xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/bb-reorder.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /* Basic block reordering routines for the GNU compiler.
2    Copyright (C) 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010
3    Free Software Foundation, Inc.
4 
5    This file is part of GCC.
6 
7    GCC is free software; you can redistribute it and/or modify it
8    under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3, or (at your option)
10    any later version.
11 
12    GCC is distributed in the hope that it will be useful, but WITHOUT
13    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15    License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with GCC; see the file COPYING3.  If not see
19    <http://www.gnu.org/licenses/>.  */
20 
21 /* This (greedy) algorithm constructs traces in several rounds.
22    The construction starts from "seeds".  The seed for the first round
23    is the entry point of function.  When there are more than one seed
24    that one is selected first that has the lowest key in the heap
25    (see function bb_to_key).  Then the algorithm repeatedly adds the most
26    probable successor to the end of a trace.  Finally it connects the traces.
27 
28    There are two parameters: Branch Threshold and Exec Threshold.
29    If the edge to a successor of the actual basic block is lower than
30    Branch Threshold or the frequency of the successor is lower than
31    Exec Threshold the successor will be the seed in one of the next rounds.
32    Each round has these parameters lower than the previous one.
33    The last round has to have these parameters set to zero
34    so that the remaining blocks are picked up.
35 
36    The algorithm selects the most probable successor from all unvisited
37    successors and successors that have been added to this trace.
38    The other successors (that has not been "sent" to the next round) will be
39    other seeds for this round and the secondary traces will start in them.
40    If the successor has not been visited in this trace it is added to the trace
41    (however, there is some heuristic for simple branches).
42    If the successor has been visited in this trace the loop has been found.
43    If the loop has many iterations the loop is rotated so that the
44    source block of the most probable edge going out from the loop
45    is the last block of the trace.
46    If the loop has few iterations and there is no edge from the last block of
47    the loop going out from loop the loop header is duplicated.
48    Finally, the construction of the trace is terminated.
49 
50    When connecting traces it first checks whether there is an edge from the
51    last block of one trace to the first block of another trace.
52    When there are still some unconnected traces it checks whether there exists
53    a basic block BB such that BB is a successor of the last bb of one trace
54    and BB is a predecessor of the first block of another trace. In this case,
55    BB is duplicated and the traces are connected through this duplicate.
56    The rest of traces are simply connected so there will be a jump to the
57    beginning of the rest of trace.
58 
59 
60    References:
61 
62    "Software Trace Cache"
63    A. Ramirez, J. Larriba-Pey, C. Navarro, J. Torrellas and M. Valero; 1999
64    http://citeseer.nj.nec.com/15361.html
65 
66 */
67 
68 #include "config.h"
69 #include "system.h"
70 #include "coretypes.h"
71 #include "tm.h"
72 #include "rtl.h"
73 #include "regs.h"
74 #include "flags.h"
75 #include "timevar.h"
76 #include "output.h"
77 #include "cfglayout.h"
78 #include "fibheap.h"
79 #include "target.h"
80 #include "function.h"
81 #include "tm_p.h"
82 #include "obstack.h"
83 #include "expr.h"
84 #include "params.h"
85 #include "toplev.h"
86 #include "tree-pass.h"
87 #include "df.h"
88 
89 /* The number of rounds.  In most cases there will only be 4 rounds, but
90    when partitioning hot and cold basic blocks into separate sections of
91    the .o file there will be an extra round.*/
92 #define N_ROUNDS 5
93 
94 /* Stubs in case we don't have a return insn.
95    We have to check at runtime too, not only compiletime.  */
96 
97 #ifndef HAVE_return
98 #define HAVE_return 0
99 #define gen_return() NULL_RTX
100 #endif
101 
102 
103 /* Branch thresholds in thousandths (per mille) of the REG_BR_PROB_BASE.  */
104 static int branch_threshold[N_ROUNDS] = {400, 200, 100, 0, 0};
105 
106 /* Exec thresholds in thousandths (per mille) of the frequency of bb 0.  */
107 static int exec_threshold[N_ROUNDS] = {500, 200, 50, 0, 0};
108 
109 /* If edge frequency is lower than DUPLICATION_THRESHOLD per mille of entry
110    block the edge destination is not duplicated while connecting traces.  */
111 #define DUPLICATION_THRESHOLD 100
112 
113 /* Length of unconditional jump instruction.  */
114 static int uncond_jump_length;
115 
116 /* Structure to hold needed information for each basic block.  */
117 typedef struct bbro_basic_block_data_def
118 {
119   /* Which trace is the bb start of (-1 means it is not a start of a trace).  */
120   int start_of_trace;
121 
122   /* Which trace is the bb end of (-1 means it is not an end of a trace).  */
123   int end_of_trace;
124 
125   /* Which trace is the bb in?  */
126   int in_trace;
127 
128   /* Which heap is BB in (if any)?  */
129   fibheap_t heap;
130 
131   /* Which heap node is BB in (if any)?  */
132   fibnode_t node;
133 } bbro_basic_block_data;
134 
135 /* The current size of the following dynamic array.  */
136 static int array_size;
137 
138 /* The array which holds needed information for basic blocks.  */
139 static bbro_basic_block_data *bbd;
140 
141 /* To avoid frequent reallocation the size of arrays is greater than needed,
142    the number of elements is (not less than) 1.25 * size_wanted.  */
143 #define GET_ARRAY_SIZE(X) ((((X) / 4) + 1) * 5)
144 
145 /* Free the memory and set the pointer to NULL.  */
146 #define FREE(P) (gcc_assert (P), free (P), P = 0)
147 
148 /* Structure for holding information about a trace.  */
149 struct trace
150 {
151   /* First and last basic block of the trace.  */
152   basic_block first, last;
153 
154   /* The round of the STC creation which this trace was found in.  */
155   int round;
156 
157   /* The length (i.e. the number of basic blocks) of the trace.  */
158   int length;
159 };
160 
161 /* Maximum frequency and count of one of the entry blocks.  */
162 static int max_entry_frequency;
163 static gcov_type max_entry_count;
164 
165 /* Local function prototypes.  */
166 static void find_traces (int *, struct trace *);
167 static basic_block rotate_loop (edge, struct trace *, int);
168 static void mark_bb_visited (basic_block, int);
169 static void find_traces_1_round (int, int, gcov_type, struct trace *, int *,
170 				 int, fibheap_t *, int);
171 static basic_block copy_bb (basic_block, edge, basic_block, int);
172 static fibheapkey_t bb_to_key (basic_block);
173 static bool better_edge_p (const_basic_block, const_edge, int, int, int, int, const_edge);
174 static void connect_traces (int, struct trace *);
175 static bool copy_bb_p (const_basic_block, int);
176 static int get_uncond_jump_length (void);
177 static bool push_to_next_round_p (const_basic_block, int, int, int, gcov_type);
178 static void find_rarely_executed_basic_blocks_and_crossing_edges (edge **,
179 								  int *,
180 								  int *);
181 static void add_labels_and_missing_jumps (edge *, int);
182 static void add_reg_crossing_jump_notes (void);
183 static void fix_up_fall_thru_edges (void);
184 static void fix_edges_for_rarely_executed_code (edge *, int);
185 static void fix_crossing_conditional_branches (void);
186 static void fix_crossing_unconditional_branches (void);
187 
188 /* Check to see if bb should be pushed into the next round of trace
189    collections or not.  Reasons for pushing the block forward are 1).
190    If the block is cold, we are doing partitioning, and there will be
191    another round (cold partition blocks are not supposed to be
192    collected into traces until the very last round); or 2). There will
193    be another round, and the basic block is not "hot enough" for the
194    current round of trace collection.  */
195 
196 static bool
197 push_to_next_round_p (const_basic_block bb, int round, int number_of_rounds,
198 		      int exec_th, gcov_type count_th)
199 {
200   bool there_exists_another_round;
201   bool block_not_hot_enough;
202 
203   there_exists_another_round = round < number_of_rounds - 1;
204 
205   block_not_hot_enough = (bb->frequency < exec_th
206 			  || bb->count < count_th
207 			  || probably_never_executed_bb_p (bb));
208 
209   if (there_exists_another_round
210       && block_not_hot_enough)
211     return true;
212   else
213     return false;
214 }
215 
216 /* Find the traces for Software Trace Cache.  Chain each trace through
217    RBI()->next.  Store the number of traces to N_TRACES and description of
218    traces to TRACES.  */
219 
220 static void
221 find_traces (int *n_traces, struct trace *traces)
222 {
223   int i;
224   int number_of_rounds;
225   edge e;
226   edge_iterator ei;
227   fibheap_t heap;
228 
229   /* Add one extra round of trace collection when partitioning hot/cold
230      basic blocks into separate sections.  The last round is for all the
231      cold blocks (and ONLY the cold blocks).  */
232 
233   number_of_rounds = N_ROUNDS - 1;
234 
235   /* Insert entry points of function into heap.  */
236   heap = fibheap_new ();
237   max_entry_frequency = 0;
238   max_entry_count = 0;
239   FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
240     {
241       bbd[e->dest->index].heap = heap;
242       bbd[e->dest->index].node = fibheap_insert (heap, bb_to_key (e->dest),
243 						    e->dest);
244       if (e->dest->frequency > max_entry_frequency)
245 	max_entry_frequency = e->dest->frequency;
246       if (e->dest->count > max_entry_count)
247 	max_entry_count = e->dest->count;
248     }
249 
250   /* Find the traces.  */
251   for (i = 0; i < number_of_rounds; i++)
252     {
253       gcov_type count_threshold;
254 
255       if (dump_file)
256 	fprintf (dump_file, "STC - round %d\n", i + 1);
257 
258       if (max_entry_count < INT_MAX / 1000)
259 	count_threshold = max_entry_count * exec_threshold[i] / 1000;
260       else
261 	count_threshold = max_entry_count / 1000 * exec_threshold[i];
262 
263       find_traces_1_round (REG_BR_PROB_BASE * branch_threshold[i] / 1000,
264 			   max_entry_frequency * exec_threshold[i] / 1000,
265 			   count_threshold, traces, n_traces, i, &heap,
266 			   number_of_rounds);
267     }
268   fibheap_delete (heap);
269 
270   if (dump_file)
271     {
272       for (i = 0; i < *n_traces; i++)
273 	{
274 	  basic_block bb;
275 	  fprintf (dump_file, "Trace %d (round %d):  ", i + 1,
276 		   traces[i].round + 1);
277 	  for (bb = traces[i].first; bb != traces[i].last; bb = (basic_block) bb->aux)
278 	    fprintf (dump_file, "%d [%d] ", bb->index, bb->frequency);
279 	  fprintf (dump_file, "%d [%d]\n", bb->index, bb->frequency);
280 	}
281       fflush (dump_file);
282     }
283 }
284 
285 /* Rotate loop whose back edge is BACK_EDGE in the tail of trace TRACE
286    (with sequential number TRACE_N).  */
287 
288 static basic_block
289 rotate_loop (edge back_edge, struct trace *trace, int trace_n)
290 {
291   basic_block bb;
292 
293   /* Information about the best end (end after rotation) of the loop.  */
