xref: /netbsd-src/external/gpl3/binutils/dist/gold/resolve.cc (revision a5847cc334d9a7029f6352b847e9e8d71a0f9e0c)
1 // resolve.cc -- symbol resolution for gold
2 
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 #include "gold.h"
24 
25 #include "elfcpp.h"
26 #include "target.h"
27 #include "object.h"
28 #include "symtab.h"
29 #include "plugin.h"
30 
31 namespace gold
32 {
33 
34 // Symbol methods used in this file.
35 
36 // This symbol is being overridden by another symbol whose version is
37 // VERSION.  Update the VERSION_ field accordingly.
38 
39 inline void
40 Symbol::override_version(const char* version)
41 {
42   if (version == NULL)
43     {
44       // This is the case where this symbol is NAME/VERSION, and the
45       // version was not marked as hidden.  That makes it the default
46       // version, so we create NAME/NULL.  Later we see another symbol
47       // NAME/NULL, and that symbol is overriding this one.  In this
48       // case, since NAME/VERSION is the default, we make NAME/NULL
49       // override NAME/VERSION as well.  They are already the same
50       // Symbol structure.  Setting the VERSION_ field to NULL ensures
51       // that it will be output with the correct, empty, version.
52       this->version_ = version;
53     }
54   else
55     {
56       // This is the case where this symbol is NAME/VERSION_ONE, and
57       // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
58       // overriding NAME.  If VERSION_ONE and VERSION_TWO are
59       // different, then this can only happen when VERSION_ONE is NULL
60       // and VERSION_TWO is not hidden.
61       gold_assert(this->version_ == version || this->version_ == NULL);
62       this->version_ = version;
63     }
64 }
65 
66 // This symbol is being overidden by another symbol whose visibility
67 // is VISIBILITY.  Updated the VISIBILITY_ field accordingly.
68 
69 inline void
70 Symbol::override_visibility(elfcpp::STV visibility)
71 {
72   // The rule for combining visibility is that we always choose the
73   // most constrained visibility.  In order of increasing constraint,
74   // visibility goes PROTECTED, HIDDEN, INTERNAL.  This is the reverse
75   // of the numeric values, so the effect is that we always want the
76   // smallest non-zero value.
77   if (visibility != elfcpp::STV_DEFAULT)
78     {
79       if (this->visibility_ == elfcpp::STV_DEFAULT)
80 	this->visibility_ = visibility;
81       else if (this->visibility_ > visibility)
82 	this->visibility_ = visibility;
83     }
84 }
85 
86 // Override the fields in Symbol.
87 
88 template<int size, bool big_endian>
89 void
90 Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
91 		      unsigned int st_shndx, bool is_ordinary,
92 		      Object* object, const char* version)
93 {
94   gold_assert(this->source_ == FROM_OBJECT);
95   this->u_.from_object.object = object;
96   this->override_version(version);
97   this->u_.from_object.shndx = st_shndx;
98   this->is_ordinary_shndx_ = is_ordinary;
99   this->type_ = sym.get_st_type();
100   this->binding_ = sym.get_st_bind();
101   this->override_visibility(sym.get_st_visibility());
102   this->nonvis_ = sym.get_st_nonvis();
103   if (object->is_dynamic())
104     this->in_dyn_ = true;
105   else
106     this->in_reg_ = true;
107 }
108 
109 // Override the fields in Sized_symbol.
110 
111 template<int size>
112 template<bool big_endian>
113 void
114 Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
115 			     unsigned st_shndx, bool is_ordinary,
116 			     Object* object, const char* version)
117 {
118   this->override_base(sym, st_shndx, is_ordinary, object, version);
119   this->value_ = sym.get_st_value();
120   this->symsize_ = sym.get_st_size();
121 }
122 
123 // Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
124 // VERSION.  This handles all aliases of TOSYM.
125 
126 template<int size, bool big_endian>
127 void
128 Symbol_table::override(Sized_symbol<size>* tosym,
129 		       const elfcpp::Sym<size, big_endian>& fromsym,
130 		       unsigned int st_shndx, bool is_ordinary,
131 		       Object* object, const char* version)
132 {
133   tosym->override(fromsym, st_shndx, is_ordinary, object, version);
134   if (tosym->has_alias())
135     {
136       Symbol* sym = this->weak_aliases_[tosym];
137       gold_assert(sym != NULL);
138       Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
139       do
140 	{
141 	  ssym->override(fromsym, st_shndx, is_ordinary, object, version);
142 	  sym = this->weak_aliases_[ssym];
143 	  gold_assert(sym != NULL);
144 	  ssym = this->get_sized_symbol<size>(sym);
145 	}
146       while (ssym != tosym);
147     }
148 }
149 
150 // The resolve functions build a little code for each symbol.
