xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/cfgloopmanip.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* Loop manipulation code for GNU compiler.
2    Copyright (C) 2002-2015 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "predict.h"
26 #include "vec.h"
27 #include "hashtab.h"
28 #include "hash-set.h"
29 #include "symtab.h"
30 #include "inchash.h"
31 #include "machmode.h"
32 #include "hard-reg-set.h"
33 #include "input.h"
34 #include "function.h"
35 #include "dominance.h"
36 #include "cfg.h"
37 #include "cfganal.h"
38 #include "basic-block.h"
39 #include "cfgloop.h"
40 #include "tree.h"
41 #include "fold-const.h"
42 #include "tree-ssa-alias.h"
43 #include "internal-fn.h"
44 #include "gimple-expr.h"
45 #include "is-a.h"
46 #include "gimple.h"
47 #include "gimple-iterator.h"
48 #include "gimplify-me.h"
49 #include "tree-ssa-loop-manip.h"
50 #include "dumpfile.h"
51 
52 static void copy_loops_to (struct loop **, int,
53 			   struct loop *);
54 static void loop_redirect_edge (edge, basic_block);
55 static void remove_bbs (basic_block *, int);
56 static bool rpe_enum_p (const_basic_block, const void *);
57 static int find_path (edge, basic_block **);
58 static void fix_loop_placements (struct loop *, bool *);
59 static bool fix_bb_placement (basic_block);
60 static void fix_bb_placements (basic_block, bool *, bitmap);
61 
62 /* Checks whether basic block BB is dominated by DATA.  */
63 static bool
64 rpe_enum_p (const_basic_block bb, const void *data)
65 {
66   return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data);
67 }
68 
69 /* Remove basic blocks BBS.  NBBS is the number of the basic blocks.  */
70 
71 static void
72 remove_bbs (basic_block *bbs, int nbbs)
73 {
74   int i;
75 
76   for (i = 0; i < nbbs; i++)
77     delete_basic_block (bbs[i]);
78 }
79 
80 /* Find path -- i.e. the basic blocks dominated by edge E and put them
81    into array BBS, that will be allocated large enough to contain them.
82    E->dest must have exactly one predecessor for this to work (it is
83    easy to achieve and we do not put it here because we do not want to
84    alter anything by this function).  The number of basic blocks in the
85    path is returned.  */
86 static int
87 find_path (edge e, basic_block **bbs)
88 {
89   gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
90 
91   /* Find bbs in the path.  */
92   *bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
93   return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
94 			     n_basic_blocks_for_fn (cfun), e->dest);
95 }
96 
97 /* Fix placement of basic block BB inside loop hierarchy --
98    Let L be a loop to that BB belongs.  Then every successor of BB must either
99      1) belong to some superloop of loop L, or
100      2) be a header of loop K such that K->outer is superloop of L
101    Returns true if we had to move BB into other loop to enforce this condition,
102    false if the placement of BB was already correct (provided that placements
103    of its successors are correct).  */
104 static bool
105 fix_bb_placement (basic_block bb)
106 {
107   edge e;
108   edge_iterator ei;
109   struct loop *loop = current_loops->tree_root, *act;
110 
111   FOR_EACH_EDGE (e, ei, bb->succs)
112     {
113       if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
114 	continue;
115 
116       act = e->dest->loop_father;
117       if (act->header == e->dest)
118 	act = loop_outer (act);
119 
120       if (flow_loop_nested_p (loop, act))
121 	loop = act;
122     }
123 
124   if (loop == bb->loop_father)
125     return false;
126 
127   remove_bb_from_loops (bb);
128   add_bb_to_loop (bb, loop);
129 
130   return true;
131 }
132 
133 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
134    of LOOP to that leads at least one exit edge of LOOP, and set it
135    as the immediate superloop of LOOP.  Return true if the immediate superloop
136    of LOOP changed.
137 
138    IRRED_INVALIDATED is set to true if a change in the loop structures might
139    invalidate the information about irreducible regions.  */
140 
141 static bool
142 fix_loop_placement (struct loop *loop, bool *irred_invalidated)
143 {
144   unsigned i;
145   edge e;
146   vec<edge> exits = get_loop_exit_edges (loop);
147   struct loop *father = current_loops->tree_root, *act;
148   bool ret = false;
149 
150   FOR_EACH_VEC_ELT (exits, i, e)
151     {
152       act = find_common_loop (loop, e->dest->loop_father);
153       if (flow_loop_nested_p (father, act))
154 	father = act;
155     }
156 
157   if (father != loop_outer (loop))
158     {
159       for (act = loop_outer (loop); act != father; act = loop_outer (act))
160 	act->num_nodes -= loop->num_nodes;
161       flow_loop_tree_node_remove (loop);
162       flow_loop_tree_node_add (father, loop);
163 
164       /* The exit edges of LOOP no longer exits its original immediate
165 	 superloops; remove them from the appropriate exit lists.  */
166       FOR_EACH_VEC_ELT (exits, i, e)
167 	{
168 	  /* We may need to recompute irreducible loops.  */
169 	  if (e->flags & EDGE_IRREDUCIBLE_LOOP)
170 	    *irred_invalidated = true;
171 	  rescan_loop_exit (e, false, false);
172 	}
173 
174       ret = true;
175     }
176 
177   exits.release ();
178   return ret;
179 }
180 
181 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
182    enforce condition condition stated in description of fix_bb_placement. We
183    start from basic block FROM that had some of its successors removed, so that
184    his placement no longer has to be correct, and iteratively fix placement of
185    its predecessors that may change if placement of FROM changed.  Also fix
186    placement of subloops of FROM->loop_father, that might also be altered due
187    to this change; the condition for them is similar, except that instead of
188    successors we consider edges coming out of the loops.
