xref: /netbsd-src/external/gpl3/binutils/dist/gold/script.cc (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 // script.cc -- handle linker scripts for gold.
2 
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 #include "gold.h"
24 
25 #include <cstdio>
26 #include <cstdlib>
27 #include <cstring>
28 #include <fnmatch.h>
29 #include <string>
30 #include <vector>
31 #include "filenames.h"
32 
33 #include "elfcpp.h"
34 #include "demangle.h"
35 #include "dirsearch.h"
36 #include "options.h"
37 #include "fileread.h"
38 #include "workqueue.h"
39 #include "readsyms.h"
40 #include "parameters.h"
41 #include "layout.h"
42 #include "symtab.h"
43 #include "target-select.h"
44 #include "script.h"
45 #include "script-c.h"
46 #include "incremental.h"
47 
48 namespace gold
49 {
50 
51 // A token read from a script file.  We don't implement keywords here;
52 // all keywords are simply represented as a string.
53 
54 class Token
55 {
56  public:
57   // Token classification.
58   enum Classification
59   {
60     // Token is invalid.
61     TOKEN_INVALID,
62     // Token indicates end of input.
63     TOKEN_EOF,
64     // Token is a string of characters.
65     TOKEN_STRING,
66     // Token is a quoted string of characters.
67     TOKEN_QUOTED_STRING,
68     // Token is an operator.
69     TOKEN_OPERATOR,
70     // Token is a number (an integer).
71     TOKEN_INTEGER
72   };
73 
74   // We need an empty constructor so that we can put this STL objects.
75   Token()
76     : classification_(TOKEN_INVALID), value_(NULL), value_length_(0),
77       opcode_(0), lineno_(0), charpos_(0)
78   { }
79 
80   // A general token with no value.
81   Token(Classification classification, int lineno, int charpos)
82     : classification_(classification), value_(NULL), value_length_(0),
83       opcode_(0), lineno_(lineno), charpos_(charpos)
84   {
85     gold_assert(classification == TOKEN_INVALID
86 		|| classification == TOKEN_EOF);
87   }
88 
89   // A general token with a value.
90   Token(Classification classification, const char* value, size_t length,
91 	int lineno, int charpos)
92     : classification_(classification), value_(value), value_length_(length),
93       opcode_(0), lineno_(lineno), charpos_(charpos)
94   {
95     gold_assert(classification != TOKEN_INVALID
96 		&& classification != TOKEN_EOF);
97   }
98 
99   // A token representing an operator.
100   Token(int opcode, int lineno, int charpos)
101     : classification_(TOKEN_OPERATOR), value_(NULL), value_length_(0),
102       opcode_(opcode), lineno_(lineno), charpos_(charpos)
103   { }
104 
105   // Return whether the token is invalid.
106   bool
107   is_invalid() const
108   { return this->classification_ == TOKEN_INVALID; }
109 
110   // Return whether this is an EOF token.
111   bool
112   is_eof() const
113   { return this->classification_ == TOKEN_EOF; }
114 
115   // Return the token classification.
116   Classification
117   classification() const
118   { return this->classification_; }
119 
120   // Return the line number at which the token starts.
121   int
122   lineno() const
123   { return this->lineno_; }
124 
125   // Return the character position at this the token starts.
126   int
127   charpos() const
128   { return this->charpos_; }
129 
130   // Get the value of a token.
131 
132   const char*
133   string_value(size_t* length) const
134   {
135     gold_assert(this->classification_ == TOKEN_STRING
136 		|| this->classification_ == TOKEN_QUOTED_STRING);
137     *length = this->value_length_;
138     return this->value_;
139   }
140 
141   int
142   operator_value() const
143   {
144     gold_assert(this->classification_ == TOKEN_OPERATOR);
145     return this->opcode_;
146   }
147 
148   uint64_t
149   integer_value() const;
150 
151  private:
152   // The token classification.
153   Classification classification_;
154   // The token value, for TOKEN_STRING or TOKEN_QUOTED_STRING or
155   // TOKEN_INTEGER.
156   const char* value_;
157   // The length of the token value.
158   size_t value_length_;
159   // The token value, for TOKEN_OPERATOR.
160   int opcode_;
161   // The line number where this token started (one based).
162   int lineno_;
163   // The character position within the line where this token started
164   // (one based).
165   int charpos_;
166 };
167 
168 // Return the value of a TOKEN_INTEGER.
169 
170 uint64_t
171 Token::integer_value() const
172 {
173   gold_assert(this->classification_ == TOKEN_INTEGER);
174 
175   size_t len = this->value_length_;
176 
177   uint64_t multiplier = 1;
178   char last = this->value_[len - 1];
179   if (last == 'm' || last == 'M')
180     {
181       multiplier = 1024 * 1024;
182       --len;
183     }
184   else if (last == 'k' || last == 'K')
185     {
186       multiplier = 1024;
187       --len;
188     }
189 
190   char *end;
191   uint64_t ret = strtoull(this->value_, &end, 0);
192   gold_assert(static_cast<size_t>(end - this->value_) == len);
193 
194   return ret * multiplier;
195 }
196 
197 // This class handles lexing a file into a sequence of tokens.
198 
199 class Lex
200 {
201  public:
202   // We unfortunately have to support different lexing modes, because
203   // when reading different parts of a linker script we need to parse
204   // things differently.
205   enum Mode
206   {
207     // Reading an ordinary linker script.
208     LINKER_SCRIPT,
209     // Reading an expression in a linker script.
210     EXPRESSION,
211     // Reading a version script.
212     VERSION_SCRIPT,
213     // Reading a --dynamic-list file.
214     DYNAMIC_LIST
215   };
216 
217   Lex(const char* input_string, size_t input_length, int parsing_token)
218     : input_string_(input_string), input_length_(input_length),
219       current_(input_string), mode_(LINKER_SCRIPT),
220       first_token_(parsing_token), token_(),
221       lineno_(1), linestart_(input_string)
222   { }
223 
224   // Read a file into a string.
225   static void
226   read_file(Input_file*, std::string*);
227 
228   // Return the next token.
229   const Token*
230   next_token();
231 
232   // Return the current lexing mode.
233   Lex::Mode
234   mode() const
235   { return this->mode_; }
236 
237   // Set the lexing mode.
238   void
239   set_mode(Mode mode)
240   { this->mode_ = mode; }
241 
242  private:
243   Lex(const Lex&);
244   Lex& operator=(const Lex&);
245 
246   // Make a general token with no value at the current location.
247   Token
248   make_token(Token::Classification c, const char* start) const
249   { return Token(c, this->lineno_, start - this->linestart_ + 1); }
250 
251   // Make a general token with a value at the current location.
252   Token
253   make_token(Token::Classification c, const char* v, size_t len,
254 	     const char* start)
255     const
256   { return Token(c, v, len, this->lineno_, start - this->linestart_ + 1); }
257 
258   // Make an operator token at the current location.
259   Token
260   make_token(int opcode, const char* start) const
261   { return Token(opcode, this->lineno_, start - this->linestart_ + 1); }
262 
263   // Make an invalid token at the current location.
264   Token
265   make_invalid_token(const char* start)
266   { return this->make_token(Token::TOKEN_INVALID, start); }
267 
268   // Make an EOF token at the current location.
269   Token
270   make_eof_token(const char* start)
271   { return this->make_token(Token::TOKEN_EOF, start); }
272 
273   // Return whether C can be the first character in a name.  C2 is the
274   // next character, since we sometimes need that.
275   inline bool
276   can_start_name(char c, char c2);
277 
278   // If C can appear in a name which has already started, return a
279   // pointer to a character later in the token or just past
280   // it. Otherwise, return NULL.
281   inline const char*
282   can_continue_name(const char* c);
283 
284   // Return whether C, C2, C3 can start a hex number.
285   inline bool
286   can_start_hex(char c, char c2, char c3);
287 
288   // If C can appear in a hex number which has already started, return
289   // a pointer to a character later in the token or just past
290   // it. Otherwise, return NULL.
291   inline const char*
292   can_continue_hex(const char* c);
293 
294   // Return whether C can start a non-hex number.
295   static inline bool
296   can_start_number(char c);
297 
298   // If C can appear in a decimal number which has already started,
299   // return a pointer to a character later in the token or just past
300   // it. Otherwise, return NULL.
301   inline const char*
302   can_continue_number(const char* c)
303   { return Lex::can_start_number(*c) ? c + 1 : NULL; }
304 
305   // If C1 C2 C3 form a valid three character operator, return the
306   // opcode.  Otherwise return 0.
307   static inline int
308   three_char_operator(char c1, char c2, char c3);
309 
310   // If C1 C2 form a valid two character operator, return the opcode.
311   // Otherwise return 0.
312   static inline int
313   two_char_operator(char c1, char c2);
314 
315   // If C1 is a valid one character operator, return the opcode.
316   // Otherwise return 0.
317   static inline int
318   one_char_operator(char c1);
319 
320   // Read the next token.
321   Token
322   get_token(const char**);
323 
324   // Skip a C style /* */ comment.  Return false if the comment did
325   // not end.
326   bool
327   skip_c_comment(const char**);
328 
329   // Skip a line # comment.  Return false if there was no newline.
330   bool
331   skip_line_comment(const char**);
332 
333   // Build a token CLASSIFICATION from all characters that match
334   // CAN_CONTINUE_FN.  The token starts at START.  Start matching from
335   // MATCH.  Set *PP to the character following the token.
336   inline Token
337   gather_token(Token::Classification,
338 	       const char* (Lex::*can_continue_fn)(const char*),
339 	       const char* start, const char* match, const char** pp);
340 
341   // Build a token from a quoted string.
342   Token
343   gather_quoted_string(const char** pp);
344 
345   // The string we are tokenizing.
346   const char* input_string_;
347   // The length of the string.
348   size_t input_length_;
349   // The current offset into the string.
350   const char* current_;
351   // The current lexing mode.
352   Mode mode_;
353   // The code to use for the first token.  This is set to 0 after it
354   // is used.
355   int first_token_;
356   // The current token.
357   Token token_;
358   // The current line number.
359   int lineno_;
360   // The start of the current line in the string.
361   const char* linestart_;
362 };
363 
364 // Read the whole file into memory.  We don't expect linker scripts to
365 // be large, so we just use a std::string as a buffer.  We ignore the
366 // data we've already read, so that we read aligned buffers.
367 
368 void
369 Lex::read_file(Input_file* input_file, std::string* contents)
370 {
371   off_t filesize = input_file->file().filesize();
372   contents->clear();
373   contents->reserve(filesize);
374 
375   off_t off = 0;
376   unsigned char buf[BUFSIZ];
377   while (off < filesize)
378     {
379       off_t get = BUFSIZ;
380       if (get > filesize - off)
381 	get = filesize - off;
382       input_file->file().read(off, get, buf);
383       contents->append(reinterpret_cast<char*>(&buf[0]), get);
384       off += get;
385     }
386 }
387 
388 // Return whether C can be the start of a name, if the next character
389 // is C2.  A name can being with a letter, underscore, period, or
390 // dollar sign.  Because a name can be a file name, we also permit
391 // forward slash, backslash, and tilde.  Tilde is the tricky case
392 // here; GNU ld also uses it as a bitwise not operator.  It is only
393 // recognized as the operator if it is not immediately followed by
394 // some character which can appear in a symbol.  That is, when we
395 // don't know that we are looking at an expression, "~0" is a file
396 // name, and "~ 0" is an expression using bitwise not.  We are
397 // compatible.
398 
399 inline bool
400 Lex::can_start_name(char c, char c2)
401 {
402   switch (c)
403     {
404     case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
405     case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
406     case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
407     case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
408     case 'Y': case 'Z':
409     case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
410     case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
411     case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
412     case 's': case 't': case 'u': case 'v': case 'w': case 'x':
413     case 'y': case 'z':
414     case '_': case '.': case '$':
415       return true;
416 
417     case '/': case '\\':
418       return this->mode_ == LINKER_SCRIPT;
419 
420     case '~':
421       return this->mode_ == LINKER_SCRIPT && can_continue_name(&c2);
422 
423     case '*': case '[':
424       return (this->mode_ == VERSION_SCRIPT
425               || this->mode_ == DYNAMIC_LIST
426 	      || (this->mode_ == LINKER_SCRIPT
427 		  && can_continue_name(&c2)));
428 
429     default:
430       return false;
431     }
432 }
433 
434 // Return whether C can continue a name which has already started.
435 // Subsequent characters in a name are the same as the leading
436 // characters, plus digits and "=+-:[],?*".  So in general the linker
437 // script language requires spaces around operators, unless we know
438 // that we are parsing an expression.
439 
440 inline const char*
441 Lex::can_continue_name(const char* c)
442 {
443   switch (*c)
444     {
445     case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
446     case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
447     case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
448     case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
449     case 'Y': case 'Z':
450     case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
451     case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
452     case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
453     case 's': case 't': case 'u': case 'v': case 'w': case 'x':
454     case 'y': case 'z':
455     case '_': case '.': case '$':
456     case '0': case '1': case '2': case '3': case '4':
457     case '5': case '6': case '7': case '8': case '9':
458       return c + 1;
459 
460     // TODO(csilvers): why not allow ~ in names for version-scripts?
461     case '/': case '\\': case '~':
462     case '=': case '+':
463     case ',':
464       if (this->mode_ == LINKER_SCRIPT)
465         return c + 1;
466       return NULL;
467 
468     case '[': case ']': case '*': case '?': case '-':
469       if (this->mode_ == LINKER_SCRIPT || this->mode_ == VERSION_SCRIPT
470           || this->mode_ == DYNAMIC_LIST)
471         return c + 1;
472       return NULL;
473 
474     // TODO(csilvers): why allow this?  ^ is meaningless in version scripts.
475     case '^':
476       if (this->mode_ == VERSION_SCRIPT || this->mode_ == DYNAMIC_LIST)
477         return c + 1;
478       return NULL;
479 
480     case ':':
481       if (this->mode_ == LINKER_SCRIPT)
482         return c + 1;
483       else if ((this->mode_ == VERSION_SCRIPT || this->mode_ == DYNAMIC_LIST)
484                && (c[1] == ':'))
485         {
486           // A name can have '::' in it, as that's a c++ namespace
487           // separator. But a single colon is not part of a name.