151 // Bit 0: 0 for global, 1 for weak.
152 // Bit 1: 0 for regular object, 1 for shared object
153 // Bits 2-3: 0 for normal, 1 for undefined, 2 for common
154 // This gives us values from 0 to 11.
155 
156 static const int global_or_weak_shift = 0;
157 static const unsigned int global_flag = 0 << global_or_weak_shift;
158 static const unsigned int weak_flag = 1 << global_or_weak_shift;
159 
160 static const int regular_or_dynamic_shift = 1;
161 static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
162 static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
163 
164 static const int def_undef_or_common_shift = 2;
165 static const unsigned int def_flag = 0 << def_undef_or_common_shift;
166 static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
167 static const unsigned int common_flag = 2 << def_undef_or_common_shift;
168 
169 // This convenience function combines all the flags based on facts
170 // about the symbol.
171 
172 static unsigned int
173 symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
174 	       unsigned int shndx, bool is_ordinary, elfcpp::STT type)
175 {
176   unsigned int bits;
177 
178   switch (binding)
179     {
180     case elfcpp::STB_GLOBAL:
181     case elfcpp::STB_GNU_UNIQUE:
182       bits = global_flag;
183       break;
184 
185     case elfcpp::STB_WEAK:
186       bits = weak_flag;
187       break;
188 
189     case elfcpp::STB_LOCAL:
190       // We should only see externally visible symbols in the symbol
191       // table.
192       gold_error(_("invalid STB_LOCAL symbol in external symbols"));
193       bits = global_flag;
194 
195     default:
196       // Any target which wants to handle STB_LOOS, etc., needs to
197       // define a resolve method.
198       gold_error(_("unsupported symbol binding %d"), static_cast<int>(binding));
199       bits = global_flag;
200     }
201 
202   if (is_dynamic)
203     bits |= dynamic_flag;
204   else
205     bits |= regular_flag;
206 
207   switch (shndx)
208     {
209     case elfcpp::SHN_UNDEF:
210       bits |= undef_flag;
211       break;
212 
213     case elfcpp::SHN_COMMON:
214       if (!is_ordinary)
215 	bits |= common_flag;
216       break;
217 
218     default:
219       if (type == elfcpp::STT_COMMON)
220 	bits |= common_flag;
221       else if (!is_ordinary && Symbol::is_common_shndx(shndx))
222 	bits |= common_flag;
223       else
224         bits |= def_flag;
225       break;
226     }
227 
228   return bits;
229 }
230 
231 // Resolve a symbol.  This is called the second and subsequent times
232 // we see a symbol.  TO is the pre-existing symbol.  ST_SHNDX is the
233 // section index for SYM, possibly adjusted for many sections.
234 // IS_ORDINARY is whether ST_SHNDX is a normal section index rather
235 // than a special code.  ORIG_ST_SHNDX is the original section index,
236 // before any munging because of discarded sections, except that all
237 // non-ordinary section indexes are mapped to SHN_UNDEF.  VERSION is
238 // the version of SYM.
239 
240 template<int size, bool big_endian>
241 void
242 Symbol_table::resolve(Sized_symbol<size>* to,
243 		      const elfcpp::Sym<size, big_endian>& sym,
244 		      unsigned int st_shndx, bool is_ordinary,
245 		      unsigned int orig_st_shndx,
246 		      Object* object, const char* version)
247 {
248   if (parameters->target().has_resolve())
249     {
250       Sized_target<size, big_endian>* sized_target;
251       sized_target = parameters->sized_target<size, big_endian>();
252       sized_target->resolve(to, sym, object, version);
253       return;
254     }
255 
256   if (!object->is_dynamic())
257     {
258       // Record that we've seen this symbol in a regular object.
259       to->set_in_reg();
260     }
261   else if (st_shndx == elfcpp::SHN_UNDEF
262            && (to->visibility() == elfcpp::STV_HIDDEN
263                || to->visibility() == elfcpp::STV_INTERNAL))
264     {
265       // A dynamic object cannot reference a hidden or internal symbol
266       // defined in another object.
267       gold_warning(_("%s symbol '%s' in %s is referenced by DSO %s"),
268                    (to->visibility() == elfcpp::STV_HIDDEN
269                     ? "hidden"
270                     : "internal"),
271                    to->demangled_name().c_str(),
272                    to->object()->name().c_str(),
273                    object->name().c_str());
274       return;
275     }
276   else
277     {
278       // Record that we've seen this symbol in a dynamic object.
279       to->set_in_dyn();
280     }
281 
282   // Record if we've seen this symbol in a real ELF object (i.e., the
283   // symbol is referenced from outside the world known to the plugin).
284   if (object->pluginobj() == NULL)
285     to->set_in_real_elf();
286 
287   // If we're processing replacement files, allow new symbols to override
288   // the placeholders from the plugin objects.
