xref: /netbsd-src/external/gpl3/binutils/dist/gold/symtab.cc (revision d11b170b9000ada93db553723522a63d5deac310)
1 // symtab.cc -- the gold symbol table
2 
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 #include "gold.h"
24 
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32 
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44 
45 namespace gold
46 {
47 
48 // Class Symbol.
49 
50 // Initialize fields in Symbol.  This initializes everything except u_
51 // and source_.
52 
53 void
54 Symbol::init_fields(const char* name, const char* version,
55 		    elfcpp::STT type, elfcpp::STB binding,
56 		    elfcpp::STV visibility, unsigned char nonvis)
57 {
58   this->name_ = name;
59   this->version_ = version;
60   this->symtab_index_ = 0;
61   this->dynsym_index_ = 0;
62   this->got_offsets_.init();
63   this->plt_offset_ = -1U;
64   this->type_ = type;
65   this->binding_ = binding;
66   this->visibility_ = visibility;
67   this->nonvis_ = nonvis;
68   this->is_def_ = false;
69   this->is_forwarder_ = false;
70   this->has_alias_ = false;
71   this->needs_dynsym_entry_ = false;
72   this->in_reg_ = false;
73   this->in_dyn_ = false;
74   this->has_warning_ = false;
75   this->is_copied_from_dynobj_ = false;
76   this->is_forced_local_ = false;
77   this->is_ordinary_shndx_ = false;
78   this->in_real_elf_ = false;
79   this->is_defined_in_discarded_section_ = false;
80   this->undef_binding_set_ = false;
81   this->undef_binding_weak_ = false;
82   this->is_predefined_ = false;
83 }
84 
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87 
88 static std::string
89 demangle(const char* name)
90 {
91   if (!parameters->options().do_demangle())
92     return name;
93 
94   // cplus_demangle allocates memory for the result it returns,
95   // and returns NULL if the name is already demangled.
96   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97   if (demangled_name == NULL)
98     return name;
99 
100   std::string retval(demangled_name);
101   free(demangled_name);
102   return retval;
103 }
104 
105 std::string
106 Symbol::demangled_name() const
107 {
108   return demangle(this->name());
109 }
110 
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112 
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116 			 const elfcpp::Sym<size, big_endian>& sym,
117 			 unsigned int st_shndx, bool is_ordinary)
118 {
119   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120 		    sym.get_st_visibility(), sym.get_st_nonvis());
121   this->u_.from_object.object = object;
122   this->u_.from_object.shndx = st_shndx;
123   this->is_ordinary_shndx_ = is_ordinary;
124   this->source_ = FROM_OBJECT;
125   this->in_reg_ = !object->is_dynamic();
126   this->in_dyn_ = object->is_dynamic();
127   this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129 
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132 
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135 			      Output_data* od, elfcpp::STT type,
136 			      elfcpp::STB binding, elfcpp::STV visibility,
137 			      unsigned char nonvis, bool offset_is_from_end,
138 			      bool is_predefined)
139 {
140   this->init_fields(name, version, type, binding, visibility, nonvis);
141   this->u_.in_output_data.output_data = od;
142   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143   this->source_ = IN_OUTPUT_DATA;
144   this->in_reg_ = true;
145   this->in_real_elf_ = true;
146   this->is_predefined_ = is_predefined;
147 }
148 
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151 
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154 				 Output_segment* os, elfcpp::STT type,
155 				 elfcpp::STB binding, elfcpp::STV visibility,
156 				 unsigned char nonvis,
157 				 Segment_offset_base offset_base,
158 				 bool is_predefined)
159 {
160   this->init_fields(name, version, type, binding, visibility, nonvis);
161   this->u_.in_output_segment.output_segment = os;
162   this->u_.in_output_segment.offset_base = offset_base;
163   this->source_ = IN_OUTPUT_SEGMENT;
164   this->in_reg_ = true;
165   this->in_real_elf_ = true;
166   this->is_predefined_ = is_predefined;
167 }
168 
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171 
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174 			   elfcpp::STT type, elfcpp::STB binding,
175 			   elfcpp::STV visibility, unsigned char nonvis,
176 			   bool is_predefined)
177 {
178   this->init_fields(name, version, type, binding, visibility, nonvis);
179   this->source_ = IS_CONSTANT;
180   this->in_reg_ = true;
181   this->in_real_elf_ = true;
182   this->is_predefined_ = is_predefined;
183 }
184 
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187 
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190 			    elfcpp::STT type, elfcpp::STB binding,
191 			    elfcpp::STV visibility, unsigned char nonvis)
192 {
193   this->init_fields(name, version, type, binding, visibility, nonvis);
194   this->dynsym_index_ = -1U;
195   this->source_ = IS_UNDEFINED;
196   this->in_reg_ = true;
197   this->in_real_elf_ = true;
198 }
199 
200 // Allocate a common symbol in the base.
201 
202 void
203 Symbol::allocate_base_common(Output_data* od)
204 {
205   gold_assert(this->is_common());
206   this->source_ = IN_OUTPUT_DATA;
207   this->u_.in_output_data.output_data = od;
208   this->u_.in_output_data.offset_is_from_end = false;
209 }
210 
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212 
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217 				Object* object,
218 				const elfcpp::Sym<size, big_endian>& sym,
219 				unsigned int st_shndx, bool is_ordinary)
220 {
221   this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222   this->value_ = sym.get_st_value();
223   this->symsize_ = sym.get_st_size();
224 }
225 
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228 
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232 				     Output_data* od, Value_type value,
233 				     Size_type symsize, elfcpp::STT type,
234 				     elfcpp::STB binding,
235 				     elfcpp::STV visibility,
236 				     unsigned char nonvis,
237 				     bool offset_is_from_end,
238 				     bool is_predefined)
239 {
240   this->init_base_output_data(name, version, od, type, binding, visibility,
241 			      nonvis, offset_is_from_end, is_predefined);
242   this->value_ = value;
243   this->symsize_ = symsize;
244 }
245 
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248 
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252 					Output_segment* os, Value_type value,
253 					Size_type symsize, elfcpp::STT type,
254 					elfcpp::STB binding,
255 					elfcpp::STV visibility,
256 					unsigned char nonvis,
257 					Segment_offset_base offset_base,
258 					bool is_predefined)
259 {
260   this->init_base_output_segment(name, version, os, type, binding, visibility,
261 				 nonvis, offset_base, is_predefined);
262   this->value_ = value;
263   this->symsize_ = symsize;
264 }
265 
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268 
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272 				  Value_type value, Size_type symsize,
273 				  elfcpp::STT type, elfcpp::STB binding,
274 				  elfcpp::STV visibility, unsigned char nonvis,
275 				  bool is_predefined)
276 {
277   this->init_base_constant(name, version, type, binding, visibility, nonvis,
278 			   is_predefined);
279   this->value_ = value;
280   this->symsize_ = symsize;
281 }
282 
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284 
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288 				   elfcpp::STT type, elfcpp::STB binding,
289 				   elfcpp::STV visibility, unsigned char nonvis)
290 {
291   this->init_base_undefined(name, version, type, binding, visibility, nonvis);
292   this->value_ = 0;
293   this->symsize_ = 0;
294 }
295 
296 // Return an allocated string holding the symbol's name as
297 // name@version.  This is used for relocatable links.
298 
299 std::string
300 Symbol::versioned_name() const
301 {
302   gold_assert(this->version_ != NULL);
303   std::string ret = this->name_;
304   ret.push_back('@');
305   if (this->is_def_)
306     ret.push_back('@');
307   ret += this->version_;
308   return ret;
309 }
310 
311 // Return true if SHNDX represents a common symbol.
312 
313 bool
314 Symbol::is_common_shndx(unsigned int shndx)
315 {
316   return (shndx == elfcpp::SHN_COMMON
317 	  || shndx == parameters->target().small_common_shndx()
318 	  || shndx == parameters->target().large_common_shndx());
319 }
320 
321 // Allocate a common symbol.
322 
323 template<int size>
324 void
325 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
326 {
327   this->allocate_base_common(od);
328   this->value_ = value;
329 }
330 
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str)   (strncmp(var, str, sizeof("" str "") - 1) == 0)
333 
334 // Return true if this symbol should be added to the dynamic symbol
335 // table.
336 
337 inline bool
338 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
339 {
340   // If the symbol is only present on plugin files, the plugin decided we
341   // don't need it.
342   if (!this->in_real_elf())
343     return false;
344 
345   // If the symbol is used by a dynamic relocation, we need to add it.
346   if (this->needs_dynsym_entry())
347     return true;
348 
349   // If this symbol's section is not added, the symbol need not be added.
350   // The section may have been GCed.  Note that export_dynamic is being
351   // overridden here.  This should not be done for shared objects.
352   if (parameters->options().gc_sections()
353       && !parameters->options().shared()
354       && this->source() == Symbol::FROM_OBJECT
355       && !this->object()->is_dynamic())
356     {
357       Relobj* relobj = static_cast<Relobj*>(this->object());
358       bool is_ordinary;
359       unsigned int shndx = this->shndx(&is_ordinary);
360       if (is_ordinary && shndx != elfcpp::SHN_UNDEF
361           && !relobj->is_section_included(shndx)
362           && !symtab->is_section_folded(relobj, shndx))
363         return false;
364     }
365 
366   // If the symbol was forced dynamic in a --dynamic-list file
367   // or an --export-dynamic-symbol option, add it.
368   if (!this->is_from_dynobj()
369       && (parameters->options().in_dynamic_list(this->name())
370 	  || parameters->options().is_export_dynamic_symbol(this->name())))
371     {
372       if (!this->is_forced_local())
373         return true;
374       gold_warning(_("Cannot export local symbol '%s'"),
375 		   this->demangled_name().c_str());
376       return false;
377     }
378 
379   // If the symbol was forced local in a version script, do not add it.
380   if (this->is_forced_local())
381     return false;
382 
383   // If dynamic-list-data was specified, add any STT_OBJECT.
384   if (parameters->options().dynamic_list_data()
385       && !this->is_from_dynobj()
386       && this->type() == elfcpp::STT_OBJECT)
387     return true;
388 
389   // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
390   // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
391   if ((parameters->options().dynamic_list_cpp_new()
392        || parameters->options().dynamic_list_cpp_typeinfo())
393       && !this->is_from_dynobj())
394     {
395       // TODO(csilvers): We could probably figure out if we're an operator
396       //                 new/delete or typeinfo without the need to demangle.
397       char* demangled_name = cplus_demangle(this->name(),
398                                             DMGL_ANSI | DMGL_PARAMS);
399       if (demangled_name == NULL)
400         {
401           // Not a C++ symbol, so it can't satisfy these flags
402         }
403       else if (parameters->options().dynamic_list_cpp_new()
404                && (strprefix(demangled_name, "operator new")
405                    || strprefix(demangled_name, "operator delete")))
406         {
407           free(demangled_name);
408           return true;
409         }
410       else if (parameters->options().dynamic_list_cpp_typeinfo()
411                && (strprefix(demangled_name, "typeinfo name for")
412                    || strprefix(demangled_name, "typeinfo for")))
413         {
414           free(demangled_name);
415           return true;
416         }
417       else
418         free(demangled_name);
419     }
420 
421   // If exporting all symbols or building a shared library,
422   // and the symbol is defined in a regular object and is
423   // externally visible, we need to add it.
424   if ((parameters->options().export_dynamic() || parameters->options().shared())
425       && !this->is_from_dynobj()
426       && !this->is_undefined()
427       && this->is_externally_visible())
428     return true;
429 
430   return false;
431 }
432 
433 // Return true if the final value of this symbol is known at link
434 // time.
435 
436 bool
437 Symbol::final_value_is_known() const
438 {
439   // If we are not generating an executable, then no final values are
440   // known, since they will change at runtime.
441   if (parameters->options().output_is_position_independent()
442       || parameters->options().relocatable())
443     return false;
444 
445   // If the symbol is not from an object file, and is not undefined,
446   // then it is defined, and known.
447   if (this->source_ != FROM_OBJECT)
448     {
449       if (this->source_ != IS_UNDEFINED)
450 	return true;
451     }
452   else
453     {
454       // If the symbol is from a dynamic object, then the final value
455       // is not known.
456       if (this->object()->is_dynamic())
457 	return false;
458 
459       // If the symbol is not undefined (it is defined or common),
460       // then the final value is known.
461       if (!this->is_undefined())
462 	return true;
463     }
464 
465   // If the symbol is undefined, then whether the final value is known
466   // depends on whether we are doing a static link.  If we are doing a
467   // dynamic link, then the final value could be filled in at runtime.
468   // This could reasonably be the case for a weak undefined symbol.
469   return parameters->doing_static_link();
470 }
471 
472 // Return the output section where this symbol is defined.
473 
474 Output_section*
475 Symbol::output_section() const
476 {
477   switch (this->source_)
478     {
479     case FROM_OBJECT:
480       {
481 	unsigned int shndx = this->u_.from_object.shndx;
482 	if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
483 	  {
484 	    gold_assert(!this->u_.from_object.object->is_dynamic());
485 	    gold_assert(this->u_.from_object.object->pluginobj() == NULL);
486 	    Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
487 	    return relobj->output_section(shndx);
488 	  }
489 	return NULL;
490       }
491 
492     case IN_OUTPUT_DATA:
493       return this->u_.in_output_data.output_data->output_section();
494 
495     case IN_OUTPUT_SEGMENT:
496     case IS_CONSTANT:
497     case IS_UNDEFINED:
498       return NULL;
499 
500     default:
501       gold_unreachable();
502     }
503 }
504 
505 // Set the symbol's output section.  This is used for symbols defined
506 // in scripts.  This should only be called after the symbol table has
507 // been finalized.
508 
509 void
510 Symbol::set_output_section(Output_section* os)
511 {
512   switch (this->source_)
513     {
514     case FROM_OBJECT:
515     case IN_OUTPUT_DATA:
516       gold_assert(this->output_section() == os);
517       break;
518     case IS_CONSTANT:
519       this->source_ = IN_OUTPUT_DATA;
520       this->u_.in_output_data.output_data = os;
521       this->u_.in_output_data.offset_is_from_end = false;
522       break;
523     case IN_OUTPUT_SEGMENT:
524     case IS_UNDEFINED:
525     default:
526       gold_unreachable();
527     }
528 }
529 
530 // Class Symbol_table.
531 
532 Symbol_table::Symbol_table(unsigned int count,
533                            const Version_script_info& version_script)
534   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
535     forwarders_(), commons_(), tls_commons_(), small_commons_(),
536     large_commons_(), forced_locals_(), warnings_(),
537     version_script_(version_script), gc_(NULL), icf_(NULL)
538 {
539   namepool_.reserve(count);
540 }
541 
542 Symbol_table::~Symbol_table()
543 {
544 }
545 
546 // The symbol table key equality function.  This is called with
547 // Stringpool keys.
