xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/alias.c (revision e6c7e151de239c49d2e38720a061ed9d1fa99309)
1 /* Alias analysis for GNU C
2    Copyright (C) 1997-2017 Free Software Foundation, Inc.
3    Contributed by John Carr (jfc@mit.edu).
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "gimple-ssa.h"
33 #include "emit-rtl.h"
34 #include "alias.h"
35 #include "fold-const.h"
36 #include "varasm.h"
37 #include "cselib.h"
38 #include "langhooks.h"
39 #include "cfganal.h"
40 #include "rtl-iter.h"
41 #include "cgraph.h"
42 
43 /* The aliasing API provided here solves related but different problems:
44 
45    Say there exists (in c)
46 
47    struct X {
48      struct Y y1;
49      struct Z z2;
50    } x1, *px1,  *px2;
51 
52    struct Y y2, *py;
53    struct Z z2, *pz;
54 
55 
56    py = &x1.y1;
57    px2 = &x1;
58 
59    Consider the four questions:
60 
61    Can a store to x1 interfere with px2->y1?
62    Can a store to x1 interfere with px2->z2?
63    Can a store to x1 change the value pointed to by with py?
64    Can a store to x1 change the value pointed to by with pz?
65 
66    The answer to these questions can be yes, yes, yes, and maybe.
67 
68    The first two questions can be answered with a simple examination
69    of the type system.  If structure X contains a field of type Y then
70    a store through a pointer to an X can overwrite any field that is
71    contained (recursively) in an X (unless we know that px1 != px2).
72 
73    The last two questions can be solved in the same way as the first
74    two questions but this is too conservative.  The observation is
75    that in some cases we can know which (if any) fields are addressed
76    and if those addresses are used in bad ways.  This analysis may be
77    language specific.  In C, arbitrary operations may be applied to
78    pointers.  However, there is some indication that this may be too
79    conservative for some C++ types.
80 
81    The pass ipa-type-escape does this analysis for the types whose
82    instances do not escape across the compilation boundary.
83 
84    Historically in GCC, these two problems were combined and a single
85    data structure that was used to represent the solution to these
86    problems.  We now have two similar but different data structures,
87    The data structure to solve the last two questions is similar to
88    the first, but does not contain the fields whose address are never
89    taken.  For types that do escape the compilation unit, the data
90    structures will have identical information.
91 */
92 
93 /* The alias sets assigned to MEMs assist the back-end in determining
94    which MEMs can alias which other MEMs.  In general, two MEMs in
95    different alias sets cannot alias each other, with one important
96    exception.  Consider something like:
97 
98      struct S { int i; double d; };
99 
100    a store to an `S' can alias something of either type `int' or type
101    `double'.  (However, a store to an `int' cannot alias a `double'
102    and vice versa.)  We indicate this via a tree structure that looks
103    like:
104 	   struct S
105 	    /   \
106 	   /     \
107 	 |/_     _\|
108 	 int    double
109 
110    (The arrows are directed and point downwards.)
111     In this situation we say the alias set for `struct S' is the
112    `superset' and that those for `int' and `double' are `subsets'.
113 
114    To see whether two alias sets can point to the same memory, we must
115    see if either alias set is a subset of the other. We need not trace
116    past immediate descendants, however, since we propagate all
117    grandchildren up one level.
118 
119    Alias set zero is implicitly a superset of all other alias sets.
120    However, this is no actual entry for alias set zero.  It is an
121    error to attempt to explicitly construct a subset of zero.  */
122 
123 struct alias_set_hash : int_hash <int, INT_MIN, INT_MIN + 1> {};
124 
125 struct GTY(()) alias_set_entry {
126   /* The alias set number, as stored in MEM_ALIAS_SET.  */
127   alias_set_type alias_set;
128 
129   /* Nonzero if would have a child of zero: this effectively makes this
130      alias set the same as alias set zero.  */
131   bool has_zero_child;
132   /* Nonzero if alias set corresponds to pointer type itself (i.e. not to
133      aggregate contaiing pointer.
134      This is used for a special case where we need an universal pointer type
135      compatible with all other pointer types.  */
136   bool is_pointer;
137   /* Nonzero if is_pointer or if one of childs have has_pointer set.  */
138   bool has_pointer;
139 
140   /* The children of the alias set.  These are not just the immediate
141      children, but, in fact, all descendants.  So, if we have:
142 
143        struct T { struct S s; float f; }
144 
145      continuing our example above, the children here will be all of
146      `int', `double', `float', and `struct S'.  */
147   hash_map<alias_set_hash, int> *children;
148 };
149 
150 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
151 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
152 static void record_set (rtx, const_rtx, void *);
153 static int base_alias_check (rtx, rtx, rtx, rtx, machine_mode,
154 			     machine_mode);
155 static rtx find_base_value (rtx);
156 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
157 static alias_set_entry *get_alias_set_entry (alias_set_type);
158 static tree decl_for_component_ref (tree);
159 static int write_dependence_p (const_rtx,
160 			       const_rtx, machine_mode, rtx,
161 			       bool, bool, bool);
162 static int compare_base_symbol_refs (const_rtx, const_rtx);
163 
164 static void memory_modified_1 (rtx, const_rtx, void *);
165 
166 /* Query statistics for the different low-level disambiguators.
167    A high-level query may trigger multiple of them.  */
168 
169 static struct {
170   unsigned long long num_alias_zero;
171   unsigned long long num_same_alias_set;
172   unsigned long long num_same_objects;
173   unsigned long long num_volatile;
174   unsigned long long num_dag;
175   unsigned long long num_universal;
176   unsigned long long num_disambiguated;
177 } alias_stats;
178 
179 
180 /* Set up all info needed to perform alias analysis on memory references.  */
181 
182 /* Returns the size in bytes of the mode of X.  */
183 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
184 
185 /* Cap the number of passes we make over the insns propagating alias
186    information through set chains.
187    ??? 10 is a completely arbitrary choice.  This should be based on the
188    maximum loop depth in the CFG, but we do not have this information
189    available (even if current_loops _is_ available).  */
190 #define MAX_ALIAS_LOOP_PASSES 10
191 
192 /* reg_base_value[N] gives an address to which register N is related.
193    If all sets after the first add or subtract to the current value
194    or otherwise modify it so it does not point to a different top level
195    object, reg_base_value[N] is equal to the address part of the source
196    of the first set.
197 
198    A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF.  ADDRESS
199    expressions represent three types of base:
200 
201      1. incoming arguments.  There is just one ADDRESS to represent all
202 	arguments, since we do not know at this level whether accesses
203 	based on different arguments can alias.  The ADDRESS has id 0.
204 
205      2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
206 	(if distinct from frame_pointer_rtx) and arg_pointer_rtx.
207 	Each of these rtxes has a separate ADDRESS associated with it,
208 	each with a negative id.
209 
210 	GCC is (and is required to be) precise in which register it
211 	chooses to access a particular region of stack.  We can therefore
212 	assume that accesses based on one of these rtxes do not alias
213 	accesses based on another of these rtxes.
214 
215      3. bases that are derived from malloc()ed memory (REG_NOALIAS).
216 	Each such piece of memory has a separate ADDRESS associated
217 	with it, each with an id greater than 0.
218 
219    Accesses based on one ADDRESS do not alias accesses based on other
220    ADDRESSes.  Accesses based on ADDRESSes in groups (2) and (3) do not
221    alias globals either; the ADDRESSes have Pmode to indicate this.
222    The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
223    indicate this.  */
224 
225 static GTY(()) vec<rtx, va_gc> *reg_base_value;
226 static rtx *new_reg_base_value;
227 
228 /* The single VOIDmode ADDRESS that represents all argument bases.
229    It has id 0.  */
230 static GTY(()) rtx arg_base_value;
231 
232 /* Used to allocate unique ids to each REG_NOALIAS ADDRESS.  */
233 static int unique_id;
234 
235 /* We preserve the copy of old array around to avoid amount of garbage
236    produced.  About 8% of garbage produced were attributed to this
237    array.  */
238 static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
239 
240 /* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
241    registers.  */
242 #define UNIQUE_BASE_VALUE_SP	-1
243 #define UNIQUE_BASE_VALUE_ARGP	-2
244 #define UNIQUE_BASE_VALUE_FP	-3
245 #define UNIQUE_BASE_VALUE_HFP	-4
246 
247 #define static_reg_base_value \
248   (this_target_rtl->x_static_reg_base_value)
249 
250 #define REG_BASE_VALUE(X)					\
251   (REGNO (X) < vec_safe_length (reg_base_value)			\
252    ? (*reg_base_value)[REGNO (X)] : 0)
253 
254 /* Vector indexed by N giving the initial (unchanging) value known for
255    pseudo-register N.  This vector is initialized in init_alias_analysis,
256    and does not change until end_alias_analysis is called.  */
257 static GTY(()) vec<rtx, va_gc> *reg_known_value;
258 
259 /* Vector recording for each reg_known_value whether it is due to a
260    REG_EQUIV note.  Future passes (viz., reload) may replace the
261    pseudo with the equivalent expression and so we account for the
262    dependences that would be introduced if that happens.
263 
264    The REG_EQUIV notes created in assign_parms may mention the arg
265    pointer, and there are explicit insns in the RTL that modify the
266    arg pointer.  Thus we must ensure that such insns don't get
267    scheduled across each other because that would invalidate the
268    REG_EQUIV notes.  One could argue that the REG_EQUIV notes are
269    wrong, but solving the problem in the scheduler will likely give
270    better code, so we do it here.  */
271 static sbitmap reg_known_equiv_p;
272 
273 /* True when scanning insns from the start of the rtl to the
274    NOTE_INSN_FUNCTION_BEG note.  */
275 static bool copying_arguments;
276 
277 
278 /* The splay-tree used to store the various alias set entries.  */
279 static GTY (()) vec<alias_set_entry *, va_gc> *alias_sets;
280 
281 /* Build a decomposed reference object for querying the alias-oracle
282    from the MEM rtx and store it in *REF.
283    Returns false if MEM is not suitable for the alias-oracle.  */
284 
285 static bool
286 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
287 {
288   tree expr = MEM_EXPR (mem);
289   tree base;
290 
291   if (!expr)
292     return false;
293 
294   ao_ref_init (ref, expr);
295 
296   /* Get the base of the reference and see if we have to reject or
297      adjust it.  */
298   base = ao_ref_base (ref);
299   if (base == NULL_TREE)
300     return false;
301 
302   /* The tree oracle doesn't like bases that are neither decls
303      nor indirect references of SSA names.  */
304   if (!(DECL_P (base)
305 	|| (TREE_CODE (base) == MEM_REF
306 	    && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
307 	|| (TREE_CODE (base) == TARGET_MEM_REF
308 	    && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
309     return false;
310 
311   /* If this is a reference based on a partitioned decl replace the
312      base with a MEM_REF of the pointer representative we
313      created during stack slot partitioning.  */
314   if (VAR_P (base)
315       && ! is_global_var (base)
316       && cfun->gimple_df->decls_to_pointers != NULL)
317     {
318       tree *namep = cfun->gimple_df->decls_to_pointers->get (base);
319       if (namep)
320 	ref->base = build_simple_mem_ref (*namep);
321     }
322 
323   ref->ref_alias_set = MEM_ALIAS_SET (mem);
324 
325   /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
326      is conservative, so trust it.  */
327   if (!MEM_OFFSET_KNOWN_P (mem)
328       || !MEM_SIZE_KNOWN_P (mem))
329     return true;
330 
331   /* If MEM_OFFSET/MEM_SIZE get us outside of ref->offset/ref->max_size
332      drop ref->ref.  */
333   if (MEM_OFFSET (mem) < 0
334       || (ref->max_size != -1
335 	  && ((MEM_OFFSET (mem) + MEM_SIZE (mem)) * BITS_PER_UNIT
336 	      > ref->max_size)))
337     ref->ref = NULL_TREE;
338 
339   /* Refine size and offset we got from analyzing MEM_EXPR by using
340      MEM_SIZE and MEM_OFFSET.  */
341 
342   ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
343   ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
344 
345   /* The MEM may extend into adjacent fields, so adjust max_size if
346      necessary.  */
347   if (ref->max_size != -1
348       && ref->size > ref->max_size)
349     ref->max_size = ref->size;
350 
351   /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
352      the MEM_EXPR punt.  This happens for STRICT_ALIGNMENT targets a lot.  */
353   if (MEM_EXPR (mem) != get_spill_slot_decl (false)
354       && (ref->offset < 0
355 	  || (DECL_P (ref->base)
356 	      && (DECL_SIZE (ref->base) == NULL_TREE
357 		  || TREE_CODE (DECL_SIZE (ref->base)) != INTEGER_CST
358 		  || wi::ltu_p (wi::to_offset (DECL_SIZE (ref->base)),
359 				ref->offset + ref->size)))))
360     return false;
361 
362   return true;
363 }
364 
365 /* Query the alias-oracle on whether the two memory rtx X and MEM may
366    alias.  If TBAA_P is set also apply TBAA.  Returns true if the
367    two rtxen may alias, false otherwise.  */
368 
369 static bool
370 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
371 {
372   ao_ref ref1, ref2;
373 
374   if (!ao_ref_from_mem (&ref1, x)
375       || !ao_ref_from_mem (&ref2, mem))
376     return true;
377 
378   return refs_may_alias_p_1 (&ref1, &ref2,
379 			     tbaa_p
380 			     && MEM_ALIAS_SET (x) != 0
381 			     && MEM_ALIAS_SET (mem) != 0);
382 }
383 
384 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
385    such an entry, or NULL otherwise.  */
386 
387 static inline alias_set_entry *
388 get_alias_set_entry (alias_set_type alias_set)
389 {
390   return (*alias_sets)[alias_set];
391 }
392 
393 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
394    the two MEMs cannot alias each other.  */
395 
396 static inline int
397 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
398 {
399   return (flag_strict_aliasing
400 	  && ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1),
401 				      MEM_ALIAS_SET (mem2)));
402 }
403 
404 /* Return true if the first alias set is a subset of the second.  */
405 
406 bool
407 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
408 {
409   alias_set_entry *ase2;
410 
411   /* Disable TBAA oracle with !flag_strict_aliasing.  */
412   if (!flag_strict_aliasing)
413     return true;
414 
415   /* Everything is a subset of the "aliases everything" set.  */
416   if (set2 == 0)
417     return true;
418 
419   /* Check if set1 is a subset of set2.  */
420   ase2 = get_alias_set_entry (set2);
421   if (ase2 != 0
422       && (ase2->has_zero_child
423 	  || (ase2->children && ase2->children->get (set1))))
424     return true;
425 
426   /* As a special case we consider alias set of "void *" to be both subset
427      and superset of every alias set of a pointer.  This extra symmetry does
428      not matter for alias_sets_conflict_p but it makes aliasing_component_refs_p
429      to return true on the following testcase:
430 
431      void *ptr;
432      char **ptr2=(char **)&ptr;
433      *ptr2 = ...
434 
435      Additionally if a set contains universal pointer, we consider every pointer
436      to be a subset of it, but we do not represent this explicitely - doing so
437      would require us to update transitive closure each time we introduce new
438      pointer type.  This makes aliasing_component_refs_p to return true
439      on the following testcase:
440 
441      struct a {void *ptr;}
442      char **ptr = (char **)&a.ptr;
443      ptr = ...
