xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/calls.c (revision 413d532bcc3f62d122e56d92e13ac64825a40baf)
1 /* Convert function calls to rtl insns, for GNU C compiler.
2    Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3    1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4    Free Software Foundation, Inc.
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12 
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "flags.h"
30 #include "expr.h"
31 #include "optabs.h"
32 #include "libfuncs.h"
33 #include "function.h"
34 #include "regs.h"
35 #include "toplev.h"
36 #include "output.h"
37 #include "tm_p.h"
38 #include "timevar.h"
39 #include "sbitmap.h"
40 #include "langhooks.h"
41 #include "target.h"
42 #include "debug.h"
43 #include "cgraph.h"
44 #include "except.h"
45 #include "dbgcnt.h"
46 #include "tree-flow.h"
47 
48 /* Like PREFERRED_STACK_BOUNDARY but in units of bytes, not bits.  */
49 #define STACK_BYTES (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)
50 
51 /* Data structure and subroutines used within expand_call.  */
52 
53 struct arg_data
54 {
55   /* Tree node for this argument.  */
56   tree tree_value;
57   /* Mode for value; TYPE_MODE unless promoted.  */
58   enum machine_mode mode;
59   /* Current RTL value for argument, or 0 if it isn't precomputed.  */
60   rtx value;
61   /* Initially-compute RTL value for argument; only for const functions.  */
62   rtx initial_value;
63   /* Register to pass this argument in, 0 if passed on stack, or an
64      PARALLEL if the arg is to be copied into multiple non-contiguous
65      registers.  */
66   rtx reg;
67   /* Register to pass this argument in when generating tail call sequence.
68      This is not the same register as for normal calls on machines with
69      register windows.  */
70   rtx tail_call_reg;
71   /* If REG is a PARALLEL, this is a copy of VALUE pulled into the correct
72      form for emit_group_move.  */
73   rtx parallel_value;
74   /* If REG was promoted from the actual mode of the argument expression,
75      indicates whether the promotion is sign- or zero-extended.  */
76   int unsignedp;
77   /* Number of bytes to put in registers.  0 means put the whole arg
78      in registers.  Also 0 if not passed in registers.  */
79   int partial;
80   /* Nonzero if argument must be passed on stack.
81      Note that some arguments may be passed on the stack
82      even though pass_on_stack is zero, just because FUNCTION_ARG says so.
83      pass_on_stack identifies arguments that *cannot* go in registers.  */
84   int pass_on_stack;
85   /* Some fields packaged up for locate_and_pad_parm.  */
86   struct locate_and_pad_arg_data locate;
87   /* Location on the stack at which parameter should be stored.  The store
88      has already been done if STACK == VALUE.  */
89   rtx stack;
90   /* Location on the stack of the start of this argument slot.  This can
91      differ from STACK if this arg pads downward.  This location is known
92      to be aligned to FUNCTION_ARG_BOUNDARY.  */
93   rtx stack_slot;
94   /* Place that this stack area has been saved, if needed.  */
95   rtx save_area;
96   /* If an argument's alignment does not permit direct copying into registers,
97      copy in smaller-sized pieces into pseudos.  These are stored in a
98      block pointed to by this field.  The next field says how many
99      word-sized pseudos we made.  */
100   rtx *aligned_regs;
101   int n_aligned_regs;
102 };
103 
104 /* A vector of one char per byte of stack space.  A byte if nonzero if
105    the corresponding stack location has been used.
106    This vector is used to prevent a function call within an argument from
107    clobbering any stack already set up.  */
108 static char *stack_usage_map;
109 
110 /* Size of STACK_USAGE_MAP.  */
111 static int highest_outgoing_arg_in_use;
112 
113 /* A bitmap of virtual-incoming stack space.  Bit is set if the corresponding
114    stack location's tail call argument has been already stored into the stack.
115    This bitmap is used to prevent sibling call optimization if function tries
116    to use parent's incoming argument slots when they have been already
117    overwritten with tail call arguments.  */
118 static sbitmap stored_args_map;
119 
120 /* stack_arg_under_construction is nonzero when an argument may be
121    initialized with a constructor call (including a C function that
122    returns a BLKmode struct) and expand_call must take special action
123    to make sure the object being constructed does not overlap the
124    argument list for the constructor call.  */
125 static int stack_arg_under_construction;
126 
127 static void emit_call_1 (rtx, tree, tree, tree, HOST_WIDE_INT, HOST_WIDE_INT,
128 			 HOST_WIDE_INT, rtx, rtx, int, rtx, int,
129 			 CUMULATIVE_ARGS *);
130 static void precompute_register_parameters (int, struct arg_data *, int *);
131 static int store_one_arg (struct arg_data *, rtx, int, int, int);
132 static void store_unaligned_arguments_into_pseudos (struct arg_data *, int);
133 static int finalize_must_preallocate (int, int, struct arg_data *,
134 				      struct args_size *);
135 static void precompute_arguments (int, struct arg_data *);
136 static int compute_argument_block_size (int, struct args_size *, tree, tree, int);
137 static void initialize_argument_information (int, struct arg_data *,
138 					     struct args_size *, int,
139 					     tree, tree,
140 					     tree, tree, CUMULATIVE_ARGS *, int,
141 					     rtx *, int *, int *, int *,
142 					     bool *, bool);
143 static void compute_argument_addresses (struct arg_data *, rtx, int);
144 static rtx rtx_for_function_call (tree, tree);
145 static void load_register_parameters (struct arg_data *, int, rtx *, int,
146 				      int, int *);
147 static rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
148 				      enum machine_mode, int, va_list);
149 static int special_function_p (const_tree, int);
150 static int check_sibcall_argument_overlap_1 (rtx);
151 static int check_sibcall_argument_overlap (rtx, struct arg_data *, int);
152 
153 static int combine_pending_stack_adjustment_and_call (int, struct args_size *,
154 						      unsigned int);
155 static tree split_complex_types (tree);
156 
157 #ifdef REG_PARM_STACK_SPACE
158 static rtx save_fixed_argument_area (int, rtx, int *, int *);
159 static void restore_fixed_argument_area (rtx, rtx, int, int);
160 #endif
161 
162 /* Force FUNEXP into a form suitable for the address of a CALL,
163    and return that as an rtx.  Also load the static chain register
164    if FNDECL is a nested function.
165 
166    CALL_FUSAGE points to a variable holding the prospective
167    CALL_INSN_FUNCTION_USAGE information.  */
168 
169 rtx
170 prepare_call_address (tree fndecl, rtx funexp, rtx static_chain_value,
171 		      rtx *call_fusage, int reg_parm_seen, int sibcallp)
172 {
173   /* Make a valid memory address and copy constants through pseudo-regs,
174      but not for a constant address if -fno-function-cse.  */
175   if (GET_CODE (funexp) != SYMBOL_REF)
176     /* If we are using registers for parameters, force the
177        function address into a register now.  */
178     funexp = ((SMALL_REGISTER_CLASSES && reg_parm_seen)
179 	      ? force_not_mem (memory_address (FUNCTION_MODE, funexp))
180 	      : memory_address (FUNCTION_MODE, funexp));
181   else if (! sibcallp)
182     {
183 #ifndef NO_FUNCTION_CSE
184       if (optimize && ! flag_no_function_cse)
185 	funexp = force_reg (Pmode, funexp);
186 #endif
187     }
188 
189   if (static_chain_value != 0)
190     {
191       rtx chain;
192 
193       gcc_assert (fndecl);
194       chain = targetm.calls.static_chain (fndecl, false);
195       static_chain_value = convert_memory_address (Pmode, static_chain_value);
196 
197       emit_move_insn (chain, static_chain_value);
198       if (REG_P (chain))
199 	use_reg (call_fusage, chain);
200     }
201 
202   return funexp;
203 }
204 
205 /* Generate instructions to call function FUNEXP,
206    and optionally pop the results.
207    The CALL_INSN is the first insn generated.
208 
209    FNDECL is the declaration node of the function.  This is given to the
210    macro RETURN_POPS_ARGS to determine whether this function pops its own args.
211 
212    FUNTYPE is the data type of the function.  This is given to the macro
213    RETURN_POPS_ARGS to determine whether this function pops its own args.
214    We used to allow an identifier for library functions, but that doesn't
215    work when the return type is an aggregate type and the calling convention
216    says that the pointer to this aggregate is to be popped by the callee.
217 
218    STACK_SIZE is the number of bytes of arguments on the stack,
219    ROUNDED_STACK_SIZE is that number rounded up to
220    PREFERRED_STACK_BOUNDARY; zero if the size is variable.  This is
221    both to put into the call insn and to generate explicit popping
222    code if necessary.
223 
224    STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value.
225    It is zero if this call doesn't want a structure value.
226 
227    NEXT_ARG_REG is the rtx that results from executing
228      FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1)
229    just after all the args have had their registers assigned.
230    This could be whatever you like, but normally it is the first
231    arg-register beyond those used for args in this call,
232    or 0 if all the arg-registers are used in this call.
233    It is passed on to `gen_call' so you can put this info in the call insn.
234 
235    VALREG is a hard register in which a value is returned,
236    or 0 if the call does not return a value.
237 
238    OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before
239    the args to this call were processed.
240    We restore `inhibit_defer_pop' to that value.
241 
242    CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that
243    denote registers used by the called function.  */
244 
245 static void
246 emit_call_1 (rtx funexp, tree fntree ATTRIBUTE_UNUSED, tree fndecl ATTRIBUTE_UNUSED,
247 	     tree funtype ATTRIBUTE_UNUSED,
248 	     HOST_WIDE_INT stack_size ATTRIBUTE_UNUSED,
249 	     HOST_WIDE_INT rounded_stack_size,
250 	     HOST_WIDE_INT struct_value_size ATTRIBUTE_UNUSED,
251 	     rtx next_arg_reg ATTRIBUTE_UNUSED, rtx valreg,
252 	     int old_inhibit_defer_pop, rtx call_fusage, int ecf_flags,
253 	     CUMULATIVE_ARGS *args_so_far ATTRIBUTE_UNUSED)
254 {
255   rtx rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
256   rtx call_insn;
257   int already_popped = 0;
258   HOST_WIDE_INT n_popped = RETURN_POPS_ARGS (fndecl, funtype, stack_size);
259 
260 #ifdef CALL_POPS_ARGS
261   n_popped += CALL_POPS_ARGS (* args_so_far);
262 #endif
263 
264   /* Ensure address is valid.  SYMBOL_REF is already valid, so no need,
265      and we don't want to load it into a register as an optimization,
266      because prepare_call_address already did it if it should be done.  */
267   if (GET_CODE (funexp) != SYMBOL_REF)
268     funexp = memory_address (FUNCTION_MODE, funexp);
269 
270 #if defined (HAVE_sibcall_pop) && defined (HAVE_sibcall_value_pop)
271   if ((ecf_flags & ECF_SIBCALL)
272       && HAVE_sibcall_pop && HAVE_sibcall_value_pop
273       && (n_popped > 0 || stack_size == 0))
274     {
275       rtx n_pop = GEN_INT (n_popped);
276       rtx pat;
277 
278       /* If this subroutine pops its own args, record that in the call insn
279 	 if possible, for the sake of frame pointer elimination.  */
280 
281       if (valreg)
282 	pat = GEN_SIBCALL_VALUE_POP (valreg,
283 				     gen_rtx_MEM (FUNCTION_MODE, funexp),
284 				     rounded_stack_size_rtx, next_arg_reg,
285 				     n_pop);
286       else
287 	pat = GEN_SIBCALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp),
288 			       rounded_stack_size_rtx, next_arg_reg, n_pop);
289 
290       emit_call_insn (pat);
291       already_popped = 1;
292     }
293   else
294 #endif
295 
296 #if defined (HAVE_call_pop) && defined (HAVE_call_value_pop)
297   /* If the target has "call" or "call_value" insns, then prefer them
298      if no arguments are actually popped.  If the target does not have
299      "call" or "call_value" insns, then we must use the popping versions
300      even if the call has no arguments to pop.  */
301 #if defined (HAVE_call) && defined (HAVE_call_value)
302   if (HAVE_call && HAVE_call_value && HAVE_call_pop && HAVE_call_value_pop
303       && n_popped > 0)
304 #else
305   if (HAVE_call_pop && HAVE_call_value_pop)
306 #endif
307     {
308       rtx n_pop = GEN_INT (n_popped);
309       rtx pat;
310 
311       /* If this subroutine pops its own args, record that in the call insn
312 	 if possible, for the sake of frame pointer elimination.  */
313 
314       if (valreg)
315 	pat = GEN_CALL_VALUE_POP (valreg,
316 				  gen_rtx_MEM (FUNCTION_MODE, funexp),
317 				  rounded_stack_size_rtx, next_arg_reg, n_pop);
318       else
319 	pat = GEN_CALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp),
320 			    rounded_stack_size_rtx, next_arg_reg, n_pop);
321 
322       emit_call_insn (pat);
323       already_popped = 1;
324     }
325   else
326 #endif
327 
328 #if defined (HAVE_sibcall) && defined (HAVE_sibcall_value)
329   if ((ecf_flags & ECF_SIBCALL)
330       && HAVE_sibcall && HAVE_sibcall_value)
331     {
332       if (valreg)
333 	emit_call_insn (GEN_SIBCALL_VALUE (valreg,
334 					   gen_rtx_MEM (FUNCTION_MODE, funexp),
335 					   rounded_stack_size_rtx,
336 					   next_arg_reg, NULL_RTX));
337       else
338 	emit_call_insn (GEN_SIBCALL (gen_rtx_MEM (FUNCTION_MODE, funexp),
339 				     rounded_stack_size_rtx, next_arg_reg,
340 				     GEN_INT (struct_value_size)));
341     }
342   else
343 #endif
344 
345 #if defined (HAVE_call) && defined (HAVE_call_value)
346   if (HAVE_call && HAVE_call_value)
347     {
348       if (valreg)
349 	emit_call_insn (GEN_CALL_VALUE (valreg,
350 					gen_rtx_MEM (FUNCTION_MODE, funexp),
351 					rounded_stack_size_rtx, next_arg_reg,
352 					NULL_RTX));
353       else
354 	emit_call_insn (GEN_CALL (gen_rtx_MEM (FUNCTION_MODE, funexp),
355 				  rounded_stack_size_rtx, next_arg_reg,
356 				  GEN_INT (struct_value_size)));
357     }
358   else
359 #endif
360     gcc_unreachable ();
361 
362   /* Find the call we just emitted.  */
363   call_insn = last_call_insn ();
364 
365   /* Put the register usage information there.  */
366   add_function_usage_to (call_insn, call_fusage);
367 
368   /* If this is a const call, then set the insn's unchanging bit.  */
369   if (ecf_flags & ECF_CONST)
370     RTL_CONST_CALL_P (call_insn) = 1;
371 
372   /* If this is a pure call, then set the insn's unchanging bit.  */
373   if (ecf_flags & ECF_PURE)
374     RTL_PURE_CALL_P (call_insn) = 1;
375 
376   /* If this is a const call, then set the insn's unchanging bit.  */
377   if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
378     RTL_LOOPING_CONST_OR_PURE_CALL_P (call_insn) = 1;
379 
380   /* Create a nothrow REG_EH_REGION note, if needed.  */
381   make_reg_eh_region_note (call_insn, ecf_flags, 0);
382 
383   if (ecf_flags & ECF_NORETURN)
384     add_reg_note (call_insn, REG_NORETURN, const0_rtx);
385 
386   if (ecf_flags & ECF_RETURNS_TWICE)
387     {
388       add_reg_note (call_insn, REG_SETJMP, const0_rtx);
389       cfun->calls_setjmp = 1;
390     }
391 
392   SIBLING_CALL_P (call_insn) = ((ecf_flags & ECF_SIBCALL) != 0);
393 
394   /* Record debug information for virtual calls.  */
395   if (flag_enable_icf_debug && fndecl == NULL)
396     (*debug_hooks->virtual_call_token) (CALL_EXPR_FN (fntree),
397                                         INSN_UID (call_insn));
398 
399   /* Restore this now, so that we do defer pops for this call's args
400      if the context of the call as a whole permits.  */
401   inhibit_defer_pop = old_inhibit_defer_pop;
402 
403   if (n_popped > 0)
404     {
405       if (!already_popped)
406 	CALL_INSN_FUNCTION_USAGE (call_insn)
407 	  = gen_rtx_EXPR_LIST (VOIDmode,
408 			       gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx),
409 			       CALL_INSN_FUNCTION_USAGE (call_insn));
410       rounded_stack_size -= n_popped;
411       rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
412       stack_pointer_delta -= n_popped;
413 
414       /* If popup is needed, stack realign must use DRAP  */
415       if (SUPPORTS_STACK_ALIGNMENT)
416         crtl->need_drap = true;
417     }
418 
419   if (!ACCUMULATE_OUTGOING_ARGS)
420     {
421       /* If returning from the subroutine does not automatically pop the args,
422 	 we need an instruction to pop them sooner or later.
423 	 Perhaps do it now; perhaps just record how much space to pop later.
424 
425 	 If returning from the subroutine does pop the args, indicate that the
426 	 stack pointer will be changed.  */
427 
428       if (rounded_stack_size != 0)
429 	{
430 	  if (ecf_flags & ECF_NORETURN)
431 	    /* Just pretend we did the pop.  */
432 	    stack_pointer_delta -= rounded_stack_size;
433 	  else if (flag_defer_pop && inhibit_defer_pop == 0
434 	      && ! (ecf_flags & (ECF_CONST | ECF_PURE)))
435 	    pending_stack_adjust += rounded_stack_size;
436 	  else
437 	    adjust_stack (rounded_stack_size_rtx);
438 	}
439     }
440   /* When we accumulate outgoing args, we must avoid any stack manipulations.
441      Restore the stack pointer to its original value now.  Usually
442      ACCUMULATE_OUTGOING_ARGS targets don't get here, but there are exceptions.
443      On  i386 ACCUMULATE_OUTGOING_ARGS can be enabled on demand, and
444      popping variants of functions exist as well.
445 
446      ??? We may optimize similar to defer_pop above, but it is
447      probably not worthwhile.
448 
449      ??? It will be worthwhile to enable combine_stack_adjustments even for
450      such machines.  */
451   else if (n_popped)
452     anti_adjust_stack (GEN_INT (n_popped));
453 }
454 
455 /* Determine if the function identified by NAME and FNDECL is one with
456    special properties we wish to know about.
457 
458    For example, if the function might return more than one time (setjmp), then
459    set RETURNS_TWICE to a nonzero value.
460 
461    Similarly set NORETURN if the function is in the longjmp family.
462 
463    Set MAY_BE_ALLOCA for any memory allocation function that might allocate
464    space from the stack such as alloca.  */
465 
466 static int
467 special_function_p (const_tree fndecl, int flags)
468 {
469   if (fndecl && DECL_NAME (fndecl)
470       && IDENTIFIER_LENGTH (DECL_NAME (fndecl)) <= 17
471       /* Exclude functions not at the file scope, or not `extern',
472 	 since they are not the magic functions we would otherwise
473 	 think they are.