189 
190    If the changes may invalidate the information about irreducible regions,
191    IRRED_INVALIDATED is set to true.
192 
193    If LOOP_CLOSED_SSA_INVLIDATED is non-zero then all basic blocks with
194    changed loop_father are collected there. */
195 
196 static void
197 fix_bb_placements (basic_block from,
198 		   bool *irred_invalidated,
199 		   bitmap loop_closed_ssa_invalidated)
200 {
201   sbitmap in_queue;
202   basic_block *queue, *qtop, *qbeg, *qend;
203   struct loop *base_loop, *target_loop;
204   edge e;
205 
206   /* We pass through blocks back-reachable from FROM, testing whether some
207      of their successors moved to outer loop.  It may be necessary to
208      iterate several times, but it is finite, as we stop unless we move
209      the basic block up the loop structure.  The whole story is a bit
210      more complicated due to presence of subloops, those are moved using
211      fix_loop_placement.  */
212 
213   base_loop = from->loop_father;
214   /* If we are already in the outermost loop, the basic blocks cannot be moved
215      outside of it.  If FROM is the header of the base loop, it cannot be moved
216      outside of it, either.  In both cases, we can end now.  */
217   if (base_loop == current_loops->tree_root
218       || from == base_loop->header)
219     return;
220 
221   in_queue = sbitmap_alloc (last_basic_block_for_fn (cfun));
222   bitmap_clear (in_queue);
223   bitmap_set_bit (in_queue, from->index);
224   /* Prevent us from going out of the base_loop.  */
225   bitmap_set_bit (in_queue, base_loop->header->index);
226 
227   queue = XNEWVEC (basic_block, base_loop->num_nodes + 1);
228   qtop = queue + base_loop->num_nodes + 1;
229   qbeg = queue;
230   qend = queue + 1;
231   *qbeg = from;
232 
233   while (qbeg != qend)
234     {
235       edge_iterator ei;
236       from = *qbeg;
237       qbeg++;
238       if (qbeg == qtop)
239 	qbeg = queue;
240       bitmap_clear_bit (in_queue, from->index);
241 
242       if (from->loop_father->header == from)
243 	{
244 	  /* Subloop header, maybe move the loop upward.  */
245 	  if (!fix_loop_placement (from->loop_father, irred_invalidated))
246 	    continue;
247 	  target_loop = loop_outer (from->loop_father);
248 	  if (loop_closed_ssa_invalidated)
249 	    {
250 	      basic_block *bbs = get_loop_body (from->loop_father);
251 	      for (unsigned i = 0; i < from->loop_father->num_nodes; ++i)
252 		bitmap_set_bit (loop_closed_ssa_invalidated, bbs[i]->index);
253 	      free (bbs);
254 	    }
255 	}
256       else
257 	{
258 	  /* Ordinary basic block.  */
259 	  if (!fix_bb_placement (from))
260 	    continue;
261 	  target_loop = from->loop_father;
262 	  if (loop_closed_ssa_invalidated)
263 	    bitmap_set_bit (loop_closed_ssa_invalidated, from->index);
264 	}
265 
266       FOR_EACH_EDGE (e, ei, from->succs)
267 	{
268 	  if (e->flags & EDGE_IRREDUCIBLE_LOOP)
269 	    *irred_invalidated = true;
270 	}
271 
272       /* Something has changed, insert predecessors into queue.  */
273       FOR_EACH_EDGE (e, ei, from->preds)
274 	{
275 	  basic_block pred = e->src;
276 	  struct loop *nca;
277 
278 	  if (e->flags & EDGE_IRREDUCIBLE_LOOP)
279 	    *irred_invalidated = true;
280 
281 	  if (bitmap_bit_p (in_queue, pred->index))
282 	    continue;
283 
284 	  /* If it is subloop, then it either was not moved, or
285 	     the path up the loop tree from base_loop do not contain
286 	     it.  */
287 	  nca = find_common_loop (pred->loop_father, base_loop);
288 	  if (pred->loop_father != base_loop
289 	      && (nca == base_loop
290 		  || nca != pred->loop_father))
291 	    pred = pred->loop_father->header;
292 	  else if (!flow_loop_nested_p (target_loop, pred->loop_father))
293 	    {
294 	      /* If PRED is already higher in the loop hierarchy than the
295 		 TARGET_LOOP to that we moved FROM, the change of the position
296 		 of FROM does not affect the position of PRED, so there is no
297 		 point in processing it.  */
298 	      continue;
299 	    }
300 
301 	  if (bitmap_bit_p (in_queue, pred->index))
302 	    continue;
303 
304 	  /* Schedule the basic block.  */
305 	  *qend = pred;
306 	  qend++;
307 	  if (qend == qtop)
308 	    qend = queue;
309 	  bitmap_set_bit (in_queue, pred->index);
310 	}
311     }
312   free (in_queue);
313   free (queue);
314 }
315 
316 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
317    and update loop structures and dominators.  Return true if we were able
318    to remove the path, false otherwise (and nothing is affected then).  */
319 bool
320 remove_path (edge e)
321 {
322   edge ae;
323   basic_block *rem_bbs, *bord_bbs, from, bb;
324   vec<basic_block> dom_bbs;
325   int i, nrem, n_bord_bbs;
326   sbitmap seen;
327   bool irred_invalidated = false;
328   edge_iterator ei;
329   struct loop *l, *f;
330 
331   if (!can_remove_branch_p (e))
332     return false;
333 
334   /* Keep track of whether we need to update information about irreducible
335      regions.  This is the case if the removed area is a part of the
336      irreducible region, or if the set of basic blocks that belong to a loop
337      that is inside an irreducible region is changed, or if such a loop is
338      removed.  */
339   if (e->flags & EDGE_IRREDUCIBLE_LOOP)
340     irred_invalidated = true;
341 
342   /* We need to check whether basic blocks are dominated by the edge
343      e, but we only have basic block dominators.  This is easy to
344      fix -- when e->dest has exactly one predecessor, this corresponds
345      to blocks dominated by e->dest, if not, split the edge.  */
346   if (!single_pred_p (e->dest))
347     e = single_pred_edge (split_edge (e));
348 
349   /* It may happen that by removing path we remove one or more loops
350      we belong to.  In this case first unloop the loops, then proceed
351      normally.   We may assume that e->dest is not a header of any loop,
352      as it now has exactly one predecessor.  */
353   for (l = e->src->loop_father; loop_outer (l); l = f)
354     {
355       f = loop_outer (l);
356       if (dominated_by_p (CDI_DOMINATORS, l->latch, e->dest))
357         unloop (l, &irred_invalidated, NULL);
358     }
359 
360   /* Identify the path.  */
361   nrem = find_path (e, &rem_bbs);
362 
363   n_bord_bbs = 0;
364   bord_bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
365   seen = sbitmap_alloc (last_basic_block_for_fn (cfun));
366   bitmap_clear (seen);
367 
368   /* Find "border" hexes -- i.e. those with predecessor in removed path.  */
369   for (i = 0; i < nrem; i++)
370     bitmap_set_bit (seen, rem_bbs[i]->index);
371   if (!irred_invalidated)
372     FOR_EACH_EDGE (ae, ei, e->src->succs)
373       if (ae != e && ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
374 	  && !bitmap_bit_p (seen, ae->dest->index)
375 	  && ae->flags & EDGE_IRREDUCIBLE_LOOP)
376 	{
377 	  irred_invalidated = true;
378 	  break;
379 	}
380 
381   for (i = 0; i < nrem; i++)
382     {
383       bb = rem_bbs[i];
384       FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
385 	if (ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
386 	    && !bitmap_bit_p (seen, ae->dest->index))
387 	  {
388 	    bitmap_set_bit (seen, ae->dest->index);
389 	    bord_bbs[n_bord_bbs++] = ae->dest;
390 
391 	    if (ae->flags & EDGE_IRREDUCIBLE_LOOP)
392 	      irred_invalidated = true;
393 	  }
394     }
395 
396   /* Remove the path.  */
397   from = e->src;
398   remove_branch (e);
399   dom_bbs.create (0);
400 
401   /* Cancel loops contained in the path.  */
402   for (i = 0; i < nrem; i++)
403     if (rem_bbs[i]->loop_father->header == rem_bbs[i])
404       cancel_loop_tree (rem_bbs[i]->loop_father);
405 
406   remove_bbs (rem_bbs, nrem);
407   free (rem_bbs);
408 
409   /* Find blocks whose dominators may be affected.  */
410   bitmap_clear (seen);
411   for (i = 0; i < n_bord_bbs; i++)
412     {
413       basic_block ldom;
414 
415       bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
416       if (bitmap_bit_p (seen, bb->index))
417 	continue;
418       bitmap_set_bit (seen, bb->index);
419 
420       for (ldom = first_dom_son (CDI_DOMINATORS, bb);
421 	   ldom;
422 	   ldom = next_dom_son (CDI_DOMINATORS, ldom))
423 	if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
424 	  dom_bbs.safe_push (ldom);
425     }
426 
427   free (seen);
428 
429   /* Recount dominators.  */
430   iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true);
431   dom_bbs.release ();
432   free (bord_bbs);
433 
434   /* Fix placements of basic blocks inside loops and the placement of
435      loops in the loop tree.  */
436   fix_bb_placements (from, &irred_invalidated, NULL);
437   fix_loop_placements (from->loop_father, &irred_invalidated);
438 
439   if (irred_invalidated
440       && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
441     mark_irreducible_loops ();
442 
443   return true;
444 }
445 
446 /* Creates place for a new LOOP in loops structure of FN.  */
447 
448 void
449 place_new_loop (struct function *fn, struct loop *loop)
450 {
451   loop->num = number_of_loops (fn);
452   vec_safe_push (loops_for_fn (fn)->larray, loop);
453 }
454 
455 /* Given LOOP structure with filled header and latch, find the body of the
456    corresponding loop and add it to loops tree.  Insert the LOOP as a son of
457    outer.  */
458 
459 void
460 add_loop (struct loop *loop, struct loop *outer)
461 {
462   basic_block *bbs;
463   int i, n;
464   struct loop *subloop;
465   edge e;
466   edge_iterator ei;
467 
468   /* Add it to loop structure.  */
469   place_new_loop (cfun, loop);
470   flow_loop_tree_node_add (outer, loop);
471 
472   /* Find its nodes.  */
473   bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
474   n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
475 
476   for (i = 0; i < n; i++)
477     {
478       if (bbs[i]->loop_father == outer)
479 	{
480 	  remove_bb_from_loops (bbs[i]);
481 	  add_bb_to_loop (bbs[i], loop);
482 	  continue;
483 	}
484 
485       loop->num_nodes++;
486 
487       /* If we find a direct subloop of OUTER, move it to LOOP.  */
488       subloop = bbs[i]->loop_father;
489       if (loop_outer (subloop) == outer
490 	  && subloop->header == bbs[i])
491 	{
492 	  flow_loop_tree_node_remove (subloop);
493 	  flow_loop_tree_node_add (loop, subloop);
494 	}
495     }
496 
497   /* Update the information about loop exit edges.  */
498   for (i = 0; i < n; i++)
499     {
500       FOR_EACH_EDGE (e, ei, bbs[i]->succs)
501 	{
502 	  rescan_loop_exit (e, false, false);
503 	}
504     }
505 
506   free (bbs);
507 }
508 
509 /* Multiply all frequencies in LOOP by NUM/DEN.  */
510 
511 void
512 scale_loop_frequencies (struct loop *loop, int num, int den)
513 {
514   basic_block *bbs;
515 
516   bbs = get_loop_body (loop);
517   scale_bbs_frequencies_int (bbs, loop->num_nodes, num, den);
518   free (bbs);
519 }
520 
521 /* Multiply all frequencies in LOOP by SCALE/REG_BR_PROB_BASE.