294   basic_block best_bb = NULL;
295   edge best_edge = NULL;
296   int best_freq = -1;
297   gcov_type best_count = -1;
298   /* The best edge is preferred when its destination is not visited yet
299      or is a start block of some trace.  */
300   bool is_preferred = false;
301 
302   /* Find the most frequent edge that goes out from current trace.  */
303   bb = back_edge->dest;
304   do
305     {
306       edge e;
307       edge_iterator ei;
308 
309       FOR_EACH_EDGE (e, ei, bb->succs)
310 	if (e->dest != EXIT_BLOCK_PTR
311 	    && e->dest->il.rtl->visited != trace_n
312 	    && (e->flags & EDGE_CAN_FALLTHRU)
313 	    && !(e->flags & EDGE_COMPLEX))
314 	{
315 	  if (is_preferred)
316 	    {
317 	      /* The best edge is preferred.  */
318 	      if (!e->dest->il.rtl->visited
319 		  || bbd[e->dest->index].start_of_trace >= 0)
320 		{
321 		  /* The current edge E is also preferred.  */
322 		  int freq = EDGE_FREQUENCY (e);
323 		  if (freq > best_freq || e->count > best_count)
324 		    {
325 		      best_freq = freq;
326 		      best_count = e->count;
327 		      best_edge = e;
328 		      best_bb = bb;
329 		    }
330 		}
331 	    }
332 	  else
333 	    {
334 	      if (!e->dest->il.rtl->visited
335 		  || bbd[e->dest->index].start_of_trace >= 0)
336 		{
337 		  /* The current edge E is preferred.  */
338 		  is_preferred = true;
339 		  best_freq = EDGE_FREQUENCY (e);
340 		  best_count = e->count;
341 		  best_edge = e;
342 		  best_bb = bb;
343 		}
344 	      else
345 		{
346 		  int freq = EDGE_FREQUENCY (e);
347 		  if (!best_edge || freq > best_freq || e->count > best_count)
348 		    {
349 		      best_freq = freq;
350 		      best_count = e->count;
351 		      best_edge = e;
352 		      best_bb = bb;
353 		    }
354 		}
355 	    }
356 	}
357       bb = (basic_block) bb->aux;
358     }
359   while (bb != back_edge->dest);
360 
361   if (best_bb)
362     {
363       /* Rotate the loop so that the BEST_EDGE goes out from the last block of
364 	 the trace.  */
365       if (back_edge->dest == trace->first)
366 	{
367 	  trace->first = (basic_block) best_bb->aux;
368 	}
369       else
370 	{
371 	  basic_block prev_bb;
372 
373 	  for (prev_bb = trace->first;
374 	       prev_bb->aux != back_edge->dest;
375 	       prev_bb = (basic_block) prev_bb->aux)
376 	    ;
377 	  prev_bb->aux = best_bb->aux;
378 
379 	  /* Try to get rid of uncond jump to cond jump.  */
380 	  if (single_succ_p (prev_bb))
381 	    {
382 	      basic_block header = single_succ (prev_bb);
383 
384 	      /* Duplicate HEADER if it is a small block containing cond jump
385 		 in the end.  */
386 	      if (any_condjump_p (BB_END (header)) && copy_bb_p (header, 0)
387 		  && !find_reg_note (BB_END (header), REG_CROSSING_JUMP,
388 				     NULL_RTX))
389 		copy_bb (header, single_succ_edge (prev_bb), prev_bb, trace_n);
390 	    }
391 	}
392     }
393   else
394     {
395       /* We have not found suitable loop tail so do no rotation.  */
396       best_bb = back_edge->src;
397     }
398   best_bb->aux = NULL;
399   return best_bb;
400 }
401 
402 /* This function marks BB that it was visited in trace number TRACE.  */
403 
404 static void
405 mark_bb_visited (basic_block bb, int trace)
406 {
407   bb->il.rtl->visited = trace;
408   if (bbd[bb->index].heap)
409     {
410       fibheap_delete_node (bbd[bb->index].heap, bbd[bb->index].node);
411       bbd[bb->index].heap = NULL;
412       bbd[bb->index].node = NULL;
413     }
414 }
415 
416 /* One round of finding traces. Find traces for BRANCH_TH and EXEC_TH i.e. do
417    not include basic blocks their probability is lower than BRANCH_TH or their
418    frequency is lower than EXEC_TH into traces (or count is lower than
419    COUNT_TH).  It stores the new traces into TRACES and modifies the number of
420    traces *N_TRACES. Sets the round (which the trace belongs to) to ROUND. It
421    expects that starting basic blocks are in *HEAP and at the end it deletes
422    *HEAP and stores starting points for the next round into new *HEAP.  */
423 
424 static void
425 find_traces_1_round (int branch_th, int exec_th, gcov_type count_th,
426 		     struct trace *traces, int *n_traces, int round,
427 		     fibheap_t *heap, int number_of_rounds)
428 {
429   /* Heap for discarded basic blocks which are possible starting points for
430      the next round.  */
431   fibheap_t new_heap = fibheap_new ();
432 
433   while (!fibheap_empty (*heap))
434     {
435       basic_block bb;
436       struct trace *trace;
437       edge best_edge, e;
438       fibheapkey_t key;
439       edge_iterator ei;
440 
441       bb = (basic_block) fibheap_extract_min (*heap);
442       bbd[bb->index].heap = NULL;
443       bbd[bb->index].node = NULL;
444 
445       if (dump_file)
446 	fprintf (dump_file, "Getting bb %d\n", bb->index);
447 
448       /* If the BB's frequency is too low send BB to the next round.  When
449 	 partitioning hot/cold blocks into separate sections, make sure all
450 	 the cold blocks (and ONLY the cold blocks) go into the (extra) final
451 	 round.  */
452 
453       if (push_to_next_round_p (bb, round, number_of_rounds, exec_th,
454 				count_th))
455 	{
456 	  int key = bb_to_key (bb);
457 	  bbd[bb->index].heap = new_heap;
458 	  bbd[bb->index].node = fibheap_insert (new_heap, key, bb);
459 
460 	  if (dump_file)
461 	    fprintf (dump_file,
462 		     "  Possible start point of next round: %d (key: %d)\n",
463 		     bb->index, key);
464 	  continue;
465 	}
466 
467       trace = traces + *n_traces;
468       trace->first = bb;
469       trace->round = round;
470       trace->length = 0;
471       bbd[bb->index].in_trace = *n_traces;
472       (*n_traces)++;
473 
474       do
475 	{
476 	  int prob, freq;
477 	  bool ends_in_call;
478 
479 	  /* The probability and frequency of the best edge.  */
480 	  int best_prob = INT_MIN / 2;
481 	  int best_freq = INT_MIN / 2;
482 
483 	  best_edge = NULL;
484 	  mark_bb_visited (bb, *n_traces);
485 	  trace->length++;
486 
487 	  if (dump_file)
488 	    fprintf (dump_file, "Basic block %d was visited in trace %d\n",
489 		     bb->index, *n_traces - 1);
490 
491 	  ends_in_call = block_ends_with_call_p (bb);
492 
493 	  /* Select the successor that will be placed after BB.  */
494 	  FOR_EACH_EDGE (e, ei, bb->succs)
495 	    {
496 	      gcc_assert (!(e->flags & EDGE_FAKE));
497 
498 	      if (e->dest == EXIT_BLOCK_PTR)
499 		continue;
500 
501 	      if (e->dest->il.rtl->visited
502 		  && e->dest->il.rtl->visited != *n_traces)
503 		continue;
504 
505 	      if (BB_PARTITION (e->dest) != BB_PARTITION (bb))
506 		continue;
507 
508 	      prob = e->probability;
509 	      freq = e->dest->frequency;
510 
511 	      /* The only sensible preference for a call instruction is the
512 		 fallthru edge.  Don't bother selecting anything else.  */
513 	      if (ends_in_call)
514 		{
515 		  if (e->flags & EDGE_CAN_FALLTHRU)
516 		    {
517 		      best_edge = e;
518 		      best_prob = prob;
519 		      best_freq = freq;
520 		    }
521 		  continue;
522 		}
523 
524 	      /* Edge that cannot be fallthru or improbable or infrequent
525 		 successor (i.e. it is unsuitable successor).  */
526 	      if (!(e->flags & EDGE_CAN_FALLTHRU) || (e->flags & EDGE_COMPLEX)
527 		  || prob < branch_th || EDGE_FREQUENCY (e) < exec_th
528 		  || e->count < count_th)
529 		continue;
530 
531 	      /* If partitioning hot/cold basic blocks, don't consider edges
532 		 that cross section boundaries.  */
533 
534 	      if (better_edge_p (bb, e, prob, freq, best_prob, best_freq,
535 				 best_edge))
536 		{
537 		  best_edge = e;
538 		  best_prob = prob;
539 		  best_freq = freq;
540 		}
541 	    }
542 
543 	  /* If the best destination has multiple predecessors, and can be
544 	     duplicated cheaper than a jump, don't allow it to be added
545 	     to a trace.  We'll duplicate it when connecting traces.  */
546 	  if (best_edge && EDGE_COUNT (best_edge->dest->preds) >= 2
547 	      && copy_bb_p (best_edge->dest, 0))
548 	    best_edge = NULL;
549 
550 	  /* Add all non-selected successors to the heaps.  */
551 	  FOR_EACH_EDGE (e, ei, bb->succs)
552 	    {
553 	      if (e == best_edge
554 		  || e->dest == EXIT_BLOCK_PTR
555 		  || e->dest->il.rtl->visited)
556 		continue;
557 
558 	      key = bb_to_key (e->dest);
559 
560 	      if (bbd[e->dest->index].heap)
561 		{
562 		  /* E->DEST is already in some heap.  */
563 		  if (key != bbd[e->dest->index].node->key)
564 		    {
565 		      if (dump_file)
566 			{
567 			  fprintf (dump_file,
568 				   "Changing key for bb %d from %ld to %ld.\n",
569 				   e->dest->index,
570 				   (long) bbd[e->dest->index].node->key,
571 				   key);
572 			}
573 		      fibheap_replace_key (bbd[e->dest->index].heap,
574 					   bbd[e->dest->index].node, key);
575 		    }
576 		}
577 	      else
578 		{
579 		  fibheap_t which_heap = *heap;
580 
581 		  prob = e->probability;
582 		  freq = EDGE_FREQUENCY (e);
583 
584 		  if (!(e->flags & EDGE_CAN_FALLTHRU)
585 		      || (e->flags & EDGE_COMPLEX)
586 		      || prob < branch_th || freq < exec_th
587 		      || e->count < count_th)
588 		    {
589 		      /* When partitioning hot/cold basic blocks, make sure
590 			 the cold blocks (and only the cold blocks) all get
591 			 pushed to the last round of trace collection.  */
592 
593 		      if (push_to_next_round_p (e->dest, round,
594 						number_of_rounds,
595 						exec_th, count_th))
596 			which_heap = new_heap;
597 		    }
598 
599 		  bbd[e->dest->index].heap = which_heap;
600 		  bbd[e->dest->index].node = fibheap_insert (which_heap,
601 								key, e->dest);
602 
603 		  if (dump_file)
604 		    {
605 		      fprintf (dump_file,
606 			       "  Possible start of %s round: %d (key: %ld)\n",
607 			       (which_heap == new_heap) ? "next" : "this",
608 			       e->dest->index, (long) key);
609 		    }
610 
611 		}
612 	    }
613 
614 	  if (best_edge) /* Suitable successor was found.  */
615 	    {
616 	      if (best_edge->dest->il.rtl->visited == *n_traces)
617 		{
618 		  /* We do nothing with one basic block loops.  */
619 		  if (best_edge->dest != bb)
620 		    {
621 		      if (EDGE_FREQUENCY (best_edge)
622 			  > 4 * best_edge->dest->frequency / 5)
623 			{
624 			  /* The loop has at least 4 iterations.  If the loop
625 			     header is not the first block of the function
626 			     we can rotate the loop.  */
627 
628 			  if (best_edge->dest != ENTRY_BLOCK_PTR->next_bb)
629 			    {
630 			      if (dump_file)
631 				{
632 				  fprintf (dump_file,
633 					   "Rotating loop %d - %d\n",
634 					   best_edge->dest->index, bb->index);
635 				}
636 			      bb->aux = best_edge->dest;
637 			      bbd[best_edge->dest->index].in_trace =
638 							     (*n_traces) - 1;
639 			      bb = rotate_loop (best_edge, trace, *n_traces);
640 			    }
641 			}
642 		      else
643 			{
644 			  /* The loop has less than 4 iterations.  */
645 
646 			  if (single_succ_p (bb)
647 			      && copy_bb_p (best_edge->dest,
648 			      		    optimize_edge_for_speed_p (best_edge)))
649 			    {
650 			      bb = copy_bb (best_edge->dest, best_edge, bb,
651 					    *n_traces);
652 			      trace->length++;
653 			    }
654 			}
655 		    }
656 
657 		  /* Terminate the trace.  */
658 		  break;
659 		}
660 	      else
661 		{
662 		  /* Check for a situation
663 
664 		    A
665 		   /|
666 		  B |
667 		   \|
668 		    C
669 
670 		  where
671 		  EDGE_FREQUENCY (AB) + EDGE_FREQUENCY (BC)
672 		    >= EDGE_FREQUENCY (AC).
