xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/cfgloopmanip.c (revision d90047b5d07facf36e6c01dcc0bded8997ce9cc2)
1 /* Loop manipulation code for GNU compiler.
2    Copyright (C) 2002-2017 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "cfganal.h"
29 #include "cfgloop.h"
30 #include "gimple-iterator.h"
31 #include "gimplify-me.h"
32 #include "tree-ssa-loop-manip.h"
33 #include "dumpfile.h"
34 
35 static void copy_loops_to (struct loop **, int,
36 			   struct loop *);
37 static void loop_redirect_edge (edge, basic_block);
38 static void remove_bbs (basic_block *, int);
39 static bool rpe_enum_p (const_basic_block, const void *);
40 static int find_path (edge, basic_block **);
41 static void fix_loop_placements (struct loop *, bool *);
42 static bool fix_bb_placement (basic_block);
43 static void fix_bb_placements (basic_block, bool *, bitmap);
44 
45 /* Checks whether basic block BB is dominated by DATA.  */
46 static bool
47 rpe_enum_p (const_basic_block bb, const void *data)
48 {
49   return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data);
50 }
51 
52 /* Remove basic blocks BBS.  NBBS is the number of the basic blocks.  */
53 
54 static void
55 remove_bbs (basic_block *bbs, int nbbs)
56 {
57   int i;
58 
59   for (i = 0; i < nbbs; i++)
60     delete_basic_block (bbs[i]);
61 }
62 
63 /* Find path -- i.e. the basic blocks dominated by edge E and put them
64    into array BBS, that will be allocated large enough to contain them.
65    E->dest must have exactly one predecessor for this to work (it is
66    easy to achieve and we do not put it here because we do not want to
67    alter anything by this function).  The number of basic blocks in the
68    path is returned.  */
69 static int
70 find_path (edge e, basic_block **bbs)
71 {
72   gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
73 
74   /* Find bbs in the path.  */
75   *bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
76   return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
77 			     n_basic_blocks_for_fn (cfun), e->dest);
78 }
79 
80 /* Fix placement of basic block BB inside loop hierarchy --
81    Let L be a loop to that BB belongs.  Then every successor of BB must either
82      1) belong to some superloop of loop L, or
83      2) be a header of loop K such that K->outer is superloop of L
84    Returns true if we had to move BB into other loop to enforce this condition,
85    false if the placement of BB was already correct (provided that placements
86    of its successors are correct).  */
87 static bool
88 fix_bb_placement (basic_block bb)
89 {
90   edge e;
91   edge_iterator ei;
92   struct loop *loop = current_loops->tree_root, *act;
93 
94   FOR_EACH_EDGE (e, ei, bb->succs)
95     {
96       if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
97 	continue;
98 
99       act = e->dest->loop_father;
100       if (act->header == e->dest)
101 	act = loop_outer (act);
102 
103       if (flow_loop_nested_p (loop, act))
104 	loop = act;
105     }
106 
107   if (loop == bb->loop_father)
108     return false;
109 
110   remove_bb_from_loops (bb);
111   add_bb_to_loop (bb, loop);
112 
113   return true;
114 }
115 
116 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
117    of LOOP to that leads at least one exit edge of LOOP, and set it
118    as the immediate superloop of LOOP.  Return true if the immediate superloop
119    of LOOP changed.
120 
121    IRRED_INVALIDATED is set to true if a change in the loop structures might
122    invalidate the information about irreducible regions.  */
123 
124 static bool
125 fix_loop_placement (struct loop *loop, bool *irred_invalidated)
126 {
127   unsigned i;
128   edge e;
129   vec<edge> exits = get_loop_exit_edges (loop);
130   struct loop *father = current_loops->tree_root, *act;
131   bool ret = false;
132 
133   FOR_EACH_VEC_ELT (exits, i, e)
134     {
135       act = find_common_loop (loop, e->dest->loop_father);
136       if (flow_loop_nested_p (father, act))
137 	father = act;
138     }
139 
140   if (father != loop_outer (loop))
141     {
142       for (act = loop_outer (loop); act != father; act = loop_outer (act))
143 	act->num_nodes -= loop->num_nodes;
144       flow_loop_tree_node_remove (loop);
145       flow_loop_tree_node_add (father, loop);
146 
147       /* The exit edges of LOOP no longer exits its original immediate
148 	 superloops; remove them from the appropriate exit lists.  */
149       FOR_EACH_VEC_ELT (exits, i, e)
150 	{
151 	  /* We may need to recompute irreducible loops.  */
152 	  if (e->flags & EDGE_IRREDUCIBLE_LOOP)
153 	    *irred_invalidated = true;
154 	  rescan_loop_exit (e, false, false);
155 	}
156 
157       ret = true;
158     }
159 
160   exits.release ();
161   return ret;
162 }
163 
164 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
165    enforce condition stated in description of fix_bb_placement. We
166    start from basic block FROM that had some of its successors removed, so that
167    his placement no longer has to be correct, and iteratively fix placement of
168    its predecessors that may change if placement of FROM changed.  Also fix
169    placement of subloops of FROM->loop_father, that might also be altered due
170    to this change; the condition for them is similar, except that instead of
171    successors we consider edges coming out of the loops.
172 
173    If the changes may invalidate the information about irreducible regions,
174    IRRED_INVALIDATED is set to true.
175 
176    If LOOP_CLOSED_SSA_INVLIDATED is non-zero then all basic blocks with
177    changed loop_father are collected there. */
178 
179 static void
180 fix_bb_placements (basic_block from,
181 		   bool *irred_invalidated,
182 		   bitmap loop_closed_ssa_invalidated)
183 {
184   basic_block *queue, *qtop, *qbeg, *qend;
185   struct loop *base_loop, *target_loop;
186   edge e;
187 
188   /* We pass through blocks back-reachable from FROM, testing whether some
189      of their successors moved to outer loop.  It may be necessary to
190      iterate several times, but it is finite, as we stop unless we move
191      the basic block up the loop structure.  The whole story is a bit
192      more complicated due to presence of subloops, those are moved using
193      fix_loop_placement.  */
194 
195   base_loop = from->loop_father;
196   /* If we are already in the outermost loop, the basic blocks cannot be moved
197      outside of it.  If FROM is the header of the base loop, it cannot be moved
198      outside of it, either.  In both cases, we can end now.  */
199   if (base_loop == current_loops->tree_root
200       || from == base_loop->header)
201     return;
202 
203   auto_sbitmap in_queue (last_basic_block_for_fn (cfun));
204   bitmap_clear (in_queue);
205   bitmap_set_bit (in_queue, from->index);
206   /* Prevent us from going out of the base_loop.  */
207   bitmap_set_bit (in_queue, base_loop->header->index);
208 
209   queue = XNEWVEC (basic_block, base_loop->num_nodes + 1);
210   qtop = queue + base_loop->num_nodes + 1;
211   qbeg = queue;
212   qend = queue + 1;
213   *qbeg = from;
214 
215   while (qbeg != qend)
216     {
217       edge_iterator ei;
218       from = *qbeg;
219       qbeg++;
220       if (qbeg == qtop)
221 	qbeg = queue;
222       bitmap_clear_bit (in_queue, from->index);
223 
224       if (from->loop_father->header == from)
225 	{
226 	  /* Subloop header, maybe move the loop upward.  */
227 	  if (!fix_loop_placement (from->loop_father, irred_invalidated))
228 	    continue;
229 	  target_loop = loop_outer (from->loop_father);
230 	  if (loop_closed_ssa_invalidated)
231 	    {
232 	      basic_block *bbs = get_loop_body (from->loop_father);
233 	      for (unsigned i = 0; i < from->loop_father->num_nodes; ++i)
234 		bitmap_set_bit (loop_closed_ssa_invalidated, bbs[i]->index);
235 	      free (bbs);
236 	    }
237 	}
238       else
239 	{
240 	  /* Ordinary basic block.  */
241 	  if (!fix_bb_placement (from))
242 	    continue;
243 	  target_loop = from->loop_father;
244 	  if (loop_closed_ssa_invalidated)
245 	    bitmap_set_bit (loop_closed_ssa_invalidated, from->index);
246 	}
247 
248       FOR_EACH_EDGE (e, ei, from->succs)
249 	{
250 	  if (e->flags & EDGE_IRREDUCIBLE_LOOP)
