xref: /netbsd-src/external/gpl3/binutils/dist/gold/script-sections.cc (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 // script-sections.cc -- linker script SECTIONS for gold
2 
3 // Copyright 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 #include "gold.h"
24 
25 #include <cstring>
26 #include <algorithm>
27 #include <list>
28 #include <map>
29 #include <string>
30 #include <vector>
31 #include <fnmatch.h>
32 
33 #include "parameters.h"
34 #include "object.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "script-c.h"
38 #include "script.h"
39 #include "script-sections.h"
40 
41 // Support for the SECTIONS clause in linker scripts.
42 
43 namespace gold
44 {
45 
46 // A region of memory.
47 class Memory_region
48 {
49  public:
50   Memory_region(const char* name, size_t namelen, unsigned int attributes,
51 		Expression* start, Expression* length)
52     : name_(name, namelen),
53       attributes_(attributes),
54       start_(start),
55       length_(length),
56       current_offset_(0),
57       vma_sections_(),
58       lma_sections_(),
59       last_section_(NULL)
60   { }
61 
62   // Return the name of this region.
63   const std::string&
64   name() const
65   { return this->name_; }
66 
67   // Return the start address of this region.
68   Expression*
69   start_address() const
70   { return this->start_; }
71 
72   // Return the length of this region.
73   Expression*
74   length() const
75   { return this->length_; }
76 
77   // Print the region (when debugging).
78   void
79   print(FILE*) const;
80 
81   // Return true if <name,namelen> matches this region.
82   bool
83   name_match(const char* name, size_t namelen)
84   {
85     return (this->name_.length() == namelen
86 	    && strncmp(this->name_.c_str(), name, namelen) == 0);
87   }
88 
89   Expression*
90   get_current_address() const
91   {
92     return
93       script_exp_binary_add(this->start_,
94 			    script_exp_integer(this->current_offset_));
95   }
96 
97   void
98   increment_offset(std::string section_name, uint64_t amount,
99 		   const Symbol_table* symtab, const Layout* layout)
100   {
101     this->current_offset_ += amount;
102 
103     if (this->current_offset_
104 	> this->length_->eval(symtab, layout, false))
105       gold_error(_("section %s overflows end of region %s"),
106 		 section_name.c_str(), this->name_.c_str());
107   }
108 
109   // Returns true iff there is room left in this region
110   // for AMOUNT more bytes of data.
111   bool
112   has_room_for(const Symbol_table* symtab, const Layout* layout,
113 	       uint64_t amount) const
114   {
115     return (this->current_offset_ + amount
116 	    < this->length_->eval(symtab, layout, false));
117   }
118 
119   // Return true if the provided section flags
120   // are compatible with this region's attributes.
121   bool
122   attributes_compatible(elfcpp::Elf_Xword flags, elfcpp::Elf_Xword type) const;
123 
124   void
125   add_section(Output_section_definition* sec, bool vma)
126   {
127     if (vma)
128       this->vma_sections_.push_back(sec);
129     else
130       this->lma_sections_.push_back(sec);
131   }
132 
133   typedef std::vector<Output_section_definition*> Section_list;
134 
135   // Return the start of the list of sections
136   // whose VMAs are taken from this region.
137   Section_list::const_iterator
138   get_vma_section_list_start() const
139   { return this->vma_sections_.begin(); }
140 
141   // Return the start of the list of sections
142   // whose LMAs are taken from this region.
143   Section_list::const_iterator
144   get_lma_section_list_start() const
145   { return this->lma_sections_.begin(); }
146 
147   // Return the end of the list of sections
148   // whose VMAs are taken from this region.
149   Section_list::const_iterator
150   get_vma_section_list_end() const
151   { return this->vma_sections_.end(); }
152 
153   // Return the end of the list of sections
154   // whose LMAs are taken from this region.
155   Section_list::const_iterator
156   get_lma_section_list_end() const
157   { return this->lma_sections_.end(); }
158 
159   Output_section_definition*
160   get_last_section() const
161   { return this->last_section_; }
162 
163   void
164   set_last_section(Output_section_definition* sec)
165   { this->last_section_ = sec; }
166 
167  private:
168 
169   std::string name_;
170   unsigned int attributes_;
171   Expression* start_;
172   Expression* length_;
173   // The offset to the next free byte in the region.
174   // Note - for compatibility with GNU LD we only maintain one offset
175   // regardless of whether the region is being used for VMA values,
176   // LMA values, or both.
177   uint64_t current_offset_;
178   // A list of sections whose VMAs are set inside this region.
179   Section_list vma_sections_;
180   // A list of sections whose LMAs are set inside this region.
181   Section_list lma_sections_;
182   // The latest section to make use of this region.
183   Output_section_definition* last_section_;
184 };
185 
186 // Return true if the provided section flags
187 // are compatible with this region's attributes.
188 
189 bool
190 Memory_region::attributes_compatible(elfcpp::Elf_Xword flags,
191 				     elfcpp::Elf_Xword type) const
192 {
193   unsigned int attrs = this->attributes_;
194 
195   // No attributes means that this region is not compatible with anything.
196   if (attrs == 0)
197     return false;
198 
199   bool match = true;
200   do
201     {
202       switch (attrs & - attrs)
203 	{
204 	case MEM_EXECUTABLE:
205 	  if ((flags & elfcpp::SHF_EXECINSTR) == 0)
206 	    match = false;
207 	  break;
208 
209 	case MEM_WRITEABLE:
210 	  if ((flags & elfcpp::SHF_WRITE) == 0)
211 	    match = false;
212 	  break;
213 
214 	case MEM_READABLE:
215 	  // All sections are presumed readable.
216 	  break;
217 
218 	case MEM_ALLOCATABLE:
219 	  if ((flags & elfcpp::SHF_ALLOC) == 0)
220 	    match = false;
221 	  break;
222 
223 	case MEM_INITIALIZED:
224 	  if ((type & elfcpp::SHT_NOBITS) != 0)
225 	    match = false;
226 	  break;
227 	}
228       attrs &= ~ (attrs & - attrs);
229     }
230   while (attrs != 0);
231 
232   return match;
233 }
234 
235 // Print a memory region.
236 
237 void
238 Memory_region::print(FILE* f) const
239 {
240   fprintf(f, "  %s", this->name_.c_str());
241 
242   unsigned int attrs = this->attributes_;
243   if (attrs != 0)
244     {
245       fprintf(f, " (");
246       do
247 	{
248 	  switch (attrs & - attrs)
249 	    {
250 	    case MEM_EXECUTABLE:  fputc('x', f); break;
251 	    case MEM_WRITEABLE:   fputc('w', f); break;
252 	    case MEM_READABLE:    fputc('r', f); break;
253 	    case MEM_ALLOCATABLE: fputc('a', f); break;
254 	    case MEM_INITIALIZED: fputc('i', f); break;
255 	    default:
256 	      gold_unreachable();
257 	    }
258 	  attrs &= ~ (attrs & - attrs);
259 	}
260       while (attrs != 0);
261       fputc(')', f);
262     }
263 
264   fprintf(f, " : origin = ");
265   this->start_->print(f);
266   fprintf(f, ", length = ");
267   this->length_->print(f);
268   fprintf(f, "\n");
269 }
270 
271 // Manage orphan sections.  This is intended to be largely compatible
272 // with the GNU linker.  The Linux kernel implicitly relies on
273 // something similar to the GNU linker's orphan placement.  We
274 // originally used a simpler scheme here, but it caused the kernel
275 // build to fail, and was also rather inefficient.
276 
277 class Orphan_section_placement
278 {
279  private:
280   typedef Script_sections::Elements_iterator Elements_iterator;
281 
282  public:
283   Orphan_section_placement();
284 
285   // Handle an output section during initialization of this mapping.
286   void
287   output_section_init(const std::string& name, Output_section*,
288 		      Elements_iterator location);
289 
290   // Initialize the last location.
291   void
292   last_init(Elements_iterator location);
293 
294   // Set *PWHERE to the address of an iterator pointing to the
295   // location to use for an orphan section.  Return true if the
296   // iterator has a value, false otherwise.
297   bool
298   find_place(Output_section*, Elements_iterator** pwhere);
299 
300   // Return the iterator being used for sections at the very end of
301   // the linker script.
302   Elements_iterator
303   last_place() const;
304 
305  private:
306   // The places that we specifically recognize.  This list is copied
307   // from the GNU linker.
308   enum Place_index
309   {
310     PLACE_TEXT,
311     PLACE_RODATA,
312     PLACE_DATA,
313     PLACE_TLS,
314     PLACE_TLS_BSS,
315     PLACE_BSS,
316     PLACE_REL,
317     PLACE_INTERP,
318     PLACE_NONALLOC,
319     PLACE_LAST,
320     PLACE_MAX
321   };
322 
323   // The information we keep for a specific place.
324   struct Place
325   {
326     // The name of sections for this place.
327     const char* name;
328     // Whether we have a location for this place.
329     bool have_location;
330     // The iterator for this place.
331     Elements_iterator location;
332   };
333 
334   // Initialize one place element.
335   void
336   initialize_place(Place_index, const char*);
337 
338   // The places.
339   Place places_[PLACE_MAX];
340   // True if this is the first call to output_section_init.
341   bool first_init_;
342 };
343 
344 // Initialize Orphan_section_placement.
345 
346 Orphan_section_placement::Orphan_section_placement()
347   : first_init_(true)
348 {
349   this->initialize_place(PLACE_TEXT, ".text");
350   this->initialize_place(PLACE_RODATA, ".rodata");
351   this->initialize_place(PLACE_DATA, ".data");
352   this->initialize_place(PLACE_TLS, NULL);
353   this->initialize_place(PLACE_TLS_BSS, NULL);
354   this->initialize_place(PLACE_BSS, ".bss");
355   this->initialize_place(PLACE_REL, NULL);
356   this->initialize_place(PLACE_INTERP, ".interp");
357   this->initialize_place(PLACE_NONALLOC, NULL);
358   this->initialize_place(PLACE_LAST, NULL);
359 }
360 
361 // Initialize one place element.
362 
363 void
364 Orphan_section_placement::initialize_place(Place_index index, const char* name)
365 {
366   this->places_[index].name = name;
367   this->places_[index].have_location = false;
368 }
369 
370 // While initializing the Orphan_section_placement information, this
371 // is called once for each output section named in the linker script.
372 // If we found an output section during the link, it will be passed in
373 // OS.
374 
375 void
376 Orphan_section_placement::output_section_init(const std::string& name,
377 					      Output_section* os,
378 					      Elements_iterator location)
379 {
380   bool first_init = this->first_init_;
381   this->first_init_ = false;
382 
383   for (int i = 0; i < PLACE_MAX; ++i)
384     {
385       if (this->places_[i].name != NULL && this->places_[i].name == name)
386 	{
387 	  if (this->places_[i].have_location)
388 	    {
389 	      // We have already seen a section with this name.
390 	      return;
391 	    }
392 
393 	  this->places_[i].location = location;
394 	  this->places_[i].have_location = true;
395 
396 	  // If we just found the .bss section, restart the search for
397 	  // an unallocated section.  This follows the GNU linker's
398 	  // behaviour.
399 	  if (i == PLACE_BSS)
400 	    this->places_[PLACE_NONALLOC].have_location = false;
401 
402 	  return;
403 	}
404     }
405 
406   // Relocation sections.
407   if (!this->places_[PLACE_REL].have_location
408       && os != NULL
409       && (os->type() == elfcpp::SHT_REL || os->type() == elfcpp::SHT_RELA)
410       && (os->flags() & elfcpp::SHF_ALLOC) != 0)
411     {
412       this->places_[PLACE_REL].location = location;
413       this->places_[PLACE_REL].have_location = true;
414     }
415 
416   // We find the location for unallocated sections by finding the
417   // first debugging or comment section after the BSS section (if
418   // there is one).
419   if (!this->places_[PLACE_NONALLOC].have_location
420       && (name == ".comment" || Layout::is_debug_info_section(name.c_str())))
421     {
422       // We add orphan sections after the location in PLACES_.  We
423       // want to store unallocated sections before LOCATION.  If this
424       // is the very first section, we can't use it.
425       if (!first_init)
426 	{
427 	  --location;
428 	  this->places_[PLACE_NONALLOC].location = location;
429 	  this->places_[PLACE_NONALLOC].have_location = true;
430 	}
431     }
432 }
433 
434 // Initialize the last location.
435 
436 void
437 Orphan_section_placement::last_init(Elements_iterator location)
438 {
439   this->places_[PLACE_LAST].location = location;
440   this->places_[PLACE_LAST].have_location = true;
441 }
442 
443 // Set *PWHERE to the address of an iterator pointing to the location
444 // to use for an orphan section.  Return true if the iterator has a
445 // value, false otherwise.
446 
447 bool
448 Orphan_section_placement::find_place(Output_section* os,
449 				     Elements_iterator** pwhere)
450 {
451   // Figure out where OS should go.  This is based on the GNU linker
452   // code.  FIXME: The GNU linker handles small data sections
453   // specially, but we don't.
454   elfcpp::Elf_Word type = os->type();
455   elfcpp::Elf_Xword flags = os->flags();
456   Place_index index;
457   if ((flags & elfcpp::SHF_ALLOC) == 0
458       && !Layout::is_debug_info_section(os->name()))
459     index = PLACE_NONALLOC;
460   else if ((flags & elfcpp::SHF_ALLOC) == 0)
461     index = PLACE_LAST;
462   else if (type == elfcpp::SHT_NOTE)
463     index = PLACE_INTERP;
464   else if ((flags & elfcpp::SHF_TLS) != 0)
465     {
466       if (type == elfcpp::SHT_NOBITS)
467 	index = PLACE_TLS_BSS;
468       else
469 	index = PLACE_TLS;
470     }
471   else if (type == elfcpp::SHT_NOBITS)
472     index = PLACE_BSS;
473   else if ((flags & elfcpp::SHF_WRITE) != 0)
474     index = PLACE_DATA;
475   else if (type == elfcpp::SHT_REL || type == elfcpp::SHT_RELA)
476     index = PLACE_REL;
477   else if ((flags & elfcpp::SHF_EXECINSTR) == 0)
478     index = PLACE_RODATA;
479   else
480     index = PLACE_TEXT;
481 
482   // If we don't have a location yet, try to find one based on a
483   // plausible ordering of sections.
484   if (!this->places_[index].have_location)
485     {
486       Place_index follow;
487       switch (index)
488 	{
489 	default:
490 	  follow = PLACE_MAX;
491 	  break;
492 	case PLACE_RODATA:
493 	  follow = PLACE_TEXT;
494 	  break;
495 	case PLACE_BSS:
496 	  follow = PLACE_DATA;
497 	  break;
498 	case PLACE_REL:
499 	  follow = PLACE_TEXT;
500 	  break;
501 	case PLACE_INTERP:
502 	  follow = PLACE_TEXT;
503 	  break;
504 	case PLACE_TLS:
505 	  follow = PLACE_DATA;
506 	  break;
507 	case PLACE_TLS_BSS:
508 	  follow = PLACE_TLS;
509 	  if (!this->places_[PLACE_TLS].have_location)
510 	    follow = PLACE_DATA;
511 	  break;
512 	}
513       if (follow != PLACE_MAX && this->places_[follow].have_location)
514 	{
515 	  // Set the location of INDEX to the location of FOLLOW.  The
516 	  // location of INDEX will then be incremented by the caller,
517 	  // so anything in INDEX will continue to be after anything
518 	  // in FOLLOW.
519 	  this->places_[index].location = this->places_[follow].location;
520 	  this->places_[index].have_location = true;
521 	}
522     }
523 
524   *pwhere = &this->places_[index].location;
525   bool ret = this->places_[index].have_location;
526 
527   // The caller will set the location.
528   this->places_[index].have_location = true;
529 
530   return ret;
531 }
532 
533 // Return the iterator being used for sections at the very end of the
534 // linker script.
535 
536 Orphan_section_placement::Elements_iterator
537 Orphan_section_placement::last_place() const
538 {
539   gold_assert(this->places_[PLACE_LAST].have_location);
540   return this->places_[PLACE_LAST].location;
541 }
542 
543 // An element in a SECTIONS clause.
544 
545 class Sections_element
546 {
547  public:
548   Sections_element()
549   { }
550 
551   virtual ~Sections_element()
552   { }
553 
554   // Return whether an output section is relro.
555   virtual bool
556   is_relro() const
557   { return false; }
558 
559   // Record that an output section is relro.
560   virtual void
561   set_is_relro()
562   { }
563 
564   // Create any required output sections.  The only real
565   // implementation is in Output_section_definition.
566   virtual void
567   create_sections(Layout*)
568   { }
569 
570   // Add any symbol being defined to the symbol table.
571   virtual void
572   add_symbols_to_table(Symbol_table*)
573   { }
574 
575   // Finalize symbols and check assertions.
576   virtual void
577   finalize_symbols(Symbol_table*, const Layout*, uint64_t*)
578   { }
579 
580   // Return the output section name to use for an input file name and
581   // section name.  This only real implementation is in
582   // Output_section_definition.
583   virtual const char*
584   output_section_name(const char*, const char*, Output_section***,
585 		      Script_sections::Section_type*)
586   { return NULL; }
587 
588   // Initialize OSP with an output section.
589   virtual void
590   orphan_section_init(Orphan_section_placement*,
591 		      Script_sections::Elements_iterator)
592   { }
593 
594   // Set section addresses.  This includes applying assignments if the
595   // expression is an absolute value.
596   virtual void
597   set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*,
598 			uint64_t*)
599   { }
600 
601   // Check a constraint (ONLY_IF_RO, etc.) on an output section.  If
602   // this section is constrained, and the input sections do not match,
603   // return the constraint, and set *POSD.
604   virtual Section_constraint
605   check_constraint(Output_section_definition**)
606   { return CONSTRAINT_NONE; }
607 
608   // See if this is the alternate output section for a constrained
609   // output section.  If it is, transfer the Output_section and return
610   // true.  Otherwise return false.
