1 /* Loop manipulation code for GNU compiler. 2 Copyright (C) 2002-2017 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 #include "config.h" 21 #include "system.h" 22 #include "coretypes.h" 23 #include "backend.h" 24 #include "rtl.h" 25 #include "tree.h" 26 #include "gimple.h" 27 #include "cfghooks.h" 28 #include "cfganal.h" 29 #include "cfgloop.h" 30 #include "gimple-iterator.h" 31 #include "gimplify-me.h" 32 #include "tree-ssa-loop-manip.h" 33 #include "dumpfile.h" 34 35 static void copy_loops_to (struct loop **, int, 36 struct loop *); 37 static void loop_redirect_edge (edge, basic_block); 38 static void remove_bbs (basic_block *, int); 39 static bool rpe_enum_p (const_basic_block, const void *); 40 static int find_path (edge, basic_block **); 41 static void fix_loop_placements (struct loop *, bool *); 42 static bool fix_bb_placement (basic_block); 43 static void fix_bb_placements (basic_block, bool *, bitmap); 44 45 /* Checks whether basic block BB is dominated by DATA. */ 46 static bool 47 rpe_enum_p (const_basic_block bb, const void *data) 48 { 49 return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data); 50 } 51 52 /* Remove basic blocks BBS. NBBS is the number of the basic blocks. */ 53 54 static void 55 remove_bbs (basic_block *bbs, int nbbs) 56 { 57 int i; 58 59 for (i = 0; i < nbbs; i++) 60 delete_basic_block (bbs[i]); 61 } 62 63 /* Find path -- i.e. the basic blocks dominated by edge E and put them 64 into array BBS, that will be allocated large enough to contain them. 65 E->dest must have exactly one predecessor for this to work (it is 66 easy to achieve and we do not put it here because we do not want to 67 alter anything by this function). The number of basic blocks in the 68 path is returned. */ 69 static int 70 find_path (edge e, basic_block **bbs) 71 { 72 gcc_assert (EDGE_COUNT (e->dest->preds) <= 1); 73 74 /* Find bbs in the path. */ 75 *bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun)); 76 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs, 77 n_basic_blocks_for_fn (cfun), e->dest); 78 } 79 80 /* Fix placement of basic block BB inside loop hierarchy -- 81 Let L be a loop to that BB belongs. Then every successor of BB must either 82 1) belong to some superloop of loop L, or 83 2) be a header of loop K such that K->outer is superloop of L 84 Returns true if we had to move BB into other loop to enforce this condition, 85 false if the placement of BB was already correct (provided that placements 86 of its successors are correct). */ 87 static bool 88 fix_bb_placement (basic_block bb) 89 { 90 edge e; 91 edge_iterator ei; 92 struct loop *loop = current_loops->tree_root, *act; 93 94 FOR_EACH_EDGE (e, ei, bb->succs) 95 { 96 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)) 97 continue; 98 99 act = e->dest->loop_father; 100 if (act->header == e->dest) 101 act = loop_outer (act); 102 103 if (flow_loop_nested_p (loop, act)) 104 loop = act; 105 } 106 107 if (loop == bb->loop_father) 108 return false; 109 110 remove_bb_from_loops (bb); 111 add_bb_to_loop (bb, loop); 112 113 return true; 114 } 115 116 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop 117 of LOOP to that leads at least one exit edge of LOOP, and set it 118 as the immediate superloop of LOOP. Return true if the immediate superloop 119 of LOOP changed. 120 121 IRRED_INVALIDATED is set to true if a change in the loop structures might 122 invalidate the information about irreducible regions. */ 123 124 static bool 125 fix_loop_placement (struct loop *loop, bool *irred_invalidated) 126 { 127 unsigned i; 128 edge e; 129 vec<edge> exits = get_loop_exit_edges (loop); 130 struct loop *father = current_loops->tree_root, *act; 131 bool ret = false; 132 133 FOR_EACH_VEC_ELT (exits, i, e) 134 { 135 act = find_common_loop (loop, e->dest->loop_father); 136 if (flow_loop_nested_p (father, act)) 137 father = act; 138 } 139 140 if (father != loop_outer (loop)) 141 { 142 for (act = loop_outer (loop); act != father; act = loop_outer (act)) 143 act->num_nodes -= loop->num_nodes; 144 flow_loop_tree_node_remove (loop); 145 flow_loop_tree_node_add (father, loop); 146 147 /* The exit edges of LOOP no longer exits its original immediate 148 superloops; remove them from the appropriate exit lists. */ 149 FOR_EACH_VEC_ELT (exits, i, e) 150 { 151 /* We may need to recompute irreducible loops. */ 152 if (e->flags & EDGE_IRREDUCIBLE_LOOP) 153 *irred_invalidated = true; 154 rescan_loop_exit (e, false, false); 155 } 156 157 ret = true; 158 } 159 160 exits.release (); 161 return ret; 162 } 163 164 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e. 165 enforce condition stated in description of fix_bb_placement. We 166 start from basic block FROM that had some of its successors removed, so that 167 his placement no longer has to be correct, and iteratively fix placement of 168 its predecessors that may change if placement of FROM changed. Also fix 169 placement of subloops of FROM->loop_father, that might also be altered due 170 to this change; the condition for them is similar, except that instead of 171 successors we consider edges coming out of the loops. 172 173 If the changes may invalidate the information about irreducible regions, 174 IRRED_INVALIDATED is set to true. 175 176 If LOOP_CLOSED_SSA_INVLIDATED is non-zero then all basic blocks with 177 changed loop_father are collected there. */ 178 179 static void 180 fix_bb_placements (basic_block from, 181 bool *irred_invalidated, 182 bitmap loop_closed_ssa_invalidated) 183 { 184 basic_block *queue, *qtop, *qbeg, *qend; 185 struct loop *base_loop, *target_loop; 186 edge e; 187 188 /* We pass through blocks back-reachable from FROM, testing whether some 189 of their successors moved to outer loop. It may be necessary to 190 iterate several times, but it is finite, as we stop unless we move 191 the basic block up the loop structure. The whole story is a bit 192 more complicated due to presence of subloops, those are moved using 193 fix_loop_placement. */ 194 195 base_loop = from->loop_father; 196 /* If we are already in the outermost loop, the basic blocks cannot be moved 197 outside of it. If FROM is the header of the base loop, it cannot be moved 198 outside of it, either. In both cases, we can end now. */ 199 if (base_loop == current_loops->tree_root 200 || from == base_loop->header) 201 return; 202 203 auto_sbitmap in_queue (last_basic_block_for_fn (cfun)); 204 bitmap_clear (in_queue); 205 bitmap_set_bit (in_queue, from->index); 206 /* Prevent us from going out of the base_loop. */ 207 bitmap_set_bit (in_queue, base_loop->header->index); 208 209 queue = XNEWVEC (basic_block, base_loop->num_nodes + 1); 210 qtop = queue + base_loop->num_nodes + 1; 211 qbeg = queue; 212 qend = queue + 1; 213 *qbeg = from; 214 215 while (qbeg != qend) 216 { 217 edge_iterator ei; 218 from = *qbeg; 219 qbeg++; 220 if (qbeg == qtop) 221 qbeg = queue; 222 bitmap_clear_bit (in_queue, from->index); 223 224 if (from->loop_father->header == from) 225 { 226 /* Subloop header, maybe move the loop upward. */ 227 if (!fix_loop_placement (from->loop_father, irred_invalidated)) 