1 /* Natural loop discovery code for GNU compiler. 2 Copyright (C) 2000-2013 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 #include "config.h" 21 #include "system.h" 22 #include "coretypes.h" 23 #include "tm.h" 24 #include "rtl.h" 25 #include "function.h" 26 #include "basic-block.h" 27 #include "cfgloop.h" 28 #include "diagnostic-core.h" 29 #include "flags.h" 30 #include "tree.h" 31 #include "tree-flow.h" 32 #include "pointer-set.h" 33 #include "ggc.h" 34 #include "dumpfile.h" 35 36 static void flow_loops_cfg_dump (FILE *); 37 38 /* Dump loop related CFG information. */ 39 40 static void 41 flow_loops_cfg_dump (FILE *file) 42 { 43 basic_block bb; 44 45 if (!file) 46 return; 47 48 FOR_EACH_BB (bb) 49 { 50 edge succ; 51 edge_iterator ei; 52 53 fprintf (file, ";; %d succs { ", bb->index); 54 FOR_EACH_EDGE (succ, ei, bb->succs) 55 fprintf (file, "%d ", succ->dest->index); 56 fprintf (file, "}\n"); 57 } 58 } 59 60 /* Return nonzero if the nodes of LOOP are a subset of OUTER. */ 61 62 bool 63 flow_loop_nested_p (const struct loop *outer, const struct loop *loop) 64 { 65 unsigned odepth = loop_depth (outer); 66 67 return (loop_depth (loop) > odepth 68 && (*loop->superloops)[odepth] == outer); 69 } 70 71 /* Returns the loop such that LOOP is nested DEPTH (indexed from zero) 72 loops within LOOP. */ 73 74 struct loop * 75 superloop_at_depth (struct loop *loop, unsigned depth) 76 { 77 unsigned ldepth = loop_depth (loop); 78 79 gcc_assert (depth <= ldepth); 80 81 if (depth == ldepth) 82 return loop; 83 84 return (*loop->superloops)[depth]; 85 } 86 87 /* Returns the list of the latch edges of LOOP. */ 88 89 static vec<edge> 90 get_loop_latch_edges (const struct loop *loop) 91 { 92 edge_iterator ei; 93 edge e; 94 vec<edge> ret = vNULL; 95 96 FOR_EACH_EDGE (e, ei, loop->header->preds) 97 { 98 if (dominated_by_p (CDI_DOMINATORS, e->src, loop->header)) 99 ret.safe_push (e); 100 } 101 102 return ret; 103 } 104 105 /* Dump the loop information specified by LOOP to the stream FILE 106 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */ 107 108 void 109 flow_loop_dump (const struct loop *loop, FILE *file, 110 void (*loop_dump_aux) (const struct loop *, FILE *, int), 111 int verbose) 112 { 113 basic_block *bbs; 114 unsigned i; 115 vec<edge> latches; 116 edge e; 117 118 if (! loop || ! loop->header) 119 return; 120 121 fprintf (file, ";;\n;; Loop %d\n", loop->num); 122 123 fprintf (file, ";; header %d, ", loop->header->index); 124 if (loop->latch) 125 fprintf (file, "latch %d\n", loop->latch->index); 126 else 127 { 128 fprintf (file, "multiple latches:"); 129 latches = get_loop_latch_edges (loop); 130 FOR_EACH_VEC_ELT (latches, i, e) 131 fprintf (file, " %d", e->src->index); 132 latches.release (); 133 fprintf (file, "\n"); 134 } 135 136 fprintf (file, ";; depth %d, outer %ld\n", 137 loop_depth (loop), (long) (loop_outer (loop) 138 ? loop_outer (loop)->num : -1)); 139 140 fprintf (file, ";; nodes:"); 141 bbs = get_loop_body (loop); 142 for (i = 0; i < loop->num_nodes; i++) 143 fprintf (file, " %d", bbs[i]->index); 144 free (bbs); 145 fprintf (file, "\n"); 146 147 if (loop_dump_aux) 148 loop_dump_aux (loop, file, verbose); 149 } 150 151 /* Dump the loop information about loops to the stream FILE, 152 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */ 153 154 void 155 flow_loops_dump (FILE *file, void (*loop_dump_aux) (const struct loop *, FILE *, int), int verbose) 156 { 157 loop_iterator li; 158 struct loop *loop; 159 160 if (!current_loops || ! file) 161 return; 162 163 fprintf (file, ";; %d loops found\n", number_of_loops ()); 164 165 FOR_EACH_LOOP (li, loop, LI_INCLUDE_ROOT) 166 { 167 flow_loop_dump (loop, file, loop_dump_aux, verbose); 168 } 169 170 if (verbose) 171 flow_loops_cfg_dump (file); 172 } 173 174 /* Free data allocated for LOOP. */ 175 176 void 177 flow_loop_free (struct loop *loop) 178 { 179 struct loop_exit *exit, *next; 180 181 vec_free (loop->superloops); 182 183 /* Break the list of the loop exit records. They will be freed when the 184 corresponding edge is rescanned or removed, and this avoids 185 accessing the (already released) head of the list stored in the 186 loop structure. */ 187 for (exit = loop->exits->next; exit != loop->exits; exit = next) 188 { 189 next = exit->next; 190 exit->next = exit; 191 exit->prev = exit; 192 } 193 194 ggc_free (loop->exits); 195 ggc_free (loop); 196 } 197 198 /* Free all the memory allocated for LOOPS. */ 199 200 void 201 flow_loops_free (struct loops *loops) 202 { 203 if (loops->larray) 204 { 205 unsigned i; 206 loop_p loop; 207 208 /* Free the loop descriptors. */ 209 FOR_EACH_VEC_SAFE_ELT (loops->larray, i, loop) 210 { 211 if (!loop) 212 continue; 213 214 flow_loop_free (loop); 215 } 216 217 vec_free (loops->larray); 218 } 219 } 220 221 /* Find the nodes contained within the LOOP with header HEADER. 222 Return the number of nodes within the loop. */ 223 224 int 225 flow_loop_nodes_find (basic_block header, struct loop *loop) 226 { 227 vec<basic_block> stack = vNULL; 228 int num_nodes = 1; 229 edge latch; 230 edge_iterator latch_ei; 231 232 header->loop_father = loop; 233 234 FOR_EACH_EDGE (latch, latch_ei, loop->header->preds) 235 { 236 if (latch->src->loop_father == loop 237 || !dominated_by_p (CDI_DOMINATORS, latch->src, loop->header)) 238 continue; 239 240 num_nodes++; 241 stack.safe_push (latch->src); 242 latch->src->loop_father = loop; 243 244 while (!stack.is_empty ()) 245 { 246 basic_block node; 247 edge e; 248 edge_iterator ei; 249 250 node = stack.pop (); 251 252 FOR_EACH_EDGE (e, ei, node->preds) 253 { 254 basic_block ancestor = e->src; 255 256 if (ancestor->loop_father != loop) 257 { 258 ancestor->loop_father = loop; 259 num_nodes++; 260 stack.safe_push (ancestor); 261 } 262 } 263 } 264 } 265 