289   if (to->source() == Symbol::FROM_OBJECT)
290     {
291       Pluginobj* obj = to->object()->pluginobj();
292       if (obj != NULL
293           && parameters->options().plugins()->in_replacement_phase())
294         {
295           this->override(to, sym, st_shndx, is_ordinary, object, version);
296           return;
297         }
298     }
299 
300   // A new weak undefined reference, merging with an old weak
301   // reference, could be a One Definition Rule (ODR) violation --
302   // especially if the types or sizes of the references differ.  We'll
303   // store such pairs and look them up later to make sure they
304   // actually refer to the same lines of code.  We also check
305   // combinations of weak and strong, which might occur if one case is
306   // inline and the other is not.  (Note: not all ODR violations can
307   // be found this way, and not everything this finds is an ODR
308   // violation.  But it's helpful to warn about.)
309   bool to_is_ordinary;
310   if (parameters->options().detect_odr_violations()
311       && (sym.get_st_bind() == elfcpp::STB_WEAK
312 	  || to->binding() == elfcpp::STB_WEAK)
313       && orig_st_shndx != elfcpp::SHN_UNDEF
314       && to->shndx(&to_is_ordinary) != elfcpp::SHN_UNDEF
315       && to_is_ordinary
316       && sym.get_st_size() != 0    // Ignore weird 0-sized symbols.
317       && to->symsize() != 0
318       && (sym.get_st_type() != to->type()
319           || sym.get_st_size() != to->symsize())
320       // C does not have a concept of ODR, so we only need to do this
321       // on C++ symbols.  These have (mangled) names starting with _Z.
322       && to->name()[0] == '_' && to->name()[1] == 'Z')
323     {
324       Symbol_location fromloc
325           = { object, orig_st_shndx, sym.get_st_value() };
326       Symbol_location toloc = { to->object(), to->shndx(&to_is_ordinary),
327 				to->value() };
328       this->candidate_odr_violations_[to->name()].insert(fromloc);
329       this->candidate_odr_violations_[to->name()].insert(toloc);
330     }
331 
332   unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
333                                          object->is_dynamic(),
334 					 st_shndx, is_ordinary,
335                                          sym.get_st_type());
336 
337   bool adjust_common_sizes;
338   bool adjust_dyndef;
339   typename Sized_symbol<size>::Size_type tosize = to->symsize();
340   if (Symbol_table::should_override(to, frombits, OBJECT, object,
341 				    &adjust_common_sizes,
342 				    &adjust_dyndef))
343     {
344       elfcpp::STB tobinding = to->binding();
345       this->override(to, sym, st_shndx, is_ordinary, object, version);
346       if (adjust_common_sizes && tosize > to->symsize())
347         to->set_symsize(tosize);
348       if (adjust_dyndef)
349 	{
350 	  // We are overriding an UNDEF or WEAK UNDEF with a DYN DEF.
351 	  // Remember which kind of UNDEF it was for future reference.
352 	  to->set_undef_binding(tobinding);
353 	}
354     }
355   else
356     {
357       if (adjust_common_sizes && sym.get_st_size() > tosize)
358         to->set_symsize(sym.get_st_size());
359       if (adjust_dyndef)
360 	{
361 	  // We are keeping a DYN DEF after seeing an UNDEF or WEAK UNDEF.
362 	  // Remember which kind of UNDEF it was.
363 	  to->set_undef_binding(sym.get_st_bind());
364 	}
365       // The ELF ABI says that even for a reference to a symbol we
366       // merge the visibility.
367       to->override_visibility(sym.get_st_visibility());
368     }
369 
370   if (adjust_common_sizes && parameters->options().warn_common())
371     {
372       if (tosize > sym.get_st_size())
373 	Symbol_table::report_resolve_problem(false,
374 					     _("common of '%s' overriding "
375 					       "smaller common"),
376 					     to, OBJECT, object);
377       else if (tosize < sym.get_st_size())
378 	Symbol_table::report_resolve_problem(false,
379 					     _("common of '%s' overidden by "
380 					       "larger common"),
381 					     to, OBJECT, object);
382       else
383 	Symbol_table::report_resolve_problem(false,
384 					     _("multiple common of '%s'"),
385 					     to, OBJECT, object);
386     }
387 }
388 
389 // Handle the core of symbol resolution.  This is called with the
390 // existing symbol, TO, and a bitflag describing the new symbol.  This
391 // returns true if we should override the existing symbol with the new
392 // one, and returns false otherwise.  It sets *ADJUST_COMMON_SIZES to
393 // true if we should set the symbol size to the maximum of the TO and
394 // FROM sizes.  It handles error conditions.