228 continue; 229 target_loop = loop_outer (from->loop_father); 230 if (loop_closed_ssa_invalidated) 231 { 232 basic_block *bbs = get_loop_body (from->loop_father); 233 for (unsigned i = 0; i < from->loop_father->num_nodes; ++i) 234 bitmap_set_bit (loop_closed_ssa_invalidated, bbs[i]->index); 235 free (bbs); 236 } 237 } 238 else 239 { 240 /* Ordinary basic block. */ 241 if (!fix_bb_placement (from)) 242 continue; 243 target_loop = from->loop_father; 244 if (loop_closed_ssa_invalidated) 245 bitmap_set_bit (loop_closed_ssa_invalidated, from->index); 246 } 247 248 FOR_EACH_EDGE (e, ei, from->succs) 249 { 250 if (e->flags & EDGE_IRREDUCIBLE_LOOP) 251 *irred_invalidated = true; 252 } 253 254 /* Something has changed, insert predecessors into queue. */ 255 FOR_EACH_EDGE (e, ei, from->preds) 256 { 257 basic_block pred = e->src; 258 struct loop *nca; 259 260 if (e->flags & EDGE_IRREDUCIBLE_LOOP) 261 *irred_invalidated = true; 262 263 if (bitmap_bit_p (in_queue, pred->index)) 264 continue; 265 266 /* If it is subloop, then it either was not moved, or 267 the path up the loop tree from base_loop do not contain 268 it. */ 269 nca = find_common_loop (pred->loop_father, base_loop); 270 if (pred->loop_father != base_loop 271 && (nca == base_loop 272 || nca != pred->loop_father)) 273 pred = pred->loop_father->header; 274 else if (!flow_loop_nested_p (target_loop, pred->loop_father)) 275 { 276 /* If PRED is already higher in the loop hierarchy than the 277 TARGET_LOOP to that we moved FROM, the change of the position 278 of FROM does not affect the position of PRED, so there is no 279 point in processing it. */ 280 continue; 281 } 282 283 if (bitmap_bit_p (in_queue, pred->index)) 284 continue; 285 286 /* Schedule the basic block. */ 287 *qend = pred; 288 qend++; 289 if (qend == qtop) 290 qend = queue; 291 bitmap_set_bit (in_queue, pred->index); 292 } 293 } 294 free (queue); 295 } 296 297 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E 298 and update loop structures and dominators. Return true if we were able 299 to remove the path, false otherwise (and nothing is affected then). */ 300 bool 301 remove_path (edge e, bool *irred_invalidated, 302 bitmap loop_closed_ssa_invalidated) 303 { 304 edge ae; 305 basic_block *rem_bbs, *bord_bbs, from, bb; 306 vec<basic_block> dom_bbs; 307 int i, nrem, n_bord_bbs; 308 bool local_irred_invalidated = false; 309 edge_iterator ei; 310 struct loop *l, *f; 311 312 if (! irred_invalidated) 313 irred_invalidated = &local_irred_invalidated; 314 315 if (!can_remove_branch_p (e)) 316 return false; 317 318 /* Keep track of whether we need to update information about irreducible 319 regions. This is the case if the removed area is a part of the 320 irreducible region, or if the set of basic blocks that belong to a loop 321 that is inside an irreducible region is changed, or if such a loop is 322 removed. */ 323 if (e->flags & EDGE_IRREDUCIBLE_LOOP) 324 *irred_invalidated = true; 325 326 /* We need to check whether basic blocks are dominated by the edge 327 e, but we only have basic block dominators. This is easy to 328 fix -- when e->dest has exactly one predecessor, this corresponds 329 to blocks dominated by e->dest, if not, split the edge. */ 330 if (!single_pred_p (e->dest)) 331 e = single_pred_edge (split_edge (e)); 332 333 /* It may happen that by removing path we remove one or more loops 334 we belong to. In this case first unloop the loops, then proceed 335 normally. We may assume that e->dest is not a header of any loop, 336 as it now has exactly one predecessor. */ 337 for (l = e->src->loop_father; loop_outer (l); l = f) 338 { 339 f = loop_outer (l); 340 if (dominated_by_p (CDI_DOMINATORS, l->latch, e->dest)) 341 unloop (l, irred_invalidated, loop_closed_ssa_invalidated); 342 } 343 344 /* Identify the path. */ 345 nrem = find_path (e, &rem_bbs); 346 347 n_bord_bbs = 0; 348 bord_bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun)); 349 auto_sbitmap seen (last_basic_block_for_fn (cfun)); 350 bitmap_clear (seen); 351 352 /* Find "border" hexes -- i.e. those with predecessor in removed path. */ 353 for (i = 0; i < nrem; i++) 354 bitmap_set_bit (seen, rem_bbs[i]->index); 355 if (!*irred_invalidated) 356 FOR_EACH_EDGE (ae, ei, e->src->succs) 357 if (ae != e && ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) 358 && !bitmap_bit_p (seen, ae->dest->index) 359 && ae->flags & EDGE_IRREDUCIBLE_LOOP) 360 { 361 *irred_invalidated = true; 362 break; 363 } 364 365 for (i = 0; i < nrem; i++) 366 { 367 bb = rem_bbs[i]; 368 FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs) 369 if (ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) 370 && !bitmap_bit_p (seen, ae->dest->index)) 371 { 372 bitmap_set_bit (seen, ae->dest->index); 373 bord_bbs[n_bord_bbs++] = ae->dest; 374 375 if (ae->flags & EDGE_IRREDUCIBLE_LOOP) 376 *irred_invalidated = true; 377 } 378 } 379 380 /* Remove the path. */ 381 from = e->src; 382 remove_branch (e); 383 dom_bbs.create (0); 384 385 /* Cancel loops contained in the path. */ 386 for (i = 0; i < nrem; i++) 387 if (rem_bbs[i]->loop_father->header == rem_bbs[i]) 388 cancel_loop_tree (rem_bbs[i]->loop_father); 389 390 remove_bbs (rem_bbs, nrem); 391 free (rem_bbs); 392 393 /* Find blocks whose dominators may be affected. */ 394 bitmap_clear (seen); 395 for (i = 0; i < n_bord_bbs; i++) 396 { 397 basic_block ldom; 398 399 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]); 400 if (bitmap_bit_p (seen, bb->index)) 401 continue; 402 bitmap_set_bit (seen, bb->index); 403 404 for (ldom = first_dom_son (CDI_DOMINATORS, bb); 405 ldom; 406 ldom = next_dom_son (CDI_DOMINATORS, ldom)) 407 if (!dominated_by_p (CDI_DOMINATORS, from, ldom)) 408 dom_bbs.safe_push (ldom); 409 } 410 411 /* Recount dominators. */ 412 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true); 413 dom_bbs.release (); 414 free (bord_bbs); 415 416 /* Fix placements of basic blocks inside loops and the placement of 417 loops in the loop tree. */ 418 fix_bb_placements (from, irred_invalidated, loop_closed_ssa_invalidated); 419 fix_loop_placements (from->loop_father, irred_invalidated); 420 421 if (local_irred_invalidated 422 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)) 423 mark_irreducible_loops (); 424 425 return true; 426 } 427 428 /* Creates place for a new LOOP in loops structure of FN. */ 429 430 void 431 place_new_loop (struct function *fn, struct loop *loop) 432 { 433 loop->num = number_of_loops (fn); 434 vec_safe_push (loops_for_fn (fn)->larray, loop); 435 } 436 437 /* Given LOOP structure with filled header and latch, find the body of the 438 corresponding loop and add it to loops tree. Insert the LOOP as a son of 439 outer. */ 440 441 void 442 add_loop (struct loop *loop, struct loop *outer) 443 { 444 basic_block *bbs; 445 int i, n; 446 struct loop *subloop; 447 edge e; 448 edge_iterator ei; 449 450 /* Add it to loop structure. */ 451 place_new_loop (cfun, loop); 452 flow_loop_tree_node_add (outer, loop); 453 454 /* Find its nodes. */ 455 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun)); 456 n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun)); 