548 
549 inline bool
550 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
551 					  const Symbol_table_key& k2) const
552 {
553   return k1.first == k2.first && k1.second == k2.second;
554 }
555 
556 bool
557 Symbol_table::is_section_folded(Object* obj, unsigned int shndx) const
558 {
559   return (parameters->options().icf_enabled()
560           && this->icf_->is_section_folded(obj, shndx));
561 }
562 
563 // For symbols that have been listed with a -u or --export-dynamic-symbol
564 // option, add them to the work list to avoid gc'ing them.
565 
566 void
567 Symbol_table::gc_mark_undef_symbols(Layout* layout)
568 {
569   for (options::String_set::const_iterator p =
570 	 parameters->options().undefined_begin();
571        p != parameters->options().undefined_end();
572        ++p)
573     {
574       const char* name = p->c_str();
575       Symbol* sym = this->lookup(name);
576       gold_assert(sym != NULL);
577       if (sym->source() == Symbol::FROM_OBJECT
578           && !sym->object()->is_dynamic())
579         {
580           Relobj* obj = static_cast<Relobj*>(sym->object());
581           bool is_ordinary;
582           unsigned int shndx = sym->shndx(&is_ordinary);
583           if (is_ordinary)
584             {
585               gold_assert(this->gc_ != NULL);
586               this->gc_->worklist().push(Section_id(obj, shndx));
587             }
588         }
589     }
590 
591   for (options::String_set::const_iterator p =
592 	 parameters->options().export_dynamic_symbol_begin();
593        p != parameters->options().export_dynamic_symbol_end();
594        ++p)
595     {
596       const char* name = p->c_str();
597       Symbol* sym = this->lookup(name);
598       gold_assert(sym != NULL);
599       if (sym->source() == Symbol::FROM_OBJECT
600           && !sym->object()->is_dynamic())
601         {
602           Relobj* obj = static_cast<Relobj*>(sym->object());
603           bool is_ordinary;
604           unsigned int shndx = sym->shndx(&is_ordinary);
605           if (is_ordinary)
606             {
607               gold_assert(this->gc_ != NULL);
608               this->gc_->worklist().push(Section_id(obj, shndx));
609             }
610         }
611     }
612 
613   for (Script_options::referenced_const_iterator p =
614 	 layout->script_options()->referenced_begin();
615        p != layout->script_options()->referenced_end();
616        ++p)
617     {
618       Symbol* sym = this->lookup(p->c_str());
619       gold_assert(sym != NULL);
620       if (sym->source() == Symbol::FROM_OBJECT
621 	  && !sym->object()->is_dynamic())
622 	{
623 	  Relobj* obj = static_cast<Relobj*>(sym->object());
624 	  bool is_ordinary;
625 	  unsigned int shndx = sym->shndx(&is_ordinary);
626 	  if (is_ordinary)
627 	    {
628 	      gold_assert(this->gc_ != NULL);
629 	      this->gc_->worklist().push(Section_id(obj, shndx));
630 	    }
631 	}
632     }
633 }
634 
635 void
636 Symbol_table::gc_mark_symbol(Symbol* sym)
637 {
638   // Add the object and section to the work list.
639   Relobj* obj = static_cast<Relobj*>(sym->object());
640   bool is_ordinary;
641   unsigned int shndx = sym->shndx(&is_ordinary);
642   if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
643     {
644       gold_assert(this->gc_!= NULL);
645       this->gc_->worklist().push(Section_id(obj, shndx));
646     }
647 }
648 
649 // When doing garbage collection, keep symbols that have been seen in
650 // dynamic objects.
651 inline void
652 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
653 {
654   if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
655       && !sym->object()->is_dynamic())
656     this->gc_mark_symbol(sym);
657 }
658 
659 // Make TO a symbol which forwards to FROM.
660 
661 void
662 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
663 {
664   gold_assert(from != to);
665   gold_assert(!from->is_forwarder() && !to->is_forwarder());
666   this->forwarders_[from] = to;
667   from->set_forwarder();
668 }
669 
670 // Resolve the forwards from FROM, returning the real symbol.
671 
672 Symbol*
673 Symbol_table::resolve_forwards(const Symbol* from) const
674 {
675   gold_assert(from->is_forwarder());
676   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
677     this->forwarders_.find(from);
678   gold_assert(p != this->forwarders_.end());
679   return p->second;
680 }
681 
682 // Look up a symbol by name.
683 
684 Symbol*
685 Symbol_table::lookup(const char* name, const char* version) const
686 {
687   Stringpool::Key name_key;
688   name = this->namepool_.find(name, &name_key);
689   if (name == NULL)
690     return NULL;
691 
692   Stringpool::Key version_key = 0;
693   if (version != NULL)
694     {
695       version = this->namepool_.find(version, &version_key);
696       if (version == NULL)
697 	return NULL;
698     }
699 
700   Symbol_table_key key(name_key, version_key);
701   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
702   if (p == this->table_.end())
703     return NULL;
704   return p->second;
705 }
706 
707 // Resolve a Symbol with another Symbol.  This is only used in the
708 // unusual case where there are references to both an unversioned
709 // symbol and a symbol with a version, and we then discover that that
710 // version is the default version.  Because this is unusual, we do
711 // this the slow way, by converting back to an ELF symbol.
712 
713 template<int size, bool big_endian>
714 void
715 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
716 {
717   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
718   elfcpp::Sym_write<size, big_endian> esym(buf);
719   // We don't bother to set the st_name or the st_shndx field.
720   esym.put_st_value(from->value());
721   esym.put_st_size(from->symsize());
722   esym.put_st_info(from->binding(), from->type());
723   esym.put_st_other(from->visibility(), from->nonvis());
724   bool is_ordinary;
725   unsigned int shndx = from->shndx(&is_ordinary);
726   this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
727 		from->version());
728   if (from->in_reg())
729     to->set_in_reg();
730   if (from->in_dyn())
731     to->set_in_dyn();
732   if (parameters->options().gc_sections())
733     this->gc_mark_dyn_syms(to);
734 }
735 
736 // Record that a symbol is forced to be local by a version script or
737 // by visibility.
738 
739 void
740 Symbol_table::force_local(Symbol* sym)
741 {
742   if (!sym->is_defined() && !sym->is_common())
743     return;
744   if (sym->is_forced_local())
745     {
746       // We already got this one.
747       return;
748     }
749   sym->set_is_forced_local();
750   this->forced_locals_.push_back(sym);
751 }
752 
753 // Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
754 // is only called for undefined symbols, when at least one --wrap
755 // option was used.
756 
757 const char*
758 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
759 {
760   // For some targets, we need to ignore a specific character when
761   // wrapping, and add it back later.
762   char prefix = '\0';
763   if (name[0] == parameters->target().wrap_char())
764     {
765       prefix = name[0];
766       ++name;
767     }
768 
769   if (parameters->options().is_wrap(name))
770     {
771       // Turn NAME into __wrap_NAME.
772       std::string s;
773       if (prefix != '\0')
774 	s += prefix;
775       s += "__wrap_";
776       s += name;
777 
778       // This will give us both the old and new name in NAMEPOOL_, but
779       // that is OK.  Only the versions we need will wind up in the
780       // real string table in the output file.
781       return this->namepool_.add(s.c_str(), true, name_key);
782     }
783 
784   const char* const real_prefix = "__real_";
785   const size_t real_prefix_length = strlen(real_prefix);
786   if (strncmp(name, real_prefix, real_prefix_length) == 0
787       && parameters->options().is_wrap(name + real_prefix_length))
788     {
789       // Turn __real_NAME into NAME.
790       std::string s;
791       if (prefix != '\0')
792 	s += prefix;
793       s += name + real_prefix_length;
794       return this->namepool_.add(s.c_str(), true, name_key);
795     }
796 
797   return name;
798 }
799 
800 // This is called when we see a symbol NAME/VERSION, and the symbol
801 // already exists in the symbol table, and VERSION is marked as being
802 // the default version.  SYM is the NAME/VERSION symbol we just added.
803 // DEFAULT_IS_NEW is true if this is the first time we have seen the
804 // symbol NAME/NULL.  PDEF points to the entry for NAME/NULL.
805 
806 template<int size, bool big_endian>
807 void
808 Symbol_table::define_default_version(Sized_symbol<size>* sym,
809 				     bool default_is_new,
810 				     Symbol_table_type::iterator pdef)
811 {
812   if (default_is_new)
813     {
814       // This is the first time we have seen NAME/NULL.  Make
815       // NAME/NULL point to NAME/VERSION, and mark SYM as the default
816       // version.
817       pdef->second = sym;
818       sym->set_is_default();
819     }
820   else if (pdef->second == sym)
821     {
822       // NAME/NULL already points to NAME/VERSION.  Don't mark the
823       // symbol as the default if it is not already the default.
824     }
825   else
826     {
827       // This is the unfortunate case where we already have entries
828       // for both NAME/VERSION and NAME/NULL.  We now see a symbol
829       // NAME/VERSION where VERSION is the default version.  We have
830       // already resolved this new symbol with the existing
831       // NAME/VERSION symbol.
832 
833       // It's possible that NAME/NULL and NAME/VERSION are both
834       // defined in regular objects.  This can only happen if one
835       // object file defines foo and another defines foo@@ver.  This
836       // is somewhat obscure, but we call it a multiple definition
837       // error.
838 
839       // It's possible that NAME/NULL actually has a version, in which
840       // case it won't be the same as VERSION.  This happens with
841       // ver_test_7.so in the testsuite for the symbol t2_2.  We see
842       // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL.  We
843       // then see an unadorned t2_2 in an object file and give it
844       // version VER1 from the version script.  This looks like a
845       // default definition for VER1, so it looks like we should merge
846       // t2_2/NULL with t2_2/VER1.  That doesn't make sense, but it's
847       // not obvious that this is an error, either.  So we just punt.
848 
849       // If one of the symbols has non-default visibility, and the
850       // other is defined in a shared object, then they are different
851       // symbols.
852 
853       // Otherwise, we just resolve the symbols as though they were
854       // the same.
855 
856       if (pdef->second->version() != NULL)
857 	gold_assert(pdef->second->version() != sym->version());
858       else if (sym->visibility() != elfcpp::STV_DEFAULT
859 	       && pdef->second->is_from_dynobj())
860 	;
861       else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
862 	       && sym->is_from_dynobj())
863 	;
864       else
865 	{
866 	  const Sized_symbol<size>* symdef;
867 	  symdef = this->get_sized_symbol<size>(pdef->second);
868 	  Symbol_table::resolve<size, big_endian>(sym, symdef);
869 	  this->make_forwarder(pdef->second, sym);
870 	  pdef->second = sym;
871 	  sym->set_is_default();
872 	}
873     }
874 }
875 
876 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
877 // name and VERSION is the version; both are canonicalized.  DEF is
878 // whether this is the default version.  ST_SHNDX is the symbol's
879 // section index; IS_ORDINARY is whether this is a normal section
880 // rather than a special code.
881 
882 // If IS_DEFAULT_VERSION is true, then this is the definition of a
883 // default version of a symbol.  That means that any lookup of
884 // NAME/NULL and any lookup of NAME/VERSION should always return the
885 // same symbol.  This is obvious for references, but in particular we
886 // want to do this for definitions: overriding NAME/NULL should also
887 // override NAME/VERSION.  If we don't do that, it would be very hard
888 // to override functions in a shared library which uses versioning.
889 
890 // We implement this by simply making both entries in the hash table
891 // point to the same Symbol structure.  That is easy enough if this is
892 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
893 // that we have seen both already, in which case they will both have
894 // independent entries in the symbol table.  We can't simply change
895 // the symbol table entry, because we have pointers to the entries
896 // attached to the object files.  So we mark the entry attached to the
897 // object file as a forwarder, and record it in the forwarders_ map.
898 // Note that entries in the hash table will never be marked as
899 // forwarders.
900 //
901 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
902 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
903 // for a special section code.  ST_SHNDX may be modified if the symbol
904 // is defined in a section being discarded.
905 
906 template<int size, bool big_endian>
907 Sized_symbol<size>*
908 Symbol_table::add_from_object(Object* object,
909 			      const char* name,
910 			      Stringpool::Key name_key,
911 			      const char* version,
912 			      Stringpool::Key version_key,
913 			      bool is_default_version,
914 			      const elfcpp::Sym<size, big_endian>& sym,
915 			      unsigned int st_shndx,
916 			      bool is_ordinary,
917 			      unsigned int orig_st_shndx)
918 {
919   // Print a message if this symbol is being traced.
920   if (parameters->options().is_trace_symbol(name))
921     {
922       if (orig_st_shndx == elfcpp::SHN_UNDEF)
923         gold_info(_("%s: reference to %s"), object->name().c_str(), name);
924       else
925         gold_info(_("%s: definition of %s"), object->name().c_str(), name);
926     }
927 
928   // For an undefined symbol, we may need to adjust the name using
929   // --wrap.
930   if (orig_st_shndx == elfcpp::SHN_UNDEF
931       && parameters->options().any_wrap())
932     {
933       const char* wrap_name = this->wrap_symbol(name, &name_key);
934       if (wrap_name != name)
935 	{
936 	  // If we see a reference to malloc with version GLIBC_2.0,
937 	  // and we turn it into a reference to __wrap_malloc, then we
938 	  // discard the version number.  Otherwise the user would be
939 	  // required to specify the correct version for
940 	  // __wrap_malloc.
941 	  version = NULL;
942 	  version_key = 0;
943 	  name = wrap_name;
944 	}
945     }
946 
947   Symbol* const snull = NULL;
948   std::pair<typename Symbol_table_type::iterator, bool> ins =
949     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
950 				       snull));
951 
952   std::pair<typename Symbol_table_type::iterator, bool> insdefault =
953     std::make_pair(this->table_.end(), false);
954   if (is_default_version)
955     {
956       const Stringpool::Key vnull_key = 0;
957       insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
958 								     vnull_key),
959 						      snull));
960     }
961 
962   // ins.first: an iterator, which is a pointer to a pair.
963   // ins.first->first: the key (a pair of name and version).
964   // ins.first->second: the value (Symbol*).
965   // ins.second: true if new entry was inserted, false if not.
966 
967   Sized_symbol<size>* ret;
968   bool was_undefined;
969   bool was_common;
970   if (!ins.second)
971     {
972       // We already have an entry for NAME/VERSION.