673 		  (i.e. 2 * B->frequency >= EDGE_FREQUENCY (AC) )
674 		  Best ordering is then A B C.
675 
676 		  This situation is created for example by:
677 
678 		  if (A) B;
679 		  C;
680 
681 		  */
682 
683 		  FOR_EACH_EDGE (e, ei, bb->succs)
684 		    if (e != best_edge
685 			&& (e->flags & EDGE_CAN_FALLTHRU)
686 			&& !(e->flags & EDGE_COMPLEX)
687 			&& !e->dest->il.rtl->visited
688 			&& single_pred_p (e->dest)
689 			&& !(e->flags & EDGE_CROSSING)
690 			&& single_succ_p (e->dest)
691 			&& (single_succ_edge (e->dest)->flags
692 			    & EDGE_CAN_FALLTHRU)
693 			&& !(single_succ_edge (e->dest)->flags & EDGE_COMPLEX)
694 			&& single_succ (e->dest) == best_edge->dest
695 			&& 2 * e->dest->frequency >= EDGE_FREQUENCY (best_edge))
696 		      {
697 			best_edge = e;
698 			if (dump_file)
699 			  fprintf (dump_file, "Selecting BB %d\n",
700 				   best_edge->dest->index);
701 			break;
702 		      }
703 
704 		  bb->aux = best_edge->dest;
705 		  bbd[best_edge->dest->index].in_trace = (*n_traces) - 1;
706 		  bb = best_edge->dest;
707 		}
708 	    }
709 	}
710       while (best_edge);
711       trace->last = bb;
712       bbd[trace->first->index].start_of_trace = *n_traces - 1;
713       bbd[trace->last->index].end_of_trace = *n_traces - 1;
714 
715       /* The trace is terminated so we have to recount the keys in heap
716 	 (some block can have a lower key because now one of its predecessors
717 	 is an end of the trace).  */
718       FOR_EACH_EDGE (e, ei, bb->succs)
719 	{
720 	  if (e->dest == EXIT_BLOCK_PTR
721 	      || e->dest->il.rtl->visited)
722 	    continue;
723 
724 	  if (bbd[e->dest->index].heap)
725 	    {
726 	      key = bb_to_key (e->dest);
727 	      if (key != bbd[e->dest->index].node->key)
728 		{
729 		  if (dump_file)
730 		    {
731 		      fprintf (dump_file,
732 			       "Changing key for bb %d from %ld to %ld.\n",
733 			       e->dest->index,
734 			       (long) bbd[e->dest->index].node->key, key);
735 		    }
736 		  fibheap_replace_key (bbd[e->dest->index].heap,
737 				       bbd[e->dest->index].node,
738 				       key);
739 		}
740 	    }
741 	}
742     }
743 
744   fibheap_delete (*heap);
745 
746   /* "Return" the new heap.  */
747   *heap = new_heap;
748 }
749 
750 /* Create a duplicate of the basic block OLD_BB and redirect edge E to it, add
751    it to trace after BB, mark OLD_BB visited and update pass' data structures
752    (TRACE is a number of trace which OLD_BB is duplicated to).  */
753 
754 static basic_block
755 copy_bb (basic_block old_bb, edge e, basic_block bb, int trace)
756 {
757   basic_block new_bb;
758 
759   new_bb = duplicate_block (old_bb, e, bb);
760   BB_COPY_PARTITION (new_bb, old_bb);
761 
762   gcc_assert (e->dest == new_bb);
763   gcc_assert (!e->dest->il.rtl->visited);
764 
765   if (dump_file)
766     fprintf (dump_file,
767 	     "Duplicated bb %d (created bb %d)\n",
768 	     old_bb->index, new_bb->index);
769   new_bb->il.rtl->visited = trace;
770   new_bb->aux = bb->aux;
771   bb->aux = new_bb;
772 
773   if (new_bb->index >= array_size || last_basic_block > array_size)
774     {
775       int i;
776       int new_size;
777 
778       new_size = MAX (last_basic_block, new_bb->index + 1);
779       new_size = GET_ARRAY_SIZE (new_size);
780       bbd = XRESIZEVEC (bbro_basic_block_data, bbd, new_size);
781       for (i = array_size; i < new_size; i++)
782 	{
783 	  bbd[i].start_of_trace = -1;
784 	  bbd[i].in_trace = -1;
785 	  bbd[i].end_of_trace = -1;
786 	  bbd[i].heap = NULL;
787 	  bbd[i].node = NULL;
788 	}
789       array_size = new_size;
790 
791       if (dump_file)
792 	{
793 	  fprintf (dump_file,
794 		   "Growing the dynamic array to %d elements.\n",
795 		   array_size);
796 	}
797     }
798 
799   bbd[new_bb->index].in_trace = trace;
800 
801   return new_bb;
802 }
803 
804 /* Compute and return the key (for the heap) of the basic block BB.  */
805 
806 static fibheapkey_t
807 bb_to_key (basic_block bb)
808 {
809   edge e;
810   edge_iterator ei;
811   int priority = 0;
812 
813   /* Do not start in probably never executed blocks.  */
814 
815   if (BB_PARTITION (bb) == BB_COLD_PARTITION
816       || probably_never_executed_bb_p (bb))
817     return BB_FREQ_MAX;
818 
819   /* Prefer blocks whose predecessor is an end of some trace
820      or whose predecessor edge is EDGE_DFS_BACK.  */
821   FOR_EACH_EDGE (e, ei, bb->preds)
822     {
823       if ((e->src != ENTRY_BLOCK_PTR && bbd[e->src->index].end_of_trace >= 0)
824 	  || (e->flags & EDGE_DFS_BACK))
825 	{
826 	  int edge_freq = EDGE_FREQUENCY (e);
827 
828 	  if (edge_freq > priority)
829 	    priority = edge_freq;
830 	}
831     }
832 
833   if (priority)
834     /* The block with priority should have significantly lower key.  */
835     return -(100 * BB_FREQ_MAX + 100 * priority + bb->frequency);
836   return -bb->frequency;
837 }
838 
839 /* Return true when the edge E from basic block BB is better than the temporary
840    best edge (details are in function).  The probability of edge E is PROB. The
841    frequency of the successor is FREQ.  The current best probability is
842    BEST_PROB, the best frequency is BEST_FREQ.
843    The edge is considered to be equivalent when PROB does not differ much from
844    BEST_PROB; similarly for frequency.  */
845 
846 static bool
847 better_edge_p (const_basic_block bb, const_edge e, int prob, int freq, int best_prob,
848 	       int best_freq, const_edge cur_best_edge)
849 {
850   bool is_better_edge;
851 
852   /* The BEST_* values do not have to be best, but can be a bit smaller than
853      maximum values.  */
854   int diff_prob = best_prob / 10;
855   int diff_freq = best_freq / 10;
856 
857   if (prob > best_prob + diff_prob)
858     /* The edge has higher probability than the temporary best edge.  */
859     is_better_edge = true;
860   else if (prob < best_prob - diff_prob)
861     /* The edge has lower probability than the temporary best edge.  */
862     is_better_edge = false;
863   else if (freq < best_freq - diff_freq)
864     /* The edge and the temporary best edge  have almost equivalent
865        probabilities.  The higher frequency of a successor now means
866        that there is another edge going into that successor.
