xref: /netbsd-src/external/gpl3/binutils/dist/gold/output.h (revision 8585484ef87f5a04d32332313cdb799625f4faf8)
1 // output.h -- manage the output file for gold   -*- C++ -*-
2 
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 #ifndef GOLD_OUTPUT_H
24 #define GOLD_OUTPUT_H
25 
26 #include <list>
27 #include <vector>
28 
29 #include "elfcpp.h"
30 #include "mapfile.h"
31 #include "layout.h"
32 #include "reloc-types.h"
33 
34 namespace gold
35 {
36 
37 class General_options;
38 class Object;
39 class Symbol;
40 class Output_file;
41 class Output_merge_base;
42 class Output_section;
43 class Relocatable_relocs;
44 class Target;
45 template<int size, bool big_endian>
46 class Sized_target;
47 template<int size, bool big_endian>
48 class Sized_relobj;
49 template<int size, bool big_endian>
50 class Sized_relobj_file;
51 
52 // An abtract class for data which has to go into the output file.
53 
54 class Output_data
55 {
56  public:
57   explicit Output_data()
58     : address_(0), data_size_(0), offset_(-1),
59       is_address_valid_(false), is_data_size_valid_(false),
60       is_offset_valid_(false), is_data_size_fixed_(false),
61       has_dynamic_reloc_(false)
62   { }
63 
64   virtual
65   ~Output_data();
66 
67   // Return the address.  For allocated sections, this is only valid
68   // after Layout::finalize is finished.
69   uint64_t
70   address() const
71   {
72     gold_assert(this->is_address_valid_);
73     return this->address_;
74   }
75 
76   // Return the size of the data.  For allocated sections, this must
77   // be valid after Layout::finalize calls set_address, but need not
78   // be valid before then.
79   off_t
80   data_size() const
81   {
82     gold_assert(this->is_data_size_valid_);
83     return this->data_size_;
84   }
85 
86   // Get the current data size.
87   off_t
88   current_data_size() const
89   { return this->current_data_size_for_child(); }
90 
91   // Return true if data size is fixed.
92   bool
93   is_data_size_fixed() const
94   { return this->is_data_size_fixed_; }
95 
96   // Return the file offset.  This is only valid after
97   // Layout::finalize is finished.  For some non-allocated sections,
98   // it may not be valid until near the end of the link.
99   off_t
100   offset() const
101   {
102     gold_assert(this->is_offset_valid_);
103     return this->offset_;
104   }
105 
106   // Reset the address and file offset.  This essentially disables the
107   // sanity testing about duplicate and unknown settings.
108   void
109   reset_address_and_file_offset()
110   {
111     this->is_address_valid_ = false;
112     this->is_offset_valid_ = false;
113     if (!this->is_data_size_fixed_)
114       this->is_data_size_valid_ = false;
115     this->do_reset_address_and_file_offset();
116   }
117 
118   // Return true if address and file offset already have reset values. In
119   // other words, calling reset_address_and_file_offset will not change them.
120   bool
121   address_and_file_offset_have_reset_values() const
122   { return this->do_address_and_file_offset_have_reset_values(); }
123 
124   // Return the required alignment.
125   uint64_t
126   addralign() const
127   { return this->do_addralign(); }
128 
129   // Return whether this has a load address.
130   bool
131   has_load_address() const
132   { return this->do_has_load_address(); }
133 
134   // Return the load address.
135   uint64_t
136   load_address() const
137   { return this->do_load_address(); }
138 
139   // Return whether this is an Output_section.
140   bool
141   is_section() const
142   { return this->do_is_section(); }
143 
144   // Return whether this is an Output_section of the specified type.
145   bool
146   is_section_type(elfcpp::Elf_Word stt) const
147   { return this->do_is_section_type(stt); }
148 
149   // Return whether this is an Output_section with the specified flag
150   // set.
151   bool
152   is_section_flag_set(elfcpp::Elf_Xword shf) const
153   { return this->do_is_section_flag_set(shf); }
154 
155   // Return the output section that this goes in, if there is one.
156   Output_section*
157   output_section()
158   { return this->do_output_section(); }
159 
160   const Output_section*
161   output_section() const
162   { return this->do_output_section(); }
163 
164   // Return the output section index, if there is an output section.
165   unsigned int
166   out_shndx() const
167   { return this->do_out_shndx(); }
168 
169   // Set the output section index, if this is an output section.
170   void
171   set_out_shndx(unsigned int shndx)
172   { this->do_set_out_shndx(shndx); }
173 
174   // Set the address and file offset of this data, and finalize the
175   // size of the data.  This is called during Layout::finalize for
176   // allocated sections.
177   void
178   set_address_and_file_offset(uint64_t addr, off_t off)
179   {
180     this->set_address(addr);
181     this->set_file_offset(off);
182     this->finalize_data_size();
183   }
184 
185   // Set the address.
186   void
187   set_address(uint64_t addr)
188   {
189     gold_assert(!this->is_address_valid_);
190     this->address_ = addr;
191     this->is_address_valid_ = true;
192   }
193 
194   // Set the file offset.
195   void
196   set_file_offset(off_t off)
197   {
198     gold_assert(!this->is_offset_valid_);
199     this->offset_ = off;
200     this->is_offset_valid_ = true;
201   }
202 
203   // Update the data size without finalizing it.
204   void
205   pre_finalize_data_size()
206   {
207     if (!this->is_data_size_valid_)
208       {
209 	// Tell the child class to update the data size.
210 	this->update_data_size();
211       }
212   }
213 
214   // Finalize the data size.
215   void
216   finalize_data_size()
217   {
218     if (!this->is_data_size_valid_)
219       {
220 	// Tell the child class to set the data size.
221 	this->set_final_data_size();
222 	gold_assert(this->is_data_size_valid_);
223       }
224   }
225 
226   // Set the TLS offset.  Called only for SHT_TLS sections.
227   void
228   set_tls_offset(uint64_t tls_base)
229   { this->do_set_tls_offset(tls_base); }
230 
231   // Return the TLS offset, relative to the base of the TLS segment.
232   // Valid only for SHT_TLS sections.
233   uint64_t
234   tls_offset() const
235   { return this->do_tls_offset(); }
236 
237   // Write the data to the output file.  This is called after
238   // Layout::finalize is complete.
239   void
240   write(Output_file* file)
241   { this->do_write(file); }
242 
243   // This is called by Layout::finalize to note that the sizes of
244   // allocated sections must now be fixed.
245   static void
246   layout_complete()
247   { Output_data::allocated_sizes_are_fixed = true; }
248 
249   // Used to check that layout has been done.
250   static bool
251   is_layout_complete()
252   { return Output_data::allocated_sizes_are_fixed; }
253 
254   // Note that a dynamic reloc has been applied to this data.
255   void
256   add_dynamic_reloc()
257   { this->has_dynamic_reloc_ = true; }
258 
259   // Return whether a dynamic reloc has been applied.
260   bool
261   has_dynamic_reloc() const
262   { return this->has_dynamic_reloc_; }
263 
264   // Whether the address is valid.
265   bool
266   is_address_valid() const
267   { return this->is_address_valid_; }
268 
269   // Whether the file offset is valid.
270   bool
271   is_offset_valid() const
272   { return this->is_offset_valid_; }
273 
274   // Whether the data size is valid.
275   bool
276   is_data_size_valid() const
277   { return this->is_data_size_valid_; }
278 
279   // Print information to the map file.
280   void
281   print_to_mapfile(Mapfile* mapfile) const
282   { return this->do_print_to_mapfile(mapfile); }
283 
284  protected:
285   // Functions that child classes may or in some cases must implement.
286 
287   // Write the data to the output file.
288   virtual void
289   do_write(Output_file*) = 0;
290 
291   // Return the required alignment.
292   virtual uint64_t
293   do_addralign() const = 0;
294 
295   // Return whether this has a load address.
296   virtual bool
297   do_has_load_address() const
298   { return false; }
299 
300   // Return the load address.
301   virtual uint64_t
302   do_load_address() const
303   { gold_unreachable(); }
304 
305   // Return whether this is an Output_section.
306   virtual bool
307   do_is_section() const
308   { return false; }
309 
310   // Return whether this is an Output_section of the specified type.
311   // This only needs to be implement by Output_section.
312   virtual bool
313   do_is_section_type(elfcpp::Elf_Word) const
314   { return false; }
315 
316   // Return whether this is an Output_section with the specific flag
317   // set.  This only needs to be implemented by Output_section.
318   virtual bool
319   do_is_section_flag_set(elfcpp::Elf_Xword) const
320   { return false; }
321 
322   // Return the output section, if there is one.
323   virtual Output_section*
324   do_output_section()
325   { return NULL; }
326 
327   virtual const Output_section*
328   do_output_section() const
329   { return NULL; }
330 
331   // Return the output section index, if there is an output section.
332   virtual unsigned int
333   do_out_shndx() const
334   { gold_unreachable(); }
335 
336   // Set the output section index, if this is an output section.
337   virtual void
338   do_set_out_shndx(unsigned int)
339   { gold_unreachable(); }
340 
341   // This is a hook for derived classes to set the preliminary data size.
342   // This is called by pre_finalize_data_size, normally called during
343   // Layout::finalize, before the section address is set, and is used
344   // during an incremental update, when we need to know the size of a
345   // section before allocating space in the output file.  For classes
346   // where the current data size is up to date, this default version of
347   // the method can be inherited.
348   virtual void
349   update_data_size()
350   { }
351 
352   // This is a hook for derived classes to set the data size.  This is
353   // called by finalize_data_size, normally called during
354   // Layout::finalize, when the section address is set.
355   virtual void
356   set_final_data_size()
357   { gold_unreachable(); }
358 
359   // A hook for resetting the address and file offset.
360   virtual void
361   do_reset_address_and_file_offset()
362   { }
363 
364   // Return true if address and file offset already have reset values. In
365   // other words, calling reset_address_and_file_offset will not change them.
366   // A child class overriding do_reset_address_and_file_offset may need to
367   // also override this.
368   virtual bool
369   do_address_and_file_offset_have_reset_values() const
370   { return !this->is_address_valid_ && !this->is_offset_valid_; }
371 
372   // Set the TLS offset.  Called only for SHT_TLS sections.
373   virtual void
374   do_set_tls_offset(uint64_t)
375   { gold_unreachable(); }
376 
377   // Return the TLS offset, relative to the base of the TLS segment.
378   // Valid only for SHT_TLS sections.
379   virtual uint64_t
380   do_tls_offset() const
381   { gold_unreachable(); }
382 
383   // Print to the map file.  This only needs to be implemented by
384   // classes which may appear in a PT_LOAD segment.
385   virtual void
386   do_print_to_mapfile(Mapfile*) const
387   { gold_unreachable(); }
388 
389   // Functions that child classes may call.
390 
391   // Reset the address.  The Output_section class needs this when an
392   // SHF_ALLOC input section is added to an output section which was
393   // formerly not SHF_ALLOC.
394   void
395   mark_address_invalid()
396   { this->is_address_valid_ = false; }
397 
398   // Set the size of the data.
399   void
400   set_data_size(off_t data_size)
401   {
402     gold_assert(!this->is_data_size_valid_
403 		&& !this->is_data_size_fixed_);
404     this->data_size_ = data_size;
405     this->is_data_size_valid_ = true;
406   }
407 
408   // Fix the data size.  Once it is fixed, it cannot be changed
409   // and the data size remains always valid.
410   void
411   fix_data_size()
412   {
413     gold_assert(this->is_data_size_valid_);
414     this->is_data_size_fixed_ = true;
415   }
416 
417   // Get the current data size--this is for the convenience of
418   // sections which build up their size over time.
419   off_t
420   current_data_size_for_child() const
421   { return this->data_size_; }
422 
423   // Set the current data size--this is for the convenience of
424   // sections which build up their size over time.
425   void
426   set_current_data_size_for_child(off_t data_size)
427   {
428     gold_assert(!this->is_data_size_valid_);
429     this->data_size_ = data_size;
430   }
431 
432   // Return default alignment for the target size.
433   static uint64_t
434   default_alignment();
435 
436   // Return default alignment for a specified size--32 or 64.
437   static uint64_t
438   default_alignment_for_size(int size);
439 
440  private:
441   Output_data(const Output_data&);
442   Output_data& operator=(const Output_data&);
443 
444   // This is used for verification, to make sure that we don't try to
445   // change any sizes of allocated sections after we set the section
446   // addresses.
447   static bool allocated_sizes_are_fixed;
448 
449   // Memory address in output file.
450   uint64_t address_;
451   // Size of data in output file.
452   off_t data_size_;
453   // File offset of contents in output file.
454   off_t offset_;
455   // Whether address_ is valid.
456   bool is_address_valid_ : 1;
457   // Whether data_size_ is valid.
458   bool is_data_size_valid_ : 1;
459   // Whether offset_ is valid.
460   bool is_offset_valid_ : 1;
461   // Whether data size is fixed.
462   bool is_data_size_fixed_ : 1;
463   // Whether any dynamic relocs have been applied to this section.
464   bool has_dynamic_reloc_ : 1;
465 };
466 
467 // Output the section headers.
468 
469 class Output_section_headers : public Output_data
470 {
471  public:
472   Output_section_headers(const Layout*,
473 			 const Layout::Segment_list*,
474 			 const Layout::Section_list*,
475 			 const Layout::Section_list*,
476 			 const Stringpool*,
477 			 const Output_section*);
478 
479  protected:
480   // Write the data to the file.
481   void
482   do_write(Output_file*);
483 
484   // Return the required alignment.
485   uint64_t
486   do_addralign() const
487   { return Output_data::default_alignment(); }
488 
489   // Write to a map file.
