1 /* Natural loop discovery code for GNU compiler. 2 Copyright (C) 2000-2017 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 #include "config.h" 21 #include "system.h" 22 #include "coretypes.h" 23 #include "backend.h" 24 #include "rtl.h" 25 #include "tree.h" 26 #include "gimple.h" 27 #include "cfghooks.h" 28 #include "gimple-ssa.h" 29 #include "diagnostic-core.h" 30 #include "cfganal.h" 31 #include "cfgloop.h" 32 #include "gimple-iterator.h" 33 #include "dumpfile.h" 34 35 static void flow_loops_cfg_dump (FILE *); 36 37 /* Dump loop related CFG information. */ 38 39 static void 40 flow_loops_cfg_dump (FILE *file) 41 { 42 basic_block bb; 43 44 if (!file) 45 return; 46 47 FOR_EACH_BB_FN (bb, cfun) 48 { 49 edge succ; 50 edge_iterator ei; 51 52 fprintf (file, ";; %d succs { ", bb->index); 53 FOR_EACH_EDGE (succ, ei, bb->succs) 54 fprintf (file, "%d ", succ->dest->index); 55 fprintf (file, "}\n"); 56 } 57 } 58 59 /* Return nonzero if the nodes of LOOP are a subset of OUTER. */ 60 61 bool 62 flow_loop_nested_p (const struct loop *outer, const struct loop *loop) 63 { 64 unsigned odepth = loop_depth (outer); 65 66 return (loop_depth (loop) > odepth 67 && (*loop->superloops)[odepth] == outer); 68 } 69 70 /* Returns the loop such that LOOP is nested DEPTH (indexed from zero) 71 loops within LOOP. */ 72 73 struct loop * 74 superloop_at_depth (struct loop *loop, unsigned depth) 75 { 76 unsigned ldepth = loop_depth (loop); 77 78 gcc_assert (depth <= ldepth); 79 80 if (depth == ldepth) 81 return loop; 82 83 return (*loop->superloops)[depth]; 84 } 85 86 /* Returns the list of the latch edges of LOOP. */ 87 88 static vec<edge> 89 get_loop_latch_edges (const struct loop *loop) 90 { 91 edge_iterator ei; 92 edge e; 93 vec<edge> ret = vNULL; 94 95 FOR_EACH_EDGE (e, ei, loop->header->preds) 96 { 97 if (dominated_by_p (CDI_DOMINATORS, e->src, loop->header)) 98 ret.safe_push (e); 99 } 100 101 return ret; 102 } 103 104 /* Dump the loop information specified by LOOP to the stream FILE 105 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */ 106 107 void 108 flow_loop_dump (const struct loop *loop, FILE *file, 109 void (*loop_dump_aux) (const struct loop *, FILE *, int), 110 int verbose) 111 { 112 basic_block *bbs; 113 unsigned i; 114 vec<edge> latches; 115 edge e; 116 117 if (! loop || ! loop->header) 118 return; 119 120 fprintf (file, ";;\n;; Loop %d\n", loop->num); 121 122 fprintf (file, ";; header %d, ", loop->header->index); 123 if (loop->latch) 124 fprintf (file, "latch %d\n", loop->latch->index); 125 else 126 { 127 fprintf (file, "multiple latches:"); 128 latches = get_loop_latch_edges (loop); 129 FOR_EACH_VEC_ELT (latches, i, e) 130 fprintf (file, " %d", e->src->index); 131 latches.release (); 132 fprintf (file, "\n"); 133 } 134 135 fprintf (file, ";; depth %d, outer %ld\n", 136 loop_depth (loop), (long) (loop_outer (loop) 137 ? loop_outer (loop)->num : -1)); 138 139 if (loop->latch) 140 { 141 bool read_profile_p; 142 gcov_type nit = expected_loop_iterations_unbounded (loop, &read_profile_p); 143 if (read_profile_p && !loop->any_estimate) 144 fprintf (file, ";; profile-based iteration count: %" PRIu64 "\n", 145 (uint64_t) nit); 146 } 147 148 fprintf (file, ";; nodes:"); 149 bbs = get_loop_body (loop); 150 for (i = 0; i < loop->num_nodes; i++) 151 fprintf (file, " %d", bbs[i]->index); 152 free (bbs); 153 fprintf (file, "\n"); 154 155 if (loop_dump_aux) 156 loop_dump_aux (loop, file, verbose); 157 } 158 159 /* Dump the loop information about loops to the stream FILE, 160 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */ 161 162 void 163 flow_loops_dump (FILE *file, void (*loop_dump_aux) (const struct loop *, FILE *, int), int verbose) 164 { 165 struct loop *loop; 166 167 if (!current_loops || ! file) 168 return; 169 170 fprintf (file, ";; %d loops found\n", number_of_loops (cfun)); 171 172 FOR_EACH_LOOP (loop, LI_INCLUDE_ROOT) 173 { 174 flow_loop_dump (loop, file, loop_dump_aux, verbose); 175 } 176 177 if (verbose) 178 flow_loops_cfg_dump (file); 179 } 180 181 /* Free data allocated for LOOP. */ 182 183 void 184 flow_loop_free (struct loop *loop) 185 { 186 struct loop_exit *exit, *next; 187 188 vec_free (loop->superloops); 189 190 /* Break the list of the loop exit records. They will be freed when the 191 corresponding edge is rescanned or removed, and this avoids 192 accessing the (already released) head of the list stored in the 193 loop structure. */ 194 for (exit = loop->exits->next; exit != loop->exits; exit = next) 195 { 196 next = exit->next; 197 exit->next = exit; 198 exit->prev = exit; 199 } 200 201 ggc_free (loop->exits); 202 ggc_free (loop); 203 } 204 205 /* Free all the memory allocated for LOOPS. */ 206 207 void 208 flow_loops_free (struct loops *loops) 209 { 210 if (loops->larray) 211 { 212 unsigned i; 213 loop_p loop; 214 215 /* Free the loop descriptors. */ 216 FOR_EACH_VEC_SAFE_ELT (loops->larray, i, loop) 217 { 218 if (!loop) 219 continue; 220 221 flow_loop_free (loop); 222 } 223 224 vec_free (loops->larray); 225 } 226 } 227 228 /* Find the nodes contained within the LOOP with header HEADER. 229 Return the number of nodes within the loop. */ 230 231 int 232 flow_loop_nodes_find (basic_block header, struct loop *loop) 233 { 234 vec<basic_block> stack = vNULL; 235 int num_nodes = 1; 236 edge latch; 237 edge_iterator latch_ei; 238 239 header->loop_father = loop; 240 241 FOR_EACH_EDGE (latch, latch_ei, loop->header->preds) 242 { 243 if (latch->src->loop_father == loop 244 || !dominated_by_p (CDI_DOMINATORS, latch->src, loop->header)) 245 continue; 246 247 num_nodes++; 248 stack.safe_push (latch->src); 249 latch->src->loop_father = loop; 250 251 while (!stack.is_empty ()) 252 { 253 basic_block node; 254 edge e; 255 edge_iterator ei; 256 257 node = stack.pop (); 258 259 FOR_EACH_EDGE (e, ei, node->preds) 260 { 261 basic_block ancestor = e->src; 262 263 if (ancestor->loop_father != loop) 264 { 265 ancestor->loop_father = loop; 266 num_nodes++; 267 stack.safe_push (ancestor); 268 } 269 } 270 } 271 } 272 stack.release (); 273 274 return num_nodes; 275 } 276 277 /* Records the vector of superloops of the loop LOOP, whose immediate 278 superloop is FATHER. */ 279 280 static void 281 establish_preds (struct loop *loop, struct loop *father) 282 { 283 loop_p ploop; 284 unsigned depth = loop_depth (father) + 1; 285 unsigned i; 286 287 loop->superloops = 0; 288 vec_alloc (loop->superloops, depth); 289 FOR_EACH_VEC_SAFE_ELT (father->superloops, i, ploop) 290 loop->superloops->quick_push (ploop); 291 loop->superloops->quick_push (father); 292 293 for (ploop = loop->inner; ploop; ploop = ploop->next) 294 establish_preds (ploop, loop); 295 } 296 297 /* Add LOOP to the loop hierarchy tree where FATHER is father of the 298 added loop. If LOOP has