867        This successor has lower frequency so it is better.  */
868     is_better_edge = true;
869   else if (freq > best_freq + diff_freq)
870     /* This successor has higher frequency so it is worse.  */
871     is_better_edge = false;
872   else if (e->dest->prev_bb == bb)
873     /* The edges have equivalent probabilities and the successors
874        have equivalent frequencies.  Select the previous successor.  */
875     is_better_edge = true;
876   else
877     is_better_edge = false;
878 
879   /* If we are doing hot/cold partitioning, make sure that we always favor
880      non-crossing edges over crossing edges.  */
881 
882   if (!is_better_edge
883       && flag_reorder_blocks_and_partition
884       && cur_best_edge
885       && (cur_best_edge->flags & EDGE_CROSSING)
886       && !(e->flags & EDGE_CROSSING))
887     is_better_edge = true;
888 
889   return is_better_edge;
890 }
891 
892 /* Connect traces in array TRACES, N_TRACES is the count of traces.  */
893 
894 static void
895 connect_traces (int n_traces, struct trace *traces)
896 {
897   int i;
898   bool *connected;
899   bool two_passes;
900   int last_trace;
901   int current_pass;
902   int current_partition;
903   int freq_threshold;
904   gcov_type count_threshold;
905 
906   freq_threshold = max_entry_frequency * DUPLICATION_THRESHOLD / 1000;
907   if (max_entry_count < INT_MAX / 1000)
908     count_threshold = max_entry_count * DUPLICATION_THRESHOLD / 1000;
909   else
910     count_threshold = max_entry_count / 1000 * DUPLICATION_THRESHOLD;
911 
912   connected = XCNEWVEC (bool, n_traces);
913   last_trace = -1;
914   current_pass = 1;
915   current_partition = BB_PARTITION (traces[0].first);
916   two_passes = false;
917 
918   if (flag_reorder_blocks_and_partition)
919     for (i = 0; i < n_traces && !two_passes; i++)
920       if (BB_PARTITION (traces[0].first)
921 	  != BB_PARTITION (traces[i].first))
922 	two_passes = true;
923 
924   for (i = 0; i < n_traces || (two_passes && current_pass == 1) ; i++)
925     {
926       int t = i;
927       int t2;
928       edge e, best;
929       int best_len;
930 
931       if (i >= n_traces)
932 	{
933 	  gcc_assert (two_passes && current_pass == 1);
934 	  i = 0;
935 	  t = i;
936 	  current_pass = 2;
937 	  if (current_partition == BB_HOT_PARTITION)
938 	    current_partition = BB_COLD_PARTITION;
939 	  else
940 	    current_partition = BB_HOT_PARTITION;
941 	}
942 
943       if (connected[t])
944 	continue;
945 
946       if (two_passes
947 	  && BB_PARTITION (traces[t].first) != current_partition)
948 	continue;
949 
950       connected[t] = true;
951 
952       /* Find the predecessor traces.  */
953       for (t2 = t; t2 > 0;)
954 	{
955 	  edge_iterator ei;
956 	  best = NULL;
957 	  best_len = 0;
958 	  FOR_EACH_EDGE (e, ei, traces[t2].first->preds)
959 	    {
960 	      int si = e->src->index;
961 
962 	      if (e->src != ENTRY_BLOCK_PTR
963 		  && (e->flags & EDGE_CAN_FALLTHRU)
964 		  && !(e->flags & EDGE_COMPLEX)
965 		  && bbd[si].end_of_trace >= 0
966 		  && !connected[bbd[si].end_of_trace]
967 		  && (BB_PARTITION (e->src) == current_partition)
968 		  && (!best
969 		      || e->probability > best->probability
970 		      || (e->probability == best->probability
971 			  && traces[bbd[si].end_of_trace].length > best_len)))
972 		{
973 		  best = e;
974 		  best_len = traces[bbd[si].end_of_trace].length;
975 		}
976 	    }
977 	  if (best)
978 	    {
979 	      best->src->aux = best->dest;
980 	      t2 = bbd[best->src->index].end_of_trace;
981 	      connected[t2] = true;
982 
983 	      if (dump_file)
984 		{
985 		  fprintf (dump_file, "Connection: %d %d\n",
986 			   best->src->index, best->dest->index);
987 		}
988 	    }
989 	  else
990 	    break;
991 	}
992 
993       if (last_trace >= 0)
994 	traces[last_trace].last->aux = traces[t2].first;
995       last_trace = t;
996 
997       /* Find the successor traces.  */
998       while (1)
999 	{
1000 	  /* Find the continuation of the chain.  */
1001 	  edge_iterator ei;
1002 	  best = NULL;
1003 	  best_len = 0;
1004 	  FOR_EACH_EDGE (e, ei, traces[t].last->succs)
1005 	    {
1006 	      int di = e->dest->index;
1007 
1008 	      if (e->dest != EXIT_BLOCK_PTR
1009 		  && (e->flags & EDGE_CAN_FALLTHRU)
1010 		  && !(e->flags & EDGE_COMPLEX)
1011 		  && bbd[di].start_of_trace >= 0
1012 		  && !connected[bbd[di].start_of_trace]
1013 		  && (BB_PARTITION (e->dest) == current_partition)
1014 		  && (!best
1015 		      || e->probability > best->probability
1016 		      || (e->probability == best->probability
1017 			  && traces[bbd[di].start_of_trace].length > best_len)))
1018 		{
1019 		  best = e;
1020 		  best_len = traces[bbd[di].start_of_trace].length;
1021 		}
1022 	    }
1023 
1024 	  if (best)
1025 	    {
1026 	      if (dump_file)
1027 		{
1028 		  fprintf (dump_file, "Connection: %d %d\n",
1029 			   best->src->index, best->dest->index);
1030 		}
1031 	      t = bbd[best->dest->index].start_of_trace;
1032 	      traces[last_trace].last->aux = traces[t].first;
1033 	      connected[t] = true;
1034 	      last_trace = t;
1035 	    }
1036 	  else
1037 	    {
1038 	      /* Try to connect the traces by duplication of 1 block.  */
1039 	      edge e2;
1040 	      basic_block next_bb = NULL;
1041 	      bool try_copy = false;
1042 
1043 	      FOR_EACH_EDGE (e, ei, traces[t].last->succs)
1044 		if (e->dest != EXIT_BLOCK_PTR
1045 		    && (e->flags & EDGE_CAN_FALLTHRU)
1046 		    && !(e->flags & EDGE_COMPLEX)
1047 		    && (!best || e->probability > best->probability))
1048 		  {
1049 		    edge_iterator ei;
1050 		    edge best2 = NULL;
1051 		    int best2_len = 0;
1052 
1053 		    /* If the destination is a start of a trace which is only
1054 		       one block long, then no need to search the successor
1055 		       blocks of the trace.  Accept it.  */
1056 		    if (bbd[e->dest->index].start_of_trace >= 0
1057 			&& traces[bbd[e->dest->index].start_of_trace].length
1058 			   == 1)
1059 		      {
1060 			best = e;
1061 			try_copy = true;
1062 			continue;
1063 		      }
1064 
1065 		    FOR_EACH_EDGE (e2, ei, e->dest->succs)
1066 		      {
1067 			int di = e2->dest->index;
1068 
1069 			if (e2->dest == EXIT_BLOCK_PTR
1070 			    || ((e2->flags & EDGE_CAN_FALLTHRU)
1071 				&& !(e2->flags & EDGE_COMPLEX)
1072 				&& bbd[di].start_of_trace >= 0
1073 				&& !connected[bbd[di].start_of_trace]
1074 				&& (BB_PARTITION (e2->dest) == current_partition)
1075 				&& (EDGE_FREQUENCY (e2) >= freq_threshold)
1076 				&& (e2->count >= count_threshold)
1077 				&& (!best2
1078 				    || e2->probability > best2->probability
1079 				    || (e2->probability == best2->probability
1080 					&& traces[bbd[di].start_of_trace].length
1081 					   > best2_len))))
1082 			  {
1083 			    best = e;
1084 			    best2 = e2;
1085 			    if (e2->dest != EXIT_BLOCK_PTR)
1086 			      best2_len = traces[bbd[di].start_of_trace].length;
1087 			    else
1088 			      best2_len = INT_MAX;
1089 			    next_bb = e2->dest;
1090 			    try_copy = true;
1091 			  }
1092 		      }
1093 		  }
1094 
1095 	      if (flag_reorder_blocks_and_partition)
1096 		try_copy = false;
1097 
1098 	      /* Copy tiny blocks always; copy larger blocks only when the
1099 		 edge is traversed frequently enough.  */
1100 	      if (try_copy
1101 		  && copy_bb_p (best->dest,
1102 				optimize_edge_for_speed_p (best)
1103 				&& EDGE_FREQUENCY (best) >= freq_threshold
1104 				&& best->count >= count_threshold))
1105 		{
1106 		  basic_block new_bb;
1107 
1108 		  if (dump_file)
1109 		    {
1110 		      fprintf (dump_file, "Connection: %d %d ",
1111 			       traces[t].last->index, best->dest->index);
1112 		      if (!next_bb)
1113 			fputc ('\n', dump_file);
1114 		      else if (next_bb == EXIT_BLOCK_PTR)
1115 			fprintf (dump_file, "exit\n");
1116 		      else
1117 			fprintf (dump_file, "%d\n", next_bb->index);
1118 		    }
1119 
1120 		  new_bb = copy_bb (best->dest, best, traces[t].last, t);
1121 		  traces[t].last = new_bb;
1122 		  if (next_bb && next_bb != EXIT_BLOCK_PTR)
1123 		    {
1124 		      t = bbd[next_bb->index].start_of_trace;
1125 		      traces[last_trace].last->aux = traces[t].first;
1126 		      connected[t] = true;
1127 		      last_trace = t;
1128 		    }
1129 		  else
1130 		    break;	/* Stop finding the successor traces.  */
1131 		}
1132 	      else
1133 		break;	/* Stop finding the successor traces.  */
1134 	    }
1135 	}
1136     }
1137 
1138   if (dump_file)
1139     {
1140       basic_block bb;
1141 
1142       fprintf (dump_file, "Final order:\n");
1143       for (bb = traces[0].first; bb; bb = (basic_block) bb->aux)
1144 	fprintf (dump_file, "%d ", bb->index);
1145       fprintf (dump_file, "\n");
1146       fflush (dump_file);
1147     }
1148 
1149   FREE (connected);
1150 }
1151 
1152 /* Return true when BB can and should be copied. CODE_MAY_GROW is true
1153    when code size is allowed to grow by duplication.  */
1154 
1155 static bool
1156 copy_bb_p (const_basic_block bb, int code_may_grow)
1157 {
1158   int size = 0;
1159   int max_size = uncond_jump_length;
1160   rtx insn;
1161 
1162   if (!bb->frequency)
1163     return false;
1164   if (EDGE_COUNT (bb->preds) < 2)
1165     return false;
1166   if (!can_duplicate_block_p (bb))
1167     return false;
1168 
1169   /* Avoid duplicating blocks which have many successors (PR/13430).  */
1170   if (EDGE_COUNT (bb->succs) > 8)
1171     return false;
1172 
1173   if (code_may_grow && optimize_bb_for_speed_p (bb))
1174     max_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
1175 
1176   FOR_BB_INSNS (bb, insn)
1177     {
1178       if (INSN_P (insn))
1179 	size += get_attr_min_length (insn);
1180     }
1181 
1182   if (size <= max_size)
1183     return true;
1184 
1185   if (dump_file)
1186     {
1187       fprintf (dump_file,
1188 	       "Block %d can't be copied because its size = %d.\n",
1189 	       bb->index, size);
1190     }
1191 
1192   return false;
1193 }
1194 
1195 /* Return the length of unconditional jump instruction.  */
1196 
1197 static int
1198 get_uncond_jump_length (void)
1199 {
1200   rtx label, jump;
1201   int length;
1202 
1203   label = emit_label_before (gen_label_rtx (), get_insns ());
