xref: /netbsd-src/external/gpl3/binutils/dist/gold/target-reloc.h (revision dd255ccea4286b0c44fa8fd48a9a19a768afe8e1)
1 // target-reloc.h -- target specific relocation support  -*- C++ -*-
2 
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6 
7 // This file is part of gold.
8 
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13 
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18 
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23 
24 #ifndef GOLD_TARGET_RELOC_H
25 #define GOLD_TARGET_RELOC_H
26 
27 #include "elfcpp.h"
28 #include "symtab.h"
29 #include "object.h"
30 #include "reloc.h"
31 #include "reloc-types.h"
32 
33 namespace gold
34 {
35 
36 // This function implements the generic part of reloc scanning.  The
37 // template parameter Scan must be a class type which provides two
38 // functions: local() and global().  Those functions implement the
39 // machine specific part of scanning.  We do it this way to
40 // avoid making a function call for each relocation, and to avoid
41 // repeating the generic code for each target.
42 
43 template<int size, bool big_endian, typename Target_type, int sh_type,
44 	 typename Scan>
45 inline void
46 scan_relocs(
47     Symbol_table* symtab,
48     Layout* layout,
49     Target_type* target,
50     Sized_relobj_file<size, big_endian>* object,
51     unsigned int data_shndx,
52     const unsigned char* prelocs,
53     size_t reloc_count,
54     Output_section* output_section,
55     bool needs_special_offset_handling,
56     size_t local_count,
57     const unsigned char* plocal_syms)
58 {
59   typedef typename Reloc_types<sh_type, size, big_endian>::Reloc Reltype;
60   const int reloc_size = Reloc_types<sh_type, size, big_endian>::reloc_size;
61   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
62   Scan scan;
63 
64   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
65     {
66       Reltype reloc(prelocs);
67 
68       if (needs_special_offset_handling
69 	  && !output_section->is_input_address_mapped(object, data_shndx,
70 						      reloc.get_r_offset()))
71 	continue;
72 
73       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
74       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
75       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
76 
77       if (r_sym < local_count)
78 	{
79 	  gold_assert(plocal_syms != NULL);
80 	  typename elfcpp::Sym<size, big_endian> lsym(plocal_syms
81 						      + r_sym * sym_size);
82 	  unsigned int shndx = lsym.get_st_shndx();
83 	  bool is_ordinary;
84 	  shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
85 	  if (is_ordinary
86 	      && shndx != elfcpp::SHN_UNDEF
87 	      && !object->is_section_included(shndx)
88               && !symtab->is_section_folded(object, shndx))
89 	    {
90 	      // RELOC is a relocation against a local symbol in a
91 	      // section we are discarding.  We can ignore this
92 	      // relocation.  It will eventually become a reloc
93 	      // against the value zero.
94 	      //
95 	      // FIXME: We should issue a warning if this is an
96 	      // allocated section; is this the best place to do it?
97 	      //
98 	      // FIXME: The old GNU linker would in some cases look
99 	      // for the linkonce section which caused this section to
100 	      // be discarded, and, if the other section was the same
101 	      // size, change the reloc to refer to the other section.
102 	      // That seems risky and weird to me, and I don't know of
103 	      // any case where it is actually required.
104 
105 	      continue;
106 	    }
107 	  scan.local(symtab, layout, target, object, data_shndx,
108 		     output_section, reloc, r_type, lsym);
109 	}
110       else
111 	{
112 	  Symbol* gsym = object->global_symbol(r_sym);
113 	  gold_assert(gsym != NULL);
114 	  if (gsym->is_forwarder())
115 	    gsym = symtab->resolve_forwards(gsym);
116 
117 	  scan.global(symtab, layout, target, object, data_shndx,
118 		      output_section, reloc, r_type, gsym);
119 	}
120     }
121 }
122 
123 // Behavior for relocations to discarded comdat sections.
124 
125 enum Comdat_behavior
126 {
127   CB_UNDETERMINED,   // Not yet determined -- need to look at section name.
128   CB_PRETEND,        // Attempt to map to the corresponding kept section.
129   CB_IGNORE,         // Ignore the relocation.
130   CB_WARNING         // Print a warning.
131 };
132 
133 // Decide what the linker should do for relocations that refer to discarded
134 // comdat sections.  This decision is based on the name of the section being
135 // relocated.