973       ret = this->get_sized_symbol<size>(ins.first->second);
974       gold_assert(ret != NULL);
975 
976       was_undefined = ret->is_undefined();
977       was_common = ret->is_common();
978 
979       this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
980 		    version);
981       if (parameters->options().gc_sections())
982         this->gc_mark_dyn_syms(ret);
983 
984       if (is_default_version)
985 	this->define_default_version<size, big_endian>(ret, insdefault.second,
986 						       insdefault.first);
987     }
988   else
989     {
990       // This is the first time we have seen NAME/VERSION.
991       gold_assert(ins.first->second == NULL);
992 
993       if (is_default_version && !insdefault.second)
994 	{
995 	  // We already have an entry for NAME/NULL.  If we override
996 	  // it, then change it to NAME/VERSION.
997 	  ret = this->get_sized_symbol<size>(insdefault.first->second);
998 
999 	  was_undefined = ret->is_undefined();
1000 	  was_common = ret->is_common();
1001 
1002 	  this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1003 			version);
1004           if (parameters->options().gc_sections())
1005             this->gc_mark_dyn_syms(ret);
1006 	  ins.first->second = ret;
1007 	}
1008       else
1009 	{
1010 	  was_undefined = false;
1011 	  was_common = false;
1012 
1013 	  Sized_target<size, big_endian>* target =
1014 	    parameters->sized_target<size, big_endian>();
1015 	  if (!target->has_make_symbol())
1016 	    ret = new Sized_symbol<size>();
1017 	  else
1018 	    {
1019 	      ret = target->make_symbol();
1020 	      if (ret == NULL)
1021 		{
1022 		  // This means that we don't want a symbol table
1023 		  // entry after all.
1024 		  if (!is_default_version)
1025 		    this->table_.erase(ins.first);
1026 		  else
1027 		    {
1028 		      this->table_.erase(insdefault.first);
1029 		      // Inserting INSDEFAULT invalidated INS.
1030 		      this->table_.erase(std::make_pair(name_key,
1031 							version_key));
1032 		    }
1033 		  return NULL;
1034 		}
1035 	    }
1036 
1037 	  ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1038 
1039 	  ins.first->second = ret;
1040 	  if (is_default_version)
1041 	    {
1042 	      // This is the first time we have seen NAME/NULL.  Point
1043 	      // it at the new entry for NAME/VERSION.
1044 	      gold_assert(insdefault.second);
1045 	      insdefault.first->second = ret;
1046 	    }
1047 	}
1048 
1049       if (is_default_version)
1050 	ret->set_is_default();
1051     }
1052 
1053   // Record every time we see a new undefined symbol, to speed up
1054   // archive groups.
1055   if (!was_undefined && ret->is_undefined())
1056     {
1057       ++this->saw_undefined_;
1058       if (parameters->options().has_plugins())
1059 	parameters->options().plugins()->new_undefined_symbol(ret);
1060     }
1061 
1062   // Keep track of common symbols, to speed up common symbol
1063   // allocation.
1064   if (!was_common && ret->is_common())
1065     {
1066       if (ret->type() == elfcpp::STT_TLS)
1067 	this->tls_commons_.push_back(ret);
1068       else if (!is_ordinary
1069 	       && st_shndx == parameters->target().small_common_shndx())
1070 	this->small_commons_.push_back(ret);
1071       else if (!is_ordinary
1072 	       && st_shndx == parameters->target().large_common_shndx())
1073 	this->large_commons_.push_back(ret);
1074       else
1075 	this->commons_.push_back(ret);
1076     }
1077 
1078   // If we're not doing a relocatable link, then any symbol with
1079   // hidden or internal visibility is local.
1080   if ((ret->visibility() == elfcpp::STV_HIDDEN
1081        || ret->visibility() == elfcpp::STV_INTERNAL)
1082       && (ret->binding() == elfcpp::STB_GLOBAL
1083 	  || ret->binding() == elfcpp::STB_GNU_UNIQUE
1084 	  || ret->binding() == elfcpp::STB_WEAK)
1085       && !parameters->options().relocatable())
1086     this->force_local(ret);
1087 
1088   return ret;
1089 }
1090 
1091 // Add all the symbols in a relocatable object to the hash table.
1092 
1093 template<int size, bool big_endian>
1094 void
1095 Symbol_table::add_from_relobj(
1096     Sized_relobj_file<size, big_endian>* relobj,
1097     const unsigned char* syms,
1098     size_t count,
1099     size_t symndx_offset,
1100     const char* sym_names,
1101     size_t sym_name_size,
1102     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1103     size_t* defined)
1104 {
1105   *defined = 0;
1106 
1107   gold_assert(size == parameters->target().get_size());
1108 
1109   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1110 
1111   const bool just_symbols = relobj->just_symbols();
1112 
1113   const unsigned char* p = syms;
1114   for (size_t i = 0; i < count; ++i, p += sym_size)
1115     {
1116       (*sympointers)[i] = NULL;
1117 
1118       elfcpp::Sym<size, big_endian> sym(p);
1119 
1120       unsigned int st_name = sym.get_st_name();
1121       if (st_name >= sym_name_size)
1122 	{
1123 	  relobj->error(_("bad global symbol name offset %u at %zu"),
1124 			st_name, i);
1125 	  continue;
1126 	}
1127 
1128       const char* name = sym_names + st_name;
1129 
1130       bool is_ordinary;
1131       unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1132 						       sym.get_st_shndx(),
1133 						       &is_ordinary);
1134       unsigned int orig_st_shndx = st_shndx;
1135       if (!is_ordinary)
1136 	orig_st_shndx = elfcpp::SHN_UNDEF;
1137 
1138       if (st_shndx != elfcpp::SHN_UNDEF)
1139 	++*defined;
1140 
1141       // A symbol defined in a section which we are not including must
1142       // be treated as an undefined symbol.
1143       bool is_defined_in_discarded_section = false;
1144       if (st_shndx != elfcpp::SHN_UNDEF
1145 	  && is_ordinary
1146 	  && !relobj->is_section_included(st_shndx)
1147           && !this->is_section_folded(relobj, st_shndx))
1148 	{
1149 	  st_shndx = elfcpp::SHN_UNDEF;
1150 	  is_defined_in_discarded_section = true;
1151 	}
1152 
1153       // In an object file, an '@' in the name separates the symbol
1154       // name from the version name.  If there are two '@' characters,
1155       // this is the default version.
1156       const char* ver = strchr(name, '@');
1157       Stringpool::Key ver_key = 0;
1158       int namelen = 0;
1159       // IS_DEFAULT_VERSION: is the version default?
1160       // IS_FORCED_LOCAL: is the symbol forced local?
1161       bool is_default_version = false;
1162       bool is_forced_local = false;
1163 
1164       // FIXME: For incremental links, we don't store version information,
1165       // so we need to ignore version symbols for now.
1166       if (parameters->incremental_update() && ver != NULL)
1167 	{
1168 	  namelen = ver - name;
1169 	  ver = NULL;
1170 	}
1171 
1172       if (ver != NULL)
1173         {
1174           // The symbol name is of the form foo@VERSION or foo@@VERSION
1175           namelen = ver - name;
1176           ++ver;
1177 	  if (*ver == '@')
1178 	    {
1179 	      is_default_version = true;
1180 	      ++ver;
1181 	    }
1182 	  ver = this->namepool_.add(ver, true, &ver_key);
1183         }
1184       // We don't want to assign a version to an undefined symbol,
1185       // even if it is listed in the version script.  FIXME: What
1186       // about a common symbol?
1187       else
1188 	{
1189 	  namelen = strlen(name);
1190 	  if (!this->version_script_.empty()
1191 	      && st_shndx != elfcpp::SHN_UNDEF)
1192 	    {
1193 	      // The symbol name did not have a version, but the
1194 	      // version script may assign a version anyway.
1195 	      std::string version;
1196 	      bool is_global;
1197 	      if (this->version_script_.get_symbol_version(name, &version,
1198 							   &is_global))
1199 		{
1200 		  if (!is_global)
1201 		    is_forced_local = true;
1202 		  else if (!version.empty())
1203 		    {
1204 		      ver = this->namepool_.add_with_length(version.c_str(),
1205 							    version.length(),
1206 							    true,
1207 							    &ver_key);
1208 		      is_default_version = true;
1209 		    }
1210 		}
1211 	    }
1212 	}
1213 
1214       elfcpp::Sym<size, big_endian>* psym = &sym;
1215       unsigned char symbuf[sym_size];
1216       elfcpp::Sym<size, big_endian> sym2(symbuf);
1217       if (just_symbols)
1218 	{
1219 	  memcpy(symbuf, p, sym_size);
1220 	  elfcpp::Sym_write<size, big_endian> sw(symbuf);
1221 	  if (orig_st_shndx != elfcpp::SHN_UNDEF
1222 	      && is_ordinary
1223 	      && relobj->e_type() == elfcpp::ET_REL)
1224 	    {
1225 	      // Symbol values in relocatable object files are section
1226 	      // relative.  This is normally what we want, but since here
1227 	      // we are converting the symbol to absolute we need to add
1228 	      // the section address.  The section address in an object
1229 	      // file is normally zero, but people can use a linker
1230 	      // script to change it.
1231 	      sw.put_st_value(sym.get_st_value()
1232 			      + relobj->section_address(orig_st_shndx));
1233 	    }
1234 	  st_shndx = elfcpp::SHN_ABS;
1235 	  is_ordinary = false;
1236 	  psym = &sym2;
1237 	}
1238 
1239       // Fix up visibility if object has no-export set.
1240       if (relobj->no_export()
1241 	  && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1242         {
1243 	  // We may have copied symbol already above.
1244 	  if (psym != &sym2)
1245 	    {
1246 	      memcpy(symbuf, p, sym_size);
1247 	      psym = &sym2;
1248 	    }
1249 
1250 	  elfcpp::STV visibility = sym2.get_st_visibility();
1251 	  if (visibility == elfcpp::STV_DEFAULT
1252 	      || visibility == elfcpp::STV_PROTECTED)
1253 	    {
1254 	      elfcpp::Sym_write<size, big_endian> sw(symbuf);
1255 	      unsigned char nonvis = sym2.get_st_nonvis();
1256 	      sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1257 	    }
1258         }
1259 
1260       Stringpool::Key name_key;
1261       name = this->namepool_.add_with_length(name, namelen, true,
1262 					     &name_key);
1263 
1264       Sized_symbol<size>* res;
1265       res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1266 				  is_default_version, *psym, st_shndx,
1267 				  is_ordinary, orig_st_shndx);
1268 
1269       if (is_forced_local)
1270 	this->force_local(res);
1271 
1272       // Do not treat this symbol as garbage if this symbol will be
1273       // exported to the dynamic symbol table.  This is true when
1274       // building a shared library or using --export-dynamic and
1275       // the symbol is externally visible.
1276       if (parameters->options().gc_sections()
1277 	  && res->is_externally_visible()
1278 	  && !res->is_from_dynobj()
1279           && (parameters->options().shared()
1280 	      || parameters->options().export_dynamic()))
1281         this->gc_mark_symbol(res);
1282 
1283       if (is_defined_in_discarded_section)
1284 	res->set_is_defined_in_discarded_section();
1285 
1286       (*sympointers)[i] = res;
1287     }
1288 }
1289 
1290 // Add a symbol from a plugin-claimed file.
1291 
1292 template<int size, bool big_endian>
1293 Symbol*
1294 Symbol_table::add_from_pluginobj(
1295     Sized_pluginobj<size, big_endian>* obj,
1296     const char* name,
1297     const char* ver,
1298     elfcpp::Sym<size, big_endian>* sym)
1299 {
1300   unsigned int st_shndx = sym->get_st_shndx();
1301   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1302 
1303   Stringpool::Key ver_key = 0;
1304   bool is_default_version = false;
1305   bool is_forced_local = false;
1306 
1307   if (ver != NULL)
1308     {
1309       ver = this->namepool_.add(ver, true, &ver_key);
1310     }
1311   // We don't want to assign a version to an undefined symbol,
1312   // even if it is listed in the version script.  FIXME: What
1313   // about a common symbol?
1314   else
1315     {
1316       if (!this->version_script_.empty()
1317           && st_shndx != elfcpp::SHN_UNDEF)
1318         {
1319           // The symbol name did not have a version, but the
1320           // version script may assign a version anyway.
1321           std::string version;
1322 	  bool is_global;
1323           if (this->version_script_.get_symbol_version(name, &version,
1324 						       &is_global))
1325             {
1326 	      if (!is_global)
1327 		is_forced_local = true;
1328 	      else if (!version.empty())
1329                 {
1330                   ver = this->namepool_.add_with_length(version.c_str(),
1331                                                         version.length(),
1332                                                         true,
1333                                                         &ver_key);
1334                   is_default_version = true;
1335                 }
1336             }
1337         }
1338     }
1339 
1340   Stringpool::Key name_key;
1341   name = this->namepool_.add(name, true, &name_key);
1342 
1343   Sized_symbol<size>* res;
1344   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1345 		              is_default_version, *sym, st_shndx,
1346 			      is_ordinary, st_shndx);
1347 
1348   if (is_forced_local)
1349     this->force_local(res);
1350 
1351   return res;
1352 }
1353 
1354 // Add all the symbols in a dynamic object to the hash table.
1355 
1356 template<int size, bool big_endian>
1357 void
1358 Symbol_table::add_from_dynobj(
1359     Sized_dynobj<size, big_endian>* dynobj,
1360     const unsigned char* syms,
1361     size_t count,
1362     const char* sym_names,
1363     size_t sym_name_size,
1364     const unsigned char* versym,
1365     size_t versym_size,
1366     const std::vector<const char*>* version_map,
1367     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1368     size_t* defined)
1369 {
1370   *defined = 0;
1371 
1372   gold_assert(size == parameters->target().get_size());
1373 
1374   if (dynobj->just_symbols())
1375     {
1376       gold_error(_("--just-symbols does not make sense with a shared object"));
1377       return;
1378     }
1379 
1380   // FIXME: For incremental links, we don't store version information,
1381   // so we need to ignore version symbols for now.
1382   if (parameters->incremental_update())
1383     versym = NULL;
1384 
1385   if (versym != NULL && versym_size / 2 < count)
1386     {
1387       dynobj->error(_("too few symbol versions"));
1388       return;
1389     }
1390 
1391   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1392 
1393   // We keep a list of all STT_OBJECT symbols, so that we can resolve
1394   // weak aliases.  This is necessary because if the dynamic object
1395   // provides the same variable under two names, one of which is a
1396   // weak definition, and the regular object refers to the weak
1397   // definition, we have to put both the weak definition and the
1398   // strong definition into the dynamic symbol table.  Given a weak
1399   // definition, the only way that we can find the corresponding
1400   // strong definition, if any, is to search the symbol table.