some children, take care of that their 299 pred field will be initialized correctly. */ 300 301 void 302 flow_loop_tree_node_add (struct loop *father, struct loop *loop) 303 { 304 loop->next = father->inner; 305 father->inner = loop; 306 307 establish_preds (loop, father); 308 } 309 310 /* Remove LOOP from the loop hierarchy tree. */ 311 312 void 313 flow_loop_tree_node_remove (struct loop *loop) 314 { 315 struct loop *prev, *father; 316 317 father = loop_outer (loop); 318 319 /* Remove loop from the list of sons. */ 320 if (father->inner == loop) 321 father->inner = loop->next; 322 else 323 { 324 for (prev = father->inner; prev->next != loop; prev = prev->next) 325 continue; 326 prev->next = loop->next; 327 } 328 329 loop->superloops = NULL; 330 } 331 332 /* Allocates and returns new loop structure. */ 333 334 struct loop * 335 alloc_loop (void) 336 { 337 struct loop *loop = ggc_cleared_alloc<struct loop> (); 338 339 loop->exits = ggc_cleared_alloc<loop_exit> (); 340 loop->exits->next = loop->exits->prev = loop->exits; 341 loop->can_be_parallel = false; 342 loop->constraints = 0; 343 loop->nb_iterations_upper_bound = 0; 344 loop->nb_iterations_likely_upper_bound = 0; 345 loop->nb_iterations_estimate = 0; 346 return loop; 347 } 348 349 /* Initializes loops structure LOOPS, reserving place for NUM_LOOPS loops 350 (including the root of the loop tree). */ 351 352 void 353 init_loops_structure (struct function *fn, 354 struct loops *loops, unsigned num_loops) 355 { 356 struct loop *root; 357 358 memset (loops, 0, sizeof *loops); 359 vec_alloc (loops->larray, num_loops); 360 361 /* Dummy loop containing whole function. */ 362 root = alloc_loop (); 363 root->num_nodes = n_basic_blocks_for_fn (fn); 364 root->latch = EXIT_BLOCK_PTR_FOR_FN (fn); 365 root->header = ENTRY_BLOCK_PTR_FOR_FN (fn); 366 ENTRY_BLOCK_PTR_FOR_FN (fn)->loop_father = root; 367 EXIT_BLOCK_PTR_FOR_FN (fn)->loop_father = root; 368 369 loops->larray->quick_push (root); 370 loops->tree_root = root; 371 } 372 373 /* Returns whether HEADER is a loop header. */ 374 375 bool 376 bb_loop_header_p (basic_block header) 377 { 378 edge_iterator ei; 379 edge e; 380 381 /* If we have an abnormal predecessor, do not consider the 382 loop (not worth the problems). */ 383 if (bb_has_abnormal_pred (header)) 384 return false; 385 386 /* Look for back edges where a predecessor is dominated 387 by this block. A natural loop has a single entry 388 node (header) that dominates all the nodes in the 389 loop. It also has single back edge to the header 390 from a latch node. */ 391 FOR_EACH_EDGE (e, ei, header->preds) 392 { 393 basic_block latch = e->src; 394 if (latch != ENTRY_BLOCK_PTR_FOR_FN (cfun) 395 && dominated_by_p (CDI_DOMINATORS, latch, header)) 396 return true; 397 } 398 399 return false; 400 } 401 402 /* Find all the natural loops in the function and save in LOOPS structure and 403 recalculate loop_father information in basic block structures. 404 If LOOPS is non-NULL then the loop structures for already recorded loops 405 will be re-used and their number will not change. We assume that no 406 stale loops exist in LOOPS. 407 When LOOPS is NULL it is allocated and re-built from scratch. 408 Return the built LOOPS structure. */ 409 410 struct loops * 411 flow_loops_find (struct loops *loops) 412 { 413 bool from_scratch = (loops == NULL); 414 int *rc_order; 415 int b; 416 unsigned i; 417 418 /* Ensure that the dominators are computed. */ 419 calculate_dominance_info (CDI_DOMINATORS); 420 421 if (!loops) 422 { 423 loops = ggc_cleared_alloc<struct loops> (); 424 init_loops_structure (cfun, loops, 1); 425 } 426 427 /* Ensure that loop exits were released. */ 428 gcc_assert (loops->exits == NULL); 429 430 /* Taking care of this degenerate case makes the rest of 431 this code simpler. */ 432 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS) 433 return loops; 434 435 /* The root loop node contains all basic-blocks. */ 436 loops->tree_root->num_nodes = n_basic_blocks_for_fn (cfun); 437 438 /* Compute depth first search order of the CFG so that outer 439 natural loops will be found before inner natural loops. */ 440 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun)); 441 pre_and_rev_post_order_compute (NULL, rc_order, false); 442 443 /* Gather all loop headers in reverse completion order and allocate 444 loop structures for loops that are not already present. */ 445 auto_vec<loop_p> larray (loops->larray->length ()); 446 for (b = 0; b < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; b++) 447 { 448 basic_block header = BASIC_BLOCK_FOR_FN (cfun, rc_order[b]); 449 if (bb_loop_header_p (header)) 450 { 451 struct loop *loop; 452 453 /* The current active loop tree has valid loop-fathers for 454 header blocks. */ 455 if (!from_scratch 456 && header->loop_father->header == header) 457 { 458 loop = header->loop_father; 459 /* If we found an existing loop remove it from the 460 loop tree. It is going to be inserted again 461 below. */ 462 flow_loop_tree_node_remove (loop); 463 } 464 else 465 { 466 /* Otherwise allocate a new loop structure for the loop. */ 467 loop = alloc_loop (); 468 /* ??? We could re-use unused loop slots here. */ 469 loop->num = loops->larray->length (); 470 vec_safe_push (loops->larray, loop); 471 loop->header = header; 472 473 if (!from_scratch 474 && dump_file && (dump_flags & TDF_DETAILS)) 475 fprintf (dump_file, "flow_loops_find: discovered new " 476 "loop %d with header %d\n", 477 loop->num, header->index); 478 } 479 /* Reset latch, we recompute it below. */ 480 loop->latch = NULL; 481 larray.safe_push (loop); 482 } 483 484 /* Make blocks part of the loop root node at start. */ 485 header->loop_father = loops->tree_root; 486 } 487 488 free (rc_order); 489 490 /* Now iterate over the loops found, insert them into the loop tree 491 and assign basic-block ownership. */ 492 for (i = 0; i < larray.length (); ++i) 493 { 494 struct loop *loop = larray[i]; 495 basic_block header = loop->header; 496 edge_iterator ei; 497 edge e; 498 499 flow_loop_tree_node_add (header->loop_father, loop); 500 loop->num_nodes = flow_loop_nodes_find (loop->header, loop); 501 502 /* Look for the latch for this header block, if it has just a 503 single one. */ 504 FOR_EACH_EDGE (e, ei, header->preds) 505 { 506 basic_block latch = e->src; 507 508 if (flow_bb_inside_loop_p (loop, latch)) 509 { 510 if (loop->latch != NULL) 511 { 512 /* More than one latch edge. */ 513 loop->latch = NULL; 514 break; 515 } 516 loop->latch = latch; 517 } 518 } 519 } 520 521 return loops; 522 } 523 524 /* Ratio of frequencies of edges so that one of more latch edges is 525 considered to belong to inner loop with same header. */ 526 #define HEAVY_EDGE_RATIO 8 527 528 /* Minimum number of samples for that we apply 529 