611   virtual bool
612   alternate_constraint(Output_section_definition*, Section_constraint)
613   { return false; }
614 
615   // Get the list of segments to use for an allocated section when
616   // using a PHDRS clause.  If this is an allocated section, return
617   // the Output_section, and set *PHDRS_LIST (the first parameter) to
618   // the list of PHDRS to which it should be attached.  If the PHDRS
619   // were not specified, don't change *PHDRS_LIST.  When not returning
620   // NULL, set *ORPHAN (the second parameter) according to whether
621   // this is an orphan section--one that is not mentioned in the
622   // linker script.
623   virtual Output_section*
624   allocate_to_segment(String_list**, bool*)
625   { return NULL; }
626 
627   // Look for an output section by name and return the address, the
628   // load address, the alignment, and the size.  This is used when an
629   // expression refers to an output section which was not actually
630   // created.  This returns true if the section was found, false
631   // otherwise.  The only real definition is for
632   // Output_section_definition.
633   virtual bool
634   get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
635                           uint64_t*) const
636   { return false; }
637 
638   // Return the associated Output_section if there is one.
639   virtual Output_section*
640   get_output_section() const
641   { return NULL; }
642 
643   // Set the section's memory regions.
644   virtual void
645   set_memory_region(Memory_region*, bool)
646   { gold_error(_("Attempt to set a memory region for a non-output section")); }
647 
648   // Print the element for debugging purposes.
649   virtual void
650   print(FILE* f) const = 0;
651 };
652 
653 // An assignment in a SECTIONS clause outside of an output section.
654 
655 class Sections_element_assignment : public Sections_element
656 {
657  public:
658   Sections_element_assignment(const char* name, size_t namelen,
659 			      Expression* val, bool provide, bool hidden)
660     : assignment_(name, namelen, false, val, provide, hidden)
661   { }
662 
663   // Add the symbol to the symbol table.
664   void
665   add_symbols_to_table(Symbol_table* symtab)
666   { this->assignment_.add_to_table(symtab); }
667 
668   // Finalize the symbol.
669   void
670   finalize_symbols(Symbol_table* symtab, const Layout* layout,
671 		   uint64_t* dot_value)
672   {
673     this->assignment_.finalize_with_dot(symtab, layout, *dot_value, NULL);
674   }
675 
676   // Set the section address.  There is no section here, but if the
677   // value is absolute, we set the symbol.  This permits us to use
678   // absolute symbols when setting dot.
679   void
680   set_section_addresses(Symbol_table* symtab, Layout* layout,
681 			uint64_t* dot_value, uint64_t*, uint64_t*)
682   {
683     this->assignment_.set_if_absolute(symtab, layout, true, *dot_value, NULL);
684   }
685 
686   // Print for debugging.
687   void
688   print(FILE* f) const
689   {
690     fprintf(f, "  ");
691     this->assignment_.print(f);
692   }
693 
694  private:
695   Symbol_assignment assignment_;
696 };
697 
698 // An assignment to the dot symbol in a SECTIONS clause outside of an
699 // output section.
700 
701 class Sections_element_dot_assignment : public Sections_element
702 {
703  public:
704   Sections_element_dot_assignment(Expression* val)
705     : val_(val)
706   { }
707 
708   // Finalize the symbol.
709   void
710   finalize_symbols(Symbol_table* symtab, const Layout* layout,
711 		   uint64_t* dot_value)
712   {
713     // We ignore the section of the result because outside of an
714     // output section definition the dot symbol is always considered
715     // to be absolute.
716     *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
717 					   NULL, NULL, NULL, false);
718   }
719 
720   // Update the dot symbol while setting section addresses.
721   void
722   set_section_addresses(Symbol_table* symtab, Layout* layout,
723 			uint64_t* dot_value, uint64_t* dot_alignment,
724 			uint64_t* load_address)
725   {
726     *dot_value = this->val_->eval_with_dot(symtab, layout, false, *dot_value,
727 					   NULL, NULL, dot_alignment, false);
728     *load_address = *dot_value;
729   }
730 
731   // Print for debugging.
732   void
733   print(FILE* f) const
734   {
735     fprintf(f, "  . = ");
736     this->val_->print(f);
737     fprintf(f, "\n");
738   }
739 
740  private:
741   Expression* val_;
742 };
743 
744 // An assertion in a SECTIONS clause outside of an output section.
745 
746 class Sections_element_assertion : public Sections_element
747 {
748  public:
749   Sections_element_assertion(Expression* check, const char* message,
750 			     size_t messagelen)
751     : assertion_(check, message, messagelen)
752   { }
753 
754   // Check the assertion.
755   void
756   finalize_symbols(Symbol_table* symtab, const Layout* layout, uint64_t*)
757   { this->assertion_.check(symtab, layout); }
758 
759   // Print for debugging.
760   void
761   print(FILE* f) const
762   {
763     fprintf(f, "  ");
764     this->assertion_.print(f);
765   }
766 
767  private:
768   Script_assertion assertion_;
769 };
770 
771 // An element in an output section in a SECTIONS clause.
772 
773 class Output_section_element
774 {
775  public:
776   // A list of input sections.
777   typedef std::list<Output_section::Input_section> Input_section_list;
778 
779   Output_section_element()
780   { }
781 
782   virtual ~Output_section_element()
783   { }
784 
785   // Return whether this element requires an output section to exist.
786   virtual bool
787   needs_output_section() const
788   { return false; }
789 
790   // Add any symbol being defined to the symbol table.
791   virtual void
792   add_symbols_to_table(Symbol_table*)
793   { }
794 
795   // Finalize symbols and check assertions.
796   virtual void
797   finalize_symbols(Symbol_table*, const Layout*, uint64_t*, Output_section**)
798   { }
799 
800   // Return whether this element matches FILE_NAME and SECTION_NAME.
801   // The only real implementation is in Output_section_element_input.
802   virtual bool
803   match_name(const char*, const char*) const
804   { return false; }
805 
806   // Set section addresses.  This includes applying assignments if the
807   // expression is an absolute value.
808   virtual void
809   set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
810 			uint64_t*, uint64_t*, Output_section**, std::string*,
811 			Input_section_list*)
812   { }
813 
814   // Print the element for debugging purposes.
815   virtual void
816   print(FILE* f) const = 0;
817 
818  protected:
819   // Return a fill string that is LENGTH bytes long, filling it with
820   // FILL.
821   std::string
822   get_fill_string(const std::string* fill, section_size_type length) const;
823 };
824 
825 std::string
826 Output_section_element::get_fill_string(const std::string* fill,
827 					section_size_type length) const
828 {
829   std::string this_fill;
830   this_fill.reserve(length);
831   while (this_fill.length() + fill->length() <= length)
832     this_fill += *fill;
833   if (this_fill.length() < length)
834     this_fill.append(*fill, 0, length - this_fill.length());
835   return this_fill;
836 }
837 
838 // A symbol assignment in an output section.
839 
840 class Output_section_element_assignment : public Output_section_element
841 {
842  public:
843   Output_section_element_assignment(const char* name, size_t namelen,
844 				    Expression* val, bool provide,
845 				    bool hidden)
846     : assignment_(name, namelen, false, val, provide, hidden)
847   { }
848 
849   // Add the symbol to the symbol table.
850   void
851   add_symbols_to_table(Symbol_table* symtab)
852   { this->assignment_.add_to_table(symtab); }
853 
854   // Finalize the symbol.
855   void
856   finalize_symbols(Symbol_table* symtab, const Layout* layout,
857 		   uint64_t* dot_value, Output_section** dot_section)
858   {
859     this->assignment_.finalize_with_dot(symtab, layout, *dot_value,
860 					*dot_section);
861   }
862 
863   // Set the section address.  There is no section here, but if the
864   // value is absolute, we set the symbol.  This permits us to use
865   // absolute symbols when setting dot.
866   void
867   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
868 			uint64_t, uint64_t* dot_value, uint64_t*,
869 			Output_section** dot_section, std::string*,
870 			Input_section_list*)
871   {
872     this->assignment_.set_if_absolute(symtab, layout, true, *dot_value,
873 				      *dot_section);
874   }
875 
876   // Print for debugging.
877   void
878   print(FILE* f) const
879   {
880     fprintf(f, "    ");
881     this->assignment_.print(f);
882   }
883 
884  private:
885   Symbol_assignment assignment_;
886 };
887 
888 // An assignment to the dot symbol in an output section.
889 
890 class Output_section_element_dot_assignment : public Output_section_element
891 {
892  public:
893   Output_section_element_dot_assignment(Expression* val)
894     : val_(val)
895   { }
896 
897   // An assignment to dot within an output section is enough to force
898   // the output section to exist.
899   bool
900   needs_output_section() const
901   { return true; }
902 
903   // Finalize the symbol.
904   void
905   finalize_symbols(Symbol_table* symtab, const Layout* layout,
906 		   uint64_t* dot_value, Output_section** dot_section)
907   {
908     *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
909 					   *dot_section, dot_section, NULL,
910 					   true);
911   }
912 
913   // Update the dot symbol while setting section addresses.
914   void
915   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
916 			uint64_t, uint64_t* dot_value, uint64_t*,
917 			Output_section** dot_section, std::string*,
918 			Input_section_list*);
919 
920   // Print for debugging.
921   void
922   print(FILE* f) const
923   {
924     fprintf(f, "    . = ");
925     this->val_->print(f);
926     fprintf(f, "\n");
927   }
928 
929  private:
930   Expression* val_;
931 };
932 
933 // Update the dot symbol while setting section addresses.
934 
935 void
936 Output_section_element_dot_assignment::set_section_addresses(
937     Symbol_table* symtab,
938     Layout* layout,
939     Output_section* output_section,
940     uint64_t,
941     uint64_t* dot_value,
942     uint64_t* dot_alignment,
943     Output_section** dot_section,
944     std::string* fill,
945     Input_section_list*)
946 {
947   uint64_t next_dot = this->val_->eval_with_dot(symtab, layout, false,
948 						*dot_value, *dot_section,
949 						dot_section, dot_alignment,
950 						true);
951   if (next_dot < *dot_value)
952     gold_error(_("dot may not move backward"));
953   if (next_dot > *dot_value && output_section != NULL)
954     {
955       section_size_type length = convert_to_section_size_type(next_dot
956 							      - *dot_value);
957       Output_section_data* posd;
958       if (fill->empty())
959 	posd = new Output_data_zero_fill(length, 0);
960       else
961 	{
962 	  std::string this_fill = this->get_fill_string(fill, length);
963 	  posd = new Output_data_const(this_fill, 0);
964 	}
965       output_section->add_output_section_data(posd);
966       layout->new_output_section_data_from_script(posd);
967     }
968   *dot_value = next_dot;
969 }
970 
971 // An assertion in an output section.
972 
973 class Output_section_element_assertion : public Output_section_element
974 {
975  public:
976   Output_section_element_assertion(Expression* check, const char* message,
977 				   size_t messagelen)
978     : assertion_(check, message, messagelen)
979   { }
980 
981   void
982   print(FILE* f) const
983   {
984     fprintf(f, "    ");
985     this->assertion_.print(f);
986   }
987 
988  private:
989   Script_assertion assertion_;
990 };
991 
992 // We use a special instance of Output_section_data to handle BYTE,
993 // SHORT, etc.  This permits forward references to symbols in the
994 // expressions.
995 
996 class Output_data_expression : public Output_section_data
997 {
998  public:
999   Output_data_expression(int size, bool is_signed, Expression* val,
1000 			 const Symbol_table* symtab, const Layout* layout,
1001 			 uint64_t dot_value, Output_section* dot_section)
1002     : Output_section_data(size, 0, true),
1003       is_signed_(is_signed), val_(val), symtab_(symtab),
1004       layout_(layout), dot_value_(dot_value), dot_section_(dot_section)
1005   { }
1006 
1007  protected:
1008   // Write the data to the output file.
1009   void
1010   do_write(Output_file*);
1011 
1012   // Write the data to a buffer.
1013   void
1014   do_write_to_buffer(unsigned char*);
1015 
1016   // Write to a map file.
1017   void
1018   do_print_to_mapfile(Mapfile* mapfile) const
1019   { mapfile->print_output_data(this, _("** expression")); }
1020 
1021  private:
1022   template<bool big_endian>
1023   void
1024   endian_write_to_buffer(uint64_t, unsigned char*);
1025 
1026   bool is_signed_;
1027   Expression* val_;
1028   const Symbol_table* symtab_;
1029   const Layout* layout_;
1030   uint64_t dot_value_;
1031   Output_section* dot_section_;
1032 };
1033 
1034 // Write the data element to the output file.
1035 
1036 void
1037 Output_data_expression::do_write(Output_file* of)
1038 {
1039   unsigned char* view = of->get_output_view(this->offset(), this->data_size());
1040   this->write_to_buffer(view);
1041   of->write_output_view(this->offset(), this->data_size(), view);
1042 }
1043 
1044 // Write the data element to a buffer.
1045 
1046 void
1047 Output_data_expression::do_write_to_buffer(unsigned char* buf)
1048 {
1049   uint64_t val = this->val_->eval_with_dot(this->symtab_, this->layout_,
1050 					   true, this->dot_value_,
1051 					   this->dot_section_, NULL, NULL,
1052 					   false);
1053 
1054   if (parameters->target().is_big_endian())
1055     this->endian_write_to_buffer<true>(val, buf);
1056   else
1057     this->endian_write_to_buffer<false>(val, buf);
1058 }
1059 
1060 template<bool big_endian>
1061 void
1062 Output_data_expression::endian_write_to_buffer(uint64_t val,
1063 					       unsigned char* buf)
1064 {
1065   switch (this->data_size())
1066     {
1067     case 1:
1068       elfcpp::Swap_unaligned<8, big_endian>::writeval(buf, val);
1069       break;
1070     case 2:
1071       elfcpp::Swap_unaligned<16, big_endian>::writeval(buf, val);
1072       break;
1073     case 4:
1074       elfcpp::Swap_unaligned<32, big_endian>::writeval(buf, val);
1075       break;
1076     case 8:
1077       if (parameters->target().get_size() == 32)
1078 	{
1079 	  val &= 0xffffffff;
1080 	  if (this->is_signed_ && (val & 0x80000000) != 0)
1081 	    val |= 0xffffffff00000000LL;
1082 	}
1083       elfcpp::Swap_unaligned<64, big_endian>::writeval(buf, val);
1084       break;
1085     default:
1086       gold_unreachable();
1087     }
1088 }
1089 
1090 // A data item in an output section.
1091 
1092 class Output_section_element_data : public Output_section_element
1093 {
1094  public:
1095   Output_section_element_data(int size, bool is_signed, Expression* val)
1096     : size_(size), is_signed_(is_signed), val_(val)
1097   { }
1098 
1099   // If there is a data item, then we must create an output section.
1100   bool
1101   needs_output_section() const
1102   { return true; }
1103 
1104   // Finalize symbols--we just need to update dot.
1105   void
1106   finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
1107 		   Output_section**)
1108   { *dot_value += this->size_; }
1109 
1110   // Store the value in the section.
1111   void
1112   set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
1113 			uint64_t* dot_value, uint64_t*, Output_section**,
1114 			std::string*, Input_section_list*);
1115 
1116   // Print for debugging.
1117   void
1118   print(FILE*) const;
1119 
1120  private:
1121   // The size in bytes.
1122   int size_;
1123   // Whether the value is signed.
1124   bool is_signed_;
1125   // The value.
1126   Expression* val_;
1127 };
1128 
1129 // Store the value in the section.
1130 
1131 void
1132 Output_section_element_data::set_section_addresses(
1133     Symbol_table* symtab,
1134     Layout* layout,
1135     Output_section* os,
1136     uint64_t,
1137     uint64_t* dot_value,
1138     uint64_t*,
1139     Output_section** dot_section,
1140     std::string*,
1141     Input_section_list*)
1142 {
1143   gold_assert(os != NULL);
1144   Output_data_expression* expression =
1145     new Output_data_expression(this->size_, this->is_signed_, this->val_,
1146 			       symtab, layout, *dot_value, *dot_section);
1147   os->add_output_section_data(expression);
1148   layout->new_output_section_data_from_script(expression);
1149   *dot_value += this->size_;
1150 }
1151 
1152 // Print for debugging.
1153 
1154 void
1155 Output_section_element_data::print(FILE* f) const
1156 {
1157   const char* s;
1158   switch (this->size_)
1159     {
1160     case 1:
1161       s = "BYTE";
1162       break;
1163     case 2:
1164       s = "SHORT";
1165       break;
1166     case 4:
1167       s = "LONG";
1168       break;
1169     case 8:
1170       if (this->is_signed_)
1171 	s = "SQUAD";
1172       else
1173 	s = "QUAD";
1174       break;
1175     default:
1176       gold_unreachable();
1177     }
1178   fprintf(f, "    %s(", s);
1179   this->val_->print(f);
1180   fprintf(f, ")\n");
1181 }
1182 
1183 // A fill value setting in an output section.
1184 
1185 class Output_section_element_fill : public Output_section_element
1186 {
1187  public:
1188   Output_section_element_fill(Expression* val)
1189     : val_(val)
1190   { }
1191 
1192   // Update the fill value while setting section addresses.
1193   void
1194   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
1195 			uint64_t, uint64_t* dot_value, uint64_t*,
1196 			Output_section** dot_section,
1197 			std::string* fill, Input_section_list*)
1198   {
1199     Output_section* fill_section;
1200     uint64_t fill_val = this->val_->eval_with_dot(symtab, layout, false,
1201 						  *dot_value, *dot_section,
1202 						  &fill_section, NULL, false);
1203     if (fill_section != NULL)
1204       gold_warning(_("fill value is not absolute"));
1205     // FIXME: The GNU linker supports fill values of arbitrary length.
