1 /* Loop manipulation code for GNU compiler. 2 Copyright (C) 2002-2019 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 #include "config.h" 21 #include "system.h" 22 #include "coretypes.h" 23 #include "backend.h" 24 #include "rtl.h" 25 #include "tree.h" 26 #include "gimple.h" 27 #include "cfghooks.h" 28 #include "cfganal.h" 29 #include "cfgloop.h" 30 #include "gimple-iterator.h" 31 #include "gimplify-me.h" 32 #include "tree-ssa-loop-manip.h" 33 #include "dumpfile.h" 34 35 static void copy_loops_to (struct loop **, int, 36 struct loop *); 37 static void loop_redirect_edge (edge, basic_block); 38 static void remove_bbs (basic_block *, int); 39 static bool rpe_enum_p (const_basic_block, const void *); 40 static int find_path (edge, basic_block **); 41 static void fix_loop_placements (struct loop *, bool *); 42 static bool fix_bb_placement (basic_block); 43 static void fix_bb_placements (basic_block, bool *, bitmap); 44 45 /* Checks whether basic block BB is dominated by DATA. */ 46 static bool 47 rpe_enum_p (const_basic_block bb, const void *data) 48 { 49 return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data); 50 } 51 52 /* Remove basic blocks BBS. NBBS is the number of the basic blocks. */ 53 54 static void 55 remove_bbs (basic_block *bbs, int nbbs) 56 { 57 int i; 58 59 for (i = 0; i < nbbs; i++) 60 delete_basic_block (bbs[i]); 61 } 62 63 /* Find path -- i.e. the basic blocks dominated by edge E and put them 64 into array BBS, that will be allocated large enough to contain them. 65 E->dest must have exactly one predecessor for this to work (it is 66 easy to achieve and we do not put it here because we do not want to 67 alter anything by this function). The number of basic blocks in the 68 path is returned. */ 69 static int 70 find_path (edge e, basic_block **bbs) 71 { 72 gcc_assert (EDGE_COUNT (e->dest->preds) <= 1); 73 74 /* Find bbs in the path. */ 75 *bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun)); 76 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs, 77 n_basic_blocks_for_fn (cfun), e->dest); 78 } 79 80 /* Fix placement of basic block BB inside loop hierarchy -- 81 Let L be a loop to that BB belongs. Then every successor of BB must either 82 1) belong to some superloop of loop L, or 83 2) be a header of loop K such that K->outer is superloop of L 84 Returns true if we had to move BB into other loop to enforce this condition, 85 false if the placement of BB was already correct (provided that placements 86 of its successors are correct). */ 87 static bool 88 fix_bb_placement (basic_block bb) 89 { 90 edge e; 91 edge_iterator ei; 92 struct loop *loop = current_loops->tree_root, *act; 93 94 FOR_EACH_EDGE (e, ei, bb->succs) 95 { 96 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)) 97 continue; 98 99 act = e->dest->loop_father; 100 if (act->header == e->dest) 101 act = loop_outer (act); 102 103 if (flow_loop_nested_p (loop, act)) 104 loop = act; 105 } 106 107 if (loop == bb->loop_father) 108 return false; 109 110 remove_bb_from_loops (bb); 111 add_bb_to_loop (bb, loop); 112 113 return true; 114 } 115 116 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop 117 of LOOP to that leads at least one exit edge of LOOP, and set it 118 as the immediate superloop of LOOP. Return true if the immediate superloop 119 of LOOP changed. 120 121 IRRED_INVALIDATED is set to true if a change in the loop structures might 122 invalidate the information about irreducible regions. */ 123 124 static bool 125 fix_loop_placement (struct loop *loop, bool *irred_invalidated) 126 { 127 unsigned i; 128 edge e; 129 vec<edge> exits = get_loop_exit_edges (loop); 130 struct loop *father = current_loops->tree_root, *act; 131 bool ret = false; 132 133 FOR_EACH_VEC_ELT (exits, i, e) 134 { 135 act = find_common_loop (loop, e->dest->loop_father); 136 if (flow_loop_nested_p (father, act)) 137 father = act; 138 } 139 140 if (father != loop_outer (loop)) 141 { 142 for (act = loop_outer (loop); act != father; act = loop_outer (act)) 143 act->num_nodes -= loop->num_nodes; 144 flow_loop_tree_node_remove (loop); 145 flow_loop_tree_node_add (father, loop); 146 147 /* The exit edges of LOOP no longer exits its original immediate 148 superloops; remove them from the appropriate exit lists. */ 149 FOR_EACH_VEC_ELT (exits, i, e) 150 { 151 /* We may need to recompute irreducible loops. */ 152 if (e->flags & EDGE_IRREDUCIBLE_LOOP) 153 *irred_invalidated = true; 154 rescan_loop_exit (e, false, false); 155 } 156 157 ret = true; 158 } 159 160 exits.release (); 161 return ret; 162 } 163 164 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e. 165 enforce condition stated in description of fix_bb_placement. We 166 start from basic block FROM that had some of its successors removed, so that 167 his placement no longer has to be correct, and iteratively fix placement of 168 its predecessors that may change if placement of FROM changed. Also fix 169 placement of subloops of FROM->loop_father, that might also be altered due 170 to this change; the condition for them is similar, except that instead of 171 successors we consider edges coming out of the loops. 172 173 If the changes may invalidate the information about irreducible regions, 174 IRRED_INVALIDATED is set to true. 175 176 If LOOP_CLOSED_SSA_INVLIDATED is non-zero then all basic blocks with 177 changed loop_father are collected there. */ 178 179 static void 180 fix_bb_placements (basic_block from, 181 bool *irred_invalidated, 182 bitmap loop_closed_ssa_invalidated) 183 { 184 basic_block *queue, *qtop, *qbeg, *qend; 185 struct loop *base_loop, *target_loop; 186 edge e; 187 188 /* We pass through blocks back-reachable from FROM, testing whether some 189 of their successors moved to outer loop. It may be necessary to 190 iterate several times, but it is finite, as we stop unless we move 191 the basic block up the loop structure. The whole story is a bit 192 more complicated due to presence of subloops, those are moved using 193 fix_loop_placement. */ 194 195 base_loop = from->loop_father; 196 /* If we are already in the outermost loop, the basic blocks cannot be moved 197 outside of it. If FROM is the header of the base loop, it cannot be moved 198 outside of it, either. In both cases, we can end now. */ 199 if (base_loop == current_loops->tree_root 200 || from == base_loop->header) 201 return; 202 203 auto_sbitmap in_queue (last_basic_block_for_fn (cfun)); 204 bitmap_clear (in_queue); 205 bitmap_set_bit (in_queue, from->index); 206 /* Prevent us from going out of the base_loop. */ 207 bitmap_set_bit (in_queue, base_loop->header->index); 208 209 queue = XNEWVEC (basic_block, base_loop->num_nodes + 1); 210 qtop = queue + base_loop->num_nodes + 1; 211 qbeg = queue; 212 qend = queue + 1; 213 *qbeg = from; 214 215 while (qbeg != qend) 216 { 217 edge_iterator ei; 218 from = *qbeg; 219 qbeg++; 220 if (qbeg == qtop) 221 qbeg = queue; 222 bitmap_clear_bit (in_queue, from->index); 223 224 if (from->loop_father->header == from) 225 { 226 /* Subloop header, maybe move the loop upward. */ 227 if (!fix_loop_placement (from->loop_father, irred_invalidated)) 