1 // script-sections.cc -- linker script SECTIONS for gold 2 3 // Copyright 2008, 2009, 2010, 2011 Free Software Foundation, Inc. 4 // Written by Ian Lance Taylor <iant@google.com>. 5 6 // This file is part of gold. 7 8 // This program is free software; you can redistribute it and/or modify 9 // it under the terms of the GNU General Public License as published by 10 // the Free Software Foundation; either version 3 of the License, or 11 // (at your option) any later version. 12 13 // This program is distributed in the hope that it will be useful, 14 // but WITHOUT ANY WARRANTY; without even the implied warranty of 15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 // GNU General Public License for more details. 17 18 // You should have received a copy of the GNU General Public License 19 // along with this program; if not, write to the Free Software 20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 21 // MA 02110-1301, USA. 22 23 #include "gold.h" 24 25 #include <cstring> 26 #include <algorithm> 27 #include <list> 28 #include <map> 29 #include <string> 30 #include <vector> 31 #include <fnmatch.h> 32 33 #include "parameters.h" 34 #include "object.h" 35 #include "layout.h" 36 #include "output.h" 37 #include "script-c.h" 38 #include "script.h" 39 #include "script-sections.h" 40 41 // Support for the SECTIONS clause in linker scripts. 42 43 namespace gold 44 { 45 46 // A region of memory. 47 class Memory_region 48 { 49 public: 50 Memory_region(const char* name, size_t namelen, unsigned int attributes, 51 Expression* start, Expression* length) 52 : name_(name, namelen), 53 attributes_(attributes), 54 start_(start), 55 length_(length), 56 current_offset_(0), 57 vma_sections_(), 58 lma_sections_(), 59 last_section_(NULL) 60 { } 61 62 // Return the name of this region. 63 const std::string& 64 name() const 65 { return this->name_; } 66 67 // Return the start address of this region. 68 Expression* 69 start_address() const 70 { return this->start_; } 71 72 // Return the length of this region. 73 Expression* 74 length() const 75 { return this->length_; } 76 77 // Print the region (when debugging). 78 void 79 print(FILE*) const; 80 81 // Return true if <name,namelen> matches this region. 82 bool 83 name_match(const char* name, size_t namelen) 84 { 85 return (this->name_.length() == namelen 86 && strncmp(this->name_.c_str(), name, namelen) == 0); 87 } 88 89 Expression* 90 get_current_address() const 91 { 92 return 93 script_exp_binary_add(this->start_, 94 script_exp_integer(this->current_offset_)); 95 } 96 97 void 98 increment_offset(std::string section_name, uint64_t amount, 99 const Symbol_table* symtab, const Layout* layout) 100 { 101 this->current_offset_ += amount; 102 103 if (this->current_offset_ 104 > this->length_->eval(symtab, layout, false)) 105 gold_error(_("section %s overflows end of region %s"), 106 section_name.c_str(), this->name_.c_str()); 107 } 108 109 // Returns true iff there is room left in this region 110 // for AMOUNT more bytes of data. 111 bool 112 has_room_for(const Symbol_table* symtab, const Layout* layout, 113 uint64_t amount) const 114 { 115 return (this->current_offset_ + amount 116 < this->length_->eval(symtab, layout, false)); 117 } 118 119 // Return true if the provided section flags 120 // are compatible with this region's attributes. 121 bool 122 attributes_compatible(elfcpp::Elf_Xword flags, elfcpp::Elf_Xword type) const; 123 124 void 125 add_section(Output_section_definition* sec, bool vma) 126 { 127 if (vma) 128 this->vma_sections_.push_back(sec); 129 else 130 this->lma_sections_.push_back(sec); 131 } 132 133 typedef std::vector<Output_section_definition*> Section_list; 134 135 // Return the start of the list of sections 136 // whose VMAs are taken from this region. 137 Section_list::const_iterator 138 get_vma_section_list_start() const 139 { return this->vma_sections_.begin(); } 140 141 // Return the start of the list of sections 142 // whose LMAs are taken from this region. 143 Section_list::const_iterator 144 get_lma_section_list_start() const 145 { return this->lma_sections_.begin(); } 146 147 // Return the end of the list of sections 148 // whose VMAs are taken from this region. 149 Section_list::const_iterator 150 get_vma_section_list_end() const 151 { return this->vma_sections_.end(); } 152 153 // Return the end of the list of sections 154 // whose LMAs are taken from this region. 155 Section_list::const_iterator 156 get_lma_section_list_end() const 157 { return this->lma_sections_.end(); } 158 159 Output_section_definition* 160 get_last_section() const 161 { return this->last_section_; } 162 163 void 164 set_last_section(Output_section_definition* sec) 165 { this->last_section_ = sec; } 166 167 private: 168 169 std::string name_; 170 unsigned int attributes_; 171 Expression* start_; 172 Expression* length_; 173 // The offset to the next free byte in the region. 174 // Note - for compatibility with GNU LD we only maintain one offset 175 // regardless of whether the region is being used for VMA values, 176 // LMA values, or both. 177 uint64_t current_offset_; 178 // A list of sections whose VMAs are set inside this region. 179 Section_list vma_sections_; 180 // A list of sections whose LMAs are set inside this region. 181 Section_list lma_sections_; 182 // The latest section to make use of this region. 183 Output_section_definition* last_section_; 184 }; 185 186 // Return true if the provided section flags 187 // are compatible with this region's attributes. 188 189 bool 190 Memory_region::attributes_compatible(elfcpp::Elf_Xword flags, 191 elfcpp::Elf_Xword type) const 192 { 193 unsigned int attrs = this->attributes_; 194 195 // No attributes means that this region is not compatible with anything. 196 if (attrs == 0) 197 return false; 198 199 bool match = true; 200 do 201 { 202 switch (attrs & - attrs) 203 { 204 case MEM_EXECUTABLE: 205 if ((flags & elfcpp::SHF_EXECINSTR) == 0) 206 match = false; 207 break; 208 209 case MEM_WRITEABLE: 210 if ((flags & elfcpp::SHF_WRITE) == 0) 211 match = false; 212 break; 213 214 case MEM_READABLE: 215 // All sections are presumed readable. 216 break; 217 218 case MEM_ALLOCATABLE: 219 if ((flags & elfcpp::SHF_ALLOC) == 0) 220 match = false; 221 break; 222 223 case MEM_INITIALIZED: 224 if ((type & elfcpp::SHT_NOBITS) != 0) 225 match = false; 226 break; 227 } 228 attrs &= ~ (attrs & - attrs); 229 } 230 while (attrs != 0); 231 232 return match; 233 } 234 235 // Print a memory region. 236 237 void 238 Memory_region::print(FILE* f) const 239 { 240 fprintf(f, " %s", this->name_.c_str()); 241 242 unsigned int attrs = this->attributes_; 243 if (attrs != 0) 244 { 245 fprintf(f, " ("); 246 do 247 { 248 switch (attrs & - attrs) 249 { 250 case MEM_EXECUTABLE: fputc('x', f); break; 251 case MEM_WRITEABLE: fputc('w', f); break; 252 case MEM_READABLE: fputc('r', f); break; 253 case MEM_ALLOCATABLE: fputc('a', f); break; 254 case MEM_INITIALIZED: fputc('i', f); break; 255 default: 256 gold_unreachable(); 257 } 258 attrs &= ~ (attrs & - attrs); 259 } 260 while (attrs != 0); 261 fputc(')', f); 262 } 263 264 fprintf(f, " : origin = "); 265 this->start_->print(f); 266 fprintf(f, ", length = "); 267 this->length_->print(f); 268 fprintf(f, "\n"); 269 } 270 271 // Manage orphan sections. This is intended to be largely compatible 272 // with the GNU linker. The Linux kernel implicitly relies on 273 // something similar to the GNU linker's orphan placement. We 274 // originally used a simpler scheme here, but it caused the kernel 275 // build to fail, and was also rather inefficient. 276 277 class Orphan_section_placement 278 { 279 private: 280 typedef Script_sections::Elements_iterator Elements_iterator; 281 282 public: 283 Orphan_section_placement(); 284 285 // Handle an output section during initialization of this mapping. 286 void 287 output_section_init(const std::string& name, Output_section*, 288 Elements_iterator location); 289 290 // Initialize the last location. 291 void 292 last_init(Elements_iterator location); 293 294 // Set *PWHERE to the address of an iterator pointing to the 295 // location to use for an orphan section. Return true if the 296 // iterator has a value, false otherwise. 297 bool 298 find_place(Output_section*, Elements_iterator** pwhere); 299 300 // Return the iterator being used for sections at the very end of 301 // the linker script. 302 Elements_iterator 303 last_place() const; 304 305 private: 306 // The places that we specifically recognize. This list is copied 307 // from the GNU linker. 308 enum Place_index 309 { 310 PLACE_TEXT, 311 PLACE_RODATA, 312 PLACE_DATA, 313 PLACE_TLS, 314 PLACE_TLS_BSS, 315 PLACE_BSS, 316 PLACE_REL, 317 PLACE_INTERP, 318 PLACE_NONALLOC, 319 PLACE_LAST, 320 PLACE_MAX 321 }; 322 323 // The information we keep for a specific place. 324 struct Place 325 { 326 // The name of sections for this place. 327 const char* name; 328 // Whether we have a location for this place. 329 bool have_location; 330 // The iterator for this place. 331 Elements_iterator location; 332 }; 333 334 // Initialize one place element. 335 void 336 initialize_place(Place_index, const char*); 337 338 // The places. 339 Place places_[PLACE_MAX]; 340 // True if this is the first call to output_section_init. 341 bool first_init_; 342 }; 343 344 // Initialize Orphan_section_placement. 345 346 Orphan_section_placement::Orphan_section_placement() 347 : first_init_(true) 348 { 349 this->initialize_place(PLACE_TEXT, ".text"); 350 this->initialize_place(PLACE_RODATA, ".rodata"); 351 this->initialize_place(PLACE_DATA, ".data"); 352 this->initialize_place(PLACE_TLS, NULL); 353 this->initialize_place(PLACE_TLS_BSS, NULL); 354 this->initialize_place(PLACE_BSS, ".bss"); 355 this->initialize_place(PLACE_REL, NULL); 356 this->initialize_place(PLACE_INTERP, ".interp"); 357 this->initialize_place(PLACE_NONALLOC, NULL); 358 this->initialize_place(PLACE_LAST, NULL); 359 } 360 361 // Initialize one place element. 362 363 void 364 Orphan_section_placement::initialize_place(Place_index index, const char* name) 365 { 366 this->places_[index].name = name; 367 this->places_[index].have_location = false; 368 } 369 370 // While initializing the Orphan_section_placement information, this 371 // is called once for each output section named in the linker script. 372 // If we found an output section during the link, it will be passed in 373 // OS. 374 375 void 376 Orphan_section_placement::output_section_init(const std::string& name, 377 Output_section* os, 378 Elements_iterator location) 379 { 380 bool first_init = this->first_init_; 381 this->first_init_ = false; 382 383 for (int i = 0; i < PLACE_MAX; ++i) 384 { 385 if (this->places_[i].name != NULL && this->places_[i].name == name) 386 { 387 if (this->places_[i].have_location) 388 { 389 // We have already seen a section with this name. 390 return; 391 } 392 393 this->places_[i].location = location; 394 this->places_[i].have_location = true; 395 396 // If we just found the .bss section, restart the search for 397 // an unallocated section. This follows the GNU linker's 398 // behaviour. 399 if (i == PLACE_BSS) 400 this->places_[PLACE_NONALLOC].have_location = false; 401 402 return; 403 } 404 } 405 406 // Relocation sections. 407 if (!this->places_[PLACE_REL].have_location 408 && os != NULL 409 && (os->type() == elfcpp::SHT_REL || os->type() == elfcpp::SHT_RELA) 410 && (os->flags() & elfcpp::SHF_ALLOC) != 0) 411 { 412 this->places_[PLACE_REL].location = location; 413 this->places_[PLACE_REL].have_location = true; 414 } 415 416 // We find the location for unallocated sections by finding the 417 // first debugging or comment section after the BSS section (if 418 // there is one). 419 if (!this->places_[PLACE_NONALLOC].have_location 420 && (name == ".comment" || Layout::is_debug_info_section(name.c_str()))) 421 { 422 // We add orphan sections after the location in PLACES_. We 423 // want to store unallocated sections before LOCATION. If this 424 // is the very first section, we can't use it. 425 if (!first_init) 426 { 427 --location; 428 this->places_[PLACE_NONALLOC].location = location; 429 this->places_[PLACE_NONALLOC].have_location = true; 430 } 431 } 432 } 433 434 // Initialize the last location. 435 436 void 437 Orphan_section_placement::last_init(Elements_iterator location) 438 { 439 this->places_[PLACE_LAST].location = location; 440 this->places_[PLACE_LAST].have_location = true; 441 } 442 443 // Set *PWHERE to the address of an iterator pointing to the location 444 // to use for an orphan section. Return true if the iterator has a 445 // value, false otherwise. 446 447 bool 448 Orphan_section_placement::find_place(Output_section* os, 449 Elements_iterator** pwhere) 450 { 451 // Figure out where OS should go. This is based on the GNU linker 452 // code. FIXME: The GNU linker handles small data sections 453 // specially, but we don't. 454 elfcpp::Elf_Word type = os->type(); 455 elfcpp::Elf_Xword flags = os->flags(); 456 Place_index index; 457 if ((flags & elfcpp::SHF_ALLOC) == 0 458 && !Layout::is_debug_info_section(os->name())) 459 index = PLACE_NONALLOC; 460 else if ((flags & elfcpp::SHF_ALLOC) == 0) 461 index = PLACE_LAST; 462 else if (type == elfcpp::SHT_NOTE) 463 index = PLACE_INTERP; 464 else if ((flags & elfcpp::SHF_TLS) != 0) 465 { 466 if (type == elfcpp::SHT_NOBITS) 467 index = PLACE_TLS_BSS; 468 else 469 index = PLACE_TLS; 470 } 471 else if (type == elfcpp::SHT_NOBITS) 472 index = PLACE_BSS; 473 else if ((flags & elfcpp::SHF_WRITE) != 0) 474 index = PLACE_DATA; 475 else if (type == elfcpp::SHT_REL || type == elfcpp::SHT_RELA) 476 index = PLACE_REL; 477 else if ((flags & elfcpp::SHF_EXECINSTR) == 0) 478 index = PLACE_RODATA; 479 else 480 index = PLACE_TEXT; 481 482 // If we don't have a location yet, try to find one based on a 483 // plausible ordering of sections. 484 if (!this->places_[index].have_location) 485 { 486 Place_index follow; 487 switch (index) 488 { 489 default: 490 follow = PLACE_MAX; 491 break; 492 case PLACE_RODATA: 493 follow = PLACE_TEXT; 494 break; 495 case PLACE_BSS: 496 follow = PLACE_DATA; 497 break; 498 case PLACE_REL: 499 follow = PLACE_TEXT; 500 break; 501 case PLACE_INTERP: 502 follow = PLACE_TEXT; 503 break; 504 case PLACE_TLS: 505 follow = PLACE_DATA; 506 break; 507 case PLACE_TLS_BSS: 508 follow = PLACE_TLS; 509 if (!this->places_[PLACE_TLS].have_location) 510 follow = PLACE_DATA; 511 break; 512 } 513 if (follow != PLACE_MAX && this->places_[follow].have_location) 514 { 515 // Set the location of INDEX to the location of FOLLOW. The 516 // location of INDEX will then be incremented by the caller, 517 // so anything in INDEX will continue to be after anything 518 // in FOLLOW. 519 this->places_[index].location = this->places_[follow].location; 520 this->places_[index].have_location = true; 521 } 522 } 523 524 *pwhere = &this->places_[index].location; 525 bool ret = this->places_[index].have_location; 526 527 // The caller will set the location. 528 this->places_[index].have_location = true; 529 530 return ret; 531 } 532 533 // Return the iterator being used for sections at the very end of the 534 // linker script. 535 536 Orphan_section_placement::Elements_iterator 537 Orphan_section_placement::last_place() const 538 { 539 gold_assert(this->places_[PLACE_LAST].have_location); 540 return this->places_[PLACE_LAST].location; 541 } 542 543 // An element in a SECTIONS clause. 544 545 class Sections_element 546 { 547 public: 548 Sections_element() 549 { } 550 551 virtual ~Sections_element() 552 { } 553 554 // Return whether an output section is relro. 555 virtual bool 556 is_relro() const 557 { return false; } 558 559 // Record that an output section is relro. 560 virtual void 561 set_is_relro() 562 { } 563 564 // Create any required output sections. The only real 565 // implementation is in Output_section_definition. 566 virtual void 567 create_sections(Layout*) 568 { } 569 570 // Add any symbol being defined to the symbol table. 571 virtual void 572 add_symbols_to_table(Symbol_table*) 573 { } 574 575 // Finalize symbols and check assertions. 576 virtual void 577 finalize_symbols(Symbol_table*, const Layout*, uint64_t*) 578 { } 579 580 // Return the output section name to use for an input file name and 581 // section name. This only real implementation is in 582 // Output_section_definition. 