1 /* Control flow graph analysis code for GNU compiler. 2 Copyright (C) 1987-2016 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 /* This file contains various simple utilities to analyze the CFG. */ 21 22 #include "config.h" 23 #include "system.h" 24 #include "coretypes.h" 25 #include "backend.h" 26 #include "cfghooks.h" 27 #include "timevar.h" 28 #include "cfganal.h" 29 30 /* Store the data structures necessary for depth-first search. */ 31 struct depth_first_search_ds { 32 /* stack for backtracking during the algorithm */ 33 basic_block *stack; 34 35 /* number of edges in the stack. That is, positions 0, ..., sp-1 36 have edges. */ 37 unsigned int sp; 38 39 /* record of basic blocks already seen by depth-first search */ 40 sbitmap visited_blocks; 41 }; 42 43 static void flow_dfs_compute_reverse_init (depth_first_search_ds *); 44 static void flow_dfs_compute_reverse_add_bb (depth_first_search_ds *, 45 basic_block); 46 static basic_block flow_dfs_compute_reverse_execute (depth_first_search_ds *, 47 basic_block); 48 static void flow_dfs_compute_reverse_finish (depth_first_search_ds *); 49 50 /* Mark the back edges in DFS traversal. 51 Return nonzero if a loop (natural or otherwise) is present. 52 Inspired by Depth_First_Search_PP described in: 53 54 Advanced Compiler Design and Implementation 55 Steven Muchnick 56 Morgan Kaufmann, 1997 57 58 and heavily borrowed from pre_and_rev_post_order_compute. */ 59 60 bool 61 mark_dfs_back_edges (void) 62 { 63 edge_iterator *stack; 64 int *pre; 65 int *post; 66 int sp; 67 int prenum = 1; 68 int postnum = 1; 69 sbitmap visited; 70 bool found = false; 71 72 /* Allocate the preorder and postorder number arrays. */ 73 pre = XCNEWVEC (int, last_basic_block_for_fn (cfun)); 74 post = XCNEWVEC (int, last_basic_block_for_fn (cfun)); 75 76 /* Allocate stack for back-tracking up CFG. */ 77 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1); 78 sp = 0; 79 80 /* Allocate bitmap to track nodes that have been visited. */ 81 visited = sbitmap_alloc (last_basic_block_for_fn (cfun)); 82 83 /* None of the nodes in the CFG have been visited yet. */ 84 bitmap_clear (visited); 85 86 /* Push the first edge on to the stack. */ 87 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs); 88 89 while (sp) 90 { 91 edge_iterator ei; 92 basic_block src; 93 basic_block dest; 94 95 /* Look at the edge on the top of the stack. */ 96 ei = stack[sp - 1]; 97 src = ei_edge (ei)->src; 98 dest = ei_edge (ei)->dest; 99 ei_edge (ei)->flags &= ~EDGE_DFS_BACK; 100 101 /* Check if the edge destination has been visited yet. */ 102 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && ! bitmap_bit_p (visited, 103 dest->index)) 104 { 105 /* Mark that we have visited the destination. */ 106 bitmap_set_bit (visited, dest->index); 107 108 pre[dest->index] = prenum++; 109 if (EDGE_COUNT (dest->succs) > 0) 110 { 111 /* Since the DEST node has been visited for the first 112 time, check its successors. */ 113 stack[sp++] = ei_start (dest->succs); 114 } 115 else 116 post[dest->index] = postnum++; 117 } 118 else 119 { 120 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun) 121 && src != ENTRY_BLOCK_PTR_FOR_FN (cfun) 122 && pre[src->index] >= pre[dest->index] 123 && post[dest->index] == 0) 124 ei_edge (ei)->flags |= EDGE_DFS_BACK, found = true; 125 126 if (ei_one_before_end_p (ei) 127 && src != ENTRY_BLOCK_PTR_FOR_FN (cfun)) 128 post[src->index] = postnum++; 129 130 if (!ei_one_before_end_p (ei)) 131 ei_next (&stack[sp - 1]); 132 else 133 sp--; 134 } 135 } 136 137 free (pre); 138 free (post); 139 free (stack); 140 sbitmap_free (visited); 141 142 return found; 143 } 144 145 /* Find unreachable blocks. An unreachable block will have 0 in 146 the reachable bit in block->flags. A nonzero value indicates the 147 block is reachable. */ 148 149 void 150 find_unreachable_blocks (void) 151 { 152 edge e; 153 edge_iterator ei; 154 basic_block *tos, *worklist, bb; 155 156 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun)); 157 158 /* Clear all the reachability flags. */ 159 160 FOR_EACH_BB_FN (bb, cfun) 161 bb->flags &= ~BB_REACHABLE; 162 163 /* Add our starting points to the worklist. Almost always there will 164 be only one. It isn't inconceivable that we might one day directly 165 support Fortran alternate entry points. */ 166 167 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) 168 { 169 *tos++ = e->dest; 170 171 /* Mark the block reachable. */ 172 e->dest->flags |= BB_REACHABLE; 173 } 174 175 /* Iterate: find everything reachable from what we've already seen. */ 176 177 while (tos != worklist) 178 { 179 basic_block b = *--tos; 180 181 FOR_EACH_EDGE (e, ei, b->succs) 182 { 183 basic_block dest = e->dest; 184 185 if (!(dest->flags & BB_REACHABLE)) 186 { 187 *tos++ = dest; 188 dest->flags |= BB_REACHABLE; 189 } 190 } 191 } 192 193 free (worklist); 194 } 195 196 /* Verify that there are no unreachable blocks in the current function. */ 197 198 void 199 verify_no_unreachable_blocks (void) 200 { 201 find_unreachable_blocks (); 202 203 basic_block bb; 204 FOR_EACH_BB_FN (bb, cfun) 205 gcc_assert ((bb->flags & BB_REACHABLE) != 0); 206 } 207 208 209 /* Functions to access an edge list with a vector representation. 210 Enough data is kept such that given an index number, the 211 pred and succ that edge represents can be determined, or 212 given a pred and a succ, its index number can be returned. 