1401   std::vector<Sized_symbol<size>*> object_symbols;
1402 
1403   const unsigned char* p = syms;
1404   const unsigned char* vs = versym;
1405   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1406     {
1407       elfcpp::Sym<size, big_endian> sym(p);
1408 
1409       if (sympointers != NULL)
1410 	(*sympointers)[i] = NULL;
1411 
1412       // Ignore symbols with local binding or that have
1413       // internal or hidden visibility.
1414       if (sym.get_st_bind() == elfcpp::STB_LOCAL
1415           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1416           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1417 	continue;
1418 
1419       // A protected symbol in a shared library must be treated as a
1420       // normal symbol when viewed from outside the shared library.
1421       // Implement this by overriding the visibility here.
1422       elfcpp::Sym<size, big_endian>* psym = &sym;
1423       unsigned char symbuf[sym_size];
1424       elfcpp::Sym<size, big_endian> sym2(symbuf);
1425       if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1426 	{
1427 	  memcpy(symbuf, p, sym_size);
1428 	  elfcpp::Sym_write<size, big_endian> sw(symbuf);
1429 	  sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1430 	  psym = &sym2;
1431 	}
1432 
1433       unsigned int st_name = psym->get_st_name();
1434       if (st_name >= sym_name_size)
1435 	{
1436 	  dynobj->error(_("bad symbol name offset %u at %zu"),
1437 			st_name, i);
1438 	  continue;
1439 	}
1440 
1441       const char* name = sym_names + st_name;
1442 
1443       bool is_ordinary;
1444       unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1445 						       &is_ordinary);
1446 
1447       if (st_shndx != elfcpp::SHN_UNDEF)
1448 	++*defined;
1449 
1450       Sized_symbol<size>* res;
1451 
1452       if (versym == NULL)
1453 	{
1454 	  Stringpool::Key name_key;
1455 	  name = this->namepool_.add(name, true, &name_key);
1456 	  res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1457 				      false, *psym, st_shndx, is_ordinary,
1458 				      st_shndx);
1459 	}
1460       else
1461 	{
1462 	  // Read the version information.
1463 
1464 	  unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1465 
1466 	  bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1467 	  v &= elfcpp::VERSYM_VERSION;
1468 
1469 	  // The Sun documentation says that V can be VER_NDX_LOCAL,
1470 	  // or VER_NDX_GLOBAL, or a version index.  The meaning of
1471 	  // VER_NDX_LOCAL is defined as "Symbol has local scope."
1472 	  // The old GNU linker will happily generate VER_NDX_LOCAL
1473 	  // for an undefined symbol.  I don't know what the Sun
1474 	  // linker will generate.
1475 
1476 	  if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1477 	      && st_shndx != elfcpp::SHN_UNDEF)
1478 	    {
1479 	      // This symbol should not be visible outside the object.
1480 	      continue;
1481 	    }
1482 
1483 	  // At this point we are definitely going to add this symbol.
1484 	  Stringpool::Key name_key;
1485 	  name = this->namepool_.add(name, true, &name_key);
1486 
1487 	  if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1488 	      || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1489 	    {
1490 	      // This symbol does not have a version.
1491 	      res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1492 					  false, *psym, st_shndx, is_ordinary,
1493 					  st_shndx);
1494 	    }
1495 	  else
1496 	    {
1497 	      if (v >= version_map->size())
1498 		{
1499 		  dynobj->error(_("versym for symbol %zu out of range: %u"),
1500 				i, v);
1501 		  continue;
1502 		}
1503 
1504 	      const char* version = (*version_map)[v];
1505 	      if (version == NULL)
1506 		{
1507 		  dynobj->error(_("versym for symbol %zu has no name: %u"),
1508 				i, v);
1509 		  continue;
1510 		}
1511 
1512 	      Stringpool::Key version_key;
1513 	      version = this->namepool_.add(version, true, &version_key);
1514 
1515 	      // If this is an absolute symbol, and the version name
1516 	      // and symbol name are the same, then this is the
1517 	      // version definition symbol.  These symbols exist to
1518 	      // support using -u to pull in particular versions.  We
1519 	      // do not want to record a version for them.
1520 	      if (st_shndx == elfcpp::SHN_ABS
1521 		  && !is_ordinary
1522 		  && name_key == version_key)
1523 		res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1524 					    false, *psym, st_shndx, is_ordinary,
1525 					    st_shndx);
1526 	      else
1527 		{
1528 		  const bool is_default_version =
1529 		    !hidden && st_shndx != elfcpp::SHN_UNDEF;
1530 		  res = this->add_from_object(dynobj, name, name_key, version,
1531 					      version_key, is_default_version,
1532 					      *psym, st_shndx,
1533 					      is_ordinary, st_shndx);
1534 		}
1535 	    }
1536 	}
1537 
1538       // Note that it is possible that RES was overridden by an
1539       // earlier object, in which case it can't be aliased here.
1540       if (st_shndx != elfcpp::SHN_UNDEF
1541 	  && is_ordinary
1542 	  && psym->get_st_type() == elfcpp::STT_OBJECT
1543 	  && res->source() == Symbol::FROM_OBJECT
1544 	  && res->object() == dynobj)
1545 	object_symbols.push_back(res);
1546 
1547       if (sympointers != NULL)
1548 	(*sympointers)[i] = res;
1549     }
1550 
1551   this->record_weak_aliases(&object_symbols);
1552 }
1553 
1554 // Add a symbol from a incremental object file.
1555 
1556 template<int size, bool big_endian>
1557 Sized_symbol<size>*
1558 Symbol_table::add_from_incrobj(
1559     Object* obj,
1560     const char* name,
1561     const char* ver,
1562     elfcpp::Sym<size, big_endian>* sym)
1563 {
1564   unsigned int st_shndx = sym->get_st_shndx();
1565   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1566 
1567   Stringpool::Key ver_key = 0;
1568   bool is_default_version = false;
1569   bool is_forced_local = false;
1570 
1571   Stringpool::Key name_key;
1572   name = this->namepool_.add(name, true, &name_key);
1573 
1574   Sized_symbol<size>* res;
1575   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1576 		              is_default_version, *sym, st_shndx,
1577 			      is_ordinary, st_shndx);
1578 
1579   if (is_forced_local)
1580     this->force_local(res);
1581 
1582   return res;
1583 }
1584 
1585 // This is used to sort weak aliases.  We sort them first by section
1586 // index, then by offset, then by weak ahead of strong.
1587 
1588 template<int size>
1589 class Weak_alias_sorter
1590 {
1591  public:
1592   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1593 };
1594 
1595 template<int size>
1596 bool
1597 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1598 				    const Sized_symbol<size>* s2) const
1599 {
1600   bool is_ordinary;
1601   unsigned int s1_shndx = s1->shndx(&is_ordinary);
1602   gold_assert(is_ordinary);
1603   unsigned int s2_shndx = s2->shndx(&is_ordinary);
1604   gold_assert(is_ordinary);
1605   if (s1_shndx != s2_shndx)
1606     return s1_shndx < s2_shndx;
1607 
1608   if (s1->value() != s2->value())
1609     return s1->value() < s2->value();
1610   if (s1->binding() != s2->binding())
1611     {
1612       if (s1->binding() == elfcpp::STB_WEAK)
1613 	return true;
1614       if (s2->binding() == elfcpp::STB_WEAK)
1615 	return false;
1616     }
1617   return std::string(s1->name()) < std::string(s2->name());
1618 }
1619 
1620 // SYMBOLS is a list of object symbols from a dynamic object.  Look
1621 // for any weak aliases, and record them so that if we add the weak
1622 // alias to the dynamic symbol table, we also add the corresponding
1623 // strong symbol.
1624 
1625 template<int size>
1626 void
1627 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1628 {
1629   // Sort the vector by section index, then by offset, then by weak
1630   // ahead of strong.
1631   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1632 
1633   // Walk through the vector.  For each weak definition, record
1634   // aliases.
1635   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1636 	 symbols->begin();
1637        p != symbols->end();
1638        ++p)
1639     {
1640       if ((*p)->binding() != elfcpp::STB_WEAK)
1641 	continue;
1642 
1643       // Build a circular list of weak aliases.  Each symbol points to
1644       // the next one in the circular list.
1645 
1646       Sized_symbol<size>* from_sym = *p;
1647       typename std::vector<Sized_symbol<size>*>::const_iterator q;
1648       for (q = p + 1; q != symbols->end(); ++q)
1649 	{
1650 	  bool dummy;
1651 	  if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1652 	      || (*q)->value() != from_sym->value())
1653 	    break;
1654 
1655 	  this->weak_aliases_[from_sym] = *q;
1656 	  from_sym->set_has_alias();
1657 	  from_sym = *q;
1658 	}
1659 
1660       if (from_sym != *p)
1661 	{
1662 	  this->weak_aliases_[from_sym] = *p;
1663 	  from_sym->set_has_alias();
1664 	}
1665 
1666       p = q - 1;
1667     }
1668 }
1669 
1670 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1671 // true, then only create the symbol if there is a reference to it.
1672 // If this does not return NULL, it sets *POLDSYM to the existing
1673 // symbol if there is one.  This sets *RESOLVE_OLDSYM if we should
1674 // resolve the newly created symbol to the old one.  This
1675 // canonicalizes *PNAME and *PVERSION.
1676 
1677 template<int size, bool big_endian>
1678 Sized_symbol<size>*
1679 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1680 				    bool only_if_ref,
1681                                     Sized_symbol<size>** poldsym,
1682 				    bool* resolve_oldsym)
1683 {
1684   *resolve_oldsym = false;
1685   *poldsym = NULL;
1686 
1687   // If the caller didn't give us a version, see if we get one from
1688   // the version script.
1689   std::string v;
1690   bool is_default_version = false;
1691   if (*pversion == NULL)
1692     {
1693       bool is_global;
1694       if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1695 	{
1696 	  if (is_global && !v.empty())
1697 	    {
1698 	      *pversion = v.c_str();
1699 	      // If we get the version from a version script, then we
1700 	      // are also the default version.
1701 	      is_default_version = true;
1702 	    }
1703 	}
1704     }
1705 
1706   Symbol* oldsym;
1707   Sized_symbol<size>* sym;
1708 
1709   bool add_to_table = false;
1710   typename Symbol_table_type::iterator add_loc = this->table_.end();
1711   bool add_def_to_table = false;
1712   typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1713 
1714   if (only_if_ref)
1715     {
1716       oldsym = this->lookup(*pname, *pversion);
1717       if (oldsym == NULL && is_default_version)
1718 	oldsym = this->lookup(*pname, NULL);
1719       if (oldsym == NULL || !oldsym->is_undefined())
1720 	return NULL;
1721 
1722       *pname = oldsym->name();
1723       if (is_default_version)
1724 	*pversion = this->namepool_.add(*pversion, true, NULL);
1725       else
1726 	*pversion = oldsym->version();
1727     }
1728   else
1729     {
1730       // Canonicalize NAME and VERSION.
1731       Stringpool::Key name_key;
1732       *pname = this->namepool_.add(*pname, true, &name_key);
1733 
1734       Stringpool::Key version_key = 0;
1735       if (*pversion != NULL)
1736 	*pversion = this->namepool_.add(*pversion, true, &version_key);
1737 
1738       Symbol* const snull = NULL;
1739       std::pair<typename Symbol_table_type::iterator, bool> ins =
1740 	this->table_.insert(std::make_pair(std::make_pair(name_key,
1741 							  version_key),
1742 					   snull));
1743 
1744       std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1745 	std::make_pair(this->table_.end(), false);
1746       if (is_default_version)
1747 	{
1748 	  const Stringpool::Key vnull = 0;
1749 	  insdefault =
1750 	    this->table_.insert(std::make_pair(std::make_pair(name_key,
1751 							      vnull),
1752 					       snull));
1753 	}
1754 
1755       if (!ins.second)
1756 	{
1757 	  // We already have a symbol table entry for NAME/VERSION.
1758 	  oldsym = ins.first->second;
1759 	  gold_assert(oldsym != NULL);
1760 
1761 	  if (is_default_version)
1762 	    {
1763 	      Sized_symbol<size>* soldsym =
1764 		this->get_sized_symbol<size>(oldsym);
1765 	      this->define_default_version<size, big_endian>(soldsym,
1766 							     insdefault.second,
1767 							     insdefault.first);
1768 	    }
1769 	}
1770       else
1771 	{
1772 	  // We haven't seen this symbol before.
1773 	  gold_assert(ins.first->second == NULL);
1774 
1775 	  add_to_table = true;
1776 	  add_loc = ins.first;
1777 
1778 	  if (is_default_version && !insdefault.second)
1779 	    {
1780 	      // We are adding NAME/VERSION, and it is the default
1781 	      // version.  We already have an entry for NAME/NULL.
1782 	      oldsym = insdefault.first->second;
1783 	      *resolve_oldsym = true;
1784 	    }
1785 	  else
1786 	    {
1787 	      oldsym = NULL;
1788 
1789 	      if (is_default_version)
1790 		{
1791 		  add_def_to_table = true;
1792 		  add_def_loc = insdefault.first;
1793 		}
1794 	    }
1795 	}
1796     }
1797 
1798   const Target& target = parameters->target();
1799   if (!target.has_make_symbol())
1800     sym = new Sized_symbol<size>();
1801   else
1802     {
1803       Sized_target<size, big_endian>* sized_target =
1804 	parameters->sized_target<size, big_endian>();
1805       sym = sized_target->make_symbol();
1806       if (sym == NULL)
1807         return NULL;
1808     }
1809 
1810   if (add_to_table)
1811     add_loc->second = sym;
1812   else
1813     gold_assert(oldsym != NULL);
1814 
1815   if (add_def_to_table)
1816     add_def_loc->second = sym;
1817 
1818   *poldsym = this->get_sized_symbol<size>(oldsym);
1819 
1820   return sym;
1821 }
1822 
1823 // Define a symbol based on an Output_data.
1824 
1825 Symbol*
1826 Symbol_table::define_in_output_data(const char* name,
1827 				    const char* version,
1828 				    Defined defined,
1829 				    Output_data* od,
1830 				    uint64_t value,
1831 				    uint64_t symsize,
1832 				    elfcpp::STT type,
1833 				    elfcpp::STB binding,
1834 				    elfcpp::STV visibility,
1835 				    unsigned char nonvis,
1836 				    bool offset_is_from_end,
1837 				    bool only_if_ref)
1838 {
1839   if (parameters->target().get_size() == 32)
1840     {
1841 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1842       return this->do_define_in_output_data<32>(name, version, defined, od,
1843                                                 value, symsize, type, binding,
1844                                                 visibility, nonvis,
1845                                                 offset_is_from_end,
1846                                                 only_if_ref);
1847 #else
1848       gold_unreachable();
1849 #endif
1850     }
1851   else if (parameters->target().get_size() == 64)
1852     {
1853 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1854       return this->do_define_in_output_data<64>(name, version, defined, od,
1855                                                 value, symsize, type, binding,
1856                                                 visibility, nonvis,
1857                                                 offset_is_from_end,
1858                                                 only_if_ref);
1859 #else
1860       gold_unreachable();
1861 #endif
1862     }
1863   else
1864     gold_unreachable();
1865 }
1866 
1867 // Define a symbol in an Output_data, sized version.