228 continue; 229 target_loop = loop_outer (from->loop_father); 230 if (loop_closed_ssa_invalidated) 231 { 232 basic_block *bbs = get_loop_body (from->loop_father); 233 for (unsigned i = 0; i < from->loop_father->num_nodes; ++i) 234 bitmap_set_bit (loop_closed_ssa_invalidated, bbs[i]->index); 235 free (bbs); 236 } 237 } 238 else 239 { 240 /* Ordinary basic block. */ 241 if (!fix_bb_placement (from)) 242 continue; 243 target_loop = from->loop_father; 244 if (loop_closed_ssa_invalidated) 245 bitmap_set_bit (loop_closed_ssa_invalidated, from->index); 246 } 247 248 FOR_EACH_EDGE (e, ei, from->succs) 249 { 250 if (e->flags & EDGE_IRREDUCIBLE_LOOP) 251 *irred_invalidated = true; 252 } 253 254 /* Something has changed, insert predecessors into queue. */ 255 FOR_EACH_EDGE (e, ei, from->preds) 256 { 257 basic_block pred = e->src; 258 struct loop *nca; 259 260 if (e->flags & EDGE_IRREDUCIBLE_LOOP) 261 *irred_invalidated = true; 262 263 if (bitmap_bit_p (in_queue, pred->index)) 264 continue; 265 266 /* If it is subloop, then it either was not moved, or 267 the path up the loop tree from base_loop do not contain 268 it. */ 269 nca = find_common_loop (pred->loop_father, base_loop); 270 if (pred->loop_father != base_loop 271 && (nca == base_loop 272 || nca != pred->loop_father)) 273 pred = pred->loop_father->header; 274 else if (!flow_loop_nested_p (target_loop, pred->loop_father)) 275 { 276 /* If PRED is already higher in the loop hierarchy than the 277 TARGET_LOOP to that we moved FROM, the change of the position 278 of FROM does not affect the position of PRED, so there is no 279 point in processing it. */ 280 continue; 281 } 282 283 if (bitmap_bit_p (in_queue, pred->index)) 284 continue; 285 286 /* Schedule the basic block. */ 287 *qend = pred; 288 qend++; 289 if (qend == qtop) 290 qend = queue; 291 bitmap_set_bit (in_queue, pred->index); 292 } 293 } 294 free (queue); 295 } 296 297 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E 298 and update loop structures and dominators. Return true if we were able 299 to remove the path, false otherwise (and nothing is affected then). */ 300 bool 301 remove_path (edge e, bool *irred_invalidated, 302 bitmap loop_closed_ssa_invalidated) 303 { 304 edge ae; 305 basic_block *rem_bbs, *bord_bbs, from, bb; 306 vec<basic_block> dom_bbs; 307 int i, nrem, n_bord_bbs; 308 bool local_irred_invalidated = false; 309 edge_iterator ei; 310 struct loop *l, *f; 311 312 if (! irred_invalidated) 313 irred_invalidated = &local_irred_invalidated; 314 315 if (!can_remove_branch_p (e)) 316 return false; 317 318 /* Keep track of whether we need to update information about irreducible 319 regions. This is the case if the removed area is a part of the 320 irreducible region, or if the set of basic blocks that belong to a loop 321 that is inside an irreducible region is changed, or if such a loop is 322 removed. */ 323 if (e->flags & EDGE_IRREDUCIBLE_LOOP) 324 *irred_invalidated = true; 325 326 /* We need to check whether basic blocks are dominated by the edge 327 e, but we only have basic block dominators. This is easy to 328 fix -- when e->dest has exactly one predecessor, this corresponds 329 to blocks dominated by e->dest, if not, split the edge. */ 330 if (!single_pred_p (e->dest)) 331 e = single_pred_edge (split_edge (e)); 332 333 /* It may happen that by removing path we remove one or more loops 334 we belong to. In this case first unloop the loops, then proceed 335 normally. We may assume that e->dest is not a header of any loop, 336 as it now has exactly one predecessor. */ 337 for (l = e->src->loop_father; loop_outer (l); l = f) 338 { 339 f = loop_outer (l); 340 if (dominated_by_p (CDI_DOMINATORS, l->latch, e->dest)) 341 unloop (l, irred_invalidated, loop_closed_ssa_invalidated); 342 } 343 344 /* Identify the path. */ 345 nrem = find_path (e, &rem_bbs); 346 347 n_bord_bbs = 0; 348 bord_bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun)); 349 auto_sbitmap seen (last_basic_block_for_fn (cfun)); 350 bitmap_clear (seen); 351 352 /* Find "border" hexes -- i.e. those with predecessor in removed path. */ 353 for (i = 0; i < nrem; i++) 354 bitmap_set_bit (seen, rem_bbs[i]->index); 355 if (!*irred_invalidated) 356 FOR_EACH_EDGE (ae, ei, e->src->succs) 357 if (ae != e && ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) 358 && !bitmap_bit_p (seen, ae->dest->index) 359 && ae->flags & EDGE_IRREDUCIBLE_LOOP) 360 { 361 *irred_invalidated = true; 362 break; 363 } 364 365 for (i = 0; i < nrem; i++) 366 { 367 bb = rem_bbs[i]; 368 FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs) 369 if (ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) 370 && !bitmap_bit_p (seen, ae->dest->index)) 371 { 372 bitmap_set_bit (seen, ae->dest->index); 373 bord_bbs[n_bord_bbs++] = ae->dest; 374 375 if (ae->flags & EDGE_IRREDUCIBLE_LOOP) 376 *irred_invalidated = true; 377 } 378 } 379 380 /* Remove the path. */ 381 from = e->src; 382 remove_branch (e); 383 dom_bbs.create (0); 384 385 /* Cancel loops contained in the path. */ 386 for (i = 0; i < nrem; i++) 387 if (rem_bbs[i]->loop_father->header == rem_bbs[i]) 388 cancel_loop_tree (rem_bbs[i]->loop_father); 389 390 remove_bbs (rem_bbs, nrem); 391 free (rem_bbs); 392 393 /* Find blocks whose dominators may be affected. */ 394 bitmap_clear (seen); 395 for (i = 0; i < n_bord_bbs; i++) 396 { 397 basic_block ldom; 398 399 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]); 400 if (bitmap_bit_p (seen, bb->index)) 401 continue; 402 bitmap_set_bit (seen, bb->index); 403 404 for (ldom = first_dom_son (CDI_DOMINATORS, bb); 405 ldom; 406 ldom = next_dom_son (CDI_DOMINATORS, ldom)) 407 if (!dominated_by_p (CDI_DOMINATORS, from, ldom)) 408 dom_bbs.safe_push (ldom); 409 } 410 411 /* Recount dominators. */ 412 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true); 413 dom_bbs.release (); 414 free (bord_bbs); 415 416 /* Fix placements of basic blocks inside loops and the placement of 417 loops in the loop tree. */ 418 fix_bb_placements (from, irred_invalidated, loop_closed_ssa_invalidated); 419 fix_loop_placements (from->loop_father, irred_invalidated); 420 421 if (local_irred_invalidated 422 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)) 423 mark_irreducible_loops (); 424 425 return true; 426 } 427 428 /* Creates place for a new LOOP in loops structure of FN. */ 429 430 void 431 place_new_loop (struct function *fn, struct loop *loop) 432 { 433 loop->num = number_of_loops (fn); 434 vec_safe_push (loops_for_fn (fn)->larray, loop); 435 } 436 437 /* Given LOOP structure with filled header and latch, find the body of the 438 corresponding loop and add it to loops tree. Insert the LOOP as a son of 439 outer. */ 440 441 void 442 add_loop (struct loop *loop, struct loop *outer) 443 { 444 basic_block *bbs; 445 int i, n; 446 struct loop *subloop; 447 edge e; 448 edge_iterator ei; 449 450 /* Add it to loop structure. */ 451 place_new_loop (cfun, loop); 452 flow_loop_tree_node_add (outer, loop); 453 454 /* Find its nodes. */ 455 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun)); 456 n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun)); 