1204   jump = emit_jump_insn (gen_jump (label));
1205 
1206   length = get_attr_min_length (jump);
1207 
1208   delete_insn (jump);
1209   delete_insn (label);
1210   return length;
1211 }
1212 
1213 /* Find the basic blocks that are rarely executed and need to be moved to
1214    a separate section of the .o file (to cut down on paging and improve
1215    cache locality).  */
1216 
1217 static void
1218 find_rarely_executed_basic_blocks_and_crossing_edges (edge **crossing_edges,
1219 						      int *n_crossing_edges,
1220 						      int *max_idx)
1221 {
1222   basic_block bb;
1223   edge e;
1224   int i;
1225   edge_iterator ei;
1226 
1227   /* Mark which partition (hot/cold) each basic block belongs in.  */
1228 
1229   FOR_EACH_BB (bb)
1230     {
1231       if (probably_never_executed_bb_p (bb))
1232 	BB_SET_PARTITION (bb, BB_COLD_PARTITION);
1233       else
1234 	BB_SET_PARTITION (bb, BB_HOT_PARTITION);
1235     }
1236 
1237   /* Mark every edge that crosses between sections.  */
1238 
1239   i = 0;
1240   FOR_EACH_BB (bb)
1241     FOR_EACH_EDGE (e, ei, bb->succs)
1242     {
1243       if (e->src != ENTRY_BLOCK_PTR
1244 	  && e->dest != EXIT_BLOCK_PTR
1245 	  && BB_PARTITION (e->src) != BB_PARTITION (e->dest))
1246 	{
1247 	  e->flags |= EDGE_CROSSING;
1248 	  if (i == *max_idx)
1249 	    {
1250 	      *max_idx *= 2;
1251 	      *crossing_edges = XRESIZEVEC (edge, *crossing_edges, *max_idx);
1252 	    }
1253 	  (*crossing_edges)[i++] = e;
1254 	}
1255       else
1256 	e->flags &= ~EDGE_CROSSING;
1257     }
1258   *n_crossing_edges = i;
1259 }
1260 
1261 /* If any destination of a crossing edge does not have a label, add label;
1262    Convert any fall-through crossing edges (for blocks that do not contain
1263    a jump) to unconditional jumps.  */
1264 
1265 static void
1266 add_labels_and_missing_jumps (edge *crossing_edges, int n_crossing_edges)
1267 {
1268   int i;
1269   basic_block src;
1270   basic_block dest;
1271   rtx label;
1272   rtx barrier;
1273   rtx new_jump;
1274 
1275   for (i=0; i < n_crossing_edges; i++)
1276     {
1277       if (crossing_edges[i])
1278 	{
1279 	  src = crossing_edges[i]->src;
1280 	  dest = crossing_edges[i]->dest;
1281 
1282 	  /* Make sure dest has a label.  */
1283 
1284 	  if (dest && (dest != EXIT_BLOCK_PTR))
1285 	    {
1286 	      label = block_label (dest);
1287 
1288 	      /* Make sure source block ends with a jump.  If the
1289 	         source block does not end with a jump it might end
1290 	         with a call_insn;  this case will be handled in
1291 	         fix_up_fall_thru_edges function.  */
1292 
1293 	      if (src && (src != ENTRY_BLOCK_PTR))
1294 		{
1295 		  if (!JUMP_P (BB_END (src))
1296 		      && !block_ends_with_call_p (src)
1297 		      && !can_throw_internal (BB_END (src)))
1298 		    /* bb just falls through.  */
1299 		    {
1300 		      /* make sure there's only one successor */
1301 		      gcc_assert (single_succ_p (src));
1302 
1303 		      /* Find label in dest block.  */
1304 		      label = block_label (dest);
1305 
1306 		      new_jump = emit_jump_insn_after (gen_jump (label),
1307 						       BB_END (src));
1308 		      barrier = emit_barrier_after (new_jump);
1309 		      JUMP_LABEL (new_jump) = label;
1310 		      LABEL_NUSES (label) += 1;
1311 		      src->il.rtl->footer = unlink_insn_chain (barrier, barrier);
1312 		      /* Mark edge as non-fallthru.  */
1313 		      crossing_edges[i]->flags &= ~EDGE_FALLTHRU;
1314 		    } /* end: 'if (!JUMP_P ... '  */
1315 		} /* end: 'if (src && src !=...'  */
1316 	    } /* end: 'if (dest && dest !=...'  */
1317 	} /* end: 'if (crossing_edges[i]...'  */
1318     } /* end for loop  */
1319 }
1320 
1321 /* Find any bb's where the fall-through edge is a crossing edge (note that
1322    these bb's must also contain a conditional jump or end with a call
1323    instruction; we've already dealt with fall-through edges for blocks
1324    that didn't have a conditional jump or didn't end with call instruction
1325    in the call to add_labels_and_missing_jumps).  Convert the fall-through
1326    edge to non-crossing edge by inserting a new bb to fall-through into.
1327    The new bb will contain an unconditional jump (crossing edge) to the
1328    original fall through destination.  */
1329 
1330 static void
1331 fix_up_fall_thru_edges (void)
1332 {
1333   basic_block cur_bb;
1334   basic_block new_bb;
1335   edge succ1;
1336   edge succ2;
1337   edge fall_thru;
1338   edge cond_jump = NULL;
1339   edge e;
1340   bool cond_jump_crosses;
1341   int invert_worked;
1342   rtx old_jump;
1343   rtx fall_thru_label;
1344   rtx barrier;
1345 
1346   FOR_EACH_BB (cur_bb)
1347     {
1348       fall_thru = NULL;
1349       if (EDGE_COUNT (cur_bb->succs) > 0)
1350 	succ1 = EDGE_SUCC (cur_bb, 0);
1351       else
1352 	succ1 = NULL;
1353 
1354       if (EDGE_COUNT (cur_bb->succs) > 1)
1355 	succ2 = EDGE_SUCC (cur_bb, 1);
1356       else
1357 	succ2 = NULL;
1358 
1359       /* Find the fall-through edge.  */
1360 
1361       if (succ1
1362 	  && (succ1->flags & EDGE_FALLTHRU))
1363 	{
1364 	  fall_thru = succ1;
1365 	  cond_jump = succ2;
1366 	}
1367       else if (succ2
1368 	       && (succ2->flags & EDGE_FALLTHRU))
1369 	{
1370 	  fall_thru = succ2;
1371 	  cond_jump = succ1;
1372 	}
1373       else if (succ1
1374 	       && (block_ends_with_call_p (cur_bb)
1375 		   || can_throw_internal (BB_END (cur_bb))))
1376 	{
1377 	  edge e;
1378 	  edge_iterator ei;
1379 
1380 	  /* Find EDGE_CAN_FALLTHRU edge.  */
1381 	  FOR_EACH_EDGE (e, ei, cur_bb->succs)
1382 	    if (e->flags & EDGE_CAN_FALLTHRU)
1383 	      {
1384 		fall_thru = e;
1385 		break;
1386 	      }
1387 	}
1388 
1389       if (fall_thru && (fall_thru->dest != EXIT_BLOCK_PTR))
1390 	{
1391 	  /* Check to see if the fall-thru edge is a crossing edge.  */
1392 
1393 	  if (fall_thru->flags & EDGE_CROSSING)
1394 	    {
1395 	      /* The fall_thru edge crosses; now check the cond jump edge, if
1396 		 it exists.  */
1397 
1398 	      cond_jump_crosses = true;
1399 	      invert_worked  = 0;
1400 	      old_jump = BB_END (cur_bb);
1401 
1402 	      /* Find the jump instruction, if there is one.  */
1403 
1404 	      if (cond_jump)
1405 		{
1406 		  if (!(cond_jump->flags & EDGE_CROSSING))
1407 		    cond_jump_crosses = false;
1408 
1409 		  /* We know the fall-thru edge crosses; if the cond
1410 		     jump edge does NOT cross, and its destination is the
1411 		     next block in the bb order, invert the jump
1412 		     (i.e. fix it so the fall thru does not cross and
1413 		     the cond jump does).  */
1414 
1415 		  if (!cond_jump_crosses
1416 		      && cur_bb->aux == cond_jump->dest)
1417 		    {
1418 		      /* Find label in fall_thru block. We've already added
1419 			 any missing labels, so there must be one.  */
1420 
1421 		      fall_thru_label = block_label (fall_thru->dest);
1422 
1423 		      if (old_jump && JUMP_P (old_jump) && fall_thru_label)
1424 			invert_worked = invert_jump (old_jump,
1425 						     fall_thru_label,0);
1426 		      if (invert_worked)
1427 			{
1428 			  fall_thru->flags &= ~EDGE_FALLTHRU;
1429 			  cond_jump->flags |= EDGE_FALLTHRU;
1430 			  update_br_prob_note (cur_bb);
1431 			  e = fall_thru;
1432 			  fall_thru = cond_jump;
1433 			  cond_jump = e;
1434 			  cond_jump->flags |= EDGE_CROSSING;
1435 			  fall_thru->flags &= ~EDGE_CROSSING;
1436 			}
1437 		    }
1438 		}
1439 
1440 	      if (cond_jump_crosses || !invert_worked)
1441 		{
1442 		  /* This is the case where both edges out of the basic
1443 		     block are crossing edges. Here we will fix up the
1444 		     fall through edge. The jump edge will be taken care
1445 		     of later.  The EDGE_CROSSING flag of fall_thru edge
1446                      is unset before the call to force_nonfallthru
1447                      function because if a new basic-block is created
1448                      this edge remains in the current section boundary
1449                      while the edge between new_bb and the fall_thru->dest
1450                      becomes EDGE_CROSSING.  */
1451 
1452                   fall_thru->flags &= ~EDGE_CROSSING;
1453 		  new_bb = force_nonfallthru (fall_thru);
1454 
1455 		  if (new_bb)
1456 		    {
1457 		      new_bb->aux = cur_bb->aux;
1458 		      cur_bb->aux = new_bb;
1459 
1460 		      /* Make sure new fall-through bb is in same
1461 			 partition as bb it's falling through from.  */
1462 
1463 		      BB_COPY_PARTITION (new_bb, cur_bb);
1464 		      single_succ_edge (new_bb)->flags |= EDGE_CROSSING;
1465 		    }
1466                   else
1467                     {
1468                       /* If a new basic-block was not created; restore
1469                          the EDGE_CROSSING flag.  */
1470                       fall_thru->flags |= EDGE_CROSSING;
1471                     }
1472 
1473 		  /* Add barrier after new jump */
1474 
1475 		  if (new_bb)
1476 		    {
1477 		      barrier = emit_barrier_after (BB_END (new_bb));
1478 		      new_bb->il.rtl->footer = unlink_insn_chain (barrier,
1479 							       barrier);
1480 		    }
1481 		  else
1482 		    {
1483 		      barrier = emit_barrier_after (BB_END (cur_bb));
1484 		      cur_bb->il.rtl->footer = unlink_insn_chain (barrier,
1485 							       barrier);
1486 		    }
1487 		}
1488 	    }
1489 	}
1490     }
1491 }
1492 
1493 /* This function checks the destination block of a "crossing jump" to
1494    see if it has any crossing predecessors that begin with a code label
1495    and end with an unconditional jump.  If so, it returns that predecessor
1496    block.  (This is to avoid creating lots of new basic blocks that all
1497    contain unconditional jumps to the same destination).  */
1498 
1499 static basic_block
1500 find_jump_block (basic_block jump_dest)
1501 {
1502   basic_block source_bb = NULL;
1503   edge e;
1504   rtx insn;
1505   edge_iterator ei;
1506 
1507   FOR_EACH_EDGE (e, ei, jump_dest->preds)
1508     if (e->flags & EDGE_CROSSING)
1509       {
1510 	basic_block src = e->src;
1511 
1512 	/* Check each predecessor to see if it has a label, and contains
1513 	   only one executable instruction, which is an unconditional jump.