213 This allows algorithms which consume a lot of memory to 214 represent the normally full matrix of edge (pred,succ) with a 215 single indexed vector, edge (EDGE_INDEX (pred, succ)), with no 216 wasted space in the client code due to sparse flow graphs. */ 217 218 /* This functions initializes the edge list. Basically the entire 219 flowgraph is processed, and all edges are assigned a number, 220 and the data structure is filled in. */ 221 222 struct edge_list * 223 create_edge_list (void) 224 { 225 struct edge_list *elist; 226 edge e; 227 int num_edges; 228 basic_block bb; 229 edge_iterator ei; 230 231 /* Determine the number of edges in the flow graph by counting successor 232 edges on each basic block. */ 233 num_edges = 0; 234 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), 235 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb) 236 { 237 num_edges += EDGE_COUNT (bb->succs); 238 } 239 240 elist = XNEW (struct edge_list); 241 elist->num_edges = num_edges; 242 elist->index_to_edge = XNEWVEC (edge, num_edges); 243 244 num_edges = 0; 245 246 /* Follow successors of blocks, and register these edges. */ 247 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), 248 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb) 249 FOR_EACH_EDGE (e, ei, bb->succs) 250 elist->index_to_edge[num_edges++] = e; 251 252 return elist; 253 } 254 255 /* This function free's memory associated with an edge list. */ 256 257 void 258 free_edge_list (struct edge_list *elist) 259 { 260 if (elist) 261 { 262 free (elist->index_to_edge); 263 free (elist); 264 } 265 } 266 267 /* This function provides debug output showing an edge list. */ 268 269 DEBUG_FUNCTION void 270 print_edge_list (FILE *f, struct edge_list *elist) 271 { 272 int x; 273 274 fprintf (f, "Compressed edge list, %d BBs + entry & exit, and %d edges\n", 275 n_basic_blocks_for_fn (cfun), elist->num_edges); 276 277 for (x = 0; x < elist->num_edges; x++) 278 { 279 fprintf (f, " %-4d - edge(", x); 280 if (INDEX_EDGE_PRED_BB (elist, x) == ENTRY_BLOCK_PTR_FOR_FN (cfun)) 281 fprintf (f, "entry,"); 282 else 283 fprintf (f, "%d,", INDEX_EDGE_PRED_BB (elist, x)->index); 284 285 if (INDEX_EDGE_SUCC_BB (elist, x) == EXIT_BLOCK_PTR_FOR_FN (cfun)) 286 fprintf (f, "exit)\n"); 287 else 288 fprintf (f, "%d)\n", INDEX_EDGE_SUCC_BB (elist, x)->index); 289 } 290 } 291 292 /* This function provides an internal consistency check of an edge list, 293 verifying that all edges are present, and that there are no 294 extra edges. */ 295 296 DEBUG_FUNCTION void 297 verify_edge_list (FILE *f, struct edge_list *elist) 298 { 299 int pred, succ, index; 300 edge e; 301 basic_block bb, p, s; 302 edge_iterator ei; 303 304 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), 305 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb) 306 { 307 FOR_EACH_EDGE (e, ei, bb->succs) 308 { 309 pred = e->src->index; 310 succ = e->dest->index; 311 index = EDGE_INDEX (elist, e->src, e->dest); 312 if (index == EDGE_INDEX_NO_EDGE) 313 { 314 fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ); 315 continue; 316 } 317 318 if (INDEX_EDGE_PRED_BB (elist, index)->index != pred) 319 fprintf (f, "*p* Pred for index %d should be %d not %d\n", 320 index, pred, INDEX_EDGE_PRED_BB (elist, index)->index); 321 if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ) 322 fprintf (f, "*p* Succ for index %d should be %d not %d\n", 323 index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index); 324 } 325 } 326 327 /* We've verified that all the edges are in the list, now lets make sure 328 there are no spurious edges in the list. This is an expensive check! */ 329 330 FOR_BB_BETWEEN (p, ENTRY_BLOCK_PTR_FOR_FN (cfun), 331 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb) 332 FOR_BB_BETWEEN (s, ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb, NULL, next_bb) 333 { 334 int found_edge = 0; 335 336 FOR_EACH_EDGE (e, ei, p->succs) 337 if (e->dest == s) 338 { 339 found_edge = 1; 340 break; 341 } 342 343 FOR_EACH_EDGE (e, ei, s->preds) 344 if (e->src == p) 345 { 346 found_edge = 1; 347 break; 348 } 349 350 if (EDGE_INDEX (elist, p, s) 351 == EDGE_INDEX_NO_EDGE && found_edge != 0) 352 fprintf (f, "*** Edge (%d, %d) appears to not have an index\n", 353 p->index, s->index); 354 if (EDGE_INDEX (elist, p, s) 355 != EDGE_INDEX_NO_EDGE && found_edge == 0) 356 fprintf (f, "*** Edge (%d, %d) has index %d, but there is no edge\n", 357 p->index, s->index, EDGE_INDEX (elist, p, s)); 358 } 359 } 360 361 362 /* Functions to compute control dependences. */ 363 364 /* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */ 365 void 366 control_dependences::set_control_dependence_map_bit (basic_block bb, 367 int edge_index) 368 { 369 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)) 370 return; 371 gcc_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun)); 372 bitmap_set_bit (control_dependence_map[bb->index], edge_index); 373 } 374 375 /* Clear all control dependences for block BB. */ 376 void 377 control_dependences::clear_control_dependence_bitmap (basic_block bb) 378 { 379 bitmap_clear (control_dependence_map[bb->index]); 380 } 381 382 /* Find the immediate postdominator PDOM of the specified basic block BLOCK. 383 This function is necessary because some blocks have negative numbers. */ 384 385 static inline basic_block 386 find_pdom (basic_block block) 387 { 388 gcc_assert (block != ENTRY_BLOCK_PTR_FOR_FN (cfun)); 389 390 if (block == EXIT_BLOCK_PTR_FOR_FN (cfun)) 391 return EXIT_BLOCK_PTR_FOR_FN (cfun); 392 else 393 { 394 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block); 395 if (! bb) 396 return EXIT_BLOCK_PTR_FOR_FN (cfun); 397 return bb; 398 } 399 } 400 401 /* Determine all blocks' control dependences on the given edge with edge_list 402 EL index EDGE_INDEX, ala Morgan, Section 3.6. */ 403 404 void 405 control_dependences::find_control_dependence (int edge_index) 406 { 407 basic_block current_block; 408 basic_block ending_block; 409 410 gcc_assert (INDEX_EDGE_PRED_BB (m_el, edge_index) 411 != EXIT_BLOCK_PTR_FOR_FN (cfun)); 412 413 if (INDEX_EDGE_PRED_BB (m_el, edge_index) == ENTRY_BLOCK_PTR_FOR_FN (cfun)) 414 ending_block = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)); 415 else 416 ending_block = find_pdom (INDEX_EDGE_PRED_BB (m_el, edge_index)); 417 418 for (current_block = INDEX_EDGE_SUCC_BB (m_el, edge_index); 419 current_block != ending_block 420 && current_block != EXIT_BLOCK_PTR_FOR_FN (cfun); 421 current_block = find_pdom (current_block)) 422 { 423 edge e = INDEX_EDGE (m_el, edge_index); 424 425 /* For abnormal edges, we don't make current_block control 426 dependent because instructions that throw are always necessary 427 anyway. */ 428 if (e->flags & EDGE_ABNORMAL) 429 continue; 430 431 set_control_dependence_map_bit (current_block, edge_index); 432 } 433 } 434 435 /* Record all blocks' control dependences on all edges in the edge 436 list EL, ala Morgan, Section 3.6. */ 437 438 control_dependences::control_dependences (struct edge_list *edges) 439 : m_el (edges) 440 { 441 timevar_push (TV_CONTROL_DEPENDENCES); 442 control_dependence_map.create (last_basic_block_for_fn (cfun)); 443 for (int i = 0; i < last_basic_block_for_fn (cfun); ++i) 444 control_dependence_map.quick_push (BITMAP_ALLOC (NULL)); 445 for (int i = 0; i < NUM_EDGES (m_el); ++i) 446 find_control_dependence (i); 447 timevar_pop (TV_CONTROL_DEPENDENCES); 448 } 449 450 /* Free control dependences and the associated edge list. */ 451 452 control_dependences::~control_dependences () 453 { 454 for (unsigned i = 0; i < control_dependence_map.length (); ++i) 455 BITMAP_FREE (control_dependence_map[i]); 456 control_dependence_map.release (); 457 free_edge_list (m_el); 458 } 459 460 /* Returns the bitmap of edges the basic-block I is dependent on. */ 461 462 bitmap 463 control_dependences::get_edges_dependent_on (int i) 464 { 465 return control_dependence_map[i]; 466 } 467 468 /* Returns the edge with index I from the edge list. */ 469 470 edge 471 control_dependences::get_edge (int i) 472 { 473 return INDEX_EDGE (m_el, i); 474 } 475 476 477 /* Given PRED and SUCC blocks, return the edge which connects the blocks. 478 If no such edge exists, return NULL. */ 479 480 edge 481 find_edge (basic_block pred, basic_block succ) 482 { 483 edge e; 484 edge_iterator ei; 485 486 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds)) 487 { 488 FOR_EACH_EDGE (e, ei, pred->succs) 489 if (e->dest == succ) 490 return e; 491 } 492 else 493 { 494 FOR_EACH_EDGE (e, ei, succ->preds) 495 if (e->src == pred) 496 return e; 497 } 498 499 return NULL; 500 } 501 502 /* This routine will determine what, if any, edge there is between 503 a specified predecessor and successor. */ 504 505 int 506 find_edge_index (struct edge_list *edge_list, basic_block pred, basic_block succ) 507 { 508 int x; 509 510 for (x = 0; x < NUM_EDGES (edge_list); x++) 511 if (INDEX_EDGE_PRED_BB (edge_list, x) == pred 512 && INDEX_EDGE_SUCC_BB (edge_list, x) == succ) 513 return x; 514 515 return (EDGE_INDEX_NO_EDGE); 516 } 517 518 /* This routine will remove any fake predecessor edges for a basic block. 519 When the edge is removed, it is also removed from whatever successor 520 list it is in. */ 521 522 static void 523 remove_fake_predecessors (basic_block bb) 524 { 525 edge e; 526 edge_iterator ei; 527 528 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); ) 529 { 530 if ((e->flags & EDGE_FAKE) == EDGE_FAKE) 531 remove_edge (e); 532 else 533 ei_next (&ei); 534 } 535 } 536 537 /* This routine will remove all fake edges from the flow graph. If 538 we remove all fake successors, it will automatically remove all 539 fake predecessors. */ 540 541 void 542 remove_fake_edges (void) 543 { 544 basic_block bb; 545 546 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb, NULL, next_bb) 547 remove_fake_predecessors (bb); 548 } 549 550 /* This routine will remove all fake edges to the EXIT_BLOCK. */ 551 552 void 553 remove_fake_exit_edges (void) 554 { 555 remove_fake_predecessors (EXIT_BLOCK_PTR_FOR_FN (cfun)); 556 } 557 558 559 /* This function will add a fake edge between any block which has no 560 successors, and the exit block. Some data flow equations require these 561 edges to exist. */ 562 563 void 564 add_noreturn_fake_exit_edges (void) 565 { 566 basic_block bb; 567 568 FOR_EACH_BB_FN (bb, cfun) 569 if (EDGE_COUNT (bb->succs) == 0) 570 make_single_succ_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE); 571 } 572 573 /* This function adds a fake edge between any infinite loops to the 574 exit block. Some optimizations require a path from each node to 575 the exit node. 576 577 See also Morgan, Figure 3.10, pp. 82-83. 578 579 The current implementation is ugly, not attempting to minimize the 580 number of inserted fake edges. To reduce the number of fake edges 581 to insert, add fake edges from _innermost_ loops containing only 582 nodes not reachable from the exit block. */ 583 584 void 585 connect_infinite_loops_to_exit (void) 586 { 587 basic_block unvisited_block = EXIT_BLOCK_PTR_FOR_FN (cfun); 588 basic_block deadend_block; 589 depth_first_search_ds dfs_ds; 590 591 /* Perform depth-first search in the reverse graph to find nodes 592 reachable from the exit block. */ 593 flow_dfs_compute_reverse_init (&dfs_ds); 594 flow_dfs_compute_reverse_add_bb (&dfs_ds, EXIT_BLOCK_PTR_FOR_FN (cfun)); 595 596 /* Repeatedly add fake edges, updating the unreachable nodes. */ 597 while (1) 598 { 599 unvisited_block = flow_dfs_compute_reverse_execute (&dfs_ds, 600 unvisited_block); 601 if (!unvisited_block) 602 break; 603 604 deadend_block = dfs_find_deadend (unvisited_block); 605 make_edge (deadend_block, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE); 606 flow_dfs_compute_reverse_add_bb (&dfs_ds, deadend_block); 607 } 608 609 flow_dfs_compute_reverse_finish (&dfs_ds); 610 return; 611 } 612 613 /* Compute reverse top sort order. This is computing a post order 614 numbering of the