find_subloop_latch_edge_by_profile heuristics. */ 530 #define HEAVY_EDGE_MIN_SAMPLES 10 531 532 /* If the profile info is available, finds an edge in LATCHES that much more 533 frequent than the remaining edges. Returns such an edge, or NULL if we do 534 not find one. 535 536 We do not use guessed profile here, only the measured one. The guessed 537 profile is usually too flat and unreliable for this (and it is mostly based 538 on the loop structure of the program, so it does not make much sense to 539 derive the loop structure from it). */ 540 541 static edge 542 find_subloop_latch_edge_by_profile (vec<edge> latches) 543 { 544 unsigned i; 545 edge e, me = NULL; 546 gcov_type mcount = 0, tcount = 0; 547 548 FOR_EACH_VEC_ELT (latches, i, e) 549 { 550 if (e->count > mcount) 551 { 552 me = e; 553 mcount = e->count; 554 } 555 tcount += e->count; 556 } 557 558 if (tcount < HEAVY_EDGE_MIN_SAMPLES 559 || (tcount - mcount) * HEAVY_EDGE_RATIO > tcount) 560 return NULL; 561 562 if (dump_file) 563 fprintf (dump_file, 564 "Found latch edge %d -> %d using profile information.\n", 565 me->src->index, me->dest->index); 566 return me; 567 } 568 569 /* Among LATCHES, guesses a latch edge of LOOP corresponding to subloop, based 570 on the structure of induction variables. Returns this edge, or NULL if we 571 do not find any. 572 573 We are quite conservative, and look just for an obvious simple innermost 574 loop (which is the case where we would lose the most performance by not 575 disambiguating the loop). More precisely, we look for the following 576 situation: The source of the chosen latch edge dominates sources of all 577 the other latch edges. Additionally, the header does not contain a phi node 578 such that the argument from the chosen edge is equal to the argument from 579 another edge. */ 580 581 static edge 582 find_subloop_latch_edge_by_ivs (struct loop *loop ATTRIBUTE_UNUSED, vec<edge> latches) 583 { 584 edge e, latch = latches[0]; 585 unsigned i; 586 gphi *phi; 587 gphi_iterator psi; 588 tree lop; 589 basic_block bb; 590 591 /* Find the candidate for the latch edge. */ 592 for (i = 1; latches.iterate (i, &e); i++) 593 if (dominated_by_p (CDI_DOMINATORS, latch->src, e->src)) 594 latch = e; 595 596 /* Verify that it dominates all the latch edges. */ 597 FOR_EACH_VEC_ELT (latches, i, e) 598 if (!dominated_by_p (CDI_DOMINATORS, e->src, latch->src)) 599 return NULL; 600 601 /* Check for a phi node that would deny that this is a latch edge of 602 a subloop. */ 603 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi)) 604 { 605 phi = psi.phi (); 606 lop = PHI_ARG_DEF_FROM_EDGE (phi, latch); 607 608 /* Ignore the values that are not changed inside the subloop. */ 609 if (TREE_CODE (lop) != SSA_NAME 610 || SSA_NAME_DEF_STMT (lop) == phi) 611 continue; 612 bb = gimple_bb (SSA_NAME_DEF_STMT (lop)); 613 if (!bb || !flow_bb_inside_loop_p (loop, bb)) 614 continue; 615 616 FOR_EACH_VEC_ELT (latches, i, e) 617 if (e != latch 618 && PHI_ARG_DEF_FROM_EDGE (phi, e) == lop) 619 return NULL; 620 } 621 622 if (dump_file) 623 fprintf (dump_file, 624 "Found latch edge %d -> %d using iv structure.\n", 625 latch->src->index, latch->dest->index); 626 return latch; 627 } 628 629 /* If we can determine that one of the several latch edges of LOOP behaves 630 as a latch edge of a separate subloop, returns this edge. Otherwise 631 returns NULL. */ 632 633 static edge 634 find_subloop_latch_edge (struct loop *loop) 635 { 636 vec<edge> latches = get_loop_latch_edges (loop); 637 edge latch = NULL; 638 639 if (latches.length () > 1) 640 { 641 latch = find_subloop_latch_edge_by_profile (latches); 642 643 if (!latch 644 /* We consider ivs to guess the latch edge only in SSA. Perhaps we 645 should use cfghook for this, but it is hard to imagine it would 646 be useful elsewhere. */ 647 && current_ir_type () == IR_GIMPLE) 648 latch = find_subloop_latch_edge_by_ivs (loop, latches); 649 } 650 651 latches.release (); 652 return latch; 653 } 654 655 /* Callback for make_forwarder_block. Returns true if the edge E is marked 656 in the set MFB_REIS_SET. */ 657 658 static hash_set<edge> *mfb_reis_set; 659 static bool 660 mfb_redirect_edges_in_set (edge e) 661 { 662 return mfb_reis_set->contains (e); 663 } 664 665 /* Creates a subloop of LOOP with latch edge LATCH. */ 666 667 static void 668 form_subloop (struct loop *loop, edge latch) 669 { 670 edge_iterator ei; 671 edge e, new_entry; 672 struct loop *new_loop; 673 674 mfb_reis_set = new hash_set<edge>; 675 FOR_EACH_EDGE (e, ei, loop->header->preds) 676 { 677 if (e != latch) 678 mfb_reis_set->add (e); 679 } 680 new_entry = make_forwarder_block (loop->header, mfb_redirect_edges_in_set, 681 NULL); 682 delete mfb_reis_set; 683 684 loop->header = new_entry->src; 685 686 /* Find the blocks and subloops that belong to the new loop, and add it to 687 the appropriate place in the loop tree. */ 688 new_loop = alloc_loop (); 689 new_loop->header = new_entry->dest; 690 new_loop->latch = latch->src; 691 add_loop (new_loop, loop); 692 } 693 694 /* Make all the latch edges of LOOP to go to a single forwarder block -- 695 a new latch of LOOP. */ 696 697 static void 698 merge_latch_edges (struct loop *loop) 699 { 700 vec<edge> latches = get_loop_latch_edges (loop); 701 edge latch, e; 702 unsigned i; 703 704 gcc_assert (latches.length () > 0); 705 706 if (latches.length () == 1) 707 loop->latch = latches[0]->src; 708 else 709 { 710 if (dump_file) 711 fprintf (dump_file, "Merged latch edges of loop %d\n", loop->num); 712 713 mfb_reis_set = new hash_set<edge>; 714 FOR_EACH_VEC_ELT (latches, i, e) 715 mfb_reis_set->add (e); 716 latch = make_forwarder_block (loop->header, mfb_redirect_edges_in_set, 717 NULL); 718 delete mfb_reis_set; 719 720 loop->header = latch->dest; 721 loop->latch = latch->src; 722 } 723 724 latches.release (); 725 } 726 727 /* LOOP may have several latch edges. Transform it into (possibly several) 728 loops with single latch edge. */ 729 730 static void 731 disambiguate_multiple_latches (struct loop *loop) 732 { 733 edge e; 734 735 /* We eliminate the multiple latches by splitting the header to the forwarder 736 block F and the rest R, and redirecting the edges. There are two cases: 737 738 1) If there is a latch edge E that corresponds to a subloop (we guess 739 that based on profile -- if it is taken much more often than the 740 remaining edges; and on trees, using the information about induction 741 variables of the loops), we redirect E to R, all the remaining edges to 742 F, then rescan the loops and try again for the outer loop. 743 2) If there is no such edge, we redirect all latch edges to F, and the 744 entry edges to R, thus making F the single latch of the loop. */ 745 746 if (dump_file) 747 fprintf (dump_file, "Disambiguating