xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/c/c-aux-info.c (revision 63aea4bd5b445e491ff0389fe27ec78b3099dba3)
1 /* Generate information regarding function declarations and definitions based
2    on information stored in GCC's tree structure.  This code implements the
3    -aux-info option.
4    Copyright (C) 1989-2013 Free Software Foundation, Inc.
5    Contributed by Ron Guilmette (rfg@segfault.us.com).
6 
7 This file is part of GCC.
8 
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13 
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17 for more details.
18 
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3.  If not see
21 <http://www.gnu.org/licenses/>.  */
22 
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "flags.h"
28 #include "tree.h"
29 #include "c-tree.h"
30 
31 enum formals_style_enum {
32   ansi,
33   k_and_r_names,
34   k_and_r_decls
35 };
36 typedef enum formals_style_enum formals_style;
37 
38 
39 static const char *data_type;
40 
41 static char *affix_data_type (const char *) ATTRIBUTE_MALLOC;
42 static const char *gen_formal_list_for_type (tree, formals_style);
43 static const char *gen_formal_list_for_func_def (tree, formals_style);
44 static const char *gen_type (const char *, tree, formals_style);
45 static const char *gen_decl (tree, int, formals_style);
46 
47 /* Given a string representing an entire type or an entire declaration
48    which only lacks the actual "data-type" specifier (at its left end),
49    affix the data-type specifier to the left end of the given type
50    specification or object declaration.
51 
52    Because of C language weirdness, the data-type specifier (which normally
53    goes in at the very left end) may have to be slipped in just to the
54    right of any leading "const" or "volatile" qualifiers (there may be more
55    than one).  Actually this may not be strictly necessary because it seems
56    that GCC (at least) accepts `<data-type> const foo;' and treats it the
57    same as `const <data-type> foo;' but people are accustomed to seeing
58    `const char *foo;' and *not* `char const *foo;' so we try to create types
59    that look as expected.  */
60 
61 static char *
62 affix_data_type (const char *param)
63 {
64   char *const type_or_decl = ASTRDUP (param);
65   char *p = type_or_decl;
66   char *qualifiers_then_data_type;
67   char saved;
68 
69   /* Skip as many leading const's or volatile's as there are.  */
70 
71   for (;;)
72     {
73       if (!strncmp (p, "volatile ", 9))
74 	{
75 	  p += 9;
76 	  continue;
77 	}
78       if (!strncmp (p, "const ", 6))
79 	{
80 	  p += 6;
81 	  continue;
82 	}
83       break;
84     }
85 
86   /* p now points to the place where we can insert the data type.  We have to
87      add a blank after the data-type of course.  */
88 
89   if (p == type_or_decl)
90     return concat (data_type, " ", type_or_decl, NULL);
91 
92   saved = *p;
93   *p = '\0';
94   qualifiers_then_data_type = concat (type_or_decl, data_type, NULL);
95   *p = saved;
96   return reconcat (qualifiers_then_data_type,
97 		   qualifiers_then_data_type, " ", p, NULL);
98 }
99 
100 /* Given a tree node which represents some "function type", generate the
101    source code version of a formal parameter list (of some given style) for
102    this function type.  Return the whole formal parameter list (including
103    a pair of surrounding parens) as a string.   Note that if the style
104    we are currently aiming for is non-ansi, then we just return a pair
105    of empty parens here.  */
106 
107 static const char *
108 gen_formal_list_for_type (tree fntype, formals_style style)
109 {
110   const char *formal_list = "";
111   tree formal_type;
112 
113   if (style != ansi)
114     return "()";
115 
116   formal_type = TYPE_ARG_TYPES (fntype);
117   while (formal_type && TREE_VALUE (formal_type) != void_type_node)
118     {
119       const char *this_type;
120 
121       if (*formal_list)
122 	formal_list = concat (formal_list, ", ", NULL);
123 
124       this_type = gen_type ("", TREE_VALUE (formal_type), ansi);
125       formal_list
126 	= ((strlen (this_type))
127 	   ? concat (formal_list, affix_data_type (this_type), NULL)
128 	   : concat (formal_list, data_type, NULL));
129 
130       formal_type = TREE_CHAIN (formal_type);
131     }
132 
133   /* If we got to here, then we are trying to generate an ANSI style formal
134      parameters list.
135 
136      New style prototyped ANSI formal parameter lists should in theory always
137      contain some stuff between the opening and closing parens, even if it is
138      only "void".