136 
137 inline Comdat_behavior
138 get_comdat_behavior(const char* name)
139 {
140   if (Layout::is_debug_info_section(name))
141     return CB_PRETEND;
142   if (strcmp(name, ".eh_frame") == 0
143       || strcmp(name, ".gcc_except_table") == 0)
144     return CB_IGNORE;
145   return CB_WARNING;
146 }
147 
148 // Give an error for a symbol with non-default visibility which is not
149 // defined locally.
150 
151 inline void
152 visibility_error(const Symbol* sym)
153 {
154   const char* v;
155   switch (sym->visibility())
156     {
157     case elfcpp::STV_INTERNAL:
158       v = _("internal");
159       break;
160     case elfcpp::STV_HIDDEN:
161       v = _("hidden");
162       break;
163     case elfcpp::STV_PROTECTED:
164       v = _("protected");
165       break;
166     default:
167       gold_unreachable();
168     }
169   gold_error(_("%s symbol '%s' is not defined locally"),
170 	     v, sym->name());
171 }
172 
173 // Return true if we are should issue an error saying that SYM is an
174 // undefined symbol.  This is called if there is a relocation against
175 // SYM.
176 
177 inline bool
178 issue_undefined_symbol_error(const Symbol* sym)
179 {
180   // We only report global symbols.
181   if (sym == NULL)
182     return false;
183 
184   // We only report undefined symbols.
185   if (!sym->is_undefined() && !sym->is_placeholder())
186     return false;
187 
188   // We don't report weak symbols.
189   if (sym->binding() == elfcpp::STB_WEAK)
190     return false;
191 
192   // We don't report symbols defined in discarded sections.
193   if (sym->is_defined_in_discarded_section())
194     return false;
195 
196   // If the target defines this symbol, don't report it here.
197   if (parameters->target().is_defined_by_abi(sym))
198     return false;
199 
200   // See if we've been told to ignore whether this symbol is
201   // undefined.
202   const char* const u = parameters->options().unresolved_symbols();
203   if (u != NULL)
204     {
205       if (strcmp(u, "ignore-all") == 0)
206 	return false;
207       if (strcmp(u, "report-all") == 0)
208 	return true;
209       if (strcmp(u, "ignore-in-object-files") == 0 && !sym->in_dyn())
210 	return false;
211       if (strcmp(u, "ignore-in-shared-libs") == 0 && !sym->in_reg())
212 	return false;
213     }
214 
215   // When creating a shared library, only report unresolved symbols if
216   // -z defs was used.
217   if (parameters->options().shared() && !parameters->options().defs())
218     return false;
219 
220   // Otherwise issue a warning.
221   return true;
222 }
223 
224 // This function implements the generic part of relocation processing.
225 // The template parameter Relocate must be a class type which provides
226 // a single function, relocate(), which implements the machine
227 // specific part of a relocation.
228 
229 // SIZE is the ELF size: 32 or 64.  BIG_ENDIAN is the endianness of
230 // the data.  SH_TYPE is the section type: SHT_REL or SHT_RELA.
231 // RELOCATE implements operator() to do a relocation.
232 
233 // PRELOCS points to the relocation data.  RELOC_COUNT is the number
234 // of relocs.  OUTPUT_SECTION is the output section.
235 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
236 // mapped to output offsets.
237 
238 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
239 // VIEW_SIZE is the size.  These refer to the input section, unless
240 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
241 // the output section.
242 
243 // RELOC_SYMBOL_CHANGES is used for -fsplit-stack support.  If it is
244 // not NULL, it is a vector indexed by relocation index.  If that
245 // entry is not NULL, it points to a global symbol which used as the
246 // symbol for the relocation, ignoring the symbol index in the
247 // relocation.