488           return c + 2;
489         }
490       return NULL;
491 
492     default:
493       return NULL;
494     }
495 }
496 
497 // For a number we accept 0x followed by hex digits, or any sequence
498 // of digits.  The old linker accepts leading '$' for hex, and
499 // trailing HXBOD.  Those are for MRI compatibility and we don't
500 // accept them.
501 
502 // Return whether C1 C2 C3 can start a hex number.
503 
504 inline bool
505 Lex::can_start_hex(char c1, char c2, char c3)
506 {
507   if (c1 == '0' && (c2 == 'x' || c2 == 'X'))
508     return this->can_continue_hex(&c3);
509   return false;
510 }
511 
512 // Return whether C can appear in a hex number.
513 
514 inline const char*
515 Lex::can_continue_hex(const char* c)
516 {
517   switch (*c)
518     {
519     case '0': case '1': case '2': case '3': case '4':
520     case '5': case '6': case '7': case '8': case '9':
521     case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
522     case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
523       return c + 1;
524 
525     default:
526       return NULL;
527     }
528 }
529 
530 // Return whether C can start a non-hex number.
531 
532 inline bool
533 Lex::can_start_number(char c)
534 {
535   switch (c)
536     {
537     case '0': case '1': case '2': case '3': case '4':
538     case '5': case '6': case '7': case '8': case '9':
539       return true;
540 
541     default:
542       return false;
543     }
544 }
545 
546 // If C1 C2 C3 form a valid three character operator, return the
547 // opcode (defined in the yyscript.h file generated from yyscript.y).
548 // Otherwise return 0.
549 
550 inline int
551 Lex::three_char_operator(char c1, char c2, char c3)
552 {
553   switch (c1)
554     {
555     case '<':
556       if (c2 == '<' && c3 == '=')
557 	return LSHIFTEQ;
558       break;
559     case '>':
560       if (c2 == '>' && c3 == '=')
561 	return RSHIFTEQ;
562       break;
563     default:
564       break;
565     }
566   return 0;
567 }
568 
569 // If C1 C2 form a valid two character operator, return the opcode
570 // (defined in the yyscript.h file generated from yyscript.y).
571 // Otherwise return 0.
572 
573 inline int
574 Lex::two_char_operator(char c1, char c2)
575 {
576   switch (c1)
577     {
578     case '=':
579       if (c2 == '=')
580 	return EQ;
581       break;
582     case '!':
583       if (c2 == '=')
584 	return NE;
585       break;
586     case '+':
587       if (c2 == '=')
588 	return PLUSEQ;
589       break;
590     case '-':
591       if (c2 == '=')
592 	return MINUSEQ;
593       break;
594     case '*':
595       if (c2 == '=')
596 	return MULTEQ;
597       break;
598     case '/':
599       if (c2 == '=')
600 	return DIVEQ;
601       break;
602     case '|':
603       if (c2 == '=')
604 	return OREQ;
605       if (c2 == '|')
606 	return OROR;
607       break;
608     case '&':
609       if (c2 == '=')
610 	return ANDEQ;
611       if (c2 == '&')
612 	return ANDAND;
613       break;
614     case '>':
615       if (c2 == '=')
616 	return GE;
617       if (c2 == '>')
618 	return RSHIFT;
619       break;
620     case '<':
621       if (c2 == '=')
622 	return LE;
623       if (c2 == '<')
624 	return LSHIFT;
625       break;
626     default:
627       break;
628     }
629   return 0;
630 }
631 
632 // If C1 is a valid operator, return the opcode.  Otherwise return 0.
633 
634 inline int
635 Lex::one_char_operator(char c1)
636 {
637   switch (c1)
638     {
639     case '+':
640     case '-':
641     case '*':
642     case '/':
643     case '%':
644     case '!':
645     case '&':
646     case '|':
647     case '^':
648     case '~':
649     case '<':
650     case '>':
651     case '=':
652     case '?':
653     case ',':
654     case '(':
655     case ')':
656     case '{':
657     case '}':
658     case '[':
659     case ']':
660     case ':':
661     case ';':
662       return c1;
663     default:
664       return 0;
665     }
666 }
667 
668 // Skip a C style comment.  *PP points to just after the "/*".  Return
669 // false if the comment did not end.
670 
671 bool
672 Lex::skip_c_comment(const char** pp)
673 {
674   const char* p = *pp;
675   while (p[0] != '*' || p[1] != '/')
676     {
677       if (*p == '\0')
678 	{
679 	  *pp = p;
680 	  return false;
681 	}
682 
683       if (*p == '\n')
684 	{
685 	  ++this->lineno_;
686 	  this->linestart_ = p + 1;
687 	}
688       ++p;
689     }
690 
691   *pp = p + 2;
692   return true;
693 }
694 
695 // Skip a line # comment.  Return false if there was no newline.
696 
697 bool
698 Lex::skip_line_comment(const char** pp)
699 {
700   const char* p = *pp;
701   size_t skip = strcspn(p, "\n");
702   if (p[skip] == '\0')
703     {
704       *pp = p + skip;
705       return false;
706     }
707 
708   p += skip + 1;
709   ++this->lineno_;
710   this->linestart_ = p;
711   *pp = p;
712 
713   return true;
714 }
715 
716 // Build a token CLASSIFICATION from all characters that match
717 // CAN_CONTINUE_FN.  Update *PP.
718 
719 inline Token
720 Lex::gather_token(Token::Classification classification,
721 		  const char* (Lex::*can_continue_fn)(const char*),
722 		  const char* start,
723 		  const char* match,
724 		  const char** pp)
725 {
726   const char* new_match = NULL;
727   while ((new_match = (this->*can_continue_fn)(match)) != NULL)
728     match = new_match;
729 
730   // A special case: integers may be followed by a single M or K,
731   // case-insensitive.
732   if (classification == Token::TOKEN_INTEGER
733       && (*match == 'm' || *match == 'M' || *match == 'k' || *match == 'K'))
734     ++match;
735 
736   *pp = match;
737   return this->make_token(classification, start, match - start, start);
738 }
739 
740 // Build a token from a quoted string.
741 
742 Token
743 Lex::gather_quoted_string(const char** pp)
744 {
745   const char* start = *pp;
746   const char* p = start;
747   ++p;
748   size_t skip = strcspn(p, "\"\n");
749   if (p[skip] != '"')
750     return this->make_invalid_token(start);
751   *pp = p + skip + 1;
752   return this->make_token(Token::TOKEN_QUOTED_STRING, p, skip, start);
753 }
754 
755 // Return the next token at *PP.  Update *PP.  General guideline: we
756 // require linker scripts to be simple ASCII.  No unicode linker
757 // scripts.  In particular we can assume that any '\0' is the end of
758 // the input.
759 
760 Token
761 Lex::get_token(const char** pp)
762 {
763   const char* p = *pp;
764 
765   while (true)
766     {
767       if (*p == '\0')
768 	{
769 	  *pp = p;
770 	  return this->make_eof_token(p);
771 	}
772 
773       // Skip whitespace quickly.
774       while (*p == ' ' || *p == '\t' || *p == '\r')
775 	++p;
776 
777       if (*p == '\n')
778 	{
779 	  ++p;
780 	  ++this->lineno_;
781 	  this->linestart_ = p;
782 	  continue;
783 	}
784 
785       // Skip C style comments.
786       if (p[0] == '/' && p[1] == '*')
787 	{
788 	  int lineno = this->lineno_;
789 	  int charpos = p - this->linestart_ + 1;
790 
791 	  *pp = p + 2;
792 	  if (!this->skip_c_comment(pp))
793 	    return Token(Token::TOKEN_INVALID, lineno, charpos);
794 	  p = *pp;
795 
796 	  continue;
797 	}
798 
799       // Skip line comments.
800       if (*p == '#')
801 	{
802 	  *pp = p + 1;
803 	  if (!this->skip_line_comment(pp))
804 	    return this->make_eof_token(p);
805 	  p = *pp;
806 	  continue;
807 	}
808 
809       // Check for a name.
810       if (this->can_start_name(p[0], p[1]))
811 	return this->gather_token(Token::TOKEN_STRING,
812 				  &Lex::can_continue_name,
813 				  p, p + 1, pp);
814 
815       // We accept any arbitrary name in double quotes, as long as it
816       // does not cross a line boundary.
817       if (*p == '"')
818 	{
819 	  *pp = p;
820 	  return this->gather_quoted_string(pp);
821 	}
822 
823       // Check for a number.
824 
825       if (this->can_start_hex(p[0], p[1], p[2]))
826 	return this->gather_token(Token::TOKEN_INTEGER,
827 				  &Lex::can_continue_hex,
828 				  p, p + 3, pp);
829 
830       if (Lex::can_start_number(p[0]))
831 	return this->gather_token(Token::TOKEN_INTEGER,
832 				  &Lex::can_continue_number,
833 				  p, p + 1, pp);
834 
835       // Check for operators.
836 
837       int opcode = Lex::three_char_operator(p[0], p[1], p[2]);
838       if (opcode != 0)
839 	{
840 	  *pp = p + 3;
841 	  return this->make_token(opcode, p);
842 	}
843 
844       opcode = Lex::two_char_operator(p[0], p[1]);
845       if (opcode != 0)
846 	{
847 	  *pp = p + 2;
848 	  return this->make_token(opcode, p);
849 	}
850 
851       opcode = Lex::one_char_operator(p[0]);
852       if (opcode != 0)
853 	{
854 	  *pp = p + 1;
855 	  return this->make_token(opcode, p);
856 	}
857 
858       return this->make_token(Token::TOKEN_INVALID, p);
859     }
860 }
861 
862 // Return the next token.
863 
864 const Token*
865 Lex::next_token()
866 {
867   // The first token is special.
868   if (this->first_token_ != 0)
869     {
870       this->token_ = Token(this->first_token_, 0, 0);
871       this->first_token_ = 0;
872       return &this->token_;
873     }
874 
875   this->token_ = this->get_token(&this->current_);
876 
877   // Don't let an early null byte fool us into thinking that we've
878   // reached the end of the file.
879   if (this->token_.is_eof()
880       && (static_cast<size_t>(this->current_ - this->input_string_)
881 	  < this->input_length_))
882     this->token_ = this->make_invalid_token(this->current_);
883 
884   return &this->token_;
885 }
886 
887 // class Symbol_assignment.
888 
889 // Add the symbol to the symbol table.  This makes sure the symbol is
890 // there and defined.  The actual value is stored later.  We can't
891 // determine the actual value at this point, because we can't
892 // necessarily evaluate the expression until all ordinary symbols have
893 // been finalized.
894 
895 // The GNU linker lets symbol assignments in the linker script
896 // silently override defined symbols in object files.  We are
897 // compatible.  FIXME: Should we issue a warning?
898 
899 void
900 Symbol_assignment::add_to_table(Symbol_table* symtab)
901 {
902   elfcpp::STV vis = this->hidden_ ? elfcpp::STV_HIDDEN : elfcpp::STV_DEFAULT;
903   this->sym_ = symtab->define_as_constant(this->name_.c_str(),
904 					  NULL, // version
905 					  (this->is_defsym_
906 					   ? Symbol_table::DEFSYM
907 					   : Symbol_table::SCRIPT),
908 					  0, // value
909 					  0, // size
910 					  elfcpp::STT_NOTYPE,
911 					  elfcpp::STB_GLOBAL,
912 					  vis,
913 					  0, // nonvis
914 					  this->provide_,
915                                           true); // force_override
916 }
917 
918 // Finalize a symbol value.
919 
920 void
921 Symbol_assignment::finalize(Symbol_table* symtab, const Layout* layout)
922 {
923   this->finalize_maybe_dot(symtab, layout, false, 0, NULL);
924 }
925 
926 // Finalize a symbol value which can refer to the dot symbol.
927 
928 void
929 Symbol_assignment::finalize_with_dot(Symbol_table* symtab,
930 				     const Layout* layout,
931 				     uint64_t dot_value,
932 				     Output_section* dot_section)
933 {
934   this->finalize_maybe_dot(symtab, layout, true, dot_value, dot_section);
935 }
936 
937 // Finalize a symbol value, internal version.
938 
939 void
940 Symbol_assignment::finalize_maybe_dot(Symbol_table* symtab,
941 				      const Layout* layout,
942 				      bool is_dot_available,
943 				      uint64_t dot_value,
944 				      Output_section* dot_section)
945 {
946   // If we were only supposed to provide this symbol, the sym_ field
947   // will be NULL if the symbol was not referenced.
948   if (this->sym_ == NULL)
949     {
950       gold_assert(this->provide_);
951       return;
952     }
953 
954   if (parameters->target().get_size() == 32)
955     {
956 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
957       this->sized_finalize<32>(symtab, layout, is_dot_available, dot_value,
958 			       dot_section);
959 #else
960       gold_unreachable();
961 #endif
962     }
963   else if (parameters->target().get_size() == 64)
964     {
965 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
966       this->sized_finalize<64>(symtab, layout, is_dot_available, dot_value,
967 			       dot_section);
968 #else
969       gold_unreachable();
970 #endif
971     }
972   else
973     gold_unreachable();
974 }
975 
976 template<int size>
977 void
978 Symbol_assignment::sized_finalize(Symbol_table* symtab, const Layout* layout,
979 				  bool is_dot_available, uint64_t dot_value,
980 				  Output_section* dot_section)
981 {
982   Output_section* section;
983   uint64_t final_val = this->val_->eval_maybe_dot(symtab, layout, true,
984 						  is_dot_available,
985 						  dot_value, dot_section,
986 						  &section, NULL, false);
987   Sized_symbol<size>* ssym = symtab->get_sized_symbol<size>(this->sym_);
988   ssym->set_value(final_val);
989   if (section != NULL)
990     ssym->set_output_section(section);
991 }
992 
993 // Set the symbol value if the expression yields an absolute value or
994 // a value relative to DOT_SECTION.
