xref: /netbsd-src/external/gpl3/binutils/dist/zlib/examples/zlib_how.html (revision 9573673d78c64ea1eac42d7f2e9521be89932ae5)
1*9573673dSchristos<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"
2*9573673dSchristos  "http://www.w3.org/TR/REC-html40/loose.dtd">
3*9573673dSchristos<html>
4*9573673dSchristos<head>
5*9573673dSchristos<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
6*9573673dSchristos<title>zlib Usage Example</title>
7*9573673dSchristos<!--  Copyright (c) 2004, 2005 Mark Adler.  -->
8*9573673dSchristos</head>
9*9573673dSchristos<body bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#00A000">
10*9573673dSchristos<h2 align="center"> zlib Usage Example </h2>
11*9573673dSchristosWe often get questions about how the <tt>deflate()</tt> and <tt>inflate()</tt> functions should be used.
12*9573673dSchristosUsers wonder when they should provide more input, when they should use more output,
13*9573673dSchristoswhat to do with a <tt>Z_BUF_ERROR</tt>, how to make sure the process terminates properly, and
14*9573673dSchristosso on.  So for those who have read <tt>zlib.h</tt> (a few times), and
15*9573673dSchristoswould like further edification, below is an annotated example in C of simple routines to compress and decompress
16*9573673dSchristosfrom an input file to an output file using <tt>deflate()</tt> and <tt>inflate()</tt> respectively.  The
17*9573673dSchristosannotations are interspersed between lines of the code.  So please read between the lines.
18*9573673dSchristosWe hope this helps explain some of the intricacies of <em>zlib</em>.
19*9573673dSchristos<p>
20*9573673dSchristosWithout further adieu, here is the program <a href="zpipe.c"><tt>zpipe.c</tt></a>:
21*9573673dSchristos<pre><b>
22*9573673dSchristos/* zpipe.c: example of proper use of zlib's inflate() and deflate()
23*9573673dSchristos   Not copyrighted -- provided to the public domain
24*9573673dSchristos   Version 1.4  11 December 2005  Mark Adler */
25*9573673dSchristos
26*9573673dSchristos/* Version history:
27*9573673dSchristos   1.0  30 Oct 2004  First version
28*9573673dSchristos   1.1   8 Nov 2004  Add void casting for unused return values
29*9573673dSchristos                     Use switch statement for inflate() return values
30*9573673dSchristos   1.2   9 Nov 2004  Add assertions to document zlib guarantees
31*9573673dSchristos   1.3   6 Apr 2005  Remove incorrect assertion in inf()
32*9573673dSchristos   1.4  11 Dec 2005  Add hack to avoid MSDOS end-of-line conversions
33*9573673dSchristos                     Avoid some compiler warnings for input and output buffers
34*9573673dSchristos */
35*9573673dSchristos</b></pre><!-- -->
36*9573673dSchristosWe now include the header files for the required definitions.  From
37*9573673dSchristos<tt>stdio.h</tt> we use <tt>fopen()</tt>, <tt>fread()</tt>, <tt>fwrite()</tt>,
38*9573673dSchristos<tt>feof()</tt>, <tt>ferror()</tt>, and <tt>fclose()</tt> for file i/o, and
39*9573673dSchristos<tt>fputs()</tt> for error messages.  From <tt>string.h</tt> we use
40*9573673dSchristos<tt>strcmp()</tt> for command line argument processing.
41*9573673dSchristosFrom <tt>assert.h</tt> we use the <tt>assert()</tt> macro.
42*9573673dSchristosFrom <tt>zlib.h</tt>
43*9573673dSchristoswe use the basic compression functions <tt>deflateInit()</tt>,
44*9573673dSchristos<tt>deflate()</tt>, and <tt>deflateEnd()</tt>, and the basic decompression
45*9573673dSchristosfunctions <tt>inflateInit()</tt>, <tt>inflate()</tt>, and
46*9573673dSchristos<tt>inflateEnd()</tt>.
47*9573673dSchristos<pre><b>
48*9573673dSchristos#include &lt;stdio.h&gt;
49*9573673dSchristos#include &lt;string.h&gt;
50*9573673dSchristos#include &lt;assert.h&gt;
51*9573673dSchristos#include "zlib.h"
52*9573673dSchristos</b></pre><!-- -->
53*9573673dSchristosThis is an ugly hack required to avoid corruption of the input and output data on
54*9573673dSchristosWindows/MS-DOS systems.  Without this, those systems would assume that the input and output
55*9573673dSchristosfiles are text, and try to convert the end-of-line characters from one standard to
56*9573673dSchristosanother.  That would corrupt binary data, and in particular would render the compressed data unusable.
57*9573673dSchristosThis sets the input and output to binary which suppresses the end-of-line conversions.
58*9573673dSchristos<tt>SET_BINARY_MODE()</tt> will be used later on <tt>stdin</tt> and <tt>stdout</tt>, at the beginning of <tt>main()</tt>.
59*9573673dSchristos<pre><b>
60*9573673dSchristos#if defined(MSDOS) || defined(OS2) || defined(WIN32) || defined(__CYGWIN__)
61*9573673dSchristos#  include &lt;fcntl.h&gt;
62*9573673dSchristos#  include &lt;io.h&gt;
63*9573673dSchristos#  define SET_BINARY_MODE(file) setmode(fileno(file), O_BINARY)
64*9573673dSchristos#else
65*9573673dSchristos#  define SET_BINARY_MODE(file)
66*9573673dSchristos#endif
67*9573673dSchristos</b></pre><!-- -->
68*9573673dSchristos<tt>CHUNK</tt> is simply the buffer size for feeding data to and pulling data
69*9573673dSchristosfrom the <em>zlib</em> routines.  Larger buffer sizes would be more efficient,
70*9573673dSchristosespecially for <tt>inflate()</tt>.  If the memory is available, buffers sizes
71*9573673dSchristoson the order of 128K or 256K bytes should be used.