139 
140      The brutal truth though is that there is lots of old K&R code out there
141      which contains declarations of "pointer-to-function" parameters and
142      these almost never have fully specified formal parameter lists associated
143      with them.  That is, the pointer-to-function parameters are declared
144      with just empty parameter lists.
145 
146      In cases such as these, protoize should really insert *something* into
147      the vacant parameter lists, but what?  It has no basis on which to insert
148      anything in particular.
149 
150      Here, we make life easy for protoize by trying to distinguish between
151      K&R empty parameter lists and new-style prototyped parameter lists
152      that actually contain "void".  In the latter case we (obviously) want
153      to output the "void" verbatim, and that what we do.  In the former case,
154      we do our best to give protoize something nice to insert.
155 
156      This "something nice" should be something that is still valid (when
157      re-compiled) but something that can clearly indicate to the user that
158      more typing information (for the parameter list) should be added (by
159      hand) at some convenient moment.
160 
161      The string chosen here is a comment with question marks in it.  */
162 
163   if (!*formal_list)
164     {
165       if (prototype_p (fntype))
166 	/* assert (TREE_VALUE (TYPE_ARG_TYPES (fntype)) == void_type_node);  */
167 	formal_list = "void";
168       else
169 	formal_list = "/* ??? */";
170     }
171   else
172     {
173       /* If there were at least some parameters, and if the formals-types-list
174 	 petered out to a NULL (i.e. without being terminated by a
175 	 void_type_node) then we need to tack on an ellipsis.  */
176       if (!formal_type)
177 	formal_list = concat (formal_list, ", ...", NULL);
178     }
179 
180   return concat (" (", formal_list, ")", NULL);
181 }
182 
183 /* Generate a parameter list for a function definition (in some given style).
184 
185    Note that this routine has to be separate (and different) from the code that
186    generates the prototype parameter lists for function declarations, because
187    in the case of a function declaration, all we have to go on is a tree node
188    representing the function's own "function type".  This can tell us the types
189    of all of the formal parameters for the function, but it cannot tell us the
190    actual *names* of each of the formal parameters.  We need to output those
191    parameter names for each function definition.
192 
193    This routine gets a pointer to a tree node which represents the actual
194    declaration of the given function, and this DECL node has a list of formal
195    parameter (variable) declarations attached to it.  These formal parameter
196    (variable) declaration nodes give us the actual names of the formal
197    parameters for the given function definition.
198 
199    This routine returns a string which is the source form for the entire
200    function formal parameter list.  */
201 
202 static const char *
203 gen_formal_list_for_func_def (tree fndecl, formals_style style)
204 {
205   const char *formal_list = "";
206   tree formal_decl;
207 
208   formal_decl = DECL_ARGUMENTS (fndecl);
209   while (formal_decl)
210     {
211       const char *this_formal;
212 
213       if (*formal_list && ((style == ansi) || (style == k_and_r_names)))
214 	formal_list = concat (formal_list, ", ", NULL);
215       this_formal = gen_decl (formal_decl, 0, style);
216       if (style == k_and_r_decls)
217 	formal_list = concat (formal_list, this_formal, "; ", NULL);
218       else
219 	formal_list = concat (formal_list, this_formal, NULL);
220       formal_decl = TREE_CHAIN (formal_decl);
221     }
222   if (style == ansi)
223     {
224       if (!DECL_ARGUMENTS (fndecl))
225 	formal_list = concat (formal_list, "void", NULL);
226       if (stdarg_p (TREE_TYPE (fndecl)))
227 	formal_list = concat (formal_list, ", ...", NULL);
228     }
229   if ((style == ansi) || (style == k_and_r_names))
230     formal_list = concat (" (", formal_list, ")", NULL);
231   return formal_list;
232 }
233 
234 /* Generate a string which is the source code form for a given type (t).  This
235    routine is ugly and complex because the C syntax for declarations is ugly
236    and complex.  This routine is straightforward so long as *no* pointer types,
237    array types, or function types are involved.
238 
239    In the simple cases, this routine will return the (string) value which was
240    passed in as the "ret_val" argument.  Usually, this starts out either as an
241    empty string, or as the name of the declared item (i.e. the formal function
242    parameter variable).
243 
244    This routine will also return with the global variable "data_type" set to
245    some string value which is the "basic" data-type of the given complete type.
246    This "data_type" string can be concatenated onto the front of the returned
247    string after this routine returns to its caller.