395 
396 bool
397 Symbol_table::should_override(const Symbol* to, unsigned int frombits,
398                               Defined defined, Object* object,
399 			      bool* adjust_common_sizes,
400 			      bool* adjust_dyndef)
401 {
402   *adjust_common_sizes = false;
403   *adjust_dyndef = false;
404 
405   unsigned int tobits;
406   if (to->source() == Symbol::IS_UNDEFINED)
407     tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_UNDEF, true,
408 			    to->type());
409   else if (to->source() != Symbol::FROM_OBJECT)
410     tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS, false,
411 			    to->type());
412   else
413     {
414       bool is_ordinary;
415       unsigned int shndx = to->shndx(&is_ordinary);
416       tobits = symbol_to_bits(to->binding(),
417 			      to->object()->is_dynamic(),
418 			      shndx,
419 			      is_ordinary,
420 			      to->type());
421     }
422 
423   // FIXME: Warn if either but not both of TO and SYM are STT_TLS.
424 
425   // We use a giant switch table for symbol resolution.  This code is
426   // unwieldy, but: 1) it is efficient; 2) we definitely handle all
427   // cases; 3) it is easy to change the handling of a particular case.
428   // The alternative would be a series of conditionals, but it is easy
429   // to get the ordering wrong.  This could also be done as a table,
430   // but that is no easier to understand than this large switch
431   // statement.
432 
433   // These are the values generated by the bit codes.
434   enum
435   {
436     DEF =              global_flag | regular_flag | def_flag,
437     WEAK_DEF =         weak_flag   | regular_flag | def_flag,
438     DYN_DEF =          global_flag | dynamic_flag | def_flag,
439     DYN_WEAK_DEF =     weak_flag   | dynamic_flag | def_flag,
440     UNDEF =            global_flag | regular_flag | undef_flag,
441     WEAK_UNDEF =       weak_flag   | regular_flag | undef_flag,
442     DYN_UNDEF =        global_flag | dynamic_flag | undef_flag,
443     DYN_WEAK_UNDEF =   weak_flag   | dynamic_flag | undef_flag,
444     COMMON =           global_flag | regular_flag | common_flag,
445     WEAK_COMMON =      weak_flag   | regular_flag | common_flag,
446     DYN_COMMON =       global_flag | dynamic_flag | common_flag,
447     DYN_WEAK_COMMON =  weak_flag   | dynamic_flag | common_flag
448   };
449 
450   switch (tobits * 16 + frombits)
451     {
452     case DEF * 16 + DEF:
453       // Two definitions of the same symbol.
454 
455       // If either symbol is defined by an object included using
456       // --just-symbols, then don't warn.  This is for compatibility
457       // with the GNU linker.  FIXME: This is a hack.
458       if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols())
459           || (object != NULL && object->just_symbols()))
460         return false;
461 
462       if (!parameters->options().muldefs())
463 	Symbol_table::report_resolve_problem(true,
464 					     _("multiple definition of '%s'"),
465 					     to, defined, object);
466       return false;
467 
468     case WEAK_DEF * 16 + DEF:
469       // We've seen a weak definition, and now we see a strong
470       // definition.  In the original SVR4 linker, this was treated as
471       // a multiple definition error.  In the Solaris linker and the
472       // GNU linker, a weak definition followed by a regular
473       // definition causes the weak definition to be overridden.  We
474       // are currently compatible with the GNU linker.  In the future
475       // we should add a target specific option to change this.
476       // FIXME.
477       return true;
478 
479     case DYN_DEF * 16 + DEF:
480     case DYN_WEAK_DEF * 16 + DEF:
481       // We've seen a definition in a dynamic object, and now we see a
482       // definition in a regular object.  The definition in the
483       // regular object overrides the definition in the dynamic
484       // object.
485       return true;
486 
487     case UNDEF * 16 + DEF:
488     case WEAK_UNDEF * 16 + DEF:
489     case DYN_UNDEF * 16 + DEF:
490     case DYN_WEAK_UNDEF * 16 + DEF:
491       // We've seen an undefined reference, and now we see a
492       // definition.  We use the definition.
493       return true;
494 
495     case COMMON * 16 + DEF:
496     case WEAK_COMMON * 16 + DEF:
497     case DYN_COMMON * 16 + DEF:
498     case DYN_WEAK_COMMON * 16 + DEF:
499       // We've seen a common symbol and now we see a definition.  The
500       // definition overrides.
501       if (parameters->options().warn_common())
502 	Symbol_table::report_resolve_problem(false,
503 					     _("definition of '%s' overriding "
504 					       "common"),
505 					     to, defined, object);
506       return true;
507 
508     case DEF * 16 + WEAK_DEF:
509     case WEAK_DEF * 16 + WEAK_DEF:
510       // We've seen a definition and now we see a weak definition.  We
511       // ignore the new weak definition.