522    If ITERATION_BOUND is non-zero, scale even further if loop is predicted
523    to iterate too many times.  */
524 
525 void
526 scale_loop_profile (struct loop *loop, int scale, gcov_type iteration_bound)
527 {
528   gcov_type iterations = expected_loop_iterations_unbounded (loop);
529   edge e;
530   edge_iterator ei;
531 
532   if (dump_file && (dump_flags & TDF_DETAILS))
533     fprintf (dump_file, ";; Scaling loop %i with scale %f, "
534 	     "bounding iterations to %i from guessed %i\n",
535 	     loop->num, (double)scale / REG_BR_PROB_BASE,
536 	     (int)iteration_bound, (int)iterations);
537 
538   /* See if loop is predicted to iterate too many times.  */
539   if (iteration_bound && iterations > 0
540       && apply_probability (iterations, scale) > iteration_bound)
541     {
542       /* Fixing loop profile for different trip count is not trivial; the exit
543 	 probabilities has to be updated to match and frequencies propagated down
544 	 to the loop body.
545 
546 	 We fully update only the simple case of loop with single exit that is
547 	 either from the latch or BB just before latch and leads from BB with
548 	 simple conditional jump.   This is OK for use in vectorizer.  */
549       e = single_exit (loop);
550       if (e)
551 	{
552 	  edge other_e;
553 	  int freq_delta;
554 	  gcov_type count_delta;
555 
556           FOR_EACH_EDGE (other_e, ei, e->src->succs)
557 	    if (!(other_e->flags & (EDGE_ABNORMAL | EDGE_FAKE))
558 		&& e != other_e)
559 	      break;
560 
561 	  /* Probability of exit must be 1/iterations.  */
562 	  freq_delta = EDGE_FREQUENCY (e);
563 	  e->probability = REG_BR_PROB_BASE / iteration_bound;
564 	  other_e->probability = inverse_probability (e->probability);
565 	  freq_delta -= EDGE_FREQUENCY (e);
566 
567 	  /* Adjust counts accordingly.  */
568 	  count_delta = e->count;
569 	  e->count = apply_probability (e->src->count, e->probability);
570 	  other_e->count = apply_probability (e->src->count, other_e->probability);
571 	  count_delta -= e->count;
572 
573 	  /* If latch exists, change its frequency and count, since we changed
574 	     probability of exit.  Theoretically we should update everything from
575 	     source of exit edge to latch, but for vectorizer this is enough.  */
576 	  if (loop->latch
577 	      && loop->latch != e->src)
578 	    {
579 	      loop->latch->frequency += freq_delta;
580 	      if (loop->latch->frequency < 0)
581 		loop->latch->frequency = 0;
582 	      loop->latch->count += count_delta;
583 	      if (loop->latch->count < 0)
584 		loop->latch->count = 0;
585 	    }
586 	}
587 
588       /* Roughly speaking we want to reduce the loop body profile by the
589 	 the difference of loop iterations.  We however can do better if
590 	 we look at the actual profile, if it is available.  */
591       scale = RDIV (iteration_bound * scale, iterations);
592       if (loop->header->count)
593 	{
594 	  gcov_type count_in = 0;
595 
596 	  FOR_EACH_EDGE (e, ei, loop->header->preds)
597 	    if (e->src != loop->latch)
598 	      count_in += e->count;
599 
600 	  if (count_in != 0)
601 	    scale = GCOV_COMPUTE_SCALE (count_in * iteration_bound,
602                                         loop->header->count);
603 	}
604       else if (loop->header->frequency)
605 	{
606 	  int freq_in = 0;
607 
608 	  FOR_EACH_EDGE (e, ei, loop->header->preds)
609 	    if (e->src != loop->latch)
610 	      freq_in += EDGE_FREQUENCY (e);
611 
612 	  if (freq_in != 0)
613 	    scale = GCOV_COMPUTE_SCALE (freq_in * iteration_bound,
614                                         loop->header->frequency);
615 	}
616       if (!scale)
617 	scale = 1;
618     }
619 
620   if (scale == REG_BR_PROB_BASE)
621     return;
622 
623   /* Scale the actual probabilities.  */
624   scale_loop_frequencies (loop, scale, REG_BR_PROB_BASE);
625   if (dump_file && (dump_flags & TDF_DETAILS))
626     fprintf (dump_file, ";; guessed iterations are now %i\n",
627 	     (int)expected_loop_iterations_unbounded (loop));
628 }
629 
630 /* Recompute dominance information for basic blocks outside LOOP.  */
631 
632 static void
633 update_dominators_in_loop (struct loop *loop)
634 {
635   vec<basic_block> dom_bbs = vNULL;
636   sbitmap seen;
637   basic_block *body;
638   unsigned i;
639 
640   seen = sbitmap_alloc (last_basic_block_for_fn (cfun));
641   bitmap_clear (seen);
642   body = get_loop_body (loop);
643 
644   for (i = 0; i < loop->num_nodes; i++)
645     bitmap_set_bit (seen, body[i]->index);
646 
647   for (i = 0; i < loop->num_nodes; i++)
648     {
649       basic_block ldom;
650 
651       for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
652 	   ldom;
653 	   ldom = next_dom_son (CDI_DOMINATORS, ldom))
654 	if (!bitmap_bit_p (seen, ldom->index))
655 	  {
656 	    bitmap_set_bit (seen, ldom->index);
657 	    dom_bbs.safe_push (ldom);
658 	  }
659     }
660 
661   iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
662   free (body);
663   free (seen);
664   dom_bbs.release ();
665 }
666 
667 /* Creates an if region as shown above. CONDITION is used to create
668    the test for the if.