457 458 for (i = 0; i < n; i++) 459 { 460 if (bbs[i]->loop_father == outer) 461 { 462 remove_bb_from_loops (bbs[i]); 463 add_bb_to_loop (bbs[i], loop); 464 continue; 465 } 466 467 loop->num_nodes++; 468 469 /* If we find a direct subloop of OUTER, move it to LOOP. */ 470 subloop = bbs[i]->loop_father; 471 if (loop_outer (subloop) == outer 472 && subloop->header == bbs[i]) 473 { 474 flow_loop_tree_node_remove (subloop); 475 flow_loop_tree_node_add (loop, subloop); 476 } 477 } 478 479 /* Update the information about loop exit edges. */ 480 for (i = 0; i < n; i++) 481 { 482 FOR_EACH_EDGE (e, ei, bbs[i]->succs) 483 { 484 rescan_loop_exit (e, false, false); 485 } 486 } 487 488 free (bbs); 489 } 490 491 /* Scale profile of loop by P. */ 492 493 void 494 scale_loop_frequencies (struct loop *loop, profile_probability p) 495 { 496 basic_block *bbs; 497 498 bbs = get_loop_body (loop); 499 scale_bbs_frequencies (bbs, loop->num_nodes, p); 500 free (bbs); 501 } 502 503 /* Scale profile in LOOP by P. 504 If ITERATION_BOUND is non-zero, scale even further if loop is predicted 505 to iterate too many times. 506 Before caling this function, preheader block profile should be already 507 scaled to final count. This is necessary because loop iterations are 508 determined by comparing header edge count to latch ege count and thus 509 they need to be scaled synchronously. */ 510 511 void 512 scale_loop_profile (struct loop *loop, profile_probability p, 513 gcov_type iteration_bound) 514 { 515 edge e, preheader_e; 516 edge_iterator ei; 517 518 if (dump_file && (dump_flags & TDF_DETAILS)) 519 { 520 fprintf (dump_file, ";; Scaling loop %i with scale ", 521 loop->num); 522 p.dump (dump_file); 523 fprintf (dump_file, " bounding iterations to %i\n", 524 (int)iteration_bound); 525 } 526 527 /* Scale the probabilities. */ 528 scale_loop_frequencies (loop, p); 529 530 if (iteration_bound == 0) 531 return; 532 533 gcov_type iterations = expected_loop_iterations_unbounded (loop, NULL, true); 534 535 if (dump_file && (dump_flags & TDF_DETAILS)) 536 { 537 fprintf (dump_file, ";; guessed iterations after scaling %i\n", 538 (int)iterations); 539 } 540 541 /* See if loop is predicted to iterate too many times. */ 542 if (iterations <= iteration_bound) 543 return; 544 545 preheader_e = loop_preheader_edge (loop); 546 547 /* We could handle also loops without preheaders, but bounding is 548 currently used only by optimizers that have preheaders constructed. */ 549 gcc_checking_assert (preheader_e); 550 profile_count count_in = preheader_e->count (); 551 552 if (count_in > profile_count::zero () 553 && loop->header->count.initialized_p ()) 554 { 555 profile_count count_delta = profile_count::zero (); 556 557 e = single_exit (loop); 558 if (e) 559 { 560 edge other_e; 561 FOR_EACH_EDGE (other_e, ei, e->src->succs) 562 if (!(other_e->flags & (EDGE_ABNORMAL | EDGE_FAKE)) 563 && e != other_e) 564 break; 565 566 /* Probability of exit must be 1/iterations. */ 567 count_delta = e->count (); 568 e->probability = profile_probability::always () 569 .apply_scale (1, iteration_bound); 570 other_e->probability = e->probability.invert (); 571 572 /* In code below we only handle the following two updates. */ 573 if (other_e->dest != loop->header 574 && other_e->dest != loop->latch 575 && (dump_file && (dump_flags & TDF_DETAILS))) 576 { 577 fprintf (dump_file, ";; giving up on update of paths from " 578 "exit condition to latch\n"); 579 } 580 } 581 else 582 if (dump_file && (dump_flags & TDF_DETAILS)) 583 fprintf (dump_file, ";; Loop has multiple exit edges; " 584 "giving up on exit condition update\n"); 585 586 /* Roughly speaking we want to reduce the loop body profile by the 587 difference of loop iterations. We however can do better if 588 we look at the actual profile, if it is available. */ 589 p = profile_probability::always (); 590 591 count_in = count_in.apply_scale (iteration_bound, 1); 592 p = count_in.probability_in (loop->header->count); 593 if (!(p > profile_probability::never ())) 594 p = profile_probability::very_unlikely (); 595 596 if (p == profile_probability::always () 597 || !p.initialized_p ()) 598 return; 599 600 /* If latch exists, change its count, since we changed 601 probability of exit. Theoretically we should update everything from 602 source of exit edge to latch, but for vectorizer this is enough. */ 603 if (loop->latch && loop->latch != e->src) 604 loop->latch->count += count_delta; 605 606 /* Scale the probabilities. */ 607 scale_loop_frequencies (loop, p); 608 609 /* Change latch's count back. */ 610 if (loop->latch && loop->latch != e->src) 611 loop->latch->count -= count_delta; 612 613 if (dump_file && (dump_flags & TDF_DETAILS)) 614 fprintf (dump_file, ";; guessed iterations are now %i\n", 615 (int)expected_loop_iterations_unbounded (loop, NULL, true)); 616 } 617 } 618 619 /* Recompute dominance information for basic blocks outside LOOP. */ 620 621 static void 622 update_dominators_in_loop (struct loop *loop) 623 { 624 vec<basic_block> dom_bbs = vNULL; 625 basic_block *body; 626 unsigned i; 627 628 auto_sbitmap seen (last_basic_block_for_fn (cfun)); 629 bitmap_clear (seen); 630 body = get_loop_body (loop); 631 632 for (i = 0; i < loop->num_nodes; i++) 633 bitmap_set_bit (seen, body[i]->index); 634 635 for (i = 0; i < loop->num_nodes; i++) 636 { 637 basic_block ldom; 638 639 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]); 640 ldom; 641 ldom = next_dom_son (CDI_DOMINATORS, ldom)) 642 if (!bitmap_bit_p (seen, ldom->index)) 643 { 644 bitmap_set_bit (seen, ldom->index); 645 dom_bbs.safe_push (ldom); 646 } 647 } 648 649 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false); 650 free (body); 651 dom_bbs.release (); 652 } 653 654 /* Creates an if region as shown above. CONDITION is used to create 655 the test for the if. 656 657 | 658 | ------------- ------------- 659 | | pred_bb | | pred_bb | 660 | ------------- ------------- 661 | | | 662 | | | ENTRY_EDGE 663 | | ENTRY_EDGE V 664 | | ====> ------------- 665 | | | cond_bb | 666 | | | CONDITION | 667 | | ------------- 668 | V / \ 669 | ------------- e_false / \ e_true 670 | | succ_bb | V V 671 | ------------- ----------- ----------- 672 | | false_bb | | true_bb | 673 | ----------- ----------- 674 | \ / 675 | \ / 676 | V V 677 | ------------- 678 | | join_bb | 679 | ------------- 680 | | exit_edge (result) 681 | V 682 | ----------- 683 | | succ_bb | 684 | ----------- 685 | 686 */ 687 688 edge 689 create_empty_if_region_on_edge (edge entry_edge, tree condition) 690 { 691 692 basic_block cond_bb, true_bb, false_bb, join_bb; 693 edge e_true, e_false, exit_edge; 694 gcond *cond_stmt; 695 tree simple_cond; 696 gimple_stmt_iterator gsi; 697 698 cond_bb = split_edge (entry_edge); 699 700 /* Insert condition in cond_bb. */ 701 gsi = gsi_last_bb (cond_bb); 702 simple_cond = 703 force_gimple_operand_gsi (&gsi, condition, true, NULL, 704 false, GSI_NEW_STMT); 705 cond_stmt = gimple_build_cond_from_tree (simple_cond, NULL_TREE, NULL_TREE); 706 gsi = gsi_last_bb (cond_bb); 707 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT); 