444 
445      This makes void * truly universal pointer type.  See pointer handling in
446      get_alias_set for more details.  */
447   if (ase2 && ase2->has_pointer)
448     {
449       alias_set_entry *ase1 = get_alias_set_entry (set1);
450 
451       if (ase1 && ase1->is_pointer)
452 	{
453           alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
454 	  /* If one is ptr_type_node and other is pointer, then we consider
455  	     them subset of each other.  */
456 	  if (set1 == voidptr_set || set2 == voidptr_set)
457 	    return true;
458 	  /* If SET2 contains universal pointer's alias set, then we consdier
459  	     every (non-universal) pointer.  */
460 	  if (ase2->children && set1 != voidptr_set
461 	      && ase2->children->get (voidptr_set))
462 	    return true;
463 	}
464     }
465   return false;
466 }
467 
468 /* Return 1 if the two specified alias sets may conflict.  */
469 
470 int
471 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
472 {
473   alias_set_entry *ase1;
474   alias_set_entry *ase2;
475 
476   /* The easy case.  */
477   if (alias_sets_must_conflict_p (set1, set2))
478     return 1;
479 
480   /* See if the first alias set is a subset of the second.  */
481   ase1 = get_alias_set_entry (set1);
482   if (ase1 != 0
483       && ase1->children && ase1->children->get (set2))
484     {
485       ++alias_stats.num_dag;
486       return 1;
487     }
488 
489   /* Now do the same, but with the alias sets reversed.  */
490   ase2 = get_alias_set_entry (set2);
491   if (ase2 != 0
492       && ase2->children && ase2->children->get (set1))
493     {
494       ++alias_stats.num_dag;
495       return 1;
496     }
497 
498   /* We want void * to be compatible with any other pointer without
499      really dropping it to alias set 0. Doing so would make it
500      compatible with all non-pointer types too.
501 
502      This is not strictly necessary by the C/C++ language
503      standards, but avoids common type punning mistakes.  In
504      addition to that, we need the existence of such universal
505      pointer to implement Fortran's C_PTR type (which is defined as
506      type compatible with all C pointers).  */
507   if (ase1 && ase2 && ase1->has_pointer && ase2->has_pointer)
508     {
509       alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
510 
511       /* If one of the sets corresponds to universal pointer,
512  	 we consider it to conflict with anything that is
513 	 or contains pointer.  */
514       if (set1 == voidptr_set || set2 == voidptr_set)
515 	{
516 	  ++alias_stats.num_universal;
517 	  return true;
518 	}
519      /* If one of sets is (non-universal) pointer and the other
520  	contains universal pointer, we also get conflict.  */
521      if (ase1->is_pointer && set2 != voidptr_set
522 	 && ase2->children && ase2->children->get (voidptr_set))
523 	{
524 	  ++alias_stats.num_universal;
525 	  return true;
526 	}
527      if (ase2->is_pointer && set1 != voidptr_set
528 	 && ase1->children && ase1->children->get (voidptr_set))
529 	{
530 	  ++alias_stats.num_universal;
531 	  return true;
532 	}
533     }
534 
535   ++alias_stats.num_disambiguated;
536 
537   /* The two alias sets are distinct and neither one is the
538      child of the other.  Therefore, they cannot conflict.  */
539   return 0;
540 }
541 
542 /* Return 1 if the two specified alias sets will always conflict.  */
543 
544 int
545 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
546 {
547   /* Disable TBAA oracle with !flag_strict_aliasing.  */
548   if (!flag_strict_aliasing)
549     return 1;
550   if (set1 == 0 || set2 == 0)
551     {
552       ++alias_stats.num_alias_zero;
553       return 1;
554     }
555   if (set1 == set2)
556     {
557       ++alias_stats.num_same_alias_set;
558       return 1;
559     }
560 
561   return 0;
562 }
563 
564 /* Return 1 if any MEM object of type T1 will always conflict (using the
565    dependency routines in this file) with any MEM object of type T2.
566    This is used when allocating temporary storage.  If T1 and/or T2 are
567    NULL_TREE, it means we know nothing about the storage.  */
568 
569 int
570 objects_must_conflict_p (tree t1, tree t2)
571 {
572   alias_set_type set1, set2;
573 
574   /* If neither has a type specified, we don't know if they'll conflict
575      because we may be using them to store objects of various types, for
576      example the argument and local variables areas of inlined functions.  */
577   if (t1 == 0 && t2 == 0)
578     return 0;
579 
580   /* If they are the same type, they must conflict.  */
581   if (t1 == t2)
582     {
583       ++alias_stats.num_same_objects;
584       return 1;
585     }
586   /* Likewise if both are volatile.  */
587   if (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2))
588     {
589       ++alias_stats.num_volatile;
590       return 1;
591     }
592 
593   set1 = t1 ? get_alias_set (t1) : 0;
594   set2 = t2 ? get_alias_set (t2) : 0;
595 
596   /* We can't use alias_sets_conflict_p because we must make sure
597      that every subtype of t1 will conflict with every subtype of
598      t2 for which a pair of subobjects of these respective subtypes
599      overlaps on the stack.  */
600   return alias_sets_must_conflict_p (set1, set2);
601 }
602 
603 /* Return the outermost parent of component present in the chain of
604    component references handled by get_inner_reference in T with the
605    following property:
606      - the component is non-addressable, or
607      - the parent has alias set zero,
608    or NULL_TREE if no such parent exists.  In the former cases, the alias
609    set of this parent is the alias set that must be used for T itself.  */
610 
611 tree
612 component_uses_parent_alias_set_from (const_tree t)
613 {
614   const_tree found = NULL_TREE;
615 
616   if (AGGREGATE_TYPE_P (TREE_TYPE (t))
617       && TYPE_TYPELESS_STORAGE (TREE_TYPE (t)))
618     return const_cast <tree> (t);
619 
620   while (handled_component_p (t))
621     {
622       switch (TREE_CODE (t))
623 	{
624 	case COMPONENT_REF:
625 	  if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
626 	    found = t;
627 	  /* Permit type-punning when accessing a union, provided the access
628 	     is directly through the union.  For example, this code does not
629 	     permit taking the address of a union member and then storing
630 	     through it.  Even the type-punning allowed here is a GCC
631 	     extension, albeit a common and useful one; the C standard says
632 	     that such accesses have implementation-defined behavior.  */
633 	  else if (TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == UNION_TYPE)
634 	    found = t;
635 	  break;
636 
637 	case ARRAY_REF:
638 	case ARRAY_RANGE_REF:
639 	  if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
640 	    found = t;
641 	  break;
642 
643 	case REALPART_EXPR:
644 	case IMAGPART_EXPR:
645 	  break;
646 
647 	case BIT_FIELD_REF:
648 	case VIEW_CONVERT_EXPR:
649 	  /* Bitfields and casts are never addressable.  */
650 	  found = t;
651 	  break;
652 
653 	default:
654 	  gcc_unreachable ();
655 	}
656 
657       if (get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) == 0)
658 	found = t;
659 
660       t = TREE_OPERAND (t, 0);
661     }
662 
663   if (found)
664     return TREE_OPERAND (found, 0);
665 
666   return NULL_TREE;
667 }
668 
669 
670 /* Return whether the pointer-type T effective for aliasing may
671    access everything and thus the reference has to be assigned
672    alias-set zero.  */
673 
674 static bool
675 ref_all_alias_ptr_type_p (const_tree t)
676 {
677   return (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
678 	  || TYPE_REF_CAN_ALIAS_ALL (t));
679 }
680 
681 /* Return the alias set for the memory pointed to by T, which may be
682    either a type or an expression.  Return -1 if there is nothing
683    special about dereferencing T.  */
684 
685 static alias_set_type
686 get_deref_alias_set_1 (tree t)
687 {
688   /* All we care about is the type.  */
689   if (! TYPE_P (t))
690     t = TREE_TYPE (t);
691 
692   /* If we have an INDIRECT_REF via a void pointer, we don't
693      know anything about what that might alias.  Likewise if the
694      pointer is marked that way.  */
695   if (ref_all_alias_ptr_type_p (t))
696     return 0;
697 
698   return -1;
699 }
700 
701 /* Return the alias set for the memory pointed to by T, which may be
702    either a type or an expression.  */
703 
704 alias_set_type
705 get_deref_alias_set (tree t)
706 {
707   /* If we're not doing any alias analysis, just assume everything
708      aliases everything else.  */
709   if (!flag_strict_aliasing)
710     return 0;
711 
712   alias_set_type set = get_deref_alias_set_1 (t);
713 
714   /* Fall back to the alias-set of the pointed-to type.  */
715   if (set == -1)
716     {
717       if (! TYPE_P (t))
718 	t = TREE_TYPE (t);
719       set = get_alias_set (TREE_TYPE (t));
720     }
721 
722   return set;
723 }
724 
725 /* Return the pointer-type relevant for TBAA purposes from the
726    memory reference tree *T or NULL_TREE in which case *T is
727    adjusted to point to the outermost component reference that
728    can be used for assigning an alias set.  */
729 
730 static tree
731 reference_alias_ptr_type_1 (tree *t)
732 {
733   tree inner;
734 
735   /* Get the base object of the reference.  */
736   inner = *t;
737   while (handled_component_p (inner))
738     {
739       /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
740 	 the type of any component references that wrap it to
741 	 determine the alias-set.  */
742       if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
743 	*t = TREE_OPERAND (inner, 0);
744       inner = TREE_OPERAND (inner, 0);
745     }
746 
747   /* Handle pointer dereferences here, they can override the
748      alias-set.  */
749   if (INDIRECT_REF_P (inner)
750       && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0))))
751     return TREE_TYPE (TREE_OPERAND (inner, 0));
752   else if (TREE_CODE (inner) == TARGET_MEM_REF)
753     return TREE_TYPE (TMR_OFFSET (inner));
754   else if (TREE_CODE (inner) == MEM_REF
755 	   && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1))))
756     return TREE_TYPE (TREE_OPERAND (inner, 1));
757 
758   /* If the innermost reference is a MEM_REF that has a
759      conversion embedded treat it like a VIEW_CONVERT_EXPR above,
760      using the memory access type for determining the alias-set.  */
761   if (TREE_CODE (inner) == MEM_REF
762       && (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
763 	  != TYPE_MAIN_VARIANT
764 	       (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))))
765     return TREE_TYPE (TREE_OPERAND (inner, 1));
766 
767   /* Otherwise, pick up the outermost object that we could have
768      a pointer to.  */
769   tree tem = component_uses_parent_alias_set_from (*t);
770   if (tem)
771     *t = tem;
772 
773   return NULL_TREE;
774 }
775 
776 /* Return the pointer-type relevant for TBAA purposes from the
777    gimple memory reference tree T.  This is the type to be used for
778    the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
779    and guarantees that get_alias_set will return the same alias
780    set for T and the replacement.  */
781 
782 tree
783 reference_alias_ptr_type (tree t)
784 {
785   /* If the frontend assigns this alias-set zero, preserve that.  */
786   if (lang_hooks.get_alias_set (t) == 0)
787     return ptr_type_node;
788 
789   tree ptype = reference_alias_ptr_type_1 (&t);
790   /* If there is a given pointer type for aliasing purposes, return it.  */
791   if (ptype != NULL_TREE)
792     return ptype;
793 
794   /* Otherwise build one from the outermost component reference we
795      may use.  */
796   if (TREE_CODE (t) == MEM_REF
797       || TREE_CODE (t) == TARGET_MEM_REF)
798     return TREE_TYPE (TREE_OPERAND (t, 1));
799   else
800     return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t)));
801 }
802 
803 /* Return whether the pointer-types T1 and T2 used to determine
804    two alias sets of two references will yield the same answer
805    from get_deref_alias_set.  */
806 
807 bool
808 alias_ptr_types_compatible_p (tree t1, tree t2)
809 {
810   if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
811     return true;
812 
813   if (ref_all_alias_ptr_type_p (t1)
814       || ref_all_alias_ptr_type_p (t2))
815     return false;
816 
817   return (TYPE_MAIN_VARIANT (TREE_TYPE (t1))
818 	  == TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
819 }
820 
821 /* Create emptry alias set entry.  */
822 
823 alias_set_entry *
824 init_alias_set_entry (alias_set_type set)
825 {
826   alias_set_entry *ase = ggc_alloc<alias_set_entry> ();
827   ase->alias_set = set;
828   ase->children = NULL;
829   ase->has_zero_child = false;
830   ase->is_pointer = false;
831   ase->has_pointer = false;
832   gcc_checking_assert (!get_alias_set_entry (set));
833   (*alias_sets)[set] = ase;
834   return ase;
835 }
836 
837 /* Return the alias set for T, which may be either a type or an
838    expression.  Call language-specific routine for help, if needed.  */
839 
840 alias_set_type
841 get_alias_set (tree t)
842 {
843   alias_set_type set;
844 
845   /* We can not give up with -fno-strict-aliasing because we need to build
846      proper type representation for possible functions which are build with
847      -fstrict-aliasing.  */
848 
849   /* return 0 if this or its type is an error.  */
850   if (t == error_mark_node
851       || (! TYPE_P (t)
852 	  && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
853     return 0;
854 
855   /* We can be passed either an expression or a type.  This and the
856      language-specific routine may make mutually-recursive calls to each other
857      to figure out what to do.  At each juncture, we see if this is a tree
858      that the language may need to handle specially.  First handle things that
859      aren't types.  */
860   if (! TYPE_P (t))
861     {
862       /* Give the language a chance to do something with this tree
863 	 before we look at it.  */
864       STRIP_NOPS (t);
865       set = lang_hooks.get_alias_set (t);
866       if (set != -1)
867 	return set;
868 
869       /* Get the alias pointer-type to use or the outermost object
870          that we could have a pointer to.  */
871       tree ptype = reference_alias_ptr_type_1 (&t);
872       if (ptype != NULL)
873 	return get_deref_alias_set (ptype);
874 
875       /* If we've already determined the alias set for a decl, just return
876 	 it.  This is necessary for C++ anonymous unions, whose component
877 	 variables don't look like union members (boo!).  */
878       if (VAR_P (t)
879 	  && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
880 	return MEM_ALIAS_SET (DECL_RTL (t));
881 
882       /* Now all we care about is the type.  */
883       t = TREE_TYPE (t);
884     }
885 
886   /* Variant qualifiers don't affect the alias set, so get the main
887      variant.  */
888   t = TYPE_MAIN_VARIANT (t);
889 
890   if (AGGREGATE_TYPE_P (t)
891       && TYPE_TYPELESS_STORAGE (t))
892     return 0;
893 
894   /* Always use the canonical type as well.  If this is a type that
895      requires structural comparisons to identify compatible types
896      use alias set zero.  */
897   if (TYPE_STRUCTURAL_EQUALITY_P (t))
898     {
899       /* Allow the language to specify another alias set for this
900 	 type.  */
901       set = lang_hooks.get_alias_set (t);
902       if (set != -1)
903 	return set;
904       /* Handle structure type equality for pointer types, arrays and vectors.