251 	    *irred_invalidated = true;
252 	}
253 
254       /* Something has changed, insert predecessors into queue.  */
255       FOR_EACH_EDGE (e, ei, from->preds)
256 	{
257 	  basic_block pred = e->src;
258 	  struct loop *nca;
259 
260 	  if (e->flags & EDGE_IRREDUCIBLE_LOOP)
261 	    *irred_invalidated = true;
262 
263 	  if (bitmap_bit_p (in_queue, pred->index))
264 	    continue;
265 
266 	  /* If it is subloop, then it either was not moved, or
267 	     the path up the loop tree from base_loop do not contain
268 	     it.  */
269 	  nca = find_common_loop (pred->loop_father, base_loop);
270 	  if (pred->loop_father != base_loop
271 	      && (nca == base_loop
272 		  || nca != pred->loop_father))
273 	    pred = pred->loop_father->header;
274 	  else if (!flow_loop_nested_p (target_loop, pred->loop_father))
275 	    {
276 	      /* If PRED is already higher in the loop hierarchy than the
277 		 TARGET_LOOP to that we moved FROM, the change of the position
278 		 of FROM does not affect the position of PRED, so there is no
279 		 point in processing it.  */
280 	      continue;
281 	    }
282 
283 	  if (bitmap_bit_p (in_queue, pred->index))
284 	    continue;
285 
286 	  /* Schedule the basic block.  */
287 	  *qend = pred;
288 	  qend++;
289 	  if (qend == qtop)
290 	    qend = queue;
291 	  bitmap_set_bit (in_queue, pred->index);
292 	}
293     }
294   free (queue);
295 }
296 
297 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
298    and update loop structures and dominators.  Return true if we were able
299    to remove the path, false otherwise (and nothing is affected then).  */
300 bool
301 remove_path (edge e, bool *irred_invalidated,
302 	     bitmap loop_closed_ssa_invalidated)
303 {
304   edge ae;
305   basic_block *rem_bbs, *bord_bbs, from, bb;
306   vec<basic_block> dom_bbs;
307   int i, nrem, n_bord_bbs;
308   bool local_irred_invalidated = false;
309   edge_iterator ei;
310   struct loop *l, *f;
311 
312   if (! irred_invalidated)
313     irred_invalidated = &local_irred_invalidated;
314 
315   if (!can_remove_branch_p (e))
316     return false;
317 
318   /* Keep track of whether we need to update information about irreducible
319      regions.  This is the case if the removed area is a part of the
320      irreducible region, or if the set of basic blocks that belong to a loop
321      that is inside an irreducible region is changed, or if such a loop is
322      removed.  */
323   if (e->flags & EDGE_IRREDUCIBLE_LOOP)
324     *irred_invalidated = true;
325 
326   /* We need to check whether basic blocks are dominated by the edge
327      e, but we only have basic block dominators.  This is easy to
328      fix -- when e->dest has exactly one predecessor, this corresponds
329      to blocks dominated by e->dest, if not, split the edge.  */
330   if (!single_pred_p (e->dest))
331     e = single_pred_edge (split_edge (e));
332 
333   /* It may happen that by removing path we remove one or more loops
334      we belong to.  In this case first unloop the loops, then proceed
335      normally.   We may assume that e->dest is not a header of any loop,
336      as it now has exactly one predecessor.  */
337   for (l = e->src->loop_father; loop_outer (l); l = f)
338     {
339       f = loop_outer (l);
340       if (dominated_by_p (CDI_DOMINATORS, l->latch, e->dest))
341         unloop (l, irred_invalidated, loop_closed_ssa_invalidated);
342     }
343 
344   /* Identify the path.  */
345   nrem = find_path (e, &rem_bbs);
346 
347   n_bord_bbs = 0;
348   bord_bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
349   auto_sbitmap seen (last_basic_block_for_fn (cfun));
350   bitmap_clear (seen);
351 
352   /* Find "border" hexes -- i.e. those with predecessor in removed path.  */
353   for (i = 0; i < nrem; i++)
354     bitmap_set_bit (seen, rem_bbs[i]->index);
355   if (!*irred_invalidated)
356     FOR_EACH_EDGE (ae, ei, e->src->succs)
357       if (ae != e && ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
358 	  && !bitmap_bit_p (seen, ae->dest->index)
359 	  && ae->flags & EDGE_IRREDUCIBLE_LOOP)
360 	{
361 	  *irred_invalidated = true;
362 	  break;
363 	}
364 
365   for (i = 0; i < nrem; i++)
366     {
367       bb = rem_bbs[i];
368       FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
369 	if (ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
370 	    && !bitmap_bit_p (seen, ae->dest->index))
371 	  {
372 	    bitmap_set_bit (seen, ae->dest->index);
373 	    bord_bbs[n_bord_bbs++] = ae->dest;
374 
375 	    if (ae->flags & EDGE_IRREDUCIBLE_LOOP)
376 	      *irred_invalidated = true;
377 	  }
378     }
379 
380   /* Remove the path.  */
381   from = e->src;
382   remove_branch (e);
383   dom_bbs.create (0);
384 
385   /* Cancel loops contained in the path.  */
386   for (i = 0; i < nrem; i++)
387     if (rem_bbs[i]->loop_father->header == rem_bbs[i])
388       cancel_loop_tree (rem_bbs[i]->loop_father);
389 
390   remove_bbs (rem_bbs, nrem);
391   free (rem_bbs);
392 
393   /* Find blocks whose dominators may be affected.  */
394   bitmap_clear (seen);
395   for (i = 0; i < n_bord_bbs; i++)
396     {
397       basic_block ldom;
398 
399       bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
400       if (bitmap_bit_p (seen, bb->index))
401 	continue;
402       bitmap_set_bit (seen, bb->index);
403 
404       for (ldom = first_dom_son (CDI_DOMINATORS, bb);
405 	   ldom;
406 	   ldom = next_dom_son (CDI_DOMINATORS, ldom))
407 	if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
408 	  dom_bbs.safe_push (ldom);
409     }
410 
411   /* Recount dominators.  */
412   iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true);
413   dom_bbs.release ();
414   free (bord_bbs);
415 
416   /* Fix placements of basic blocks inside loops and the placement of
417      loops in the loop tree.  */
418   fix_bb_placements (from, irred_invalidated, loop_closed_ssa_invalidated);
419   fix_loop_placements (from->loop_father, irred_invalidated);
420 
421   if (local_irred_invalidated
422       && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
423     mark_irreducible_loops ();
424 
425   return true;
426 }
427 
428 /* Creates place for a new LOOP in loops structure of FN.  */
429 
430 void
431 place_new_loop (struct function *fn, struct loop *loop)
432 {
433   loop->num = number_of_loops (fn);
434   vec_safe_push (loops_for_fn (fn)->larray, loop);
435 }
436 
437 /* Given LOOP structure with filled header and latch, find the body of the
438    corresponding loop and add it to loops tree.  Insert the LOOP as a son of
439    outer.  */
440 
441 void
442 add_loop (struct loop *loop, struct loop *outer)
443 {
444   basic_block *bbs;
445   int i, n;
446   struct loop *subloop;
447   edge e;
448   edge_iterator ei;
449 
450   /* Add it to loop structure.  */
451   place_new_loop (cfun, loop);
452   flow_loop_tree_node_add (outer, loop);
453 
454   /* Find its nodes.  */
455   bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
456   n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
457 
458   for (i = 0; i < n; i++)
459     {
460       if (bbs[i]->loop_father == outer)
461 	{
462 	  remove_bb_from_loops (bbs[i]);
463 	  add_bb_to_loop (bbs[i], loop);
464 	  continue;
465 	}
466 
467       loop->num_nodes++;
468 
469       /* If we find a direct subloop of OUTER, move it to LOOP.  */
470       subloop = bbs[i]->loop_father;
471       if (loop_outer (subloop) == outer
472 	  && subloop->header == bbs[i])
473 	{
474 	  flow_loop_tree_node_remove (subloop);
475 	  flow_loop_tree_node_add (loop, subloop);
476 	}
477     }
478 
479   /* Update the information about loop exit edges.  */
480   for (i = 0; i < n; i++)
481     {
482       FOR_EACH_EDGE (e, ei, bbs[i]->succs)
483 	{
484 	  rescan_loop_exit (e, false, false);
485 	}
486     }
487 
488   free (bbs);
489 }
490 
491 /* Multiply all frequencies in LOOP by NUM/DEN.  */
492 
493 void
494 scale_loop_frequencies (struct loop *loop, int num, int den)
495 {
496   basic_block *bbs;
497 
498   bbs = get_loop_body (loop);
499   scale_bbs_frequencies_int (bbs, loop->num_nodes, num, den);
500   free (bbs);
501 }
502 
503 /* Multiply all frequencies in LOOP by SCALE/REG_BR_PROB_BASE.