669 
670    |
671    |     -------------                 -------------
672    |     |  pred_bb  |                 |  pred_bb  |
673    |     -------------                 -------------
674    |           |                             |
675    |           |                             | ENTRY_EDGE
676    |           | ENTRY_EDGE                  V
677    |           |             ====>     -------------
678    |           |                       |  cond_bb  |
679    |           |                       | CONDITION |
680    |           |                       -------------
681    |           V                        /         \
682    |     -------------         e_false /           \ e_true
683    |     |  succ_bb  |                V             V
684    |     -------------         -----------       -----------
685    |                           | false_bb |      | true_bb |
686    |                           -----------       -----------
687    |                                   \           /
688    |                                    \         /
689    |                                     V       V
690    |                                   -------------
691    |                                   |  join_bb  |
692    |                                   -------------
693    |                                         | exit_edge (result)
694    |                                         V
695    |                                    -----------
696    |                                    | succ_bb |
697    |                                    -----------
698    |
699  */
700 
701 edge
702 create_empty_if_region_on_edge (edge entry_edge, tree condition)
703 {
704 
705   basic_block cond_bb, true_bb, false_bb, join_bb;
706   edge e_true, e_false, exit_edge;
707   gcond *cond_stmt;
708   tree simple_cond;
709   gimple_stmt_iterator gsi;
710 
711   cond_bb = split_edge (entry_edge);
712 
713   /* Insert condition in cond_bb.  */
714   gsi = gsi_last_bb (cond_bb);
715   simple_cond =
716     force_gimple_operand_gsi (&gsi, condition, true, NULL,
717 			      false, GSI_NEW_STMT);
718   cond_stmt = gimple_build_cond_from_tree (simple_cond, NULL_TREE, NULL_TREE);
719   gsi = gsi_last_bb (cond_bb);
720   gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
721 
722   join_bb = split_edge (single_succ_edge (cond_bb));
723 
724   e_true = single_succ_edge (cond_bb);
725   true_bb = split_edge (e_true);
726 
727   e_false = make_edge (cond_bb, join_bb, 0);
728   false_bb = split_edge (e_false);
729 
730   e_true->flags &= ~EDGE_FALLTHRU;
731   e_true->flags |= EDGE_TRUE_VALUE;
732   e_false->flags &= ~EDGE_FALLTHRU;
733   e_false->flags |= EDGE_FALSE_VALUE;
734 
735   set_immediate_dominator (CDI_DOMINATORS, cond_bb, entry_edge->src);
736   set_immediate_dominator (CDI_DOMINATORS, true_bb, cond_bb);
737   set_immediate_dominator (CDI_DOMINATORS, false_bb, cond_bb);
738   set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb);
739 
740   exit_edge = single_succ_edge (join_bb);
741 
742   if (single_pred_p (exit_edge->dest))
743     set_immediate_dominator (CDI_DOMINATORS, exit_edge->dest, join_bb);
744 
745   return exit_edge;
746 }
747 
748 /* create_empty_loop_on_edge
749    |
750    |    - pred_bb -                   ------ pred_bb ------
751    |   |           |                 | iv0 = initial_value |
752    |    -----|-----                   ---------|-----------
753    |         |                       ______    | entry_edge
754    |         | entry_edge           /      |   |
755    |         |             ====>   |      -V---V- loop_header -------------
756    |         V                     |     | iv_before = phi (iv0, iv_after) |
757    |    - succ_bb -                |      ---|-----------------------------
758    |   |           |               |         |
759    |    -----------                |      ---V--- loop_body ---------------
760    |                               |     | iv_after = iv_before + stride   |
761    |                               |     | if (iv_before < upper_bound)    |
762    |                               |      ---|--------------\--------------
763    |                               |         |               \ exit_e
764    |                               |         V                \
765    |                               |       - loop_latch -      V- succ_bb -
766    |                               |      |              |     |           |
767    |                               |       /-------------       -----------
768    |                                \ ___ /
769 
770    Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME
771    that is used before the increment of IV. IV_BEFORE should be used for
772    adding code to the body that uses the IV.  OUTER is the outer loop in
773    which the new loop should be inserted.
774 
775    Both INITIAL_VALUE and UPPER_BOUND expressions are gimplified and
776    inserted on the loop entry edge.  This implies that this function
777    should be used only when the UPPER_BOUND expression is a loop
778    invariant.  */
779 
780 struct loop *
781 create_empty_loop_on_edge (edge entry_edge,
782 			   tree initial_value,
783 			   tree stride, tree upper_bound,
784 			   tree iv,
785 			   tree *iv_before,
786 			   tree *iv_after,
787 			   struct loop *outer)
788 {
789   basic_block loop_header, loop_latch, succ_bb, pred_bb;
790   struct loop *loop;
791   gimple_stmt_iterator gsi;
792   gimple_seq stmts;
793   gcond *cond_expr;
794   tree exit_test;
795   edge exit_e;
796   int prob;
797 
798   gcc_assert (entry_edge && initial_value && stride && upper_bound && iv);
799 
800   /* Create header, latch and wire up the loop.  */
801   pred_bb = entry_edge->src;
802   loop_header = split_edge (entry_edge);
803   loop_latch = split_edge (single_succ_edge (loop_header));
804   succ_bb = single_succ (loop_latch);
805   make_edge (loop_header, succ_bb, 0);
806   redirect_edge_succ_nodup (single_succ_edge (loop_latch), loop_header);
807 
808   /* Set immediate dominator information.  */
809   set_immediate_dominator (CDI_DOMINATORS, loop_header, pred_bb);
810   set_immediate_dominator (CDI_DOMINATORS, loop_latch, loop_header);
811   set_immediate_dominator (CDI_DOMINATORS, succ_bb, loop_header);
812 
813   /* Initialize a loop structure and put it in a loop hierarchy.  */
814   loop = alloc_loop ();
815   loop->header = loop_header;
816   loop->latch = loop_latch;
817   add_loop (loop, outer);
818 
819   /* TODO: Fix frequencies and counts.  */
820   prob = REG_BR_PROB_BASE / 2;
821 
822   scale_loop_frequencies (loop, REG_BR_PROB_BASE - prob, REG_BR_PROB_BASE);
823 
824   /* Update dominators.  */
825   update_dominators_in_loop (loop);
826 
827   /* Modify edge flags.  */
828   exit_e = single_exit (loop);
829   exit_e->flags = EDGE_LOOP_EXIT | EDGE_FALSE_VALUE;
830   single_pred_edge (loop_latch)->flags = EDGE_TRUE_VALUE;
831 
832   /* Construct IV code in loop.  */
833   initial_value = force_gimple_operand (initial_value, &stmts, true, iv);
834   if (stmts)
835     {
836       gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
837       gsi_commit_edge_inserts ();
838     }
839 
840   upper_bound = force_gimple_operand (upper_bound, &stmts, true, NULL);
841   if (stmts)
842     {
843       gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
844       gsi_commit_edge_inserts ();
845     }
846 
847   gsi = gsi_last_bb (loop_header);
848   create_iv (initial_value, stride, iv, loop, &gsi, false,
849 	     iv_before, iv_after);
850 
851   /* Insert loop exit condition.  */
852   cond_expr = gimple_build_cond
853     (LT_EXPR, *iv_before, upper_bound, NULL_TREE, NULL_TREE);
854 
855   exit_test = gimple_cond_lhs (cond_expr);
856   exit_test = force_gimple_operand_gsi (&gsi, exit_test, true, NULL,
857 					false, GSI_NEW_STMT);
858   gimple_cond_set_lhs (cond_expr, exit_test);
859   gsi = gsi_last_bb (exit_e->src);
860   gsi_insert_after (&gsi, cond_expr, GSI_NEW_STMT);
861 
862   split_block_after_labels (loop_header);
863 
864   return loop;
865 }
866 
867 /* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting
868    latch to header and update loop tree and dominators
869    accordingly. Everything between them plus LATCH_EDGE destination must
870    be dominated by HEADER_EDGE destination, and back-reachable from
871    LATCH_EDGE source.  HEADER_EDGE is redirected to basic block SWITCH_BB,
872    FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and
873    TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE.
874    Returns the newly created loop.  Frequencies and counts in the new loop
875    are scaled by FALSE_SCALE and in the old one by TRUE_SCALE.  */
876 
877 struct loop *
878 loopify (edge latch_edge, edge header_edge,
879 	 basic_block switch_bb, edge true_edge, edge false_edge,
880 	 bool redirect_all_edges, unsigned true_scale, unsigned false_scale)
881 {
882   basic_block succ_bb = latch_edge->dest;
883   basic_block pred_bb = header_edge->src;
884   struct loop *loop = alloc_loop ();
885   struct loop *outer = loop_outer (succ_bb->loop_father);
886   int freq;
887   gcov_type cnt;
888   edge e;
889   edge_iterator ei;
890 
891   loop->header = header_edge->dest;
892   loop->latch = latch_edge->src;
893 
894   freq = EDGE_FREQUENCY (header_edge);
895   cnt = header_edge->count;
896 
897   /* Redirect edges.  */
898   loop_redirect_edge (latch_edge, loop->header);
899   loop_redirect_edge (true_edge, succ_bb);
900 
901   /* During loop versioning, one of the switch_bb edge is already properly
902      set. Do not redirect it again unless redirect_all_edges is true.  */
903   if (redirect_all_edges)
904     {
905       loop_redirect_edge (header_edge, switch_bb);
906       loop_redirect_edge (false_edge, loop->header);
907 
908       /* Update dominators.  */
909       set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb);
910       set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb);
911     }
912 
913   set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb);
914 
915   /* Compute new loop.  */
916   add_loop (loop, outer);
917 
918   /* Add switch_bb to appropriate loop.  */
919   if (switch_bb->loop_father)
920     remove_bb_from_loops (switch_bb);
921   add_bb_to_loop (switch_bb, outer);
922 
923   /* Fix frequencies.  */
924   if (redirect_all_edges)
925     {
926       switch_bb->frequency = freq;
927       switch_bb->count = cnt;
928       FOR_EACH_EDGE (e, ei, switch_bb->succs)
929 	{
930 	  e->count = apply_probability (switch_bb->count, e->probability);
931 	}
932     }
933   scale_loop_frequencies (loop, false_scale, REG_BR_PROB_BASE);
934   scale_loop_frequencies (succ_bb->loop_father, true_scale, REG_BR_PROB_BASE);
935   update_dominators_in_loop (loop);
936 
937   return loop;
938 }
939 
940 /* Remove the latch edge of a LOOP and update loops to indicate that
941    the LOOP was removed.  After this function, original loop latch will
942    have no successor, which caller is expected to fix somehow.