stack.release (); 266 267 return num_nodes; 268 } 269 270 /* Records the vector of superloops of the loop LOOP, whose immediate 271 superloop is FATHER. */ 272 273 static void 274 establish_preds (struct loop *loop, struct loop *father) 275 { 276 loop_p ploop; 277 unsigned depth = loop_depth (father) + 1; 278 unsigned i; 279 280 loop->superloops = 0; 281 vec_alloc (loop->superloops, depth); 282 FOR_EACH_VEC_SAFE_ELT (father->superloops, i, ploop) 283 loop->superloops->quick_push (ploop); 284 loop->superloops->quick_push (father); 285 286 for (ploop = loop->inner; ploop; ploop = ploop->next) 287 establish_preds (ploop, loop); 288 } 289 290 /* Add LOOP to the loop hierarchy tree where FATHER is father of the 291 added loop. If LOOP has some children, take care of that their 292 pred field will be initialized correctly. */ 293 294 void 295 flow_loop_tree_node_add (struct loop *father, struct loop *loop) 296 { 297 loop->next = father->inner; 298 father->inner = loop; 299 300 establish_preds (loop, father); 301 } 302 303 /* Remove LOOP from the loop hierarchy tree. */ 304 305 void 306 flow_loop_tree_node_remove (struct loop *loop) 307 { 308 struct loop *prev, *father; 309 310 father = loop_outer (loop); 311 312 /* Remove loop from the list of sons. */ 313 if (father->inner == loop) 314 father->inner = loop->next; 315 else 316 { 317 for (prev = father->inner; prev->next != loop; prev = prev->next) 318 continue; 319 prev->next = loop->next; 320 } 321 322 loop->superloops = NULL; 323 } 324 325 /* Allocates and returns new loop structure. */ 326 327 struct loop * 328 alloc_loop (void) 329 { 330 struct loop *loop = ggc_alloc_cleared_loop (); 331 332 loop->exits = ggc_alloc_cleared_loop_exit (); 333 loop->exits->next = loop->exits->prev = loop->exits; 334 loop->can_be_parallel = false; 335 336 return loop; 337 } 338 339 /* Initializes loops structure LOOPS, reserving place for NUM_LOOPS loops 340 (including the root of the loop tree). */ 341 342 static void 343 init_loops_structure (struct loops *loops, unsigned num_loops) 344 { 345 struct loop *root; 346 347 memset (loops, 0, sizeof *loops); 348 vec_alloc (loops->larray, num_loops); 349 350 /* Dummy loop containing whole function. */ 351 root = alloc_loop (); 352 root->num_nodes = n_basic_blocks; 353 root->latch = EXIT_BLOCK_PTR; 354 root->header = ENTRY_BLOCK_PTR; 355 ENTRY_BLOCK_PTR->loop_father = root; 356 EXIT_BLOCK_PTR->loop_father = root; 357 358 loops->larray->quick_push (root); 359 loops->tree_root = root; 360 } 361 362 /* Returns whether HEADER is a loop header. */ 363 364 bool 365 bb_loop_header_p (basic_block header) 366 { 367 edge_iterator ei; 368 edge e; 369 370 /* If we have an abnormal predecessor, do not consider the 371 loop (not worth the problems). */ 372 if (bb_has_abnormal_pred (header)) 373 return false; 374 375 /* Look for back edges where a predecessor is dominated 376 by this block. A natural loop has a single entry 377 node (header) that dominates all the nodes in the 378 loop. It also has single back edge to the header 379 from a latch node. */ 380 FOR_EACH_EDGE (e, ei, header->preds) 381 { 382 basic_block latch = e->src; 383 if (latch != ENTRY_BLOCK_PTR 384 && dominated_by_p (CDI_DOMINATORS, latch, header)) 385 return true; 386 } 387 388 return false; 389 } 390 391 /* Find all the natural loops in the function and save in LOOPS structure and 392 recalculate loop_father information in basic block structures. 393 If LOOPS is non-NULL then the loop structures for already recorded loops 394 will be re-used and their number will not change. We assume that no 395 stale loops exist in LOOPS. 396 When LOOPS is NULL it is allocated and re-built from scratch. 397 Return the built LOOPS structure. */ 398 399 struct loops * 400 flow_loops_find (struct loops *loops) 401 { 402 bool from_scratch = (loops == NULL); 403 int *rc_order; 404 int b; 405 unsigned i; 406 vec<loop_p> larray; 407 408 /* Ensure that the dominators are computed. */ 409 calculate_dominance_info (CDI_DOMINATORS); 410 411 if (!loops) 412 { 413 loops = ggc_alloc_cleared_loops (); 414 init_loops_structure (loops, 1); 415 } 416 417 /* Ensure that loop exits were released. */ 418 gcc_assert (loops->exits == NULL); 419 420 /* Taking care of this degenerate case makes the rest of 421 this code simpler. */ 422 if (n_basic_blocks == NUM_FIXED_BLOCKS) 423 return loops; 424 425 /* The root loop node contains all basic-blocks. */ 426 loops->tree_root->num_nodes = n_basic_blocks; 427 428 /* Compute depth first search order of the CFG so that outer 429 natural loops will be found before inner natural loops. */ 430 rc_order = XNEWVEC (int, n_basic_blocks); 431 pre_and_rev_post_order_compute (NULL, rc_order, false); 432 433 /* Gather all loop headers in reverse completion order and allocate 434 loop structures for loops that are not already present. */ 435 larray.create (loops->larray->length()); 436 for (b = 0; b < n_basic_blocks - NUM_FIXED_BLOCKS; b++) 437 { 438 basic_block header = BASIC_BLOCK (rc_order[b]); 439 if (bb_loop_header_p (header)) 440 { 441 struct loop *loop; 442 443 /* The current active loop tree has valid loop-fathers for 444 header blocks. */ 445 if (!from_scratch 446 && header->loop_father->header == header) 447 { 448 loop = header->loop_father; 449 /* If we found an existing loop remove it from the 450 loop tree. It is going to be inserted again 451 below. */ 452 flow_loop_tree_node_remove (loop); 453 } 454 else 455 { 456 /* Otherwise allocate a new loop structure for the loop. */ 457 loop = alloc_loop (); 458 /* ??? We could re-use unused loop slots here. */ 459 loop->num = loops->larray->length (); 460 vec_safe_push (loops->larray, loop); 461 loop->header = header; 462 463 if (!from_scratch 464 && dump_file && (dump_flags & TDF_DETAILS)) 465 