504    If ITERATION_BOUND is non-zero, scale even further if loop is predicted
505    to iterate too many times.  */
506 
507 void
508 scale_loop_profile (struct loop *loop, int scale, gcov_type iteration_bound)
509 {
510   gcov_type iterations = expected_loop_iterations_unbounded (loop);
511   edge e;
512   edge_iterator ei;
513 
514   if (dump_file && (dump_flags & TDF_DETAILS))
515     fprintf (dump_file, ";; Scaling loop %i with scale %f, "
516 	     "bounding iterations to %i from guessed %i\n",
517 	     loop->num, (double)scale / REG_BR_PROB_BASE,
518 	     (int)iteration_bound, (int)iterations);
519 
520   /* See if loop is predicted to iterate too many times.  */
521   if (iteration_bound && iterations > 0
522       && apply_probability (iterations, scale) > iteration_bound)
523     {
524       /* Fixing loop profile for different trip count is not trivial; the exit
525 	 probabilities has to be updated to match and frequencies propagated down
526 	 to the loop body.
527 
528 	 We fully update only the simple case of loop with single exit that is
529 	 either from the latch or BB just before latch and leads from BB with
530 	 simple conditional jump.   This is OK for use in vectorizer.  */
531       e = single_exit (loop);
532       if (e)
533 	{
534 	  edge other_e;
535 	  int freq_delta;
536 	  gcov_type count_delta;
537 
538           FOR_EACH_EDGE (other_e, ei, e->src->succs)
539 	    if (!(other_e->flags & (EDGE_ABNORMAL | EDGE_FAKE))
540 		&& e != other_e)
541 	      break;
542 
543 	  /* Probability of exit must be 1/iterations.  */
544 	  freq_delta = EDGE_FREQUENCY (e);
545 	  e->probability = REG_BR_PROB_BASE / iteration_bound;
546 	  other_e->probability = inverse_probability (e->probability);
547 	  freq_delta -= EDGE_FREQUENCY (e);
548 
549 	  /* Adjust counts accordingly.  */
550 	  count_delta = e->count;
551 	  e->count = apply_probability (e->src->count, e->probability);
552 	  other_e->count = apply_probability (e->src->count, other_e->probability);
553 	  count_delta -= e->count;
554 
555 	  /* If latch exists, change its frequency and count, since we changed
556 	     probability of exit.  Theoretically we should update everything from
557 	     source of exit edge to latch, but for vectorizer this is enough.  */
558 	  if (loop->latch
559 	      && loop->latch != e->src)
560 	    {
561 	      loop->latch->frequency += freq_delta;
562 	      if (loop->latch->frequency < 0)
563 		loop->latch->frequency = 0;
564 	      loop->latch->count += count_delta;
565 	      if (loop->latch->count < 0)
566 		loop->latch->count = 0;
567 	    }
568 	}
569 
570       /* Roughly speaking we want to reduce the loop body profile by the
571 	 difference of loop iterations.  We however can do better if
572 	 we look at the actual profile, if it is available.  */
573       scale = RDIV (iteration_bound * scale, iterations);
574       if (loop->header->count)
575 	{
576 	  gcov_type count_in = 0;
577 
578 	  FOR_EACH_EDGE (e, ei, loop->header->preds)
579 	    if (e->src != loop->latch)
580 	      count_in += e->count;
581 
582 	  if (count_in != 0)
583 	    scale = GCOV_COMPUTE_SCALE (count_in * iteration_bound,
584                                         loop->header->count);
585 	}
586       else if (loop->header->frequency)
587 	{
588 	  int freq_in = 0;
589 
590 	  FOR_EACH_EDGE (e, ei, loop->header->preds)
591 	    if (e->src != loop->latch)
592 	      freq_in += EDGE_FREQUENCY (e);
593 
594 	  if (freq_in != 0)
595 	    scale = GCOV_COMPUTE_SCALE (freq_in * iteration_bound,
596                                         loop->header->frequency);
597 	}
598       if (!scale)
599 	scale = 1;
600     }
601 
602   if (scale == REG_BR_PROB_BASE)
603     return;
604 
605   /* Scale the actual probabilities.  */
606   scale_loop_frequencies (loop, scale, REG_BR_PROB_BASE);
607   if (dump_file && (dump_flags & TDF_DETAILS))
608     fprintf (dump_file, ";; guessed iterations are now %i\n",
609 	     (int)expected_loop_iterations_unbounded (loop));
610 }
611 
612 /* Recompute dominance information for basic blocks outside LOOP.  */
613 
614 static void
615 update_dominators_in_loop (struct loop *loop)
616 {
617   vec<basic_block> dom_bbs = vNULL;
618   basic_block *body;
619   unsigned i;
620 
621   auto_sbitmap seen (last_basic_block_for_fn (cfun));
622   bitmap_clear (seen);
623   body = get_loop_body (loop);
624 
625   for (i = 0; i < loop->num_nodes; i++)
626     bitmap_set_bit (seen, body[i]->index);
627 
628   for (i = 0; i < loop->num_nodes; i++)
629     {
630       basic_block ldom;
631 
632       for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
633 	   ldom;
634 	   ldom = next_dom_son (CDI_DOMINATORS, ldom))
635 	if (!bitmap_bit_p (seen, ldom->index))
636 	  {
637 	    bitmap_set_bit (seen, ldom->index);
638 	    dom_bbs.safe_push (ldom);
639 	  }
640     }
641 
642   iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
643   free (body);
644   dom_bbs.release ();
645 }
646 
647 /* Creates an if region as shown above. CONDITION is used to create
648    the test for the if.
649 
650    |
651    |     -------------                 -------------
652    |     |  pred_bb  |                 |  pred_bb  |
653    |     -------------                 -------------
654    |           |                             |
655    |           |                             | ENTRY_EDGE
656    |           | ENTRY_EDGE                  V
657    |           |             ====>     -------------
658    |           |                       |  cond_bb  |
659    |           |                       | CONDITION |
660    |           |                       -------------
661    |           V                        /         \
662    |     -------------         e_false /           \ e_true
663    |     |  succ_bb  |                V             V
664    |     -------------         -----------       -----------
665    |                           | false_bb |      | true_bb |
666    |                           -----------       -----------
667    |                                   \           /
668    |                                    \         /
669    |                                     V       V
670    |                                   -------------
671    |                                   |  join_bb  |
672    |                                   -------------
673    |                                         | exit_edge (result)
674    |                                         V
675    |                                    -----------
676    |                                    | succ_bb |
677    |                                    -----------
678    |
679  */
680 
681 edge
682 create_empty_if_region_on_edge (edge entry_edge, tree condition)
683 {
684 
685   basic_block cond_bb, true_bb, false_bb, join_bb;
686   edge e_true, e_false, exit_edge;
687   gcond *cond_stmt;
688   tree simple_cond;
689   gimple_stmt_iterator gsi;
690 
691   cond_bb = split_edge (entry_edge);
692 
693   /* Insert condition in cond_bb.  */
694   gsi = gsi_last_bb (cond_bb);
695   simple_cond =
696     force_gimple_operand_gsi (&gsi, condition, true, NULL,
697 			      false, GSI_NEW_STMT);
698   cond_stmt = gimple_build_cond_from_tree (simple_cond, NULL_TREE, NULL_TREE);
699   gsi = gsi_last_bb (cond_bb);
700   gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
701 
702   join_bb = split_edge (single_succ_edge (cond_bb));
703 
704   e_true = single_succ_edge (cond_bb);
705   true_bb = split_edge (e_true);
706 
707   e_false = make_edge (cond_bb, join_bb, 0);
708   false_bb = split_edge (e_false);
709 
710   e_true->flags &= ~EDGE_FALLTHRU;
711   e_true->flags |= EDGE_TRUE_VALUE;
712   e_false->flags &= ~EDGE_FALLTHRU;
713   e_false->flags |= EDGE_FALSE_VALUE;
714 
715   set_immediate_dominator (CDI_DOMINATORS, cond_bb, entry_edge->src);
716   set_immediate_dominator (CDI_DOMINATORS, true_bb, cond_bb);
717   set_immediate_dominator (CDI_DOMINATORS, false_bb, cond_bb);
718   set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb);
719 
720   exit_edge = single_succ_edge (join_bb);
721 
722   if (single_pred_p (exit_edge->dest))
723     set_immediate_dominator (CDI_DOMINATORS, exit_edge->dest, join_bb);
724 
725   return exit_edge;
726 }
727 
728 /* create_empty_loop_on_edge
729    |
730    |    - pred_bb -                   ------ pred_bb ------
731    |   |           |                 | iv0 = initial_value |
732    |    -----|-----                   ---------|-----------
733    |         |                       ______    | entry_edge
734    |         | entry_edge           /      |   |
735    |         |             ====>   |      -V---V- loop_header -------------
736    |         V                     |     | iv_before = phi (iv0, iv_after) |
737    |    - succ_bb -                |      ---|-----------------------------
738    |   |           |               |         |
739    |    -----------                |      ---V--- loop_body ---------------
740    |                               |     | iv_after = iv_before + stride   |
741    |                               |     | if (iv_before < upper_bound)    |
742    |                               |      ---|--------------\--------------
743    |                               |         |               \ exit_e
744    |                               |         V                \
745    |                               |       - loop_latch -      V- succ_bb -
746    |                               |      |              |     |           |
747    |                               |       /-------------       -----------
748    |                                \ ___ /
749 
750    Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME
751    that is used before the increment of IV. IV_BEFORE should be used for
752    adding code to the body that uses the IV.  OUTER is the outer loop in
753    which the new loop should be inserted.