474 	 FIXME: this should be handled with attributes, not with this
475 	 hacky imitation of DECL_ASSEMBLER_NAME.  It's (also) wrong
476 	 because you can declare fork() inside a function if you
477 	 wish.  */
478       && (DECL_CONTEXT (fndecl) == NULL_TREE
479 	  || TREE_CODE (DECL_CONTEXT (fndecl)) == TRANSLATION_UNIT_DECL)
480       && TREE_PUBLIC (fndecl))
481     {
482       const char *name = IDENTIFIER_POINTER (DECL_NAME (fndecl));
483       const char *tname = name;
484 
485       /* We assume that alloca will always be called by name.  It
486 	 makes no sense to pass it as a pointer-to-function to
487 	 anything that does not understand its behavior.  */
488       if (((IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 6
489 	    && name[0] == 'a'
490 	    && ! strcmp (name, "alloca"))
491 	   || (IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 16
492 	       && name[0] == '_'
493 	       && ! strcmp (name, "__builtin_alloca"))))
494 	flags |= ECF_MAY_BE_ALLOCA;
495 
496       /* Disregard prefix _, __, __x or __builtin_.  */
497       if (name[0] == '_')
498 	{
499 	  if (name[1] == '_'
500 	      && name[2] == 'b'
501 	      && !strncmp (name + 3, "uiltin_", 7))
502 	    tname += 10;
503 	  else if (name[1] == '_' && name[2] == 'x')
504 	    tname += 3;
505 	  else if (name[1] == '_')
506 	    tname += 2;
507 	  else
508 	    tname += 1;
509 	}
510 
511       if (tname[0] == 's')
512 	{
513 	  if ((tname[1] == 'e'
514 	       && (! strcmp (tname, "setjmp")
515 		   || ! strcmp (tname, "setjmp_syscall")))
516 	      || (tname[1] == 'i'
517 		  && ! strcmp (tname, "sigsetjmp"))
518 	      || (tname[1] == 'a'
519 		  && ! strcmp (tname, "savectx")))
520 	    flags |= ECF_RETURNS_TWICE;
521 
522 	  if (tname[1] == 'i'
523 	      && ! strcmp (tname, "siglongjmp"))
524 	    flags |= ECF_NORETURN;
525 	}
526       else if ((tname[0] == 'q' && tname[1] == 's'
527 		&& ! strcmp (tname, "qsetjmp"))
528 	       || (tname[0] == 'v' && tname[1] == 'f'
529 		   && ! strcmp (tname, "vfork"))
530 	       || (tname[0] == 'g' && tname[1] == 'e'
531 		   && !strcmp (tname, "getcontext")))
532 	flags |= ECF_RETURNS_TWICE;
533 
534       else if (tname[0] == 'l' && tname[1] == 'o'
535 	       && ! strcmp (tname, "longjmp"))
536 	flags |= ECF_NORETURN;
537     }
538 
539   return flags;
540 }
541 
542 /* Return nonzero when FNDECL represents a call to setjmp.  */
543 
544 int
545 setjmp_call_p (const_tree fndecl)
546 {
547   return special_function_p (fndecl, 0) & ECF_RETURNS_TWICE;
548 }
549 
550 
551 /* Return true if STMT is an alloca call.  */
552 
553 bool
554 gimple_alloca_call_p (const_gimple stmt)
555 {
556   tree fndecl;
557 
558   if (!is_gimple_call (stmt))
559     return false;
560 
561   fndecl = gimple_call_fndecl (stmt);
562   if (fndecl && (special_function_p (fndecl, 0) & ECF_MAY_BE_ALLOCA))
563     return true;
564 
565   return false;
566 }
567 
568 /* Return true when exp contains alloca call.  */
569 
570 bool
571 alloca_call_p (const_tree exp)
572 {
573   if (TREE_CODE (exp) == CALL_EXPR
574       && TREE_CODE (CALL_EXPR_FN (exp)) == ADDR_EXPR
575       && (TREE_CODE (TREE_OPERAND (CALL_EXPR_FN (exp), 0)) == FUNCTION_DECL)
576       && (special_function_p (TREE_OPERAND (CALL_EXPR_FN (exp), 0), 0)
577 	  & ECF_MAY_BE_ALLOCA))
578     return true;
579   return false;
580 }
581 
582 /* Detect flags (function attributes) from the function decl or type node.  */
583 
584 int
585 flags_from_decl_or_type (const_tree exp)
586 {
587   int flags = 0;
588 
589   if (DECL_P (exp))
590     {
591       /* The function exp may have the `malloc' attribute.  */
592       if (DECL_IS_MALLOC (exp))
593 	flags |= ECF_MALLOC;
594 
595       /* The function exp may have the `returns_twice' attribute.  */
596       if (DECL_IS_RETURNS_TWICE (exp))
597 	flags |= ECF_RETURNS_TWICE;
598 
599       /* Process the pure and const attributes.  */
600       if (TREE_READONLY (exp) && ! TREE_THIS_VOLATILE (exp))
601 	flags |= ECF_CONST;
602       if (DECL_PURE_P (exp))
603 	flags |= ECF_PURE;
604       if (DECL_LOOPING_CONST_OR_PURE_P (exp))
605 	flags |= ECF_LOOPING_CONST_OR_PURE;
606 
607       if (DECL_IS_NOVOPS (exp))
608 	flags |= ECF_NOVOPS;
609 
610       if (TREE_NOTHROW (exp))
611 	flags |= ECF_NOTHROW;
612 
613       flags = special_function_p (exp, flags);
614     }
615   else if (TYPE_P (exp) && TYPE_READONLY (exp) && ! TREE_THIS_VOLATILE (exp))
616     flags |= ECF_CONST;
617 
618   if (TREE_THIS_VOLATILE (exp))
619     flags |= ECF_NORETURN;
620 
621   return flags;
622 }
623 
624 /* Detect flags from a CALL_EXPR.  */
625 
626 int
627 call_expr_flags (const_tree t)
628 {
629   int flags;
630   tree decl = get_callee_fndecl (t);
631 
632   if (decl)
633     flags = flags_from_decl_or_type (decl);
634   else
635     {
636       t = TREE_TYPE (CALL_EXPR_FN (t));
637       if (t && TREE_CODE (t) == POINTER_TYPE)
638 	flags = flags_from_decl_or_type (TREE_TYPE (t));
639       else
640 	flags = 0;
641     }
642 
643   return flags;
644 }
645 
646 /* Precompute all register parameters as described by ARGS, storing values
647    into fields within the ARGS array.
648 
649    NUM_ACTUALS indicates the total number elements in the ARGS array.
650 
651    Set REG_PARM_SEEN if we encounter a register parameter.  */
652 
653 static void
654 precompute_register_parameters (int num_actuals, struct arg_data *args,
655 				int *reg_parm_seen)
656 {
657   int i;
658 
659   *reg_parm_seen = 0;
660 
661   for (i = 0; i < num_actuals; i++)
662     if (args[i].reg != 0 && ! args[i].pass_on_stack)
663       {
664 	*reg_parm_seen = 1;
665 
666 	if (args[i].value == 0)
667 	  {
668 	    push_temp_slots ();
669 	    args[i].value = expand_normal (args[i].tree_value);
670 	    preserve_temp_slots (args[i].value);
671 	    pop_temp_slots ();
672 	  }
673 
674 	/* If the value is a non-legitimate constant, force it into a
675 	   pseudo now.  TLS symbols sometimes need a call to resolve.  */
676 	if (CONSTANT_P (args[i].value)
677 	    && !LEGITIMATE_CONSTANT_P (args[i].value))
678 	  args[i].value = force_reg (args[i].mode, args[i].value);
679 
680 	/* If we are to promote the function arg to a wider mode,
681 	   do it now.  */
682 
683 	if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value)))
684 	  args[i].value
685 	    = convert_modes (args[i].mode,
686 			     TYPE_MODE (TREE_TYPE (args[i].tree_value)),
687 			     args[i].value, args[i].unsignedp);
688 
689 	/* If we're going to have to load the value by parts, pull the
690 	   parts into pseudos.  The part extraction process can involve
691 	   non-trivial computation.  */
692 	if (GET_CODE (args[i].reg) == PARALLEL)
693 	  {
694 	    tree type = TREE_TYPE (args[i].tree_value);
695 	    args[i].parallel_value
696 	      = emit_group_load_into_temps (args[i].reg, args[i].value,
697 					    type, int_size_in_bytes (type));
698 	  }
699 
700 	/* If the value is expensive, and we are inside an appropriately
701 	   short loop, put the value into a pseudo and then put the pseudo
702 	   into the hard reg.
703 
704 	   For small register classes, also do this if this call uses
705 	   register parameters.  This is to avoid reload conflicts while
706 	   loading the parameters registers.  */
707 
708 	else if ((! (REG_P (args[i].value)
709 		     || (GET_CODE (args[i].value) == SUBREG
710 			 && REG_P (SUBREG_REG (args[i].value)))))
711 		 && args[i].mode != BLKmode
712 		 && rtx_cost (args[i].value, SET, optimize_insn_for_speed_p ())
713 		    > COSTS_N_INSNS (1)
714 		 && ((SMALL_REGISTER_CLASSES && *reg_parm_seen)
715 		     || optimize))
716 	  args[i].value = copy_to_mode_reg (args[i].mode, args[i].value);
717       }
718 }
719 
720 #ifdef REG_PARM_STACK_SPACE
721 
722   /* The argument list is the property of the called routine and it
723      may clobber it.  If the fixed area has been used for previous
724      parameters, we must save and restore it.  */
725 
726 static rtx
727 save_fixed_argument_area (int reg_parm_stack_space, rtx argblock, int *low_to_save, int *high_to_save)
728 {
729   int low;
730   int high;
731 
732   /* Compute the boundary of the area that needs to be saved, if any.  */
733   high = reg_parm_stack_space;
734 #ifdef ARGS_GROW_DOWNWARD
735   high += 1;
736 #endif
737   if (high > highest_outgoing_arg_in_use)
738     high = highest_outgoing_arg_in_use;
739 
740   for (low = 0; low < high; low++)
741     if (stack_usage_map[low] != 0)
742       {
743 	int num_to_save;
744 	enum machine_mode save_mode;
745 	int delta;
746 	rtx stack_area;
747 	rtx save_area;
748 
749 	while (stack_usage_map[--high] == 0)
750 	  ;
751 
752 	*low_to_save = low;
753 	*high_to_save = high;
754 
755 	num_to_save = high - low + 1;
756 	save_mode = mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1);
757 
758 	/* If we don't have the required alignment, must do this
759 	   in BLKmode.  */
760 	if ((low & (MIN (GET_MODE_SIZE (save_mode),
761 			 BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)))
762 	  save_mode = BLKmode;
763 
764 #ifdef ARGS_GROW_DOWNWARD
765 	delta = -high;
766 #else
767 	delta = low;
768 #endif
769 	stack_area = gen_rtx_MEM (save_mode,
770 				  memory_address (save_mode,
771 						  plus_constant (argblock,
772 								 delta)));
773 
774 	set_mem_align (stack_area, PARM_BOUNDARY);
775 	if (save_mode == BLKmode)
776 	  {
777 	    save_area = assign_stack_temp (BLKmode, num_to_save, 0);
778 	    emit_block_move (validize_mem (save_area), stack_area,
779 			     GEN_INT (num_to_save), BLOCK_OP_CALL_PARM);
780 	  }
781 	else
782 	  {
783 	    save_area = gen_reg_rtx (save_mode);
784 	    emit_move_insn (save_area, stack_area);
785 	  }
786 
787 	return save_area;
788       }
789 
790   return NULL_RTX;
791 }
792 
793 static void
794 restore_fixed_argument_area (rtx save_area, rtx argblock, int high_to_save, int low_to_save)
795 {
796   enum machine_mode save_mode = GET_MODE (save_area);
797   int delta;
798   rtx stack_area;
799 
800 #ifdef ARGS_GROW_DOWNWARD
801   delta = -high_to_save;
802 #else
803   delta = low_to_save;
804 #endif
805   stack_area = gen_rtx_MEM (save_mode,
806 			    memory_address (save_mode,
807 					    plus_constant (argblock, delta)));
808   set_mem_align (stack_area, PARM_BOUNDARY);
809 
810   if (save_mode != BLKmode)
811     emit_move_insn (stack_area, save_area);
812   else
813     emit_block_move (stack_area, validize_mem (save_area),
814 		     GEN_INT (high_to_save - low_to_save + 1),
815 		     BLOCK_OP_CALL_PARM);
816 }
817 #endif /* REG_PARM_STACK_SPACE */
818 
819 /* If any elements in ARGS refer to parameters that are to be passed in
820    registers, but not in memory, and whose alignment does not permit a
821    direct copy into registers.  Copy the values into a group of pseudos
822    which we will later copy into the appropriate hard registers.
823 
824    Pseudos for each unaligned argument will be stored into the array
825    args[argnum].aligned_regs.  The caller is responsible for deallocating
826    the aligned_regs array if it is nonzero.  */
827 
828 static void
829 store_unaligned_arguments_into_pseudos (struct arg_data *args, int num_actuals)
830 {
831   int i, j;
832 
833   for (i = 0; i < num_actuals; i++)
834     if (args[i].reg != 0 && ! args[i].pass_on_stack
835 	&& args[i].mode == BLKmode
836 	&& MEM_P (args[i].value)
837 	&& (MEM_ALIGN (args[i].value)
838 	    < (unsigned int) MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD)))
839       {
840 	int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
841 	int endian_correction = 0;
842 
843 	if (args[i].partial)
844 	  {
845 	    gcc_assert (args[i].partial % UNITS_PER_WORD == 0);
846 	    args[i].n_aligned_regs = args[i].partial / UNITS_PER_WORD;
847 	  }
848 	else
849 	  {
850 	    args[i].n_aligned_regs
851 	      = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
852 	  }
853 
854 	args[i].aligned_regs = XNEWVEC (rtx, args[i].n_aligned_regs);
855 
856 	/* Structures smaller than a word are normally aligned to the
857 	   least significant byte.  On a BYTES_BIG_ENDIAN machine,
858 	   this means we must skip the empty high order bytes when
859 	   calculating the bit offset.  */
860 	if (bytes < UNITS_PER_WORD
861 #ifdef BLOCK_REG_PADDING
862 	    && (BLOCK_REG_PADDING (args[i].mode,
863 				   TREE_TYPE (args[i].tree_value), 1)
864 		== downward)
865 #else
866 	    && BYTES_BIG_ENDIAN
867 #endif
868 	    )
869 	  endian_correction = BITS_PER_WORD - bytes * BITS_PER_UNIT;
870 
871 	for (j = 0; j < args[i].n_aligned_regs; j++)
872 	  {
873 	    rtx reg = gen_reg_rtx (word_mode);
874 	    rtx word = operand_subword_force (args[i].value, j, BLKmode);
875 	    int bitsize = MIN (bytes * BITS_PER_UNIT, BITS_PER_WORD);
876 
877 	    args[i].aligned_regs[j] = reg;
878 	    word = extract_bit_field (word, bitsize, 0, 1, NULL_RTX,
879 				      word_mode, word_mode);
880 
881 	    /* There is no need to restrict this code to loading items
882 	       in TYPE_ALIGN sized hunks.  The bitfield instructions can
883 	       load up entire word sized registers efficiently.
884 
885 	       ??? This may not be needed anymore.
886 	       We use to emit a clobber here but that doesn't let later
887 	       passes optimize the instructions we emit.  By storing 0 into
888 	       the register later passes know the first AND to zero out the
889 	       bitfield being set in the register is unnecessary.  The store
890 	       of 0 will be deleted as will at least the first AND.  */
891 
892 	    emit_move_insn (reg, const0_rtx);
893 
894 	    bytes -= bitsize / BITS_PER_UNIT;
895 	    store_bit_field (reg, bitsize, endian_correction, word_mode,
896 			     word);
897 	  }
898       }
899 }
900 
901 /* Fill in ARGS_SIZE and ARGS array based on the parameters found in
902    CALL_EXPR EXP.
903 
904    NUM_ACTUALS is the total number of parameters.
905 
906    N_NAMED_ARGS is the total number of named arguments.
907 
908    STRUCT_VALUE_ADDR_VALUE is the implicit argument for a struct return
909    value, or null.
910 
911    FNDECL is the tree code for the target of this call (if known)
912 
913    ARGS_SO_FAR holds state needed by the target to know where to place
914    the next argument.
915 
916    REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
917    for arguments which are passed in registers.
918 
919    OLD_STACK_LEVEL is a pointer to an rtx which olds the old stack level
920    and may be modified by this routine.
921 
922    OLD_PENDING_ADJ, MUST_PREALLOCATE and FLAGS are pointers to integer
923    flags which may may be modified by this routine.
924 
925    MAY_TAILCALL is cleared if we encounter an invisible pass-by-reference
926    that requires allocation of stack space.
927 
928    CALL_FROM_THUNK_P is true if this call is the jump from a thunk to
929    the thunked-to function.  */
930 
931 static void
932 initialize_argument_information (int num_actuals ATTRIBUTE_UNUSED,
933 				 struct arg_data *args,
934 				 struct args_size *args_size,
935 				 int n_named_args ATTRIBUTE_UNUSED,
936 				 tree exp, tree struct_value_addr_value,
937 				 tree fndecl, tree fntype,
938 				 CUMULATIVE_ARGS *args_so_far,
939 				 int reg_parm_stack_space,
940 				 rtx *old_stack_level, int *old_pending_adj,
941 				 int *must_preallocate, int *ecf_flags,
942 				 bool *may_tailcall, bool call_from_thunk_p)
943 {
944   location_t loc = EXPR_LOCATION (exp);
945   /* 1 if scanning parms front to back, -1 if scanning back to front.  */
946   int inc;
947 
948   /* Count arg position in order args appear.  */
949   int argpos;
950 
951   int i;
952 
953   args_size->constant = 0;
954   args_size->var = 0;
955 
956   /* In this loop, we consider args in the order they are written.
957      We fill up ARGS from the front or from the back if necessary
958      so that in any case the first arg to be pushed ends up at the front.  */
959 
960   if (PUSH_ARGS_REVERSED)
961     {
962       i = num_actuals - 1, inc = -1;
963       /* In this case, must reverse order of args
964 	 so that we compute and push the last arg first.  */
965     }
966   else
967     {
968       i = 0, inc = 1;
969     }
970 
971   /* First fill in the actual arguments in the ARGS array, splitting
972      complex arguments if necessary.  */
973   {
974     int j = i;
975     call_expr_arg_iterator iter;
976     tree arg;
977 
978     if (struct_value_addr_value)
979       {
980 	args[j].tree_value = struct_value_addr_value;
981 	j += inc;
982       }
983     FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
984       {
985 	tree argtype = TREE_TYPE (arg);
986 	if (targetm.calls.split_complex_arg
987 	    && argtype
988 	    && TREE_CODE (argtype) == COMPLEX_TYPE
989 	    && targetm.calls.split_complex_arg (argtype))
990 	  {
991 	    tree subtype = TREE_TYPE (argtype);
992 	    args[j].tree_value = build1 (REALPART_EXPR, subtype, arg);
993 	    j += inc;
994 	    args[j].tree_value = build1 (IMAGPART_EXPR, subtype, arg);
995 	  }
996 	else
997 	  args[j].tree_value = arg;
998 	j += inc;
999       }
1000   }
1001 
1002   /* I counts args in order (to be) pushed; ARGPOS counts in order written.  */
1003   for (argpos = 0; argpos < num_actuals; i += inc, argpos++)
1004     {
1005       tree type = TREE_TYPE (args[i].tree_value);
1006       int unsignedp;
1007       enum machine_mode mode;
1008 
1009       /* Replace erroneous argument with constant zero.  */
1010       if (type == error_mark_node || !COMPLETE_TYPE_P (type))
1011 	args[i].tree_value = integer_zero_node, type = integer_type_node;
1012 
1013       /* If TYPE is a transparent union or record, pass things the way
1014 	 we would pass the first field of the union or record.  We have
1015 	 already verified that the modes are the same.  */
1016       if ((TREE_CODE (type) == UNION_TYPE || TREE_CODE (type) == RECORD_TYPE)
1017 	   && TYPE_TRANSPARENT_AGGR (type))
1018 	type = TREE_TYPE (first_field (type));
1019 
1020       /* Decide where to pass this arg.
1021 
1022 	 args[i].reg is nonzero if all or part is passed in registers.
1023 
1024 	 args[i].partial is nonzero if part but not all is passed in registers,
1025 	 and the exact value says how many bytes are passed in registers.
1026 
1027 	 args[i].pass_on_stack is nonzero if the argument must at least be
1028 	 computed on the stack.  It may then be loaded back into registers
1029 	 if args[i].reg is nonzero.
1030 
1031 	 These decisions are driven by the FUNCTION_... macros and must agree
1032 	 with those made by function.c.  */
1033 
1034       /* See if this argument should be passed by invisible reference.  */
1035       if (pass_by_reference (args_so_far, TYPE_MODE (type),
1036 			     type, argpos < n_named_args))
1037 	{
1038 	  bool callee_copies;
1039 	  tree base;
1040 
1041 	  callee_copies
1042 	    = reference_callee_copied (args_so_far, TYPE_MODE (type),
1043 				       type, argpos < n_named_args);
1044 
1045 	  /* If we're compiling a thunk, pass through invisible references
1046 	     instead of making a copy.  */
1047 	  if (call_from_thunk_p
1048 	      || (callee_copies
1049 		  && !TREE_ADDRESSABLE (type)
1050 		  && (base = get_base_address (args[i].tree_value))
1051 		  && TREE_CODE (base) != SSA_NAME
1052 		  && (!DECL_P (base) || MEM_P (DECL_RTL (base)))))
1053 	    {
1054 	      /* We can't use sibcalls if a callee-copied argument is
1055 		 stored in the current function's frame.  */
1056 	      if (!call_from_thunk_p && DECL_P (base) && !TREE_STATIC (base))
1057 		*may_tailcall = false;
1058 
1059 	      args[i].tree_value = build_fold_addr_expr_loc (loc,
1060 							 args[i].tree_value);
1061 	      type = TREE_TYPE (args[i].tree_value);
1062 
1063 	      if (*ecf_flags & ECF_CONST)
1064 		*ecf_flags &= ~(ECF_CONST | ECF_LOOPING_CONST_OR_PURE);
1065 	    }
1066 	  else
1067 	    {
1068 	      /* We make a copy of the object and pass the address to the
1069 		 function being called.  */
1070 	      rtx copy;
1071 
1072 	      if (!COMPLETE_TYPE_P (type)
1073 		  || TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST
1074 		  || (flag_stack_check == GENERIC_STACK_CHECK
1075 		      && compare_tree_int (TYPE_SIZE_UNIT (type),
1076 					   STACK_CHECK_MAX_VAR_SIZE) > 0))
1077 		{
1078 		  /* This is a variable-sized object.  Make space on the stack
1079 		     for it.  */
1080 		  rtx size_rtx = expr_size (args[i].tree_value);
1081 
1082 		  if (*old_stack_level == 0)
1083 		    {
1084 		      emit_stack_save (SAVE_BLOCK, old_stack_level, NULL_RTX);
1085 		      *old_pending_adj = pending_stack_adjust;
1086 		      pending_stack_adjust = 0;
1087 		    }
1088 
1089 		  copy = gen_rtx_MEM (BLKmode,
1090 				      allocate_dynamic_stack_space
1091 				      (size_rtx, NULL_RTX, TYPE_ALIGN (type)));
1092 		  set_mem_attributes (copy, type, 1);
1093 		}
1094 	      else
1095 		copy = assign_temp (type, 0, 1, 0);
1096 
1097 	      store_expr (args[i].tree_value, copy, 0, false);
1098 
1099 	      /* Just change the const function to pure and then let
1100 		 the next test clear the pure based on
1101 		 callee_copies.  */
1102 	      if (*ecf_flags & ECF_CONST)
1103 		{
1104 		  *ecf_flags &= ~ECF_CONST;
1105 		  *ecf_flags |= ECF_PURE;
1106 		}
1107 
1108 	      if (!callee_copies && *ecf_flags & ECF_PURE)
1109 		*ecf_flags &= ~(ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
1110 
1111 	      args[i].tree_value
1112 		= build_fold_addr_expr_loc (loc, make_tree (type, copy));
1113 	      type = TREE_TYPE (args[i].tree_value);
1114 	      *may_tailcall = false;
1115 	    }
1116 	}
1117 
1118       unsignedp = TYPE_UNSIGNED (type);
1119       mode = promote_function_mode (type, TYPE_MODE (type), &unsignedp,
1120 				    fndecl ? TREE_TYPE (fndecl) : fntype, 0);
1121 
1122       args[i].unsignedp = unsignedp;
1123       args[i].mode = mode;
1124 
1125       args[i].reg = FUNCTION_ARG (*args_so_far, mode, type,
1126 				  argpos < n_named_args);
1127 #ifdef FUNCTION_INCOMING_ARG
1128       /* If this is a sibling call and the machine has register windows, the
1129 	 register window has to be unwinded before calling the routine, so
1130 	 arguments have to go into the incoming registers.  */
1131       args[i].tail_call_reg = FUNCTION_INCOMING_ARG (*args_so_far, mode, type,
1132 						     argpos < n_named_args);
1133 #else
1134       args[i].tail_call_reg = args[i].reg;
1135 #endif
1136 
1137       if (args[i].reg)
1138 	args[i].partial
1139 	  = targetm.calls.arg_partial_bytes (args_so_far, mode, type,
1140 					     argpos < n_named_args);
1141 
1142       args[i].pass_on_stack = targetm.calls.must_pass_in_stack (mode, type);
1143 
1144       /* If FUNCTION_ARG returned a (parallel [(expr_list (nil) ...) ...]),
1145 	 it means that we are to pass this arg in the register(s) designated
1146 	 by the PARALLEL, but also to pass it in the stack.  */
1147       if (args[i].reg && GET_CODE (args[i].reg) == PARALLEL
1148 	  && XEXP (XVECEXP (args[i].reg, 0, 0), 0) == 0)
1149 	args[i].pass_on_stack = 1;
1150 
1151       /* If this is an addressable type, we must preallocate the stack
1152 	 since we must evaluate the object into its final location.