943 
944    If this may cause the information about irreducible regions to become
945    invalid, IRRED_INVALIDATED is set to true.
946 
947    LOOP_CLOSED_SSA_INVALIDATED, if non-NULL, is a bitmap where we store
948    basic blocks that had non-trivial update on their loop_father.*/
949 
950 void
951 unloop (struct loop *loop, bool *irred_invalidated,
952 	bitmap loop_closed_ssa_invalidated)
953 {
954   basic_block *body;
955   struct loop *ploop;
956   unsigned i, n;
957   basic_block latch = loop->latch;
958   bool dummy = false;
959 
960   if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
961     *irred_invalidated = true;
962 
963   /* This is relatively straightforward.  The dominators are unchanged, as
964      loop header dominates loop latch, so the only thing we have to care of
965      is the placement of loops and basic blocks inside the loop tree.  We
966      move them all to the loop->outer, and then let fix_bb_placements do
967      its work.  */
968 
969   body = get_loop_body (loop);
970   n = loop->num_nodes;
971   for (i = 0; i < n; i++)
972     if (body[i]->loop_father == loop)
973       {
974 	remove_bb_from_loops (body[i]);
975 	add_bb_to_loop (body[i], loop_outer (loop));
976       }
977   free (body);
978 
979   while (loop->inner)
980     {
981       ploop = loop->inner;
982       flow_loop_tree_node_remove (ploop);
983       flow_loop_tree_node_add (loop_outer (loop), ploop);
984     }
985 
986   /* Remove the loop and free its data.  */
987   delete_loop (loop);
988 
989   remove_edge (single_succ_edge (latch));
990 
991   /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
992      there is an irreducible region inside the cancelled loop, the flags will
993      be still correct.  */
994   fix_bb_placements (latch, &dummy, loop_closed_ssa_invalidated);
995 }
996 
997 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
998    condition stated in description of fix_loop_placement holds for them.
999    It is used in case when we removed some edges coming out of LOOP, which
1000    may cause the right placement of LOOP inside loop tree to change.
1001 
1002    IRRED_INVALIDATED is set to true if a change in the loop structures might
1003    invalidate the information about irreducible regions.  */
1004 
1005 static void
1006 fix_loop_placements (struct loop *loop, bool *irred_invalidated)
1007 {
1008   struct loop *outer;
1009 
1010   while (loop_outer (loop))
1011     {
1012       outer = loop_outer (loop);
1013       if (!fix_loop_placement (loop, irred_invalidated))
1014 	break;
1015 
1016       /* Changing the placement of a loop in the loop tree may alter the
1017 	 validity of condition 2) of the description of fix_bb_placement
1018 	 for its preheader, because the successor is the header and belongs
1019 	 to the loop.  So call fix_bb_placements to fix up the placement
1020 	 of the preheader and (possibly) of its predecessors.  */
1021       fix_bb_placements (loop_preheader_edge (loop)->src,
1022 			 irred_invalidated, NULL);
1023       loop = outer;
1024     }
1025 }
1026 
1027 /* Duplicate loop bounds and other information we store about
1028    the loop into its duplicate.  */
1029 
1030 void
1031 copy_loop_info (struct loop *loop, struct loop *target)
1032 {
1033   gcc_checking_assert (!target->any_upper_bound && !target->any_estimate);
1034   target->any_upper_bound = loop->any_upper_bound;
1035   target->nb_iterations_upper_bound = loop->nb_iterations_upper_bound;
1036   target->any_estimate = loop->any_estimate;
1037   target->nb_iterations_estimate = loop->nb_iterations_estimate;
1038   target->estimate_state = loop->estimate_state;
1039   target->warned_aggressive_loop_optimizations
1040     |= loop->warned_aggressive_loop_optimizations;
1041 }
1042 
1043 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
1044    created loop into loops structure.  */
1045 struct loop *
1046 duplicate_loop (struct loop *loop, struct loop *target)
1047 {
1048   struct loop *cloop;
1049   cloop = alloc_loop ();
1050   place_new_loop (cfun, cloop);
1051 
1052   copy_loop_info (loop, cloop);
1053 
1054   /* Mark the new loop as copy of LOOP.  */
1055   set_loop_copy (loop, cloop);
1056 
1057   /* Add it to target.  */
1058   flow_loop_tree_node_add (target, cloop);
1059 
1060   return cloop;
1061 }
1062 
1063 /* Copies structure of subloops of LOOP into TARGET loop, placing
1064    newly created loops into loop tree.  */
1065 void
1066 duplicate_subloops (struct loop *loop, struct loop *target)
1067 {
1068   struct loop *aloop, *cloop;
1069 
1070   for (aloop = loop->inner; aloop; aloop = aloop->next)
1071     {
1072       cloop = duplicate_loop (aloop, target);
1073       duplicate_subloops (aloop, cloop);
1074     }
1075 }
1076 
1077 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
1078    into TARGET loop, placing newly created loops into loop tree.  */
1079 static void
1080 copy_loops_to (struct loop **copied_loops, int n, struct loop *target)
1081 {
1082   struct loop *aloop;
1083   int i;
1084 
1085   for (i = 0; i < n; i++)
1086     {
1087       aloop = duplicate_loop (copied_loops[i], target);
1088       duplicate_subloops (copied_loops[i], aloop);
1089     }
1090 }
1091 
1092 /* Redirects edge E to basic block DEST.  */
1093 static void
1094 loop_redirect_edge (edge e, basic_block dest)
1095 {
1096   if (e->dest == dest)
1097     return;
1098 
1099   redirect_edge_and_branch_force (e, dest);
1100 }
1101 
1102 /* Check whether LOOP's body can be duplicated.  */
1103 bool
1104 can_duplicate_loop_p (const struct loop *loop)
1105 {
1106   int ret;
1107   basic_block *bbs = get_loop_body (loop);
1108 
1109   ret = can_copy_bbs_p (bbs, loop->num_nodes);
1110   free (bbs);
1111 
1112   return ret;
1113 }
1114 
1115 /* Sets probability and count of edge E to zero.  The probability and count
1116    is redistributed evenly to the remaining edges coming from E->src.  */
1117 
1118 static void
1119 set_zero_probability (edge e)
1120 {
1121   basic_block bb = e->src;
1122   edge_iterator ei;
1123   edge ae, last = NULL;
1124   unsigned n = EDGE_COUNT (bb->succs);
1125   gcov_type cnt = e->count, cnt1;
1126   unsigned prob = e->probability, prob1;
1127 
1128   gcc_assert (n > 1);
1129   cnt1 = cnt / (n - 1);
1130   prob1 = prob / (n - 1);
1131 
1132   FOR_EACH_EDGE (ae, ei, bb->succs)
1133     {
1134       if (ae == e)
1135 	continue;
1136 
1137       ae->probability += prob1;
1138       ae->count += cnt1;
1139       last = ae;
1140     }
1141 
1142   /* Move the rest to one of the edges.  */
1143   last->probability += prob % (n - 1);
1144   last->count += cnt % (n - 1);
1145 
1146   e->probability = 0;
1147   e->count = 0;
1148 }
1149 
1150 /* Duplicates body of LOOP to given edge E NDUPL times.  Takes care of updating
1151    loop structure and dominators.  E's destination must be LOOP header for
1152    this to work, i.e. it must be entry or latch edge of this loop; these are
1153    unique, as the loops must have preheaders for this function to work
1154    correctly (in case E is latch, the function unrolls the loop, if E is entry
1155    edge, it peels the loop).  Store edges created by copying ORIG edge from
1156    copies corresponding to set bits in WONT_EXIT bitmap (bit 0 corresponds to
1157    original LOOP body, the other copies are numbered in order given by control