1868 
1869 template<int size>
1870 Sized_symbol<size>*
1871 Symbol_table::do_define_in_output_data(
1872     const char* name,
1873     const char* version,
1874     Defined defined,
1875     Output_data* od,
1876     typename elfcpp::Elf_types<size>::Elf_Addr value,
1877     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1878     elfcpp::STT type,
1879     elfcpp::STB binding,
1880     elfcpp::STV visibility,
1881     unsigned char nonvis,
1882     bool offset_is_from_end,
1883     bool only_if_ref)
1884 {
1885   Sized_symbol<size>* sym;
1886   Sized_symbol<size>* oldsym;
1887   bool resolve_oldsym;
1888 
1889   if (parameters->target().is_big_endian())
1890     {
1891 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1892       sym = this->define_special_symbol<size, true>(&name, &version,
1893 						    only_if_ref, &oldsym,
1894 						    &resolve_oldsym);
1895 #else
1896       gold_unreachable();
1897 #endif
1898     }
1899   else
1900     {
1901 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1902       sym = this->define_special_symbol<size, false>(&name, &version,
1903 						     only_if_ref, &oldsym,
1904 						     &resolve_oldsym);
1905 #else
1906       gold_unreachable();
1907 #endif
1908     }
1909 
1910   if (sym == NULL)
1911     return NULL;
1912 
1913   sym->init_output_data(name, version, od, value, symsize, type, binding,
1914 			visibility, nonvis, offset_is_from_end,
1915 			defined == PREDEFINED);
1916 
1917   if (oldsym == NULL)
1918     {
1919       if (binding == elfcpp::STB_LOCAL
1920 	  || this->version_script_.symbol_is_local(name))
1921 	this->force_local(sym);
1922       else if (version != NULL)
1923 	sym->set_is_default();
1924       return sym;
1925     }
1926 
1927   if (Symbol_table::should_override_with_special(oldsym, type, defined))
1928     this->override_with_special(oldsym, sym);
1929 
1930   if (resolve_oldsym)
1931     return sym;
1932   else
1933     {
1934       delete sym;
1935       return oldsym;
1936     }
1937 }
1938 
1939 // Define a symbol based on an Output_segment.
1940 
1941 Symbol*
1942 Symbol_table::define_in_output_segment(const char* name,
1943 				       const char* version,
1944 				       Defined defined,
1945 				       Output_segment* os,
1946 				       uint64_t value,
1947 				       uint64_t symsize,
1948 				       elfcpp::STT type,
1949 				       elfcpp::STB binding,
1950 				       elfcpp::STV visibility,
1951 				       unsigned char nonvis,
1952 				       Symbol::Segment_offset_base offset_base,
1953 				       bool only_if_ref)
1954 {
1955   if (parameters->target().get_size() == 32)
1956     {
1957 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1958       return this->do_define_in_output_segment<32>(name, version, defined, os,
1959                                                    value, symsize, type,
1960                                                    binding, visibility, nonvis,
1961                                                    offset_base, only_if_ref);
1962 #else
1963       gold_unreachable();
1964 #endif
1965     }
1966   else if (parameters->target().get_size() == 64)
1967     {
1968 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1969       return this->do_define_in_output_segment<64>(name, version, defined, os,
1970                                                    value, symsize, type,
1971                                                    binding, visibility, nonvis,
1972                                                    offset_base, only_if_ref);
1973 #else
1974       gold_unreachable();
1975 #endif
1976     }
1977   else
1978     gold_unreachable();
1979 }
1980 
1981 // Define a symbol in an Output_segment, sized version.
1982 
1983 template<int size>
1984 Sized_symbol<size>*
1985 Symbol_table::do_define_in_output_segment(
1986     const char* name,
1987     const char* version,
1988     Defined defined,
1989     Output_segment* os,
1990     typename elfcpp::Elf_types<size>::Elf_Addr value,
1991     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1992     elfcpp::STT type,
1993     elfcpp::STB binding,
1994     elfcpp::STV visibility,
1995     unsigned char nonvis,
1996     Symbol::Segment_offset_base offset_base,
1997     bool only_if_ref)
1998 {
1999   Sized_symbol<size>* sym;
2000   Sized_symbol<size>* oldsym;
2001   bool resolve_oldsym;
2002 
2003   if (parameters->target().is_big_endian())
2004     {
2005 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2006       sym = this->define_special_symbol<size, true>(&name, &version,
2007 						    only_if_ref, &oldsym,
2008 						    &resolve_oldsym);
2009 #else
2010       gold_unreachable();
2011 #endif
2012     }
2013   else
2014     {
2015 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2016       sym = this->define_special_symbol<size, false>(&name, &version,
2017 						     only_if_ref, &oldsym,
2018 						     &resolve_oldsym);
2019 #else
2020       gold_unreachable();
2021 #endif
2022     }
2023 
2024   if (sym == NULL)
2025     return NULL;
2026 
2027   sym->init_output_segment(name, version, os, value, symsize, type, binding,
2028 			   visibility, nonvis, offset_base,
2029 			   defined == PREDEFINED);
2030 
2031   if (oldsym == NULL)
2032     {
2033       if (binding == elfcpp::STB_LOCAL
2034 	  || this->version_script_.symbol_is_local(name))
2035 	this->force_local(sym);
2036       else if (version != NULL)
2037 	sym->set_is_default();
2038       return sym;
2039     }
2040 
2041   if (Symbol_table::should_override_with_special(oldsym, type, defined))
2042     this->override_with_special(oldsym, sym);
2043 
2044   if (resolve_oldsym)
2045     return sym;
2046   else
2047     {
2048       delete sym;
2049       return oldsym;
2050     }
2051 }
2052 
2053 // Define a special symbol with a constant value.  It is a multiple
2054 // definition error if this symbol is already defined.
2055 
2056 Symbol*
2057 Symbol_table::define_as_constant(const char* name,
2058 				 const char* version,
2059 				 Defined defined,
2060 				 uint64_t value,
2061 				 uint64_t symsize,
2062 				 elfcpp::STT type,
2063 				 elfcpp::STB binding,
2064 				 elfcpp::STV visibility,
2065 				 unsigned char nonvis,
2066 				 bool only_if_ref,
2067                                  bool force_override)
2068 {
2069   if (parameters->target().get_size() == 32)
2070     {
2071 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2072       return this->do_define_as_constant<32>(name, version, defined, value,
2073                                              symsize, type, binding,
2074                                              visibility, nonvis, only_if_ref,
2075                                              force_override);
2076 #else
2077       gold_unreachable();
2078 #endif
2079     }
2080   else if (parameters->target().get_size() == 64)
2081     {
2082 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2083       return this->do_define_as_constant<64>(name, version, defined, value,
2084                                              symsize, type, binding,
2085                                              visibility, nonvis, only_if_ref,
2086                                              force_override);
2087 #else
2088       gold_unreachable();
2089 #endif
2090     }
2091   else
2092     gold_unreachable();
2093 }
2094 
2095 // Define a symbol as a constant, sized version.
2096 
2097 template<int size>
2098 Sized_symbol<size>*
2099 Symbol_table::do_define_as_constant(
2100     const char* name,
2101     const char* version,
2102     Defined defined,
2103     typename elfcpp::Elf_types<size>::Elf_Addr value,
2104     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2105     elfcpp::STT type,
2106     elfcpp::STB binding,
2107     elfcpp::STV visibility,
2108     unsigned char nonvis,
2109     bool only_if_ref,
2110     bool force_override)
2111 {
2112   Sized_symbol<size>* sym;
2113   Sized_symbol<size>* oldsym;
2114   bool resolve_oldsym;
2115 
2116   if (parameters->target().is_big_endian())
2117     {
2118 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2119       sym = this->define_special_symbol<size, true>(&name, &version,
2120 						    only_if_ref, &oldsym,
2121 						    &resolve_oldsym);
2122 #else
2123       gold_unreachable();
2124 #endif
2125     }
2126   else
2127     {
2128 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2129       sym = this->define_special_symbol<size, false>(&name, &version,
2130 						     only_if_ref, &oldsym,
2131 						     &resolve_oldsym);
2132 #else
2133       gold_unreachable();
2134 #endif
2135     }
2136 
2137   if (sym == NULL)
2138     return NULL;
2139 
2140   sym->init_constant(name, version, value, symsize, type, binding, visibility,
2141 		     nonvis, defined == PREDEFINED);
2142 
2143   if (oldsym == NULL)
2144     {
2145       // Version symbols are absolute symbols with name == version.
2146       // We don't want to force them to be local.
2147       if ((version == NULL
2148 	   || name != version
2149 	   || value != 0)
2150 	  && (binding == elfcpp::STB_LOCAL
2151 	      || this->version_script_.symbol_is_local(name)))
2152 	this->force_local(sym);
2153       else if (version != NULL
2154 	       && (name != version || value != 0))
2155 	sym->set_is_default();
2156       return sym;
2157     }
2158 
2159   if (force_override
2160       || Symbol_table::should_override_with_special(oldsym, type, defined))
2161     this->override_with_special(oldsym, sym);
2162 
2163   if (resolve_oldsym)
2164     return sym;
2165   else
2166     {
2167       delete sym;
2168       return oldsym;
2169     }
2170 }
2171 
2172 // Define a set of symbols in output sections.
2173 
2174 void
2175 Symbol_table::define_symbols(const Layout* layout, int count,
2176 			     const Define_symbol_in_section* p,
2177 			     bool only_if_ref)
2178 {
2179   for (int i = 0; i < count; ++i, ++p)
2180     {
2181       Output_section* os = layout->find_output_section(p->output_section);
2182       if (os != NULL)
2183 	this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2184 				    p->size, p->type, p->binding,
2185 				    p->visibility, p->nonvis,
2186 				    p->offset_is_from_end,
2187 				    only_if_ref || p->only_if_ref);
2188       else
2189 	this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2190 				 p->type, p->binding, p->visibility, p->nonvis,
2191 				 only_if_ref || p->only_if_ref,
2192                                  false);
2193     }
2194 }
2195 
2196 // Define a set of symbols in output segments.
2197 
2198 void
2199 Symbol_table::define_symbols(const Layout* layout, int count,
2200 			     const Define_symbol_in_segment* p,
2201 			     bool only_if_ref)
2202 {
2203   for (int i = 0; i < count; ++i, ++p)
2204     {
2205       Output_segment* os = layout->find_output_segment(p->segment_type,
2206 						       p->segment_flags_set,
2207 						       p->segment_flags_clear);
2208       if (os != NULL)
2209 	this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2210 				       p->size, p->type, p->binding,
2211 				       p->visibility, p->nonvis,
2212 				       p->offset_base,
2213 				       only_if_ref || p->only_if_ref);
2214       else
2215 	this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2216 				 p->type, p->binding, p->visibility, p->nonvis,
2217 				 only_if_ref || p->only_if_ref,
2218                                  false);
2219     }
2220 }
2221 
2222 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
2223 // symbol should be defined--typically a .dyn.bss section.  VALUE is
2224 // the offset within POSD.
2225 
2226 template<int size>
2227 void
2228 Symbol_table::define_with_copy_reloc(
2229     Sized_symbol<size>* csym,
2230     Output_data* posd,
2231     typename elfcpp::Elf_types<size>::Elf_Addr value)
2232 {
2233   gold_assert(csym->is_from_dynobj());
2234   gold_assert(!csym->is_copied_from_dynobj());
2235   Object* object = csym->object();
2236   gold_assert(object->is_dynamic());
2237   Dynobj* dynobj = static_cast<Dynobj*>(object);
2238 
2239   // Our copied variable has to override any variable in a shared
2240   // library.
2241   elfcpp::STB binding = csym->binding();
2242   if (binding == elfcpp::STB_WEAK)
2243     binding = elfcpp::STB_GLOBAL;
2244 
2245   this->define_in_output_data(csym->name(), csym->version(), COPY,
2246 			      posd, value, csym->symsize(),
2247 			      csym->type(), binding,
2248 			      csym->visibility(), csym->nonvis(),
2249 			      false, false);
2250 
2251   csym->set_is_copied_from_dynobj();
2252   csym->set_needs_dynsym_entry();
2253 
2254   this->copied_symbol_dynobjs_[csym] = dynobj;
2255 
2256   // We have now defined all aliases, but we have not entered them all
2257   // in the copied_symbol_dynobjs_ map.
2258   if (csym->has_alias())
2259     {
2260       Symbol* sym = csym;
2261       while (true)
2262 	{
2263 	  sym = this->weak_aliases_[sym];
2264 	  if (sym == csym)
2265 	    break;
2266 	  gold_assert(sym->output_data() == posd);
2267 
2268 	  sym->set_is_copied_from_dynobj();
2269 	  this->copied_symbol_dynobjs_[sym] = dynobj;
2270 	}
2271     }
2272 }
2273 
2274 // SYM is defined using a COPY reloc.  Return the dynamic object where
2275 // the original definition was found.
2276 
2277 Dynobj*
2278 Symbol_table::get_copy_source(const Symbol* sym) const
2279 {
2280   gold_assert(sym->is_copied_from_dynobj());
2281   Copied_symbol_dynobjs::const_iterator p =
2282     this->copied_symbol_dynobjs_.find(sym);
2283   gold_assert(p != this->copied_symbol_dynobjs_.end());
2284   return p->second;
2285 }
2286 
2287 // Add any undefined symbols named on the command line.