fprintf (dump_file, "flow_loops_find: discovered new " 466 "loop %d with header %d\n", 467 loop->num, header->index); 468 } 469 /* Reset latch, we recompute it below. */ 470 loop->latch = NULL; 471 larray.safe_push (loop); 472 } 473 474 /* Make blocks part of the loop root node at start. */ 475 header->loop_father = loops->tree_root; 476 } 477 478 free (rc_order); 479 480 /* Now iterate over the loops found, insert them into the loop tree 481 and assign basic-block ownership. */ 482 for (i = 0; i < larray.length (); ++i) 483 { 484 struct loop *loop = larray[i]; 485 basic_block header = loop->header; 486 edge_iterator ei; 487 edge e; 488 489 flow_loop_tree_node_add (header->loop_father, loop); 490 loop->num_nodes = flow_loop_nodes_find (loop->header, loop); 491 492 /* Look for the latch for this header block, if it has just a 493 single one. */ 494 FOR_EACH_EDGE (e, ei, header->preds) 495 { 496 basic_block latch = e->src; 497 498 if (flow_bb_inside_loop_p (loop, latch)) 499 { 500 if (loop->latch != NULL) 501 { 502 /* More than one latch edge. */ 503 loop->latch = NULL; 504 break; 505 } 506 loop->latch = latch; 507 } 508 } 509 } 510 511 larray.release(); 512 513 return loops; 514 } 515 516 /* Ratio of frequencies of edges so that one of more latch edges is 517 considered to belong to inner loop with same header. */ 518 #define HEAVY_EDGE_RATIO 8 519 520 /* Minimum number of samples for that we apply 521 find_subloop_latch_edge_by_profile heuristics. */ 522 #define HEAVY_EDGE_MIN_SAMPLES 10 523 524 /* If the profile info is available, finds an edge in LATCHES that much more 525 frequent than the remaining edges. Returns such an edge, or NULL if we do 526 not find one. 527 528 We do not use guessed profile here, only the measured one. The guessed 529 profile is usually too flat and unreliable for this (and it is mostly based 530 on the loop structure of the program, so it does not make much sense to 531 derive the loop structure from it). */ 532 533 static edge 534 find_subloop_latch_edge_by_profile (vec<edge> latches) 535 { 536 unsigned i; 537 edge e, me = NULL; 538 gcov_type mcount = 0, tcount = 0; 539 540 FOR_EACH_VEC_ELT (latches, i, e) 541 { 542 if (e->count > mcount) 543 { 544 me = e; 545 mcount = e->count; 546 } 547 tcount += e->count; 548 } 549 550 if (tcount < HEAVY_EDGE_MIN_SAMPLES 551 || (tcount - mcount) * HEAVY_EDGE_RATIO > tcount) 552 return NULL; 553 554 if (dump_file) 555 fprintf (dump_file, 556 "Found latch edge %d -> %d using profile information.\n", 557 me->src->index, me->dest->index); 558 return me; 559 } 560 561 /* Among LATCHES, guesses a latch edge of LOOP corresponding to subloop, based 562 on the structure of induction variables. Returns this edge, or NULL if we 563 do not find any. 564 565 We are quite conservative, and look just for an obvious simple innermost 566 loop (which is the case where we would lose the most performance by not 567 disambiguating the loop). More precisely, we look for the following 568 situation: The source of the chosen latch edge dominates sources of all 569 the other latch edges. Additionally, the header does not contain a phi node 570 such that the argument from the chosen edge is equal to the argument from 571 another edge. */ 572 573 static edge 574 find_subloop_latch_edge_by_ivs (struct loop *loop ATTRIBUTE_UNUSED, vec<edge> latches) 575 { 576 edge e, latch = latches[0]; 577 unsigned i; 578 gimple phi; 579 gimple_stmt_iterator psi; 580 tree lop; 581 basic_block bb; 582 583 /* Find the candidate for the latch edge. */ 584 for (i = 1; latches.iterate (i, &e); i++) 585 if (dominated_by_p (CDI_DOMINATORS, latch->src, e->src)) 586 latch = e; 587 588 /* Verify that it dominates all the latch edges. */ 589 FOR_EACH_VEC_ELT (latches, i, e) 590 if (!dominated_by_p (CDI_DOMINATORS, e->src, latch->src)) 591 return NULL; 592 593 /* Check for a phi node that would deny that this is a latch edge of 594 a subloop. */ 595 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi)) 596 { 597 phi = gsi_stmt (psi); 598 lop = PHI_ARG_DEF_FROM_EDGE (phi, latch); 599 600 /* Ignore the values that are not changed inside the subloop. */ 601 if (TREE_CODE (lop) != SSA_NAME 602 || SSA_NAME_DEF_STMT (lop) == phi) 603 continue; 604 bb = gimple_bb (SSA_NAME_DEF_STMT (lop)); 605 if (!bb || !flow_bb_inside_loop_p (loop, bb)) 606 continue; 607 608 FOR_EACH_VEC_ELT (latches, i, e) 609 if (e != latch 610 && PHI_ARG_DEF_FROM_EDGE (phi, e) == lop) 611 return NULL; 612 } 613 614 if (dump_file) 615 fprintf (dump_file, 616 "Found latch edge %d -> %d using iv structure.\n", 617 latch->src->index, latch->dest->index); 618 return latch; 619 } 620 621 /* If we can determine that one of the several latch edges of LOOP behaves 622 as a latch edge of a separate subloop, returns this edge. Otherwise 623 returns NULL. */ 624 625 static edge 626 find_subloop_latch_edge (struct loop *loop) 627 { 628 vec<edge> latches = get_loop_latch_edges (loop); 629 edge latch = NULL; 630 631 if (latches.length () > 1) 632 { 633 latch = find_subloop_latch_edge_by_profile (latches); 634 635 if (!latch 636 /* We consider ivs to guess the latch edge only in SSA. Perhaps we 637 should use cfghook for this, but it is hard to imagine it would 638 be useful elsewhere. */ 639 && current_ir_type () == IR_GIMPLE) 640 latch = find_subloop_latch_edge_by_ivs (loop, latches); 641 } 642 643 latches.release (); 644 return latch; 645 } 646 647 /* Callback for make_forwarder_block. Returns true if the edge E is marked 648 in the set MFB_REIS_SET. */ 649 650 static struct pointer_set_t *mfb_reis_set; 651 static bool 652 mfb_redirect_edges_in_set (edge e) 653 { 654 return pointer_set_contains (mfb_reis_set, e); 655 } 656 657 /* Creates a subloop of LOOP with latch edge LATCH. */ 658 659 static void 