1206     unsigned char fill_buff[4];
1207     elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
1208     fill->assign(reinterpret_cast<char*>(fill_buff), 4);
1209   }
1210 
1211   // Print for debugging.
1212   void
1213   print(FILE* f) const
1214   {
1215     fprintf(f, "    FILL(");
1216     this->val_->print(f);
1217     fprintf(f, ")\n");
1218   }
1219 
1220  private:
1221   // The new fill value.
1222   Expression* val_;
1223 };
1224 
1225 // An input section specification in an output section
1226 
1227 class Output_section_element_input : public Output_section_element
1228 {
1229  public:
1230   Output_section_element_input(const Input_section_spec* spec, bool keep);
1231 
1232   // Finalize symbols--just update the value of the dot symbol.
1233   void
1234   finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
1235 		   Output_section** dot_section)
1236   {
1237     *dot_value = this->final_dot_value_;
1238     *dot_section = this->final_dot_section_;
1239   }
1240 
1241   // See whether we match FILE_NAME and SECTION_NAME as an input
1242   // section.
1243   bool
1244   match_name(const char* file_name, const char* section_name) const;
1245 
1246   // Set the section address.
1247   void
1248   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
1249 			uint64_t subalign, uint64_t* dot_value, uint64_t*,
1250 			Output_section**, std::string* fill,
1251 			Input_section_list*);
1252 
1253   // Print for debugging.
1254   void
1255   print(FILE* f) const;
1256 
1257  private:
1258   // An input section pattern.
1259   struct Input_section_pattern
1260   {
1261     std::string pattern;
1262     bool pattern_is_wildcard;
1263     Sort_wildcard sort;
1264 
1265     Input_section_pattern(const char* patterna, size_t patternlena,
1266 			  Sort_wildcard sorta)
1267       : pattern(patterna, patternlena),
1268 	pattern_is_wildcard(is_wildcard_string(this->pattern.c_str())),
1269 	sort(sorta)
1270     { }
1271   };
1272 
1273   typedef std::vector<Input_section_pattern> Input_section_patterns;
1274 
1275   // Filename_exclusions is a pair of filename pattern and a bool
1276   // indicating whether the filename is a wildcard.
1277   typedef std::vector<std::pair<std::string, bool> > Filename_exclusions;
1278 
1279   // Return whether STRING matches PATTERN, where IS_WILDCARD_PATTERN
1280   // indicates whether this is a wildcard pattern.
1281   static inline bool
1282   match(const char* string, const char* pattern, bool is_wildcard_pattern)
1283   {
1284     return (is_wildcard_pattern
1285 	    ? fnmatch(pattern, string, 0) == 0
1286 	    : strcmp(string, pattern) == 0);
1287   }
1288 
1289   // See if we match a file name.
1290   bool
1291   match_file_name(const char* file_name) const;
1292 
1293   // The file name pattern.  If this is the empty string, we match all
1294   // files.
1295   std::string filename_pattern_;
1296   // Whether the file name pattern is a wildcard.
1297   bool filename_is_wildcard_;
1298   // How the file names should be sorted.  This may only be
1299   // SORT_WILDCARD_NONE or SORT_WILDCARD_BY_NAME.
1300   Sort_wildcard filename_sort_;
1301   // The list of file names to exclude.
1302   Filename_exclusions filename_exclusions_;
1303   // The list of input section patterns.
1304   Input_section_patterns input_section_patterns_;
1305   // Whether to keep this section when garbage collecting.
1306   bool keep_;
1307   // The value of dot after including all matching sections.
1308   uint64_t final_dot_value_;
1309   // The section where dot is defined after including all matching
1310   // sections.
1311   Output_section* final_dot_section_;
1312 };
1313 
1314 // Construct Output_section_element_input.  The parser records strings
1315 // as pointers into a copy of the script file, which will go away when
1316 // parsing is complete.  We make sure they are in std::string objects.
1317 
1318 Output_section_element_input::Output_section_element_input(
1319     const Input_section_spec* spec,
1320     bool keep)
1321   : filename_pattern_(),
1322     filename_is_wildcard_(false),
1323     filename_sort_(spec->file.sort),
1324     filename_exclusions_(),
1325     input_section_patterns_(),
1326     keep_(keep),
1327     final_dot_value_(0),
1328     final_dot_section_(NULL)
1329 {
1330   // The filename pattern "*" is common, and matches all files.  Turn
1331   // it into the empty string.
1332   if (spec->file.name.length != 1 || spec->file.name.value[0] != '*')
1333     this->filename_pattern_.assign(spec->file.name.value,
1334 				   spec->file.name.length);
1335   this->filename_is_wildcard_ = is_wildcard_string(this->filename_pattern_.c_str());
1336 
1337   if (spec->input_sections.exclude != NULL)
1338     {
1339       for (String_list::const_iterator p =
1340 	     spec->input_sections.exclude->begin();
1341 	   p != spec->input_sections.exclude->end();
1342 	   ++p)
1343 	{
1344 	  bool is_wildcard = is_wildcard_string((*p).c_str());
1345 	  this->filename_exclusions_.push_back(std::make_pair(*p,
1346 							      is_wildcard));
1347 	}
1348     }
1349 
1350   if (spec->input_sections.sections != NULL)
1351     {
1352       Input_section_patterns& isp(this->input_section_patterns_);
1353       for (String_sort_list::const_iterator p =
1354 	     spec->input_sections.sections->begin();
1355 	   p != spec->input_sections.sections->end();
1356 	   ++p)
1357 	isp.push_back(Input_section_pattern(p->name.value, p->name.length,
1358 					    p->sort));
1359     }
1360 }
1361 
1362 // See whether we match FILE_NAME.
1363 
1364 bool
1365 Output_section_element_input::match_file_name(const char* file_name) const
1366 {
1367   if (!this->filename_pattern_.empty())
1368     {
1369       // If we were called with no filename, we refuse to match a
1370       // pattern which requires a file name.
1371       if (file_name == NULL)
1372 	return false;
1373 
1374       if (!match(file_name, this->filename_pattern_.c_str(),
1375 		 this->filename_is_wildcard_))
1376 	return false;
1377     }
1378 
1379   if (file_name != NULL)
1380     {
1381       // Now we have to see whether FILE_NAME matches one of the
1382       // exclusion patterns, if any.
1383       for (Filename_exclusions::const_iterator p =
1384 	     this->filename_exclusions_.begin();
1385 	   p != this->filename_exclusions_.end();
1386 	   ++p)
1387 	{
1388 	  if (match(file_name, p->first.c_str(), p->second))
1389 	    return false;
1390 	}
1391     }
1392 
1393   return true;
1394 }
1395 
1396 // See whether we match FILE_NAME and SECTION_NAME.
1397 
1398 bool
1399 Output_section_element_input::match_name(const char* file_name,
1400 					 const char* section_name) const
1401 {
1402   if (!this->match_file_name(file_name))
1403     return false;
1404 
1405   // If there are no section name patterns, then we match.
1406   if (this->input_section_patterns_.empty())
1407     return true;
1408 
1409   // See whether we match the section name patterns.
1410   for (Input_section_patterns::const_iterator p =
1411 	 this->input_section_patterns_.begin();
1412        p != this->input_section_patterns_.end();
1413        ++p)
1414     {
1415       if (match(section_name, p->pattern.c_str(), p->pattern_is_wildcard))
1416 	return true;
1417     }
1418 
1419   // We didn't match any section names, so we didn't match.
1420   return false;
1421 }
1422 
1423 // Information we use to sort the input sections.
1424 
1425 class Input_section_info
1426 {
1427  public:
1428   Input_section_info(const Output_section::Input_section& input_section)
1429     : input_section_(input_section), section_name_(),
1430       size_(0), addralign_(1)
1431   { }
1432 
1433   // Return the simple input section.
1434   const Output_section::Input_section&
1435   input_section() const
1436   { return this->input_section_; }
1437 
1438   // Return the object.
1439   Relobj*
1440   relobj() const
1441   { return this->input_section_.relobj(); }
1442 
1443   // Return the section index.
1444   unsigned int
1445   shndx()
1446   { return this->input_section_.shndx(); }
1447 
1448   // Return the section name.
1449   const std::string&
1450   section_name() const
1451   { return this->section_name_; }
1452 
1453   // Set the section name.
1454   void
1455   set_section_name(const std::string name)
1456   { this->section_name_ = name; }
1457 
1458   // Return the section size.
1459   uint64_t
1460   size() const
1461   { return this->size_; }
1462 
1463   // Set the section size.
1464   void
1465   set_size(uint64_t size)
1466   { this->size_ = size; }
1467 
1468   // Return the address alignment.
1469   uint64_t
1470   addralign() const
1471   { return this->addralign_; }
1472 
1473   // Set the address alignment.
1474   void
1475   set_addralign(uint64_t addralign)
1476   { this->addralign_ = addralign; }
1477 
1478  private:
1479   // Input section, can be a relaxed section.
1480   Output_section::Input_section input_section_;
1481   // Name of the section.
1482   std::string section_name_;
1483   // Section size.
1484   uint64_t size_;
1485   // Address alignment.
1486   uint64_t addralign_;
1487 };
1488 
1489 // A class to sort the input sections.
1490 
1491 class Input_section_sorter
1492 {
1493  public:
1494   Input_section_sorter(Sort_wildcard filename_sort, Sort_wildcard section_sort)
1495     : filename_sort_(filename_sort), section_sort_(section_sort)
1496   { }
1497 
1498   bool
1499   operator()(const Input_section_info&, const Input_section_info&) const;
1500 
1501  private:
1502   Sort_wildcard filename_sort_;
1503   Sort_wildcard section_sort_;
1504 };
1505 
1506 bool
1507 Input_section_sorter::operator()(const Input_section_info& isi1,
1508 				 const Input_section_info& isi2) const
1509 {
1510   if (this->section_sort_ == SORT_WILDCARD_BY_NAME
1511       || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1512       || (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME
1513 	  && isi1.addralign() == isi2.addralign()))
1514     {
1515       if (isi1.section_name() != isi2.section_name())
1516 	return isi1.section_name() < isi2.section_name();
1517     }
1518   if (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT
1519       || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1520       || this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME)
1521     {
1522       if (isi1.addralign() != isi2.addralign())
1523 	return isi1.addralign() < isi2.addralign();
1524     }
1525   if (this->filename_sort_ == SORT_WILDCARD_BY_NAME)
1526     {
1527       if (isi1.relobj()->name() != isi2.relobj()->name())
1528 	return (isi1.relobj()->name() < isi2.relobj()->name());
1529     }
1530 
1531   // Otherwise we leave them in the same order.
1532   return false;
1533 }
1534 
1535 // Set the section address.  Look in INPUT_SECTIONS for sections which
1536 // match this spec, sort them as specified, and add them to the output
1537 // section.
1538 
1539 void
1540 Output_section_element_input::set_section_addresses(
1541     Symbol_table*,
1542     Layout* layout,
1543     Output_section* output_section,
1544     uint64_t subalign,
1545     uint64_t* dot_value,
1546     uint64_t*,
1547     Output_section** dot_section,
1548     std::string* fill,
1549     Input_section_list* input_sections)
1550 {
1551   // We build a list of sections which match each
1552   // Input_section_pattern.
1553 
1554   typedef std::vector<std::vector<Input_section_info> > Matching_sections;
1555   size_t input_pattern_count = this->input_section_patterns_.size();
1556   if (input_pattern_count == 0)
1557     input_pattern_count = 1;
1558   Matching_sections matching_sections(input_pattern_count);
1559 
1560   // Look through the list of sections for this output section.  Add
1561   // each one which matches to one of the elements of
1562   // MATCHING_SECTIONS.
1563 
1564   Input_section_list::iterator p = input_sections->begin();
1565   while (p != input_sections->end())
1566     {
1567       Relobj* relobj = p->relobj();
1568       unsigned int shndx = p->shndx();
1569       Input_section_info isi(*p);
1570 
1571       // Calling section_name and section_addralign is not very
1572       // efficient.
1573 
1574       // Lock the object so that we can get information about the
1575       // section.  This is OK since we know we are single-threaded
1576       // here.
1577       {
1578 	const Task* task = reinterpret_cast<const Task*>(-1);
1579 	Task_lock_obj<Object> tl(task, relobj);
1580 
1581 	isi.set_section_name(relobj->section_name(shndx));
1582 	if (p->is_relaxed_input_section())
1583 	  {
1584 	    // We use current data size because relaxed section sizes may not
1585 	    // have finalized yet.
1586 	    isi.set_size(p->relaxed_input_section()->current_data_size());
1587 	    isi.set_addralign(p->relaxed_input_section()->addralign());
1588 	  }
1589 	else
1590 	  {
1591 	    isi.set_size(relobj->section_size(shndx));
1592 	    isi.set_addralign(relobj->section_addralign(shndx));
1593 	  }
1594       }
1595 
1596       if (!this->match_file_name(relobj->name().c_str()))
1597 	++p;
1598       else if (this->input_section_patterns_.empty())
1599 	{
1600 	  matching_sections[0].push_back(isi);
1601 	  p = input_sections->erase(p);
1602 	}
1603       else
1604 	{
1605 	  size_t i;
1606 	  for (i = 0; i < input_pattern_count; ++i)
1607 	    {
1608 	      const Input_section_pattern&
1609 		isp(this->input_section_patterns_[i]);
1610 	      if (match(isi.section_name().c_str(), isp.pattern.c_str(),
1611 			isp.pattern_is_wildcard))
1612 		break;
1613 	    }
1614 
1615 	  if (i >= this->input_section_patterns_.size())
1616 	    ++p;
1617 	  else
1618 	    {
1619 	      matching_sections[i].push_back(isi);
1620 	      p = input_sections->erase(p);
1621 	    }
1622 	}
1623     }
1624 
1625   // Look through MATCHING_SECTIONS.  Sort each one as specified,
1626   // using a stable sort so that we get the default order when
1627   // sections are otherwise equal.  Add each input section to the
1628   // output section.
1629 
1630   uint64_t dot = *dot_value;
1631   for (size_t i = 0; i < input_pattern_count; ++i)
1632     {
1633       if (matching_sections[i].empty())
1634 	continue;
1635 
1636       gold_assert(output_section != NULL);
1637 
1638       const Input_section_pattern& isp(this->input_section_patterns_[i]);
1639       if (isp.sort != SORT_WILDCARD_NONE
1640 	  || this->filename_sort_ != SORT_WILDCARD_NONE)
1641 	std::stable_sort(matching_sections[i].begin(),
1642 			 matching_sections[i].end(),
1643 			 Input_section_sorter(this->filename_sort_,
1644 					      isp.sort));
1645 
1646       for (std::vector<Input_section_info>::const_iterator p =
1647 	     matching_sections[i].begin();
1648 	   p != matching_sections[i].end();
1649 	   ++p)
1650 	{
1651 	  // Override the original address alignment if SUBALIGN is specified
1652 	  // and is greater than the original alignment.  We need to make a
1653 	  // copy of the input section to modify the alignment.
1654 	  Output_section::Input_section sis(p->input_section());
1655 
1656 	  uint64_t this_subalign = sis.addralign();
1657 	  if (!sis.is_input_section())
1658 	    sis.output_section_data()->finalize_data_size();
1659 	  uint64_t data_size = sis.data_size();
1660 	  if (this_subalign < subalign)
1661 	    {
1662 	      this_subalign = subalign;
1663 	      sis.set_addralign(subalign);
1664 	    }
1665 
1666 	  uint64_t address = align_address(dot, this_subalign);
1667 
1668 	  if (address > dot && !fill->empty())
1669 	    {
1670 	      section_size_type length =
1671 		convert_to_section_size_type(address - dot);
1672 	      std::string this_fill = this->get_fill_string(fill, length);
1673 	      Output_section_data* posd = new Output_data_const(this_fill, 0);
1674 	      output_section->add_output_section_data(posd);
1675 	      layout->new_output_section_data_from_script(posd);
1676 	    }
1677 
1678 	  output_section->add_script_input_section(sis);
1679 	  dot = address + data_size;
1680 	}
1681     }
1682 
1683   // An SHF_TLS/SHT_NOBITS section does not take up any
1684   // address space.
1685   if (output_section == NULL
1686       || (output_section->flags() & elfcpp::SHF_TLS) == 0
1687       || output_section->type() != elfcpp::SHT_NOBITS)
1688     *dot_value = dot;
1689 
1690   this->final_dot_value_ = *dot_value;
1691   this->final_dot_section_ = *dot_section;
1692 }
1693 
1694 // Print for debugging.