248 
249    In complicated cases involving pointer types, array types, or function
250    types, the C declaration syntax requires an "inside out" approach, i.e. if
251    you have a type which is a "pointer-to-function" type, you need to handle
252    the "pointer" part first, but it also has to be "innermost" (relative to
253    the declaration stuff for the "function" type).  Thus, is this case, you
254    must prepend a "(*" and append a ")" to the name of the item (i.e. formal
255    variable).  Then you must append and prepend the other info for the
256    "function type" part of the overall type.
257 
258    To handle the "innermost precedence" rules of complicated C declarators, we
259    do the following (in this routine).  The input parameter called "ret_val"
260    is treated as a "seed".  Each time gen_type is called (perhaps recursively)
261    some additional strings may be appended or prepended (or both) to the "seed"
262    string.  If yet another (lower) level of the GCC tree exists for the given
263    type (as in the case of a pointer type, an array type, or a function type)
264    then the (wrapped) seed is passed to a (recursive) invocation of gen_type()
265    this recursive invocation may again "wrap" the (new) seed with yet more
266    declarator stuff, by appending, prepending (or both).  By the time the
267    recursion bottoms out, the "seed value" at that point will have a value
268    which is (almost) the complete source version of the declarator (except
269    for the data_type info).  Thus, this deepest "seed" value is simply passed
270    back up through all of the recursive calls until it is given (as the return
271    value) to the initial caller of the gen_type() routine.  All that remains
272    to do at this point is for the initial caller to prepend the "data_type"
273    string onto the returned "seed".  */
274 
275 static const char *
276 gen_type (const char *ret_val, tree t, formals_style style)
277 {
278   tree chain_p;
279 
280   /* If there is a typedef name for this type, use it.  */
281   if (TYPE_NAME (t) && TREE_CODE (TYPE_NAME (t)) == TYPE_DECL)
282     data_type = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (t)));
283   else
284     {
285       switch (TREE_CODE (t))
286 	{
287 	case POINTER_TYPE:
288 	  if (TYPE_READONLY (t))
289 	    ret_val = concat ("const ", ret_val, NULL);
290 	  if (TYPE_VOLATILE (t))
291 	    ret_val = concat ("volatile ", ret_val, NULL);
292 
293 	  ret_val = concat ("*", ret_val, NULL);
294 
295 	  if (TREE_CODE (TREE_TYPE (t)) == ARRAY_TYPE || TREE_CODE (TREE_TYPE (t)) == FUNCTION_TYPE)
296 	    ret_val = concat ("(", ret_val, ")", NULL);
297 
298 	  ret_val = gen_type (ret_val, TREE_TYPE (t), style);
299 
300 	  return ret_val;
301 
302 	case ARRAY_TYPE:
303 	  if (!COMPLETE_TYPE_P (t) || TREE_CODE (TYPE_SIZE (t)) != INTEGER_CST)
304 	    ret_val = gen_type (concat (ret_val, "[]", NULL),
305 				TREE_TYPE (t), style);
306 	  else if (int_size_in_bytes (t) == 0)
307 	    ret_val = gen_type (concat (ret_val, "[0]", NULL),
308 				TREE_TYPE (t), style);
309 	  else
310 	    {
311 	      int size = (int_size_in_bytes (t) / int_size_in_bytes (TREE_TYPE (t)));
312 	      char buff[10];
313 	      sprintf (buff, "[%d]", size);
314 	      ret_val = gen_type (concat (ret_val, buff, NULL),
315 				  TREE_TYPE (t), style);
316 	    }
317 	  break;
318 
319 	case FUNCTION_TYPE:
320 	  ret_val = gen_type (concat (ret_val,
321 				      gen_formal_list_for_type (t, style),
322 				      NULL),
323 			      TREE_TYPE (t), style);