1153 
1154 	 If this is to be passed in both registers and the stack, it is simpler
1155 	 to preallocate.  */
1156       if (TREE_ADDRESSABLE (type)
1157 	  || (args[i].pass_on_stack && args[i].reg != 0))
1158 	*must_preallocate = 1;
1159 
1160       /* Compute the stack-size of this argument.  */
1161       if (args[i].reg == 0 || args[i].partial != 0
1162 	  || reg_parm_stack_space > 0
1163 	  || args[i].pass_on_stack)
1164 	locate_and_pad_parm (mode, type,
1165 #ifdef STACK_PARMS_IN_REG_PARM_AREA
1166 			     1,
1167 #else
1168 			     args[i].reg != 0,
1169 #endif
1170 			     args[i].pass_on_stack ? 0 : args[i].partial,
1171 			     fndecl, args_size, &args[i].locate);
1172 #ifdef BLOCK_REG_PADDING
1173       else
1174 	/* The argument is passed entirely in registers.  See at which
1175 	   end it should be padded.  */
1176 	args[i].locate.where_pad =
1177 	  BLOCK_REG_PADDING (mode, type,
1178 			     int_size_in_bytes (type) <= UNITS_PER_WORD);
1179 #endif
1180 
1181       /* Update ARGS_SIZE, the total stack space for args so far.  */
1182 
1183       args_size->constant += args[i].locate.size.constant;
1184       if (args[i].locate.size.var)
1185 	ADD_PARM_SIZE (*args_size, args[i].locate.size.var);
1186 
1187       /* Increment ARGS_SO_FAR, which has info about which arg-registers
1188 	 have been used, etc.  */
1189 
1190       FUNCTION_ARG_ADVANCE (*args_so_far, TYPE_MODE (type), type,
1191 			    argpos < n_named_args);
1192     }
1193 }
1194 
1195 /* Update ARGS_SIZE to contain the total size for the argument block.
1196    Return the original constant component of the argument block's size.
1197 
1198    REG_PARM_STACK_SPACE holds the number of bytes of stack space reserved
1199    for arguments passed in registers.  */
1200 
1201 static int
1202 compute_argument_block_size (int reg_parm_stack_space,
1203 			     struct args_size *args_size,
1204 			     tree fndecl ATTRIBUTE_UNUSED,
1205 			     tree fntype ATTRIBUTE_UNUSED,
1206 			     int preferred_stack_boundary ATTRIBUTE_UNUSED)
1207 {
1208   int unadjusted_args_size = args_size->constant;
1209 
1210   /* For accumulate outgoing args mode we don't need to align, since the frame
1211      will be already aligned.  Align to STACK_BOUNDARY in order to prevent
1212      backends from generating misaligned frame sizes.  */
1213   if (ACCUMULATE_OUTGOING_ARGS && preferred_stack_boundary > STACK_BOUNDARY)
1214     preferred_stack_boundary = STACK_BOUNDARY;
1215 
1216   /* Compute the actual size of the argument block required.  The variable
1217      and constant sizes must be combined, the size may have to be rounded,
1218      and there may be a minimum required size.  */
1219 
1220   if (args_size->var)
1221     {
1222       args_size->var = ARGS_SIZE_TREE (*args_size);
1223       args_size->constant = 0;
1224 
1225       preferred_stack_boundary /= BITS_PER_UNIT;
1226       if (preferred_stack_boundary > 1)
1227 	{
1228 	  /* We don't handle this case yet.  To handle it correctly we have
1229 	     to add the delta, round and subtract the delta.
1230 	     Currently no machine description requires this support.  */
1231 	  gcc_assert (!(stack_pointer_delta & (preferred_stack_boundary - 1)));
1232 	  args_size->var = round_up (args_size->var, preferred_stack_boundary);
1233 	}
1234 
1235       if (reg_parm_stack_space > 0)
1236 	{
1237 	  args_size->var
1238 	    = size_binop (MAX_EXPR, args_size->var,
1239 			  ssize_int (reg_parm_stack_space));
1240 
1241 	  /* The area corresponding to register parameters is not to count in
1242 	     the size of the block we need.  So make the adjustment.  */
1243 	  if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
1244 	    args_size->var
1245 	      = size_binop (MINUS_EXPR, args_size->var,
1246 			    ssize_int (reg_parm_stack_space));
1247 	}
1248     }
1249   else
1250     {
1251       preferred_stack_boundary /= BITS_PER_UNIT;
1252       if (preferred_stack_boundary < 1)
1253 	preferred_stack_boundary = 1;
1254       args_size->constant = (((args_size->constant
1255 			       + stack_pointer_delta
1256 			       + preferred_stack_boundary - 1)
1257 			      / preferred_stack_boundary
1258 			      * preferred_stack_boundary)
1259 			     - stack_pointer_delta);
1260 
1261       args_size->constant = MAX (args_size->constant,
1262 				 reg_parm_stack_space);
1263 
1264       if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
1265 	args_size->constant -= reg_parm_stack_space;
1266     }
1267   return unadjusted_args_size;
1268 }
1269 
1270 /* Precompute parameters as needed for a function call.
1271 
1272    FLAGS is mask of ECF_* constants.
1273 
1274    NUM_ACTUALS is the number of arguments.
1275 
1276    ARGS is an array containing information for each argument; this
1277    routine fills in the INITIAL_VALUE and VALUE fields for each
1278    precomputed argument.  */
1279 
1280 static void
1281 precompute_arguments (int num_actuals, struct arg_data *args)
1282 {
1283   int i;
1284 
1285   /* If this is a libcall, then precompute all arguments so that we do not
1286      get extraneous instructions emitted as part of the libcall sequence.  */
1287 
1288   /* If we preallocated the stack space, and some arguments must be passed
1289      on the stack, then we must precompute any parameter which contains a
1290      function call which will store arguments on the stack.
1291      Otherwise, evaluating the parameter may clobber previous parameters
1292      which have already been stored into the stack.  (we have code to avoid
1293      such case by saving the outgoing stack arguments, but it results in
1294      worse code)  */
1295   if (!ACCUMULATE_OUTGOING_ARGS)
1296     return;
1297 
1298   for (i = 0; i < num_actuals; i++)
1299     {
1300       tree type;
1301       enum machine_mode mode;
1302 
1303       if (TREE_CODE (args[i].tree_value) != CALL_EXPR)
1304 	continue;
1305 
1306       /* If this is an addressable type, we cannot pre-evaluate it.  */
1307       type = TREE_TYPE (args[i].tree_value);
1308       gcc_assert (!TREE_ADDRESSABLE (type));
1309 
1310       args[i].initial_value = args[i].value
1311 	= expand_normal (args[i].tree_value);
1312 
1313       mode = TYPE_MODE (type);
1314       if (mode != args[i].mode)
1315 	{
1316 	  int unsignedp = args[i].unsignedp;
1317 	  args[i].value
1318 	    = convert_modes (args[i].mode, mode,
1319 			     args[i].value, args[i].unsignedp);
1320 
1321 	  /* CSE will replace this only if it contains args[i].value
1322 	     pseudo, so convert it down to the declared mode using
1323 	     a SUBREG.  */
1324 	  if (REG_P (args[i].value)
1325 	      && GET_MODE_CLASS (args[i].mode) == MODE_INT
1326 	      && promote_mode (type, mode, &unsignedp) != args[i].mode)
1327 	    {
1328 	      args[i].initial_value
1329 		= gen_lowpart_SUBREG (mode, args[i].value);
1330 	      SUBREG_PROMOTED_VAR_P (args[i].initial_value) = 1;
1331 	      SUBREG_PROMOTED_UNSIGNED_SET (args[i].initial_value,
1332 					    args[i].unsignedp);
1333 	    }
1334 	}
1335     }
1336 }
1337 
1338 /* Given the current state of MUST_PREALLOCATE and information about
1339    arguments to a function call in NUM_ACTUALS, ARGS and ARGS_SIZE,
1340    compute and return the final value for MUST_PREALLOCATE.  */
1341 
1342 static int
1343 finalize_must_preallocate (int must_preallocate, int num_actuals,
1344 			   struct arg_data *args, struct args_size *args_size)
1345 {
1346   /* See if we have or want to preallocate stack space.
1347 
1348      If we would have to push a partially-in-regs parm
1349      before other stack parms, preallocate stack space instead.
1350 
1351      If the size of some parm is not a multiple of the required stack
1352      alignment, we must preallocate.
1353 
1354      If the total size of arguments that would otherwise create a copy in
1355      a temporary (such as a CALL) is more than half the total argument list
1356      size, preallocation is faster.
1357 
1358      Another reason to preallocate is if we have a machine (like the m88k)
1359      where stack alignment is required to be maintained between every
1360      pair of insns, not just when the call is made.  However, we assume here
1361      that such machines either do not have push insns (and hence preallocation
1362      would occur anyway) or the problem is taken care of with
1363      PUSH_ROUNDING.  */
1364 
1365   if (! must_preallocate)
1366     {
1367       int partial_seen = 0;
1368       int copy_to_evaluate_size = 0;
1369       int i;
1370 
1371       for (i = 0; i < num_actuals && ! must_preallocate; i++)
1372 	{
1373 	  if (args[i].partial > 0 && ! args[i].pass_on_stack)
1374 	    partial_seen = 1;
1375 	  else if (partial_seen && args[i].reg == 0)
1376 	    must_preallocate = 1;
1377 
1378 	  if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
1379 	      && (TREE_CODE (args[i].tree_value) == CALL_EXPR
1380 		  || TREE_CODE (args[i].tree_value) == TARGET_EXPR
1381 		  || TREE_CODE (args[i].tree_value) == COND_EXPR
1382 		  || TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))))
1383 	    copy_to_evaluate_size
1384 	      += int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1385 	}
1386 
1387       if (copy_to_evaluate_size * 2 >= args_size->constant
1388 	  && args_size->constant > 0)
1389 	must_preallocate = 1;
1390     }
1391   return must_preallocate;
1392 }
1393 
1394 /* If we preallocated stack space, compute the address of each argument
1395    and store it into the ARGS array.
1396 
1397    We need not ensure it is a valid memory address here; it will be
1398    validized when it is used.
1399 
1400    ARGBLOCK is an rtx for the address of the outgoing arguments.  */
1401 
1402 static void
1403 compute_argument_addresses (struct arg_data *args, rtx argblock, int num_actuals)
1404 {
1405   if (argblock)
1406     {
1407       rtx arg_reg = argblock;
1408       int i, arg_offset = 0;
1409 
1410       if (GET_CODE (argblock) == PLUS)
1411 	arg_reg = XEXP (argblock, 0), arg_offset = INTVAL (XEXP (argblock, 1));
1412 
1413       for (i = 0; i < num_actuals; i++)
1414 	{
1415 	  rtx offset = ARGS_SIZE_RTX (args[i].locate.offset);
1416 	  rtx slot_offset = ARGS_SIZE_RTX (args[i].locate.slot_offset);
1417 	  rtx addr;
1418 	  unsigned int align, boundary;
1419 	  unsigned int units_on_stack = 0;
1420 	  enum machine_mode partial_mode = VOIDmode;
1421 
1422 	  /* Skip this parm if it will not be passed on the stack.  */
1423 	  if (! args[i].pass_on_stack
1424 	      && args[i].reg != 0
1425 	      && args[i].partial == 0)
1426 	    continue;
1427 
1428 	  if (CONST_INT_P (offset))
1429 	    addr = plus_constant (arg_reg, INTVAL (offset));
1430 	  else
1431 	    addr = gen_rtx_PLUS (Pmode, arg_reg, offset);
1432 
1433 	  addr = plus_constant (addr, arg_offset);
1434 
1435 	  if (args[i].partial != 0)
1436 	    {
1437 	      /* Only part of the parameter is being passed on the stack.
1438 		 Generate a simple memory reference of the correct size.  */
1439 	      units_on_stack = args[i].locate.size.constant;
1440 	      partial_mode = mode_for_size (units_on_stack * BITS_PER_UNIT,
1441 					    MODE_INT, 1);
1442 	      args[i].stack = gen_rtx_MEM (partial_mode, addr);
1443 	      set_mem_size (args[i].stack, GEN_INT (units_on_stack));
1444 	    }
1445 	  else
1446 	    {
1447 	      args[i].stack = gen_rtx_MEM (args[i].mode, addr);
1448 	      set_mem_attributes (args[i].stack,
1449 				  TREE_TYPE (args[i].tree_value), 1);
1450 	    }
1451 	  align = BITS_PER_UNIT;
1452 	  boundary = args[i].locate.boundary;
1453 	  if (args[i].locate.where_pad != downward)
1454 	    align = boundary;
1455 	  else if (CONST_INT_P (offset))
1456 	    {
1457 	      align = INTVAL (offset) * BITS_PER_UNIT | boundary;
1458 	      align = align & -align;
1459 	    }
1460 	  set_mem_align (args[i].stack, align);
1461 
1462 	  if (CONST_INT_P (slot_offset))
1463 	    addr = plus_constant (arg_reg, INTVAL (slot_offset));
1464 	  else
1465 	    addr = gen_rtx_PLUS (Pmode, arg_reg, slot_offset);
1466 
1467 	  addr = plus_constant (addr, arg_offset);
1468 
1469 	  if (args[i].partial != 0)
1470 	    {
1471 	      /* Only part of the parameter is being passed on the stack.
1472 		 Generate a simple memory reference of the correct size.
1473 	       */
1474 	      args[i].stack_slot = gen_rtx_MEM (partial_mode, addr);
1475 	      set_mem_size (args[i].stack_slot, GEN_INT (units_on_stack));
1476 	    }
1477 	  else
1478 	    {
1479 	      args[i].stack_slot = gen_rtx_MEM (args[i].mode, addr);
1480 	      set_mem_attributes (args[i].stack_slot,
1481 				  TREE_TYPE (args[i].tree_value), 1);
1482 	    }
1483 	  set_mem_align (args[i].stack_slot, args[i].locate.boundary);
1484 
1485 	  /* Function incoming arguments may overlap with sibling call
1486 	     outgoing arguments and we cannot allow reordering of reads
1487 	     from function arguments with stores to outgoing arguments
1488 	     of sibling calls.  */
1489 	  set_mem_alias_set (args[i].stack, 0);
1490 	  set_mem_alias_set (args[i].stack_slot, 0);
1491 	}
1492     }
1493 }
1494 
1495 /* Given a FNDECL and EXP, return an rtx suitable for use as a target address
1496    in a call instruction.
1497 
1498    FNDECL is the tree node for the target function.  For an indirect call
1499    FNDECL will be NULL_TREE.
1500 
1501    ADDR is the operand 0 of CALL_EXPR for this call.  */
1502 
1503 static rtx
1504 rtx_for_function_call (tree fndecl, tree addr)
1505 {
1506   rtx funexp;
1507 
1508   /* Get the function to call, in the form of RTL.  */
1509   if (fndecl)
1510     {
1511       /* If this is the first use of the function, see if we need to
1512 	 make an external definition for it.  */
1513       if (!TREE_USED (fndecl) && fndecl != current_function_decl)
1514 	{
1515 	  assemble_external (fndecl);
1516 	  TREE_USED (fndecl) = 1;
1517 	}
1518 
1519       /* Get a SYMBOL_REF rtx for the function address.  */
1520       funexp = XEXP (DECL_RTL (fndecl), 0);
1521     }
1522   else
1523     /* Generate an rtx (probably a pseudo-register) for the address.  */
1524     {
1525       push_temp_slots ();
1526       funexp = expand_normal (addr);
1527       pop_temp_slots ();	/* FUNEXP can't be BLKmode.  */
1528     }
1529   return funexp;
1530 }
1531 
1532 /* Return true if and only if SIZE storage units (usually bytes)
1533    starting from address ADDR overlap with already clobbered argument
1534    area.  This function is used to determine if we should give up a
1535    sibcall.  */
1536 
1537 static bool
1538 mem_overlaps_already_clobbered_arg_p (rtx addr, unsigned HOST_WIDE_INT size)
1539 {
1540   HOST_WIDE_INT i;
1541 
1542   if (addr == crtl->args.internal_arg_pointer)
1543     i = 0;
1544   else if (GET_CODE (addr) == PLUS
1545 	   && XEXP (addr, 0) == crtl->args.internal_arg_pointer
1546 	   && CONST_INT_P (XEXP (addr, 1)))
1547     i = INTVAL (XEXP (addr, 1));
1548   /* Return true for arg pointer based indexed addressing.  */
1549   else if (GET_CODE (addr) == PLUS
1550 	   && (XEXP (addr, 0) == crtl->args.internal_arg_pointer
1551 	       || XEXP (addr, 1) == crtl->args.internal_arg_pointer))
1552     return true;
1553   else
1554     return false;
1555 
1556 #ifdef ARGS_GROW_DOWNWARD
1557   i = -i - size;
1558 #endif
1559   if (size > 0)
1560     {
1561       unsigned HOST_WIDE_INT k;
1562 
1563       for (k = 0; k < size; k++)
1564 	if (i + k < stored_args_map->n_bits
1565 	    && TEST_BIT (stored_args_map, i + k))
1566 	  return true;
1567     }
1568 
1569   return false;
1570 }
1571 
1572 /* Do the register loads required for any wholly-register parms or any
1573    parms which are passed both on the stack and in a register.  Their
1574    expressions were already evaluated.
1575 
1576    Mark all register-parms as living through the call, putting these USE
1577    insns in the CALL_INSN_FUNCTION_USAGE field.