660 form_subloop (struct loop *loop, edge latch) 661 { 662 edge_iterator ei; 663 edge e, new_entry; 664 struct loop *new_loop; 665 666 mfb_reis_set = pointer_set_create (); 667 FOR_EACH_EDGE (e, ei, loop->header->preds) 668 { 669 if (e != latch) 670 pointer_set_insert (mfb_reis_set, e); 671 } 672 new_entry = make_forwarder_block (loop->header, mfb_redirect_edges_in_set, 673 NULL); 674 pointer_set_destroy (mfb_reis_set); 675 676 loop->header = new_entry->src; 677 678 /* Find the blocks and subloops that belong to the new loop, and add it to 679 the appropriate place in the loop tree. */ 680 new_loop = alloc_loop (); 681 new_loop->header = new_entry->dest; 682 new_loop->latch = latch->src; 683 add_loop (new_loop, loop); 684 } 685 686 /* Make all the latch edges of LOOP to go to a single forwarder block -- 687 a new latch of LOOP. */ 688 689 static void 690 merge_latch_edges (struct loop *loop) 691 { 692 vec<edge> latches = get_loop_latch_edges (loop); 693 edge latch, e; 694 unsigned i; 695 696 gcc_assert (latches.length () > 0); 697 698 if (latches.length () == 1) 699 loop->latch = latches[0]->src; 700 else 701 { 702 if (dump_file) 703 fprintf (dump_file, "Merged latch edges of loop %d\n", loop->num); 704 705 mfb_reis_set = pointer_set_create (); 706 FOR_EACH_VEC_ELT (latches, i, e) 707 pointer_set_insert (mfb_reis_set, e); 708 latch = make_forwarder_block (loop->header, mfb_redirect_edges_in_set, 709 NULL); 710 pointer_set_destroy (mfb_reis_set); 711 712 loop->header = latch->dest; 713 loop->latch = latch->src; 714 } 715 716 latches.release (); 717 } 718 719 /* LOOP may have several latch edges. Transform it into (possibly several) 720 loops with single latch edge. */ 721 722 static void 723 disambiguate_multiple_latches (struct loop *loop) 724 { 725 edge e; 726 727 /* We eliminate the multiple latches by splitting the header to the forwarder 728 block F and the rest R, and redirecting the edges. There are two cases: 729 730 1) If there is a latch edge E that corresponds to a subloop (we guess 731 that based on profile -- if it is taken much more often than the 732 remaining edges; and on trees, using the information about induction 733 variables of the loops), we redirect E to R, all the remaining edges to 734 F, then rescan the loops and try again for the outer loop. 735 2) If there is no such edge, we redirect all latch edges to F, and the 736 entry edges to R, thus making F the single latch of the loop. */ 737 738 if (dump_file) 739 fprintf (dump_file, "Disambiguating loop %d with multiple latches\n", 740 loop->num); 741 742 /* During latch merging, we may need to redirect the entry edges to a new 743 block. This would cause problems if the entry edge was the one from the 744 entry block. To avoid having to handle this case specially, split 745 such entry edge. */ 746 e = find_edge (ENTRY_BLOCK_PTR, loop->header); 747 if (e) 748 split_edge (e); 749 750 while (1) 751 { 752 e = find_subloop_latch_edge (loop); 753 if (!e) 754 break; 755 756 form_subloop (loop, e); 757 } 758 759 merge_latch_edges (loop); 760 } 761 762 /* Split loops with multiple latch edges. */ 763 764 void 765 disambiguate_loops_with_multiple_latches (void) 766 { 767 loop_iterator li; 768 struct loop *loop; 769 770 FOR_EACH_LOOP (li, loop, 0) 771 { 772 if (!loop->latch) 773 disambiguate_multiple_latches (loop); 774 } 775 } 776 777 /* Return nonzero if basic block BB belongs to LOOP. */ 778 bool 779 flow_bb_inside_loop_p (const struct loop *loop, const_basic_block bb) 780 { 781 struct loop *source_loop; 782 783 if (bb == ENTRY_BLOCK_PTR || bb == EXIT_BLOCK_PTR) 784 return 0; 785 786 source_loop = bb->loop_father; 787 return loop == source_loop || flow_loop_nested_p (loop, source_loop); 788 } 789 790 /* Enumeration predicate for get_loop_body_with_size. */ 791 static bool 792 glb_enum_p (const_basic_block bb, const void *glb_loop) 793 { 794 const struct loop *const loop = (const struct loop *) glb_loop; 795 return (bb != loop->header 796 && dominated_by_p (CDI_DOMINATORS, bb, loop->header)); 797 } 798 799 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs 800 order against direction of edges from latch. Specially, if 801 header != latch, latch is the 1-st block. LOOP cannot be the fake 802 loop tree root, and its size must be at most MAX_SIZE. The blocks 803 in the LOOP body are stored to BODY, and the size of the LOOP is 804 returned. */ 805 806 unsigned 807 get_loop_body_with_size (const struct loop *loop, basic_block *body, 808 unsigned max_size) 809 { 810 return dfs_enumerate_from (loop->header, 1, glb_enum_p, 811 body, max_size, loop); 812 } 813 814 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs 815 order against direction of edges from latch. Specially, if 816 header != latch, latch is the 1-st block. */ 817 818 basic_block * 819 get_loop_body (const struct loop *loop) 820 { 821 basic_block *body, bb; 822 unsigned tv = 0; 823 824 gcc_assert (loop->num_nodes); 825 826 body = XNEWVEC (basic_block, loop->num_nodes); 827 828 if (loop->latch == EXIT_BLOCK_PTR) 829 { 830 /* There may be blocks unreachable from EXIT_BLOCK, hence we need to 831 special-case the fake loop that contains the whole function. */ 832 gcc_assert (loop->num_nodes == (unsigned) n_basic_blocks); 833 body[tv++] = loop->header; 834 body[tv++] = EXIT_BLOCK_PTR; 835 FOR_EACH_BB (bb) 836 body[tv++] = bb; 837 } 838 else 839 tv = get_loop_body_with_size (loop, body, loop->num_nodes); 840 841 gcc_assert (tv == loop->num_nodes); 842 return body; 843 } 844 845 /* Fills dominance descendants inside LOOP of the basic block BB into 846 array TOVISIT from index *TV. */ 847 848 static void 849 fill_sons_in_loop (const struct loop *loop, basic_block bb, 850 basic_block *tovisit, int *tv) 851 { 852 basic_block son, postpone = NULL; 