loop %d with multiple latches\n", 748 loop->num); 749 750 /* During latch merging, we may need to redirect the entry edges to a new 751 block. This would cause problems if the entry edge was the one from the 752 entry block. To avoid having to handle this case specially, split 753 such entry edge. */ 754 e = find_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), loop->header); 755 if (e) 756 split_edge (e); 757 758 while (1) 759 { 760 e = find_subloop_latch_edge (loop); 761 if (!e) 762 break; 763 764 form_subloop (loop, e); 765 } 766 767 merge_latch_edges (loop); 768 } 769 770 /* Split loops with multiple latch edges. */ 771 772 void 773 disambiguate_loops_with_multiple_latches (void) 774 { 775 struct loop *loop; 776 777 FOR_EACH_LOOP (loop, 0) 778 { 779 if (!loop->latch) 780 disambiguate_multiple_latches (loop); 781 } 782 } 783 784 /* Return nonzero if basic block BB belongs to LOOP. */ 785 bool 786 flow_bb_inside_loop_p (const struct loop *loop, const_basic_block bb) 787 { 788 struct loop *source_loop; 789 790 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun) 791 || bb == EXIT_BLOCK_PTR_FOR_FN (cfun)) 792 return 0; 793 794 source_loop = bb->loop_father; 795 return loop == source_loop || flow_loop_nested_p (loop, source_loop); 796 } 797 798 /* Enumeration predicate for get_loop_body_with_size. */ 799 static bool 800 glb_enum_p (const_basic_block bb, const void *glb_loop) 801 { 802 const struct loop *const loop = (const struct loop *) glb_loop; 803 return (bb != loop->header 804 && dominated_by_p (CDI_DOMINATORS, bb, loop->header)); 805 } 806 807 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs 808 order against direction of edges from latch. Specially, if 809 header != latch, latch is the 1-st block. LOOP cannot be the fake 810 loop tree root, and its size must be at most MAX_SIZE. The blocks 811 in the LOOP body are stored to BODY, and the size of the LOOP is 812 returned. */ 813 814 unsigned 815 get_loop_body_with_size (const struct loop *loop, basic_block *body, 816 unsigned max_size) 817 { 818 return dfs_enumerate_from (loop->header, 1, glb_enum_p, 819 body, max_size, loop); 820 } 821 822 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs 823 order against direction of edges from latch. Specially, if 824 header != latch, latch is the 1-st block. */ 825 826 basic_block * 827 get_loop_body (const struct loop *loop) 828 { 829 basic_block *body, bb; 830 unsigned tv = 0; 831 832 gcc_assert (loop->num_nodes); 833 834 body = XNEWVEC (basic_block, loop->num_nodes); 835 836 if (loop->latch == EXIT_BLOCK_PTR_FOR_FN (cfun)) 837 { 838 /* There may be blocks unreachable from EXIT_BLOCK, hence we need to 839 special-case the fake loop that contains the whole function. */ 840 gcc_assert (loop->num_nodes == (unsigned) n_basic_blocks_for_fn (cfun)); 841 body[tv++] = loop->header; 842 body[tv++] = EXIT_BLOCK_PTR_FOR_FN (cfun); 843 FOR_EACH_BB_FN (bb, cfun) 844 body[tv++] = bb; 845 } 846 else 847 tv = get_loop_body_with_size (loop, body, loop->num_nodes); 848 849 gcc_assert (tv == loop->num_nodes); 850 return body; 851 } 852 853 /* Fills dominance descendants inside LOOP of the basic block BB into 854 array TOVISIT from index *TV. */ 855 856 static void 857 fill_sons_in_loop (const struct loop *loop, basic_block bb, 858 basic_block *tovisit, int *tv) 859 { 860 basic_block son, postpone = NULL; 861 862 tovisit[(*tv)++] = bb; 863 for (son = first_dom_son (CDI_DOMINATORS, bb); 864 son; 865 son = next_dom_son (CDI_DOMINATORS, son)) 866 { 867 if (!flow_bb_inside_loop_p (loop, son)) 868 continue; 869 870 if (dominated_by_p (CDI_DOMINATORS, loop->latch, son)) 871 { 872 postpone = son; 873 continue; 874 } 875 fill_sons_in_loop (loop, son, tovisit, tv); 876 } 877 878 if (postpone) 879 fill_sons_in_loop (loop, postpone, tovisit, tv); 880 } 881 882 /* Gets body of a LOOP (that must be different from the outermost loop) 883 sorted by dominance relation. Additionally, if a basic block s dominates 884 the latch, then only blocks dominated by s are be after it. */ 885 886 basic_block * 887 get_loop_body_in_dom_order (const struct loop *loop) 888 { 889 basic_block *tovisit; 890 int tv; 891 892 gcc_assert (loop->num_nodes); 893 894 tovisit = XNEWVEC (basic_block, loop->num_nodes); 895 896 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun)); 897 898 tv = 0; 899 fill_sons_in_loop (loop, loop->header, tovisit, &tv); 900 901 gcc_assert (tv == (int) loop->num_nodes); 902 903 return tovisit; 904 } 905 906 /* Gets body of a LOOP sorted via provided BB_COMPARATOR. */ 907 908 basic_block * 909 get_loop_body_in_custom_order (const struct loop *loop, 910 int (*bb_comparator) (const void *, const void *)) 911 { 912 basic_block *bbs = get_loop_body (loop); 913 914 qsort (bbs, loop->num_nodes, sizeof (basic_block), bb_comparator); 915 916 return bbs; 917 } 918 919 /* Get body of a LOOP in breadth first sort order. */ 920 921 basic_block * 922 get_loop_body_in_bfs_order (const struct loop *loop) 923 { 924 basic_block *blocks; 925 basic_block bb; 926 bitmap visited; 927 unsigned int i = 1; 928 unsigned int vc = 0; 929 930 gcc_assert (loop->num_nodes); 931 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun)); 932 933 blocks = XNEWVEC (basic_block, loop->num_nodes); 934 visited = BITMAP_ALLOC (NULL); 935 blocks[0] = loop->header; 936 bitmap_set_bit (visited, loop->header->index); 937 while (i < loop->num_nodes) 938 { 939 edge e; 940 edge_iterator ei; 941 gcc_assert (i > vc); 942 bb = blocks[vc++]; 943 944 FOR_EACH_EDGE (e, ei, bb->succs) 945 { 946 if (flow_bb_inside_loop_p (loop, e->dest)) 947 { 948 /* This bb is now visited. */ 949 if (bitmap_set_bit (visited, e->dest->index)) 950 blocks[i++] = e->dest; 951 } 952 } 953 } 954 955 BITMAP_FREE (visited); 956 return blocks; 957 } 958 959 /* Hash function for struct loop_exit. */ 960 961 hashval_t 962 loop_exit_hasher::hash (loop_exit *exit) 963 { 964 return htab_hash_pointer (exit->e); 965 } 966 967 /* Equality function for struct loop_exit. Compares with edge. */ 968 969 bool 970 loop_exit_hasher::equal (loop_exit *exit, edge e) 971 { 972 return exit->e == e; 973 } 974 975 /* Frees the list of loop exit descriptions EX. */ 976 977 void 978 loop_exit_hasher::remove (loop_exit *exit) 979 { 980 loop_exit *next; 981 for (; exit; exit = next) 982 { 983 next = exit->next_e; 984 985 exit->next->prev = exit->prev; 986 exit->prev->next = exit->next; 987 988 ggc_free (exit); 989 } 990 } 991 992 /* Returns the list of records for E as an exit of a loop. */ 993 994 static struct loop_exit * 995 get_exit_descriptions (edge e) 996 { 997 return current_loops->exits->find_with_hash (e, htab_hash_pointer (e)); 998 } 999 1000 /* Updates the lists of loop exits in that E appears. 