905 	 This is easy to do, because the code bellow ignore canonical types on
906 	 these anyway.  This is important for LTO, where TYPE_CANONICAL for
907 	 pointers can not be meaningfuly computed by the frotnend.  */
908       if (canonical_type_used_p (t))
909 	{
910 	  /* In LTO we set canonical types for all types where it makes
911 	     sense to do so.  Double check we did not miss some type.  */
912 	  gcc_checking_assert (!in_lto_p || !type_with_alias_set_p (t));
913           return 0;
914 	}
915     }
916   else
917     {
918       t = TYPE_CANONICAL (t);
919       gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
920     }
921 
922   /* If this is a type with a known alias set, return it.  */
923   gcc_checking_assert (t == TYPE_MAIN_VARIANT (t));
924   if (TYPE_ALIAS_SET_KNOWN_P (t))
925     return TYPE_ALIAS_SET (t);
926 
927   /* We don't want to set TYPE_ALIAS_SET for incomplete types.  */
928   if (!COMPLETE_TYPE_P (t))
929     {
930       /* For arrays with unknown size the conservative answer is the
931 	 alias set of the element type.  */
932       if (TREE_CODE (t) == ARRAY_TYPE)
933 	return get_alias_set (TREE_TYPE (t));
934 
935       /* But return zero as a conservative answer for incomplete types.  */
936       return 0;
937     }
938 
939   /* See if the language has special handling for this type.  */
940   set = lang_hooks.get_alias_set (t);
941   if (set != -1)
942     return set;
943 
944   /* There are no objects of FUNCTION_TYPE, so there's no point in
945      using up an alias set for them.  (There are, of course, pointers
946      and references to functions, but that's different.)  */
947   else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
948     set = 0;
949 
950   /* Unless the language specifies otherwise, let vector types alias
951      their components.  This avoids some nasty type punning issues in
952      normal usage.  And indeed lets vectors be treated more like an
953      array slice.  */
954   else if (TREE_CODE (t) == VECTOR_TYPE)
955     set = get_alias_set (TREE_TYPE (t));
956 
957   /* Unless the language specifies otherwise, treat array types the
958      same as their components.  This avoids the asymmetry we get
959      through recording the components.  Consider accessing a
960      character(kind=1) through a reference to a character(kind=1)[1:1].
961      Or consider if we want to assign integer(kind=4)[0:D.1387] and
962      integer(kind=4)[4] the same alias set or not.
963      Just be pragmatic here and make sure the array and its element
964      type get the same alias set assigned.  */
965   else if (TREE_CODE (t) == ARRAY_TYPE
966 	   && (!TYPE_NONALIASED_COMPONENT (t)
967 	       || TYPE_STRUCTURAL_EQUALITY_P (t)))
968     set = get_alias_set (TREE_TYPE (t));
969 
970   /* From the former common C and C++ langhook implementation:
971 
972      Unfortunately, there is no canonical form of a pointer type.
973      In particular, if we have `typedef int I', then `int *', and
974      `I *' are different types.  So, we have to pick a canonical
975      representative.  We do this below.
976 
977      Technically, this approach is actually more conservative that
978      it needs to be.  In particular, `const int *' and `int *'
979      should be in different alias sets, according to the C and C++
980      standard, since their types are not the same, and so,
981      technically, an `int **' and `const int **' cannot point at
982      the same thing.
983 
984      But, the standard is wrong.  In particular, this code is
985      legal C++:
986 
987      int *ip;
988      int **ipp = &ip;
989      const int* const* cipp = ipp;
990      And, it doesn't make sense for that to be legal unless you
991      can dereference IPP and CIPP.  So, we ignore cv-qualifiers on
992      the pointed-to types.  This issue has been reported to the
993      C++ committee.
994 
995      For this reason go to canonical type of the unqalified pointer type.
996      Until GCC 6 this code set all pointers sets to have alias set of
997      ptr_type_node but that is a bad idea, because it prevents disabiguations
998      in between pointers.  For Firefox this accounts about 20% of all
999      disambiguations in the program.  */
1000   else if (POINTER_TYPE_P (t) && t != ptr_type_node)
1001     {
1002       tree p;
1003       auto_vec <bool, 8> reference;
1004 
1005       /* Unnest all pointers and references.
1006 	 We also want to make pointer to array/vector equivalent to pointer to
1007 	 its element (see the reasoning above). Skip all those types, too.  */
1008       for (p = t; POINTER_TYPE_P (p)
1009 	   || (TREE_CODE (p) == ARRAY_TYPE
1010 	       && (!TYPE_NONALIASED_COMPONENT (p)
1011 		   || !COMPLETE_TYPE_P (p)
1012 		   || TYPE_STRUCTURAL_EQUALITY_P (p)))
1013 	   || TREE_CODE (p) == VECTOR_TYPE;
1014 	   p = TREE_TYPE (p))
1015 	{
1016 	  /* Ada supports recusive pointers.  Instead of doing recrusion check
1017 	     just give up once the preallocated space of 8 elements is up.
1018 	     In this case just punt to void * alias set.  */
1019 	  if (reference.length () == 8)
1020 	    {
1021 	      p = ptr_type_node;
1022 	      break;
1023 	    }
1024 	  if (TREE_CODE (p) == REFERENCE_TYPE)
1025 	    /* In LTO we want languages that use references to be compatible
1026  	       with languages that use pointers.  */
1027 	    reference.safe_push (true && !in_lto_p);
1028 	  if (TREE_CODE (p) == POINTER_TYPE)
1029 	    reference.safe_push (false);
1030 	}
1031       p = TYPE_MAIN_VARIANT (p);
1032 
1033       /* Make void * compatible with char * and also void **.
1034 	 Programs are commonly violating TBAA by this.
1035 
1036 	 We also make void * to conflict with every pointer
1037 	 (see record_component_aliases) and thus it is safe it to use it for
1038 	 pointers to types with TYPE_STRUCTURAL_EQUALITY_P.  */
1039       if (TREE_CODE (p) == VOID_TYPE || TYPE_STRUCTURAL_EQUALITY_P (p))
1040 	set = get_alias_set (ptr_type_node);
1041       else
1042 	{
1043 	  /* Rebuild pointer type starting from canonical types using
1044 	     unqualified pointers and references only.  This way all such
1045 	     pointers will have the same alias set and will conflict with
1046 	     each other.
1047 
1048 	     Most of time we already have pointers or references of a given type.
1049 	     If not we build new one just to be sure that if someone later
1050 	     (probably only middle-end can, as we should assign all alias
1051 	     classes only after finishing translation unit) builds the pointer
1052 	     type, the canonical type will match.  */
1053 	  p = TYPE_CANONICAL (p);
1054 	  while (!reference.is_empty ())
1055 	    {
1056 	      if (reference.pop ())
1057 		p = build_reference_type (p);
1058 	      else
1059 		p = build_pointer_type (p);
1060 	      gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1061 	      /* build_pointer_type should always return the canonical type.
1062 		 For LTO TYPE_CANOINCAL may be NULL, because we do not compute
1063 		 them.  Be sure that frontends do not glob canonical types of
1064 		 pointers in unexpected way and that p == TYPE_CANONICAL (p)
1065 		 in all other cases.  */
1066 	      gcc_checking_assert (!TYPE_CANONICAL (p)
1067 				   || p == TYPE_CANONICAL (p));
1068 	    }
1069 
1070 	  /* Assign the alias set to both p and t.
1071 	     We can not call get_alias_set (p) here as that would trigger
1072 	     infinite recursion when p == t.  In other cases it would just
1073 	     trigger unnecesary legwork of rebuilding the pointer again.  */
1074 	  gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1075 	  if (TYPE_ALIAS_SET_KNOWN_P (p))
1076 	    set = TYPE_ALIAS_SET (p);
1077 	  else
1078 	    {
1079 	      set = new_alias_set ();
1080 	      TYPE_ALIAS_SET (p) = set;
1081 	    }
1082 	}
1083     }
1084   /* Alias set of ptr_type_node is special and serve as universal pointer which
1085      is TBAA compatible with every other pointer type.  Be sure we have the
1086      alias set built even for LTO which otherwise keeps all TYPE_CANONICAL
1087      of pointer types NULL.  */
1088   else if (t == ptr_type_node)
1089     set = new_alias_set ();
1090 
1091   /* Otherwise make a new alias set for this type.  */
1092   else
1093     {
1094       /* Each canonical type gets its own alias set, so canonical types
1095 	 shouldn't form a tree.  It doesn't really matter for types
1096 	 we handle specially above, so only check it where it possibly
1097 	 would result in a bogus alias set.  */
1098       gcc_checking_assert (TYPE_CANONICAL (t) == t);
1099 
1100       set = new_alias_set ();
1101     }
1102 
1103   TYPE_ALIAS_SET (t) = set;
1104 
1105   /* If this is an aggregate type or a complex type, we must record any
1106      component aliasing information.  */
1107   if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
1108     record_component_aliases (t);
1109 
1110   /* We treat pointer types specially in alias_set_subset_of.  */
1111   if (POINTER_TYPE_P (t) && set)
1112     {
1113       alias_set_entry *ase = get_alias_set_entry (set);
1114       if (!ase)
1115 	ase = init_alias_set_entry (set);
1116       ase->is_pointer = true;
1117       ase->has_pointer = true;
1118     }
1119 
1120   return set;
1121 }
1122 
1123 /* Return a brand-new alias set.  */
1124 
1125 alias_set_type
1126 new_alias_set (void)
1127 {
1128   if (alias_sets == 0)
1129     vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1130   vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1131   return alias_sets->length () - 1;
1132 }
1133 
1134 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
1135    not everything that aliases SUPERSET also aliases SUBSET.  For example,
1136    in C, a store to an `int' can alias a load of a structure containing an
1137    `int', and vice versa.  But it can't alias a load of a 'double' member
1138    of the same structure.  Here, the structure would be the SUPERSET and
1139    `int' the SUBSET.  This relationship is also described in the comment at
1140    the beginning of this file.
1141 
1142    This function should be called only once per SUPERSET/SUBSET pair.
1143 
1144    It is illegal for SUPERSET to be zero; everything is implicitly a
1145    subset of alias set zero.  */
1146 
1147 void
1148 record_alias_subset (alias_set_type superset, alias_set_type subset)
1149 {
1150   alias_set_entry *superset_entry;
1151   alias_set_entry *subset_entry;
1152 
1153   /* It is possible in complex type situations for both sets to be the same,
1154      in which case we can ignore this operation.  */
1155   if (superset == subset)
1156     return;
1157 
1158   gcc_assert (superset);
1159 
1160   superset_entry = get_alias_set_entry (superset);
1161   if (superset_entry == 0)
1162     {
1163       /* Create an entry for the SUPERSET, so that we have a place to
1164 	 attach the SUBSET.  */
1165       superset_entry = init_alias_set_entry (superset);
1166     }
1167 
1168   if (subset == 0)
1169     superset_entry->has_zero_child = 1;
1170   else
1171     {
1172       subset_entry = get_alias_set_entry (subset);
1173       if (!superset_entry->children)
1174 	superset_entry->children
1175 	  = hash_map<alias_set_hash, int>::create_ggc (64);
1176       /* If there is an entry for the subset, enter all of its children
1177 	 (if they are not already present) as children of the SUPERSET.  */
1178       if (subset_entry)
1179 	{
1180 	  if (subset_entry->has_zero_child)
1181 	    superset_entry->has_zero_child = true;
1182           if (subset_entry->has_pointer)
1183 	    superset_entry->has_pointer = true;
1184 
1185 	  if (subset_entry->children)
1186 	    {
1187 	      hash_map<alias_set_hash, int>::iterator iter
1188 		= subset_entry->children->begin ();
1189 	      for (; iter != subset_entry->children->end (); ++iter)
1190 		superset_entry->children->put ((*iter).first, (*iter).second);
1191 	    }
1192 	}
1193 
1194       /* Enter the SUBSET itself as a child of the SUPERSET.  */
1195       superset_entry->children->put (subset, 0);
1196     }
1197 }
1198 
1199 /* Record that component types of TYPE, if any, are part of that type for
1200    aliasing purposes.  For record types, we only record component types
1201    for fields that are not marked non-addressable.  For array types, we
1202    only record the component type if it is not marked non-aliased.  */
1203 
1204 void
1205 record_component_aliases (tree type)
1206 {
1207   alias_set_type superset = get_alias_set (type);
1208   tree field;
1209 
1210   if (superset == 0)
1211     return;
1212 
1213   switch (TREE_CODE (type))
1214     {
1215     case RECORD_TYPE:
1216     case UNION_TYPE:
1217     case QUAL_UNION_TYPE:
1218       for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
1219 	if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
1220 	  {
1221 	    /* LTO type merging does not make any difference between
1222 	       component pointer types.  We may have
1223 
1224 	       struct foo {int *a;};
1225 
1226 	       as TYPE_CANONICAL of
1227 
1228 	       struct bar {float *a;};
1229 
1230 	       Because accesses to int * and float * do not alias, we would get
1231 	       false negative when accessing the same memory location by
1232 	       float ** and bar *. We thus record the canonical type as:
1233 
1234 	       struct {void *a;};
1235 
1236 	       void * is special cased and works as a universal pointer type.
1237 	       Accesses to it conflicts with accesses to any other pointer
1238 	       type.  */
1239 	    tree t = TREE_TYPE (field);
1240 	    if (in_lto_p)
1241 	      {
1242 		/* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1243 		   element type and that type has to be normalized to void *,
1244 		   too, in the case it is a pointer. */
1245 		while (!canonical_type_used_p (t) && !POINTER_TYPE_P (t))
1246 		  {
1247 		    gcc_checking_assert (TYPE_STRUCTURAL_EQUALITY_P (t));
1248 		    t = TREE_TYPE (t);
1249 		  }
1250 		if (POINTER_TYPE_P (t))
1251 		  t = ptr_type_node;
1252 		else if (flag_checking)
1253 		  gcc_checking_assert (get_alias_set (t)
1254 				       == get_alias_set (TREE_TYPE (field)));
1255 	      }
1256 
1257 	    record_alias_subset (superset, get_alias_set (t));
1258 	  }
1259       break;
1260 
1261     case COMPLEX_TYPE:
1262       record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
1263       break;
1264 
1265     /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1266        element type.  */
1267 
1268     default:
1269       break;
1270     }
1271 }
1272 
1273 /* Allocate an alias set for use in storing and reading from the varargs
1274    spill area.  */
1275 
1276 static GTY(()) alias_set_type varargs_set = -1;
1277 
1278 alias_set_type
1279 get_varargs_alias_set (void)
1280 {
1281 #if 1
1282   /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1283      varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1284      consistently use the varargs alias set for loads from the varargs
1285      area.  So don't use it anywhere.  */
1286   return 0;
1287 #else
1288   if (varargs_set == -1)
1289     varargs_set = new_alias_set ();
1290 
1291   return varargs_set;
1292 #endif
1293 }
1294 
1295 /* Likewise, but used for the fixed portions of the frame, e.g., register
1296    save areas.  */
1297 
1298 static GTY(()) alias_set_type frame_set = -1;
1299 
1300 alias_set_type
1301 get_frame_alias_set (void)
1302 {
1303   if (frame_set == -1)
1304     frame_set = new_alias_set ();
1305 
1306   return frame_set;
1307 }
1308 
1309 /* Create a new, unique base with id ID.  */
1310 
1311 static rtx
1312 unique_base_value (HOST_WIDE_INT id)
1313 {
1314   return gen_rtx_ADDRESS (Pmode, id);
1315 }
1316 
1317 /* Return true if accesses based on any other base value cannot alias
1318    those based on X.  */
1319 
1320 static bool
1321 unique_base_value_p (rtx x)
1322 {
1323   return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1324 }
1325 
1326 /* Return true if X is known to be a base value.  */
1327 
1328 static bool
1329 known_base_value_p (rtx x)
1330 {
1331   switch (GET_CODE (x))
1332     {
1333     case LABEL_REF:
1334     case SYMBOL_REF:
1335       return true;
1336 
1337     case ADDRESS:
1338       /* Arguments may or may not be bases; we don't know for sure.  */
1339       return GET_MODE (x) != VOIDmode;
1340 
1341     default:
1342       return false;
1343     }
1344 }
1345 
1346 /* Inside SRC, the source of a SET, find a base address.  */
1347 
1348 static rtx
1349 find_base_value (rtx src)
1350 {
1351   unsigned int regno;
1352 
1353 #if defined (FIND_BASE_TERM)
1354   /* Try machine-dependent ways to find the base term.  */
1355   src = FIND_BASE_TERM (src);
1356 #endif
1357 
1358   switch (GET_CODE (src))
1359     {
1360     case SYMBOL_REF:
1361     case LABEL_REF:
1362       return src;
1363 
1364     case REG:
1365       regno = REGNO (src);
1366       /* At the start of a function, argument registers have known base
1367 	 values which may be lost later.  Returning an ADDRESS
1368 	 expression here allows optimization based on argument values
1369 	 even when the argument registers are used for other purposes.  */
1370       if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1371 	return new_reg_base_value[regno];
1372 
1373       /* If a pseudo has a known base value, return it.  Do not do this
1374 	 for non-fixed hard regs since it can result in a circular
1375 	 dependency chain for registers which have values at function entry.