1158    flow through them) into TO_REMOVE array.  Returns false if duplication is
1159    impossible.  */
1160 
1161 bool
1162 duplicate_loop_to_header_edge (struct loop *loop, edge e,
1163 			       unsigned int ndupl, sbitmap wont_exit,
1164 			       edge orig, vec<edge> *to_remove,
1165 			       int flags)
1166 {
1167   struct loop *target, *aloop;
1168   struct loop **orig_loops;
1169   unsigned n_orig_loops;
1170   basic_block header = loop->header, latch = loop->latch;
1171   basic_block *new_bbs, *bbs, *first_active;
1172   basic_block new_bb, bb, first_active_latch = NULL;
1173   edge ae, latch_edge;
1174   edge spec_edges[2], new_spec_edges[2];
1175 #define SE_LATCH 0
1176 #define SE_ORIG 1
1177   unsigned i, j, n;
1178   int is_latch = (latch == e->src);
1179   int scale_act = 0, *scale_step = NULL, scale_main = 0;
1180   int scale_after_exit = 0;
1181   int p, freq_in, freq_le, freq_out_orig;
1182   int prob_pass_thru, prob_pass_wont_exit, prob_pass_main;
1183   int add_irreducible_flag;
1184   basic_block place_after;
1185   bitmap bbs_to_scale = NULL;
1186   bitmap_iterator bi;
1187 
1188   gcc_assert (e->dest == loop->header);
1189   gcc_assert (ndupl > 0);
1190 
1191   if (orig)
1192     {
1193       /* Orig must be edge out of the loop.  */
1194       gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
1195       gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
1196     }
1197 
1198   n = loop->num_nodes;
1199   bbs = get_loop_body_in_dom_order (loop);
1200   gcc_assert (bbs[0] == loop->header);
1201   gcc_assert (bbs[n  - 1] == loop->latch);
1202 
1203   /* Check whether duplication is possible.  */
1204   if (!can_copy_bbs_p (bbs, loop->num_nodes))
1205     {
1206       free (bbs);
1207       return false;
1208     }
1209   new_bbs = XNEWVEC (basic_block, loop->num_nodes);
1210 
1211   /* In case we are doing loop peeling and the loop is in the middle of
1212      irreducible region, the peeled copies will be inside it too.  */
1213   add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
1214   gcc_assert (!is_latch || !add_irreducible_flag);
1215 
1216   /* Find edge from latch.  */
1217   latch_edge = loop_latch_edge (loop);
1218 
1219   if (flags & DLTHE_FLAG_UPDATE_FREQ)
1220     {
1221       /* Calculate coefficients by that we have to scale frequencies
1222 	 of duplicated loop bodies.  */
1223       freq_in = header->frequency;
1224       freq_le = EDGE_FREQUENCY (latch_edge);
1225       if (freq_in == 0)
1226 	freq_in = 1;
1227       if (freq_in < freq_le)
1228 	freq_in = freq_le;
1229       freq_out_orig = orig ? EDGE_FREQUENCY (orig) : freq_in - freq_le;
1230       if (freq_out_orig > freq_in - freq_le)
1231 	freq_out_orig = freq_in - freq_le;
1232       prob_pass_thru = RDIV (REG_BR_PROB_BASE * freq_le, freq_in);
1233       prob_pass_wont_exit =
1234 	      RDIV (REG_BR_PROB_BASE * (freq_le + freq_out_orig), freq_in);
1235 
1236       if (orig
1237 	  && REG_BR_PROB_BASE - orig->probability != 0)
1238 	{
1239 	  /* The blocks that are dominated by a removed exit edge ORIG have
1240 	     frequencies scaled by this.  */
1241 	  scale_after_exit
1242               = GCOV_COMPUTE_SCALE (REG_BR_PROB_BASE,
1243                                     REG_BR_PROB_BASE - orig->probability);
1244 	  bbs_to_scale = BITMAP_ALLOC (NULL);
1245 	  for (i = 0; i < n; i++)
1246 	    {
1247 	      if (bbs[i] != orig->src
1248 		  && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src))
1249 		bitmap_set_bit (bbs_to_scale, i);
1250 	    }
1251 	}
1252 
1253       scale_step = XNEWVEC (int, ndupl);
1254 
1255       for (i = 1; i <= ndupl; i++)
1256 	scale_step[i - 1] = bitmap_bit_p (wont_exit, i)
1257 				? prob_pass_wont_exit
1258 				: prob_pass_thru;
1259 
1260       /* Complete peeling is special as the probability of exit in last
1261 	 copy becomes 1.  */
1262       if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
1263 	{
1264 	  int wanted_freq = EDGE_FREQUENCY (e);
1265 
1266 	  if (wanted_freq > freq_in)
1267 	    wanted_freq = freq_in;
1268 
1269 	  gcc_assert (!is_latch);
1270 	  /* First copy has frequency of incoming edge.  Each subsequent
1271 	     frequency should be reduced by prob_pass_wont_exit.  Caller
1272 	     should've managed the flags so all except for original loop
1273 	     has won't exist set.  */
1274 	  scale_act = GCOV_COMPUTE_SCALE (wanted_freq, freq_in);
1275 	  /* Now simulate the duplication adjustments and compute header
1276 	     frequency of the last copy.  */
1277 	  for (i = 0; i < ndupl; i++)
1278 	    wanted_freq = combine_probabilities (wanted_freq, scale_step[i]);
1279 	  scale_main = GCOV_COMPUTE_SCALE (wanted_freq, freq_in);
1280 	}
1281       else if (is_latch)
1282 	{
1283 	  prob_pass_main = bitmap_bit_p (wont_exit, 0)
1284 				? prob_pass_wont_exit
1285 				: prob_pass_thru;
1286 	  p = prob_pass_main;
1287 	  scale_main = REG_BR_PROB_BASE;
1288 	  for (i = 0; i < ndupl; i++)
1289 	    {
1290 	      scale_main += p;
1291 	      p = combine_probabilities (p, scale_step[i]);
1292 	    }
1293 	  scale_main = GCOV_COMPUTE_SCALE (REG_BR_PROB_BASE, scale_main);
1294 	  scale_act = combine_probabilities (scale_main, prob_pass_main);
1295 	}
1296       else
1297 	{
1298 	  scale_main = REG_BR_PROB_BASE;
1299 	  for (i = 0; i < ndupl; i++)
1300 	    scale_main = combine_probabilities (scale_main, scale_step[i]);
1301 	  scale_act = REG_BR_PROB_BASE - prob_pass_thru;
1302 	}
1303       for (i = 0; i < ndupl; i++)
1304 	gcc_assert (scale_step[i] >= 0 && scale_step[i] <= REG_BR_PROB_BASE);
1305       gcc_assert (scale_main >= 0 && scale_main <= REG_BR_PROB_BASE
1306 		  && scale_act >= 0  && scale_act <= REG_BR_PROB_BASE);
1307     }
1308 
1309   /* Loop the new bbs will belong to.  */
1310   target = e->src->loop_father;
1311 
1312   /* Original loops.  */
1313   n_orig_loops = 0;
1314   for (aloop = loop->inner; aloop; aloop = aloop->next)
1315     n_orig_loops++;
1316   orig_loops = XNEWVEC (struct loop *, n_orig_loops);
1317   for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
1318     orig_loops[i] = aloop;
1319 
1320   set_loop_copy (loop, target);
1321 
1322   first_active = XNEWVEC (basic_block, n);
1323   if (is_latch)
1324     {
1325       memcpy (first_active, bbs, n * sizeof (basic_block));
1326       first_active_latch = latch;
1327     }
1328 
1329   spec_edges[SE_ORIG] = orig;
1330   spec_edges[SE_LATCH] = latch_edge;
1331 
1332   place_after = e->src;
1333   for (j = 0; j < ndupl; j++)
1334     {
1335       /* Copy loops.  */
1336       copy_loops_to (orig_loops, n_orig_loops, target);
1337 
1338       /* Copy bbs.  */
1339       copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
1340 		place_after, true);
1341       place_after = new_spec_edges[SE_LATCH]->src;
1342 
1343       if (flags & DLTHE_RECORD_COPY_NUMBER)
1344 	for (i = 0; i < n; i++)
1345 	  {
1346 	    gcc_assert (!new_bbs[i]->aux);
1347 	    new_bbs[i]->aux = (void *)(size_t)(j + 1);
1348 	  }
1349 
1350       /* Note whether the blocks and edges belong to an irreducible loop.  */
1351       if (add_irreducible_flag)
1352 	{
1353 	  for (i = 0; i < n; i++)
1354 	    new_bbs[i]->flags |= BB_DUPLICATED;
1355 	  for (i = 0; i < n; i++)
1356 	    {
1357 	      edge_iterator ei;
1358 	      new_bb = new_bbs[i];