853 854 tovisit[(*tv)++] = bb; 855 for (son = first_dom_son (CDI_DOMINATORS, bb); 856 son; 857 son = next_dom_son (CDI_DOMINATORS, son)) 858 { 859 if (!flow_bb_inside_loop_p (loop, son)) 860 continue; 861 862 if (dominated_by_p (CDI_DOMINATORS, loop->latch, son)) 863 { 864 postpone = son; 865 continue; 866 } 867 fill_sons_in_loop (loop, son, tovisit, tv); 868 } 869 870 if (postpone) 871 fill_sons_in_loop (loop, postpone, tovisit, tv); 872 } 873 874 /* Gets body of a LOOP (that must be different from the outermost loop) 875 sorted by dominance relation. Additionally, if a basic block s dominates 876 the latch, then only blocks dominated by s are be after it. */ 877 878 basic_block * 879 get_loop_body_in_dom_order (const struct loop *loop) 880 { 881 basic_block *tovisit; 882 int tv; 883 884 gcc_assert (loop->num_nodes); 885 886 tovisit = XNEWVEC (basic_block, loop->num_nodes); 887 888 gcc_assert (loop->latch != EXIT_BLOCK_PTR); 889 890 tv = 0; 891 fill_sons_in_loop (loop, loop->header, tovisit, &tv); 892 893 gcc_assert (tv == (int) loop->num_nodes); 894 895 return tovisit; 896 } 897 898 /* Gets body of a LOOP sorted via provided BB_COMPARATOR. */ 899 900 basic_block * 901 get_loop_body_in_custom_order (const struct loop *loop, 902 int (*bb_comparator) (const void *, const void *)) 903 { 904 basic_block *bbs = get_loop_body (loop); 905 906 qsort (bbs, loop->num_nodes, sizeof (basic_block), bb_comparator); 907 908 return bbs; 909 } 910 911 /* Get body of a LOOP in breadth first sort order. */ 912 913 basic_block * 914 get_loop_body_in_bfs_order (const struct loop *loop) 915 { 916 basic_block *blocks; 917 basic_block bb; 918 bitmap visited; 919 unsigned int i = 0; 920 unsigned int vc = 1; 921 922 gcc_assert (loop->num_nodes); 923 gcc_assert (loop->latch != EXIT_BLOCK_PTR); 924 925 blocks = XNEWVEC (basic_block, loop->num_nodes); 926 visited = BITMAP_ALLOC (NULL); 927 928 bb = loop->header; 929 while (i < loop->num_nodes) 930 { 931 edge e; 932 edge_iterator ei; 933 934 if (bitmap_set_bit (visited, bb->index)) 935 /* This basic block is now visited */ 936 blocks[i++] = bb; 937 938 FOR_EACH_EDGE (e, ei, bb->succs) 939 { 940 if (flow_bb_inside_loop_p (loop, e->dest)) 941 { 942 if (bitmap_set_bit (visited, e->dest->index)) 943 blocks[i++] = e->dest; 944 } 945 } 946 947 gcc_assert (i >= vc); 948 949 bb = blocks[vc++]; 950 } 951 952 BITMAP_FREE (visited); 953 return blocks; 954 } 955 956 /* Hash function for struct loop_exit. */ 957 958 static hashval_t 959 loop_exit_hash (const void *ex) 960 { 961 const struct loop_exit *const exit = (const struct loop_exit *) ex; 962 963 return htab_hash_pointer (exit->e); 964 } 965 966 /* Equality function for struct loop_exit. Compares with edge. */ 967 968 static int 969 loop_exit_eq (const void *ex, const void *e) 970 { 971 const struct loop_exit *const exit = (const struct loop_exit *) ex; 972 973 return exit->e == e; 974 } 975 976 /* Frees the list of loop exit descriptions EX. */ 977 978 static void 979 loop_exit_free (void *ex) 980 { 981 struct loop_exit *exit = (struct loop_exit *) ex, *next; 982 983 for (; exit; exit = next) 984 { 985 next = exit->next_e; 986 987 exit->next->prev = exit->prev; 988 exit->prev->next = exit->next; 989 990 ggc_free (exit); 991 } 992 } 993 994 /* Returns the list of records for E as an exit of a loop. */ 995 996 static struct loop_exit * 997 get_exit_descriptions (edge e) 998 { 999 return (struct loop_exit *) htab_find_with_hash (current_loops->exits, e, 1000 htab_hash_pointer (e)); 1001 } 1002 1003 /* Updates the lists of loop exits in that E appears. 1004 If REMOVED is true, E is being removed, and we 1005 just remove it from the lists of exits. 1006 If NEW_EDGE is true and E is not a loop exit, we 1007 do not try to remove it from loop exit lists. */ 1008 1009 void 1010 rescan_loop_exit (edge e, bool new_edge, bool removed) 1011 { 1012 void **slot; 1013 struct loop_exit *exits = NULL, *exit; 1014 struct loop *aloop, *cloop; 1015 1016 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS)) 1017 return; 1018 1019 if (!removed 1020 && e->src->loop_father != NULL 1021 && e->dest->loop_father != NULL 1022 && !flow_bb_inside_loop_p (e->src->loop_father, e->dest)) 1023 { 1024 cloop = find_common_loop (e->src->loop_father, e->dest->loop_father); 1025 for (aloop = e->src->loop_father; 1026 aloop != cloop; 1027 aloop = loop_outer (aloop)) 1028 { 1029 exit = ggc_alloc_loop_exit (); 1030 exit->e = e; 1031 1032 exit->next = aloop->exits->next; 1033 exit->prev = aloop->exits; 1034 exit->next->prev = exit; 1035 exit->prev->next = exit; 1036 1037 exit->next_e = exits; 1038 exits = exit; 1039 } 1040 } 1041 1042 if (!exits && new_edge) 1043 return; 1044 1045 slot = htab_find_slot_with_hash (current_loops->exits, e, 1046 htab_hash_pointer (e), 1047 exits ? INSERT : NO_INSERT); 1048 if (!slot) 1049 return; 1050 1051 if (exits) 1052 { 1053 if (*slot) 1054 loop_exit_free (*slot); 1055 *slot = exits; 1056 } 1057 else 1058 htab_clear_slot (current_loops->exits, slot); 1059 } 1060 1061 /* For each loop, record list of exit edges, and start maintaining these 1062 lists. */ 1063 1064 void 1065 record_loop_exits (void) 1066 { 1067 basic_block bb; 1068 edge_iterator ei; 1069 edge e; 1070 1071 if (!current_loops) 1072 return; 1073 1074 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS)) 1075 return; 1076 loops_state_set (LOOPS_HAVE_RECORDED_EXITS); 1077 1078 gcc_assert (current_loops->exits == NULL); 1079 current_loops->exits = htab_create_ggc (2 * number_of_loops (), 1080 loop_exit_hash, loop_exit_eq, 1081 loop_exit_free); 1082 1083 FOR_EACH_BB (bb) 1084 { 1085 FOR_EACH_EDGE (e, ei, bb->succs) 1086 { 1087 rescan_loop_exit (e, true, false); 1088 } 1089 } 1090 } 1091 1092 /* Dumps information about the exit in *SLOT to FILE. 