1695 
1696 void
1697 Output_section_element_input::print(FILE* f) const
1698 {
1699   fprintf(f, "    ");
1700 
1701   if (this->keep_)
1702     fprintf(f, "KEEP(");
1703 
1704   if (!this->filename_pattern_.empty())
1705     {
1706       bool need_close_paren = false;
1707       switch (this->filename_sort_)
1708 	{
1709 	case SORT_WILDCARD_NONE:
1710 	  break;
1711 	case SORT_WILDCARD_BY_NAME:
1712 	  fprintf(f, "SORT_BY_NAME(");
1713 	  need_close_paren = true;
1714 	  break;
1715 	default:
1716 	  gold_unreachable();
1717 	}
1718 
1719       fprintf(f, "%s", this->filename_pattern_.c_str());
1720 
1721       if (need_close_paren)
1722 	fprintf(f, ")");
1723     }
1724 
1725   if (!this->input_section_patterns_.empty()
1726       || !this->filename_exclusions_.empty())
1727     {
1728       fprintf(f, "(");
1729 
1730       bool need_space = false;
1731       if (!this->filename_exclusions_.empty())
1732 	{
1733 	  fprintf(f, "EXCLUDE_FILE(");
1734 	  bool need_comma = false;
1735 	  for (Filename_exclusions::const_iterator p =
1736 		 this->filename_exclusions_.begin();
1737 	       p != this->filename_exclusions_.end();
1738 	       ++p)
1739 	    {
1740 	      if (need_comma)
1741 		fprintf(f, ", ");
1742 	      fprintf(f, "%s", p->first.c_str());
1743 	      need_comma = true;
1744 	    }
1745 	  fprintf(f, ")");
1746 	  need_space = true;
1747 	}
1748 
1749       for (Input_section_patterns::const_iterator p =
1750 	     this->input_section_patterns_.begin();
1751 	   p != this->input_section_patterns_.end();
1752 	   ++p)
1753 	{
1754 	  if (need_space)
1755 	    fprintf(f, " ");
1756 
1757 	  int close_parens = 0;
1758 	  switch (p->sort)
1759 	    {
1760 	    case SORT_WILDCARD_NONE:
1761 	      break;
1762 	    case SORT_WILDCARD_BY_NAME:
1763 	      fprintf(f, "SORT_BY_NAME(");
1764 	      close_parens = 1;
1765 	      break;
1766 	    case SORT_WILDCARD_BY_ALIGNMENT:
1767 	      fprintf(f, "SORT_BY_ALIGNMENT(");
1768 	      close_parens = 1;
1769 	      break;
1770 	    case SORT_WILDCARD_BY_NAME_BY_ALIGNMENT:
1771 	      fprintf(f, "SORT_BY_NAME(SORT_BY_ALIGNMENT(");
1772 	      close_parens = 2;
1773 	      break;
1774 	    case SORT_WILDCARD_BY_ALIGNMENT_BY_NAME:
1775 	      fprintf(f, "SORT_BY_ALIGNMENT(SORT_BY_NAME(");
1776 	      close_parens = 2;
1777 	      break;
1778 	    default:
1779 	      gold_unreachable();
1780 	    }
1781 
1782 	  fprintf(f, "%s", p->pattern.c_str());
1783 
1784 	  for (int i = 0; i < close_parens; ++i)
1785 	    fprintf(f, ")");
1786 
1787 	  need_space = true;
1788 	}
1789 
1790       fprintf(f, ")");
1791     }
1792 
1793   if (this->keep_)
1794     fprintf(f, ")");
1795 
1796   fprintf(f, "\n");
1797 }
1798 
1799 // An output section.
1800 
1801 class Output_section_definition : public Sections_element
1802 {
1803  public:
1804   typedef Output_section_element::Input_section_list Input_section_list;
1805 
1806   Output_section_definition(const char* name, size_t namelen,
1807 			    const Parser_output_section_header* header);
1808 
1809   // Finish the output section with the information in the trailer.
1810   void
1811   finish(const Parser_output_section_trailer* trailer);
1812 
1813   // Add a symbol to be defined.
1814   void
1815   add_symbol_assignment(const char* name, size_t length, Expression* value,
1816 			bool provide, bool hidden);
1817 
1818   // Add an assignment to the special dot symbol.
1819   void
1820   add_dot_assignment(Expression* value);
1821 
1822   // Add an assertion.
1823   void
1824   add_assertion(Expression* check, const char* message, size_t messagelen);
1825 
1826   // Add a data item to the current output section.
1827   void
1828   add_data(int size, bool is_signed, Expression* val);
1829 
1830   // Add a setting for the fill value.
1831   void
1832   add_fill(Expression* val);
1833 
1834   // Add an input section specification.
1835   void
1836   add_input_section(const Input_section_spec* spec, bool keep);
1837 
1838   // Return whether the output section is relro.
1839   bool
1840   is_relro() const
1841   { return this->is_relro_; }
1842 
1843   // Record that the output section is relro.
1844   void
1845   set_is_relro()
1846   { this->is_relro_ = true; }
1847 
1848   // Create any required output sections.
1849   void
1850   create_sections(Layout*);
1851 
1852   // Add any symbols being defined to the symbol table.
1853   void
1854   add_symbols_to_table(Symbol_table* symtab);
1855 
1856   // Finalize symbols and check assertions.
1857   void
1858   finalize_symbols(Symbol_table*, const Layout*, uint64_t*);
1859 
1860   // Return the output section name to use for an input file name and
1861   // section name.
1862   const char*
1863   output_section_name(const char* file_name, const char* section_name,
1864 		      Output_section***, Script_sections::Section_type*);
1865 
1866   // Initialize OSP with an output section.
1867   void
1868   orphan_section_init(Orphan_section_placement* osp,
1869 		      Script_sections::Elements_iterator p)
1870   { osp->output_section_init(this->name_, this->output_section_, p); }
1871 
1872   // Set the section address.
1873   void
1874   set_section_addresses(Symbol_table* symtab, Layout* layout,
1875 			uint64_t* dot_value, uint64_t*,
1876 			uint64_t* load_address);
1877 
1878   // Check a constraint (ONLY_IF_RO, etc.) on an output section.  If
1879   // this section is constrained, and the input sections do not match,
1880   // return the constraint, and set *POSD.
1881   Section_constraint
1882   check_constraint(Output_section_definition** posd);
1883 
1884   // See if this is the alternate output section for a constrained
1885   // output section.  If it is, transfer the Output_section and return
1886   // true.  Otherwise return false.
1887   bool
1888   alternate_constraint(Output_section_definition*, Section_constraint);
1889 
1890   // Get the list of segments to use for an allocated section when
1891   // using a PHDRS clause.
1892   Output_section*
1893   allocate_to_segment(String_list** phdrs_list, bool* orphan);
1894 
1895   // Look for an output section by name and return the address, the
1896   // load address, the alignment, and the size.  This is used when an
1897   // expression refers to an output section which was not actually
1898   // created.  This returns true if the section was found, false
1899   // otherwise.
1900   bool
1901   get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
1902                           uint64_t*) const;
1903 
1904   // Return the associated Output_section if there is one.
1905   Output_section*
1906   get_output_section() const
1907   { return this->output_section_; }
1908 
1909   // Print the contents to the FILE.  This is for debugging.
1910   void
1911   print(FILE*) const;
1912 
1913   // Return the output section type if specified or Script_sections::ST_NONE.
1914   Script_sections::Section_type
1915   section_type() const;
1916 
1917   // Store the memory region to use.
1918   void
1919   set_memory_region(Memory_region*, bool set_vma);
1920 
1921   void
1922   set_section_vma(Expression* address)
1923   { this->address_ = address; }
1924 
1925   void
1926   set_section_lma(Expression* address)
1927   { this->load_address_ = address; }
1928 
1929   const std::string&
1930   get_section_name() const
1931   { return this->name_; }
1932 
1933  private:
1934   static const char*
1935   script_section_type_name(Script_section_type);
1936 
1937   typedef std::vector<Output_section_element*> Output_section_elements;
1938 
1939   // The output section name.
1940   std::string name_;
1941   // The address.  This may be NULL.
1942   Expression* address_;
1943   // The load address.  This may be NULL.
1944   Expression* load_address_;
1945   // The alignment.  This may be NULL.
1946   Expression* align_;
1947   // The input section alignment.  This may be NULL.
1948   Expression* subalign_;
1949   // The constraint, if any.
1950   Section_constraint constraint_;
1951   // The fill value.  This may be NULL.
1952   Expression* fill_;
1953   // The list of segments this section should go into.  This may be
1954   // NULL.
1955   String_list* phdrs_;
1956   // The list of elements defining the section.
1957   Output_section_elements elements_;
1958   // The Output_section created for this definition.  This will be
1959   // NULL if none was created.
1960   Output_section* output_section_;
1961   // The address after it has been evaluated.
1962   uint64_t evaluated_address_;
1963   // The load address after it has been evaluated.
1964   uint64_t evaluated_load_address_;
1965   // The alignment after it has been evaluated.
1966   uint64_t evaluated_addralign_;
1967   // The output section is relro.
1968   bool is_relro_;
1969   // The output section type if specified.
1970   enum Script_section_type script_section_type_;
1971 };
1972 
1973 // Constructor.
1974 
1975 Output_section_definition::Output_section_definition(
1976     const char* name,
1977     size_t namelen,
1978     const Parser_output_section_header* header)
1979   : name_(name, namelen),
1980     address_(header->address),
1981     load_address_(header->load_address),
1982     align_(header->align),
1983     subalign_(header->subalign),
1984     constraint_(header->constraint),
1985     fill_(NULL),
1986     phdrs_(NULL),
1987     elements_(),
1988     output_section_(NULL),
1989     evaluated_address_(0),
1990     evaluated_load_address_(0),
1991     evaluated_addralign_(0),
1992     is_relro_(false),
1993     script_section_type_(header->section_type)
1994 {
1995 }
1996 
1997 // Finish an output section.
1998 
1999 void
2000 Output_section_definition::finish(const Parser_output_section_trailer* trailer)
2001 {
2002   this->fill_ = trailer->fill;
2003   this->phdrs_ = trailer->phdrs;
2004 }
2005 
2006 // Add a symbol to be defined.
2007 
2008 void
2009 Output_section_definition::add_symbol_assignment(const char* name,
2010 						 size_t length,
2011 						 Expression* value,
2012 						 bool provide,
2013 						 bool hidden)
2014 {
2015   Output_section_element* p = new Output_section_element_assignment(name,
2016 								    length,
2017 								    value,
2018 								    provide,
2019 								    hidden);
2020   this->elements_.push_back(p);
2021 }
2022 
2023 // Add an assignment to the special dot symbol.
2024 
2025 void
2026 Output_section_definition::add_dot_assignment(Expression* value)
2027 {
2028   Output_section_element* p = new Output_section_element_dot_assignment(value);
2029   this->elements_.push_back(p);
2030 }
2031 
2032 // Add an assertion.
2033 
2034 void
2035 Output_section_definition::add_assertion(Expression* check,
2036 					 const char* message,
2037 					 size_t messagelen)
2038 {
2039   Output_section_element* p = new Output_section_element_assertion(check,
2040 								   message,
2041 								   messagelen);
2042   this->elements_.push_back(p);
2043 }
2044 
2045 // Add a data item to the current output section.
2046 
2047 void
2048 Output_section_definition::add_data(int size, bool is_signed, Expression* val)
2049 {
2050   Output_section_element* p = new Output_section_element_data(size, is_signed,
2051 							      val);
2052   this->elements_.push_back(p);
2053 }
2054 
2055 // Add a setting for the fill value.
2056 
2057 void
2058 Output_section_definition::add_fill(Expression* val)
2059 {
2060   Output_section_element* p = new Output_section_element_fill(val);
2061   this->elements_.push_back(p);
2062 }
2063 
2064 // Add an input section specification.
2065 
2066 void
2067 Output_section_definition::add_input_section(const Input_section_spec* spec,
2068 					     bool keep)
2069 {
2070   Output_section_element* p = new Output_section_element_input(spec, keep);
2071   this->elements_.push_back(p);
2072 }
2073 
2074 // Create any required output sections.  We need an output section if
2075 // there is a data statement here.
2076 
2077 void
2078 Output_section_definition::create_sections(Layout* layout)
2079 {
2080   if (this->output_section_ != NULL)
2081     return;
2082   for (Output_section_elements::const_iterator p = this->elements_.begin();
2083        p != this->elements_.end();
2084        ++p)
2085     {
2086       if ((*p)->needs_output_section())
2087 	{
2088 	  const char* name = this->name_.c_str();
2089 	  this->output_section_ =
2090 	    layout->make_output_section_for_script(name, this->section_type());
2091 	  return;
2092 	}
2093     }
2094 }
2095 
2096 // Add any symbols being defined to the symbol table.
2097 
2098 void
2099 Output_section_definition::add_symbols_to_table(Symbol_table* symtab)
2100 {
2101   for (Output_section_elements::iterator p = this->elements_.begin();
2102        p != this->elements_.end();
2103        ++p)
2104     (*p)->add_symbols_to_table(symtab);
2105 }
2106 
2107 // Finalize symbols and check assertions.
2108 
2109 void
2110 Output_section_definition::finalize_symbols(Symbol_table* symtab,
2111 					    const Layout* layout,
2112 					    uint64_t* dot_value)
2113 {
2114   if (this->output_section_ != NULL)
2115     *dot_value = this->output_section_->address();
2116   else
2117     {
2118       uint64_t address = *dot_value;
2119       if (this->address_ != NULL)
2120 	{
2121 	  address = this->address_->eval_with_dot(symtab, layout, true,
2122 						  *dot_value, NULL,
2123 						  NULL, NULL, false);
2124 	}
2125       if (this->align_ != NULL)
2126 	{
2127 	  uint64_t align = this->align_->eval_with_dot(symtab, layout, true,
2128 						       *dot_value, NULL,
2129 						       NULL, NULL, false);
2130 	  address = align_address(address, align);
2131 	}
2132       *dot_value = address;
2133     }
2134 
2135   Output_section* dot_section = this->output_section_;
2136   for (Output_section_elements::iterator p = this->elements_.begin();
2137        p != this->elements_.end();
2138        ++p)
2139     (*p)->finalize_symbols(symtab, layout, dot_value, &dot_section);
2140 }
2141 
2142 // Return the output section name to use for an input section name.
2143 
2144 const char*
2145 Output_section_definition::output_section_name(
2146     const char* file_name,
2147     const char* section_name,
2148     Output_section*** slot,
2149     Script_sections::Section_type* psection_type)
2150 {
2151   // Ask each element whether it matches NAME.
2152   for (Output_section_elements::const_iterator p = this->elements_.begin();
2153        p != this->elements_.end();
2154        ++p)
2155     {
2156       if ((*p)->match_name(file_name, section_name))
2157 	{
2158 	  // We found a match for NAME, which means that it should go
2159 	  // into this output section.
2160 	  *slot = &this->output_section_;
2161 	  *psection_type = this->section_type();
2162 	  return this->name_.c_str();
2163 	}
2164     }
2165 
2166   // We don't know about this section name.
2167   return NULL;
2168 }
2169 
2170 // Return true if memory from START to START + LENGTH is contained
2171 // within a memory region.
2172 
2173 bool
2174 Script_sections::block_in_region(Symbol_table* symtab, Layout* layout,
2175 				 uint64_t start, uint64_t length) const
2176 {
2177   if (this->memory_regions_ == NULL)
2178     return false;
2179 
2180   for (Memory_regions::const_iterator mr = this->memory_regions_->begin();
2181        mr != this->memory_regions_->end();
2182        ++mr)
2183     {
2184       uint64_t s = (*mr)->start_address()->eval(symtab, layout, false);
2185       uint64_t l = (*mr)->length()->eval(symtab, layout, false);
2186 
2187       if (s <= start
2188 	  && (s + l) >= (start + length))
2189 	return true;
2190     }
2191 
2192   return false;
2193 }
2194 
2195 // Find a memory region that should be used by a given output SECTION.
2196 // If provided set PREVIOUS_SECTION_RETURN to point to the last section
2197 // that used the return memory region.
2198 
2199 Memory_region*
2200 Script_sections::find_memory_region(
2201     Output_section_definition* section,
2202     bool find_vma_region,
2203     Output_section_definition** previous_section_return)
2204 {
2205   if (previous_section_return != NULL)
2206     * previous_section_return = NULL;
2207 
2208   // Walk the memory regions specified in this script, if any.
2209   if (this->memory_regions_ == NULL)
2210     return NULL;
2211 
2212   // The /DISCARD/ section never gets assigned to any region.
2213   if (section->get_section_name() == "/DISCARD/")
2214     return NULL;
2215 
2216   Memory_region* first_match = NULL;
2217 
2218   // First check to see if a region has been assigned to this section.
2219   for (Memory_regions::const_iterator mr = this->memory_regions_->begin();
2220        mr != this->memory_regions_->end();
2221        ++mr)
2222     {
2223       if (find_vma_region)
2224 	{
2225 	  for (Memory_region::Section_list::const_iterator s =
2226 		 (*mr)->get_vma_section_list_start();
2227 	       s != (*mr)->get_vma_section_list_end();
2228 	       ++s)
2229 	    if ((*s) == section)
2230 	      {
2231 		(*mr)->set_last_section(section);
2232 		return *mr;
2233 	      }
2234 	}
2235       else
2236 	{
2237 	  for (Memory_region::Section_list::const_iterator s =
2238 		 (*mr)->get_lma_section_list_start();
2239 	       s != (*mr)->get_lma_section_list_end();
2240 	       ++s)
2241 	    if ((*s) == section)
2242 	      {
2243 		(*mr)->set_last_section(section);
2244 		return *mr;
2245 	      }
2246 	}
2247 
2248       // Make a note of the first memory region whose attributes
2249       // are compatible with the section.  If we do not find an
2250       // explicit region assignment, then we will return this region.
2251       Output_section* out_sec = section->get_output_section();
2252       if (first_match == NULL
2253 	  && out_sec != NULL
2254 	  && (*mr)->attributes_compatible(out_sec->flags(),
2255 					  out_sec->type()))
2256 	first_match = *mr;
2257     }
2258 
2259   // With LMA computations, if an explicit region has not been specified then
2260   // we will want to set the difference between the VMA and the LMA of the
2261   // section were searching for to be the same as the difference between the
2262   // VMA and LMA of the last section to be added to first matched region.
2263   // Hence, if it was asked for, we return a pointer to the last section
2264   // known to be used by the first matched region.
2265   if (first_match != NULL
2266       && previous_section_return != NULL)
2267     *previous_section_return = first_match->get_last_section();
2268 
2269   return first_match;
2270 }
2271 
2272 // Set the section address.  Note that the OUTPUT_SECTION_ field will
2273 // be NULL if no input sections were mapped to this output section.
2274 // We still have to adjust dot and process symbol assignments.
2275 
2276 void
2277 Output_section_definition::set_section_addresses(Symbol_table* symtab,
2278 						 Layout* layout,
2279 						 uint64_t* dot_value,
2280 						 uint64_t* dot_alignment,
2281                                                  uint64_t* load_address)
2282 {
2283   Memory_region* vma_region = NULL;
2284   Memory_region* lma_region = NULL;
2285   Script_sections* script_sections =
2286     layout->script_options()->script_sections();
2287   uint64_t address;
2288   uint64_t old_dot_value = *dot_value;
2289   uint64_t old_load_address = *load_address;
2290 
2291   // Decide the start address for the section.  The algorithm is:
2292   // 1) If an address has been specified in a linker script, use that.