1578 
1579    When IS_SIBCALL, perform the check_sibcall_argument_overlap
1580    checking, setting *SIBCALL_FAILURE if appropriate.  */
1581 
1582 static void
1583 load_register_parameters (struct arg_data *args, int num_actuals,
1584 			  rtx *call_fusage, int flags, int is_sibcall,
1585 			  int *sibcall_failure)
1586 {
1587   int i, j;
1588 
1589   for (i = 0; i < num_actuals; i++)
1590     {
1591       rtx reg = ((flags & ECF_SIBCALL)
1592 		 ? args[i].tail_call_reg : args[i].reg);
1593       if (reg)
1594 	{
1595 	  int partial = args[i].partial;
1596 	  int nregs;
1597 	  int size = 0;
1598 	  rtx before_arg = get_last_insn ();
1599 	  /* Set non-negative if we must move a word at a time, even if
1600 	     just one word (e.g, partial == 4 && mode == DFmode).  Set
1601 	     to -1 if we just use a normal move insn.  This value can be
1602 	     zero if the argument is a zero size structure.  */
1603 	  nregs = -1;
1604 	  if (GET_CODE (reg) == PARALLEL)
1605 	    ;
1606 	  else if (partial)
1607 	    {
1608 	      gcc_assert (partial % UNITS_PER_WORD == 0);
1609 	      nregs = partial / UNITS_PER_WORD;
1610 	    }
1611 	  else if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode)
1612 	    {
1613 	      size = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1614 	      nregs = (size + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
1615 	    }
1616 	  else
1617 	    size = GET_MODE_SIZE (args[i].mode);
1618 
1619 	  /* Handle calls that pass values in multiple non-contiguous
1620 	     locations.  The Irix 6 ABI has examples of this.  */
1621 
1622 	  if (GET_CODE (reg) == PARALLEL)
1623 	    emit_group_move (reg, args[i].parallel_value);
1624 
1625 	  /* If simple case, just do move.  If normal partial, store_one_arg
1626 	     has already loaded the register for us.  In all other cases,
1627 	     load the register(s) from memory.  */
1628 
1629 	  else if (nregs == -1)
1630 	    {
1631 	      emit_move_insn (reg, args[i].value);
1632 #ifdef BLOCK_REG_PADDING
1633 	      /* Handle case where we have a value that needs shifting
1634 		 up to the msb.  eg. a QImode value and we're padding
1635 		 upward on a BYTES_BIG_ENDIAN machine.  */
1636 	      if (size < UNITS_PER_WORD
1637 		  && (args[i].locate.where_pad
1638 		      == (BYTES_BIG_ENDIAN ? upward : downward)))
1639 		{
1640 		  rtx x;
1641 		  int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1642 
1643 		  /* Assigning REG here rather than a temp makes CALL_FUSAGE
1644 		     report the whole reg as used.  Strictly speaking, the
1645 		     call only uses SIZE bytes at the msb end, but it doesn't
1646 		     seem worth generating rtl to say that.  */
1647 		  reg = gen_rtx_REG (word_mode, REGNO (reg));
1648 		  x = expand_shift (LSHIFT_EXPR, word_mode, reg,
1649 				    build_int_cst (NULL_TREE, shift),
1650 				    reg, 1);
1651 		  if (x != reg)
1652 		    emit_move_insn (reg, x);
1653 		}
1654 #endif
1655 	    }
1656 
1657 	  /* If we have pre-computed the values to put in the registers in
1658 	     the case of non-aligned structures, copy them in now.  */
1659 
1660 	  else if (args[i].n_aligned_regs != 0)
1661 	    for (j = 0; j < args[i].n_aligned_regs; j++)
1662 	      emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) + j),
1663 			      args[i].aligned_regs[j]);
1664 
1665 	  else if (partial == 0 || args[i].pass_on_stack)
1666 	    {
1667 	      rtx mem = validize_mem (args[i].value);
1668 
1669 	      /* Check for overlap with already clobbered argument area.  */
1670 	      if (is_sibcall
1671 		  && mem_overlaps_already_clobbered_arg_p (XEXP (args[i].value, 0),
1672 							   size))
1673 		*sibcall_failure = 1;
1674 
1675 	      /* Handle a BLKmode that needs shifting.  */
1676 	      if (nregs == 1 && size < UNITS_PER_WORD
1677 #ifdef BLOCK_REG_PADDING
1678 		  && args[i].locate.where_pad == downward
1679 #else
1680 		  && BYTES_BIG_ENDIAN
1681 #endif
1682 		 )
1683 		{
1684 		  rtx tem = operand_subword_force (mem, 0, args[i].mode);
1685 		  rtx ri = gen_rtx_REG (word_mode, REGNO (reg));
1686 		  rtx x = gen_reg_rtx (word_mode);
1687 		  int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1688 		  enum tree_code dir = BYTES_BIG_ENDIAN ? RSHIFT_EXPR
1689 							: LSHIFT_EXPR;
1690 
1691 		  emit_move_insn (x, tem);
1692 		  x = expand_shift (dir, word_mode, x,
1693 				    build_int_cst (NULL_TREE, shift),
1694 				    ri, 1);
1695 		  if (x != ri)
1696 		    emit_move_insn (ri, x);
1697 		}
1698 	      else
1699 		move_block_to_reg (REGNO (reg), mem, nregs, args[i].mode);
1700 	    }
1701 
1702 	  /* When a parameter is a block, and perhaps in other cases, it is
1703 	     possible that it did a load from an argument slot that was
1704 	     already clobbered.  */
1705 	  if (is_sibcall
1706 	      && check_sibcall_argument_overlap (before_arg, &args[i], 0))
1707 	    *sibcall_failure = 1;
1708 
1709 	  /* Handle calls that pass values in multiple non-contiguous
1710 	     locations.  The Irix 6 ABI has examples of this.  */
1711 	  if (GET_CODE (reg) == PARALLEL)
1712 	    use_group_regs (call_fusage, reg);
1713 	  else if (nregs == -1)
1714 	    use_reg (call_fusage, reg);
1715 	  else if (nregs > 0)
1716 	    use_regs (call_fusage, REGNO (reg), nregs);
1717 	}
1718     }
1719 }
1720 
1721 /* We need to pop PENDING_STACK_ADJUST bytes.  But, if the arguments
1722    wouldn't fill up an even multiple of PREFERRED_UNIT_STACK_BOUNDARY
1723    bytes, then we would need to push some additional bytes to pad the
1724    arguments.  So, we compute an adjust to the stack pointer for an
1725    amount that will leave the stack under-aligned by UNADJUSTED_ARGS_SIZE
1726    bytes.  Then, when the arguments are pushed the stack will be perfectly
1727    aligned.  ARGS_SIZE->CONSTANT is set to the number of bytes that should
1728    be popped after the call.  Returns the adjustment.  */
1729 
1730 static int
1731 combine_pending_stack_adjustment_and_call (int unadjusted_args_size,
1732 					   struct args_size *args_size,
1733 					   unsigned int preferred_unit_stack_boundary)
1734 {
1735   /* The number of bytes to pop so that the stack will be
1736      under-aligned by UNADJUSTED_ARGS_SIZE bytes.  */
1737   HOST_WIDE_INT adjustment;
1738   /* The alignment of the stack after the arguments are pushed, if we
1739      just pushed the arguments without adjust the stack here.  */
1740   unsigned HOST_WIDE_INT unadjusted_alignment;
1741 
1742   unadjusted_alignment
1743     = ((stack_pointer_delta + unadjusted_args_size)
1744        % preferred_unit_stack_boundary);
1745 
1746   /* We want to get rid of as many of the PENDING_STACK_ADJUST bytes
1747      as possible -- leaving just enough left to cancel out the
1748      UNADJUSTED_ALIGNMENT.  In other words, we want to ensure that the
1749      PENDING_STACK_ADJUST is non-negative, and congruent to
1750      -UNADJUSTED_ALIGNMENT modulo the PREFERRED_UNIT_STACK_BOUNDARY.  */
1751 
1752   /* Begin by trying to pop all the bytes.  */
1753   unadjusted_alignment
1754     = (unadjusted_alignment
1755        - (pending_stack_adjust % preferred_unit_stack_boundary));
1756   adjustment = pending_stack_adjust;
1757   /* Push enough additional bytes that the stack will be aligned
1758      after the arguments are pushed.  */
1759   if (preferred_unit_stack_boundary > 1)
1760     {
1761       if (unadjusted_alignment > 0)
1762 	adjustment -= preferred_unit_stack_boundary - unadjusted_alignment;
1763       else
1764 	adjustment += unadjusted_alignment;
1765     }
1766 
1767   /* Now, sets ARGS_SIZE->CONSTANT so that we pop the right number of
1768      bytes after the call.  The right number is the entire
1769      PENDING_STACK_ADJUST less our ADJUSTMENT plus the amount required
1770      by the arguments in the first place.  */
1771   args_size->constant
1772     = pending_stack_adjust - adjustment + unadjusted_args_size;
1773 
1774   return adjustment;
1775 }
1776 
1777 /* Scan X expression if it does not dereference any argument slots
1778    we already clobbered by tail call arguments (as noted in stored_args_map
1779    bitmap).
1780    Return nonzero if X expression dereferences such argument slots,
1781    zero otherwise.  */
1782 
1783 static int
1784 check_sibcall_argument_overlap_1 (rtx x)
1785 {
1786   RTX_CODE code;
1787   int i, j;
1788   const char *fmt;
1789 
1790   if (x == NULL_RTX)
1791     return 0;
1792 
1793   code = GET_CODE (x);
1794 
1795   if (code == MEM)
1796     return mem_overlaps_already_clobbered_arg_p (XEXP (x, 0),
1797 						 GET_MODE_SIZE (GET_MODE (x)));
1798 
1799   /* Scan all subexpressions.  */
1800   fmt = GET_RTX_FORMAT (code);
1801   for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1802     {
1803       if (*fmt == 'e')
1804 	{
1805 	  if (check_sibcall_argument_overlap_1 (XEXP (x, i)))
1806 	    return 1;
1807 	}
1808       else if (*fmt == 'E')
1809 	{
1810 	  for (j = 0; j < XVECLEN (x, i); j++)
1811 	    if (check_sibcall_argument_overlap_1 (XVECEXP (x, i, j)))
1812 	      return 1;
1813 	}
1814     }
1815   return 0;
1816 }
1817 
1818 /* Scan sequence after INSN if it does not dereference any argument slots
1819    we already clobbered by tail call arguments (as noted in stored_args_map
1820    bitmap).  If MARK_STORED_ARGS_MAP, add stack slots for ARG to
1821    stored_args_map bitmap afterwards (when ARG is a register MARK_STORED_ARGS_MAP
1822    should be 0).  Return nonzero if sequence after INSN dereferences such argument
1823    slots, zero otherwise.  */
1824 
1825 static int
1826 check_sibcall_argument_overlap (rtx insn, struct arg_data *arg, int mark_stored_args_map)
1827 {
1828   int low, high;
1829 
1830   if (insn == NULL_RTX)
1831     insn = get_insns ();
1832   else
1833     insn = NEXT_INSN (insn);
1834 
1835   for (; insn; insn = NEXT_INSN (insn))
1836     if (INSN_P (insn)
1837 	&& check_sibcall_argument_overlap_1 (PATTERN (insn)))
1838       break;
1839 
1840   if (mark_stored_args_map)
1841     {
1842 #ifdef ARGS_GROW_DOWNWARD
1843       low = -arg->locate.slot_offset.constant - arg->locate.size.constant;
1844 #else
1845       low = arg->locate.slot_offset.constant;
1846 #endif
1847 
1848       for (high = low + arg->locate.size.constant; low < high; low++)
1849 	SET_BIT (stored_args_map, low);
1850     }
1851   return insn != NULL_RTX;
1852 }
1853 
1854 /* Given that a function returns a value of mode MODE at the most
1855    significant end of hard register VALUE, shift VALUE left or right
1856    as specified by LEFT_P.  Return true if some action was needed.  */
1857 
1858 bool
1859 shift_return_value (enum machine_mode mode, bool left_p, rtx value)
1860 {
1861   HOST_WIDE_INT shift;
1862 
1863   gcc_assert (REG_P (value) && HARD_REGISTER_P (value));
1864   shift = GET_MODE_BITSIZE (GET_MODE (value)) - GET_MODE_BITSIZE (mode);
1865   if (shift == 0)
1866     return false;
1867 
1868   /* Use ashr rather than lshr for right shifts.  This is for the benefit
1869      of the MIPS port, which requires SImode values to be sign-extended
1870      when stored in 64-bit registers.  */
1871   if (!force_expand_binop (GET_MODE (value), left_p ? ashl_optab : ashr_optab,
1872 			   value, GEN_INT (shift), value, 1, OPTAB_WIDEN))
1873     gcc_unreachable ();
1874   return true;
1875 }
1876 
1877 /* If X is a likely-spilled register value, copy it to a pseudo
1878    register and return that register.  Return X otherwise.  */
1879 
1880 static rtx
1881 avoid_likely_spilled_reg (rtx x)
1882 {
1883   rtx new_rtx;
1884 
1885   if (REG_P (x)
1886       && HARD_REGISTER_P (x)
1887       && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (x))))
1888     {
1889       /* Make sure that we generate a REG rather than a CONCAT.
1890 	 Moves into CONCATs can need nontrivial instructions,
1891 	 and the whole point of this function is to avoid
1892 	 using the hard register directly in such a situation.  */
1893       generating_concat_p = 0;
1894       new_rtx = gen_reg_rtx (GET_MODE (x));
1895       generating_concat_p = 1;
1896       emit_move_insn (new_rtx, x);
1897       return new_rtx;
1898     }
1899   return x;
1900 }
1901 
1902 /* Generate all the code for a CALL_EXPR exp
1903    and return an rtx for its value.
1904    Store the value in TARGET (specified as an rtx) if convenient.
1905    If the value is stored in TARGET then TARGET is returned.
1906    If IGNORE is nonzero, then we ignore the value of the function call.  */
1907 
1908 rtx
1909 expand_call (tree exp, rtx target, int ignore)
1910 {
1911   /* Nonzero if we are currently expanding a call.  */
1912   static int currently_expanding_call = 0;
1913 
1914   /* RTX for the function to be called.  */
1915   rtx funexp;
1916   /* Sequence of insns to perform a normal "call".  */
1917   rtx normal_call_insns = NULL_RTX;
1918   /* Sequence of insns to perform a tail "call".  */
1919   rtx tail_call_insns = NULL_RTX;
1920   /* Data type of the function.  */
1921   tree funtype;
1922   tree type_arg_types;
1923   tree rettype;
1924   /* Declaration of the function being called,
1925      or 0 if the function is computed (not known by name).  */
1926   tree fndecl = 0;
1927   /* The type of the function being called.  */
1928   tree fntype;
1929   bool try_tail_call = CALL_EXPR_TAILCALL (exp);
1930   int pass;
1931 
1932   /* Register in which non-BLKmode value will be returned,
1933      or 0 if no value or if value is BLKmode.  */
1934   rtx valreg;
1935   /* Address where we should return a BLKmode value;
1936      0 if value not BLKmode.  */
1937   rtx structure_value_addr = 0;
1938   /* Nonzero if that address is being passed by treating it as
1939      an extra, implicit first parameter.  Otherwise,
1940      it is passed by being copied directly into struct_value_rtx.  */
1941   int structure_value_addr_parm = 0;
1942   /* Holds the value of implicit argument for the struct value.  */
1943   tree structure_value_addr_value = NULL_TREE;
1944   /* Size of aggregate value wanted, or zero if none wanted
1945      or if we are using the non-reentrant PCC calling convention
1946      or expecting the value in registers.  */
1947   HOST_WIDE_INT struct_value_size = 0;
1948   /* Nonzero if called function returns an aggregate in memory PCC style,
1949      by returning the address of where to find it.  */
1950   int pcc_struct_value = 0;
1951   rtx struct_value = 0;
1952 
1953   /* Number of actual parameters in this call, including struct value addr.  */
1954   int num_actuals;
1955   /* Number of named args.  Args after this are anonymous ones
1956      and they must all go on the stack.  */
1957   int n_named_args;
1958   /* Number of complex actual arguments that need to be split.  */
1959   int num_complex_actuals = 0;
1960 
1961   /* Vector of information about each argument.
1962      Arguments are numbered in the order they will be pushed,
1963      not the order they are written.  */
1964   struct arg_data *args;
1965 
1966   /* Total size in bytes of all the stack-parms scanned so far.  */
1967   struct args_size args_size;
1968   struct args_size adjusted_args_size;
1969   /* Size of arguments before any adjustments (such as rounding).  */
1970   int unadjusted_args_size;
1971   /* Data on reg parms scanned so far.  */
1972   CUMULATIVE_ARGS args_so_far;
1973   /* Nonzero if a reg parm has been scanned.  */
1974   int reg_parm_seen;
1975   /* Nonzero if this is an indirect function call.  */
1976 
1977   /* Nonzero if we must avoid push-insns in the args for this call.
1978      If stack space is allocated for register parameters, but not by the
1979      caller, then it is preallocated in the fixed part of the stack frame.
1980      So the entire argument block must then be preallocated (i.e., we
1981      ignore PUSH_ROUNDING in that case).  */
1982 
1983   int must_preallocate = !PUSH_ARGS;
1984 
1985   /* Size of the stack reserved for parameter registers.  */
1986   int reg_parm_stack_space = 0;
1987 
1988   /* Address of space preallocated for stack parms
1989      (on machines that lack push insns), or 0 if space not preallocated.  */
1990   rtx argblock = 0;
1991 
1992   /* Mask of ECF_ flags.  */
1993   int flags = 0;
1994 #ifdef REG_PARM_STACK_SPACE
1995   /* Define the boundary of the register parm stack space that needs to be
1996      saved, if any.  */
1997   int low_to_save, high_to_save;
1998   rtx save_area = 0;		/* Place that it is saved */
1999 #endif
2000 
2001   int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
2002   char *initial_stack_usage_map = stack_usage_map;
2003   char *stack_usage_map_buf = NULL;
2004 
2005   int old_stack_allocated;
2006 
2007   /* State variables to track stack modifications.  */
2008   rtx old_stack_level = 0;
2009   int old_stack_arg_under_construction = 0;
2010   int old_pending_adj = 0;
2011   int old_inhibit_defer_pop = inhibit_defer_pop;
2012 
2013   /* Some stack pointer alterations we make are performed via
2014      allocate_dynamic_stack_space. This modifies the stack_pointer_delta,
2015      which we then also need to save/restore along the way.  */
2016   int old_stack_pointer_delta = 0;
2017 
2018   rtx call_fusage;
2019   tree addr = CALL_EXPR_FN (exp);
2020   int i;
2021   /* The alignment of the stack, in bits.  */
2022   unsigned HOST_WIDE_INT preferred_stack_boundary;
2023   /* The alignment of the stack, in bytes.  */
2024   unsigned HOST_WIDE_INT preferred_unit_stack_boundary;
2025   /* The static chain value to use for this call.  */
2026   rtx static_chain_value;
2027   /* See if this is "nothrow" function call.  */
2028   if (TREE_NOTHROW (exp))
2029     flags |= ECF_NOTHROW;
2030 
2031   /* See if we can find a DECL-node for the actual function, and get the
2032      function attributes (flags) from the function decl or type node.  */
2033   fndecl = get_callee_fndecl (exp);
2034   if (fndecl)
2035     {
2036       fntype = TREE_TYPE (fndecl);
2037       flags |= flags_from_decl_or_type (fndecl);
2038     }
2039   else
2040     {
2041       fntype = TREE_TYPE (TREE_TYPE (addr));
2042       flags |= flags_from_decl_or_type (fntype);
2043     }
2044   rettype = TREE_TYPE (exp);
2045 
2046   struct_value = targetm.calls.struct_value_rtx (fntype, 0);
2047 
2048   /* Warn if this value is an aggregate type,
2049      regardless of which calling convention we are using for it.  */
2050   if (AGGREGATE_TYPE_P (rettype))
2051     warning (OPT_Waggregate_return, "function call has aggregate value");
2052 
2053   /* If the result of a non looping pure or const function call is
2054      ignored (or void), and none of its arguments are volatile, we can
2055      avoid expanding the call and just evaluate the arguments for
2056      side-effects.  */
2057   if ((flags & (ECF_CONST | ECF_PURE))
2058       && (!(flags & ECF_LOOPING_CONST_OR_PURE))
2059       && (ignore || target == const0_rtx
2060 	  || TYPE_MODE (rettype) == VOIDmode))
2061     {
2062       bool volatilep = false;
2063       tree arg;
2064       call_expr_arg_iterator iter;
2065 
2066       FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2067 	if (TREE_THIS_VOLATILE (arg))
2068 	  {
2069 	    volatilep = true;
2070 	    break;
2071 	  }
2072 
2073       if (! volatilep)
2074 	{
2075 	  FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2076 	    expand_expr (arg, const0_rtx, VOIDmode, EXPAND_NORMAL);
2077 	  return const0_rtx;
2078 	}
2079     }
2080 
2081 #ifdef REG_PARM_STACK_SPACE
2082   reg_parm_stack_space = REG_PARM_STACK_SPACE (!fndecl ? fntype : fndecl);
2083 #endif
2084 
2085   if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
2086       && reg_parm_stack_space > 0 && PUSH_ARGS)
2087     must_preallocate = 1;
2088 
2089   /* Set up a place to return a structure.  */
2090 
2091   /* Cater to broken compilers.  */
2092   if (aggregate_value_p (exp, (!fndecl ? fntype : fndecl)))
2093     {
2094       /* This call returns a big structure.  */
2095       flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
2096 
2097 #ifdef PCC_STATIC_STRUCT_RETURN
2098       {
2099 	pcc_struct_value = 1;
2100       }
2101 #else /* not PCC_STATIC_STRUCT_RETURN */
2102       {
2103 	struct_value_size = int_size_in_bytes (rettype);
2104 
2105 	if (target && MEM_P (target) && CALL_EXPR_RETURN_SLOT_OPT (exp))
2106 	  structure_value_addr = XEXP (target, 0);
2107 	else
2108 	  {
2109 	    /* For variable-sized objects, we must be called with a target
2110 	       specified.  If we were to allocate space on the stack here,
2111 	       we would have no way of knowing when to free it.  */
2112 	    rtx d = assign_temp (rettype, 0, 1, 1);
2113 
2114 	    mark_temp_addr_taken (d);
2115 	    structure_value_addr = XEXP (d, 0);
2116 	    target = 0;
2117 	  }
2118       }
2119 #endif /* not PCC_STATIC_STRUCT_RETURN */
2120     }
2121 
2122   /* Figure out the amount to which the stack should be aligned.  */
2123   preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
2124   if (fndecl)
2125     {
2126       struct cgraph_rtl_info *i = cgraph_rtl_info (fndecl);
2127       /* Without automatic stack alignment, we can't increase preferred
2128 	 stack boundary.  With automatic stack alignment, it is
2129 	 unnecessary since unless we can guarantee that all callers will
2130 	 align the outgoing stack properly, callee has to align its
2131 	 stack anyway.  */
2132       if (i
2133 	  && i->preferred_incoming_stack_boundary
2134 	  && i->preferred_incoming_stack_boundary < preferred_stack_boundary)
2135 	preferred_stack_boundary = i->preferred_incoming_stack_boundary;
2136     }
2137 
2138   /* Operand 0 is a pointer-to-function; get the type of the function.  */
2139   funtype = TREE_TYPE (addr);
2140   gcc_assert (POINTER_TYPE_P (funtype));
2141   funtype = TREE_TYPE (funtype);
2142 
2143   /* Count whether there are actual complex arguments that need to be split
2144      into their real and imaginary parts.  Munge the type_arg_types
2145      appropriately here as well.  */
2146   if (targetm.calls.split_complex_arg)
2147     {
2148       call_expr_arg_iterator iter;
2149       tree arg;
2150       FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2151 	{
2152 	  tree type = TREE_TYPE (arg);
2153 	  if (type && TREE_CODE (type) == COMPLEX_TYPE
2154 	      && targetm.calls.split_complex_arg (type))
2155 	    num_complex_actuals++;
2156 	}
2157       type_arg_types = split_complex_types (TYPE_ARG_TYPES (funtype));
2158     }
2159   else
2160     type_arg_types = TYPE_ARG_TYPES (funtype);
2161 
2162   if (flags & ECF_MAY_BE_ALLOCA)
2163     cfun->calls_alloca = 1;
2164 
2165   /* If struct_value_rtx is 0, it means pass the address
2166      as if it were an extra parameter.  Put the argument expression
2167      in structure_value_addr_value.  */
2168   if (structure_value_addr && struct_value == 0)
2169     {
2170       /* If structure_value_addr is a REG other than
2171 	 virtual_outgoing_args_rtx, we can use always use it.  If it
2172 	 is not a REG, we must always copy it into a register.
2173 	 If it is virtual_outgoing_args_rtx, we must copy it to another
2174 	 register in some cases.  */
2175       rtx temp = (!REG_P (structure_value_addr)
2176 		  || (ACCUMULATE_OUTGOING_ARGS
2177 		      && stack_arg_under_construction
2178 		      && structure_value_addr == virtual_outgoing_args_rtx)
2179 		  ? copy_addr_to_reg (convert_memory_address
2180 				      (Pmode, structure_value_addr))
2181 		  : structure_value_addr);
2182 
2183       structure_value_addr_value =
2184 	make_tree (build_pointer_type (TREE_TYPE (funtype)), temp);
2185       structure_value_addr_parm = 1;
2186     }
2187 
2188   /* Count the arguments and set NUM_ACTUALS.  */
2189   num_actuals =
2190     call_expr_nargs (exp) + num_complex_actuals + structure_value_addr_parm;
2191 
2192   /* Compute number of named args.