1093 Callback for htab_traverse. */ 1094 1095 static int 1096 dump_recorded_exit (void **slot, void *file) 1097 { 1098 struct loop_exit *exit = (struct loop_exit *) *slot; 1099 unsigned n = 0; 1100 edge e = exit->e; 1101 1102 for (; exit != NULL; exit = exit->next_e) 1103 n++; 1104 1105 fprintf ((FILE*) file, "Edge %d->%d exits %u loops\n", 1106 e->src->index, e->dest->index, n); 1107 1108 return 1; 1109 } 1110 1111 /* Dumps the recorded exits of loops to FILE. */ 1112 1113 extern void dump_recorded_exits (FILE *); 1114 void 1115 dump_recorded_exits (FILE *file) 1116 { 1117 if (!current_loops->exits) 1118 return; 1119 htab_traverse (current_loops->exits, dump_recorded_exit, file); 1120 } 1121 1122 /* Releases lists of loop exits. */ 1123 1124 void 1125 release_recorded_exits (void) 1126 { 1127 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS)); 1128 htab_delete (current_loops->exits); 1129 current_loops->exits = NULL; 1130 loops_state_clear (LOOPS_HAVE_RECORDED_EXITS); 1131 } 1132 1133 /* Returns the list of the exit edges of a LOOP. */ 1134 1135 vec<edge> 1136 get_loop_exit_edges (const struct loop *loop) 1137 { 1138 vec<edge> edges = vNULL; 1139 edge e; 1140 unsigned i; 1141 basic_block *body; 1142 edge_iterator ei; 1143 struct loop_exit *exit; 1144 1145 gcc_assert (loop->latch != EXIT_BLOCK_PTR); 1146 1147 /* If we maintain the lists of exits, use them. Otherwise we must 1148 scan the body of the loop. */ 1149 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS)) 1150 { 1151 for (exit = loop->exits->next; exit->e; exit = exit->next) 1152 edges.safe_push (exit->e); 1153 } 1154 else 1155 { 1156 body = get_loop_body (loop); 1157 for (i = 0; i < loop->num_nodes; i++) 1158 FOR_EACH_EDGE (e, ei, body[i]->succs) 1159 { 1160 if (!flow_bb_inside_loop_p (loop, e->dest)) 1161 edges.safe_push (e); 1162 } 1163 free (body); 1164 } 1165 1166 return edges; 1167 } 1168 1169 /* Counts the number of conditional branches inside LOOP. */ 1170 1171 unsigned 1172 num_loop_branches (const struct loop *loop) 1173 { 1174 unsigned i, n; 1175 basic_block * body; 1176 1177 gcc_assert (loop->latch != EXIT_BLOCK_PTR); 1178 1179 body = get_loop_body (loop); 1180 n = 0; 1181 for (i = 0; i < loop->num_nodes; i++) 1182 if (EDGE_COUNT (body[i]->succs) >= 2) 1183 n++; 1184 free (body); 1185 1186 return n; 1187 } 1188 1189 /* Adds basic block BB to LOOP. */ 1190 void 1191 add_bb_to_loop (basic_block bb, struct loop *loop) 1192 { 1193 unsigned i; 1194 loop_p ploop; 1195 edge_iterator ei; 1196 edge e; 1197 1198 gcc_assert (bb->loop_father == NULL); 1199 bb->loop_father = loop; 1200 loop->num_nodes++; 1201 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop) 1202 ploop->num_nodes++; 1203 1204 FOR_EACH_EDGE (e, ei, bb->succs) 1205 { 1206 rescan_loop_exit (e, true, false); 1207 } 1208 FOR_EACH_EDGE (e, ei, bb->preds) 1209 { 1210 rescan_loop_exit (e, true, false); 1211 } 1212 } 1213 1214 /* Remove basic block BB from loops. */ 1215 void 1216 remove_bb_from_loops (basic_block bb) 1217 { 1218 unsigned i; 1219 struct loop *loop = bb->loop_father; 1220 loop_p ploop; 1221 edge_iterator ei; 1222 edge e; 1223 1224 gcc_assert (loop != NULL); 1225 loop->num_nodes--; 1226 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop) 1227 ploop->num_nodes--; 1228 bb->loop_father = NULL; 1229 1230 FOR_EACH_EDGE (e, ei, bb->succs) 1231 { 1232 rescan_loop_exit (e, false, true); 1233 } 1234 FOR_EACH_EDGE (e, ei, bb->preds) 1235 { 1236 rescan_loop_exit (e, false, true); 1237 } 1238 } 1239 1240 /* Finds nearest common ancestor in loop tree for given loops. */ 1241 struct loop * 1242 find_common_loop (struct loop *loop_s, struct loop *loop_d) 1243 { 1244 unsigned sdepth, ddepth; 1245 1246 if (!loop_s) return loop_d; 1247 if (!loop_d) return loop_s; 1248 1249 sdepth = loop_depth (loop_s); 1250 ddepth = loop_depth (loop_d); 1251 1252 if (sdepth < ddepth) 1253 loop_d = (*loop_d->superloops)[sdepth]; 1254 else if (sdepth > ddepth) 1255 loop_s = (*loop_s->superloops)[ddepth]; 1256 1257 while (loop_s != loop_d) 1258 { 1259 loop_s = loop_outer (loop_s); 1260 loop_d = loop_outer (loop_d); 1261 } 1262 return loop_s; 1263 } 1264 1265 /* Removes LOOP from structures and frees its data. */ 1266 1267 void 1268 delete_loop (struct loop *loop) 1269 { 1270 /* Remove the loop from structure. */ 1271 flow_loop_tree_node_remove (loop); 1272 1273 /* Remove loop from loops array. */ 1274 (*current_loops->larray)[loop->num] = NULL; 1275 1276 /* Free loop data. */ 1277 flow_loop_free (loop); 1278 } 1279 1280 /* Cancels the LOOP; it must be innermost one. */ 1281 1282 static void 1283 cancel_loop (struct loop *loop) 1284 { 1285 basic_block *bbs; 1286 unsigned i; 1287 struct loop *outer = loop_outer (loop); 1288 1289 gcc_assert (!loop->inner); 1290 1291 /* Move blocks up one level (they should be removed as soon as possible). */ 1292 bbs = get_loop_body (loop); 1293 for (i = 0; i < loop->num_nodes; i++) 1294 bbs[i]->loop_father = outer; 1295 1296 free (bbs); 1297 delete_loop (loop); 1298 } 1299 1300 /* Cancels LOOP and all its subloops. */ 1301 void 1302 cancel_loop_tree (struct loop *loop) 1303 { 1304 while (loop->inner) 1305 cancel_loop_tree (loop->inner); 1306 cancel_loop (loop); 1307 } 1308 1309 /* Checks that information about loops is correct 1310 -- sizes of loops are all right 1311 -- results of get_loop_body really belong to the loop 1312 -- loop header have just single entry edge and single latch edge 1313 -- loop latches have only single successor that is header of their loop 1314 -- irreducible loops are correctly marked 1315 -- the cached loop depth and loop father of each bb is correct 1316 */ 1317 DEBUG_FUNCTION void 1318 verify_loop_structure (void) 1319 { 1320 unsigned *sizes, i, j; 1321 sbitmap irreds; 1322 basic_block bb; 