72*9573673dSchristos<pre><b>
73*9573673dSchristos#define CHUNK 16384
74*9573673dSchristos</b></pre><!-- -->
75*9573673dSchristosThe <tt>def()</tt> routine compresses data from an input file to an output file.  The output data
76*9573673dSchristoswill be in the <em>zlib</em> format, which is different from the <em>gzip</em> or <em>zip</em>
77*9573673dSchristosformats.  The <em>zlib</em> format has a very small header of only two bytes to identify it as
78*9573673dSchristosa <em>zlib</em> stream and to provide decoding information, and a four-byte trailer with a fast
79*9573673dSchristoscheck value to verify the integrity of the uncompressed data after decoding.
80*9573673dSchristos<pre><b>
81*9573673dSchristos/* Compress from file source to file dest until EOF on source.
82*9573673dSchristos   def() returns Z_OK on success, Z_MEM_ERROR if memory could not be
83*9573673dSchristos   allocated for processing, Z_STREAM_ERROR if an invalid compression
84*9573673dSchristos   level is supplied, Z_VERSION_ERROR if the version of zlib.h and the
85*9573673dSchristos   version of the library linked do not match, or Z_ERRNO if there is
86*9573673dSchristos   an error reading or writing the files. */
87*9573673dSchristosint def(FILE *source, FILE *dest, int level)
88*9573673dSchristos{
89*9573673dSchristos</b></pre>
90*9573673dSchristosHere are the local variables for <tt>def()</tt>.  <tt>ret</tt> will be used for <em>zlib</em>
91*9573673dSchristosreturn codes.  <tt>flush</tt> will keep track of the current flushing state for <tt>deflate()</tt>,
92*9573673dSchristoswhich is either no flushing, or flush to completion after the end of the input file is reached.
93*9573673dSchristos<tt>have</tt> is the amount of data returned from <tt>deflate()</tt>.  The <tt>strm</tt> structure
94*9573673dSchristosis used to pass information to and from the <em>zlib</em> routines, and to maintain the
95*9573673dSchristos<tt>deflate()</tt> state.  <tt>in</tt> and <tt>out</tt> are the input and output buffers for
96*9573673dSchristos<tt>deflate()</tt>.
97*9573673dSchristos<pre><b>
98*9573673dSchristos    int ret, flush;
99*9573673dSchristos    unsigned have;
100*9573673dSchristos    z_stream strm;
101*9573673dSchristos    unsigned char in[CHUNK];
102*9573673dSchristos    unsigned char out[CHUNK];
103*9573673dSchristos</b></pre><!-- -->
104*9573673dSchristosThe first thing we do is to initialize the <em>zlib</em> state for compression using
105*9573673dSchristos<tt>deflateInit()</tt>.  This must be done before the first use of <tt>deflate()</tt>.
106*9573673dSchristosThe <tt>zalloc</tt>, <tt>zfree</tt>, and <tt>opaque</tt> fields in the <tt>strm</tt>
107*9573673dSchristosstructure must be initialized before calling <tt>deflateInit()</tt>.  Here they are
108*9573673dSchristosset to the <em>zlib</em> constant <tt>Z_NULL</tt> to request that <em>zlib</em> use
109*9573673dSchristosthe default memory allocation routines.  An application may also choose to provide
110*9573673dSchristoscustom memory allocation routines here.  <tt>deflateInit()</tt> will allocate on the
111*9573673dSchristosorder of 256K bytes for the internal state.
112*9573673dSchristos(See <a href="zlib_tech.html"><em>zlib Technical Details</em></a>.)
113*9573673dSchristos<p>
114*9573673dSchristos<tt>deflateInit()</tt> is called with a pointer to the structure to be initialized and
115*9573673dSchristosthe compression level, which is an integer in the range of -1 to 9.  Lower compression
116*9573673dSchristoslevels result in faster execution, but less compression.  Higher levels result in
117*9573673dSchristosgreater compression, but slower execution.  The <em>zlib</em> constant Z_DEFAULT_COMPRESSION,
118*9573673dSchristosequal to -1,
119*9573673dSchristosprovides a good compromise between compression and speed and is equivalent to level 6.
120*9573673dSchristosLevel 0 actually does no compression at all, and in fact expands the data slightly to produce
121*9573673dSchristosthe <em>zlib</em> format (it is not a byte-for-byte copy of the input).
122*9573673dSchristosMore advanced applications of <em>zlib</em>
123*9573673dSchristosmay use <tt>deflateInit2()</tt> here instead.  Such an application may want to reduce how
124*9573673dSchristosmuch memory will be used, at some price in compression.  Or it may need to request a
125*9573673dSchristos<em>gzip</em> header and trailer instead of a <em>zlib</em> header and trailer, or raw
126*9573673dSchristosencoding with no header or trailer at all.
127*9573673dSchristos<p>
128*9573673dSchristosWe must check the return value of <tt>deflateInit()</tt> against the <em>zlib</em> constant
129*9573673dSchristos<tt>Z_OK</tt> to make sure that it was able to
130*9573673dSchristosallocate memory for the internal state, and that the provided arguments were valid.