2293   // 2) Otherwise if a memory region has been specified for the section,
2294   //    use the next free address in the region.
2295   // 3) Otherwise if memory regions have been specified find the first
2296   //    region whose attributes are compatible with this section and
2297   //    install it into that region.
2298   // 4) Otherwise use the current location counter.
2299 
2300   if (this->output_section_ != NULL
2301       // Check for --section-start.
2302       && parameters->options().section_start(this->output_section_->name(),
2303 					     &address))
2304     ;
2305   else if (this->address_ == NULL)
2306     {
2307       vma_region = script_sections->find_memory_region(this, true, NULL);
2308 
2309       if (vma_region != NULL)
2310 	address = vma_region->get_current_address()->eval(symtab, layout,
2311 							  false);
2312       else
2313 	address = *dot_value;
2314     }
2315   else
2316     address = this->address_->eval_with_dot(symtab, layout, true,
2317 					    *dot_value, NULL, NULL,
2318 					    dot_alignment, false);
2319   uint64_t align;
2320   if (this->align_ == NULL)
2321     {
2322       if (this->output_section_ == NULL)
2323 	align = 0;
2324       else
2325 	align = this->output_section_->addralign();
2326     }
2327   else
2328     {
2329       Output_section* align_section;
2330       align = this->align_->eval_with_dot(symtab, layout, true, *dot_value,
2331 					  NULL, &align_section, NULL, false);
2332       if (align_section != NULL)
2333 	gold_warning(_("alignment of section %s is not absolute"),
2334 		     this->name_.c_str());
2335       if (this->output_section_ != NULL)
2336 	this->output_section_->set_addralign(align);
2337     }
2338 
2339   address = align_address(address, align);
2340 
2341   uint64_t start_address = address;
2342 
2343   *dot_value = address;
2344 
2345   // Except for NOLOAD sections, the address of non-SHF_ALLOC sections is
2346   // forced to zero, regardless of what the linker script wants.
2347   if (this->output_section_ != NULL
2348       && ((this->output_section_->flags() & elfcpp::SHF_ALLOC) != 0
2349 	  || this->output_section_->is_noload()))
2350     this->output_section_->set_address(address);
2351 
2352   this->evaluated_address_ = address;
2353   this->evaluated_addralign_ = align;
2354 
2355   uint64_t laddr;
2356 
2357   if (this->load_address_ == NULL)
2358     {
2359       Output_section_definition* previous_section;
2360 
2361       // Determine if an LMA region has been set for this section.
2362       lma_region = script_sections->find_memory_region(this, false,
2363 						       &previous_section);
2364 
2365       if (lma_region != NULL)
2366 	{
2367 	  if (previous_section == NULL)
2368 	    // The LMA address was explicitly set to the given region.
2369 	    laddr = lma_region->get_current_address()->eval(symtab, layout,
2370 							    false);
2371 	  else
2372 	    {
2373 	      // We are not going to use the discovered lma_region, so
2374 	      // make sure that we do not update it in the code below.
2375 	      lma_region = NULL;
2376 
2377 	      if (this->address_ != NULL || previous_section == this)
2378 		{
2379 		  // Either an explicit VMA address has been set, or an
2380 		  // explicit VMA region has been set, so set the LMA equal to
2381 		  // the VMA.
2382 		  laddr = address;
2383 		}
2384 	      else
2385 		{
2386 		  // The LMA address was not explicitly or implicitly set.
2387 		  //
2388 		  // We have been given the first memory region that is
2389 		  // compatible with the current section and a pointer to the
2390 		  // last section to use this region.  Set the LMA of this
2391 		  // section so that the difference between its' VMA and LMA
2392 		  // is the same as the difference between the VMA and LMA of
2393 		  // the last section in the given region.
2394 		  laddr = address + (previous_section->evaluated_load_address_
2395 				     - previous_section->evaluated_address_);
2396 		}
2397 	    }
2398 
2399 	  if (this->output_section_ != NULL)
2400 	    this->output_section_->set_load_address(laddr);
2401 	}
2402       else
2403 	{
2404 	  // Do not set the load address of the output section, if one exists.
2405 	  // This allows future sections to determine what the load address
2406 	  // should be.  If none is ever set, it will default to being the
2407 	  // same as the vma address.
2408 	  laddr = address;
2409 	}
2410     }
2411   else
2412     {
2413       laddr = this->load_address_->eval_with_dot(symtab, layout, true,
2414 						 *dot_value,
2415 						 this->output_section_,
2416 						 NULL, NULL, false);
2417       if (this->output_section_ != NULL)
2418         this->output_section_->set_load_address(laddr);
2419     }
2420 
2421   this->evaluated_load_address_ = laddr;
2422 
2423   uint64_t subalign;
2424   if (this->subalign_ == NULL)
2425     subalign = 0;
2426   else
2427     {
2428       Output_section* subalign_section;
2429       subalign = this->subalign_->eval_with_dot(symtab, layout, true,
2430 						*dot_value, NULL,
2431 						&subalign_section, NULL,
2432 						false);
2433       if (subalign_section != NULL)
2434 	gold_warning(_("subalign of section %s is not absolute"),
2435 		     this->name_.c_str());
2436     }
2437 
2438   std::string fill;
2439   if (this->fill_ != NULL)
2440     {
2441       // FIXME: The GNU linker supports fill values of arbitrary
2442       // length.
2443       Output_section* fill_section;
2444       uint64_t fill_val = this->fill_->eval_with_dot(symtab, layout, true,
2445 						     *dot_value,
2446 						     NULL, &fill_section,
2447 						     NULL, false);
2448       if (fill_section != NULL)
2449 	gold_warning(_("fill of section %s is not absolute"),
2450 		     this->name_.c_str());
2451       unsigned char fill_buff[4];
2452       elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
2453       fill.assign(reinterpret_cast<char*>(fill_buff), 4);
2454     }
2455 
2456   Input_section_list input_sections;
2457   if (this->output_section_ != NULL)
2458     {
2459       // Get the list of input sections attached to this output
2460       // section.  This will leave the output section with only
2461       // Output_section_data entries.
2462       address += this->output_section_->get_input_sections(address,
2463 							   fill,
2464 							   &input_sections);
2465       *dot_value = address;
2466     }
2467 
2468   Output_section* dot_section = this->output_section_;
2469   for (Output_section_elements::iterator p = this->elements_.begin();
2470        p != this->elements_.end();
2471        ++p)
2472     (*p)->set_section_addresses(symtab, layout, this->output_section_,
2473 				subalign, dot_value, dot_alignment,
2474 				&dot_section, &fill, &input_sections);
2475 
2476   gold_assert(input_sections.empty());
2477 
2478   if (vma_region != NULL)
2479     {
2480       // Update the VMA region being used by the section now that we know how
2481       // big it is.  Use the current address in the region, rather than
2482       // start_address because that might have been aligned upwards and we
2483       // need to allow for the padding.
2484       Expression* addr = vma_region->get_current_address();
2485       uint64_t size = *dot_value - addr->eval(symtab, layout, false);
2486 
2487       vma_region->increment_offset(this->get_section_name(), size,
2488 				   symtab, layout);
2489     }
2490 
2491   // If the LMA region is different from the VMA region, then increment the
2492   // offset there as well.  Note that we use the same "dot_value -
2493   // start_address" formula that is used in the load_address assignment below.
2494   if (lma_region != NULL && lma_region != vma_region)
2495     lma_region->increment_offset(this->get_section_name(),
2496 				 *dot_value - start_address,
2497 				 symtab, layout);
2498 
2499   // Compute the load address for the following section.
2500   if (this->output_section_ == NULL)
2501     *load_address = *dot_value;
2502   else if (this->load_address_ == NULL)
2503     {
2504       if (lma_region == NULL)
2505 	*load_address = *dot_value;
2506       else
2507 	*load_address =
2508 	  lma_region->get_current_address()->eval(symtab, layout, false);
2509     }
2510   else
2511     *load_address = (this->output_section_->load_address()
2512                      + (*dot_value - start_address));
2513 
2514   if (this->output_section_ != NULL)
2515     {
2516       if (this->is_relro_)
2517 	this->output_section_->set_is_relro();
2518       else
2519 	this->output_section_->clear_is_relro();
2520 
2521       // If this is a NOLOAD section, keep dot and load address unchanged.
2522       if (this->output_section_->is_noload())
2523 	{
2524 	  *dot_value = old_dot_value;
2525 	  *load_address = old_load_address;
2526 	}
2527     }
2528 }
2529 
2530 // Check a constraint (ONLY_IF_RO, etc.) on an output section.  If
2531 // this section is constrained, and the input sections do not match,
2532 // return the constraint, and set *POSD.
2533 
2534 Section_constraint
2535 Output_section_definition::check_constraint(Output_section_definition** posd)
2536 {
2537   switch (this->constraint_)
2538     {
2539     case CONSTRAINT_NONE:
2540       return CONSTRAINT_NONE;
2541 
2542     case CONSTRAINT_ONLY_IF_RO:
2543       if (this->output_section_ != NULL
2544 	  && (this->output_section_->flags() & elfcpp::SHF_WRITE) != 0)
2545 	{
2546 	  *posd = this;
2547 	  return CONSTRAINT_ONLY_IF_RO;
2548 	}
2549       return CONSTRAINT_NONE;
2550 
2551     case CONSTRAINT_ONLY_IF_RW:
2552       if (this->output_section_ != NULL
2553 	  && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
2554 	{
2555 	  *posd = this;
2556 	  return CONSTRAINT_ONLY_IF_RW;
2557 	}
2558       return CONSTRAINT_NONE;
2559 
2560     case CONSTRAINT_SPECIAL:
2561       if (this->output_section_ != NULL)
2562 	gold_error(_("SPECIAL constraints are not implemented"));
2563       return CONSTRAINT_NONE;
2564 
2565     default:
2566       gold_unreachable();
2567     }
2568 }
2569 
2570 // See if this is the alternate output section for a constrained
2571 // output section.  If it is, transfer the Output_section and return
2572 // true.  Otherwise return false.
2573 
2574 bool
2575 Output_section_definition::alternate_constraint(
2576     Output_section_definition* posd,
2577     Section_constraint constraint)
2578 {
2579   if (this->name_ != posd->name_)
2580     return false;
2581 
2582   switch (constraint)
2583     {
2584     case CONSTRAINT_ONLY_IF_RO:
2585       if (this->constraint_ != CONSTRAINT_ONLY_IF_RW)
2586 	return false;
2587       break;
2588 
2589     case CONSTRAINT_ONLY_IF_RW:
2590       if (this->constraint_ != CONSTRAINT_ONLY_IF_RO)
2591 	return false;
2592       break;
2593 
2594     default:
2595       gold_unreachable();
2596     }
2597 
2598   // We have found the alternate constraint.  We just need to move
2599   // over the Output_section.  When constraints are used properly,
2600   // THIS should not have an output_section pointer, as all the input
2601   // sections should have matched the other definition.
2602 
2603   if (this->output_section_ != NULL)
2604     gold_error(_("mismatched definition for constrained sections"));
2605 
2606   this->output_section_ = posd->output_section_;
2607   posd->output_section_ = NULL;
2608 
2609   if (this->is_relro_)
2610     this->output_section_->set_is_relro();
2611   else
2612     this->output_section_->clear_is_relro();
2613 
2614   return true;
2615 }
2616 
2617 // Get the list of segments to use for an allocated section when using
2618 // a PHDRS clause.
2619 
2620 Output_section*
2621 Output_section_definition::allocate_to_segment(String_list** phdrs_list,
2622 					       bool* orphan)
2623 {
2624   // Update phdrs_list even if we don't have an output section. It
2625   // might be used by the following sections.
2626   if (this->phdrs_ != NULL)
2627     *phdrs_list = this->phdrs_;
2628 
2629   if (this->output_section_ == NULL)
2630     return NULL;
2631   if ((this->output_section_->flags() & elfcpp::SHF_ALLOC) == 0)
2632     return NULL;
2633   *orphan = false;
2634   return this->output_section_;
2635 }
2636 
2637 // Look for an output section by name and return the address, the load
2638 // address, the alignment, and the size.  This is used when an
2639 // expression refers to an output section which was not actually
2640 // created.  This returns true if the section was found, false
2641 // otherwise.
2642 
2643 bool
2644 Output_section_definition::get_output_section_info(const char* name,
2645                                                    uint64_t* address,
2646                                                    uint64_t* load_address,
2647                                                    uint64_t* addralign,
2648                                                    uint64_t* size) const
2649 {
2650   if (this->name_ != name)
2651     return false;
2652 
2653   if (this->output_section_ != NULL)
2654     {
2655       *address = this->output_section_->address();
2656       if (this->output_section_->has_load_address())
2657         *load_address = this->output_section_->load_address();
2658       else
2659         *load_address = *address;
2660       *addralign = this->output_section_->addralign();
2661       *size = this->output_section_->current_data_size();
2662     }
2663   else
2664     {
2665       *address = this->evaluated_address_;
2666       *load_address = this->evaluated_load_address_;
2667       *addralign = this->evaluated_addralign_;
2668       *size = 0;
2669     }
2670 
2671   return true;
2672 }
2673 
2674 // Print for debugging.
2675 
2676 void
2677 Output_section_definition::print(FILE* f) const
2678 {
2679   fprintf(f, "  %s ", this->name_.c_str());
2680 
2681   if (this->address_ != NULL)
2682     {
2683       this->address_->print(f);
2684       fprintf(f, " ");
2685     }
2686 
2687   if (this->script_section_type_ != SCRIPT_SECTION_TYPE_NONE)
2688       fprintf(f, "(%s) ",
2689 	      this->script_section_type_name(this->script_section_type_));
2690 
2691   fprintf(f, ": ");
2692 
2693   if (this->load_address_ != NULL)
2694     {
2695       fprintf(f, "AT(");
2696       this->load_address_->print(f);
2697       fprintf(f, ") ");
2698     }
2699 
2700   if (this->align_ != NULL)
2701     {
2702       fprintf(f, "ALIGN(");
2703       this->align_->print(f);
2704       fprintf(f, ") ");
2705     }
2706 
2707   if (this->subalign_ != NULL)
2708     {
2709       fprintf(f, "SUBALIGN(");
2710       this->subalign_->print(f);
2711       fprintf(f, ") ");
2712     }
2713 
2714   fprintf(f, "{\n");
2715 
2716   for (Output_section_elements::const_iterator p = this->elements_.begin();
2717        p != this->elements_.end();
2718        ++p)
2719     (*p)->print(f);
2720 
2721   fprintf(f, "  }");
2722 
2723   if (this->fill_ != NULL)
2724     {
2725       fprintf(f, " = ");
2726       this->fill_->print(f);
2727     }
2728 
2729   if (this->phdrs_ != NULL)
2730     {
2731       for (String_list::const_iterator p = this->phdrs_->begin();
2732 	   p != this->phdrs_->end();
2733 	   ++p)
2734 	fprintf(f, " :%s", p->c_str());
2735     }
2736 
2737   fprintf(f, "\n");
2738 }
2739 
2740 Script_sections::Section_type
2741 Output_section_definition::section_type() const
2742 {
2743   switch (this->script_section_type_)
2744     {
2745     case SCRIPT_SECTION_TYPE_NONE:
2746       return Script_sections::ST_NONE;
2747     case SCRIPT_SECTION_TYPE_NOLOAD:
2748       return Script_sections::ST_NOLOAD;
2749     case SCRIPT_SECTION_TYPE_COPY:
2750     case SCRIPT_SECTION_TYPE_DSECT:
2751     case SCRIPT_SECTION_TYPE_INFO:
2752     case SCRIPT_SECTION_TYPE_OVERLAY:
2753       // There are not really support so we treat them as ST_NONE.  The
2754       // parse should have issued errors for them already.
2755       return Script_sections::ST_NONE;
2756     default:
2757       gold_unreachable();
2758     }
2759 }
2760 
2761 // Return the name of a script section type.
2762 
2763 const char*
2764 Output_section_definition::script_section_type_name(
2765     Script_section_type script_section_type)
2766 {
2767   switch (script_section_type)
2768     {
2769     case SCRIPT_SECTION_TYPE_NONE:
2770       return "NONE";
2771     case SCRIPT_SECTION_TYPE_NOLOAD:
2772       return "NOLOAD";
2773     case SCRIPT_SECTION_TYPE_DSECT:
2774       return "DSECT";
2775     case SCRIPT_SECTION_TYPE_COPY:
2776       return "COPY";
2777     case SCRIPT_SECTION_TYPE_INFO:
2778       return "INFO";
2779     case SCRIPT_SECTION_TYPE_OVERLAY:
2780       return "OVERLAY";
2781     default:
2782       gold_unreachable();
2783     }
2784 }
2785 
2786 void
2787 Output_section_definition::set_memory_region(Memory_region* mr, bool set_vma)
2788 {
2789   gold_assert(mr != NULL);
2790   // Add the current section to the specified region's list.
2791   mr->add_section(this, set_vma);
2792 }
2793 
2794 // An output section created to hold orphaned input sections.  These
2795 // do not actually appear in linker scripts.  However, for convenience
2796 // when setting the output section addresses, we put a marker to these
2797 // sections in the appropriate place in the list of SECTIONS elements.
2798 
2799 class Orphan_output_section : public Sections_element
2800 {
2801  public:
2802   Orphan_output_section(Output_section* os)
2803     : os_(os)
2804   { }
2805 
2806   // Return whether the orphan output section is relro.  We can just
2807   // check the output section because we always set the flag, if
2808   // needed, just after we create the Orphan_output_section.