995 
996 void
997 Symbol_assignment::set_if_absolute(Symbol_table* symtab, const Layout* layout,
998 				   bool is_dot_available, uint64_t dot_value,
999 				   Output_section* dot_section)
1000 {
1001   if (this->sym_ == NULL)
1002     return;
1003 
1004   Output_section* val_section;
1005   uint64_t val = this->val_->eval_maybe_dot(symtab, layout, false,
1006 					    is_dot_available, dot_value,
1007 					    dot_section, &val_section, NULL,
1008 					    false);
1009   if (val_section != NULL && val_section != dot_section)
1010     return;
1011 
1012   if (parameters->target().get_size() == 32)
1013     {
1014 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1015       Sized_symbol<32>* ssym = symtab->get_sized_symbol<32>(this->sym_);
1016       ssym->set_value(val);
1017 #else
1018       gold_unreachable();
1019 #endif
1020     }
1021   else if (parameters->target().get_size() == 64)
1022     {
1023 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1024       Sized_symbol<64>* ssym = symtab->get_sized_symbol<64>(this->sym_);
1025       ssym->set_value(val);
1026 #else
1027       gold_unreachable();
1028 #endif
1029     }
1030   else
1031     gold_unreachable();
1032   if (val_section != NULL)
1033     this->sym_->set_output_section(val_section);
1034 }
1035 
1036 // Print for debugging.
1037 
1038 void
1039 Symbol_assignment::print(FILE* f) const
1040 {
1041   if (this->provide_ && this->hidden_)
1042     fprintf(f, "PROVIDE_HIDDEN(");
1043   else if (this->provide_)
1044     fprintf(f, "PROVIDE(");
1045   else if (this->hidden_)
1046     gold_unreachable();
1047 
1048   fprintf(f, "%s = ", this->name_.c_str());
1049   this->val_->print(f);
1050 
1051   if (this->provide_ || this->hidden_)
1052     fprintf(f, ")");
1053 
1054   fprintf(f, "\n");
1055 }
1056 
1057 // Class Script_assertion.
1058 
1059 // Check the assertion.
1060 
1061 void
1062 Script_assertion::check(const Symbol_table* symtab, const Layout* layout)
1063 {
1064   if (!this->check_->eval(symtab, layout, true))
1065     gold_error("%s", this->message_.c_str());
1066 }
1067 
1068 // Print for debugging.
1069 
1070 void
1071 Script_assertion::print(FILE* f) const
1072 {
1073   fprintf(f, "ASSERT(");
1074   this->check_->print(f);
1075   fprintf(f, ", \"%s\")\n", this->message_.c_str());
1076 }
1077 
1078 // Class Script_options.
1079 
1080 Script_options::Script_options()
1081   : entry_(), symbol_assignments_(), symbol_definitions_(),
1082     symbol_references_(), version_script_info_(), script_sections_()
1083 {
1084 }
1085 
1086 // Returns true if NAME is on the list of symbol assignments waiting
1087 // to be processed.
1088 
1089 bool
1090 Script_options::is_pending_assignment(const char* name)
1091 {
1092   for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1093        p != this->symbol_assignments_.end();
1094        ++p)
1095     if ((*p)->name() == name)
1096       return true;
1097   return false;
1098 }
1099 
1100 // Add a symbol to be defined.
1101 
1102 void
1103 Script_options::add_symbol_assignment(const char* name, size_t length,
1104 				      bool is_defsym, Expression* value,
1105 				      bool provide, bool hidden)
1106 {
1107   if (length != 1 || name[0] != '.')
1108     {
1109       if (this->script_sections_.in_sections_clause())
1110 	{
1111 	  gold_assert(!is_defsym);
1112 	  this->script_sections_.add_symbol_assignment(name, length, value,
1113 						       provide, hidden);
1114 	}
1115       else
1116 	{
1117 	  Symbol_assignment* p = new Symbol_assignment(name, length, is_defsym,
1118 						       value, provide, hidden);
1119 	  this->symbol_assignments_.push_back(p);
1120 	}
1121 
1122       if (!provide)
1123 	{
1124 	  std::string n(name, length);
1125 	  this->symbol_definitions_.insert(n);
1126 	  this->symbol_references_.erase(n);
1127 	}
1128     }
1129   else
1130     {
1131       if (provide || hidden)
1132 	gold_error(_("invalid use of PROVIDE for dot symbol"));
1133 
1134       // The GNU linker permits assignments to dot outside of SECTIONS
1135       // clauses and treats them as occurring inside, so we don't
1136       // check in_sections_clause here.
1137       this->script_sections_.add_dot_assignment(value);
1138     }
1139 }
1140 
1141 // Add a reference to a symbol.
1142 
1143 void
1144 Script_options::add_symbol_reference(const char* name, size_t length)
1145 {
1146   if (length != 1 || name[0] != '.')
1147     {
1148       std::string n(name, length);
1149       if (this->symbol_definitions_.find(n) == this->symbol_definitions_.end())
1150 	this->symbol_references_.insert(n);
1151     }
1152 }
1153 
1154 // Add an assertion.
1155 
1156 void
1157 Script_options::add_assertion(Expression* check, const char* message,
1158 			      size_t messagelen)
1159 {
1160   if (this->script_sections_.in_sections_clause())
1161     this->script_sections_.add_assertion(check, message, messagelen);
1162   else
1163     {
1164       Script_assertion* p = new Script_assertion(check, message, messagelen);
1165       this->assertions_.push_back(p);
1166     }
1167 }
1168 
1169 // Create sections required by any linker scripts.
1170 
1171 void
1172 Script_options::create_script_sections(Layout* layout)
1173 {
1174   if (this->saw_sections_clause())
1175     this->script_sections_.create_sections(layout);
1176 }
1177 
1178 // Add any symbols we are defining to the symbol table.
1179 
1180 void
1181 Script_options::add_symbols_to_table(Symbol_table* symtab)
1182 {
1183   for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1184        p != this->symbol_assignments_.end();
1185        ++p)
1186     (*p)->add_to_table(symtab);
1187   this->script_sections_.add_symbols_to_table(symtab);
1188 }
1189 
1190 // Finalize symbol values.  Also check assertions.
1191 
1192 void
1193 Script_options::finalize_symbols(Symbol_table* symtab, const Layout* layout)
1194 {
1195   // We finalize the symbols defined in SECTIONS first, because they
1196   // are the ones which may have changed.  This way if symbol outside
1197   // SECTIONS are defined in terms of symbols inside SECTIONS, they
1198   // will get the right value.
1199   this->script_sections_.finalize_symbols(symtab, layout);
1200 
1201   for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1202        p != this->symbol_assignments_.end();
1203        ++p)
1204     (*p)->finalize(symtab, layout);
1205 
1206   for (Assertions::iterator p = this->assertions_.begin();
1207        p != this->assertions_.end();
1208        ++p)
1209     (*p)->check(symtab, layout);
1210 }
1211 
1212 // Set section addresses.  We set all the symbols which have absolute
1213 // values.  Then we let the SECTIONS clause do its thing.  This
1214 // returns the segment which holds the file header and segment
1215 // headers, if any.
1216 
1217 Output_segment*
1218 Script_options::set_section_addresses(Symbol_table* symtab, Layout* layout)
1219 {
1220   for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1221        p != this->symbol_assignments_.end();
1222        ++p)
1223     (*p)->set_if_absolute(symtab, layout, false, 0, NULL);
1224 
1225   return this->script_sections_.set_section_addresses(symtab, layout);
1226 }
1227 
1228 // This class holds data passed through the parser to the lexer and to
1229 // the parser support functions.  This avoids global variables.  We
1230 // can't use global variables because we need not be called by a
1231 // singleton thread.
1232 
1233 class Parser_closure
1234 {
1235  public:
1236   Parser_closure(const char* filename,
1237 		 const Position_dependent_options& posdep_options,
1238 		 bool parsing_defsym, bool in_group, bool is_in_sysroot,
1239                  Command_line* command_line,
1240 		 Script_options* script_options,
1241 		 Lex* lex,
1242 		 bool skip_on_incompatible_target,
1243 		 Script_info* script_info)
1244     : filename_(filename), posdep_options_(posdep_options),
1245       parsing_defsym_(parsing_defsym), in_group_(in_group),
1246       is_in_sysroot_(is_in_sysroot),
1247       skip_on_incompatible_target_(skip_on_incompatible_target),
1248       found_incompatible_target_(false),
1249       command_line_(command_line), script_options_(script_options),
1250       version_script_info_(script_options->version_script_info()),
1251       lex_(lex), lineno_(0), charpos_(0), lex_mode_stack_(), inputs_(NULL),
1252       script_info_(script_info)
1253   {
1254     // We start out processing C symbols in the default lex mode.
1255     this->language_stack_.push_back(Version_script_info::LANGUAGE_C);
1256     this->lex_mode_stack_.push_back(lex->mode());
1257   }
1258 
1259   // Return the file name.
1260   const char*
1261   filename() const
1262   { return this->filename_; }
1263 
1264   // Return the position dependent options.  The caller may modify
1265   // this.
1266   Position_dependent_options&
1267   position_dependent_options()
1268   { return this->posdep_options_; }
1269 
1270   // Whether we are parsing a --defsym.
1271   bool
1272   parsing_defsym() const
1273   { return this->parsing_defsym_; }
1274 
1275   // Return whether this script is being run in a group.
1276   bool
1277   in_group() const
1278   { return this->in_group_; }
1279 
1280   // Return whether this script was found using a directory in the
1281   // sysroot.
1282   bool
1283   is_in_sysroot() const
1284   { return this->is_in_sysroot_; }
1285 
1286   // Whether to skip to the next file with the same name if we find an
1287   // incompatible target in an OUTPUT_FORMAT statement.
1288   bool
1289   skip_on_incompatible_target() const
1290   { return this->skip_on_incompatible_target_; }
1291 
1292   // Stop skipping to the next file on an incompatible target.  This
1293   // is called when we make some unrevocable change to the data
1294   // structures.
1295   void
1296   clear_skip_on_incompatible_target()
1297   { this->skip_on_incompatible_target_ = false; }
1298 
1299   // Whether we found an incompatible target in an OUTPUT_FORMAT
1300   // statement.
1301   bool
1302   found_incompatible_target() const
1303   { return this->found_incompatible_target_; }
1304 
1305   // Note that we found an incompatible target.
1306   void
1307   set_found_incompatible_target()
1308   { this->found_incompatible_target_ = true; }
1309 
1310   // Returns the Command_line structure passed in at constructor time.
1311   // This value may be NULL.  The caller may modify this, which modifies
1312   // the passed-in Command_line object (not a copy).
1313   Command_line*
1314   command_line()
1315   { return this->command_line_; }
1316 
1317   // Return the options which may be set by a script.
1318   Script_options*
1319   script_options()
1320   { return this->script_options_; }
1321 
1322   // Return the object in which version script information should be stored.
1323   Version_script_info*
1324   version_script()
1325   { return this->version_script_info_; }
1326 
1327   // Return the next token, and advance.
1328   const Token*
1329   next_token()
1330   {
1331     const Token* token = this->lex_->next_token();
1332     this->lineno_ = token->lineno();
1333     this->charpos_ = token->charpos();
1334     return token;
1335   }
1336 
1337   // Set a new lexer mode, pushing the current one.
1338   void
1339   push_lex_mode(Lex::Mode mode)
1340   {
1341     this->lex_mode_stack_.push_back(this->lex_->mode());
1342     this->lex_->set_mode(mode);
1343   }
1344 
1345   // Pop the lexer mode.
1346   void
1347   pop_lex_mode()
1348   {
1349     gold_assert(!this->lex_mode_stack_.empty());
1350     this->lex_->set_mode(this->lex_mode_stack_.back());
1351     this->lex_mode_stack_.pop_back();
1352   }
1353 
1354   // Return the current lexer mode.
1355   Lex::Mode
1356   lex_mode() const
1357   { return this->lex_mode_stack_.back(); }
1358 
1359   // Return the line number of the last token.
1360   int
1361   lineno() const
1362   { return this->lineno_; }
1363 
1364   // Return the character position in the line of the last token.
1365   int
1366   charpos() const
1367   { return this->charpos_; }
1368 
1369   // Return the list of input files, creating it if necessary.  This
1370   // is a space leak--we never free the INPUTS_ pointer.
1371   Input_arguments*
1372   inputs()
1373   {
1374     if (this->inputs_ == NULL)
1375       this->inputs_ = new Input_arguments();
1376     return this->inputs_;
1377   }
1378 
1379   // Return whether we saw any input files.
1380   bool
1381   saw_inputs() const
1382   { return this->inputs_ != NULL && !this->inputs_->empty(); }
1383 
1384   // Return the current language being processed in a version script
1385   // (eg, "C++").  The empty string represents unmangled C names.
1386   Version_script_info::Language
1387   get_current_language() const
1388   { return this->language_stack_.back(); }
1389 
1390   // Push a language onto the stack when entering an extern block.
1391   void
1392   push_language(Version_script_info::Language lang)
1393   { this->language_stack_.push_back(lang); }
1394 
1395   // Pop a language off of the stack when exiting an extern block.
1396   void
1397   pop_language()
1398   {
1399     gold_assert(!this->language_stack_.empty());
1400     this->language_stack_.pop_back();
1401   }
1402 
1403   // Return a pointer to the incremental info.
1404   Script_info*
1405   script_info()
1406   { return this->script_info_; }
1407 
1408  private:
1409   // The name of the file we are reading.
1410   const char* filename_;
1411   // The position dependent options.
1412   Position_dependent_options posdep_options_;
1413   // True if we are parsing a --defsym.
1414   bool parsing_defsym_;
1415   // Whether we are currently in a --start-group/--end-group.
1416   bool in_group_;
1417   // Whether the script was found in a sysrooted directory.
1418   bool is_in_sysroot_;
1419   // If this is true, then if we find an OUTPUT_FORMAT with an
1420   // incompatible target, then we tell the parser to abort so that we
1421   // can search for the next file with the same name.
1422   bool skip_on_incompatible_target_;
1423   // True if we found an OUTPUT_FORMAT with an incompatible target.
1424   bool found_incompatible_target_;
1425   // May be NULL if the user chooses not to pass one in.
1426   Command_line* command_line_;
1427   // Options which may be set from any linker script.
1428   Script_options* script_options_;
1429   // Information parsed from a version script.
1430   Version_script_info* version_script_info_;
1431   // The lexer.
1432   Lex* lex_;
1433   // The line number of the last token returned by next_token.