490   void
491   do_print_to_mapfile(Mapfile* mapfile) const
492   { mapfile->print_output_data(this, _("** section headers")); }
493 
494   // Update the data size.
495   void
496   update_data_size()
497   { this->set_data_size(this->do_size()); }
498 
499   // Set final data size.
500   void
501   set_final_data_size()
502   { this->set_data_size(this->do_size()); }
503 
504  private:
505   // Write the data to the file with the right size and endianness.
506   template<int size, bool big_endian>
507   void
508   do_sized_write(Output_file*);
509 
510   // Compute data size.
511   off_t
512   do_size() const;
513 
514   const Layout* layout_;
515   const Layout::Segment_list* segment_list_;
516   const Layout::Section_list* section_list_;
517   const Layout::Section_list* unattached_section_list_;
518   const Stringpool* secnamepool_;
519   const Output_section* shstrtab_section_;
520 };
521 
522 // Output the segment headers.
523 
524 class Output_segment_headers : public Output_data
525 {
526  public:
527   Output_segment_headers(const Layout::Segment_list& segment_list);
528 
529  protected:
530   // Write the data to the file.
531   void
532   do_write(Output_file*);
533 
534   // Return the required alignment.
535   uint64_t
536   do_addralign() const
537   { return Output_data::default_alignment(); }
538 
539   // Write to a map file.
540   void
541   do_print_to_mapfile(Mapfile* mapfile) const
542   { mapfile->print_output_data(this, _("** segment headers")); }
543 
544   // Set final data size.
545   void
546   set_final_data_size()
547   { this->set_data_size(this->do_size()); }
548 
549  private:
550   // Write the data to the file with the right size and endianness.
551   template<int size, bool big_endian>
552   void
553   do_sized_write(Output_file*);
554 
555   // Compute the current size.
556   off_t
557   do_size() const;
558 
559   const Layout::Segment_list& segment_list_;
560 };
561 
562 // Output the ELF file header.
563 
564 class Output_file_header : public Output_data
565 {
566  public:
567   Output_file_header(const Target*,
568 		     const Symbol_table*,
569 		     const Output_segment_headers*);
570 
571   // Add information about the section headers.  We lay out the ELF
572   // file header before we create the section headers.
573   void set_section_info(const Output_section_headers*,
574 			const Output_section* shstrtab);
575 
576  protected:
577   // Write the data to the file.
578   void
579   do_write(Output_file*);
580 
581   // Return the required alignment.
582   uint64_t
583   do_addralign() const
584   { return Output_data::default_alignment(); }
585 
586   // Write to a map file.
587   void
588   do_print_to_mapfile(Mapfile* mapfile) const
589   { mapfile->print_output_data(this, _("** file header")); }
590 
591   // Set final data size.
592   void
593   set_final_data_size(void)
594   { this->set_data_size(this->do_size()); }
595 
596  private:
597   // Write the data to the file with the right size and endianness.
598   template<int size, bool big_endian>
599   void
600   do_sized_write(Output_file*);
601 
602   // Return the value to use for the entry address.
603   template<int size>
604   typename elfcpp::Elf_types<size>::Elf_Addr
605   entry();
606 
607   // Compute the current data size.
608   off_t
609   do_size() const;
610 
611   const Target* target_;
612   const Symbol_table* symtab_;
613   const Output_segment_headers* segment_header_;
614   const Output_section_headers* section_header_;
615   const Output_section* shstrtab_;
616 };
617 
618 // Output sections are mainly comprised of input sections.  However,
619 // there are cases where we have data to write out which is not in an
620 // input section.  Output_section_data is used in such cases.  This is
621 // an abstract base class.
622 
623 class Output_section_data : public Output_data
624 {
625  public:
626   Output_section_data(off_t data_size, uint64_t addralign,
627 		      bool is_data_size_fixed)
628     : Output_data(), output_section_(NULL), addralign_(addralign)
629   {
630     this->set_data_size(data_size);
631     if (is_data_size_fixed)
632       this->fix_data_size();
633   }
634 
635   Output_section_data(uint64_t addralign)
636     : Output_data(), output_section_(NULL), addralign_(addralign)
637   { }
638 
639   // Return the output section.
640   Output_section*
641   output_section()
642   { return this->output_section_; }
643 
644   const Output_section*
645   output_section() const
646   { return this->output_section_; }
647 
648   // Record the output section.
649   void
650   set_output_section(Output_section* os);
651 
652   // Add an input section, for SHF_MERGE sections.  This returns true
653   // if the section was handled.
654   bool
655   add_input_section(Relobj* object, unsigned int shndx)
656   { return this->do_add_input_section(object, shndx); }
657 
658   // Given an input OBJECT, an input section index SHNDX within that
659   // object, and an OFFSET relative to the start of that input
660   // section, return whether or not the corresponding offset within
661   // the output section is known.  If this function returns true, it
662   // sets *POUTPUT to the output offset.  The value -1 indicates that
663   // this input offset is being discarded.
664   bool
665   output_offset(const Relobj* object, unsigned int shndx,
666 		section_offset_type offset,
667 		section_offset_type* poutput) const
668   { return this->do_output_offset(object, shndx, offset, poutput); }
669 
670   // Return whether this is the merge section for the input section
671   // SHNDX in OBJECT.  This should return true when output_offset
672   // would return true for some values of OFFSET.
673   bool
674   is_merge_section_for(const Relobj* object, unsigned int shndx) const
675   { return this->do_is_merge_section_for(object, shndx); }
676 
677   // Write the contents to a buffer.  This is used for sections which
678   // require postprocessing, such as compression.
679   void
680   write_to_buffer(unsigned char* buffer)
681   { this->do_write_to_buffer(buffer); }
682 
683   // Print merge stats to stderr.  This should only be called for
684   // SHF_MERGE sections.
685   void
686   print_merge_stats(const char* section_name)
687   { this->do_print_merge_stats(section_name); }
688 
689  protected:
690   // The child class must implement do_write.
691 
692   // The child class may implement specific adjustments to the output
693   // section.
694   virtual void
695   do_adjust_output_section(Output_section*)
696   { }
697 
698   // May be implemented by child class.  Return true if the section
699   // was handled.
700   virtual bool
701   do_add_input_section(Relobj*, unsigned int)
702   { gold_unreachable(); }
703 
704   // The child class may implement output_offset.
705   virtual bool
706   do_output_offset(const Relobj*, unsigned int, section_offset_type,
707 		   section_offset_type*) const
708   { return false; }
709 
710   // The child class may implement is_merge_section_for.
711   virtual bool
712   do_is_merge_section_for(const Relobj*, unsigned int) const
713   { return false; }
714 
715   // The child class may implement write_to_buffer.  Most child
716   // classes can not appear in a compressed section, and they do not
717   // implement this.
718   virtual void
719   do_write_to_buffer(unsigned char*)
720   { gold_unreachable(); }
721 
722   // Print merge statistics.
723   virtual void
724   do_print_merge_stats(const char*)
725   { gold_unreachable(); }
726 
727   // Return the required alignment.
728   uint64_t
729   do_addralign() const
730   { return this->addralign_; }
731 
732   // Return the output section.
733   Output_section*
734   do_output_section()
735   { return this->output_section_; }
736 
737   const Output_section*
738   do_output_section() const
739   { return this->output_section_; }
740 
741   // Return the section index of the output section.
742   unsigned int
743   do_out_shndx() const;
744 
745   // Set the alignment.
746   void
747   set_addralign(uint64_t addralign);
748 
749  private:
750   // The output section for this section.
751   Output_section* output_section_;
752   // The required alignment.
753   uint64_t addralign_;
754 };
755 
756 // Some Output_section_data classes build up their data step by step,
757 // rather than all at once.  This class provides an interface for
758 // them.
759 
760 class Output_section_data_build : public Output_section_data
761 {
762  public:
763   Output_section_data_build(uint64_t addralign)
764     : Output_section_data(addralign)
765   { }
766 
767   Output_section_data_build(off_t data_size, uint64_t addralign)
768     : Output_section_data(data_size, addralign, false)
769   { }
770 
771   // Set the current data size.
772   void
773   set_current_data_size(off_t data_size)
774   { this->set_current_data_size_for_child(data_size); }
775 
776  protected:
777   // Set the final data size.
778   virtual void
779   set_final_data_size()
780   { this->set_data_size(this->current_data_size_for_child()); }
781 };
782 
783 // A simple case of Output_data in which we have constant data to
784 // output.
785 
786 class Output_data_const : public Output_section_data
787 {
788  public:
789   Output_data_const(const std::string& data, uint64_t addralign)
790     : Output_section_data(data.size(), addralign, true), data_(data)
791   { }
792 
793   Output_data_const(const char* p, off_t len, uint64_t addralign)
794     : Output_section_data(len, addralign, true), data_(p, len)
795   { }
796 
797   Output_data_const(const unsigned char* p, off_t len, uint64_t addralign)
798     : Output_section_data(len, addralign, true),
799       data_(reinterpret_cast<const char*>(p), len)
800   { }
801 
802  protected:
803   // Write the data to the output file.
804   void
805   do_write(Output_file*);
806 
807   // Write the data to a buffer.
808   void
809   do_write_to_buffer(unsigned char* buffer)
810   { memcpy(buffer, this->data_.data(), this->data_.size()); }
811 
812   // Write to a map file.
813   void
814   do_print_to_mapfile(Mapfile* mapfile) const
815   { mapfile->print_output_data(this, _("** fill")); }
816 
817  private:
818   std::string data_;
819 };
820 
821 // Another version of Output_data with constant data, in which the
822 // buffer is allocated by the caller.
823 
824 class Output_data_const_buffer : public Output_section_data
825 {
826  public:
827   Output_data_const_buffer(const unsigned char* p, off_t len,
828 			   uint64_t addralign, const char* map_name)
829     : Output_section_data(len, addralign, true),
830       p_(p), map_name_(map_name)
831   { }
832 
833  protected:
834   // Write the data the output file.
835   void
836   do_write(Output_file*);
837 
838   // Write the data to a buffer.
839   void
840   do_write_to_buffer(unsigned char* buffer)
841   { memcpy(buffer, this->p_, this->data_size()); }
842 
843   // Write to a map file.
844   void
845   do_print_to_mapfile(Mapfile* mapfile) const
846   { mapfile->print_output_data(this, _(this->map_name_)); }
847 
848  private:
849   // The data to output.
850   const unsigned char* p_;
851   // Name to use in a map file.  Maps are a rarely used feature, but
852   // the space usage is minor as aren't very many of these objects.
853   const char* map_name_;
854 };
855 
856 // A place holder for a fixed amount of data written out via some
857 // other mechanism.
858 
859 class Output_data_fixed_space : public Output_section_data
860 {
861  public:
862   Output_data_fixed_space(off_t data_size, uint64_t addralign,
863 			  const char* map_name)
864     : Output_section_data(data_size, addralign, true),
865       map_name_(map_name)
866   { }
867 
868  protected:
869   // Write out the data--the actual data must be written out
870   // elsewhere.
871   void
872   do_write(Output_file*)
873   { }
874 
875   // Write to a map file.
876   void
877   do_print_to_mapfile(Mapfile* mapfile) const
878   { mapfile->print_output_data(this, _(this->map_name_)); }
879 
880  private:
881   // Name to use in a map file.  Maps are a rarely used feature, but
882   // the space usage is minor as aren't very many of these objects.
883   const char* map_name_;
884 };
885 
886 // A place holder for variable sized data written out via some other
887 // mechanism.
888 
889 class Output_data_space : public Output_section_data_build
890 {
891  public:
892   explicit Output_data_space(uint64_t addralign, const char* map_name)
893     : Output_section_data_build(addralign),
894       map_name_(map_name)
895   { }
896 
897   explicit Output_data_space(off_t data_size, uint64_t addralign,
898 			     const char* map_name)
899     : Output_section_data_build(data_size, addralign),
900       map_name_(map_name)
901   { }
902 
903   // Set the alignment.
904   void
905   set_space_alignment(uint64_t align)
906   { this->set_addralign(align); }
907 
908  protected:
909   // Write out the data--the actual data must be written out
910   // elsewhere.
911   void
912   do_write(Output_file*)
913   { }
914 
915   // Write to a map file.
916   void
917   do_print_to_mapfile(Mapfile* mapfile) const
918   { mapfile->print_output_data(this, _(this->map_name_)); }
919 
920  private:
921   // Name to use in a map file.  Maps are a rarely used feature, but
922   // the space usage is minor as aren't very many of these objects.
923   const char* map_name_;
924 };
925 
926 // Fill fixed space with zeroes.  This is just like
927 // Output_data_fixed_space, except that the map name is known.
928 
929 class Output_data_zero_fill : public Output_section_data
930 {
931  public:
932   Output_data_zero_fill(off_t data_size, uint64_t addralign)
933     : Output_section_data(data_size, addralign, true)
934   { }
935 
936  protected:
937   // There is no data to write out.
938   void
939   do_write(Output_file*)
940   { }
941 
942   // Write to a map file.
943   void
944   do_print_to_mapfile(Mapfile* mapfile) const
945   { mapfile->print_output_data(this, "** zero fill"); }
946 };
947 
948 // A string table which goes into an output section.
949 
950 class Output_data_strtab : public Output_section_data
951 {
952  public:
953   Output_data_strtab(Stringpool* strtab)
954     : Output_section_data(1), strtab_(strtab)
955   { }
956 
957  protected:
958   // This is called to update the section size prior to assigning
959   // the address and file offset.
960   void
961   update_data_size()
962   { this->set_final_data_size(); }
963 
964   // This is called to set the address and file offset.  Here we make
965   // sure that the Stringpool is finalized.
966   void
967   set_final_data_size();
968 
969   // Write out the data.