583 virtual const char* 584 output_section_name(const char*, const char*, Output_section***, 585 Script_sections::Section_type*) 586 { return NULL; } 587 588 // Initialize OSP with an output section. 589 virtual void 590 orphan_section_init(Orphan_section_placement*, 591 Script_sections::Elements_iterator) 592 { } 593 594 // Set section addresses. This includes applying assignments if the 595 // expression is an absolute value. 596 virtual void 597 set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*, 598 uint64_t*) 599 { } 600 601 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If 602 // this section is constrained, and the input sections do not match, 603 // return the constraint, and set *POSD. 604 virtual Section_constraint 605 check_constraint(Output_section_definition**) 606 { return CONSTRAINT_NONE; } 607 608 // See if this is the alternate output section for a constrained 609 // output section. If it is, transfer the Output_section and return 610 // true. Otherwise return false. 611 virtual bool 612 alternate_constraint(Output_section_definition*, Section_constraint) 613 { return false; } 614 615 // Get the list of segments to use for an allocated section when 616 // using a PHDRS clause. If this is an allocated section, return 617 // the Output_section, and set *PHDRS_LIST (the first parameter) to 618 // the list of PHDRS to which it should be attached. If the PHDRS 619 // were not specified, don't change *PHDRS_LIST. When not returning 620 // NULL, set *ORPHAN (the second parameter) according to whether 621 // this is an orphan section--one that is not mentioned in the 622 // linker script. 623 virtual Output_section* 624 allocate_to_segment(String_list**, bool*) 625 { return NULL; } 626 627 // Look for an output section by name and return the address, the 628 // load address, the alignment, and the size. This is used when an 629 // expression refers to an output section which was not actually 630 // created. This returns true if the section was found, false 631 // otherwise. The only real definition is for 632 // Output_section_definition. 633 virtual bool 634 get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*, 635 uint64_t*) const 636 { return false; } 637 638 // Return the associated Output_section if there is one. 639 virtual Output_section* 640 get_output_section() const 641 { return NULL; } 642 643 // Set the section's memory regions. 644 virtual void 645 set_memory_region(Memory_region*, bool) 646 { gold_error(_("Attempt to set a memory region for a non-output section")); } 647 648 // Print the element for debugging purposes. 649 virtual void 650 print(FILE* f) const = 0; 651 }; 652 653 // An assignment in a SECTIONS clause outside of an output section. 654 655 class Sections_element_assignment : public Sections_element 656 { 657 public: 658 Sections_element_assignment(const char* name, size_t namelen, 659 Expression* val, bool provide, bool hidden) 660 : assignment_(name, namelen, false, val, provide, hidden) 661 { } 662 663 // Add the symbol to the symbol table. 664 void 665 add_symbols_to_table(Symbol_table* symtab) 666 { this->assignment_.add_to_table(symtab); } 667 668 // Finalize the symbol. 669 void 670 finalize_symbols(Symbol_table* symtab, const Layout* layout, 671 uint64_t* dot_value) 672 { 673 this->assignment_.finalize_with_dot(symtab, layout, *dot_value, NULL); 674 } 675 676 // Set the section address. There is no section here, but if the 677 // value is absolute, we set the symbol. This permits us to use 678 // absolute symbols when setting dot. 679 void 680 set_section_addresses(Symbol_table* symtab, Layout* layout, 681 uint64_t* dot_value, uint64_t*, uint64_t*) 682 { 683 this->assignment_.set_if_absolute(symtab, layout, true, *dot_value, NULL); 684 } 685 686 // Print for debugging. 687 void 688 print(FILE* f) const 689 { 690 fprintf(f, " "); 691 this->assignment_.print(f); 692 } 693 694 private: 695 Symbol_assignment assignment_; 696 }; 697 698 // An assignment to the dot symbol in a SECTIONS clause outside of an 699 // output section. 700 701 class Sections_element_dot_assignment : public Sections_element 702 { 703 public: 704 Sections_element_dot_assignment(Expression* val) 705 : val_(val) 706 { } 707 708 // Finalize the symbol. 709 void 710 finalize_symbols(Symbol_table* symtab, const Layout* layout, 711 uint64_t* dot_value) 712 { 713 // We ignore the section of the result because outside of an 714 // output section definition the dot symbol is always considered 715 // to be absolute. 716 *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value, 717 NULL, NULL, NULL, false); 718 } 719 720 // Update the dot symbol while setting section addresses. 721 void 722 set_section_addresses(Symbol_table* symtab, Layout* layout, 723 uint64_t* dot_value, uint64_t* dot_alignment, 724 uint64_t* load_address) 725 { 726 *dot_value = this->val_->eval_with_dot(symtab, layout, false, *dot_value, 727 NULL, NULL, dot_alignment, false); 728 *load_address = *dot_value; 729 } 730 731 // Print for debugging. 732 void 733 print(FILE* f) const 734 { 735 fprintf(f, " . = "); 736 this->val_->print(f); 737 fprintf(f, "\n"); 738 } 739 740 private: 741 Expression* val_; 742 }; 743 744 // An assertion in a SECTIONS clause outside of an output section. 745 746 class Sections_element_assertion : public Sections_element 747 { 748 public: 749 Sections_element_assertion(Expression* check, const char* message, 750 size_t messagelen) 751 : assertion_(check, message, messagelen) 752 { } 753 754 // Check the assertion. 755 void 756 finalize_symbols(Symbol_table* symtab, const Layout* layout, uint64_t*) 757 { this->assertion_.check(symtab, layout); } 758 759 // Print for debugging. 760 void 761 print(FILE* f) const 762 { 763 fprintf(f, " "); 764 this->assertion_.print(f); 765 } 766 767 private: 768 Script_assertion assertion_; 769 }; 770 771 // An element in an output section in a SECTIONS clause. 772 773 class Output_section_element 774 { 775 public: 776 // A list of input sections. 777 typedef std::list<Output_section::Input_section> Input_section_list; 778 779 Output_section_element() 780 { } 781 782 virtual ~Output_section_element() 783 { } 784 785 // Return whether this element requires an output section to exist. 786 virtual bool 787 needs_output_section() const 788 { return false; } 789 790 // Add any symbol being defined to the symbol table. 791 virtual void 792 add_symbols_to_table(Symbol_table*) 793 { } 794 795 // Finalize symbols and check assertions. 796 virtual void 797 finalize_symbols(Symbol_table*, const Layout*, uint64_t*, Output_section**) 798 { } 799 800 // Return whether this element matches FILE_NAME and SECTION_NAME. 801 // The only real implementation is in Output_section_element_input. 802 virtual bool 803 match_name(const char*, const char*) const 804 { return false; } 805 806 // Set section addresses. This includes applying assignments if the 807 // expression is an absolute value. 808 virtual void 809 set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t, 810 uint64_t*, uint64_t*, Output_section**, std::string*, 811 Input_section_list*) 812 { } 813 814 // Print the element for debugging purposes. 815 virtual void 816 print(FILE* f) const = 0; 817 818 protected: 819 // Return a fill string that is LENGTH bytes long, filling it with 820 // FILL. 821 std::string 822 get_fill_string(const std::string* fill, section_size_type length) const; 823 }; 824 825 std::string 826 Output_section_element::get_fill_string(const std::string* fill, 827 section_size_type length) const 828 { 829 std::string this_fill; 830 this_fill.reserve(length); 831 while (this_fill.length() + fill->length() <= length) 832 this_fill += *fill; 833 if (this_fill.length() < length) 834 this_fill.append(*fill, 0, length - this_fill.length()); 835 return this_fill; 836 } 837 838 // A symbol assignment in an output section. 839 840 class Output_section_element_assignment : public Output_section_element 841 { 842 public: 843 Output_section_element_assignment(const char* name, size_t namelen, 844 Expression* val, bool provide, 845 bool hidden) 846 : assignment_(name, namelen, false, val, provide, hidden) 847 { } 848 849 // Add the symbol to the symbol table. 850 void 851 add_symbols_to_table(Symbol_table* symtab) 852 { this->assignment_.add_to_table(symtab); } 853 854 // Finalize the symbol. 855 void 856 finalize_symbols(Symbol_table* symtab, const Layout* layout, 857 uint64_t* dot_value, Output_section** dot_section) 858 { 859 this->assignment_.finalize_with_dot(symtab, layout, *dot_value, 860 *dot_section); 861 } 862 863 // Set the section address. There is no section here, but if the 864 // value is absolute, we set the symbol. This permits us to use 865 // absolute symbols when setting dot. 866 void 867 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*, 868 uint64_t, uint64_t* dot_value, uint64_t*, 869 Output_section** dot_section, std::string*, 870 Input_section_list*) 871 { 872 this->assignment_.set_if_absolute(symtab, layout, true, *dot_value, 873 *dot_section); 874 } 875 876 // Print for debugging. 877 void 878 print(FILE* f) const 879 { 880 fprintf(f, " "); 881 this->assignment_.print(f); 882 } 883 884 private: 885 Symbol_assignment assignment_; 886 }; 887 888 // An assignment to the dot symbol in an output section. 889 890 class Output_section_element_dot_assignment : public Output_section_element 891 { 892 public: 893 Output_section_element_dot_assignment(Expression* val) 894 : val_(val) 895 { } 896 897 // An assignment to dot within an output section is enough to force 898 // the output section to exist. 899 bool 900 needs_output_section() const 901 { return true; } 902 903 // Finalize the symbol. 904 void 905 finalize_symbols(Symbol_table* symtab, const Layout* layout, 906 uint64_t* dot_value, Output_section** dot_section) 907 { 908 *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value, 909 *dot_section, dot_section, NULL, 910 true); 911 } 912 913 // Update the dot symbol while setting section addresses. 914 void 915 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*, 916 uint64_t, uint64_t* dot_value, uint64_t*, 917 Output_section** dot_section, std::string*, 918 Input_section_list*); 919 920 // Print for debugging. 921 void 922 print(FILE* f) const 923 { 924 fprintf(f, " . = "); 925 this->val_->print(f); 926 fprintf(f, "\n"); 927 } 928 929 private: 930 Expression* val_; 931 }; 932 933 // Update the dot symbol while setting section addresses. 934 935 void 936 Output_section_element_dot_assignment::set_section_addresses( 937 Symbol_table* symtab, 938 Layout* layout, 939 Output_section* output_section, 940 uint64_t, 941 uint64_t* dot_value, 942 uint64_t* dot_alignment, 943 Output_section** dot_section, 944 std::string* fill, 945 Input_section_list*) 946 { 947 uint64_t next_dot = this->val_->eval_with_dot(symtab, layout, false, 948 *dot_value, *dot_section, 949 dot_section, dot_alignment, 950 true); 951 if (next_dot < *dot_value) 952 gold_error(_("dot may not move backward")); 953 if (next_dot > *dot_value && output_section != NULL) 954 { 955 section_size_type length = convert_to_section_size_type(next_dot 956 - *dot_value); 957 Output_section_data* posd; 958 if (fill->empty()) 959 posd = new Output_data_zero_fill(length, 0); 960 else 961 { 962 std::string this_fill = this->get_fill_string(fill, length); 963 posd = new Output_data_const(this_fill, 0); 964 } 965 output_section->add_output_section_data(posd); 966 layout->new_output_section_data_from_script(posd); 967 } 968 *dot_value = next_dot; 969 } 970 971 // An assertion in an output section. 972 973 class Output_section_element_assertion : public Output_section_element 974 { 975 public: 976 Output_section_element_assertion(Expression* check, const char* message, 977 size_t messagelen) 978 : assertion_(check, message, messagelen) 979 { } 980 981 void 982 print(FILE* f) const 983 { 984 fprintf(f, " "); 985 this->assertion_.print(f); 986 } 987 988 private: 989 Script_assertion assertion_; 990 }; 991 992 // We use a special instance of Output_section_data to handle BYTE, 993 // SHORT, etc. This permits forward references to symbols in the 994 // expressions. 995 996 class Output_data_expression : public Output_section_data 997 { 998 public: 999 Output_data_expression(int size, bool is_signed, Expression* val, 1000 const Symbol_table* symtab, const Layout* layout, 1001 uint64_t dot_value, Output_section* dot_section) 1002 : Output_section_data(size, 0, true), 1003 is_signed_(is_signed), val_(val), symtab_(symtab), 1004 layout_(layout), dot_value_(dot_value), dot_section_(dot_section) 1005 { } 1006 1007 protected: 1008 // Write the data to the output file. 1009 void 1010 do_write(Output_file*); 1011 1012 // Write the data to a buffer. 1013 void 1014 do_write_to_buffer(unsigned char*); 1015 1016 // Write to a map file. 1017 void 1018 do_print_to_mapfile(Mapfile* mapfile) const 1019 { mapfile->print_output_data(this, _("** expression")); } 1020 1021 private: 1022 template<bool big_endian> 1023 void 1024 endian_write_to_buffer(uint64_t, unsigned char*); 1025 1026 bool is_signed_; 1027 Expression* val_; 1028 const Symbol_table* symtab_; 1029 const Layout* layout_; 1030 uint64_t dot_value_; 1031 Output_section* dot_section_; 1032 }; 1033 1034 // Write the data element to the output file. 1035 1036 void 1037 Output_data_expression::do_write(Output_file* of) 1038 { 1039 unsigned char* view = of->get_output_view(this->offset(), this->data_size()); 1040 this->write_to_buffer(view); 1041 of->write_output_view(this->offset(), this->data_size(), view); 1042 } 1043 1044 // Write the data element to a buffer. 1045 1046 void 1047 Output_data_expression::do_write_to_buffer(unsigned char* buf) 1048 { 1049 uint64_t val = this->val_->eval_with_dot(this->symtab_, this->layout_, 1050 true, this->dot_value_, 1051 this->dot_section_, NULL, NULL, 1052 false); 1053 1054 if (parameters->target().is_big_endian()) 1055 this->endian_write_to_buffer<true>(val, buf); 1056 else 1057 this->endian_write_to_buffer<false>(val, buf); 1058 } 1059 1060 template<bool big_endian> 1061 void 1062 Output_data_expression::endian_write_to_buffer(uint64_t val, 1063 unsigned char* buf) 1064 { 1065 switch (this->data_size()) 1066 { 1067 case 1: 1068 elfcpp::Swap_unaligned<8, big_endian>::writeval(buf, val); 1069 break; 1070 case 2: 1071 elfcpp::Swap_unaligned<16, big_endian>::writeval(buf, val); 1072 break; 1073 case 4: 1074 elfcpp::Swap_unaligned<32, big_endian>::writeval(buf, val); 1075 break; 1076 case 8: 1077 if (parameters->target().get_size() == 32) 1078 { 1079 val &= 0xffffffff; 1080 if (this->is_signed_ && (val & 0x80000000) != 0) 1081 val |= 0xffffffff00000000LL; 1082 } 1083 elfcpp::Swap_unaligned<64, big_endian>::writeval(buf, val); 1084 break; 1085 default: 1086 gold_unreachable(); 1087 } 1088 } 1089 1090 // A data item in an output section. 1091 1092 class Output_section_element_data : public Output_section_element 1093 { 1094 public: 1095 Output_section_element_data(int size, bool is_signed, Expression* val) 1096 : size_(size), is_signed_(is_signed), val_(val) 1097 { } 1098 1099 // If there is a data item, then we must create an output section. 1100 bool 1101 needs_output_section() const 1102 { return true; } 1103 1104 // Finalize symbols--we just need to update dot. 1105 void 1106 finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value, 1107 Output_section**) 1108 { *dot_value += this->size_; } 1109 1110 // Store the value in the section. 1111 void 1112 set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t, 1113 uint64_t* dot_value, uint64_t*, Output_section**, 1114 std::string*, Input_section_list*); 1115 1116 // Print for debugging. 1117 void 1118 print(FILE*) const; 1119 1120 private: 1121 // The size in bytes. 1122 int size_; 1123 // Whether the value is signed. 1124 bool is_signed_; 1125 // The value. 1126 Expression* val_; 1127 }; 1128 1129 // Store the value in the section. 1130 1131 void 1132 Output_section_element_data::set_section_addresses( 1133 Symbol_table* symtab, 1134 Layout* layout, 1135 Output_section* os, 1136 uint64_t, 1137 uint64_t* dot_value, 1138 uint64_t*, 1139 Output_section** dot_section, 1140 std::string*, 1141 Input_section_list*) 1142 { 1143 gold_assert(os != NULL); 1144 Output_data_expression* expression = 1145 new Output_data_expression(this->size_, this->is_signed_, this->val_, 1146 symtab, layout, *dot_value, *dot_section); 1147 os->add_output_section_data(expression); 1148 layout->new_output_section_data_from_script(expression); 1149 *dot_value += this->size_; 1150 } 1151 1152 // Print for debugging. 