1514 	   If so, we can use it.  */
1515 
1516 	if (LABEL_P (BB_HEAD (src)))
1517 	  for (insn = BB_HEAD (src);
1518 	       !INSN_P (insn) && insn != NEXT_INSN (BB_END (src));
1519 	       insn = NEXT_INSN (insn))
1520 	    {
1521 	      if (INSN_P (insn)
1522 		  && insn == BB_END (src)
1523 		  && JUMP_P (insn)
1524 		  && !any_condjump_p (insn))
1525 		{
1526 		  source_bb = src;
1527 		  break;
1528 		}
1529 	    }
1530 
1531 	if (source_bb)
1532 	  break;
1533       }
1534 
1535   return source_bb;
1536 }
1537 
1538 /* Find all BB's with conditional jumps that are crossing edges;
1539    insert a new bb and make the conditional jump branch to the new
1540    bb instead (make the new bb same color so conditional branch won't
1541    be a 'crossing' edge).  Insert an unconditional jump from the
1542    new bb to the original destination of the conditional jump.  */
1543 
1544 static void
1545 fix_crossing_conditional_branches (void)
1546 {
1547   basic_block cur_bb;
1548   basic_block new_bb;
1549   basic_block last_bb;
1550   basic_block dest;
1551   edge succ1;
1552   edge succ2;
1553   edge crossing_edge;
1554   edge new_edge;
1555   rtx old_jump;
1556   rtx set_src;
1557   rtx old_label = NULL_RTX;
1558   rtx new_label;
1559   rtx new_jump;
1560   rtx barrier;
1561 
1562  last_bb = EXIT_BLOCK_PTR->prev_bb;
1563 
1564   FOR_EACH_BB (cur_bb)
1565     {
1566       crossing_edge = NULL;
1567       if (EDGE_COUNT (cur_bb->succs) > 0)
1568 	succ1 = EDGE_SUCC (cur_bb, 0);
1569       else
1570 	succ1 = NULL;
1571 
1572       if (EDGE_COUNT (cur_bb->succs) > 1)
1573 	succ2 = EDGE_SUCC (cur_bb, 1);
1574       else
1575 	succ2 = NULL;
1576 
1577       /* We already took care of fall-through edges, so only one successor
1578 	 can be a crossing edge.  */
1579 
1580       if (succ1 && (succ1->flags & EDGE_CROSSING))
1581 	crossing_edge = succ1;
1582       else if (succ2 && (succ2->flags & EDGE_CROSSING))
1583 	crossing_edge = succ2;
1584 
1585       if (crossing_edge)
1586 	{
1587 	  old_jump = BB_END (cur_bb);
1588 
1589 	  /* Check to make sure the jump instruction is a
1590 	     conditional jump.  */
1591 
1592 	  set_src = NULL_RTX;
1593 
1594 	  if (any_condjump_p (old_jump))
1595 	    {
1596 	      if (GET_CODE (PATTERN (old_jump)) == SET)
1597 		set_src = SET_SRC (PATTERN (old_jump));
1598 	      else if (GET_CODE (PATTERN (old_jump)) == PARALLEL)
1599 		{
1600 		  set_src = XVECEXP (PATTERN (old_jump), 0,0);
1601 		  if (GET_CODE (set_src) == SET)
1602 		    set_src = SET_SRC (set_src);
1603 		  else
1604 		    set_src = NULL_RTX;
1605 		}
1606 	    }
1607 
1608 	  if (set_src && (GET_CODE (set_src) == IF_THEN_ELSE))
1609 	    {
1610 	      if (GET_CODE (XEXP (set_src, 1)) == PC)
1611 		old_label = XEXP (set_src, 2);
1612 	      else if (GET_CODE (XEXP (set_src, 2)) == PC)
1613 		old_label = XEXP (set_src, 1);
1614 
1615 	      /* Check to see if new bb for jumping to that dest has
1616 		 already been created; if so, use it; if not, create
1617 		 a new one.  */
1618 
1619 	      new_bb = find_jump_block (crossing_edge->dest);
1620 
1621 	      if (new_bb)
1622 		new_label = block_label (new_bb);
1623 	      else
1624 		{
1625 		  /* Create new basic block to be dest for
1626 		     conditional jump.  */
1627 
1628 		  new_bb = create_basic_block (NULL, NULL, last_bb);
1629 		  new_bb->aux = last_bb->aux;
1630 		  last_bb->aux = new_bb;
1631 		  last_bb = new_bb;
1632 		  /* Put appropriate instructions in new bb.  */
1633 
1634 		  new_label = gen_label_rtx ();
1635 		  emit_label_before (new_label, BB_HEAD (new_bb));
1636 		  BB_HEAD (new_bb) = new_label;
1637 
1638 		  if (GET_CODE (old_label) == LABEL_REF)
1639 		    {
1640 		      old_label = JUMP_LABEL (old_jump);
1641 		      new_jump = emit_jump_insn_after (gen_jump
1642 						       (old_label),
1643 						       BB_END (new_bb));
1644 		    }
1645 		  else
1646 		    {
1647 		      gcc_assert (HAVE_return
1648 				  && GET_CODE (old_label) == RETURN);
1649 		      new_jump = emit_jump_insn_after (gen_return (),
1650 						       BB_END (new_bb));
1651 		    }
1652 
1653 		  barrier = emit_barrier_after (new_jump);
1654 		  JUMP_LABEL (new_jump) = old_label;
1655 		  new_bb->il.rtl->footer = unlink_insn_chain (barrier,
1656 							   barrier);
1657 
1658 		  /* Make sure new bb is in same partition as source
1659 		     of conditional branch.  */
1660 		  BB_COPY_PARTITION (new_bb, cur_bb);
1661 		}
1662 
1663 	      /* Make old jump branch to new bb.  */
1664 
1665 	      redirect_jump (old_jump, new_label, 0);
1666 
1667 	      /* Remove crossing_edge as predecessor of 'dest'.  */
1668 
1669 	      dest = crossing_edge->dest;
1670 
1671 	      redirect_edge_succ (crossing_edge, new_bb);
1672 
1673 	      /* Make a new edge from new_bb to old dest; new edge
1674 		 will be a successor for new_bb and a predecessor
1675 		 for 'dest'.  */
1676 
1677 	      if (EDGE_COUNT (new_bb->succs) == 0)
1678 		new_edge = make_edge (new_bb, dest, 0);
1679 	      else
1680 		new_edge = EDGE_SUCC (new_bb, 0);
1681 
1682 	      crossing_edge->flags &= ~EDGE_CROSSING;
1683 	      new_edge->flags |= EDGE_CROSSING;
1684 	    }
1685 	}
1686     }
1687 }
1688 
1689 /* Find any unconditional branches that cross between hot and cold
1690    sections.  Convert them into indirect jumps instead.  */
1691 
1692 static void
1693 fix_crossing_unconditional_branches (void)
1694 {
1695   basic_block cur_bb;
1696   rtx last_insn;
1697   rtx label;
1698   rtx label_addr;
1699   rtx indirect_jump_sequence;
1700   rtx jump_insn = NULL_RTX;
1701   rtx new_reg;
1702   rtx cur_insn;
1703   edge succ;
1704 
1705   FOR_EACH_BB (cur_bb)
1706     {
1707       last_insn = BB_END (cur_bb);
1708 
1709       if (EDGE_COUNT (cur_bb->succs) < 1)
1710 	continue;
1711 
1712       succ = EDGE_SUCC (cur_bb, 0);
1713 
1714       /* Check to see if bb ends in a crossing (unconditional) jump.  At
1715 	 this point, no crossing jumps should be conditional.  */
1716 
1717       if (JUMP_P (last_insn)
1718 	  && (succ->flags & EDGE_CROSSING))
1719 	{
1720 	  rtx label2, table;
1721 
1722 	  gcc_assert (!any_condjump_p (last_insn));
1723 
1724 	  /* Make sure the jump is not already an indirect or table jump.  */
1725 
1726 	  if (!computed_jump_p (last_insn)
1727 	      && !tablejump_p (last_insn, &label2, &table))
1728 	    {
1729 	      /* We have found a "crossing" unconditional branch.  Now
1730 		 we must convert it to an indirect jump.  First create
1731 		 reference of label, as target for jump.  */
1732 
1733 	      label = JUMP_LABEL (last_insn);
1734 	      label_addr = gen_rtx_LABEL_REF (Pmode, label);
1735 	      LABEL_NUSES (label) += 1;
1736 
1737 	      /* Get a register to use for the indirect jump.  */
1738 
1739 	      new_reg = gen_reg_rtx (Pmode);
1740 
1741 	      /* Generate indirect the jump sequence.  */
1742 
1743 	      start_sequence ();
1744 	      emit_move_insn (new_reg, label_addr);
1745 	      emit_indirect_jump (new_reg);
1746 	      indirect_jump_sequence = get_insns ();
1747 	      end_sequence ();
1748 
1749 	      /* Make sure every instruction in the new jump sequence has
1750 		 its basic block set to be cur_bb.  */
1751 
1752 	      for (cur_insn = indirect_jump_sequence; cur_insn;
1753 		   cur_insn = NEXT_INSN (cur_insn))
1754 		{
1755 		  if (!BARRIER_P (cur_insn))
1756 		    BLOCK_FOR_INSN (cur_insn) = cur_bb;
1757 		  if (JUMP_P (cur_insn))
1758 		    jump_insn = cur_insn;
1759 		}
1760 
1761 	      /* Insert the new (indirect) jump sequence immediately before
1762 		 the unconditional jump, then delete the unconditional jump.  */
1763 
1764 	      emit_insn_before (indirect_jump_sequence, last_insn);
1765 	      delete_insn (last_insn);
1766 
1767 	      /* Make BB_END for cur_bb be the jump instruction (NOT the
1768 		 barrier instruction at the end of the sequence...).  */
1769 
1770 	      BB_END (cur_bb) = jump_insn;
1771 	    }
1772 	}
1773     }
1774 }
1775 
1776 /* Add REG_CROSSING_JUMP note to all crossing jump insns.  */
1777 
1778 static void
1779 add_reg_crossing_jump_notes (void)
1780 {
1781   basic_block bb;
1782   edge e;
1783   edge_iterator ei;
1784 
1785   FOR_EACH_BB (bb)
1786     FOR_EACH_EDGE (e, ei, bb->succs)
1787       if ((e->flags & EDGE_CROSSING)
1788 	  && JUMP_P (BB_END (e->src)))
1789 	add_reg_note (BB_END (e->src), REG_CROSSING_JUMP, NULL_RTX);
1790 }
1791 
1792 /* Hot and cold basic blocks are partitioned and put in separate
1793    sections of the .o file, to reduce paging and improve cache
1794    performance (hopefully).  This can result in bits of code from the
1795    same function being widely separated in the .o file.  However this
1796    is not obvious to the current bb structure.  Therefore we must take
1797    care to ensure that: 1). There are no fall_thru edges that cross
1798    between sections; 2). For those architectures which have "short"
1799    conditional branches, all conditional branches that attempt to
1800    cross between sections are converted to unconditional branches;
1801    and, 3). For those architectures which have "short" unconditional
1802    branches, all unconditional branches that attempt to cross between
1803    sections are converted to indirect jumps.