970   void
971   do_write(Output_file*);
972 
973   // Write the data to a buffer.
974   void
975   do_write_to_buffer(unsigned char* buffer)
976   { this->strtab_->write_to_buffer(buffer, this->data_size()); }
977 
978   // Write to a map file.
979   void
980   do_print_to_mapfile(Mapfile* mapfile) const
981   { mapfile->print_output_data(this, _("** string table")); }
982 
983  private:
984   Stringpool* strtab_;
985 };
986 
987 // This POD class is used to represent a single reloc in the output
988 // file.  This could be a private class within Output_data_reloc, but
989 // the templatization is complex enough that I broke it out into a
990 // separate class.  The class is templatized on either elfcpp::SHT_REL
991 // or elfcpp::SHT_RELA, and also on whether this is a dynamic
992 // relocation or an ordinary relocation.
993 
994 // A relocation can be against a global symbol, a local symbol, a
995 // local section symbol, an output section, or the undefined symbol at
996 // index 0.  We represent the latter by using a NULL global symbol.
997 
998 template<int sh_type, bool dynamic, int size, bool big_endian>
999 class Output_reloc;
1000 
1001 template<bool dynamic, int size, bool big_endian>
1002 class Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1003 {
1004  public:
1005   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1006   typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1007 
1008   static const Address invalid_address = static_cast<Address>(0) - 1;
1009 
1010   // An uninitialized entry.  We need this because we want to put
1011   // instances of this class into an STL container.
1012   Output_reloc()
1013     : local_sym_index_(INVALID_CODE)
1014   { }
1015 
1016   // We have a bunch of different constructors.  They come in pairs
1017   // depending on how the address of the relocation is specified.  It
1018   // can either be an offset in an Output_data or an offset in an
1019   // input section.
1020 
1021   // A reloc against a global symbol.
1022 
1023   Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1024 	       Address address, bool is_relative, bool is_symbolless,
1025 	       bool use_plt_offset);
1026 
1027   Output_reloc(Symbol* gsym, unsigned int type,
1028                Sized_relobj<size, big_endian>* relobj,
1029 	       unsigned int shndx, Address address, bool is_relative,
1030 	       bool is_symbolless, bool use_plt_offset);
1031 
1032   // A reloc against a local symbol or local section symbol.
1033 
1034   Output_reloc(Sized_relobj<size, big_endian>* relobj,
1035 	       unsigned int local_sym_index, unsigned int type,
1036 	       Output_data* od, Address address, bool is_relative,
1037                bool is_symbolless, bool is_section_symbol,
1038                bool use_plt_offset);
1039 
1040   Output_reloc(Sized_relobj<size, big_endian>* relobj,
1041 	       unsigned int local_sym_index, unsigned int type,
1042 	       unsigned int shndx, Address address, bool is_relative,
1043                bool is_symbolless, bool is_section_symbol,
1044                bool use_plt_offset);
1045 
1046   // A reloc against the STT_SECTION symbol of an output section.
1047 
1048   Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1049 	       Address address);
1050 
1051   Output_reloc(Output_section* os, unsigned int type,
1052                Sized_relobj<size, big_endian>* relobj,
1053 	       unsigned int shndx, Address address);
1054 
1055   // An absolute relocation with no symbol.
1056 
1057   Output_reloc(unsigned int type, Output_data* od, Address address);
1058 
1059   Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1060 	       unsigned int shndx, Address address);
1061 
1062   // A target specific relocation.  The target will be called to get
1063   // the symbol index, passing ARG.  The type and offset will be set
1064   // as for other relocation types.
1065 
1066   Output_reloc(unsigned int type, void* arg, Output_data* od,
1067 	       Address address);
1068 
1069   Output_reloc(unsigned int type, void* arg,
1070 	       Sized_relobj<size, big_endian>* relobj,
1071 	       unsigned int shndx, Address address);
1072 
1073   // Return the reloc type.
1074   unsigned int
1075   type() const
1076   { return this->type_; }
1077 
1078   // Return whether this is a RELATIVE relocation.
1079   bool
1080   is_relative() const
1081   { return this->is_relative_; }
1082 
1083   // Return whether this is a relocation which should not use
1084   // a symbol, but which obtains its addend from a symbol.
1085   bool
1086   is_symbolless() const
1087   { return this->is_symbolless_; }
1088 
1089   // Return whether this is against a local section symbol.
1090   bool
1091   is_local_section_symbol() const
1092   {
1093     return (this->local_sym_index_ != GSYM_CODE
1094             && this->local_sym_index_ != SECTION_CODE
1095             && this->local_sym_index_ != INVALID_CODE
1096 	    && this->local_sym_index_ != TARGET_CODE
1097             && this->is_section_symbol_);
1098   }
1099 
1100   // Return whether this is a target specific relocation.
1101   bool
1102   is_target_specific() const
1103   { return this->local_sym_index_ == TARGET_CODE; }
1104 
1105   // Return the argument to pass to the target for a target specific
1106   // relocation.
1107   void*
1108   target_arg() const
1109   {
1110     gold_assert(this->local_sym_index_ == TARGET_CODE);
1111     return this->u1_.arg;
1112   }
1113 
1114   // For a local section symbol, return the offset of the input
1115   // section within the output section.  ADDEND is the addend being
1116   // applied to the input section.
1117   Address
1118   local_section_offset(Addend addend) const;
1119 
1120   // Get the value of the symbol referred to by a Rel relocation when
1121   // we are adding the given ADDEND.
1122   Address
1123   symbol_value(Addend addend) const;
1124 
1125   // If this relocation is against an input section, return the
1126   // relocatable object containing the input section.
1127   Sized_relobj<size, big_endian>*
1128   get_relobj() const
1129   {
1130     if (this->shndx_ == INVALID_CODE)
1131       return NULL;
1132     return this->u2_.relobj;
1133   }
1134 
1135   // Write the reloc entry to an output view.
1136   void
1137   write(unsigned char* pov) const;
1138 
1139   // Write the offset and info fields to Write_rel.
1140   template<typename Write_rel>
1141   void write_rel(Write_rel*) const;
1142 
1143   // This is used when sorting dynamic relocs.  Return -1 to sort this
1144   // reloc before R2, 0 to sort the same as R2, 1 to sort after R2.
1145   int
1146   compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1147     const;
1148 
1149   // Return whether this reloc should be sorted before the argument
1150   // when sorting dynamic relocs.
1151   bool
1152   sort_before(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>&
1153 	      r2) const
1154   { return this->compare(r2) < 0; }
1155 
1156  private:
1157   // Record that we need a dynamic symbol index.
1158   void
1159   set_needs_dynsym_index();
1160 
1161   // Return the symbol index.
1162   unsigned int
1163   get_symbol_index() const;
1164 
1165   // Return the output address.
1166   Address
1167   get_address() const;
1168 
1169   // Codes for local_sym_index_.
1170   enum
1171   {
1172     // Global symbol.
1173     GSYM_CODE = -1U,
1174     // Output section.
1175     SECTION_CODE = -2U,
1176     // Target specific.
1177     TARGET_CODE = -3U,
1178     // Invalid uninitialized entry.
1179     INVALID_CODE = -4U
1180   };
1181 
1182   union
1183   {
1184     // For a local symbol or local section symbol
1185     // (this->local_sym_index_ >= 0), the object.  We will never
1186     // generate a relocation against a local symbol in a dynamic
1187     // object; that doesn't make sense.  And our callers will always
1188     // be templatized, so we use Sized_relobj here.
1189     Sized_relobj<size, big_endian>* relobj;
1190     // For a global symbol (this->local_sym_index_ == GSYM_CODE, the
1191     // symbol.  If this is NULL, it indicates a relocation against the
1192     // undefined 0 symbol.
1193     Symbol* gsym;
1194     // For a relocation against an output section
1195     // (this->local_sym_index_ == SECTION_CODE), the output section.
1196     Output_section* os;
1197     // For a target specific relocation, an argument to pass to the
1198     // target.
1199     void* arg;
1200   } u1_;
1201   union
1202   {
1203     // If this->shndx_ is not INVALID CODE, the object which holds the
1204     // input section being used to specify the reloc address.
1205     Sized_relobj<size, big_endian>* relobj;
1206     // If this->shndx_ is INVALID_CODE, the output data being used to
1207     // specify the reloc address.  This may be NULL if the reloc
1208     // address is absolute.
1209     Output_data* od;
1210   } u2_;
1211   // The address offset within the input section or the Output_data.
1212   Address address_;
1213   // This is GSYM_CODE for a global symbol, or SECTION_CODE for a
1214   // relocation against an output section, or TARGET_CODE for a target
1215   // specific relocation, or INVALID_CODE for an uninitialized value.
1216   // Otherwise, for a local symbol (this->is_section_symbol_ is
1217   // false), the local symbol index.  For a local section symbol
1218   // (this->is_section_symbol_ is true), the section index in the
1219   // input file.
1220   unsigned int local_sym_index_;
1221   // The reloc type--a processor specific code.
1222   unsigned int type_ : 28;
1223   // True if the relocation is a RELATIVE relocation.
1224   bool is_relative_ : 1;
1225   // True if the relocation is one which should not use
1226   // a symbol, but which obtains its addend from a symbol.
1227   bool is_symbolless_ : 1;
1228   // True if the relocation is against a section symbol.
1229   bool is_section_symbol_ : 1;
1230   // True if the addend should be the PLT offset.
1231   // (Used only for RELA, but stored here for space.)
1232   bool use_plt_offset_ : 1;
1233   // If the reloc address is an input section in an object, the
1234   // section index.  This is INVALID_CODE if the reloc address is
1235   // specified in some other way.
1236   unsigned int shndx_;
1237 };
1238 
1239 // The SHT_RELA version of Output_reloc<>.  This is just derived from
1240 // the SHT_REL version of Output_reloc, but it adds an addend.
1241 
1242 template<bool dynamic, int size, bool big_endian>
1243 class Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1244 {
1245  public:
1246   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1247   typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1248 
1249   // An uninitialized entry.
1250   Output_reloc()
1251     : rel_()
1252   { }
1253 
1254   // A reloc against a global symbol.
1255 
1256   Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1257 	       Address address, Addend addend, bool is_relative,
1258 	       bool is_symbolless, bool use_plt_offset)
1259     : rel_(gsym, type, od, address, is_relative, is_symbolless,
1260 	   use_plt_offset),
1261       addend_(addend)
1262   { }
1263 
1264   Output_reloc(Symbol* gsym, unsigned int type,
1265                Sized_relobj<size, big_endian>* relobj,
1266 	       unsigned int shndx, Address address, Addend addend,
1267 	       bool is_relative, bool is_symbolless, bool use_plt_offset)
1268     : rel_(gsym, type, relobj, shndx, address, is_relative,
1269 	   is_symbolless, use_plt_offset), addend_(addend)
1270   { }
1271 
1272   // A reloc against a local symbol.
1273 
1274   Output_reloc(Sized_relobj<size, big_endian>* relobj,
1275 	       unsigned int local_sym_index, unsigned int type,
1276 	       Output_data* od, Address address,
1277 	       Addend addend, bool is_relative,
1278 	       bool is_symbolless, bool is_section_symbol,
1279 	       bool use_plt_offset)
1280     : rel_(relobj, local_sym_index, type, od, address, is_relative,
1281            is_symbolless, is_section_symbol, use_plt_offset),
1282       addend_(addend)
1283   { }
1284 
1285   Output_reloc(Sized_relobj<size, big_endian>* relobj,
1286 	       unsigned int local_sym_index, unsigned int type,
1287 	       unsigned int shndx, Address address,
1288 	       Addend addend, bool is_relative,
1289 	       bool is_symbolless, bool is_section_symbol,
1290 	       bool use_plt_offset)
1291     : rel_(relobj, local_sym_index, type, shndx, address, is_relative,
1292            is_symbolless, is_section_symbol, use_plt_offset),
1293       addend_(addend)
1294   { }
1295 
1296   // A reloc against the STT_SECTION symbol of an output section.
1297 
1298   Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1299 	       Address address, Addend addend)
1300     : rel_(os, type, od, address), addend_(addend)
1301   { }
1302 
1303   Output_reloc(Output_section* os, unsigned int type,
1304                Sized_relobj<size, big_endian>* relobj,
1305 	       unsigned int shndx, Address address, Addend addend)
1306     : rel_(os, type, relobj, shndx, address), addend_(addend)
1307   { }
1308 
1309   // An absolute relocation with no symbol.
1310 
1311   Output_reloc(unsigned int type, Output_data* od, Address address,
1312 	       Addend addend)
1313     : rel_(type, od, address), addend_(addend)
1314   { }
1315 
1316   Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1317 	       unsigned int shndx, Address address, Addend addend)
1318     : rel_(type, relobj, shndx, address), addend_(addend)
1319   { }
1320 
1321   // A target specific relocation.  The target will be called to get
1322   // the symbol index and the addend, passing ARG.  The type and
1323   // offset will be set as for other relocation types.
1324 
1325   Output_reloc(unsigned int type, void* arg, Output_data* od,
1326 	       Address address, Addend addend)
1327     : rel_(type, arg, od, address), addend_(addend)
1328   { }
1329 
1330   Output_reloc(unsigned int type, void* arg,
1331 	       Sized_relobj<size, big_endian>* relobj,
1332 	       unsigned int shndx, Address address, Addend addend)
1333     : rel_(type, arg, relobj, shndx, address), addend_(addend)
1334   { }
1335 
1336   // Return whether this is a RELATIVE relocation.
1337   bool
1338   is_relative() const
1339   { return this->rel_.is_relative(); }
1340 
1341   // Return whether this is a relocation which should not use
1342   // a symbol, but which obtains its addend from a symbol.