1376 
1377 	 The test above is not sufficient because the scheduler may move
1378 	 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN.  */
1379       if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1380 	  && regno < vec_safe_length (reg_base_value))
1381 	{
1382 	  /* If we're inside init_alias_analysis, use new_reg_base_value
1383 	     to reduce the number of relaxation iterations.  */
1384 	  if (new_reg_base_value && new_reg_base_value[regno]
1385 	      && DF_REG_DEF_COUNT (regno) == 1)
1386 	    return new_reg_base_value[regno];
1387 
1388 	  if ((*reg_base_value)[regno])
1389 	    return (*reg_base_value)[regno];
1390 	}
1391 
1392       return 0;
1393 
1394     case MEM:
1395       /* Check for an argument passed in memory.  Only record in the
1396 	 copying-arguments block; it is too hard to track changes
1397 	 otherwise.  */
1398       if (copying_arguments
1399 	  && (XEXP (src, 0) == arg_pointer_rtx
1400 	      || (GET_CODE (XEXP (src, 0)) == PLUS
1401 		  && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1402 	return arg_base_value;
1403       return 0;
1404 
1405     case CONST:
1406       src = XEXP (src, 0);
1407       if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1408 	break;
1409 
1410       /* fall through */
1411 
1412     case PLUS:
1413     case MINUS:
1414       {
1415 	rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1416 
1417 	/* If either operand is a REG that is a known pointer, then it
1418 	   is the base.  */
1419 	if (REG_P (src_0) && REG_POINTER (src_0))
1420 	  return find_base_value (src_0);
1421 	if (REG_P (src_1) && REG_POINTER (src_1))
1422 	  return find_base_value (src_1);
1423 
1424 	/* If either operand is a REG, then see if we already have
1425 	   a known value for it.  */
1426 	if (REG_P (src_0))
1427 	  {
1428 	    temp = find_base_value (src_0);
1429 	    if (temp != 0)
1430 	      src_0 = temp;
1431 	  }
1432 
1433 	if (REG_P (src_1))
1434 	  {
1435 	    temp = find_base_value (src_1);
1436 	    if (temp!= 0)
1437 	      src_1 = temp;
1438 	  }
1439 
1440 	/* If either base is named object or a special address
1441 	   (like an argument or stack reference), then use it for the
1442 	   base term.  */
1443 	if (src_0 != 0 && known_base_value_p (src_0))
1444 	  return src_0;
1445 
1446 	if (src_1 != 0 && known_base_value_p (src_1))
1447 	  return src_1;
1448 
1449 	/* Guess which operand is the base address:
1450 	   If either operand is a symbol, then it is the base.  If
1451 	   either operand is a CONST_INT, then the other is the base.  */
1452 	if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1453 	  return find_base_value (src_0);
1454 	else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1455 	  return find_base_value (src_1);
1456 
1457 	return 0;
1458       }
1459 
1460     case LO_SUM:
1461       /* The standard form is (lo_sum reg sym) so look only at the
1462 	 second operand.  */
1463       return find_base_value (XEXP (src, 1));
1464 
1465     case AND:
1466       /* If the second operand is constant set the base
1467 	 address to the first operand.  */
1468       if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
1469 	return find_base_value (XEXP (src, 0));
1470       return 0;
1471 
1472     case TRUNCATE:
1473       /* As we do not know which address space the pointer is referring to, we can
1474 	 handle this only if the target does not support different pointer or
1475 	 address modes depending on the address space.  */
1476       if (!target_default_pointer_address_modes_p ())
1477 	break;
1478       if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1479 	break;
1480       /* Fall through.  */
1481     case HIGH:
1482     case PRE_INC:
1483     case PRE_DEC:
1484     case POST_INC:
1485     case POST_DEC:
1486     case PRE_MODIFY:
1487     case POST_MODIFY:
1488       return find_base_value (XEXP (src, 0));
1489 
1490     case ZERO_EXTEND:
1491     case SIGN_EXTEND:	/* used for NT/Alpha pointers */
1492       /* As we do not know which address space the pointer is referring to, we can
1493 	 handle this only if the target does not support different pointer or
1494 	 address modes depending on the address space.  */
1495       if (!target_default_pointer_address_modes_p ())
1496 	break;
1497 
1498       {
1499 	rtx temp = find_base_value (XEXP (src, 0));
1500 
1501 	if (temp != 0 && CONSTANT_P (temp))
1502 	  temp = convert_memory_address (Pmode, temp);
1503 
1504 	return temp;
1505       }
1506 
1507     default:
1508       break;
1509     }
1510 
1511   return 0;
1512 }
1513 
1514 /* Called from init_alias_analysis indirectly through note_stores,
1515    or directly if DEST is a register with a REG_NOALIAS note attached.
1516    SET is null in the latter case.  */
1517 
1518 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1519    register N has been set in this function.  */
1520 static sbitmap reg_seen;
1521 
1522 static void
1523 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1524 {
1525   unsigned regno;
1526   rtx src;
1527   int n;
1528 
1529   if (!REG_P (dest))
1530     return;
1531 
1532   regno = REGNO (dest);
1533 
1534   gcc_checking_assert (regno < reg_base_value->length ());
1535 
1536   n = REG_NREGS (dest);
1537   if (n != 1)
1538     {
1539       while (--n >= 0)
1540 	{
1541 	  bitmap_set_bit (reg_seen, regno + n);
1542 	  new_reg_base_value[regno + n] = 0;
1543 	}
1544       return;
1545     }
1546 
1547   if (set)
1548     {
1549       /* A CLOBBER wipes out any old value but does not prevent a previously
1550 	 unset register from acquiring a base address (i.e. reg_seen is not
1551 	 set).  */
1552       if (GET_CODE (set) == CLOBBER)
1553 	{
1554 	  new_reg_base_value[regno] = 0;
1555 	  return;
1556 	}
1557       src = SET_SRC (set);
1558     }
1559   else
1560     {
1561       /* There's a REG_NOALIAS note against DEST.  */
1562       if (bitmap_bit_p (reg_seen, regno))
1563 	{
1564 	  new_reg_base_value[regno] = 0;
1565 	  return;
1566 	}
1567       bitmap_set_bit (reg_seen, regno);
1568       new_reg_base_value[regno] = unique_base_value (unique_id++);
1569       return;
1570     }
1571 
1572   /* If this is not the first set of REGNO, see whether the new value
1573      is related to the old one.  There are two cases of interest:
1574 
1575 	(1) The register might be assigned an entirely new value
1576 	    that has the same base term as the original set.
1577 
1578 	(2) The set might be a simple self-modification that
1579 	    cannot change REGNO's base value.
1580 
1581      If neither case holds, reject the original base value as invalid.
1582      Note that the following situation is not detected:
1583 
1584 	 extern int x, y;  int *p = &x; p += (&y-&x);
1585 
1586      ANSI C does not allow computing the difference of addresses
1587      of distinct top level objects.  */
1588   if (new_reg_base_value[regno] != 0
1589       && find_base_value (src) != new_reg_base_value[regno])
1590     switch (GET_CODE (src))
1591       {
1592       case LO_SUM:
1593       case MINUS:
1594 	if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1595 	  new_reg_base_value[regno] = 0;
1596 	break;
1597       case PLUS:
1598 	/* If the value we add in the PLUS is also a valid base value,
1599 	   this might be the actual base value, and the original value
1600 	   an index.  */
1601 	{
1602 	  rtx other = NULL_RTX;
1603 
1604 	  if (XEXP (src, 0) == dest)
1605 	    other = XEXP (src, 1);
1606 	  else if (XEXP (src, 1) == dest)
1607 	    other = XEXP (src, 0);
1608 
1609 	  if (! other || find_base_value (other))
1610 	    new_reg_base_value[regno] = 0;
1611 	  break;
1612 	}
1613       case AND:
1614 	if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1615 	  new_reg_base_value[regno] = 0;
1616 	break;
1617       default:
1618 	new_reg_base_value[regno] = 0;
1619 	break;
1620       }
1621   /* If this is the first set of a register, record the value.  */
1622   else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1623 	   && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
1624     new_reg_base_value[regno] = find_base_value (src);
1625 
1626   bitmap_set_bit (reg_seen, regno);
1627 }
1628 
1629 /* Return REG_BASE_VALUE for REGNO.  Selective scheduler uses this to avoid
1630    using hard registers with non-null REG_BASE_VALUE for renaming.  */
1631 rtx
1632 get_reg_base_value (unsigned int regno)
1633 {
1634   return (*reg_base_value)[regno];
1635 }
1636 
1637 /* If a value is known for REGNO, return it.  */
1638 
1639 rtx
1640 get_reg_known_value (unsigned int regno)
1641 {
1642   if (regno >= FIRST_PSEUDO_REGISTER)
1643     {
1644       regno -= FIRST_PSEUDO_REGISTER;
1645       if (regno < vec_safe_length (reg_known_value))
1646 	return (*reg_known_value)[regno];
1647     }
1648   return NULL;
1649 }
1650 
1651 /* Set it.  */
1652 
1653 static void
1654 set_reg_known_value (unsigned int regno, rtx val)
1655 {
1656   if (regno >= FIRST_PSEUDO_REGISTER)
1657     {
1658       regno -= FIRST_PSEUDO_REGISTER;
1659       if (regno < vec_safe_length (reg_known_value))
1660 	(*reg_known_value)[regno] = val;
1661     }
1662 }
1663 
1664 /* Similarly for reg_known_equiv_p.  */
1665 
1666 bool
1667 get_reg_known_equiv_p (unsigned int regno)
1668 {
1669   if (regno >= FIRST_PSEUDO_REGISTER)
1670     {
1671       regno -= FIRST_PSEUDO_REGISTER;
1672       if (regno < vec_safe_length (reg_known_value))
1673 	return bitmap_bit_p (reg_known_equiv_p, regno);
1674     }
1675   return false;
1676 }
1677 
1678 static void
1679 set_reg_known_equiv_p (unsigned int regno, bool val)
1680 {
1681   if (regno >= FIRST_PSEUDO_REGISTER)
1682     {
1683       regno -= FIRST_PSEUDO_REGISTER;
1684       if (regno < vec_safe_length (reg_known_value))
1685 	{
1686 	  if (val)
1687 	    bitmap_set_bit (reg_known_equiv_p, regno);
1688 	  else
1689 	    bitmap_clear_bit (reg_known_equiv_p, regno);
1690 	}
1691     }
1692 }
1693 
1694 
1695 /* Returns a canonical version of X, from the point of view alias
1696    analysis.  (For example, if X is a MEM whose address is a register,
1697    and the register has a known value (say a SYMBOL_REF), then a MEM
1698    whose address is the SYMBOL_REF is returned.)  */
1699 
1700 rtx
1701 canon_rtx (rtx x)
1702 {
1703   /* Recursively look for equivalences.  */
1704   if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1705     {
1706       rtx t = get_reg_known_value (REGNO (x));
1707       if (t == x)
1708 	return x;
1709       if (t)
1710 	return canon_rtx (t);
1711     }
1712 
1713   if (GET_CODE (x) == PLUS)
1714     {
1715       rtx x0 = canon_rtx (XEXP (x, 0));
1716       rtx x1 = canon_rtx (XEXP (x, 1));
1717 
1718       if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1719 	return simplify_gen_binary (PLUS, GET_MODE (x), x0, x1);
1720     }
1721 
1722   /* This gives us much better alias analysis when called from
1723      the loop optimizer.   Note we want to leave the original
1724      MEM alone, but need to return the canonicalized MEM with
1725      all the flags with their original values.  */
1726   else if (MEM_P (x))
1727     x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1728 
1729   return x;
1730 }
1731 
1732 /* Return 1 if X and Y are identical-looking rtx's.
1733    Expect that X and Y has been already canonicalized.
1734 
1735    We use the data in reg_known_value above to see if two registers with
1736    different numbers are, in fact, equivalent.  */
1737 
1738 static int
1739 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1740 {
1741   int i;
1742   int j;
1743   enum rtx_code code;
1744   const char *fmt;
1745 
1746   if (x == 0 && y == 0)
1747     return 1;
1748   if (x == 0 || y == 0)
1749     return 0;
1750 
1751   if (x == y)
1752     return 1;
1753 
1754   code = GET_CODE (x);
1755   /* Rtx's of different codes cannot be equal.  */
1756   if (code != GET_CODE (y))
1757     return 0;
1758 
1759   /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1760      (REG:SI x) and (REG:HI x) are NOT equivalent.  */
1761 
1762   if (GET_MODE (x) != GET_MODE (y))
1763     return 0;
1764 
1765   /* Some RTL can be compared without a recursive examination.  */
1766   switch (code)
1767     {
1768     case REG:
1769       return REGNO (x) == REGNO (y);
1770 
1771     case LABEL_REF:
1772       return label_ref_label (x) == label_ref_label (y);
1773 
1774     case SYMBOL_REF:
1775       return compare_base_symbol_refs (x, y) == 1;
1776 
1777     case ENTRY_VALUE:
1778       /* This is magic, don't go through canonicalization et al.  */
1779       return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1780 
1781     case VALUE:
1782     CASE_CONST_UNIQUE:
1783       /* Pointer equality guarantees equality for these nodes.  */
1784       return 0;
1785 
1786     default:
1787       break;
1788     }
1789 
1790   /* canon_rtx knows how to handle plus.  No need to canonicalize.  */
1791   if (code == PLUS)
1792     return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1793 	     && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1794 	    || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1795 		&& rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1796   /* For commutative operations, the RTX match if the operand match in any
1797      order.  Also handle the simple binary and unary cases without a loop.  */
1798   if (COMMUTATIVE_P (x))
1799     {
1800       rtx xop0 = canon_rtx (XEXP (x, 0));
1801       rtx yop0 = canon_rtx (XEXP (y, 0));
1802       rtx yop1 = canon_rtx (XEXP (y, 1));
1803 
1804       return ((rtx_equal_for_memref_p (xop0, yop0)
1805 	       && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1806 	      || (rtx_equal_for_memref_p (xop0, yop1)
1807 		  && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1808     }
1809   else if (NON_COMMUTATIVE_P (x))
1810     {
1811       return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1812 				      canon_rtx (XEXP (y, 0)))
1813 	      && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1814 					 canon_rtx (XEXP (y, 1))));
1815     }
1816   else if (UNARY_P (x))
1817     return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1818 				   canon_rtx (XEXP (y, 0)));
1819 
1820   /* Compare the elements.  If any pair of corresponding elements
1821      fail to match, return 0 for the whole things.