1153 1154 void 1155 Output_section_element_data::print(FILE* f) const 1156 { 1157 const char* s; 1158 switch (this->size_) 1159 { 1160 case 1: 1161 s = "BYTE"; 1162 break; 1163 case 2: 1164 s = "SHORT"; 1165 break; 1166 case 4: 1167 s = "LONG"; 1168 break; 1169 case 8: 1170 if (this->is_signed_) 1171 s = "SQUAD"; 1172 else 1173 s = "QUAD"; 1174 break; 1175 default: 1176 gold_unreachable(); 1177 } 1178 fprintf(f, " %s(", s); 1179 this->val_->print(f); 1180 fprintf(f, ")\n"); 1181 } 1182 1183 // A fill value setting in an output section. 1184 1185 class Output_section_element_fill : public Output_section_element 1186 { 1187 public: 1188 Output_section_element_fill(Expression* val) 1189 : val_(val) 1190 { } 1191 1192 // Update the fill value while setting section addresses. 1193 void 1194 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*, 1195 uint64_t, uint64_t* dot_value, uint64_t*, 1196 Output_section** dot_section, 1197 std::string* fill, Input_section_list*) 1198 { 1199 Output_section* fill_section; 1200 uint64_t fill_val = this->val_->eval_with_dot(symtab, layout, false, 1201 *dot_value, *dot_section, 1202 &fill_section, NULL, false); 1203 if (fill_section != NULL) 1204 gold_warning(_("fill value is not absolute")); 1205 // FIXME: The GNU linker supports fill values of arbitrary length. 1206 unsigned char fill_buff[4]; 1207 elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val); 1208 fill->assign(reinterpret_cast<char*>(fill_buff), 4); 1209 } 1210 1211 // Print for debugging. 1212 void 1213 print(FILE* f) const 1214 { 1215 fprintf(f, " FILL("); 1216 this->val_->print(f); 1217 fprintf(f, ")\n"); 1218 } 1219 1220 private: 1221 // The new fill value. 1222 Expression* val_; 1223 }; 1224 1225 // An input section specification in an output section 1226 1227 class Output_section_element_input : public Output_section_element 1228 { 1229 public: 1230 Output_section_element_input(const Input_section_spec* spec, bool keep); 1231 1232 // Finalize symbols--just update the value of the dot symbol. 1233 void 1234 finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value, 1235 Output_section** dot_section) 1236 { 1237 *dot_value = this->final_dot_value_; 1238 *dot_section = this->final_dot_section_; 1239 } 1240 1241 // See whether we match FILE_NAME and SECTION_NAME as an input 1242 // section. 1243 bool 1244 match_name(const char* file_name, const char* section_name) const; 1245 1246 // Set the section address. 1247 void 1248 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*, 1249 uint64_t subalign, uint64_t* dot_value, uint64_t*, 1250 Output_section**, std::string* fill, 1251 Input_section_list*); 1252 1253 // Print for debugging. 1254 void 1255 print(FILE* f) const; 1256 1257 private: 1258 // An input section pattern. 1259 struct Input_section_pattern 1260 { 1261 std::string pattern; 1262 bool pattern_is_wildcard; 1263 Sort_wildcard sort; 1264 1265 Input_section_pattern(const char* patterna, size_t patternlena, 1266 Sort_wildcard sorta) 1267 : pattern(patterna, patternlena), 1268 pattern_is_wildcard(is_wildcard_string(this->pattern.c_str())), 1269 sort(sorta) 1270 { } 1271 }; 1272 1273 typedef std::vector<Input_section_pattern> Input_section_patterns; 1274 1275 // Filename_exclusions is a pair of filename pattern and a bool 1276 // indicating whether the filename is a wildcard. 1277 typedef std::vector<std::pair<std::string, bool> > Filename_exclusions; 1278 1279 // Return whether STRING matches PATTERN, where IS_WILDCARD_PATTERN 1280 // indicates whether this is a wildcard pattern. 1281 static inline bool 1282 match(const char* string, const char* pattern, bool is_wildcard_pattern) 1283 { 1284 return (is_wildcard_pattern 1285 ? fnmatch(pattern, string, 0) == 0 1286 : strcmp(string, pattern) == 0); 1287 } 1288 1289 // See if we match a file name. 1290 bool 1291 match_file_name(const char* file_name) const; 1292 1293 // The file name pattern. If this is the empty string, we match all 1294 // files. 1295 std::string filename_pattern_; 1296 // Whether the file name pattern is a wildcard. 1297 bool filename_is_wildcard_; 1298 // How the file names should be sorted. This may only be 1299 // SORT_WILDCARD_NONE or SORT_WILDCARD_BY_NAME. 1300 Sort_wildcard filename_sort_; 1301 // The list of file names to exclude. 1302 Filename_exclusions filename_exclusions_; 1303 // The list of input section patterns. 1304 Input_section_patterns input_section_patterns_; 1305 // Whether to keep this section when garbage collecting. 1306 bool keep_; 1307 // The value of dot after including all matching sections. 1308 uint64_t final_dot_value_; 1309 // The section where dot is defined after including all matching 1310 // sections. 1311 Output_section* final_dot_section_; 1312 }; 1313 1314 // Construct Output_section_element_input. The parser records strings 1315 // as pointers into a copy of the script file, which will go away when 1316 // parsing is complete. We make sure they are in std::string objects. 1317 1318 Output_section_element_input::Output_section_element_input( 1319 const Input_section_spec* spec, 1320 bool keep) 1321 : filename_pattern_(), 1322 filename_is_wildcard_(false), 1323 filename_sort_(spec->file.sort), 1324 filename_exclusions_(), 1325 input_section_patterns_(), 1326 keep_(keep), 1327 final_dot_value_(0), 1328 final_dot_section_(NULL) 1329 { 1330 // The filename pattern "*" is common, and matches all files. Turn 1331 // it into the empty string. 1332 if (spec->file.name.length != 1 || spec->file.name.value[0] != '*') 1333 this->filename_pattern_.assign(spec->file.name.value, 1334 spec->file.name.length); 1335 this->filename_is_wildcard_ = is_wildcard_string(this->filename_pattern_.c_str()); 1336 1337 if (spec->input_sections.exclude != NULL) 1338 { 1339 for (String_list::const_iterator p = 1340 spec->input_sections.exclude->begin(); 1341 p != spec->input_sections.exclude->end(); 1342 ++p) 1343 { 1344 bool is_wildcard = is_wildcard_string((*p).c_str()); 1345 this->filename_exclusions_.push_back(std::make_pair(*p, 1346 is_wildcard)); 1347 } 1348 } 1349 1350 if (spec->input_sections.sections != NULL) 1351 { 1352 Input_section_patterns& isp(this->input_section_patterns_); 1353 for (String_sort_list::const_iterator p = 1354 spec->input_sections.sections->begin(); 1355 p != spec->input_sections.sections->end(); 1356 ++p) 1357 isp.push_back(Input_section_pattern(p->name.value, p->name.length, 1358 p->sort)); 1359 } 1360 } 1361 1362 // See whether we match FILE_NAME. 1363 1364 bool 1365 Output_section_element_input::match_file_name(const char* file_name) const 1366 { 1367 if (!this->filename_pattern_.empty()) 1368 { 1369 // If we were called with no filename, we refuse to match a 1370 // pattern which requires a file name. 1371 if (file_name == NULL) 1372 return false; 1373 1374 if (!match(file_name, this->filename_pattern_.c_str(), 1375 this->filename_is_wildcard_)) 1376 return false; 1377 } 1378 1379 if (file_name != NULL) 1380 { 1381 // Now we have to see whether FILE_NAME matches one of the 1382 // exclusion patterns, if any. 1383 for (Filename_exclusions::const_iterator p = 1384 this->filename_exclusions_.begin(); 1385 p != this->filename_exclusions_.end(); 1386 ++p) 1387 { 1388 if (match(file_name, p->first.c_str(), p->second)) 1389 return false; 1390 } 1391 } 1392 1393 return true; 1394 } 1395 1396 // See whether we match FILE_NAME and SECTION_NAME. 1397 1398 bool 1399 Output_section_element_input::match_name(const char* file_name, 1400 const char* section_name) const 1401 { 1402 if (!this->match_file_name(file_name)) 1403 return false; 1404 1405 // If there are no section name patterns, then we match. 1406 if (this->input_section_patterns_.empty()) 1407 return true; 1408 1409 // See whether we match the section name patterns. 1410 for (Input_section_patterns::const_iterator p = 1411 this->input_section_patterns_.begin(); 1412 p != this->input_section_patterns_.end(); 1413 ++p) 1414 { 1415 if (match(section_name, p->pattern.c_str(), p->pattern_is_wildcard)) 1416 return true; 1417 } 1418 1419 // We didn't match any section names, so we didn't match. 1420 return false; 1421 } 1422 1423 // Information we use to sort the input sections. 1424 1425 class Input_section_info 1426 { 1427 public: 1428 Input_section_info(const Output_section::Input_section& input_section) 1429 : input_section_(input_section), section_name_(), 1430 size_(0), addralign_(1) 1431 { } 1432 1433 // Return the simple input section. 1434 const Output_section::Input_section& 1435 input_section() const 1436 { return this->input_section_; } 1437 1438 // Return the object. 1439 Relobj* 1440 relobj() const 1441 { return this->input_section_.relobj(); } 1442 1443 // Return the section index. 1444 unsigned int 1445 shndx() 1446 { return this->input_section_.shndx(); } 1447 1448 // Return the section name. 1449 const std::string& 1450 section_name() const 1451 { return this->section_name_; } 1452 1453 // Set the section name. 1454 void 1455 set_section_name(const std::string name) 1456 { this->section_name_ = name; } 1457 1458 // Return the section size. 1459 uint64_t 1460 size() const 1461 { return this->size_; } 1462 1463 // Set the section size. 1464 void 1465 set_size(uint64_t size) 1466 { this->size_ = size; } 1467 1468 // Return the address alignment. 1469 uint64_t 1470 addralign() const 1471 { return this->addralign_; } 1472 1473 // Set the address alignment. 1474 void 1475 set_addralign(uint64_t addralign) 1476 { this->addralign_ = addralign; } 1477 1478 private: 1479 // Input section, can be a relaxed section. 1480 Output_section::Input_section input_section_; 1481 // Name of the section. 1482 std::string section_name_; 1483 // Section size. 1484 uint64_t size_; 1485 // Address alignment. 1486 uint64_t addralign_; 1487 }; 1488 1489 // A class to sort the input sections. 1490 1491 class Input_section_sorter 1492 { 1493 public: 1494 Input_section_sorter(Sort_wildcard filename_sort, Sort_wildcard section_sort) 1495 : filename_sort_(filename_sort), section_sort_(section_sort) 1496 { } 1497 1498 bool 1499 operator()(const Input_section_info&, const Input_section_info&) const; 1500 1501 private: 1502 Sort_wildcard filename_sort_; 1503 Sort_wildcard section_sort_; 1504 }; 1505 1506 bool 1507 Input_section_sorter::operator()(const Input_section_info& isi1, 1508 const Input_section_info& isi2) const 1509 { 1510 if (this->section_sort_ == SORT_WILDCARD_BY_NAME 1511 || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT 1512 || (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME 1513 && isi1.addralign() == isi2.addralign())) 1514 { 1515 if (isi1.section_name() != isi2.section_name()) 1516 return isi1.section_name() < isi2.section_name(); 1517 } 1518 if (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT 1519 || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT 1520 || this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME) 1521 { 1522 if (isi1.addralign() != isi2.addralign()) 1523 return isi1.addralign() < isi2.addralign(); 1524 } 1525 if (this->filename_sort_ == SORT_WILDCARD_BY_NAME) 1526 { 1527 if (isi1.relobj()->name() != isi2.relobj()->name()) 1528 return (isi1.relobj()->name() < isi2.relobj()->name()); 1529 } 1530 1531 // Otherwise we leave them in the same order. 1532 return false; 1533 } 1534 1535 // Set the section address. Look in INPUT_SECTIONS for sections which 1536 // match this spec, sort them as specified, and add them to the output 1537 // section. 1538 1539 void 1540 Output_section_element_input::set_section_addresses( 1541 Symbol_table*, 1542 Layout* layout, 1543 Output_section* output_section, 1544 uint64_t subalign, 1545 uint64_t* dot_value, 1546 uint64_t*, 1547 Output_section** dot_section, 1548 std::string* fill, 1549 Input_section_list* input_sections) 1550 { 1551 // We build a list of sections which match each 1552 // Input_section_pattern. 1553 1554 typedef std::vector<std::vector<Input_section_info> > Matching_sections; 1555 size_t input_pattern_count = this->input_section_patterns_.size(); 1556 if (input_pattern_count == 0) 1557 input_pattern_count = 1; 1558 Matching_sections matching_sections(input_pattern_count); 1559 1560 // Look through the list of sections for this output section. Add 1561 // each one which matches to one of the elements of 1562 // MATCHING_SECTIONS. 1563 1564 Input_section_list::iterator p = input_sections->begin(); 1565 while (p != input_sections->end()) 1566 { 1567 Relobj* relobj = p->relobj(); 1568 unsigned int shndx = p->shndx(); 1569 Input_section_info isi(*p); 1570 1571 // Calling section_name and section_addralign is not very 1572 // efficient. 1573 1574 // Lock the object so that we can get information about the 1575 // section. This is OK since we know we are single-threaded 1576 // here. 1577 { 1578 const Task* task = reinterpret_cast<const Task*>(-1); 1579 Task_lock_obj<Object> tl(task, relobj); 1580 1581 isi.set_section_name(relobj->section_name(shndx)); 1582 if (p->is_relaxed_input_section()) 1583 { 1584 // We use current data size because relaxed section sizes may not 1585 // have finalized yet. 1586 isi.set_size(p->relaxed_input_section()->current_data_size()); 1587 isi.set_addralign(p->relaxed_input_section()->addralign()); 1588 } 1589 else 1590 { 1591 isi.set_size(relobj->section_size(shndx)); 1592 isi.set_addralign(relobj->section_addralign(shndx)); 1593 } 1594 } 1595 1596 if (!this->match_file_name(relobj->name().c_str())) 1597 ++p; 1598 else if (this->input_section_patterns_.empty()) 1599 { 1600 matching_sections[0].push_back(isi); 1601 p = input_sections->erase(p); 1602 } 1603 else 1604 { 1605 size_t i; 1606 for (i = 0; i < input_pattern_count; ++i) 1607 { 1608 const Input_section_pattern& 1609 isp(this->input_section_patterns_[i]); 1610 if (match(isi.section_name().c_str(), isp.pattern.c_str(), 1611 isp.pattern_is_wildcard)) 1612 break; 1613 } 1614 1615 if (i >= this->input_section_patterns_.size()) 1616 ++p; 1617 else 1618 { 1619 matching_sections[i].push_back(isi); 1620 p = input_sections->erase(p); 1621 } 1622 } 1623 } 1624 1625 // Look through MATCHING_SECTIONS. Sort each one as specified, 1626 // using a stable sort so that we get the default order when 1627 // sections are otherwise equal. Add each input section to the 1628 // output section. 1629 1630 uint64_t dot = *dot_value; 1631 for (size_t i = 0; i < input_pattern_count; ++i) 1632 { 1633 if (matching_sections[i].empty()) 1634 continue; 1635 1636 gold_assert(output_section != NULL); 1637 1638 const Input_section_pattern& isp(this->input_section_patterns_[i]); 1639 if (isp.sort != SORT_WILDCARD_NONE 1640 || this->filename_sort_ != SORT_WILDCARD_NONE) 1641 std::stable_sort(matching_sections[i].begin(), 1642 matching_sections[i].end(), 1643 Input_section_sorter(this->filename_sort_, 1644 isp.sort)); 1645 1646 for (std::vector<Input_section_info>::const_iterator p = 1647 matching_sections[i].begin(); 1648 p != matching_sections[i].end(); 1649 ++p) 1650 { 1651 // Override the original address alignment if SUBALIGN is specified 1652 // and is greater than the original alignment. We need to make a 1653 // copy of the input section to modify the alignment. 1654 Output_section::Input_section sis(p->input_section()); 1655 1656 uint64_t this_subalign = sis.addralign(); 1657 if (!sis.is_input_section()) 1658 sis.output_section_data()->finalize_data_size(); 1659 uint64_t data_size = sis.data_size(); 1660 if (this_subalign < subalign) 1661 { 1662 this_subalign = subalign; 1663 sis.set_addralign(subalign); 1664 } 1665 1666 uint64_t address = align_address(dot, this_subalign); 1667 1668 if (address > dot && !fill->empty()) 1669 { 1670 section_size_type length = 1671 convert_to_section_size_type(address - dot); 1672 std::string this_fill = this->get_fill_string(fill, length); 1673 Output_section_data* posd = new Output_data_const(this_fill, 0); 1674 output_section->add_output_section_data(posd); 1675 layout->new_output_section_data_from_script(posd); 1676 } 1677 1678 output_section->add_script_input_section(sis); 1679 dot = address + data_size; 1680 } 1681 } 1682 1683 // An SHF_TLS/SHT_NOBITS section does not take up any 1684 // address space. 