1434   int lineno_;
1435   // The column number of the last token returned by next_token.
1436   int charpos_;
1437   // A stack of lexer modes.
1438   std::vector<Lex::Mode> lex_mode_stack_;
1439   // A stack of which extern/language block we're inside. Can be C++,
1440   // java, or empty for C.
1441   std::vector<Version_script_info::Language> language_stack_;
1442   // New input files found to add to the link.
1443   Input_arguments* inputs_;
1444   // Pointer to incremental linking info.
1445   Script_info* script_info_;
1446 };
1447 
1448 // FILE was found as an argument on the command line.  Try to read it
1449 // as a script.  Return true if the file was handled.
1450 
1451 bool
1452 read_input_script(Workqueue* workqueue, Symbol_table* symtab, Layout* layout,
1453 		  Dirsearch* dirsearch, int dirindex,
1454 		  Input_objects* input_objects, Mapfile* mapfile,
1455 		  Input_group* input_group,
1456 		  const Input_argument* input_argument,
1457 		  Input_file* input_file, Task_token* next_blocker,
1458 		  bool* used_next_blocker)
1459 {
1460   *used_next_blocker = false;
1461 
1462   std::string input_string;
1463   Lex::read_file(input_file, &input_string);
1464 
1465   Lex lex(input_string.c_str(), input_string.length(), PARSING_LINKER_SCRIPT);
1466 
1467   Script_info* script_info = NULL;
1468   if (layout->incremental_inputs() != NULL)
1469     {
1470       const std::string& filename = input_file->filename();
1471       Timespec mtime = input_file->file().get_mtime();
1472       unsigned int arg_serial = input_argument->file().arg_serial();
1473       script_info = new Script_info(filename);
1474       layout->incremental_inputs()->report_script(script_info, arg_serial,
1475 						  mtime);
1476     }
1477 
1478   Parser_closure closure(input_file->filename().c_str(),
1479 			 input_argument->file().options(),
1480 			 false,
1481 			 input_group != NULL,
1482 			 input_file->is_in_sysroot(),
1483                          NULL,
1484 			 layout->script_options(),
1485 			 &lex,
1486 			 input_file->will_search_for(),
1487 			 script_info);
1488 
1489   bool old_saw_sections_clause =
1490     layout->script_options()->saw_sections_clause();
1491 
1492   if (yyparse(&closure) != 0)
1493     {
1494       if (closure.found_incompatible_target())
1495 	{
1496 	  Read_symbols::incompatible_warning(input_argument, input_file);
1497 	  Read_symbols::requeue(workqueue, input_objects, symtab, layout,
1498 				dirsearch, dirindex, mapfile, input_argument,
1499 				input_group, next_blocker);
1500 	  return true;
1501 	}
1502       return false;
1503     }
1504 
1505   if (!old_saw_sections_clause
1506       && layout->script_options()->saw_sections_clause()
1507       && layout->have_added_input_section())
1508     gold_error(_("%s: SECTIONS seen after other input files; try -T/--script"),
1509 	       input_file->filename().c_str());
1510 
1511   if (!closure.saw_inputs())
1512     return true;
1513 
1514   Task_token* this_blocker = NULL;
1515   for (Input_arguments::const_iterator p = closure.inputs()->begin();
1516        p != closure.inputs()->end();
1517        ++p)
1518     {
1519       Task_token* nb;
1520       if (p + 1 == closure.inputs()->end())
1521 	nb = next_blocker;
1522       else
1523 	{
1524 	  nb = new Task_token(true);
1525 	  nb->add_blocker();
1526 	}
1527       workqueue->queue_soon(new Read_symbols(input_objects, symtab,
1528 					     layout, dirsearch, 0, mapfile, &*p,
1529 					     input_group, NULL, this_blocker, nb));
1530       this_blocker = nb;
1531     }
1532 
1533   *used_next_blocker = true;
1534 
1535   return true;
1536 }
1537 
1538 // Helper function for read_version_script(), read_commandline_script() and
1539 // script_include_directive().  Processes the given file in the mode indicated
1540 // by first_token and lex_mode.
1541 
1542 static bool
1543 read_script_file(const char* filename, Command_line* cmdline,
1544                  Script_options* script_options,
1545                  int first_token, Lex::Mode lex_mode)
1546 {
1547   Dirsearch dirsearch;
1548   std::string name = filename;
1549 
1550   // If filename is a relative filename, search for it manually using "." +
1551   // cmdline->options()->library_path() -- not dirsearch.
1552   if (!IS_ABSOLUTE_PATH(filename))
1553     {
1554       const General_options::Dir_list& search_path =
1555           cmdline->options().library_path();
1556       name = Dirsearch::find_file_in_dir_list(name, search_path, ".");
1557     }
1558 
1559   // The file locking code wants to record a Task, but we haven't
1560   // started the workqueue yet.  This is only for debugging purposes,
1561   // so we invent a fake value.
1562   const Task* task = reinterpret_cast<const Task*>(-1);
1563 
1564   // We don't want this file to be opened in binary mode.
1565   Position_dependent_options posdep = cmdline->position_dependent_options();
1566   if (posdep.format_enum() == General_options::OBJECT_FORMAT_BINARY)
1567     posdep.set_format_enum(General_options::OBJECT_FORMAT_ELF);
1568   Input_file_argument input_argument(name.c_str(),
1569 				     Input_file_argument::INPUT_FILE_TYPE_FILE,
1570 				     "", false, posdep);
1571   Input_file input_file(&input_argument);
1572   int dummy = 0;
1573   if (!input_file.open(dirsearch, task, &dummy))
1574     return false;
1575 
1576   std::string input_string;
1577   Lex::read_file(&input_file, &input_string);
1578 
1579   Lex lex(input_string.c_str(), input_string.length(), first_token);
1580   lex.set_mode(lex_mode);
1581 
1582   Parser_closure closure(filename,
1583 			 cmdline->position_dependent_options(),
1584 			 first_token == Lex::DYNAMIC_LIST,
1585 			 false,
1586 			 input_file.is_in_sysroot(),
1587                          cmdline,
1588 			 script_options,
1589 			 &lex,
1590 			 false,
1591 			 NULL);
1592   if (yyparse(&closure) != 0)
1593     {
1594       input_file.file().unlock(task);
1595       return false;
1596     }
1597 
1598   input_file.file().unlock(task);
1599 
1600   gold_assert(!closure.saw_inputs());
1601 
1602   return true;
1603 }
1604 
1605 // FILENAME was found as an argument to --script (-T).
1606 // Read it as a script, and execute its contents immediately.
1607 
1608 bool
1609 read_commandline_script(const char* filename, Command_line* cmdline)
1610 {
1611   return read_script_file(filename, cmdline, &cmdline->script_options(),
1612                           PARSING_LINKER_SCRIPT, Lex::LINKER_SCRIPT);
1613 }
1614 
1615 // FILENAME was found as an argument to --version-script.  Read it as
1616 // a version script, and store its contents in
1617 // cmdline->script_options()->version_script_info().
1618 
1619 bool
1620 read_version_script(const char* filename, Command_line* cmdline)
1621 {
1622   return read_script_file(filename, cmdline, &cmdline->script_options(),
1623                           PARSING_VERSION_SCRIPT, Lex::VERSION_SCRIPT);
1624 }
1625 
1626 // FILENAME was found as an argument to --dynamic-list.  Read it as a
1627 // list of symbols, and store its contents in DYNAMIC_LIST.
1628 
1629 bool
1630 read_dynamic_list(const char* filename, Command_line* cmdline,
1631                   Script_options* dynamic_list)
1632 {
1633   return read_script_file(filename, cmdline, dynamic_list,
1634                           PARSING_DYNAMIC_LIST, Lex::DYNAMIC_LIST);
1635 }
1636 
1637 // Implement the --defsym option on the command line.  Return true if
1638 // all is well.
1639 
1640 bool
1641 Script_options::define_symbol(const char* definition)
1642 {
1643   Lex lex(definition, strlen(definition), PARSING_DEFSYM);
1644   lex.set_mode(Lex::EXPRESSION);
1645 
1646   // Dummy value.
1647   Position_dependent_options posdep_options;
1648 
1649   Parser_closure closure("command line", posdep_options, true,
1650 			 false, false, NULL, this, &lex, false, NULL);
1651 
1652   if (yyparse(&closure) != 0)
1653     return false;
1654 
1655   gold_assert(!closure.saw_inputs());
1656 
1657   return true;
1658 }
1659 
1660 // Print the script to F for debugging.
1661 
1662 void
1663 Script_options::print(FILE* f) const
1664 {
1665   fprintf(f, "%s: Dumping linker script\n", program_name);
1666 
1667   if (!this->entry_.empty())
1668     fprintf(f, "ENTRY(%s)\n", this->entry_.c_str());
1669 
1670   for (Symbol_assignments::const_iterator p =
1671 	 this->symbol_assignments_.begin();
1672        p != this->symbol_assignments_.end();
1673        ++p)
1674     (*p)->print(f);
1675 
1676   for (Assertions::const_iterator p = this->assertions_.begin();
1677        p != this->assertions_.end();
1678        ++p)
1679     (*p)->print(f);
1680 
1681   this->script_sections_.print(f);
1682 
1683   this->version_script_info_.print(f);
1684 }
1685 
1686 // Manage mapping from keywords to the codes expected by the bison
1687 // parser.  We construct one global object for each lex mode with
1688 // keywords.
1689 
1690 class Keyword_to_parsecode
1691 {
1692  public:
1693   // The structure which maps keywords to parsecodes.
1694   struct Keyword_parsecode
1695   {
1696     // Keyword.
1697     const char* keyword;
1698     // Corresponding parsecode.
1699     int parsecode;
1700   };
1701 
1702   Keyword_to_parsecode(const Keyword_parsecode* keywords,
1703                        int keyword_count)
1704       : keyword_parsecodes_(keywords), keyword_count_(keyword_count)
1705   { }
1706 
1707   // Return the parsecode corresponding KEYWORD, or 0 if it is not a
1708   // keyword.
1709   int
1710   keyword_to_parsecode(const char* keyword, size_t len) const;
1711 
1712  private:
1713   const Keyword_parsecode* keyword_parsecodes_;
1714   const int keyword_count_;
1715 };
1716 
1717 // Mapping from keyword string to keyword parsecode.  This array must
1718 // be kept in sorted order.  Parsecodes are looked up using bsearch.
1719 // This array must correspond to the list of parsecodes in yyscript.y.
1720 
1721 static const Keyword_to_parsecode::Keyword_parsecode
1722 script_keyword_parsecodes[] =
1723 {
1724   { "ABSOLUTE", ABSOLUTE },
1725   { "ADDR", ADDR },
1726   { "ALIGN", ALIGN_K },
1727   { "ALIGNOF", ALIGNOF },
1728   { "ASSERT", ASSERT_K },
1729   { "AS_NEEDED", AS_NEEDED },
1730   { "AT", AT },
1731   { "BIND", BIND },
1732   { "BLOCK", BLOCK },
1733   { "BYTE", BYTE },
1734   { "CONSTANT", CONSTANT },
1735   { "CONSTRUCTORS", CONSTRUCTORS },
1736   { "COPY", COPY },
1737   { "CREATE_OBJECT_SYMBOLS", CREATE_OBJECT_SYMBOLS },
1738   { "DATA_SEGMENT_ALIGN", DATA_SEGMENT_ALIGN },
1739   { "DATA_SEGMENT_END", DATA_SEGMENT_END },
1740   { "DATA_SEGMENT_RELRO_END", DATA_SEGMENT_RELRO_END },
1741   { "DEFINED", DEFINED },
1742   { "DSECT", DSECT },
1743   { "ENTRY", ENTRY },
1744   { "EXCLUDE_FILE", EXCLUDE_FILE },
1745   { "EXTERN", EXTERN },
1746   { "FILL", FILL },
1747   { "FLOAT", FLOAT },
1748   { "FORCE_COMMON_ALLOCATION", FORCE_COMMON_ALLOCATION },
1749   { "GROUP", GROUP },
1750   { "HLL", HLL },
1751   { "INCLUDE", INCLUDE },
1752   { "INFO", INFO },
1753   { "INHIBIT_COMMON_ALLOCATION", INHIBIT_COMMON_ALLOCATION },
1754   { "INPUT", INPUT },
1755   { "KEEP", KEEP },
1756   { "LENGTH", LENGTH },
1757   { "LOADADDR", LOADADDR },
1758   { "LONG", LONG },
1759   { "MAP", MAP },
1760   { "MAX", MAX_K },
1761   { "MEMORY", MEMORY },
1762   { "MIN", MIN_K },
1763   { "NEXT", NEXT },
1764   { "NOCROSSREFS", NOCROSSREFS },
1765   { "NOFLOAT", NOFLOAT },
1766   { "NOLOAD", NOLOAD },
1767   { "ONLY_IF_RO", ONLY_IF_RO },
1768   { "ONLY_IF_RW", ONLY_IF_RW },
1769   { "OPTION", OPTION },
1770   { "ORIGIN", ORIGIN },
1771   { "OUTPUT", OUTPUT },
1772   { "OUTPUT_ARCH", OUTPUT_ARCH },
1773   { "OUTPUT_FORMAT", OUTPUT_FORMAT },
1774   { "OVERLAY", OVERLAY },
1775   { "PHDRS", PHDRS },
1776   { "PROVIDE", PROVIDE },
1777   { "PROVIDE_HIDDEN", PROVIDE_HIDDEN },
1778   { "QUAD", QUAD },
1779   { "SEARCH_DIR", SEARCH_DIR },
1780   { "SECTIONS", SECTIONS },
1781   { "SEGMENT_START", SEGMENT_START },
1782   { "SHORT", SHORT },
1783   { "SIZEOF", SIZEOF },
1784   { "SIZEOF_HEADERS", SIZEOF_HEADERS },
1785   { "SORT", SORT_BY_NAME },
1786   { "SORT_BY_ALIGNMENT", SORT_BY_ALIGNMENT },
1787   { "SORT_BY_NAME", SORT_BY_NAME },
1788   { "SPECIAL", SPECIAL },
1789   { "SQUAD", SQUAD },
1790   { "STARTUP", STARTUP },
1791   { "SUBALIGN", SUBALIGN },
1792   { "SYSLIB", SYSLIB },
1793   { "TARGET", TARGET_K },
1794   { "TRUNCATE", TRUNCATE },
1795   { "VERSION", VERSIONK },
1796   { "global", GLOBAL },
1797   { "l", LENGTH },
1798   { "len", LENGTH },
1799   { "local", LOCAL },
1800   { "o", ORIGIN },
1801   { "org", ORIGIN },
1802   { "sizeof_headers", SIZEOF_HEADERS },
1803 };
1804 
1805 static const Keyword_to_parsecode
1806 script_keywords(&script_keyword_parsecodes[0],
1807                 (sizeof(script_keyword_parsecodes)
1808                  / sizeof(script_keyword_parsecodes[0])));
1809 
1810 static const Keyword_to_parsecode::Keyword_parsecode
1811 version_script_keyword_parsecodes[] =
1812 {
1813   { "extern", EXTERN },
1814   { "global", GLOBAL },
1815   { "local", LOCAL },
1816 };
1817 
1818 static const Keyword_to_parsecode
1819 version_script_keywords(&version_script_keyword_parsecodes[0],
1820                         (sizeof(version_script_keyword_parsecodes)
1821                          / sizeof(version_script_keyword_parsecodes[0])));
1822 
1823 static const Keyword_to_parsecode::Keyword_parsecode
1824 dynamic_list_keyword_parsecodes[] =
1825 {
1826   { "extern", EXTERN },
1827 };
1828 
1829 static const Keyword_to_parsecode
1830 dynamic_list_keywords(&dynamic_list_keyword_parsecodes[0],
1831                       (sizeof(dynamic_list_keyword_parsecodes)
1832                        / sizeof(dynamic_list_keyword_parsecodes[0])));
1833 
1834 
1835 
1836 // Comparison function passed to bsearch.