1822 
1823      Limit cases to types which actually appear in addresses.  */
1824 
1825   fmt = GET_RTX_FORMAT (code);
1826   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1827     {
1828       switch (fmt[i])
1829 	{
1830 	case 'i':
1831 	  if (XINT (x, i) != XINT (y, i))
1832 	    return 0;
1833 	  break;
1834 
1835 	case 'E':
1836 	  /* Two vectors must have the same length.  */
1837 	  if (XVECLEN (x, i) != XVECLEN (y, i))
1838 	    return 0;
1839 
1840 	  /* And the corresponding elements must match.  */
1841 	  for (j = 0; j < XVECLEN (x, i); j++)
1842 	    if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1843 					canon_rtx (XVECEXP (y, i, j))) == 0)
1844 	      return 0;
1845 	  break;
1846 
1847 	case 'e':
1848 	  if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1849 				      canon_rtx (XEXP (y, i))) == 0)
1850 	    return 0;
1851 	  break;
1852 
1853 	  /* This can happen for asm operands.  */
1854 	case 's':
1855 	  if (strcmp (XSTR (x, i), XSTR (y, i)))
1856 	    return 0;
1857 	  break;
1858 
1859 	/* This can happen for an asm which clobbers memory.  */
1860 	case '0':
1861 	  break;
1862 
1863 	  /* It is believed that rtx's at this level will never
1864 	     contain anything but integers and other rtx's,
1865 	     except for within LABEL_REFs and SYMBOL_REFs.  */
1866 	default:
1867 	  gcc_unreachable ();
1868 	}
1869     }
1870   return 1;
1871 }
1872 
1873 static rtx
1874 find_base_term (rtx x)
1875 {
1876   cselib_val *val;
1877   struct elt_loc_list *l, *f;
1878   rtx ret;
1879 
1880 #if defined (FIND_BASE_TERM)
1881   /* Try machine-dependent ways to find the base term.  */
1882   x = FIND_BASE_TERM (x);
1883 #endif
1884 
1885   switch (GET_CODE (x))
1886     {
1887     case REG:
1888       return REG_BASE_VALUE (x);
1889 
1890     case TRUNCATE:
1891       /* As we do not know which address space the pointer is referring to, we can
1892 	 handle this only if the target does not support different pointer or
1893 	 address modes depending on the address space.  */
1894       if (!target_default_pointer_address_modes_p ())
1895 	return 0;
1896       if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1897 	return 0;
1898       /* Fall through.  */
1899     case HIGH:
1900     case PRE_INC:
1901     case PRE_DEC:
1902     case POST_INC:
1903     case POST_DEC:
1904     case PRE_MODIFY:
1905     case POST_MODIFY:
1906       return find_base_term (XEXP (x, 0));
1907 
1908     case ZERO_EXTEND:
1909     case SIGN_EXTEND:	/* Used for Alpha/NT pointers */
1910       /* As we do not know which address space the pointer is referring to, we can
1911 	 handle this only if the target does not support different pointer or
1912 	 address modes depending on the address space.  */
1913       if (!target_default_pointer_address_modes_p ())
1914 	return 0;
1915 
1916       {
1917 	rtx temp = find_base_term (XEXP (x, 0));
1918 
1919 	if (temp != 0 && CONSTANT_P (temp))
1920 	  temp = convert_memory_address (Pmode, temp);
1921 
1922 	return temp;
1923       }
1924 
1925     case VALUE:
1926       val = CSELIB_VAL_PTR (x);
1927       ret = NULL_RTX;
1928 
1929       if (!val)
1930 	return ret;
1931 
1932       if (cselib_sp_based_value_p (val))
1933 	return static_reg_base_value[STACK_POINTER_REGNUM];
1934 
1935       f = val->locs;
1936       /* Temporarily reset val->locs to avoid infinite recursion.  */
1937       val->locs = NULL;
1938 
1939       for (l = f; l; l = l->next)
1940 	if (GET_CODE (l->loc) == VALUE
1941 	    && CSELIB_VAL_PTR (l->loc)->locs
1942 	    && !CSELIB_VAL_PTR (l->loc)->locs->next
1943 	    && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
1944 	  continue;
1945 	else if ((ret = find_base_term (l->loc)) != 0)
1946 	  break;
1947 
1948       val->locs = f;
1949       return ret;
1950 
1951     case LO_SUM:
1952       /* The standard form is (lo_sum reg sym) so look only at the
1953          second operand.  */
1954       return find_base_term (XEXP (x, 1));
1955 
1956     case CONST:
1957       x = XEXP (x, 0);
1958       if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1959 	return 0;
1960       /* Fall through.  */
1961     case PLUS:
1962     case MINUS:
1963       {
1964 	rtx tmp1 = XEXP (x, 0);
1965 	rtx tmp2 = XEXP (x, 1);
1966 
1967 	/* This is a little bit tricky since we have to determine which of
1968 	   the two operands represents the real base address.  Otherwise this
1969 	   routine may return the index register instead of the base register.
1970 
1971 	   That may cause us to believe no aliasing was possible, when in
1972 	   fact aliasing is possible.
1973 
1974 	   We use a few simple tests to guess the base register.  Additional
1975 	   tests can certainly be added.  For example, if one of the operands
1976 	   is a shift or multiply, then it must be the index register and the
1977 	   other operand is the base register.  */
1978 
1979 	if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1980 	  return find_base_term (tmp2);
1981 
1982 	/* If either operand is known to be a pointer, then prefer it
1983 	   to determine the base term.  */
1984 	if (REG_P (tmp1) && REG_POINTER (tmp1))
1985 	  ;
1986 	else if (REG_P (tmp2) && REG_POINTER (tmp2))
1987 	  std::swap (tmp1, tmp2);
1988 	/* If second argument is constant which has base term, prefer it
1989 	   over variable tmp1.  See PR64025.  */
1990 	else if (CONSTANT_P (tmp2) && !CONST_INT_P (tmp2))
1991 	  std::swap (tmp1, tmp2);
1992 
1993 	/* Go ahead and find the base term for both operands.  If either base
1994 	   term is from a pointer or is a named object or a special address
1995 	   (like an argument or stack reference), then use it for the
1996 	   base term.  */
1997 	rtx base = find_base_term (tmp1);
1998 	if (base != NULL_RTX
1999 	    && ((REG_P (tmp1) && REG_POINTER (tmp1))
2000 		 || known_base_value_p (base)))
2001 	  return base;
2002 	base = find_base_term (tmp2);
2003 	if (base != NULL_RTX
2004 	    && ((REG_P (tmp2) && REG_POINTER (tmp2))
2005 		 || known_base_value_p (base)))
2006 	  return base;
2007 
2008 	/* We could not determine which of the two operands was the
2009 	   base register and which was the index.  So we can determine
2010 	   nothing from the base alias check.  */
2011 	return 0;
2012       }
2013 
2014     case AND:
2015       if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
2016 	return find_base_term (XEXP (x, 0));
2017       return 0;
2018 
2019     case SYMBOL_REF:
2020     case LABEL_REF:
2021       return x;
2022 
2023     default:
2024       return 0;
2025     }
2026 }
2027 
2028 /* Return true if accesses to address X may alias accesses based
2029    on the stack pointer.  */
2030 
2031 bool
2032 may_be_sp_based_p (rtx x)
2033 {
2034   rtx base = find_base_term (x);
2035   return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
2036 }
2037 
2038 /* BASE1 and BASE2 are decls.  Return 1 if they refer to same object, 0
2039    if they refer to different objects and -1 if we can not decide.  */
2040 
2041 int
2042 compare_base_decls (tree base1, tree base2)
2043 {
2044   int ret;
2045   gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
2046   if (base1 == base2)
2047     return 1;
2048 
2049   /* If we have two register decls with register specification we
2050      cannot decide unless their assembler name is the same.  */
2051   if (DECL_REGISTER (base1)
2052       && DECL_REGISTER (base2)
2053       && DECL_ASSEMBLER_NAME_SET_P (base1)
2054       && DECL_ASSEMBLER_NAME_SET_P (base2))
2055     {
2056       if (DECL_ASSEMBLER_NAME (base1) == DECL_ASSEMBLER_NAME (base2))
2057 	return 1;
2058       return -1;
2059     }
2060 
2061   /* Declarations of non-automatic variables may have aliases.  All other
2062      decls are unique.  */
2063   if (!decl_in_symtab_p (base1)
2064       || !decl_in_symtab_p (base2))
2065     return 0;
2066 
2067   /* Don't cause symbols to be inserted by the act of checking.  */
2068   symtab_node *node1 = symtab_node::get (base1);
2069   if (!node1)
2070     return 0;
2071   symtab_node *node2 = symtab_node::get (base2);
2072   if (!node2)
2073     return 0;
2074 
2075   ret = node1->equal_address_to (node2, true);
2076   return ret;
2077 }
2078 
2079 /* Same as compare_base_decls but for SYMBOL_REF.  */
2080 
2081 static int
2082 compare_base_symbol_refs (const_rtx x_base, const_rtx y_base)
2083 {
2084   tree x_decl = SYMBOL_REF_DECL (x_base);
2085   tree y_decl = SYMBOL_REF_DECL (y_base);
2086   bool binds_def = true;
2087 
2088   if (XSTR (x_base, 0) == XSTR (y_base, 0))
2089     return 1;
2090   if (x_decl && y_decl)
2091     return compare_base_decls (x_decl, y_decl);
2092   if (x_decl || y_decl)
2093     {
2094       if (!x_decl)
2095 	{
2096 	  std::swap (x_decl, y_decl);
2097 	  std::swap (x_base, y_base);
2098 	}
2099       /* We handle specially only section anchors and assume that other
2100  	 labels may overlap with user variables in an arbitrary way.  */
2101       if (!SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2102         return -1;
2103       /* Anchors contains static VAR_DECLs and CONST_DECLs.  We are safe
2104 	 to ignore CONST_DECLs because they are readonly.  */
2105       if (!VAR_P (x_decl)
2106 	  || (!TREE_STATIC (x_decl) && !TREE_PUBLIC (x_decl)))
2107 	return 0;
2108 
2109       symtab_node *x_node = symtab_node::get_create (x_decl)
2110 			    ->ultimate_alias_target ();
2111       /* External variable can not be in section anchor.  */
2112       if (!x_node->definition)
2113 	return 0;
2114       x_base = XEXP (DECL_RTL (x_node->decl), 0);
2115       /* If not in anchor, we can disambiguate.  */
2116       if (!SYMBOL_REF_HAS_BLOCK_INFO_P (x_base))
2117 	return 0;
2118 
2119       /* We have an alias of anchored variable.  If it can be interposed;
2120  	 we must assume it may or may not alias its anchor.  */
2121       binds_def = decl_binds_to_current_def_p (x_decl);
2122     }
2123   /* If we have variable in section anchor, we can compare by offset.  */
2124   if (SYMBOL_REF_HAS_BLOCK_INFO_P (x_base)
2125       && SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2126     {
2127       if (SYMBOL_REF_BLOCK (x_base) != SYMBOL_REF_BLOCK (y_base))
2128 	return 0;
2129       if (SYMBOL_REF_BLOCK_OFFSET (x_base) == SYMBOL_REF_BLOCK_OFFSET (y_base))
2130 	return binds_def ? 1 : -1;
2131       if (SYMBOL_REF_ANCHOR_P (x_base) != SYMBOL_REF_ANCHOR_P (y_base))
2132 	return -1;
2133       return 0;
2134     }
2135   /* In general we assume that memory locations pointed to by different labels
2136      may overlap in undefined ways.  */
2137   return -1;
2138 }
2139 
2140 /* Return 0 if the addresses X and Y are known to point to different
2141    objects, 1 if they might be pointers to the same object.  */
2142 
2143 static int
2144 base_alias_check (rtx x, rtx x_base, rtx y, rtx y_base,
2145 		  machine_mode x_mode, machine_mode y_mode)
2146 {
2147   /* If the address itself has no known base see if a known equivalent
2148      value has one.  If either address still has no known base, nothing
2149      is known about aliasing.  */
2150   if (x_base == 0)
2151     {
2152       rtx x_c;
2153 
2154       if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
2155 	return 1;
2156 
2157       x_base = find_base_term (x_c);
2158       if (x_base == 0)
2159 	return 1;
2160     }
2161 
2162   if (y_base == 0)
2163     {
2164       rtx y_c;
2165       if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
2166 	return 1;
2167 
2168       y_base = find_base_term (y_c);
2169       if (y_base == 0)
2170 	return 1;
2171     }
2172 
2173   /* If the base addresses are equal nothing is known about aliasing.  */
2174   if (rtx_equal_p (x_base, y_base))
2175     return 1;
2176 
2177   /* The base addresses are different expressions.  If they are not accessed
2178      via AND, there is no conflict.  We can bring knowledge of object
2179      alignment into play here.  For example, on alpha, "char a, b;" can
2180      alias one another, though "char a; long b;" cannot.  AND addresses may
2181      implicitly alias surrounding objects; i.e. unaligned access in DImode
2182      via AND address can alias all surrounding object types except those
2183      with aligment 8 or higher.  */
2184   if (GET_CODE (x) == AND && GET_CODE (y) == AND)
2185     return 1;
2186   if (GET_CODE (x) == AND
2187       && (!CONST_INT_P (XEXP (x, 1))
2188 	  || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
2189     return 1;
2190   if (GET_CODE (y) == AND
2191       && (!CONST_INT_P (XEXP (y, 1))
2192 	  || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
2193     return 1;
2194 
2195   /* Differing symbols not accessed via AND never alias.  */
2196   if (GET_CODE (x_base) == SYMBOL_REF && GET_CODE (y_base) == SYMBOL_REF)
2197     return compare_base_symbol_refs (x_base, y_base) != 0;
2198 
2199   if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
2200     return 0;
2201 
2202   if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
2203     return 0;
2204 
2205   return 1;
2206 }
2207 
2208 /* Return TRUE if EXPR refers to a VALUE whose uid is greater than
2209    (or equal to) that of V.  */
2210 
2211 static bool
2212 refs_newer_value_p (const_rtx expr, rtx v)
2213 {
2214   int minuid = CSELIB_VAL_PTR (v)->uid;
2215   subrtx_iterator::array_type array;
2216   FOR_EACH_SUBRTX (iter, array, expr, NONCONST)
2217     if (GET_CODE (*iter) == VALUE && CSELIB_VAL_PTR (*iter)->uid >= minuid)
2218       return true;
2219   return false;
2220 }
2221 
2222 /* Convert the address X into something we can use.  This is done by returning
2223    it unchanged unless it is a VALUE or VALUE +/- constant; for VALUE
2224    we call cselib to get a more useful rtx.  */
2225 
2226 rtx
2227 get_addr (rtx x)
2228 {
2229   cselib_val *v;
2230   struct elt_loc_list *l;
2231 
2232   if (GET_CODE (x) != VALUE)
2233     {
2234       if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
2235 	  && GET_CODE (XEXP (x, 0)) == VALUE
2236 	  && CONST_SCALAR_INT_P (XEXP (x, 1)))
2237 	{
2238 	  rtx op0 = get_addr (XEXP (x, 0));
2239 	  if (op0 != XEXP (x, 0))
2240 	    {
2241 	      if (GET_CODE (x) == PLUS
2242 		  && GET_CODE (XEXP (x, 1)) == CONST_INT)
2243 		return plus_constant (GET_MODE (x), op0, INTVAL (XEXP (x, 1)));
2244 	      return simplify_gen_binary (GET_CODE (x), GET_MODE (x),
2245 					  op0, XEXP (x, 1));
2246 	    }
2247 	}
2248       return x;
2249     }
2250   v = CSELIB_VAL_PTR (x);
2251   if (v)
2252     {
2253       bool have_equivs = cselib_have_permanent_equivalences ();
2254       if (have_equivs)
2255 	v = canonical_cselib_val (v);
2256       for (l = v->locs; l; l = l->next)
2257 	if (CONSTANT_P (l->loc))
2258 	  return l->loc;
2259       for (l = v->locs; l; l = l->next)
2260 	if (!REG_P (l->loc) && !MEM_P (l->loc)
2261 	    /* Avoid infinite recursion when potentially dealing with
2262 	       var-tracking artificial equivalences, by skipping the
2263 	       equivalences themselves, and not choosing expressions
2264 	       that refer to newer VALUEs.  */
2265 	    && (!have_equivs
2266 		|| (GET_CODE (l->loc) != VALUE
2267 		    && !refs_newer_value_p (l->loc, x))))
2268 	  return l->loc;
2269       if (have_equivs)
2270 	{
2271 	  for (l = v->locs; l; l = l->next)
2272 	    if (REG_P (l->loc)
2273 		|| (GET_CODE (l->loc) != VALUE
2274 		    && !refs_newer_value_p (l->loc, x)))
2275 	      return l->loc;
2276 	  /* Return the canonical value.  */
2277 	  return v->val_rtx;
2278 	}
2279       if (v->locs)
2280 	return v->locs->loc;
2281     }
2282   return x;
2283 }
2284 
2285 /*  Return the address of the (N_REFS + 1)th memory reference to ADDR
2286     where SIZE is the size in bytes of the memory reference.  If ADDR
2287     is not modified by the memory reference then ADDR is returned.  */
2288 
2289 static rtx
2290 addr_side_effect_eval (rtx addr, int size, int n_refs)
2291 {
2292   int offset = 0;
2293 
2294   switch (GET_CODE (addr))
2295     {
2296     case PRE_INC:
2297       offset = (n_refs + 1) * size;
2298       break;
2299     case PRE_DEC:
2300       offset = -(n_refs + 1) * size;
2301       break;
2302     case POST_INC:
2303       offset = n_refs * size;
2304       break;
2305     case POST_DEC:
2306       offset = -n_refs * size;
2307       break;
2308 
2309     default:
2310       return addr;
2311     }
2312 
2313   if (offset)
2314     addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
2315 			 gen_int_mode (offset, GET_MODE (addr)));
2316   else
2317     addr = XEXP (addr, 0);
2318   addr = canon_rtx (addr);
2319 
2320   return addr;
2321 }
2322 
2323 /* Return TRUE if an object X sized at XSIZE bytes and another object
2324    Y sized at YSIZE bytes, starting C bytes after X, may overlap.  If
2325    any of the sizes is zero, assume an overlap, otherwise use the
2326    absolute value of the sizes as the actual sizes.  */
2327 
2328 static inline bool
2329 offset_overlap_p (HOST_WIDE_INT c, int xsize, int ysize)
2330 {
2331   return (xsize == 0 || ysize == 0
2332 	  || (c >= 0
2333 	      ? (abs (xsize) > c)
2334 	      : (abs (ysize) > -c)));
2335 }
2336 
2337 /* Return one if X and Y (memory addresses) reference the
2338    same location in memory or if the references overlap.