1001 If REMOVED is true, E is being removed, and we 1002 just remove it from the lists of exits. 1003 If NEW_EDGE is true and E is not a loop exit, we 1004 do not try to remove it from loop exit lists. */ 1005 1006 void 1007 rescan_loop_exit (edge e, bool new_edge, bool removed) 1008 { 1009 struct loop_exit *exits = NULL, *exit; 1010 struct loop *aloop, *cloop; 1011 1012 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS)) 1013 return; 1014 1015 if (!removed 1016 && e->src->loop_father != NULL 1017 && e->dest->loop_father != NULL 1018 && !flow_bb_inside_loop_p (e->src->loop_father, e->dest)) 1019 { 1020 cloop = find_common_loop (e->src->loop_father, e->dest->loop_father); 1021 for (aloop = e->src->loop_father; 1022 aloop != cloop; 1023 aloop = loop_outer (aloop)) 1024 { 1025 exit = ggc_alloc<loop_exit> (); 1026 exit->e = e; 1027 1028 exit->next = aloop->exits->next; 1029 exit->prev = aloop->exits; 1030 exit->next->prev = exit; 1031 exit->prev->next = exit; 1032 1033 exit->next_e = exits; 1034 exits = exit; 1035 } 1036 } 1037 1038 if (!exits && new_edge) 1039 return; 1040 1041 loop_exit **slot 1042 = current_loops->exits->find_slot_with_hash (e, htab_hash_pointer (e), 1043 exits ? INSERT : NO_INSERT); 1044 if (!slot) 1045 return; 1046 1047 if (exits) 1048 { 1049 if (*slot) 1050 loop_exit_hasher::remove (*slot); 1051 *slot = exits; 1052 } 1053 else 1054 current_loops->exits->clear_slot (slot); 1055 } 1056 1057 /* For each loop, record list of exit edges, and start maintaining these 1058 lists. */ 1059 1060 void 1061 record_loop_exits (void) 1062 { 1063 basic_block bb; 1064 edge_iterator ei; 1065 edge e; 1066 1067 if (!current_loops) 1068 return; 1069 1070 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS)) 1071 return; 1072 loops_state_set (LOOPS_HAVE_RECORDED_EXITS); 1073 1074 gcc_assert (current_loops->exits == NULL); 1075 current_loops->exits 1076 = hash_table<loop_exit_hasher>::create_ggc (2 * number_of_loops (cfun)); 1077 1078 FOR_EACH_BB_FN (bb, cfun) 1079 { 1080 FOR_EACH_EDGE (e, ei, bb->succs) 1081 { 1082 rescan_loop_exit (e, true, false); 1083 } 1084 } 1085 } 1086 1087 /* Dumps information about the exit in *SLOT to FILE. 1088 Callback for htab_traverse. */ 1089 1090 int 1091 dump_recorded_exit (loop_exit **slot, FILE *file) 1092 { 1093 struct loop_exit *exit = *slot; 1094 unsigned n = 0; 1095 edge e = exit->e; 1096 1097 for (; exit != NULL; exit = exit->next_e) 1098 n++; 1099 1100 fprintf (file, "Edge %d->%d exits %u loops\n", 1101 e->src->index, e->dest->index, n); 1102 1103 return 1; 1104 } 1105 1106 /* Dumps the recorded exits of loops to FILE. */ 1107 1108 extern void dump_recorded_exits (FILE *); 1109 void 1110 dump_recorded_exits (FILE *file) 1111 { 1112 if (!current_loops->exits) 1113 return; 1114 current_loops->exits->traverse<FILE *, dump_recorded_exit> (file); 1115 } 1116 1117 /* Releases lists of loop exits. */ 1118 1119 void 1120 release_recorded_exits (function *fn) 1121 { 1122 gcc_assert (loops_state_satisfies_p (fn, LOOPS_HAVE_RECORDED_EXITS)); 1123 loops_for_fn (fn)->exits->empty (); 1124 loops_for_fn (fn)->exits = NULL; 1125 loops_state_clear (fn, LOOPS_HAVE_RECORDED_EXITS); 1126 } 1127 1128 /* Returns the list of the exit edges of a LOOP. */ 1129 1130 vec<edge> 1131 get_loop_exit_edges (const struct loop *loop) 1132 { 1133 vec<edge> edges = vNULL; 1134 edge e; 1135 unsigned i; 1136 basic_block *body; 1137 edge_iterator ei; 1138 struct loop_exit *exit; 1139 1140 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun)); 1141 1142 /* If we maintain the lists of exits, use them. Otherwise we must 1143 scan the body of the loop. */ 1144 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS)) 1145 { 1146 for (exit = loop->exits->next; exit->e; exit = exit->next) 1147 edges.safe_push (exit->e); 1148 } 1149 else 1150 { 1151 body = get_loop_body (loop); 1152 for (i = 0; i < loop->num_nodes; i++) 1153 FOR_EACH_EDGE (e, ei, body[i]->succs) 1154 { 1155 if (!flow_bb_inside_loop_p (loop, e->dest)) 1156 edges.safe_push (e); 1157 } 1158 free (body); 1159 } 1160 1161 return edges; 1162 } 1163 1164 /* Counts the number of conditional branches inside LOOP. */ 1165 1166 unsigned 1167 num_loop_branches (const struct loop *loop) 1168 { 1169 unsigned i, n; 1170 basic_block * body; 1171 1172 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun)); 1173 1174 body = get_loop_body (loop); 1175 n = 0; 1176 for (i = 0; i < loop->num_nodes; i++) 1177 if (EDGE_COUNT (body[i]->succs) >= 2) 1178 n++; 1179 free (body); 1180 1181 return n; 1182 } 1183 1184 /* Adds basic block BB to LOOP. */ 1185 void 1186 add_bb_to_loop (basic_block bb, struct loop *loop) 1187 { 1188 unsigned i; 1189 loop_p ploop; 1190 edge_iterator ei; 1191 edge e; 1192 1193 gcc_assert (bb->loop_father == NULL); 1194 bb->loop_father = loop; 1195 loop->num_nodes++; 1196 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop) 1197 ploop->num_nodes++; 1198 1199 FOR_EACH_EDGE (e, ei, bb->succs) 1200 { 1201 rescan_loop_exit (e, true, false); 1202 } 1203 FOR_EACH_EDGE (e, ei, bb->preds) 1204 { 1205 rescan_loop_exit (e, true, false); 1206 } 1207 } 1208 1209 /* Remove basic block BB from loops. */ 1210 void 1211 remove_bb_from_loops (basic_block bb) 1212 { 1213 unsigned i; 1214 struct loop *loop = bb->loop_father; 1215 loop_p ploop; 1216 edge_iterator ei; 1217 edge e; 1218 1219 gcc_assert (loop != NULL); 1220 loop->num_nodes--; 1221 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop) 1222 ploop->num_nodes--; 1223 bb->loop_father = NULL; 1224 1225 FOR_EACH_EDGE (e, ei, bb->succs) 1226 { 1227 rescan_loop_exit (e, false, true); 1228 } 1229 FOR_EACH_EDGE (e, ei, bb->preds) 1230 { 1231 rescan_loop_exit (e, false, true); 1232 } 1233 } 1234 1235 /* Finds nearest common ancestor in loop tree for given loops. */ 1236 struct loop * 1237 find_common_loop (struct loop *loop_s, struct loop *loop_d) 1238 { 1239 unsigned sdepth, ddepth; 1240 1241 if (!loop_s) return loop_d; 1242 if (!loop_d) return loop_s; 1243 1244 sdepth = loop_depth (loop_s); 1245 ddepth = loop_depth (loop_d); 1246 1247 if (sdepth < ddepth) 1248 loop_d = (*loop_d->superloops)[sdepth]; 1249 else if (sdepth > ddepth) 1250 loop_s = (*loop_s->superloops)[ddepth]; 1251 1252 while (loop_s != loop_d) 1253 { 1254 loop_s = loop_outer (loop_s); 1255 loop_d = loop_outer (loop_d); 1256 } 1257 return loop_s; 1258 } 1259 1260 /* Removes LOOP from structures and frees its data. */ 1261 1262 void 1263 delete_loop (struct loop *loop) 1264 { 1265 /* Remove the loop from structure. */ 1266 flow_loop_tree_node_remove (loop); 1267 1268 /* Remove loop from loops array. */ 1269 (*current_loops->larray)[loop->num] = NULL; 1270 1271 /* Free loop data. */ 1272 flow_loop_free (loop); 1273 } 1274 1275 /* Cancels the LOOP; it must be innermost one. */ 1276 1277 static void 1278 cancel_loop (struct loop *loop) 1279 { 1280 basic_block *bbs; 1281 unsigned i; 1282 struct loop *outer = loop_outer (loop); 1283 1284 gcc_assert (!loop->inner); 1285 1286 /* Move blocks up one level (they should be removed as soon as possible). */ 1287 bbs = get_loop_body (loop); 1288 for (i = 0; i < loop->num_nodes; i++) 1289 bbs[i]->loop_father = outer; 1290 1291 free (bbs); 1292 delete_loop (loop); 1293 } 1294 1295 /* Cancels LOOP and all its subloops. */ 1296 void 1297 cancel_loop_tree (struct loop *loop) 1298 { 1299 while (loop->inner) 1300 cancel_loop_tree (loop->inner); 1301 cancel_loop (loop); 1302 } 1303 1304 /* Checks that information about loops is correct 1305 -- sizes of loops are all right 1306 -- results of get_loop_body really belong to the loop 1307 -- loop header have just single entry edge and single latch edge 1308 -- loop latches have only single successor that is header of their loop 1309 -- irreducible loops are correctly marked 1310 -- the cached loop depth and loop father of each bb is correct 1311 */ 1312 DEBUG_FUNCTION void 1313 verify_loop_structure (void) 1314 { 1315 unsigned *sizes, i, j; 1316 basic_block bb, *bbs; 1317 struct loop *loop; 1318 int err = 0; 1319 edge e; 1320 unsigned num = number_of_loops (cfun); 1321 struct loop_exit *exit, *mexit; 1322 bool dom_available = dom_info_available_p (CDI_DOMINATORS); 1323 1324 if (loops_state_satisfies_p (LOOPS_NEED_FIXUP)) 1325 { 1326 error ("loop verification on loop tree that needs fixup"); 1327 err = 1; 1328 } 1329 1330 /* We need up-to-date dominators, compute or verify them. */ 1331 if (!dom_available) 1332 calculate_dominance_info (CDI_DOMINATORS); 1333 else 1334 verify_dominators (CDI_DOMINATORS); 1335 1336 /* Check the loop tree root. */ 1337 if (current_loops->tree_root->header != ENTRY_BLOCK_PTR_FOR_FN (cfun) 1338 || current_loops->tree_root->latch != EXIT_BLOCK_PTR_FOR_FN (cfun) 1339 || (current_loops->tree_root->num_nodes 1340 != (unsigned) n_basic_blocks_for_fn (cfun))) 1341 { 1342 error ("corrupt loop tree root"); 1343 err = 1; 1344 } 1345 1346 /* Check the headers. */ 1347 FOR_EACH_BB_FN (bb, cfun) 1348 if (bb_loop_header_p (bb)) 1349 { 1350 if (bb->loop_father->header == NULL) 1351 { 1352 error ("loop with header %d marked for removal", bb->index); 1353 err = 1; 1354 } 1355 else if (bb->loop_father->header != bb) 1356 { 1357 error ("loop with header %d not in loop tree", bb->index); 1358 err = 1; 1359 } 1360 } 1361 else if (bb->loop_father->header == bb) 1362 { 1363 error ("non-loop with header %d not marked for removal", bb->index); 1364 err = 1; 1365 } 1366 1367 /* Check the recorded loop father and sizes of loops. */ 1368 auto_sbitmap visited (last_basic_block_for_fn (cfun)); 1369 bitmap_clear (visited); 1370 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun)); 1371 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST) 1372 { 1373 unsigned n; 1374 1375 if (loop->header == NULL) 1376 { 1377 error ("removed loop %d in loop tree", loop->num); 1378 err = 1; 1379 continue; 1380 } 1381 1382 n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun)); 1383 if (loop->num_nodes != n) 1384 { 1385 error ("size of loop %d should be %d, not %d", 1386 loop->num, n, loop->num_nodes); 1387 err = 1; 1388 } 1389 1390 for (j = 0; j < n; j++) 1391 { 1392 bb = bbs[j]; 1393 1394 if (!flow_bb_inside_loop_p (loop, bb)) 1395 { 1396 error ("bb %d does not belong to loop %d", 1397 bb->index, loop->num); 1398 err = 1; 1399 } 1400 1401 /* Ignore this block if it is in an inner loop. */ 1402 if (bitmap_bit_p (visited, bb->index)) 1403 continue; 1404 bitmap_set_bit (visited, bb->index); 1405 1406 if (bb->loop_father != loop) 1407 { 1408 error ("bb %d has father loop %d, should be loop %d", 1409 bb->index, bb->loop_father->num, loop->num); 1410 err = 1; 1411 } 1412 } 1413 } 1414 free (bbs); 1415 1416 /* Check headers and latches. */ 1417 FOR_EACH_LOOP (loop, 0) 1418 { 1419 i = loop->num; 1420 if (loop->header == NULL) 1421 continue; 1422 if (!bb_loop_header_p (loop->header)) 1423 { 1424 error ("loop %d%'s header is not a loop header", i); 1425 err = 1; 1426 } 1427 if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS) 1428 && EDGE_COUNT (loop->header->preds) != 2) 1429 { 1430 error ("loop %d%'s header does not have exactly 2 entries", i); 1431 err = 1; 1432 } 1433 if (loop->latch) 1434 { 1435 if (!find_edge (loop->latch, loop->header)) 1436 { 1437 error ("loop %d%'s latch does not have an edge to its header", i); 1438 err = 1; 1439 } 1440 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, loop->header)) 1441 { 1442 error ("loop %d%'s latch is not dominated by its header", i); 1443 err = 1; 1444 } 1445 } 1446 if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES)) 1447 { 1448 if (!single_succ_p (loop->latch)) 1449 { 1450 error ("loop %d%'s latch does not have exactly 1 successor", i); 1451 err = 1; 1452 } 1453 if (single_succ (loop->latch) != loop->header) 1454 { 1455 error ("loop %d%'s latch does not have header as successor", i); 1456 err = 1; 1457 } 1458 if (loop->latch->loop_father != loop) 1459 { 1460 error ("loop %d%'s latch does not belong directly to it", i); 1461 err = 1; 1462 } 1463 } 1464 if (loop->header->loop_father != loop) 1465 { 1466 error ("loop %d%'s header does not belong directly to it", i); 1467 err = 1; 1468 } 1469 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS) 1470 && (loop_latch_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)) 1471 { 1472 error ("loop %d%'s latch is marked as part of irreducible region", i); 1473 err = 1; 1474 } 1475 } 1476 1477 /* Check irreducible loops. */ 1478 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)) 1479 { 1480 /* Record old info. */ 1481 auto_sbitmap irreds (last_basic_block_for_fn (cfun)); 1482 FOR_EACH_BB_FN (bb, cfun) 1483 { 1484 edge_iterator ei; 1485 if (bb->flags & BB_IRREDUCIBLE_LOOP) 1486 bitmap_set_bit (irreds, bb->index); 1487 else 1488 bitmap_clear_bit (irreds, bb->index); 1489 FOR_EACH_EDGE (e, ei, bb->succs) 1490 if (e->flags & EDGE_IRREDUCIBLE_LOOP) 1491 e->flags |= EDGE_ALL_FLAGS + 1; 1492 } 1493 1494 /* Recount it. */ 1495 mark_irreducible_loops (); 1496 1497 /* Compare. */ 1498 FOR_EACH_BB_FN (bb, cfun) 1499 { 1500 edge_iterator ei; 1501 1502 if ((bb->flags & BB_IRREDUCIBLE_LOOP) 1503 && !bitmap_bit_p (irreds, bb->index)) 1504 { 1505 error ("basic block %d should be marked irreducible", bb->index); 1506 err = 1; 1507 } 1508 else if (!(bb->flags & BB_IRREDUCIBLE_LOOP) 1509 && bitmap_bit_p (irreds, bb->index)) 1510 { 1511 error ("basic block %d should not be marked irreducible", bb->index); 1512 err = 1; 1513 } 1514 FOR_EACH_EDGE (e, ei, bb->succs) 1515 { 1516 if ((e->flags & EDGE_IRREDUCIBLE_LOOP) 1517 && !