1323 struct loop *loop; 1324 int err = 0; 1325 edge e; 1326 unsigned num = number_of_loops (); 1327 loop_iterator li; 1328 struct loop_exit *exit, *mexit; 1329 bool dom_available = dom_info_available_p (CDI_DOMINATORS); 1330 sbitmap visited; 1331 1332 /* We need up-to-date dominators, compute or verify them. */ 1333 if (!dom_available) 1334 calculate_dominance_info (CDI_DOMINATORS); 1335 else 1336 verify_dominators (CDI_DOMINATORS); 1337 1338 /* Check sizes. */ 1339 sizes = XCNEWVEC (unsigned, num); 1340 sizes[0] = 2; 1341 1342 FOR_EACH_BB (bb) 1343 for (loop = bb->loop_father; loop; loop = loop_outer (loop)) 1344 sizes[loop->num]++; 1345 1346 FOR_EACH_LOOP (li, loop, LI_INCLUDE_ROOT) 1347 { 1348 i = loop->num; 1349 1350 if (loop->num_nodes != sizes[i]) 1351 { 1352 error ("size of loop %d should be %d, not %d", 1353 i, sizes[i], loop->num_nodes); 1354 err = 1; 1355 } 1356 } 1357 1358 /* Check the headers. */ 1359 FOR_EACH_BB (bb) 1360 if (bb_loop_header_p (bb) 1361 && bb->loop_father->header != bb) 1362 { 1363 error ("loop with header %d not in loop tree", bb->index); 1364 err = 1; 1365 } 1366 1367 /* Check get_loop_body. */ 1368 visited = sbitmap_alloc (last_basic_block); 1369 bitmap_clear (visited); 1370 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST) 1371 { 1372 basic_block *bbs = get_loop_body (loop); 1373 1374 for (j = 0; j < loop->num_nodes; j++) 1375 { 1376 bb = bbs[j]; 1377 1378 if (!flow_bb_inside_loop_p (loop, bb)) 1379 { 1380 error ("bb %d does not belong to loop %d", 1381 bb->index, loop->num); 1382 err = 1; 1383 } 1384 1385 /* Ignore this block if it is in an inner loop. */ 1386 if (bitmap_bit_p (visited, bb->index)) 1387 continue; 1388 bitmap_set_bit (visited, bb->index); 1389 1390 if (bb->loop_father != loop) 1391 { 1392 error ("bb %d has father loop %d, should be loop %d", 1393 bb->index, bb->loop_father->num, loop->num); 1394 err = 1; 1395 } 1396 } 1397 1398 free (bbs); 1399 } 1400 sbitmap_free (visited); 1401 1402 /* Check headers and latches. */ 1403 FOR_EACH_LOOP (li, loop, 0) 1404 { 1405 i = loop->num; 1406 1407 if (!bb_loop_header_p (loop->header)) 1408 { 1409 error ("loop %d%'s header is not a loop header", i); 1410 err = 1; 1411 } 1412 if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS) 1413 && EDGE_COUNT (loop->header->preds) != 2) 1414 { 1415 error ("loop %d%'s header does not have exactly 2 entries", i); 1416 err = 1; 1417 } 1418 if (loop->latch) 1419 { 1420 if (!find_edge (loop->latch, loop->header)) 1421 { 1422 error ("loop %d%'s latch does not have an edge to its header", i); 1423 err = 1; 1424 } 1425 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, loop->header)) 1426 { 1427 error ("loop %d%'s latch is not dominated by its header", i); 1428 err = 1; 1429 } 1430 } 1431 if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES)) 1432 { 1433 if (!single_succ_p (loop->latch)) 1434 { 1435 error ("loop %d%'s latch does not have exactly 1 successor", i); 1436 err = 1; 1437 } 1438 if (single_succ (loop->latch) != loop->header) 1439 { 1440 error ("loop %d%'s latch does not have header as successor", i); 1441 err = 1; 1442 } 1443 if (loop->latch->loop_father != loop) 1444 { 1445 error ("loop %d%'s latch does not belong directly to it", i); 1446 err = 1; 1447 } 1448 } 1449 if (loop->header->loop_father != loop) 1450 { 1451 error ("loop %d%'s header does not belong directly to it", i); 1452 err = 1; 1453 } 1454 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS) 1455 && (loop_latch_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)) 1456 { 1457 error ("loop %d%'s latch is marked as part of irreducible region", i); 1458 err = 1; 1459 } 1460 } 1461 1462 /* Check irreducible loops. */ 1463 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)) 1464 { 1465 /* Record old info. */ 1466 irreds = sbitmap_alloc (last_basic_block); 1467 FOR_EACH_BB (bb) 1468 { 1469 edge_iterator ei; 1470 if (bb->flags & BB_IRREDUCIBLE_LOOP) 1471 bitmap_set_bit (irreds, bb->index); 1472 else 1473 bitmap_clear_bit (irreds, bb->index); 1474 FOR_EACH_EDGE (e, ei, bb->succs) 1475 if (e->flags & EDGE_IRREDUCIBLE_LOOP) 1476 e->flags |= EDGE_ALL_FLAGS + 1; 1477 } 1478 1479 /* Recount it. */ 1480 mark_irreducible_loops (); 1481 1482 /* Compare. */ 1483 FOR_EACH_BB (bb) 1484 { 1485 edge_iterator ei; 1486 1487 if ((bb->flags & BB_IRREDUCIBLE_LOOP) 1488 && !bitmap_bit_p (irreds, bb->index)) 1489 { 1490 error ("basic block %d should be marked irreducible", bb->index); 1491 err = 1; 1492 } 1493 else if (!(bb->flags & BB_IRREDUCIBLE_LOOP) 1494 && bitmap_bit_p (irreds, bb->index)) 1495 { 1496 error ("basic block %d should not be marked irreducible", bb->index); 1497 err = 1; 1498 } 1499 FOR_EACH_EDGE (e, ei, bb->succs) 1500 { 1501 if ((e->flags & EDGE_IRREDUCIBLE_LOOP) 1502 && !(e->flags & (EDGE_ALL_FLAGS + 1))) 1503 { 1504 error ("edge from %d to %d should be marked irreducible", 1505 e->src->index, e->dest->index); 1506 err = 1; 1507 } 1508 else if (!