2339    Return zero if they do not overlap, else return
2340    minus one in which case they still might reference the same location.
2341 
2342    C is an offset accumulator.  When
2343    C is nonzero, we are testing aliases between X and Y + C.
2344    XSIZE is the size in bytes of the X reference,
2345    similarly YSIZE is the size in bytes for Y.
2346    Expect that canon_rtx has been already called for X and Y.
2347 
2348    If XSIZE or YSIZE is zero, we do not know the amount of memory being
2349    referenced (the reference was BLKmode), so make the most pessimistic
2350    assumptions.
2351 
2352    If XSIZE or YSIZE is negative, we may access memory outside the object
2353    being referenced as a side effect.  This can happen when using AND to
2354    align memory references, as is done on the Alpha.
2355 
2356    Nice to notice that varying addresses cannot conflict with fp if no
2357    local variables had their addresses taken, but that's too hard now.
2358 
2359    ???  Contrary to the tree alias oracle this does not return
2360    one for X + non-constant and Y + non-constant when X and Y are equal.
2361    If that is fixed the TBAA hack for union type-punning can be removed.  */
2362 
2363 static int
2364 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
2365 {
2366   if (GET_CODE (x) == VALUE)
2367     {
2368       if (REG_P (y))
2369 	{
2370 	  struct elt_loc_list *l = NULL;
2371 	  if (CSELIB_VAL_PTR (x))
2372 	    for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
2373 		 l; l = l->next)
2374 	      if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
2375 		break;
2376 	  if (l)
2377 	    x = y;
2378 	  else
2379 	    x = get_addr (x);
2380 	}
2381       /* Don't call get_addr if y is the same VALUE.  */
2382       else if (x != y)
2383 	x = get_addr (x);
2384     }
2385   if (GET_CODE (y) == VALUE)
2386     {
2387       if (REG_P (x))
2388 	{
2389 	  struct elt_loc_list *l = NULL;
2390 	  if (CSELIB_VAL_PTR (y))
2391 	    for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
2392 		 l; l = l->next)
2393 	      if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
2394 		break;
2395 	  if (l)
2396 	    y = x;
2397 	  else
2398 	    y = get_addr (y);
2399 	}
2400       /* Don't call get_addr if x is the same VALUE.  */
2401       else if (y != x)
2402 	y = get_addr (y);
2403     }
2404   if (GET_CODE (x) == HIGH)
2405     x = XEXP (x, 0);
2406   else if (GET_CODE (x) == LO_SUM)
2407     x = XEXP (x, 1);
2408   else
2409     x = addr_side_effect_eval (x, abs (xsize), 0);
2410   if (GET_CODE (y) == HIGH)
2411     y = XEXP (y, 0);
2412   else if (GET_CODE (y) == LO_SUM)
2413     y = XEXP (y, 1);
2414   else
2415     y = addr_side_effect_eval (y, abs (ysize), 0);
2416 
2417   if (GET_CODE (x) == SYMBOL_REF && GET_CODE (y) == SYMBOL_REF)
2418     {
2419       int cmp = compare_base_symbol_refs (x,y);
2420 
2421       /* If both decls are the same, decide by offsets.  */
2422       if (cmp == 1)
2423         return offset_overlap_p (c, xsize, ysize);
2424       /* Assume a potential overlap for symbolic addresses that went
2425 	 through alignment adjustments (i.e., that have negative
2426 	 sizes), because we can't know how far they are from each
2427 	 other.  */
2428       if (xsize < 0 || ysize < 0)
2429 	return -1;
2430       /* If decls are different or we know by offsets that there is no overlap,
2431 	 we win.  */
2432       if (!cmp || !offset_overlap_p (c, xsize, ysize))
2433 	return 0;
2434       /* Decls may or may not be different and offsets overlap....*/
2435       return -1;
2436     }
2437   else if (rtx_equal_for_memref_p (x, y))
2438     {
2439       return offset_overlap_p (c, xsize, ysize);
2440     }
2441 
2442   /* This code used to check for conflicts involving stack references and
2443      globals but the base address alias code now handles these cases.  */
2444 
2445   if (GET_CODE (x) == PLUS)
2446     {
2447       /* The fact that X is canonicalized means that this
2448 	 PLUS rtx is canonicalized.  */
2449       rtx x0 = XEXP (x, 0);
2450       rtx x1 = XEXP (x, 1);
2451 
2452       /* However, VALUEs might end up in different positions even in
2453 	 canonical PLUSes.  Comparing their addresses is enough.  */
2454       if (x0 == y)
2455 	return memrefs_conflict_p (xsize, x1, ysize, const0_rtx, c);
2456       else if (x1 == y)
2457 	return memrefs_conflict_p (xsize, x0, ysize, const0_rtx, c);
2458 
2459       if (GET_CODE (y) == PLUS)
2460 	{
2461 	  /* The fact that Y is canonicalized means that this
2462 	     PLUS rtx is canonicalized.  */
2463 	  rtx y0 = XEXP (y, 0);
2464 	  rtx y1 = XEXP (y, 1);
2465 
2466 	  if (x0 == y1)
2467 	    return memrefs_conflict_p (xsize, x1, ysize, y0, c);
2468 	  if (x1 == y0)
2469 	    return memrefs_conflict_p (xsize, x0, ysize, y1, c);
2470 
2471 	  if (rtx_equal_for_memref_p (x1, y1))
2472 	    return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2473 	  if (rtx_equal_for_memref_p (x0, y0))
2474 	    return memrefs_conflict_p (xsize, x1, ysize, y1, c);
2475 	  if (CONST_INT_P (x1))
2476 	    {
2477 	      if (CONST_INT_P (y1))
2478 		return memrefs_conflict_p (xsize, x0, ysize, y0,
2479 					   c - INTVAL (x1) + INTVAL (y1));
2480 	      else
2481 		return memrefs_conflict_p (xsize, x0, ysize, y,
2482 					   c - INTVAL (x1));
2483 	    }
2484 	  else if (CONST_INT_P (y1))
2485 	    return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2486 
2487 	  return -1;
2488 	}
2489       else if (CONST_INT_P (x1))
2490 	return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
2491     }
2492   else if (GET_CODE (y) == PLUS)
2493     {
2494       /* The fact that Y is canonicalized means that this
2495 	 PLUS rtx is canonicalized.  */
2496       rtx y0 = XEXP (y, 0);
2497       rtx y1 = XEXP (y, 1);
2498 
2499       if (x == y0)
2500 	return memrefs_conflict_p (xsize, const0_rtx, ysize, y1, c);
2501       if (x == y1)
2502 	return memrefs_conflict_p (xsize, const0_rtx, ysize, y0, c);
2503 
2504       if (CONST_INT_P (y1))
2505 	return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2506       else
2507 	return -1;
2508     }
2509 
2510   if (GET_CODE (x) == GET_CODE (y))
2511     switch (GET_CODE (x))
2512       {
2513       case MULT:
2514 	{
2515 	  /* Handle cases where we expect the second operands to be the
2516 	     same, and check only whether the first operand would conflict
2517 	     or not.  */
2518 	  rtx x0, y0;
2519 	  rtx x1 = canon_rtx (XEXP (x, 1));
2520 	  rtx y1 = canon_rtx (XEXP (y, 1));
2521 	  if (! rtx_equal_for_memref_p (x1, y1))
2522 	    return -1;
2523 	  x0 = canon_rtx (XEXP (x, 0));
2524 	  y0 = canon_rtx (XEXP (y, 0));
2525 	  if (rtx_equal_for_memref_p (x0, y0))
2526 	    return offset_overlap_p (c, xsize, ysize);
2527 
2528 	  /* Can't properly adjust our sizes.  */
2529 	  if (!CONST_INT_P (x1))
2530 	    return -1;
2531 	  xsize /= INTVAL (x1);
2532 	  ysize /= INTVAL (x1);
2533 	  c /= INTVAL (x1);
2534 	  return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2535 	}
2536 
2537       default:
2538 	break;
2539       }
2540 
2541   /* Deal with alignment ANDs by adjusting offset and size so as to
2542      cover the maximum range, without taking any previously known
2543      alignment into account.  Make a size negative after such an
2544      adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2545      assume a potential overlap, because they may end up in contiguous
2546      memory locations and the stricter-alignment access may span over
2547      part of both.  */
2548   if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2549     {
2550       HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2551       unsigned HOST_WIDE_INT uc = sc;
2552       if (sc < 0 && pow2_or_zerop (-uc))
2553 	{
2554 	  if (xsize > 0)
2555 	    xsize = -xsize;
2556 	  if (xsize)
2557 	    xsize += sc + 1;
2558 	  c -= sc + 1;
2559 	  return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2560 				     ysize, y, c);
2561 	}
2562     }
2563   if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2564     {
2565       HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2566       unsigned HOST_WIDE_INT uc = sc;
2567       if (sc < 0 && pow2_or_zerop (-uc))
2568 	{
2569 	  if (ysize > 0)
2570 	    ysize = -ysize;
2571 	  if (ysize)
2572 	    ysize += sc + 1;
2573 	  c += sc + 1;
2574 	  return memrefs_conflict_p (xsize, x,
2575 				     ysize, canon_rtx (XEXP (y, 0)), c);
2576 	}
2577     }
2578 
2579   if (CONSTANT_P (x))
2580     {
2581       if (CONST_INT_P (x) && CONST_INT_P (y))
2582 	{
2583 	  c += (INTVAL (y) - INTVAL (x));
2584 	  return offset_overlap_p (c, xsize, ysize);
2585 	}
2586 
2587       if (GET_CODE (x) == CONST)
2588 	{
2589 	  if (GET_CODE (y) == CONST)
2590 	    return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2591 				       ysize, canon_rtx (XEXP (y, 0)), c);
2592 	  else
2593 	    return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2594 				       ysize, y, c);
2595 	}
2596       if (GET_CODE (y) == CONST)
2597 	return memrefs_conflict_p (xsize, x, ysize,
2598 				   canon_rtx (XEXP (y, 0)), c);
2599 
2600       /* Assume a potential overlap for symbolic addresses that went
2601 	 through alignment adjustments (i.e., that have negative
2602 	 sizes), because we can't know how far they are from each
2603 	 other.  */
2604       if (CONSTANT_P (y))
2605 	return (xsize < 0 || ysize < 0 || offset_overlap_p (c, xsize, ysize));
2606 
2607       return -1;
2608     }
2609 
2610   return -1;
2611 }
2612 
2613 /* Functions to compute memory dependencies.
2614 
2615    Since we process the insns in execution order, we can build tables
2616    to keep track of what registers are fixed (and not aliased), what registers
2617    are varying in known ways, and what registers are varying in unknown
2618    ways.
2619 
2620    If both memory references are volatile, then there must always be a
2621    dependence between the two references, since their order can not be
2622    changed.  A volatile and non-volatile reference can be interchanged
2623    though.