324 	  break;
325 
326 	case IDENTIFIER_NODE:
327 	  data_type = IDENTIFIER_POINTER (t);
328 	  break;
329 
330 	/* The following three cases are complicated by the fact that a
331 	   user may do something really stupid, like creating a brand new
332 	   "anonymous" type specification in a formal argument list (or as
333 	   part of a function return type specification).  For example:
334 
335 		int f (enum { red, green, blue } color);
336 
337 	   In such cases, we have no name that we can put into the prototype
338 	   to represent the (anonymous) type.  Thus, we have to generate the
339 	   whole darn type specification.  Yuck!  */
340 
341 	case RECORD_TYPE:
342 	  if (TYPE_NAME (t))
343 	    data_type = IDENTIFIER_POINTER (TYPE_NAME (t));
344 	  else
345 	    {
346 	      data_type = "";
347 	      chain_p = TYPE_FIELDS (t);
348 	      while (chain_p)
349 		{
350 		  data_type = concat (data_type, gen_decl (chain_p, 0, ansi),
351 				      NULL);
352 		  chain_p = TREE_CHAIN (chain_p);
353 		  data_type = concat (data_type, "; ", NULL);
354 		}
355 	      data_type = concat ("{ ", data_type, "}", NULL);
356 	    }
357 	  data_type = concat ("struct ", data_type, NULL);
358 	  break;
359 
360 	case UNION_TYPE:
361 	  if (TYPE_NAME (t))
362 	    data_type = IDENTIFIER_POINTER (TYPE_NAME (t));
363 	  else
364 	    {
365 	      data_type = "";
366 	      chain_p = TYPE_FIELDS (t);
367 	      while (chain_p)
368 		{
369 		  data_type = concat (data_type, gen_decl (chain_p, 0, ansi),
370 				      NULL);
371 		  chain_p = TREE_CHAIN (chain_p);
372 		  data_type = concat (data_type, "; ", NULL);
373 		}
374 	      data_type = concat ("{ ", data_type, "}", NULL);
375 	    }
376 	  data_type = concat ("union ", data_type, NULL);
377 	  break;
378 
379 	case ENUMERAL_TYPE:
380 	  if (TYPE_NAME (t))
381 	    data_type = IDENTIFIER_POINTER (TYPE_NAME (t));
382 	  else
383 	    {
384 	      data_type = "";
385 	      chain_p = TYPE_VALUES (t);
386 	      while (chain_p)
387 		{
388 		  data_type = concat (data_type,
389 			IDENTIFIER_POINTER (TREE_PURPOSE (chain_p)), NULL);
390 		  chain_p = TREE_CHAIN (chain_p);
391 		  if (chain_p)
392 		    data_type = concat (data_type, ", ", NULL);
393 		}
394 	      data_type = concat ("{ ", data_type, " }", NULL);
395 	    }
396 	  data_type = concat ("enum ", data_type, NULL);
397 	  break;
398 
399 	case TYPE_DECL:
400 	  data_type = IDENTIFIER_POINTER (DECL_NAME (t));
401 	  break;
402 
403 	case INTEGER_TYPE:
404 	case FIXED_POINT_TYPE:
405 	  data_type = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (t)));
406 	  /* Normally, `unsigned' is part of the deal.  Not so if it comes
407 	     with a type qualifier.  */
408 	  if (TYPE_UNSIGNED (t) && TYPE_QUALS (t))
409 	    data_type = concat ("unsigned ", data_type, NULL);
410 	  break;
411 
412 	case REAL_TYPE:
413 	  data_type = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (t)));
414 	  break;
415 
416 	case VOID_TYPE:
417 	  data_type = "void";
418 	  break;
419 
420 	case ERROR_MARK:
421 	  data_type = "[ERROR]";
422 	  break;
423 
424 	default:
425 	  gcc_unreachable ();
426 	}
427     }
428   if (TYPE_READONLY (t))
429     ret_val = concat ("const ", ret_val, NULL);
430   if (TYPE_VOLATILE (t))
431     ret_val = concat ("volatile ", ret_val, NULL);
432   if (TYPE_RESTRICT (t))
433     ret_val = concat ("restrict ", ret_val, NULL);
434   return ret_val;
435 }
436 
437 /* Generate a string (source) representation of an entire entity declaration
438    (using some particular style for function types).