457 458 for (i = 0; i < n; i++) 459 { 460 if (bbs[i]->loop_father == outer) 461 { 462 remove_bb_from_loops (bbs[i]); 463 add_bb_to_loop (bbs[i], loop); 464 continue; 465 } 466 467 loop->num_nodes++; 468 469 /* If we find a direct subloop of OUTER, move it to LOOP. */ 470 subloop = bbs[i]->loop_father; 471 if (loop_outer (subloop) == outer 472 && subloop->header == bbs[i]) 473 { 474 flow_loop_tree_node_remove (subloop); 475 flow_loop_tree_node_add (loop, subloop); 476 } 477 } 478 479 /* Update the information about loop exit edges. */ 480 for (i = 0; i < n; i++) 481 { 482 FOR_EACH_EDGE (e, ei, bbs[i]->succs) 483 { 484 rescan_loop_exit (e, false, false); 485 } 486 } 487 488 free (bbs); 489 } 490 491 /* Multiply all frequencies in LOOP by NUM/DEN. */ 492 493 void 494 scale_loop_frequencies (struct loop *loop, int num, int den) 495 { 496 basic_block *bbs; 497 498 bbs = get_loop_body (loop); 499 scale_bbs_frequencies_int (bbs, loop->num_nodes, num, den); 500 free (bbs); 501 } 502 503 /* Multiply all frequencies in LOOP by SCALE/REG_BR_PROB_BASE. 504 If ITERATION_BOUND is non-zero, scale even further if loop is predicted 505 to iterate too many times. */ 506 507 void 508 scale_loop_profile (struct loop *loop, int scale, gcov_type iteration_bound) 509 { 510 gcov_type iterations = expected_loop_iterations_unbounded (loop); 511 edge e; 512 edge_iterator ei; 513 514 if (dump_file && (dump_flags & TDF_DETAILS)) 515 fprintf (dump_file, ";; Scaling loop %i with scale %f, " 516 "bounding iterations to %i from guessed %i\n", 517 loop->num, (double)scale / REG_BR_PROB_BASE, 518 (int)iteration_bound, (int)iterations); 519 520 /* See if loop is predicted to iterate too many times. */ 521 if (iteration_bound && iterations > 0 522 && apply_probability (iterations, scale) > iteration_bound) 523 { 524 /* Fixing loop profile for different trip count is not trivial; the exit 525 probabilities has to be updated to match and frequencies propagated down 526 to the loop body. 527 528 We fully update only the simple case of loop with single exit that is 529 either from the latch or BB just before latch and leads from BB with 530 simple conditional jump. This is OK for use in vectorizer. */ 531 e = single_exit (loop); 532 if (e) 533 { 534 edge other_e; 535 int freq_delta; 536 gcov_type count_delta; 537 538 FOR_EACH_EDGE (other_e, ei, e->src->succs) 539 if (!(other_e->flags & (EDGE_ABNORMAL | EDGE_FAKE)) 540 && e != other_e) 541 break; 542 543 /* Probability of exit must be 1/iterations. */ 544 freq_delta = EDGE_FREQUENCY (e); 545 e->probability = REG_BR_PROB_BASE / iteration_bound; 546 other_e->probability = inverse_probability (e->probability); 547 freq_delta -= EDGE_FREQUENCY (e); 548 549 /* Adjust counts accordingly. */ 550 count_delta = e->count; 551 e->count = apply_probability (e->src->count, e->probability); 552 other_e->count = apply_probability (e->src->count, other_e->probability); 553 count_delta -= e->count; 554 555 /* If latch exists, change its frequency and count, since we changed 556 probability of exit. Theoretically we should update everything from 557 source of exit edge to latch, but for vectorizer this is enough. */ 558 if (loop->latch 559 && loop->latch != e->src) 560 { 561 loop->latch->frequency += freq_delta; 562 if (loop->latch->frequency < 0) 563 loop->latch->frequency = 0; 564 loop->latch->count += count_delta; 565 if (loop->latch->count < 0) 566 loop->latch->count = 0; 567 } 568 } 569 570 /* Roughly speaking we want to reduce the loop body profile by the 571 difference of loop iterations. We however can do better if 572 we look at the actual profile, if it is available. */ 573 scale = RDIV (iteration_bound * scale, iterations); 574 if (loop->header->count) 575 { 576 gcov_type count_in = 0; 577 578 FOR_EACH_EDGE (e, ei, loop->header->preds) 579 if (e->src != loop->latch) 580 count_in += e->count; 581 582 if (count_in != 0) 583 scale = GCOV_COMPUTE_SCALE (count_in * iteration_bound, 584 loop->header->count); 585 } 586 else if (loop->header->frequency) 587 { 588 int freq_in = 0; 589 590 FOR_EACH_EDGE (e, ei, loop->header->preds) 591 if (e->src != loop->latch) 592 freq_in += EDGE_FREQUENCY (e); 593 594 if (freq_in != 0) 595 scale = GCOV_COMPUTE_SCALE (freq_in * iteration_bound, 596 loop->header->frequency); 597 } 598 if (!scale) 599 scale = 1; 600 } 601 602 if (scale == REG_BR_PROB_BASE) 603 return; 604 605 /* Scale the actual probabilities. */ 606 scale_loop_frequencies (loop, scale, REG_BR_PROB_BASE); 607 if (dump_file && (dump_flags & TDF_DETAILS)) 608 fprintf (dump_file, ";; guessed iterations are now %i\n", 609 (int)expected_loop_iterations_unbounded (loop)); 610 } 611 612 /* Recompute dominance information for basic blocks outside LOOP. */ 613 614 static void 615 update_dominators_in_loop (struct loop *loop) 616 { 617 vec<basic_block> dom_bbs = vNULL; 618 basic_block *body; 619 unsigned i; 620 621 auto_sbitmap seen (last_basic_block_for_fn (cfun)); 622 bitmap_clear (seen); 623 body = get_loop_body (loop); 624 625 for (i = 0; i < loop->num_nodes; i++) 626 bitmap_set_bit (seen, body[i]->index); 627 628 for (i = 0; i < loop->num_nodes; i++) 629 { 630 basic_block ldom; 631 632 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]); 633 ldom; 634 ldom = next_dom_son (CDI_DOMINATORS, ldom)) 635 if (!bitmap_bit_p (seen, ldom->index)) 636 { 637 bitmap_set_bit (seen, ldom->index); 638 dom_bbs.safe_push (ldom); 639 } 640 } 641 642 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false); 643 free (body); 644 dom_bbs.release (); 645 } 646 647 /* Creates an if region as shown above. CONDITION is used to create 648 the test for the if. 649 650 | 651 | ------------- ------------- 652 | | pred_bb | | pred_bb | 653 | ------------- ------------- 654 | | | 655 | | | ENTRY_EDGE 656 | | ENTRY_EDGE V 657 | | ====> ------------- 658 | | | cond_bb | 659 | | | CONDITION | 660 | | ------------- 661 | V / \ 662 | ------------- e_false / \ e_true 663 | | succ_bb | V V 664 | ------------- ----------- ----------- 665 | | false_bb | | true_bb | 666 | ----------- ----------- 667 | \ / 668 | \ / 669 | V V 670 | ------------- 671 | | join_bb | 672 | ------------- 673 | | exit_edge (result) 674 | V 675 | ----------- 676 | | succ_bb | 677 | ----------- 678 | 679 */ 680 681 edge 682 create_empty_if_region_on_edge (edge entry_edge, tree condition) 683 { 684 685 basic_block cond_bb, true_bb, false_bb, join_bb; 686 edge e_true, e_false, exit_edge; 687 gcond *cond_stmt; 688 tree simple_cond; 689 gimple_stmt_iterator gsi; 690 691 cond_bb = split_edge (entry_edge); 692 693 /* Insert condition in cond_bb. */ 694 gsi = gsi_last_bb (cond_bb); 695 simple_cond = 696 force_gimple_operand_gsi (&gsi, condition, true, NULL, 697 false, GSI_NEW_STMT); 698 cond_stmt = gimple_build_cond_from_tree (simple_cond, NULL_TREE, NULL_TREE); 699 gsi = gsi_last_bb (cond_bb); 700 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT); 701 702 join_bb = split_edge (single_succ_edge (cond_bb)); 703 704 e_true = single_succ_edge (cond_bb); 705 true_bb = split_edge (e_true); 706 707 e_false = make_edge (cond_bb, join_bb, 0); 708 false_bb = split_edge (e_false); 709 710 e_true->flags &= ~EDGE_FALLTHRU; 711 e_true->flags |= EDGE_TRUE_VALUE; 712 e_false->flags &= ~EDGE_FALLTHRU; 713 e_false->flags |= EDGE_FALSE_VALUE; 714 715 set_immediate_dominator (CDI_DOMINATORS, cond_bb, entry_edge->src); 716 set_immediate_dominator (CDI_DOMINATORS, true_bb, cond_bb); 717 set_immediate_dominator (CDI_DOMINATORS, false_bb, cond_bb); 718 set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb); 719 720 exit_edge = single_succ_edge (join_bb); 721 722 if (single_pred_p (exit_edge->dest)) 723 set_immediate_dominator (CDI_DOMINATORS, exit_edge->dest, join_bb); 724 725 return exit_edge; 726 } 727 728 /* create_empty_loop_on_edge 729 | 730 | - pred_bb - ------ pred_bb ------ 731 | | | | iv0 = initial_value | 732 | -----|----- ---------|----------- 733 | | ______ | entry_edge 734 | | entry_edge / | | 735 | | ====> | -V---V- loop_header ------------- 736 | V | | iv_before = phi (iv0, iv_after) | 737 | - succ_bb - | ---|----------------------------- 738 | | | | | 739 | ----------- | ---V--- loop_body --------------- 740 | | | iv_after = iv_before + stride | 741 | | | if (iv_before < upper_bound) | 742 | | ---|--------------\-------------- 743 | | | \ exit_e 744 | | V \ 745 | | - loop_latch - V- succ_bb - 746 | | | | | | 747 | | /------------- ----------- 748 | \ ___ / 749 750 Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME 751 that is used before the increment of IV. IV_BEFORE should be used for 752 adding code to the body that uses the IV. OUTER is the outer loop in 753 which the new loop should be inserted. 754 755 Both INITIAL_VALUE and UPPER_BOUND expressions are gimplified and 756 inserted on the loop entry edge. This implies that this function 757 should be used only when the UPPER_BOUND expression is a loop 758 invariant. */ 759 760 struct loop * 761 create_empty_loop_on_edge (edge entry_edge, 762 tree initial_value, 763 tree stride, tree upper_bound, 764 tree iv, 765 tree *iv_before, 766 tree *iv_after, 767 struct loop *outer) 768 { 769 basic_block loop_header, loop_latch, succ_bb, pred_bb; 770 struct loop *loop; 771 gimple_stmt_iterator gsi; 772 gimple_seq stmts; 773 gcond *cond_expr; 774 tree exit_test; 775 edge exit_e; 776 int prob; 777 778 gcc_assert (entry_edge && initial_value && stride && upper_bound && iv); 779 780 /* Create header, latch and wire up the loop. */ 781 pred_bb = entry_edge->src; 782 loop_header = split_edge (entry_edge); 783 loop_latch = split_edge (single_succ_edge (loop_header)); 784 succ_bb = single_succ (loop_latch); 785 make_edge (loop_header, succ_bb, 0); 786 redirect_edge_succ_nodup (single_succ_edge (loop_latch), loop_header); 787 788 /* Set immediate dominator information. */ 789 set_immediate_dominator (CDI_DOMINATORS, loop_header, pred_bb); 790 set_immediate_dominator (CDI_DOMINATORS, loop_latch, loop_header); 791 set_immediate_dominator (CDI_DOMINATORS, succ_bb, loop_header); 792 793 /* Initialize a loop structure and put it in a loop hierarchy. */ 794 loop = alloc_loop (); 795 loop->header = loop_header; 796 loop->latch = loop_latch; 797 add_loop (loop, outer); 798 799 /* TODO: Fix frequencies and counts. */ 800 prob = REG_BR_PROB_BASE / 2; 801 802 scale_loop_frequencies (loop, REG_BR_PROB_BASE - prob, REG_BR_PROB_BASE); 803 804 /* Update dominators. */ 805 update_dominators_in_loop (loop); 806 807 /* Modify edge flags. */ 808 exit_e = single_exit (loop); 809 exit_e->flags = EDGE_LOOP_EXIT | EDGE_FALSE_VALUE; 810 single_pred_edge (loop_latch)->flags = EDGE_TRUE_VALUE; 811 812 /* Construct IV code in loop. */ 813 initial_value = force_gimple_operand (initial_value, &stmts, true, iv); 814 if (stmts) 815 { 816 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts); 817 gsi_commit_edge_inserts (); 818 } 819 820 upper_bound = force_gimple_operand (upper_bound, &stmts, true, NULL); 821 if (stmts) 822 { 823 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts); 824 gsi_commit_edge_inserts (); 825 } 826 827 gsi = gsi_last_bb (loop_header); 828 create_iv (initial_value, stride, iv, loop, &gsi, false, 829 iv_before, iv_after); 830 831 /* Insert loop exit condition. */ 832 cond_expr = gimple_build_cond 833 (LT_EXPR, *iv_before, upper_bound, NULL_TREE, NULL_TREE); 834 835 exit_test = gimple_cond_lhs (cond_expr); 836 exit_test = force_gimple_operand_gsi (&gsi, exit_test, true, NULL, 837 false, GSI_NEW_STMT); 838 gimple_cond_set_lhs (cond_expr, exit_test); 839 gsi = gsi_last_bb (exit_e->src); 840 gsi_insert_after (&gsi, cond_expr, GSI_NEW_STMT); 841 842 split_block_after_labels (loop_header); 843 844 return loop; 845 } 846 847 /* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting 848 latch to header and update loop tree and dominators 849 accordingly. Everything between them plus LATCH_EDGE destination must 850 be dominated by HEADER_EDGE destination, and back-reachable from 851 LATCH_EDGE source. HEADER_EDGE is redirected to basic block SWITCH_BB, 852 FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and 853 TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE. 854 Returns the newly created loop. Frequencies and counts in the new loop 855 are scaled by FALSE_SCALE and in the old one by TRUE_SCALE. */ 856 857 struct loop * 858 loopify (edge latch_edge, edge header_edge, 859 basic_block switch_bb, edge true_edge, edge false_edge, 860 bool redirect_all_edges, unsigned true_scale, unsigned false_scale) 861 { 862 basic_block succ_bb = latch_edge->dest; 863 basic_block pred_bb = header_edge->src; 864 struct loop *loop = alloc_loop (); 865 struct loop *outer = loop_outer (succ_bb->loop_father); 866 int freq; 867 gcov_type cnt; 868 edge e; 869 edge_iterator ei; 870 871 loop->header = header_edge->dest; 872 loop->latch = latch_edge->src; 873 874 freq = EDGE_FREQUENCY (header_edge); 875 cnt = header_edge->count; 876 877 /* Redirect edges. */ 878 loop_redirect_edge (latch_edge, loop->header); 879 loop_redirect_edge (true_edge, succ_bb); 880 881 /* During loop versioning, one of the switch_bb edge is already properly 882 set. Do not redirect it again unless redirect_all_edges is true. */ 883 if (redirect_all_edges) 884 { 885 loop_redirect_edge (header_edge, switch_bb); 886 loop_redirect_edge (false_edge, loop->header); 887 888 /* Update dominators. */ 889 set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb); 890 set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb); 891 } 892 893 set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb); 894 895 /* Compute new loop. */ 896 add_loop (loop, outer); 897 898 /* Add switch_bb to appropriate loop. */ 899 if (switch_bb->loop_father) 900 remove_bb_from_loops (switch_bb); 901 add_bb_to_loop (switch_bb, outer); 902 903 /* Fix frequencies. */ 904 if (redirect_all_edges) 905 { 906 switch_bb->frequency = freq; 907 switch_bb->count = cnt; 908 FOR_EACH_EDGE (e, ei, switch_bb->succs) 909 { 910 e->count = apply_probability (switch_bb->count, e->probability); 911 } 912 } 913 scale_loop_frequencies (loop, false_scale, REG_BR_PROB_BASE); 914 scale_loop_frequencies (succ_bb->loop_father, true_scale, REG_BR_PROB_BASE); 915 update_dominators_in_loop (loop); 916 917 return loop; 918 } 919 920 /* Remove the latch edge of a LOOP and update loops to indicate that 921 the LOOP was removed. After this function, original loop latch will 922 have no successor, which caller is expected to fix somehow. 