1343   bool
1344   is_symbolless() const
1345   { return this->rel_.is_symbolless(); }
1346 
1347   // If this relocation is against an input section, return the
1348   // relocatable object containing the input section.
1349   Sized_relobj<size, big_endian>*
1350   get_relobj() const
1351   { return this->rel_.get_relobj(); }
1352 
1353   // Write the reloc entry to an output view.
1354   void
1355   write(unsigned char* pov) const;
1356 
1357   // Return whether this reloc should be sorted before the argument
1358   // when sorting dynamic relocs.
1359   bool
1360   sort_before(const Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>&
1361 	      r2) const
1362   {
1363     int i = this->rel_.compare(r2.rel_);
1364     if (i < 0)
1365       return true;
1366     else if (i > 0)
1367       return false;
1368     else
1369       return this->addend_ < r2.addend_;
1370   }
1371 
1372  private:
1373   // The basic reloc.
1374   Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_;
1375   // The addend.
1376   Addend addend_;
1377 };
1378 
1379 // Output_data_reloc_generic is a non-template base class for
1380 // Output_data_reloc_base.  This gives the generic code a way to hold
1381 // a pointer to a reloc section.
1382 
1383 class Output_data_reloc_generic : public Output_section_data_build
1384 {
1385  public:
1386   Output_data_reloc_generic(int size, bool sort_relocs)
1387     : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1388       relative_reloc_count_(0), sort_relocs_(sort_relocs)
1389   { }
1390 
1391   // Return the number of relative relocs in this section.
1392   size_t
1393   relative_reloc_count() const
1394   { return this->relative_reloc_count_; }
1395 
1396   // Whether we should sort the relocs.
1397   bool
1398   sort_relocs() const
1399   { return this->sort_relocs_; }
1400 
1401   // Add a reloc of type TYPE against the global symbol GSYM.  The
1402   // relocation applies to the data at offset ADDRESS within OD.
1403   virtual void
1404   add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1405 		     uint64_t address, uint64_t addend) = 0;
1406 
1407   // Add a reloc of type TYPE against the global symbol GSYM.  The
1408   // relocation applies to data at offset ADDRESS within section SHNDX
1409   // of object file RELOBJ.  OD is the associated output section.
1410   virtual void
1411   add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1412 		     Relobj* relobj, unsigned int shndx, uint64_t address,
1413 		     uint64_t addend) = 0;
1414 
1415   // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
1416   // in RELOBJ.  The relocation applies to the data at offset ADDRESS
1417   // within OD.
1418   virtual void
1419   add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1420 		    unsigned int type, Output_data* od, uint64_t address,
1421 		    uint64_t addend) = 0;
1422 
1423   // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
1424   // in RELOBJ.  The relocation applies to the data at offset ADDRESS
1425   // within section SHNDX of RELOBJ.  OD is the associated output
1426   // section.
1427   virtual void
1428   add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1429 		    unsigned int type, Output_data* od, unsigned int shndx,
1430 		    uint64_t address, uint64_t addend) = 0;
1431 
1432   // Add a reloc of type TYPE against the STT_SECTION symbol of the
1433   // output section OS.  The relocation applies to the data at offset
1434   // ADDRESS within OD.
1435   virtual void
1436   add_output_section_generic(Output_section *os, unsigned int type,
1437 			     Output_data* od, uint64_t address,
1438 			     uint64_t addend) = 0;
1439 
1440   // Add a reloc of type TYPE against the STT_SECTION symbol of the
1441   // output section OS.  The relocation applies to the data at offset
1442   // ADDRESS within section SHNDX of RELOBJ.  OD is the associated
1443   // output section.
1444   virtual void
1445   add_output_section_generic(Output_section* os, unsigned int type,
1446 			     Output_data* od, Relobj* relobj,
1447 			     unsigned int shndx, uint64_t address,
1448 			     uint64_t addend) = 0;
1449 
1450  protected:
1451   // Note that we've added another relative reloc.
1452   void
1453   bump_relative_reloc_count()
1454   { ++this->relative_reloc_count_; }
1455 
1456  private:
1457   // The number of relative relocs added to this section.  This is to
1458   // support DT_RELCOUNT.
1459   size_t relative_reloc_count_;
1460   // Whether to sort the relocations when writing them out, to make
1461   // the dynamic linker more efficient.
1462   bool sort_relocs_;
1463 };
1464 
1465 // Output_data_reloc is used to manage a section containing relocs.
1466 // SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA.  DYNAMIC
1467 // indicates whether this is a dynamic relocation or a normal
1468 // relocation.  Output_data_reloc_base is a base class.
1469 // Output_data_reloc is the real class, which we specialize based on
1470 // the reloc type.
1471 
1472 template<int sh_type, bool dynamic, int size, bool big_endian>
1473 class Output_data_reloc_base : public Output_data_reloc_generic
1474 {
1475  public:
1476   typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
1477   typedef typename Output_reloc_type::Address Address;
1478   static const int reloc_size =
1479     Reloc_types<sh_type, size, big_endian>::reloc_size;
1480 
1481   // Construct the section.
1482   Output_data_reloc_base(bool sort_relocs)
1483     : Output_data_reloc_generic(size, sort_relocs)
1484   { }
1485 
1486  protected:
1487   // Write out the data.
1488   void
1489   do_write(Output_file*);
1490 
1491   // Set the entry size and the link.
1492   void
1493   do_adjust_output_section(Output_section* os);
1494 
1495   // Write to a map file.
1496   void
1497   do_print_to_mapfile(Mapfile* mapfile) const
1498   {
1499     mapfile->print_output_data(this,
1500 			       (dynamic
1501 				? _("** dynamic relocs")
1502 				: _("** relocs")));
1503   }
1504 
1505   // Add a relocation entry.
1506   void
1507   add(Output_data* od, const Output_reloc_type& reloc)
1508   {
1509     this->relocs_.push_back(reloc);
1510     this->set_current_data_size(this->relocs_.size() * reloc_size);
1511     if (dynamic)
1512       od->add_dynamic_reloc();
1513     if (reloc.is_relative())
1514       this->bump_relative_reloc_count();
1515     Sized_relobj<size, big_endian>* relobj = reloc.get_relobj();
1516     if (relobj != NULL)
1517       relobj->add_dyn_reloc(this->relocs_.size() - 1);
1518   }
1519 
1520  private:
1521   typedef std::vector<Output_reloc_type> Relocs;
1522 
1523   // The class used to sort the relocations.
1524   struct Sort_relocs_comparison
1525   {
1526     bool
1527     operator()(const Output_reloc_type& r1, const Output_reloc_type& r2) const
1528     { return r1.sort_before(r2); }
1529   };
1530 
1531   // The relocations in this section.
1532   Relocs relocs_;
1533 };
1534 
1535 // The class which callers actually create.
1536 
1537 template<int sh_type, bool dynamic, int size, bool big_endian>
1538 class Output_data_reloc;
1539 
1540 // The SHT_REL version of Output_data_reloc.
1541 
1542 template<bool dynamic, int size, bool big_endian>
1543 class Output_data_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1544   : public Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>
1545 {
1546  private:
1547   typedef Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size,
1548 				 big_endian> Base;
1549 
1550  public:
1551   typedef typename Base::Output_reloc_type Output_reloc_type;
1552   typedef typename Output_reloc_type::Address Address;
1553 
1554   Output_data_reloc(bool sr)
1555     : Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>(sr)
1556   { }
1557 
1558   // Add a reloc against a global symbol.
1559 
1560   void
1561   add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address)
1562   { this->add(od, Output_reloc_type(gsym, type, od, address, false, false, false)); }
1563 
1564   void
1565   add_global(Symbol* gsym, unsigned int type, Output_data* od,
1566              Sized_relobj<size, big_endian>* relobj,
1567 	     unsigned int shndx, Address address)
1568   { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1569                                     false, false, false)); }
1570 
1571   void
1572   add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1573 		     uint64_t address, uint64_t addend)
1574   {
1575     gold_assert(addend == 0);
1576     this->add(od, Output_reloc_type(gsym, type, od,
1577 				    convert_types<Address, uint64_t>(address),
1578 				    false, false, false));
1579   }
1580 
1581   void
1582   add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1583 		     Relobj* relobj, unsigned int shndx, uint64_t address,
1584 		     uint64_t addend)
1585   {
1586     gold_assert(addend == 0);
1587     Sized_relobj<size, big_endian>* sized_relobj =
1588       static_cast<Sized_relobj<size, big_endian>*>(relobj);
1589     this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx,
1590 				    convert_types<Address, uint64_t>(address),
1591 				    false, false, false));
1592   }
1593 
1594   // Add a RELATIVE reloc against a global symbol.  The final relocation
1595   // will not reference the symbol.
1596 
1597   void
1598   add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1599                       Address address)
1600   { this->add(od, Output_reloc_type(gsym, type, od, address, true, true,
1601 				    false)); }
1602 
1603   void
1604   add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1605                       Sized_relobj<size, big_endian>* relobj,
1606                       unsigned int shndx, Address address)
1607   {
1608     this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1609                                     true, true, false));
1610   }
1611 
1612   // Add a global relocation which does not use a symbol for the relocation,
1613   // but which gets its addend from a symbol.
1614 
1615   void
1616   add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1617 			       Output_data* od, Address address)
1618   { this->add(od, Output_reloc_type(gsym, type, od, address, false, true,
1619 				    false)); }
1620 
1621   void
1622   add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1623 			       Output_data* od,
1624 			       Sized_relobj<size, big_endian>* relobj,
1625 			       unsigned int shndx, Address address)
1626   {
1627     this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1628                                     false, true, false));
1629   }
1630 
1631   // Add a reloc against a local symbol.
1632 
1633   void
1634   add_local(Sized_relobj<size, big_endian>* relobj,
1635 	    unsigned int local_sym_index, unsigned int type,
1636 	    Output_data* od, Address address)
1637   {
1638     this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1639                                     address, false, false, false, false));
1640   }
1641 
1642   void
1643   add_local(Sized_relobj<size, big_endian>* relobj,
1644 	    unsigned int local_sym_index, unsigned int type,
1645 	    Output_data* od, unsigned int shndx, Address address)
1646   {
1647     this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1648 				    address, false, false, false, false));
1649   }
1650 
1651   void
1652   add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1653 		    unsigned int type, Output_data* od, uint64_t address,
1654 		    uint64_t addend)
1655   {
1656     gold_assert(addend == 0);
1657     Sized_relobj<size, big_endian>* sized_relobj =
1658       static_cast<Sized_relobj<size, big_endian> *>(relobj);
1659     this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od,
1660 				    convert_types<Address, uint64_t>(address),
1661 				    false, false, false, false));
1662   }
1663 
1664   void
1665   add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1666 		    unsigned int type, Output_data* od, unsigned int shndx,
1667 		    uint64_t address, uint64_t addend)
1668   {
1669     gold_assert(addend == 0);
1670     Sized_relobj<size, big_endian>* sized_relobj =
1671       static_cast<Sized_relobj<size, big_endian>*>(relobj);
1672     this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx,
1673 				    convert_types<Address, uint64_t>(address),
1674 				    false, false, false, false));
1675   }
1676 
1677   // Add a RELATIVE reloc against a local symbol.
1678 
1679   void
1680   add_local_relative(Sized_relobj<size, big_endian>* relobj,
1681 	             unsigned int local_sym_index, unsigned int type,
1682 	             Output_data* od, Address address)
1683   {
1684     this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1685                                     address, true, true, false, false));
1686   }
1687 
1688   void
1689   add_local_relative(Sized_relobj<size, big_endian>* relobj,
1690 	             unsigned int local_sym_index, unsigned int type,
1691 	             Output_data* od, unsigned int shndx, Address address)
1692   {
1693     this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1694 				    address, true, true, false, false));
1695   }
1696 
1697   // Add a local relocation which does not use a symbol for the relocation,
1698   // but which gets its addend from a symbol.
1699 
1700   void
1701   add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1702 			      unsigned int local_sym_index, unsigned int type,
1703 			      Output_data* od, Address address)
1704   {
1705     this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1706                                     address, false, true, false, false));
1707   }
1708 
1709   void
1710   add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1711 			      unsigned int local_sym_index, unsigned int type,
1712 			      Output_data* od, unsigned int shndx,
1713 			      Address address)
1714   {
1715     this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1716 				    address, false, true, false, false));
1717   }
1718 
1719   // Add a reloc against a local section symbol.  This will be
1720   // converted into a reloc against the STT_SECTION symbol of the
1721   // output section.
1722 
1723   void
1724   add_local_section(Sized_relobj<size, big_endian>* relobj,
1725                     unsigned int input_shndx, unsigned int type,
1726                     Output_data* od, Address address)
1727   {
1728     this->add(od, Output_reloc_type(relobj, input_shndx, type, od,
1729                                     address, false, false, true, false));
1730   }
1731 
1732   void
1733   add_local_section(Sized_relobj<size, big_endian>* relobj,
1734                     unsigned int input_shndx, unsigned int type,
1735                     Output_data* od, unsigned int shndx, Address address)
1736   {
1737     this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1738                                     address, false, false, true, false));
1739   }
1740 
1741   // A reloc against the STT_SECTION symbol of an output section.
1742   // OS is the Output_section that the relocation refers to; OD is
1743   // the Output_data object being relocated.