graph. If INCLUDE_ENTRY_EXIT is true, then 615 ENTRY_BLOCK and EXIT_BLOCK are included. If DELETE_UNREACHABLE is 616 true, unreachable blocks are deleted. */ 617 618 int 619 post_order_compute (int *post_order, bool include_entry_exit, 620 bool delete_unreachable) 621 { 622 edge_iterator *stack; 623 int sp; 624 int post_order_num = 0; 625 sbitmap visited; 626 int count; 627 628 if (include_entry_exit) 629 post_order[post_order_num++] = EXIT_BLOCK; 630 631 /* Allocate stack for back-tracking up CFG. */ 632 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1); 633 sp = 0; 634 635 /* Allocate bitmap to track nodes that have been visited. */ 636 visited = sbitmap_alloc (last_basic_block_for_fn (cfun)); 637 638 /* None of the nodes in the CFG have been visited yet. */ 639 bitmap_clear (visited); 640 641 /* Push the first edge on to the stack. */ 642 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs); 643 644 while (sp) 645 { 646 edge_iterator ei; 647 basic_block src; 648 basic_block dest; 649 650 /* Look at the edge on the top of the stack. */ 651 ei = stack[sp - 1]; 652 src = ei_edge (ei)->src; 653 dest = ei_edge (ei)->dest; 654 655 /* Check if the edge destination has been visited yet. */ 656 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun) 657 && ! bitmap_bit_p (visited, dest->index)) 658 { 659 /* Mark that we have visited the destination. */ 660 bitmap_set_bit (visited, dest->index); 661 662 if (EDGE_COUNT (dest->succs) > 0) 663 /* Since the DEST node has been visited for the first 664 time, check its successors. */ 665 stack[sp++] = ei_start (dest->succs); 666 else 667 post_order[post_order_num++] = dest->index; 668 } 669 else 670 { 671 if (ei_one_before_end_p (ei) 672 && src != ENTRY_BLOCK_PTR_FOR_FN (cfun)) 673 post_order[post_order_num++] = src->index; 674 675 if (!ei_one_before_end_p (ei)) 676 ei_next (&stack[sp - 1]); 677 else 678 sp--; 679 } 680 } 681 682 if (include_entry_exit) 683 { 684 post_order[post_order_num++] = ENTRY_BLOCK; 685 count = post_order_num; 686 } 687 else 688 count = post_order_num + 2; 689 690 /* Delete the unreachable blocks if some were found and we are 691 supposed to do it. */ 692 if (delete_unreachable && (count != n_basic_blocks_for_fn (cfun))) 693 { 694 basic_block b; 695 basic_block next_bb; 696 for (b = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; b 697 != EXIT_BLOCK_PTR_FOR_FN (cfun); b = next_bb) 698 { 699 next_bb = b->next_bb; 700 701 if (!(bitmap_bit_p (visited, b->index))) 702 delete_basic_block (b); 703 } 704 705 tidy_fallthru_edges (); 706 } 707 708 free (stack); 709 sbitmap_free (visited); 710 return post_order_num; 711 } 712 713 714 /* Helper routine for inverted_post_order_compute 715 flow_dfs_compute_reverse_execute, and the reverse-CFG 716 deapth first search in dominance.c. 717 BB has to belong to a region of CFG 718 unreachable by inverted traversal from the exit. 719 i.e. there's no control flow path from ENTRY to EXIT 720 that contains this BB. 721 This can happen in two cases - if there's an infinite loop 722 or if there's a block that has no successor 723 (call to a function with no return). 724 Some RTL passes deal with this condition by 725 calling connect_infinite_loops_to_exit () and/or 726 add_noreturn_fake_exit_edges (). 727 However, those methods involve modifying the CFG itself 728 which may not be desirable. 729 Hence, we deal with the infinite loop/no return cases 730 by identifying a unique basic block that can reach all blocks 731 in such a region by inverted traversal. 732 This function returns a basic block that guarantees 733 that all blocks in the region are reachable 734 by starting an inverted traversal from the returned block. */ 735 736 basic_block 737 dfs_find_deadend (basic_block bb) 738 { 739 bitmap visited = BITMAP_ALLOC (NULL); 740 741 for (;;) 742 { 743 if (EDGE_COUNT (bb->succs) == 0 744 || ! bitmap_set_bit (visited, bb->index)) 745 { 746 BITMAP_FREE (visited); 747 return bb; 748 } 749 750 bb = EDGE_SUCC (bb, 0)->dest; 751 } 752 753 gcc_unreachable (); 754 } 755 756 757 /* Compute the reverse top sort order of the inverted CFG 758 i.e. starting from the exit block and following the edges backward 759 (from successors to predecessors). 760 This ordering can be used for forward dataflow problems among others. 761 762 Optionally if START_POINTS is specified, start from exit block and all 763 basic blocks in START_POINTS. This is used by CD-DCE. 764 765 This function assumes that all blocks in the CFG are reachable 766 from the ENTRY (but not necessarily from EXIT). 767 768 If there's an infinite loop, 769 a simple inverted traversal starting from the blocks 770 with no successors can't visit all blocks. 771 To solve this problem, we first do inverted traversal 772 starting from the blocks with no successor. 773 And if there's any block left that's not visited by the regular 774 inverted traversal from EXIT, 775 those blocks are in such problematic region. 