131*9573673dSchristos<tt>deflateInit()</tt> will also check that the version of <em>zlib</em> that the <tt>zlib.h</tt>
132*9573673dSchristosfile came from matches the version of <em>zlib</em> actually linked with the program.  This
133*9573673dSchristosis especially important for environments in which <em>zlib</em> is a shared library.
134*9573673dSchristos<p>
135*9573673dSchristosNote that an application can initialize multiple, independent <em>zlib</em> streams, which can
136*9573673dSchristosoperate in parallel.  The state information maintained in the structure allows the <em>zlib</em>
137*9573673dSchristosroutines to be reentrant.
138*9573673dSchristos<pre><b>
139*9573673dSchristos    /* allocate deflate state */
140*9573673dSchristos    strm.zalloc = Z_NULL;
141*9573673dSchristos    strm.zfree = Z_NULL;
142*9573673dSchristos    strm.opaque = Z_NULL;
143*9573673dSchristos    ret = deflateInit(&amp;strm, level);
144*9573673dSchristos    if (ret != Z_OK)
145*9573673dSchristos        return ret;
146*9573673dSchristos</b></pre><!-- -->
147*9573673dSchristosWith the pleasantries out of the way, now we can get down to business.  The outer <tt>do</tt>-loop
148*9573673dSchristosreads all of the input file and exits at the bottom of the loop once end-of-file is reached.
149*9573673dSchristosThis loop contains the only call of <tt>deflate()</tt>.  So we must make sure that all of the
150*9573673dSchristosinput data has been processed and that all of the output data has been generated and consumed
151*9573673dSchristosbefore we fall out of the loop at the bottom.
152*9573673dSchristos<pre><b>
153*9573673dSchristos    /* compress until end of file */
154*9573673dSchristos    do {
155*9573673dSchristos</b></pre>
156*9573673dSchristosWe start off by reading data from the input file.  The number of bytes read is put directly
157*9573673dSchristosinto <tt>avail_in</tt>, and a pointer to those bytes is put into <tt>next_in</tt>.  We also
158*9573673dSchristoscheck to see if end-of-file on the input has been reached.  If we are at the end of file, then <tt>flush</tt> is set to the
159*9573673dSchristos<em>zlib</em> constant <tt>Z_FINISH</tt>, which is later passed to <tt>deflate()</tt> to
160*9573673dSchristosindicate that this is the last chunk of input data to compress.  We need to use <tt>feof()</tt>
161*9573673dSchristosto check for end-of-file as opposed to seeing if fewer than <tt>CHUNK</tt> bytes have been read.  The
162*9573673dSchristosreason is that if the input file length is an exact multiple of <tt>CHUNK</tt>, we will miss
163*9573673dSchristosthe fact that we got to the end-of-file, and not know to tell <tt>deflate()</tt> to finish
164*9573673dSchristosup the compressed stream.  If we are not yet at the end of the input, then the <em>zlib</em>
165*9573673dSchristosconstant <tt>Z_NO_FLUSH</tt> will be passed to <tt>deflate</tt> to indicate that we are still
166*9573673dSchristosin the middle of the uncompressed data.
167*9573673dSchristos<p>
168*9573673dSchristosIf there is an error in reading from the input file, the process is aborted with
169*9573673dSchristos<tt>deflateEnd()</tt> being called to free the allocated <em>zlib</em> state before returning
170*9573673dSchristosthe error.  We wouldn't want a memory leak, now would we?  <tt>deflateEnd()</tt> can be called
171*9573673dSchristosat any time after the state has been initialized.  Once that's done, <tt>deflateInit()</tt> (or
172*9573673dSchristos<tt>deflateInit2()</tt>) would have to be called to start a new compression process.  There is
173*9573673dSchristosno point here in checking the <tt>deflateEnd()</tt> return code.  The deallocation can't fail.
174*9573673dSchristos<pre><b>
175*9573673dSchristos        strm.avail_in = fread(in, 1, CHUNK, source);
176*9573673dSchristos        if (ferror(source)) {
177*9573673dSchristos            (void)deflateEnd(&amp;strm);
178*9573673dSchristos            return Z_ERRNO;
179*9573673dSchristos        }
180*9573673dSchristos        flush = feof(source) ? Z_FINISH : Z_NO_FLUSH;
181*9573673dSchristos        strm.next_in = in;
182*9573673dSchristos</b></pre><!-- -->
183*9573673dSchristosThe inner <tt>do</tt>-loop passes our chunk of input data to <tt>deflate()</tt>, and then
184*9573673dSchristoskeeps calling <tt>deflate()</tt> until it is done producing output.  Once there is no more
185*9573673dSchristosnew output, <tt>deflate()</tt> is guaranteed to have consumed all of the input, i.e.,
186*9573673dSchristos<tt>avail_in</tt> will be zero.
187*9573673dSchristos<pre><b>
188*9573673dSchristos        /* run deflate() on input until output buffer not full, finish
189*9573673dSchristos           compression if all of source has been read in */
190*9573673dSchristos        do {
191*9573673dSchristos</b></pre>
192*9573673dSchristosOutput space is provided to <tt>deflate()</tt> by setting <tt>avail_out</tt> to the number
193*9573673dSchristosof available output bytes and <tt>next_out</tt> to a pointer to that space.