2193      First, do a raw count of the args for INIT_CUMULATIVE_ARGS.  */
2194 
2195   if (type_arg_types != 0)
2196     n_named_args
2197       = (list_length (type_arg_types)
2198 	 /* Count the struct value address, if it is passed as a parm.  */
2199 	 + structure_value_addr_parm);
2200   else
2201     /* If we know nothing, treat all args as named.  */
2202     n_named_args = num_actuals;
2203 
2204   /* Start updating where the next arg would go.
2205 
2206      On some machines (such as the PA) indirect calls have a different
2207      calling convention than normal calls.  The fourth argument in
2208      INIT_CUMULATIVE_ARGS tells the backend if this is an indirect call
2209      or not.  */
2210   INIT_CUMULATIVE_ARGS (args_so_far, funtype, NULL_RTX, fndecl, n_named_args);
2211 
2212   /* Now possibly adjust the number of named args.
2213      Normally, don't include the last named arg if anonymous args follow.
2214      We do include the last named arg if
2215      targetm.calls.strict_argument_naming() returns nonzero.
2216      (If no anonymous args follow, the result of list_length is actually
2217      one too large.  This is harmless.)
2218 
2219      If targetm.calls.pretend_outgoing_varargs_named() returns
2220      nonzero, and targetm.calls.strict_argument_naming() returns zero,
2221      this machine will be able to place unnamed args that were passed
2222      in registers into the stack.  So treat all args as named.  This
2223      allows the insns emitting for a specific argument list to be
2224      independent of the function declaration.
2225 
2226      If targetm.calls.pretend_outgoing_varargs_named() returns zero,
2227      we do not have any reliable way to pass unnamed args in
2228      registers, so we must force them into memory.  */
2229 
2230   if (type_arg_types != 0
2231       && targetm.calls.strict_argument_naming (&args_so_far))
2232     ;
2233   else if (type_arg_types != 0
2234 	   && ! targetm.calls.pretend_outgoing_varargs_named (&args_so_far))
2235     /* Don't include the last named arg.  */
2236     --n_named_args;
2237   else
2238     /* Treat all args as named.  */
2239     n_named_args = num_actuals;
2240 
2241   /* Make a vector to hold all the information about each arg.  */
2242   args = XALLOCAVEC (struct arg_data, num_actuals);
2243   memset (args, 0, num_actuals * sizeof (struct arg_data));
2244 
2245   /* Build up entries in the ARGS array, compute the size of the
2246      arguments into ARGS_SIZE, etc.  */
2247   initialize_argument_information (num_actuals, args, &args_size,
2248 				   n_named_args, exp,
2249 				   structure_value_addr_value, fndecl, fntype,
2250 				   &args_so_far, reg_parm_stack_space,
2251 				   &old_stack_level, &old_pending_adj,
2252 				   &must_preallocate, &flags,
2253 				   &try_tail_call, CALL_FROM_THUNK_P (exp));
2254 
2255   if (args_size.var)
2256     must_preallocate = 1;
2257 
2258   /* Now make final decision about preallocating stack space.  */
2259   must_preallocate = finalize_must_preallocate (must_preallocate,
2260 						num_actuals, args,
2261 						&args_size);
2262 
2263   /* If the structure value address will reference the stack pointer, we
2264      must stabilize it.  We don't need to do this if we know that we are
2265      not going to adjust the stack pointer in processing this call.  */
2266 
2267   if (structure_value_addr
2268       && (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr)
2269 	  || reg_mentioned_p (virtual_outgoing_args_rtx,
2270 			      structure_value_addr))
2271       && (args_size.var
2272 	  || (!ACCUMULATE_OUTGOING_ARGS && args_size.constant)))
2273     structure_value_addr = copy_to_reg (structure_value_addr);
2274 
2275   /* Tail calls can make things harder to debug, and we've traditionally
2276      pushed these optimizations into -O2.  Don't try if we're already
2277      expanding a call, as that means we're an argument.  Don't try if
2278      there's cleanups, as we know there's code to follow the call.  */
2279 
2280   if (currently_expanding_call++ != 0
2281       || !flag_optimize_sibling_calls
2282       || args_size.var
2283       || dbg_cnt (tail_call) == false)
2284     try_tail_call = 0;
2285 
2286   /*  Rest of purposes for tail call optimizations to fail.  */
2287   if (
2288 #ifdef HAVE_sibcall_epilogue
2289       !HAVE_sibcall_epilogue
2290 #else
2291       1
2292 #endif
2293       || !try_tail_call
2294       /* Doing sibling call optimization needs some work, since
2295 	 structure_value_addr can be allocated on the stack.
2296 	 It does not seem worth the effort since few optimizable
2297 	 sibling calls will return a structure.  */
2298       || structure_value_addr != NULL_RTX
2299 #ifdef REG_PARM_STACK_SPACE
2300       /* If outgoing reg parm stack space changes, we can not do sibcall.  */
2301       || (OUTGOING_REG_PARM_STACK_SPACE (funtype)
2302 	  != OUTGOING_REG_PARM_STACK_SPACE (TREE_TYPE (current_function_decl)))
2303       || (reg_parm_stack_space != REG_PARM_STACK_SPACE (fndecl))
2304 #endif
2305       /* Check whether the target is able to optimize the call
2306 	 into a sibcall.  */
2307       || !targetm.function_ok_for_sibcall (fndecl, exp)
2308       /* Functions that do not return exactly once may not be sibcall
2309 	 optimized.  */
2310       || (flags & (ECF_RETURNS_TWICE | ECF_NORETURN))
2311       || TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (addr)))
2312       /* If the called function is nested in the current one, it might access
2313 	 some of the caller's arguments, but could clobber them beforehand if
2314 	 the argument areas are shared.  */
2315       || (fndecl && decl_function_context (fndecl) == current_function_decl)
2316       /* If this function requires more stack slots than the current
2317 	 function, we cannot change it into a sibling call.
2318 	 crtl->args.pretend_args_size is not part of the
2319 	 stack allocated by our caller.  */
2320       || args_size.constant > (crtl->args.size
2321 			       - crtl->args.pretend_args_size)
2322       /* If the callee pops its own arguments, then it must pop exactly
2323 	 the same number of arguments as the current function.  */
2324       || (RETURN_POPS_ARGS (fndecl, funtype, args_size.constant)
2325 	  != RETURN_POPS_ARGS (current_function_decl,
2326 			       TREE_TYPE (current_function_decl),
2327 			       crtl->args.size))
2328       || !lang_hooks.decls.ok_for_sibcall (fndecl))
2329     try_tail_call = 0;
2330 
2331   /* Check if caller and callee disagree in promotion of function
2332      return value.  */
2333   if (try_tail_call)
2334     {
2335       enum machine_mode caller_mode, caller_promoted_mode;
2336       enum machine_mode callee_mode, callee_promoted_mode;
2337       int caller_unsignedp, callee_unsignedp;
2338       tree caller_res = DECL_RESULT (current_function_decl);
2339 
2340       caller_unsignedp = TYPE_UNSIGNED (TREE_TYPE (caller_res));
2341       caller_mode = DECL_MODE (caller_res);
2342       callee_unsignedp = TYPE_UNSIGNED (TREE_TYPE (funtype));
2343       callee_mode = TYPE_MODE (TREE_TYPE (funtype));
2344       caller_promoted_mode
2345 	= promote_function_mode (TREE_TYPE (caller_res), caller_mode,
2346 				 &caller_unsignedp,
2347 				 TREE_TYPE (current_function_decl), 1);
2348       callee_promoted_mode
2349 	= promote_function_mode (TREE_TYPE (funtype), callee_mode,
2350 				 &callee_unsignedp,
2351 				 funtype, 1);
2352       if (caller_mode != VOIDmode
2353 	  && (caller_promoted_mode != callee_promoted_mode
2354 	      || ((caller_mode != caller_promoted_mode
2355 		   || callee_mode != callee_promoted_mode)
2356 		  && (caller_unsignedp != callee_unsignedp
2357 		      || GET_MODE_BITSIZE (caller_mode)
2358 			 < GET_MODE_BITSIZE (callee_mode)))))
2359 	try_tail_call = 0;
2360     }
2361 
2362   /* Ensure current function's preferred stack boundary is at least
2363      what we need.  Stack alignment may also increase preferred stack
2364      boundary.  */
2365   if (crtl->preferred_stack_boundary < preferred_stack_boundary)
2366     crtl->preferred_stack_boundary = preferred_stack_boundary;
2367   else
2368     preferred_stack_boundary = crtl->preferred_stack_boundary;
2369 
2370   preferred_unit_stack_boundary = preferred_stack_boundary / BITS_PER_UNIT;
2371 
2372   /* We want to make two insn chains; one for a sibling call, the other
2373      for a normal call.  We will select one of the two chains after
2374      initial RTL generation is complete.  */
2375   for (pass = try_tail_call ? 0 : 1; pass < 2; pass++)
2376     {
2377       int sibcall_failure = 0;
2378       /* We want to emit any pending stack adjustments before the tail
2379 	 recursion "call".  That way we know any adjustment after the tail
2380 	 recursion call can be ignored if we indeed use the tail
2381 	 call expansion.  */
2382       int save_pending_stack_adjust = 0;
2383       int save_stack_pointer_delta = 0;
2384       rtx insns;
2385       rtx before_call, next_arg_reg, after_args;
2386 
2387       if (pass == 0)
2388 	{
2389 	  /* State variables we need to save and restore between
2390 	     iterations.  */
2391 	  save_pending_stack_adjust = pending_stack_adjust;
2392 	  save_stack_pointer_delta = stack_pointer_delta;
2393 	}
2394       if (pass)
2395 	flags &= ~ECF_SIBCALL;
2396       else
2397 	flags |= ECF_SIBCALL;
2398 
2399       /* Other state variables that we must reinitialize each time
2400 	 through the loop (that are not initialized by the loop itself).  */
2401       argblock = 0;
2402       call_fusage = 0;
2403 
2404       /* Start a new sequence for the normal call case.
2405 
2406 	 From this point on, if the sibling call fails, we want to set
2407 	 sibcall_failure instead of continuing the loop.  */
2408       start_sequence ();
2409 
2410       /* Don't let pending stack adjusts add up to too much.
2411 	 Also, do all pending adjustments now if there is any chance
2412 	 this might be a call to alloca or if we are expanding a sibling
2413 	 call sequence.
2414 	 Also do the adjustments before a throwing call, otherwise
2415 	 exception handling can fail; PR 19225. */
2416       if (pending_stack_adjust >= 32
2417 	  || (pending_stack_adjust > 0
2418 	      && (flags & ECF_MAY_BE_ALLOCA))
2419 	  || (pending_stack_adjust > 0
2420 	      && flag_exceptions && !(flags & ECF_NOTHROW))
2421 	  || pass == 0)
2422 	do_pending_stack_adjust ();
2423 
2424       /* Precompute any arguments as needed.  */
2425       if (pass)
2426 	precompute_arguments (num_actuals, args);
2427 
2428       /* Now we are about to start emitting insns that can be deleted
2429 	 if a libcall is deleted.  */
2430       if (pass && (flags & ECF_MALLOC))
2431 	start_sequence ();
2432 
2433       if (pass == 0 && crtl->stack_protect_guard)
2434 	stack_protect_epilogue ();
2435 
2436       adjusted_args_size = args_size;
2437       /* Compute the actual size of the argument block required.  The variable
2438 	 and constant sizes must be combined, the size may have to be rounded,
2439 	 and there may be a minimum required size.  When generating a sibcall
2440 	 pattern, do not round up, since we'll be re-using whatever space our
2441 	 caller provided.  */
2442       unadjusted_args_size
2443 	= compute_argument_block_size (reg_parm_stack_space,
2444 				       &adjusted_args_size,
2445 				       fndecl, fntype,
2446 				       (pass == 0 ? 0
2447 					: preferred_stack_boundary));
2448 
2449       old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
2450 
2451       /* The argument block when performing a sibling call is the
2452 	 incoming argument block.  */
2453       if (pass == 0)
2454 	{
2455 	  argblock = crtl->args.internal_arg_pointer;
2456 	  argblock
2457 #ifdef STACK_GROWS_DOWNWARD
2458 	    = plus_constant (argblock, crtl->args.pretend_args_size);
2459 #else
2460 	    = plus_constant (argblock, -crtl->args.pretend_args_size);
2461 #endif
2462 	  stored_args_map = sbitmap_alloc (args_size.constant);
2463 	  sbitmap_zero (stored_args_map);
2464 	}
2465 
2466       /* If we have no actual push instructions, or shouldn't use them,
2467 	 make space for all args right now.  */
2468       else if (adjusted_args_size.var != 0)
2469 	{
2470 	  if (old_stack_level == 0)
2471 	    {
2472 	      emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
2473 	      old_stack_pointer_delta = stack_pointer_delta;
2474 	      old_pending_adj = pending_stack_adjust;
2475 	      pending_stack_adjust = 0;
2476 	      /* stack_arg_under_construction says whether a stack arg is
2477 		 being constructed at the old stack level.  Pushing the stack
2478 		 gets a clean outgoing argument block.  */
2479 	      old_stack_arg_under_construction = stack_arg_under_construction;
2480 	      stack_arg_under_construction = 0;
2481 	    }
2482 	  argblock = push_block (ARGS_SIZE_RTX (adjusted_args_size), 0, 0);
2483 	}
2484       else
2485 	{
2486 	  /* Note that we must go through the motions of allocating an argument
2487 	     block even if the size is zero because we may be storing args
2488 	     in the area reserved for register arguments, which may be part of
2489 	     the stack frame.  */
2490 
2491 	  int needed = adjusted_args_size.constant;
2492 
2493 	  /* Store the maximum argument space used.  It will be pushed by
2494 	     the prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow
2495 	     checking).  */
2496 
2497 	  if (needed > crtl->outgoing_args_size)
2498 	    crtl->outgoing_args_size = needed;
2499 
2500 	  if (must_preallocate)
2501 	    {
2502 	      if (ACCUMULATE_OUTGOING_ARGS)
2503 		{
2504 		  /* Since the stack pointer will never be pushed, it is
2505 		     possible for the evaluation of a parm to clobber
2506 		     something we have already written to the stack.
2507 		     Since most function calls on RISC machines do not use
2508 		     the stack, this is uncommon, but must work correctly.
2509 
2510 		     Therefore, we save any area of the stack that was already
2511 		     written and that we are using.  Here we set up to do this
2512 		     by making a new stack usage map from the old one.  The
2513 		     actual save will be done by store_one_arg.
2514 
2515 		     Another approach might be to try to reorder the argument
2516 		     evaluations to avoid this conflicting stack usage.  */
2517 
2518 		  /* Since we will be writing into the entire argument area,
2519 		     the map must be allocated for its entire size, not just
2520 		     the part that is the responsibility of the caller.  */
2521 		  if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
2522 		    needed += reg_parm_stack_space;
2523 
2524 #ifdef ARGS_GROW_DOWNWARD
2525 		  highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2526 						     needed + 1);
2527 #else
2528 		  highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2529 						     needed);
2530 #endif
2531 		  if (stack_usage_map_buf)
2532 		    free (stack_usage_map_buf);
2533 		  stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
2534 		  stack_usage_map = stack_usage_map_buf;
2535 
2536 		  if (initial_highest_arg_in_use)
2537 		    memcpy (stack_usage_map, initial_stack_usage_map,
2538 			    initial_highest_arg_in_use);
2539 
2540 		  if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
2541 		    memset (&stack_usage_map[initial_highest_arg_in_use], 0,
2542 			   (highest_outgoing_arg_in_use
2543 			    - initial_highest_arg_in_use));
2544 		  needed = 0;
2545 
2546 		  /* The address of the outgoing argument list must not be
2547 		     copied to a register here, because argblock would be left
2548 		     pointing to the wrong place after the call to
2549 		     allocate_dynamic_stack_space below.  */
2550 
2551 		  argblock = virtual_outgoing_args_rtx;
2552 		}
2553 	      else
2554 		{
2555 		  if (inhibit_defer_pop == 0)
2556 		    {
2557 		      /* Try to reuse some or all of the pending_stack_adjust
2558 			 to get this space.  */
2559 		      needed
2560 			= (combine_pending_stack_adjustment_and_call
2561 			   (unadjusted_args_size,
2562 			    &adjusted_args_size,
2563 			    preferred_unit_stack_boundary));
2564 
2565 		      /* combine_pending_stack_adjustment_and_call computes
2566 			 an adjustment before the arguments are allocated.
2567 			 Account for them and see whether or not the stack
2568 			 needs to go up or down.  */
2569 		      needed = unadjusted_args_size - needed;
2570 
2571 		      if (needed < 0)
2572 			{
2573 			  /* We're releasing stack space.  */
2574 			  /* ??? We can avoid any adjustment at all if we're
2575 			     already aligned.  FIXME.  */
2576 			  pending_stack_adjust = -needed;
2577 			  do_pending_stack_adjust ();
2578 			  needed = 0;
2579 			}
2580 		      else
2581 			/* We need to allocate space.  We'll do that in
2582 			   push_block below.  */
2583 			pending_stack_adjust = 0;
2584 		    }
2585 
2586 		  /* Special case this because overhead of `push_block' in
2587 		     this case is non-trivial.  */
2588 		  if (needed == 0)
2589 		    argblock = virtual_outgoing_args_rtx;
2590 		  else
2591 		    {
2592 		      argblock = push_block (GEN_INT (needed), 0, 0);
2593 #ifdef ARGS_GROW_DOWNWARD
2594 		      argblock = plus_constant (argblock, needed);
2595 #endif
2596 		    }
2597 
2598 		  /* We only really need to call `copy_to_reg' in the case
2599 		     where push insns are going to be used to pass ARGBLOCK
2600 		     to a function call in ARGS.  In that case, the stack
2601 		     pointer changes value from the allocation point to the
2602 		     call point, and hence the value of
2603 		     VIRTUAL_OUTGOING_ARGS_RTX changes as well.  But might
2604 		     as well always do it.  */
2605 		  argblock = copy_to_reg (argblock);
2606 		}
2607 	    }
2608 	}
2609 
2610       if (ACCUMULATE_OUTGOING_ARGS)
2611 	{
2612 	  /* The save/restore code in store_one_arg handles all
2613 	     cases except one: a constructor call (including a C
2614 	     function returning a BLKmode struct) to initialize
2615 	     an argument.  */
2616 	  if (stack_arg_under_construction)
2617 	    {
2618 	      rtx push_size
2619 		= GEN_INT (adjusted_args_size.constant
2620 			   + (OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype
2621 			   					      : TREE_TYPE (fndecl))) ? 0
2622 			      : reg_parm_stack_space));
2623 	      if (old_stack_level == 0)
2624 		{
2625 		  emit_stack_save (SAVE_BLOCK, &old_stack_level,
2626 				   NULL_RTX);
2627 		  old_stack_pointer_delta = stack_pointer_delta;
2628 		  old_pending_adj = pending_stack_adjust;
2629 		  pending_stack_adjust = 0;
2630 		  /* stack_arg_under_construction says whether a stack
2631 		     arg is being constructed at the old stack level.
2632 		     Pushing the stack gets a clean outgoing argument
2633 		     block.  */
2634 		  old_stack_arg_under_construction
2635 		    = stack_arg_under_construction;
2636 		  stack_arg_under_construction = 0;
2637 		  /* Make a new map for the new argument list.  */
2638 		  if (stack_usage_map_buf)
2639 		    free (stack_usage_map_buf);
2640 		  stack_usage_map_buf = XCNEWVEC (char, highest_outgoing_arg_in_use);
2641 		  stack_usage_map = stack_usage_map_buf;
2642 		  highest_outgoing_arg_in_use = 0;
2643 		}
2644 	      allocate_dynamic_stack_space (push_size, NULL_RTX,
2645 					    BITS_PER_UNIT);
2646 	    }
2647 
2648 	  /* If argument evaluation might modify the stack pointer,
2649 	     copy the address of the argument list to a register.  */
2650 	  for (i = 0; i < num_actuals; i++)
2651 	    if (args[i].pass_on_stack)
2652 	      {
2653 		argblock = copy_addr_to_reg (argblock);
2654 		break;
2655 	      }
2656 	}
2657 
2658       compute_argument_addresses (args, argblock, num_actuals);
2659 
2660       /* If we push args individually in reverse order, perform stack alignment
2661 	 before the first push (the last arg).  */
2662       if (PUSH_ARGS_REVERSED && argblock == 0
2663 	  && adjusted_args_size.constant != unadjusted_args_size)
2664 	{
2665 	  /* When the stack adjustment is pending, we get better code
2666 	     by combining the adjustments.  */
2667 	  if (pending_stack_adjust
2668 	      && ! inhibit_defer_pop)
2669 	    {
2670 	      pending_stack_adjust
2671 		= (combine_pending_stack_adjustment_and_call
2672 		   (unadjusted_args_size,
2673 		    &adjusted_args_size,
2674 		    preferred_unit_stack_boundary));
2675 	      do_pending_stack_adjust ();
2676 	    }
2677 	  else if (argblock == 0)
2678 	    anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2679 					- unadjusted_args_size));
2680 	}
2681       /* Now that the stack is properly aligned, pops can't safely
2682 	 be deferred during the evaluation of the arguments.  */
2683       NO_DEFER_POP;
2684 
2685       funexp = rtx_for_function_call (fndecl, addr);
2686 
2687       /* Figure out the register where the value, if any, will come back.  */
2688       valreg = 0;
2689       if (TYPE_MODE (rettype) != VOIDmode
2690 	  && ! structure_value_addr)
2691 	{
2692 	  if (pcc_struct_value)
2693 	    valreg = hard_function_value (build_pointer_type (rettype),
2694 					  fndecl, NULL, (pass == 0));
2695 	  else
2696 	    valreg = hard_function_value (rettype, fndecl, fntype,
2697 					  (pass == 0));
2698 
2699 	  /* If VALREG is a PARALLEL whose first member has a zero
2700 	     offset, use that.  This is for targets such as m68k that
2701 	     return the same value in multiple places.  */
2702 	  if (GET_CODE (valreg) == PARALLEL)
2703 	    {
2704 	      rtx elem = XVECEXP (valreg, 0, 0);
2705 	      rtx where = XEXP (elem, 0);
2706 	      rtx offset = XEXP (elem, 1);
2707 	      if (offset == const0_rtx
2708 		  && GET_MODE (where) == GET_MODE (valreg))
2709 		valreg = where;
2710 	    }
2711 	}
2712 
2713       /* Precompute all register parameters.  It isn't safe to compute anything
2714 	 once we have started filling any specific hard regs.  */
2715       precompute_register_parameters (num_actuals, args, &reg_parm_seen);
2716 
2717       if (CALL_EXPR_STATIC_CHAIN (exp))
2718 	static_chain_value = expand_normal (CALL_EXPR_STATIC_CHAIN (exp));
2719       else
2720 	static_chain_value = 0;
2721 
2722 #ifdef REG_PARM_STACK_SPACE
2723       /* Save the fixed argument area if it's part of the caller's frame and
2724 	 is clobbered by argument setup for this call.  */
2725       if (ACCUMULATE_OUTGOING_ARGS && pass)
2726 	save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
2727 					      &low_to_save, &high_to_save);
2728 #endif
2729 
2730       /* Now store (and compute if necessary) all non-register parms.