1685 if (output_section == NULL 1686 || (output_section->flags() & elfcpp::SHF_TLS) == 0 1687 || output_section->type() != elfcpp::SHT_NOBITS) 1688 *dot_value = dot; 1689 1690 this->final_dot_value_ = *dot_value; 1691 this->final_dot_section_ = *dot_section; 1692 } 1693 1694 // Print for debugging. 1695 1696 void 1697 Output_section_element_input::print(FILE* f) const 1698 { 1699 fprintf(f, " "); 1700 1701 if (this->keep_) 1702 fprintf(f, "KEEP("); 1703 1704 if (!this->filename_pattern_.empty()) 1705 { 1706 bool need_close_paren = false; 1707 switch (this->filename_sort_) 1708 { 1709 case SORT_WILDCARD_NONE: 1710 break; 1711 case SORT_WILDCARD_BY_NAME: 1712 fprintf(f, "SORT_BY_NAME("); 1713 need_close_paren = true; 1714 break; 1715 default: 1716 gold_unreachable(); 1717 } 1718 1719 fprintf(f, "%s", this->filename_pattern_.c_str()); 1720 1721 if (need_close_paren) 1722 fprintf(f, ")"); 1723 } 1724 1725 if (!this->input_section_patterns_.empty() 1726 || !this->filename_exclusions_.empty()) 1727 { 1728 fprintf(f, "("); 1729 1730 bool need_space = false; 1731 if (!this->filename_exclusions_.empty()) 1732 { 1733 fprintf(f, "EXCLUDE_FILE("); 1734 bool need_comma = false; 1735 for (Filename_exclusions::const_iterator p = 1736 this->filename_exclusions_.begin(); 1737 p != this->filename_exclusions_.end(); 1738 ++p) 1739 { 1740 if (need_comma) 1741 fprintf(f, ", "); 1742 fprintf(f, "%s", p->first.c_str()); 1743 need_comma = true; 1744 } 1745 fprintf(f, ")"); 1746 need_space = true; 1747 } 1748 1749 for (Input_section_patterns::const_iterator p = 1750 this->input_section_patterns_.begin(); 1751 p != this->input_section_patterns_.end(); 1752 ++p) 1753 { 1754 if (need_space) 1755 fprintf(f, " "); 1756 1757 int close_parens = 0; 1758 switch (p->sort) 1759 { 1760 case SORT_WILDCARD_NONE: 1761 break; 1762 case SORT_WILDCARD_BY_NAME: 1763 fprintf(f, "SORT_BY_NAME("); 1764 close_parens = 1; 1765 break; 1766 case SORT_WILDCARD_BY_ALIGNMENT: 1767 fprintf(f, "SORT_BY_ALIGNMENT("); 1768 close_parens = 1; 1769 break; 1770 case SORT_WILDCARD_BY_NAME_BY_ALIGNMENT: 1771 fprintf(f, "SORT_BY_NAME(SORT_BY_ALIGNMENT("); 1772 close_parens = 2; 1773 break; 1774 case SORT_WILDCARD_BY_ALIGNMENT_BY_NAME: 1775 fprintf(f, "SORT_BY_ALIGNMENT(SORT_BY_NAME("); 1776 close_parens = 2; 1777 break; 1778 default: 1779 gold_unreachable(); 1780 } 1781 1782 fprintf(f, "%s", p->pattern.c_str()); 1783 1784 for (int i = 0; i < close_parens; ++i) 1785 fprintf(f, ")"); 1786 1787 need_space = true; 1788 } 1789 1790 fprintf(f, ")"); 1791 } 1792 1793 if (this->keep_) 1794 fprintf(f, ")"); 1795 1796 fprintf(f, "\n"); 1797 } 1798 1799 // An output section. 1800 1801 class Output_section_definition : public Sections_element 1802 { 1803 public: 1804 typedef Output_section_element::Input_section_list Input_section_list; 1805 1806 Output_section_definition(const char* name, size_t namelen, 1807 const Parser_output_section_header* header); 1808 1809 // Finish the output section with the information in the trailer. 1810 void 1811 finish(const Parser_output_section_trailer* trailer); 1812 1813 // Add a symbol to be defined. 1814 void 1815 add_symbol_assignment(const char* name, size_t length, Expression* value, 1816 bool provide, bool hidden); 1817 1818 // Add an assignment to the special dot symbol. 1819 void 1820 add_dot_assignment(Expression* value); 1821 1822 // Add an assertion. 1823 void 1824 add_assertion(Expression* check, const char* message, size_t messagelen); 1825 1826 // Add a data item to the current output section. 1827 void 1828 add_data(int size, bool is_signed, Expression* val); 1829 1830 // Add a setting for the fill value. 1831 void 1832 add_fill(Expression* val); 1833 1834 // Add an input section specification. 1835 void 1836 add_input_section(const Input_section_spec* spec, bool keep); 1837 1838 // Return whether the output section is relro. 1839 bool 1840 is_relro() const 1841 { return this->is_relro_; } 1842 1843 // Record that the output section is relro. 1844 void 1845 set_is_relro() 1846 { this->is_relro_ = true; } 1847 1848 // Create any required output sections. 1849 void 1850 create_sections(Layout*); 1851 1852 // Add any symbols being defined to the symbol table. 1853 void 1854 add_symbols_to_table(Symbol_table* symtab); 1855 1856 // Finalize symbols and check assertions. 1857 void 1858 finalize_symbols(Symbol_table*, const Layout*, uint64_t*); 1859 1860 // Return the output section name to use for an input file name and 1861 // section name. 1862 const char* 1863 output_section_name(const char* file_name, const char* section_name, 1864 Output_section***, Script_sections::Section_type*); 1865 1866 // Initialize OSP with an output section. 1867 void 1868 orphan_section_init(Orphan_section_placement* osp, 1869 Script_sections::Elements_iterator p) 1870 { osp->output_section_init(this->name_, this->output_section_, p); } 1871 1872 // Set the section address. 1873 void 1874 set_section_addresses(Symbol_table* symtab, Layout* layout, 1875 uint64_t* dot_value, uint64_t*, 1876 uint64_t* load_address); 1877 1878 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If 1879 // this section is constrained, and the input sections do not match, 1880 // return the constraint, and set *POSD. 1881 Section_constraint 1882 check_constraint(Output_section_definition** posd); 1883 1884 // See if this is the alternate output section for a constrained 1885 // output section. If it is, transfer the Output_section and return 1886 // true. Otherwise return false. 1887 bool 1888 alternate_constraint(Output_section_definition*, Section_constraint); 1889 1890 // Get the list of segments to use for an allocated section when 1891 // using a PHDRS clause. 1892 Output_section* 1893 allocate_to_segment(String_list** phdrs_list, bool* orphan); 1894 1895 // Look for an output section by name and return the address, the 1896 // load address, the alignment, and the size. This is used when an 1897 // expression refers to an output section which was not actually 1898 // created. This returns true if the section was found, false 1899 // otherwise. 1900 bool 1901 get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*, 1902 uint64_t*) const; 1903 1904 // Return the associated Output_section if there is one. 1905 Output_section* 1906 get_output_section() const 1907 { return this->output_section_; } 1908 1909 // Print the contents to the FILE. This is for debugging. 1910 void 1911 print(FILE*) const; 1912 1913 // Return the output section type if specified or Script_sections::ST_NONE. 1914 Script_sections::Section_type 1915 section_type() const; 1916 1917 // Store the memory region to use. 1918 void 1919 set_memory_region(Memory_region*, bool set_vma); 1920 1921 void 1922 set_section_vma(Expression* address) 1923 { this->address_ = address; } 1924 1925 void 1926 set_section_lma(Expression* address) 1927 { this->load_address_ = address; } 1928 1929 const std::string& 1930 get_section_name() const 1931 { return this->name_; } 1932 1933 private: 1934 static const char* 1935 script_section_type_name(Script_section_type); 1936 1937 typedef std::vector<Output_section_element*> Output_section_elements; 1938 1939 // The output section name. 1940 std::string name_; 1941 // The address. This may be NULL. 1942 Expression* address_; 1943 // The load address. This may be NULL. 1944 Expression* load_address_; 1945 // The alignment. This may be NULL. 1946 Expression* align_; 1947 // The input section alignment. This may be NULL. 1948 Expression* subalign_; 1949 // The constraint, if any. 1950 Section_constraint constraint_; 1951 // The fill value. This may be NULL. 1952 Expression* fill_; 1953 // The list of segments this section should go into. This may be 1954 // NULL. 1955 String_list* phdrs_; 1956 // The list of elements defining the section. 1957 Output_section_elements elements_; 1958 // The Output_section created for this definition. This will be 1959 // NULL if none was created. 1960 Output_section* output_section_; 1961 // The address after it has been evaluated. 1962 uint64_t evaluated_address_; 1963 // The load address after it has been evaluated. 1964 uint64_t evaluated_load_address_; 1965 // The alignment after it has been evaluated. 1966 uint64_t evaluated_addralign_; 1967 // The output section is relro. 1968 bool is_relro_; 1969 // The output section type if specified. 1970 enum Script_section_type script_section_type_; 1971 }; 1972 1973 // Constructor. 1974 1975 Output_section_definition::Output_section_definition( 1976 const char* name, 1977 size_t namelen, 1978 const Parser_output_section_header* header) 1979 : name_(name, namelen), 1980 address_(header->address), 1981 load_address_(header->load_address), 1982 align_(header->align), 1983 subalign_(header->subalign), 1984 constraint_(header->constraint), 1985 fill_(NULL), 1986 phdrs_(NULL), 1987 elements_(), 1988 output_section_(NULL), 1989 evaluated_address_(0), 1990 evaluated_load_address_(0), 1991 evaluated_addralign_(0), 1992 is_relro_(false), 1993 script_section_type_(header->section_type) 1994 { 1995 } 1996 1997 // Finish an output section. 1998 1999 void 2000 Output_section_definition::finish(const Parser_output_section_trailer* trailer) 2001 { 2002 this->fill_ = trailer->fill; 2003 this->phdrs_ = trailer->phdrs; 2004 } 2005 2006 // Add a symbol to be defined. 2007 2008 void 2009 Output_section_definition::add_symbol_assignment(const char* name, 2010 size_t length, 2011 Expression* value, 2012 bool provide, 2013 bool hidden) 2014 { 2015 Output_section_element* p = new Output_section_element_assignment(name, 2016 length, 2017 value, 2018 provide, 2019 hidden); 2020 this->elements_.push_back(p); 2021 } 2022 2023 // Add an assignment to the special dot symbol. 2024 2025 void 2026 Output_section_definition::add_dot_assignment(Expression* value) 2027 { 2028 Output_section_element* p = new Output_section_element_dot_assignment(value); 2029 this->elements_.push_back(p); 2030 } 2031 2032 // Add an assertion. 2033 2034 void 2035 Output_section_definition::add_assertion(Expression* check, 2036 const char* message, 2037 size_t messagelen) 2038 { 2039 Output_section_element* p = new Output_section_element_assertion(check, 2040 message, 2041 messagelen); 2042 this->elements_.push_back(p); 2043 } 2044 2045 // Add a data item to the current output section. 2046 2047 void 2048 Output_section_definition::add_data(int size, bool is_signed, Expression* val) 2049 { 2050 Output_section_element* p = new Output_section_element_data(size, is_signed, 2051 val); 2052 this->elements_.push_back(p); 2053 } 2054 2055 // Add a setting for the fill value. 2056 2057 void 2058 Output_section_definition::add_fill(Expression* val) 2059 { 2060 Output_section_element* p = new Output_section_element_fill(val); 2061 this->elements_.push_back(p); 2062 } 2063 2064 // Add an input section specification. 2065 2066 void 2067 Output_section_definition::add_input_section(const Input_section_spec* spec, 2068 bool keep) 2069 { 2070 Output_section_element* p = new Output_section_element_input(spec, keep); 2071 this->elements_.push_back(p); 2072 } 2073 2074 // Create any required output sections. We need an output section if 2075 // there is a data statement here. 2076 2077 void 2078 Output_section_definition::create_sections(Layout* layout) 2079 { 2080 if (this->output_section_ != NULL) 2081 return; 2082 for (Output_section_elements::const_iterator p = this->elements_.begin(); 2083 p != this->elements_.end(); 2084 ++p) 2085 { 2086 if ((*p)->needs_output_section()) 2087 { 2088 const char* name = this->name_.c_str(); 2089 this->output_section_ = 2090 layout->make_output_section_for_script(name, this->section_type()); 2091 return; 2092 } 2093 } 2094 } 2095 2096 // Add any symbols being defined to the symbol table. 2097 2098 void 2099 Output_section_definition::add_symbols_to_table(Symbol_table* symtab) 2100 { 2101 for (Output_section_elements::iterator p = this->elements_.begin(); 2102 p != this->elements_.end(); 2103 ++p) 2104 (*p)->add_symbols_to_table(symtab); 2105 } 2106 2107 // Finalize symbols and check assertions. 2108 2109 void 2110 Output_section_definition::finalize_symbols(Symbol_table* symtab, 2111 const Layout* layout, 2112 uint64_t* dot_value) 2113 { 2114 if (this->output_section_ != NULL) 2115 *dot_value = this->output_section_->address(); 2116 else 2117 { 2118 uint64_t address = *dot_value; 2119 if (this->address_ != NULL) 2120 { 2121 address = this->address_->eval_with_dot(symtab, layout, true, 2122 *dot_value, NULL, 2123 NULL, NULL, false); 2124 } 2125 if (this->align_ != NULL) 2126 { 2127 uint64_t align = this->align_->eval_with_dot(symtab, layout, true, 2128 *dot_value, NULL, 2129 NULL, NULL, false); 2130 address = align_address(address, align); 2131 } 2132 *dot_value = address; 2133 } 2134 2135 Output_section* dot_section = this->output_section_; 2136 for (Output_section_elements::iterator p = this->elements_.begin(); 2137 p != this->elements_.end(); 2138 ++p) 2139 (*p)->finalize_symbols(symtab, layout, dot_value, &dot_section); 2140 } 2141 2142 // Return the output section name to use for an input section name. 2143 2144 const char* 2145 Output_section_definition::output_section_name( 2146 const char* file_name, 2147 const char* section_name, 2148 Output_section*** slot, 2149 Script_sections::Section_type* psection_type) 2150 { 2151 // Ask each element whether it matches NAME. 2152 for (Output_section_elements::const_iterator p = this->elements_.begin(); 2153 p != this->elements_.end(); 2154 ++p) 2155 { 2156 if ((*p)->match_name(file_name, section_name)) 2157 { 2158 // We found a match for NAME, which means that it should go 2159 // into this output section. 2160 *slot = &this->output_section_; 2161 *psection_type = this->section_type(); 2162 return this->name_.c_str(); 2163 } 2164 } 2165 2166 // We don't know about this section name. 2167 return NULL; 2168 } 2169 2170 // Return true if memory from START to START + LENGTH is contained 2171 // within a memory region. 2172 2173 bool 2174 Script_sections::block_in_region(Symbol_table* symtab, Layout* layout, 2175 uint64_t start, uint64_t length) const 2176 { 2177 if (this->memory_regions_ == NULL) 2178 return false; 2179 2180 for (Memory_regions::const_iterator mr = this->memory_regions_->begin(); 2181 mr != this->memory_regions_->end(); 2182 ++mr) 2183 { 2184 uint64_t s = (*mr)->start_address()->eval(symtab, layout, false); 2185 uint64_t l = (*mr)->length()->eval(symtab, layout, false); 2186 2187 if (s <= start 2188 && (s + l) >= (start + length)) 2189 return true; 2190 } 2191 2192 return false; 2193 } 2194 2195 // Find a memory region that should be used by a given output SECTION. 2196 // If provided set PREVIOUS_SECTION_RETURN to point to the last section 2197 // that used the return memory region. 2198 2199 Memory_region* 2200 Script_sections::find_memory_region( 2201 Output_section_definition* section, 2202 bool find_vma_region, 2203 Output_section_definition** previous_section_return) 2204 { 2205 if (previous_section_return != NULL) 2206 * previous_section_return = NULL; 2207 2208 // Walk the memory regions specified in this script, if any. 2209 if (this->memory_regions_ == NULL) 2210 return NULL; 2211 2212 // The /DISCARD/ section never gets assigned to any region. 2213 if (section->get_section_name() == "/DISCARD/") 2214 return NULL; 2215 2216 Memory_region* first_match = NULL; 2217 2218 // First check to see if a region has been assigned to this section. 2219 for (Memory_regions::const_iterator mr = this->memory_regions_->begin(); 2220 mr != this->memory_regions_->end(); 2221 ++mr) 2222 { 2223 if (find_vma_region) 2224 { 2225 for (Memory_region::Section_list::const_iterator s = 2226 (*mr)->get_vma_section_list_start(); 2227 s != (*mr)->get_vma_section_list_end(); 2228 ++s) 2229 if ((*s) == section) 2230 { 2231 (*mr)->set_last_section(section); 2232 return *mr; 2233 } 2234 } 2235 else 2236 { 2237 for (Memory_region::Section_list::const_iterator s = 2238 (*mr)->get_lma_section_list_start(); 2239 s != (*mr)->get_lma_section_list_end(); 2240 ++s) 2241 if ((*s) == section) 2242 { 2243 (*mr)->set_last_section(section); 2244 return *mr; 2245 } 2246 } 2247 2248 // Make a note of the first memory region whose attributes 2249 // are compatible with the section. If we do not find an 2250 // explicit region assignment, then we will return this region. 