194*9573673dSchristos<pre><b>
195*9573673dSchristos            strm.avail_out = CHUNK;
196*9573673dSchristos            strm.next_out = out;
197*9573673dSchristos</b></pre>
198*9573673dSchristosNow we call the compression engine itself, <tt>deflate()</tt>.  It takes as many of the
199*9573673dSchristos<tt>avail_in</tt> bytes at <tt>next_in</tt> as it can process, and writes as many as
200*9573673dSchristos<tt>avail_out</tt> bytes to <tt>next_out</tt>.  Those counters and pointers are then
201*9573673dSchristosupdated past the input data consumed and the output data written.  It is the amount of
202*9573673dSchristosoutput space available that may limit how much input is consumed.
203*9573673dSchristosHence the inner loop to make sure that
204*9573673dSchristosall of the input is consumed by providing more output space each time.  Since <tt>avail_in</tt>
205*9573673dSchristosand <tt>next_in</tt> are updated by <tt>deflate()</tt>, we don't have to mess with those
206*9573673dSchristosbetween <tt>deflate()</tt> calls until it's all used up.
207*9573673dSchristos<p>
208*9573673dSchristosThe parameters to <tt>deflate()</tt> are a pointer to the <tt>strm</tt> structure containing
209*9573673dSchristosthe input and output information and the internal compression engine state, and a parameter
210*9573673dSchristosindicating whether and how to flush data to the output.  Normally <tt>deflate</tt> will consume
211*9573673dSchristosseveral K bytes of input data before producing any output (except for the header), in order
212*9573673dSchristosto accumulate statistics on the data for optimum compression.  It will then put out a burst of
213*9573673dSchristoscompressed data, and proceed to consume more input before the next burst.  Eventually,
214*9573673dSchristos<tt>deflate()</tt>
215*9573673dSchristosmust be told to terminate the stream, complete the compression with provided input data, and
216*9573673dSchristoswrite out the trailer check value.  <tt>deflate()</tt> will continue to compress normally as long
217*9573673dSchristosas the flush parameter is <tt>Z_NO_FLUSH</tt>.  Once the <tt>Z_FINISH</tt> parameter is provided,
218*9573673dSchristos<tt>deflate()</tt> will begin to complete the compressed output stream.  However depending on how
219*9573673dSchristosmuch output space is provided, <tt>deflate()</tt> may have to be called several times until it
220*9573673dSchristoshas provided the complete compressed stream, even after it has consumed all of the input.  The flush
221*9573673dSchristosparameter must continue to be <tt>Z_FINISH</tt> for those subsequent calls.
222*9573673dSchristos<p>
223*9573673dSchristosThere are other values of the flush parameter that are used in more advanced applications.  You can
224*9573673dSchristosforce <tt>deflate()</tt> to produce a burst of output that encodes all of the input data provided
225*9573673dSchristosso far, even if it wouldn't have otherwise, for example to control data latency on a link with
226*9573673dSchristoscompressed data.  You can also ask that <tt>deflate()</tt> do that as well as erase any history up to
227*9573673dSchristosthat point so that what follows can be decompressed independently, for example for random access
228*9573673dSchristosapplications.  Both requests will degrade compression by an amount depending on how often such
229*9573673dSchristosrequests are made.
230*9573673dSchristos<p>
231*9573673dSchristos<tt>deflate()</tt> has a return value that can indicate errors, yet we do not check it here.  Why
232*9573673dSchristosnot?  Well, it turns out that <tt>deflate()</tt> can do no wrong here.  Let's go through
233*9573673dSchristos<tt>deflate()</tt>'s return values and dispense with them one by one.  The possible values are
234*9573673dSchristos<tt>Z_OK</tt>, <tt>Z_STREAM_END</tt>, <tt>Z_STREAM_ERROR</tt>, or <tt>Z_BUF_ERROR</tt>.  <tt>Z_OK</tt>
235*9573673dSchristosis, well, ok.  <tt>Z_STREAM_END</tt> is also ok and will be returned for the last call of
236*9573673dSchristos<tt>deflate()</tt>.  This is already guaranteed by calling <tt>deflate()</tt> with <tt>Z_FINISH</tt>
237*9573673dSchristosuntil it has no more output.  <tt>Z_STREAM_ERROR</tt> is only possible if the stream is not
238*9573673dSchristosinitialized properly, but we did initialize it properly.  There is no harm in checking for
239*9573673dSchristos<tt>Z_STREAM_ERROR</tt> here, for example to check for the possibility that some
240*9573673dSchristosother part of the application inadvertently clobbered the memory containing the <em>zlib</em> state.
241*9573673dSchristos<tt>Z_BUF_ERROR</tt> will be explained further below, but
242*9573673dSchristossuffice it to say that this is simply an indication that <tt>deflate()</tt> could not consume
243*9573673dSchristosmore input or produce more output.  <tt>deflate()</tt> can be called again with more output space
244*9573673dSchristosor more available input, which it will be in this code.
245*9573673dSchristos<pre><b>
246*9573673dSchristos            ret = deflate(&amp;strm, flush);    /* no bad return value */
247*9573673dSchristos            assert(ret != Z_STREAM_ERROR);  /* state not clobbered */
248*9573673dSchristos</b></pre>
249*9573673dSchristosNow we compute how much output <tt>deflate()</tt> provided on the last call, which is the
250*9573673dSchristosdifference between how much space was provided before the call, and how much output space
251*9573673dSchristosis still available after the call.  Then that data, if any, is written to the output file.
252*9573673dSchristosWe can then reuse the output buffer for the next call of <tt>deflate()</tt>.  Again if there
253*9573673dSchristosis a file i/o error, we call <tt>deflateEnd()</tt> before returning to avoid a memory leak.