2731 	 These come before register parms, since they can require block-moves,
2732 	 which could clobber the registers used for register parms.
2733 	 Parms which have partial registers are not stored here,
2734 	 but we do preallocate space here if they want that.  */
2735 
2736       for (i = 0; i < num_actuals; i++)
2737 	{
2738 	  if (args[i].reg == 0 || args[i].pass_on_stack)
2739 	    {
2740 	      rtx before_arg = get_last_insn ();
2741 
2742 	      if (store_one_arg (&args[i], argblock, flags,
2743 				 adjusted_args_size.var != 0,
2744 				 reg_parm_stack_space)
2745 		  || (pass == 0
2746 		      && check_sibcall_argument_overlap (before_arg,
2747 							 &args[i], 1)))
2748 		sibcall_failure = 1;
2749 	      }
2750 
2751 	  if (((flags & ECF_CONST)
2752 	       || ((flags & ECF_PURE) && ACCUMULATE_OUTGOING_ARGS))
2753 	      && args[i].stack)
2754 	    call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
2755 					     gen_rtx_USE (VOIDmode,
2756 							  args[i].stack),
2757 					     call_fusage);
2758 	}
2759 
2760       /* If we have a parm that is passed in registers but not in memory
2761 	 and whose alignment does not permit a direct copy into registers,
2762 	 make a group of pseudos that correspond to each register that we
2763 	 will later fill.  */
2764       if (STRICT_ALIGNMENT)
2765 	store_unaligned_arguments_into_pseudos (args, num_actuals);
2766 
2767       /* Now store any partially-in-registers parm.
2768 	 This is the last place a block-move can happen.  */
2769       if (reg_parm_seen)
2770 	for (i = 0; i < num_actuals; i++)
2771 	  if (args[i].partial != 0 && ! args[i].pass_on_stack)
2772 	    {
2773 	      rtx before_arg = get_last_insn ();
2774 
2775 	      if (store_one_arg (&args[i], argblock, flags,
2776 				 adjusted_args_size.var != 0,
2777 				 reg_parm_stack_space)
2778 		  || (pass == 0
2779 		      && check_sibcall_argument_overlap (before_arg,
2780 							 &args[i], 1)))
2781 		sibcall_failure = 1;
2782 	    }
2783 
2784       /* If we pushed args in forward order, perform stack alignment
2785 	 after pushing the last arg.  */
2786       if (!PUSH_ARGS_REVERSED && argblock == 0)
2787 	anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2788 				    - unadjusted_args_size));
2789 
2790       /* If register arguments require space on the stack and stack space
2791 	 was not preallocated, allocate stack space here for arguments
2792 	 passed in registers.  */
2793       if (OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
2794           && !ACCUMULATE_OUTGOING_ARGS
2795 	  && must_preallocate == 0 && reg_parm_stack_space > 0)
2796 	anti_adjust_stack (GEN_INT (reg_parm_stack_space));
2797 
2798       /* Pass the function the address in which to return a
2799 	 structure value.  */
2800       if (pass != 0 && structure_value_addr && ! structure_value_addr_parm)
2801 	{
2802 	  structure_value_addr
2803 	    = convert_memory_address (Pmode, structure_value_addr);
2804 	  emit_move_insn (struct_value,
2805 			  force_reg (Pmode,
2806 				     force_operand (structure_value_addr,
2807 						    NULL_RTX)));
2808 
2809 	  if (REG_P (struct_value))
2810 	    use_reg (&call_fusage, struct_value);
2811 	}
2812 
2813       after_args = get_last_insn ();
2814       funexp = prepare_call_address (fndecl, funexp, static_chain_value,
2815 				     &call_fusage, reg_parm_seen, pass == 0);
2816 
2817       load_register_parameters (args, num_actuals, &call_fusage, flags,
2818 				pass == 0, &sibcall_failure);
2819 
2820       /* Save a pointer to the last insn before the call, so that we can
2821 	 later safely search backwards to find the CALL_INSN.  */
2822       before_call = get_last_insn ();
2823 
2824       /* Set up next argument register.  For sibling calls on machines
2825 	 with register windows this should be the incoming register.  */
2826 #ifdef FUNCTION_INCOMING_ARG
2827       if (pass == 0)
2828 	next_arg_reg = FUNCTION_INCOMING_ARG (args_so_far, VOIDmode,
2829 					      void_type_node, 1);
2830       else
2831 #endif
2832 	next_arg_reg = FUNCTION_ARG (args_so_far, VOIDmode,
2833 				     void_type_node, 1);
2834 
2835       /* All arguments and registers used for the call must be set up by
2836 	 now!  */
2837 
2838       /* Stack must be properly aligned now.  */
2839       gcc_assert (!pass
2840 		  || !(stack_pointer_delta % preferred_unit_stack_boundary));
2841 
2842       /* Generate the actual call instruction.  */
2843       emit_call_1 (funexp, exp, fndecl, funtype, unadjusted_args_size,
2844 		   adjusted_args_size.constant, struct_value_size,
2845 		   next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage,
2846 		   flags, & args_so_far);
2847 
2848       /* If the call setup or the call itself overlaps with anything
2849 	 of the argument setup we probably clobbered our call address.
2850 	 In that case we can't do sibcalls.  */
2851       if (pass == 0
2852 	  && check_sibcall_argument_overlap (after_args, 0, 0))
2853 	sibcall_failure = 1;
2854 
2855       /* If a non-BLKmode value is returned at the most significant end
2856 	 of a register, shift the register right by the appropriate amount
2857 	 and update VALREG accordingly.  BLKmode values are handled by the
2858 	 group load/store machinery below.  */
2859       if (!structure_value_addr
2860 	  && !pcc_struct_value
2861 	  && TYPE_MODE (rettype) != BLKmode
2862 	  && targetm.calls.return_in_msb (rettype))
2863 	{
2864 	  if (shift_return_value (TYPE_MODE (rettype), false, valreg))
2865 	    sibcall_failure = 1;
2866 	  valreg = gen_rtx_REG (TYPE_MODE (rettype), REGNO (valreg));
2867 	}
2868 
2869       if (pass && (flags & ECF_MALLOC))
2870 	{
2871 	  rtx temp = gen_reg_rtx (GET_MODE (valreg));
2872 	  rtx last, insns;
2873 
2874 	  /* The return value from a malloc-like function is a pointer.  */
2875 	  if (TREE_CODE (rettype) == POINTER_TYPE)
2876 	    mark_reg_pointer (temp, BIGGEST_ALIGNMENT);
2877 
2878 	  emit_move_insn (temp, valreg);
2879 
2880 	  /* The return value from a malloc-like function can not alias
2881 	     anything else.  */
2882 	  last = get_last_insn ();
2883 	  add_reg_note (last, REG_NOALIAS, temp);
2884 
2885 	  /* Write out the sequence.  */
2886 	  insns = get_insns ();
2887 	  end_sequence ();
2888 	  emit_insn (insns);
2889 	  valreg = temp;
2890 	}
2891 
2892       /* For calls to `setjmp', etc., inform
2893 	 function.c:setjmp_warnings that it should complain if
2894 	 nonvolatile values are live.  For functions that cannot
2895 	 return, inform flow that control does not fall through.  */
2896 
2897       if ((flags & ECF_NORETURN) || pass == 0)
2898 	{
2899 	  /* The barrier must be emitted
2900 	     immediately after the CALL_INSN.  Some ports emit more
2901 	     than just a CALL_INSN above, so we must search for it here.  */
2902 
2903 	  rtx last = get_last_insn ();
2904 	  while (!CALL_P (last))
2905 	    {
2906 	      last = PREV_INSN (last);
2907 	      /* There was no CALL_INSN?  */
2908 	      gcc_assert (last != before_call);
2909 	    }
2910 
2911 	  emit_barrier_after (last);
2912 
2913 	  /* Stack adjustments after a noreturn call are dead code.
2914 	     However when NO_DEFER_POP is in effect, we must preserve
2915 	     stack_pointer_delta.  */
2916 	  if (inhibit_defer_pop == 0)
2917 	    {
2918 	      stack_pointer_delta = old_stack_allocated;
2919 	      pending_stack_adjust = 0;
2920 	    }
2921 	}
2922 
2923       /* If value type not void, return an rtx for the value.  */
2924 
2925       if (TYPE_MODE (rettype) == VOIDmode
2926 	  || ignore)
2927 	target = const0_rtx;
2928       else if (structure_value_addr)
2929 	{
2930 	  if (target == 0 || !MEM_P (target))
2931 	    {
2932 	      target
2933 		= gen_rtx_MEM (TYPE_MODE (rettype),
2934 			       memory_address (TYPE_MODE (rettype),
2935 					       structure_value_addr));
2936 	      set_mem_attributes (target, rettype, 1);
2937 	    }
2938 	}
2939       else if (pcc_struct_value)
2940 	{
2941 	  /* This is the special C++ case where we need to
2942 	     know what the true target was.  We take care to
2943 	     never use this value more than once in one expression.  */
2944 	  target = gen_rtx_MEM (TYPE_MODE (rettype),
2945 				copy_to_reg (valreg));
2946 	  set_mem_attributes (target, rettype, 1);
2947 	}
2948       /* Handle calls that return values in multiple non-contiguous locations.
2949 	 The Irix 6 ABI has examples of this.  */
2950       else if (GET_CODE (valreg) == PARALLEL)
2951 	{
2952 	  if (target == 0)
2953 	    {
2954 	      /* This will only be assigned once, so it can be readonly.  */
2955 	      tree nt = build_qualified_type (rettype,
2956 					      (TYPE_QUALS (rettype)
2957 					       | TYPE_QUAL_CONST));
2958 
2959 	      target = assign_temp (nt, 0, 1, 1);
2960 	    }
2961 
2962 	  if (! rtx_equal_p (target, valreg))
2963 	    emit_group_store (target, valreg, rettype,
2964 			      int_size_in_bytes (rettype));
2965 
2966 	  /* We can not support sibling calls for this case.  */
2967 	  sibcall_failure = 1;
2968 	}
2969       else if (target
2970 	       && GET_MODE (target) == TYPE_MODE (rettype)
2971 	       && GET_MODE (target) == GET_MODE (valreg))
2972 	{
2973 	  bool may_overlap = false;
2974 
2975 	  /* We have to copy a return value in a CLASS_LIKELY_SPILLED hard
2976 	     reg to a plain register.  */
2977 	  if (!REG_P (target) || HARD_REGISTER_P (target))
2978 	    valreg = avoid_likely_spilled_reg (valreg);
2979 
2980 	  /* If TARGET is a MEM in the argument area, and we have
2981 	     saved part of the argument area, then we can't store
2982 	     directly into TARGET as it may get overwritten when we
2983 	     restore the argument save area below.  Don't work too
2984 	     hard though and simply force TARGET to a register if it
2985 	     is a MEM; the optimizer is quite likely to sort it out.  */
2986 	  if (ACCUMULATE_OUTGOING_ARGS && pass && MEM_P (target))
2987 	    for (i = 0; i < num_actuals; i++)
2988 	      if (args[i].save_area)
2989 		{
2990 		  may_overlap = true;
2991 		  break;
2992 		}
2993 
2994 	  if (may_overlap)
2995 	    target = copy_to_reg (valreg);
2996 	  else
2997 	    {
2998 	      /* TARGET and VALREG cannot be equal at this point
2999 		 because the latter would not have
3000 		 REG_FUNCTION_VALUE_P true, while the former would if
3001 		 it were referring to the same register.
3002 
3003 		 If they refer to the same register, this move will be
3004 		 a no-op, except when function inlining is being
3005 		 done.  */
3006 	      emit_move_insn (target, valreg);
3007 
3008 	      /* If we are setting a MEM, this code must be executed.
3009 		 Since it is emitted after the call insn, sibcall
3010 		 optimization cannot be performed in that case.  */
3011 	      if (MEM_P (target))
3012 		sibcall_failure = 1;
3013 	    }
3014 	}
3015       else if (TYPE_MODE (rettype) == BLKmode)
3016 	{
3017 	  rtx val = valreg;
3018 	  if (GET_MODE (val) != BLKmode)
3019 	    val = avoid_likely_spilled_reg (val);
3020 	  target = copy_blkmode_from_reg (target, val, rettype);
3021 
3022 	  /* We can not support sibling calls for this case.  */
3023 	  sibcall_failure = 1;
3024 	}
3025       else
3026 	target = copy_to_reg (avoid_likely_spilled_reg (valreg));
3027 
3028       /* If we promoted this return value, make the proper SUBREG.
3029          TARGET might be const0_rtx here, so be careful.  */
3030       if (REG_P (target)
3031 	  && TYPE_MODE (rettype) != BLKmode
3032 	  && GET_MODE (target) != TYPE_MODE (rettype))
3033 	{
3034 	  tree type = rettype;
3035 	  int unsignedp = TYPE_UNSIGNED (type);
3036 	  int offset = 0;
3037 	  enum machine_mode pmode;
3038 
3039 	  /* Ensure we promote as expected, and get the new unsignedness.  */
3040 	  pmode = promote_function_mode (type, TYPE_MODE (type), &unsignedp,
3041 					 funtype, 1);
3042 	  gcc_assert (GET_MODE (target) == pmode);
3043 
3044 	  if ((WORDS_BIG_ENDIAN || BYTES_BIG_ENDIAN)
3045 	      && (GET_MODE_SIZE (GET_MODE (target))
3046 		  > GET_MODE_SIZE (TYPE_MODE (type))))
3047 	    {
3048 	      offset = GET_MODE_SIZE (GET_MODE (target))
3049 	        - GET_MODE_SIZE (TYPE_MODE (type));
3050 	      if (! BYTES_BIG_ENDIAN)
3051 	        offset = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
3052 	      else if (! WORDS_BIG_ENDIAN)
3053 	        offset %= UNITS_PER_WORD;
3054 	    }
3055 
3056 	  target = gen_rtx_SUBREG (TYPE_MODE (type), target, offset);
3057 	  SUBREG_PROMOTED_VAR_P (target) = 1;
3058 	  SUBREG_PROMOTED_UNSIGNED_SET (target, unsignedp);
3059 	}
3060 
3061       /* If size of args is variable or this was a constructor call for a stack
3062 	 argument, restore saved stack-pointer value.  */
3063 
3064       if (old_stack_level)
3065 	{
3066 	  emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX);
3067 	  stack_pointer_delta = old_stack_pointer_delta;
3068 	  pending_stack_adjust = old_pending_adj;
3069 	  old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
3070 	  stack_arg_under_construction = old_stack_arg_under_construction;
3071 	  highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3072 	  stack_usage_map = initial_stack_usage_map;
3073 	  sibcall_failure = 1;
3074 	}
3075       else if (ACCUMULATE_OUTGOING_ARGS && pass)
3076 	{
3077 #ifdef REG_PARM_STACK_SPACE
3078 	  if (save_area)
3079 	    restore_fixed_argument_area (save_area, argblock,
3080 					 high_to_save, low_to_save);
3081 #endif
3082 
3083 	  /* If we saved any argument areas, restore them.  */
3084 	  for (i = 0; i < num_actuals; i++)
3085 	    if (args[i].save_area)
3086 	      {
3087 		enum machine_mode save_mode = GET_MODE (args[i].save_area);
3088 		rtx stack_area
3089 		  = gen_rtx_MEM (save_mode,
3090 				 memory_address (save_mode,
3091 						 XEXP (args[i].stack_slot, 0)));
3092 
3093 		if (save_mode != BLKmode)
3094 		  emit_move_insn (stack_area, args[i].save_area);
3095 		else
3096 		  emit_block_move (stack_area, args[i].save_area,
3097 				   GEN_INT (args[i].locate.size.constant),
3098 				   BLOCK_OP_CALL_PARM);
3099 	      }
3100 
3101 	  highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3102 	  stack_usage_map = initial_stack_usage_map;
3103 	}
3104 
3105       /* If this was alloca, record the new stack level for nonlocal gotos.
3106 	 Check for the handler slots since we might not have a save area
3107 	 for non-local gotos.  */
3108 
3109       if ((flags & ECF_MAY_BE_ALLOCA) && cfun->nonlocal_goto_save_area != 0)
3110 	update_nonlocal_goto_save_area ();
3111 
3112       /* Free up storage we no longer need.  */
3113       for (i = 0; i < num_actuals; ++i)
3114 	if (args[i].aligned_regs)
3115 	  free (args[i].aligned_regs);
3116 
3117       insns = get_insns ();
3118       end_sequence ();
3119 
3120       if (pass == 0)
3121 	{
3122 	  tail_call_insns = insns;
3123 
3124 	  /* Restore the pending stack adjustment now that we have
3125 	     finished generating the sibling call sequence.  */
3126 
3127 	  pending_stack_adjust = save_pending_stack_adjust;
3128 	  stack_pointer_delta = save_stack_pointer_delta;
3129 
3130 	  /* Prepare arg structure for next iteration.  */
3131 	  for (i = 0; i < num_actuals; i++)
3132 	    {
3133 	      args[i].value = 0;
3134 	      args[i].aligned_regs = 0;
3135 	      args[i].stack = 0;
3136 	    }
3137 
3138 	  sbitmap_free (stored_args_map);
3139 	}
3140       else
3141 	{
3142 	  normal_call_insns = insns;
3143 
3144 	  /* Verify that we've deallocated all the stack we used.  */
3145 	  gcc_assert ((flags & ECF_NORETURN)
3146 		      || (old_stack_allocated
3147 			  == stack_pointer_delta - pending_stack_adjust));
3148 	}
3149 
3150       /* If something prevents making this a sibling call,
3151 	 zero out the sequence.  */
3152       if (sibcall_failure)
3153 	tail_call_insns = NULL_RTX;
3154       else
3155 	break;
3156     }
3157 
3158   /* If tail call production succeeded, we need to remove REG_EQUIV notes on
3159      arguments too, as argument area is now clobbered by the call.  */
3160   if (tail_call_insns)
3161     {
3162       emit_insn (tail_call_insns);
3163       crtl->tail_call_emit = true;
3164     }
3165   else
3166     emit_insn (normal_call_insns);
3167 
3168   currently_expanding_call--;
3169 
3170   if (stack_usage_map_buf)
3171     free (stack_usage_map_buf);
3172 
3173   return target;
3174 }
3175 
3176 /* A sibling call sequence invalidates any REG_EQUIV notes made for
3177    this function's incoming arguments.
3178 
3179    At the start of RTL generation we know the only REG_EQUIV notes
3180    in the rtl chain are those for incoming arguments, so we can look
3181    for REG_EQUIV notes between the start of the function and the
3182    NOTE_INSN_FUNCTION_BEG.
3183 
3184    This is (slight) overkill.  We could keep track of the highest
3185    argument we clobber and be more selective in removing notes, but it
3186    does not seem to be worth the effort.  */
3187 
3188 void
3189 fixup_tail_calls (void)
3190 {
3191   rtx insn;
3192 
3193   for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3194     {
3195       rtx note;
3196 
3197       /* There are never REG_EQUIV notes for the incoming arguments
3198 	 after the NOTE_INSN_FUNCTION_BEG note, so stop if we see it.  */
3199       if (NOTE_P (insn)
3200 	  && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3201 	break;
3202 
3203       note = find_reg_note (insn, REG_EQUIV, 0);
3204       if (note)
3205 	remove_note (insn, note);
3206       note = find_reg_note (insn, REG_EQUIV, 0);
3207       gcc_assert (!note);
3208     }
3209 }
3210 
3211 /* Traverse a list of TYPES and expand all complex types into their
3212    components.  */
3213 static tree
3214 split_complex_types (tree types)
3215 {
3216   tree p;
3217 
3218   /* Before allocating memory, check for the common case of no complex.  */
3219   for (p = types; p; p = TREE_CHAIN (p))
3220     {
3221       tree type = TREE_VALUE (p);
3222       if (TREE_CODE (type) == COMPLEX_TYPE
3223 	  && targetm.calls.split_complex_arg (type))
3224 	goto found;
3225     }
3226   return types;
3227 
3228  found:
3229   types = copy_list (types);
3230 
3231   for (p = types; p; p = TREE_CHAIN (p))
3232     {
3233       tree complex_type = TREE_VALUE (p);
3234 
3235       if (TREE_CODE (complex_type) == COMPLEX_TYPE
3236 	  && targetm.calls.split_complex_arg (complex_type))
3237 	{
3238 	  tree next, imag;
3239 
3240 	  /* Rewrite complex type with component type.  */
3241 	  TREE_VALUE (p) = TREE_TYPE (complex_type);
3242 	  next = TREE_CHAIN (p);
3243 
3244 	  /* Add another component type for the imaginary part.  */
3245 	  imag = build_tree_list (NULL_TREE, TREE_VALUE (p));
3246 	  TREE_CHAIN (p) = imag;
3247 	  TREE_CHAIN (imag) = next;
3248 
3249 	  /* Skip the newly created node.  */
3250 	  p = TREE_CHAIN (p);
3251 	}
3252     }
3253 
3254   return types;
3255 }
3256 
3257 /* Output a library call to function FUN (a SYMBOL_REF rtx).