(e->flags & (EDGE_ALL_FLAGS + 1))) 1518 { 1519 error ("edge from %d to %d should be marked irreducible", 1520 e->src->index, e->dest->index); 1521 err = 1; 1522 } 1523 else if (!(e->flags & EDGE_IRREDUCIBLE_LOOP) 1524 && (e->flags & (EDGE_ALL_FLAGS + 1))) 1525 { 1526 error ("edge from %d to %d should not be marked irreducible", 1527 e->src->index, e->dest->index); 1528 err = 1; 1529 } 1530 e->flags &= ~(EDGE_ALL_FLAGS + 1); 1531 } 1532 } 1533 } 1534 1535 /* Check the recorded loop exits. */ 1536 FOR_EACH_LOOP (loop, 0) 1537 { 1538 if (!loop->exits || loop->exits->e != NULL) 1539 { 1540 error ("corrupted head of the exits list of loop %d", 1541 loop->num); 1542 err = 1; 1543 } 1544 else 1545 { 1546 /* Check that the list forms a cycle, and all elements except 1547 for the head are nonnull. */ 1548 for (mexit = loop->exits, exit = mexit->next, i = 0; 1549 exit->e && exit != mexit; 1550 exit = exit->next) 1551 { 1552 if (i++ & 1) 1553 mexit = mexit->next; 1554 } 1555 1556 if (exit != loop->exits) 1557 { 1558 error ("corrupted exits list of loop %d", loop->num); 1559 err = 1; 1560 } 1561 } 1562 1563 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS)) 1564 { 1565 if (loop->exits->next != loop->exits) 1566 { 1567 error ("nonempty exits list of loop %d, but exits are not recorded", 1568 loop->num); 1569 err = 1; 1570 } 1571 } 1572 } 1573 1574 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS)) 1575 { 1576 unsigned n_exits = 0, eloops; 1577 1578 sizes = XCNEWVEC (unsigned, num); 1579 memset (sizes, 0, sizeof (unsigned) * num); 1580 FOR_EACH_BB_FN (bb, cfun) 1581 { 1582 edge_iterator ei; 1583 if (bb->loop_father == current_loops->tree_root) 1584 continue; 1585 FOR_EACH_EDGE (e, ei, bb->succs) 1586 { 1587 if (flow_bb_inside_loop_p (bb->loop_father, e->dest)) 1588 continue; 1589 1590 n_exits++; 1591 exit = get_exit_descriptions (e); 1592 if (!exit) 1593 { 1594 error ("exit %d->%d not recorded", 1595 e->src->index, e->dest->index); 1596 err = 1; 1597 } 1598 eloops = 0; 1599 for (; exit; exit = exit->next_e) 1600 eloops++; 1601 1602 for (loop = bb->loop_father; 1603 loop != e->dest->loop_father 1604 /* When a loop exit is also an entry edge which 1605 can happen when avoiding CFG manipulations 1606 then the last loop exited is the outer loop 1607 of the loop entered. */ 1608 && loop != loop_outer (e->dest->loop_father); 1609 loop = loop_outer (loop)) 1610 { 1611 eloops--; 1612 sizes[loop->num]++; 1613 } 1614 1615 if (eloops != 0) 1616 { 1617 error ("wrong list of exited loops for edge %d->%d", 1618 e->src->index, e->dest->index); 1619 err = 1; 1620 } 1621 } 1622 } 1623 1624 if (n_exits != current_loops->exits->elements ()) 1625 { 1626 error ("too many loop exits recorded"); 1627 err = 1; 1628 } 1629 1630 FOR_EACH_LOOP (loop, 0) 1631 { 1632 eloops = 0; 1633 for (exit = loop->exits->next; exit->e; exit = exit->next) 1634 eloops++; 1635 if (eloops != sizes[loop->num]) 1636 { 1637 error ("%d exits recorded for loop %d (having %d exits)", 1638 eloops, loop->num, sizes[loop->num]); 1639 err = 1; 1640 } 1641 } 1642 1643 free (sizes); 1644 } 1645 1646 gcc_assert (!err); 1647 1648 if (!dom_available) 1649 free_dominance_info (CDI_DOMINATORS); 1650 } 1651 1652 /* Returns latch edge of LOOP. */ 1653 edge 1654 loop_latch_edge (const struct loop *loop) 1655 { 1656 return find_edge (loop->latch, loop->header); 1657 } 1658 1659 /* Returns preheader edge of LOOP. */ 1660 edge 1661 loop_preheader_edge (const struct loop *loop) 1662 { 1663 edge e; 1664 edge_iterator ei; 1665 1666 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)); 1667 1668 FOR_EACH_EDGE (e, ei, loop->header->preds) 1669 if (e->src != loop->latch) 1670 break; 1671 1672 return e; 1673 } 1674 1675 /* Returns true if E is an exit of LOOP. */ 1676 1677 bool 1678 loop_exit_edge_p (const struct loop *loop, const_edge e) 1679 { 1680 return (flow_bb_inside_loop_p (loop, e->src) 1681 && !flow_bb_inside_loop_p (loop, e->dest)); 1682 } 1683 1684 /* Returns the single exit edge of LOOP, or NULL if LOOP has either no exit 1685 or more than one exit. If loops do not have the exits recorded, NULL 1686 is returned always. */ 1687 1688 edge 1689 single_exit (const struct loop *loop) 1690 { 1691 struct loop_exit *exit = loop->exits->next; 1692 1693 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS)) 1694 return NULL; 1695 1696 if (exit->e && exit->next == loop->exits) 1697 return exit->e; 1698 else 1699 return NULL; 1700 } 1701 1702 /* Returns true when BB has an incoming edge exiting LOOP. */ 1703 1704 bool 1705 loop_exits_to_bb_p (struct loop *loop, basic_block bb) 1706 { 1707 edge e; 1708 edge_iterator ei; 1709 1710 FOR_EACH_EDGE (e, ei, bb->preds) 1711 if (loop_exit_edge_p (loop, e)) 1712 return true; 1713 1714 return false; 1715 } 1716 1717 /* Returns true when BB has an outgoing edge exiting LOOP. */ 1718 1719 bool 1720 loop_exits_from_bb_p (struct loop *loop, basic_block bb) 1721 { 1722 edge e; 1723 edge_iterator ei; 1724 1725 FOR_EACH_EDGE (e, ei, bb->succs) 1726 if (loop_exit_edge_p (loop, e)) 1727 return true; 1728 1729 return false; 1730 } 1731 1732 /* Return location corresponding to the loop control condition if possible. */ 1733 1734 location_t 1735 get_loop_location (struct loop *loop) 1736 { 1737 rtx_insn *insn = NULL; 1738 struct niter_desc *desc = NULL; 1739 edge exit; 1740 1741 /* For a for or while loop, we would like to return the location 1742 of the for or while statement, if possible. To do this, look 1743 for the branch guarding the loop back-edge. */ 1744 1745 /* If this is a simple loop with an in_edge, then the loop control 1746 branch is typically at the end of its source. */ 1747 desc = get_simple_loop_desc (loop); 1748 if (desc->in_edge) 1749 { 1750 FOR_BB_INSNS_REVERSE (desc->in_edge->src, insn) 1751 { 1752 if (INSN_P (insn) && INSN_HAS_LOCATION (insn)) 1753 return INSN_LOCATION (insn); 1754 } 1755 } 1756 /* If loop has a single exit, then the loop control branch 1757 must be at the end of its source. */ 1758 if ((exit = single_exit (loop))) 1759 { 1760 FOR_BB_INSNS_REVERSE (exit->src, insn) 1761 { 1762 if (INSN_P (insn) && INSN_HAS_LOCATION (insn)) 1763 return INSN_LOCATION (insn); 1764 } 1765 } 1766 /* Next check the latch, to see if it is non-empty. */ 1767 FOR_BB_INSNS_REVERSE (loop->latch, insn) 1768 { 1769 if (INSN_P (insn) && INSN_HAS_LOCATION (insn)) 1770 return INSN_LOCATION (insn); 1771 } 1772 /* Finally, if none of the above identifies the loop control branch, 1773 return the first location in the loop header. */ 1774 FOR_BB_INSNS (loop->header, insn) 1775 { 1776 if (INSN_P (insn) && INSN_HAS_LOCATION (insn)) 1777 return INSN_LOCATION (insn); 1778 } 1779 /* If all else fails, simply return the current function location. */ 1780 return DECL_SOURCE_LOCATION (current_function_decl); 1781 } 1782 1783 /* Records that every statement in LOOP is executed I_BOUND times. 