708 709 join_bb = split_edge (single_succ_edge (cond_bb)); 710 711 e_true = single_succ_edge (cond_bb); 712 true_bb = split_edge (e_true); 713 714 e_false = make_edge (cond_bb, join_bb, 0); 715 false_bb = split_edge (e_false); 716 717 e_true->flags &= ~EDGE_FALLTHRU; 718 e_true->flags |= EDGE_TRUE_VALUE; 719 e_false->flags &= ~EDGE_FALLTHRU; 720 e_false->flags |= EDGE_FALSE_VALUE; 721 722 set_immediate_dominator (CDI_DOMINATORS, cond_bb, entry_edge->src); 723 set_immediate_dominator (CDI_DOMINATORS, true_bb, cond_bb); 724 set_immediate_dominator (CDI_DOMINATORS, false_bb, cond_bb); 725 set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb); 726 727 exit_edge = single_succ_edge (join_bb); 728 729 if (single_pred_p (exit_edge->dest)) 730 set_immediate_dominator (CDI_DOMINATORS, exit_edge->dest, join_bb); 731 732 return exit_edge; 733 } 734 735 /* create_empty_loop_on_edge 736 | 737 | - pred_bb - ------ pred_bb ------ 738 | | | | iv0 = initial_value | 739 | -----|----- ---------|----------- 740 | | ______ | entry_edge 741 | | entry_edge / | | 742 | | ====> | -V---V- loop_header ------------- 743 | V | | iv_before = phi (iv0, iv_after) | 744 | - succ_bb - | ---|----------------------------- 745 | | | | | 746 | ----------- | ---V--- loop_body --------------- 747 | | | iv_after = iv_before + stride | 748 | | | if (iv_before < upper_bound) | 749 | | ---|--------------\-------------- 750 | | | \ exit_e 751 | | V \ 752 | | - loop_latch - V- succ_bb - 753 | | | | | | 754 | | /------------- ----------- 755 | \ ___ / 756 757 Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME 758 that is used before the increment of IV. IV_BEFORE should be used for 759 adding code to the body that uses the IV. OUTER is the outer loop in 760 which the new loop should be inserted. 761 762 Both INITIAL_VALUE and UPPER_BOUND expressions are gimplified and 763 inserted on the loop entry edge. This implies that this function 764 should be used only when the UPPER_BOUND expression is a loop 765 invariant. */ 766 767 struct loop * 768 create_empty_loop_on_edge (edge entry_edge, 769 tree initial_value, 770 tree stride, tree upper_bound, 771 tree iv, 772 tree *iv_before, 773 tree *iv_after, 774 struct loop *outer) 775 { 776 basic_block loop_header, loop_latch, succ_bb, pred_bb; 777 struct loop *loop; 778 gimple_stmt_iterator gsi; 779 gimple_seq stmts; 780 gcond *cond_expr; 781 tree exit_test; 782 edge exit_e; 783 784 gcc_assert (entry_edge && initial_value && stride && upper_bound && iv); 785 786 /* Create header, latch and wire up the loop. */ 787 pred_bb = entry_edge->src; 788 loop_header = split_edge (entry_edge); 789 loop_latch = split_edge (single_succ_edge (loop_header)); 790 succ_bb = single_succ (loop_latch); 791 make_edge (loop_header, succ_bb, 0); 792 redirect_edge_succ_nodup (single_succ_edge (loop_latch), loop_header); 793 794 /* Set immediate dominator information. */ 795 set_immediate_dominator (CDI_DOMINATORS, loop_header, pred_bb); 796 set_immediate_dominator (CDI_DOMINATORS, loop_latch, loop_header); 797 set_immediate_dominator (CDI_DOMINATORS, succ_bb, loop_header); 798 799 /* Initialize a loop structure and put it in a loop hierarchy. */ 800 loop = alloc_loop (); 801 loop->header = loop_header; 802 loop->latch = loop_latch; 803 add_loop (loop, outer); 804 805 /* TODO: Fix counts. */ 806 scale_loop_frequencies (loop, profile_probability::even ()); 807 808 /* Update dominators. */ 809 update_dominators_in_loop (loop); 810 811 /* Modify edge flags. */ 812 exit_e = single_exit (loop); 813 exit_e->flags = EDGE_LOOP_EXIT | EDGE_FALSE_VALUE; 814 single_pred_edge (loop_latch)->flags = EDGE_TRUE_VALUE; 815 816 /* Construct IV code in loop. */ 817 initial_value = force_gimple_operand (initial_value, &stmts, true, iv); 818 if (stmts) 819 { 820 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts); 821 gsi_commit_edge_inserts (); 822 } 823 824 upper_bound = force_gimple_operand (upper_bound, &stmts, true, NULL); 825 if (stmts) 826 { 827 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts); 828 gsi_commit_edge_inserts (); 829 } 830 831 gsi = gsi_last_bb (loop_header); 832 create_iv (initial_value, stride, iv, loop, &gsi, false, 833 iv_before, iv_after); 834 835 /* Insert loop exit condition. */ 836 cond_expr = gimple_build_cond 837 (LT_EXPR, *iv_before, upper_bound, NULL_TREE, NULL_TREE); 838 839 exit_test = gimple_cond_lhs (cond_expr); 840 exit_test = force_gimple_operand_gsi (&gsi, exit_test, true, NULL, 841 false, GSI_NEW_STMT); 842 gimple_cond_set_lhs (cond_expr, exit_test); 843 gsi = gsi_last_bb (exit_e->src); 844 gsi_insert_after (&gsi, cond_expr, GSI_NEW_STMT); 845 846 split_block_after_labels (loop_header); 847 848 return loop; 849 } 850 851 /* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting 852 latch to header and update loop tree and dominators 853 accordingly. Everything between them plus LATCH_EDGE destination must 854 be dominated by HEADER_EDGE destination, and back-reachable from 855 LATCH_EDGE source. HEADER_EDGE is redirected to basic block SWITCH_BB, 856 FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and 857 TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE. 858 Returns the newly created loop. Frequencies and counts in the new loop 859 are scaled by FALSE_SCALE and in the old one by TRUE_SCALE. */ 860 861 struct loop * 862 loopify (edge latch_edge, edge header_edge, 863 basic_block switch_bb, edge true_edge, edge false_edge, 864 bool redirect_all_edges, profile_probability true_scale, 865 profile_probability false_scale) 866 { 867 basic_block succ_bb = latch_edge->dest; 868 basic_block pred_bb = header_edge->src; 869 struct loop *loop = alloc_loop (); 870 struct loop *outer = loop_outer (succ_bb->loop_father); 871 profile_count cnt; 872 873 loop->header = header_edge->dest; 874 loop->latch = latch_edge->src; 875 876 cnt = header_edge->count (); 877 878 /* Redirect edges. */ 879 loop_redirect_edge (latch_edge, loop->header); 880 loop_redirect_edge (true_edge, succ_bb); 881 882 /* During loop versioning, one of the switch_bb edge is already properly 883 set. Do not redirect it again unless redirect_all_edges is true. */ 884 if (redirect_all_edges) 885 { 886 loop_redirect_edge (header_edge, switch_bb); 887 loop_redirect_edge (false_edge, loop->header); 888 889 /* Update dominators. */ 890 set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb); 891 set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb); 892 } 893 894 set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb); 895 896 /* Compute new loop. */ 897 add_loop (loop, outer); 898 899 /* Add switch_bb to appropriate loop. */ 900 if (switch_bb->loop_father) 901 remove_bb_from_loops (switch_bb); 902 add_bb_to_loop (switch_bb, outer); 903 904 /* Fix counts. */ 905 if (redirect_all_edges) 906 { 907 switch_bb->count = cnt; 908 } 909 scale_loop_frequencies (loop, false_scale); 910 scale_loop_frequencies (succ_bb->loop_father, true_scale); 911 update_dominators_in_loop (loop); 912 913 return loop; 914 } 915 916 /* Remove the latch edge of a LOOP and update loops to indicate that 917 the LOOP was removed. After this function, original loop latch will 918 have no successor, which caller is expected to fix somehow. 