923 924 If this may cause the information about irreducible regions to become 925 invalid, IRRED_INVALIDATED is set to true. 926 927 LOOP_CLOSED_SSA_INVALIDATED, if non-NULL, is a bitmap where we store 928 basic blocks that had non-trivial update on their loop_father.*/ 929 930 void 931 unloop (struct loop *loop, bool *irred_invalidated, 932 bitmap loop_closed_ssa_invalidated) 933 { 934 basic_block *body; 935 struct loop *ploop; 936 unsigned i, n; 937 basic_block latch = loop->latch; 938 bool dummy = false; 939 940 if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP) 941 *irred_invalidated = true; 942 943 /* This is relatively straightforward. The dominators are unchanged, as 944 loop header dominates loop latch, so the only thing we have to care of 945 is the placement of loops and basic blocks inside the loop tree. We 946 move them all to the loop->outer, and then let fix_bb_placements do 947 its work. */ 948 949 body = get_loop_body (loop); 950 n = loop->num_nodes; 951 for (i = 0; i < n; i++) 952 if (body[i]->loop_father == loop) 953 { 954 remove_bb_from_loops (body[i]); 955 add_bb_to_loop (body[i], loop_outer (loop)); 956 } 957 free (body); 958 959 while (loop->inner) 960 { 961 ploop = loop->inner; 962 flow_loop_tree_node_remove (ploop); 963 flow_loop_tree_node_add (loop_outer (loop), ploop); 964 } 965 966 /* Remove the loop and free its data. */ 967 delete_loop (loop); 968 969 remove_edge (single_succ_edge (latch)); 970 971 /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if 972 there is an irreducible region inside the cancelled loop, the flags will 973 be still correct. */ 974 fix_bb_placements (latch, &dummy, loop_closed_ssa_invalidated); 975 } 976 977 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that 978 condition stated in description of fix_loop_placement holds for them. 979 It is used in case when we removed some edges coming out of LOOP, which 980 may cause the right placement of LOOP inside loop tree to change. 981 982 IRRED_INVALIDATED is set to true if a change in the loop structures might 983 invalidate the information about irreducible regions. */ 984 985 static void 986 fix_loop_placements (struct loop *loop, bool *irred_invalidated) 987 { 988 struct loop *outer; 989 990 while (loop_outer (loop)) 991 { 992 outer = loop_outer (loop); 993 if (!fix_loop_placement (loop, irred_invalidated)) 994 break; 995 996 /* Changing the placement of a loop in the loop tree may alter the 997 validity of condition 2) of the description of fix_bb_placement 998 for its preheader, because the successor is the header and belongs 999 to the loop. So call fix_bb_placements to fix up the placement 1000 of the preheader and (possibly) of its predecessors. */ 1001 fix_bb_placements (loop_preheader_edge (loop)->src, 1002 irred_invalidated, NULL); 1003 loop = outer; 1004 } 1005 } 1006 1007 /* Duplicate loop bounds and other information we store about 1008 the loop into its duplicate. */ 1009 1010 void 1011 copy_loop_info (struct loop *loop, struct loop *target) 1012 { 1013 gcc_checking_assert (!target->any_upper_bound && !target->any_estimate); 1014 target->any_upper_bound = loop->any_upper_bound; 1015 target->nb_iterations_upper_bound = loop->nb_iterations_upper_bound; 1016 target->any_likely_upper_bound = loop->any_likely_upper_bound; 1017 target->nb_iterations_likely_upper_bound 1018 = loop->nb_iterations_likely_upper_bound; 1019 target->any_estimate = loop->any_estimate; 1020 target->nb_iterations_estimate = loop->nb_iterations_estimate; 1021 target->estimate_state = loop->estimate_state; 1022 target->constraints = loop->constraints; 1023 target->warned_aggressive_loop_optimizations 1024 |= loop->warned_aggressive_loop_optimizations; 1025 target->in_oacc_kernels_region = loop->in_oacc_kernels_region; 1026 target->owned_clique = loop->owned_clique; 1027 } 1028 1029 /* Copies copy of LOOP as subloop of TARGET loop, placing newly 1030 created loop into loops structure. */ 1031 struct loop * 1032 duplicate_loop (struct loop *loop, struct loop *target) 1033 { 1034 struct loop *cloop; 1035 cloop = alloc_loop (); 1036 place_new_loop (cfun, cloop); 1037 1038 copy_loop_info (loop, cloop); 1039 1040 /* Mark the new loop as copy of LOOP. */ 1041 set_loop_copy (loop, cloop); 1042 1043 /* Add it to target. */ 1044 flow_loop_tree_node_add (target, cloop); 1045 1046 return cloop; 1047 } 1048 1049 /* Copies structure of subloops of LOOP into TARGET loop, placing 1050 newly created loops into loop tree. */ 1051 void 1052 duplicate_subloops (struct loop *loop, struct loop *target) 1053 { 1054 struct loop *aloop, *cloop; 1055 1056 for (aloop = loop->inner; aloop; aloop = aloop->next) 1057 { 1058 cloop = duplicate_loop (aloop, target); 1059 duplicate_subloops (aloop, cloop); 1060 } 1061 } 1062 1063 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS, 1064 into TARGET loop, placing newly created loops into loop tree. */ 1065 static void 1066 copy_loops_to (struct loop **copied_loops, int n, struct loop *target) 1067 { 1068 struct loop *aloop; 1069 int i; 1070 1071 for (i = 0; i < n; i++) 1072 { 1073 aloop = duplicate_loop (copied_loops[i], target); 1074 duplicate_subloops (copied_loops[i], aloop); 1075 } 1076 } 1077 1078 /* Redirects edge E to basic block DEST. */ 1079 static void 1080 loop_redirect_edge (edge e, basic_block dest) 1081 { 1082 if (e->dest == dest) 1083 return; 1084 1085 redirect_edge_and_branch_force (e, dest); 1086 } 1087 1088 /* Check whether LOOP's body can be duplicated. */ 1089 bool 1090 can_duplicate_loop_p (const struct loop *loop) 1091 { 1092 int ret; 1093 basic_block *bbs = get_loop_body (loop); 1094 1095 ret = can_copy_bbs_p (bbs, loop->num_nodes); 1096 free (bbs); 1097 1098 return ret; 1099 } 1100 1101 /* Sets probability and count of edge E to zero. The probability and count 1102 is redistributed evenly to the remaining edges coming from E->src. */ 1103 1104 static void 1105 set_zero_probability (edge e) 1106 { 1107 basic_block bb = e->src; 1108 edge_iterator ei; 1109 edge ae, last = NULL; 1110 unsigned n = EDGE_COUNT (bb->succs); 1111 gcov_type cnt = e->count, cnt1; 1112 unsigned prob = e->probability, prob1; 1113 1114 gcc_assert (n > 1); 1115 cnt1 = cnt / (n - 1); 1116 prob1 = prob / (n - 1); 1117 1118 FOR_EACH_EDGE (ae, ei, bb->succs) 1119 { 1120 if (ae == e) 1121 continue; 1122 1123 ae->probability += prob1; 1124 ae->count += cnt1; 1125 last = ae; 1126 } 1127 1128 /* Move the rest to one of the edges. */ 1129 last->probability += prob % (n - 1); 1130 last->count += cnt % (n - 1); 1131 1132 e->probability = 0; 1133 e->count = 0; 1134 } 1135 1136 /* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating 1137 loop structure and dominators. E's destination must be LOOP header for 1138 this to work, i.e. it must be entry or latch edge of this loop; these are 1139 unique, as the loops must have preheaders for this function