2251 Output_section* out_sec = section->get_output_section(); 2252 if (first_match == NULL 2253 && out_sec != NULL 2254 && (*mr)->attributes_compatible(out_sec->flags(), 2255 out_sec->type())) 2256 first_match = *mr; 2257 } 2258 2259 // With LMA computations, if an explicit region has not been specified then 2260 // we will want to set the difference between the VMA and the LMA of the 2261 // section were searching for to be the same as the difference between the 2262 // VMA and LMA of the last section to be added to first matched region. 2263 // Hence, if it was asked for, we return a pointer to the last section 2264 // known to be used by the first matched region. 2265 if (first_match != NULL 2266 && previous_section_return != NULL) 2267 *previous_section_return = first_match->get_last_section(); 2268 2269 return first_match; 2270 } 2271 2272 // Set the section address. Note that the OUTPUT_SECTION_ field will 2273 // be NULL if no input sections were mapped to this output section. 2274 // We still have to adjust dot and process symbol assignments. 2275 2276 void 2277 Output_section_definition::set_section_addresses(Symbol_table* symtab, 2278 Layout* layout, 2279 uint64_t* dot_value, 2280 uint64_t* dot_alignment, 2281 uint64_t* load_address) 2282 { 2283 Memory_region* vma_region = NULL; 2284 Memory_region* lma_region = NULL; 2285 Script_sections* script_sections = 2286 layout->script_options()->script_sections(); 2287 uint64_t address; 2288 uint64_t old_dot_value = *dot_value; 2289 uint64_t old_load_address = *load_address; 2290 2291 // Decide the start address for the section. The algorithm is: 2292 // 1) If an address has been specified in a linker script, use that. 2293 // 2) Otherwise if a memory region has been specified for the section, 2294 // use the next free address in the region. 2295 // 3) Otherwise if memory regions have been specified find the first 2296 // region whose attributes are compatible with this section and 2297 // install it into that region. 2298 // 4) Otherwise use the current location counter. 2299 2300 if (this->output_section_ != NULL 2301 // Check for --section-start. 2302 && parameters->options().section_start(this->output_section_->name(), 2303 &address)) 2304 ; 2305 else if (this->address_ == NULL) 2306 { 2307 vma_region = script_sections->find_memory_region(this, true, NULL); 2308 2309 if (vma_region != NULL) 2310 address = vma_region->get_current_address()->eval(symtab, layout, 2311 false); 2312 else 2313 address = *dot_value; 2314 } 2315 else 2316 address = this->address_->eval_with_dot(symtab, layout, true, 2317 *dot_value, NULL, NULL, 2318 dot_alignment, false); 2319 uint64_t align; 2320 if (this->align_ == NULL) 2321 { 2322 if (this->output_section_ == NULL) 2323 align = 0; 2324 else 2325 align = this->output_section_->addralign(); 2326 } 2327 else 2328 { 2329 Output_section* align_section; 2330 align = this->align_->eval_with_dot(symtab, layout, true, *dot_value, 2331 NULL, &align_section, NULL, false); 2332 if (align_section != NULL) 2333 gold_warning(_("alignment of section %s is not absolute"), 2334 this->name_.c_str()); 2335 if (this->output_section_ != NULL) 2336 this->output_section_->set_addralign(align); 2337 } 2338 2339 address = align_address(address, align); 2340 2341 uint64_t start_address = address; 2342 2343 *dot_value = address; 2344 2345 // Except for NOLOAD sections, the address of non-SHF_ALLOC sections is 2346 // forced to zero, regardless of what the linker script wants. 2347 if (this->output_section_ != NULL 2348 && ((this->output_section_->flags() & elfcpp::SHF_ALLOC) != 0 2349 || this->output_section_->is_noload())) 2350 this->output_section_->set_address(address); 2351 2352 this->evaluated_address_ = address; 2353 this->evaluated_addralign_ = align; 2354 2355 uint64_t laddr; 2356 2357 if (this->load_address_ == NULL) 2358 { 2359 Output_section_definition* previous_section; 2360 2361 // Determine if an LMA region has been set for this section. 2362 lma_region = script_sections->find_memory_region(this, false, 2363 &previous_section); 2364 2365 if (lma_region != NULL) 2366 { 2367 if (previous_section == NULL) 2368 // The LMA address was explicitly set to the given region. 2369 laddr = lma_region->get_current_address()->eval(symtab, layout, 2370 false); 2371 else 2372 { 2373 // We are not going to use the discovered lma_region, so 2374 // make sure that we do not update it in the code below. 2375 lma_region = NULL; 2376 2377 if (this->address_ != NULL || previous_section == this) 2378 { 2379 // Either an explicit VMA address has been set, or an 2380 // explicit VMA region has been set, so set the LMA equal to 2381 // the VMA. 2382 laddr = address; 2383 } 2384 else 2385 { 2386 // The LMA address was not explicitly or implicitly set. 2387 // 2388 // We have been given the first memory region that is 2389 // compatible with the current section and a pointer to the 2390 // last section to use this region. Set the LMA of this 2391 // section so that the difference between its' VMA and LMA 2392 // is the same as the difference between the VMA and LMA of 2393 // the last section in the given region. 2394 laddr = address + (previous_section->evaluated_load_address_ 2395 - previous_section->evaluated_address_); 2396 } 2397 } 2398 2399 if (this->output_section_ != NULL) 2400 this->output_section_->set_load_address(laddr); 2401 } 2402 else 2403 { 2404 // Do not set the load address of the output section, if one exists. 2405 // This allows future sections to determine what the load address 2406 // should be. If none is ever set, it will default to being the 2407 // same as the vma address. 2408 laddr = address; 2409 } 2410 } 2411 else 2412 { 2413 laddr = this->load_address_->eval_with_dot(symtab, layout, true, 2414 *dot_value, 2415 this->output_section_, 2416 NULL, NULL, false); 2417 if (this->output_section_ != NULL) 2418 this->output_section_->set_load_address(laddr); 2419 } 2420 2421 this->evaluated_load_address_ = laddr; 2422 2423 uint64_t subalign; 2424 if (this->subalign_ == NULL) 2425 subalign = 0; 2426 else 2427 { 2428 Output_section* subalign_section; 2429 subalign = this->subalign_->eval_with_dot(symtab, layout, true, 2430 *dot_value, NULL, 2431 &subalign_section, NULL, 2432 false); 2433 if (subalign_section != NULL) 2434 gold_warning(_("subalign of section %s is not absolute"), 2435 this->name_.c_str()); 2436 } 2437 2438 std::string fill; 2439 if (this->fill_ != NULL) 2440 { 2441 // FIXME: The GNU linker supports fill values of arbitrary 2442 // length. 2443 Output_section* fill_section; 2444 uint64_t fill_val = this->fill_->eval_with_dot(symtab, layout, true, 2445 *dot_value, 2446 NULL, &fill_section, 2447 NULL, false); 2448 if (fill_section != NULL) 2449 gold_warning(_("fill of section %s is not absolute"), 2450 this->name_.c_str()); 2451 unsigned char fill_buff[4]; 2452 elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val); 2453 fill.assign(reinterpret_cast<char*>(fill_buff), 4); 2454 } 2455 2456 Input_section_list input_sections; 2457 if (this->output_section_ != NULL) 2458 { 2459 // Get the list of input sections attached to this output 2460 // section. This will leave the output section with only 2461 // Output_section_data entries. 2462 address += this->output_section_->get_input_sections(address, 2463 fill, 2464 &input_sections); 2465 *dot_value = address; 2466 } 2467 2468 Output_section* dot_section = this->output_section_; 2469 for (Output_section_elements::iterator p = this->elements_.begin(); 2470 p != this->elements_.end(); 2471 ++p) 2472 (*p)->set_section_addresses(symtab, layout, this->output_section_, 2473 subalign, dot_value, dot_alignment, 2474 &dot_section, &fill, &input_sections); 2475 2476 gold_assert(input_sections.empty()); 2477 2478 if (vma_region != NULL) 2479 { 2480 // Update the VMA region being used by the section now that we know how 2481 // big it is. Use the current address in the region, rather than 2482 // start_address because that might have been aligned upwards and we 2483 // need to allow for the padding. 2484 Expression* addr = vma_region->get_current_address(); 2485 uint64_t size = *dot_value - addr->eval(symtab, layout, false); 2486 2487 vma_region->increment_offset(this->get_section_name(), size, 2488 symtab, layout); 2489 } 2490 2491 // If the LMA region is different from the VMA region, then increment the 2492 // offset there as well. Note that we use the same "dot_value - 2493 // start_address" formula that is used in the load_address assignment below. 2494 if (lma_region != NULL && lma_region != vma_region) 2495 lma_region->increment_offset(this->get_section_name(), 2496 *dot_value - start_address, 2497 symtab, layout); 2498 2499 // Compute the load address for the following section. 2500 if (this->output_section_ == NULL) 2501 *load_address = *dot_value; 2502 else if (this->load_address_ == NULL) 2503 { 2504 if (lma_region == NULL) 2505 *load_address = *dot_value; 2506 else 2507 *load_address = 2508 lma_region->get_current_address()->eval(symtab, layout, false); 2509 } 2510 else 2511 *load_address = (this->output_section_->load_address() 2512 + (*dot_value - start_address)); 2513 2514 if (this->output_section_ != NULL) 2515 { 2516 if (this->is_relro_) 2517 this->output_section_->set_is_relro(); 2518 else 2519 this->output_section_->clear_is_relro(); 2520 2521 // If this is a NOLOAD section, keep dot and load address unchanged. 2522 if (this->output_section_->is_noload()) 2523 { 2524 *dot_value = old_dot_value; 2525 *load_address = old_load_address; 2526 } 2527 } 2528 } 2529 2530 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If 2531 // this section is constrained, and the input sections do not match, 2532 // return the constraint, and set *POSD. 2533 2534 Section_constraint 2535 Output_section_definition::check_constraint(Output_section_definition** posd) 2536 { 2537 switch (this->constraint_) 2538 { 2539 case CONSTRAINT_NONE: 2540 return CONSTRAINT_NONE; 2541 2542 case CONSTRAINT_ONLY_IF_RO: 2543 if (this->output_section_ != NULL 2544 && (this->output_section_->flags() & elfcpp::SHF_WRITE) != 0) 2545 { 2546 *posd = this; 2547 return CONSTRAINT_ONLY_IF_RO; 2548 } 2549 return CONSTRAINT_NONE; 2550 2551 case CONSTRAINT_ONLY_IF_RW: 2552 if (this->output_section_ != NULL 2553 && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0) 2554 { 2555 *posd = this; 2556 return CONSTRAINT_ONLY_IF_RW; 2557 } 2558 return CONSTRAINT_NONE; 2559 2560 case CONSTRAINT_SPECIAL: 2561 if (this->output_section_ != NULL) 2562 gold_error(_("SPECIAL constraints are not implemented")); 2563 return CONSTRAINT_NONE; 2564 2565 default: 2566 gold_unreachable(); 2567 } 2568 } 2569 2570 // See if this is the alternate output section for a constrained 2571 // output section. If it is, transfer the Output_section and return 2572 // true. Otherwise return false. 2573 2574 bool 2575 Output_section_definition::alternate_constraint( 2576 Output_section_definition* posd, 2577 Section_constraint constraint) 2578 { 2579 if (this->name_ != posd->name_) 2580 return false; 2581 2582 switch (constraint) 2583 { 2584 case CONSTRAINT_ONLY_IF_RO: 2585 if (this->constraint_ != CONSTRAINT_ONLY_IF_RW) 2586 return false; 2587 break; 2588 2589 case CONSTRAINT_ONLY_IF_RW: 2590 if (this->constraint_ != CONSTRAINT_ONLY_IF_RO) 2591 return false; 2592 break; 2593 2594 default: 2595 gold_unreachable(); 2596 } 2597 2598 // We have found the alternate constraint. We just need to move 2599 // over the Output_section. When constraints are used properly, 2600 // THIS should not have an output_section pointer, as all the input 2601 // sections should have matched the other definition. 2602 2603 if (this->output_section_ != NULL) 2604 gold_error(_("mismatched definition for constrained sections")); 2605 2606 this->output_section_ = posd->output_section_; 2607 posd->output_section_ = NULL; 2608 2609 if (this->is_relro_) 2610 this->output_section_->set_is_relro(); 2611 else 2612 this->output_section_->clear_is_relro(); 2613 2614 return true; 2615 } 2616 2617 // Get the list of segments to use for an allocated section when using 2618 // a PHDRS clause. 2619 2620 Output_section* 2621 Output_section_definition::allocate_to_segment(String_list** phdrs_list, 2622 bool* orphan) 2623 { 2624 // Update phdrs_list even if we don't have an output section. It 2625 // might be used by the following sections. 2626 if (this->phdrs_ != NULL) 2627 *phdrs_list = this->phdrs_; 2628 2629 if (this->output_section_ == NULL) 2630 return NULL; 2631 if ((this->output_section_->flags() & elfcpp::SHF_ALLOC) == 0) 2632 return NULL; 2633 *orphan = false; 2634 return this->output_section_; 2635 } 2636 2637 // Look for an output section by name and return the address, the load 2638 // address, the alignment, and the size. This is used when an 2639 // expression refers to an output section which was not actually 2640 // created. This returns true if the section was found, false 2641 // otherwise. 2642 2643 bool 2644 Output_section_definition::get_output_section_info(const char* name, 2645 uint64_t* address, 2646 uint64_t* load_address, 2647 uint64_t* addralign, 2648 uint64_t* size) const 2649 { 2650 if (this->name_ != name) 2651 return false; 2652 2653 if (this->output_section_ != NULL) 2654 { 2655 *address = this->output_section_->address(); 2656 if (this->output_section_->has_load_address()) 2657 *load_address = this->output_section_->load_address(); 2658 else 2659 *load_address = *address; 2660 *addralign = this->output_section_->addralign(); 2661 *size = this->output_section_->current_data_size(); 2662 } 2663 else 2664 { 2665 *address = this->evaluated_address_; 2666 *load_address = this->evaluated_load_address_; 2667 *addralign = this->evaluated_addralign_; 2668 *size = 0; 2669 } 2670 2671 return true; 2672 } 2673 2674 // Print for debugging. 2675 2676 void 2677 Output_section_definition::print(FILE* f) const 2678 { 2679 fprintf(f, " %s ", this->name_.c_str()); 2680 2681 if (this->address_ != NULL) 2682 { 2683 this->address_->print(f); 2684 fprintf(f, " "); 2685 } 2686 2687 if (this->script_section_type_ != SCRIPT_SECTION_TYPE_NONE) 2688 fprintf(f, "(%s) ", 2689 this->script_section_type_name(this->script_section_type_)); 2690 2691 fprintf(f, ": "); 2692 2693 if (this->load_address_ != NULL) 2694 { 2695 fprintf(f, "AT("); 2696 this->load_address_->print(f); 2697 fprintf(f, ") "); 2698 } 2699 2700 if (this->align_ != NULL) 2701 { 2702 fprintf(f, "ALIGN("); 2703 this->align_->print(f); 2704 fprintf(f, ") "); 2705 } 2706 2707 if (this->subalign_ != NULL) 2708 { 2709 fprintf(f, "SUBALIGN("); 2710 this->subalign_->print(f); 2711 fprintf(f, ") "); 2712 } 2713 2714 fprintf(f, "{\n"); 2715 2716 for (Output_section_elements::const_iterator p = this->elements_.begin(); 2717 p != this->elements_.end(); 2718 ++p) 2719 (*p)->print(f); 2720 2721 fprintf(f, " }"); 2722 2723 if (this->fill_ != NULL) 2724 { 2725 fprintf(f, " = "); 2726 this->fill_->print(f); 2727 } 2728 2729 if (this->phdrs_ != NULL) 2730 { 2731 for (String_list::const_iterator p = this->phdrs_->begin(); 2732 p != this->phdrs_->end(); 2733 ++p) 2734 fprintf(f, " :%s", p->c_str()); 2735 } 2736 2737 fprintf(f, "\n"); 2738 } 2739 2740 Script_sections::Section_type 2741 Output_section_definition::section_type() const 2742 { 2743 switch (this->script_section_type_) 2744 { 2745 case SCRIPT_SECTION_TYPE_NONE: 2746 return Script_sections::ST_NONE; 2747 case SCRIPT_SECTION_TYPE_NOLOAD: 2748 return Script_sections::ST_NOLOAD; 2749 case SCRIPT_SECTION_TYPE_COPY: 2750 case SCRIPT_SECTION_TYPE_DSECT: 2751 case SCRIPT_SECTION_TYPE_INFO: 2752 case SCRIPT_SECTION_TYPE_OVERLAY: 2753 // There are not really support so we treat them as ST_NONE. The 2754 // parse should have issued errors for them already. 