1359 	      if (new_bb->loop_father == target)
1360 		new_bb->flags |= BB_IRREDUCIBLE_LOOP;
1361 
1362 	      FOR_EACH_EDGE (ae, ei, new_bb->succs)
1363 		if ((ae->dest->flags & BB_DUPLICATED)
1364 		    && (ae->src->loop_father == target
1365 			|| ae->dest->loop_father == target))
1366 		  ae->flags |= EDGE_IRREDUCIBLE_LOOP;
1367 	    }
1368 	  for (i = 0; i < n; i++)
1369 	    new_bbs[i]->flags &= ~BB_DUPLICATED;
1370 	}
1371 
1372       /* Redirect the special edges.  */
1373       if (is_latch)
1374 	{
1375 	  redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1376 	  redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1377 					  loop->header);
1378 	  set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
1379 	  latch = loop->latch = new_bbs[n - 1];
1380 	  e = latch_edge = new_spec_edges[SE_LATCH];
1381 	}
1382       else
1383 	{
1384 	  redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1385 					  loop->header);
1386 	  redirect_edge_and_branch_force (e, new_bbs[0]);
1387 	  set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
1388 	  e = new_spec_edges[SE_LATCH];
1389 	}
1390 
1391       /* Record exit edge in this copy.  */
1392       if (orig && bitmap_bit_p (wont_exit, j + 1))
1393 	{
1394 	  if (to_remove)
1395 	    to_remove->safe_push (new_spec_edges[SE_ORIG]);
1396 	  set_zero_probability (new_spec_edges[SE_ORIG]);
1397 
1398 	  /* Scale the frequencies of the blocks dominated by the exit.  */
1399 	  if (bbs_to_scale)
1400 	    {
1401 	      EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1402 		{
1403 		  scale_bbs_frequencies_int (new_bbs + i, 1, scale_after_exit,
1404 					     REG_BR_PROB_BASE);
1405 		}
1406 	    }
1407 	}
1408 
1409       /* Record the first copy in the control flow order if it is not
1410 	 the original loop (i.e. in case of peeling).  */
1411       if (!first_active_latch)
1412 	{
1413 	  memcpy (first_active, new_bbs, n * sizeof (basic_block));
1414 	  first_active_latch = new_bbs[n - 1];
1415 	}
1416 
1417       /* Set counts and frequencies.  */
1418       if (flags & DLTHE_FLAG_UPDATE_FREQ)
1419 	{
1420 	  scale_bbs_frequencies_int (new_bbs, n, scale_act, REG_BR_PROB_BASE);
1421 	  scale_act = combine_probabilities (scale_act, scale_step[j]);
1422 	}
1423     }
1424   free (new_bbs);
1425   free (orig_loops);
1426 
1427   /* Record the exit edge in the original loop body, and update the frequencies.  */
1428   if (orig && bitmap_bit_p (wont_exit, 0))
1429     {
1430       if (to_remove)
1431 	to_remove->safe_push (orig);
1432       set_zero_probability (orig);
1433 
1434       /* Scale the frequencies of the blocks dominated by the exit.  */
1435       if (bbs_to_scale)
1436 	{
1437 	  EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1438 	    {
1439 	      scale_bbs_frequencies_int (bbs + i, 1, scale_after_exit,
1440 					 REG_BR_PROB_BASE);
1441 	    }
1442 	}
1443     }
1444 
1445   /* Update the original loop.  */
1446   if (!is_latch)
1447     set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1448   if (flags & DLTHE_FLAG_UPDATE_FREQ)
1449     {
1450       scale_bbs_frequencies_int (bbs, n, scale_main, REG_BR_PROB_BASE);
1451       free (scale_step);
1452     }
1453 
1454   /* Update dominators of outer blocks if affected.  */
1455   for (i = 0; i < n; i++)
1456     {
1457       basic_block dominated, dom_bb;
1458       vec<basic_block> dom_bbs;
1459       unsigned j;
1460 
1461       bb = bbs[i];
1462       bb->aux = 0;
1463 
1464       dom_bbs = get_dominated_by (CDI_DOMINATORS, bb);
1465       FOR_EACH_VEC_ELT (dom_bbs, j, dominated)
1466 	{
1467 	  if (flow_bb_inside_loop_p (loop, dominated))
1468 	    continue;
1469 	  dom_bb = nearest_common_dominator (
1470 			CDI_DOMINATORS, first_active[i], first_active_latch);
1471 	  set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1472 	}
1473       dom_bbs.release ();
1474     }
1475   free (first_active);
1476 
1477   free (bbs);
1478   BITMAP_FREE (bbs_to_scale);
1479 
1480   return true;
1481 }
1482 
1483 /* A callback for make_forwarder block, to redirect all edges except for
1484    MFB_KJ_EDGE to the entry part.  E is the edge for that we should decide
1485    whether to redirect it.  */
1486 
1487 edge mfb_kj_edge;
1488 bool
1489 mfb_keep_just (edge e)
1490 {
1491   return e != mfb_kj_edge;
1492 }
1493 
1494 /* True when a candidate preheader BLOCK has predecessors from LOOP.  */
1495 
1496 static bool
1497 has_preds_from_loop (basic_block block, struct loop *loop)
1498 {
1499   edge e;
1500   edge_iterator ei;
1501 
1502   FOR_EACH_EDGE (e, ei, block->preds)
1503     if (e->src->loop_father == loop)
1504       return true;
1505   return false;
1506 }
1507 
1508 /* Creates a pre-header for a LOOP.  Returns newly created block.  Unless
1509    CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1510    entry; otherwise we also force preheader block to have only one successor.
1511    When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block
1512    to be a fallthru predecessor to the loop header and to have only
1513    predecessors from outside of the loop.
1514    The function also updates dominators.  */
1515 
1516 basic_block
1517 create_preheader (struct loop *loop, int flags)
1518 {
1519   edge e, fallthru;
1520   basic_block dummy;
1521   int nentry = 0;
1522   bool irred = false;
1523   bool latch_edge_was_fallthru;
1524   edge one_succ_pred = NULL, single_entry = NULL;
1525   edge_iterator ei;
1526 
1527   FOR_EACH_EDGE (e, ei, loop->header->preds)
1528     {
1529       if (e->src == loop->latch)
1530 	continue;
1531       irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1532       nentry++;
1533       single_entry = e;
1534       if (single_succ_p (e->src))
1535 	one_succ_pred = e;
1536     }
1537   gcc_assert (nentry);
1538   if (nentry == 1)
1539     {
1540       bool need_forwarder_block = false;
1541 
1542       /* We do not allow entry block to be the loop preheader, since we
1543 	     cannot emit code there.  */
1544       if (single_entry->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1545         need_forwarder_block = true;
1546       else
1547         {
1548           /* If we want simple preheaders, also force the preheader to have
1549              just a single successor.  */
1550           if ((flags & CP_SIMPLE_PREHEADERS)
1551               && !single_succ_p (single_entry->src))
1552             need_forwarder_block = true;
1553           /* If we want fallthru preheaders, also create forwarder block when
1554              preheader ends with a jump or has predecessors from loop.  */
1555           else if ((flags & CP_FALLTHRU_PREHEADERS)
1556                    && (JUMP_P (BB_END (single_entry->src))
1557                        || has_preds_from_loop (single_entry->src, loop)))
1558             need_forwarder_block = true;
1559         }
1560       if (! need_forwarder_block)
1561 	return NULL;
1562     }
1563 
1564   mfb_kj_edge = loop_latch_edge (loop);
1565   latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
1566   fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL);
1567   dummy = fallthru->src;
1568   loop->header = fallthru->dest;
1569 
1570   /* Try to be clever in placing the newly created preheader.  The idea is to
1571      avoid breaking any "fallthruness" relationship between blocks.