to work 1140 correctly (in case E is latch, the function unrolls the loop, if E is entry 1141 edge, it peels the loop). Store edges created by copying ORIG edge from 1142 copies corresponding to set bits in WONT_EXIT bitmap (bit 0 corresponds to 1143 original LOOP body, the other copies are numbered in order given by control 1144 flow through them) into TO_REMOVE array. Returns false if duplication is 1145 impossible. */ 1146 1147 bool 1148 duplicate_loop_to_header_edge (struct loop *loop, edge e, 1149 unsigned int ndupl, sbitmap wont_exit, 1150 edge orig, vec<edge> *to_remove, 1151 int flags) 1152 { 1153 struct loop *target, *aloop; 1154 struct loop **orig_loops; 1155 unsigned n_orig_loops; 1156 basic_block header = loop->header, latch = loop->latch; 1157 basic_block *new_bbs, *bbs, *first_active; 1158 basic_block new_bb, bb, first_active_latch = NULL; 1159 edge ae, latch_edge; 1160 edge spec_edges[2], new_spec_edges[2]; 1161 #define SE_LATCH 0 1162 #define SE_ORIG 1 1163 unsigned i, j, n; 1164 int is_latch = (latch == e->src); 1165 int scale_act = 0, *scale_step = NULL, scale_main = 0; 1166 int scale_after_exit = 0; 1167 int p, freq_in, freq_le, freq_out_orig; 1168 int prob_pass_thru, prob_pass_wont_exit, prob_pass_main; 1169 int add_irreducible_flag; 1170 basic_block place_after; 1171 bitmap bbs_to_scale = NULL; 1172 bitmap_iterator bi; 1173 1174 gcc_assert (e->dest == loop->header); 1175 gcc_assert (ndupl > 0); 1176 1177 if (orig) 1178 { 1179 /* Orig must be edge out of the loop. */ 1180 gcc_assert (flow_bb_inside_loop_p (loop, orig->src)); 1181 gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest)); 1182 } 1183 1184 n = loop->num_nodes; 1185 bbs = get_loop_body_in_dom_order (loop); 1186 gcc_assert (bbs[0] == loop->header); 1187 gcc_assert (bbs[n - 1] == loop->latch); 1188 1189 /* Check whether duplication is possible. */ 1190 if (!can_copy_bbs_p (bbs, loop->num_nodes)) 1191 { 1192 free (bbs); 1193 return false; 1194 } 1195 new_bbs = XNEWVEC (basic_block, loop->num_nodes); 1196 1197 /* In case we are doing loop peeling and the loop is in the middle of 1198 irreducible region, the peeled copies will be inside it too. */ 1199 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP; 1200 gcc_assert (!is_latch || !add_irreducible_flag); 1201 1202 /* Find edge from latch. */ 1203 latch_edge = loop_latch_edge (loop); 1204 1205 if (flags & DLTHE_FLAG_UPDATE_FREQ) 1206 { 1207 /* Calculate coefficients by that we have to scale frequencies 1208 of duplicated loop bodies. */ 1209 freq_in = header->frequency; 1210 freq_le = EDGE_FREQUENCY (latch_edge); 1211 if (freq_in == 0) 1212 freq_in = 1; 1213 if (freq_in < freq_le) 1214 freq_in = freq_le; 1215 freq_out_orig = orig ? EDGE_FREQUENCY (orig) : freq_in - freq_le; 1216 if (freq_out_orig > freq_in - freq_le) 1217 freq_out_orig = freq_in - freq_le; 1218 prob_pass_thru = RDIV (REG_BR_PROB_BASE * freq_le, freq_in); 1219 prob_pass_wont_exit = 1220 RDIV (REG_BR_PROB_BASE * (freq_le + freq_out_orig), freq_in); 1221 1222 if (orig 1223 && REG_BR_PROB_BASE - orig->probability != 0) 1224 { 1225 /* The blocks that are dominated by a removed exit edge ORIG have 1226 frequencies scaled by this. */ 1227 scale_after_exit 1228 = GCOV_COMPUTE_SCALE (REG_BR_PROB_BASE, 1229 REG_BR_PROB_BASE - orig->probability); 1230 bbs_to_scale = BITMAP_ALLOC (NULL); 1231 for (i = 0; i < n; i++) 1232 { 1233 if (bbs[i] != orig->src 1234 && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src)) 1235 bitmap_set_bit (bbs_to_scale, i); 1236 } 1237 } 1238 1239 scale_step = XNEWVEC (int, ndupl); 1240 1241 for (i = 1; i <= ndupl; i++) 1242 scale_step[i - 1] = bitmap_bit_p (wont_exit, i) 1243 ? prob_pass_wont_exit 1244 : prob_pass_thru; 1245 1246 /* Complete peeling is special as the probability of exit in last 1247 copy becomes 1. */ 1248 if (flags & DLTHE_FLAG_COMPLETTE_PEEL) 1249 { 1250 int wanted_freq = EDGE_FREQUENCY (e); 1251 1252 if (wanted_freq > freq_in) 1253 wanted_freq = freq_in; 1254 1255 gcc_assert (!is_latch); 1256 /* First copy has frequency of incoming edge. Each subsequent 1257 frequency should be reduced by prob_pass_wont_exit. Caller 1258 should've managed the flags so all except for original loop 1259 has won't exist set. */ 1260 scale_act = GCOV_COMPUTE_SCALE (wanted_freq, freq_in); 1261 /* Now simulate the duplication adjustments and compute header 1262 frequency of the last copy. */ 1263 for (i = 0; i < ndupl; i++) 1264 wanted_freq = combine_probabilities (wanted_freq, scale_step[i]); 1265 scale_main = GCOV_COMPUTE_SCALE (wanted_freq, freq_in); 1266 } 1267 else if (is_latch) 1268 { 1269 prob_pass_main = bitmap_bit_p (wont_exit, 0) 1270 ? prob_pass_wont_exit 1271 : prob_pass_thru; 1272 p = prob_pass_main; 1273 scale_main = REG_BR_PROB_BASE; 1274 for (i = 0; i < ndupl; i++) 1275 { 1276 scale_main += p; 1277 p = combine_probabilities (p, scale_step[i]); 1278 } 1279 scale_main = GCOV_COMPUTE_SCALE (REG_BR_PROB_BASE, scale_main); 1280 scale_act = combine_probabilities (scale_main, prob_pass_main); 1281 } 1282 else 1283 { 1284 int preheader_freq = EDGE_FREQUENCY (e); 1285 scale_main = REG_BR_PROB_BASE; 1286 for (i = 0; i < ndupl; i++) 1287 scale_main = combine_probabilities (scale_main, scale_step[i]); 1288 if (preheader_freq > freq_in) 1289 preheader_freq = freq_in; 1290 scale_act = GCOV_COMPUTE_SCALE (preheader_freq, freq_in); 1291 } 1292 for (i = 0; i < ndupl; i++) 1293 gcc_assert (scale_step[i] >= 0 && scale_step[i] <= REG_BR_PROB_BASE); 1294 gcc_assert (scale_main >= 0 && scale_main <= REG_BR_PROB_BASE 1295 && scale_act >= 0 && scale_act <= REG_BR_PROB_BASE); 1296 } 1297 1298 /* Loop the new bbs will belong to. */ 1299 target = e->src->loop_father; 1300 1301 /* Original loops. */ 1302 n_orig_loops = 0; 1303 for (aloop = loop->inner; aloop; aloop = aloop->next) 1304 n_orig_loops++; 1305 orig_loops = XNEWVEC (struct loop *, n_orig_loops); 1306 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++) 1307 orig_loops[i] = aloop; 1308 1309 set_loop_copy (loop, target); 1310 1311 first_active = XNEWVEC (basic_block, n); 1312 if (is_latch) 1313 { 1314 memcpy (first_active, bbs, n * sizeof (basic_block)); 1315 first_active_latch = latch; 1316 } 1317 1318 spec_edges[SE_ORIG] = orig; 1319 spec_edges[SE_LATCH] = latch_edge; 1320 1321 place_after = e->src; 1322 for (j = 0; j < ndupl; j++) 1323 { 1324 /* Copy loops. */ 1325 copy_loops_to (orig_loops, n_orig_loops, target); 1326 1327 /* Copy bbs. */ 1328 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop, 1329 place_after, true); 1330 place_after = new_spec_edges[SE_LATCH]->src; 1331 1332 if (flags & DLTHE_RECORD_COPY_NUMBER) 1333 for (i = 0; i < n; i++) 1334 { 1335 gcc_assert (!new_bbs[i]->aux); 1336 new_bbs[i]->aux = (void *)(size_t)(j + 1); 1337 } 1338 1339 /* Note whether the blocks and edges belong to an irreducible loop. */ 1340 if (add_irreducible_flag) 1341 { 1342 for (i = 0; i < n; i++) 1343 new_bbs[i]->flags |= BB_DUPLICATED; 1344 for (i = 0; i < n; i++) 1345 { 1346 edge_iterator ei; 1347 new_bb = new_bbs[i]; 1348 if (new_bb->loop_father == target) 1349 new_bb->flags |= BB_IRREDUCIBLE_LOOP; 1350 1351 