919 920 If this may cause the information about irreducible regions to become 921 invalid, IRRED_INVALIDATED is set to true. 922 923 LOOP_CLOSED_SSA_INVALIDATED, if non-NULL, is a bitmap where we store 924 basic blocks that had non-trivial update on their loop_father.*/ 925 926 void 927 unloop (struct loop *loop, bool *irred_invalidated, 928 bitmap loop_closed_ssa_invalidated) 929 { 930 basic_block *body; 931 struct loop *ploop; 932 unsigned i, n; 933 basic_block latch = loop->latch; 934 bool dummy = false; 935 936 if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP) 937 *irred_invalidated = true; 938 939 /* This is relatively straightforward. The dominators are unchanged, as 940 loop header dominates loop latch, so the only thing we have to care of 941 is the placement of loops and basic blocks inside the loop tree. We 942 move them all to the loop->outer, and then let fix_bb_placements do 943 its work. */ 944 945 body = get_loop_body (loop); 946 n = loop->num_nodes; 947 for (i = 0; i < n; i++) 948 if (body[i]->loop_father == loop) 949 { 950 remove_bb_from_loops (body[i]); 951 add_bb_to_loop (body[i], loop_outer (loop)); 952 } 953 free (body); 954 955 while (loop->inner) 956 { 957 ploop = loop->inner; 958 flow_loop_tree_node_remove (ploop); 959 flow_loop_tree_node_add (loop_outer (loop), ploop); 960 } 961 962 /* Remove the loop and free its data. */ 963 delete_loop (loop); 964 965 remove_edge (single_succ_edge (latch)); 966 967 /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if 968 there is an irreducible region inside the cancelled loop, the flags will 969 be still correct. */ 970 fix_bb_placements (latch, &dummy, loop_closed_ssa_invalidated); 971 } 972 973 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that 974 condition stated in description of fix_loop_placement holds for them. 975 It is used in case when we removed some edges coming out of LOOP, which 976 may cause the right placement of LOOP inside loop tree to change. 977 978 IRRED_INVALIDATED is set to true if a change in the loop structures might 979 invalidate the information about irreducible regions. */ 980 981 static void 982 fix_loop_placements (struct loop *loop, bool *irred_invalidated) 983 { 984 struct loop *outer; 985 986 while (loop_outer (loop)) 987 { 988 outer = loop_outer (loop); 989 if (!fix_loop_placement (loop, irred_invalidated)) 990 break; 991 992 /* Changing the placement of a loop in the loop tree may alter the 993 validity of condition 2) of the description of fix_bb_placement 994 for its preheader, because the successor is the header and belongs 995 to the loop. So call fix_bb_placements to fix up the placement 996 of the preheader and (possibly) of its predecessors. */ 997 fix_bb_placements (loop_preheader_edge (loop)->src, 998 irred_invalidated, NULL); 999 loop = outer; 1000 } 1001 } 1002 1003 /* Duplicate loop bounds and other information we store about 1004 the loop into its duplicate. */ 1005 1006 void 1007 copy_loop_info (struct loop *loop, struct loop *target) 1008 { 1009 gcc_checking_assert (!target->any_upper_bound && !target->any_estimate); 1010 target->any_upper_bound = loop->any_upper_bound; 1011 target->nb_iterations_upper_bound = loop->nb_iterations_upper_bound; 1012 target->any_likely_upper_bound = loop->any_likely_upper_bound; 1013 target->nb_iterations_likely_upper_bound 1014 = loop->nb_iterations_likely_upper_bound; 1015 target->any_estimate = loop->any_estimate; 1016 target->nb_iterations_estimate = loop->nb_iterations_estimate; 1017 target->estimate_state = loop->estimate_state; 1018 target->safelen = loop->safelen; 1019 target->constraints = loop->constraints; 1020 target->can_be_parallel = loop->can_be_parallel; 1021 target->warned_aggressive_loop_optimizations 1022 |= loop->warned_aggressive_loop_optimizations; 1023 target->dont_vectorize = loop->dont_vectorize; 1024 target->force_vectorize = loop->force_vectorize; 1025 target->in_oacc_kernels_region = loop->in_oacc_kernels_region; 1026 target->unroll = loop->unroll; 1027 target->owned_clique = loop->owned_clique; 1028 } 1029 1030 /* Copies copy of LOOP as subloop of TARGET loop, placing newly 1031 created loop into loops structure. If AFTER is non-null 1032 the new loop is added at AFTER->next, otherwise in front of TARGETs 1033 sibling list. */ 1034 struct loop * 1035 duplicate_loop (struct loop *loop, struct loop *target, struct loop *after) 1036 { 1037 struct loop *cloop; 1038 cloop = alloc_loop (); 1039 place_new_loop (cfun, cloop); 1040 1041 copy_loop_info (loop, cloop); 1042 1043 /* Mark the new loop as copy of LOOP. */ 1044 set_loop_copy (loop, cloop); 1045 1046 /* Add it to target. */ 1047 flow_loop_tree_node_add (target, cloop, after); 1048 1049 return cloop; 1050 } 1051 1052 /* Copies structure of subloops of LOOP into TARGET loop, placing 1053 newly created loops into loop tree at the end of TARGETs sibling 1054 list in the original order. */ 1055 void 1056 duplicate_subloops (struct loop *loop, struct loop *target) 1057 { 1058 struct loop *aloop, *cloop, *tail; 1059 1060 for (tail = target->inner; tail && tail->next; tail = tail->next) 1061 ; 1062 for (aloop = loop->inner; aloop; aloop = aloop->next) 1063 { 1064 cloop = duplicate_loop (aloop, target, tail); 1065 tail = cloop; 1066 gcc_assert(!tail->next); 1067 duplicate_subloops (aloop, cloop); 1068 } 1069 } 1070 1071 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS, 1072 into TARGET loop, placing newly created loops into loop tree adding 1073 them to TARGETs sibling list at the end in order. */ 1074 static void 1075 copy_loops_to (struct loop **copied_loops, int n, struct loop *target) 1076 { 1077 struct loop *aloop, *tail; 1078 int i; 1079 1080 for (tail = target->inner; tail && tail->next; tail = tail->next) 1081 ; 1082 for (i = 0; i < n; i++) 1083 { 1084 aloop = duplicate_loop (copied_loops[i], target, tail); 1085 tail = aloop; 1086 gcc_assert(!tail->next); 1087 duplicate_subloops (copied_loops[i], aloop); 1088 } 1089 } 1090 1091 /* Redirects edge E to basic block DEST. */ 1092 static void 1093 loop_redirect_edge (edge e, basic_block dest) 1094 { 1095 if (e->dest == dest) 1096 return; 1097 1098 redirect_edge_and_branch_force (e, dest); 1099 } 1100 1101 /* Check whether LOOP's body can be duplicated. */ 1102 bool 1103 can_duplicate_loop_p (const struct loop *loop) 1104 { 1105 int ret; 1106 basic_block *bbs = get_loop_body (loop); 1107 1108 ret = can_copy_bbs_p (bbs, loop->num_nodes); 1109 free (bbs); 1110 1111 return ret; 1112 } 1113 1114 /* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating 1115 loop structure and dominators (order of inner subloops is retained). 