2288 
2289 void
2290 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2291 {
2292   if (parameters->options().any_undefined()
2293       || layout->script_options()->any_unreferenced())
2294     {
2295       if (parameters->target().get_size() == 32)
2296 	{
2297 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2298 	  this->do_add_undefined_symbols_from_command_line<32>(layout);
2299 #else
2300 	  gold_unreachable();
2301 #endif
2302 	}
2303       else if (parameters->target().get_size() == 64)
2304 	{
2305 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2306 	  this->do_add_undefined_symbols_from_command_line<64>(layout);
2307 #else
2308 	  gold_unreachable();
2309 #endif
2310 	}
2311       else
2312 	gold_unreachable();
2313     }
2314 }
2315 
2316 template<int size>
2317 void
2318 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2319 {
2320   for (options::String_set::const_iterator p =
2321 	 parameters->options().undefined_begin();
2322        p != parameters->options().undefined_end();
2323        ++p)
2324     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2325 
2326   for (options::String_set::const_iterator p =
2327 	 parameters->options().export_dynamic_symbol_begin();
2328        p != parameters->options().export_dynamic_symbol_end();
2329        ++p)
2330     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2331 
2332   for (Script_options::referenced_const_iterator p =
2333 	 layout->script_options()->referenced_begin();
2334        p != layout->script_options()->referenced_end();
2335        ++p)
2336     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2337 }
2338 
2339 template<int size>
2340 void
2341 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2342 {
2343   if (this->lookup(name) != NULL)
2344     return;
2345 
2346   const char* version = NULL;
2347 
2348   Sized_symbol<size>* sym;
2349   Sized_symbol<size>* oldsym;
2350   bool resolve_oldsym;
2351   if (parameters->target().is_big_endian())
2352     {
2353 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2354       sym = this->define_special_symbol<size, true>(&name, &version,
2355 						    false, &oldsym,
2356 						    &resolve_oldsym);
2357 #else
2358       gold_unreachable();
2359 #endif
2360     }
2361   else
2362     {
2363 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2364       sym = this->define_special_symbol<size, false>(&name, &version,
2365 						     false, &oldsym,
2366 						     &resolve_oldsym);
2367 #else
2368       gold_unreachable();
2369 #endif
2370     }
2371 
2372   gold_assert(oldsym == NULL);
2373 
2374   sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2375 		      elfcpp::STV_DEFAULT, 0);
2376   ++this->saw_undefined_;
2377 }
2378 
2379 // Set the dynamic symbol indexes.  INDEX is the index of the first
2380 // global dynamic symbol.  Pointers to the symbols are stored into the
2381 // vector SYMS.  The names are added to DYNPOOL.  This returns an
2382 // updated dynamic symbol index.
2383 
2384 unsigned int
2385 Symbol_table::set_dynsym_indexes(unsigned int index,
2386 				 std::vector<Symbol*>* syms,
2387 				 Stringpool* dynpool,
2388 				 Versions* versions)
2389 {
2390   for (Symbol_table_type::iterator p = this->table_.begin();
2391        p != this->table_.end();
2392        ++p)
2393     {
2394       Symbol* sym = p->second;
2395 
2396       // Note that SYM may already have a dynamic symbol index, since
2397       // some symbols appear more than once in the symbol table, with
2398       // and without a version.
2399 
2400       if (!sym->should_add_dynsym_entry(this))
2401 	sym->set_dynsym_index(-1U);
2402       else if (!sym->has_dynsym_index())
2403 	{
2404 	  sym->set_dynsym_index(index);
2405 	  ++index;
2406 	  syms->push_back(sym);
2407 	  dynpool->add(sym->name(), false, NULL);
2408 
2409 	  // Record any version information.
2410           if (sym->version() != NULL)
2411             versions->record_version(this, dynpool, sym);
2412 
2413 	  // If the symbol is defined in a dynamic object and is
2414 	  // referenced in a regular object, then mark the dynamic
2415 	  // object as needed.  This is used to implement --as-needed.
2416 	  if (sym->is_from_dynobj() && sym->in_reg())
2417 	    sym->object()->set_is_needed();
2418 	}
2419     }
2420 
2421   // Finish up the versions.  In some cases this may add new dynamic
2422   // symbols.
2423   index = versions->finalize(this, index, syms);
2424 
2425   return index;
2426 }
2427 
2428 // Set the final values for all the symbols.  The index of the first
2429 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
2430 // file offset OFF.  Add their names to POOL.  Return the new file
2431 // offset.  Update *PLOCAL_SYMCOUNT if necessary.
2432 
2433 off_t
2434 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2435 		       size_t dyncount, Stringpool* pool,
2436 		       unsigned int* plocal_symcount)
2437 {
2438   off_t ret;
2439 
2440   gold_assert(*plocal_symcount != 0);
2441   this->first_global_index_ = *plocal_symcount;
2442 
2443   this->dynamic_offset_ = dynoff;
2444   this->first_dynamic_global_index_ = dyn_global_index;
2445   this->dynamic_count_ = dyncount;
2446 
2447   if (parameters->target().get_size() == 32)
2448     {
2449 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2450       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2451 #else
2452       gold_unreachable();
2453 #endif
2454     }
2455   else if (parameters->target().get_size() == 64)
2456     {
2457 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2458       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2459 #else
2460       gold_unreachable();
2461 #endif
2462     }
2463   else
2464     gold_unreachable();
2465 
2466   // Now that we have the final symbol table, we can reliably note
2467   // which symbols should get warnings.
2468   this->warnings_.note_warnings(this);
2469 
2470   return ret;
2471 }
2472 
2473 // SYM is going into the symbol table at *PINDEX.  Add the name to
2474 // POOL, update *PINDEX and *POFF.
2475 
2476 template<int size>
2477 void
2478 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2479 				  unsigned int* pindex, off_t* poff)
2480 {
2481   sym->set_symtab_index(*pindex);
2482   if (sym->version() == NULL || !parameters->options().relocatable())
2483     pool->add(sym->name(), false, NULL);
2484   else
2485     pool->add(sym->versioned_name(), true, NULL);
2486   ++*pindex;
2487   *poff += elfcpp::Elf_sizes<size>::sym_size;
2488 }
2489 
2490 // Set the final value for all the symbols.  This is called after
2491 // Layout::finalize, so all the output sections have their final
2492 // address.
2493 
2494 template<int size>
2495 off_t
2496 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2497 			     unsigned int* plocal_symcount)
2498 {
2499   off = align_address(off, size >> 3);
2500   this->offset_ = off;
2501 
2502   unsigned int index = *plocal_symcount;
2503   const unsigned int orig_index = index;
2504 
2505   // First do all the symbols which have been forced to be local, as
2506   // they must appear before all global symbols.
2507   for (Forced_locals::iterator p = this->forced_locals_.begin();
2508        p != this->forced_locals_.end();
2509        ++p)
2510     {
2511       Symbol* sym = *p;
2512       gold_assert(sym->is_forced_local());
2513       if (this->sized_finalize_symbol<size>(sym))
2514 	{
2515 	  this->add_to_final_symtab<size>(sym, pool, &index, &off);
2516 	  ++*plocal_symcount;
2517 	}
2518     }
2519 
2520   // Now do all the remaining symbols.
2521   for (Symbol_table_type::iterator p = this->table_.begin();
2522        p != this->table_.end();
2523        ++p)
2524     {
2525       Symbol* sym = p->second;
2526       if (this->sized_finalize_symbol<size>(sym))
2527 	this->add_to_final_symtab<size>(sym, pool, &index, &off);
2528     }
2529 
2530   this->output_count_ = index - orig_index;
2531 
2532   return off;
2533 }
2534 
2535 // Compute the final value of SYM and store status in location PSTATUS.
2536 // During relaxation, this may be called multiple times for a symbol to
2537 // compute its would-be final value in each relaxation pass.
2538 
2539 template<int size>
2540 typename Sized_symbol<size>::Value_type
2541 Symbol_table::compute_final_value(
2542     const Sized_symbol<size>* sym,
2543     Compute_final_value_status* pstatus) const
2544 {
2545   typedef typename Sized_symbol<size>::Value_type Value_type;
2546   Value_type value;
2547 
2548   switch (sym->source())
2549     {
2550     case Symbol::FROM_OBJECT:
2551       {
2552 	bool is_ordinary;
2553 	unsigned int shndx = sym->shndx(&is_ordinary);
2554 
2555 	if (!is_ordinary
2556 	    && shndx != elfcpp::SHN_ABS
2557 	    && !Symbol::is_common_shndx(shndx))
2558 	  {
2559 	    *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2560 	    return 0;
2561 	  }
2562 
2563 	Object* symobj = sym->object();
2564 	if (symobj->is_dynamic())
2565 	  {
2566 	    value = 0;
2567 	    shndx = elfcpp::SHN_UNDEF;
2568 	  }
2569 	else if (symobj->pluginobj() != NULL)
2570 	  {
2571 	    value = 0;
2572 	    shndx = elfcpp::SHN_UNDEF;
2573 	  }
2574 	else if (shndx == elfcpp::SHN_UNDEF)
2575 	  value = 0;
2576 	else if (!is_ordinary
2577 		 && (shndx == elfcpp::SHN_ABS
2578 		     || Symbol::is_common_shndx(shndx)))
2579 	  value = sym->value();
2580 	else
2581 	  {
2582 	    Relobj* relobj = static_cast<Relobj*>(symobj);
2583 	    Output_section* os = relobj->output_section(shndx);
2584 
2585             if (this->is_section_folded(relobj, shndx))
2586               {
2587                 gold_assert(os == NULL);
2588                 // Get the os of the section it is folded onto.
2589                 Section_id folded = this->icf_->get_folded_section(relobj,
2590                                                                    shndx);
2591                 gold_assert(folded.first != NULL);
2592                 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2593 		unsigned folded_shndx = folded.second;
2594 
2595                 os = folded_obj->output_section(folded_shndx);
2596                 gold_assert(os != NULL);
2597 
2598 		// Replace (relobj, shndx) with canonical ICF input section.
2599 		shndx = folded_shndx;
2600 		relobj = folded_obj;
2601               }
2602 
2603             uint64_t secoff64 = relobj->output_section_offset(shndx);
2604  	    if (os == NULL)
2605 	      {
2606                 bool static_or_reloc = (parameters->doing_static_link() ||
2607                                         parameters->options().relocatable());
2608                 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2609 
2610 		*pstatus = CFVS_NO_OUTPUT_SECTION;
2611 		return 0;
2612 	      }
2613 
2614             if (secoff64 == -1ULL)
2615               {
2616                 // The section needs special handling (e.g., a merge section).
2617 
2618 	        value = os->output_address(relobj, shndx, sym->value());
2619 	      }
2620             else
2621               {
2622                 Value_type secoff =
2623                   convert_types<Value_type, uint64_t>(secoff64);
2624 	        if (sym->type() == elfcpp::STT_TLS)
2625 	          value = sym->value() + os->tls_offset() + secoff;
2626 	        else
2627 	          value = sym->value() + os->address() + secoff;
2628 	      }
2629 	  }
2630       }
2631       break;
2632 
2633     case Symbol::IN_OUTPUT_DATA:
2634       {
2635 	Output_data* od = sym->output_data();
2636 	value = sym->value();
2637 	if (sym->type() != elfcpp::STT_TLS)
2638 	  value += od->address();
2639 	else
2640 	  {
2641 	    Output_section* os = od->output_section();
2642 	    gold_assert(os != NULL);
2643 	    value += os->tls_offset() + (od->address() - os->address());
2644 	  }
2645 	if (sym->offset_is_from_end())
2646 	  value += od->data_size();
2647       }
2648       break;
2649 
2650     case Symbol::IN_OUTPUT_SEGMENT:
2651       {
2652 	Output_segment* os = sym->output_segment();
2653 	value = sym->value();
2654         if (sym->type() != elfcpp::STT_TLS)
2655 	  value += os->vaddr();
2656 	switch (sym->offset_base())
2657 	  {
2658 	  case Symbol::SEGMENT_START:
2659 	    break;
2660 	  case Symbol::SEGMENT_END:
2661 	    value += os->memsz();
2662 	    break;
2663 	  case Symbol::SEGMENT_BSS:
2664 	    value += os->filesz();
2665 	    break;
2666 	  default:
2667 	    gold_unreachable();
2668 	  }
2669       }
2670       break;
2671 
2672     case Symbol::IS_CONSTANT:
2673       value = sym->value();
2674       break;
2675 
2676     case Symbol::IS_UNDEFINED:
2677       value = 0;
2678       break;
2679 
2680     default:
2681       gold_unreachable();
2682     }
2683 
2684   *pstatus = CFVS_OK;
2685   return value;
2686 }
2687 
2688 // Finalize the symbol SYM.  This returns true if the symbol should be
2689 // added to the symbol table, false otherwise.
2690 
2691 template<int size>
2692 bool
2693 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2694 {
2695   typedef typename Sized_symbol<size>::Value_type Value_type;
2696 
2697   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2698 
2699   // The default version of a symbol may appear twice in the symbol
2700   // table.  We only need to finalize it once.
2701   if (sym->has_symtab_index())
2702     return false;
2703 
2704   if (!sym->in_reg())
2705     {
2706       gold_assert(!sym->has_symtab_index());
2707       sym->set_symtab_index(-1U);
2708       gold_assert(sym->dynsym_index() == -1U);
2709       return false;
2710     }
2711 
2712   // If the symbol is only present on plugin files, the plugin decided we
2713   // don't need it.
2714   if (!sym->in_real_elf())
2715     {
2716       gold_assert(!sym->has_symtab_index());
2717       sym->set_symtab_index(-1U);
2718       return false;
2719     }
2720 
2721   // Compute final symbol value.
2722   Compute_final_value_status status;
2723   Value_type value = this->compute_final_value(sym, &status);
2724 
2725   switch (status)
2726     {
2727     case CFVS_OK:
2728       break;
2729     case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2730       {
2731 	bool is_ordinary;
2732 	unsigned int shndx = sym->shndx(&is_ordinary);
2733 	gold_error(_("%s: unsupported symbol section 0x%x"),
2734 		   sym->demangled_name().c_str(), shndx);
2735       }
2736       break;
2737     case CFVS_NO_OUTPUT_SECTION:
2738       sym->set_symtab_index(-1U);
2739       return false;
2740     default:
2741       gold_unreachable();
2742     }
2743 
2744   sym->set_value(value);
2745 
2746   if (parameters->options().strip_all()
2747       || !parameters->options().should_retain_symbol(sym->name()))
2748     {
2749       sym->set_symtab_index(-1U);
2750       return false;
2751     }
2752 
2753   return true;
2754 }
2755 
2756 // Write out the global symbols.
2757 
2758 void
2759 Symbol_table::write_globals(const Stringpool* sympool,
2760 			    const Stringpool* dynpool,
2761 			    Output_symtab_xindex* symtab_xindex,
2762 			    Output_symtab_xindex* dynsym_xindex,
2763 			    Output_file* of) const
2764 {
2765   switch (parameters->size_and_endianness())
2766     {
2767 #ifdef HAVE_TARGET_32_LITTLE
2768     case Parameters::TARGET_32_LITTLE:
2769       this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2770 					   dynsym_xindex, of);
2771       break;
2772 #endif
2773 #ifdef HAVE_TARGET_32_BIG
2774     case Parameters::TARGET_32_BIG:
2775       this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2776 					  dynsym_xindex, of);
2777       break;
2778 #endif
2779 #ifdef HAVE_TARGET_64_LITTLE
2780     case Parameters::TARGET_64_LITTLE:
2781       this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2782 					   dynsym_xindex, of);
2783       break;
2784 #endif
2785 #ifdef HAVE_TARGET_64_BIG
2786     case Parameters::TARGET_64_BIG:
2787       this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2788 					  dynsym_xindex, of);
2789       break;
2790 #endif
2791     default:
2792       gold_unreachable();
2793     }
2794 }
2795 
2796 // Write out the global symbols.