2755 return Script_sections::ST_NONE; 2756 default: 2757 gold_unreachable(); 2758 } 2759 } 2760 2761 // Return the name of a script section type. 2762 2763 const char* 2764 Output_section_definition::script_section_type_name( 2765 Script_section_type script_section_type) 2766 { 2767 switch (script_section_type) 2768 { 2769 case SCRIPT_SECTION_TYPE_NONE: 2770 return "NONE"; 2771 case SCRIPT_SECTION_TYPE_NOLOAD: 2772 return "NOLOAD"; 2773 case SCRIPT_SECTION_TYPE_DSECT: 2774 return "DSECT"; 2775 case SCRIPT_SECTION_TYPE_COPY: 2776 return "COPY"; 2777 case SCRIPT_SECTION_TYPE_INFO: 2778 return "INFO"; 2779 case SCRIPT_SECTION_TYPE_OVERLAY: 2780 return "OVERLAY"; 2781 default: 2782 gold_unreachable(); 2783 } 2784 } 2785 2786 void 2787 Output_section_definition::set_memory_region(Memory_region* mr, bool set_vma) 2788 { 2789 gold_assert(mr != NULL); 2790 // Add the current section to the specified region's list. 2791 mr->add_section(this, set_vma); 2792 } 2793 2794 // An output section created to hold orphaned input sections. These 2795 // do not actually appear in linker scripts. However, for convenience 2796 // when setting the output section addresses, we put a marker to these 2797 // sections in the appropriate place in the list of SECTIONS elements. 2798 2799 class Orphan_output_section : public Sections_element 2800 { 2801 public: 2802 Orphan_output_section(Output_section* os) 2803 : os_(os) 2804 { } 2805 2806 // Return whether the orphan output section is relro. We can just 2807 // check the output section because we always set the flag, if 2808 // needed, just after we create the Orphan_output_section. 2809 bool 2810 is_relro() const 2811 { return this->os_->is_relro(); } 2812 2813 // Initialize OSP with an output section. This should have been 2814 // done already. 2815 void 2816 orphan_section_init(Orphan_section_placement*, 2817 Script_sections::Elements_iterator) 2818 { gold_unreachable(); } 2819 2820 // Set section addresses. 2821 void 2822 set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*, 2823 uint64_t*); 2824 2825 // Get the list of segments to use for an allocated section when 2826 // using a PHDRS clause. 2827 Output_section* 2828 allocate_to_segment(String_list**, bool*); 2829 2830 // Return the associated Output_section. 2831 Output_section* 2832 get_output_section() const 2833 { return this->os_; } 2834 2835 // Print for debugging. 2836 void 2837 print(FILE* f) const 2838 { 2839 fprintf(f, " marker for orphaned output section %s\n", 2840 this->os_->name()); 2841 } 2842 2843 private: 2844 Output_section* os_; 2845 }; 2846 2847 // Set section addresses. 2848 2849 void 2850 Orphan_output_section::set_section_addresses(Symbol_table*, Layout*, 2851 uint64_t* dot_value, 2852 uint64_t*, 2853 uint64_t* load_address) 2854 { 2855 typedef std::list<Output_section::Input_section> Input_section_list; 2856 2857 bool have_load_address = *load_address != *dot_value; 2858 2859 uint64_t address = *dot_value; 2860 address = align_address(address, this->os_->addralign()); 2861 2862 // For a relocatable link, all orphan sections are put at 2863 // address 0. In general we expect all sections to be at 2864 // address 0 for a relocatable link, but we permit the linker 2865 // script to override that for specific output sections. 2866 if (parameters->options().relocatable()) 2867 { 2868 address = 0; 2869 *load_address = 0; 2870 have_load_address = false; 2871 } 2872 2873 if ((this->os_->flags() & elfcpp::SHF_ALLOC) != 0) 2874 { 2875 this->os_->set_address(address); 2876 if (have_load_address) 2877 this->os_->set_load_address(align_address(*load_address, 2878 this->os_->addralign())); 2879 } 2880 2881 Input_section_list input_sections; 2882 address += this->os_->get_input_sections(address, "", &input_sections); 2883 2884 for (Input_section_list::iterator p = input_sections.begin(); 2885 p != input_sections.end(); 2886 ++p) 2887 { 2888 uint64_t addralign = p->addralign(); 2889 if (!p->is_input_section()) 2890 p->output_section_data()->finalize_data_size(); 2891 uint64_t size = p->data_size(); 2892 address = align_address(address, addralign); 2893 this->os_->add_script_input_section(*p); 2894 address += size; 2895 } 2896 2897 // An SHF_TLS/SHT_NOBITS section does not take up any address space. 2898 if (this->os_ == NULL 2899 || (this->os_->flags() & elfcpp::SHF_TLS) == 0 2900 || this->os_->type() != elfcpp::SHT_NOBITS) 2901 { 2902 if (!have_load_address) 2903 *load_address = address; 2904 else 2905 *load_address += address - *dot_value; 2906 2907 *dot_value = address; 2908 } 2909 } 2910 2911 // Get the list of segments to use for an allocated section when using 2912 // a PHDRS clause. If this is an allocated section, return the 2913 // Output_section. We don't change the list of segments. 2914 2915 Output_section* 2916 Orphan_output_section::allocate_to_segment(String_list**, bool* orphan) 2917 { 2918 if ((this->os_->flags() & elfcpp::SHF_ALLOC) == 0) 2919 return NULL; 2920 *orphan = true; 2921 return this->os_; 2922 } 2923 2924 // Class Phdrs_element. A program header from a PHDRS clause. 2925 2926 class Phdrs_element 2927 { 2928 public: 2929 Phdrs_element(const char* name, size_t namelen, unsigned int type, 2930 bool includes_filehdr, bool includes_phdrs, 2931 bool is_flags_valid, unsigned int flags, 2932 Expression* load_address) 2933 : name_(name, namelen), type_(type), includes_filehdr_(includes_filehdr), 2934 includes_phdrs_(includes_phdrs), is_flags_valid_(is_flags_valid), 2935 flags_(flags), load_address_(load_address), load_address_value_(0), 2936 segment_(NULL) 2937 { } 2938 2939 // Return the name of this segment. 2940 const std::string& 2941 name() const 2942 { return this->name_; } 2943 2944 // Return the type of the segment. 2945 unsigned int 2946 type() const 2947 { return this->type_; } 2948 2949 // Whether to include the file header. 2950 bool 2951 includes_filehdr() const 2952 { return this->includes_filehdr_; } 2953 2954 // Whether to include the program headers. 2955 bool 2956 includes_phdrs() const 2957 { return this->includes_phdrs_; } 2958 2959 // Return whether there is a load address. 2960 bool 2961 has_load_address() const 2962 { return this->load_address_ != NULL; } 2963 2964 // Evaluate the load address expression if there is one. 2965 void 2966 eval_load_address(Symbol_table* symtab, Layout* layout) 2967 { 2968 if (this->load_address_ != NULL) 2969 this->load_address_value_ = this->load_address_->eval(symtab, layout, 2970 true); 2971 } 2972 2973 // Return the load address. 2974 uint64_t 2975 load_address() const 2976 { 2977 gold_assert(this->load_address_ != NULL); 2978 return this->load_address_value_; 2979 } 2980 2981 // Create the segment. 2982 Output_segment* 2983 create_segment(Layout* layout) 2984 { 2985 this->segment_ = layout->make_output_segment(this->type_, this->flags_); 2986 return this->segment_; 2987 } 2988 2989 // Return the segment. 2990 Output_segment* 2991 segment() 2992 { return this->segment_; } 2993 2994 // Release the segment. 2995 void 2996 release_segment() 2997 { this->segment_ = NULL; } 2998 2999 // Set the segment flags if appropriate. 3000 void 3001 set_flags_if_valid() 3002 { 3003 if (this->is_flags_valid_) 3004 this->segment_->set_flags(this->flags_); 3005 } 3006 3007 // Print for debugging. 3008 void 3009 print(FILE*) const; 3010 3011 private: 3012 // The name used in the script. 3013 std::string name_; 3014 // The type of the segment (PT_LOAD, etc.). 3015 unsigned int type_; 3016 // Whether this segment includes the file header. 3017 bool includes_filehdr_; 3018 // Whether this segment includes the section headers. 3019 bool includes_phdrs_; 3020 // Whether the flags were explicitly specified. 3021 bool is_flags_valid_; 3022 // The flags for this segment (PF_R, etc.) if specified. 3023 unsigned int flags_; 3024 // The expression for the load address for this segment. This may 3025 // be NULL. 3026 Expression* load_address_; 3027 // The actual load address from evaluating the expression. 3028 uint64_t load_address_value_; 3029 // The segment itself. 3030 Output_segment* segment_; 3031 }; 3032 3033 // Print for debugging. 3034 3035 void 3036 Phdrs_element::print(FILE* f) const 3037 { 3038 fprintf(f, " %s 0x%x", this->name_.c_str(), this->type_); 3039 if (this->includes_filehdr_) 3040 fprintf(f, " FILEHDR"); 3041 if (this->includes_phdrs_) 3042 fprintf(f, " PHDRS"); 3043 if (this->is_flags_valid_) 3044 fprintf(f, " FLAGS(%u)", this->flags_); 3045 if (this->load_address_ != NULL) 3046 { 3047 fprintf(f, " AT("); 3048 this->load_address_->print(f); 3049 fprintf(f, ")"); 3050 } 3051 fprintf(f, ";\n"); 3052 } 3053 3054 // Add a memory region. 3055 3056 void 3057 Script_sections::add_memory_region(const char* name, size_t namelen, 3058 unsigned int attributes, 3059 Expression* start, Expression* length) 3060 { 3061 if (this->memory_regions_ == NULL) 3062 this->memory_regions_ = new Memory_regions(); 3063 else if (this->find_memory_region(name, namelen)) 3064 { 3065 gold_error(_("region '%.*s' already defined"), static_cast<int>(namelen), 3066 name); 3067 // FIXME: Add a GOLD extension to allow multiple regions with the same 3068 // name. This would amount to a single region covering disjoint blocks 3069 // of memory, which is useful for embedded devices. 3070 } 3071 3072 // FIXME: Check the length and start values. Currently we allow 3073 // non-constant expressions for these values, whereas LD does not. 3074 3075 // FIXME: Add a GOLD extension to allow NEGATIVE LENGTHS. This would 3076 // describe a region that packs from the end address going down, rather 3077 // than the start address going up. This would be useful for embedded 3078 // devices. 3079 3080 this->memory_regions_->push_back(new Memory_region(name, namelen, attributes, 3081 start, length)); 3082 } 3083 3084 // Find a memory region. 3085 3086 Memory_region* 3087 Script_sections::find_memory_region(const char* name, size_t namelen) 3088 { 3089 if (this->memory_regions_ == NULL) 3090 return NULL; 3091 3092 for (Memory_regions::const_iterator m = this->memory_regions_->begin(); 3093 m != this->memory_regions_->end(); 3094 ++m) 3095 if ((*m)->name_match(name, namelen)) 3096 return *m; 3097 3098 return NULL; 3099 } 3100 3101 // Find a memory region's origin. 3102 3103 Expression* 3104 Script_sections::find_memory_region_origin(const char* name, size_t namelen) 3105 { 3106 Memory_region* mr = find_memory_region(name, namelen); 3107 if (mr == NULL) 3108 return NULL; 3109 3110 return mr->start_address(); 3111 } 3112 3113 // Find a memory region's length. 3114 3115 Expression* 3116 Script_sections::find_memory_region_length(const char* name, size_t namelen) 3117 { 3118 Memory_region* mr = find_memory_region(name, namelen); 3119 if (mr == NULL) 3120 return NULL; 3121 3122 return mr->length(); 3123 } 3124 3125 // Set the memory region to use for the current section. 3126 3127 void 3128 Script_sections::set_memory_region(Memory_region* mr, bool set_vma) 3129 { 3130 gold_assert(!this->sections_elements_->empty()); 3131 this->sections_elements_->back()->set_memory_region(mr, set_vma); 3132 } 3133 3134 // Class Script_sections. 3135 3136 Script_sections::Script_sections() 3137 : saw_sections_clause_(false), 3138 in_sections_clause_(false), 3139 sections_elements_(NULL), 3140 output_section_(NULL), 3141 memory_regions_(NULL), 3142 phdrs_elements_(NULL), 3143 orphan_section_placement_(NULL), 3144 data_segment_align_start_(), 3145 saw_data_segment_align_(false), 3146 saw_relro_end_(false), 3147 saw_segment_start_expression_(false) 3148 { 3149 } 3150 3151 // Start a SECTIONS clause. 3152 3153 void 3154 Script_sections::start_sections() 3155 { 3156 gold_assert(!this->in_sections_clause_ && this->output_section_ == NULL); 3157 this->saw_sections_clause_ = true; 3158 this->in_sections_clause_ = true; 3159 if (this->sections_elements_ == NULL) 3160 this->sections_elements_ = new Sections_elements; 3161 } 3162 3163 // Finish a SECTIONS clause. 3164 3165 void 3166 Script_sections::finish_sections() 3167 { 3168 gold_assert(this->in_sections_clause_ && this->output_section_ == NULL); 3169 this->in_sections_clause_ = false; 3170 } 3171 3172 // Add a symbol to be defined. 3173 3174 void 3175 Script_sections::add_symbol_assignment(const char* name, size_t length, 3176 Expression* val, bool provide, 3177 bool hidden) 3178 { 3179 if (this->output_section_ != NULL) 3180 this->output_section_->add_symbol_assignment(name, length, val, 3181 provide, hidden); 3182 else 3183 { 3184 Sections_element* p = new Sections_element_assignment(name, length, 3185 val, provide, 3186 hidden); 3187 this->sections_elements_->push_back(p); 3188 } 3189 } 3190 3191 // Add an assignment to the special dot symbol. 3192 3193 void 3194 Script_sections::add_dot_assignment(Expression* val) 3195 { 3196 if (this->output_section_ != NULL) 3197 this->output_section_->add_dot_assignment(val); 3198 else 3199 { 3200 // The GNU linker permits assignments to . to appears outside of 3201 // a SECTIONS clause, and treats it as appearing inside, so 3202 // sections_elements_ may be NULL here. 3203 if (this->sections_elements_ == NULL) 3204 { 3205 this->sections_elements_ = new Sections_elements; 3206 this->saw_sections_clause_ = true; 3207 } 3208 3209 Sections_element* p = new Sections_element_dot_assignment(val); 3210 this->sections_elements_->push_back(p); 3211 } 3212 } 3213 3214 // Add an assertion. 3215 3216 void 3217 Script_sections::add_assertion(Expression* check, const char* message, 3218 size_t messagelen) 3219 { 3220 if (this->output_section_ != NULL) 3221 this->output_section_->add_assertion(check, message, messagelen); 3222 else 3223 { 3224 Sections_element* p = new Sections_element_assertion(check, message, 3225 messagelen); 3226 this->sections_elements_->push_back(p); 3227 } 3228 } 3229 3230 // Start processing entries for an output section. 3231 3232 void 3233 Script_sections::start_output_section( 3234 const char* name, 3235 size_t namelen, 3236 const Parser_output_section_header* header) 3237 { 3238 Output_section_definition* posd = new Output_section_definition(name, 3239 namelen, 3240 header); 3241 this->sections_elements_->push_back(posd); 3242 gold_assert(this->output_section_ == NULL); 3243 this->output_section_ = posd; 3244 } 3245 3246 // Stop processing entries for an output section. 3247 3248 void 3249 Script_sections::finish_output_section( 3250 const Parser_output_section_trailer* trailer) 3251 { 3252 gold_assert(this->output_section_ != NULL); 3253 this->output_section_->finish(trailer); 3254 this->output_section_ = NULL; 3255 } 3256 3257 // Add a data item to the current output section. 3258 3259 void 3260 Script_sections::add_data(int size, bool is_signed, Expression* val) 3261 { 3262 gold_assert(this->output_section_ != NULL); 3263 this->output_section_->add_data(size, is_signed, val); 3264 } 3265 3266 // Add a fill value setting to the current output section. 3267 3268 void 3269 Script_sections::add_fill(Expression* val) 3270 { 3271 gold_assert(this->output_section_ != NULL); 3272 this->output_section_->add_fill(val); 3273 } 3274 3275 // Add an input section specification to the current output section. 3276 3277 void 3278 Script_sections::add_input_section(const Input_section_spec* spec, bool keep) 3279 { 3280 gold_assert(this->output_section_ != NULL); 3281 this->output_section_->add_input_section(spec, keep); 3282 } 3283 3284 // This is called when we see DATA_SEGMENT_ALIGN. It means that any 3285 // subsequent output sections may be relro. 3286 3287 void 3288 Script_sections::data_segment_align() 3289 { 3290 if (this->saw_data_segment_align_) 3291 gold_error(_("DATA_SEGMENT_ALIGN may only appear once in a linker script")); 3292 gold_assert(!this->sections_elements_->empty()); 3293 Sections_elements::iterator p = this->sections_elements_->end(); 3294 --p; 3295 this->data_segment_align_start_ = p; 3296 this->saw_data_segment_align_ = true; 3297 } 3298 3299 // This is called when we see DATA_SEGMENT_RELRO_END. It means that 3300 // any output sections seen since DATA_SEGMENT_ALIGN are relro. 3301 3302 void 3303 Script_sections::data_segment_relro_end() 3304 { 3305 if (this->saw_relro_end_) 3306 gold_error(_("DATA_SEGMENT_RELRO_END may only appear once " 3307 "in a linker script")); 3308 this->saw_relro_end_ = true; 3309 3310 if (!this->saw_data_segment_align_) 3311 gold_error(_("DATA_SEGMENT_RELRO_END must follow DATA_SEGMENT_ALIGN")); 3312 else 3313 { 3314 Sections_elements::iterator p = this->data_segment_align_start_; 3315 for (++p; p != this->sections_elements_->end(); ++p) 3316 (*p)->set_is_relro(); 3317 } 3318 } 3319 3320 // Create any required sections. 