776 Among those, we find one block that has 777 any visited predecessor (which is an entry into such a region), 778 and start looking for a "dead end" from that block 779 and do another inverted traversal from that block. */ 780 781 int 782 inverted_post_order_compute (int *post_order, 783 sbitmap *start_points) 784 { 785 basic_block bb; 786 edge_iterator *stack; 787 int sp; 788 int post_order_num = 0; 789 sbitmap visited; 790 791 if (flag_checking) 792 verify_no_unreachable_blocks (); 793 794 /* Allocate stack for back-tracking up CFG. */ 795 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1); 796 sp = 0; 797 798 /* Allocate bitmap to track nodes that have been visited. */ 799 visited = sbitmap_alloc (last_basic_block_for_fn (cfun)); 800 801 /* None of the nodes in the CFG have been visited yet. */ 802 bitmap_clear (visited); 803 804 if (start_points) 805 { 806 FOR_ALL_BB_FN (bb, cfun) 807 if (bitmap_bit_p (*start_points, bb->index) 808 && EDGE_COUNT (bb->preds) > 0) 809 { 810 stack[sp++] = ei_start (bb->preds); 811 bitmap_set_bit (visited, bb->index); 812 } 813 if (EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)) 814 { 815 stack[sp++] = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds); 816 bitmap_set_bit (visited, EXIT_BLOCK_PTR_FOR_FN (cfun)->index); 817 } 818 } 819 else 820 /* Put all blocks that have no successor into the initial work list. */ 821 FOR_ALL_BB_FN (bb, cfun) 822 if (EDGE_COUNT (bb->succs) == 0) 823 { 824 /* Push the initial edge on to the stack. */ 825 if (EDGE_COUNT (bb->preds) > 0) 826 { 827 stack[sp++] = ei_start (bb->preds); 828 bitmap_set_bit (visited, bb->index); 829 } 830 } 831 832 do 833 { 834 bool has_unvisited_bb = false; 835 836 /* The inverted traversal loop. */ 837 while (sp) 838 { 839 edge_iterator ei; 840 basic_block pred; 841 842 /* Look at the edge on the top of the stack. */ 843 ei = stack[sp - 1]; 844 bb = ei_edge (ei)->dest; 845 pred = ei_edge (ei)->src; 846 847 /* Check if the predecessor has been visited yet. */ 848 if (! bitmap_bit_p (visited, pred->index)) 849 { 850 /* Mark that we have visited the destination. */ 851 bitmap_set_bit (visited, pred->index); 852 853 if (EDGE_COUNT (pred->preds) > 0) 854 /* Since the predecessor node has been visited for the first 855 time, check its predecessors. */ 856 stack[sp++] = ei_start (pred->preds); 857 else 858 post_order[post_order_num++] = pred->index; 859 } 860 else 861 { 862 if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun) 863 && ei_one_before_end_p (ei)) 864 post_order[post_order_num++] = bb->index; 865 866 if (!ei_one_before_end_p (ei)) 867 ei_next (&stack[sp - 1]); 868 else 869 sp--; 870 } 871 } 872 873 /* Detect any infinite loop and activate the kludge. 874 Note that this doesn't check EXIT_BLOCK itself 875 since EXIT_BLOCK is always added after the outer do-while loop. */ 876 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), 877 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb) 878 if (!bitmap_bit_p (visited, bb->index)) 879 { 880 has_unvisited_bb = true; 881 882 if (EDGE_COUNT (bb->preds) > 0) 883 { 884 edge_iterator ei; 885 edge e; 886 basic_block visited_pred = NULL; 887 888 /* Find an already visited predecessor. */ 889 FOR_EACH_EDGE (e, ei, bb->preds) 890 { 891 if (bitmap_bit_p (visited, e->src->index)) 892 visited_pred = e->src; 893 } 894 895 if (visited_pred) 896 { 897 basic_block be = dfs_find_deadend (bb); 898 gcc_assert (be != NULL); 899 bitmap_set_bit (visited, be->index); 900 stack[sp++] = ei_start (be->preds); 901 break; 902 } 903 } 904 } 905 906 if (has_unvisited_bb && sp == 0) 907 { 908 /* No blocks are reachable from EXIT at all. 909 Find a dead-end from the ENTRY, and restart the iteration. */ 910 basic_block be = dfs_find_deadend (ENTRY_BLOCK_PTR_FOR_FN (cfun)); 911 gcc_assert (be != NULL); 912 bitmap_set_bit (visited, be->index); 913 stack[sp++] = ei_start (be->preds); 914 } 915 916 /* The only case the below while fires is 917 when there's an infinite loop. */ 918 } 919 while (sp); 920 921 /* EXIT_BLOCK is always included. */ 922 post_order[post_order_num++] = EXIT_BLOCK; 923 924 free (stack); 925 sbitmap_free (visited); 926 return post_order_num; 927 } 928 929 /* Compute the depth first search order of FN and store in the array 930 PRE_ORDER if nonzero. If REV_POST_ORDER is nonzero, return the 931 reverse completion number for each node. Returns the number of nodes 932 visited. A depth first search tries to get as far away from the starting 933 point as quickly as possible. 934 935 In case the function has unreachable blocks the number of nodes 936 visited does not include them. 937 938 pre_order is a really a preorder numbering of the graph. 939 rev_post_order is really a reverse postorder numbering of the graph. */ 940 941 int 942 pre_and_rev_post_order_compute_fn (struct function *fn, 943 int *pre_order, int *rev_post_order, 944 bool include_entry_exit) 945 { 946 edge_iterator *stack; 947 int sp; 948 int pre_order_num = 0; 949 int rev_post_order_num = n_basic_blocks_for_fn (cfun) - 1; 950 sbitmap visited; 951 952 /* Allocate stack for back-tracking up CFG. */ 953 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1); 954 sp = 0; 955 956 if (include_entry_exit) 957 { 958 if (pre_order) 959 pre_order[pre_order_num] = ENTRY_BLOCK; 960 pre_order_num++; 961 if (rev_post_order) 962 rev_post_order[rev_post_order_num--] = EXIT_BLOCK; 963 } 964 else 965 rev_post_order_num -= NUM_FIXED_BLOCKS; 966 967 /* Allocate bitmap to track nodes that have been visited. */ 968 visited = sbitmap_alloc (last_basic_block_for_fn (cfun)); 969 970 /* None of the nodes in the CFG have been visited yet. */ 971 bitmap_clear (visited); 972 973 /* Push the first edge on to the stack. */ 974 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (fn)->succs); 975 976 while (sp) 977 { 978 edge_iterator ei; 979 basic_block src; 980 basic_block dest; 981 982 /* Look at the edge on the top of the stack. */ 983 ei = stack[sp - 1]; 984 src = ei_edge (ei)->src; 985 dest = ei_edge (ei)->dest; 986 987 /* Check if the edge destination has been visited yet. */ 988 if (dest != EXIT_BLOCK_PTR_FOR_FN (fn) 989 && ! bitmap_bit_p (visited, dest->index)) 990 { 991 /* Mark that we have visited the destination. */ 992 bitmap_set_bit (visited, dest->index); 993 994 if (pre_order) 995 pre_order[pre_order_num] = dest->index; 996 997 pre_order_num++; 998 999 if (EDGE_COUNT (dest->succs) > 0) 1000 /* Since the DEST node has been visited for the first 1001 time, check its successors. */ 1002 stack[sp++] = ei_start (dest->succs); 1003 else if (rev_post_order) 1004 /* There are no successors for