1572 
1573      The preheader was created just before the header and all incoming edges
1574      to the header were redirected to the preheader, except the latch edge.
1575      So the only problematic case is when this latch edge was a fallthru
1576      edge: it is not anymore after the preheader creation so we have broken
1577      the fallthruness.  We're therefore going to look for a better place.  */
1578   if (latch_edge_was_fallthru)
1579     {
1580       if (one_succ_pred)
1581 	e = one_succ_pred;
1582       else
1583 	e = EDGE_PRED (dummy, 0);
1584 
1585       move_block_after (dummy, e->src);
1586     }
1587 
1588   if (irred)
1589     {
1590       dummy->flags |= BB_IRREDUCIBLE_LOOP;
1591       single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
1592     }
1593 
1594   if (dump_file)
1595     fprintf (dump_file, "Created preheader block for loop %i\n",
1596 	     loop->num);
1597 
1598   if (flags & CP_FALLTHRU_PREHEADERS)
1599     gcc_assert ((single_succ_edge (dummy)->flags & EDGE_FALLTHRU)
1600                 && !JUMP_P (BB_END (dummy)));
1601 
1602   return dummy;
1603 }
1604 
1605 /* Create preheaders for each loop; for meaning of FLAGS see create_preheader.  */
1606 
1607 void
1608 create_preheaders (int flags)
1609 {
1610   struct loop *loop;
1611 
1612   if (!current_loops)
1613     return;
1614 
1615   FOR_EACH_LOOP (loop, 0)
1616     create_preheader (loop, flags);
1617   loops_state_set (LOOPS_HAVE_PREHEADERS);
1618 }
1619 
1620 /* Forces all loop latches to have only single successor.  */
1621 
1622 void
1623 force_single_succ_latches (void)
1624 {
1625   struct loop *loop;
1626   edge e;
1627 
1628   FOR_EACH_LOOP (loop, 0)
1629     {
1630       if (loop->latch != loop->header && single_succ_p (loop->latch))
1631 	continue;
1632 
1633       e = find_edge (loop->latch, loop->header);
1634       gcc_checking_assert (e != NULL);
1635 
1636       split_edge (e);
1637     }
1638   loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES);
1639 }
1640 
1641 /* This function is called from loop_version.  It splits the entry edge
1642    of the loop we want to version, adds the versioning condition, and
1643    adjust the edges to the two versions of the loop appropriately.
1644    e is an incoming edge. Returns the basic block containing the
1645    condition.
1646 
1647    --- edge e ---- > [second_head]
1648 
1649    Split it and insert new conditional expression and adjust edges.
1650 
1651     --- edge e ---> [cond expr] ---> [first_head]
1652 			|
1653 			+---------> [second_head]
1654 
1655   THEN_PROB is the probability of then branch of the condition.  */
1656 
1657 static basic_block
1658 lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head,
1659 			   edge e, void *cond_expr, unsigned then_prob)
1660 {
1661   basic_block new_head = NULL;
1662   edge e1;
1663 
1664   gcc_assert (e->dest == second_head);
1665 
1666   /* Split edge 'e'. This will create a new basic block, where we can
1667      insert conditional expr.  */
1668   new_head = split_edge (e);
1669 
1670   lv_add_condition_to_bb (first_head, second_head, new_head,
1671 			  cond_expr);
1672 
1673   /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there.  */
1674   e = single_succ_edge (new_head);
1675   e1 = make_edge (new_head, first_head,
1676 		  current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0);
1677   e1->probability = then_prob;
1678   e->probability = REG_BR_PROB_BASE - then_prob;
1679   e1->count = apply_probability (e->count, e1->probability);
1680   e->count = apply_probability (e->count, e->probability);
1681 
1682   set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
1683   set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
1684 
1685   /* Adjust loop header phi nodes.  */
1686   lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
1687 
1688   return new_head;
1689 }
1690 
1691 /* Main entry point for Loop Versioning transformation.
1692 
1693    This transformation given a condition and a loop, creates
1694    -if (condition) { loop_copy1 } else { loop_copy2 },
1695    where loop_copy1 is the loop transformed in one way, and loop_copy2
1696    is the loop transformed in another way (or unchanged). 'condition'
1697    may be a run time test for things that were not resolved by static
1698    analysis (overlapping ranges (anti-aliasing), alignment, etc.).
1699 
1700    THEN_PROB is the probability of the then edge of the if.  THEN_SCALE
1701    is the ratio by that the frequencies in the original loop should
1702    be scaled.  ELSE_SCALE is the ratio by that the frequencies in the
1703    new loop should be scaled.
1704 
1705    If PLACE_AFTER is true, we place the new loop after LOOP in the
1706    instruction stream, otherwise it is placed before LOOP.  */
1707 
1708 struct loop *
1709 loop_version (struct loop *loop,
1710 	      void *cond_expr, basic_block *condition_bb,
1711 	      unsigned then_prob, unsigned then_scale, unsigned else_scale,
1712 	      bool place_after)
1713 {
1714   basic_block first_head, second_head;
1715   edge entry, latch_edge, true_edge, false_edge;
1716   int irred_flag;
1717   struct loop *nloop;
1718   basic_block cond_bb;
1719 
1720   /* Record entry and latch edges for the loop */
1721   entry = loop_preheader_edge (loop);
1722   irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
1723   entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
1724 
1725   /* Note down head of loop as first_head.  */
1726   first_head = entry->dest;
1727 
1728   /* Duplicate loop.  */
1729   if (!cfg_hook_duplicate_loop_to_header_edge (loop, entry, 1,
1730 					       NULL, NULL, NULL, 0))
1731     {
1732       entry->flags |= irred_flag;
1733       return NULL;
1734     }
1735 
1736   /* After duplication entry edge now points to new loop head block.
1737      Note down new head as second_head.  */
1738   second_head = entry->dest;
1739 
1740   /* Split loop entry edge and insert new block with cond expr.  */
1741   cond_bb =  lv_adjust_loop_entry_edge (first_head, second_head,
1742 					entry, cond_expr, then_prob);
1743   if (condition_bb)
1744     *condition_bb = cond_bb;
1745 
1746   if (!cond_bb)
1747     {
1748       entry->flags |= irred_flag;
1749       return NULL;
1750     }
1751 
1752   latch_edge = single_succ_edge (get_bb_copy (loop->latch));
1753 
1754   extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1755   nloop = loopify (latch_edge,
1756 		   single_pred_edge (get_bb_copy (loop->header)),
1757 		   cond_bb, true_edge, false_edge,
1758 		   false /* Do not redirect all edges.  */,
1759 		   then_scale, else_scale);
1760 
1761   copy_loop_info (loop, nloop);
1762 
1763   /* loopify redirected latch_edge. Update its PENDING_STMTS.  */
1764   lv_flush_pending_stmts (latch_edge);
1765 
1766   /* loopify redirected condition_bb's succ edge. Update its PENDING_STMTS.  */
1767   extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1768   lv_flush_pending_stmts (false_edge);
1769   /* Adjust irreducible flag.  */
1770   if (irred_flag)
1771     {
1772       cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
1773       loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1774       loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1775       single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
1776     }
1777 
1778   if (place_after)
1779     {
1780       basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
1781       unsigned i;
1782 
1783       after = loop->latch;
1784 
1785       for (i = 0; i < nloop->num_nodes; i++)
1786 	{
1787 	  move_block_after (bbs[i], after);
1788 	  after = bbs[i];
1789 	}
1790       free (bbs);
1791     }
1792 
1793   /* At this point condition_bb is loop preheader with two successors,
1794      first_head and second_head.   Make sure that loop preheader has only
1795      one successor.  */
1796   split_edge (loop_preheader_edge (loop));
1797   split_edge (loop_preheader_edge (nloop));
1798 
1799   return nloop;
1800 }
1801