1744 
1745   void
1746   add_output_section(Output_section* os, unsigned int type,
1747 		     Output_data* od, Address address)
1748   { this->add(od, Output_reloc_type(os, type, od, address)); }
1749 
1750   void
1751   add_output_section(Output_section* os, unsigned int type, Output_data* od,
1752 		     Sized_relobj<size, big_endian>* relobj,
1753                      unsigned int shndx, Address address)
1754   { this->add(od, Output_reloc_type(os, type, relobj, shndx, address)); }
1755 
1756   void
1757   add_output_section_generic(Output_section* os, unsigned int type,
1758 			     Output_data* od, uint64_t address,
1759 			     uint64_t addend)
1760   {
1761     gold_assert(addend == 0);
1762     this->add(od, Output_reloc_type(os, type, od,
1763 				    convert_types<Address, uint64_t>(address)));
1764   }
1765 
1766   void
1767   add_output_section_generic(Output_section* os, unsigned int type,
1768 			     Output_data* od, Relobj* relobj,
1769 			     unsigned int shndx, uint64_t address,
1770 			     uint64_t addend)
1771   {
1772     gold_assert(addend == 0);
1773     Sized_relobj<size, big_endian>* sized_relobj =
1774       static_cast<Sized_relobj<size, big_endian>*>(relobj);
1775     this->add(od, Output_reloc_type(os, type, sized_relobj, shndx,
1776 				    convert_types<Address, uint64_t>(address)));
1777   }
1778 
1779   // Add an absolute relocation.
1780 
1781   void
1782   add_absolute(unsigned int type, Output_data* od, Address address)
1783   { this->add(od, Output_reloc_type(type, od, address)); }
1784 
1785   void
1786   add_absolute(unsigned int type, Output_data* od,
1787 	       Sized_relobj<size, big_endian>* relobj,
1788 	       unsigned int shndx, Address address)
1789   { this->add(od, Output_reloc_type(type, relobj, shndx, address)); }
1790 
1791   // Add a target specific relocation.  A target which calls this must
1792   // define the reloc_symbol_index and reloc_addend virtual functions.
1793 
1794   void
1795   add_target_specific(unsigned int type, void* arg, Output_data* od,
1796 		      Address address)
1797   { this->add(od, Output_reloc_type(type, arg, od, address)); }
1798 
1799   void
1800   add_target_specific(unsigned int type, void* arg, Output_data* od,
1801 		      Sized_relobj<size, big_endian>* relobj,
1802 		      unsigned int shndx, Address address)
1803   { this->add(od, Output_reloc_type(type, arg, relobj, shndx, address)); }
1804 };
1805 
1806 // The SHT_RELA version of Output_data_reloc.
1807 
1808 template<bool dynamic, int size, bool big_endian>
1809 class Output_data_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1810   : public Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>
1811 {
1812  private:
1813   typedef Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size,
1814 				 big_endian> Base;
1815 
1816  public:
1817   typedef typename Base::Output_reloc_type Output_reloc_type;
1818   typedef typename Output_reloc_type::Address Address;
1819   typedef typename Output_reloc_type::Addend Addend;
1820 
1821   Output_data_reloc(bool sr)
1822     : Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>(sr)
1823   { }
1824 
1825   // Add a reloc against a global symbol.
1826 
1827   void
1828   add_global(Symbol* gsym, unsigned int type, Output_data* od,
1829 	     Address address, Addend addend)
1830   { this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1831                                     false, false, false)); }
1832 
1833   void
1834   add_global(Symbol* gsym, unsigned int type, Output_data* od,
1835              Sized_relobj<size, big_endian>* relobj,
1836 	     unsigned int shndx, Address address,
1837 	     Addend addend)
1838   { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1839                                     addend, false, false, false)); }
1840 
1841   void
1842   add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1843 		     uint64_t address, uint64_t addend)
1844   {
1845     this->add(od, Output_reloc_type(gsym, type, od,
1846 				    convert_types<Address, uint64_t>(address),
1847 				    convert_types<Addend, uint64_t>(addend),
1848 				    false, false, false));
1849   }
1850 
1851   void
1852   add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1853 		     Relobj* relobj, unsigned int shndx, uint64_t address,
1854 		     uint64_t addend)
1855   {
1856     Sized_relobj<size, big_endian>* sized_relobj =
1857       static_cast<Sized_relobj<size, big_endian>*>(relobj);
1858     this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx,
1859 				    convert_types<Address, uint64_t>(address),
1860 				    convert_types<Addend, uint64_t>(addend),
1861 				    false, false, false));
1862   }
1863 
1864   // Add a RELATIVE reloc against a global symbol.  The final output
1865   // relocation will not reference the symbol, but we must keep the symbol
1866   // information long enough to set the addend of the relocation correctly
1867   // when it is written.
1868 
1869   void
1870   add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1871 	              Address address, Addend addend, bool use_plt_offset)
1872   { this->add(od, Output_reloc_type(gsym, type, od, address, addend, true,
1873 				    true, use_plt_offset)); }
1874 
1875   void
1876   add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1877                       Sized_relobj<size, big_endian>* relobj,
1878                       unsigned int shndx, Address address, Addend addend,
1879 		      bool use_plt_offset)
1880   { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1881                                     addend, true, true, use_plt_offset)); }
1882 
1883   // Add a global relocation which does not use a symbol for the relocation,
1884   // but which gets its addend from a symbol.
1885 
1886   void
1887   add_symbolless_global_addend(Symbol* gsym, unsigned int type, Output_data* od,
1888 			       Address address, Addend addend)
1889   { this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1890 				    false, true, false)); }
1891 
1892   void
1893   add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1894 			       Output_data* od,
1895 			       Sized_relobj<size, big_endian>* relobj,
1896 			       unsigned int shndx, Address address, Addend addend)
1897   { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1898                                     addend, false, true, false)); }
1899 
1900   // Add a reloc against a local symbol.
1901 
1902   void
1903   add_local(Sized_relobj<size, big_endian>* relobj,
1904 	    unsigned int local_sym_index, unsigned int type,
1905 	    Output_data* od, Address address, Addend addend)
1906   {
1907     this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1908 				    addend, false, false, false, false));
1909   }
1910 
1911   void
1912   add_local(Sized_relobj<size, big_endian>* relobj,
1913 	    unsigned int local_sym_index, unsigned int type,
1914 	    Output_data* od, unsigned int shndx, Address address,
1915 	    Addend addend)
1916   {
1917     this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1918                                     address, addend, false, false, false,
1919                                     false));
1920   }
1921 
1922   void
1923   add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1924 		    unsigned int type, Output_data* od, uint64_t address,
1925 		    uint64_t addend)
1926   {
1927     Sized_relobj<size, big_endian>* sized_relobj =
1928       static_cast<Sized_relobj<size, big_endian> *>(relobj);
1929     this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od,
1930 				    convert_types<Address, uint64_t>(address),
1931 				    convert_types<Addend, uint64_t>(addend),
1932 				    false, false, false, false));
1933   }
1934 
1935   void
1936   add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1937 		    unsigned int type, Output_data* od, unsigned int shndx,
1938 		    uint64_t address, uint64_t addend)
1939   {
1940     Sized_relobj<size, big_endian>* sized_relobj =
1941       static_cast<Sized_relobj<size, big_endian>*>(relobj);
1942     this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx,
1943 				    convert_types<Address, uint64_t>(address),
1944 				    convert_types<Addend, uint64_t>(addend),
1945 				    false, false, false, false));
1946   }
1947 
1948   // Add a RELATIVE reloc against a local symbol.
1949 
1950   void
1951   add_local_relative(Sized_relobj<size, big_endian>* relobj,
1952 	             unsigned int local_sym_index, unsigned int type,
1953 	             Output_data* od, Address address, Addend addend,
1954 	             bool use_plt_offset)
1955   {
1956     this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1957 				    addend, true, true, false,
1958 				    use_plt_offset));
1959   }
1960 
1961   void
1962   add_local_relative(Sized_relobj<size, big_endian>* relobj,
1963 	             unsigned int local_sym_index, unsigned int type,
1964 	             Output_data* od, unsigned int shndx, Address address,
1965 	             Addend addend, bool use_plt_offset)
1966   {
1967     this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1968                                     address, addend, true, true, false,
1969                                     use_plt_offset));
1970   }
1971 
1972   // Add a local relocation which does not use a symbol for the relocation,
1973   // but which gets it's addend from a symbol.
1974 
1975   void
1976   add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1977 			      unsigned int local_sym_index, unsigned int type,
1978 			      Output_data* od, Address address, Addend addend)
1979   {
1980     this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1981 				    addend, false, true, false, false));
1982   }
1983 
1984   void
1985   add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1986 			      unsigned int local_sym_index, unsigned int type,
1987 			      Output_data* od, unsigned int shndx,
1988 			      Address address, Addend addend)
1989   {
1990     this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1991                                     address, addend, false, true, false,
1992                                     false));
1993   }
1994 
1995   // Add a reloc against a local section symbol.  This will be
1996   // converted into a reloc against the STT_SECTION symbol of the
1997   // output section.
1998 
1999   void
2000   add_local_section(Sized_relobj<size, big_endian>* relobj,
2001                     unsigned int input_shndx, unsigned int type,
2002                     Output_data* od, Address address, Addend addend)
2003   {
2004     this->add(od, Output_reloc_type(relobj, input_shndx, type, od, address,
2005 				    addend, false, false, true, false));
2006   }
2007 
2008   void
2009   add_local_section(Sized_relobj<size, big_endian>* relobj,
2010 		    unsigned int input_shndx, unsigned int type,
2011 		    Output_data* od, unsigned int shndx, Address address,
2012 		    Addend addend)
2013   {
2014     this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
2015                                     address, addend, false, false, true,
2016                                     false));
2017   }
2018 
2019   // A reloc against the STT_SECTION symbol of an output section.
2020 
2021   void
2022   add_output_section(Output_section* os, unsigned int type, Output_data* od,
2023 		     Address address, Addend addend)
2024   { this->add(od, Output_reloc_type(os, type, od, address, addend)); }
2025 
2026   void
2027   add_output_section(Output_section* os, unsigned int type, Output_data* od,
2028                      Sized_relobj<size, big_endian>* relobj,
2029 		     unsigned int shndx, Address address, Addend addend)
2030   { this->add(od, Output_reloc_type(os, type, relobj, shndx, address,
2031                                     addend)); }
2032 
2033   void
2034   add_output_section_generic(Output_section* os, unsigned int type,
2035 			     Output_data* od, uint64_t address,
2036 			     uint64_t addend)
2037   {
2038     this->add(od, Output_reloc_type(os, type, od,
2039 				    convert_types<Address, uint64_t>(address),
2040 				    convert_types<Addend, uint64_t>(addend)));
2041   }
2042 
2043   void
2044   add_output_section_generic(Output_section* os, unsigned int type,
2045 			     Output_data* od, Relobj* relobj,
2046 			     unsigned int shndx, uint64_t address,
2047 			     uint64_t addend)
2048   {
2049     Sized_relobj<size, big_endian>* sized_relobj =
2050       static_cast<Sized_relobj<size, big_endian>*>(relobj);
2051     this->add(od, Output_reloc_type(os, type, sized_relobj, shndx,
2052 				    convert_types<Address, uint64_t>(address),
2053 				    convert_types<Addend, uint64_t>(addend)));
2054   }
2055 
2056   // Add an absolute relocation.
2057 
2058   void
2059   add_absolute(unsigned int type, Output_data* od, Address address,
2060 	       Addend addend)
2061   { this->add(od, Output_reloc_type(type, od, address, addend)); }
2062 
2063   void
2064   add_absolute(unsigned int type, Output_data* od,
2065 	       Sized_relobj<size, big_endian>* relobj,
2066 	       unsigned int shndx, Address address, Addend addend)
2067   { this->add(od, Output_reloc_type(type, relobj, shndx, address, addend)); }
2068 
2069   // Add a target specific relocation.  A target which calls this must
2070   // define the reloc_symbol_index and reloc_addend virtual functions.
2071 
2072   void
2073   add_target_specific(unsigned int type, void* arg, Output_data* od,
2074 		      Address address, Addend addend)
2075   { this->add(od, Output_reloc_type(type, arg, od, address, addend)); }
2076 
2077   void
2078   add_target_specific(unsigned int type, void* arg, Output_data* od,
2079 		      Sized_relobj<size, big_endian>* relobj,
2080 		      unsigned int shndx, Address address, Addend addend)
2081   {
2082     this->add(od, Output_reloc_type(type, arg, relobj, shndx, address,
2083 				    addend));
2084   }
2085 };
2086 
2087 // Output_relocatable_relocs represents a relocation section in a
2088 // relocatable link.  The actual data is written out in the target
2089 // hook relocate_for_relocatable.  This just saves space for it.
2090 
2091 template<int sh_type, int size, bool big_endian>
2092 class Output_relocatable_relocs : public Output_section_data
2093 {
2094  public:
2095   Output_relocatable_relocs(Relocatable_relocs* rr)
2096     : Output_section_data(Output_data::default_alignment_for_size(size)),
2097       rr_(rr)
2098   { }
2099 
2100   void
2101   set_final_data_size();
2102 
2103   // Write out the data.  There is nothing to do here.
2104   void
2105   do_write(Output_file*)
2106   { }
2107 
2108   // Write to a map file.
2109   void
2110   do_print_to_mapfile(Mapfile* mapfile) const
2111   { mapfile->print_output_data(this, _("** relocs")); }
2112 
2113  private:
2114   // The relocs associated with this input section.
2115   Relocatable_relocs* rr_;
2116 };
2117 
2118 // Handle a GROUP section.
2119 
2120 template<int size, bool big_endian>
2121 class Output_data_group : public Output_section_data
2122 {
2123  public:
2124   // The constructor clears *INPUT_SHNDXES.
2125   Output_data_group(Sized_relobj_file<size, big_endian>* relobj,
2126 		    section_size_type entry_count,
2127 		    elfcpp::Elf_Word flags,
2128 		    std::vector<unsigned int>* input_shndxes);
2129 
2130   void
2131   do_write(Output_file*);
2132 
2133   // Write to a map file.