3321 3322 void 3323 Script_sections::create_sections(Layout* layout) 3324 { 3325 if (!this->saw_sections_clause_) 3326 return; 3327 for (Sections_elements::iterator p = this->sections_elements_->begin(); 3328 p != this->sections_elements_->end(); 3329 ++p) 3330 (*p)->create_sections(layout); 3331 } 3332 3333 // Add any symbols we are defining to the symbol table. 3334 3335 void 3336 Script_sections::add_symbols_to_table(Symbol_table* symtab) 3337 { 3338 if (!this->saw_sections_clause_) 3339 return; 3340 for (Sections_elements::iterator p = this->sections_elements_->begin(); 3341 p != this->sections_elements_->end(); 3342 ++p) 3343 (*p)->add_symbols_to_table(symtab); 3344 } 3345 3346 // Finalize symbols and check assertions. 3347 3348 void 3349 Script_sections::finalize_symbols(Symbol_table* symtab, const Layout* layout) 3350 { 3351 if (!this->saw_sections_clause_) 3352 return; 3353 uint64_t dot_value = 0; 3354 for (Sections_elements::iterator p = this->sections_elements_->begin(); 3355 p != this->sections_elements_->end(); 3356 ++p) 3357 (*p)->finalize_symbols(symtab, layout, &dot_value); 3358 } 3359 3360 // Return the name of the output section to use for an input file name 3361 // and section name. 3362 3363 const char* 3364 Script_sections::output_section_name( 3365 const char* file_name, 3366 const char* section_name, 3367 Output_section*** output_section_slot, 3368 Script_sections::Section_type* psection_type) 3369 { 3370 for (Sections_elements::const_iterator p = this->sections_elements_->begin(); 3371 p != this->sections_elements_->end(); 3372 ++p) 3373 { 3374 const char* ret = (*p)->output_section_name(file_name, section_name, 3375 output_section_slot, 3376 psection_type); 3377 3378 if (ret != NULL) 3379 { 3380 // The special name /DISCARD/ means that the input section 3381 // should be discarded. 3382 if (strcmp(ret, "/DISCARD/") == 0) 3383 { 3384 *output_section_slot = NULL; 3385 *psection_type = Script_sections::ST_NONE; 3386 return NULL; 3387 } 3388 return ret; 3389 } 3390 } 3391 3392 // If we couldn't find a mapping for the name, the output section 3393 // gets the name of the input section. 3394 3395 *output_section_slot = NULL; 3396 *psection_type = Script_sections::ST_NONE; 3397 3398 return section_name; 3399 } 3400 3401 // Place a marker for an orphan output section into the SECTIONS 3402 // clause. 3403 3404 void 3405 Script_sections::place_orphan(Output_section* os) 3406 { 3407 Orphan_section_placement* osp = this->orphan_section_placement_; 3408 if (osp == NULL) 3409 { 3410 // Initialize the Orphan_section_placement structure. 3411 osp = new Orphan_section_placement(); 3412 for (Sections_elements::iterator p = this->sections_elements_->begin(); 3413 p != this->sections_elements_->end(); 3414 ++p) 3415 (*p)->orphan_section_init(osp, p); 3416 gold_assert(!this->sections_elements_->empty()); 3417 Sections_elements::iterator last = this->sections_elements_->end(); 3418 --last; 3419 osp->last_init(last); 3420 this->orphan_section_placement_ = osp; 3421 } 3422 3423 Orphan_output_section* orphan = new Orphan_output_section(os); 3424 3425 // Look for where to put ORPHAN. 3426 Sections_elements::iterator* where; 3427 if (osp->find_place(os, &where)) 3428 { 3429 if ((**where)->is_relro()) 3430 os->set_is_relro(); 3431 else 3432 os->clear_is_relro(); 3433 3434 // We want to insert ORPHAN after *WHERE, and then update *WHERE 3435 // so that the next one goes after this one. 3436 Sections_elements::iterator p = *where; 3437 gold_assert(p != this->sections_elements_->end()); 3438 ++p; 3439 *where = this->sections_elements_->insert(p, orphan); 3440 } 3441 else 3442 { 3443 os->clear_is_relro(); 3444 // We don't have a place to put this orphan section. Put it, 3445 // and all other sections like it, at the end, but before the 3446 // sections which always come at the end. 3447 Sections_elements::iterator last = osp->last_place(); 3448 *where = this->sections_elements_->insert(last, orphan); 3449 } 3450 } 3451 3452 // Set the addresses of all the output sections. Walk through all the 3453 // elements, tracking the dot symbol. Apply assignments which set 3454 // absolute symbol values, in case they are used when setting dot. 3455 // Fill in data statement values. As we find output sections, set the 3456 // address, set the address of all associated input sections, and 3457 // update dot. Return the segment which should hold the file header 3458 // and segment headers, if any. 3459 3460 Output_segment* 3461 Script_sections::set_section_addresses(Symbol_table* symtab, Layout* layout) 3462 { 3463 gold_assert(this->saw_sections_clause_); 3464 3465 // Implement ONLY_IF_RO/ONLY_IF_RW constraints. These are a pain 3466 // for our representation. 3467 for (Sections_elements::iterator p = this->sections_elements_->begin(); 3468 p != this->sections_elements_->end(); 3469 ++p) 3470 { 3471 Output_section_definition* posd; 3472 Section_constraint failed_constraint = (*p)->check_constraint(&posd); 3473 if (failed_constraint != CONSTRAINT_NONE) 3474 { 3475 Sections_elements::iterator q; 3476 for (q = this->sections_elements_->begin(); 3477 q != this->sections_elements_->end(); 3478 ++q) 3479 { 3480 if (q != p) 3481 { 3482 if ((*q)->alternate_constraint(posd, failed_constraint)) 3483 break; 3484 } 3485 } 3486 3487 if (q == this->sections_elements_->end()) 3488 gold_error(_("no matching section constraint")); 3489 } 3490 } 3491 3492 // Force the alignment of the first TLS section to be the maximum 3493 // alignment of all TLS sections. 3494 Output_section* first_tls = NULL; 3495 uint64_t tls_align = 0; 3496 for (Sections_elements::const_iterator p = this->sections_elements_->begin(); 3497 p != this->sections_elements_->end(); 3498 ++p) 3499 { 3500 Output_section* os = (*p)->get_output_section(); 3501 if (os != NULL && (os->flags() & elfcpp::SHF_TLS) != 0) 3502 { 3503 if (first_tls == NULL) 3504 first_tls = os; 3505 if (os->addralign() > tls_align) 3506 tls_align = os->addralign(); 3507 } 3508 } 3509 if (first_tls != NULL) 3510 first_tls->set_addralign(tls_align); 3511 3512 // For a relocatable link, we implicitly set dot to zero. 3513 uint64_t dot_value = 0; 3514 uint64_t dot_alignment = 0; 3515 uint64_t load_address = 0; 3516 3517 // Check to see if we want to use any of -Ttext, -Tdata and -Tbss options 3518 // to set section addresses. If the script has any SEGMENT_START 3519 // expression, we do not set the section addresses. 3520 bool use_tsection_options = 3521 (!this->saw_segment_start_expression_ 3522 && (parameters->options().user_set_Ttext() 3523 || parameters->options().user_set_Tdata() 3524 || parameters->options().user_set_Tbss())); 3525 3526 for (Sections_elements::iterator p = this->sections_elements_->begin(); 3527 p != this->sections_elements_->end(); 3528 ++p) 3529 { 3530 Output_section* os = (*p)->get_output_section(); 3531 3532 // Handle -Ttext, -Tdata and -Tbss options. We do this by looking for 3533 // the special sections by names and doing dot assignments. 3534 if (use_tsection_options 3535 && os != NULL 3536 && (os->flags() & elfcpp::SHF_ALLOC) != 0) 3537 { 3538 uint64_t new_dot_value = dot_value; 3539 3540 if (parameters->options().user_set_Ttext() 3541 && strcmp(os->name(), ".text") == 0) 3542 new_dot_value = parameters->options().Ttext(); 3543 else if (parameters->options().user_set_Tdata() 3544 && strcmp(os->name(), ".data") == 0) 3545 new_dot_value = parameters->options().Tdata(); 3546 else if (parameters->options().user_set_Tbss() 3547 && strcmp(os->name(), ".bss") == 0) 3548 new_dot_value = parameters->options().Tbss(); 3549 3550 // Update dot and load address if necessary. 3551 if (new_dot_value < dot_value) 3552 gold_error(_("dot may not move backward")); 3553 else if (new_dot_value != dot_value) 3554 { 3555 dot_value = new_dot_value; 3556 load_address = new_dot_value; 3557 } 3558 } 3559 3560 (*p)->set_section_addresses(symtab, layout, &dot_value, &dot_alignment, 3561 &load_address); 3562 } 3563 3564 if (this->phdrs_elements_ != NULL) 3565 { 3566 for (Phdrs_elements::iterator p = this->phdrs_elements_->begin(); 3567 p != this->phdrs_elements_->end(); 3568 ++p) 3569 (*p)->eval_load_address(symtab, layout); 3570 } 3571 3572 return this->create_segments(layout, dot_alignment); 3573 } 3574 3575 // Sort the sections in order to put them into segments. 3576 3577 class Sort_output_sections 3578 { 3579 public: 3580 Sort_output_sections(const Script_sections::Sections_elements* elements) 3581 : elements_(elements) 3582 { } 3583 3584 bool 3585 operator()(const Output_section* os1, const Output_section* os2) const; 3586 3587 private: 3588 int 3589 script_compare(const Output_section* os1, const Output_section* os2) const; 3590 3591 private: 3592 const Script_sections::Sections_elements* elements_; 3593 }; 3594 3595 bool 3596 Sort_output_sections::operator()(const Output_section* os1, 3597 const Output_section* os2) const 3598 { 3599 // Sort first by the load address. 3600 uint64_t lma1 = (os1->has_load_address() 3601 ? os1->load_address() 3602 : os1->address()); 3603 uint64_t lma2 = (os2->has_load_address() 3604 ? os2->load_address() 3605 : os2->address()); 3606 if (lma1 != lma2) 3607 return lma1 < lma2; 3608 3609 // Then sort by the virtual address. 3610 if (os1->address() != os2->address()) 3611 return os1->address() < os2->address(); 3612 3613 // If the linker script says which of these sections is first, go 3614 // with what it says. 3615 int i = this->script_compare(os1, os2); 3616 if (i != 0) 3617 return i < 0; 3618 3619 // Sort PROGBITS before NOBITS. 3620 bool nobits1 = os1->type() == elfcpp::SHT_NOBITS; 3621 bool nobits2 = os2->type() == elfcpp::SHT_NOBITS; 3622 if (nobits1 != nobits2) 3623 return nobits2; 3624 3625 // Sort PROGBITS TLS sections to the end, NOBITS TLS sections to the 3626 // beginning. 3627 bool tls1 = (os1->flags() & elfcpp::SHF_TLS) != 0; 3628 bool tls2 = (os2->flags() & elfcpp::SHF_TLS) != 0; 3629 if (tls1 != tls2) 3630 return nobits1 ? tls1 : tls2; 3631 3632 // Sort non-NOLOAD before NOLOAD. 3633 if (os1->is_noload() && !os2->is_noload()) 3634 return true; 3635 if (!os1->is_noload() && os2->is_noload()) 3636 return true; 3637 3638 // The sections seem practically identical. Sort by name to get a 3639 // stable sort. 3640 return os1->name() < os2->name(); 3641 } 3642 3643 // Return -1 if OS1 comes before OS2 in ELEMENTS_, 1 if comes after, 0 3644 // if either OS1 or OS2 is not mentioned. This ensures that we keep 3645 // empty sections in the order in which they appear in a linker 3646 // script. 3647 3648 int 3649 Sort_output_sections::script_compare(const Output_section* os1, 3650 const Output_section* os2) const 3651 { 3652 if (this->elements_ == NULL) 3653 return 0; 3654 3655 bool found_os1 = false; 3656 bool found_os2 = false; 3657 for (Script_sections::Sections_elements::const_iterator 3658 p = this->elements_->begin(); 3659 p != this->elements_->end(); 3660 ++p) 3661 { 3662 if (os2 == (*p)->get_output_section()) 3663 { 3664 if (found_os1) 3665 return -1; 3666 found_os2 = true; 3667 } 3668 else if (os1 == (*p)->get_output_section()) 3669 { 3670 if (found_os2) 3671 return 1; 3672 found_os1 = true; 3673 } 3674 } 3675 3676 return 0; 3677 } 3678 3679 // Return whether OS is a BSS section. This is a SHT_NOBITS section. 3680 // We treat a section with the SHF_TLS flag set as taking up space 3681 // even if it is SHT_NOBITS (this is true of .tbss), as we allocate 3682 // space for them in the file. 3683 3684 bool 3685 Script_sections::is_bss_section(const Output_section* os) 3686 { 3687 return (os->type() == elfcpp::SHT_NOBITS 3688 && (os->flags() & elfcpp::SHF_TLS) == 0); 3689 } 3690 3691 // Return the size taken by the file header and the program headers. 3692 3693 size_t 3694 Script_sections::total_header_size(Layout* layout) const 3695 { 3696 size_t segment_count = layout->segment_count(); 3697 size_t file_header_size; 3698 size_t segment_headers_size; 3699 if (parameters->target().get_size() == 32) 3700 { 3701 file_header_size = elfcpp::Elf_sizes<32>::ehdr_size; 3702 segment_headers_size = segment_count * elfcpp::Elf_sizes<32>::phdr_size; 3703 } 3704 else if (parameters->target().get_size() == 64) 3705 { 3706 file_header_size = elfcpp::Elf_sizes<64>::ehdr_size; 3707 segment_headers_size = segment_count * elfcpp::Elf_sizes<64>::phdr_size; 3708 } 3709 else 3710 gold_unreachable(); 3711 3712 return file_header_size + segment_headers_size; 3713 } 3714 3715 // Return the amount we have to subtract from the LMA to accommodate 3716 // headers of the given size. The complication is that the file 3717 // header have to be at the start of a page, as otherwise it will not 3718 // be at the start of the file. 3719 3720 uint64_t 3721 Script_sections::header_size_adjustment(uint64_t lma, 3722 size_t sizeof_headers) const 3723 { 3724 const uint64_t abi_pagesize = parameters->target().abi_pagesize(); 3725 uint64_t hdr_lma = lma - sizeof_headers; 3726 hdr_lma &= ~(abi_pagesize - 1); 3727 return lma - hdr_lma; 3728 } 3729 3730 // Create the PT_LOAD segments when using a SECTIONS clause. Returns 3731 // the segment which should hold the file header and segment headers, 3732 // if any. 3733 3734 Output_segment* 3735 Script_sections::create_segments(Layout* layout, uint64_t dot_alignment) 3736 { 3737 gold_assert(this->saw_sections_clause_); 3738 3739 if (parameters->options().relocatable()) 3740 return NULL; 3741 3742 if (this->saw_phdrs_clause()) 3743 return create_segments_from_phdrs_clause(layout, dot_alignment); 3744 3745 Layout::Section_list sections; 3746 layout->get_allocated_sections(§ions); 3747 3748 // Sort the sections by address. 3749 std::stable_sort(sections.begin(), sections.end(), 3750 Sort_output_sections(this->sections_elements_)); 3751 3752 this->create_note_and_tls_segments(layout, §ions); 3753 3754 // Walk through the sections adding them to PT_LOAD segments. 3755 const uint64_t abi_pagesize = parameters->target().abi_pagesize(); 3756 Output_segment* first_seg = NULL; 3757 Output_segment* current_seg = NULL; 3758 bool is_current_seg_readonly = true; 3759 Layout::Section_list::iterator plast = sections.end(); 3760 uint64_t last_vma = 0; 3761 uint64_t last_lma = 0; 3762 uint64_t last_size = 0; 3763 for (Layout::Section_list::iterator p = sections.begin(); 3764 p != sections.end(); 3765 ++p) 3766 { 3767 const uint64_t vma = (*p)->address(); 3768 const uint64_t lma = ((*p)->has_load_address() 3769 ? (*p)->load_address() 3770 : vma); 3771 const uint64_t size = (*p)->current_data_size(); 3772 3773 bool need_new_segment; 3774 if (current_seg == NULL) 3775 need_new_segment = true; 3776 else if (lma - vma != last_lma - last_vma) 3777 { 3778 // This section has a different LMA relationship than the 3779 // last one; we need a new segment. 3780 need_new_segment = true; 3781 } 3782 else if (align_address(last_lma + last_size, abi_pagesize) 3783 < align_address(lma, abi_pagesize)) 3784 { 3785 // Putting this section in the segment would require 3786 // skipping a page. 3787 need_new_segment = true; 3788 } 3789 else if (is_bss_section(*plast) && !is_bss_section(*p)) 3790 { 3791 // A non-BSS section can not follow a BSS section in the 3792 // same segment. 3793 need_new_segment = true; 3794 } 3795 else if (is_current_seg_readonly 3796 && ((*p)->flags() & elfcpp::SHF_WRITE) != 0 3797 && !parameters->options().omagic()) 3798 { 3799 // Don't put a writable section in the same segment as a 3800 // non-writable section. 3801 need_new_segment = true; 3802 } 3803 else 3804 { 3805 // Otherwise, reuse the existing segment. 