the DEST node so assign 1005 its reverse completion number. */ 1006 rev_post_order[rev_post_order_num--] = dest->index; 1007 } 1008 else 1009 { 1010 if (ei_one_before_end_p (ei) 1011 && src != ENTRY_BLOCK_PTR_FOR_FN (fn) 1012 && rev_post_order) 1013 /* There are no more successors for the SRC node 1014 so assign its reverse completion number. */ 1015 rev_post_order[rev_post_order_num--] = src->index; 1016 1017 if (!ei_one_before_end_p (ei)) 1018 ei_next (&stack[sp - 1]); 1019 else 1020 sp--; 1021 } 1022 } 1023 1024 free (stack); 1025 sbitmap_free (visited); 1026 1027 if (include_entry_exit) 1028 { 1029 if (pre_order) 1030 pre_order[pre_order_num] = EXIT_BLOCK; 1031 pre_order_num++; 1032 if (rev_post_order) 1033 rev_post_order[rev_post_order_num--] = ENTRY_BLOCK; 1034 } 1035 1036 return pre_order_num; 1037 } 1038 1039 /* Like pre_and_rev_post_order_compute_fn but operating on the 1040 current function and asserting that all nodes were visited. */ 1041 1042 int 1043 pre_and_rev_post_order_compute (int *pre_order, int *rev_post_order, 1044 bool include_entry_exit) 1045 { 1046 int pre_order_num 1047 = pre_and_rev_post_order_compute_fn (cfun, pre_order, rev_post_order, 1048 include_entry_exit); 1049 if (include_entry_exit) 1050 /* The number of nodes visited should be the number of blocks. */ 1051 gcc_assert (pre_order_num == n_basic_blocks_for_fn (cfun)); 1052 else 1053 /* The number of nodes visited should be the number of blocks minus 1054 the entry and exit blocks which are not visited here. */ 1055 gcc_assert (pre_order_num 1056 == (n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS)); 1057 1058 return pre_order_num; 1059 } 1060 1061 /* Compute the depth first search order on the _reverse_ graph and 1062 store in the array DFS_ORDER, marking the nodes visited in VISITED. 1063 Returns the number of nodes visited. 1064 1065 The computation is split into three pieces: 1066 1067 flow_dfs_compute_reverse_init () creates the necessary data 1068 structures. 1069 1070 flow_dfs_compute_reverse_add_bb () adds a basic block to the data 1071 structures. The block will start the search. 1072 1073 flow_dfs_compute_reverse_execute () continues (or starts) the 1074 search using the block on the top of the stack, stopping when the 1075 stack is empty. 1076 1077 flow_dfs_compute_reverse_finish () destroys the necessary data 1078 structures. 1079 1080 Thus, the user will probably call ..._init(), call ..._add_bb() to 1081 add a beginning basic block to the stack, call ..._execute(), 1082 possibly add another bb to the stack and again call ..._execute(), 1083 ..., and finally call _finish(). */ 1084 1085 /* Initialize the data structures used for depth-first search on the 1086 reverse graph. If INITIALIZE_STACK is nonzero, the exit block is 1087 added to the basic block stack. DATA is the current depth-first 1088 search context. If INITIALIZE_STACK is nonzero, there is an 1089 element on the stack. */ 1090 1091 static void 1092 flow_dfs_compute_reverse_init (depth_first_search_ds *data) 1093 { 1094 /* Allocate stack for back-tracking up CFG. */ 1095 data->stack = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun)); 1096 data->sp = 0; 1097 1098 /* Allocate bitmap to track nodes that have been visited. */ 1099 data->visited_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun)); 1100 1101 /* None of the nodes in the CFG have been visited yet. */ 1102 bitmap_clear (data->visited_blocks); 1103 1104 return; 1105 } 1106 1107 /* Add the specified basic block to the top of the dfs data 1108 structures. When the search continues, it will start at the 1109 block. */ 1110 1111 static void 1112 flow_dfs_compute_reverse_add_bb (depth_first_search_ds *data, basic_block bb) 1113 { 1114 data->stack[data->sp++] = bb; 1115 bitmap_set_bit (data->visited_blocks, bb->index); 1116 } 1117 1118 /* Continue the depth-first search through the reverse graph starting with the 1119 block at the stack's top and ending when the stack is empty. Visited nodes 1120 are marked. Returns an unvisited basic block, or NULL if there is none 1121 available. */ 1122 1123 static basic_block 1124 flow_dfs_compute_reverse_execute (depth_first_search_ds *data, 1125 basic_block last_unvisited) 1126 { 1127 basic_block bb; 1128 edge e; 1129 edge_iterator ei; 1130 1131 while (data->sp > 0) 1132 { 1133 bb = data->stack[--data->sp]; 1134 1135 /* Perform depth-first search on adjacent vertices. */ 1136 FOR_EACH_EDGE (e, ei, bb->preds) 1137 if (!bitmap_bit_p (data->visited_blocks, e->src->index)) 1138 flow_dfs_compute_reverse_add_bb (data, e->src); 1139 } 1140 1141 /* Determine if there are unvisited basic blocks. */ 1142 FOR_BB_BETWEEN (bb, last_unvisited, NULL, prev_bb) 1143 if (!bitmap_bit_p (data->visited_blocks, bb->index)) 1144 return bb; 1145 1146 return NULL; 1147 } 1148 1149 /* Destroy the data structures needed for depth-first search on the 1150 reverse graph. */ 1151 1152 static void 1153 flow_dfs_compute_reverse_finish (depth_first_search_ds *data) 1154 { 1155 free (data->stack); 1156 sbitmap_free (data->visited_blocks); 1157 } 1158 1159 /* Performs dfs search from BB over vertices satisfying PREDICATE; 1160 if REVERSE, go against direction of edges. Returns number of blocks 1161 found and their list in RSLT. RSLT can contain at most RSLT_MAX items. */ 1162 int 1163 dfs_enumerate_from (basic_block bb, int reverse, 1164 bool (*predicate) (const_basic_block, const void *), 1165 basic_block *rslt, int rslt_max, const void *data) 1166 { 1167 basic_block *st, lbb; 1168 int sp = 0, tv = 0; 1169 unsigned size; 1170 1171 /* A bitmap to keep track of visited blocks. Allocating it each time 1172 this function is called is not possible, since dfs_enumerate_from 1173 is often used on small (almost) disjoint parts of cfg (bodies of 