1116 E's destination must be LOOP header for this to work, i.e. it must be entry 1117 or latch edge of this loop; these are unique, as the loops must have 1118 preheaders for this function to work correctly (in case E is latch, the 1119 function unrolls the loop, if E is entry edge, it peels the loop). Store 1120 edges created by copying ORIG edge from copies corresponding to set bits in 1121 WONT_EXIT bitmap (bit 0 corresponds to original LOOP body, the other copies 1122 are numbered in order given by control flow through them) into TO_REMOVE 1123 array. Returns false if duplication is 1124 impossible. */ 1125 1126 bool 1127 duplicate_loop_to_header_edge (struct loop *loop, edge e, 1128 unsigned int ndupl, sbitmap wont_exit, 1129 edge orig, vec<edge> *to_remove, 1130 int flags) 1131 { 1132 struct loop *target, *aloop; 1133 struct loop **orig_loops; 1134 unsigned n_orig_loops; 1135 basic_block header = loop->header, latch = loop->latch; 1136 basic_block *new_bbs, *bbs, *first_active; 1137 basic_block new_bb, bb, first_active_latch = NULL; 1138 edge ae, latch_edge; 1139 edge spec_edges[2], new_spec_edges[2]; 1140 const int SE_LATCH = 0; 1141 const int SE_ORIG = 1; 1142 unsigned i, j, n; 1143 int is_latch = (latch == e->src); 1144 profile_probability *scale_step = NULL; 1145 profile_probability scale_main = profile_probability::always (); 1146 profile_probability scale_act = profile_probability::always (); 1147 profile_count after_exit_num = profile_count::zero (), 1148 after_exit_den = profile_count::zero (); 1149 bool scale_after_exit = false; 1150 int add_irreducible_flag; 1151 basic_block place_after; 1152 bitmap bbs_to_scale = NULL; 1153 bitmap_iterator bi; 1154 1155 gcc_assert (e->dest == loop->header); 1156 gcc_assert (ndupl > 0); 1157 1158 if (orig) 1159 { 1160 /* Orig must be edge out of the loop. */ 1161 gcc_assert (flow_bb_inside_loop_p (loop, orig->src)); 1162 gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest)); 1163 } 1164 1165 n = loop->num_nodes; 1166 bbs = get_loop_body_in_dom_order (loop); 1167 gcc_assert (bbs[0] == loop->header); 1168 gcc_assert (bbs[n - 1] == loop->latch); 1169 1170 /* Check whether duplication is possible. */ 1171 if (!can_copy_bbs_p (bbs, loop->num_nodes)) 1172 { 1173 free (bbs); 1174 return false; 1175 } 1176 new_bbs = XNEWVEC (basic_block, loop->num_nodes); 1177 1178 /* In case we are doing loop peeling and the loop is in the middle of 1179 irreducible region, the peeled copies will be inside it too. */ 1180 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP; 1181 gcc_assert (!is_latch || !add_irreducible_flag); 1182 1183 /* Find edge from latch. */ 1184 latch_edge = loop_latch_edge (loop); 1185 1186 if (flags & DLTHE_FLAG_UPDATE_FREQ) 1187 { 1188 /* Calculate coefficients by that we have to scale counts 1189 of duplicated loop bodies. */ 1190 profile_count count_in = header->count; 1191 profile_count count_le = latch_edge->count (); 1192 profile_count count_out_orig = orig ? orig->count () : count_in - count_le; 1193 profile_probability prob_pass_thru = count_le.probability_in (count_in); 1194 profile_probability prob_pass_wont_exit = 1195 (count_le + count_out_orig).probability_in (count_in); 1196 1197 if (orig && orig->probability.initialized_p () 1198 && !(orig->probability == profile_probability::always ())) 1199 { 1200 /* The blocks that are dominated by a removed exit edge ORIG have 1201 frequencies scaled by this. */ 1202 if (orig->count ().initialized_p ()) 1203 { 1204 after_exit_num = orig->src->count; 1205 after_exit_den = after_exit_num - orig->count (); 1206 scale_after_exit = true; 1207 } 1208 bbs_to_scale = BITMAP_ALLOC (NULL); 1209 for (i = 0; i < n; i++) 1210 { 1211 if (bbs[i] != orig->src 1212 && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src)) 1213 bitmap_set_bit (bbs_to_scale, i); 1214 } 1215 } 1216 1217 scale_step = XNEWVEC (profile_probability, ndupl); 1218 1219 for (i = 1; i <= ndupl; i++) 1220 scale_step[i - 1] = bitmap_bit_p (wont_exit, i) 1221 ? prob_pass_wont_exit 1222 : prob_pass_thru; 1223 1224 /* Complete peeling is special as the probability of exit in last 1225 copy becomes 1. */ 1226 if (flags & DLTHE_FLAG_COMPLETTE_PEEL) 1227 { 1228 profile_count wanted_count = e->count (); 1229 1230 gcc_assert (!is_latch); 1231 /* First copy has count of incoming edge. Each subsequent 1232 count should be reduced by prob_pass_wont_exit. Caller 1233 should've managed the flags so all except for original loop 1234 has won't exist set. */ 1235 scale_act = wanted_count.probability_in (count_in); 1236 /* Now simulate the duplication adjustments and compute header 1237 frequency of the last copy. */ 1238 for (i = 0; i < ndupl; i++) 1239 wanted_count = wanted_count.apply_probability (scale_step [i]); 1240 scale_main = wanted_count.probability_in (count_in); 1241 } 1242 /* Here we insert loop bodies inside the loop itself (for loop unrolling). 1243 First iteration will be original loop followed by duplicated bodies. 1244 It is necessary to scale down the original so we get right overall 1245 number of iterations. */ 1246 else if (is_latch) 1247 { 1248 profile_probability prob_pass_main = bitmap_bit_p (wont_exit, 0) 1249 ? prob_pass_wont_exit 1250 : prob_pass_thru; 1251 profile_probability p = prob_pass_main; 1252 profile_count scale_main_den = count_in; 1253 for (i = 0; i < ndupl; i++) 1254 { 1255 scale_main_den += count_in.apply_probability (p); 1256 p = p * scale_step[i]; 1257 } 1258 /* If original loop is executed COUNT_IN times, the unrolled 1259 loop will account SCALE_MAIN_DEN times. */ 1260 scale_main = count_in.probability_in (scale_main_den); 1261 scale_act = scale_main * prob_pass_main; 1262 } 1263 else 1264 { 1265 profile_count preheader_count = e->count (); 1266 for (i = 0; i < ndupl; i++) 1267 scale_main = scale_main * scale_step[i]; 1268 scale_act = preheader_count.probability_in (count_in); 1269 } 1270 } 1271 1272 /* Loop the new bbs will belong to. */ 1273 target = e->src->loop_father; 1274 1275 /* Original loops. */ 1276 n_orig_loops = 0; 1277 for (aloop = loop->inner; aloop; aloop = aloop->next) 1278 n_orig_loops++; 1279 orig_loops = XNEWVEC (struct loop *, n_orig_loops); 1280 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++) 1281 orig_loops[i] = aloop; 1282 1283 set_loop_copy (loop, target); 1284 1285 first_active = XNEWVEC (basic_block, n); 1286 if (is_latch) 1287 { 1288 memcpy (first_active, bbs, n * sizeof (basic_block)); 1289 first_active_latch = latch; 1290 } 1291 1292 spec_edges[SE_ORIG] = orig; 1293 spec_edges[SE_LATCH] = latch_edge; 1294 1295 place_after = e->src; 1296 for (j = 0; j < ndupl; j++) 1297 { 1298 /* Copy loops. */ 1299 copy_loops_to (orig_loops, n_orig_loops, target); 1300 1301 /* Copy bbs. */ 1302 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop, 1303 place_after, true); 1304 place_after = new_spec_edges[SE_LATCH]->src; 1305 1306 if (flags & DLTHE_RECORD_COPY_NUMBER) 1307 for (i = 0; i < n; i++) 1308 { 1309 gcc_assert (!new_bbs[i]->aux); 1310 new_bbs[i]->aux = (void *)(size_t)(j + 1); 1311 } 1312 1313 /* Note whether the blocks and edges belong to an irreducible loop. */ 1314 if (add_irreducible_flag) 1315 { 1316 for (i = 0; i < n; i++) 1317 new_bbs[i]->flags |= BB_DUPLICATED; 1318 for (i = 0; i < n; i++) 1319 { 1320 edge_iterator ei; 1321 new_bb = new_bbs[i]; 1322 if (new_bb->loop_father == target) 1323 new_bb->flags |= BB_IRREDUCIBLE_LOOP; 1324 1325 FOR_EACH_EDGE (ae, ei, new_bb->succs) 1326 