2797 
2798 template<int size, bool big_endian>
2799 void
2800 Symbol_table::sized_write_globals(const Stringpool* sympool,
2801 				  const Stringpool* dynpool,
2802 				  Output_symtab_xindex* symtab_xindex,
2803 				  Output_symtab_xindex* dynsym_xindex,
2804 				  Output_file* of) const
2805 {
2806   const Target& target = parameters->target();
2807 
2808   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2809 
2810   const unsigned int output_count = this->output_count_;
2811   const section_size_type oview_size = output_count * sym_size;
2812   const unsigned int first_global_index = this->first_global_index_;
2813   unsigned char* psyms;
2814   if (this->offset_ == 0 || output_count == 0)
2815     psyms = NULL;
2816   else
2817     psyms = of->get_output_view(this->offset_, oview_size);
2818 
2819   const unsigned int dynamic_count = this->dynamic_count_;
2820   const section_size_type dynamic_size = dynamic_count * sym_size;
2821   const unsigned int first_dynamic_global_index =
2822     this->first_dynamic_global_index_;
2823   unsigned char* dynamic_view;
2824   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2825     dynamic_view = NULL;
2826   else
2827     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2828 
2829   for (Symbol_table_type::const_iterator p = this->table_.begin();
2830        p != this->table_.end();
2831        ++p)
2832     {
2833       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2834 
2835       // Possibly warn about unresolved symbols in shared libraries.
2836       this->warn_about_undefined_dynobj_symbol(sym);
2837 
2838       unsigned int sym_index = sym->symtab_index();
2839       unsigned int dynsym_index;
2840       if (dynamic_view == NULL)
2841 	dynsym_index = -1U;
2842       else
2843 	dynsym_index = sym->dynsym_index();
2844 
2845       if (sym_index == -1U && dynsym_index == -1U)
2846 	{
2847 	  // This symbol is not included in the output file.
2848 	  continue;
2849 	}
2850 
2851       unsigned int shndx;
2852       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2853       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2854       elfcpp::STB binding = sym->binding();
2855 
2856       // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
2857       if (binding == elfcpp::STB_GNU_UNIQUE
2858 	  && !parameters->options().gnu_unique())
2859 	binding = elfcpp::STB_GLOBAL;
2860 
2861       switch (sym->source())
2862 	{
2863 	case Symbol::FROM_OBJECT:
2864 	  {
2865 	    bool is_ordinary;
2866 	    unsigned int in_shndx = sym->shndx(&is_ordinary);
2867 
2868 	    if (!is_ordinary
2869 		&& in_shndx != elfcpp::SHN_ABS
2870 		&& !Symbol::is_common_shndx(in_shndx))
2871 	      {
2872 		gold_error(_("%s: unsupported symbol section 0x%x"),
2873 			   sym->demangled_name().c_str(), in_shndx);
2874 		shndx = in_shndx;
2875 	      }
2876 	    else
2877 	      {
2878 		Object* symobj = sym->object();
2879 		if (symobj->is_dynamic())
2880 		  {
2881 		    if (sym->needs_dynsym_value())
2882 		      dynsym_value = target.dynsym_value(sym);
2883 		    shndx = elfcpp::SHN_UNDEF;
2884 		    if (sym->is_undef_binding_weak())
2885 		      binding = elfcpp::STB_WEAK;
2886 		    else
2887 		      binding = elfcpp::STB_GLOBAL;
2888 		  }
2889 		else if (symobj->pluginobj() != NULL)
2890 		  shndx = elfcpp::SHN_UNDEF;
2891 		else if (in_shndx == elfcpp::SHN_UNDEF
2892 			 || (!is_ordinary
2893 			     && (in_shndx == elfcpp::SHN_ABS
2894 				 || Symbol::is_common_shndx(in_shndx))))
2895 		  shndx = in_shndx;
2896 		else
2897 		  {
2898 		    Relobj* relobj = static_cast<Relobj*>(symobj);
2899 		    Output_section* os = relobj->output_section(in_shndx);
2900                     if (this->is_section_folded(relobj, in_shndx))
2901                       {
2902                         // This global symbol must be written out even though
2903                         // it is folded.
2904                         // Get the os of the section it is folded onto.
2905                         Section_id folded =
2906                              this->icf_->get_folded_section(relobj, in_shndx);
2907                         gold_assert(folded.first !=NULL);
2908                         Relobj* folded_obj =
2909                           reinterpret_cast<Relobj*>(folded.first);
2910                         os = folded_obj->output_section(folded.second);
2911                         gold_assert(os != NULL);
2912                       }
2913 		    gold_assert(os != NULL);
2914 		    shndx = os->out_shndx();
2915 
2916 		    if (shndx >= elfcpp::SHN_LORESERVE)
2917 		      {
2918 			if (sym_index != -1U)
2919 			  symtab_xindex->add(sym_index, shndx);
2920 			if (dynsym_index != -1U)
2921 			  dynsym_xindex->add(dynsym_index, shndx);
2922 			shndx = elfcpp::SHN_XINDEX;
2923 		      }
2924 
2925 		    // In object files symbol values are section
2926 		    // relative.
2927 		    if (parameters->options().relocatable())
2928 		      sym_value -= os->address();
2929 		  }
2930 	      }
2931 	  }
2932 	  break;
2933 
2934 	case Symbol::IN_OUTPUT_DATA:
2935 	  shndx = sym->output_data()->out_shndx();
2936 	  if (shndx >= elfcpp::SHN_LORESERVE)
2937 	    {
2938 	      if (sym_index != -1U)
2939 		symtab_xindex->add(sym_index, shndx);
2940 	      if (dynsym_index != -1U)
2941 		dynsym_xindex->add(dynsym_index, shndx);
2942 	      shndx = elfcpp::SHN_XINDEX;
2943 	    }
2944 	  break;
2945 
2946 	case Symbol::IN_OUTPUT_SEGMENT:
2947 	  shndx = elfcpp::SHN_ABS;
2948 	  break;
2949 
2950 	case Symbol::IS_CONSTANT:
2951 	  shndx = elfcpp::SHN_ABS;
2952 	  break;
2953 
2954 	case Symbol::IS_UNDEFINED:
2955 	  shndx = elfcpp::SHN_UNDEF;
2956 	  break;
2957 
2958 	default:
2959 	  gold_unreachable();
2960 	}
2961 
2962       if (sym_index != -1U)
2963 	{
2964 	  sym_index -= first_global_index;
2965 	  gold_assert(sym_index < output_count);
2966 	  unsigned char* ps = psyms + (sym_index * sym_size);
2967 	  this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2968 						     binding, sympool, ps);
2969 	}
2970 
2971       if (dynsym_index != -1U)
2972 	{
2973 	  dynsym_index -= first_dynamic_global_index;
2974 	  gold_assert(dynsym_index < dynamic_count);
2975 	  unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2976 	  this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2977 						     binding, dynpool, pd);
2978 	}
2979     }
2980 
2981   of->write_output_view(this->offset_, oview_size, psyms);
2982   if (dynamic_view != NULL)
2983     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2984 }
2985 
2986 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
2987 // strtab holding the name.
2988 
2989 template<int size, bool big_endian>
2990 void
2991 Symbol_table::sized_write_symbol(
2992     Sized_symbol<size>* sym,
2993     typename elfcpp::Elf_types<size>::Elf_Addr value,
2994     unsigned int shndx,
2995     elfcpp::STB binding,
2996     const Stringpool* pool,
2997     unsigned char* p) const
2998 {
2999   elfcpp::Sym_write<size, big_endian> osym(p);
3000   if (sym->version() == NULL || !parameters->options().relocatable())
3001     osym.put_st_name(pool->get_offset(sym->name()));
3002   else
3003     osym.put_st_name(pool->get_offset(sym->versioned_name()));
3004   osym.put_st_value(value);
3005   // Use a symbol size of zero for undefined symbols from shared libraries.
3006   if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3007     osym.put_st_size(0);
3008   else
3009     osym.put_st_size(sym->symsize());
3010   elfcpp::STT type = sym->type();
3011   // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
3012   if (type == elfcpp::STT_GNU_IFUNC
3013       && sym->is_from_dynobj())
3014     type = elfcpp::STT_FUNC;
3015   // A version script may have overridden the default binding.
3016   if (sym->is_forced_local())
3017     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3018   else
3019     osym.put_st_info(elfcpp::elf_st_info(binding, type));
3020   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3021   osym.put_st_shndx(shndx);
3022 }
3023 
3024 // Check for unresolved symbols in shared libraries.  This is
3025 // controlled by the --allow-shlib-undefined option.
3026 
3027 // We only warn about libraries for which we have seen all the
3028 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
3029 // which were not seen in this link.  If we didn't see a DT_NEEDED
3030 // entry, we aren't going to be able to reliably report whether the
3031 // symbol is undefined.
3032 
3033 // We also don't warn about libraries found in a system library
3034 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3035 // are OK.  This heuristic avoids problems on GNU/Linux, in which -ldl
3036 // can have undefined references satisfied by ld-linux.so.
3037 
3038 inline void
3039 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3040 {
3041   bool dummy;
3042   if (sym->source() == Symbol::FROM_OBJECT
3043       && sym->object()->is_dynamic()
3044       && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3045       && sym->binding() != elfcpp::STB_WEAK
3046       && !parameters->options().allow_shlib_undefined()
3047       && !parameters->target().is_defined_by_abi(sym)
3048       && !sym->object()->is_in_system_directory())
3049     {
3050       // A very ugly cast.
3051       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3052       if (!dynobj->has_unknown_needed_entries())
3053         gold_undefined_symbol(sym);
3054     }
3055 }
3056 
3057 // Write out a section symbol.  Return the update offset.
3058 
3059 void
3060 Symbol_table::write_section_symbol(const Output_section* os,
3061 				   Output_symtab_xindex* symtab_xindex,
3062 				   Output_file* of,
3063 				   off_t offset) const
3064 {
3065   switch (parameters->size_and_endianness())
3066     {
3067 #ifdef HAVE_TARGET_32_LITTLE
3068     case Parameters::TARGET_32_LITTLE:
3069       this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3070 						  offset);
3071       break;
3072 #endif
3073 #ifdef HAVE_TARGET_32_BIG
3074     case Parameters::TARGET_32_BIG:
3075       this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3076 						 offset);
3077       break;
3078 #endif
3079 #ifdef HAVE_TARGET_64_LITTLE
3080     case Parameters::TARGET_64_LITTLE:
3081       this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3082 						  offset);
3083       break;
3084 #endif
3085 #ifdef HAVE_TARGET_64_BIG
3086     case Parameters::TARGET_64_BIG:
3087       this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3088 						 offset);
3089       break;
3090 #endif
3091     default:
3092       gold_unreachable();
3093     }
3094 }
3095 
3096 // Write out a section symbol, specialized for size and endianness.
3097 
3098 template<int size, bool big_endian>
3099 void
3100 Symbol_table::sized_write_section_symbol(const Output_section* os,
3101 					 Output_symtab_xindex* symtab_xindex,
3102 					 Output_file* of,
3103 					 off_t offset) const
3104 {
3105   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3106 
3107   unsigned char* pov = of->get_output_view(offset, sym_size);
3108 
3109   elfcpp::Sym_write<size, big_endian> osym(pov);
3110   osym.put_st_name(0);
3111   if (parameters->options().relocatable())
3112     osym.put_st_value(0);
3113   else
3114     osym.put_st_value(os->address());
3115   osym.put_st_size(0);
3116   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3117 				       elfcpp::STT_SECTION));
3118   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3119 
3120   unsigned int shndx = os->out_shndx();
3121   if (shndx >= elfcpp::SHN_LORESERVE)
3122     {
3123       symtab_xindex->add(os->symtab_index(), shndx);
3124       shndx = elfcpp::SHN_XINDEX;
3125     }
3126   osym.put_st_shndx(shndx);
3127 
3128   of->write_output_view(offset, sym_size, pov);
3129 }
3130 
3131 // Print statistical information to stderr.  This is used for --stats.
3132 
3133 void
3134 Symbol_table::print_stats() const
3135 {
3136 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3137   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3138 	  program_name, this->table_.size(), this->table_.bucket_count());
3139 #else
3140   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3141 	  program_name, this->table_.size());
3142 #endif
3143   this->namepool_.print_stats("symbol table stringpool");
3144 }
3145 
3146 // We check for ODR violations by looking for symbols with the same
3147 // name for which the debugging information reports that they were
3148 // defined in disjoint source locations.  When comparing the source
3149 // location, we consider instances with the same base filename to be
3150 // the same.  This is because different object files/shared libraries
3151 // can include the same header file using different paths, and
3152 // different optimization settings can make the line number appear to
3153 // be a couple lines off, and we don't want to report an ODR violation
3154 // in those cases.
3155 
3156 // This struct is used to compare line information, as returned by
3157 // Dwarf_line_info::one_addr2line.  It implements a < comparison
3158 // operator used with std::sort.
3159 
3160 struct Odr_violation_compare
3161 {
3162   bool
3163   operator()(const std::string& s1, const std::string& s2) const
3164   {
3165     // Inputs should be of the form "dirname/filename:linenum" where
3166     // "dirname/" is optional.  We want to compare just the filename:linenum.
3167 
3168     // Find the last '/' in each string.
3169     std::string::size_type s1begin = s1.rfind('/');
3170     std::string::size_type s2begin = s2.rfind('/');
3171     // If there was no '/' in a string, start at the beginning.
3172     if (s1begin == std::string::npos)
3173       s1begin = 0;
3174     if (s2begin == std::string::npos)
3175       s2begin = 0;
3176     return s1.compare(s1begin, std::string::npos,
3177 		      s2, s2begin, std::string::npos) < 0;
3178   }
3179 };
3180 
3181 // Returns all of the lines attached to LOC, not just the one the
3182 // instruction actually came from.
3183 std::vector<std::string>
3184 Symbol_table::linenos_from_loc(const Task* task,
3185                                const Symbol_location& loc)
3186 {
3187   // We need to lock the object in order to read it.  This
3188   // means that we have to run in a singleton Task.  If we
3189   // want to run this in a general Task for better
3190   // performance, we will need one Task for object, plus
3191   // appropriate locking to ensure that we don't conflict with
3192   // other uses of the object.  Also note, one_addr2line is not
3193   // currently thread-safe.
3194   Task_lock_obj<Object> tl(task, loc.object);
3195 
3196   std::vector<std::string> result;
3197   // 16 is the size of the object-cache that one_addr2line should use.