754 
755    Both INITIAL_VALUE and UPPER_BOUND expressions are gimplified and
756    inserted on the loop entry edge.  This implies that this function
757    should be used only when the UPPER_BOUND expression is a loop
758    invariant.  */
759 
760 struct loop *
761 create_empty_loop_on_edge (edge entry_edge,
762 			   tree initial_value,
763 			   tree stride, tree upper_bound,
764 			   tree iv,
765 			   tree *iv_before,
766 			   tree *iv_after,
767 			   struct loop *outer)
768 {
769   basic_block loop_header, loop_latch, succ_bb, pred_bb;
770   struct loop *loop;
771   gimple_stmt_iterator gsi;
772   gimple_seq stmts;
773   gcond *cond_expr;
774   tree exit_test;
775   edge exit_e;
776   int prob;
777 
778   gcc_assert (entry_edge && initial_value && stride && upper_bound && iv);
779 
780   /* Create header, latch and wire up the loop.  */
781   pred_bb = entry_edge->src;
782   loop_header = split_edge (entry_edge);
783   loop_latch = split_edge (single_succ_edge (loop_header));
784   succ_bb = single_succ (loop_latch);
785   make_edge (loop_header, succ_bb, 0);
786   redirect_edge_succ_nodup (single_succ_edge (loop_latch), loop_header);
787 
788   /* Set immediate dominator information.  */
789   set_immediate_dominator (CDI_DOMINATORS, loop_header, pred_bb);
790   set_immediate_dominator (CDI_DOMINATORS, loop_latch, loop_header);
791   set_immediate_dominator (CDI_DOMINATORS, succ_bb, loop_header);
792 
793   /* Initialize a loop structure and put it in a loop hierarchy.  */
794   loop = alloc_loop ();
795   loop->header = loop_header;
796   loop->latch = loop_latch;
797   add_loop (loop, outer);
798 
799   /* TODO: Fix frequencies and counts.  */
800   prob = REG_BR_PROB_BASE / 2;
801 
802   scale_loop_frequencies (loop, REG_BR_PROB_BASE - prob, REG_BR_PROB_BASE);
803 
804   /* Update dominators.  */
805   update_dominators_in_loop (loop);
806 
807   /* Modify edge flags.  */
808   exit_e = single_exit (loop);
809   exit_e->flags = EDGE_LOOP_EXIT | EDGE_FALSE_VALUE;
810   single_pred_edge (loop_latch)->flags = EDGE_TRUE_VALUE;
811 
812   /* Construct IV code in loop.  */
813   initial_value = force_gimple_operand (initial_value, &stmts, true, iv);
814   if (stmts)
815     {
816       gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
817       gsi_commit_edge_inserts ();
818     }
819 
820   upper_bound = force_gimple_operand (upper_bound, &stmts, true, NULL);
821   if (stmts)
822     {
823       gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
824       gsi_commit_edge_inserts ();
825     }
826 
827   gsi = gsi_last_bb (loop_header);
828   create_iv (initial_value, stride, iv, loop, &gsi, false,
829 	     iv_before, iv_after);
830 
831   /* Insert loop exit condition.  */
832   cond_expr = gimple_build_cond
833     (LT_EXPR, *iv_before, upper_bound, NULL_TREE, NULL_TREE);
834 
835   exit_test = gimple_cond_lhs (cond_expr);
836   exit_test = force_gimple_operand_gsi (&gsi, exit_test, true, NULL,
837 					false, GSI_NEW_STMT);
838   gimple_cond_set_lhs (cond_expr, exit_test);
839   gsi = gsi_last_bb (exit_e->src);
840   gsi_insert_after (&gsi, cond_expr, GSI_NEW_STMT);
841 
842   split_block_after_labels (loop_header);
843 
844   return loop;
845 }
846 
847 /* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting
848    latch to header and update loop tree and dominators
849    accordingly. Everything between them plus LATCH_EDGE destination must
850    be dominated by HEADER_EDGE destination, and back-reachable from
851    LATCH_EDGE source.  HEADER_EDGE is redirected to basic block SWITCH_BB,
852    FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and
853    TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE.
854    Returns the newly created loop.  Frequencies and counts in the new loop
855    are scaled by FALSE_SCALE and in the old one by TRUE_SCALE.  */
856 
857 struct loop *
858 loopify (edge latch_edge, edge header_edge,
859 	 basic_block switch_bb, edge true_edge, edge false_edge,
860 	 bool redirect_all_edges, unsigned true_scale, unsigned false_scale)
861 {
862   basic_block succ_bb = latch_edge->dest;
863   basic_block pred_bb = header_edge->src;
864   struct loop *loop = alloc_loop ();
865   struct loop *outer = loop_outer (succ_bb->loop_father);
866   int freq;
867   gcov_type cnt;
868   edge e;
869   edge_iterator ei;
870 
871   loop->header = header_edge->dest;
872   loop->latch = latch_edge->src;
873 
874   freq = EDGE_FREQUENCY (header_edge);
875   cnt = header_edge->count;
876 
877   /* Redirect edges.  */
878   loop_redirect_edge (latch_edge, loop->header);
879   loop_redirect_edge (true_edge, succ_bb);
880 
881   /* During loop versioning, one of the switch_bb edge is already properly
882      set. Do not redirect it again unless redirect_all_edges is true.  */
883   if (redirect_all_edges)
884     {
885       loop_redirect_edge (header_edge, switch_bb);
886       loop_redirect_edge (false_edge, loop->header);
887 
888       /* Update dominators.  */
889       set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb);
890       set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb);
891     }
892 
893   set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb);
894 
895   /* Compute new loop.  */
896   add_loop (loop, outer);
897 
898   /* Add switch_bb to appropriate loop.  */
899   if (switch_bb->loop_father)
900     remove_bb_from_loops (switch_bb);
901   add_bb_to_loop (switch_bb, outer);
902 
903   /* Fix frequencies.  */
904   if (redirect_all_edges)
905     {
906       switch_bb->frequency = freq;
907       switch_bb->count = cnt;
908       FOR_EACH_EDGE (e, ei, switch_bb->succs)
909 	{
910 	  e->count = apply_probability (switch_bb->count, e->probability);
911 	}
912     }
913   scale_loop_frequencies (loop, false_scale, REG_BR_PROB_BASE);
914   scale_loop_frequencies (succ_bb->loop_father, true_scale, REG_BR_PROB_BASE);
915   update_dominators_in_loop (loop);
916 
917   return loop;
918 }
919 
920 /* Remove the latch edge of a LOOP and update loops to indicate that
921    the LOOP was removed.  After this function, original loop latch will
922    have no successor, which caller is expected to fix somehow.