512       return false;
513 
514     case DYN_DEF * 16 + WEAK_DEF:
515     case DYN_WEAK_DEF * 16 + WEAK_DEF:
516       // We've seen a dynamic definition and now we see a regular weak
517       // definition.  The regular weak definition overrides.
518       return true;
519 
520     case UNDEF * 16 + WEAK_DEF:
521     case WEAK_UNDEF * 16 + WEAK_DEF:
522     case DYN_UNDEF * 16 + WEAK_DEF:
523     case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
524       // A weak definition of a currently undefined symbol.
525       return true;
526 
527     case COMMON * 16 + WEAK_DEF:
528     case WEAK_COMMON * 16 + WEAK_DEF:
529       // A weak definition does not override a common definition.
530       return false;
531 
532     case DYN_COMMON * 16 + WEAK_DEF:
533     case DYN_WEAK_COMMON * 16 + WEAK_DEF:
534       // A weak definition does override a definition in a dynamic
535       // object.
536       if (parameters->options().warn_common())
537 	Symbol_table::report_resolve_problem(false,
538 					     _("definition of '%s' overriding "
539 					       "dynamic common definition"),
540 					     to, defined, object);
541       return true;
542 
543     case DEF * 16 + DYN_DEF:
544     case WEAK_DEF * 16 + DYN_DEF:
545     case DYN_DEF * 16 + DYN_DEF:
546     case DYN_WEAK_DEF * 16 + DYN_DEF:
547       // Ignore a dynamic definition if we already have a definition.
548       return false;
549 
550     case UNDEF * 16 + DYN_DEF:
551     case DYN_UNDEF * 16 + DYN_DEF:
552     case DYN_WEAK_UNDEF * 16 + DYN_DEF:
553       // Use a dynamic definition if we have a reference.
554       return true;
555 
556     case WEAK_UNDEF * 16 + DYN_DEF:
557       // When overriding a weak undef by a dynamic definition,
558       // we need to remember that the original undef was weak.
559       *adjust_dyndef = true;
560       return true;
561 
562     case COMMON * 16 + DYN_DEF:
563     case WEAK_COMMON * 16 + DYN_DEF:
564     case DYN_COMMON * 16 + DYN_DEF:
565     case DYN_WEAK_COMMON * 16 + DYN_DEF:
566       // Ignore a dynamic definition if we already have a common
567       // definition.
568       return false;
569 
570     case DEF * 16 + DYN_WEAK_DEF:
571     case WEAK_DEF * 16 + DYN_WEAK_DEF:
572     case DYN_DEF * 16 + DYN_WEAK_DEF:
573     case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
574       // Ignore a weak dynamic definition if we already have a
575       // definition.
576       return false;
577 
578     case UNDEF * 16 + DYN_WEAK_DEF:
579       // When overriding an undef by a dynamic weak definition,
580       // we need to remember that the original undef was not weak.
581       *adjust_dyndef = true;
582       return true;
583 
584     case DYN_UNDEF * 16 + DYN_WEAK_DEF:
585     case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
586       // Use a weak dynamic definition if we have a reference.
587       return true;
588 
589     case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
590       // When overriding a weak undef by a dynamic definition,
591       // we need to remember that the original undef was weak.
592       *adjust_dyndef = true;
593       return true;
594 
595     case COMMON * 16 + DYN_WEAK_DEF:
596     case WEAK_COMMON * 16 + DYN_WEAK_DEF:
597     case DYN_COMMON * 16 + DYN_WEAK_DEF:
598     case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
599       // Ignore a weak dynamic definition if we already have a common
600       // definition.
601       return false;
602 
603     case DEF * 16 + UNDEF:
604     case WEAK_DEF * 16 + UNDEF:
605     case UNDEF * 16 + UNDEF:
606       // A new undefined reference tells us nothing.
607       return false;
608 
609     case DYN_DEF * 16 + UNDEF:
610     case DYN_WEAK_DEF * 16 + UNDEF:
611       // For a dynamic def, we need to remember which kind of undef we see.
612       *adjust_dyndef = true;
613       return false;
614 
615     case WEAK_UNDEF * 16 + UNDEF:
616     case DYN_UNDEF * 16 + UNDEF:
617     case DYN_WEAK_UNDEF * 16 + UNDEF:
618       // A strong undef overrides a dynamic or weak undef.
619       return true;
620 
621     case COMMON * 16 + UNDEF:
622     case WEAK_COMMON * 16 + UNDEF:
623     case DYN_COMMON * 16 + UNDEF:
624     case DYN_WEAK_COMMON * 16 + UNDEF:
625       // A new undefined reference tells us nothing.