3258    The RETVAL parameter specifies whether return value needs to be saved, other
3259    parameters are documented in the emit_library_call function below.  */
3260 
3261 static rtx
3262 emit_library_call_value_1 (int retval, rtx orgfun, rtx value,
3263 			   enum libcall_type fn_type,
3264 			   enum machine_mode outmode, int nargs, va_list p)
3265 {
3266   /* Total size in bytes of all the stack-parms scanned so far.  */
3267   struct args_size args_size;
3268   /* Size of arguments before any adjustments (such as rounding).  */
3269   struct args_size original_args_size;
3270   int argnum;
3271   rtx fun;
3272   /* Todo, choose the correct decl type of orgfun. Sadly this information
3273      isn't present here, so we default to native calling abi here.  */
3274   tree fndecl ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
3275   tree fntype ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
3276   int inc;
3277   int count;
3278   rtx argblock = 0;
3279   CUMULATIVE_ARGS args_so_far;
3280   struct arg
3281   {
3282     rtx value;
3283     enum machine_mode mode;
3284     rtx reg;
3285     int partial;
3286     struct locate_and_pad_arg_data locate;
3287     rtx save_area;
3288   };
3289   struct arg *argvec;
3290   int old_inhibit_defer_pop = inhibit_defer_pop;
3291   rtx call_fusage = 0;
3292   rtx mem_value = 0;
3293   rtx valreg;
3294   int pcc_struct_value = 0;
3295   int struct_value_size = 0;
3296   int flags;
3297   int reg_parm_stack_space = 0;
3298   int needed;
3299   rtx before_call;
3300   tree tfom;			/* type_for_mode (outmode, 0) */
3301 
3302 #ifdef REG_PARM_STACK_SPACE
3303   /* Define the boundary of the register parm stack space that needs to be
3304      save, if any.  */
3305   int low_to_save = 0, high_to_save = 0;
3306   rtx save_area = 0;            /* Place that it is saved.  */
3307 #endif
3308 
3309   /* Size of the stack reserved for parameter registers.  */
3310   int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
3311   char *initial_stack_usage_map = stack_usage_map;
3312   char *stack_usage_map_buf = NULL;
3313 
3314   rtx struct_value = targetm.calls.struct_value_rtx (0, 0);
3315 
3316 #ifdef REG_PARM_STACK_SPACE
3317   reg_parm_stack_space = REG_PARM_STACK_SPACE ((tree) 0);
3318 #endif
3319 
3320   /* By default, library functions can not throw.  */
3321   flags = ECF_NOTHROW;
3322 
3323   switch (fn_type)
3324     {
3325     case LCT_NORMAL:
3326       break;
3327     case LCT_CONST:
3328       flags |= ECF_CONST;
3329       break;
3330     case LCT_PURE:
3331       flags |= ECF_PURE;
3332       break;
3333     case LCT_NORETURN:
3334       flags |= ECF_NORETURN;
3335       break;
3336     case LCT_THROW:
3337       flags = ECF_NORETURN;
3338       break;
3339     case LCT_RETURNS_TWICE:
3340       flags = ECF_RETURNS_TWICE;
3341       break;
3342     }
3343   fun = orgfun;
3344 
3345   /* Ensure current function's preferred stack boundary is at least
3346      what we need.  */
3347   if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
3348     crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
3349 
3350   /* If this kind of value comes back in memory,
3351      decide where in memory it should come back.  */
3352   if (outmode != VOIDmode)
3353     {
3354       tfom = lang_hooks.types.type_for_mode (outmode, 0);
3355       if (aggregate_value_p (tfom, 0))
3356 	{
3357 #ifdef PCC_STATIC_STRUCT_RETURN
3358 	  rtx pointer_reg
3359 	    = hard_function_value (build_pointer_type (tfom), 0, 0, 0);
3360 	  mem_value = gen_rtx_MEM (outmode, pointer_reg);
3361 	  pcc_struct_value = 1;
3362 	  if (value == 0)
3363 	    value = gen_reg_rtx (outmode);
3364 #else /* not PCC_STATIC_STRUCT_RETURN */
3365 	  struct_value_size = GET_MODE_SIZE (outmode);
3366 	  if (value != 0 && MEM_P (value))
3367 	    mem_value = value;
3368 	  else
3369 	    mem_value = assign_temp (tfom, 0, 1, 1);
3370 #endif
3371 	  /* This call returns a big structure.  */
3372 	  flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
3373 	}
3374     }
3375   else
3376     tfom = void_type_node;
3377 
3378   /* ??? Unfinished: must pass the memory address as an argument.  */
3379 
3380   /* Copy all the libcall-arguments out of the varargs data
3381      and into a vector ARGVEC.
3382 
3383      Compute how to pass each argument.  We only support a very small subset
3384      of the full argument passing conventions to limit complexity here since
3385      library functions shouldn't have many args.  */
3386 
3387   argvec = XALLOCAVEC (struct arg, nargs + 1);
3388   memset (argvec, 0, (nargs + 1) * sizeof (struct arg));
3389 
3390 #ifdef INIT_CUMULATIVE_LIBCALL_ARGS
3391   INIT_CUMULATIVE_LIBCALL_ARGS (args_so_far, outmode, fun);
3392 #else
3393   INIT_CUMULATIVE_ARGS (args_so_far, NULL_TREE, fun, 0, nargs);
3394 #endif
3395 
3396   args_size.constant = 0;
3397   args_size.var = 0;
3398 
3399   count = 0;
3400 
3401   push_temp_slots ();
3402 
3403   /* If there's a structure value address to be passed,
3404      either pass it in the special place, or pass it as an extra argument.  */
3405   if (mem_value && struct_value == 0 && ! pcc_struct_value)
3406     {
3407       rtx addr = XEXP (mem_value, 0);
3408 
3409       nargs++;
3410 
3411       /* Make sure it is a reasonable operand for a move or push insn.  */
3412       if (!REG_P (addr) && !MEM_P (addr)
3413 	  && ! (CONSTANT_P (addr) && LEGITIMATE_CONSTANT_P (addr)))
3414 	addr = force_operand (addr, NULL_RTX);
3415 
3416       argvec[count].value = addr;
3417       argvec[count].mode = Pmode;
3418       argvec[count].partial = 0;
3419 
3420       argvec[count].reg = FUNCTION_ARG (args_so_far, Pmode, NULL_TREE, 1);
3421       gcc_assert (targetm.calls.arg_partial_bytes (&args_so_far, Pmode,
3422 						   NULL_TREE, 1) == 0);
3423 
3424       locate_and_pad_parm (Pmode, NULL_TREE,
3425 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3426 			   1,
3427 #else
3428 			   argvec[count].reg != 0,
3429 #endif
3430 			   0, NULL_TREE, &args_size, &argvec[count].locate);
3431 
3432       if (argvec[count].reg == 0 || argvec[count].partial != 0
3433 	  || reg_parm_stack_space > 0)
3434 	args_size.constant += argvec[count].locate.size.constant;
3435 
3436       FUNCTION_ARG_ADVANCE (args_so_far, Pmode, (tree) 0, 1);
3437 
3438       count++;
3439     }
3440 
3441   for (; count < nargs; count++)
3442     {
3443       rtx val = va_arg (p, rtx);
3444       enum machine_mode mode = (enum machine_mode) va_arg (p, int);
3445 
3446       /* We cannot convert the arg value to the mode the library wants here;
3447 	 must do it earlier where we know the signedness of the arg.  */
3448       gcc_assert (mode != BLKmode
3449 		  && (GET_MODE (val) == mode || GET_MODE (val) == VOIDmode));
3450 
3451       /* Make sure it is a reasonable operand for a move or push insn.  */
3452       if (!REG_P (val) && !MEM_P (val)
3453 	  && ! (CONSTANT_P (val) && LEGITIMATE_CONSTANT_P (val)))
3454 	val = force_operand (val, NULL_RTX);
3455 
3456       if (pass_by_reference (&args_so_far, mode, NULL_TREE, 1))
3457 	{
3458 	  rtx slot;
3459 	  int must_copy
3460 	    = !reference_callee_copied (&args_so_far, mode, NULL_TREE, 1);
3461 
3462 	  /* If this was a CONST function, it is now PURE since it now
3463 	     reads memory.  */
3464 	  if (flags & ECF_CONST)
3465 	    {
3466 	      flags &= ~ECF_CONST;
3467 	      flags |= ECF_PURE;
3468 	    }
3469 
3470 	  if (MEM_P (val) && !must_copy)
3471 	    slot = val;
3472 	  else
3473 	    {
3474 	      slot = assign_temp (lang_hooks.types.type_for_mode (mode, 0),
3475 				  0, 1, 1);
3476 	      emit_move_insn (slot, val);
3477 	    }
3478 
3479 	  call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3480 					   gen_rtx_USE (VOIDmode, slot),
3481 					   call_fusage);
3482 	  if (must_copy)
3483 	    call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3484 					     gen_rtx_CLOBBER (VOIDmode,
3485 							      slot),
3486 					     call_fusage);
3487 
3488 	  mode = Pmode;
3489 	  val = force_operand (XEXP (slot, 0), NULL_RTX);
3490 	}
3491 
3492       argvec[count].value = val;
3493       argvec[count].mode = mode;
3494 
3495       argvec[count].reg = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
3496 
3497       argvec[count].partial
3498 	= targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL_TREE, 1);
3499 
3500       locate_and_pad_parm (mode, NULL_TREE,
3501 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3502 			   1,
3503 #else
3504 			   argvec[count].reg != 0,
3505 #endif
3506 			   argvec[count].partial,
3507 			   NULL_TREE, &args_size, &argvec[count].locate);
3508 
3509       gcc_assert (!argvec[count].locate.size.var);
3510 
3511       if (argvec[count].reg == 0 || argvec[count].partial != 0
3512 	  || reg_parm_stack_space > 0)
3513 	args_size.constant += argvec[count].locate.size.constant;
3514 
3515       FUNCTION_ARG_ADVANCE (args_so_far, mode, (tree) 0, 1);
3516     }
3517 
3518   /* If this machine requires an external definition for library
3519      functions, write one out.  */
3520   assemble_external_libcall (fun);
3521 
3522   original_args_size = args_size;
3523   args_size.constant = (((args_size.constant
3524 			  + stack_pointer_delta
3525 			  + STACK_BYTES - 1)
3526 			  / STACK_BYTES
3527 			  * STACK_BYTES)
3528 			 - stack_pointer_delta);
3529 
3530   args_size.constant = MAX (args_size.constant,
3531 			    reg_parm_stack_space);
3532 
3533   if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
3534     args_size.constant -= reg_parm_stack_space;
3535 
3536   if (args_size.constant > crtl->outgoing_args_size)
3537     crtl->outgoing_args_size = args_size.constant;
3538 
3539   if (ACCUMULATE_OUTGOING_ARGS)
3540     {
3541       /* Since the stack pointer will never be pushed, it is possible for
3542 	 the evaluation of a parm to clobber something we have already
3543 	 written to the stack.  Since most function calls on RISC machines
3544 	 do not use the stack, this is uncommon, but must work correctly.
3545 
3546 	 Therefore, we save any area of the stack that was already written
3547 	 and that we are using.  Here we set up to do this by making a new
3548 	 stack usage map from the old one.
3549 
3550 	 Another approach might be to try to reorder the argument
3551 	 evaluations to avoid this conflicting stack usage.  */
3552 
3553       needed = args_size.constant;
3554 
3555       /* Since we will be writing into the entire argument area, the
3556 	 map must be allocated for its entire size, not just the part that
3557 	 is the responsibility of the caller.  */
3558       if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
3559 	needed += reg_parm_stack_space;
3560 
3561 #ifdef ARGS_GROW_DOWNWARD
3562       highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3563 					 needed + 1);
3564 #else
3565       highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3566 					 needed);
3567 #endif
3568       stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
3569       stack_usage_map = stack_usage_map_buf;
3570 
3571       if (initial_highest_arg_in_use)
3572 	memcpy (stack_usage_map, initial_stack_usage_map,
3573 		initial_highest_arg_in_use);
3574 
3575       if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
3576 	memset (&stack_usage_map[initial_highest_arg_in_use], 0,
3577 	       highest_outgoing_arg_in_use - initial_highest_arg_in_use);
3578       needed = 0;
3579 
3580       /* We must be careful to use virtual regs before they're instantiated,
3581 	 and real regs afterwards.  Loop optimization, for example, can create
3582 	 new libcalls after we've instantiated the virtual regs, and if we
3583 	 use virtuals anyway, they won't match the rtl patterns.  */
3584 
3585       if (virtuals_instantiated)
3586 	argblock = plus_constant (stack_pointer_rtx, STACK_POINTER_OFFSET);
3587       else
3588 	argblock = virtual_outgoing_args_rtx;
3589     }
3590   else
3591     {
3592       if (!PUSH_ARGS)
3593 	argblock = push_block (GEN_INT (args_size.constant), 0, 0);
3594     }
3595 
3596   /* If we push args individually in reverse order, perform stack alignment
3597      before the first push (the last arg).  */
3598   if (argblock == 0 && PUSH_ARGS_REVERSED)
3599     anti_adjust_stack (GEN_INT (args_size.constant
3600 				- original_args_size.constant));
3601 
3602   if (PUSH_ARGS_REVERSED)
3603     {
3604       inc = -1;
3605       argnum = nargs - 1;
3606     }
3607   else
3608     {
3609       inc = 1;
3610       argnum = 0;
3611     }
3612 
3613 #ifdef REG_PARM_STACK_SPACE
3614   if (ACCUMULATE_OUTGOING_ARGS)
3615     {
3616       /* The argument list is the property of the called routine and it
3617 	 may clobber it.  If the fixed area has been used for previous
3618 	 parameters, we must save and restore it.  */
3619       save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
3620 					    &low_to_save, &high_to_save);
3621     }
3622 #endif
3623 
3624   /* Push the args that need to be pushed.  */
3625 
3626   /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3627      are to be pushed.  */
3628   for (count = 0; count < nargs; count++, argnum += inc)
3629     {
3630       enum machine_mode mode = argvec[argnum].mode;
3631       rtx val = argvec[argnum].value;
3632       rtx reg = argvec[argnum].reg;
3633       int partial = argvec[argnum].partial;
3634       unsigned int parm_align = argvec[argnum].locate.boundary;
3635       int lower_bound = 0, upper_bound = 0, i;
3636 
3637       if (! (reg != 0 && partial == 0))
3638 	{
3639 	  if (ACCUMULATE_OUTGOING_ARGS)
3640 	    {
3641 	      /* If this is being stored into a pre-allocated, fixed-size,
3642 		 stack area, save any previous data at that location.  */
3643 
3644 #ifdef ARGS_GROW_DOWNWARD
3645 	      /* stack_slot is negative, but we want to index stack_usage_map
3646 		 with positive values.  */
3647 	      upper_bound = -argvec[argnum].locate.slot_offset.constant + 1;
3648 	      lower_bound = upper_bound - argvec[argnum].locate.size.constant;
3649 #else
3650 	      lower_bound = argvec[argnum].locate.slot_offset.constant;
3651 	      upper_bound = lower_bound + argvec[argnum].locate.size.constant;
3652 #endif
3653 
3654 	      i = lower_bound;
3655 	      /* Don't worry about things in the fixed argument area;
3656 		 it has already been saved.  */
3657 	      if (i < reg_parm_stack_space)
3658 		i = reg_parm_stack_space;
3659 	      while (i < upper_bound && stack_usage_map[i] == 0)
3660 		i++;
3661 
3662 	      if (i < upper_bound)
3663 		{
3664 		  /* We need to make a save area.  */
3665 		  unsigned int size
3666 		    = argvec[argnum].locate.size.constant * BITS_PER_UNIT;
3667 		  enum machine_mode save_mode
3668 		    = mode_for_size (size, MODE_INT, 1);
3669 		  rtx adr
3670 		    = plus_constant (argblock,
3671 				     argvec[argnum].locate.offset.constant);
3672 		  rtx stack_area
3673 		    = gen_rtx_MEM (save_mode, memory_address (save_mode, adr));
3674 
3675 		  if (save_mode == BLKmode)
3676 		    {
3677 		      argvec[argnum].save_area
3678 			= assign_stack_temp (BLKmode,
3679 					     argvec[argnum].locate.size.constant,
3680 					     0);
3681 
3682 		      emit_block_move (validize_mem (argvec[argnum].save_area),
3683 				       stack_area,
3684 				       GEN_INT (argvec[argnum].locate.size.constant),
3685 				       BLOCK_OP_CALL_PARM);
3686 		    }
3687 		  else
3688 		    {
3689 		      argvec[argnum].save_area = gen_reg_rtx (save_mode);
3690 
3691 		      emit_move_insn (argvec[argnum].save_area, stack_area);
3692 		    }
3693 		}
3694 	    }
3695 
3696 	  emit_push_insn (val, mode, NULL_TREE, NULL_RTX, parm_align,
3697 			  partial, reg, 0, argblock,
3698 			  GEN_INT (argvec[argnum].locate.offset.constant),
3699 			  reg_parm_stack_space,
3700 			  ARGS_SIZE_RTX (argvec[argnum].locate.alignment_pad));
3701 
3702 	  /* Now mark the segment we just used.  */
3703 	  if (ACCUMULATE_OUTGOING_ARGS)
3704 	    for (i = lower_bound; i < upper_bound; i++)
3705 	      stack_usage_map[i] = 1;
3706 
3707 	  NO_DEFER_POP;
3708 
3709 	  if ((flags & ECF_CONST)
3710 	      || ((flags & ECF_PURE) && ACCUMULATE_OUTGOING_ARGS))
3711 	    {
3712 	      rtx use;
3713 
3714 	      /* Indicate argument access so that alias.c knows that these
3715 		 values are live.  */
3716 	      if (argblock)
3717 		use = plus_constant (argblock,
3718 				     argvec[argnum].locate.offset.constant);
3719 	      else
3720 		/* When arguments are pushed, trying to tell alias.c where
3721 		   exactly this argument is won't work, because the
3722 		   auto-increment causes confusion.  So we merely indicate
3723 		   that we access something with a known mode somewhere on
3724 		   the stack.  */
3725 		use = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3726 				    gen_rtx_SCRATCH (Pmode));
3727 	      use = gen_rtx_MEM (argvec[argnum].mode, use);
3728 	      use = gen_rtx_USE (VOIDmode, use);
3729 	      call_fusage = gen_rtx_EXPR_LIST (VOIDmode, use, call_fusage);
3730 	    }
3731 	}
3732     }
3733 
3734   /* If we pushed args in forward order, perform stack alignment
3735      after pushing the last arg.  */
3736   if (argblock == 0 && !PUSH_ARGS_REVERSED)
3737     anti_adjust_stack (GEN_INT (args_size.constant
3738 				- original_args_size.constant));
3739 
3740   if (PUSH_ARGS_REVERSED)
3741     argnum = nargs - 1;
3742   else
3743     argnum = 0;
3744 
3745   fun = prepare_call_address (NULL, fun, NULL, &call_fusage, 0, 0);
3746 
3747   /* Now load any reg parms into their regs.  */
3748 
3749   /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3750      are to be pushed.  */
3751   for (count = 0; count < nargs; count++, argnum += inc)
3752     {
3753       enum machine_mode mode = argvec[argnum].mode;
3754       rtx val = argvec[argnum].value;
3755       rtx reg = argvec[argnum].reg;
3756       int partial = argvec[argnum].partial;
3757 
3758       /* Handle calls that pass values in multiple non-contiguous
3759 	 locations.  The PA64 has examples of this for library calls.  */
3760       if (reg != 0 && GET_CODE (reg) == PARALLEL)
3761 	emit_group_load (reg, val, NULL_TREE, GET_MODE_SIZE (mode));
3762       else if (reg != 0 && partial == 0)
3763 	emit_move_insn (reg, val);
3764 
3765       NO_DEFER_POP;
3766     }
3767 
3768   /* Any regs containing parms remain in use through the call.  */
3769   for (count = 0; count < nargs; count++)
3770     {
3771       rtx reg = argvec[count].reg;
3772       if (reg != 0 && GET_CODE (reg) == PARALLEL)
3773 	use_group_regs (&call_fusage, reg);
3774       else if (reg != 0)
3775         {
3776 	  int partial = argvec[count].partial;
3777 	  if (partial)
3778 	    {
3779 	      int nregs;
3780               gcc_assert (partial % UNITS_PER_WORD == 0);
3781 	      nregs = partial / UNITS_PER_WORD;
3782 	      use_regs (&call_fusage, REGNO (reg), nregs);
3783 	    }
3784 	  else
3785 	    use_reg (&call_fusage, reg);
3786 	}
3787     }
3788 
3789   /* Pass the function the address in which to return a structure value.  */
3790   if (mem_value != 0 && struct_value != 0 && ! pcc_struct_value)
3791     {
3792       emit_move_insn (struct_value,
3793 		      force_reg (Pmode,
3794 				 force_operand (XEXP (mem_value, 0),
3795 						NULL_RTX)));
3796       if (REG_P (struct_value))
3797 	use_reg (&call_fusage, struct_value);
3798     }
3799 
3800   /* Don't allow popping to be deferred, since then
3801      cse'ing of library calls could delete a call and leave the pop.  */
3802   NO_DEFER_POP;
3803   valreg = (mem_value == 0 && outmode != VOIDmode
3804 	    ? hard_libcall_value (outmode, orgfun) : NULL_RTX);
3805 
3806   /* Stack must be properly aligned now.  */
3807   gcc_assert (!(stack_pointer_delta
3808 		& (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT - 1)));
3809 
3810   before_call = get_last_insn ();
3811 
3812   /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
3813      will set inhibit_defer_pop to that value.  */
3814   /* The return type is needed to decide how many bytes the function pops.