2809   bool
2810   is_relro() const
2811   { return this->os_->is_relro(); }
2812 
2813   // Initialize OSP with an output section.  This should have been
2814   // done already.
2815   void
2816   orphan_section_init(Orphan_section_placement*,
2817 		      Script_sections::Elements_iterator)
2818   { gold_unreachable(); }
2819 
2820   // Set section addresses.
2821   void
2822   set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*,
2823 			uint64_t*);
2824 
2825   // Get the list of segments to use for an allocated section when
2826   // using a PHDRS clause.
2827   Output_section*
2828   allocate_to_segment(String_list**, bool*);
2829 
2830   // Return the associated Output_section.
2831   Output_section*
2832   get_output_section() const
2833   { return this->os_; }
2834 
2835   // Print for debugging.
2836   void
2837   print(FILE* f) const
2838   {
2839     fprintf(f, "  marker for orphaned output section %s\n",
2840 	    this->os_->name());
2841   }
2842 
2843  private:
2844   Output_section* os_;
2845 };
2846 
2847 // Set section addresses.
2848 
2849 void
2850 Orphan_output_section::set_section_addresses(Symbol_table*, Layout*,
2851 					     uint64_t* dot_value,
2852 					     uint64_t*,
2853                                              uint64_t* load_address)
2854 {
2855   typedef std::list<Output_section::Input_section> Input_section_list;
2856 
2857   bool have_load_address = *load_address != *dot_value;
2858 
2859   uint64_t address = *dot_value;
2860   address = align_address(address, this->os_->addralign());
2861 
2862   // For a relocatable link, all orphan sections are put at
2863   // address 0.  In general we expect all sections to be at
2864   // address 0 for a relocatable link, but we permit the linker
2865   // script to override that for specific output sections.
2866   if (parameters->options().relocatable())
2867     {
2868       address = 0;
2869       *load_address = 0;
2870       have_load_address = false;
2871     }
2872 
2873   if ((this->os_->flags() & elfcpp::SHF_ALLOC) != 0)
2874     {
2875       this->os_->set_address(address);
2876       if (have_load_address)
2877         this->os_->set_load_address(align_address(*load_address,
2878                                                   this->os_->addralign()));
2879     }
2880 
2881   Input_section_list input_sections;
2882   address += this->os_->get_input_sections(address, "", &input_sections);
2883 
2884   for (Input_section_list::iterator p = input_sections.begin();
2885        p != input_sections.end();
2886        ++p)
2887     {
2888       uint64_t addralign = p->addralign();
2889       if (!p->is_input_section())
2890 	p->output_section_data()->finalize_data_size();
2891       uint64_t size = p->data_size();
2892       address = align_address(address, addralign);
2893       this->os_->add_script_input_section(*p);
2894       address += size;
2895     }
2896 
2897   // An SHF_TLS/SHT_NOBITS section does not take up any address space.
2898   if (this->os_ == NULL
2899       || (this->os_->flags() & elfcpp::SHF_TLS) == 0
2900       || this->os_->type() != elfcpp::SHT_NOBITS)
2901     {
2902       if (!have_load_address)
2903 	*load_address = address;
2904       else
2905 	*load_address += address - *dot_value;
2906 
2907       *dot_value = address;
2908     }
2909 }
2910 
2911 // Get the list of segments to use for an allocated section when using
2912 // a PHDRS clause.  If this is an allocated section, return the
2913 // Output_section.  We don't change the list of segments.
2914 
2915 Output_section*
2916 Orphan_output_section::allocate_to_segment(String_list**, bool* orphan)
2917 {
2918   if ((this->os_->flags() & elfcpp::SHF_ALLOC) == 0)
2919     return NULL;
2920   *orphan = true;
2921   return this->os_;
2922 }
2923 
2924 // Class Phdrs_element.  A program header from a PHDRS clause.
2925 
2926 class Phdrs_element
2927 {
2928  public:
2929   Phdrs_element(const char* name, size_t namelen, unsigned int type,
2930 		bool includes_filehdr, bool includes_phdrs,
2931 		bool is_flags_valid, unsigned int flags,
2932 		Expression* load_address)
2933     : name_(name, namelen), type_(type), includes_filehdr_(includes_filehdr),
2934       includes_phdrs_(includes_phdrs), is_flags_valid_(is_flags_valid),
2935       flags_(flags), load_address_(load_address), load_address_value_(0),
2936       segment_(NULL)
2937   { }
2938 
2939   // Return the name of this segment.
2940   const std::string&
2941   name() const
2942   { return this->name_; }
2943 
2944   // Return the type of the segment.
2945   unsigned int
2946   type() const
2947   { return this->type_; }
2948 
2949   // Whether to include the file header.
2950   bool
2951   includes_filehdr() const
2952   { return this->includes_filehdr_; }
2953 
2954   // Whether to include the program headers.
2955   bool
2956   includes_phdrs() const
2957   { return this->includes_phdrs_; }
2958 
2959   // Return whether there is a load address.
2960   bool
2961   has_load_address() const
2962   { return this->load_address_ != NULL; }
2963 
2964   // Evaluate the load address expression if there is one.
2965   void
2966   eval_load_address(Symbol_table* symtab, Layout* layout)
2967   {
2968     if (this->load_address_ != NULL)
2969       this->load_address_value_ = this->load_address_->eval(symtab, layout,
2970 							    true);
2971   }
2972 
2973   // Return the load address.
2974   uint64_t
2975   load_address() const
2976   {
2977     gold_assert(this->load_address_ != NULL);
2978     return this->load_address_value_;
2979   }
2980 
2981   // Create the segment.
2982   Output_segment*
2983   create_segment(Layout* layout)
2984   {
2985     this->segment_ = layout->make_output_segment(this->type_, this->flags_);
2986     return this->segment_;
2987   }
2988 
2989   // Return the segment.
2990   Output_segment*
2991   segment()
2992   { return this->segment_; }
2993 
2994   // Release the segment.
2995   void
2996   release_segment()
2997   { this->segment_ = NULL; }
2998 
2999   // Set the segment flags if appropriate.
3000   void
3001   set_flags_if_valid()
3002   {
3003     if (this->is_flags_valid_)
3004       this->segment_->set_flags(this->flags_);
3005   }
3006 
3007   // Print for debugging.
3008   void
3009   print(FILE*) const;
3010 
3011  private:
3012   // The name used in the script.
3013   std::string name_;
3014   // The type of the segment (PT_LOAD, etc.).
3015   unsigned int type_;
3016   // Whether this segment includes the file header.
3017   bool includes_filehdr_;
3018   // Whether this segment includes the section headers.
3019   bool includes_phdrs_;
3020   // Whether the flags were explicitly specified.
3021   bool is_flags_valid_;
3022   // The flags for this segment (PF_R, etc.) if specified.
3023   unsigned int flags_;
3024   // The expression for the load address for this segment.  This may
3025   // be NULL.
3026   Expression* load_address_;
3027   // The actual load address from evaluating the expression.
3028   uint64_t load_address_value_;
3029   // The segment itself.
3030   Output_segment* segment_;
3031 };
3032 
3033 // Print for debugging.
3034 
3035 void
3036 Phdrs_element::print(FILE* f) const
3037 {
3038   fprintf(f, "  %s 0x%x", this->name_.c_str(), this->type_);
3039   if (this->includes_filehdr_)
3040     fprintf(f, " FILEHDR");
3041   if (this->includes_phdrs_)
3042     fprintf(f, " PHDRS");
3043   if (this->is_flags_valid_)
3044     fprintf(f, " FLAGS(%u)", this->flags_);
3045   if (this->load_address_ != NULL)
3046     {
3047       fprintf(f, " AT(");
3048       this->load_address_->print(f);
3049       fprintf(f, ")");
3050     }
3051   fprintf(f, ";\n");
3052 }
3053 
3054 // Add a memory region.
3055 
3056 void
3057 Script_sections::add_memory_region(const char* name, size_t namelen,
3058 				   unsigned int attributes,
3059 				   Expression* start, Expression* length)
3060 {
3061   if (this->memory_regions_ == NULL)
3062     this->memory_regions_ = new Memory_regions();
3063   else if (this->find_memory_region(name, namelen))
3064     {
3065       gold_error(_("region '%.*s' already defined"), static_cast<int>(namelen),
3066                   name);
3067       // FIXME: Add a GOLD extension to allow multiple regions with the same
3068       // name.  This would amount to a single region covering disjoint blocks
3069       // of memory, which is useful for embedded devices.
3070     }
3071 
3072   // FIXME: Check the length and start values.  Currently we allow
3073   // non-constant expressions for these values, whereas LD does not.
3074 
3075   // FIXME: Add a GOLD extension to allow NEGATIVE LENGTHS.  This would
3076   // describe a region that packs from the end address going down, rather
3077   // than the start address going up.  This would be useful for embedded
3078   // devices.
3079 
3080   this->memory_regions_->push_back(new Memory_region(name, namelen, attributes,
3081 						     start, length));
3082 }
3083 
3084 // Find a memory region.
3085 
3086 Memory_region*
3087 Script_sections::find_memory_region(const char* name, size_t namelen)
3088 {
3089   if (this->memory_regions_ == NULL)
3090     return NULL;
3091 
3092   for (Memory_regions::const_iterator m = this->memory_regions_->begin();
3093        m != this->memory_regions_->end();
3094        ++m)
3095     if ((*m)->name_match(name, namelen))
3096       return *m;
3097 
3098   return NULL;
3099 }
3100 
3101 // Find a memory region's origin.
3102 
3103 Expression*
3104 Script_sections::find_memory_region_origin(const char* name, size_t namelen)
3105 {
3106   Memory_region* mr = find_memory_region(name, namelen);
3107   if (mr == NULL)
3108     return NULL;
3109 
3110   return mr->start_address();
3111 }
3112 
3113 // Find a memory region's length.
3114 
3115 Expression*
3116 Script_sections::find_memory_region_length(const char* name, size_t namelen)
3117 {
3118   Memory_region* mr = find_memory_region(name, namelen);
3119   if (mr == NULL)
3120     return NULL;
3121 
3122   return mr->length();
3123 }
3124 
3125 // Set the memory region to use for the current section.
3126 
3127 void
3128 Script_sections::set_memory_region(Memory_region* mr, bool set_vma)
3129 {
3130   gold_assert(!this->sections_elements_->empty());
3131   this->sections_elements_->back()->set_memory_region(mr, set_vma);
3132 }
3133 
3134 // Class Script_sections.
3135 
3136 Script_sections::Script_sections()
3137   : saw_sections_clause_(false),
3138     in_sections_clause_(false),
3139     sections_elements_(NULL),
3140     output_section_(NULL),
3141     memory_regions_(NULL),
3142     phdrs_elements_(NULL),
3143     orphan_section_placement_(NULL),
3144     data_segment_align_start_(),
3145     saw_data_segment_align_(false),
3146     saw_relro_end_(false),
3147     saw_segment_start_expression_(false)
3148 {
3149 }
3150 
3151 // Start a SECTIONS clause.
3152 
3153 void
3154 Script_sections::start_sections()
3155 {
3156   gold_assert(!this->in_sections_clause_ && this->output_section_ == NULL);
3157   this->saw_sections_clause_ = true;
3158   this->in_sections_clause_ = true;
3159   if (this->sections_elements_ == NULL)
3160     this->sections_elements_ = new Sections_elements;
3161 }
3162 
3163 // Finish a SECTIONS clause.
3164 
3165 void
3166 Script_sections::finish_sections()
3167 {
3168   gold_assert(this->in_sections_clause_ && this->output_section_ == NULL);
3169   this->in_sections_clause_ = false;
3170 }
3171 
3172 // Add a symbol to be defined.
3173 
3174 void
3175 Script_sections::add_symbol_assignment(const char* name, size_t length,
3176 				       Expression* val, bool provide,
3177 				       bool hidden)
3178 {
3179   if (this->output_section_ != NULL)
3180     this->output_section_->add_symbol_assignment(name, length, val,
3181 						 provide, hidden);
3182   else
3183     {
3184       Sections_element* p = new Sections_element_assignment(name, length,
3185 							    val, provide,
3186 							    hidden);
3187       this->sections_elements_->push_back(p);
3188     }
3189 }
3190 
3191 // Add an assignment to the special dot symbol.
3192 
3193 void
3194 Script_sections::add_dot_assignment(Expression* val)
3195 {
3196   if (this->output_section_ != NULL)
3197     this->output_section_->add_dot_assignment(val);
3198   else
3199     {
3200       // The GNU linker permits assignments to . to appears outside of
3201       // a SECTIONS clause, and treats it as appearing inside, so
3202       // sections_elements_ may be NULL here.
3203       if (this->sections_elements_ == NULL)
3204 	{
3205 	  this->sections_elements_ = new Sections_elements;
3206 	  this->saw_sections_clause_ = true;
3207 	}
3208 
3209       Sections_element* p = new Sections_element_dot_assignment(val);
3210       this->sections_elements_->push_back(p);
3211     }
3212 }
3213 
3214 // Add an assertion.
3215 
3216 void
3217 Script_sections::add_assertion(Expression* check, const char* message,
3218 			       size_t messagelen)
3219 {
3220   if (this->output_section_ != NULL)
3221     this->output_section_->add_assertion(check, message, messagelen);
3222   else
3223     {
3224       Sections_element* p = new Sections_element_assertion(check, message,
3225 							   messagelen);
3226       this->sections_elements_->push_back(p);
3227     }
3228 }
3229 
3230 // Start processing entries for an output section.
3231 
3232 void
3233 Script_sections::start_output_section(
3234     const char* name,
3235     size_t namelen,
3236     const Parser_output_section_header* header)
3237 {
3238   Output_section_definition* posd = new Output_section_definition(name,
3239 								  namelen,
3240 								  header);
3241   this->sections_elements_->push_back(posd);
3242   gold_assert(this->output_section_ == NULL);
3243   this->output_section_ = posd;
3244 }
3245 
3246 // Stop processing entries for an output section.
3247 
3248 void
3249 Script_sections::finish_output_section(
3250     const Parser_output_section_trailer* trailer)
3251 {
3252   gold_assert(this->output_section_ != NULL);
3253   this->output_section_->finish(trailer);
3254   this->output_section_ = NULL;
3255 }
3256 
3257 // Add a data item to the current output section.
3258 
3259 void
3260 Script_sections::add_data(int size, bool is_signed, Expression* val)
3261 {
3262   gold_assert(this->output_section_ != NULL);
3263   this->output_section_->add_data(size, is_signed, val);
3264 }
3265 
3266 // Add a fill value setting to the current output section.
3267 
3268 void
3269 Script_sections::add_fill(Expression* val)
3270 {
3271   gold_assert(this->output_section_ != NULL);
3272   this->output_section_->add_fill(val);
3273 }
3274 
3275 // Add an input section specification to the current output section.
3276 
3277 void
3278 Script_sections::add_input_section(const Input_section_spec* spec, bool keep)
3279 {
3280   gold_assert(this->output_section_ != NULL);
3281   this->output_section_->add_input_section(spec, keep);
3282 }
3283 
3284 // This is called when we see DATA_SEGMENT_ALIGN.  It means that any
3285 // subsequent output sections may be relro.
3286 
3287 void
3288 Script_sections::data_segment_align()
3289 {
3290   if (this->saw_data_segment_align_)
3291     gold_error(_("DATA_SEGMENT_ALIGN may only appear once in a linker script"));
3292   gold_assert(!this->sections_elements_->empty());
3293   Sections_elements::iterator p = this->sections_elements_->end();
3294   --p;
3295   this->data_segment_align_start_ = p;
3296   this->saw_data_segment_align_ = true;
3297 }
3298 
3299 // This is called when we see DATA_SEGMENT_RELRO_END.  It means that
3300 // any output sections seen since DATA_SEGMENT_ALIGN are relro.
3301 
3302 void
3303 Script_sections::data_segment_relro_end()
3304 {
3305   if (this->saw_relro_end_)
3306     gold_error(_("DATA_SEGMENT_RELRO_END may only appear once "
3307 		 "in a linker script"));
3308   this->saw_relro_end_ = true;
3309 
3310   if (!this->saw_data_segment_align_)
3311     gold_error(_("DATA_SEGMENT_RELRO_END must follow DATA_SEGMENT_ALIGN"));
3312   else
3313     {
3314       Sections_elements::iterator p = this->data_segment_align_start_;
3315       for (++p; p != this->sections_elements_->end(); ++p)
3316 	(*p)->set_is_relro();
3317     }
3318 }
3319 
3320 // Create any required sections.
3321 
3322 void
3323 Script_sections::create_sections(Layout* layout)
3324 {
3325   if (!this->saw_sections_clause_)
3326     return;
3327   for (Sections_elements::iterator p = this->sections_elements_->begin();
3328        p != this->sections_elements_->end();
3329        ++p)
3330     (*p)->create_sections(layout);
3331 }
3332 
3333 // Add any symbols we are defining to the symbol table.
3334 
3335 void
3336 Script_sections::add_symbols_to_table(Symbol_table* symtab)
3337 {
3338   if (!this->saw_sections_clause_)
3339     return;
3340   for (Sections_elements::iterator p = this->sections_elements_->begin();
3341        p != this->sections_elements_->end();
3342        ++p)
3343     (*p)->add_symbols_to_table(symtab);
3344 }
3345 
3346 // Finalize symbols and check assertions.
3347 
3348 void
3349 Script_sections::finalize_symbols(Symbol_table* symtab, const Layout* layout)
3350 {
3351   if (!this->saw_sections_clause_)
3352     return;
3353   uint64_t dot_value = 0;
3354   for (Sections_elements::iterator p = this->sections_elements_->begin();
3355        p != this->sections_elements_->end();
3356        ++p)
3357     (*p)->finalize_symbols(symtab, layout, &dot_value);
3358 }
3359 
3360 // Return the name of the output section to use for an input file name
3361 // and section name.