1837 
1838 extern "C"
1839 {
1840 
1841 struct Ktt_key
1842 {
1843   const char* str;
1844   size_t len;
1845 };
1846 
1847 static int
1848 ktt_compare(const void* keyv, const void* kttv)
1849 {
1850   const Ktt_key* key = static_cast<const Ktt_key*>(keyv);
1851   const Keyword_to_parsecode::Keyword_parsecode* ktt =
1852     static_cast<const Keyword_to_parsecode::Keyword_parsecode*>(kttv);
1853   int i = strncmp(key->str, ktt->keyword, key->len);
1854   if (i != 0)
1855     return i;
1856   if (ktt->keyword[key->len] != '\0')
1857     return -1;
1858   return 0;
1859 }
1860 
1861 } // End extern "C".
1862 
1863 int
1864 Keyword_to_parsecode::keyword_to_parsecode(const char* keyword,
1865                                            size_t len) const
1866 {
1867   Ktt_key key;
1868   key.str = keyword;
1869   key.len = len;
1870   void* kttv = bsearch(&key,
1871                        this->keyword_parsecodes_,
1872                        this->keyword_count_,
1873                        sizeof(this->keyword_parsecodes_[0]),
1874                        ktt_compare);
1875   if (kttv == NULL)
1876     return 0;
1877   Keyword_parsecode* ktt = static_cast<Keyword_parsecode*>(kttv);
1878   return ktt->parsecode;
1879 }
1880 
1881 // The following structs are used within the VersionInfo class as well
1882 // as in the bison helper functions.  They store the information
1883 // parsed from the version script.
1884 
1885 // A single version expression.
1886 // For example, pattern="std::map*" and language="C++".
1887 struct Version_expression
1888 {
1889   Version_expression(const std::string& a_pattern,
1890 		     Version_script_info::Language a_language,
1891                      bool a_exact_match)
1892     : pattern(a_pattern), language(a_language), exact_match(a_exact_match),
1893       was_matched_by_symbol(false)
1894   { }
1895 
1896   std::string pattern;
1897   Version_script_info::Language language;
1898   // If false, we use glob() to match pattern.  If true, we use strcmp().
1899   bool exact_match;
1900   // True if --no-undefined-version is in effect and we found this
1901   // version in get_symbol_version.  We use mutable because this
1902   // struct is generally not modifiable after it has been created.
1903   mutable bool was_matched_by_symbol;
1904 };
1905 
1906 // A list of expressions.
1907 struct Version_expression_list
1908 {
1909   std::vector<struct Version_expression> expressions;
1910 };
1911 
1912 // A list of which versions upon which another version depends.
1913 // Strings should be from the Stringpool.
1914 struct Version_dependency_list
1915 {
1916   std::vector<std::string> dependencies;
1917 };
1918 
1919 // The total definition of a version.  It includes the tag for the
1920 // version, its global and local expressions, and any dependencies.
1921 struct Version_tree
1922 {
1923   Version_tree()
1924       : tag(), global(NULL), local(NULL), dependencies(NULL)
1925   { }
1926 
1927   std::string tag;
1928   const struct Version_expression_list* global;
1929   const struct Version_expression_list* local;
1930   const struct Version_dependency_list* dependencies;
1931 };
1932 
1933 // Helper class that calls cplus_demangle when needed and takes care of freeing
1934 // the result.
1935 
1936 class Lazy_demangler
1937 {
1938  public:
1939   Lazy_demangler(const char* symbol, int options)
1940     : symbol_(symbol), options_(options), demangled_(NULL), did_demangle_(false)
1941   { }
1942 
1943   ~Lazy_demangler()
1944   { free(this->demangled_); }
1945 
1946   // Return the demangled name. The actual demangling happens on the first call,
1947   // and the result is later cached.
1948   inline char*
1949   get();
1950 
1951  private:
1952   // The symbol to demangle.
1953   const char* symbol_;
1954   // Option flags to pass to cplus_demagle.
1955   const int options_;
1956   // The cached demangled value, or NULL if demangling didn't happen yet or
1957   // failed.
1958   char* demangled_;
1959   // Whether we already called cplus_demangle
1960   bool did_demangle_;
1961 };
1962 
1963 // Return the demangled name. The actual demangling happens on the first call,
1964 // and the result is later cached. Returns NULL if the symbol cannot be
1965 // demangled.
1966 
1967 inline char*
1968 Lazy_demangler::get()
1969 {
1970   if (!this->did_demangle_)
1971     {
1972       this->demangled_ = cplus_demangle(this->symbol_, this->options_);
1973       this->did_demangle_ = true;
1974     }
1975   return this->demangled_;
1976 }
1977 
1978 // Class Version_script_info.
1979 
1980 Version_script_info::Version_script_info()
1981   : dependency_lists_(), expression_lists_(), version_trees_(), globs_(),
1982     default_version_(NULL), default_is_global_(false), is_finalized_(false)
1983 {
1984   for (int i = 0; i < LANGUAGE_COUNT; ++i)
1985     this->exact_[i] = NULL;
1986 }
1987 
1988 Version_script_info::~Version_script_info()
1989 {
1990 }
1991 
1992 // Forget all the known version script information.
1993 
1994 void
1995 Version_script_info::clear()
1996 {
1997   for (size_t k = 0; k < this->dependency_lists_.size(); ++k)
1998     delete this->dependency_lists_[k];
1999   this->dependency_lists_.clear();
2000   for (size_t k = 0; k < this->version_trees_.size(); ++k)
2001     delete this->version_trees_[k];
2002   this->version_trees_.clear();
2003   for (size_t k = 0; k < this->expression_lists_.size(); ++k)
2004     delete this->expression_lists_[k];
2005   this->expression_lists_.clear();
2006 }
2007 
2008 // Finalize the version script information.
2009 
2010 void
2011 Version_script_info::finalize()
2012 {
2013   if (!this->is_finalized_)
2014     {
2015       this->build_lookup_tables();
2016       this->is_finalized_ = true;
2017     }
2018 }
2019 
2020 // Return all the versions.
2021 
2022 std::vector<std::string>
2023 Version_script_info::get_versions() const
2024 {
2025   std::vector<std::string> ret;
2026   for (size_t j = 0; j < this->version_trees_.size(); ++j)
2027     if (!this->version_trees_[j]->tag.empty())
2028       ret.push_back(this->version_trees_[j]->tag);
2029   return ret;
2030 }
2031 
2032 // Return the dependencies of VERSION.
2033 
2034 std::vector<std::string>
2035 Version_script_info::get_dependencies(const char* version) const
2036 {
2037   std::vector<std::string> ret;
2038   for (size_t j = 0; j < this->version_trees_.size(); ++j)
2039     if (this->version_trees_[j]->tag == version)
2040       {
2041         const struct Version_dependency_list* deps =
2042           this->version_trees_[j]->dependencies;
2043         if (deps != NULL)
2044           for (size_t k = 0; k < deps->dependencies.size(); ++k)
2045             ret.push_back(deps->dependencies[k]);
2046         return ret;
2047       }
2048   return ret;
2049 }
2050 
2051 // A version script essentially maps a symbol name to a version tag
2052 // and an indication of whether symbol is global or local within that
2053 // version tag.  Each symbol maps to at most one version tag.
2054 // Unfortunately, in practice, version scripts are ambiguous, and list
2055 // symbols multiple times.  Thus, we have to document the matching
2056 // process.
2057 
2058 // This is a description of what the GNU linker does as of 2010-01-11.
2059 // It walks through the version tags in the order in which they appear
2060 // in the version script.  For each tag, it first walks through the
2061 // global patterns for that tag, then the local patterns.  When
2062 // looking at a single pattern, it first applies any language specific
2063 // demangling as specified for the pattern, and then matches the
2064 // resulting symbol name to the pattern.  If it finds an exact match
2065 // for a literal pattern (a pattern enclosed in quotes or with no
2066 // wildcard characters), then that is the match that it uses.  If
2067 // finds a match with a wildcard pattern, then it saves it and
2068 // continues searching.  Wildcard patterns that are exactly "*" are
2069 // saved separately.
2070 
2071 // If no exact match with a literal pattern is ever found, then if a
2072 // wildcard match with a global pattern was found it is used,
2073 // otherwise if a wildcard match with a local pattern was found it is
2074 // used.
2075 
2076 // This is the result:
2077 //   * If there is an exact match, then we use the first tag in the
2078 //     version script where it matches.
2079 //     + If the exact match in that tag is global, it is used.
2080 //     + Otherwise the exact match in that tag is local, and is used.
2081 //   * Otherwise, if there is any match with a global wildcard pattern:
2082 //     + If there is any match with a wildcard pattern which is not
2083 //       "*", then we use the tag in which the *last* such pattern
2084 //       appears.
2085 //     + Otherwise, we matched "*".  If there is no match with a local
2086 //       wildcard pattern which is not "*", then we use the *last*
2087 //       match with a global "*".  Otherwise, continue.
2088 //   * Otherwise, if there is any match with a local wildcard pattern:
2089 //     + If there is any match with a wildcard pattern which is not
2090 //       "*", then we use the tag in which the *last* such pattern
2091 //       appears.
2092 //     + Otherwise, we matched "*", and we use the tag in which the
2093 //       *last* such match occurred.
2094 
2095 // There is an additional wrinkle.  When the GNU linker finds a symbol
2096 // with a version defined in an object file due to a .symver
2097 // directive, it looks up that symbol name in that version tag.  If it
2098 // finds it, it matches the symbol name against the patterns for that
2099 // version.  If there is no match with a global pattern, but there is
2100 // a match with a local pattern, then the GNU linker marks the symbol
2101 // as local.
2102 
2103 // We want gold to be generally compatible, but we also want gold to
2104 // be fast.  These are the rules that gold implements:
2105 //   * If there is an exact match for the mangled name, we use it.
2106 //     + If there is more than one exact match, we give a warning, and
2107 //       we use the first tag in the script which matches.
2108 //     + If a symbol has an exact match as both global and local for
2109 //       the same version tag, we give an error.
2110 //   * Otherwise, we look for an extern C++ or an extern Java exact
2111 //     match.  If we find an exact match, we use it.
2112 //     + If there is more than one exact match, we give a warning, and
2113 //       we use the first tag in the script which matches.
2114 //     + If a symbol has an exact match as both global and local for
2115 //       the same version tag, we give an error.
2116 //   * Otherwise, we look through the wildcard patterns, ignoring "*"
2117 //     patterns.  We look through the version tags in reverse order.
2118 //     For each version tag, we look through the global patterns and
2119 //     then the local patterns.  We use the first match we find (i.e.,
2120 //     the last matching version tag in the file).
2121 //   * Otherwise, we use the "*" pattern if there is one.  We give an
2122 //     error if there are multiple "*" patterns.
2123 
2124 // At least for now, gold does not look up the version tag for a
2125 // symbol version found in an object file to see if it should be
2126 // forced local.  There are other ways to force a symbol to be local,
2127 // and I don't understand why this one is useful.
2128 
2129 // Build a set of fast lookup tables for a version script.
2130 
2131 void
2132 Version_script_info::build_lookup_tables()
2133 {
2134   size_t size = this->version_trees_.size();
2135   for (size_t j = 0; j < size; ++j)
2136     {
2137       const Version_tree* v = this->version_trees_[j];
2138       this->build_expression_list_lookup(v->local, v, false);
2139       this->build_expression_list_lookup(v->global, v, true);
2140     }
2141 }
2142 
2143 // If a pattern has backlashes but no unquoted wildcard characters,
2144 // then we apply backslash unquoting and look for an exact match.
2145 // Otherwise we treat it as a wildcard pattern.  This function returns
2146 // true for a wildcard pattern.  Otherwise, it does backslash
2147 // unquoting on *PATTERN and returns false.  If this returns true,
2148 // *PATTERN may have been partially unquoted.
2149 
2150 bool
2151 Version_script_info::unquote(std::string* pattern) const
2152 {
2153   bool saw_backslash = false;
2154   size_t len = pattern->length();
2155   size_t j = 0;
2156   for (size_t i = 0; i < len; ++i)
2157     {
2158       if (saw_backslash)
2159 	saw_backslash = false;
2160       else
2161 	{
2162 	  switch ((*pattern)[i])
2163 	    {
2164 	    case '?': case '[': case '*':
2165 	      return true;
2166 	    case '\\':
2167 	      saw_backslash = true;
2168 	      continue;
2169 	    default:
2170 	      break;
2171 	    }
2172 	}
2173 
2174       if (i != j)
2175 	(*pattern)[j] = (*pattern)[i];
2176       ++j;
2177     }
2178   return false;
2179 }
2180 
2181 // Add an exact match for MATCH to *PE.  The result of the match is
2182 // V/IS_GLOBAL.
