1 /* Control flow graph manipulation code for GNU compiler. 2 Copyright (C) 1987-2013 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 /* This file contains low level functions to manipulate the CFG and 21 analyze it. All other modules should not transform the data structure 22 directly and use abstraction instead. The file is supposed to be 23 ordered bottom-up and should not contain any code dependent on a 24 particular intermediate language (RTL or trees). 25 26 Available functionality: 27 - Initialization/deallocation 28 init_flow, clear_edges 29 - Low level basic block manipulation 30 alloc_block, expunge_block 31 - Edge manipulation 32 make_edge, make_single_succ_edge, cached_make_edge, remove_edge 33 - Low level edge redirection (without updating instruction chain) 34 redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred 35 - Dumping and debugging 36 dump_flow_info, debug_flow_info, dump_edge_info 37 - Allocation of AUX fields for basic blocks 38 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block 39 - clear_bb_flags 40 - Consistency checking 41 verify_flow_info 42 - Dumping and debugging 43 print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n 44 45 TODO: Document these "Available functionality" functions in the files 46 that implement them. 47 */ 48 49 #include "config.h" 50 #include "system.h" 51 #include "coretypes.h" 52 #include "obstack.h" 53 #include "ggc.h" 54 #include "hash-table.h" 55 #include "alloc-pool.h" 56 #include "tree.h" 57 #include "basic-block.h" 58 #include "df.h" 59 #include "cfgloop.h" /* FIXME: For struct loop. */ 60 #include "dumpfile.h" 61 62 63 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y)) 64 65 /* Called once at initialization time. */ 66 67 void 68 init_flow (struct function *the_fun) 69 { 70 if (!the_fun->cfg) 71 the_fun->cfg = ggc_alloc_cleared_control_flow_graph (); 72 n_edges_for_function (the_fun) = 0; 73 ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun) 74 = ggc_alloc_cleared_basic_block_def (); 75 ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun)->index = ENTRY_BLOCK; 76 EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun) 77 = ggc_alloc_cleared_basic_block_def (); 78 EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun)->index = EXIT_BLOCK; 79 ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun)->next_bb 80 = EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun); 81 EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun)->prev_bb 82 = ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun); 83 } 84 85 /* Helper function for remove_edge and clear_edges. Frees edge structure 86 without actually removing it from the pred/succ arrays. */ 87 88 static void 89 free_edge (edge e) 90 { 91 n_edges--; 92 ggc_free (e); 93 } 94 95 /* Free the memory associated with the edge structures. */ 96 97 void 98 clear_edges (void) 99 { 100 basic_block bb; 101 edge e; 102 edge_iterator ei; 103 104 FOR_EACH_BB (bb) 105 { 106 FOR_EACH_EDGE (e, ei, bb->succs) 107 free_edge (e); 108 vec_safe_truncate (bb->succs, 0); 109 vec_safe_truncate (bb->preds, 0); 110 } 111 112 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs) 113 free_edge (e); 114 vec_safe_truncate (EXIT_BLOCK_PTR->preds, 0); 115 vec_safe_truncate (ENTRY_BLOCK_PTR->succs, 0); 116 117 gcc_assert (!n_edges); 118 } 119 120 /* Allocate memory for basic_block. */ 121 122 basic_block 123 alloc_block (void) 124 { 125 basic_block bb; 126 bb = ggc_alloc_cleared_basic_block_def (); 127 return bb; 128 } 129 130 /* Link block B to chain after AFTER. */ 131 void 132 link_block (basic_block b, basic_block after) 133 { 134 b->next_bb = after->next_bb; 135 b->prev_bb = after; 136 after->next_bb = b; 137 b->next_bb->prev_bb = b; 138 } 139 140 /* Unlink block B from chain. */ 141 void 142 unlink_block (basic_block b) 143 { 144 b->next_bb->prev_bb = b->prev_bb; 145 