3362 
3363 const char*
3364 Script_sections::output_section_name(
3365     const char* file_name,
3366     const char* section_name,
3367     Output_section*** output_section_slot,
3368     Script_sections::Section_type* psection_type)
3369 {
3370   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3371        p != this->sections_elements_->end();
3372        ++p)
3373     {
3374       const char* ret = (*p)->output_section_name(file_name, section_name,
3375 						  output_section_slot,
3376 						  psection_type);
3377 
3378       if (ret != NULL)
3379 	{
3380 	  // The special name /DISCARD/ means that the input section
3381 	  // should be discarded.
3382 	  if (strcmp(ret, "/DISCARD/") == 0)
3383 	    {
3384 	      *output_section_slot = NULL;
3385 	      *psection_type = Script_sections::ST_NONE;
3386 	      return NULL;
3387 	    }
3388 	  return ret;
3389 	}
3390     }
3391 
3392   // If we couldn't find a mapping for the name, the output section
3393   // gets the name of the input section.
3394 
3395   *output_section_slot = NULL;
3396   *psection_type = Script_sections::ST_NONE;
3397 
3398   return section_name;
3399 }
3400 
3401 // Place a marker for an orphan output section into the SECTIONS
3402 // clause.
3403 
3404 void
3405 Script_sections::place_orphan(Output_section* os)
3406 {
3407   Orphan_section_placement* osp = this->orphan_section_placement_;
3408   if (osp == NULL)
3409     {
3410       // Initialize the Orphan_section_placement structure.
3411       osp = new Orphan_section_placement();
3412       for (Sections_elements::iterator p = this->sections_elements_->begin();
3413 	   p != this->sections_elements_->end();
3414 	   ++p)
3415 	(*p)->orphan_section_init(osp, p);
3416       gold_assert(!this->sections_elements_->empty());
3417       Sections_elements::iterator last = this->sections_elements_->end();
3418       --last;
3419       osp->last_init(last);
3420       this->orphan_section_placement_ = osp;
3421     }
3422 
3423   Orphan_output_section* orphan = new Orphan_output_section(os);
3424 
3425   // Look for where to put ORPHAN.
3426   Sections_elements::iterator* where;
3427   if (osp->find_place(os, &where))
3428     {
3429       if ((**where)->is_relro())
3430 	os->set_is_relro();
3431       else
3432 	os->clear_is_relro();
3433 
3434       // We want to insert ORPHAN after *WHERE, and then update *WHERE
3435       // so that the next one goes after this one.
3436       Sections_elements::iterator p = *where;
3437       gold_assert(p != this->sections_elements_->end());
3438       ++p;
3439       *where = this->sections_elements_->insert(p, orphan);
3440     }
3441   else
3442     {
3443       os->clear_is_relro();
3444       // We don't have a place to put this orphan section.  Put it,
3445       // and all other sections like it, at the end, but before the
3446       // sections which always come at the end.
3447       Sections_elements::iterator last = osp->last_place();
3448       *where = this->sections_elements_->insert(last, orphan);
3449     }
3450 }
3451 
3452 // Set the addresses of all the output sections.  Walk through all the
3453 // elements, tracking the dot symbol.  Apply assignments which set
3454 // absolute symbol values, in case they are used when setting dot.
3455 // Fill in data statement values.  As we find output sections, set the
3456 // address, set the address of all associated input sections, and
3457 // update dot.  Return the segment which should hold the file header
3458 // and segment headers, if any.
3459 
3460 Output_segment*
3461 Script_sections::set_section_addresses(Symbol_table* symtab, Layout* layout)
3462 {
3463   gold_assert(this->saw_sections_clause_);
3464 
3465   // Implement ONLY_IF_RO/ONLY_IF_RW constraints.  These are a pain
3466   // for our representation.
3467   for (Sections_elements::iterator p = this->sections_elements_->begin();
3468        p != this->sections_elements_->end();
3469        ++p)
3470     {
3471       Output_section_definition* posd;
3472       Section_constraint failed_constraint = (*p)->check_constraint(&posd);
3473       if (failed_constraint != CONSTRAINT_NONE)
3474 	{
3475 	  Sections_elements::iterator q;
3476 	  for (q = this->sections_elements_->begin();
3477 	       q != this->sections_elements_->end();
3478 	       ++q)
3479 	    {
3480 	      if (q != p)
3481 		{
3482 		  if ((*q)->alternate_constraint(posd, failed_constraint))
3483 		    break;
3484 		}
3485 	    }
3486 
3487 	  if (q == this->sections_elements_->end())
3488 	    gold_error(_("no matching section constraint"));
3489 	}
3490     }
3491 
3492   // Force the alignment of the first TLS section to be the maximum
3493   // alignment of all TLS sections.
3494   Output_section* first_tls = NULL;
3495   uint64_t tls_align = 0;
3496   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3497        p != this->sections_elements_->end();
3498        ++p)
3499     {
3500       Output_section* os = (*p)->get_output_section();
3501       if (os != NULL && (os->flags() & elfcpp::SHF_TLS) != 0)
3502 	{
3503 	  if (first_tls == NULL)
3504 	    first_tls = os;
3505 	  if (os->addralign() > tls_align)
3506 	    tls_align = os->addralign();
3507 	}
3508     }
3509   if (first_tls != NULL)
3510     first_tls->set_addralign(tls_align);
3511 
3512   // For a relocatable link, we implicitly set dot to zero.
3513   uint64_t dot_value = 0;
3514   uint64_t dot_alignment = 0;
3515   uint64_t load_address = 0;
3516 
3517   // Check to see if we want to use any of -Ttext, -Tdata and -Tbss options
3518   // to set section addresses.  If the script has any SEGMENT_START
3519   // expression, we do not set the section addresses.
3520   bool use_tsection_options =
3521     (!this->saw_segment_start_expression_
3522      && (parameters->options().user_set_Ttext()
3523 	 || parameters->options().user_set_Tdata()
3524 	 || parameters->options().user_set_Tbss()));
3525 
3526   for (Sections_elements::iterator p = this->sections_elements_->begin();
3527        p != this->sections_elements_->end();
3528        ++p)
3529     {
3530       Output_section* os = (*p)->get_output_section();
3531 
3532       // Handle -Ttext, -Tdata and -Tbss options.  We do this by looking for
3533       // the special sections by names and doing dot assignments.
3534       if (use_tsection_options
3535 	  && os != NULL
3536 	  && (os->flags() & elfcpp::SHF_ALLOC) != 0)
3537 	{
3538 	  uint64_t new_dot_value = dot_value;
3539 
3540 	  if (parameters->options().user_set_Ttext()
3541 	      && strcmp(os->name(), ".text") == 0)
3542 	    new_dot_value = parameters->options().Ttext();
3543 	  else if (parameters->options().user_set_Tdata()
3544 	      && strcmp(os->name(), ".data") == 0)
3545 	    new_dot_value = parameters->options().Tdata();
3546 	  else if (parameters->options().user_set_Tbss()
3547 	      && strcmp(os->name(), ".bss") == 0)
3548 	    new_dot_value = parameters->options().Tbss();
3549 
3550 	  // Update dot and load address if necessary.
3551 	  if (new_dot_value < dot_value)
3552 	    gold_error(_("dot may not move backward"));
3553 	  else if (new_dot_value != dot_value)
3554 	    {
3555 	      dot_value = new_dot_value;
3556 	      load_address = new_dot_value;
3557 	    }
3558 	}
3559 
3560       (*p)->set_section_addresses(symtab, layout, &dot_value, &dot_alignment,
3561 				  &load_address);
3562     }
3563 
3564   if (this->phdrs_elements_ != NULL)
3565     {
3566       for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
3567 	   p != this->phdrs_elements_->end();
3568 	   ++p)
3569 	(*p)->eval_load_address(symtab, layout);
3570     }
3571 
3572   return this->create_segments(layout, dot_alignment);
3573 }
3574 
3575 // Sort the sections in order to put them into segments.
3576 
3577 class Sort_output_sections
3578 {
3579  public:
3580   Sort_output_sections(const Script_sections::Sections_elements* elements)
3581    : elements_(elements)
3582   { }
3583 
3584   bool
3585   operator()(const Output_section* os1, const Output_section* os2) const;
3586 
3587  private:
3588   int
3589   script_compare(const Output_section* os1, const Output_section* os2) const;
3590 
3591  private:
3592   const Script_sections::Sections_elements* elements_;
3593 };
3594 
3595 bool
3596 Sort_output_sections::operator()(const Output_section* os1,
3597 				 const Output_section* os2) const
3598 {
3599   // Sort first by the load address.
3600   uint64_t lma1 = (os1->has_load_address()
3601 		   ? os1->load_address()
3602 		   : os1->address());
3603   uint64_t lma2 = (os2->has_load_address()
3604 		   ? os2->load_address()
3605 		   : os2->address());
3606   if (lma1 != lma2)
3607     return lma1 < lma2;
3608 
3609   // Then sort by the virtual address.
3610   if (os1->address() != os2->address())
3611     return os1->address() < os2->address();
3612 
3613   // If the linker script says which of these sections is first, go
3614   // with what it says.
3615   int i = this->script_compare(os1, os2);
3616   if (i != 0)
3617     return i < 0;
3618 
3619   // Sort PROGBITS before NOBITS.
3620   bool nobits1 = os1->type() == elfcpp::SHT_NOBITS;
3621   bool nobits2 = os2->type() == elfcpp::SHT_NOBITS;
3622   if (nobits1 != nobits2)
3623     return nobits2;
3624 
3625   // Sort PROGBITS TLS sections to the end, NOBITS TLS sections to the
3626   // beginning.
3627   bool tls1 = (os1->flags() & elfcpp::SHF_TLS) != 0;
3628   bool tls2 = (os2->flags() & elfcpp::SHF_TLS) != 0;
3629   if (tls1 != tls2)
3630     return nobits1 ? tls1 : tls2;
3631 
3632   // Sort non-NOLOAD before NOLOAD.
3633   if (os1->is_noload() && !os2->is_noload())
3634     return true;
3635   if (!os1->is_noload() && os2->is_noload())
3636     return true;
3637 
3638   // The sections seem practically identical.  Sort by name to get a
3639   // stable sort.
3640   return os1->name() < os2->name();
3641 }
3642 
3643 // Return -1 if OS1 comes before OS2 in ELEMENTS_, 1 if comes after, 0
3644 // if either OS1 or OS2 is not mentioned.  This ensures that we keep
3645 // empty sections in the order in which they appear in a linker
3646 // script.
3647 
3648 int
3649 Sort_output_sections::script_compare(const Output_section* os1,
3650 				     const Output_section* os2) const
3651 {
3652   if (this->elements_ == NULL)
3653     return 0;
3654 
3655   bool found_os1 = false;
3656   bool found_os2 = false;
3657   for (Script_sections::Sections_elements::const_iterator
3658 	 p = this->elements_->begin();
3659        p != this->elements_->end();
3660        ++p)
3661     {
3662       if (os2 == (*p)->get_output_section())
3663 	{
3664 	  if (found_os1)
3665 	    return -1;
3666 	  found_os2 = true;
3667 	}
3668       else if (os1 == (*p)->get_output_section())
3669 	{
3670 	  if (found_os2)
3671 	    return 1;
3672 	  found_os1 = true;
3673 	}
3674     }
3675 
3676   return 0;
3677 }
3678 
3679 // Return whether OS is a BSS section.  This is a SHT_NOBITS section.
3680 // We treat a section with the SHF_TLS flag set as taking up space
3681 // even if it is SHT_NOBITS (this is true of .tbss), as we allocate
3682 // space for them in the file.
3683 
3684 bool
3685 Script_sections::is_bss_section(const Output_section* os)
3686 {
3687   return (os->type() == elfcpp::SHT_NOBITS
3688 	  && (os->flags() & elfcpp::SHF_TLS) == 0);
3689 }
3690 
3691 // Return the size taken by the file header and the program headers.
3692 
3693 size_t
3694 Script_sections::total_header_size(Layout* layout) const
3695 {
3696   size_t segment_count = layout->segment_count();
3697   size_t file_header_size;
3698   size_t segment_headers_size;
3699   if (parameters->target().get_size() == 32)
3700     {
3701       file_header_size = elfcpp::Elf_sizes<32>::ehdr_size;
3702       segment_headers_size = segment_count * elfcpp::Elf_sizes<32>::phdr_size;
3703     }
3704   else if (parameters->target().get_size() == 64)
3705     {
3706       file_header_size = elfcpp::Elf_sizes<64>::ehdr_size;
3707       segment_headers_size = segment_count * elfcpp::Elf_sizes<64>::phdr_size;
3708     }
3709   else
3710     gold_unreachable();
3711 
3712   return file_header_size + segment_headers_size;
3713 }
3714 
3715 // Return the amount we have to subtract from the LMA to accommodate
3716 // headers of the given size.  The complication is that the file
3717 // header have to be at the start of a page, as otherwise it will not
3718 // be at the start of the file.
3719 
3720 uint64_t
3721 Script_sections::header_size_adjustment(uint64_t lma,
3722 					size_t sizeof_headers) const
3723 {
3724   const uint64_t abi_pagesize = parameters->target().abi_pagesize();
3725   uint64_t hdr_lma = lma - sizeof_headers;
3726   hdr_lma &= ~(abi_pagesize - 1);
3727   return lma - hdr_lma;
3728 }
3729 
3730 // Create the PT_LOAD segments when using a SECTIONS clause.  Returns
3731 // the segment which should hold the file header and segment headers,
3732 // if any.
3733 
3734 Output_segment*
3735 Script_sections::create_segments(Layout* layout, uint64_t dot_alignment)
3736 {
3737   gold_assert(this->saw_sections_clause_);
3738 
3739   if (parameters->options().relocatable())
3740     return NULL;
3741 
3742   if (this->saw_phdrs_clause())
3743     return create_segments_from_phdrs_clause(layout, dot_alignment);
3744 
3745   Layout::Section_list sections;
3746   layout->get_allocated_sections(&sections);
3747 
3748   // Sort the sections by address.
3749   std::stable_sort(sections.begin(), sections.end(),
3750 		   Sort_output_sections(this->sections_elements_));
3751 
3752   this->create_note_and_tls_segments(layout, &sections);
3753 
3754   // Walk through the sections adding them to PT_LOAD segments.
3755   const uint64_t abi_pagesize = parameters->target().abi_pagesize();
3756   Output_segment* first_seg = NULL;
3757   Output_segment* current_seg = NULL;
3758   bool is_current_seg_readonly = true;
3759   Layout::Section_list::iterator plast = sections.end();
3760   uint64_t last_vma = 0;
3761   uint64_t last_lma = 0;
3762   uint64_t last_size = 0;
3763   for (Layout::Section_list::iterator p = sections.begin();
3764        p != sections.end();
3765        ++p)
3766     {
3767       const uint64_t vma = (*p)->address();
3768       const uint64_t lma = ((*p)->has_load_address()
3769 			    ? (*p)->load_address()
3770 			    : vma);
3771       const uint64_t size = (*p)->current_data_size();
3772 
3773       bool need_new_segment;
3774       if (current_seg == NULL)
3775 	need_new_segment = true;
3776       else if (lma - vma != last_lma - last_vma)
3777 	{
3778 	  // This section has a different LMA relationship than the
3779 	  // last one; we need a new segment.
3780 	  need_new_segment = true;
3781 	}
3782       else if (align_address(last_lma + last_size, abi_pagesize)
3783 	       < align_address(lma, abi_pagesize))
3784 	{
3785 	  // Putting this section in the segment would require
3786 	  // skipping a page.
3787 	  need_new_segment = true;
3788 	}
3789       else if (is_bss_section(*plast) && !is_bss_section(*p))
3790 	{
3791 	  // A non-BSS section can not follow a BSS section in the
3792 	  // same segment.
3793 	  need_new_segment = true;
3794 	}
3795       else if (is_current_seg_readonly
3796 	       && ((*p)->flags() & elfcpp::SHF_WRITE) != 0
3797 	       && !parameters->options().omagic())
3798 	{
3799 	  // Don't put a writable section in the same segment as a
3800 	  // non-writable section.
3801 	  need_new_segment = true;
3802 	}
3803       else
3804 	{
3805 	  // Otherwise, reuse the existing segment.
3806 	  need_new_segment = false;
3807 	}
3808 
3809       elfcpp::Elf_Word seg_flags =
3810 	Layout::section_flags_to_segment((*p)->flags());
3811 
3812       if (need_new_segment)
3813 	{
3814 	  current_seg = layout->make_output_segment(elfcpp::PT_LOAD,
3815 						    seg_flags);
3816 	  current_seg->set_addresses(vma, lma);
3817 	  current_seg->set_minimum_p_align(dot_alignment);
3818 	  if (first_seg == NULL)
3819 	    first_seg = current_seg;
3820 	  is_current_seg_readonly = true;
3821 	}
3822 
3823       current_seg->add_output_section_to_load(layout, *p, seg_flags);
3824 
3825       if (((*p)->flags() & elfcpp::SHF_WRITE) != 0)
3826 	is_current_seg_readonly = false;
3827 
3828       plast = p;
3829       last_vma = vma;
3830       last_lma = lma;
3831       last_size = size;
3832     }
3833 
3834   // An ELF program should work even if the program headers are not in
3835   // a PT_LOAD segment.  However, it appears that the Linux kernel
3836   // does not set the AT_PHDR auxiliary entry in that case.  It sets
3837   // the load address to p_vaddr - p_offset of the first PT_LOAD
3838   // segment.  It then sets AT_PHDR to the load address plus the
3839   // offset to the program headers, e_phoff in the file header.  This
3840   // fails when the program headers appear in the file before the
3841   // first PT_LOAD segment.  Therefore, we always create a PT_LOAD
3842   // segment to hold the file header and the program headers.  This is
3843   // effectively what the GNU linker does, and it is slightly more
3844   // efficient in any case.  We try to use the first PT_LOAD segment
3845   // if we can, otherwise we make a new one.