2183 
2184 void
2185 Version_script_info::add_exact_match(const std::string& match,
2186 				     const Version_tree* v, bool is_global,
2187 				     const Version_expression* ve,
2188 				     Exact* pe)
2189 {
2190   std::pair<Exact::iterator, bool> ins =
2191     pe->insert(std::make_pair(match, Version_tree_match(v, is_global, ve)));
2192   if (ins.second)
2193     {
2194       // This is the first time we have seen this match.
2195       return;
2196     }
2197 
2198   Version_tree_match& vtm(ins.first->second);
2199   if (vtm.real->tag != v->tag)
2200     {
2201       // This is an ambiguous match.  We still return the
2202       // first version that we found in the script, but we
2203       // record the new version to issue a warning if we
2204       // wind up looking up this symbol.
2205       if (vtm.ambiguous == NULL)
2206 	vtm.ambiguous = v;
2207     }
2208   else if (is_global != vtm.is_global)
2209     {
2210       // We have a match for both the global and local entries for a
2211       // version tag.  That's got to be wrong.
2212       gold_error(_("'%s' appears as both a global and a local symbol "
2213 		   "for version '%s' in script"),
2214 		 match.c_str(), v->tag.c_str());
2215     }
2216 }
2217 
2218 // Build fast lookup information for EXPLIST and store it in LOOKUP.
2219 // All matches go to V, and IS_GLOBAL is true if they are global
2220 // matches.
2221 
2222 void
2223 Version_script_info::build_expression_list_lookup(
2224     const Version_expression_list* explist,
2225     const Version_tree* v,
2226     bool is_global)
2227 {
2228   if (explist == NULL)
2229     return;
2230   size_t size = explist->expressions.size();
2231   for (size_t i = 0; i < size; ++i)
2232     {
2233       const Version_expression& exp(explist->expressions[i]);
2234 
2235       if (exp.pattern.length() == 1 && exp.pattern[0] == '*')
2236 	{
2237 	  if (this->default_version_ != NULL
2238 	      && this->default_version_->tag != v->tag)
2239 	    gold_warning(_("wildcard match appears in both version '%s' "
2240 			   "and '%s' in script"),
2241 			 this->default_version_->tag.c_str(), v->tag.c_str());
2242 	  else if (this->default_version_ != NULL
2243 		   && this->default_is_global_ != is_global)
2244 	    gold_error(_("wildcard match appears as both global and local "
2245 			 "in version '%s' in script"),
2246 		       v->tag.c_str());
2247 	  this->default_version_ = v;
2248 	  this->default_is_global_ = is_global;
2249 	  continue;
2250 	}
2251 
2252       std::string pattern = exp.pattern;
2253       if (!exp.exact_match)
2254 	{
2255 	  if (this->unquote(&pattern))
2256 	    {
2257 	      this->globs_.push_back(Glob(&exp, v, is_global));
2258 	      continue;
2259 	    }
2260 	}
2261 
2262       if (this->exact_[exp.language] == NULL)
2263 	this->exact_[exp.language] = new Exact();
2264       this->add_exact_match(pattern, v, is_global, &exp,
2265 			    this->exact_[exp.language]);
2266     }
2267 }
2268 
2269 // Return the name to match given a name, a language code, and two
2270 // lazy demanglers.
2271 
2272 const char*
2273 Version_script_info::get_name_to_match(const char* name,
2274 				       int language,
2275 				       Lazy_demangler* cpp_demangler,
2276 				       Lazy_demangler* java_demangler) const
2277 {
2278   switch (language)
2279     {
2280     case LANGUAGE_C:
2281       return name;
2282     case LANGUAGE_CXX:
2283       return cpp_demangler->get();
2284     case LANGUAGE_JAVA:
2285       return java_demangler->get();
2286     default:
2287       gold_unreachable();
2288     }
2289 }
2290 
2291 // Look up SYMBOL_NAME in the list of versions.  Return true if the
2292 // symbol is found, false if not.  If the symbol is found, then if
2293 // PVERSION is not NULL, set *PVERSION to the version tag, and if
2294 // P_IS_GLOBAL is not NULL, set *P_IS_GLOBAL according to whether the
2295 // symbol is global or not.
2296 
2297 bool
2298 Version_script_info::get_symbol_version(const char* symbol_name,
2299 					std::string* pversion,
2300 					bool* p_is_global) const
2301 {
2302   Lazy_demangler cpp_demangled_name(symbol_name, DMGL_ANSI | DMGL_PARAMS);
2303   Lazy_demangler java_demangled_name(symbol_name,
2304 				     DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
2305 
2306   gold_assert(this->is_finalized_);
2307   for (int i = 0; i < LANGUAGE_COUNT; ++i)
2308     {
2309       Exact* exact = this->exact_[i];
2310       if (exact == NULL)
2311 	continue;
2312 
2313       const char* name_to_match = this->get_name_to_match(symbol_name, i,
2314 							  &cpp_demangled_name,
2315 							  &java_demangled_name);
2316       if (name_to_match == NULL)
2317 	{
2318 	  // If the name can not be demangled, the GNU linker goes
2319 	  // ahead and tries to match it anyhow.  That does not
2320 	  // make sense to me and I have not implemented it.
2321 	  continue;
2322 	}
2323 
2324       Exact::const_iterator pe = exact->find(name_to_match);
2325       if (pe != exact->end())
2326 	{
2327 	  const Version_tree_match& vtm(pe->second);
2328 	  if (vtm.ambiguous != NULL)
2329 	    gold_warning(_("using '%s' as version for '%s' which is also "
2330 			   "named in version '%s' in script"),
2331 			 vtm.real->tag.c_str(), name_to_match,
2332 			 vtm.ambiguous->tag.c_str());
2333 
2334 	  if (pversion != NULL)
2335 	    *pversion = vtm.real->tag;
2336 	  if (p_is_global != NULL)
2337 	    *p_is_global = vtm.is_global;
2338 
2339 	  // If we are using --no-undefined-version, and this is a
2340 	  // global symbol, we have to record that we have found this
2341 	  // symbol, so that we don't warn about it.  We have to do
2342 	  // this now, because otherwise we have no way to get from a
2343 	  // non-C language back to the demangled name that we
2344 	  // matched.
2345 	  if (p_is_global != NULL && vtm.is_global)
2346 	    vtm.expression->was_matched_by_symbol = true;
2347 
2348 	  return true;
2349 	}
2350     }
2351 
2352   // Look through the glob patterns in reverse order.
2353 
2354   for (Globs::const_reverse_iterator p = this->globs_.rbegin();
2355        p != this->globs_.rend();
2356        ++p)
2357     {
2358       int language = p->expression->language;
2359       const char* name_to_match = this->get_name_to_match(symbol_name,
2360 							  language,
2361 							  &cpp_demangled_name,
2362 							  &java_demangled_name);
2363       if (name_to_match == NULL)
2364 	continue;
2365 
2366       if (fnmatch(p->expression->pattern.c_str(), name_to_match,
2367 		  FNM_NOESCAPE) == 0)
2368 	{
2369 	  if (pversion != NULL)
2370 	    *pversion = p->version->tag;
2371 	  if (p_is_global != NULL)
2372 	    *p_is_global = p->is_global;
2373 	  return true;
2374 	}
2375     }
2376 
2377   // Finally, there may be a wildcard.
2378   if (this->default_version_ != NULL)
2379     {
2380       if (pversion != NULL)
2381 	*pversion = this->default_version_->tag;
2382       if (p_is_global != NULL)
2383 	*p_is_global = this->default_is_global_;
2384       return true;
2385     }
2386 
2387   return false;
2388 }
2389 
2390 // Give an error if any exact symbol names (not wildcards) appear in a
2391 // version script, but there is no such symbol.
2392 
2393 void
2394 Version_script_info::check_unmatched_names(const Symbol_table* symtab) const
2395 {
2396   for (size_t i = 0; i < this->version_trees_.size(); ++i)
2397     {
2398       const Version_tree* vt = this->version_trees_[i];
2399       if (vt->global == NULL)
2400 	continue;
2401       for (size_t j = 0; j < vt->global->expressions.size(); ++j)
2402 	{
2403 	  const Version_expression& expression(vt->global->expressions[j]);
2404 
2405 	  // Ignore cases where we used the version because we saw a
2406 	  // symbol that we looked up.  Note that
2407 	  // WAS_MATCHED_BY_SYMBOL will be true even if the symbol was
2408 	  // not a definition.  That's OK as in that case we most
2409 	  // likely gave an undefined symbol error anyhow.
2410 	  if (expression.was_matched_by_symbol)
2411 	    continue;
2412 
2413 	  // Just ignore names which are in languages other than C.
2414 	  // We have no way to look them up in the symbol table.
2415 	  if (expression.language != LANGUAGE_C)
2416 	    continue;
2417 
2418 	  // Remove backslash quoting, and ignore wildcard patterns.
2419 	  std::string pattern = expression.pattern;
2420 	  if (!expression.exact_match)
2421 	    {
2422 	      if (this->unquote(&pattern))
2423 		continue;
2424 	    }
2425 
2426 	  if (symtab->lookup(pattern.c_str(), vt->tag.c_str()) == NULL)
2427 	    gold_error(_("version script assignment of %s to symbol %s "
2428 			 "failed: symbol not defined"),
2429 		       vt->tag.c_str(), pattern.c_str());
2430 	}
2431     }
2432 }
2433 
2434 struct Version_dependency_list*
2435 Version_script_info::allocate_dependency_list()
2436 {
2437   dependency_lists_.push_back(new Version_dependency_list);
2438   return dependency_lists_.back();
2439 }
2440 
2441 struct Version_expression_list*
2442 Version_script_info::allocate_expression_list()
2443 {
2444   expression_lists_.push_back(new Version_expression_list);
2445   return expression_lists_.back();
2446 }
2447 
2448 struct Version_tree*
2449 Version_script_info::allocate_version_tree()
2450 {
2451   version_trees_.push_back(new Version_tree);
2452   return version_trees_.back();
2453 }
2454 
2455 // Print for debugging.
2456 
2457 void
2458 Version_script_info::print(FILE* f) const
2459 {
2460   if (this->empty())
2461     return;
2462 
2463   fprintf(f, "VERSION {");
2464 
2465   for (size_t i = 0; i < this->version_trees_.size(); ++i)
2466     {
2467       const Version_tree* vt = this->version_trees_[i];
2468 
2469       if (vt->tag.empty())
2470 	fprintf(f, "  {\n");
2471       else
2472 	fprintf(f, "  %s {\n", vt->tag.c_str());
2473 
2474       if (vt->global != NULL)
2475 	{
2476 	  fprintf(f, "    global :\n");
2477 	  this->print_expression_list(f, vt->global);
2478 	}
2479 
2480       if (vt->local != NULL)
2481 	{
2482 	  fprintf(f, "    local :\n");
2483 	  this->print_expression_list(f, vt->local);
2484 	}
2485 
2486       fprintf(f, "  }");
2487       if (vt->dependencies != NULL)
2488 	{
2489 	  const Version_dependency_list* deps = vt->dependencies;
2490 	  for (size_t j = 0; j < deps->dependencies.size(); ++j)
2491 	    {
2492 	      if (j < deps->dependencies.size() - 1)
2493 		fprintf(f, "\n");
2494 	      fprintf(f, "    %s", deps->dependencies[j].c_str());
2495 	    }
2496 	}
2497       fprintf(f, ";\n");
2498     }
2499 
2500   fprintf(f, "}\n");
2501 }
2502 
2503 void
2504 Version_script_info::print_expression_list(
2505     FILE* f,
2506     const Version_expression_list* vel) const
2507 {
2508   Version_script_info::Language current_language = LANGUAGE_C;
2509   for (size_t i = 0; i < vel->expressions.size(); ++i)
2510     {
2511       const Version_expression& ve(vel->expressions[i]);
2512 
2513       if (ve.language != current_language)
2514 	{
2515 	  if (current_language != LANGUAGE_C)
2516 	    fprintf(f, "      }\n");
2517 	  switch (ve.language)
2518 	    {
2519 	    case LANGUAGE_C:
2520 	      break;
2521 	    case LANGUAGE_CXX:
2522 	      fprintf(f, "      extern \"C++\" {\n");
2523 	      break;
2524 	    case LANGUAGE_JAVA:
2525 	      fprintf(f, "      extern \"Java\" {\n");
2526 	      break;
2527 	    default:
2528 	      gold_unreachable();
2529 	    }
2530 	  current_language = ve.language;
2531 	}
2532 
2533       fprintf(f, "      ");
2534       if (current_language != LANGUAGE_C)
2535 	fprintf(f, "  ");
2536 
2537       if (ve.exact_match)
2538 	fprintf(f, "\"");
2539       fprintf(f, "%s", ve.pattern.c_str());
2540       if (ve.exact_match)
2541 	fprintf(f, "\"");
2542 
2543       fprintf(f, "\n");
2544     }
2545 
2546   if (current_language != LANGUAGE_C)
2547     fprintf(f, "      }\n");
2548 }
2549 
2550 } // End namespace gold.
2551 
2552 // The remaining functions are extern "C", so it's clearer to not put
2553 // them in namespace gold.
2554 
2555 using namespace gold;
2556 
2557 // This function is called by the bison parser to return the next
2558 // token.
2559 
2560 extern "C" int
2561 yylex(YYSTYPE* lvalp, void* closurev)
2562 {
2563   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2564   const Token* token = closure->next_token();
2565   switch (token->classification())
2566     {
2567     default:
2568       gold_unreachable();
2569 
2570     case Token::TOKEN_INVALID:
2571       yyerror(closurev, "invalid character");
2572       return 0;
2573 
2574     case Token::TOKEN_EOF:
2575       return 0;
2576 
2577     case Token::TOKEN_STRING:
2578       {
2579 	// This is either a keyword or a STRING.