626       return false;
627 
628     case DEF * 16 + WEAK_UNDEF:
629     case WEAK_DEF * 16 + WEAK_UNDEF:
630     case UNDEF * 16 + WEAK_UNDEF:
631     case WEAK_UNDEF * 16 + WEAK_UNDEF:
632     case DYN_UNDEF * 16 + WEAK_UNDEF:
633     case COMMON * 16 + WEAK_UNDEF:
634     case WEAK_COMMON * 16 + WEAK_UNDEF:
635     case DYN_COMMON * 16 + WEAK_UNDEF:
636     case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
637       // A new weak undefined reference tells us nothing unless the
638       // exisiting symbol is a dynamic weak reference.
639       return false;
640 
641     case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
642       // A new weak reference overrides an existing dynamic weak reference.
643       // This is necessary because a dynamic weak reference remembers
644       // the old binding, which may not be weak.  If we keeps the existing
645       // dynamic weak reference, the weakness may be dropped in the output.
646       return true;
647 
648     case DYN_DEF * 16 + WEAK_UNDEF:
649     case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
650       // For a dynamic def, we need to remember which kind of undef we see.
651       *adjust_dyndef = true;
652       return false;
653 
654     case DEF * 16 + DYN_UNDEF:
655     case WEAK_DEF * 16 + DYN_UNDEF:
656     case DYN_DEF * 16 + DYN_UNDEF:
657     case DYN_WEAK_DEF * 16 + DYN_UNDEF:
658     case UNDEF * 16 + DYN_UNDEF:
659     case WEAK_UNDEF * 16 + DYN_UNDEF:
660     case DYN_UNDEF * 16 + DYN_UNDEF:
661     case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
662     case COMMON * 16 + DYN_UNDEF:
663     case WEAK_COMMON * 16 + DYN_UNDEF:
664     case DYN_COMMON * 16 + DYN_UNDEF:
665     case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
666       // A new dynamic undefined reference tells us nothing.
667       return false;
668 
669     case DEF * 16 + DYN_WEAK_UNDEF:
670     case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
671     case DYN_DEF * 16 + DYN_WEAK_UNDEF:
672     case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
673     case UNDEF * 16 + DYN_WEAK_UNDEF:
674     case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
675     case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
676     case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
677     case COMMON * 16 + DYN_WEAK_UNDEF:
678     case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
679     case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
680     case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
681       // A new weak dynamic undefined reference tells us nothing.
682       return false;
683 
684     case DEF * 16 + COMMON:
685       // A common symbol does not override a definition.
686       if (parameters->options().warn_common())
687 	Symbol_table::report_resolve_problem(false,
688 					     _("common '%s' overridden by "
689 					       "previous definition"),
690 					     to, defined, object);
691       return false;
692 
693     case WEAK_DEF * 16 + COMMON:
694     case DYN_DEF * 16 + COMMON:
695     case DYN_WEAK_DEF * 16 + COMMON:
696       // A common symbol does override a weak definition or a dynamic
697       // definition.
698       return true;
699 
700     case UNDEF * 16 + COMMON:
701     case WEAK_UNDEF * 16 + COMMON:
702     case DYN_UNDEF * 16 + COMMON:
703     case DYN_WEAK_UNDEF * 16 + COMMON:
704       // A common symbol is a definition for a reference.
705       return true;
706 
707     case COMMON * 16 + COMMON:
708       // Set the size to the maximum.
709       *adjust_common_sizes = true;
710       return false;
711 
712     case WEAK_COMMON * 16 + COMMON:
713       // I'm not sure just what a weak common symbol means, but
714       // presumably it can be overridden by a regular common symbol.
715       return true;
716 
717     case DYN_COMMON * 16 + COMMON:
718     case DYN_WEAK_COMMON * 16 + COMMON:
719       // Use the real common symbol, but adjust the size if necessary.
720       *adjust_common_sizes = true;
721       return true;
722 
723     case DEF * 16 + WEAK_COMMON:
724     case WEAK_DEF * 16 + WEAK_COMMON:
725     case DYN_DEF * 16 + WEAK_COMMON:
726     case DYN_WEAK_DEF * 16 + WEAK_COMMON:
727       // Whatever a weak common symbol is, it won't override a
728       // definition.
729       return false;
730 
731     case UNDEF * 16 + WEAK_COMMON:
732     case WEAK_UNDEF * 16 + WEAK_COMMON:
733     case DYN_UNDEF * 16 + WEAK_COMMON:
734     case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
735       // A weak common symbol is better than an undefined symbol.
736       return true;
737 
738     case COMMON * 16 + WEAK_COMMON:
739     case WEAK_COMMON * 16 + WEAK_COMMON:
740     case DYN_COMMON * 16 + WEAK_COMMON:
741     case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
742       // Ignore a weak common symbol in the presence of a real common
743       // symbol.