b->prev_bb->next_bb = b->next_bb; 146 b->prev_bb = NULL; 147 b->next_bb = NULL; 148 } 149 150 /* Sequentially order blocks and compact the arrays. */ 151 void 152 compact_blocks (void) 153 { 154 int i; 155 156 SET_BASIC_BLOCK (ENTRY_BLOCK, ENTRY_BLOCK_PTR); 157 SET_BASIC_BLOCK (EXIT_BLOCK, EXIT_BLOCK_PTR); 158 159 if (df) 160 df_compact_blocks (); 161 else 162 { 163 basic_block bb; 164 165 i = NUM_FIXED_BLOCKS; 166 FOR_EACH_BB (bb) 167 { 168 SET_BASIC_BLOCK (i, bb); 169 bb->index = i; 170 i++; 171 } 172 gcc_assert (i == n_basic_blocks); 173 174 for (; i < last_basic_block; i++) 175 SET_BASIC_BLOCK (i, NULL); 176 } 177 last_basic_block = n_basic_blocks; 178 } 179 180 /* Remove block B from the basic block array. */ 181 182 void 183 expunge_block (basic_block b) 184 { 185 unlink_block (b); 186 SET_BASIC_BLOCK (b->index, NULL); 187 n_basic_blocks--; 188 /* We should be able to ggc_free here, but we are not. 189 The dead SSA_NAMES are left pointing to dead statements that are pointing 190 to dead basic blocks making garbage collector to die. 191 We should be able to release all dead SSA_NAMES and at the same time we should 192 clear out BB pointer of dead statements consistently. */ 193 } 194 195 /* Connect E to E->src. */ 196 197 static inline void 198 connect_src (edge e) 199 { 200 vec_safe_push (e->src->succs, e); 201 df_mark_solutions_dirty (); 202 } 203 204 /* Connect E to E->dest. */ 205 206 static inline void 207 connect_dest (edge e) 208 { 209 basic_block dest = e->dest; 210 vec_safe_push (dest->preds, e); 211 e->dest_idx = EDGE_COUNT (dest->preds) - 1; 212 df_mark_solutions_dirty (); 213 } 214 215 /* Disconnect edge E from E->src. */ 216 217 static inline void 218 disconnect_src (edge e) 219 { 220 basic_block src = e->src; 221 edge_iterator ei; 222 edge tmp; 223 224 for (ei = ei_start (src->succs); (tmp = ei_safe_edge (ei)); ) 225 { 226 if (tmp == e) 227 { 228 src->succs->unordered_remove (ei.index); 229 df_mark_solutions_dirty (); 230 return; 231 } 232 else 233 ei_next (&ei); 234 } 235 236 gcc_unreachable (); 237 } 238 239 /* Disconnect edge E from E->dest. */ 240 241 static inline void 242 disconnect_dest (edge e) 243 { 244 basic_block dest = e->dest; 245 unsigned int dest_idx = e->dest_idx; 246 247 dest->preds->unordered_remove (dest_idx); 248 249 /* If we removed an edge in the middle of the edge vector, we need 250 to update dest_idx of the edge that moved into the "hole". */ 251 if (dest_idx < EDGE_COUNT (dest->preds)) 252 EDGE_PRED (dest, dest_idx)->dest_idx = dest_idx; 253 df_mark_solutions_dirty (); 254 } 255 256 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly 257 created edge. Use this only if you are sure that this edge can't 258 possibly already exist. */ 259 260 edge 261 unchecked_make_edge (basic_block src, basic_block dst, int flags) 262 { 263 edge e; 264 e = ggc_alloc_cleared_edge_def (); 265 n_edges++; 266 267 e->src = src; 268 e->dest = dst; 269 e->flags = flags; 270 271 connect_src (e); 272 connect_dest (e); 273 274 execute_on_growing_pred (e); 275 return e; 276 } 277 278 /* Create an edge connecting SRC and DST with FLAGS optionally using 279 edge cache CACHE. Return the new edge, NULL if already exist. */ 280 281 edge 282 cached_make_edge (sbitmap edge_cache, basic_block src, basic_block dst, int flags) 283 { 284 if (edge_cache == NULL 285 || src == ENTRY_BLOCK_PTR 286 || dst == EXIT_BLOCK_PTR) 287 return make_edge (src, dst, flags); 288 289 /* Does the requested edge already exist? */ 290 if (! bitmap_bit_p (edge_cache, dst->index)) 291 { 292 /* The edge does not exist. Create one and update the 293 cache. */ 294 bitmap_set_bit (edge_cache, dst->index); 295 return unchecked_make_edge (src, dst, flags); 296 } 297 298 /* At this point, we know that the requested edge exists. Adjust 299 flags if necessary. */ 300 if (flags) 301 { 302 edge e = find_edge (src, dst); 303 e->flags |= flags; 304 } 305 306 return NULL; 307 } 308 309 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly 310 created edge or NULL if already exist. */ 311 312 edge 313 make_edge (basic_block src, basic_block dest, int flags) 314 { 315 edge e = find_edge (src, dest); 316 317 /* Make sure we don't add duplicate edges. */ 318 if (e) 319 { 320 e->flags |= flags; 321 return NULL; 322 } 323 324 return unchecked_make_edge (src, dest, flags); 325 } 326 327 /* Create an edge connecting SRC to DEST and set probability by knowing 328 that it is the single edge leaving SRC. */ 329 330 edge 331 make_single_succ_edge (basic_block src, basic_block dest, int flags) 332 { 333 edge e = make_edge (src, dest, flags); 334 335 e->probability = REG_BR_PROB_BASE; 336 e->count = src->count; 337 return e; 338 } 339 340 /* This function will remove an edge from the flow graph. */ 341 342 void 343 remove_edge_raw (edge e) 344 { 345 remove_predictions_associated_with_edge (e); 346 execute_on_shrinking_pred (e); 347 348 disconnect_src (e); 349 disconnect_dest (e); 350 351 free_edge (e); 352 } 353 354 /* Redirect an edge's successor from one block to another. */ 355 356 void 357 redirect_edge_succ (edge e, basic_block new_succ) 358 { 359 execute_on_shrinking_pred (e); 360 361 disconnect_dest (e); 362 363 e->dest = new_succ; 364 365 /* Reconnect the edge to the new successor block. */ 366 connect_dest (e); 367 368 execute_on_growing_pred (e); 369 } 370 371 /* Redirect an edge's predecessor from one block to another. */ 372 373 void 374 redirect_edge_pred (edge e, basic_block new_pred) 375 { 376 disconnect_src (e); 377 378 e->src = new_pred; 379 380 /* Reconnect the edge to the new predecessor block. */ 381 connect_src (e); 382 } 383 384 /* Clear all basic block flags that do not have to be preserved. */ 385 void 386 clear_bb_flags (void) 387 { 388 basic_block bb; 389 390 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb) 391 bb->flags &= BB_FLAGS_TO_PRESERVE; 392 } 393 394 /* Check the consistency of profile information. We can't do that 395 in verify_flow_info, as the counts may get invalid for incompletely 396 solved graphs, later eliminating of conditionals or roundoff errors. 397 It is still practical to have them reported for debugging of simple 398 testcases. */ 399 static void 400 check_bb_profile (basic_block bb, FILE * file, int indent, int flags) 401 { 402 edge e; 403 int sum = 0; 404 gcov_type lsum; 405 edge_iterator ei; 406 struct function *fun = DECL_STRUCT_FUNCTION (current_function_decl); 407 char *s_indent = (char *) alloca ((size_t) indent + 1); 408 memset ((void *) s_indent, ' ', (size_t) indent); 409 s_indent[indent] = '\0'; 410 411 if (profile_status_for_function (fun) == PROFILE_ABSENT) 412 return; 413 414 if (bb != EXIT_BLOCK_PTR_FOR_FUNCTION (fun)) 415 { 416 FOR_EACH_EDGE (e, ei, bb->succs) 417 sum += e->probability; 418 if (EDGE_COUNT (bb->succs) && abs (sum - REG_BR_PROB_BASE) > 100) 419 fprintf (file, "%s%sInvalid sum of outgoing probabilities %.1f%%\n", 420 (flags & TDF_COMMENT) ? ";; " : "", s_indent, 421 sum * 100.0 / REG_BR_PROB_BASE); 422 lsum = 0; 423 FOR_EACH_EDGE (e, ei, bb->succs) 424 lsum += e->count; 425 if (EDGE_COUNT (bb->succs) 426 && (lsum - bb->count > 100 || lsum - bb->count < -100)) 427 fprintf (file, "%s%sInvalid sum of outgoing counts %i, should be %i\n", 428 (flags & TDF_COMMENT) ? ";; " : "", s_indent, 429 (int) lsum, (int) bb->count); 430 } 431 if (bb != ENTRY_BLOCK_PTR_FOR_FUNCTION (fun)) 432 { 433 sum = 0; 434 FOR_EACH_EDGE (e, ei, bb->preds) 435 sum += EDGE_FREQUENCY (e); 436 if (abs (sum - bb->frequency) > 100) 437 fprintf (file, 438 "%s%sInvalid sum of incoming frequencies %i, should be %i\n", 439 (flags & TDF_COMMENT) ? ";; " : "", s_indent, 440 sum, bb->frequency); 441 lsum = 0; 442 FOR_EACH_EDGE (e, ei, bb->preds) 443 lsum += e->count; 444 if (lsum - bb->count > 100 || lsum - bb->count < -100) 445 fprintf (file, "%s%sInvalid sum of incoming counts %i, should be %i\n", 446 (flags & TDF_COMMENT) ? ";; " : "", s_indent, 447 (int) lsum, (int) bb->count); 448 } 449 } 450 451 void 452 dump_edge_info (FILE *file, edge e, int flags, int do_succ) 453 { 454 basic_block side = (do_succ ? e->dest : e->src); 455 bool do_details = false; 456 457 if ((flags & TDF_DETAILS) != 0 458 && (flags & TDF_SLIM) == 0) 459 do_details = true; 460 461 /* ENTRY_BLOCK_PTR/EXIT_BLOCK_PTR depend on cfun. 462 Compare against ENTRY_BLOCK/EXIT_BLOCK to avoid that dependency. */ 463 if (side->index == ENTRY_BLOCK) 464 fputs (" ENTRY", file); 465 else if (side->index == EXIT_BLOCK) 466 fputs (" EXIT", file); 467 else 468 fprintf (file, " %d", side->index); 469 470 if (e->probability && do_details) 471 fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE); 472 473 if (e->count && do_details) 474 { 475 fputs (" count:", file); 476 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count); 477 } 478 479 if (e->flags && do_details) 480 { 481 static const char * const bitnames[] = 482 { 483 #define DEF_EDGE_FLAG(NAME,IDX) #NAME , 484 #include "cfg-flags.def" 485 NULL 486 #undef DEF_EDGE_FLAG 487 }; 488 bool comma = false; 489 int i, flags = e->flags; 490 491 gcc_assert (e->flags <= EDGE_ALL_FLAGS); 492 fputs (" (", file); 493 for (i = 0; flags; i++) 494 if (flags & (1 << i)) 495 { 496 flags &= ~(1 << i); 497 498 if (comma) 499 fputc (',', file); 500 fputs (bitnames[i], file); 501 comma = true; 502 } 503 504 fputc (')', file); 505 } 506 } 507 508 /* Simple routines to easily allocate AUX fields of basic blocks. */ 509 510 static struct obstack block_aux_obstack; 511 static void *first_block_aux_obj = 0; 512 static struct obstack edge_aux_obstack; 513 static void *first_edge_aux_obj = 0; 514 515 /* Allocate a memory block of SIZE as BB->aux. The obstack must 516 be first initialized by alloc_aux_for_blocks. */ 517 518 static void 519 alloc_aux_for_block (basic_block bb, int size) 520 { 521 /* Verify that aux field is clear. */ 522 gcc_assert (!bb->aux && first_block_aux_obj); 523 bb->aux = obstack_alloc (&block_aux_obstack, size); 524 memset (bb->aux, 0, size); 525 } 526 527 /* Initialize the block_aux_obstack and if SIZE is nonzero, call 528 alloc_aux_for_block for each basic block. */ 529 530 void 531 alloc_aux_for_blocks (int size) 532 { 533 static int initialized; 534 535 if (!initialized) 536 { 537 gcc_obstack_init (&block_aux_obstack); 538 initialized = 1; 539 } 540 else 541 /* Check whether AUX data are still allocated. */ 542 gcc_assert (!first_block_aux_obj); 543 544 first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0); 545 if (size) 546 { 547 basic_block bb; 548 549 FOR_ALL_BB (bb) 550 alloc_aux_for_block (bb, size); 551 } 552 } 553 554 /* Clear AUX pointers of all blocks. */ 555 556 void 557 clear_aux_for_blocks (void) 558 { 559 basic_block bb; 560 561 FOR_ALL_BB (bb) 562 bb->aux = NULL; 563 } 564 565 /* Free data allocated in block_aux_obstack and clear AUX pointers 566 of all blocks. */ 567 568 void 569 free_aux_for_blocks (void) 570 { 571 gcc_assert (first_block_aux_obj); 572 obstack_free (&block_aux_obstack, first_block_aux_obj); 573 first_block_aux_obj = NULL; 574 575 clear_aux_for_blocks (); 576 } 577 578 /* Allocate a memory edge of SIZE as E->aux. The obstack must 579 be first initialized by alloc_aux_for_edges. */ 580 581 void 582 alloc_aux_for_edge (edge e, int size) 583 { 584 /* Verify that aux field is clear. */ 585 gcc_assert (!e->aux && first_edge_aux_obj); 586 e->aux = obstack_alloc (&edge_aux_obstack, size); 587 memset (e->aux, 0, size); 588 } 589 590 /* Initialize the edge_aux_obstack and if SIZE is nonzero, call 591 alloc_aux_for_edge for each basic edge. */ 592 593 void 594 alloc_aux_for_edges (int size) 595 { 596 static int initialized; 597 598 if (!initialized) 599 { 600 