2580 	size_t len;
2581 	const char* str = token->string_value(&len);
2582 	int parsecode = 0;
2583         switch (closure->lex_mode())
2584           {
2585           case Lex::LINKER_SCRIPT:
2586             parsecode = script_keywords.keyword_to_parsecode(str, len);
2587             break;
2588           case Lex::VERSION_SCRIPT:
2589             parsecode = version_script_keywords.keyword_to_parsecode(str, len);
2590             break;
2591           case Lex::DYNAMIC_LIST:
2592             parsecode = dynamic_list_keywords.keyword_to_parsecode(str, len);
2593             break;
2594           default:
2595             break;
2596           }
2597 	if (parsecode != 0)
2598 	  return parsecode;
2599 	lvalp->string.value = str;
2600 	lvalp->string.length = len;
2601 	return STRING;
2602       }
2603 
2604     case Token::TOKEN_QUOTED_STRING:
2605       lvalp->string.value = token->string_value(&lvalp->string.length);
2606       return QUOTED_STRING;
2607 
2608     case Token::TOKEN_OPERATOR:
2609       return token->operator_value();
2610 
2611     case Token::TOKEN_INTEGER:
2612       lvalp->integer = token->integer_value();
2613       return INTEGER;
2614     }
2615 }
2616 
2617 // This function is called by the bison parser to report an error.
2618 
2619 extern "C" void
2620 yyerror(void* closurev, const char* message)
2621 {
2622   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2623   gold_error(_("%s:%d:%d: %s"), closure->filename(), closure->lineno(),
2624 	     closure->charpos(), message);
2625 }
2626 
2627 // Called by the bison parser to add an external symbol to the link.
2628 
2629 extern "C" void
2630 script_add_extern(void* closurev, const char* name, size_t length)
2631 {
2632   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2633   closure->script_options()->add_symbol_reference(name, length);
2634 }
2635 
2636 // Called by the bison parser to add a file to the link.
2637 
2638 extern "C" void
2639 script_add_file(void* closurev, const char* name, size_t length)
2640 {
2641   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2642 
2643   // If this is an absolute path, and we found the script in the
2644   // sysroot, then we want to prepend the sysroot to the file name.
2645   // For example, this is how we handle a cross link to the x86_64
2646   // libc.so, which refers to /lib/libc.so.6.
2647   std::string name_string(name, length);
2648   const char* extra_search_path = ".";
2649   std::string script_directory;
2650   if (IS_ABSOLUTE_PATH(name_string.c_str()))
2651     {
2652       if (closure->is_in_sysroot())
2653 	{
2654 	  const std::string& sysroot(parameters->options().sysroot());
2655 	  gold_assert(!sysroot.empty());
2656 	  name_string = sysroot + name_string;
2657 	}
2658     }
2659   else
2660     {
2661       // In addition to checking the normal library search path, we
2662       // also want to check in the script-directory.
2663       const char* slash = strrchr(closure->filename(), '/');
2664       if (slash != NULL)
2665 	{
2666 	  script_directory.assign(closure->filename(),
2667 				  slash - closure->filename() + 1);
2668 	  extra_search_path = script_directory.c_str();
2669 	}
2670     }
2671 
2672   Input_file_argument file(name_string.c_str(),
2673 			   Input_file_argument::INPUT_FILE_TYPE_FILE,
2674 			   extra_search_path, false,
2675 			   closure->position_dependent_options());
2676   Input_argument& arg = closure->inputs()->add_file(file);
2677   arg.set_script_info(closure->script_info());
2678 }
2679 
2680 // Called by the bison parser to add a library to the link.
2681 
2682 extern "C" void
2683 script_add_library(void* closurev, const char* name, size_t length)
2684 {
2685   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2686   std::string name_string(name, length);
2687 
2688   if (name_string[0] != 'l')
2689     gold_error(_("library name must be prefixed with -l"));
2690 
2691   Input_file_argument file(name_string.c_str() + 1,
2692 			   Input_file_argument::INPUT_FILE_TYPE_LIBRARY,
2693 			   "", false,
2694 			   closure->position_dependent_options());
2695   Input_argument& arg = closure->inputs()->add_file(file);
2696   arg.set_script_info(closure->script_info());
2697 }
2698 
2699 // Called by the bison parser to start a group.  If we are already in
2700 // a group, that means that this script was invoked within a
2701 // --start-group --end-group sequence on the command line, or that
2702 // this script was found in a GROUP of another script.  In that case,
2703 // we simply continue the existing group, rather than starting a new
2704 // one.  It is possible to construct a case in which this will do
2705 // something other than what would happen if we did a recursive group,
2706 // but it's hard to imagine why the different behaviour would be
2707 // useful for a real program.  Avoiding recursive groups is simpler
2708 // and more efficient.
2709 
2710 extern "C" void
2711 script_start_group(void* closurev)
2712 {
2713   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2714   if (!closure->in_group())
2715     closure->inputs()->start_group();
2716 }
2717 
2718 // Called by the bison parser at the end of a group.
2719 
2720 extern "C" void
2721 script_end_group(void* closurev)
2722 {
2723   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2724   if (!closure->in_group())
2725     closure->inputs()->end_group();
2726 }
2727 
2728 // Called by the bison parser to start an AS_NEEDED list.
2729 
2730 extern "C" void
2731 script_start_as_needed(void* closurev)
2732 {
2733   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2734   closure->position_dependent_options().set_as_needed(true);
2735 }
2736 
2737 // Called by the bison parser at the end of an AS_NEEDED list.
2738 
2739 extern "C" void
2740 script_end_as_needed(void* closurev)
2741 {
2742   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2743   closure->position_dependent_options().set_as_needed(false);
2744 }
2745 
2746 // Called by the bison parser to set the entry symbol.
2747 
2748 extern "C" void
2749 script_set_entry(void* closurev, const char* entry, size_t length)
2750 {
2751   // We'll parse this exactly the same as --entry=ENTRY on the commandline
2752   // TODO(csilvers): FIXME -- call set_entry directly.
2753   std::string arg("--entry=");
2754   arg.append(entry, length);
2755   script_parse_option(closurev, arg.c_str(), arg.size());
2756 }
2757 
2758 // Called by the bison parser to set whether to define common symbols.
2759 
2760 extern "C" void
2761 script_set_common_allocation(void* closurev, int set)
2762 {
2763   const char* arg = set != 0 ? "--define-common" : "--no-define-common";
2764   script_parse_option(closurev, arg, strlen(arg));
2765 }
2766 
2767 // Called by the bison parser to refer to a symbol.
2768 
2769 extern "C" Expression*
2770 script_symbol(void* closurev, const char* name, size_t length)
2771 {
2772   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2773   if (length != 1 || name[0] != '.')
2774     closure->script_options()->add_symbol_reference(name, length);
2775   return script_exp_string(name, length);
2776 }
2777 
2778 // Called by the bison parser to define a symbol.
2779 
2780 extern "C" void
2781 script_set_symbol(void* closurev, const char* name, size_t length,
2782 		  Expression* value, int providei, int hiddeni)
2783 {
2784   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2785   const bool provide = providei != 0;
2786   const bool hidden = hiddeni != 0;
2787   closure->script_options()->add_symbol_assignment(name, length,
2788 						   closure->parsing_defsym(),
2789 						   value, provide, hidden);
2790   closure->clear_skip_on_incompatible_target();
2791 }
2792 
2793 // Called by the bison parser to add an assertion.
2794 
2795 extern "C" void
2796 script_add_assertion(void* closurev, Expression* check, const char* message,
2797 		     size_t messagelen)
2798 {
2799   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2800   closure->script_options()->add_assertion(check, message, messagelen);
2801   closure->clear_skip_on_incompatible_target();
2802 }
2803 
2804 // Called by the bison parser to parse an OPTION.
2805 
2806 extern "C" void
2807 script_parse_option(void* closurev, const char* option, size_t length)
2808 {
2809   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2810   // We treat the option as a single command-line option, even if
2811   // it has internal whitespace.
2812   if (closure->command_line() == NULL)
2813     {
2814       // There are some options that we could handle here--e.g.,
2815       // -lLIBRARY.  Should we bother?
2816       gold_warning(_("%s:%d:%d: ignoring command OPTION; OPTION is only valid"
2817 		     " for scripts specified via -T/--script"),
2818 		   closure->filename(), closure->lineno(), closure->charpos());
2819     }
2820   else
2821     {
2822       bool past_a_double_dash_option = false;
2823       const char* mutable_option = strndup(option, length);
2824       gold_assert(mutable_option != NULL);
2825       closure->command_line()->process_one_option(1, &mutable_option, 0,
2826                                                   &past_a_double_dash_option);
2827       // The General_options class will quite possibly store a pointer
2828       // into mutable_option, so we can't free it.  In cases the class
2829       // does not store such a pointer, this is a memory leak.  Alas. :(
2830     }
2831   closure->clear_skip_on_incompatible_target();
2832 }
2833 
2834 // Called by the bison parser to handle OUTPUT_FORMAT.  OUTPUT_FORMAT
2835 // takes either one or three arguments.  In the three argument case,
2836 // the format depends on the endianness option, which we don't
2837 // currently support (FIXME).  If we see an OUTPUT_FORMAT for the
2838 // wrong format, then we want to search for a new file.  Returning 0
2839 // here will cause the parser to immediately abort.
2840 
2841 extern "C" int
2842 script_check_output_format(void* closurev,
2843 			   const char* default_name, size_t default_length,
2844 			   const char*, size_t, const char*, size_t)
2845 {
2846   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2847   std::string name(default_name, default_length);
2848   Target* target = select_target_by_bfd_name(name.c_str());
2849   if (target == NULL || !parameters->is_compatible_target(target))
2850     {
2851       if (closure->skip_on_incompatible_target())
2852 	{
2853 	  closure->set_found_incompatible_target();
2854 	  return 0;
2855 	}
2856       // FIXME: Should we warn about the unknown target?
2857     }
2858   return 1;
2859 }
2860 
2861 // Called by the bison parser to handle TARGET.
2862 
2863 extern "C" void
2864 script_set_target(void* closurev, const char* target, size_t len)
2865 {
2866   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2867   std::string s(target, len);
2868   General_options::Object_format format_enum;
2869   format_enum = General_options::string_to_object_format(s.c_str());
2870   closure->position_dependent_options().set_format_enum(format_enum);
2871 }
2872 
2873 // Called by the bison parser to handle SEARCH_DIR.  This is handled
2874 // exactly like a -L option.
2875 
2876 extern "C" void
2877 script_add_search_dir(void* closurev, const char* option, size_t length)
2878 {
2879   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2880   if (closure->command_line() == NULL)
2881     gold_warning(_("%s:%d:%d: ignoring SEARCH_DIR; SEARCH_DIR is only valid"
2882 		   " for scripts specified via -T/--script"),
2883 		 closure->filename(), closure->lineno(), closure->charpos());
2884   else if (!closure->command_line()->options().nostdlib())
2885     {
2886       std::string s = "-L" + std::string(option, length);
2887       script_parse_option(closurev, s.c_str(), s.size());
2888     }
2889 }
2890 
2891 /* Called by the bison parser to push the lexer into expression
2892    mode.  */
2893 
2894 extern "C" void
2895 script_push_lex_into_expression_mode(void* closurev)
2896 {
2897   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2898   closure->push_lex_mode(Lex::EXPRESSION);
2899 }
2900 
2901 /* Called by the bison parser to push the lexer into version
2902    mode.  */
2903 
2904 extern "C" void
2905 script_push_lex_into_version_mode(void* closurev)
2906 {
2907   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2908   if (closure->version_script()->is_finalized())
2909     gold_error(_("%s:%d:%d: invalid use of VERSION in input file"),
2910 	       closure->filename(), closure->lineno(), closure->charpos());
2911   closure->push_lex_mode(Lex::VERSION_SCRIPT);
2912 }
2913 
2914 /* Called by the bison parser to pop the lexer mode.  */
2915 
2916 extern "C" void
2917 script_pop_lex_mode(void* closurev)
2918 {
2919   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2920   closure->pop_lex_mode();
2921 }
2922 
2923 // Register an entire version node. For example:
2924 //
2925 // GLIBC_2.1 {
2926 //   global: foo;
2927 // } GLIBC_2.0;
2928 //
2929 // - tag is "GLIBC_2.1"
2930 // - tree contains the information "global: foo"
2931 // - deps contains "GLIBC_2.0"
2932 
2933 extern "C" void
2934 script_register_vers_node(void*,
2935 			  const char* tag,
2936 			  int taglen,
2937 			  struct Version_tree* tree,
2938 			  struct Version_dependency_list* deps)
2939 {
2940   gold_assert(tree != NULL);
2941   tree->dependencies = deps;
2942   if (tag != NULL)
2943     tree->tag = std::string(tag, taglen);
2944 }
2945 
2946 // Add a dependencies to the list of existing dependencies, if any,
2947 // and return the expanded list.
2948 
2949 extern "C" struct Version_dependency_list*
2950 script_add_vers_depend(void* closurev,
2951 		       struct Version_dependency_list* all_deps,
2952 		       const char* depend_to_add, int deplen)
2953 {
2954   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2955   if (all_deps == NULL)
2956     all_deps = closure->version_script()->allocate_dependency_list();
2957   all_deps->dependencies.push_back(std::string(depend_to_add, deplen));
2958   return all_deps;
2959 }
2960 
2961 // Add a pattern expression to an existing list of expressions, if any.
2962 
2963 extern "C" struct Version_expression_list*
2964 script_new_vers_pattern(void* closurev,
2965 			struct Version_expression_list* expressions,
2966 			const char* pattern, int patlen, int exact_match)
2967 {
2968   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2969   if (expressions == NULL)
2970     expressions = closure->version_script()->allocate_expression_list();
2971   expressions->expressions.push_back(
2972       Version_expression(std::string(pattern, patlen),
2973                          closure->get_current_language(),
2974                          static_cast<bool>(exact_match)));
2975   return expressions;
2976 }
2977 
2978 // Attaches b to the end of a, and clears b.  So a = a + b and b = {}.
2979 
2980 extern "C" struct Version_expression_list*
2981 script_merge_expressions(struct Version_expression_list* a,
2982                          struct Version_expression_list* b)
2983 {
2984   a->expressions.insert(a->expressions.end(),
2985                         b->expressions.begin(), b->expressions.end());
2986   // We could delete b and remove it from expressions_lists_, but
2987   // that's a lot of work.  This works just as well.