2624 
2625    We also must allow AND addresses, because they may generate accesses
2626    outside the object being referenced.  This is used to generate aligned
2627    addresses from unaligned addresses, for instance, the alpha
2628    storeqi_unaligned pattern.  */
2629 
2630 /* Read dependence: X is read after read in MEM takes place.  There can
2631    only be a dependence here if both reads are volatile, or if either is
2632    an explicit barrier.  */
2633 
2634 int
2635 read_dependence (const_rtx mem, const_rtx x)
2636 {
2637   if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2638     return true;
2639   if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2640       || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2641     return true;
2642   return false;
2643 }
2644 
2645 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it.  */
2646 
2647 static tree
2648 decl_for_component_ref (tree x)
2649 {
2650   do
2651     {
2652       x = TREE_OPERAND (x, 0);
2653     }
2654   while (x && TREE_CODE (x) == COMPONENT_REF);
2655 
2656   return x && DECL_P (x) ? x : NULL_TREE;
2657 }
2658 
2659 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2660    for the offset of the field reference.  *KNOWN_P says whether the
2661    offset is known.  */
2662 
2663 static void
2664 adjust_offset_for_component_ref (tree x, bool *known_p,
2665 				 HOST_WIDE_INT *offset)
2666 {
2667   if (!*known_p)
2668     return;
2669   do
2670     {
2671       tree xoffset = component_ref_field_offset (x);
2672       tree field = TREE_OPERAND (x, 1);
2673       if (TREE_CODE (xoffset) != INTEGER_CST)
2674 	{
2675 	  *known_p = false;
2676 	  return;
2677 	}
2678 
2679       offset_int woffset
2680 	= (wi::to_offset (xoffset)
2681 	   + (wi::to_offset (DECL_FIELD_BIT_OFFSET (field))
2682 	      >> LOG2_BITS_PER_UNIT));
2683       if (!wi::fits_uhwi_p (woffset))
2684 	{
2685 	  *known_p = false;
2686 	  return;
2687 	}
2688       *offset += woffset.to_uhwi ();
2689 
2690       x = TREE_OPERAND (x, 0);
2691     }
2692   while (x && TREE_CODE (x) == COMPONENT_REF);
2693 }
2694 
2695 /* Return nonzero if we can determine the exprs corresponding to memrefs
2696    X and Y and they do not overlap.
2697    If LOOP_VARIANT is set, skip offset-based disambiguation */
2698 
2699 int
2700 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2701 {
2702   tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2703   rtx rtlx, rtly;
2704   rtx basex, basey;
2705   bool moffsetx_known_p, moffsety_known_p;
2706   HOST_WIDE_INT moffsetx = 0, moffsety = 0;
2707   HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey;
2708 
2709   /* Unless both have exprs, we can't tell anything.  */
2710   if (exprx == 0 || expry == 0)
2711     return 0;
2712 
2713   /* For spill-slot accesses make sure we have valid offsets.  */
2714   if ((exprx == get_spill_slot_decl (false)
2715        && ! MEM_OFFSET_KNOWN_P (x))
2716       || (expry == get_spill_slot_decl (false)
2717 	  && ! MEM_OFFSET_KNOWN_P (y)))
2718     return 0;
2719 
2720   /* If the field reference test failed, look at the DECLs involved.  */
2721   moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2722   if (moffsetx_known_p)
2723     moffsetx = MEM_OFFSET (x);
2724   if (TREE_CODE (exprx) == COMPONENT_REF)
2725     {
2726       tree t = decl_for_component_ref (exprx);
2727       if (! t)
2728 	return 0;
2729       adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2730       exprx = t;
2731     }
2732 
2733   moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2734   if (moffsety_known_p)
2735     moffsety = MEM_OFFSET (y);
2736   if (TREE_CODE (expry) == COMPONENT_REF)
2737     {
2738       tree t = decl_for_component_ref (expry);
2739       if (! t)
2740 	return 0;
2741       adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2742       expry = t;
2743     }
2744 
2745   if (! DECL_P (exprx) || ! DECL_P (expry))
2746     return 0;
2747 
2748   /* If we refer to different gimple registers, or one gimple register
2749      and one non-gimple-register, we know they can't overlap.  First,
2750      gimple registers don't have their addresses taken.  Now, there
2751      could be more than one stack slot for (different versions of) the
2752      same gimple register, but we can presumably tell they don't
2753      overlap based on offsets from stack base addresses elsewhere.
2754      It's important that we don't proceed to DECL_RTL, because gimple
2755      registers may not pass DECL_RTL_SET_P, and make_decl_rtl won't be
2756      able to do anything about them since no SSA information will have
2757      remained to guide it.  */
2758   if (is_gimple_reg (exprx) || is_gimple_reg (expry))
2759     return exprx != expry
2760       || (moffsetx_known_p && moffsety_known_p
2761 	  && MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y)
2762 	  && !offset_overlap_p (moffsety - moffsetx,
2763 				MEM_SIZE (x), MEM_SIZE (y)));
2764 
2765   /* With invalid code we can end up storing into the constant pool.
2766      Bail out to avoid ICEing when creating RTL for this.
2767      See gfortran.dg/lto/20091028-2_0.f90.  */
2768   if (TREE_CODE (exprx) == CONST_DECL
2769       || TREE_CODE (expry) == CONST_DECL)
2770     return 1;
2771 
2772   /* If one decl is known to be a function or label in a function and
2773      the other is some kind of data, they can't overlap.  */
2774   if ((TREE_CODE (exprx) == FUNCTION_DECL
2775        || TREE_CODE (exprx) == LABEL_DECL)
2776       != (TREE_CODE (expry) == FUNCTION_DECL
2777 	  || TREE_CODE (expry) == LABEL_DECL))
2778     return 1;
2779 
2780   /* If either of the decls doesn't have DECL_RTL set (e.g. marked as
2781      living in multiple places), we can't tell anything.  Exception
2782      are FUNCTION_DECLs for which we can create DECL_RTL on demand.  */
2783   if ((!DECL_RTL_SET_P (exprx) && TREE_CODE (exprx) != FUNCTION_DECL)
2784       || (!DECL_RTL_SET_P (expry) && TREE_CODE (expry) != FUNCTION_DECL))
2785     return 0;
2786 
2787   rtlx = DECL_RTL (exprx);
2788   rtly = DECL_RTL (expry);
2789 
2790   /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2791      can't overlap unless they are the same because we never reuse that part
2792      of the stack frame used for locals for spilled pseudos.  */
2793   if ((!MEM_P (rtlx) || !MEM_P (rtly))
2794       && ! rtx_equal_p (rtlx, rtly))
2795     return 1;
2796 
2797   /* If we have MEMs referring to different address spaces (which can
2798      potentially overlap), we cannot easily tell from the addresses
2799      whether the references overlap.  */
2800   if (MEM_P (rtlx) && MEM_P (rtly)
2801       && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2802     return 0;
2803 
2804   /* Get the base and offsets of both decls.  If either is a register, we
2805      know both are and are the same, so use that as the base.  The only
2806      we can avoid overlap is if we can deduce that they are nonoverlapping
2807      pieces of that decl, which is very rare.  */
2808   basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2809   if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
2810     offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2811 
2812   basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2813   if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
2814     offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2815 
2816   /* If the bases are different, we know they do not overlap if both
2817      are constants or if one is a constant and the other a pointer into the
2818      stack frame.  Otherwise a different base means we can't tell if they
2819      overlap or not.  */
2820   if (compare_base_decls (exprx, expry) == 0)
2821     return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2822 	    || (CONSTANT_P (basex) && REG_P (basey)
2823 		&& REGNO_PTR_FRAME_P (REGNO (basey)))
2824 	    || (CONSTANT_P (basey) && REG_P (basex)
2825 		&& REGNO_PTR_FRAME_P (REGNO (basex))));
2826 
2827   /* Offset based disambiguation not appropriate for loop invariant */
2828   if (loop_invariant)
2829     return 0;
2830 
2831   /* Offset based disambiguation is OK even if we do not know that the
2832      declarations are necessarily different
2833     (i.e. compare_base_decls (exprx, expry) == -1)  */
2834 
2835   sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2836 	   : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
2837 	   : -1);
2838   sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2839 	   : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2840 	   : -1);
2841 
2842   /* If we have an offset for either memref, it can update the values computed
2843      above.  */
2844   if (moffsetx_known_p)
2845     offsetx += moffsetx, sizex -= moffsetx;
2846   if (moffsety_known_p)
2847     offsety += moffsety, sizey -= moffsety;
2848 
2849   /* If a memref has both a size and an offset, we can use the smaller size.
2850      We can't do this if the offset isn't known because we must view this
2851      memref as being anywhere inside the DECL's MEM.  */
2852   if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
2853     sizex = MEM_SIZE (x);
2854   if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
2855     sizey = MEM_SIZE (y);
2856 
2857   /* Put the values of the memref with the lower offset in X's values.  */
2858   if (offsetx > offsety)
2859     {
2860       std::swap (offsetx, offsety);
2861       std::swap (sizex, sizey);
2862     }
2863 
2864   /* If we don't know the size of the lower-offset value, we can't tell
2865      if they conflict.  Otherwise, we do the test.  */
2866   return sizex >= 0 && offsety >= offsetx + sizex;
2867 }
2868 
2869 /* Helper for true_dependence and canon_true_dependence.
2870    Checks for true dependence: X is read after store in MEM takes place.
2871 
2872    If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2873    NULL_RTX, and the canonical addresses of MEM and X are both computed
2874    here.  If MEM_CANONICALIZED, then MEM must be already canonicalized.
2875 
2876    If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2877 
2878    Returns 1 if there is a true dependence, 0 otherwise.  */
2879 
2880 static int
2881 true_dependence_1 (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
2882 		   const_rtx x, rtx x_addr, bool mem_canonicalized)
2883 {
2884   rtx true_mem_addr;
2885   rtx base;
2886   int ret;
2887 
2888   gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2889 		       : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2890 
2891   if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2892     return 1;
2893 
2894   /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2895      This is used in epilogue deallocation functions, and in cselib.  */
2896   if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2897     return 1;
2898   if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2899     return 1;
2900   if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2901       || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2902     return 1;
2903 
2904   if (! x_addr)
2905     x_addr = XEXP (x, 0);
2906   x_addr = get_addr (x_addr);
2907 
2908   if (! mem_addr)
2909     {
2910       mem_addr = XEXP (mem, 0);
2911       if (mem_mode == VOIDmode)
2912 	mem_mode = GET_MODE (mem);
2913     }
2914   true_mem_addr = get_addr (mem_addr);
2915 
2916   /* Read-only memory is by definition never modified, and therefore can't
2917      conflict with anything.  However, don't assume anything when AND
2918      addresses are involved and leave to the code below to determine
2919      dependence.  We don't expect to find read-only set on MEM, but
2920      stupid user tricks can produce them, so don't die.  */
2921   if (MEM_READONLY_P (x)
2922       && GET_CODE (x_addr) != AND
2923       && GET_CODE (true_mem_addr) != AND)
2924     return 0;
2925 
2926   /* If we have MEMs referring to different address spaces (which can
2927      potentially overlap), we cannot easily tell from the addresses
2928      whether the references overlap.  */
2929   if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2930     return 1;
2931 
2932   base = find_base_term (x_addr);
2933   if (base && (GET_CODE (base) == LABEL_REF
2934 	       || (GET_CODE (base) == SYMBOL_REF
2935 		   && CONSTANT_POOL_ADDRESS_P (base))))
2936     return 0;
2937 
2938   rtx mem_base = find_base_term (true_mem_addr);
2939   if (! base_alias_check (x_addr, base, true_mem_addr, mem_base,
2940 			  GET_MODE (x), mem_mode))
2941     return 0;
2942 
2943   x_addr = canon_rtx (x_addr);
2944   if (!mem_canonicalized)
2945     mem_addr = canon_rtx (true_mem_addr);
2946 
2947   if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2948 				 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2949     return ret;
2950 
2951   if (mems_in_disjoint_alias_sets_p (x, mem))
2952     return 0;
2953 
2954   if (nonoverlapping_memrefs_p (mem, x, false))
2955     return 0;
2956 
2957   return rtx_refs_may_alias_p (x, mem, true);
2958 }
2959 
2960 /* True dependence: X is read after store in MEM takes place.  */
2961 
2962 int
2963 true_dependence (const_rtx mem, machine_mode mem_mode, const_rtx x)
2964 {
2965   return true_dependence_1 (mem, mem_mode, NULL_RTX,
2966 			    x, NULL_RTX, /*mem_canonicalized=*/false);
2967 }
2968 
2969 /* Canonical true dependence: X is read after store in MEM takes place.
2970    Variant of true_dependence which assumes MEM has already been
2971    canonicalized (hence we no longer do that here).
2972    The mem_addr argument has been added, since true_dependence_1 computed
2973    this value prior to canonicalizing.  */
2974 
2975 int
2976 canon_true_dependence (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
2977 		       const_rtx x, rtx x_addr)
2978 {
2979   return true_dependence_1 (mem, mem_mode, mem_addr,
2980 			    x, x_addr, /*mem_canonicalized=*/true);
2981 }
2982 
2983 /* Returns nonzero if a write to X might alias a previous read from
2984    (or, if WRITEP is true, a write to) MEM.
2985    If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
2986    and X_MODE the mode for that access.
2987    If MEM_CANONICALIZED is true, MEM is canonicalized.  */
2988 
2989 static int
2990 write_dependence_p (const_rtx mem,
2991 		    const_rtx x, machine_mode x_mode, rtx x_addr,
2992 		    bool mem_canonicalized, bool x_canonicalized, bool writep)
2993 {
2994   rtx mem_addr;
2995   rtx true_mem_addr, true_x_addr;
2996   rtx base;
2997   int ret;
2998 
2999   gcc_checking_assert (x_canonicalized
3000 		       ? (x_addr != NULL_RTX
3001 			  && (x_mode != VOIDmode || GET_MODE (x) == VOIDmode))
3002 		       : (x_addr == NULL_RTX && x_mode == VOIDmode));
3003 
3004   if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3005     return 1;
3006 
3007   /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3008      This is used in epilogue deallocation functions.  */
3009   if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3010     return 1;
3011   if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3012     return 1;
3013   if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3014       || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3015     return 1;
3016 
3017   if (!x_addr)
3018     x_addr = XEXP (x, 0);
3019   true_x_addr = get_addr (x_addr);
3020 
3021   mem_addr = XEXP (mem, 0);
3022   true_mem_addr = get_addr (mem_addr);
3023 
3024   /* A read from read-only memory can't conflict with read-write memory.