if ((ae->dest->flags & BB_DUPLICATED) 1327 && (ae->src->loop_father == target 1328 || ae->dest->loop_father == target)) 1329 ae->flags |= EDGE_IRREDUCIBLE_LOOP; 1330 } 1331 for (i = 0; i < n; i++) 1332 new_bbs[i]->flags &= ~BB_DUPLICATED; 1333 } 1334 1335 /* Redirect the special edges. */ 1336 if (is_latch) 1337 { 1338 redirect_edge_and_branch_force (latch_edge, new_bbs[0]); 1339 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH], 1340 loop->header); 1341 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch); 1342 latch = loop->latch = new_bbs[n - 1]; 1343 e = latch_edge = new_spec_edges[SE_LATCH]; 1344 } 1345 else 1346 { 1347 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH], 1348 loop->header); 1349 redirect_edge_and_branch_force (e, new_bbs[0]); 1350 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src); 1351 e = new_spec_edges[SE_LATCH]; 1352 } 1353 1354 /* Record exit edge in this copy. */ 1355 if (orig && bitmap_bit_p (wont_exit, j + 1)) 1356 { 1357 if (to_remove) 1358 to_remove->safe_push (new_spec_edges[SE_ORIG]); 1359 force_edge_cold (new_spec_edges[SE_ORIG], true); 1360 1361 /* Scale the frequencies of the blocks dominated by the exit. */ 1362 if (bbs_to_scale && scale_after_exit) 1363 { 1364 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi) 1365 scale_bbs_frequencies_profile_count (new_bbs + i, 1, after_exit_num, 1366 after_exit_den); 1367 } 1368 } 1369 1370 /* Record the first copy in the control flow order if it is not 1371 the original loop (i.e. in case of peeling). */ 1372 if (!first_active_latch) 1373 { 1374 memcpy (first_active, new_bbs, n * sizeof (basic_block)); 1375 first_active_latch = new_bbs[n - 1]; 1376 } 1377 1378 /* Set counts and frequencies. */ 1379 if (flags & DLTHE_FLAG_UPDATE_FREQ) 1380 { 1381 scale_bbs_frequencies (new_bbs, n, scale_act); 1382 scale_act = scale_act * scale_step[j]; 1383 } 1384 } 1385 free (new_bbs); 1386 free (orig_loops); 1387 1388 /* Record the exit edge in the original loop body, and update the frequencies. */ 1389 if (orig && bitmap_bit_p (wont_exit, 0)) 1390 { 1391 if (to_remove) 1392 to_remove->safe_push (orig); 1393 force_edge_cold (orig, true); 1394 1395 /* Scale the frequencies of the blocks dominated by the exit. */ 1396 if (bbs_to_scale && scale_after_exit) 1397 { 1398 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi) 1399 scale_bbs_frequencies_profile_count (bbs + i, 1, after_exit_num, 1400 after_exit_den); 1401 } 1402 } 1403 1404 /* Update the original loop. */ 1405 if (!is_latch) 1406 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src); 1407 if (flags & DLTHE_FLAG_UPDATE_FREQ) 1408 { 1409 scale_bbs_frequencies (bbs, n, scale_main); 1410 free (scale_step); 1411 } 1412 1413 /* Update dominators of outer blocks if affected. */ 1414 for (i = 0; i < n; i++) 1415 { 1416 basic_block dominated, dom_bb; 1417 vec<basic_block> dom_bbs; 1418 unsigned j; 1419 1420 bb = bbs[i]; 1421 bb->aux = 0; 1422 1423 dom_bbs = get_dominated_by (CDI_DOMINATORS, bb); 1424 FOR_EACH_VEC_ELT (dom_bbs, j, dominated) 1425 { 1426 if (flow_bb_inside_loop_p (loop, dominated)) 1427 continue; 1428 dom_bb = nearest_common_dominator ( 1429 CDI_DOMINATORS, first_active[i], first_active_latch); 1430 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb); 1431 } 1432 dom_bbs.release (); 1433 } 1434 free (first_active); 1435 1436 free (bbs); 1437 BITMAP_FREE (bbs_to_scale); 1438 1439 return true; 1440 } 1441 1442 /* A callback for make_forwarder block, to redirect all edges except for 1443 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide 1444 whether to redirect it. */ 1445 1446 edge mfb_kj_edge; 1447 bool 1448 mfb_keep_just (edge e) 1449 { 1450 return e != mfb_kj_edge; 1451 } 1452 1453 /* True when a candidate preheader BLOCK has predecessors from LOOP. */ 1454 1455 static bool 1456 has_preds_from_loop (basic_block block, struct loop *loop) 1457 { 1458 edge e; 1459 edge_iterator ei; 1460 1461 FOR_EACH_EDGE (e, ei, block->preds) 1462 if (e->src->loop_father == loop) 1463 return true; 1464 return false; 1465 } 1466 1467 /* Creates a pre-header for a LOOP. Returns newly created block. Unless 1468 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single 1469 entry; otherwise we also force preheader block to have only one successor. 1470 When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block 1471 to be a fallthru predecessor to the loop header and to have only 1472 predecessors from outside of the loop. 1473 The function also updates dominators. */ 1474 1475 basic_block 1476 create_preheader (struct loop *loop, int flags) 1477 { 1478 edge e; 1479 basic_block dummy; 1480 int nentry = 0; 1481 bool irred = false; 1482 bool latch_edge_was_fallthru; 1483 edge one_succ_pred = NULL, single_entry = NULL; 1484 edge_iterator ei; 1485 1486 FOR_EACH_EDGE (e, ei, loop->header->preds) 1487 { 1488 if (e->src == loop->latch) 1489 continue; 1490 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0; 1491 nentry++; 1492 single_entry = e; 1493 if (single_succ_p (e->src)) 1494 one_succ_pred = e; 1495 } 1496 gcc_assert (nentry); 1497 if (nentry == 1) 1498 { 1499 bool need_forwarder_block = false; 1500 1501 /* We do not allow entry block to be the loop preheader, since we 1502 cannot emit code there. */ 1503 if (single_entry->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)) 1504 need_forwarder_block = true; 1505 else 1506 { 1507 /* If we want simple preheaders, also force the preheader to have 1508 just a single successor. */ 1509 if ((flags & CP_SIMPLE_PREHEADERS) 1510 && !single_succ_p (single_entry->src)) 1511 need_forwarder_block = true; 1512 /* If we want fallthru preheaders, also create forwarder block when 1513 preheader ends with a jump or has predecessors from loop. */ 1514 else if ((flags & CP_FALLTHRU_PREHEADERS) 1515 && (JUMP_P (BB_END (single_entry->src)) 1516 || has_preds_from_loop (single_entry->src, loop))) 1517 need_forwarder_block = true; 1518 } 1519 if (! need_forwarder_block) 1520 return NULL; 1521 } 1522 1523 mfb_kj_edge = loop_latch_edge (loop); 1524 latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0; 1525 if (nentry == 1 1526 && ((flags & CP_FALLTHRU_PREHEADERS) == 0 1527 || (single_entry->flags & EDGE_CROSSING) == 0)) 1528 dummy = split_edge (single_entry); 1529 else 1530 { 1531 edge fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL); 1532 dummy = fallthru->src; 1533 loop->header = fallthru->dest; 1534 } 1535 1536 /* Try to be clever in placing the newly created preheader. The idea is to 1537 avoid breaking any "fallthruness" relationship between blocks. 