2134   void
2135   do_print_to_mapfile(Mapfile* mapfile) const
2136   { mapfile->print_output_data(this, _("** group")); }
2137 
2138   // Set final data size.
2139   void
2140   set_final_data_size()
2141   { this->set_data_size((this->input_shndxes_.size() + 1) * 4); }
2142 
2143  private:
2144   // The input object.
2145   Sized_relobj_file<size, big_endian>* relobj_;
2146   // The group flag word.
2147   elfcpp::Elf_Word flags_;
2148   // The section indexes of the input sections in this group.
2149   std::vector<unsigned int> input_shndxes_;
2150 };
2151 
2152 // Output_data_got is used to manage a GOT.  Each entry in the GOT is
2153 // for one symbol--either a global symbol or a local symbol in an
2154 // object.  The target specific code adds entries to the GOT as
2155 // needed.  The GOT_SIZE template parameter is the size in bits of a
2156 // GOT entry, typically 32 or 64.
2157 
2158 class Output_data_got_base : public Output_section_data_build
2159 {
2160  public:
2161   Output_data_got_base(uint64_t align)
2162     : Output_section_data_build(align)
2163   { }
2164 
2165   Output_data_got_base(off_t data_size, uint64_t align)
2166     : Output_section_data_build(data_size, align)
2167   { }
2168 
2169   // Reserve the slot at index I in the GOT.
2170   void
2171   reserve_slot(unsigned int i)
2172   { this->do_reserve_slot(i); }
2173 
2174  protected:
2175   // Reserve the slot at index I in the GOT.
2176   virtual void
2177   do_reserve_slot(unsigned int i) = 0;
2178 };
2179 
2180 template<int got_size, bool big_endian>
2181 class Output_data_got : public Output_data_got_base
2182 {
2183  public:
2184   typedef typename elfcpp::Elf_types<got_size>::Elf_Addr Valtype;
2185 
2186   Output_data_got()
2187     : Output_data_got_base(Output_data::default_alignment_for_size(got_size)),
2188       entries_(), free_list_()
2189   { }
2190 
2191   Output_data_got(off_t data_size)
2192     : Output_data_got_base(data_size,
2193 			   Output_data::default_alignment_for_size(got_size)),
2194       entries_(), free_list_()
2195   {
2196     // For an incremental update, we have an existing GOT section.
2197     // Initialize the list of entries and the free list.
2198     this->entries_.resize(data_size / (got_size / 8));
2199     this->free_list_.init(data_size, false);
2200   }
2201 
2202   // Add an entry for a global symbol to the GOT.  Return true if this
2203   // is a new GOT entry, false if the symbol was already in the GOT.
2204   bool
2205   add_global(Symbol* gsym, unsigned int got_type);
2206 
2207   // Like add_global, but use the PLT offset of the global symbol if
2208   // it has one.
2209   bool
2210   add_global_plt(Symbol* gsym, unsigned int got_type);
2211 
2212   // Add an entry for a global symbol to the GOT, and add a dynamic
2213   // relocation of type R_TYPE for the GOT entry.
2214   void
2215   add_global_with_rel(Symbol* gsym, unsigned int got_type,
2216                       Output_data_reloc_generic* rel_dyn, unsigned int r_type);
2217 
2218   // Add a pair of entries for a global symbol to the GOT, and add
2219   // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
2220   void
2221   add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2222                            Output_data_reloc_generic* rel_dyn,
2223 			   unsigned int r_type_1, unsigned int r_type_2);
2224 
2225   // Add an entry for a local symbol to the GOT.  This returns true if
2226   // this is a new GOT entry, false if the symbol already has a GOT
2227   // entry.
2228   bool
2229   add_local(Relobj* object, unsigned int sym_index, unsigned int got_type);
2230 
2231   // Like add_local, but use the PLT offset of the local symbol if it
2232   // has one.
2233   bool
2234   add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type);
2235 
2236   // Add an entry for a local symbol to the GOT, and add a dynamic
2237   // relocation of type R_TYPE for the GOT entry.
2238   void
2239   add_local_with_rel(Relobj* object, unsigned int sym_index,
2240 		     unsigned int got_type, Output_data_reloc_generic* rel_dyn,
2241 		     unsigned int r_type);
2242 
2243   // Add a pair of entries for a local symbol to the GOT, and add
2244   // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
2245   void
2246   add_local_pair_with_rel(Relobj* object, unsigned int sym_index,
2247 			  unsigned int shndx, unsigned int got_type,
2248 			  Output_data_reloc_generic* rel_dyn,
2249                           unsigned int r_type_1, unsigned int r_type_2);
2250 
2251   // Add a constant to the GOT.  This returns the offset of the new
2252   // entry from the start of the GOT.
2253   unsigned int
2254   add_constant(Valtype constant)
2255   {
2256     unsigned int got_offset = this->add_got_entry(Got_entry(constant));
2257     return got_offset;
2258   }
2259 
2260   // Reserve a slot in the GOT for a local symbol.
2261   void
2262   reserve_local(unsigned int i, Relobj* object, unsigned int sym_index,
2263 		unsigned int got_type);
2264 
2265   // Reserve a slot in the GOT for a global symbol.
2266   void
2267   reserve_global(unsigned int i, Symbol* gsym, unsigned int got_type);
2268 
2269  protected:
2270   // Write out the GOT table.
2271   void
2272   do_write(Output_file*);
2273 
2274   // Write to a map file.
2275   void
2276   do_print_to_mapfile(Mapfile* mapfile) const
2277   { mapfile->print_output_data(this, _("** GOT")); }
2278 
2279   // Reserve the slot at index I in the GOT.
2280   virtual void
2281   do_reserve_slot(unsigned int i)
2282   { this->free_list_.remove(i * got_size / 8, (i + 1) * got_size / 8); }
2283 
2284  private:
2285   // This POD class holds a single GOT entry.
2286   class Got_entry
2287   {
2288    public:
2289     // Create a zero entry.
2290     Got_entry()
2291       : local_sym_index_(RESERVED_CODE), use_plt_offset_(false)
2292     { this->u_.constant = 0; }
2293 
2294     // Create a global symbol entry.
2295     Got_entry(Symbol* gsym, bool use_plt_offset)
2296       : local_sym_index_(GSYM_CODE), use_plt_offset_(use_plt_offset)
2297     { this->u_.gsym = gsym; }
2298 
2299     // Create a local symbol entry.
2300     Got_entry(Relobj* object, unsigned int local_sym_index,
2301 	      bool use_plt_offset)
2302       : local_sym_index_(local_sym_index), use_plt_offset_(use_plt_offset)
2303     {
2304       gold_assert(local_sym_index != GSYM_CODE
2305 		  && local_sym_index != CONSTANT_CODE
2306 		  && local_sym_index != RESERVED_CODE
2307 		  && local_sym_index == this->local_sym_index_);
2308       this->u_.object = object;
2309     }
2310 
2311     // Create a constant entry.  The constant is a host value--it will
2312     // be swapped, if necessary, when it is written out.
2313     explicit Got_entry(Valtype constant)
2314       : local_sym_index_(CONSTANT_CODE), use_plt_offset_(false)
2315     { this->u_.constant = constant; }
2316 
2317     // Write the GOT entry to an output view.
2318     void
2319     write(unsigned char* pov) const;
2320 
2321    private:
2322     enum
2323     {
2324       GSYM_CODE = 0x7fffffff,
2325       CONSTANT_CODE = 0x7ffffffe,
2326       RESERVED_CODE = 0x7ffffffd
2327     };
2328 
2329     union
2330     {
2331       // For a local symbol, the object.
2332       Relobj* object;
2333       // For a global symbol, the symbol.
2334       Symbol* gsym;
2335       // For a constant, the constant.
2336       Valtype constant;
2337     } u_;
2338     // For a local symbol, the local symbol index.  This is GSYM_CODE
2339     // for a global symbol, or CONSTANT_CODE for a constant.
2340     unsigned int local_sym_index_ : 31;
2341     // Whether to use the PLT offset of the symbol if it has one.
2342     bool use_plt_offset_ : 1;
2343   };
2344 
2345   typedef std::vector<Got_entry> Got_entries;
2346 
2347   // Create a new GOT entry and return its offset.
2348   unsigned int
2349   add_got_entry(Got_entry got_entry);
2350 
2351   // Create a pair of new GOT entries and return the offset of the first.
2352   unsigned int
2353   add_got_entry_pair(Got_entry got_entry_1, Got_entry got_entry_2);
2354 
2355   // Return the offset into the GOT of GOT entry I.
2356   unsigned int
2357   got_offset(unsigned int i) const
2358   { return i * (got_size / 8); }
2359 
2360   // Return the offset into the GOT of the last entry added.
2361   unsigned int
2362   last_got_offset() const
2363   { return this->got_offset(this->entries_.size() - 1); }
2364 
2365   // Set the size of the section.
2366   void
2367   set_got_size()
2368   { this->set_current_data_size(this->got_offset(this->entries_.size())); }
2369 
2370   // The list of GOT entries.
2371   Got_entries entries_;
2372 
2373   // List of available regions within the section, for incremental
2374   // update links.
2375   Free_list free_list_;
2376 };
2377 
2378 // Output_data_dynamic is used to hold the data in SHT_DYNAMIC
2379 // section.
2380 
2381 class Output_data_dynamic : public Output_section_data
2382 {
2383  public:
2384   Output_data_dynamic(Stringpool* pool)
2385     : Output_section_data(Output_data::default_alignment()),
2386       entries_(), pool_(pool)
2387   { }
2388 
2389   // Add a new dynamic entry with a fixed numeric value.
2390   void
2391   add_constant(elfcpp::DT tag, unsigned int val)
2392   { this->add_entry(Dynamic_entry(tag, val)); }
2393 
2394   // Add a new dynamic entry with the address of output data.
2395   void
2396   add_section_address(elfcpp::DT tag, const Output_data* od)
2397   { this->add_entry(Dynamic_entry(tag, od, false)); }
2398 
2399   // Add a new dynamic entry with the address of output data
2400   // plus a constant offset.
2401   void
2402   add_section_plus_offset(elfcpp::DT tag, const Output_data* od,
2403                           unsigned int offset)
2404   { this->add_entry(Dynamic_entry(tag, od, offset)); }
2405 
2406   // Add a new dynamic entry with the size of output data.
2407   void
2408   add_section_size(elfcpp::DT tag, const Output_data* od)
2409   { this->add_entry(Dynamic_entry(tag, od, true)); }
2410 
2411   // Add a new dynamic entry with the total size of two output datas.
2412   void
2413   add_section_size(elfcpp::DT tag, const Output_data* od,
2414 		   const Output_data* od2)
2415   { this->add_entry(Dynamic_entry(tag, od, od2)); }
2416 
2417   // Add a new dynamic entry with the address of a symbol.
2418   void
2419   add_symbol(elfcpp::DT tag, const Symbol* sym)
2420   { this->add_entry(Dynamic_entry(tag, sym)); }
2421 
2422   // Add a new dynamic entry with a string.
2423   void
2424   add_string(elfcpp::DT tag, const char* str)
2425   { this->add_entry(Dynamic_entry(tag, this->pool_->add(str, true, NULL))); }
2426 
2427   void
2428   add_string(elfcpp::DT tag, const std::string& str)
2429   { this->add_string(tag, str.c_str()); }
2430 
2431  protected:
2432   // Adjust the output section to set the entry size.
2433   void
2434   do_adjust_output_section(Output_section*);
2435 
2436   // Set the final data size.
2437   void
2438   set_final_data_size();
2439 
2440   // Write out the dynamic entries.
2441   void
2442   do_write(Output_file*);
2443 
2444   // Write to a map file.
2445   void
2446   do_print_to_mapfile(Mapfile* mapfile) const
2447   { mapfile->print_output_data(this, _("** dynamic")); }
2448 
2449  private:
2450   // This POD class holds a single dynamic entry.
2451   class Dynamic_entry
2452   {
2453    public:
2454     // Create an entry with a fixed numeric value.
2455     Dynamic_entry(elfcpp::DT tag, unsigned int val)
2456       : tag_(tag), offset_(DYNAMIC_NUMBER)
2457     { this->u_.val = val; }
2458 
2459     // Create an entry with the size or address of a section.
2460     Dynamic_entry(elfcpp::DT tag, const Output_data* od, bool section_size)
2461       : tag_(tag),
2462 	offset_(section_size
2463 		? DYNAMIC_SECTION_SIZE
2464 		: DYNAMIC_SECTION_ADDRESS)
2465     {
2466       this->u_.od = od;
2467       this->od2 = NULL;
2468     }
2469 
2470     // Create an entry with the size of two sections.
2471     Dynamic_entry(elfcpp::DT tag, const Output_data* od, const Output_data* od2)
2472       : tag_(tag),
2473 	offset_(DYNAMIC_SECTION_SIZE)
2474     {
2475       this->u_.od = od;
2476       this->od2 = od2;
2477     }
2478 
2479     // Create an entry with the address of a section plus a constant offset.
2480     Dynamic_entry(elfcpp::DT tag, const Output_data* od, unsigned int offset)
2481       : tag_(tag),
2482 	offset_(offset)
2483     { this->u_.od = od; }
2484 
2485     // Create an entry with the address of a symbol.
2486     Dynamic_entry(elfcpp::DT tag, const Symbol* sym)
2487       : tag_(tag), offset_(DYNAMIC_SYMBOL)
2488     { this->u_.sym = sym; }
2489 
2490     // Create an entry with a string.
2491     Dynamic_entry(elfcpp::DT tag, const char* str)
2492       : tag_(tag), offset_(DYNAMIC_STRING)
2493     { this->u_.str = str; }
2494 
2495     // Return the tag of this entry.
2496     elfcpp::DT
2497     tag() const
2498     { return this->tag_; }
2499 
2500     // Write the dynamic entry to an output view.