248 
249 template<int size, bool big_endian, typename Target_type, int sh_type,
250 	 typename Relocate>
251 inline void
252 relocate_section(
253     const Relocate_info<size, big_endian>* relinfo,
254     Target_type* target,
255     const unsigned char* prelocs,
256     size_t reloc_count,
257     Output_section* output_section,
258     bool needs_special_offset_handling,
259     unsigned char* view,
260     typename elfcpp::Elf_types<size>::Elf_Addr view_address,
261     section_size_type view_size,
262     const Reloc_symbol_changes* reloc_symbol_changes)
263 {
264   typedef typename Reloc_types<sh_type, size, big_endian>::Reloc Reltype;
265   const int reloc_size = Reloc_types<sh_type, size, big_endian>::reloc_size;
266   Relocate relocate;
267 
268   Sized_relobj_file<size, big_endian>* object = relinfo->object;
269   unsigned int local_count = object->local_symbol_count();
270 
271   Comdat_behavior comdat_behavior = CB_UNDETERMINED;
272 
273   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
274     {
275       Reltype reloc(prelocs);
276 
277       section_offset_type offset =
278 	convert_to_section_size_type(reloc.get_r_offset());
279 
280       if (needs_special_offset_handling)
281 	{
282 	  offset = output_section->output_offset(relinfo->object,
283 						 relinfo->data_shndx,
284 						 offset);
285 	  if (offset == -1)
286 	    continue;
287 	}
288 
289       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
290       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
291       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
292 
293       const Sized_symbol<size>* sym;
294 
295       Symbol_value<size> symval;
296       const Symbol_value<size> *psymval;
297       bool is_defined_in_discarded_section;
298       unsigned int shndx;
299       if (r_sym < local_count
300 	  && (reloc_symbol_changes == NULL
301 	      || (*reloc_symbol_changes)[i] == NULL))
302 	{
303 	  sym = NULL;
304 	  psymval = object->local_symbol(r_sym);
305 
306           // If the local symbol belongs to a section we are discarding,
307           // and that section is a debug section, try to find the
308           // corresponding kept section and map this symbol to its
309           // counterpart in the kept section.  The symbol must not
310           // correspond to a section we are folding.
311 	  bool is_ordinary;
312 	  shndx = psymval->input_shndx(&is_ordinary);
313 	  is_defined_in_discarded_section =
314 	    (is_ordinary
315 	     && shndx != elfcpp::SHN_UNDEF
316 	     && !object->is_section_included(shndx)
317 	     && !relinfo->symtab->is_section_folded(object, shndx));
318 	}
319       else
320 	{
321 	  const Symbol* gsym;
322 	  if (reloc_symbol_changes != NULL
323 	      && (*reloc_symbol_changes)[i] != NULL)
324 	    gsym = (*reloc_symbol_changes)[i];
325 	  else
326 	    {
327 	      gsym = object->global_symbol(r_sym);
328 	      gold_assert(gsym != NULL);
329 	      if (gsym->is_forwarder())
330 		gsym = relinfo->symtab->resolve_forwards(gsym);
331 	    }
332 
333 	  sym = static_cast<const Sized_symbol<size>*>(gsym);
334 	  if (sym->has_symtab_index() && sym->symtab_index() != -1U)
335 	    symval.set_output_symtab_index(sym->symtab_index());
336 	  else
337 	    symval.set_no_output_symtab_entry();
338 	  symval.set_output_value(sym->value());
339 	  if (gsym->type() == elfcpp::STT_TLS)
340 	    symval.set_is_tls_symbol();
341 	  else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
342 	    symval.set_is_ifunc_symbol();
343 	  psymval = &symval;
344 
345 	  is_defined_in_discarded_section =
346 	    (gsym->is_defined_in_discarded_section()
347 	     && gsym->is_undefined());
348 	  shndx = 0;
349 	}
350 
351       Symbol_value<size> symval2;
352       if (is_defined_in_discarded_section)
353 	{
354 	  if (comdat_behavior == CB_UNDETERMINED)
355 	    {
356 	      std::string name = object->section_name(relinfo->data_shndx);
357 	      comdat_behavior = get_comdat_behavior(name.c_str());
358 	    }
359 	  if (comdat_behavior == CB_PRETEND)
360 	    {
361 	      // FIXME: This case does not work for global symbols.