923 
924    If this may cause the information about irreducible regions to become
925    invalid, IRRED_INVALIDATED is set to true.
926 
927    LOOP_CLOSED_SSA_INVALIDATED, if non-NULL, is a bitmap where we store
928    basic blocks that had non-trivial update on their loop_father.*/
929 
930 void
931 unloop (struct loop *loop, bool *irred_invalidated,
932 	bitmap loop_closed_ssa_invalidated)
933 {
934   basic_block *body;
935   struct loop *ploop;
936   unsigned i, n;
937   basic_block latch = loop->latch;
938   bool dummy = false;
939 
940   if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
941     *irred_invalidated = true;
942 
943   /* This is relatively straightforward.  The dominators are unchanged, as
944      loop header dominates loop latch, so the only thing we have to care of
945      is the placement of loops and basic blocks inside the loop tree.  We
946      move them all to the loop->outer, and then let fix_bb_placements do
947      its work.  */
948 
949   body = get_loop_body (loop);
950   n = loop->num_nodes;
951   for (i = 0; i < n; i++)
952     if (body[i]->loop_father == loop)
953       {
954 	remove_bb_from_loops (body[i]);
955 	add_bb_to_loop (body[i], loop_outer (loop));
956       }
957   free (body);
958 
959   while (loop->inner)
960     {
961       ploop = loop->inner;
962       flow_loop_tree_node_remove (ploop);
963       flow_loop_tree_node_add (loop_outer (loop), ploop);
964     }
965 
966   /* Remove the loop and free its data.  */
967   delete_loop (loop);
968 
969   remove_edge (single_succ_edge (latch));
970 
971   /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
972      there is an irreducible region inside the cancelled loop, the flags will
973      be still correct.  */
974   fix_bb_placements (latch, &dummy, loop_closed_ssa_invalidated);
975 }
976 
977 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
978    condition stated in description of fix_loop_placement holds for them.
979    It is used in case when we removed some edges coming out of LOOP, which
980    may cause the right placement of LOOP inside loop tree to change.
981 
982    IRRED_INVALIDATED is set to true if a change in the loop structures might
983    invalidate the information about irreducible regions.  */
984 
985 static void
986 fix_loop_placements (struct loop *loop, bool *irred_invalidated)
987 {
988   struct loop *outer;
989 
990   while (loop_outer (loop))
991     {
992       outer = loop_outer (loop);
993       if (!fix_loop_placement (loop, irred_invalidated))
994 	break;
995 
996       /* Changing the placement of a loop in the loop tree may alter the
997 	 validity of condition 2) of the description of fix_bb_placement
998 	 for its preheader, because the successor is the header and belongs
999 	 to the loop.  So call fix_bb_placements to fix up the placement
1000 	 of the preheader and (possibly) of its predecessors.  */
1001       fix_bb_placements (loop_preheader_edge (loop)->src,
1002 			 irred_invalidated, NULL);
1003       loop = outer;
1004     }
1005 }
1006 
1007 /* Duplicate loop bounds and other information we store about
1008    the loop into its duplicate.  */
1009 
1010 void
1011 copy_loop_info (struct loop *loop, struct loop *target)
1012 {
1013   gcc_checking_assert (!target->any_upper_bound && !target->any_estimate);
1014   target->any_upper_bound = loop->any_upper_bound;
1015   target->nb_iterations_upper_bound = loop->nb_iterations_upper_bound;
1016   target->any_likely_upper_bound = loop->any_likely_upper_bound;
1017   target->nb_iterations_likely_upper_bound
1018     = loop->nb_iterations_likely_upper_bound;
1019   target->any_estimate = loop->any_estimate;
1020   target->nb_iterations_estimate = loop->nb_iterations_estimate;
1021   target->estimate_state = loop->estimate_state;
1022   target->constraints = loop->constraints;
1023   target->warned_aggressive_loop_optimizations
1024     |= loop->warned_aggressive_loop_optimizations;
1025   target->in_oacc_kernels_region = loop->in_oacc_kernels_region;
1026 }
1027 
1028 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
1029    created loop into loops structure.  */
1030 struct loop *
1031 duplicate_loop (struct loop *loop, struct loop *target)
1032 {
1033   struct loop *cloop;
1034   cloop = alloc_loop ();
1035   place_new_loop (cfun, cloop);
1036 
1037   copy_loop_info (loop, cloop);
1038 
1039   /* Mark the new loop as copy of LOOP.  */
1040   set_loop_copy (loop, cloop);
1041 
1042   /* Add it to target.  */
1043   flow_loop_tree_node_add (target, cloop);
1044 
1045   return cloop;
1046 }
1047 
1048 /* Copies structure of subloops of LOOP into TARGET loop, placing
1049    newly created loops into loop tree.  */
1050 void
1051 duplicate_subloops (struct loop *loop, struct loop *target)
1052 {
1053   struct loop *aloop, *cloop;
1054 
1055   for (aloop = loop->inner; aloop; aloop = aloop->next)
1056     {
1057       cloop = duplicate_loop (aloop, target);
1058       duplicate_subloops (aloop, cloop);
1059     }
1060 }
1061 
1062 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
1063    into TARGET loop, placing newly created loops into loop tree.  */
1064 static void
1065 copy_loops_to (struct loop **copied_loops, int n, struct loop *target)
1066 {
1067   struct loop *aloop;
1068   int i;
1069 
1070   for (i = 0; i < n; i++)
1071     {
1072       aloop = duplicate_loop (copied_loops[i], target);
1073       duplicate_subloops (copied_loops[i], aloop);
1074     }
1075 }
1076 
1077 /* Redirects edge E to basic block DEST.  */
1078 static void
1079 loop_redirect_edge (edge e, basic_block dest)
1080 {
1081   if (e->dest == dest)
1082     return;
1083 
1084   redirect_edge_and_branch_force (e, dest);
1085 }
1086 
1087 /* Check whether LOOP's body can be duplicated.  */
1088 bool
1089 can_duplicate_loop_p (const struct loop *loop)
1090 {
1091   int ret;
1092   basic_block *bbs = get_loop_body (loop);
1093 
1094   ret = can_copy_bbs_p (bbs, loop->num_nodes);
1095   free (bbs);
1096 
1097   return ret;
1098 }
1099 
1100 /* Sets probability and count of edge E to zero.  The probability and count
1101    is redistributed evenly to the remaining edges coming from E->src.  */
1102 
1103 static void
1104 set_zero_probability (edge e)
1105 {
1106   basic_block bb = e->src;
1107   edge_iterator ei;
1108   edge ae, last = NULL;
1109   unsigned n = EDGE_COUNT (bb->succs);
1110   gcov_type cnt = e->count, cnt1;
1111   unsigned prob = e->probability, prob1;
1112 
1113   gcc_assert (n > 1);
1114   cnt1 = cnt / (n - 1);
1115   prob1 = prob / (n - 1);
1116 
1117   FOR_EACH_EDGE (ae, ei, bb->succs)
1118     {
1119       if (ae == e)
1120 	continue;
1121 
1122       ae->probability += prob1;
1123       ae->count += cnt1;
1124       last = ae;
1125     }
1126 
1127   /* Move the rest to one of the edges.  */
1128   last->probability += prob % (n - 1);
1129   last->count += cnt % (n - 1);
1130 
1131   e->probability = 0;
1132   e->count = 0;
1133 }
1134 
1135 /* Duplicates body of LOOP to given edge E NDUPL times.  Takes care of updating
1136    loop structure and dominators.  E's destination must be LOOP header for
1137    this to work, i.e. it must be entry or latch edge of this loop; these are
1138    unique, as the loops must have preheaders for this function to work
1139    correctly (in case E is latch, the function unrolls the loop, if E is entry
1140    edge, it peels the loop).  Store edges created by copying ORIG edge from
1141    copies corresponding to set bits in WONT_EXIT bitmap (bit 0 corresponds to