3198   std::string canonical_result = Dwarf_line_info::one_addr2line(
3199       loc.object, loc.shndx, loc.offset, 16, &result);
3200   if (!canonical_result.empty())
3201     result.push_back(canonical_result);
3202   return result;
3203 }
3204 
3205 // OutputIterator that records if it was ever assigned to.  This
3206 // allows it to be used with std::set_intersection() to check for
3207 // intersection rather than computing the intersection.
3208 struct Check_intersection
3209 {
3210   Check_intersection()
3211     : value_(false)
3212   {}
3213 
3214   bool had_intersection() const
3215   { return this->value_; }
3216 
3217   Check_intersection& operator++()
3218   { return *this; }
3219 
3220   Check_intersection& operator*()
3221   { return *this; }
3222 
3223   template<typename T>
3224   Check_intersection& operator=(const T&)
3225   {
3226     this->value_ = true;
3227     return *this;
3228   }
3229 
3230  private:
3231   bool value_;
3232 };
3233 
3234 // Check candidate_odr_violations_ to find symbols with the same name
3235 // but apparently different definitions (different source-file/line-no
3236 // for each line assigned to the first instruction).
3237 
3238 void
3239 Symbol_table::detect_odr_violations(const Task* task,
3240 				    const char* output_file_name) const
3241 {
3242   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3243        it != candidate_odr_violations_.end();
3244        ++it)
3245     {
3246       const char* const symbol_name = it->first;
3247 
3248       std::string first_object_name;
3249       std::vector<std::string> first_object_linenos;
3250 
3251       Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3252           locs = it->second.begin();
3253       const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3254           locs_end = it->second.end();
3255       for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3256         {
3257           // Save the line numbers from the first definition to
3258           // compare to the other definitions.  Ideally, we'd compare
3259           // every definition to every other, but we don't want to
3260           // take O(N^2) time to do this.  This shortcut may cause
3261           // false negatives that appear or disappear depending on the
3262           // link order, but it won't cause false positives.
3263           first_object_name = locs->object->name();
3264           first_object_linenos = this->linenos_from_loc(task, *locs);
3265         }
3266 
3267       // Sort by Odr_violation_compare to make std::set_intersection work.
3268       std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3269                 Odr_violation_compare());
3270 
3271       for (; locs != locs_end; ++locs)
3272         {
3273           std::vector<std::string> linenos =
3274               this->linenos_from_loc(task, *locs);
3275           // linenos will be empty if we couldn't parse the debug info.
3276           if (linenos.empty())
3277             continue;
3278           // Sort by Odr_violation_compare to make std::set_intersection work.
3279           std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3280 
3281           Check_intersection intersection_result =
3282               std::set_intersection(first_object_linenos.begin(),
3283                                     first_object_linenos.end(),
3284                                     linenos.begin(),
3285                                     linenos.end(),
3286                                     Check_intersection(),
3287                                     Odr_violation_compare());
3288           if (!intersection_result.had_intersection())
3289             {
3290               gold_warning(_("while linking %s: symbol '%s' defined in "
3291                              "multiple places (possible ODR violation):"),
3292                            output_file_name, demangle(symbol_name).c_str());
3293               // This only prints one location from each definition,
3294               // which may not be the location we expect to intersect
3295               // with another definition.  We could print the whole
3296               // set of locations, but that seems too verbose.
3297               gold_assert(!first_object_linenos.empty());
3298               gold_assert(!linenos.empty());
3299               fprintf(stderr, _("  %s from %s\n"),
3300                       first_object_linenos[0].c_str(),
3301                       first_object_name.c_str());
3302               fprintf(stderr, _("  %s from %s\n"),
3303                       linenos[0].c_str(),
3304                       locs->object->name().c_str());
3305               // Only print one broken pair, to avoid needing to
3306               // compare against a list of the disjoint definition
3307               // locations we've found so far.  (If we kept comparing
3308               // against just the first one, we'd get a lot of
3309               // redundant complaints about the second definition
3310               // location.)
3311               break;
3312             }
3313         }
3314     }
3315   // We only call one_addr2line() in this function, so we can clear its cache.
3316   Dwarf_line_info::clear_addr2line_cache();
3317 }
3318 
3319 // Warnings functions.
3320 
3321 // Add a new warning.
3322 
3323 void
3324 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3325 		      const std::string& warning)
3326 {
3327   name = symtab->canonicalize_name(name);
3328   this->warnings_[name].set(obj, warning);
3329 }
3330 
3331 // Look through the warnings and mark the symbols for which we should
3332 // warn.  This is called during Layout::finalize when we know the
3333 // sources for all the symbols.
3334 
3335 void
3336 Warnings::note_warnings(Symbol_table* symtab)
3337 {
3338   for (Warning_table::iterator p = this->warnings_.begin();
3339        p != this->warnings_.end();
3340        ++p)
3341     {
3342       Symbol* sym = symtab->lookup(p->first, NULL);
3343       if (sym != NULL
3344 	  && sym->source() == Symbol::FROM_OBJECT
3345 	  && sym->object() == p->second.object)
3346 	sym->set_has_warning();
3347     }
3348 }
3349 
3350 // Issue a warning.  This is called when we see a relocation against a
3351 // symbol for which has a warning.
3352 
3353 template<int size, bool big_endian>
3354 void
3355 Warnings::issue_warning(const Symbol* sym,
3356 			const Relocate_info<size, big_endian>* relinfo,
3357 			size_t relnum, off_t reloffset) const
3358 {
3359   gold_assert(sym->has_warning());
3360 
3361   // We don't want to issue a warning for a relocation against the
3362   // symbol in the same object file in which the symbol is defined.
3363   if (sym->object() == relinfo->object)
3364     return;
3365 
3366   Warning_table::const_iterator p = this->warnings_.find(sym->name());
3367   gold_assert(p != this->warnings_.end());
3368   gold_warning_at_location(relinfo, relnum, reloffset,
3369 			   "%s", p->second.text.c_str());
3370 }
3371 
3372 // Instantiate the templates we need.  We could use the configure
3373 // script to restrict this to only the ones needed for implemented
3374 // targets.
3375 
3376 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3377 template
3378 void
3379 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3380 #endif
3381 
3382 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3383 template
3384 void
3385 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3386 #endif
3387 
3388 #ifdef HAVE_TARGET_32_LITTLE
3389 template
3390 void
3391 Symbol_table::add_from_relobj<32, false>(
3392     Sized_relobj_file<32, false>* relobj,
3393     const unsigned char* syms,
3394     size_t count,
3395     size_t symndx_offset,
3396     const char* sym_names,
3397     size_t sym_name_size,
3398     Sized_relobj_file<32, false>::Symbols* sympointers,
3399     size_t* defined);
3400 #endif
3401 
3402 #ifdef HAVE_TARGET_32_BIG
3403 template
3404 void
3405 Symbol_table::add_from_relobj<32, true>(
3406     Sized_relobj_file<32, true>* relobj,
3407     const unsigned char* syms,
3408     size_t count,
3409     size_t symndx_offset,
3410     const char* sym_names,
3411     size_t sym_name_size,
3412     Sized_relobj_file<32, true>::Symbols* sympointers,
3413     size_t* defined);
3414 #endif
3415 
3416 #ifdef HAVE_TARGET_64_LITTLE
3417 template
3418 void
3419 Symbol_table::add_from_relobj<64, false>(
3420     Sized_relobj_file<64, false>* relobj,
3421     const unsigned char* syms,
3422     size_t count,
3423     size_t symndx_offset,
3424     const char* sym_names,
3425     size_t sym_name_size,
3426     Sized_relobj_file<64, false>::Symbols* sympointers,
3427     size_t* defined);
3428 #endif
3429 
3430 #ifdef HAVE_TARGET_64_BIG
3431 template
3432 void
3433 Symbol_table::add_from_relobj<64, true>(
3434     Sized_relobj_file<64, true>* relobj,
3435     const unsigned char* syms,
3436     size_t count,
3437     size_t symndx_offset,
3438     const char* sym_names,
3439     size_t sym_name_size,
3440     Sized_relobj_file<64, true>::Symbols* sympointers,
3441     size_t* defined);
3442 #endif
3443 
3444 #ifdef HAVE_TARGET_32_LITTLE
3445 template
3446 Symbol*
3447 Symbol_table::add_from_pluginobj<32, false>(
3448     Sized_pluginobj<32, false>* obj,
3449     const char* name,
3450     const char* ver,
3451     elfcpp::Sym<32, false>* sym);
3452 #endif
3453 
3454 #ifdef HAVE_TARGET_32_BIG
3455 template
3456 Symbol*
3457 Symbol_table::add_from_pluginobj<32, true>(
3458     Sized_pluginobj<32, true>* obj,
3459     const char* name,
3460     const char* ver,
3461     elfcpp::Sym<32, true>* sym);
3462 #endif
3463 
3464 #ifdef HAVE_TARGET_64_LITTLE
3465 template
3466 Symbol*
3467 Symbol_table::add_from_pluginobj<64, false>(
3468     Sized_pluginobj<64, false>* obj,
3469     const char* name,
3470     const char* ver,
3471     elfcpp::Sym<64, false>* sym);
3472 #endif
3473 
3474 #ifdef HAVE_TARGET_64_BIG
3475 template
3476 Symbol*
3477 Symbol_table::add_from_pluginobj<64, true>(
3478     Sized_pluginobj<64, true>* obj,
3479     const char* name,
3480     const char* ver,
3481     elfcpp::Sym<64, true>* sym);
3482 #endif
3483 
3484 #ifdef HAVE_TARGET_32_LITTLE
3485 template
3486 void
3487 Symbol_table::add_from_dynobj<32, false>(
3488     Sized_dynobj<32, false>* dynobj,
3489     const unsigned char* syms,
3490     size_t count,
3491     const char* sym_names,
3492     size_t sym_name_size,
3493     const unsigned char* versym,
3494     size_t versym_size,
3495     const std::vector<const char*>* version_map,
3496     Sized_relobj_file<32, false>::Symbols* sympointers,
3497     size_t* defined);
3498 #endif
3499 
3500 #ifdef HAVE_TARGET_32_BIG
3501 template
3502 void
3503 Symbol_table::add_from_dynobj<32, true>(
3504     Sized_dynobj<32, true>* dynobj,
3505     const unsigned char* syms,
3506     size_t count,
3507     const char* sym_names,
3508     size_t sym_name_size,
3509     const unsigned char* versym,
3510     size_t versym_size,
3511     const std::vector<const char*>* version_map,
3512     Sized_relobj_file<32, true>::Symbols* sympointers,
3513     size_t* defined);
3514 #endif
3515 
3516 #ifdef HAVE_TARGET_64_LITTLE
3517 template
3518 void
3519 Symbol_table::add_from_dynobj<64, false>(
3520     Sized_dynobj<64, false>* dynobj,
3521     const unsigned char* syms,
3522     size_t count,
3523     const char* sym_names,
3524     size_t sym_name_size,
3525     const unsigned char* versym,
3526     size_t versym_size,
3527     const std::vector<const char*>* version_map,
3528     Sized_relobj_file<64, false>::Symbols* sympointers,
3529     size_t* defined);
3530 #endif
3531 
3532 #ifdef HAVE_TARGET_64_BIG
3533 template
3534 void
3535 Symbol_table::add_from_dynobj<64, true>(
3536     Sized_dynobj<64, true>* dynobj,
3537     const unsigned char* syms,
3538     size_t count,
3539     const char* sym_names,
3540     size_t sym_name_size,
3541     const unsigned char* versym,
3542     size_t versym_size,
3543     const std::vector<const char*>* version_map,
3544     Sized_relobj_file<64, true>::Symbols* sympointers,
3545     size_t* defined);
3546 #endif
3547 
3548 #ifdef HAVE_TARGET_32_LITTLE
3549 template
3550 Sized_symbol<32>*
3551 Symbol_table::add_from_incrobj(
3552     Object* obj,
3553     const char* name,
3554     const char* ver,
3555     elfcpp::Sym<32, false>* sym);
3556 #endif
3557 
3558 #ifdef HAVE_TARGET_32_BIG
3559 template
3560 Sized_symbol<32>*
3561 Symbol_table::add_from_incrobj(
3562     Object* obj,
3563     const char* name,
3564     const char* ver,
3565     elfcpp::Sym<32, true>* sym);
3566 #endif
3567 
3568 #ifdef HAVE_TARGET_64_LITTLE
3569 template
3570 Sized_symbol<64>*
3571 Symbol_table::add_from_incrobj(
3572     Object* obj,
3573     const char* name,
3574     const char* ver,
3575     elfcpp::Sym<64, false>* sym);
3576 #endif
3577 
3578 #ifdef HAVE_TARGET_64_BIG
3579 template
3580 Sized_symbol<64>*
3581 Symbol_table::add_from_incrobj(
3582     Object* obj,
3583     const char* name,
3584     const char* ver,
3585     elfcpp::Sym<64, true>* sym);
3586 #endif
3587 
3588 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3589 template
3590 void
3591 Symbol_table::define_with_copy_reloc<32>(
3592     Sized_symbol<32>* sym,
3593     Output_data* posd,
3594     elfcpp::Elf_types<32>::Elf_Addr value);
3595 #endif
3596 
3597 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3598 template
3599 void
3600 Symbol_table::define_with_copy_reloc<64>(
3601     Sized_symbol<64>* sym,
3602     Output_data* posd,
3603     elfcpp::Elf_types<64>::Elf_Addr value);
3604 #endif
3605 
3606 #ifdef HAVE_TARGET_32_LITTLE
3607 template
3608 void
3609 Warnings::issue_warning<32, false>(const Symbol* sym,
3610 				   const Relocate_info<32, false>* relinfo,
3611 				   size_t relnum, off_t reloffset) const;
3612 #endif
3613 
3614 #ifdef HAVE_TARGET_32_BIG
3615 template
3616 void
3617 Warnings::issue_warning<32, true>(const Symbol* sym,
3618 				  const Relocate_info<32, true>* relinfo,
3619 				  size_t relnum, off_t reloffset) const;
3620 #endif
3621 
3622 #ifdef HAVE_TARGET_64_LITTLE
3623 template
3624 void
3625 Warnings::issue_warning<64, false>(const Symbol* sym,
3626 				   const Relocate_info<64, false>* relinfo,
3627 				   size_t relnum, off_t reloffset) const;
3628 #endif
3629 
3630 #ifdef HAVE_TARGET_64_BIG
3631 template
3632 void
3633 Warnings::issue_warning<64, true>(const Symbol* sym,
3634 				  const Relocate_info<64, true>* relinfo,
3635 				  size_t relnum, off_t reloffset) const;
3636 #endif
3637 
3638 } // End namespace gold.
3639