2501     template<int size, bool big_endian>
2502     void
2503     write(unsigned char* pov, const Stringpool*) const;
2504 
2505    private:
2506     // Classification is encoded in the OFFSET field.
2507     enum Classification
2508     {
2509       // Section address.
2510       DYNAMIC_SECTION_ADDRESS = 0,
2511       // Number.
2512       DYNAMIC_NUMBER = -1U,
2513       // Section size.
2514       DYNAMIC_SECTION_SIZE = -2U,
2515       // Symbol adress.
2516       DYNAMIC_SYMBOL = -3U,
2517       // String.
2518       DYNAMIC_STRING = -4U
2519       // Any other value indicates a section address plus OFFSET.
2520     };
2521 
2522     union
2523     {
2524       // For DYNAMIC_NUMBER.
2525       unsigned int val;
2526       // For DYNAMIC_SECTION_SIZE and section address plus OFFSET.
2527       const Output_data* od;
2528       // For DYNAMIC_SYMBOL.
2529       const Symbol* sym;
2530       // For DYNAMIC_STRING.
2531       const char* str;
2532     } u_;
2533     // For DYNAMIC_SYMBOL with two sections.
2534     const Output_data* od2;
2535     // The dynamic tag.
2536     elfcpp::DT tag_;
2537     // The type of entry (Classification) or offset within a section.
2538     unsigned int offset_;
2539   };
2540 
2541   // Add an entry to the list.
2542   void
2543   add_entry(const Dynamic_entry& entry)
2544   { this->entries_.push_back(entry); }
2545 
2546   // Sized version of write function.
2547   template<int size, bool big_endian>
2548   void
2549   sized_write(Output_file* of);
2550 
2551   // The type of the list of entries.
2552   typedef std::vector<Dynamic_entry> Dynamic_entries;
2553 
2554   // The entries.
2555   Dynamic_entries entries_;
2556   // The pool used for strings.
2557   Stringpool* pool_;
2558 };
2559 
2560 // Output_symtab_xindex is used to handle SHT_SYMTAB_SHNDX sections,
2561 // which may be required if the object file has more than
2562 // SHN_LORESERVE sections.
2563 
2564 class Output_symtab_xindex : public Output_section_data
2565 {
2566  public:
2567   Output_symtab_xindex(size_t symcount)
2568     : Output_section_data(symcount * 4, 4, true),
2569       entries_()
2570   { }
2571 
2572   // Add an entry: symbol number SYMNDX has section SHNDX.
2573   void
2574   add(unsigned int symndx, unsigned int shndx)
2575   { this->entries_.push_back(std::make_pair(symndx, shndx)); }
2576 
2577  protected:
2578   void
2579   do_write(Output_file*);
2580 
2581   // Write to a map file.
2582   void
2583   do_print_to_mapfile(Mapfile* mapfile) const
2584   { mapfile->print_output_data(this, _("** symtab xindex")); }
2585 
2586  private:
2587   template<bool big_endian>
2588   void
2589   endian_do_write(unsigned char*);
2590 
2591   // It is likely that most symbols will not require entries.  Rather
2592   // than keep a vector for all symbols, we keep pairs of symbol index
2593   // and section index.
2594   typedef std::vector<std::pair<unsigned int, unsigned int> > Xindex_entries;
2595 
2596   // The entries we need.
2597   Xindex_entries entries_;
2598 };
2599 
2600 // A relaxed input section.
2601 class Output_relaxed_input_section : public Output_section_data_build
2602 {
2603  public:
2604   // We would like to call relobj->section_addralign(shndx) to get the
2605   // alignment but we do not want the constructor to fail.  So callers
2606   // are repsonsible for ensuring that.
2607   Output_relaxed_input_section(Relobj* relobj, unsigned int shndx,
2608 			       uint64_t addralign)
2609     : Output_section_data_build(addralign), relobj_(relobj), shndx_(shndx)
2610   { }
2611 
2612   // Return the Relobj of this relaxed input section.
2613   Relobj*
2614   relobj() const
2615   { return this->relobj_; }
2616 
2617   // Return the section index of this relaxed input section.
2618   unsigned int
2619   shndx() const
2620   { return this->shndx_; }
2621 
2622  private:
2623   Relobj* relobj_;
2624   unsigned int shndx_;
2625 };
2626 
2627 // This class describes properties of merge data sections.  It is used
2628 // as a key type for maps.
2629 class Merge_section_properties
2630 {
2631  public:
2632   Merge_section_properties(bool is_string, uint64_t entsize,
2633 			     uint64_t addralign)
2634     : is_string_(is_string), entsize_(entsize), addralign_(addralign)
2635   { }
2636 
2637   // Whether this equals to another Merge_section_properties MSP.
2638   bool
2639   eq(const Merge_section_properties& msp) const
2640   {
2641     return ((this->is_string_ == msp.is_string_)
2642 	    && (this->entsize_ == msp.entsize_)
2643 	    && (this->addralign_ == msp.addralign_));
2644   }
2645 
2646   // Compute a hash value for this using 64-bit FNV-1a hash.
2647   size_t
2648   hash_value() const
2649   {
2650     uint64_t h = 14695981039346656037ULL;	// FNV offset basis.
2651     uint64_t prime = 1099511628211ULL;
2652     h = (h ^ static_cast<uint64_t>(this->is_string_)) * prime;
2653     h = (h ^ static_cast<uint64_t>(this->entsize_)) * prime;
2654     h = (h ^ static_cast<uint64_t>(this->addralign_)) * prime;
2655     return h;
2656   }
2657 
2658   // Functors for associative containers.
2659   struct equal_to
2660   {
2661     bool
2662     operator()(const Merge_section_properties& msp1,
2663 	       const Merge_section_properties& msp2) const
2664     { return msp1.eq(msp2); }
2665   };
2666 
2667   struct hash
2668   {
2669     size_t
2670     operator()(const Merge_section_properties& msp) const
2671     { return msp.hash_value(); }
2672   };
2673 
2674  private:
2675   // Whether this merge data section is for strings.
2676   bool is_string_;
2677   // Entsize of this merge data section.
2678   uint64_t entsize_;
2679   // Address alignment.
2680   uint64_t addralign_;
2681 };
2682 
2683 // This class is used to speed up look up of special input sections in an
2684 // Output_section.
2685 
2686 class Output_section_lookup_maps
2687 {
2688  public:
2689   Output_section_lookup_maps()
2690     : is_valid_(true), merge_sections_by_properties_(),
2691       merge_sections_by_id_(), relaxed_input_sections_by_id_()
2692   { }
2693 
2694   // Whether the maps are valid.
2695   bool
2696   is_valid() const
2697   { return this->is_valid_; }
2698 
2699   // Invalidate the maps.
2700   void
2701   invalidate()
2702   { this->is_valid_ = false; }
2703 
2704   // Clear the maps.
2705   void
2706   clear()
2707   {
2708     this->merge_sections_by_properties_.clear();
2709     this->merge_sections_by_id_.clear();
2710     this->relaxed_input_sections_by_id_.clear();
2711     // A cleared map is valid.
2712     this->is_valid_ = true;
2713   }
2714 
2715   // Find a merge section by merge section properties.  Return NULL if none
2716   // is found.
2717   Output_merge_base*
2718   find_merge_section(const Merge_section_properties& msp) const
2719   {
2720     gold_assert(this->is_valid_);
2721     Merge_sections_by_properties::const_iterator p =
2722       this->merge_sections_by_properties_.find(msp);
2723     return p != this->merge_sections_by_properties_.end() ? p->second : NULL;
2724   }
2725 
2726   // Find a merge section by section ID of a merge input section.  Return NULL
2727   // if none is found.
2728   Output_merge_base*
2729   find_merge_section(const Object* object, unsigned int shndx) const
2730   {
2731     gold_assert(this->is_valid_);
2732     Merge_sections_by_id::const_iterator p =
2733       this->merge_sections_by_id_.find(Const_section_id(object, shndx));
2734     return p != this->merge_sections_by_id_.end() ? p->second : NULL;
2735   }
2736 
2737   // Add a merge section pointed by POMB with properties MSP.
2738   void
2739   add_merge_section(const Merge_section_properties& msp,
2740 		    Output_merge_base* pomb)
2741   {
2742     std::pair<Merge_section_properties, Output_merge_base*> value(msp, pomb);
2743     std::pair<Merge_sections_by_properties::iterator, bool> result =
2744       this->merge_sections_by_properties_.insert(value);
2745     gold_assert(result.second);
2746   }
2747 
2748   // Add a mapping from a merged input section in OBJECT with index SHNDX
2749   // to a merge output section pointed by POMB.
2750   void
2751   add_merge_input_section(const Object* object, unsigned int shndx,
2752 			  Output_merge_base* pomb)
2753   {
2754     Const_section_id csid(object, shndx);
2755     std::pair<Const_section_id, Output_merge_base*> value(csid, pomb);
2756     std::pair<Merge_sections_by_id::iterator, bool> result =
2757       this->merge_sections_by_id_.insert(value);
2758     gold_assert(result.second);
2759   }
2760 
2761   // Find a relaxed input section of OBJECT with index SHNDX.
2762   Output_relaxed_input_section*
2763   find_relaxed_input_section(const Object* object, unsigned int shndx) const
2764   {
2765     gold_assert(this->is_valid_);
2766     Relaxed_input_sections_by_id::const_iterator p =
2767       this->relaxed_input_sections_by_id_.find(Const_section_id(object, shndx));
2768     return p != this->relaxed_input_sections_by_id_.end() ? p->second : NULL;
2769   }
2770 
2771   // Add a relaxed input section pointed by POMB and whose original input
2772   // section is in OBJECT with index SHNDX.
2773   void
2774   add_relaxed_input_section(const Relobj* relobj, unsigned int shndx,
2775 			    Output_relaxed_input_section* poris)
2776   {
2777     Const_section_id csid(relobj, shndx);
2778     std::pair<Const_section_id, Output_relaxed_input_section*>
2779       value(csid, poris);
2780     std::pair<Relaxed_input_sections_by_id::iterator, bool> result =
2781       this->relaxed_input_sections_by_id_.insert(value);
2782     gold_assert(result.second);
2783   }
2784 
2785  private:
2786   typedef Unordered_map<Const_section_id, Output_merge_base*,
2787 			Const_section_id_hash>
2788     Merge_sections_by_id;
2789 
2790   typedef Unordered_map<Merge_section_properties, Output_merge_base*,
2791 			Merge_section_properties::hash,
2792 			Merge_section_properties::equal_to>
2793     Merge_sections_by_properties;
2794 
2795   typedef Unordered_map<Const_section_id, Output_relaxed_input_section*,
2796 			Const_section_id_hash>
2797     Relaxed_input_sections_by_id;
2798 
2799   // Whether this is valid
2800   bool is_valid_;
2801   // Merge sections by merge section properties.
2802   Merge_sections_by_properties merge_sections_by_properties_;
2803   // Merge sections by section IDs.
2804   Merge_sections_by_id merge_sections_by_id_;
2805   // Relaxed sections by section IDs.
2806   Relaxed_input_sections_by_id relaxed_input_sections_by_id_;
2807 };
2808 
2809 // This abstract base class defines the interface for the
2810 // types of methods used to fill free space left in an output
2811 // section during an incremental link.  These methods are used
2812 // to insert dummy compilation units into debug info so that
2813 // debug info consumers can scan the debug info serially.
2814 
2815 class Output_fill
2816 {
2817  public:
2818   Output_fill()
2819     : is_big_endian_(parameters->target().is_big_endian())
2820   { }
2821 
2822   virtual
2823   ~Output_fill()
2824   { }
2825 
2826   // Return the smallest size chunk of free space that can be
2827   // filled with a dummy compilation unit.
2828   size_t
2829   minimum_hole_size() const
2830   { return this->do_minimum_hole_size(); }
2831 
2832   // Write a fill pattern of length LEN at offset OFF in the file.
2833   void
2834   write(Output_file* of, off_t off, size_t len) const
2835   { this->do_write(of, off, len); }
2836 
2837  protected:
2838   virtual size_t
2839   do_minimum_hole_size() const = 0;
2840 
2841   virtual void
2842   do_write(Output_file* of, off_t off, size_t len) const = 0;
2843 
2844   bool
2845   is_big_endian() const
2846   { return this->is_big_endian_; }
2847 
2848  private:
2849   bool is_big_endian_;
2850 };
2851 
2852 // Fill method that introduces a dummy compilation unit in
2853 // a .debug_info or .debug_types section.
2854 
2855 class Output_fill_debug_info : public Output_fill
2856 {
2857  public:
2858   Output_fill_debug_info(bool is_debug_types)
2859     : is_debug_types_(is_debug_types)
2860   { }
2861 
2862  protected:
2863   virtual size_t
2864   do_minimum_hole_size() const;
2865 
2866   virtual void
2867   do_write(Output_file* of, off_t off, size_t len) const;
2868 
2869  private:
2870   // Version of the header.
2871   static const int version = 4;
2872   // True if this is a .debug_types section.
2873   bool is_debug_types_;
2874 };
2875 
2876 // Fill method that introduces a dummy compilation unit in
2877 // a .debug_line section.
2878 
2879 class Output_fill_debug_line : public Output_fill
2880 {
2881  public:
2882   Output_fill_debug_line()
2883   { }
2884 
2885  protected:
2886   virtual size_t
2887   do_minimum_hole_size() const;
2888 
2889   virtual void
2890   do_write(Output_file* of, off_t off, size_t len) const;
2891 
2892  private:
2893   // Version of the header.  We write a DWARF-3 header because it's smaller
2894   // and many tools have not yet been updated to understand the DWARF-4 header.