3806 need_new_segment = false; 3807 } 3808 3809 elfcpp::Elf_Word seg_flags = 3810 Layout::section_flags_to_segment((*p)->flags()); 3811 3812 if (need_new_segment) 3813 { 3814 current_seg = layout->make_output_segment(elfcpp::PT_LOAD, 3815 seg_flags); 3816 current_seg->set_addresses(vma, lma); 3817 current_seg->set_minimum_p_align(dot_alignment); 3818 if (first_seg == NULL) 3819 first_seg = current_seg; 3820 is_current_seg_readonly = true; 3821 } 3822 3823 current_seg->add_output_section_to_load(layout, *p, seg_flags); 3824 3825 if (((*p)->flags() & elfcpp::SHF_WRITE) != 0) 3826 is_current_seg_readonly = false; 3827 3828 plast = p; 3829 last_vma = vma; 3830 last_lma = lma; 3831 last_size = size; 3832 } 3833 3834 // An ELF program should work even if the program headers are not in 3835 // a PT_LOAD segment. However, it appears that the Linux kernel 3836 // does not set the AT_PHDR auxiliary entry in that case. It sets 3837 // the load address to p_vaddr - p_offset of the first PT_LOAD 3838 // segment. It then sets AT_PHDR to the load address plus the 3839 // offset to the program headers, e_phoff in the file header. This 3840 // fails when the program headers appear in the file before the 3841 // first PT_LOAD segment. Therefore, we always create a PT_LOAD 3842 // segment to hold the file header and the program headers. This is 3843 // effectively what the GNU linker does, and it is slightly more 3844 // efficient in any case. We try to use the first PT_LOAD segment 3845 // if we can, otherwise we make a new one. 3846 3847 if (first_seg == NULL) 3848 return NULL; 3849 3850 // -n or -N mean that the program is not demand paged and there is 3851 // no need to put the program headers in a PT_LOAD segment. 3852 if (parameters->options().nmagic() || parameters->options().omagic()) 3853 return NULL; 3854 3855 size_t sizeof_headers = this->total_header_size(layout); 3856 3857 uint64_t vma = first_seg->vaddr(); 3858 uint64_t lma = first_seg->paddr(); 3859 3860 uint64_t subtract = this->header_size_adjustment(lma, sizeof_headers); 3861 3862 if ((lma & (abi_pagesize - 1)) >= sizeof_headers) 3863 { 3864 first_seg->set_addresses(vma - subtract, lma - subtract); 3865 return first_seg; 3866 } 3867 3868 // If there is no room to squeeze in the headers, then punt. The 3869 // resulting executable probably won't run on GNU/Linux, but we 3870 // trust that the user knows what they are doing. 3871 if (lma < subtract || vma < subtract) 3872 return NULL; 3873 3874 // If memory regions have been specified and the address range 3875 // we are about to use is not contained within any region then 3876 // issue a warning message about the segment we are going to 3877 // create. It will be outside of any region and so possibly 3878 // using non-existent or protected memory. We test LMA rather 3879 // than VMA since we assume that the headers will never be 3880 // relocated. 3881 if (this->memory_regions_ != NULL 3882 && !this->block_in_region (NULL, layout, lma - subtract, subtract)) 3883 gold_warning(_("creating a segment to contain the file and program" 3884 " headers outside of any MEMORY region")); 3885 3886 Output_segment* load_seg = layout->make_output_segment(elfcpp::PT_LOAD, 3887 elfcpp::PF_R); 3888 load_seg->set_addresses(vma - subtract, lma - subtract); 3889 3890 return load_seg; 3891 } 3892 3893 // Create a PT_NOTE segment for each SHT_NOTE section and a PT_TLS 3894 // segment if there are any SHT_TLS sections. 3895 3896 void 3897 Script_sections::create_note_and_tls_segments( 3898 Layout* layout, 3899 const Layout::Section_list* sections) 3900 { 3901 gold_assert(!this->saw_phdrs_clause()); 3902 3903 bool saw_tls = false; 3904 for (Layout::Section_list::const_iterator p = sections->begin(); 3905 p != sections->end(); 3906 ++p) 3907 { 3908 if ((*p)->type() == elfcpp::SHT_NOTE) 3909 { 3910 elfcpp::Elf_Word seg_flags = 3911 Layout::section_flags_to_segment((*p)->flags()); 3912 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_NOTE, 3913 seg_flags); 3914 oseg->add_output_section_to_nonload(*p, seg_flags); 3915 3916 // Incorporate any subsequent SHT_NOTE sections, in the 3917 // hopes that the script is sensible. 3918 Layout::Section_list::const_iterator pnext = p + 1; 3919 while (pnext != sections->end() 3920 && (*pnext)->type() == elfcpp::SHT_NOTE) 3921 { 3922 seg_flags = Layout::section_flags_to_segment((*pnext)->flags()); 3923 oseg->add_output_section_to_nonload(*pnext, seg_flags); 3924 p = pnext; 3925 ++pnext; 3926 } 3927 } 3928 3929 if (((*p)->flags() & elfcpp::SHF_TLS) != 0) 3930 { 3931 if (saw_tls) 3932 gold_error(_("TLS sections are not adjacent")); 3933 3934 elfcpp::Elf_Word seg_flags = 3935 Layout::section_flags_to_segment((*p)->flags()); 3936 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_TLS, 3937 seg_flags); 3938 oseg->add_output_section_to_nonload(*p, seg_flags); 3939 3940 Layout::Section_list::const_iterator pnext = p + 1; 3941 while (pnext != sections->end() 3942 && ((*pnext)->flags() & elfcpp::SHF_TLS) != 0) 3943 { 3944 seg_flags = Layout::section_flags_to_segment((*pnext)->flags()); 3945 oseg->add_output_section_to_nonload(*pnext, seg_flags); 3946 p = pnext; 3947 ++pnext; 3948 } 3949 3950 saw_tls = true; 3951 } 3952 3953 // If we are making a shared library, and we see a section named 3954 // .interp then put the .interp section in a PT_INTERP segment. 3955 // This is for GNU ld compatibility. 3956 if (strcmp((*p)->name(), ".interp") == 0) 3957 { 3958 elfcpp::Elf_Word seg_flags = 3959 Layout::section_flags_to_segment((*p)->flags()); 3960 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_INTERP, 3961 seg_flags); 3962 oseg->add_output_section_to_nonload(*p, seg_flags); 3963 } 3964 } 3965 } 3966 3967 // Add a program header. The PHDRS clause is syntactically distinct 3968 // from the SECTIONS clause, but we implement it with the SECTIONS 3969 // support because PHDRS is useless if there is no SECTIONS clause. 3970 3971 void 3972 Script_sections::add_phdr(const char* name, size_t namelen, unsigned int type, 3973 bool includes_filehdr, bool includes_phdrs, 3974 bool is_flags_valid, unsigned int flags, 3975 Expression* load_address) 3976 { 3977 if (this->phdrs_elements_ == NULL) 3978 this->phdrs_elements_ = new Phdrs_elements(); 3979 this->phdrs_elements_->push_back(new Phdrs_element(name, namelen, type, 3980 includes_filehdr, 3981 includes_phdrs, 3982 is_flags_valid, flags, 3983 load_address)); 3984 } 3985 3986 // Return the number of segments we expect to create based on the 3987 // SECTIONS clause. This is used to implement SIZEOF_HEADERS. 3988 3989 size_t 3990 Script_sections::expected_segment_count(const Layout* layout) const 3991 { 3992 if (this->saw_phdrs_clause()) 3993 return this->phdrs_elements_->size(); 3994 3995 Layout::Section_list sections; 3996 layout->get_allocated_sections(§ions); 3997 3998 // We assume that we will need two PT_LOAD segments. 3999 size_t ret = 2; 4000 4001 bool saw_note = false; 4002 bool saw_tls = false; 4003 for (Layout::Section_list::const_iterator p = sections.begin(); 4004 p != sections.end(); 4005 ++p) 4006 { 4007 if ((*p)->type() == elfcpp::SHT_NOTE) 4008 { 4009 // Assume that all note sections will fit into a single 4010 // PT_NOTE segment. 4011 if (!saw_note) 4012 { 4013 ++ret; 4014 saw_note = true; 4015 } 4016 } 4017 else if (((*p)->flags() & elfcpp::SHF_TLS) != 0) 4018 { 4019 // There can only be one PT_TLS segment. 4020 if (!saw_tls) 4021 { 4022 ++ret; 4023 saw_tls = true; 4024 } 4025 } 4026 } 4027 4028 return ret; 4029 } 4030 4031 // Create the segments from a PHDRS clause. Return the segment which 4032 // should hold the file header and program headers, if any. 4033 4034 Output_segment* 4035 Script_sections::create_segments_from_phdrs_clause(Layout* layout, 4036 uint64_t dot_alignment) 4037 { 4038 this->attach_sections_using_phdrs_clause(layout); 4039 return this->set_phdrs_clause_addresses(layout, dot_alignment); 4040 } 4041 4042 // Create the segments from the PHDRS clause, and put the output 4043 // sections in them. 4044 4045 void 4046 Script_sections::attach_sections_using_phdrs_clause(Layout* layout) 4047 { 4048 typedef std::map<std::string, Output_segment*> Name_to_segment; 4049 Name_to_segment name_to_segment; 4050 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin(); 4051 p != this->phdrs_elements_->end(); 4052 ++p) 4053 name_to_segment[(*p)->name()] = (*p)->create_segment(layout); 4054 4055 // Walk through the output sections and attach them to segments. 4056 // Output sections in the script which do not list segments are 4057 // attached to the same set of segments as the immediately preceding 4058 // output section. 4059 4060 String_list* phdr_names = NULL; 4061 bool load_segments_only = false; 4062 for (Sections_elements::const_iterator p = this->sections_elements_->begin(); 4063 p != this->sections_elements_->end(); 4064 ++p) 4065 { 4066 bool is_orphan; 4067 String_list* old_phdr_names = phdr_names; 4068 Output_section* os = (*p)->allocate_to_segment(&phdr_names, &is_orphan); 4069 if (os == NULL) 4070 continue; 4071 4072 elfcpp::Elf_Word seg_flags = 4073 Layout::section_flags_to_segment(os->flags()); 4074 4075 if (phdr_names == NULL) 4076 { 4077 // Don't worry about empty orphan sections. 4078 if (is_orphan && os->current_data_size() > 0) 4079 gold_error(_("allocated section %s not in any segment"), 4080 os->name()); 4081 4082 // To avoid later crashes drop this section into the first 4083 // PT_LOAD segment. 4084 for (Phdrs_elements::const_iterator ppe = 4085 this->phdrs_elements_->begin(); 4086 ppe != this->phdrs_elements_->end(); 4087 ++ppe) 4088 { 4089 Output_segment* oseg = (*ppe)->segment(); 4090 if (oseg->type() == elfcpp::PT_LOAD) 4091 { 4092 oseg->add_output_section_to_load(layout, os, seg_flags); 4093 break; 4094 } 4095 } 4096 4097 continue; 4098 } 4099 4100 // We see a list of segments names. Disable PT_LOAD segment only 4101 // filtering. 4102 if (old_phdr_names != phdr_names) 4103 load_segments_only = false; 4104 4105 // If this is an orphan section--one that was not explicitly 4106 // mentioned in the linker script--then it should not inherit 4107 // any segment type other than PT_LOAD. Otherwise, e.g., the 4108 // PT_INTERP segment will pick up following orphan sections, 4109 // which does not make sense. If this is not an orphan section, 4110 // we trust the linker script. 4111 if (is_orphan) 4112 { 4113 // Enable PT_LOAD segments only filtering until we see another 4114 // list of segment names. 4115 load_segments_only = true; 4116 } 4117 4118 bool in_load_segment = false; 4119 for (String_list::const_iterator q = phdr_names->begin(); 4120 q != phdr_names->end(); 4121 ++q) 4122 { 4123 Name_to_segment::const_iterator r = name_to_segment.find(*q); 4124 if (r == name_to_segment.end()) 4125 gold_error(_("no segment %s"), q->c_str()); 4126 else 4127 { 4128 if (load_segments_only 4129 && r->second->type() != elfcpp::PT_LOAD) 4130 continue; 4131 4132 if (r->second->type() != elfcpp::PT_LOAD) 4133 r->second->add_output_section_to_nonload(os, seg_flags); 4134 else 4135 { 4136 r->second->add_output_section_to_load(layout, os, seg_flags); 4137 if (in_load_segment) 4138 gold_error(_("section in two PT_LOAD segments")); 4139 in_load_segment = true; 4140 } 4141 } 4142 } 4143 4144 if (!in_load_segment) 4145 gold_error(_("allocated section not in any PT_LOAD segment")); 4146 } 4147 } 4148 4149 // Set the addresses for segments created from a PHDRS clause. Return 4150 // the segment which should hold the file header and program headers, 4151 // if any. 4152 4153 Output_segment* 4154 Script_sections::set_phdrs_clause_addresses(Layout* layout, 4155 uint64_t dot_alignment) 4156 { 4157 Output_segment* load_seg = NULL; 4158 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin(); 4159 p != this->phdrs_elements_->end(); 4160 ++p) 4161 { 4162 // Note that we have to set the flags after adding the output 4163 // sections to the segment, as adding an output segment can 4164 // change the flags. 4165 (*p)->set_flags_if_valid(); 4166 4167 Output_segment* oseg = (*p)->segment(); 4168 4169 if (oseg->type() != elfcpp::PT_LOAD) 4170 { 4171 // The addresses of non-PT_LOAD segments are set from the 4172 // PT_LOAD segments. 4173 if ((*p)->has_load_address()) 4174 gold_error(_("may only specify load address for PT_LOAD segment")); 4175 continue; 4176 } 4177 4178 oseg->set_minimum_p_align(dot_alignment); 4179 4180 // The output sections should have addresses from the SECTIONS 4181 // clause. The addresses don't have to be in order, so find the 4182 // one with the lowest load address. Use that to set the 4183 // address of the segment. 4184 4185 Output_section* osec = oseg->section_with_lowest_load_address(); 4186 if (osec == NULL) 4187 { 4188 oseg->set_addresses(0, 0); 4189 continue; 4190 } 4191 4192 uint64_t vma = osec->address(); 4193 uint64_t lma = osec->has_load_address() ? osec->load_address() : vma; 4194 4195 // Override the load address of the section with the load 4196 // address specified for the segment. 4197 if ((*p)->has_load_address()) 4198 { 4199 if (osec->has_load_address()) 4200 gold_warning(_("PHDRS load address overrides " 4201 "section %s load address"), 4202 osec->name()); 4203 4204 lma = (*p)->load_address(); 4205 } 4206 4207 bool headers = (*p)->includes_filehdr() && (*p)->includes_phdrs(); 4208 if (!headers && ((*p)->includes_filehdr() || (*p)->includes_phdrs())) 4209 { 4210 // We could support this if we wanted to. 4211 gold_error(_("using only one of FILEHDR and PHDRS is " 4212 "not currently supported")); 4213 } 4214 if (headers) 4215 { 4216 size_t sizeof_headers = this->total_header_size(layout); 4217 uint64_t subtract = this->header_size_adjustment(lma, 4218 sizeof_headers); 4219 if (lma >= subtract && vma >= subtract) 4220 { 4221 lma -= subtract; 4222 vma -= subtract; 4223 } 4224 else 4225 { 4226 gold_error(_("sections loaded on first page without room " 4227 "for file and program headers " 4228 "are not supported")); 4229 } 4230 4231 if (load_seg != NULL) 4232 gold_error(_("using FILEHDR and PHDRS on more than one " 4233 "PT_LOAD segment is not currently supported")); 4234 load_seg = oseg; 4235 } 4236 4237 oseg->set_addresses(vma, lma); 4238 } 4239 4240 return load_seg; 4241 } 4242 4243 // Add the file header and segment headers to non-load segments 4244 // specified in the PHDRS clause. 4245 4246 void 4247 Script_sections::put_headers_in_phdrs(Output_data* file_header, 4248 Output_data* segment_headers) 4249 { 4250 gold_assert(this->saw_phdrs_clause()); 4251 for (Phdrs_elements::iterator p = this->phdrs_elements_->begin(); 4252 p != this->phdrs_elements_->end(); 4253 ++p) 4254 { 4255 if ((*p)->type() != elfcpp::PT_LOAD) 4256 { 4257 if ((*p)->includes_phdrs()) 4258 (*p)->segment()->add_initial_output_data(segment_headers); 4259 if ((*p)->includes_filehdr()) 4260 (*p)->segment()->add_initial_output_data(file_header); 4261 } 4262 } 4263 } 4264 4265 // Look for an output section by name and return the address, the load 4266 // address, the alignment, and the size. This is used when an 4267 // expression refers to an output section which was not actually 4268 // created. This returns true if the section was found, false 4269 // otherwise. 4270 4271 bool 4272 Script_sections::get_output_section_info(const char* name, uint64_t* address, 4273 uint64_t* load_address, 4274 uint64_t* addralign, 4275 uint64_t* size) const 4276 { 4277 if (!this->saw_sections_clause_) 4278 return false; 4279 for (Sections_elements::const_iterator p = this->sections_elements_->begin(); 4280 p != this->sections_elements_->end(); 4281 ++p) 4282 if ((*p)->get_output_section_info(name, address, load_address, addralign, 4283 size)) 4284 return true; 4285 return false; 4286 } 4287 4288 // Release all Output_segments. This remove all pointers to all 4289 // Output_segments. 4290 4291 void 4292 Script_sections::release_segments() 4293 { 4294 if (this->saw_phdrs_clause()) 4295 { 4296 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin(); 4297 p != this->phdrs_elements_->end(); 4298 ++p) 4299 (*p)->release_segment(); 4300 } 4301 } 4302 4303 // Print the SECTIONS clause to F for debugging. 4304 4305 void 4306 Script_sections::print(FILE* f) const 4307 { 4308 if (this->phdrs_elements_ != NULL) 4309 { 4310 fprintf(f, "PHDRS {\n"); 4311 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin(); 4312 p != this->phdrs_elements_->end(); 4313 ++p) 4314 (*p)->print(f); 4315 fprintf(f, "}\n"); 4316 } 4317 4318 if (this->memory_regions_ != NULL) 4319 { 4320 fprintf(f, "MEMORY {\n"); 4321 for (Memory_regions::const_iterator m = this->memory_regions_->begin(); 4322 m != this->memory_regions_->end(); 4323 ++m) 4324 (*m)->print(f); 4325 fprintf(f, "}\n"); 4326 } 4327 4328 if (!this->saw_sections_clause_) 4329 return; 4330 4331 fprintf(f, "SECTIONS {\n"); 4332 4333 for (Sections_elements::const_iterator p = this->sections_elements_->begin(); 4334 p != this->sections_elements_->end(); 4335 ++p) 4336 (*p)->print(f); 4337 4338 fprintf(f, "}\n"); 4339 } 4340 4341 } // End namespace gold. 4342