FOR_EACH_EDGE (ae, ei, new_bb->succs) 1352 if ((ae->dest->flags & BB_DUPLICATED) 1353 && (ae->src->loop_father == target 1354 || ae->dest->loop_father == target)) 1355 ae->flags |= EDGE_IRREDUCIBLE_LOOP; 1356 } 1357 for (i = 0; i < n; i++) 1358 new_bbs[i]->flags &= ~BB_DUPLICATED; 1359 } 1360 1361 /* Redirect the special edges. */ 1362 if (is_latch) 1363 { 1364 redirect_edge_and_branch_force (latch_edge, new_bbs[0]); 1365 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH], 1366 loop->header); 1367 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch); 1368 latch = loop->latch = new_bbs[n - 1]; 1369 e = latch_edge = new_spec_edges[SE_LATCH]; 1370 } 1371 else 1372 { 1373 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH], 1374 loop->header); 1375 redirect_edge_and_branch_force (e, new_bbs[0]); 1376 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src); 1377 e = new_spec_edges[SE_LATCH]; 1378 } 1379 1380 /* Record exit edge in this copy. */ 1381 if (orig && bitmap_bit_p (wont_exit, j + 1)) 1382 { 1383 if (to_remove) 1384 to_remove->safe_push (new_spec_edges[SE_ORIG]); 1385 set_zero_probability (new_spec_edges[SE_ORIG]); 1386 1387 /* Scale the frequencies of the blocks dominated by the exit. */ 1388 if (bbs_to_scale) 1389 { 1390 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi) 1391 { 1392 scale_bbs_frequencies_int (new_bbs + i, 1, scale_after_exit, 1393 REG_BR_PROB_BASE); 1394 } 1395 } 1396 } 1397 1398 /* Record the first copy in the control flow order if it is not 1399 the original loop (i.e. in case of peeling). */ 1400 if (!first_active_latch) 1401 { 1402 memcpy (first_active, new_bbs, n * sizeof (basic_block)); 1403 first_active_latch = new_bbs[n - 1]; 1404 } 1405 1406 /* Set counts and frequencies. */ 1407 if (flags & DLTHE_FLAG_UPDATE_FREQ) 1408 { 1409 scale_bbs_frequencies_int (new_bbs, n, scale_act, REG_BR_PROB_BASE); 1410 scale_act = combine_probabilities (scale_act, scale_step[j]); 1411 } 1412 } 1413 free (new_bbs); 1414 free (orig_loops); 1415 1416 /* Record the exit edge in the original loop body, and update the frequencies. */ 1417 if (orig && bitmap_bit_p (wont_exit, 0)) 1418 { 1419 if (to_remove) 1420 to_remove->safe_push (orig); 1421 set_zero_probability (orig); 1422 1423 /* Scale the frequencies of the blocks dominated by the exit. */ 1424 if (bbs_to_scale) 1425 { 1426 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi) 1427 { 1428 scale_bbs_frequencies_int (bbs + i, 1, scale_after_exit, 1429 REG_BR_PROB_BASE); 1430 } 1431 } 1432 } 1433 1434 /* Update the original loop. */ 1435 if (!is_latch) 1436 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src); 1437 if (flags & DLTHE_FLAG_UPDATE_FREQ) 1438 { 1439 scale_bbs_frequencies_int (bbs, n, scale_main, REG_BR_PROB_BASE); 1440 free (scale_step); 1441 } 1442 1443 /* Update dominators of outer blocks if affected. */ 1444 for (i = 0; i < n; i++) 1445 { 1446 basic_block dominated, dom_bb; 1447 vec<basic_block> dom_bbs; 1448 unsigned j; 1449 1450 bb = bbs[i]; 1451 bb->aux = 0; 1452 1453 dom_bbs = get_dominated_by (CDI_DOMINATORS, bb); 1454 FOR_EACH_VEC_ELT (dom_bbs, j, dominated) 1455 { 1456 if (flow_bb_inside_loop_p (loop, dominated)) 1457 continue; 1458 dom_bb = nearest_common_dominator ( 1459 CDI_DOMINATORS, first_active[i], first_active_latch); 1460 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb); 1461 } 1462 dom_bbs.release (); 1463 } 1464 free (first_active); 1465 1466 free (bbs); 1467 BITMAP_FREE (bbs_to_scale); 1468 1469 return true; 1470 } 1471 1472 /* A callback for make_forwarder block, to redirect all edges except for 1473 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide 1474 whether to redirect it. */ 1475 1476 edge mfb_kj_edge; 1477 bool 1478 mfb_keep_just (edge e) 1479 { 1480 return e != mfb_kj_edge; 1481 } 1482 1483 /* True when a candidate preheader BLOCK has predecessors from LOOP. */ 1484 1485 static bool 1486 has_preds_from_loop (basic_block block, struct loop *loop) 1487 { 1488 edge e; 1489 edge_iterator ei; 1490 1491 FOR_EACH_EDGE (e, ei, block->preds) 1492 if (e->src->loop_father == loop) 1493 return true; 1494 return false; 1495 } 1496 1497 /* Creates a pre-header for a LOOP. Returns newly created block. Unless 1498 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single 1499 entry; otherwise we also force preheader block to have only one successor. 1500 When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block 1501 to be a fallthru predecessor to the loop header and to have only 1502 predecessors from outside of the loop. 1503 The function also updates dominators. */ 1504 1505 basic_block 1506 create_preheader (struct loop *loop, int flags) 1507 { 1508 edge e; 1509 basic_block dummy; 1510 int nentry = 0; 1511 bool irred = false; 1512 bool latch_edge_was_fallthru; 1513 edge one_succ_pred = NULL, single_entry = NULL; 1514 edge_iterator ei; 1515 1516 FOR_EACH_EDGE (e, ei, loop->header->preds) 1517 { 1518 if (e->src == loop->latch) 1519 continue; 1520 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0; 1521 nentry++; 1522 single_entry = e; 1523 if (single_succ_p (e->src)) 1524 one_succ_pred = e; 1525 } 1526 gcc_assert (nentry); 1527 if (nentry == 1) 1528 { 1529 bool need_forwarder_block = false; 1530 1531 /* We do not allow entry block to be the loop preheader, since we 1532 cannot emit code there. */ 1533 if (single_entry->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)) 1534 need_forwarder_block = true; 1535 else 1536 { 1537 /* If we want simple preheaders, also force the preheader to have 1538 just a single successor. */ 1539 if ((flags & CP_SIMPLE_PREHEADERS) 1540 && !single_succ_p (single_entry->src)) 1541 need_forwarder_block = true; 1542 /* If we want fallthru preheaders, also create forwarder block when 1543 preheader ends with a jump or has predecessors from loop. */ 1544 else if ((flags & CP_FALLTHRU_PREHEADERS) 1545 && (JUMP_P (BB_END (single_entry->src)) 1546 || has_preds_from_loop (single_entry->src, loop))) 1547 need_forwarder_block = true; 1548 } 1549 if (! need_forwarder_block) 1550 return NULL; 1551 } 1552 1553 mfb_kj_edge = loop_latch_edge (loop); 1554 latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0; 1555 if (nentry == 1) 1556 dummy = split_edge (single_entry); 1557 else 1558 { 1559 edge fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL); 1560 dummy = fallthru->src; 1561 loop->header = fallthru->dest; 1562 } 1563 1564 /* Try to be clever in placing the newly created preheader. The idea is to 1565 avoid breaking any "fallthruness" relationship between blocks. 