1804 
1805    The code for fixing up fall_thru edges that cross between hot and
1806    cold basic blocks does so by creating new basic blocks containing
1807    unconditional branches to the appropriate label in the "other"
1808    section.  The new basic block is then put in the same (hot or cold)
1809    section as the original conditional branch, and the fall_thru edge
1810    is modified to fall into the new basic block instead.  By adding
1811    this level of indirection we end up with only unconditional branches
1812    crossing between hot and cold sections.
1813 
1814    Conditional branches are dealt with by adding a level of indirection.
1815    A new basic block is added in the same (hot/cold) section as the
1816    conditional branch, and the conditional branch is retargeted to the
1817    new basic block.  The new basic block contains an unconditional branch
1818    to the original target of the conditional branch (in the other section).
1819 
1820    Unconditional branches are dealt with by converting them into
1821    indirect jumps.  */
1822 
1823 static void
1824 fix_edges_for_rarely_executed_code (edge *crossing_edges,
1825 				    int n_crossing_edges)
1826 {
1827   /* Make sure the source of any crossing edge ends in a jump and the
1828      destination of any crossing edge has a label.  */
1829 
1830   add_labels_and_missing_jumps (crossing_edges, n_crossing_edges);
1831 
1832   /* Convert all crossing fall_thru edges to non-crossing fall
1833      thrus to unconditional jumps (that jump to the original fall
1834      thru dest).  */
1835 
1836   fix_up_fall_thru_edges ();
1837 
1838   /* If the architecture does not have conditional branches that can
1839      span all of memory, convert crossing conditional branches into
1840      crossing unconditional branches.  */
1841 
1842   if (!HAS_LONG_COND_BRANCH)
1843     fix_crossing_conditional_branches ();
1844 
1845   /* If the architecture does not have unconditional branches that
1846      can span all of memory, convert crossing unconditional branches
1847      into indirect jumps.  Since adding an indirect jump also adds
1848      a new register usage, update the register usage information as
1849      well.  */
1850 
1851   if (!HAS_LONG_UNCOND_BRANCH)
1852     fix_crossing_unconditional_branches ();
1853 
1854   add_reg_crossing_jump_notes ();
1855 }
1856 
1857 /* Verify, in the basic block chain, that there is at most one switch
1858    between hot/cold partitions. This is modelled on
1859    rtl_verify_flow_info_1, but it cannot go inside that function
1860    because this condition will not be true until after
1861    reorder_basic_blocks is called.  */
1862 
1863 static void
1864 verify_hot_cold_block_grouping (void)
1865 {
1866   basic_block bb;
1867   int err = 0;
1868   bool switched_sections = false;
1869   int current_partition = 0;
1870 
1871   FOR_EACH_BB (bb)
1872     {
1873       if (!current_partition)
1874 	current_partition = BB_PARTITION (bb);
1875       if (BB_PARTITION (bb) != current_partition)
1876 	{
1877 	  if (switched_sections)
1878 	    {
1879 	      error ("multiple hot/cold transitions found (bb %i)",
1880 		     bb->index);
1881 	      err = 1;
1882 	    }
1883 	  else
1884 	    {
1885 	      switched_sections = true;
1886 	      current_partition = BB_PARTITION (bb);
1887 	    }
1888 	}
1889     }
1890 
1891   gcc_assert(!err);
1892 }
1893 
1894 /* Reorder basic blocks.  The main entry point to this file.  FLAGS is
1895    the set of flags to pass to cfg_layout_initialize().  */
1896 
1897 void
1898 reorder_basic_blocks (void)
1899 {
1900   int n_traces;
1901   int i;
1902   struct trace *traces;
1903 
1904   gcc_assert (current_ir_type () == IR_RTL_CFGLAYOUT);
1905 
1906   if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1)
1907     return;
1908 
1909   set_edge_can_fallthru_flag ();
1910   mark_dfs_back_edges ();
1911 
1912   /* We are estimating the length of uncond jump insn only once since the code
1913      for getting the insn length always returns the minimal length now.  */
1914   if (uncond_jump_length == 0)
1915     uncond_jump_length = get_uncond_jump_length ();
1916 
1917   /* We need to know some information for each basic block.  */
1918   array_size = GET_ARRAY_SIZE (last_basic_block);
1919   bbd = XNEWVEC (bbro_basic_block_data, array_size);
1920   for (i = 0; i < array_size; i++)
1921     {
1922       bbd[i].start_of_trace = -1;
1923       bbd[i].in_trace = -1;
1924       bbd[i].end_of_trace = -1;
1925       bbd[i].heap = NULL;
1926       bbd[i].node = NULL;
1927     }
1928 
1929   traces = XNEWVEC (struct trace, n_basic_blocks);
1930   n_traces = 0;
1931   find_traces (&n_traces, traces);
1932   connect_traces (n_traces, traces);
1933   FREE (traces);
1934   FREE (bbd);
1935 
1936   relink_block_chain (/*stay_in_cfglayout_mode=*/true);
1937 
1938   if (dump_file)
1939     dump_flow_info (dump_file, dump_flags);
1940 
1941   if (flag_reorder_blocks_and_partition)
1942     verify_hot_cold_block_grouping ();
1943 }
1944 
1945 /* Determine which partition the first basic block in the function
1946    belongs to, then find the first basic block in the current function
1947    that belongs to a different section, and insert a
1948    NOTE_INSN_SWITCH_TEXT_SECTIONS note immediately before it in the
1949    instruction stream.  When writing out the assembly code,
1950    encountering this note will make the compiler switch between the
1951    hot and cold text sections.  */
1952 
1953 static void
1954 insert_section_boundary_note (void)
1955 {
1956   basic_block bb;
1957   rtx new_note;
1958   int first_partition = 0;
1959 
1960   if (flag_reorder_blocks_and_partition)
1961     FOR_EACH_BB (bb)
1962     {
1963       if (!first_partition)
1964 	first_partition = BB_PARTITION (bb);
1965       if (BB_PARTITION (bb) != first_partition)
1966 	{
1967 	  new_note = emit_note_before (NOTE_INSN_SWITCH_TEXT_SECTIONS,
1968 				       BB_HEAD (bb));
1969 	  /* ??? This kind of note always lives between basic blocks,
1970 	     but add_insn_before will set BLOCK_FOR_INSN anyway.  */
1971 	  BLOCK_FOR_INSN (new_note) = NULL;
1972 	  break;
1973 	}
1974     }
1975 }
1976 
1977 /* Duplicate the blocks containing computed gotos.  This basically unfactors
1978    computed gotos that were factored early on in the compilation process to
1979    speed up edge based data flow.  We used to not unfactoring them again,
1980    which can seriously pessimize code with many computed jumps in the source
1981    code, such as interpreters.  See e.g. PR15242.  */
1982 
1983 static bool
1984 gate_duplicate_computed_gotos (void)
1985 {
1986   if (targetm.cannot_modify_jumps_p ())
1987     return false;
1988   return (optimize > 0
1989 	  && flag_expensive_optimizations
1990 	  && ! optimize_function_for_size_p (cfun));
1991 }
1992 
1993 
1994 static unsigned int
1995 duplicate_computed_gotos (void)
1996 {
1997   basic_block bb, new_bb;
1998   bitmap candidates;
1999   int max_size;
2000 
2001   if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1)
2002     return 0;
2003 
2004   cfg_layout_initialize (0);
2005 
2006   /* We are estimating the length of uncond jump insn only once
2007      since the code for getting the insn length always returns
2008      the minimal length now.  */
2009   if (uncond_jump_length == 0)
2010     uncond_jump_length = get_uncond_jump_length ();
2011 
2012   max_size = uncond_jump_length * PARAM_VALUE (PARAM_MAX_GOTO_DUPLICATION_INSNS);
2013   candidates = BITMAP_ALLOC (NULL);
2014 
2015   /* Look for blocks that end in a computed jump, and see if such blocks
2016      are suitable for unfactoring.  If a block is a candidate for unfactoring,
2017      mark it in the candidates.  */
2018   FOR_EACH_BB (bb)
2019     {
2020       rtx insn;
2021       edge e;
2022       edge_iterator ei;
2023       int size, all_flags;
2024 
2025       /* Build the reorder chain for the original order of blocks.  */
2026       if (bb->next_bb != EXIT_BLOCK_PTR)
2027 	bb->aux = bb->next_bb;
2028 
2029       /* Obviously the block has to end in a computed jump.  */
2030       if (!computed_jump_p (BB_END (bb)))
2031 	continue;
2032 
2033       /* Only consider blocks that can be duplicated.  */
2034       if (find_reg_note (BB_END (bb), REG_CROSSING_JUMP, NULL_RTX)
2035 	  || !can_duplicate_block_p (bb))
2036 	continue;
2037 
2038       /* Make sure that the block is small enough.  */
2039       size = 0;
2040       FOR_BB_INSNS (bb, insn)
2041 	if (INSN_P (insn))
2042 	  {
2043 	    size += get_attr_min_length (insn);
2044 	    if (size > max_size)
2045 	       break;
2046 	  }
2047       if (size > max_size)
2048 	continue;
2049 
2050       /* Final check: there must not be any incoming abnormal edges.  */
2051       all_flags = 0;
2052       FOR_EACH_EDGE (e, ei, bb->preds)
2053 	all_flags |= e->flags;
2054       if (all_flags & EDGE_COMPLEX)
2055 	continue;
2056 
2057       bitmap_set_bit (candidates, bb->index);
2058     }
2059 
2060   /* Nothing to do if there is no computed jump here.  */
2061   if (bitmap_empty_p (candidates))
2062     goto done;
2063 
2064   /* Duplicate computed gotos.  */
2065   FOR_EACH_BB (bb)
2066     {
2067       if (bb->il.rtl->visited)
2068 	continue;
2069 
2070       bb->il.rtl->visited = 1;
2071 
2072       /* BB must have one outgoing edge.  That edge must not lead to
2073 	 the exit block or the next block.