1142    original LOOP body, the other copies are numbered in order given by control
1143    flow through them) into TO_REMOVE array.  Returns false if duplication is
1144    impossible.  */
1145 
1146 bool
1147 duplicate_loop_to_header_edge (struct loop *loop, edge e,
1148 			       unsigned int ndupl, sbitmap wont_exit,
1149 			       edge orig, vec<edge> *to_remove,
1150 			       int flags)
1151 {
1152   struct loop *target, *aloop;
1153   struct loop **orig_loops;
1154   unsigned n_orig_loops;
1155   basic_block header = loop->header, latch = loop->latch;
1156   basic_block *new_bbs, *bbs, *first_active;
1157   basic_block new_bb, bb, first_active_latch = NULL;
1158   edge ae, latch_edge;
1159   edge spec_edges[2], new_spec_edges[2];
1160 #define SE_LATCH 0
1161 #define SE_ORIG 1
1162   unsigned i, j, n;
1163   int is_latch = (latch == e->src);
1164   int scale_act = 0, *scale_step = NULL, scale_main = 0;
1165   int scale_after_exit = 0;
1166   int p, freq_in, freq_le, freq_out_orig;
1167   int prob_pass_thru, prob_pass_wont_exit, prob_pass_main;
1168   int add_irreducible_flag;
1169   basic_block place_after;
1170   bitmap bbs_to_scale = NULL;
1171   bitmap_iterator bi;
1172 
1173   gcc_assert (e->dest == loop->header);
1174   gcc_assert (ndupl > 0);
1175 
1176   if (orig)
1177     {
1178       /* Orig must be edge out of the loop.  */
1179       gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
1180       gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
1181     }
1182 
1183   n = loop->num_nodes;
1184   bbs = get_loop_body_in_dom_order (loop);
1185   gcc_assert (bbs[0] == loop->header);
1186   gcc_assert (bbs[n  - 1] == loop->latch);
1187 
1188   /* Check whether duplication is possible.  */
1189   if (!can_copy_bbs_p (bbs, loop->num_nodes))
1190     {
1191       free (bbs);
1192       return false;
1193     }
1194   new_bbs = XNEWVEC (basic_block, loop->num_nodes);
1195 
1196   /* In case we are doing loop peeling and the loop is in the middle of
1197      irreducible region, the peeled copies will be inside it too.  */
1198   add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
1199   gcc_assert (!is_latch || !add_irreducible_flag);
1200 
1201   /* Find edge from latch.  */
1202   latch_edge = loop_latch_edge (loop);
1203 
1204   if (flags & DLTHE_FLAG_UPDATE_FREQ)
1205     {
1206       /* Calculate coefficients by that we have to scale frequencies
1207 	 of duplicated loop bodies.  */
1208       freq_in = header->frequency;
1209       freq_le = EDGE_FREQUENCY (latch_edge);
1210       if (freq_in == 0)
1211 	freq_in = 1;
1212       if (freq_in < freq_le)
1213 	freq_in = freq_le;
1214       freq_out_orig = orig ? EDGE_FREQUENCY (orig) : freq_in - freq_le;
1215       if (freq_out_orig > freq_in - freq_le)
1216 	freq_out_orig = freq_in - freq_le;
1217       prob_pass_thru = RDIV (REG_BR_PROB_BASE * freq_le, freq_in);
1218       prob_pass_wont_exit =
1219 	      RDIV (REG_BR_PROB_BASE * (freq_le + freq_out_orig), freq_in);
1220 
1221       if (orig
1222 	  && REG_BR_PROB_BASE - orig->probability != 0)
1223 	{
1224 	  /* The blocks that are dominated by a removed exit edge ORIG have
1225 	     frequencies scaled by this.  */
1226 	  scale_after_exit
1227               = GCOV_COMPUTE_SCALE (REG_BR_PROB_BASE,
1228                                     REG_BR_PROB_BASE - orig->probability);
1229 	  bbs_to_scale = BITMAP_ALLOC (NULL);
1230 	  for (i = 0; i < n; i++)
1231 	    {
1232 	      if (bbs[i] != orig->src
1233 		  && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src))
1234 		bitmap_set_bit (bbs_to_scale, i);
1235 	    }
1236 	}
1237 
1238       scale_step = XNEWVEC (int, ndupl);
1239 
1240       for (i = 1; i <= ndupl; i++)
1241 	scale_step[i - 1] = bitmap_bit_p (wont_exit, i)
1242 				? prob_pass_wont_exit
1243 				: prob_pass_thru;
1244 
1245       /* Complete peeling is special as the probability of exit in last
1246 	 copy becomes 1.  */
1247       if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
1248 	{
1249 	  int wanted_freq = EDGE_FREQUENCY (e);
1250 
1251 	  if (wanted_freq > freq_in)
1252 	    wanted_freq = freq_in;
1253 
1254 	  gcc_assert (!is_latch);
1255 	  /* First copy has frequency of incoming edge.  Each subsequent
1256 	     frequency should be reduced by prob_pass_wont_exit.  Caller
1257 	     should've managed the flags so all except for original loop
1258 	     has won't exist set.  */
1259 	  scale_act = GCOV_COMPUTE_SCALE (wanted_freq, freq_in);
1260 	  /* Now simulate the duplication adjustments and compute header
1261 	     frequency of the last copy.  */
1262 	  for (i = 0; i < ndupl; i++)
1263 	    wanted_freq = combine_probabilities (wanted_freq, scale_step[i]);
1264 	  scale_main = GCOV_COMPUTE_SCALE (wanted_freq, freq_in);
1265 	}
1266       else if (is_latch)
1267 	{
1268 	  prob_pass_main = bitmap_bit_p (wont_exit, 0)
1269 				? prob_pass_wont_exit
1270 				: prob_pass_thru;
1271 	  p = prob_pass_main;
1272 	  scale_main = REG_BR_PROB_BASE;
1273 	  for (i = 0; i < ndupl; i++)
1274 	    {
1275 	      scale_main += p;
1276 	      p = combine_probabilities (p, scale_step[i]);
1277 	    }
1278 	  scale_main = GCOV_COMPUTE_SCALE (REG_BR_PROB_BASE, scale_main);
1279 	  scale_act = combine_probabilities (scale_main, prob_pass_main);
1280 	}
1281       else
1282 	{
1283 	  int preheader_freq = EDGE_FREQUENCY (e);
1284 	  scale_main = REG_BR_PROB_BASE;
1285 	  for (i = 0; i < ndupl; i++)
1286 	    scale_main = combine_probabilities (scale_main, scale_step[i]);
1287 	  if (preheader_freq > freq_in)
1288 	    preheader_freq = freq_in;
1289 	  scale_act = GCOV_COMPUTE_SCALE (preheader_freq, freq_in);
1290 	}
1291       for (i = 0; i < ndupl; i++)
1292 	gcc_assert (scale_step[i] >= 0 && scale_step[i] <= REG_BR_PROB_BASE);
1293       gcc_assert (scale_main >= 0 && scale_main <= REG_BR_PROB_BASE
1294 		  && scale_act >= 0  && scale_act <= REG_BR_PROB_BASE);
1295     }
1296 
1297   /* Loop the new bbs will belong to.  */
1298   target = e->src->loop_father;
1299 
1300   /* Original loops.  */
1301   n_orig_loops = 0;
1302   for (aloop = loop->inner; aloop; aloop = aloop->next)
1303     n_orig_loops++;
1304   orig_loops = XNEWVEC (struct loop *, n_orig_loops);
1305   for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
1306     orig_loops[i] = aloop;
1307 
1308   set_loop_copy (loop, target);
1309 
1310   first_active = XNEWVEC (basic_block, n);
1311   if (is_latch)
1312     {
1313       memcpy (first_active, bbs, n * sizeof (basic_block));
1314       first_active_latch = latch;
1315     }
1316 
1317   spec_edges[SE_ORIG] = orig;
1318   spec_edges[SE_LATCH] = latch_edge;
1319 
1320   place_after = e->src;
1321   for (j = 0; j < ndupl; j++)
1322     {
1323       /* Copy loops.  */
1324       copy_loops_to (orig_loops, n_orig_loops, target);
1325 
1326       /* Copy bbs.  */
1327       copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
1328 		place_after, true);
1329       place_after = new_spec_edges[SE_LATCH]->src;
1330 
1331       if (flags & DLTHE_RECORD_COPY_NUMBER)
1332 	for (i = 0; i < n; i++)
1333 	  {
1334 	    gcc_assert (!new_bbs[i]->aux);
1335 	    new_bbs[i]->aux = (void *)(size_t)(j + 1);
1336 	  }
1337 
1338       /* Note whether the blocks and edges belong to an irreducible loop.  */
1339       if (add_irreducible_flag)
1340 	{
1341 	  for (i = 0; i < n; i++)
1342 	    new_bbs[i]->flags |= BB_DUPLICATED;
1343 	  for (i = 0; i < n; i++)
1344 	    {