362 	      // We have no place to store the original section index.
363 	      // Fortunately this does not matter for comdat sections,
364 	      // only for sections explicitly discarded by a linker
365 	      // script.
366 	      bool found;
367 	      typename elfcpp::Elf_types<size>::Elf_Addr value =
368 		object->map_to_kept_section(shndx, &found);
369 	      if (found)
370 		symval2.set_output_value(value + psymval->input_value());
371 	      else
372 		symval2.set_output_value(0);
373 	    }
374 	  else
375 	    {
376 	      if (comdat_behavior == CB_WARNING)
377 		gold_warning_at_location(relinfo, i, offset,
378 					 _("relocation refers to discarded "
379 					   "section"));
380 	      symval2.set_output_value(0);
381 	    }
382 	  symval2.set_no_output_symtab_entry();
383 	  psymval = &symval2;
384 	}
385 
386       if (!relocate.relocate(relinfo, target, output_section, i, reloc,
387 			     r_type, sym, psymval, view + offset,
388 			     view_address + offset, view_size))
389 	continue;
390 
391       if (offset < 0 || static_cast<section_size_type>(offset) >= view_size)
392 	{
393 	  gold_error_at_location(relinfo, i, offset,
394 				 _("reloc has bad offset %zu"),
395 				 static_cast<size_t>(offset));
396 	  continue;
397 	}
398 
399       if (issue_undefined_symbol_error(sym))
400 	gold_undefined_symbol_at_location(sym, relinfo, i, offset);
401       else if (sym != NULL
402 	       && sym->visibility() != elfcpp::STV_DEFAULT
403 	       && (sym->is_undefined() || sym->is_from_dynobj()))
404 	visibility_error(sym);
405 
406       if (sym != NULL && sym->has_warning())
407 	relinfo->symtab->issue_warning(sym, relinfo, i, offset);
408     }
409 }
410 
411 // Apply an incremental relocation.
412 
413 template<int size, bool big_endian, typename Target_type,
414 	 typename Relocate>
415 void
416 apply_relocation(const Relocate_info<size, big_endian>* relinfo,
417 		 Target_type* target,
418 		 typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
419 		 unsigned int r_type,
420 		 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
421 		 const Symbol* gsym,
422 		 unsigned char* view,
423 		 typename elfcpp::Elf_types<size>::Elf_Addr address,
424 		 section_size_type view_size)
425 {
426   // Construct the ELF relocation in a temporary buffer.
427   const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
428   unsigned char relbuf[reloc_size];
429   elfcpp::Rela<size, big_endian> rel(relbuf);
430   elfcpp::Rela_write<size, big_endian> orel(relbuf);
431   orel.put_r_offset(r_offset);
432   orel.put_r_info(elfcpp::elf_r_info<size>(0, r_type));
433   orel.put_r_addend(r_addend);
434 
435   // Setup a Symbol_value for the global symbol.
436   const Sized_symbol<size>* sym = static_cast<const Sized_symbol<size>*>(gsym);
437   Symbol_value<size> symval;
438   gold_assert(sym->has_symtab_index() && sym->symtab_index() != -1U);
439   symval.set_output_symtab_index(sym->symtab_index());
440   symval.set_output_value(sym->value());
441   if (gsym->type() == elfcpp::STT_TLS)
442     symval.set_is_tls_symbol();
443   else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
444     symval.set_is_ifunc_symbol();
445 
446   Relocate relocate;
447   relocate.relocate(relinfo, target, NULL, -1U, rel, r_type, sym, &symval,
448 		    view + r_offset, address + r_offset, view_size);
449 }
450 
451 // This class may be used as a typical class for the
452 // Scan_relocatable_reloc parameter to scan_relocatable_relocs.  The
453 // template parameter Classify_reloc must be a class type which
454 // provides a function get_size_for_reloc which returns the number of
455 // bytes to which a reloc applies.  This class is intended to capture
456 // the most typical target behaviour, while still permitting targets
457 // to define their own independent class for Scan_relocatable_reloc.