254*9573673dSchristos<pre><b>
255*9573673dSchristos            have = CHUNK - strm.avail_out;
256*9573673dSchristos            if (fwrite(out, 1, have, dest) != have || ferror(dest)) {
257*9573673dSchristos                (void)deflateEnd(&amp;strm);
258*9573673dSchristos                return Z_ERRNO;
259*9573673dSchristos            }
260*9573673dSchristos</b></pre>
261*9573673dSchristosThe inner <tt>do</tt>-loop is repeated until the last <tt>deflate()</tt> call fails to fill the
262*9573673dSchristosprovided output buffer.  Then we know that <tt>deflate()</tt> has done as much as it can with
263*9573673dSchristosthe provided input, and that all of that input has been consumed.  We can then fall out of this
264*9573673dSchristosloop and reuse the input buffer.
265*9573673dSchristos<p>
266*9573673dSchristosThe way we tell that <tt>deflate()</tt> has no more output is by seeing that it did not fill
267*9573673dSchristosthe output buffer, leaving <tt>avail_out</tt> greater than zero.  However suppose that
268*9573673dSchristos<tt>deflate()</tt> has no more output, but just so happened to exactly fill the output buffer!
269*9573673dSchristos<tt>avail_out</tt> is zero, and we can't tell that <tt>deflate()</tt> has done all it can.
270*9573673dSchristosAs far as we know, <tt>deflate()</tt>
271*9573673dSchristoshas more output for us.  So we call it again.  But now <tt>deflate()</tt> produces no output
272*9573673dSchristosat all, and <tt>avail_out</tt> remains unchanged as <tt>CHUNK</tt>.  That <tt>deflate()</tt> call
273*9573673dSchristoswasn't able to do anything, either consume input or produce output, and so it returns
274*9573673dSchristos<tt>Z_BUF_ERROR</tt>.  (See, I told you I'd cover this later.)  However this is not a problem at
275*9573673dSchristosall.  Now we finally have the desired indication that <tt>deflate()</tt> is really done,
276*9573673dSchristosand so we drop out of the inner loop to provide more input to <tt>deflate()</tt>.
277*9573673dSchristos<p>
278*9573673dSchristosWith <tt>flush</tt> set to <tt>Z_FINISH</tt>, this final set of <tt>deflate()</tt> calls will
279*9573673dSchristoscomplete the output stream.  Once that is done, subsequent calls of <tt>deflate()</tt> would return
280*9573673dSchristos<tt>Z_STREAM_ERROR</tt> if the flush parameter is not <tt>Z_FINISH</tt>, and do no more processing
281*9573673dSchristosuntil the state is reinitialized.
282*9573673dSchristos<p>
283*9573673dSchristosSome applications of <em>zlib</em> have two loops that call <tt>deflate()</tt>
284*9573673dSchristosinstead of the single inner loop we have here.  The first loop would call
285*9573673dSchristoswithout flushing and feed all of the data to <tt>deflate()</tt>.  The second loop would call
286*9573673dSchristos<tt>deflate()</tt> with no more
287*9573673dSchristosdata and the <tt>Z_FINISH</tt> parameter to complete the process.  As you can see from this
288*9573673dSchristosexample, that can be avoided by simply keeping track of the current flush state.
289*9573673dSchristos<pre><b>
290*9573673dSchristos        } while (strm.avail_out == 0);
291*9573673dSchristos        assert(strm.avail_in == 0);     /* all input will be used */
292*9573673dSchristos</b></pre><!-- -->
293*9573673dSchristosNow we check to see if we have already processed all of the input file.  That information was
294*9573673dSchristossaved in the <tt>flush</tt> variable, so we see if that was set to <tt>Z_FINISH</tt>.  If so,
295*9573673dSchristosthen we're done and we fall out of the outer loop.  We're guaranteed to get <tt>Z_STREAM_END</tt>
296*9573673dSchristosfrom the last <tt>deflate()</tt> call, since we ran it until the last chunk of input was
297*9573673dSchristosconsumed and all of the output was generated.
298*9573673dSchristos<pre><b>
299*9573673dSchristos        /* done when last data in file processed */
300*9573673dSchristos    } while (flush != Z_FINISH);
301*9573673dSchristos    assert(ret == Z_STREAM_END);        /* stream will be complete */
302*9573673dSchristos</b></pre><!-- -->
303*9573673dSchristosThe process is complete, but we still need to deallocate the state to avoid a memory leak
304*9573673dSchristos(or rather more like a memory hemorrhage if you didn't do this).  Then
305*9573673dSchristosfinally we can return with a happy return value.
306*9573673dSchristos<pre><b>
307*9573673dSchristos    /* clean up and return */
308*9573673dSchristos    (void)deflateEnd(&amp;strm);
309*9573673dSchristos    return Z_OK;
310*9573673dSchristos}
311*9573673dSchristos</b></pre><!-- -->
312*9573673dSchristosNow we do the same thing for decompression in the <tt>inf()</tt> routine. <tt>inf()</tt>
313*9573673dSchristosdecompresses what is hopefully a valid <em>zlib</em> stream from the input file and writes the
314*9573673dSchristosuncompressed data to the output file.  Much of the discussion above for <tt>def()</tt>
315*9573673dSchristosapplies to <tt>inf()</tt> as well, so the discussion here will focus on the differences between
316*9573673dSchristosthe two.
317*9573673dSchristos<pre><b>
318*9573673dSchristos/* Decompress from file source to file dest until stream ends or EOF.