1345 	      edge_iterator ei;
1346 	      new_bb = new_bbs[i];
1347 	      if (new_bb->loop_father == target)
1348 		new_bb->flags |= BB_IRREDUCIBLE_LOOP;
1349 
1350 	      FOR_EACH_EDGE (ae, ei, new_bb->succs)
1351 		if ((ae->dest->flags & BB_DUPLICATED)
1352 		    && (ae->src->loop_father == target
1353 			|| ae->dest->loop_father == target))
1354 		  ae->flags |= EDGE_IRREDUCIBLE_LOOP;
1355 	    }
1356 	  for (i = 0; i < n; i++)
1357 	    new_bbs[i]->flags &= ~BB_DUPLICATED;
1358 	}
1359 
1360       /* Redirect the special edges.  */
1361       if (is_latch)
1362 	{
1363 	  redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1364 	  redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1365 					  loop->header);
1366 	  set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
1367 	  latch = loop->latch = new_bbs[n - 1];
1368 	  e = latch_edge = new_spec_edges[SE_LATCH];
1369 	}
1370       else
1371 	{
1372 	  redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1373 					  loop->header);
1374 	  redirect_edge_and_branch_force (e, new_bbs[0]);
1375 	  set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
1376 	  e = new_spec_edges[SE_LATCH];
1377 	}
1378 
1379       /* Record exit edge in this copy.  */
1380       if (orig && bitmap_bit_p (wont_exit, j + 1))
1381 	{
1382 	  if (to_remove)
1383 	    to_remove->safe_push (new_spec_edges[SE_ORIG]);
1384 	  set_zero_probability (new_spec_edges[SE_ORIG]);
1385 
1386 	  /* Scale the frequencies of the blocks dominated by the exit.  */
1387 	  if (bbs_to_scale)
1388 	    {
1389 	      EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1390 		{
1391 		  scale_bbs_frequencies_int (new_bbs + i, 1, scale_after_exit,
1392 					     REG_BR_PROB_BASE);
1393 		}
1394 	    }
1395 	}
1396 
1397       /* Record the first copy in the control flow order if it is not
1398 	 the original loop (i.e. in case of peeling).  */
1399       if (!first_active_latch)
1400 	{
1401 	  memcpy (first_active, new_bbs, n * sizeof (basic_block));
1402 	  first_active_latch = new_bbs[n - 1];
1403 	}
1404 
1405       /* Set counts and frequencies.  */
1406       if (flags & DLTHE_FLAG_UPDATE_FREQ)
1407 	{
1408 	  scale_bbs_frequencies_int (new_bbs, n, scale_act, REG_BR_PROB_BASE);
1409 	  scale_act = combine_probabilities (scale_act, scale_step[j]);
1410 	}
1411     }
1412   free (new_bbs);
1413   free (orig_loops);
1414 
1415   /* Record the exit edge in the original loop body, and update the frequencies.  */
1416   if (orig && bitmap_bit_p (wont_exit, 0))
1417     {
1418       if (to_remove)
1419 	to_remove->safe_push (orig);
1420       set_zero_probability (orig);
1421 
1422       /* Scale the frequencies of the blocks dominated by the exit.  */
1423       if (bbs_to_scale)
1424 	{
1425 	  EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1426 	    {
1427 	      scale_bbs_frequencies_int (bbs + i, 1, scale_after_exit,
1428 					 REG_BR_PROB_BASE);
1429 	    }
1430 	}
1431     }
1432 
1433   /* Update the original loop.  */
1434   if (!is_latch)
1435     set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1436   if (flags & DLTHE_FLAG_UPDATE_FREQ)
1437     {
1438       scale_bbs_frequencies_int (bbs, n, scale_main, REG_BR_PROB_BASE);
1439       free (scale_step);
1440     }
1441 
1442   /* Update dominators of outer blocks if affected.  */
1443   for (i = 0; i < n; i++)
1444     {
1445       basic_block dominated, dom_bb;
1446       vec<basic_block> dom_bbs;
1447       unsigned j;
1448 
1449       bb = bbs[i];
1450       bb->aux = 0;
1451 
1452       dom_bbs = get_dominated_by (CDI_DOMINATORS, bb);
1453       FOR_EACH_VEC_ELT (dom_bbs, j, dominated)
1454 	{
1455 	  if (flow_bb_inside_loop_p (loop, dominated))
1456 	    continue;
1457 	  dom_bb = nearest_common_dominator (
1458 			CDI_DOMINATORS, first_active[i], first_active_latch);
1459 	  set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1460 	}
1461       dom_bbs.release ();
1462     }
1463   free (first_active);
1464 
1465   free (bbs);
1466   BITMAP_FREE (bbs_to_scale);
1467 
1468   return true;
1469 }
1470 
1471 /* A callback for make_forwarder block, to redirect all edges except for
1472    MFB_KJ_EDGE to the entry part.  E is the edge for that we should decide
1473    whether to redirect it.  */
1474 
1475 edge mfb_kj_edge;
1476 bool
1477 mfb_keep_just (edge e)
1478 {
1479   return e != mfb_kj_edge;
1480 }
1481 
1482 /* True when a candidate preheader BLOCK has predecessors from LOOP.  */
1483 
1484 static bool
1485 has_preds_from_loop (basic_block block, struct loop *loop)
1486 {
1487   edge e;
1488   edge_iterator ei;
1489 
1490   FOR_EACH_EDGE (e, ei, block->preds)
1491     if (e->src->loop_father == loop)
1492       return true;
1493   return false;
1494 }
1495 
1496 /* Creates a pre-header for a LOOP.  Returns newly created block.  Unless
1497    CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1498    entry; otherwise we also force preheader block to have only one successor.
1499    When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block
1500    to be a fallthru predecessor to the loop header and to have only
1501    predecessors from outside of the loop.
1502    The function also updates dominators.  */
1503 
1504 basic_block
1505 create_preheader (struct loop *loop, int flags)
1506 {
1507   edge e;
1508   basic_block dummy;
1509   int nentry = 0;
1510   bool irred = false;
1511   bool latch_edge_was_fallthru;
1512   edge one_succ_pred = NULL, single_entry = NULL;
1513   edge_iterator ei;
1514 
1515   FOR_EACH_EDGE (e, ei, loop->header->preds)
1516     {
1517       if (e->src == loop->latch)
1518 	continue;
1519       irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1520       nentry++;
1521       single_entry = e;
1522       if (single_succ_p (e->src))
1523 	one_succ_pred = e;
1524     }
1525   gcc_assert (nentry);
1526   if (nentry == 1)
1527     {
1528       bool need_forwarder_block = false;
1529 
1530       /* We do not allow entry block to be the loop preheader, since we
1531 	     cannot emit code there.  */
1532       if (single_entry->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1533         need_forwarder_block = true;
1534       else
1535         {
1536           /* If we want simple preheaders, also force the preheader to have
1537              just a single successor.  */
1538           if ((flags & CP_SIMPLE_PREHEADERS)
1539               && !single_succ_p (single_entry->src))
1540             need_forwarder_block = true;
1541           /* If we want fallthru preheaders, also create forwarder block when
1542              preheader ends with a jump or has predecessors from loop.  */
1543           else if ((flags & CP_FALLTHRU_PREHEADERS)
1544                    && (JUMP_P (BB_END (single_entry->src))
1545                        || has_preds_from_loop (single_entry->src, loop)))
1546             need_forwarder_block = true;
1547         }
1548       if (! need_forwarder_block)
1549 	return NULL;
1550     }
1551 
1552   mfb_kj_edge = loop_latch_edge (loop);
1553   latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
1554   if (nentry == 1)
1555     dummy = split_edge (single_entry);
1556   else
1557     {
1558       edge fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL);
1559       dummy = fallthru->src;
1560       loop->header = fallthru->dest;
1561     }
1562 
1563   /* Try to be clever in placing the newly created preheader.  The idea is to
1564      avoid breaking any "fallthruness" relationship between blocks.