439 
440    The given entity may be either a variable or a function.
441 
442    If the "is_func_definition" parameter is nonzero, assume that the thing
443    we are generating a declaration for is a FUNCTION_DECL node which is
444    associated with a function definition.  In this case, we can assume that
445    an attached list of DECL nodes for function formal arguments is present.  */
446 
447 static const char *
448 gen_decl (tree decl, int is_func_definition, formals_style style)
449 {
450   const char *ret_val;
451 
452   if (DECL_NAME (decl))
453     ret_val = IDENTIFIER_POINTER (DECL_NAME (decl));
454   else
455     ret_val = "";
456 
457   /* If we are just generating a list of names of formal parameters, we can
458      simply return the formal parameter name (with no typing information
459      attached to it) now.  */
460 
461   if (style == k_and_r_names)
462     return ret_val;
463 
464   /* Note that for the declaration of some entity (either a function or a
465      data object, like for instance a parameter) if the entity itself was
466      declared as either const or volatile, then const and volatile properties
467      are associated with just the declaration of the entity, and *not* with
468      the `type' of the entity.  Thus, for such declared entities, we have to
469      generate the qualifiers here.  */
470 
471   if (TREE_THIS_VOLATILE (decl))
472     ret_val = concat ("volatile ", ret_val, NULL);
473   if (TREE_READONLY (decl))
474     ret_val = concat ("const ", ret_val, NULL);
475 
476   data_type = "";
477 
478   /* For FUNCTION_DECL nodes, there are two possible cases here.  First, if
479      this FUNCTION_DECL node was generated from a function "definition", then
480      we will have a list of DECL_NODE's, one for each of the function's formal
481      parameters.  In this case, we can print out not only the types of each
482      formal, but also each formal's name.  In the second case, this
483      FUNCTION_DECL node came from an actual function declaration (and *not*
484      a definition).  In this case, we do nothing here because the formal
485      argument type-list will be output later, when the "type" of the function
486      is added to the string we are building.  Note that the ANSI-style formal
487      parameter list is considered to be a (suffix) part of the "type" of the
488      function.  */
489 
490   if (TREE_CODE (decl) == FUNCTION_DECL && is_func_definition)
491     {
492       ret_val = concat (ret_val, gen_formal_list_for_func_def (decl, ansi),
493 			NULL);
494 
495       /* Since we have already added in the formals list stuff, here we don't
496 	 add the whole "type" of the function we are considering (which
497 	 would include its parameter-list info), rather, we only add in
498 	 the "type" of the "type" of the function, which is really just
499 	 the return-type of the function (and does not include the parameter
500 	 list info).  */
501 
502       ret_val = gen_type (ret_val, TREE_TYPE (TREE_TYPE (decl)), style);
503     }
504   else
505     ret_val = gen_type (ret_val, TREE_TYPE (decl), style);
506 
507   ret_val = affix_data_type (ret_val);
508 
509   if (TREE_CODE (decl) != FUNCTION_DECL && C_DECL_REGISTER (decl))
510     ret_val = concat ("register ", ret_val, NULL);
511   if (TREE_PUBLIC (decl))
512     ret_val = concat ("extern ", ret_val, NULL);
513   if (TREE_CODE (decl) == FUNCTION_DECL && !TREE_PUBLIC (decl))
514     ret_val = concat ("static ", ret_val, NULL);
515 
516   return ret_val;
517 }
518 
519 extern FILE *aux_info_file;
520 
521 /* Generate and write a new line of info to the aux-info (.X) file.  This
522    routine is called once for each function declaration, and once for each
523    function definition (even the implicit ones).  */
524 
525 void
526 gen_aux_info_record (tree fndecl, int is_definition, int is_implicit,
527 		     int is_prototyped)
528 {
529   if (flag_gen_aux_info)
530     {
531       static int compiled_from_record = 0;
532       expanded_location xloc = expand_location (DECL_SOURCE_LOCATION (fndecl));
533 
534       /* Each output .X file must have a header line.  Write one now if we
535 	 have not yet done so.  */
536 
537       if (!compiled_from_record++)
538 	{
539 	  /* The first line tells which directory file names are relative to.
540 	     Currently, -aux-info works only for files in the working
541 	     directory, so just use a `.' as a placeholder for now.  */
542 	  fprintf (aux_info_file, "/* compiled from: . */\n");
543 	}
544 
545       /* Write the actual line of auxiliary info.  */
546 
547       fprintf (aux_info_file, "/* %s:%d:%c%c */ %s;",
548 	       xloc.file, xloc.line,
549 	       (is_implicit) ? 'I' : (is_prototyped) ? 'N' : 'O',
550 	       (is_definition) ? 'F' : 'C',
551 	       gen_decl (fndecl, is_definition, ansi));
552 
553       /* If this is an explicit function declaration, we need to also write
554 	 out an old-style (i.e. K&R) function header, just in case the user
555 	 wants to run unprotoize.  */
556 
557       if (is_definition)
558 	{
559 	  fprintf (aux_info_file, " /*%s %s*/",
560 		   gen_formal_list_for_func_def (fndecl, k_and_r_names),
561 		   gen_formal_list_for_func_def (fndecl, k_and_r_decls));
562 	}
563 
564       fprintf (aux_info_file, "\n");
565     }
566 }
567