744       return false;
745 
746     case DEF * 16 + DYN_COMMON:
747     case WEAK_DEF * 16 + DYN_COMMON:
748     case DYN_DEF * 16 + DYN_COMMON:
749     case DYN_WEAK_DEF * 16 + DYN_COMMON:
750       // Ignore a dynamic common symbol in the presence of a
751       // definition.
752       return false;
753 
754     case UNDEF * 16 + DYN_COMMON:
755     case WEAK_UNDEF * 16 + DYN_COMMON:
756     case DYN_UNDEF * 16 + DYN_COMMON:
757     case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
758       // A dynamic common symbol is a definition of sorts.
759       return true;
760 
761     case COMMON * 16 + DYN_COMMON:
762     case WEAK_COMMON * 16 + DYN_COMMON:
763     case DYN_COMMON * 16 + DYN_COMMON:
764     case DYN_WEAK_COMMON * 16 + DYN_COMMON:
765       // Set the size to the maximum.
766       *adjust_common_sizes = true;
767       return false;
768 
769     case DEF * 16 + DYN_WEAK_COMMON:
770     case WEAK_DEF * 16 + DYN_WEAK_COMMON:
771     case DYN_DEF * 16 + DYN_WEAK_COMMON:
772     case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
773       // A common symbol is ignored in the face of a definition.
774       return false;
775 
776     case UNDEF * 16 + DYN_WEAK_COMMON:
777     case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
778     case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
779     case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
780       // I guess a weak common symbol is better than a definition.
781       return true;
782 
783     case COMMON * 16 + DYN_WEAK_COMMON:
784     case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
785     case DYN_COMMON * 16 + DYN_WEAK_COMMON:
786     case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
787       // Set the size to the maximum.
788       *adjust_common_sizes = true;
789       return false;
790 
791     default:
792       gold_unreachable();
793     }
794 }
795 
796 // Issue an error or warning due to symbol resolution.  IS_ERROR
797 // indicates an error rather than a warning.  MSG is the error
798 // message; it is expected to have a %s for the symbol name.  TO is
799 // the existing symbol.  DEFINED/OBJECT is where the new symbol was
800 // found.
801 
802 // FIXME: We should have better location information here.  When the
803 // symbol is defined, we should be able to pull the location from the
804 // debug info if there is any.
805 
806 void
807 Symbol_table::report_resolve_problem(bool is_error, const char* msg,
808 				     const Symbol* to, Defined defined,
809 				     Object* object)
810 {
811   std::string demangled(to->demangled_name());
812   size_t len = strlen(msg) + demangled.length() + 10;
813   char* buf = new char[len];
814   snprintf(buf, len, msg, demangled.c_str());
815 
816   const char* objname;
817   switch (defined)
818     {
819     case OBJECT:
820       objname = object->name().c_str();
821       break;
822     case COPY:
823       objname = _("COPY reloc");
824       break;
825     case DEFSYM:
826     case UNDEFINED:
827       objname = _("command line");
828       break;
829     case SCRIPT:
830       objname = _("linker script");
831       break;
832     case PREDEFINED:
833       objname = _("linker defined");
834       break;
835     default:
836       gold_unreachable();
837     }
838 
839   if (is_error)
840     gold_error("%s: %s", objname, buf);
841   else
842     gold_warning("%s: %s", objname, buf);
843 
844   delete[] buf;
845 
846   if (to->source() == Symbol::FROM_OBJECT)
847     objname = to->object()->name().c_str();
848   else
849     objname = _("command line");
850   gold_info("%s: %s: previous definition here", program_name, objname);
851 }
852 
853 // A special case of should_override which is only called for a strong
854 // defined symbol from a regular object file.  This is used when
855 // defining special symbols.
856 
857 bool
858 Symbol_table::should_override_with_special(const Symbol* to, Defined defined)
859 {
860   bool adjust_common_sizes;
861   bool adjust_dyn_def;
862   unsigned int frombits = global_flag | regular_flag | def_flag;
863   bool ret = Symbol_table::should_override(to, frombits, defined, NULL,
864 					   &adjust_common_sizes,
865 					   &adjust_dyn_def);
866   gold_assert(!adjust_common_sizes && !adjust_dyn_def);
867   return ret;
868 }
869 
870 // Override symbol base with a special symbol.