458 
459 template<int sh_type, typename Classify_reloc>
460 class Default_scan_relocatable_relocs
461 {
462  public:
463   // Return the strategy to use for a local symbol which is not a
464   // section symbol, given the relocation type.
465   inline Relocatable_relocs::Reloc_strategy
466   local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
467   {
468     // We assume that relocation type 0 is NONE.  Targets which are
469     // different must override.
470     if (r_type == 0 && r_sym == 0)
471       return Relocatable_relocs::RELOC_DISCARD;
472     return Relocatable_relocs::RELOC_COPY;
473   }
474 
475   // Return the strategy to use for a local symbol which is a section
476   // symbol, given the relocation type.
477   inline Relocatable_relocs::Reloc_strategy
478   local_section_strategy(unsigned int r_type, Relobj* object)
479   {
480     if (sh_type == elfcpp::SHT_RELA)
481       return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
482     else
483       {
484 	Classify_reloc classify;
485 	switch (classify.get_size_for_reloc(r_type, object))
486 	  {
487 	  case 0:
488 	    return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
489 	  case 1:
490 	    return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_1;
491 	  case 2:
492 	    return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_2;
493 	  case 4:
494 	    return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4;
495 	  case 8:
496 	    return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_8;
497 	  default:
498 	    gold_unreachable();
499 	  }
500       }
501   }
502 
503   // Return the strategy to use for a global symbol, given the
504   // relocation type, the object, and the symbol index.
505   inline Relocatable_relocs::Reloc_strategy
506   global_strategy(unsigned int, Relobj*, unsigned int)
507   { return Relocatable_relocs::RELOC_COPY; }
508 };
509 
510 // Scan relocs during a relocatable link.  This is a default
511 // definition which should work for most targets.
512 // Scan_relocatable_reloc must name a class type which provides three
513 // functions which return a Relocatable_relocs::Reloc_strategy code:
514 // global_strategy, local_non_section_strategy, and
515 // local_section_strategy.  Most targets should be able to use
516 // Default_scan_relocatable_relocs as this class.
517 
518 template<int size, bool big_endian, int sh_type,
519 	 typename Scan_relocatable_reloc>
520 void
521 scan_relocatable_relocs(
522     Symbol_table*,
523     Layout*,
524     Sized_relobj_file<size, big_endian>* object,
525     unsigned int data_shndx,
526     const unsigned char* prelocs,
527     size_t reloc_count,
528     Output_section* output_section,
529     bool needs_special_offset_handling,
530     size_t local_symbol_count,
531     const unsigned char* plocal_syms,
532     Relocatable_relocs* rr)
533 {
534   typedef typename Reloc_types<sh_type, size, big_endian>::Reloc Reltype;
535   const int reloc_size = Reloc_types<sh_type, size, big_endian>::reloc_size;
536   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
537   Scan_relocatable_reloc scan;
538 
539   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
540     {
541       Reltype reloc(prelocs);
542 
543       Relocatable_relocs::Reloc_strategy strategy;
544 
545       if (needs_special_offset_handling
546 	  && !output_section->is_input_address_mapped(object, data_shndx,
547 						      reloc.get_r_offset()))
548 	strategy = Relocatable_relocs::RELOC_DISCARD;
549       else
550 	{
551 	  typename elfcpp::Elf_types<size>::Elf_WXword r_info =
552 	    reloc.get_r_info();
553 	  const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
554 	  const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
555 
556 	  if (r_sym >= local_symbol_count)
557 	    strategy = scan.global_strategy(r_type, object, r_sym);
558 	  else
559 	    {
560 	      gold_assert(plocal_syms != NULL);
561 	      typename elfcpp::Sym<size, big_endian> lsym(plocal_syms
562 							  + r_sym * sym_size);
563 	      unsigned int shndx = lsym.get_st_shndx();
564 	      bool is_ordinary;
565 	      shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
566 	      if (is_ordinary
567 		  && shndx != elfcpp::SHN_UNDEF
568 		  && !object->is_section_included(shndx))
569 		{
570 		  // RELOC is a relocation against a local symbol
571 		  // defined in a section we are discarding.  Discard
572 		  // the reloc.  FIXME: Should we issue a warning?