(e->flags & EDGE_IRREDUCIBLE_LOOP) 1509 && (e->flags & (EDGE_ALL_FLAGS + 1))) 1510 { 1511 error ("edge from %d to %d should not be marked irreducible", 1512 e->src->index, e->dest->index); 1513 err = 1; 1514 } 1515 e->flags &= ~(EDGE_ALL_FLAGS + 1); 1516 } 1517 } 1518 free (irreds); 1519 } 1520 1521 /* Check the recorded loop exits. */ 1522 FOR_EACH_LOOP (li, loop, 0) 1523 { 1524 if (!loop->exits || loop->exits->e != NULL) 1525 { 1526 error ("corrupted head of the exits list of loop %d", 1527 loop->num); 1528 err = 1; 1529 } 1530 else 1531 { 1532 /* Check that the list forms a cycle, and all elements except 1533 for the head are nonnull. */ 1534 for (mexit = loop->exits, exit = mexit->next, i = 0; 1535 exit->e && exit != mexit; 1536 exit = exit->next) 1537 { 1538 if (i++ & 1) 1539 mexit = mexit->next; 1540 } 1541 1542 if (exit != loop->exits) 1543 { 1544 error ("corrupted exits list of loop %d", loop->num); 1545 err = 1; 1546 } 1547 } 1548 1549 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS)) 1550 { 1551 if (loop->exits->next != loop->exits) 1552 { 1553 error ("nonempty exits list of loop %d, but exits are not recorded", 1554 loop->num); 1555 err = 1; 1556 } 1557 } 1558 } 1559 1560 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS)) 1561 { 1562 unsigned n_exits = 0, eloops; 1563 1564 memset (sizes, 0, sizeof (unsigned) * num); 1565 FOR_EACH_BB (bb) 1566 { 1567 edge_iterator ei; 1568 if (bb->loop_father == current_loops->tree_root) 1569 continue; 1570 FOR_EACH_EDGE (e, ei, bb->succs) 1571 { 1572 if (flow_bb_inside_loop_p (bb->loop_father, e->dest)) 1573 continue; 1574 1575 n_exits++; 1576 exit = get_exit_descriptions (e); 1577 if (!exit) 1578 { 1579 error ("exit %d->%d not recorded", 1580 e->src->index, e->dest->index); 1581 err = 1; 1582 } 1583 eloops = 0; 1584 for (; exit; exit = exit->next_e) 1585 eloops++; 1586 1587 for (loop = bb->loop_father; 1588 loop != e->dest->loop_father 1589 /* When a loop exit is also an entry edge which 1590 can happen when avoiding CFG manipulations 1591 then the last loop exited is the outer loop 1592 of the loop entered. */ 1593 && loop != loop_outer (e->dest->loop_father); 1594 loop = loop_outer (loop)) 1595 { 1596 eloops--; 1597 sizes[loop->num]++; 1598 } 1599 1600 if (eloops != 0) 1601 { 1602 error ("wrong list of exited loops for edge %d->%d", 1603 e->src->index, e->dest->index); 1604 err = 1; 1605 } 1606 } 1607 } 1608 1609 if (n_exits != htab_elements (current_loops->exits)) 1610 { 1611 error ("too many loop exits recorded"); 1612 err = 1; 1613 } 1614 1615 FOR_EACH_LOOP (li, loop, 0) 1616 { 1617 eloops = 0; 1618 for (exit = loop->exits->next; exit->e; exit = exit->next) 1619 eloops++; 1620 if (eloops != sizes[loop->num]) 1621 { 1622 error ("%d exits recorded for loop %d (having %d exits)", 1623 eloops, loop->num, sizes[loop->num]); 1624 err = 1; 1625 } 1626 } 1627 } 1628 1629 gcc_assert (!err); 1630 1631 free (sizes); 1632 if (!dom_available) 1633 free_dominance_info (CDI_DOMINATORS); 1634 } 1635 1636 /* Returns latch edge of LOOP. */ 1637 edge 1638 loop_latch_edge (const struct loop *loop) 1639 { 1640 return find_edge (loop->latch, loop->header); 1641 } 1642 1643 /* Returns preheader edge of LOOP. */ 1644 edge 1645 loop_preheader_edge (const struct loop *loop) 1646 { 1647 edge e; 1648 edge_iterator ei; 1649 1650 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)); 1651 1652 FOR_EACH_EDGE (e, ei, loop->header->preds) 1653 if (e->src != loop->latch) 1654 break; 1655 1656 return e; 1657 } 1658 1659 /* Returns true if E is an exit of LOOP. */ 1660 1661 bool 1662 loop_exit_edge_p (const struct loop *loop, const_edge e) 1663 { 1664 return (flow_bb_inside_loop_p (loop, e->src) 1665 && !flow_bb_inside_loop_p (loop, e->dest)); 1666 } 1667 1668 /* Returns the single exit edge of LOOP, or NULL if LOOP has either no exit 1669 or more than one exit. If loops do not have the exits recorded, NULL 1670 is returned always. */ 1671 1672 edge 1673 single_exit (const struct loop *loop) 1674 { 1675 struct loop_exit *exit = loop->exits->next; 1676 1677 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS)) 1678 return NULL; 1679 1680 if (exit->e && exit->next == loop->exits) 1681 return exit->e; 1682 else 1683 return NULL; 1684 } 1685 1686 /* Returns true when BB has an incoming edge exiting LOOP. */ 1687 1688 bool 1689 loop_exits_to_bb_p (struct loop *loop, basic_block bb) 1690 { 1691 edge e; 1692 edge_iterator ei; 1693 1694 FOR_EACH_EDGE (e, ei, bb->preds) 1695 if (loop_exit_edge_p (loop, e)) 1696 return true; 1697 1698 return false; 1699 } 1700 1701 /* Returns true when BB has an outgoing edge exiting LOOP. */ 1702 1703 bool 1704 loop_exits_from_bb_p (struct loop *loop, basic_block bb) 1705 { 1706 edge e; 1707 edge_iterator ei; 1708 1709 FOR_EACH_EDGE (e, ei, bb->succs) 1710 if (loop_exit_edge_p (loop, e)) 1711 return true; 1712 1713 return false; 1714 } 1715 1716 /* Return location corresponding to the loop control condition if possible. */ 1717 1718 location_t 1719 get_loop_location (struct loop *loop) 1720 { 1721 rtx insn = NULL; 1722 struct niter_desc *desc = NULL; 1723 edge exit; 1724 1725 /* For a for or while loop, we would like to return the location 1726 of the for or while statement, if possible. To do this, look 1727 for the branch guarding the loop back-edge. */ 1728 1729 /* If this is a simple loop with an in_edge, then the loop control 1730 branch is typically at the end of its source. */ 1731 desc = get_simple_loop_desc (loop); 1732 if (desc->in_edge) 1733 { 1734 FOR_BB_INSNS_REVERSE (desc->in_edge->src, insn) 1735 { 1736 if (INSN_P (insn) && INSN_HAS_LOCATION (insn)) 1737 return INSN_LOCATION (insn); 1738 } 1739 } 1740 /* If loop has a single exit, then the loop control branch 1741 must be at the end of its source. */ 1742 if ((exit = single_exit (loop))) 1743 { 1744 FOR_BB_INSNS_REVERSE (exit->src, insn) 1745 { 1746 if (INSN_P (insn) && INSN_HAS_LOCATION (insn)) 1747 return INSN_LOCATION (insn); 1748 } 1749 } 1750 /* Next check the latch, to see if it is non-empty. */ 1751 FOR_BB_INSNS_REVERSE (loop->latch, insn) 1752 { 1753 if (INSN_P (insn) && INSN_HAS_LOCATION (insn)) 1754 return INSN_LOCATION (insn); 1755 } 1756 /* Finally, if none of the above identifies the loop control branch, 1757 return the first location in the loop header. */ 1758 FOR_BB_INSNS (loop->header, insn) 1759 { 1760 if (INSN_P (insn) && INSN_HAS_LOCATION (insn)) 1761 return INSN_LOCATION (insn); 1762 } 1763 /* If all else fails, simply return the current function location. */ 1764 return DECL_SOURCE_LOCATION (current_function_decl); 1765 } 1766 1767