1784 REALISTIC is true if I_BOUND is expected to be close to the real number 1785 of iterations. UPPER is true if we are sure the loop iterates at most 1786 I_BOUND times. */ 1787 1788 void 1789 record_niter_bound (struct loop *loop, const widest_int &i_bound, 1790 bool realistic, bool upper) 1791 { 1792 /* Update the bounds only when there is no previous estimation, or when the 1793 current estimation is smaller. */ 1794 if (upper 1795 && (!loop->any_upper_bound 1796 || wi::ltu_p (i_bound, loop->nb_iterations_upper_bound))) 1797 { 1798 loop->any_upper_bound = true; 1799 loop->nb_iterations_upper_bound = i_bound; 1800 if (!loop->any_likely_upper_bound) 1801 { 1802 loop->any_likely_upper_bound = true; 1803 loop->nb_iterations_likely_upper_bound = i_bound; 1804 } 1805 } 1806 if (realistic 1807 && (!loop->any_estimate 1808 || wi::ltu_p (i_bound, loop->nb_iterations_estimate))) 1809 { 1810 loop->any_estimate = true; 1811 loop->nb_iterations_estimate = i_bound; 1812 } 1813 if (!realistic 1814 && (!loop->any_likely_upper_bound 1815 || wi::ltu_p (i_bound, loop->nb_iterations_likely_upper_bound))) 1816 { 1817 loop->any_likely_upper_bound = true; 1818 loop->nb_iterations_likely_upper_bound = i_bound; 1819 } 1820 1821 /* If an upper bound is smaller than the realistic estimate of the 1822 number of iterations, use the upper bound instead. */ 1823 if (loop->any_upper_bound 1824 && loop->any_estimate 1825 && wi::ltu_p (loop->nb_iterations_upper_bound, 1826 loop->nb_iterations_estimate)) 1827 loop->nb_iterations_estimate = loop->nb_iterations_upper_bound; 1828 if (loop->any_upper_bound 1829 && loop->any_likely_upper_bound 1830 && wi::ltu_p (loop->nb_iterations_upper_bound, 1831 loop->nb_iterations_likely_upper_bound)) 1832 loop->nb_iterations_likely_upper_bound = loop->nb_iterations_upper_bound; 1833 } 1834 1835 /* Similar to get_estimated_loop_iterations, but returns the estimate only 1836 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate 1837 on the number of iterations of LOOP could not be derived, returns -1. */ 1838 1839 HOST_WIDE_INT 1840 get_estimated_loop_iterations_int (struct loop *loop) 1841 { 1842 widest_int nit; 1843 HOST_WIDE_INT hwi_nit; 1844 1845 if (!get_estimated_loop_iterations (loop, &nit)) 1846 return -1; 1847 1848 if (!wi::fits_shwi_p (nit)) 1849 return -1; 1850 hwi_nit = nit.to_shwi (); 1851 1852 return hwi_nit < 0 ? -1 : hwi_nit; 1853 } 1854 1855 /* Returns an upper bound on the number of executions of statements 1856 in the LOOP. For statements before the loop exit, this exceeds 1857 the number of execution of the latch by one. */ 1858 1859 HOST_WIDE_INT 1860 max_stmt_executions_int (struct loop *loop) 1861 { 1862 HOST_WIDE_INT nit = get_max_loop_iterations_int (loop); 1863 HOST_WIDE_INT snit; 1864 1865 if (nit == -1) 1866 return -1; 1867 1868 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1); 1869 1870 /* If the computation overflows, return -1. */ 1871 return snit < 0 ? -1 : snit; 1872 } 1873 1874 /* Returns an likely upper bound on the number of executions of statements 1875 in the LOOP. For statements before the loop exit, this exceeds 1876 the number of execution of the latch by one. */ 1877 1878 HOST_WIDE_INT 1879 likely_max_stmt_executions_int (struct loop *loop) 1880 { 1881 HOST_WIDE_INT nit = get_likely_max_loop_iterations_int (loop); 1882 HOST_WIDE_INT snit; 1883 1884 if (nit == -1) 1885 return -1; 1886 1887 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1); 1888 1889 /* If the computation overflows, return -1. */ 1890 return snit < 0 ? -1 : snit; 1891 } 1892 1893 /* Sets NIT to the estimated number of executions of the latch of the 1894 LOOP. If we have no reliable estimate, the function returns false, otherwise 1895 returns true. */ 1896 1897 bool 1898 get_estimated_loop_iterations (struct loop *loop, widest_int *nit) 1899 { 1900 /* Even if the bound is not recorded, possibly we can derrive one from 1901 profile. */ 1902 if (!loop->any_estimate) 1903 { 1904 if (loop->header->count) 1905 { 1906 *nit = gcov_type_to_wide_int 1907 (expected_loop_iterations_unbounded (loop) + 1); 1908 return true; 1909 } 1910 return false; 1911 } 1912 1913 *nit = loop->nb_iterations_estimate; 1914 return true; 1915 } 1916 1917 /* Sets NIT to an upper bound for the maximum number of executions of the 1918 latch of the LOOP. If we have no reliable estimate, the function returns 1919 false, otherwise returns true. */ 1920 1921 bool 1922 get_max_loop_iterations (const struct loop *loop, widest_int *nit) 1923 { 1924 if (!loop->any_upper_bound) 1925 return false; 1926 1927 *nit = loop->nb_iterations_upper_bound; 1928 return true; 1929 } 1930 1931 /* Similar to get_max_loop_iterations, but returns the estimate only 1932 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate 1933 on the number of iterations of LOOP could not be derived, returns -1. */ 1934 1935 HOST_WIDE_INT 1936 get_max_loop_iterations_int (const struct loop *loop) 1937 { 1938 widest_int nit; 1939 HOST_WIDE_INT hwi_nit; 1940 1941 if (!get_max_loop_iterations (loop, &nit)) 1942 return -1; 1943 1944 if (!wi::fits_shwi_p (nit)) 1945 return -1; 1946 hwi_nit = nit.to_shwi (); 1947 1948 return hwi_nit < 0 ? -1 : hwi_nit; 1949 } 1950 1951 /* Sets NIT to an upper bound for the maximum number of executions of the 1952 latch of the LOOP. If we have no reliable estimate, the function returns 1953 false, otherwise returns true. */ 1954 1955 bool 1956 get_likely_max_loop_iterations (struct loop *loop, widest_int *nit) 1957 { 1958 if (!loop->any_likely_upper_bound) 1959 return false; 1960 1961 *nit = loop->nb_iterations_likely_upper_bound; 1962 return true; 1963 } 1964 1965 /* Similar to get_max_loop_iterations, but returns the estimate only 1966 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate 1967 on the number of iterations of LOOP could not be derived, returns -1. */ 1968 1969 HOST_WIDE_INT 1970 get_likely_max_loop_iterations_int (struct loop *loop) 1971 { 1972 widest_int nit; 1973 HOST_WIDE_INT hwi_nit; 1974 1975 if (!get_likely_max_loop_iterations (loop, &nit)) 1976 return -1; 1977 1978 if (!wi::fits_shwi_p (nit)) 1979 return -1; 1980 hwi_nit = nit.to_shwi (); 1981 1982 return hwi_nit < 0 ? -1 : hwi_nit; 1983 } 1984 1985 /* Returns the loop depth of the loop BB belongs to. */ 1986 1987 int 1988 bb_loop_depth (const_basic_block bb) 1989 { 1990 return bb->loop_father ? loop_depth (bb->loop_father) : 0; 1991 } 1992 1993 /* Marks LOOP for removal and sets LOOPS_NEED_FIXUP. */ 1994 1995 void 1996 mark_loop_for_removal (loop_p loop) 1997 { 1998 if (loop->header == NULL) 1999 return; 2000 loop->former_header = loop->header; 2001 loop->header = NULL; 2002 loop->latch = NULL; 2003 loops_state_set (LOOPS_NEED_FIXUP); 2004 } 2005