573 		  strategy = Relocatable_relocs::RELOC_DISCARD;
574 		}
575 	      else if (lsym.get_st_type() != elfcpp::STT_SECTION)
576 		strategy = scan.local_non_section_strategy(r_type, object,
577 							   r_sym);
578 	      else
579 		{
580 		  strategy = scan.local_section_strategy(r_type, object);
581 		  if (strategy != Relocatable_relocs::RELOC_DISCARD)
582                     object->output_section(shndx)->set_needs_symtab_index();
583 		}
584 
585 	      if (strategy == Relocatable_relocs::RELOC_COPY)
586 		object->set_must_have_output_symtab_entry(r_sym);
587 	    }
588 	}
589 
590       rr->set_next_reloc_strategy(strategy);
591     }
592 }
593 
594 // Relocate relocs during a relocatable link.  This is a default
595 // definition which should work for most targets.
596 
597 template<int size, bool big_endian, int sh_type>
598 void
599 relocate_for_relocatable(
600     const Relocate_info<size, big_endian>* relinfo,
601     const unsigned char* prelocs,
602     size_t reloc_count,
603     Output_section* output_section,
604     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
605     const Relocatable_relocs* rr,
606     unsigned char* view,
607     typename elfcpp::Elf_types<size>::Elf_Addr view_address,
608     section_size_type view_size,
609     unsigned char* reloc_view,
610     section_size_type reloc_view_size)
611 {
612   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
613   typedef typename Reloc_types<sh_type, size, big_endian>::Reloc Reltype;
614   typedef typename Reloc_types<sh_type, size, big_endian>::Reloc_write
615     Reltype_write;
616   const int reloc_size = Reloc_types<sh_type, size, big_endian>::reloc_size;
617   const Address invalid_address = static_cast<Address>(0) - 1;
618 
619   Sized_relobj_file<size, big_endian>* const object = relinfo->object;
620   const unsigned int local_count = object->local_symbol_count();
621 
622   unsigned char* pwrite = reloc_view;
623 
624   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
625     {
626       Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
627       if (strategy == Relocatable_relocs::RELOC_DISCARD)
628 	continue;
629 
630       if (strategy == Relocatable_relocs::RELOC_SPECIAL)
631 	{
632 	  // Target wants to handle this relocation.
633 	  Sized_target<size, big_endian>* target =
634 	    parameters->sized_target<size, big_endian>();
635 	  target->relocate_special_relocatable(relinfo, sh_type, prelocs,
636 					       i, output_section,
637 					       offset_in_output_section,
638 					       view, view_address,
639 					       view_size, pwrite);
640 	  pwrite += reloc_size;
641 	  continue;
642 	}
643       Reltype reloc(prelocs);
644       Reltype_write reloc_write(pwrite);
645 
646       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
647       const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
648       const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
649 
650       // Get the new symbol index.
651 
652       unsigned int new_symndx;
653       if (r_sym < local_count)
654 	{
655 	  switch (strategy)
656 	    {
657 	    case Relocatable_relocs::RELOC_COPY:
658 	      if (r_sym == 0)
659 		new_symndx = 0;
660 	      else
661 		{
662 		  new_symndx = object->symtab_index(r_sym);
663 		  gold_assert(new_symndx != -1U);
664 		}
665 	      break;
666 
667 	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
668 	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0:
669 	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_1:
670 	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_2:
671 	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4:
672 	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_8:
673 	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED:
674 	      {
675 		// We are adjusting a section symbol.  We need to find
676 		// the symbol table index of the section symbol for
677 		// the output section corresponding to input section
678 		// in which this symbol is defined.