gcc_obstack_init (&edge_aux_obstack); 601 initialized = 1; 602 } 603 else 604 /* Check whether AUX data are still allocated. */ 605 gcc_assert (!first_edge_aux_obj); 606 607 first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0); 608 if (size) 609 { 610 basic_block bb; 611 612 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb) 613 { 614 edge e; 615 edge_iterator ei; 616 617 FOR_EACH_EDGE (e, ei, bb->succs) 618 alloc_aux_for_edge (e, size); 619 } 620 } 621 } 622 623 /* Clear AUX pointers of all edges. */ 624 625 void 626 clear_aux_for_edges (void) 627 { 628 basic_block bb; 629 edge e; 630 631 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb) 632 { 633 edge_iterator ei; 634 FOR_EACH_EDGE (e, ei, bb->succs) 635 e->aux = NULL; 636 } 637 } 638 639 /* Free data allocated in edge_aux_obstack and clear AUX pointers 640 of all edges. */ 641 642 void 643 free_aux_for_edges (void) 644 { 645 gcc_assert (first_edge_aux_obj); 646 obstack_free (&edge_aux_obstack, first_edge_aux_obj); 647 first_edge_aux_obj = NULL; 648 649 clear_aux_for_edges (); 650 } 651 652 DEBUG_FUNCTION void 653 debug_bb (basic_block bb) 654 { 655 dump_bb (stderr, bb, 0, dump_flags); 656 } 657 658 DEBUG_FUNCTION basic_block 659 debug_bb_n (int n) 660 { 661 basic_block bb = BASIC_BLOCK (n); 662 debug_bb (bb); 663 return bb; 664 } 665 666 /* Dumps cfg related information about basic block BB to OUTF. 667 If HEADER is true, dump things that appear before the instructions 668 contained in BB. If FOOTER is true, dump things that appear after. 669 Flags are the TDF_* masks as documented in dumpfile.h. 670 NB: With TDF_DETAILS, it is assumed that cfun is available, so 671 that maybe_hot_bb_p and probably_never_executed_bb_p don't ICE. */ 672 673 void 674 dump_bb_info (FILE *outf, basic_block bb, int indent, int flags, 675 bool do_header, bool do_footer) 676 { 677 edge_iterator ei; 678 edge e; 679 static const char * const bb_bitnames[] = 680 { 681 #define DEF_BASIC_BLOCK_FLAG(NAME,IDX) #NAME , 682 #include "cfg-flags.def" 683 NULL 684 #undef DEF_BASIC_BLOCK_FLAG 685 }; 686 const unsigned n_bitnames = sizeof (bb_bitnames) / sizeof (char *); 687 bool first; 688 char *s_indent = (char *) alloca ((size_t) indent + 1); 689 memset ((void *) s_indent, ' ', (size_t) indent); 690 s_indent[indent] = '\0'; 691 692 gcc_assert (bb->flags <= BB_ALL_FLAGS); 693 694 if (do_header) 695 { 696 unsigned i; 697 698 if (flags & TDF_COMMENT) 699 fputs (";; ", outf); 700 fprintf (outf, "%sbasic block %d, loop depth %d", 701 s_indent, bb->index, bb_loop_depth (bb)); 702 if (flags & TDF_DETAILS) 703 { 704 struct function *fun = DECL_STRUCT_FUNCTION (current_function_decl); 705 fprintf (outf, ", count " HOST_WIDEST_INT_PRINT_DEC, 706 (HOST_WIDEST_INT) bb->count); 707 fprintf (outf, ", freq %i", bb->frequency); 708 if (maybe_hot_bb_p (fun, bb)) 709 fputs (", maybe hot", outf); 710 if (probably_never_executed_bb_p (fun, bb)) 711 fputs (", probably never executed", outf); 712 } 713 fputc ('\n', outf); 714 if (TDF_DETAILS) 715 check_bb_profile (bb, outf, indent, flags); 716 717 if (flags & TDF_DETAILS) 718 { 719 if (flags & TDF_COMMENT) 720 fputs (";; ", outf); 721 fprintf (outf, "%s prev block ", s_indent); 722 if (bb->prev_bb) 723 fprintf (outf, "%d", bb->prev_bb->index); 724 else 725 fprintf (outf, "(nil)"); 726 fprintf (outf, ", next block "); 727 if (bb->next_bb) 728 fprintf (outf, "%d", bb->next_bb->index); 729 else 730 fprintf (outf, "(nil)"); 731 732 fputs (", flags:", outf); 733 first = true; 734 for (i = 0; i < n_bitnames; i++) 735 if (bb->flags & (1 << i)) 736 { 737 if (first) 738 fputs (" (", outf); 739 else 740 fputs (", ", outf); 741 first = false; 742 fputs (bb_bitnames[i], outf); 743 } 744 if (!first) 745 fputc (')', outf); 746 fputc ('\n', outf); 747 } 748 749 if (flags & TDF_COMMENT) 750 fputs (";; ", outf); 751 fprintf (outf, "%s pred: ", s_indent); 752 