3025      Don't assume anything when AND addresses are involved and leave to
3026      the code below to determine dependence.  */
3027   if (!writep
3028       && MEM_READONLY_P (mem)
3029       && GET_CODE (true_x_addr) != AND
3030       && GET_CODE (true_mem_addr) != AND)
3031     return 0;
3032 
3033   /* If we have MEMs referring to different address spaces (which can
3034      potentially overlap), we cannot easily tell from the addresses
3035      whether the references overlap.  */
3036   if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3037     return 1;
3038 
3039   base = find_base_term (true_mem_addr);
3040   if (! writep
3041       && base
3042       && (GET_CODE (base) == LABEL_REF
3043 	  || (GET_CODE (base) == SYMBOL_REF
3044 	      && CONSTANT_POOL_ADDRESS_P (base))))
3045     return 0;
3046 
3047   rtx x_base = find_base_term (true_x_addr);
3048   if (! base_alias_check (true_x_addr, x_base, true_mem_addr, base,
3049 			  GET_MODE (x), GET_MODE (mem)))
3050     return 0;
3051 
3052   if (!x_canonicalized)
3053     {
3054       x_addr = canon_rtx (true_x_addr);
3055       x_mode = GET_MODE (x);
3056     }
3057   if (!mem_canonicalized)
3058     mem_addr = canon_rtx (true_mem_addr);
3059 
3060   if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
3061 				 GET_MODE_SIZE (x_mode), x_addr, 0)) != -1)
3062     return ret;
3063 
3064   if (nonoverlapping_memrefs_p (x, mem, false))
3065     return 0;
3066 
3067   return rtx_refs_may_alias_p (x, mem, false);
3068 }
3069 
3070 /* Anti dependence: X is written after read in MEM takes place.  */
3071 
3072 int
3073 anti_dependence (const_rtx mem, const_rtx x)
3074 {
3075   return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3076 			     /*mem_canonicalized=*/false,
3077 			     /*x_canonicalized*/false, /*writep=*/false);
3078 }
3079 
3080 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3081    Also, consider X in X_MODE (which might be from an enclosing
3082    STRICT_LOW_PART / ZERO_EXTRACT).
3083    If MEM_CANONICALIZED is true, MEM is canonicalized.  */
3084 
3085 int
3086 canon_anti_dependence (const_rtx mem, bool mem_canonicalized,
3087 		       const_rtx x, machine_mode x_mode, rtx x_addr)
3088 {
3089   return write_dependence_p (mem, x, x_mode, x_addr,
3090 			     mem_canonicalized, /*x_canonicalized=*/true,
3091 			     /*writep=*/false);
3092 }
3093 
3094 /* Output dependence: X is written after store in MEM takes place.  */
3095 
3096 int
3097 output_dependence (const_rtx mem, const_rtx x)
3098 {
3099   return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3100 			     /*mem_canonicalized=*/false,
3101 			     /*x_canonicalized*/false, /*writep=*/true);
3102 }
3103 
3104 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3105    Also, consider X in X_MODE (which might be from an enclosing
3106    STRICT_LOW_PART / ZERO_EXTRACT).
3107    If MEM_CANONICALIZED is true, MEM is canonicalized.  */
3108 
3109 int
3110 canon_output_dependence (const_rtx mem, bool mem_canonicalized,
3111 			 const_rtx x, machine_mode x_mode, rtx x_addr)
3112 {
3113   return write_dependence_p (mem, x, x_mode, x_addr,
3114 			     mem_canonicalized, /*x_canonicalized=*/true,
3115 			     /*writep=*/true);
3116 }
3117 
3118 
3119 
3120 /* Check whether X may be aliased with MEM.  Don't do offset-based
3121   memory disambiguation & TBAA.  */
3122 int
3123 may_alias_p (const_rtx mem, const_rtx x)
3124 {
3125   rtx x_addr, mem_addr;
3126 
3127   if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3128     return 1;
3129 
3130   /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3131      This is used in epilogue deallocation functions.  */
3132   if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3133     return 1;
3134   if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3135     return 1;
3136   if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3137       || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3138     return 1;
3139 
3140   x_addr = XEXP (x, 0);
3141   x_addr = get_addr (x_addr);
3142 
3143   mem_addr = XEXP (mem, 0);
3144   mem_addr = get_addr (mem_addr);
3145 
3146   /* Read-only memory is by definition never modified, and therefore can't
3147      conflict with anything.  However, don't assume anything when AND
3148      addresses are involved and leave to the code below to determine
3149      dependence.  We don't expect to find read-only set on MEM, but
3150      stupid user tricks can produce them, so don't die.  */
3151   if (MEM_READONLY_P (x)
3152       && GET_CODE (x_addr) != AND
3153       && GET_CODE (mem_addr) != AND)
3154     return 0;
3155 
3156   /* If we have MEMs referring to different address spaces (which can
3157      potentially overlap), we cannot easily tell from the addresses
3158      whether the references overlap.  */
3159   if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3160     return 1;
3161 
3162   rtx x_base = find_base_term (x_addr);
3163   rtx mem_base = find_base_term (mem_addr);
3164   if (! base_alias_check (x_addr, x_base, mem_addr, mem_base,
3165 			  GET_MODE (x), GET_MODE (mem_addr)))
3166     return 0;
3167 
3168   if (nonoverlapping_memrefs_p (mem, x, true))
3169     return 0;
3170 
3171   /* TBAA not valid for loop_invarint */
3172   return rtx_refs_may_alias_p (x, mem, false);
3173 }
3174 
3175 void
3176 init_alias_target (void)
3177 {
3178   int i;
3179 
3180   if (!arg_base_value)
3181     arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
3182 
3183   memset (static_reg_base_value, 0, sizeof static_reg_base_value);
3184 
3185   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3186     /* Check whether this register can hold an incoming pointer
3187        argument.  FUNCTION_ARG_REGNO_P tests outgoing register
3188        numbers, so translate if necessary due to register windows.  */
3189     if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
3190 	&& HARD_REGNO_MODE_OK (i, Pmode))
3191       static_reg_base_value[i] = arg_base_value;
3192 
3193   static_reg_base_value[STACK_POINTER_REGNUM]
3194     = unique_base_value (UNIQUE_BASE_VALUE_SP);
3195   static_reg_base_value[ARG_POINTER_REGNUM]
3196     = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
3197   static_reg_base_value[FRAME_POINTER_REGNUM]
3198     = unique_base_value (UNIQUE_BASE_VALUE_FP);
3199   if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
3200     static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
3201       = unique_base_value (UNIQUE_BASE_VALUE_HFP);
3202 }
3203 
3204 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
3205    to be memory reference.  */
3206 static bool memory_modified;
3207 static void
3208 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3209 {
3210   if (MEM_P (x))
3211     {
3212       if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
3213 	memory_modified = true;
3214     }
3215 }
3216 
3217 
3218 /* Return true when INSN possibly modify memory contents of MEM
3219    (i.e. address can be modified).  */
3220 bool
3221 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
3222 {
3223   if (!INSN_P (insn))
3224     return false;
3225   memory_modified = false;
3226   note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
3227   return memory_modified;
3228 }
3229 
3230 /* Return TRUE if the destination of a set is rtx identical to
3231    ITEM.  */
3232 static inline bool
3233 set_dest_equal_p (const_rtx set, const_rtx item)
3234 {
3235   rtx dest = SET_DEST (set);
3236   return rtx_equal_p (dest, item);
3237 }
3238 
3239 /* Initialize the aliasing machinery.  Initialize the REG_KNOWN_VALUE
3240    array.  */
3241 
3242 void
3243 init_alias_analysis (void)
3244 {
3245   unsigned int maxreg = max_reg_num ();
3246   int changed, pass;
3247   int i;
3248   unsigned int ui;
3249   rtx_insn *insn;
3250   rtx val;
3251   int rpo_cnt;
3252   int *rpo;
3253 
3254   timevar_push (TV_ALIAS_ANALYSIS);
3255 
3256   vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER);
3257   reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
3258   bitmap_clear (reg_known_equiv_p);
3259 
3260   /* If we have memory allocated from the previous run, use it.  */
3261   if (old_reg_base_value)
3262     reg_base_value = old_reg_base_value;
3263 
3264   if (reg_base_value)
3265     reg_base_value->truncate (0);
3266 
3267   vec_safe_grow_cleared (reg_base_value, maxreg);
3268 
3269   new_reg_base_value = XNEWVEC (rtx, maxreg);
3270   reg_seen = sbitmap_alloc (maxreg);
3271 
3272   /* The basic idea is that each pass through this loop will use the
3273      "constant" information from the previous pass to propagate alias
3274      information through another level of assignments.
3275 
3276      The propagation is done on the CFG in reverse post-order, to propagate
3277      things forward as far as possible in each iteration.
3278 
3279      This could get expensive if the assignment chains are long.  Maybe
3280      we should throttle the number of iterations, possibly based on
3281      the optimization level or flag_expensive_optimizations.
3282 
3283      We could propagate more information in the first pass by making use
3284      of DF_REG_DEF_COUNT to determine immediately that the alias information
3285      for a pseudo is "constant".
3286 
3287      A program with an uninitialized variable can cause an infinite loop
3288      here.  Instead of doing a full dataflow analysis to detect such problems
3289      we just cap the number of iterations for the loop.
3290 
3291      The state of the arrays for the set chain in question does not matter
3292      since the program has undefined behavior.  */
3293 
3294   rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
3295   rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
3296 
3297   /* The prologue/epilogue insns are not threaded onto the
3298      insn chain until after reload has completed.  Thus,
3299      there is no sense wasting time checking if INSN is in
3300      the prologue/epilogue until after reload has completed.  */
3301   bool could_be_prologue_epilogue = ((targetm.have_prologue ()
3302 				      || targetm.have_epilogue ())
3303 				     && reload_completed);
3304 
3305   pass = 0;
3306   do
3307     {
3308       /* Assume nothing will change this iteration of the loop.  */
3309       changed = 0;
3310 
3311       /* We want to assign the same IDs each iteration of this loop, so
3312 	 start counting from one each iteration of the loop.  */
3313       unique_id = 1;
3314 
3315       /* We're at the start of the function each iteration through the
3316 	 loop, so we're copying arguments.  */
3317       copying_arguments = true;
3318 
3319       /* Wipe the potential alias information clean for this pass.  */
3320       memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
3321 
3322       /* Wipe the reg_seen array clean.  */
3323       bitmap_clear (reg_seen);
3324 
3325       /* Initialize the alias information for this pass.  */
3326       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3327 	if (static_reg_base_value[i])
3328 	  {
3329 	    new_reg_base_value[i] = static_reg_base_value[i];
3330 	    bitmap_set_bit (reg_seen, i);
3331 	  }
3332 
3333       /* Walk the insns adding values to the new_reg_base_value array.  */
3334       for (i = 0; i < rpo_cnt; i++)
3335 	{
3336 	  basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
3337 	  FOR_BB_INSNS (bb, insn)
3338 	    {
3339 	      if (NONDEBUG_INSN_P (insn))
3340 		{
3341 		  rtx note, set;
3342 
3343 		  if (could_be_prologue_epilogue
3344 		      && prologue_epilogue_contains (insn))
3345 		    continue;
3346 
3347 		  /* If this insn has a noalias note, process it,  Otherwise,
3348 		     scan for sets.  A simple set will have no side effects
3349 		     which could change the base value of any other register.  */
3350 
3351 		  if (GET_CODE (PATTERN (insn)) == SET
3352 		      && REG_NOTES (insn) != 0
3353 		      && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
3354 		    record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
3355 		  else
3356 		    note_stores (PATTERN (insn), record_set, NULL);
3357 
3358 		  set = single_set (insn);
3359 
3360 		  if (set != 0
3361 		      && REG_P (SET_DEST (set))
3362 		      && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3363 		    {
3364 		      unsigned int regno = REGNO (SET_DEST (set));
3365 		      rtx src = SET_SRC (set);
3366 		      rtx t;
3367 
3368 		      note = find_reg_equal_equiv_note (insn);
3369 		      if (note && REG_NOTE_KIND (note) == REG_EQUAL
3370 			  && DF_REG_DEF_COUNT (regno) != 1)
3371 			note = NULL_RTX;
3372 
3373 		      if (note != NULL_RTX
3374 			  && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3375 			  && ! rtx_varies_p (XEXP (note, 0), 1)
3376 			  && ! reg_overlap_mentioned_p (SET_DEST (set),
3377 							XEXP (note, 0)))
3378 			{
3379 			  set_reg_known_value (regno, XEXP (note, 0));
3380 			  set_reg_known_equiv_p (regno,
3381 						 REG_NOTE_KIND (note) == REG_EQUIV);
3382 			}
3383 		      else if (DF_REG_DEF_COUNT (regno) == 1
3384 			       && GET_CODE (src) == PLUS
3385 			       && REG_P (XEXP (src, 0))
3386 			       && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
3387 			       && CONST_INT_P (XEXP (src, 1)))
3388 			{
3389 			  t = plus_constant (GET_MODE (src), t,
3390 					     INTVAL (XEXP (src, 1)));
3391 			  set_reg_known_value (regno, t);
3392 			  set_reg_known_equiv_p (regno, false);
3393 			}
3394 		      else if (DF_REG_DEF_COUNT (regno) == 1
3395 			       && ! rtx_varies_p (src, 1))
3396 			{
3397 			  set_reg_known_value (regno, src);
3398 			  set_reg_known_equiv_p (regno, false);
3399 			}
3400 		    }
3401 		}
3402 	      else if (NOTE_P (insn)
3403 		       && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3404 		copying_arguments = false;
3405 	    }
3406 	}
3407 
3408       /* Now propagate values from new_reg_base_value to reg_base_value.  */
3409       gcc_assert (maxreg == (unsigned int) max_reg_num ());
3410 
3411       for (ui = 0; ui < maxreg; ui++)
3412 	{
3413 	  if (new_reg_base_value[ui]
3414 	      && new_reg_base_value[ui] != (*reg_base_value)[ui]
3415 	      && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
3416 	    {
3417 	      (*reg_base_value)[ui] = new_reg_base_value[ui];
3418 	      changed = 1;
3419 	    }
3420 	}
3421     }
3422   while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
3423   XDELETEVEC (rpo);
3424 
3425   /* Fill in the remaining entries.  */
3426   FOR_EACH_VEC_ELT (*reg_known_value, i, val)
3427     {
3428       int regno = i + FIRST_PSEUDO_REGISTER;
3429       if (! val)
3430 	set_reg_known_value (regno, regno_reg_rtx[regno]);
3431     }
3432 
3433   /* Clean up.  */
3434   free (new_reg_base_value);
3435   new_reg_base_value = 0;
3436   sbitmap_free (reg_seen);
3437   reg_seen = 0;
3438   timevar_pop (TV_ALIAS_ANALYSIS);
3439 }
3440 
3441 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3442    Special API for var-tracking pass purposes.  */
3443 
3444 void
3445 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3446 {
3447   (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
3448 }
3449 
3450 void
3451 end_alias_analysis (void)
3452 {
3453   old_reg_base_value = reg_base_value;
3454   vec_free (reg_known_value);
3455   sbitmap_free (reg_known_equiv_p);
3456 }
3457 
3458 void
3459 dump_alias_stats_in_alias_c (FILE *s)
3460 {
3461   fprintf (s, "  TBAA oracle: %llu disambiguations %llu queries\n"
3462 	      "               %llu are in alias set 0\n"
3463 	      "               %llu queries asked about the same object\n"
3464 	      "               %llu queries asked about the same alias set\n"
3465 	      "               %llu access volatile\n"
3466 	      "               %llu are dependent in the DAG\n"
3467 	      "               %llu are aritificially in conflict with void *\n",
3468 	   alias_stats.num_disambiguated,
3469 	   alias_stats.num_alias_zero + alias_stats.num_same_alias_set
3470 	   + alias_stats.num_same_objects + alias_stats.num_volatile
3471 	   + alias_stats.num_dag + alias_stats.num_disambiguated
3472 	   + alias_stats.num_universal,
3473 	   alias_stats.num_alias_zero, alias_stats.num_same_alias_set,
3474 	   alias_stats.num_same_objects, alias_stats.num_volatile,
3475 	   alias_stats.num_dag, alias_stats.num_universal);
3476 }
3477 #include "gt-alias.h"
3478