1174 loops), and allocating a large sbitmap would lead to quadratic 1175 behavior. */ 1176 static sbitmap visited; 1177 static unsigned v_size; 1178 1179 #define MARK_VISITED(BB) (bitmap_set_bit (visited, (BB)->index)) 1180 #define UNMARK_VISITED(BB) (bitmap_clear_bit (visited, (BB)->index)) 1181 #define VISITED_P(BB) (bitmap_bit_p (visited, (BB)->index)) 1182 1183 /* Resize the VISITED sbitmap if necessary. */ 1184 size = last_basic_block_for_fn (cfun); 1185 if (size < 10) 1186 size = 10; 1187 1188 if (!visited) 1189 { 1190 1191 visited = sbitmap_alloc (size); 1192 bitmap_clear (visited); 1193 v_size = size; 1194 } 1195 else if (v_size < size) 1196 { 1197 /* Ensure that we increase the size of the sbitmap exponentially. */ 1198 if (2 * v_size > size) 1199 size = 2 * v_size; 1200 1201 visited = sbitmap_resize (visited, size, 0); 1202 v_size = size; 1203 } 1204 1205 st = XNEWVEC (basic_block, rslt_max); 1206 rslt[tv++] = st[sp++] = bb; 1207 MARK_VISITED (bb); 1208 while (sp) 1209 { 1210 edge e; 1211 edge_iterator ei; 1212 lbb = st[--sp]; 1213 if (reverse) 1214 { 1215 FOR_EACH_EDGE (e, ei, lbb->preds) 1216 if (!VISITED_P (e->src) && predicate (e->src, data)) 1217 { 1218 gcc_assert (tv != rslt_max); 1219 rslt[tv++] = st[sp++] = e->src; 1220 MARK_VISITED (e->src); 1221 } 1222 } 1223 else 1224 { 1225 FOR_EACH_EDGE (e, ei, lbb->succs) 1226 if (!VISITED_P (e->dest) && predicate (e->dest, data)) 1227 { 1228 gcc_assert (tv != rslt_max); 1229 rslt[tv++] = st[sp++] = e->dest; 1230 MARK_VISITED (e->dest); 1231 } 1232 } 1233 } 1234 free (st); 1235 for (sp = 0; sp < tv; sp++) 1236 UNMARK_VISITED (rslt[sp]); 1237 return tv; 1238 #undef MARK_VISITED 1239 #undef UNMARK_VISITED 1240 #undef VISITED_P 1241 } 1242 1243 1244 /* Compute dominance frontiers, ala Harvey, Ferrante, et al. 1245 1246 This algorithm can be found in Timothy Harvey's PhD thesis, at 1247 http://www.cs.rice.edu/~harv/dissertation.pdf in the section on iterative 1248 dominance algorithms. 1249 1250 First, we identify each join point, j (any node with more than one 1251 incoming edge is a join point). 1252 1253 We then examine each predecessor, p, of j and walk up the dominator tree 1254 starting at p. 1255 1256 We stop the walk when we reach j's immediate dominator - j is in the 1257 dominance frontier of each of the nodes in the walk, except for j's 1258 immediate dominator. Intuitively, all of the rest of j's dominators are 1259 shared by j's predecessors as well. 1260 Since they dominate j, they will not have j in their dominance frontiers. 1261 1262 The number of nodes touched by this algorithm is equal to the size 1263 of the dominance frontiers, no more, no less. 1264 */ 1265 1266 1267 static void 1268 compute_dominance_frontiers_1 (bitmap_head *frontiers) 1269 { 1270 edge p; 1271 edge_iterator ei; 1272 basic_block b; 1273 FOR_EACH_BB_FN (b, cfun) 1274 { 1275 if (EDGE_COUNT (b->preds) >= 2) 1276 { 1277 FOR_EACH_EDGE (p, ei, b->preds) 1278 { 1279 basic_block runner = p->src; 1280 basic_block domsb; 1281 if (runner == ENTRY_BLOCK_PTR_FOR_FN (cfun)) 1282 continue; 1283 1284 domsb = get_immediate_dominator (CDI_DOMINATORS, b); 1285 while (runner != domsb) 1286 { 1287 if (!bitmap_set_bit (&frontiers[runner->index], 1288 b->index)) 1289 break; 1290 runner = get_immediate_dominator (CDI_DOMINATORS, 1291 runner); 1292 } 1293 } 1294 } 1295 } 1296 } 1297 1298 1299 void 1300 compute_dominance_frontiers (bitmap_head *frontiers) 1301 { 1302 timevar_push (TV_DOM_FRONTIERS); 1303 1304 compute_dominance_frontiers_1 (frontiers); 1305 1306 timevar_pop (TV_DOM_FRONTIERS); 1307 } 1308 1309 /* Given a set of blocks with variable definitions (DEF_BLOCKS), 1310 return a bitmap with all the blocks in the iterated dominance 1311 frontier of the blocks in DEF_BLOCKS. DFS contains dominance 1312 frontier information as returned by compute_dominance_frontiers. 1313 1314 The resulting set of blocks are the potential sites where PHI nodes 1315 are needed. The caller is responsible for freeing the memory 1316 allocated for the return value. */ 1317 1318 bitmap 1319 compute_idf (bitmap def_blocks, bitmap_head *dfs) 1320 { 1321 bitmap_iterator bi; 1322 unsigned bb_index, i; 1323 bitmap phi_insertion_points; 1324 1325 /* Each block can appear at most twice on the work-stack. */ 1326 auto_vec<int> work_stack (2 * n_basic_blocks_for_fn (cfun)); 1327 phi_insertion_points = BITMAP_ALLOC (NULL); 1328 1329 /* Seed the work list with all the blocks in DEF_BLOCKS. We use 1330 vec::quick_push here for speed. This is safe because we know that 1331 the number of definition blocks is no greater than the number of 1332 basic blocks, which is the initial capacity of WORK_STACK. */ 1333 EXECUTE_IF_SET_IN_BITMAP (def_blocks, 0, bb_index, bi) 1334 work_stack.quick_push (bb_index); 1335 1336 /* Pop a block off the worklist, add every block that appears in 1337 the original block's DF that we have not already processed to 1338 the worklist. Iterate until the worklist is empty. Blocks 1339 which are added to the worklist are potential sites for 1340 PHI nodes. */ 1341 while (work_stack.length () > 0) 1342 { 1343 bb_index = work_stack.pop (); 1344 1345 /* Since the registration of NEW -> OLD name mappings is done 1346 separately from the call to update_ssa, when updating the SSA 1347 form, the basic blocks where new and/or old names are defined 1348 may have disappeared by CFG cleanup calls. In this case, 1349 we may pull a non-existing block from the work stack. */ 1350 gcc_checking_assert (bb_index 1351 < (unsigned) last_basic_block_for_fn (cfun)); 1352 1353 EXECUTE_IF_AND_COMPL_IN_BITMAP (&dfs[bb_index], phi_insertion_points, 1354 0, i, bi) 1355 { 1356 work_stack.quick_push (i); 1357 bitmap_set_bit (phi_insertion_points, i); 1358 } 1359 } 1360 1361 return phi_insertion_points; 1362 } 1363 1364 /* Intersection and union of preds/succs for sbitmap based data flow 1365 solvers. All four functions defined below take the same arguments: 1366 B is the basic block to perform the operation for. DST is the 1367 target sbitmap, i.e. the result. SRC is an sbitmap vector of size 1368 last_basic_block so that it can be indexed with basic block indices. 