first = true; 753 FOR_EACH_EDGE (e, ei, bb->preds) 754 { 755 if (! first) 756 { 757 if (flags & TDF_COMMENT) 758 fputs (";; ", outf); 759 fprintf (outf, "%s ", s_indent); 760 } 761 first = false; 762 dump_edge_info (outf, e, flags, 0); 763 fputc ('\n', outf); 764 } 765 if (first) 766 fputc ('\n', outf); 767 } 768 769 if (do_footer) 770 { 771 if (flags & TDF_COMMENT) 772 fputs (";; ", outf); 773 fprintf (outf, "%s succ: ", s_indent); 774 first = true; 775 FOR_EACH_EDGE (e, ei, bb->succs) 776 { 777 if (! first) 778 { 779 if (flags & TDF_COMMENT) 780 fputs (";; ", outf); 781 fprintf (outf, "%s ", s_indent); 782 } 783 first = false; 784 dump_edge_info (outf, e, flags, 1); 785 fputc ('\n', outf); 786 } 787 if (first) 788 fputc ('\n', outf); 789 } 790 } 791 792 /* Dumps a brief description of cfg to FILE. */ 793 794 void 795 brief_dump_cfg (FILE *file, int flags) 796 { 797 basic_block bb; 798 799 FOR_EACH_BB (bb) 800 { 801 dump_bb_info (file, bb, 0, 802 flags & (TDF_COMMENT | TDF_DETAILS), 803 true, true); 804 } 805 } 806 807 /* An edge originally destinating BB of FREQUENCY and COUNT has been proved to 808 leave the block by TAKEN_EDGE. Update profile of BB such that edge E can be 809 redirected to destination of TAKEN_EDGE. 810 811 This function may leave the profile inconsistent in the case TAKEN_EDGE 812 frequency or count is believed to be lower than FREQUENCY or COUNT 813 respectively. */ 814 void 815 update_bb_profile_for_threading (basic_block bb, int edge_frequency, 816 gcov_type count, edge taken_edge) 817 { 818 edge c; 819 int prob; 820 edge_iterator ei; 821 822 bb->count -= count; 823 if (bb->count < 0) 824 { 825 if (dump_file) 826 fprintf (dump_file, "bb %i count became negative after threading", 827 bb->index); 828 bb->count = 0; 829 } 830 831 /* Compute the probability of TAKEN_EDGE being reached via threaded edge. 832 Watch for overflows. */ 833 if (bb->frequency) 834 prob = edge_frequency * REG_BR_PROB_BASE / bb->frequency; 835 else 836 prob = 0; 837 if (prob > taken_edge->probability) 838 { 839 if (dump_file) 840 fprintf (dump_file, "Jump threading proved probability of edge " 841 "%i->%i too small (it is %i, should be %i).\n", 842 taken_edge->src->index, taken_edge->dest->index, 843 taken_edge->probability, prob); 844 prob = taken_edge->probability; 845 } 846 847 /* Now rescale the probabilities. */ 848 taken_edge->probability -= prob; 849 prob = REG_BR_PROB_BASE - prob; 850 bb->frequency -= edge_frequency; 851 if (bb->frequency < 0) 852 bb->frequency = 0; 853 if (prob <= 0) 854 { 855 if (dump_file) 856 fprintf (dump_file, "Edge frequencies of bb %i has been reset, " 857 "frequency of block should end up being 0, it is %i\n", 858 bb->index, bb->frequency); 859 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE; 860 ei = ei_start (bb->succs); 861 ei_next (&ei); 862 for (; (c = ei_safe_edge (ei)); ei_next (&ei)) 863 c->probability = 0; 864 } 865 else if (prob != REG_BR_PROB_BASE) 866 { 867 int scale = RDIV (65536 * REG_BR_PROB_BASE, prob); 868 869 FOR_EACH_EDGE (c, ei, bb->succs) 870 { 871 /* Protect from overflow due to additional scaling. */ 872 if (c->probability > prob) 873 c->probability = REG_BR_PROB_BASE; 874 else 875 { 876 c->probability = RDIV (c->probability * scale, 65536); 877 if (c->probability > REG_BR_PROB_BASE) 878 c->probability = REG_BR_PROB_BASE; 879 } 880 } 881 } 882 883 gcc_assert (bb == taken_edge->src); 884 taken_edge->count -= count; 885 if (taken_edge->count < 0) 886 { 887 if (dump_file) 888 fprintf (dump_file, "edge %i->%i count became negative after threading", 889 taken_edge->src->index, taken_edge->dest->index); 890 taken_edge->count = 0; 891 } 892 } 893 894 /* Multiply all frequencies of basic blocks in array BBS of length NBBS 895 by NUM/DEN, in int arithmetic. May lose some accuracy. */ 896 void 897 scale_bbs_frequencies_int (basic_block *bbs, int nbbs, int