2074 	 The destination must have more than one predecessor.  */
2075       if (!single_succ_p (bb)
2076 	  || single_succ (bb) == EXIT_BLOCK_PTR
2077 	  || single_succ (bb) == bb->next_bb
2078 	  || single_pred_p (single_succ (bb)))
2079 	continue;
2080 
2081       /* The successor block has to be a duplication candidate.  */
2082       if (!bitmap_bit_p (candidates, single_succ (bb)->index))
2083 	continue;
2084 
2085       new_bb = duplicate_block (single_succ (bb), single_succ_edge (bb), bb);
2086       new_bb->aux = bb->aux;
2087       bb->aux = new_bb;
2088       new_bb->il.rtl->visited = 1;
2089     }
2090 
2091 done:
2092   cfg_layout_finalize ();
2093 
2094   BITMAP_FREE (candidates);
2095   return 0;
2096 }
2097 
2098 struct rtl_opt_pass pass_duplicate_computed_gotos =
2099 {
2100  {
2101   RTL_PASS,
2102   "compgotos",                          /* name */
2103   gate_duplicate_computed_gotos,        /* gate */
2104   duplicate_computed_gotos,             /* execute */
2105   NULL,                                 /* sub */
2106   NULL,                                 /* next */
2107   0,                                    /* static_pass_number */
2108   TV_REORDER_BLOCKS,                    /* tv_id */
2109   0,                                    /* properties_required */
2110   0,                                    /* properties_provided */
2111   0,                                    /* properties_destroyed */
2112   0,                                    /* todo_flags_start */
2113   TODO_dump_func | TODO_verify_rtl_sharing,/* todo_flags_finish */
2114  }
2115 };
2116 
2117 
2118 /* This function is the main 'entrance' for the optimization that
2119    partitions hot and cold basic blocks into separate sections of the
2120    .o file (to improve performance and cache locality).  Ideally it
2121    would be called after all optimizations that rearrange the CFG have
2122    been called.  However part of this optimization may introduce new
2123    register usage, so it must be called before register allocation has
2124    occurred.  This means that this optimization is actually called
2125    well before the optimization that reorders basic blocks (see
2126    function above).
2127 
2128    This optimization checks the feedback information to determine
2129    which basic blocks are hot/cold, updates flags on the basic blocks
2130    to indicate which section they belong in.  This information is
2131    later used for writing out sections in the .o file.  Because hot
2132    and cold sections can be arbitrarily large (within the bounds of
2133    memory), far beyond the size of a single function, it is necessary
2134    to fix up all edges that cross section boundaries, to make sure the
2135    instructions used can actually span the required distance.  The
2136    fixes are described below.
2137 
2138    Fall-through edges must be changed into jumps; it is not safe or
2139    legal to fall through across a section boundary.  Whenever a
2140    fall-through edge crossing a section boundary is encountered, a new
2141    basic block is inserted (in the same section as the fall-through
2142    source), and the fall through edge is redirected to the new basic
2143    block.  The new basic block contains an unconditional jump to the
2144    original fall-through target.  (If the unconditional jump is
2145    insufficient to cross section boundaries, that is dealt with a
2146    little later, see below).
2147 
2148    In order to deal with architectures that have short conditional
2149    branches (which cannot span all of memory) we take any conditional
2150    jump that attempts to cross a section boundary and add a level of
2151    indirection: it becomes a conditional jump to a new basic block, in
2152    the same section.  The new basic block contains an unconditional
2153    jump to the original target, in the other section.
2154 
2155    For those architectures whose unconditional branch is also
2156    incapable of reaching all of memory, those unconditional jumps are
2157    converted into indirect jumps, through a register.
2158 
2159    IMPORTANT NOTE: This optimization causes some messy interactions
2160    with the cfg cleanup optimizations; those optimizations want to
2161    merge blocks wherever possible, and to collapse indirect jump
2162    sequences (change "A jumps to B jumps to C" directly into "A jumps
2163    to C").  Those optimizations can undo the jump fixes that
2164    partitioning is required to make (see above), in order to ensure
2165    that jumps attempting to cross section boundaries are really able
2166    to cover whatever distance the jump requires (on many architectures
2167    conditional or unconditional jumps are not able to reach all of
2168    memory).  Therefore tests have to be inserted into each such
2169    optimization to make sure that it does not undo stuff necessary to
2170    cross partition boundaries.  This would be much less of a problem
2171    if we could perform this optimization later in the compilation, but
2172    unfortunately the fact that we may need to create indirect jumps
2173    (through registers) requires that this optimization be performed
2174    before register allocation.  */
2175 
2176 static void
2177 partition_hot_cold_basic_blocks (void)
2178 {
2179   edge *crossing_edges;
2180   int n_crossing_edges;
2181   int max_edges = 2 * last_basic_block;
2182 
2183   if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1)
2184     return;
2185 
2186   crossing_edges = XCNEWVEC (edge, max_edges);
2187 
2188   find_rarely_executed_basic_blocks_and_crossing_edges (&crossing_edges,
2189 							&n_crossing_edges,
2190 							&max_edges);
2191 
2192   if (n_crossing_edges > 0)
2193     fix_edges_for_rarely_executed_code (crossing_edges, n_crossing_edges);
2194 
2195   free (crossing_edges);
2196 }
2197 
2198 static bool
2199 gate_handle_reorder_blocks (void)
2200 {
2201   if (targetm.cannot_modify_jumps_p ())
2202     return false;
2203   return (optimize > 0);
2204 }
2205 
2206 
2207 /* Reorder basic blocks.  */
2208 static unsigned int
2209 rest_of_handle_reorder_blocks (void)
2210 {
2211   basic_block bb;
2212 
2213   /* Last attempt to optimize CFG, as scheduling, peepholing and insn
2214      splitting possibly introduced more crossjumping opportunities.  */
2215   cfg_layout_initialize (CLEANUP_EXPENSIVE);
2216 
2217   if ((flag_reorder_blocks || flag_reorder_blocks_and_partition)
2218       /* Don't reorder blocks when optimizing for size because extra jump insns may
2219 	 be created; also barrier may create extra padding.
2220 
2221 	 More correctly we should have a block reordering mode that tried to
2222 	 minimize the combined size of all the jumps.  This would more or less
2223 	 automatically remove extra jumps, but would also try to use more short
2224 	 jumps instead of long jumps.  */
2225       && optimize_function_for_speed_p (cfun))
2226     {
2227       reorder_basic_blocks ();
2228       cleanup_cfg (CLEANUP_EXPENSIVE);
2229     }
2230 
2231   FOR_EACH_BB (bb)
2232     if (bb->next_bb != EXIT_BLOCK_PTR)
2233       bb->aux = bb->next_bb;
2234   cfg_layout_finalize ();
2235 
2236   /* Add NOTE_INSN_SWITCH_TEXT_SECTIONS notes.  */
2237   insert_section_boundary_note ();
2238   return 0;
2239 }
2240 
2241 struct rtl_opt_pass pass_reorder_blocks =
2242 {
2243  {
2244   RTL_PASS,
2245   "bbro",                               /* name */
2246   gate_handle_reorder_blocks,           /* gate */
2247   rest_of_handle_reorder_blocks,        /* execute */
2248   NULL,                                 /* sub */
2249   NULL,                                 /* next */
2250   0,                                    /* static_pass_number */
2251   TV_REORDER_BLOCKS,                    /* tv_id */
2252   0,                                    /* properties_required */
2253   0,                                    /* properties_provided */
2254   0,                                    /* properties_destroyed */
2255   0,                                    /* todo_flags_start */
2256   TODO_dump_func | TODO_verify_rtl_sharing,/* todo_flags_finish */
2257  }
2258 };
2259 
2260 static bool
2261 gate_handle_partition_blocks (void)
2262 {
2263   /* The optimization to partition hot/cold basic blocks into separate
2264      sections of the .o file does not work well with linkonce or with
2265      user defined section attributes.  Don't call it if either case
2266      arises.  */
2267 
2268   return (flag_reorder_blocks_and_partition
2269 	  && !DECL_ONE_ONLY (current_function_decl)
2270 	  && !user_defined_section_attribute);
2271 }
2272 
2273 /* Partition hot and cold basic blocks.  */
2274 static unsigned int
2275 rest_of_handle_partition_blocks (void)
2276 {
2277   partition_hot_cold_basic_blocks ();
2278   return 0;
2279 }
2280 
2281 struct rtl_opt_pass pass_partition_blocks =
2282 {
2283  {
2284   RTL_PASS,
2285   "bbpart",                             /* name */
2286   gate_handle_partition_blocks,         /* gate */
2287   rest_of_handle_partition_blocks,      /* execute */
2288   NULL,                                 /* sub */
2289   NULL,                                 /* next */
2290   0,                                    /* static_pass_number */
2291   TV_REORDER_BLOCKS,                    /* tv_id */
2292   PROP_cfglayout,                       /* properties_required */
2293   0,                                    /* properties_provided */
2294   0,                                    /* properties_destroyed */
2295   0,                                    /* todo_flags_start */
2296   TODO_dump_func | TODO_verify_rtl_sharing/* todo_flags_finish */
2297  }
2298 };
2299