1565 
1566      The preheader was created just before the header and all incoming edges
1567      to the header were redirected to the preheader, except the latch edge.
1568      So the only problematic case is when this latch edge was a fallthru
1569      edge: it is not anymore after the preheader creation so we have broken
1570      the fallthruness.  We're therefore going to look for a better place.  */
1571   if (latch_edge_was_fallthru)
1572     {
1573       if (one_succ_pred)
1574 	e = one_succ_pred;
1575       else
1576 	e = EDGE_PRED (dummy, 0);
1577 
1578       move_block_after (dummy, e->src);
1579     }
1580 
1581   if (irred)
1582     {
1583       dummy->flags |= BB_IRREDUCIBLE_LOOP;
1584       single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
1585     }
1586 
1587   if (dump_file)
1588     fprintf (dump_file, "Created preheader block for loop %i\n",
1589 	     loop->num);
1590 
1591   if (flags & CP_FALLTHRU_PREHEADERS)
1592     gcc_assert ((single_succ_edge (dummy)->flags & EDGE_FALLTHRU)
1593                 && !JUMP_P (BB_END (dummy)));
1594 
1595   return dummy;
1596 }
1597 
1598 /* Create preheaders for each loop; for meaning of FLAGS see create_preheader.  */
1599 
1600 void
1601 create_preheaders (int flags)
1602 {
1603   struct loop *loop;
1604 
1605   if (!current_loops)
1606     return;
1607 
1608   FOR_EACH_LOOP (loop, 0)
1609     create_preheader (loop, flags);
1610   loops_state_set (LOOPS_HAVE_PREHEADERS);
1611 }
1612 
1613 /* Forces all loop latches to have only single successor.  */
1614 
1615 void
1616 force_single_succ_latches (void)
1617 {
1618   struct loop *loop;
1619   edge e;
1620 
1621   FOR_EACH_LOOP (loop, 0)
1622     {
1623       if (loop->latch != loop->header && single_succ_p (loop->latch))
1624 	continue;
1625 
1626       e = find_edge (loop->latch, loop->header);
1627       gcc_checking_assert (e != NULL);
1628 
1629       split_edge (e);
1630     }
1631   loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES);
1632 }
1633 
1634 /* This function is called from loop_version.  It splits the entry edge
1635    of the loop we want to version, adds the versioning condition, and
1636    adjust the edges to the two versions of the loop appropriately.
1637    e is an incoming edge. Returns the basic block containing the
1638    condition.
1639 
1640    --- edge e ---- > [second_head]
1641 
1642    Split it and insert new conditional expression and adjust edges.
1643 
1644     --- edge e ---> [cond expr] ---> [first_head]
1645 			|
1646 			+---------> [second_head]
1647 
1648   THEN_PROB is the probability of then branch of the condition.
1649   ELSE_PROB is the probability of else branch. Note that they may be both
1650   REG_BR_PROB_BASE when condition is IFN_LOOP_VECTORIZED.  */
1651 
1652 static basic_block
1653 lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head,
1654 			   edge e, void *cond_expr, unsigned then_prob,
1655 			   unsigned else_prob)
1656 {
1657   basic_block new_head = NULL;
1658   edge e1;
1659 
1660   gcc_assert (e->dest == second_head);
1661 
1662   /* Split edge 'e'. This will create a new basic block, where we can
1663      insert conditional expr.  */
1664   new_head = split_edge (e);
1665 
1666   lv_add_condition_to_bb (first_head, second_head, new_head,
1667 			  cond_expr);
1668 
1669   /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there.  */
1670   e = single_succ_edge (new_head);
1671   e1 = make_edge (new_head, first_head,
1672 		  current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0);
1673   e1->probability = then_prob;
1674   e->probability = else_prob;
1675   e1->count = apply_probability (e->count, e1->probability);
1676   e->count = apply_probability (e->count, e->probability);
1677 
1678   set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
1679   set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
1680 
1681   /* Adjust loop header phi nodes.  */
1682   lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
1683 
1684   return new_head;
1685 }
1686 
1687 /* Main entry point for Loop Versioning transformation.
1688 
1689    This transformation given a condition and a loop, creates
1690    -if (condition) { loop_copy1 } else { loop_copy2 },
1691    where loop_copy1 is the loop transformed in one way, and loop_copy2
1692    is the loop transformed in another way (or unchanged). COND_EXPR
1693    may be a run time test for things that were not resolved by static
1694    analysis (overlapping ranges (anti-aliasing), alignment, etc.).
1695 
1696    If non-NULL, CONDITION_BB is set to the basic block containing the
1697    condition.
1698 
1699    THEN_PROB is the probability of the then edge of the if.  THEN_SCALE
1700    is the ratio by that the frequencies in the original loop should
1701    be scaled.  ELSE_SCALE is the ratio by that the frequencies in the
1702    new loop should be scaled.
1703 
1704    If PLACE_AFTER is true, we place the new loop after LOOP in the
1705    instruction stream, otherwise it is placed before LOOP.  */
1706 
1707 struct loop *
1708 loop_version (struct loop *loop,
1709 	      void *cond_expr, basic_block *condition_bb,
1710 	      unsigned then_prob, unsigned else_prob,
1711 	      unsigned then_scale, unsigned else_scale,
1712 	      bool place_after)
1713 {
1714   basic_block first_head, second_head;
1715   edge entry, latch_edge, true_edge, false_edge;
1716   int irred_flag;
1717   struct loop *nloop;
1718   basic_block cond_bb;
1719 
1720   /* Record entry and latch edges for the loop */
1721   entry = loop_preheader_edge (loop);
1722   irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
1723   entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
1724 
1725   /* Note down head of loop as first_head.  */
1726   first_head = entry->dest;
1727 
1728   /* Duplicate loop.  */
1729   if (!cfg_hook_duplicate_loop_to_header_edge (loop, entry, 1,
1730 					       NULL, NULL, NULL, 0))
1731     {
1732       entry->flags |= irred_flag;
1733       return NULL;
1734     }
1735 
1736   /* After duplication entry edge now points to new loop head block.
1737      Note down new head as second_head.  */
1738   second_head = entry->dest;
1739 
1740   /* Split loop entry edge and insert new block with cond expr.  */
1741   cond_bb =  lv_adjust_loop_entry_edge (first_head, second_head,
1742 					entry, cond_expr, then_prob, else_prob);
1743   if (condition_bb)
1744     *condition_bb = cond_bb;
1745 
1746   if (!cond_bb)
1747     {
1748       entry->flags |= irred_flag;
1749       return NULL;
1750     }
1751 
1752   latch_edge = single_succ_edge (get_bb_copy (loop->latch));
1753 
1754   extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1755   nloop = loopify (latch_edge,
1756 		   single_pred_edge (get_bb_copy (loop->header)),
1757 		   cond_bb, true_edge, false_edge,
1758 		   false /* Do not redirect all edges.  */,
1759 		   then_scale, else_scale);
1760 
1761   copy_loop_info (loop, nloop);
1762 
1763   /* loopify redirected latch_edge. Update its PENDING_STMTS.  */
1764   lv_flush_pending_stmts (latch_edge);
1765 
1766   /* loopify redirected condition_bb's succ edge. Update its PENDING_STMTS.  */
1767   extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1768   lv_flush_pending_stmts (false_edge);
1769   /* Adjust irreducible flag.  */
1770   if (irred_flag)
1771     {
1772       cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
1773       loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1774       loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1775       single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
1776     }
1777 
1778   if (place_after)
1779     {
1780       basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
1781       unsigned i;
1782 
1783       after = loop->latch;
1784 
1785       for (i = 0; i < nloop->num_nodes; i++)
1786 	{
1787 	  move_block_after (bbs[i], after);
1788 	  after = bbs[i];
1789 	}
1790       free (bbs);
1791     }
1792 
1793   /* At this point condition_bb is loop preheader with two successors,
1794      first_head and second_head.   Make sure that loop preheader has only
1795      one successor.  */
1796   split_edge (loop_preheader_edge (loop));
1797   split_edge (loop_preheader_edge (nloop));
1798 
1799   return nloop;
1800 }
1801