679 		gold_assert(r_sym < local_count);
680 		bool is_ordinary;
681 		unsigned int shndx =
682 		  object->local_symbol_input_shndx(r_sym, &is_ordinary);
683 		gold_assert(is_ordinary);
684 		Output_section* os = object->output_section(shndx);
685 		gold_assert(os != NULL);
686 		gold_assert(os->needs_symtab_index());
687 		new_symndx = os->symtab_index();
688 	      }
689 	      break;
690 
691 	    default:
692 	      gold_unreachable();
693 	    }
694 	}
695       else
696 	{
697 	  const Symbol* gsym = object->global_symbol(r_sym);
698 	  gold_assert(gsym != NULL);
699 	  if (gsym->is_forwarder())
700 	    gsym = relinfo->symtab->resolve_forwards(gsym);
701 
702 	  gold_assert(gsym->has_symtab_index());
703 	  new_symndx = gsym->symtab_index();
704 	}
705 
706       // Get the new offset--the location in the output section where
707       // this relocation should be applied.
708 
709       Address offset = reloc.get_r_offset();
710       Address new_offset;
711       if (offset_in_output_section != invalid_address)
712 	new_offset = offset + offset_in_output_section;
713       else
714 	{
715           section_offset_type sot_offset =
716               convert_types<section_offset_type, Address>(offset);
717 	  section_offset_type new_sot_offset =
718               output_section->output_offset(object, relinfo->data_shndx,
719                                             sot_offset);
720 	  gold_assert(new_sot_offset != -1);
721           new_offset = new_sot_offset;
722 	}
723 
724       // In an object file, r_offset is an offset within the section.
725       // In an executable or dynamic object, generated by
726       // --emit-relocs, r_offset is an absolute address.
727       if (!parameters->options().relocatable())
728 	{
729 	  new_offset += view_address;
730 	  if (offset_in_output_section != invalid_address)
731 	    new_offset -= offset_in_output_section;
732 	}
733 
734       reloc_write.put_r_offset(new_offset);
735       reloc_write.put_r_info(elfcpp::elf_r_info<size>(new_symndx, r_type));
736 
737       // Handle the reloc addend based on the strategy.
738 
739       if (strategy == Relocatable_relocs::RELOC_COPY)
740 	{
741 	  if (sh_type == elfcpp::SHT_RELA)
742 	    Reloc_types<sh_type, size, big_endian>::
743 	      copy_reloc_addend(&reloc_write,
744 				&reloc);
745 	}
746       else
747 	{
748 	  // The relocation uses a section symbol in the input file.
749 	  // We are adjusting it to use a section symbol in the output
750 	  // file.  The input section symbol refers to some address in
751 	  // the input section.  We need the relocation in the output
752 	  // file to refer to that same address.  This adjustment to
753 	  // the addend is the same calculation we use for a simple
754 	  // absolute relocation for the input section symbol.
755 
756 	  const Symbol_value<size>* psymval = object->local_symbol(r_sym);
757 
758 	  unsigned char* padd = view + offset;
759 	  switch (strategy)
760 	    {
761 	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
762 	      {
763 		typename elfcpp::Elf_types<size>::Elf_Swxword addend;
764 		addend = Reloc_types<sh_type, size, big_endian>::
765 			   get_reloc_addend(&reloc);
766 		addend = psymval->value(object, addend);
767 		Reloc_types<sh_type, size, big_endian>::
768 		  set_reloc_addend(&reloc_write, addend);
769 	      }
770 	      break;
771 
772 	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0:
773 	      break;
774 
775 	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_1:
776 	      Relocate_functions<size, big_endian>::rel8(padd, object,
777 							 psymval);
778 	      break;
779 
780 	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_2:
781 	      Relocate_functions<size, big_endian>::rel16(padd, object,
782 							  psymval);
783 	      break;
784 
785 	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4:
786 	      Relocate_functions<size, big_endian>::rel32(padd, object,
787 							  psymval);
788 	      break;
789 
790 	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_8:
791 	      Relocate_functions<size, big_endian>::rel64(padd, object,
792 							  psymval);
793 	      break;
794 
795 	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED:
796 	      Relocate_functions<size, big_endian>::rel32_unaligned(padd,
797 								    object,
798 								    psymval);
799 	      break;
800 
801 	    default:
802 	      gold_unreachable();
803 	    }
804 	}
805 
806       pwrite += reloc_size;
807     }
808 
809   gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
810 	      == reloc_view_size);
811 }
812 
813 } // End namespace gold.
814 
815 #endif // !defined(GOLD_TARGET_RELOC_H)
816