1369 DST may be (but does not have to be) SRC[B->index]. */ 1370 1371 /* Set the bitmap DST to the intersection of SRC of successors of 1372 basic block B. */ 1373 1374 void 1375 bitmap_intersection_of_succs (sbitmap dst, sbitmap *src, basic_block b) 1376 { 1377 unsigned int set_size = dst->size; 1378 edge e; 1379 unsigned ix; 1380 1381 gcc_assert (!dst->popcount); 1382 1383 for (e = NULL, ix = 0; ix < EDGE_COUNT (b->succs); ix++) 1384 { 1385 e = EDGE_SUCC (b, ix); 1386 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)) 1387 continue; 1388 1389 bitmap_copy (dst, src[e->dest->index]); 1390 break; 1391 } 1392 1393 if (e == 0) 1394 bitmap_ones (dst); 1395 else 1396 for (++ix; ix < EDGE_COUNT (b->succs); ix++) 1397 { 1398 unsigned int i; 1399 SBITMAP_ELT_TYPE *p, *r; 1400 1401 e = EDGE_SUCC (b, ix); 1402 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)) 1403 continue; 1404 1405 p = src[e->dest->index]->elms; 1406 r = dst->elms; 1407 for (i = 0; i < set_size; i++) 1408 *r++ &= *p++; 1409 } 1410 } 1411 1412 /* Set the bitmap DST to the intersection of SRC of predecessors of 1413 basic block B. */ 1414 1415 void 1416 bitmap_intersection_of_preds (sbitmap dst, sbitmap *src, basic_block b) 1417 { 1418 unsigned int set_size = dst->size; 1419 edge e; 1420 unsigned ix; 1421 1422 gcc_assert (!dst->popcount); 1423 1424 for (e = NULL, ix = 0; ix < EDGE_COUNT (b->preds); ix++) 1425 { 1426 e = EDGE_PRED (b, ix); 1427 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)) 1428 continue; 1429 1430 bitmap_copy (dst, src[e->src->index]); 1431 break; 1432 } 1433 1434 if (e == 0) 1435 bitmap_ones (dst); 1436 else 1437 for (++ix; ix < EDGE_COUNT (b->preds); ix++) 1438 { 1439 unsigned int i; 1440 SBITMAP_ELT_TYPE *p, *r; 1441 1442 e = EDGE_PRED (b, ix); 1443 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)) 1444 continue; 1445 1446 p = src[e->src->index]->elms; 1447 r = dst->elms; 1448 for (i = 0; i < set_size; i++) 1449 *r++ &= *p++; 1450 } 1451 } 1452 1453 /* Set the bitmap DST to the union of SRC of successors of 1454 basic block B. */ 1455 1456 void 1457 bitmap_union_of_succs (sbitmap dst, sbitmap *src, basic_block b) 1458 { 1459 unsigned int set_size = dst->size; 1460 edge e; 1461 unsigned ix; 1462 1463 gcc_assert (!dst->popcount); 1464 1465 for (ix = 0; ix < EDGE_COUNT (b->succs); ix++) 1466 { 1467 e = EDGE_SUCC (b, ix); 1468 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)) 1469 continue; 1470 1471 bitmap_copy (dst, src[e->dest->index]); 1472 break; 1473 } 1474 1475 if (ix == EDGE_COUNT (b->succs)) 1476 bitmap_clear (dst); 1477 else 1478 for (ix++; ix < EDGE_COUNT (b->succs); ix++) 1479 { 1480 unsigned int i; 1481 SBITMAP_ELT_TYPE *p, *r; 1482 1483 e = EDGE_SUCC (b, ix); 1484 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)) 1485 continue; 1486 1487 p = src[e->dest->index]->elms; 1488 r = dst->elms; 1489 for (i = 0; i < set_size; i++) 1490 *r++ |= *p++; 1491 } 1492 } 1493 1494 /* Set the bitmap DST to the union of SRC of predecessors of 1495 basic block B. */ 1496 1497 void 1498 bitmap_union_of_preds (sbitmap dst, sbitmap *src, basic_block b) 1499 { 1500 unsigned int set_size = dst->size; 1501 edge e; 1502 unsigned ix; 1503 1504 gcc_assert (!dst->popcount); 1505 1506 for (ix = 0; ix < EDGE_COUNT (b->preds); ix++) 1507 { 1508 e = EDGE_PRED (b, ix); 1509 if (e->src== ENTRY_BLOCK_PTR_FOR_FN (cfun)) 1510 continue; 1511 1512 bitmap_copy (dst, src[e->src->index]); 1513 break; 1514 } 1515 1516 if (ix == EDGE_COUNT (b->preds)) 1517 bitmap_clear (dst); 1518 else 1519 for (ix++; ix < EDGE_COUNT (b->preds); ix++) 1520 { 1521 unsigned int i; 1522 SBITMAP_ELT_TYPE *p, *r; 1523 1524 e = EDGE_PRED (b, ix); 1525 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)) 1526 continue; 1527 1528 p = src[e->src->index]->elms; 1529 r = dst->elms; 1530 for (i = 0; i < set_size; i++) 1531 *r++ |= *p++; 1532 } 1533 } 1534 1535 /* Returns the list of basic blocks in the function in an order that guarantees 1536 that if a block X has just a single predecessor Y, then Y is after X in the 1537 ordering. */ 1538 1539 basic_block * 1540 single_pred_before_succ_order (void) 1541 { 1542 basic_block x, y; 1543 basic_block *order = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun)); 1544 unsigned n = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; 1545 unsigned np, i; 1546 sbitmap visited = sbitmap_alloc (last_basic_block_for_fn (cfun)); 1547 1548 #define MARK_VISITED(BB) (bitmap_set_bit (visited, (BB)->index)) 1549 #define VISITED_P(BB) (bitmap_bit_p (visited, (BB)->index)) 1550 1551 bitmap_clear (visited); 1552 1553 MARK_VISITED (ENTRY_BLOCK_PTR_FOR_FN (cfun)); 1554 FOR_EACH_BB_FN (x, cfun) 1555 { 1556 if (VISITED_P (x)) 1557 continue; 1558 1559 /* Walk the predecessors of x as long as they have precisely one 1560 predecessor and add them to the list, so that they get stored 1561 after x. */ 1562 for (y = x, np = 1; 1563 single_pred_p (y) && !VISITED_P (single_pred (y)); 1564 y = single_pred (y)) 1565 np++; 1566 for (y = x, i = n - np; 1567 single_pred_p (y) && !VISITED_P (single_pred (y)); 1568 y = single_pred (y), i++) 1569 { 1570 order[i] = y; 1571 MARK_VISITED (y); 1572 } 1573 order[i] = y; 1574 MARK_VISITED (y); 1575 1576 gcc_assert (i == n - 1); 1577 n -= np; 1578 } 1579 1580 sbitmap_free (visited); 1581 gcc_assert (n == 0); 1582 return order; 1583 1584 #undef MARK_VISITED 1585 #undef VISITED_P 1586 } 1587