1566 1567 The preheader was created just before the header and all incoming edges 1568 to the header were redirected to the preheader, except the latch edge. 1569 So the only problematic case is when this latch edge was a fallthru 1570 edge: it is not anymore after the preheader creation so we have broken 1571 the fallthruness. We're therefore going to look for a better place. */ 1572 if (latch_edge_was_fallthru) 1573 { 1574 if (one_succ_pred) 1575 e = one_succ_pred; 1576 else 1577 e = EDGE_PRED (dummy, 0); 1578 1579 move_block_after (dummy, e->src); 1580 } 1581 1582 if (irred) 1583 { 1584 dummy->flags |= BB_IRREDUCIBLE_LOOP; 1585 single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP; 1586 } 1587 1588 if (dump_file) 1589 fprintf (dump_file, "Created preheader block for loop %i\n", 1590 loop->num); 1591 1592 if (flags & CP_FALLTHRU_PREHEADERS) 1593 gcc_assert ((single_succ_edge (dummy)->flags & EDGE_FALLTHRU) 1594 && !JUMP_P (BB_END (dummy))); 1595 1596 return dummy; 1597 } 1598 1599 /* Create preheaders for each loop; for meaning of FLAGS see create_preheader. */ 1600 1601 void 1602 create_preheaders (int flags) 1603 { 1604 struct loop *loop; 1605 1606 if (!current_loops) 1607 return; 1608 1609 FOR_EACH_LOOP (loop, 0) 1610 create_preheader (loop, flags); 1611 loops_state_set (LOOPS_HAVE_PREHEADERS); 1612 } 1613 1614 /* Forces all loop latches to have only single successor. */ 1615 1616 void 1617 force_single_succ_latches (void) 1618 { 1619 struct loop *loop; 1620 edge e; 1621 1622 FOR_EACH_LOOP (loop, 0) 1623 { 1624 if (loop->latch != loop->header && single_succ_p (loop->latch)) 1625 continue; 1626 1627 e = find_edge (loop->latch, loop->header); 1628 gcc_checking_assert (e != NULL); 1629 1630 split_edge (e); 1631 } 1632 loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES); 1633 } 1634 1635 /* This function is called from loop_version. It splits the entry edge 1636 of the loop we want to version, adds the versioning condition, and 1637 adjust the edges to the two versions of the loop appropriately. 1638 e is an incoming edge. Returns the basic block containing the 1639 condition. 1640 1641 --- edge e ---- > [second_head] 1642 1643 Split it and insert new conditional expression and adjust edges. 1644 1645 --- edge e ---> [cond expr] ---> [first_head] 1646 | 1647 +---------> [second_head] 1648 1649 THEN_PROB is the probability of then branch of the condition. 1650 ELSE_PROB is the probability of else branch. Note that they may be both 1651 REG_BR_PROB_BASE when condition is IFN_LOOP_VECTORIZED. */ 1652 1653 static basic_block 1654 lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head, 1655 edge e, void *cond_expr, unsigned then_prob, 1656 unsigned else_prob) 1657 { 1658 basic_block new_head = NULL; 1659 edge e1; 1660 1661 gcc_assert (e->dest == second_head); 1662 1663 /* Split edge 'e'. This will create a new basic block, where we can 1664 insert conditional expr. */ 1665 new_head = split_edge (e); 1666 1667 lv_add_condition_to_bb (first_head, second_head, new_head, 1668 cond_expr); 1669 1670 /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there. */ 1671 e = single_succ_edge (new_head); 1672 e1 = make_edge (new_head, first_head, 1673 current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0); 1674 e1->probability = then_prob; 1675 e->probability = else_prob; 1676 e1->count = apply_probability (e->count, e1->probability); 1677 e->count = apply_probability (e->count, e->probability); 1678 1679 set_immediate_dominator (CDI_DOMINATORS, first_head, new_head); 1680 set_immediate_dominator (CDI_DOMINATORS, second_head, new_head); 1681 1682 /* Adjust loop header phi nodes. */ 1683 lv_adjust_loop_header_phi (first_head, second_head, new_head, e1); 1684 1685 return new_head; 1686 } 1687 1688 /* Main entry point for Loop Versioning transformation. 1689 1690 This transformation given a condition and a loop, creates 1691 -if (condition) { loop_copy1 } else { loop_copy2 }, 1692 where loop_copy1 is the loop transformed in one way, and loop_copy2 1693 is the loop transformed in another way (or unchanged). COND_EXPR 1694 may be a run time test for things that were not resolved by static 1695 analysis (overlapping ranges (anti-aliasing), alignment, etc.). 1696 1697 If non-NULL, CONDITION_BB is set to the basic block containing the 1698 condition. 1699 1700 THEN_PROB is the probability of the then edge of the if. THEN_SCALE 1701 is the ratio by that the frequencies in the original loop should 1702 be scaled. ELSE_SCALE is the ratio by that the frequencies in the 1703 new loop should be scaled. 1704 1705 If PLACE_AFTER is true, we place the new loop after LOOP in the 1706 instruction stream, otherwise it is placed before LOOP. */ 1707 1708 struct loop * 1709 loop_version (struct loop *loop, 1710 void *cond_expr, basic_block *condition_bb, 1711 unsigned then_prob, unsigned else_prob, 1712 unsigned then_scale, unsigned else_scale, 1713 bool place_after) 1714 { 1715 basic_block first_head, second_head; 1716 edge entry, latch_edge, true_edge, false_edge; 1717 int irred_flag; 1718 struct loop *nloop; 1719 basic_block cond_bb; 1720 1721 /* Record entry and latch edges for the loop */ 1722 entry = loop_preheader_edge (loop); 1723 irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP; 1724 entry->flags &= ~EDGE_IRREDUCIBLE_LOOP; 1725 1726 /* Note down head of loop as first_head. */ 1727 first_head = entry->dest; 1728 1729 /* Duplicate loop. */ 1730 if (!cfg_hook_duplicate_loop_to_header_edge (loop, entry, 1, 1731 NULL, NULL, NULL, 0)) 1732 { 1733 entry->flags |= irred_flag; 1734 return NULL; 1735 } 1736 1737 /* After duplication entry edge now points to new loop head block. 1738 Note down new head as second_head. */ 1739 second_head = entry->dest; 1740 1741 /* Split loop entry edge and insert new block with cond expr. */ 1742 cond_bb = lv_adjust_loop_entry_edge (first_head, second_head, 1743 entry, cond_expr, then_prob, else_prob); 1744 if (condition_bb) 1745 *condition_bb = cond_bb; 1746 1747 if (!cond_bb) 1748 { 1749 entry->flags |= irred_flag; 1750 return NULL; 1751 } 1752 1753 latch_edge = single_succ_edge (get_bb_copy (loop->latch)); 1754 1755 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge); 1756 nloop = loopify (latch_edge, 1757 single_pred_edge (get_bb_copy (loop->header)), 1758 cond_bb, true_edge, false_edge, 1759 false /* Do not redirect all edges. */, 1760 then_scale, else_scale); 1761 1762 copy_loop_info (loop, nloop); 1763 1764 /* loopify redirected latch_edge. Update its PENDING_STMTS. */ 1765 lv_flush_pending_stmts (latch_edge); 1766 1767 /* loopify redirected condition_bb's succ edge. Update its PENDING_STMTS. */ 1768 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge); 1769 lv_flush_pending_stmts (false_edge); 1770 /* Adjust irreducible flag. */ 1771 if (irred_flag) 1772 { 1773 cond_bb->flags |= BB_IRREDUCIBLE_LOOP; 1774 loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP; 1775 loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP; 1776 single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP; 1777 } 1778 1779 if (place_after) 1780 { 1781 basic_block *bbs = get_loop_body_in_dom_order (nloop), after; 1782 unsigned i; 1783 1784 after = loop->latch; 1785 1786 for (i = 0; i < nloop->num_nodes; i++) 1787 { 1788 move_block_after (bbs[i], after); 1789 after = bbs[i]; 1790 } 1791 free (bbs); 1792 } 1793 1794 /* At this point condition_bb is loop preheader with two successors, 1795 first_head and second_head. Make sure that loop preheader has only 1796 one successor. */ 1797 split_edge (loop_preheader_edge (loop)); 1798 split_edge (loop_preheader_edge (nloop)); 1799 1800 return nloop; 1801 } 1802