871 
872 void
873 Symbol::override_base_with_special(const Symbol* from)
874 {
875   gold_assert(this->name_ == from->name_ || this->has_alias());
876 
877   this->source_ = from->source_;
878   switch (from->source_)
879     {
880     case FROM_OBJECT:
881       this->u_.from_object = from->u_.from_object;
882       break;
883     case IN_OUTPUT_DATA:
884       this->u_.in_output_data = from->u_.in_output_data;
885       break;
886     case IN_OUTPUT_SEGMENT:
887       this->u_.in_output_segment = from->u_.in_output_segment;
888       break;
889     case IS_CONSTANT:
890     case IS_UNDEFINED:
891       break;
892     default:
893       gold_unreachable();
894       break;
895     }
896 
897   this->override_version(from->version_);
898   this->type_ = from->type_;
899   this->binding_ = from->binding_;
900   this->override_visibility(from->visibility_);
901   this->nonvis_ = from->nonvis_;
902 
903   // Special symbols are always considered to be regular symbols.
904   this->in_reg_ = true;
905 
906   if (from->needs_dynsym_entry_)
907     this->needs_dynsym_entry_ = true;
908   if (from->needs_dynsym_value_)
909     this->needs_dynsym_value_ = true;
910 
911   // We shouldn't see these flags.  If we do, we need to handle them
912   // somehow.
913   gold_assert(!from->is_forwarder_);
914   gold_assert(!from->has_plt_offset());
915   gold_assert(!from->has_warning_);
916   gold_assert(!from->is_copied_from_dynobj_);
917   gold_assert(!from->is_forced_local_);
918 }
919 
920 // Override a symbol with a special symbol.
921 
922 template<int size>
923 void
924 Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
925 {
926   this->override_base_with_special(from);
927   this->value_ = from->value_;
928   this->symsize_ = from->symsize_;
929 }
930 
931 // Override TOSYM with the special symbol FROMSYM.  This handles all
932 // aliases of TOSYM.
933 
934 template<int size>
935 void
936 Symbol_table::override_with_special(Sized_symbol<size>* tosym,
937 				    const Sized_symbol<size>* fromsym)
938 {
939   tosym->override_with_special(fromsym);
940   if (tosym->has_alias())
941     {
942       Symbol* sym = this->weak_aliases_[tosym];
943       gold_assert(sym != NULL);
944       Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
945       do
946 	{
947 	  ssym->override_with_special(fromsym);
948 	  sym = this->weak_aliases_[ssym];
949 	  gold_assert(sym != NULL);
950 	  ssym = this->get_sized_symbol<size>(sym);
951 	}
952       while (ssym != tosym);
953     }
954   if (tosym->binding() == elfcpp::STB_LOCAL
955       || ((tosym->visibility() == elfcpp::STV_HIDDEN
956 	   || tosym->visibility() == elfcpp::STV_INTERNAL)
957 	  && (tosym->binding() == elfcpp::STB_GLOBAL
958 	      || tosym->binding() == elfcpp::STB_GNU_UNIQUE
959 	      || tosym->binding() == elfcpp::STB_WEAK)
960 	  && !parameters->options().relocatable()))
961     this->force_local(tosym);
962 }
963 
964 // Instantiate the templates we need.  We could use the configure
965 // script to restrict this to only the ones needed for implemented
966 // targets.
967 
968 // We have to instantiate both big and little endian versions because
969 // these are used by other templates that depends on size only.
970 
971 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
972 template
973 void
974 Symbol_table::resolve<32, false>(
975     Sized_symbol<32>* to,
976     const elfcpp::Sym<32, false>& sym,
977     unsigned int st_shndx,
978     bool is_ordinary,
979     unsigned int orig_st_shndx,
980     Object* object,
981     const char* version);
982 
983 template
984 void
985 Symbol_table::resolve<32, true>(
986     Sized_symbol<32>* to,
987     const elfcpp::Sym<32, true>& sym,
988     unsigned int st_shndx,
989     bool is_ordinary,
990     unsigned int orig_st_shndx,
991     Object* object,
992     const char* version);
993 #endif
994 
995 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
996 template
997 void
998 Symbol_table::resolve<64, false>(
999     Sized_symbol<64>* to,
1000     const elfcpp::Sym<64, false>& sym,
1001     unsigned int st_shndx,
1002     bool is_ordinary,
1003     unsigned int orig_st_shndx,
1004     Object* object,
1005     const char* version);
1006 
1007 template
1008 void
1009 Symbol_table::resolve<64, true>(
1010     Sized_symbol<64>* to,
1011     const elfcpp::Sym<64, true>& sym,
1012     unsigned int st_shndx,
1013     bool is_ordinary,
1014     unsigned int orig_st_shndx,
1015     Object* object,
1016     const char* version);
1017 #endif
1018 
1019 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1020 template
1021 void
1022 Symbol_table::override_with_special<32>(Sized_symbol<32>*,
1023 					const Sized_symbol<32>*);
1024 #endif
1025 
1026 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1027 template
1028 void
1029 Symbol_table::override_with_special<64>(Sized_symbol<64>*,
1030 					const Sized_symbol<64>*);
1031 #endif
1032 
1033 } // End namespace gold.
1034