3846 
3847   if (first_seg == NULL)
3848     return NULL;
3849 
3850   // -n or -N mean that the program is not demand paged and there is
3851   // no need to put the program headers in a PT_LOAD segment.
3852   if (parameters->options().nmagic() || parameters->options().omagic())
3853     return NULL;
3854 
3855   size_t sizeof_headers = this->total_header_size(layout);
3856 
3857   uint64_t vma = first_seg->vaddr();
3858   uint64_t lma = first_seg->paddr();
3859 
3860   uint64_t subtract = this->header_size_adjustment(lma, sizeof_headers);
3861 
3862   if ((lma & (abi_pagesize - 1)) >= sizeof_headers)
3863     {
3864       first_seg->set_addresses(vma - subtract, lma - subtract);
3865       return first_seg;
3866     }
3867 
3868   // If there is no room to squeeze in the headers, then punt.  The
3869   // resulting executable probably won't run on GNU/Linux, but we
3870   // trust that the user knows what they are doing.
3871   if (lma < subtract || vma < subtract)
3872     return NULL;
3873 
3874   // If memory regions have been specified and the address range
3875   // we are about to use is not contained within any region then
3876   // issue a warning message about the segment we are going to
3877   // create.  It will be outside of any region and so possibly
3878   // using non-existent or protected memory.  We test LMA rather
3879   // than VMA since we assume that the headers will never be
3880   // relocated.
3881   if (this->memory_regions_ != NULL
3882       && !this->block_in_region (NULL, layout, lma - subtract, subtract))
3883     gold_warning(_("creating a segment to contain the file and program"
3884 		   " headers outside of any MEMORY region"));
3885 
3886   Output_segment* load_seg = layout->make_output_segment(elfcpp::PT_LOAD,
3887 							 elfcpp::PF_R);
3888   load_seg->set_addresses(vma - subtract, lma - subtract);
3889 
3890   return load_seg;
3891 }
3892 
3893 // Create a PT_NOTE segment for each SHT_NOTE section and a PT_TLS
3894 // segment if there are any SHT_TLS sections.
3895 
3896 void
3897 Script_sections::create_note_and_tls_segments(
3898     Layout* layout,
3899     const Layout::Section_list* sections)
3900 {
3901   gold_assert(!this->saw_phdrs_clause());
3902 
3903   bool saw_tls = false;
3904   for (Layout::Section_list::const_iterator p = sections->begin();
3905        p != sections->end();
3906        ++p)
3907     {
3908       if ((*p)->type() == elfcpp::SHT_NOTE)
3909 	{
3910 	  elfcpp::Elf_Word seg_flags =
3911 	    Layout::section_flags_to_segment((*p)->flags());
3912 	  Output_segment* oseg = layout->make_output_segment(elfcpp::PT_NOTE,
3913 							     seg_flags);
3914 	  oseg->add_output_section_to_nonload(*p, seg_flags);
3915 
3916 	  // Incorporate any subsequent SHT_NOTE sections, in the
3917 	  // hopes that the script is sensible.
3918 	  Layout::Section_list::const_iterator pnext = p + 1;
3919 	  while (pnext != sections->end()
3920 		 && (*pnext)->type() == elfcpp::SHT_NOTE)
3921 	    {
3922 	      seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
3923 	      oseg->add_output_section_to_nonload(*pnext, seg_flags);
3924 	      p = pnext;
3925 	      ++pnext;
3926 	    }
3927 	}
3928 
3929       if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
3930 	{
3931 	  if (saw_tls)
3932 	    gold_error(_("TLS sections are not adjacent"));
3933 
3934 	  elfcpp::Elf_Word seg_flags =
3935 	    Layout::section_flags_to_segment((*p)->flags());
3936 	  Output_segment* oseg = layout->make_output_segment(elfcpp::PT_TLS,
3937 							     seg_flags);
3938 	  oseg->add_output_section_to_nonload(*p, seg_flags);
3939 
3940 	  Layout::Section_list::const_iterator pnext = p + 1;
3941 	  while (pnext != sections->end()
3942 		 && ((*pnext)->flags() & elfcpp::SHF_TLS) != 0)
3943 	    {
3944 	      seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
3945 	      oseg->add_output_section_to_nonload(*pnext, seg_flags);
3946 	      p = pnext;
3947 	      ++pnext;
3948 	    }
3949 
3950 	  saw_tls = true;
3951 	}
3952 
3953       // If we are making a shared library, and we see a section named
3954       // .interp then put the .interp section in a PT_INTERP segment.
3955       // This is for GNU ld compatibility.
3956       if (strcmp((*p)->name(), ".interp") == 0)
3957 	{
3958 	  elfcpp::Elf_Word seg_flags =
3959 	    Layout::section_flags_to_segment((*p)->flags());
3960 	  Output_segment* oseg = layout->make_output_segment(elfcpp::PT_INTERP,
3961 							     seg_flags);
3962 	  oseg->add_output_section_to_nonload(*p, seg_flags);
3963 	}
3964     }
3965 }
3966 
3967 // Add a program header.  The PHDRS clause is syntactically distinct
3968 // from the SECTIONS clause, but we implement it with the SECTIONS
3969 // support because PHDRS is useless if there is no SECTIONS clause.
3970 
3971 void
3972 Script_sections::add_phdr(const char* name, size_t namelen, unsigned int type,
3973 			  bool includes_filehdr, bool includes_phdrs,
3974 			  bool is_flags_valid, unsigned int flags,
3975 			  Expression* load_address)
3976 {
3977   if (this->phdrs_elements_ == NULL)
3978     this->phdrs_elements_ = new Phdrs_elements();
3979   this->phdrs_elements_->push_back(new Phdrs_element(name, namelen, type,
3980 						     includes_filehdr,
3981 						     includes_phdrs,
3982 						     is_flags_valid, flags,
3983 						     load_address));
3984 }
3985 
3986 // Return the number of segments we expect to create based on the
3987 // SECTIONS clause.  This is used to implement SIZEOF_HEADERS.
3988 
3989 size_t
3990 Script_sections::expected_segment_count(const Layout* layout) const
3991 {
3992   if (this->saw_phdrs_clause())
3993     return this->phdrs_elements_->size();
3994 
3995   Layout::Section_list sections;
3996   layout->get_allocated_sections(&sections);
3997 
3998   // We assume that we will need two PT_LOAD segments.
3999   size_t ret = 2;
4000 
4001   bool saw_note = false;
4002   bool saw_tls = false;
4003   for (Layout::Section_list::const_iterator p = sections.begin();
4004        p != sections.end();
4005        ++p)
4006     {
4007       if ((*p)->type() == elfcpp::SHT_NOTE)
4008 	{
4009 	  // Assume that all note sections will fit into a single
4010 	  // PT_NOTE segment.
4011 	  if (!saw_note)
4012 	    {
4013 	      ++ret;
4014 	      saw_note = true;
4015 	    }
4016 	}
4017       else if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
4018 	{
4019 	  // There can only be one PT_TLS segment.
4020 	  if (!saw_tls)
4021 	    {
4022 	      ++ret;
4023 	      saw_tls = true;
4024 	    }
4025 	}
4026     }
4027 
4028   return ret;
4029 }
4030 
4031 // Create the segments from a PHDRS clause.  Return the segment which
4032 // should hold the file header and program headers, if any.
4033 
4034 Output_segment*
4035 Script_sections::create_segments_from_phdrs_clause(Layout* layout,
4036 						   uint64_t dot_alignment)
4037 {
4038   this->attach_sections_using_phdrs_clause(layout);
4039   return this->set_phdrs_clause_addresses(layout, dot_alignment);
4040 }
4041 
4042 // Create the segments from the PHDRS clause, and put the output
4043 // sections in them.
4044 
4045 void
4046 Script_sections::attach_sections_using_phdrs_clause(Layout* layout)
4047 {
4048   typedef std::map<std::string, Output_segment*> Name_to_segment;
4049   Name_to_segment name_to_segment;
4050   for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4051        p != this->phdrs_elements_->end();
4052        ++p)
4053     name_to_segment[(*p)->name()] = (*p)->create_segment(layout);
4054 
4055   // Walk through the output sections and attach them to segments.
4056   // Output sections in the script which do not list segments are
4057   // attached to the same set of segments as the immediately preceding
4058   // output section.
4059 
4060   String_list* phdr_names = NULL;
4061   bool load_segments_only = false;
4062   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
4063        p != this->sections_elements_->end();
4064        ++p)
4065     {
4066       bool is_orphan;
4067       String_list* old_phdr_names = phdr_names;
4068       Output_section* os = (*p)->allocate_to_segment(&phdr_names, &is_orphan);
4069       if (os == NULL)
4070 	continue;
4071 
4072       elfcpp::Elf_Word seg_flags =
4073 	Layout::section_flags_to_segment(os->flags());
4074 
4075       if (phdr_names == NULL)
4076 	{
4077 	  // Don't worry about empty orphan sections.
4078 	  if (is_orphan && os->current_data_size() > 0)
4079 	    gold_error(_("allocated section %s not in any segment"),
4080 		       os->name());
4081 
4082 	  // To avoid later crashes drop this section into the first
4083 	  // PT_LOAD segment.
4084 	  for (Phdrs_elements::const_iterator ppe =
4085 		 this->phdrs_elements_->begin();
4086 	       ppe != this->phdrs_elements_->end();
4087 	       ++ppe)
4088 	    {
4089 	      Output_segment* oseg = (*ppe)->segment();
4090 	      if (oseg->type() == elfcpp::PT_LOAD)
4091 		{
4092 		  oseg->add_output_section_to_load(layout, os, seg_flags);
4093 		  break;
4094 		}
4095 	    }
4096 
4097 	  continue;
4098 	}
4099 
4100       // We see a list of segments names.  Disable PT_LOAD segment only
4101       // filtering.
4102       if (old_phdr_names != phdr_names)
4103 	load_segments_only = false;
4104 
4105       // If this is an orphan section--one that was not explicitly
4106       // mentioned in the linker script--then it should not inherit
4107       // any segment type other than PT_LOAD.  Otherwise, e.g., the
4108       // PT_INTERP segment will pick up following orphan sections,
4109       // which does not make sense.  If this is not an orphan section,
4110       // we trust the linker script.
4111       if (is_orphan)
4112 	{
4113 	  // Enable PT_LOAD segments only filtering until we see another
4114 	  // list of segment names.
4115 	  load_segments_only = true;
4116 	}
4117 
4118       bool in_load_segment = false;
4119       for (String_list::const_iterator q = phdr_names->begin();
4120 	   q != phdr_names->end();
4121 	   ++q)
4122 	{
4123 	  Name_to_segment::const_iterator r = name_to_segment.find(*q);
4124 	  if (r == name_to_segment.end())
4125 	    gold_error(_("no segment %s"), q->c_str());
4126 	  else
4127 	    {
4128 	      if (load_segments_only
4129 		  && r->second->type() != elfcpp::PT_LOAD)
4130 		continue;
4131 
4132 	      if (r->second->type() != elfcpp::PT_LOAD)
4133 		r->second->add_output_section_to_nonload(os, seg_flags);
4134 	      else
4135 		{
4136 		  r->second->add_output_section_to_load(layout, os, seg_flags);
4137 		  if (in_load_segment)
4138 		    gold_error(_("section in two PT_LOAD segments"));
4139 		  in_load_segment = true;
4140 		}
4141 	    }
4142 	}
4143 
4144       if (!in_load_segment)
4145 	gold_error(_("allocated section not in any PT_LOAD segment"));
4146     }
4147 }
4148 
4149 // Set the addresses for segments created from a PHDRS clause.  Return
4150 // the segment which should hold the file header and program headers,
4151 // if any.
4152 
4153 Output_segment*
4154 Script_sections::set_phdrs_clause_addresses(Layout* layout,
4155 					    uint64_t dot_alignment)
4156 {
4157   Output_segment* load_seg = NULL;
4158   for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4159        p != this->phdrs_elements_->end();
4160        ++p)
4161     {
4162       // Note that we have to set the flags after adding the output
4163       // sections to the segment, as adding an output segment can
4164       // change the flags.
4165       (*p)->set_flags_if_valid();
4166 
4167       Output_segment* oseg = (*p)->segment();
4168 
4169       if (oseg->type() != elfcpp::PT_LOAD)
4170 	{
4171 	  // The addresses of non-PT_LOAD segments are set from the
4172 	  // PT_LOAD segments.
4173 	  if ((*p)->has_load_address())
4174 	    gold_error(_("may only specify load address for PT_LOAD segment"));
4175 	  continue;
4176 	}
4177 
4178       oseg->set_minimum_p_align(dot_alignment);
4179 
4180       // The output sections should have addresses from the SECTIONS
4181       // clause.  The addresses don't have to be in order, so find the
4182       // one with the lowest load address.  Use that to set the
4183       // address of the segment.
4184 
4185       Output_section* osec = oseg->section_with_lowest_load_address();
4186       if (osec == NULL)
4187 	{
4188 	  oseg->set_addresses(0, 0);
4189 	  continue;
4190 	}
4191 
4192       uint64_t vma = osec->address();
4193       uint64_t lma = osec->has_load_address() ? osec->load_address() : vma;
4194 
4195       // Override the load address of the section with the load
4196       // address specified for the segment.
4197       if ((*p)->has_load_address())
4198 	{
4199 	  if (osec->has_load_address())
4200 	    gold_warning(_("PHDRS load address overrides "
4201 			   "section %s load address"),
4202 			 osec->name());
4203 
4204 	  lma = (*p)->load_address();
4205 	}
4206 
4207       bool headers = (*p)->includes_filehdr() && (*p)->includes_phdrs();
4208       if (!headers && ((*p)->includes_filehdr() || (*p)->includes_phdrs()))
4209 	{
4210 	  // We could support this if we wanted to.
4211 	  gold_error(_("using only one of FILEHDR and PHDRS is "
4212 		       "not currently supported"));
4213 	}
4214       if (headers)
4215 	{
4216 	  size_t sizeof_headers = this->total_header_size(layout);
4217 	  uint64_t subtract = this->header_size_adjustment(lma,
4218 							   sizeof_headers);
4219 	  if (lma >= subtract && vma >= subtract)
4220 	    {
4221 	      lma -= subtract;
4222 	      vma -= subtract;
4223 	    }
4224 	  else
4225 	    {
4226 	      gold_error(_("sections loaded on first page without room "
4227 			   "for file and program headers "
4228 			   "are not supported"));
4229 	    }
4230 
4231 	  if (load_seg != NULL)
4232 	    gold_error(_("using FILEHDR and PHDRS on more than one "
4233 			 "PT_LOAD segment is not currently supported"));
4234 	  load_seg = oseg;
4235 	}
4236 
4237       oseg->set_addresses(vma, lma);
4238     }
4239 
4240   return load_seg;
4241 }
4242 
4243 // Add the file header and segment headers to non-load segments
4244 // specified in the PHDRS clause.
4245 
4246 void
4247 Script_sections::put_headers_in_phdrs(Output_data* file_header,
4248 				      Output_data* segment_headers)
4249 {
4250   gold_assert(this->saw_phdrs_clause());
4251   for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
4252        p != this->phdrs_elements_->end();
4253        ++p)
4254     {
4255       if ((*p)->type() != elfcpp::PT_LOAD)
4256 	{
4257 	  if ((*p)->includes_phdrs())
4258 	    (*p)->segment()->add_initial_output_data(segment_headers);
4259 	  if ((*p)->includes_filehdr())
4260 	    (*p)->segment()->add_initial_output_data(file_header);
4261 	}
4262     }
4263 }
4264 
4265 // Look for an output section by name and return the address, the load
4266 // address, the alignment, and the size.  This is used when an
4267 // expression refers to an output section which was not actually
4268 // created.  This returns true if the section was found, false
4269 // otherwise.
4270 
4271 bool
4272 Script_sections::get_output_section_info(const char* name, uint64_t* address,
4273                                          uint64_t* load_address,
4274                                          uint64_t* addralign,
4275                                          uint64_t* size) const
4276 {
4277   if (!this->saw_sections_clause_)
4278     return false;
4279   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
4280        p != this->sections_elements_->end();
4281        ++p)
4282     if ((*p)->get_output_section_info(name, address, load_address, addralign,
4283                                       size))
4284       return true;
4285   return false;
4286 }
4287 
4288 // Release all Output_segments.  This remove all pointers to all
4289 // Output_segments.
4290 
4291 void
4292 Script_sections::release_segments()
4293 {
4294   if (this->saw_phdrs_clause())
4295     {
4296       for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4297 	   p != this->phdrs_elements_->end();
4298 	   ++p)
4299 	(*p)->release_segment();
4300     }
4301 }
4302 
4303 // Print the SECTIONS clause to F for debugging.
4304 
4305 void
4306 Script_sections::print(FILE* f) const
4307 {
4308   if (this->phdrs_elements_ != NULL)
4309     {
4310       fprintf(f, "PHDRS {\n");
4311       for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4312 	   p != this->phdrs_elements_->end();
4313 	   ++p)
4314 	(*p)->print(f);
4315       fprintf(f, "}\n");
4316     }
4317 
4318   if (this->memory_regions_ != NULL)
4319     {
4320       fprintf(f, "MEMORY {\n");
4321       for (Memory_regions::const_iterator m = this->memory_regions_->begin();
4322 	   m != this->memory_regions_->end();
4323 	   ++m)
4324 	(*m)->print(f);
4325       fprintf(f, "}\n");
4326     }
4327 
4328   if (!this->saw_sections_clause_)
4329     return;
4330 
4331   fprintf(f, "SECTIONS {\n");
4332 
4333   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
4334        p != this->sections_elements_->end();
4335        ++p)
4336     (*p)->print(f);
4337 
4338   fprintf(f, "}\n");
4339 }
4340 
4341 } // End namespace gold.
4342