319*9573673dSchristos   inf() returns Z_OK on success, Z_MEM_ERROR if memory could not be
320*9573673dSchristos   allocated for processing, Z_DATA_ERROR if the deflate data is
321*9573673dSchristos   invalid or incomplete, Z_VERSION_ERROR if the version of zlib.h and
322*9573673dSchristos   the version of the library linked do not match, or Z_ERRNO if there
323*9573673dSchristos   is an error reading or writing the files. */
324*9573673dSchristosint inf(FILE *source, FILE *dest)
325*9573673dSchristos{
326*9573673dSchristos</b></pre>
327*9573673dSchristosThe local variables have the same functionality as they do for <tt>def()</tt>.  The
328*9573673dSchristosonly difference is that there is no <tt>flush</tt> variable, since <tt>inflate()</tt>
329*9573673dSchristoscan tell from the <em>zlib</em> stream itself when the stream is complete.
330*9573673dSchristos<pre><b>
331*9573673dSchristos    int ret;
332*9573673dSchristos    unsigned have;
333*9573673dSchristos    z_stream strm;
334*9573673dSchristos    unsigned char in[CHUNK];
335*9573673dSchristos    unsigned char out[CHUNK];
336*9573673dSchristos</b></pre><!-- -->
337*9573673dSchristosThe initialization of the state is the same, except that there is no compression level,
338*9573673dSchristosof course, and two more elements of the structure are initialized.  <tt>avail_in</tt>
339*9573673dSchristosand <tt>next_in</tt> must be initialized before calling <tt>inflateInit()</tt>.  This
340*9573673dSchristosis because the application has the option to provide the start of the zlib stream in
341*9573673dSchristosorder for <tt>inflateInit()</tt> to have access to information about the compression
342*9573673dSchristosmethod to aid in memory allocation.  In the current implementation of <em>zlib</em>
343*9573673dSchristos(up through versions 1.2.x), the method-dependent memory allocations are deferred to the first call of
344*9573673dSchristos<tt>inflate()</tt> anyway.  However those fields must be initialized since later versions
345*9573673dSchristosof <em>zlib</em> that provide more compression methods may take advantage of this interface.
346*9573673dSchristosIn any case, no decompression is performed by <tt>inflateInit()</tt>, so the
347*9573673dSchristos<tt>avail_out</tt> and <tt>next_out</tt> fields do not need to be initialized before calling.
348*9573673dSchristos<p>
349*9573673dSchristosHere <tt>avail_in</tt> is set to zero and <tt>next_in</tt> is set to <tt>Z_NULL</tt> to
350*9573673dSchristosindicate that no input data is being provided.
351*9573673dSchristos<pre><b>
352*9573673dSchristos    /* allocate inflate state */
353*9573673dSchristos    strm.zalloc = Z_NULL;
354*9573673dSchristos    strm.zfree = Z_NULL;
355*9573673dSchristos    strm.opaque = Z_NULL;
356*9573673dSchristos    strm.avail_in = 0;
357*9573673dSchristos    strm.next_in = Z_NULL;
358*9573673dSchristos    ret = inflateInit(&amp;strm);
359*9573673dSchristos    if (ret != Z_OK)
360*9573673dSchristos        return ret;
361*9573673dSchristos</b></pre><!-- -->
362*9573673dSchristosThe outer <tt>do</tt>-loop decompresses input until <tt>inflate()</tt> indicates
363*9573673dSchristosthat it has reached the end of the compressed data and has produced all of the uncompressed
364*9573673dSchristosoutput.  This is in contrast to <tt>def()</tt> which processes all of the input file.
365*9573673dSchristosIf end-of-file is reached before the compressed data self-terminates, then the compressed
366*9573673dSchristosdata is incomplete and an error is returned.
367*9573673dSchristos<pre><b>
368*9573673dSchristos    /* decompress until deflate stream ends or end of file */
369*9573673dSchristos    do {
370*9573673dSchristos</b></pre>
371*9573673dSchristosWe read input data and set the <tt>strm</tt> structure accordingly.  If we've reached the
372*9573673dSchristosend of the input file, then we leave the outer loop and report an error, since the
373*9573673dSchristoscompressed data is incomplete.  Note that we may read more data than is eventually consumed
374*9573673dSchristosby <tt>inflate()</tt>, if the input file continues past the <em>zlib</em> stream.
375*9573673dSchristosFor applications where <em>zlib</em> streams are embedded in other data, this routine would
376*9573673dSchristosneed to be modified to return the unused data, or at least indicate how much of the input
377*9573673dSchristosdata was not used, so the application would know where to pick up after the <em>zlib</em> stream.
378*9573673dSchristos<pre><b>
379*9573673dSchristos        strm.avail_in = fread(in, 1, CHUNK, source);
380*9573673dSchristos        if (ferror(source)) {
381*9573673dSchristos            (void)inflateEnd(&amp;strm);
382*9573673dSchristos            return Z_ERRNO;
383*9573673dSchristos        }
384*9573673dSchristos        if (strm.avail_in == 0)
385*9573673dSchristos            break;
386*9573673dSchristos        strm.next_in = in;
387*9573673dSchristos</b></pre><!-- -->
388*9573673dSchristosThe inner <tt>do</tt>-loop has the same function it did in <tt>def()</tt>, which is to
389*9573673dSchristoskeep calling <tt>inflate()</tt> until has generated all of the output it can with the
390*9573673dSchristosprovided input.
391*9573673dSchristos<pre><b>
392*9573673dSchristos        /* run inflate() on input until output buffer not full */
393*9573673dSchristos        do {
394*9573673dSchristos</b></pre>
395*9573673dSchristosJust like in <tt>def()</tt>, the same output space is provided for each call of <tt>inflate()</tt>.