num, int den) 898 { 899 int i; 900 edge e; 901 if (num < 0) 902 num = 0; 903 904 /* Scale NUM and DEN to avoid overflows. Frequencies are in order of 905 10^4, if we make DEN <= 10^3, we can afford to upscale by 100 906 and still safely fit in int during calculations. */ 907 if (den > 1000) 908 { 909 if (num > 1000000) 910 return; 911 912 num = RDIV (1000 * num, den); 913 den = 1000; 914 } 915 if (num > 100 * den) 916 return; 917 918 for (i = 0; i < nbbs; i++) 919 { 920 edge_iterator ei; 921 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den); 922 /* Make sure the frequencies do not grow over BB_FREQ_MAX. */ 923 if (bbs[i]->frequency > BB_FREQ_MAX) 924 bbs[i]->frequency = BB_FREQ_MAX; 925 bbs[i]->count = RDIV (bbs[i]->count * num, den); 926 FOR_EACH_EDGE (e, ei, bbs[i]->succs) 927 e->count = RDIV (e->count * num, den); 928 } 929 } 930 931 /* numbers smaller than this value are safe to multiply without getting 932 64bit overflow. */ 933 #define MAX_SAFE_MULTIPLIER (1 << (sizeof (HOST_WIDEST_INT) * 4 - 1)) 934 935 /* Multiply all frequencies of basic blocks in array BBS of length NBBS 936 by NUM/DEN, in gcov_type arithmetic. More accurate than previous 937 function but considerably slower. */ 938 void 939 scale_bbs_frequencies_gcov_type (basic_block *bbs, int nbbs, gcov_type num, 940 gcov_type den) 941 { 942 int i; 943 edge e; 944 gcov_type fraction = RDIV (num * 65536, den); 945 946 gcc_assert (fraction >= 0); 947 948 if (num < MAX_SAFE_MULTIPLIER) 949 for (i = 0; i < nbbs; i++) 950 { 951 edge_iterator ei; 952 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den); 953 if (bbs[i]->count <= MAX_SAFE_MULTIPLIER) 954 bbs[i]->count = RDIV (bbs[i]->count * num, den); 955 else 956 bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536); 957 FOR_EACH_EDGE (e, ei, bbs[i]->succs) 958 if (bbs[i]->count <= MAX_SAFE_MULTIPLIER) 959 e->count = RDIV (e->count * num, den); 960 else 961 e->count = RDIV (e->count * fraction, 65536); 962 } 963 else 964 for (i = 0; i < nbbs; i++) 965 { 966 edge_iterator ei; 967 if (sizeof (gcov_type) > sizeof (int)) 968 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den); 969 else 970 bbs[i]->frequency = RDIV (bbs[i]->frequency * fraction, 65536); 971 bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536); 972 FOR_EACH_EDGE (e, ei, bbs[i]->succs) 973 e->count = RDIV (e->count * fraction, 65536); 974 } 975 } 976 977 /* Helper types for hash tables. */ 978 979 struct htab_bb_copy_original_entry 980 { 981 /* Block we are attaching info to. */ 982 int index1; 983 /* Index of original or copy (depending on the hashtable) */ 984 int index2; 985 }; 986 987 struct bb_copy_hasher : typed_noop_remove <htab_bb_copy_original_entry> 988 { 989 typedef htab_bb_copy_original_entry value_type; 990 typedef htab_bb_copy_original_entry compare_type; 991 static inline hashval_t hash (const value_type *); 992 static inline bool equal (const value_type *existing, 993 const compare_type * candidate); 994 }; 995 996 inline hashval_t 997 bb_copy_hasher::hash (const value_type *data) 998 { 999 return data->index1; 1000 } 1001 1002 inline bool 1003 bb_copy_hasher::equal (const value_type *data, const compare_type *data2) 1004 { 1005 return data->index1 == data2->index1; 1006 } 1007 1008 /* Data structures used to maintain mapping between basic blocks and 1009 copies. */ 1010 static hash_table <bb_copy_hasher> bb_original; 1011 static hash_table <bb_copy_hasher> bb_copy; 1012 1013 /* And between loops and copies. */ 1014 static hash_table <bb_copy_hasher> loop_copy; 1015 static alloc_pool original_copy_bb_pool; 1016 1017 1018 /* Initialize the data structures to maintain mapping between blocks 1019 and its copies. */ 1020 void 1021 initialize_original_copy_tables (void) 1022 { 1023 gcc_assert (!original_copy_bb_pool); 1024 original_copy_bb_pool 1025 = create_alloc_pool ("original_copy", 1026 sizeof (struct htab_bb_copy_original_entry), 10); 1027 bb_original.create (10); 1028 bb_copy.create (10); 1029 loop_copy.create (10); 1030 } 1031 1032 /* Free the data structures to maintain mapping between blocks and 1033 its copies. */ 1034 void 1035 free_original_copy_tables (void) 1036 { 1037 gcc_assert (original_copy_bb_pool); 1038 bb_copy.dispose (); 1039 bb_original.dispose (); 1040 loop_copy.dispose (); 1041 free_alloc_pool (original_copy_bb_pool); 1042 original_copy_bb_pool = NULL; 1043 } 1044 1045 /* Removes the value associated with OBJ from table TAB. */ 1046 1047 static void 1048 copy_original_table_clear (hash_table <bb_copy_hasher> tab, unsigned obj) 1049 { 1050 htab_bb_copy_original_entry **slot; 1051 struct htab_bb_copy_original_entry key, *elt; 1052 1053 if (!original_copy_bb_pool) 1054 return; 1055 1056 key.index1 = obj; 1057 slot = tab.find_slot (&key, NO_INSERT); 1058 if (!slot) 1059 return; 1060 1061 elt = *slot; 1062 tab.clear_slot (slot); 1063 pool_free (original_copy_bb_pool, elt); 1064 } 1065 1066 /* Sets the value associated with OBJ in table TAB to VAL. 1067 Do nothing when data structures are not initialized. */ 1068 1069 static void 1070 copy_original_table_set (hash_table <bb_copy_hasher> tab, 1071 unsigned obj, unsigned val) 1072 { 1073 struct htab_bb_copy_original_entry **slot; 1074 struct htab_bb_copy_original_entry key; 1075 1076 if (!original_copy_bb_pool) 1077 return; 1078 1079 key.index1 = obj; 1080 slot = tab.find_slot (&key, INSERT); 1081 if (!*slot) 1082 { 1083 *slot = (struct htab_bb_copy_original_entry *) 1084 pool_alloc (original_copy_bb_pool); 1085 (*slot)->index1 = obj; 1086 } 1087 (*slot)->index2 = val; 1088 } 1089 1090 /* Set original for basic block. Do nothing when data structures are not 1091 initialized so passes not needing this don't need to care. */ 1092 void 1093 set_bb_original (basic_block bb, basic_block original) 1094 { 1095 copy_original_table_set (bb_original, bb->index, original->index); 1096 } 1097 1098 /* Get the original basic block. */ 1099 basic_block 1100 get_bb_original (basic_block bb) 1101 { 1102 struct htab_bb_copy_original_entry *entry; 1103 struct htab_bb_copy_original_entry key; 1104 1105 gcc_assert (original_copy_bb_pool); 1106 1107 key.index1 = bb->index; 1108 entry = bb_original.find (&key); 1109 if (entry) 1110 return BASIC_BLOCK (entry->index2); 1111 else 1112 return NULL; 1113 } 1114 1115 /* Set copy for basic block. Do nothing when data structures are not 1116 initialized so passes not needing this don't need to care. */ 1117 void 1118 set_bb_copy (basic_block bb, basic_block copy) 1119 { 1120 copy_original_table_set (bb_copy, bb->index, copy->index); 1121 } 1122 1123 /* Get the copy of basic block. */ 1124 basic_block 1125 get_bb_copy (basic_block bb) 1126 { 1127 struct htab_bb_copy_original_entry *entry; 1128 struct htab_bb_copy_original_entry key; 1129 1130 gcc_assert (original_copy_bb_pool); 1131 1132 key.index1 = bb->index; 1133 entry = bb_copy.find (&key); 1134 if (entry) 1135 return BASIC_BLOCK (entry->index2); 1136 else 1137 return NULL; 1138 } 1139 1140 /* Set copy for LOOP to COPY. Do nothing when data structures are not 1141 initialized so passes not needing this don't need to care. */ 1142 1143 void 1144 set_loop_copy (struct loop *loop, struct loop *copy) 1145 { 1146 if (!copy) 1147 copy_original_table_clear (loop_copy, loop->num); 1148 else 1149 copy_original_table_set (loop_copy, loop->num, copy->num); 1150 } 1151 1152 /* Get the copy of LOOP. */ 1153 1154 struct loop * 1155 get_loop_copy (struct loop *loop) 1156 { 1157 struct htab_bb_copy_original_entry *entry; 1158 struct htab_bb_copy_original_entry key; 1159 1160 gcc_assert (original_copy_bb_pool); 1161 1162 key.index1 = loop->num; 1163 entry = loop_copy.find (&key); 1164 if (entry) 1165 return get_loop (entry->index2); 1166 else 1167 return NULL; 1168 } 1169