1538 1539 The preheader was created just before the header and all incoming edges 1540 to the header were redirected to the preheader, except the latch edge. 1541 So the only problematic case is when this latch edge was a fallthru 1542 edge: it is not anymore after the preheader creation so we have broken 1543 the fallthruness. We're therefore going to look for a better place. */ 1544 if (latch_edge_was_fallthru) 1545 { 1546 if (one_succ_pred) 1547 e = one_succ_pred; 1548 else 1549 e = EDGE_PRED (dummy, 0); 1550 1551 move_block_after (dummy, e->src); 1552 } 1553 1554 if (irred) 1555 { 1556 dummy->flags |= BB_IRREDUCIBLE_LOOP; 1557 single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP; 1558 } 1559 1560 if (dump_file) 1561 fprintf (dump_file, "Created preheader block for loop %i\n", 1562 loop->num); 1563 1564 if (flags & CP_FALLTHRU_PREHEADERS) 1565 gcc_assert ((single_succ_edge (dummy)->flags & EDGE_FALLTHRU) 1566 && !JUMP_P (BB_END (dummy))); 1567 1568 return dummy; 1569 } 1570 1571 /* Create preheaders for each loop; for meaning of FLAGS see create_preheader. */ 1572 1573 void 1574 create_preheaders (int flags) 1575 { 1576 struct loop *loop; 1577 1578 if (!current_loops) 1579 return; 1580 1581 FOR_EACH_LOOP (loop, 0) 1582 create_preheader (loop, flags); 1583 loops_state_set (LOOPS_HAVE_PREHEADERS); 1584 } 1585 1586 /* Forces all loop latches to have only single successor. */ 1587 1588 void 1589 force_single_succ_latches (void) 1590 { 1591 struct loop *loop; 1592 edge e; 1593 1594 FOR_EACH_LOOP (loop, 0) 1595 { 1596 if (loop->latch != loop->header && single_succ_p (loop->latch)) 1597 continue; 1598 1599 e = find_edge (loop->latch, loop->header); 1600 gcc_checking_assert (e != NULL); 1601 1602 split_edge (e); 1603 } 1604 loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES); 1605 } 1606 1607 /* This function is called from loop_version. It splits the entry edge 1608 of the loop we want to version, adds the versioning condition, and 1609 adjust the edges to the two versions of the loop appropriately. 1610 e is an incoming edge. Returns the basic block containing the 1611 condition. 1612 1613 --- edge e ---- > [second_head] 1614 1615 Split it and insert new conditional expression and adjust edges. 1616 1617 --- edge e ---> [cond expr] ---> [first_head] 1618 | 1619 +---------> [second_head] 1620 1621 THEN_PROB is the probability of then branch of the condition. 1622 ELSE_PROB is the probability of else branch. Note that they may be both 1623 REG_BR_PROB_BASE when condition is IFN_LOOP_VECTORIZED or 1624 IFN_LOOP_DIST_ALIAS. */ 1625 1626 static basic_block 1627 lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head, 1628 edge e, void *cond_expr, 1629 profile_probability then_prob, 1630 profile_probability else_prob) 1631 { 1632 basic_block new_head = NULL; 1633 edge e1; 1634 1635 gcc_assert (e->dest == second_head); 1636 1637 /* Split edge 'e'. This will create a new basic block, where we can 1638 insert conditional expr. */ 1639 new_head = split_edge (e); 1640 1641 lv_add_condition_to_bb (first_head, second_head, new_head, 1642 cond_expr); 1643 1644 /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there. */ 1645 e = single_succ_edge (new_head); 1646 e1 = make_edge (new_head, first_head, 1647 current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0); 1648 e1->probability = then_prob; 1649 e->probability = else_prob; 1650 1651 set_immediate_dominator (CDI_DOMINATORS, first_head, new_head); 1652 set_immediate_dominator (CDI_DOMINATORS, second_head, new_head); 1653 1654 /* Adjust loop header phi nodes. */ 1655 lv_adjust_loop_header_phi (first_head, second_head, new_head, e1); 1656 1657 return new_head; 1658 } 1659 1660 /* Main entry point for Loop Versioning transformation. 1661 1662 This transformation given a condition and a loop, creates 1663 -if (condition) { loop_copy1 } else { loop_copy2 }, 1664 where loop_copy1 is the loop transformed in one way, and loop_copy2 1665 is the loop transformed in another way (or unchanged). COND_EXPR 1666 may be a run time test for things that were not resolved by static 1667 analysis (overlapping ranges (anti-aliasing), alignment, etc.). 1668 1669 If non-NULL, CONDITION_BB is set to the basic block containing the 1670 condition. 1671 1672 THEN_PROB is the probability of the then edge of the if. THEN_SCALE 1673 is the ratio by that the frequencies in the original loop should 1674 be scaled. ELSE_SCALE is the ratio by that the frequencies in the 1675 new loop should be scaled. 1676 1677 If PLACE_AFTER is true, we place the new loop after LOOP in the 1678 instruction stream, otherwise it is placed before LOOP. */ 1679 1680 struct loop * 1681 loop_version (struct loop *loop, 1682 void *cond_expr, basic_block *condition_bb, 1683 profile_probability then_prob, profile_probability else_prob, 1684 profile_probability then_scale, profile_probability else_scale, 1685 bool place_after) 1686 { 1687 basic_block first_head, second_head; 1688 edge entry, latch_edge, true_edge, false_edge; 1689 int irred_flag; 1690 struct loop *nloop; 1691 basic_block cond_bb; 1692 1693 /* Record entry and latch edges for the loop */ 1694 entry = loop_preheader_edge (loop); 1695 irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP; 1696 entry->flags &= ~EDGE_IRREDUCIBLE_LOOP; 1697 1698 /* Note down head of loop as first_head. */ 1699 first_head = entry->dest; 1700 1701 /* Duplicate loop. */ 1702 if (!cfg_hook_duplicate_loop_to_header_edge (loop, entry, 1, 1703 NULL, NULL, NULL, 0)) 1704 { 1705 entry->flags |= irred_flag; 1706 return NULL; 1707 } 1708 1709 /* After duplication entry edge now points to new loop head block. 1710 Note down new head as second_head. */ 1711 second_head = entry->dest; 1712 1713 /* Split loop entry edge and insert new block with cond expr. */ 1714 cond_bb = lv_adjust_loop_entry_edge (first_head, second_head, 1715 entry, cond_expr, then_prob, else_prob); 1716 if (condition_bb) 1717 *condition_bb = cond_bb; 1718 1719 if (!cond_bb) 1720 { 1721 entry->flags |= irred_flag; 1722 return NULL; 1723 } 1724 1725 latch_edge = single_succ_edge (get_bb_copy (loop->latch)); 1726 1727 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge); 1728 nloop = loopify (latch_edge, 1729 single_pred_edge (get_bb_copy (loop->header)), 1730 cond_bb, true_edge, false_edge, 1731 false /* Do not redirect all edges. */, 1732 then_scale, else_scale); 1733 1734 copy_loop_info (loop, nloop); 1735 1736 /* loopify redirected latch_edge. Update its PENDING_STMTS. */ 1737 lv_flush_pending_stmts (latch_edge); 1738 1739 /* loopify redirected condition_bb's succ edge. Update its PENDING_STMTS. */ 1740 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge); 1741 lv_flush_pending_stmts (false_edge); 1742 /* Adjust irreducible flag. */ 1743 if (irred_flag) 1744 { 1745 cond_bb->flags |= BB_IRREDUCIBLE_LOOP; 1746 loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP; 1747 loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP; 1748 single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP; 1749 } 1750 1751 if (place_after) 1752 { 1753 basic_block *bbs = get_loop_body_in_dom_order (nloop), after; 1754 unsigned i; 1755 1756 after = loop->latch; 1757 1758 for (i = 0; i < nloop->num_nodes; i++) 1759 { 1760 move_block_after (bbs[i], after); 1761 after = bbs[i]; 1762 } 1763 free (bbs); 1764 } 1765 1766 /* At this point condition_bb is loop preheader with two successors, 1767 first_head and second_head. Make sure that loop preheader has only 1768 one successor. */ 1769 split_edge (loop_preheader_edge (loop)); 1770 split_edge (loop_preheader_edge (nloop)); 1771 1772 return nloop; 1773 } 1774