3815      Signedness plays no role in that, so for simplicity, we pretend it's
3816      always signed.  We also assume that the list of arguments passed has
3817      no impact, so we pretend it is unknown.  */
3818 
3819   emit_call_1 (fun, NULL,
3820 	       get_identifier (XSTR (orgfun, 0)),
3821 	       build_function_type (tfom, NULL_TREE),
3822 	       original_args_size.constant, args_size.constant,
3823 	       struct_value_size,
3824 	       FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1),
3825 	       valreg,
3826 	       old_inhibit_defer_pop + 1, call_fusage, flags, & args_so_far);
3827 
3828   /* For calls to `setjmp', etc., inform function.c:setjmp_warnings
3829      that it should complain if nonvolatile values are live.  For
3830      functions that cannot return, inform flow that control does not
3831      fall through.  */
3832 
3833   if (flags & ECF_NORETURN)
3834     {
3835       /* The barrier note must be emitted
3836 	 immediately after the CALL_INSN.  Some ports emit more than
3837 	 just a CALL_INSN above, so we must search for it here.  */
3838 
3839       rtx last = get_last_insn ();
3840       while (!CALL_P (last))
3841 	{
3842 	  last = PREV_INSN (last);
3843 	  /* There was no CALL_INSN?  */
3844 	  gcc_assert (last != before_call);
3845 	}
3846 
3847       emit_barrier_after (last);
3848     }
3849 
3850   /* Now restore inhibit_defer_pop to its actual original value.  */
3851   OK_DEFER_POP;
3852 
3853   pop_temp_slots ();
3854 
3855   /* Copy the value to the right place.  */
3856   if (outmode != VOIDmode && retval)
3857     {
3858       if (mem_value)
3859 	{
3860 	  if (value == 0)
3861 	    value = mem_value;
3862 	  if (value != mem_value)
3863 	    emit_move_insn (value, mem_value);
3864 	}
3865       else if (GET_CODE (valreg) == PARALLEL)
3866 	{
3867 	  if (value == 0)
3868 	    value = gen_reg_rtx (outmode);
3869 	  emit_group_store (value, valreg, NULL_TREE, GET_MODE_SIZE (outmode));
3870 	}
3871       else
3872 	{
3873 	  /* Convert to the proper mode if a promotion has been active.  */
3874 	  if (GET_MODE (valreg) != outmode)
3875 	    {
3876 	      int unsignedp = TYPE_UNSIGNED (tfom);
3877 
3878 	      gcc_assert (promote_function_mode (tfom, outmode, &unsignedp,
3879 						 fndecl ? TREE_TYPE (fndecl) : fntype, 1)
3880 			  == GET_MODE (valreg));
3881 	      valreg = convert_modes (outmode, GET_MODE (valreg), valreg, 0);
3882 	    }
3883 
3884 	  if (value != 0)
3885 	    emit_move_insn (value, valreg);
3886 	  else
3887 	    value = valreg;
3888 	}
3889     }
3890 
3891   if (ACCUMULATE_OUTGOING_ARGS)
3892     {
3893 #ifdef REG_PARM_STACK_SPACE
3894       if (save_area)
3895 	restore_fixed_argument_area (save_area, argblock,
3896 				     high_to_save, low_to_save);
3897 #endif
3898 
3899       /* If we saved any argument areas, restore them.  */
3900       for (count = 0; count < nargs; count++)
3901 	if (argvec[count].save_area)
3902 	  {
3903 	    enum machine_mode save_mode = GET_MODE (argvec[count].save_area);
3904 	    rtx adr = plus_constant (argblock,
3905 				     argvec[count].locate.offset.constant);
3906 	    rtx stack_area = gen_rtx_MEM (save_mode,
3907 					  memory_address (save_mode, adr));
3908 
3909 	    if (save_mode == BLKmode)
3910 	      emit_block_move (stack_area,
3911 			       validize_mem (argvec[count].save_area),
3912 			       GEN_INT (argvec[count].locate.size.constant),
3913 			       BLOCK_OP_CALL_PARM);
3914 	    else
3915 	      emit_move_insn (stack_area, argvec[count].save_area);
3916 	  }
3917 
3918       highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3919       stack_usage_map = initial_stack_usage_map;
3920     }
3921 
3922   if (stack_usage_map_buf)
3923     free (stack_usage_map_buf);
3924 
3925   return value;
3926 
3927 }
3928 
3929 /* Output a library call to function FUN (a SYMBOL_REF rtx)
3930    (emitting the queue unless NO_QUEUE is nonzero),
3931    for a value of mode OUTMODE,
3932    with NARGS different arguments, passed as alternating rtx values
3933    and machine_modes to convert them to.
3934 
3935    FN_TYPE should be LCT_NORMAL for `normal' calls, LCT_CONST for
3936    `const' calls, LCT_PURE for `pure' calls, or other LCT_ value for
3937    other types of library calls.  */
3938 
3939 void
3940 emit_library_call (rtx orgfun, enum libcall_type fn_type,
3941 		   enum machine_mode outmode, int nargs, ...)
3942 {
3943   va_list p;
3944 
3945   va_start (p, nargs);
3946   emit_library_call_value_1 (0, orgfun, NULL_RTX, fn_type, outmode, nargs, p);
3947   va_end (p);
3948 }
3949 
3950 /* Like emit_library_call except that an extra argument, VALUE,
3951    comes second and says where to store the result.
3952    (If VALUE is zero, this function chooses a convenient way
3953    to return the value.
3954 
3955    This function returns an rtx for where the value is to be found.
3956    If VALUE is nonzero, VALUE is returned.  */
3957 
3958 rtx
3959 emit_library_call_value (rtx orgfun, rtx value,
3960 			 enum libcall_type fn_type,
3961 			 enum machine_mode outmode, int nargs, ...)
3962 {
3963   rtx result;
3964   va_list p;
3965 
3966   va_start (p, nargs);
3967   result = emit_library_call_value_1 (1, orgfun, value, fn_type, outmode,
3968 				      nargs, p);
3969   va_end (p);
3970 
3971   return result;
3972 }
3973 
3974 /* Store a single argument for a function call
3975    into the register or memory area where it must be passed.
3976    *ARG describes the argument value and where to pass it.
3977 
3978    ARGBLOCK is the address of the stack-block for all the arguments,
3979    or 0 on a machine where arguments are pushed individually.
3980 
3981    MAY_BE_ALLOCA nonzero says this could be a call to `alloca'
3982    so must be careful about how the stack is used.
3983 
3984    VARIABLE_SIZE nonzero says that this was a variable-sized outgoing
3985    argument stack.  This is used if ACCUMULATE_OUTGOING_ARGS to indicate
3986    that we need not worry about saving and restoring the stack.
3987 
3988    FNDECL is the declaration of the function we are calling.
3989 
3990    Return nonzero if this arg should cause sibcall failure,
3991    zero otherwise.  */
3992 
3993 static int
3994 store_one_arg (struct arg_data *arg, rtx argblock, int flags,
3995 	       int variable_size ATTRIBUTE_UNUSED, int reg_parm_stack_space)
3996 {
3997   tree pval = arg->tree_value;
3998   rtx reg = 0;
3999   int partial = 0;
4000   int used = 0;
4001   int i, lower_bound = 0, upper_bound = 0;
4002   int sibcall_failure = 0;
4003 
4004   if (TREE_CODE (pval) == ERROR_MARK)
4005     return 1;
4006 
4007   /* Push a new temporary level for any temporaries we make for
4008      this argument.  */
4009   push_temp_slots ();
4010 
4011   if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL))
4012     {
4013       /* If this is being stored into a pre-allocated, fixed-size, stack area,
4014 	 save any previous data at that location.  */
4015       if (argblock && ! variable_size && arg->stack)
4016 	{
4017 #ifdef ARGS_GROW_DOWNWARD
4018 	  /* stack_slot is negative, but we want to index stack_usage_map
4019 	     with positive values.  */
4020 	  if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
4021 	    upper_bound = -INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1)) + 1;
4022 	  else
4023 	    upper_bound = 0;
4024 
4025 	  lower_bound = upper_bound - arg->locate.size.constant;
4026 #else
4027 	  if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
4028 	    lower_bound = INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1));
4029 	  else
4030 	    lower_bound = 0;
4031 
4032 	  upper_bound = lower_bound + arg->locate.size.constant;
4033 #endif
4034 
4035 	  i = lower_bound;
4036 	  /* Don't worry about things in the fixed argument area;
4037 	     it has already been saved.  */
4038 	  if (i < reg_parm_stack_space)
4039 	    i = reg_parm_stack_space;
4040 	  while (i < upper_bound && stack_usage_map[i] == 0)
4041 	    i++;
4042 
4043 	  if (i < upper_bound)
4044 	    {
4045 	      /* We need to make a save area.  */
4046 	      unsigned int size = arg->locate.size.constant * BITS_PER_UNIT;
4047 	      enum machine_mode save_mode = mode_for_size (size, MODE_INT, 1);
4048 	      rtx adr = memory_address (save_mode, XEXP (arg->stack_slot, 0));
4049 	      rtx stack_area = gen_rtx_MEM (save_mode, adr);
4050 
4051 	      if (save_mode == BLKmode)
4052 		{
4053 		  tree ot = TREE_TYPE (arg->tree_value);
4054 		  tree nt = build_qualified_type (ot, (TYPE_QUALS (ot)
4055 						       | TYPE_QUAL_CONST));
4056 
4057 		  arg->save_area = assign_temp (nt, 0, 1, 1);
4058 		  preserve_temp_slots (arg->save_area);
4059 		  emit_block_move (validize_mem (arg->save_area), stack_area,
4060 				   GEN_INT (arg->locate.size.constant),
4061 				   BLOCK_OP_CALL_PARM);
4062 		}
4063 	      else
4064 		{
4065 		  arg->save_area = gen_reg_rtx (save_mode);
4066 		  emit_move_insn (arg->save_area, stack_area);
4067 		}
4068 	    }
4069 	}
4070     }
4071 
4072   /* If this isn't going to be placed on both the stack and in registers,
4073      set up the register and number of words.  */
4074   if (! arg->pass_on_stack)
4075     {
4076       if (flags & ECF_SIBCALL)
4077 	reg = arg->tail_call_reg;
4078       else
4079 	reg = arg->reg;
4080       partial = arg->partial;
4081     }
4082 
4083   /* Being passed entirely in a register.  We shouldn't be called in
4084      this case.  */
4085   gcc_assert (reg == 0 || partial != 0);
4086 
4087   /* If this arg needs special alignment, don't load the registers
4088      here.  */
4089   if (arg->n_aligned_regs != 0)
4090     reg = 0;
4091 
4092   /* If this is being passed partially in a register, we can't evaluate
4093      it directly into its stack slot.  Otherwise, we can.  */
4094   if (arg->value == 0)
4095     {
4096       /* stack_arg_under_construction is nonzero if a function argument is
4097 	 being evaluated directly into the outgoing argument list and
4098 	 expand_call must take special action to preserve the argument list
4099 	 if it is called recursively.
4100 
4101 	 For scalar function arguments stack_usage_map is sufficient to
4102 	 determine which stack slots must be saved and restored.  Scalar
4103 	 arguments in general have pass_on_stack == 0.
4104 
4105 	 If this argument is initialized by a function which takes the
4106 	 address of the argument (a C++ constructor or a C function
4107 	 returning a BLKmode structure), then stack_usage_map is
4108 	 insufficient and expand_call must push the stack around the
4109 	 function call.  Such arguments have pass_on_stack == 1.
4110 
4111 	 Note that it is always safe to set stack_arg_under_construction,
4112 	 but this generates suboptimal code if set when not needed.  */
4113 
4114       if (arg->pass_on_stack)
4115 	stack_arg_under_construction++;
4116 
4117       arg->value = expand_expr (pval,
4118 				(partial
4119 				 || TYPE_MODE (TREE_TYPE (pval)) != arg->mode)
4120 				? NULL_RTX : arg->stack,
4121 				VOIDmode, EXPAND_STACK_PARM);
4122 
4123       /* If we are promoting object (or for any other reason) the mode
4124 	 doesn't agree, convert the mode.  */
4125 
4126       if (arg->mode != TYPE_MODE (TREE_TYPE (pval)))
4127 	arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)),
4128 				    arg->value, arg->unsignedp);
4129 
4130       if (arg->pass_on_stack)
4131 	stack_arg_under_construction--;
4132     }
4133 
4134   /* Check for overlap with already clobbered argument area.  */
4135   if ((flags & ECF_SIBCALL)
4136       && MEM_P (arg->value)
4137       && mem_overlaps_already_clobbered_arg_p (XEXP (arg->value, 0),
4138 					       arg->locate.size.constant))
4139     sibcall_failure = 1;
4140 
4141   /* Don't allow anything left on stack from computation
4142      of argument to alloca.  */
4143   if (flags & ECF_MAY_BE_ALLOCA)
4144     do_pending_stack_adjust ();
4145 
4146   if (arg->value == arg->stack)
4147     /* If the value is already in the stack slot, we are done.  */
4148     ;
4149   else if (arg->mode != BLKmode)
4150     {
4151       int size;
4152       unsigned int parm_align;
4153 
4154       /* Argument is a scalar, not entirely passed in registers.
4155 	 (If part is passed in registers, arg->partial says how much
4156 	 and emit_push_insn will take care of putting it there.)
4157 
4158 	 Push it, and if its size is less than the
4159 	 amount of space allocated to it,
4160 	 also bump stack pointer by the additional space.
4161 	 Note that in C the default argument promotions
4162 	 will prevent such mismatches.  */
4163 
4164       size = GET_MODE_SIZE (arg->mode);
4165       /* Compute how much space the push instruction will push.
4166 	 On many machines, pushing a byte will advance the stack
4167 	 pointer by a halfword.  */
4168 #ifdef PUSH_ROUNDING
4169       size = PUSH_ROUNDING (size);
4170 #endif
4171       used = size;
4172 
4173       /* Compute how much space the argument should get:
4174 	 round up to a multiple of the alignment for arguments.  */
4175       if (none != FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)))
4176 	used = (((size + PARM_BOUNDARY / BITS_PER_UNIT - 1)
4177 		 / (PARM_BOUNDARY / BITS_PER_UNIT))
4178 		* (PARM_BOUNDARY / BITS_PER_UNIT));
4179 
4180       /* Compute the alignment of the pushed argument.  */
4181       parm_align = arg->locate.boundary;
4182       if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
4183 	{
4184 	  int pad = used - size;
4185 	  if (pad)
4186 	    {
4187 	      unsigned int pad_align = (pad & -pad) * BITS_PER_UNIT;
4188 	      parm_align = MIN (parm_align, pad_align);
4189 	    }
4190 	}
4191 
4192       /* This isn't already where we want it on the stack, so put it there.
4193 	 This can either be done with push or copy insns.  */
4194       emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), NULL_RTX,
4195 		      parm_align, partial, reg, used - size, argblock,
4196 		      ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4197 		      ARGS_SIZE_RTX (arg->locate.alignment_pad));
4198 
4199       /* Unless this is a partially-in-register argument, the argument is now
4200 	 in the stack.  */
4201       if (partial == 0)
4202 	arg->value = arg->stack;
4203     }
4204   else
4205     {
4206       /* BLKmode, at least partly to be pushed.  */
4207 
4208       unsigned int parm_align;
4209       int excess;
4210       rtx size_rtx;
4211 
4212       /* Pushing a nonscalar.
4213 	 If part is passed in registers, PARTIAL says how much
4214 	 and emit_push_insn will take care of putting it there.  */
4215 
4216       /* Round its size up to a multiple
4217 	 of the allocation unit for arguments.  */
4218 
4219       if (arg->locate.size.var != 0)
4220 	{
4221 	  excess = 0;
4222 	  size_rtx = ARGS_SIZE_RTX (arg->locate.size);
4223 	}
4224       else
4225 	{
4226 	  /* PUSH_ROUNDING has no effect on us, because emit_push_insn
4227 	     for BLKmode is careful to avoid it.  */
4228 	  excess = (arg->locate.size.constant
4229 		    - int_size_in_bytes (TREE_TYPE (pval))
4230 		    + partial);
4231 	  size_rtx = expand_expr (size_in_bytes (TREE_TYPE (pval)),
4232 				  NULL_RTX, TYPE_MODE (sizetype),
4233 				  EXPAND_NORMAL);
4234 	}
4235 
4236       parm_align = arg->locate.boundary;
4237 
4238       /* When an argument is padded down, the block is aligned to
4239 	 PARM_BOUNDARY, but the actual argument isn't.  */
4240       if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
4241 	{
4242 	  if (arg->locate.size.var)
4243 	    parm_align = BITS_PER_UNIT;
4244 	  else if (excess)
4245 	    {
4246 	      unsigned int excess_align = (excess & -excess) * BITS_PER_UNIT;
4247 	      parm_align = MIN (parm_align, excess_align);
4248 	    }
4249 	}
4250 
4251       if ((flags & ECF_SIBCALL) && MEM_P (arg->value))
4252 	{
4253 	  /* emit_push_insn might not work properly if arg->value and
4254 	     argblock + arg->locate.offset areas overlap.  */
4255 	  rtx x = arg->value;
4256 	  int i = 0;
4257 
4258 	  if (XEXP (x, 0) == crtl->args.internal_arg_pointer
4259 	      || (GET_CODE (XEXP (x, 0)) == PLUS
4260 		  && XEXP (XEXP (x, 0), 0) ==
4261 		     crtl->args.internal_arg_pointer
4262 		  && CONST_INT_P (XEXP (XEXP (x, 0), 1))))
4263 	    {
4264 	      if (XEXP (x, 0) != crtl->args.internal_arg_pointer)
4265 		i = INTVAL (XEXP (XEXP (x, 0), 1));
4266 
4267 	      /* expand_call should ensure this.  */
4268 	      gcc_assert (!arg->locate.offset.var
4269 			  && arg->locate.size.var == 0
4270 			  && CONST_INT_P (size_rtx));
4271 
4272 	      if (arg->locate.offset.constant > i)
4273 		{
4274 		  if (arg->locate.offset.constant < i + INTVAL (size_rtx))
4275 		    sibcall_failure = 1;
4276 		}
4277 	      else if (arg->locate.offset.constant < i)
4278 		{
4279 		  /* Use arg->locate.size.constant instead of size_rtx
4280 		     because we only care about the part of the argument
4281 		     on the stack.  */
4282 		  if (i < (arg->locate.offset.constant
4283 			   + arg->locate.size.constant))
4284 		    sibcall_failure = 1;
4285 		}
4286 	      else
4287 		{
4288 		  /* Even though they appear to be at the same location,
4289 		     if part of the outgoing argument is in registers,
4290 		     they aren't really at the same location.  Check for
4291 		     this by making sure that the incoming size is the
4292 		     same as the outgoing size.  */
4293 		  if (arg->locate.size.constant != INTVAL (size_rtx))
4294 		    sibcall_failure = 1;
4295 		}
4296 	    }
4297 	}
4298 
4299       emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx,
4300 		      parm_align, partial, reg, excess, argblock,
4301 		      ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4302 		      ARGS_SIZE_RTX (arg->locate.alignment_pad));
4303 
4304       /* Unless this is a partially-in-register argument, the argument is now
4305 	 in the stack.
4306 
4307 	 ??? Unlike the case above, in which we want the actual
4308 	 address of the data, so that we can load it directly into a
4309 	 register, here we want the address of the stack slot, so that
4310 	 it's properly aligned for word-by-word copying or something
4311 	 like that.  It's not clear that this is always correct.  */
4312       if (partial == 0)
4313 	arg->value = arg->stack_slot;
4314     }
4315 
4316   if (arg->reg && GET_CODE (arg->reg) == PARALLEL)
4317     {
4318       tree type = TREE_TYPE (arg->tree_value);
4319       arg->parallel_value
4320 	= emit_group_load_into_temps (arg->reg, arg->value, type,
4321 				      int_size_in_bytes (type));
4322     }
4323 
4324   /* Mark all slots this store used.  */
4325   if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL)
4326       && argblock && ! variable_size && arg->stack)
4327     for (i = lower_bound; i < upper_bound; i++)
4328       stack_usage_map[i] = 1;
4329 
4330   /* Once we have pushed something, pops can't safely
4331      be deferred during the rest of the arguments.  */
4332   NO_DEFER_POP;
4333 
4334   /* Free any temporary slots made in processing this argument.  Show
4335      that we might have taken the address of something and pushed that
4336      as an operand.  */
4337   preserve_temp_slots (NULL_RTX);
4338   free_temp_slots ();
4339   pop_temp_slots ();
4340 
4341   return sibcall_failure;
4342 }
4343 
4344 /* Nonzero if we do not know how to pass TYPE solely in registers.  */
4345 
4346 bool
4347 must_pass_in_stack_var_size (enum machine_mode mode ATTRIBUTE_UNUSED,
4348 			     const_tree type)
4349 {
4350   if (!type)
4351     return false;
4352 
4353   /* If the type has variable size...  */
4354   if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4355     return true;
4356 
4357   /* If the type is marked as addressable (it is required
4358      to be constructed into the stack)...  */
4359   if (TREE_ADDRESSABLE (type))
4360     return true;
4361 
4362   return false;
4363 }
4364 
4365 /* Another version of the TARGET_MUST_PASS_IN_STACK hook.  This one
4366    takes trailing padding of a structure into account.  */
4367 /* ??? Should be able to merge these two by examining BLOCK_REG_PADDING.  */
4368 
4369 bool
4370 must_pass_in_stack_var_size_or_pad (enum machine_mode mode, const_tree type)
4371 {
4372   if (!type)
4373     return false;
4374 
4375   /* If the type has variable size...  */
4376   if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4377     return true;
4378 
4379   /* If the type is marked as addressable (it is required
4380      to be constructed into the stack)...  */
4381   if (TREE_ADDRESSABLE (type))
4382     return true;
4383 
4384   /* If the padding and mode of the type is such that a copy into
4385      a register would put it into the wrong part of the register.  */
4386   if (mode == BLKmode
4387       && int_size_in_bytes (type) % (PARM_BOUNDARY / BITS_PER_UNIT)
4388       && (FUNCTION_ARG_PADDING (mode, type)
4389 	  == (BYTES_BIG_ENDIAN ? upward : downward)))
4390     return true;
4391 
4392   return false;
4393 }
4394