396*9573673dSchristos<pre><b>
397*9573673dSchristos            strm.avail_out = CHUNK;
398*9573673dSchristos            strm.next_out = out;
399*9573673dSchristos</b></pre>
400*9573673dSchristosNow we run the decompression engine itself.  There is no need to adjust the flush parameter, since
401*9573673dSchristosthe <em>zlib</em> format is self-terminating. The main difference here is that there are
402*9573673dSchristosreturn values that we need to pay attention to.  <tt>Z_DATA_ERROR</tt>
403*9573673dSchristosindicates that <tt>inflate()</tt> detected an error in the <em>zlib</em> compressed data format,
404*9573673dSchristoswhich means that either the data is not a <em>zlib</em> stream to begin with, or that the data was
405*9573673dSchristoscorrupted somewhere along the way since it was compressed.  The other error to be processed is
406*9573673dSchristos<tt>Z_MEM_ERROR</tt>, which can occur since memory allocation is deferred until <tt>inflate()</tt>
407*9573673dSchristosneeds it, unlike <tt>deflate()</tt>, whose memory is allocated at the start by <tt>deflateInit()</tt>.
408*9573673dSchristos<p>
409*9573673dSchristosAdvanced applications may use
410*9573673dSchristos<tt>deflateSetDictionary()</tt> to prime <tt>deflate()</tt> with a set of likely data to improve the
411*9573673dSchristosfirst 32K or so of compression.  This is noted in the <em>zlib</em> header, so <tt>inflate()</tt>
412*9573673dSchristosrequests that that dictionary be provided before it can start to decompress.  Without the dictionary,
413*9573673dSchristoscorrect decompression is not possible.  For this routine, we have no idea what the dictionary is,
414*9573673dSchristosso the <tt>Z_NEED_DICT</tt> indication is converted to a <tt>Z_DATA_ERROR</tt>.
415*9573673dSchristos<p>
416*9573673dSchristos<tt>inflate()</tt> can also return <tt>Z_STREAM_ERROR</tt>, which should not be possible here,
417*9573673dSchristosbut could be checked for as noted above for <tt>def()</tt>.  <tt>Z_BUF_ERROR</tt> does not need to be
418*9573673dSchristoschecked for here, for the same reasons noted for <tt>def()</tt>.  <tt>Z_STREAM_END</tt> will be
419*9573673dSchristoschecked for later.
420*9573673dSchristos<pre><b>
421*9573673dSchristos            ret = inflate(&amp;strm, Z_NO_FLUSH);
422*9573673dSchristos            assert(ret != Z_STREAM_ERROR);  /* state not clobbered */
423*9573673dSchristos            switch (ret) {
424*9573673dSchristos            case Z_NEED_DICT:
425*9573673dSchristos                ret = Z_DATA_ERROR;     /* and fall through */
426*9573673dSchristos            case Z_DATA_ERROR:
427*9573673dSchristos            case Z_MEM_ERROR:
428*9573673dSchristos                (void)inflateEnd(&amp;strm);
429*9573673dSchristos                return ret;
430*9573673dSchristos            }
431*9573673dSchristos</b></pre>
432*9573673dSchristosThe output of <tt>inflate()</tt> is handled identically to that of <tt>deflate()</tt>.
433*9573673dSchristos<pre><b>
434*9573673dSchristos            have = CHUNK - strm.avail_out;
435*9573673dSchristos            if (fwrite(out, 1, have, dest) != have || ferror(dest)) {
436*9573673dSchristos                (void)inflateEnd(&amp;strm);
437*9573673dSchristos                return Z_ERRNO;
438*9573673dSchristos            }
439*9573673dSchristos</b></pre>
440*9573673dSchristosThe inner <tt>do</tt>-loop ends when <tt>inflate()</tt> has no more output as indicated
441*9573673dSchristosby not filling the output buffer, just as for <tt>deflate()</tt>.  In this case, we cannot
442*9573673dSchristosassert that <tt>strm.avail_in</tt> will be zero, since the deflate stream may end before the file
443*9573673dSchristosdoes.
444*9573673dSchristos<pre><b>
445*9573673dSchristos        } while (strm.avail_out == 0);
446*9573673dSchristos</b></pre><!-- -->
447*9573673dSchristosThe outer <tt>do</tt>-loop ends when <tt>inflate()</tt> reports that it has reached the
448*9573673dSchristosend of the input <em>zlib</em> stream, has completed the decompression and integrity
449*9573673dSchristoscheck, and has provided all of the output.  This is indicated by the <tt>inflate()</tt>
450*9573673dSchristosreturn value <tt>Z_STREAM_END</tt>.  The inner loop is guaranteed to leave <tt>ret</tt>
451*9573673dSchristosequal to <tt>Z_STREAM_END</tt> if the last chunk of the input file read contained the end
452*9573673dSchristosof the <em>zlib</em> stream.  So if the return value is not <tt>Z_STREAM_END</tt>, the
453*9573673dSchristosloop continues to read more input.
454*9573673dSchristos<pre><b>
455*9573673dSchristos        /* done when inflate() says it's done */
456*9573673dSchristos    } while (ret != Z_STREAM_END);
457*9573673dSchristos</b></pre><!-- -->
458*9573673dSchristosAt this point, decompression successfully completed, or we broke out of the loop due to no
459*9573673dSchristosmore data being available from the input file.  If the last <tt>inflate()</tt> return value
460*9573673dSchristosis not <tt>Z_STREAM_END</tt>, then the <em>zlib</em> stream was incomplete and a data error
461*9573673dSchristosis returned.  Otherwise, we return with a happy return value.  Of course, <tt>inflateEnd()</tt>
462*9573673dSchristosis called first to avoid a memory leak.