2988   b->expressions.clear();
2989   return a;
2990 }
2991 
2992 // Combine the global and local expressions into a a Version_tree.
2993 
2994 extern "C" struct Version_tree*
2995 script_new_vers_node(void* closurev,
2996 		     struct Version_expression_list* global,
2997 		     struct Version_expression_list* local)
2998 {
2999   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3000   Version_tree* tree = closure->version_script()->allocate_version_tree();
3001   tree->global = global;
3002   tree->local = local;
3003   return tree;
3004 }
3005 
3006 // Handle a transition in language, such as at the
3007 // start or end of 'extern "C++"'
3008 
3009 extern "C" void
3010 version_script_push_lang(void* closurev, const char* lang, int langlen)
3011 {
3012   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3013   std::string language(lang, langlen);
3014   Version_script_info::Language code;
3015   if (language.empty() || language == "C")
3016     code = Version_script_info::LANGUAGE_C;
3017   else if (language == "C++")
3018     code = Version_script_info::LANGUAGE_CXX;
3019   else if (language == "Java")
3020     code = Version_script_info::LANGUAGE_JAVA;
3021   else
3022     {
3023       char* buf = new char[langlen + 100];
3024       snprintf(buf, langlen + 100,
3025 	       _("unrecognized version script language '%s'"),
3026 	       language.c_str());
3027       yyerror(closurev, buf);
3028       delete[] buf;
3029       code = Version_script_info::LANGUAGE_C;
3030     }
3031   closure->push_language(code);
3032 }
3033 
3034 extern "C" void
3035 version_script_pop_lang(void* closurev)
3036 {
3037   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3038   closure->pop_language();
3039 }
3040 
3041 // Called by the bison parser to start a SECTIONS clause.
3042 
3043 extern "C" void
3044 script_start_sections(void* closurev)
3045 {
3046   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3047   closure->script_options()->script_sections()->start_sections();
3048   closure->clear_skip_on_incompatible_target();
3049 }
3050 
3051 // Called by the bison parser to finish a SECTIONS clause.
3052 
3053 extern "C" void
3054 script_finish_sections(void* closurev)
3055 {
3056   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3057   closure->script_options()->script_sections()->finish_sections();
3058 }
3059 
3060 // Start processing entries for an output section.
3061 
3062 extern "C" void
3063 script_start_output_section(void* closurev, const char* name, size_t namelen,
3064 			    const struct Parser_output_section_header* header)
3065 {
3066   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3067   closure->script_options()->script_sections()->start_output_section(name,
3068 								     namelen,
3069 								     header);
3070 }
3071 
3072 // Finish processing entries for an output section.
3073 
3074 extern "C" void
3075 script_finish_output_section(void* closurev,
3076 			     const struct Parser_output_section_trailer* trail)
3077 {
3078   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3079   closure->script_options()->script_sections()->finish_output_section(trail);
3080 }
3081 
3082 // Add a data item (e.g., "WORD (0)") to the current output section.
3083 
3084 extern "C" void
3085 script_add_data(void* closurev, int data_token, Expression* val)
3086 {
3087   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3088   int size;
3089   bool is_signed = true;
3090   switch (data_token)
3091     {
3092     case QUAD:
3093       size = 8;
3094       is_signed = false;
3095       break;
3096     case SQUAD:
3097       size = 8;
3098       break;
3099     case LONG:
3100       size = 4;
3101       break;
3102     case SHORT:
3103       size = 2;
3104       break;
3105     case BYTE:
3106       size = 1;
3107       break;
3108     default:
3109       gold_unreachable();
3110     }
3111   closure->script_options()->script_sections()->add_data(size, is_signed, val);
3112 }
3113 
3114 // Add a clause setting the fill value to the current output section.
3115 
3116 extern "C" void
3117 script_add_fill(void* closurev, Expression* val)
3118 {
3119   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3120   closure->script_options()->script_sections()->add_fill(val);
3121 }
3122 
3123 // Add a new input section specification to the current output
3124 // section.
3125 
3126 extern "C" void
3127 script_add_input_section(void* closurev,
3128 			 const struct Input_section_spec* spec,
3129 			 int keepi)
3130 {
3131   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3132   bool keep = keepi != 0;
3133   closure->script_options()->script_sections()->add_input_section(spec, keep);
3134 }
3135 
3136 // When we see DATA_SEGMENT_ALIGN we record that following output
3137 // sections may be relro.
3138 
3139 extern "C" void
3140 script_data_segment_align(void* closurev)
3141 {
3142   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3143   if (!closure->script_options()->saw_sections_clause())
3144     gold_error(_("%s:%d:%d: DATA_SEGMENT_ALIGN not in SECTIONS clause"),
3145 	       closure->filename(), closure->lineno(), closure->charpos());
3146   else
3147     closure->script_options()->script_sections()->data_segment_align();
3148 }
3149 
3150 // When we see DATA_SEGMENT_RELRO_END we know that all output sections
3151 // since DATA_SEGMENT_ALIGN should be relro.
3152 
3153 extern "C" void
3154 script_data_segment_relro_end(void* closurev)
3155 {
3156   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3157   if (!closure->script_options()->saw_sections_clause())
3158     gold_error(_("%s:%d:%d: DATA_SEGMENT_ALIGN not in SECTIONS clause"),
3159 	       closure->filename(), closure->lineno(), closure->charpos());
3160   else
3161     closure->script_options()->script_sections()->data_segment_relro_end();
3162 }
3163 
3164 // Create a new list of string/sort pairs.
3165 
3166 extern "C" String_sort_list_ptr
3167 script_new_string_sort_list(const struct Wildcard_section* string_sort)
3168 {
3169   return new String_sort_list(1, *string_sort);
3170 }
3171 
3172 // Add an entry to a list of string/sort pairs.  The way the parser
3173 // works permits us to simply modify the first parameter, rather than
3174 // copy the vector.
3175 
3176 extern "C" String_sort_list_ptr
3177 script_string_sort_list_add(String_sort_list_ptr pv,
3178 			    const struct Wildcard_section* string_sort)
3179 {
3180   if (pv == NULL)
3181     return script_new_string_sort_list(string_sort);
3182   else
3183     {
3184       pv->push_back(*string_sort);
3185       return pv;
3186     }
3187 }
3188 
3189 // Create a new list of strings.
3190 
3191 extern "C" String_list_ptr
3192 script_new_string_list(const char* str, size_t len)
3193 {
3194   return new String_list(1, std::string(str, len));
3195 }
3196 
3197 // Add an element to a list of strings.  The way the parser works
3198 // permits us to simply modify the first parameter, rather than copy
3199 // the vector.
3200 
3201 extern "C" String_list_ptr
3202 script_string_list_push_back(String_list_ptr pv, const char* str, size_t len)
3203 {
3204   if (pv == NULL)
3205     return script_new_string_list(str, len);
3206   else
3207     {
3208       pv->push_back(std::string(str, len));
3209       return pv;
3210     }
3211 }
3212 
3213 // Concatenate two string lists.  Either or both may be NULL.  The way
3214 // the parser works permits us to modify the parameters, rather than
3215 // copy the vector.
3216 
3217 extern "C" String_list_ptr
3218 script_string_list_append(String_list_ptr pv1, String_list_ptr pv2)
3219 {
3220   if (pv1 == NULL)
3221     return pv2;
3222   if (pv2 == NULL)
3223     return pv1;
3224   pv1->insert(pv1->end(), pv2->begin(), pv2->end());
3225   return pv1;
3226 }
3227 
3228 // Add a new program header.
3229 
3230 extern "C" void
3231 script_add_phdr(void* closurev, const char* name, size_t namelen,
3232 		unsigned int type, const Phdr_info* info)
3233 {
3234   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3235   bool includes_filehdr = info->includes_filehdr != 0;
3236   bool includes_phdrs = info->includes_phdrs != 0;
3237   bool is_flags_valid = info->is_flags_valid != 0;
3238   Script_sections* ss = closure->script_options()->script_sections();
3239   ss->add_phdr(name, namelen, type, includes_filehdr, includes_phdrs,
3240 	       is_flags_valid, info->flags, info->load_address);
3241   closure->clear_skip_on_incompatible_target();
3242 }
3243 
3244 // Convert a program header string to a type.
3245 
3246 #define PHDR_TYPE(NAME) { #NAME, sizeof(#NAME) - 1, elfcpp::NAME }
3247 
3248 static struct
3249 {
3250   const char* name;
3251   size_t namelen;
3252   unsigned int val;
3253 } phdr_type_names[] =
3254 {
3255   PHDR_TYPE(PT_NULL),
3256   PHDR_TYPE(PT_LOAD),
3257   PHDR_TYPE(PT_DYNAMIC),
3258   PHDR_TYPE(PT_INTERP),
3259   PHDR_TYPE(PT_NOTE),
3260   PHDR_TYPE(PT_SHLIB),
3261   PHDR_TYPE(PT_PHDR),
3262   PHDR_TYPE(PT_TLS),
3263   PHDR_TYPE(PT_GNU_EH_FRAME),
3264   PHDR_TYPE(PT_GNU_STACK),
3265   PHDR_TYPE(PT_GNU_RELRO)
3266 };
3267 
3268 extern "C" unsigned int
3269 script_phdr_string_to_type(void* closurev, const char* name, size_t namelen)
3270 {
3271   for (unsigned int i = 0;
3272        i < sizeof(phdr_type_names) / sizeof(phdr_type_names[0]);
3273        ++i)
3274     if (namelen == phdr_type_names[i].namelen
3275 	&& strncmp(name, phdr_type_names[i].name, namelen) == 0)
3276       return phdr_type_names[i].val;
3277   yyerror(closurev, _("unknown PHDR type (try integer)"));
3278   return elfcpp::PT_NULL;
3279 }
3280 
3281 extern "C" void
3282 script_saw_segment_start_expression(void* closurev)
3283 {
3284   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3285   Script_sections* ss = closure->script_options()->script_sections();
3286   ss->set_saw_segment_start_expression(true);
3287 }
3288 
3289 extern "C" void
3290 script_set_section_region(void* closurev, const char* name, size_t namelen,
3291 			  int set_vma)
3292 {
3293   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3294   if (!closure->script_options()->saw_sections_clause())
3295     {
3296       gold_error(_("%s:%d:%d: MEMORY region '%.*s' referred to outside of "
3297 		   "SECTIONS clause"),
3298 		 closure->filename(), closure->lineno(), closure->charpos(),
3299 		 static_cast<int>(namelen), name);
3300       return;
3301     }
3302 
3303   Script_sections* ss = closure->script_options()->script_sections();
3304   Memory_region* mr = ss->find_memory_region(name, namelen);
3305   if (mr == NULL)
3306     {
3307       gold_error(_("%s:%d:%d: MEMORY region '%.*s' not declared"),
3308 		 closure->filename(), closure->lineno(), closure->charpos(),
3309 		 static_cast<int>(namelen), name);
3310       return;
3311     }
3312 
3313   ss->set_memory_region(mr, set_vma);
3314 }
3315 
3316 extern "C" void
3317 script_add_memory(void* closurev, const char* name, size_t namelen,
3318 		  unsigned int attrs, Expression* origin, Expression* length)
3319 {
3320   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3321   Script_sections* ss = closure->script_options()->script_sections();
3322   ss->add_memory_region(name, namelen, attrs, origin, length);
3323 }
3324 
3325 extern "C" unsigned int
3326 script_parse_memory_attr(void* closurev, const char* attrs, size_t attrlen,
3327 			 int invert)
3328 {
3329   int attributes = 0;
3330 
3331   while (attrlen--)
3332     switch (*attrs++)
3333       {
3334       case 'R':
3335       case 'r':
3336 	attributes |= MEM_READABLE; break;
3337       case 'W':
3338       case 'w':
3339 	attributes |= MEM_READABLE | MEM_WRITEABLE; break;
3340       case 'X':
3341       case 'x':
3342 	attributes |= MEM_EXECUTABLE; break;
3343       case 'A':
3344       case 'a':
3345 	attributes |= MEM_ALLOCATABLE; break;
3346       case 'I':
3347       case 'i':
3348       case 'L':
3349       case 'l':
3350 	attributes |= MEM_INITIALIZED; break;
3351       default:
3352 	yyerror(closurev, _("unknown MEMORY attribute"));
3353       }
3354 
3355   if (invert)
3356     attributes = (~ attributes) & MEM_ATTR_MASK;
3357 
3358   return attributes;
3359 }
3360 
3361 extern "C" void
3362 script_include_directive(void* closurev, const char* filename, size_t length)
3363 {
3364   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3365   std::string name(filename, length);
3366   Command_line* cmdline = closure->command_line();
3367   read_script_file(name.c_str(), cmdline, &cmdline->script_options(),
3368                    PARSING_LINKER_SCRIPT, Lex::LINKER_SCRIPT);
3369 }
3370 
3371 // Functions for memory regions.
3372 
3373 extern "C" Expression*
3374 script_exp_function_origin(void* closurev, const char* name, size_t namelen)
3375 {
3376   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3377   Script_sections* ss = closure->script_options()->script_sections();
3378   Expression* origin = ss->find_memory_region_origin(name, namelen);
3379 
3380   if (origin == NULL)
3381     {
3382       gold_error(_("undefined memory region '%s' referenced "
3383 		   "in ORIGIN expression"),
3384 		 name);
3385       // Create a dummy expression to prevent crashes later on.
3386       origin = script_exp_integer(0);
3387     }
3388 
3389   return origin;
3390 }
3391 
3392 extern "C" Expression*
3393 script_exp_function_length(void* closurev, const char* name, size_t namelen)
3394 {
3395   Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3396   Script_sections* ss = closure->script_options()->script_sections();
3397   Expression* length = ss->find_memory_region_length(name, namelen);
3398 
3399   if (length == NULL)
3400     {
3401       gold_error(_("undefined memory region '%s' referenced "
3402 		   "in LENGTH expression"),
3403 		 name);
3404       // Create a dummy expression to prevent crashes later on.
3405       length = script_exp_integer(0);
3406     }
3407 
3408   return length;
3409 }
3410