463*9573673dSchristos<pre><b>
464*9573673dSchristos    /* clean up and return */
465*9573673dSchristos    (void)inflateEnd(&amp;strm);
466*9573673dSchristos    return ret == Z_STREAM_END ? Z_OK : Z_DATA_ERROR;
467*9573673dSchristos}
468*9573673dSchristos</b></pre><!-- -->
469*9573673dSchristosThat ends the routines that directly use <em>zlib</em>.  The following routines make this
470*9573673dSchristosa command-line program by running data through the above routines from <tt>stdin</tt> to
471*9573673dSchristos<tt>stdout</tt>, and handling any errors reported by <tt>def()</tt> or <tt>inf()</tt>.
472*9573673dSchristos<p>
473*9573673dSchristos<tt>zerr()</tt> is used to interpret the possible error codes from <tt>def()</tt>
474*9573673dSchristosand <tt>inf()</tt>, as detailed in their comments above, and print out an error message.
475*9573673dSchristosNote that these are only a subset of the possible return values from <tt>deflate()</tt>
476*9573673dSchristosand <tt>inflate()</tt>.
477*9573673dSchristos<pre><b>
478*9573673dSchristos/* report a zlib or i/o error */
479*9573673dSchristosvoid zerr(int ret)
480*9573673dSchristos{
481*9573673dSchristos    fputs("zpipe: ", stderr);
482*9573673dSchristos    switch (ret) {
483*9573673dSchristos    case Z_ERRNO:
484*9573673dSchristos        if (ferror(stdin))
485*9573673dSchristos            fputs("error reading stdin\n", stderr);
486*9573673dSchristos        if (ferror(stdout))
487*9573673dSchristos            fputs("error writing stdout\n", stderr);
488*9573673dSchristos        break;
489*9573673dSchristos    case Z_STREAM_ERROR:
490*9573673dSchristos        fputs("invalid compression level\n", stderr);
491*9573673dSchristos        break;
492*9573673dSchristos    case Z_DATA_ERROR:
493*9573673dSchristos        fputs("invalid or incomplete deflate data\n", stderr);
494*9573673dSchristos        break;
495*9573673dSchristos    case Z_MEM_ERROR:
496*9573673dSchristos        fputs("out of memory\n", stderr);
497*9573673dSchristos        break;
498*9573673dSchristos    case Z_VERSION_ERROR:
499*9573673dSchristos        fputs("zlib version mismatch!\n", stderr);
500*9573673dSchristos    }
501*9573673dSchristos}
502*9573673dSchristos</b></pre><!-- -->
503*9573673dSchristosHere is the <tt>main()</tt> routine used to test <tt>def()</tt> and <tt>inf()</tt>.  The
504*9573673dSchristos<tt>zpipe</tt> command is simply a compression pipe from <tt>stdin</tt> to <tt>stdout</tt>, if
505*9573673dSchristosno arguments are given, or it is a decompression pipe if <tt>zpipe -d</tt> is used.  If any other
506*9573673dSchristosarguments are provided, no compression or decompression is performed.  Instead a usage
507*9573673dSchristosmessage is displayed.  Examples are <tt>zpipe < foo.txt > foo.txt.z</tt> to compress, and
508*9573673dSchristos<tt>zpipe -d < foo.txt.z > foo.txt</tt> to decompress.
509*9573673dSchristos<pre><b>
510*9573673dSchristos/* compress or decompress from stdin to stdout */
511*9573673dSchristosint main(int argc, char **argv)
512*9573673dSchristos{
513*9573673dSchristos    int ret;
514*9573673dSchristos
515*9573673dSchristos    /* avoid end-of-line conversions */
516*9573673dSchristos    SET_BINARY_MODE(stdin);
517*9573673dSchristos    SET_BINARY_MODE(stdout);
518*9573673dSchristos
519*9573673dSchristos    /* do compression if no arguments */
520*9573673dSchristos    if (argc == 1) {
521*9573673dSchristos        ret = def(stdin, stdout, Z_DEFAULT_COMPRESSION);
522*9573673dSchristos        if (ret != Z_OK)
523*9573673dSchristos            zerr(ret);
524*9573673dSchristos        return ret;
525*9573673dSchristos    }
526*9573673dSchristos
527*9573673dSchristos    /* do decompression if -d specified */
528*9573673dSchristos    else if (argc == 2 &amp;&amp; strcmp(argv[1], "-d") == 0) {
529*9573673dSchristos        ret = inf(stdin, stdout);
530*9573673dSchristos        if (ret != Z_OK)
531*9573673dSchristos            zerr(ret);
532*9573673dSchristos        return ret;
533*9573673dSchristos    }
534*9573673dSchristos
535*9573673dSchristos    /* otherwise, report usage */
536*9573673dSchristos    else {
537*9573673dSchristos        fputs("zpipe usage: zpipe [-d] &lt; source &gt; dest\n", stderr);
538*9573673dSchristos        return 1;
539*9573673dSchristos    }
540*9573673dSchristos}
541*9573673dSchristos</b></pre>
542*9573673dSchristos<hr>
543*9573673dSchristos<i>Copyright (c) 2004, 2005 by Mark Adler<br>Last modified 11 December 2005</i>
544*9573673dSchristos</body>
545*9573673dSchristos</html>
546