2895   static const int version = 3;
2896   // Length of the portion of the header that follows the header_length
2897   // field.  This includes the following fields:
2898   // minimum_instruction_length, default_is_stmt, line_base, line_range,
2899   // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2900   // The standard_opcode_lengths array is 12 bytes long, and the
2901   // include_directories and filenames fields each contain only a single
2902   // null byte.
2903   static const size_t header_length = 19;
2904 };
2905 
2906 // An output section.  We don't expect to have too many output
2907 // sections, so we don't bother to do a template on the size.
2908 
2909 class Output_section : public Output_data
2910 {
2911  public:
2912   // Create an output section, giving the name, type, and flags.
2913   Output_section(const char* name, elfcpp::Elf_Word, elfcpp::Elf_Xword);
2914   virtual ~Output_section();
2915 
2916   // Add a new input section SHNDX, named NAME, with header SHDR, from
2917   // object OBJECT.  RELOC_SHNDX is the index of a relocation section
2918   // which applies to this section, or 0 if none, or -1 if more than
2919   // one.  HAVE_SECTIONS_SCRIPT is true if we have a SECTIONS clause
2920   // in a linker script; in that case we need to keep track of input
2921   // sections associated with an output section.  Return the offset
2922   // within the output section.
2923   template<int size, bool big_endian>
2924   off_t
2925   add_input_section(Layout* layout, Sized_relobj_file<size, big_endian>* object,
2926                     unsigned int shndx, const char* name,
2927 		    const elfcpp::Shdr<size, big_endian>& shdr,
2928 		    unsigned int reloc_shndx, bool have_sections_script);
2929 
2930   // Add generated data POSD to this output section.
2931   void
2932   add_output_section_data(Output_section_data* posd);
2933 
2934   // Add a relaxed input section PORIS called NAME to this output section
2935   // with LAYOUT.
2936   void
2937   add_relaxed_input_section(Layout* layout,
2938 			    Output_relaxed_input_section* poris,
2939 			    const std::string& name);
2940 
2941   // Return the section name.
2942   const char*
2943   name() const
2944   { return this->name_; }
2945 
2946   // Return the section type.
2947   elfcpp::Elf_Word
2948   type() const
2949   { return this->type_; }
2950 
2951   // Return the section flags.
2952   elfcpp::Elf_Xword
2953   flags() const
2954   { return this->flags_; }
2955 
2956   typedef std::map<Section_id, unsigned int> Section_layout_order;
2957 
2958   void
2959   update_section_layout(const Section_layout_order* order_map);
2960 
2961   // Update the output section flags based on input section flags.
2962   void
2963   update_flags_for_input_section(elfcpp::Elf_Xword flags);
2964 
2965   // Return the entsize field.
2966   uint64_t
2967   entsize() const
2968   { return this->entsize_; }
2969 
2970   // Set the entsize field.
2971   void
2972   set_entsize(uint64_t v);
2973 
2974   // Set the load address.
2975   void
2976   set_load_address(uint64_t load_address)
2977   {
2978     this->load_address_ = load_address;
2979     this->has_load_address_ = true;
2980   }
2981 
2982   // Set the link field to the output section index of a section.
2983   void
2984   set_link_section(const Output_data* od)
2985   {
2986     gold_assert(this->link_ == 0
2987 		&& !this->should_link_to_symtab_
2988 		&& !this->should_link_to_dynsym_);
2989     this->link_section_ = od;
2990   }
2991 
2992   // Set the link field to a constant.
2993   void
2994   set_link(unsigned int v)
2995   {
2996     gold_assert(this->link_section_ == NULL
2997 		&& !this->should_link_to_symtab_
2998 		&& !this->should_link_to_dynsym_);
2999     this->link_ = v;
3000   }
3001 
3002   // Record that this section should link to the normal symbol table.
3003   void
3004   set_should_link_to_symtab()
3005   {
3006     gold_assert(this->link_section_ == NULL
3007 		&& this->link_ == 0
3008 		&& !this->should_link_to_dynsym_);
3009     this->should_link_to_symtab_ = true;
3010   }
3011 
3012   // Record that this section should link to the dynamic symbol table.
3013   void
3014   set_should_link_to_dynsym()
3015   {
3016     gold_assert(this->link_section_ == NULL
3017 		&& this->link_ == 0
3018 		&& !this->should_link_to_symtab_);
3019     this->should_link_to_dynsym_ = true;
3020   }
3021 
3022   // Return the info field.
3023   unsigned int
3024   info() const
3025   {
3026     gold_assert(this->info_section_ == NULL
3027 		&& this->info_symndx_ == NULL);
3028     return this->info_;
3029   }
3030 
3031   // Set the info field to the output section index of a section.
3032   void
3033   set_info_section(const Output_section* os)
3034   {
3035     gold_assert((this->info_section_ == NULL
3036 		 || (this->info_section_ == os
3037 		     && this->info_uses_section_index_))
3038 		&& this->info_symndx_ == NULL
3039 		&& this->info_ == 0);
3040     this->info_section_ = os;
3041     this->info_uses_section_index_= true;
3042   }
3043 
3044   // Set the info field to the symbol table index of a symbol.
3045   void
3046   set_info_symndx(const Symbol* sym)
3047   {
3048     gold_assert(this->info_section_ == NULL
3049 		&& (this->info_symndx_ == NULL
3050 		    || this->info_symndx_ == sym)
3051 		&& this->info_ == 0);
3052     this->info_symndx_ = sym;
3053   }
3054 
3055   // Set the info field to the symbol table index of a section symbol.
3056   void
3057   set_info_section_symndx(const Output_section* os)
3058   {
3059     gold_assert((this->info_section_ == NULL
3060 		 || (this->info_section_ == os
3061 		     && !this->info_uses_section_index_))
3062 		&& this->info_symndx_ == NULL
3063 		&& this->info_ == 0);
3064     this->info_section_ = os;
3065     this->info_uses_section_index_ = false;
3066   }
3067 
3068   // Set the info field to a constant.
3069   void
3070   set_info(unsigned int v)
3071   {
3072     gold_assert(this->info_section_ == NULL
3073 		&& this->info_symndx_ == NULL
3074 		&& (this->info_ == 0
3075 		    || this->info_ == v));
3076     this->info_ = v;
3077   }
3078 
3079   // Set the addralign field.
3080   void
3081   set_addralign(uint64_t v)
3082   { this->addralign_ = v; }
3083 
3084   // Whether the output section index has been set.
3085   bool
3086   has_out_shndx() const
3087   { return this->out_shndx_ != -1U; }
3088 
3089   // Indicate that we need a symtab index.
3090   void
3091   set_needs_symtab_index()
3092   { this->needs_symtab_index_ = true; }
3093 
3094   // Return whether we need a symtab index.
3095   bool
3096   needs_symtab_index() const
3097   { return this->needs_symtab_index_; }
3098 
3099   // Get the symtab index.
3100   unsigned int
3101   symtab_index() const
3102   {
3103     gold_assert(this->symtab_index_ != 0);
3104     return this->symtab_index_;
3105   }
3106 
3107   // Set the symtab index.
3108   void
3109   set_symtab_index(unsigned int index)
3110   {
3111     gold_assert(index != 0);
3112     this->symtab_index_ = index;
3113   }
3114 
3115   // Indicate that we need a dynsym index.
3116   void
3117   set_needs_dynsym_index()
3118   { this->needs_dynsym_index_ = true; }
3119 
3120   // Return whether we need a dynsym index.
3121   bool
3122   needs_dynsym_index() const
3123   { return this->needs_dynsym_index_; }
3124 
3125   // Get the dynsym index.
3126   unsigned int
3127   dynsym_index() const
3128   {
3129     gold_assert(this->dynsym_index_ != 0);
3130     return this->dynsym_index_;
3131   }
3132 
3133   // Set the dynsym index.
3134   void
3135   set_dynsym_index(unsigned int index)
3136   {
3137     gold_assert(index != 0);
3138     this->dynsym_index_ = index;
3139   }
3140 
3141   // Return whether the input sections sections attachd to this output
3142   // section may require sorting.  This is used to handle constructor
3143   // priorities compatibly with GNU ld.
3144   bool
3145   may_sort_attached_input_sections() const
3146   { return this->may_sort_attached_input_sections_; }
3147 
3148   // Record that the input sections attached to this output section
3149   // may require sorting.
3150   void
3151   set_may_sort_attached_input_sections()
3152   { this->may_sort_attached_input_sections_ = true; }
3153 
3154    // Returns true if input sections must be sorted according to the
3155   // order in which their name appear in the --section-ordering-file.
3156   bool
3157   input_section_order_specified()
3158   { return this->input_section_order_specified_; }
3159 
3160   // Record that input sections must be sorted as some of their names
3161   // match the patterns specified through --section-ordering-file.
3162   void
3163   set_input_section_order_specified()
3164   { this->input_section_order_specified_ = true; }
3165 
3166   // Return whether the input sections attached to this output section
3167   // require sorting.  This is used to handle constructor priorities
3168   // compatibly with GNU ld.
3169   bool
3170   must_sort_attached_input_sections() const
3171   { return this->must_sort_attached_input_sections_; }
3172 
3173   // Record that the input sections attached to this output section
3174   // require sorting.
3175   void
3176   set_must_sort_attached_input_sections()
3177   { this->must_sort_attached_input_sections_ = true; }
3178 
3179   // Get the order in which this section appears in the PT_LOAD output
3180   // segment.
3181   Output_section_order
3182   order() const
3183   { return this->order_; }
3184 
3185   // Set the order for this section.
3186   void
3187   set_order(Output_section_order order)
3188   { this->order_ = order; }
3189 
3190   // Return whether this section holds relro data--data which has
3191   // dynamic relocations but which may be marked read-only after the
3192   // dynamic relocations have been completed.
3193   bool
3194   is_relro() const
3195   { return this->is_relro_; }
3196 
3197   // Record that this section holds relro data.
3198   void
3199   set_is_relro()
3200   { this->is_relro_ = true; }
3201 
3202   // Record that this section does not hold relro data.
3203   void
3204   clear_is_relro()
3205   { this->is_relro_ = false; }
3206 
3207   // True if this is a small section: a section which holds small
3208   // variables.
3209   bool
3210   is_small_section() const
3211   { return this->is_small_section_; }
3212 
3213   // Record that this is a small section.
3214   void
3215   set_is_small_section()
3216   { this->is_small_section_ = true; }
3217 
3218   // True if this is a large section: a section which holds large
3219   // variables.
3220   bool
3221   is_large_section() const
3222   { return this->is_large_section_; }
3223 
3224   // Record that this is a large section.
3225   void
3226   set_is_large_section()
3227   { this->is_large_section_ = true; }
3228 
3229   // True if this is a large data (not BSS) section.
3230   bool
3231   is_large_data_section()
3232   { return this->is_large_section_ && this->type_ != elfcpp::SHT_NOBITS; }
3233 
3234   // Return whether this section should be written after all the input
3235   // sections are complete.
3236   bool
3237   after_input_sections() const
3238   { return this->after_input_sections_; }
3239 
3240   // Record that this section should be written after all the input
3241   // sections are complete.
3242   void
3243   set_after_input_sections()
3244   { this->after_input_sections_ = true; }
3245 
3246   // Return whether this section requires postprocessing after all
3247   // relocations have been applied.
3248   bool
3249   requires_postprocessing() const
3250   { return this->requires_postprocessing_; }
3251 
3252   // If a section requires postprocessing, return the buffer to use.
3253   unsigned char*
3254   postprocessing_buffer() const
3255   {
3256     gold_assert(this->postprocessing_buffer_ != NULL);
3257     return this->postprocessing_buffer_;
3258   }
3259 
3260   // If a section requires postprocessing, create the buffer to use.
3261   void
3262   create_postprocessing_buffer();
3263 
3264   // If a section requires postprocessing, this is the size of the
3265   // buffer to which relocations should be applied.
3266   off_t
3267   postprocessing_buffer_size() const
3268   { return this->current_data_size_for_child(); }
3269 
3270   // Modify the section name.  This is only permitted for an
3271   // unallocated section, and only before the size has been finalized.
3272   // Otherwise the name will not get into Layout::namepool_.
3273   void
3274   set_name(const char* newname)
3275   {
3276     gold_assert((this->flags_ & elfcpp::SHF_ALLOC) == 0);
3277     gold_assert(!this->is_data_size_valid());
3278     this->name_ = newname;
3279   }
3280 
3281   // Return whether the offset OFFSET in the input section SHNDX in
3282   // object OBJECT is being included in the link.
3283   bool
3284   is_input_address_mapped(const Relobj* object, unsigned int shndx,
3285 			  off_t offset) const;
3286 
3287   // Return the offset within the output section of OFFSET relative to
3288   // the start of input section SHNDX in object OBJECT.
3289   section_offset_type
3290   output_offset(const Relobj* object, unsigned int shndx,
3291 		section_offset_type offset) const;
3292 
3293   // Return the output virtual address of OFFSET relative to the start
3294   // of input section SHNDX in object OBJECT.
3295   uint64_t
3296   output_address(const Relobj* object, unsigned int shndx,
3297 		 off_t offset) const;
3298 
3299   // Look for the merged section for input section SHNDX in object
3300   // OBJECT.  If found, return true, and set *ADDR to the address of
3301   // the start of the merged section.  This is not necessary the
3302   // output offset corresponding to input offset 0 in the section,
3303   // since the section may be mapped arbitrarily.
3304   bool
3305   find_starting_output_address(const Relobj* object, unsigned int shndx,
3306 			       uint64_t* addr) const;
3307 
3308   // Record that this output section was found in the SECTIONS clause
3309   // of a linker script.
3310   void
3311   set_found_in_sections_clause()
3312   { this->found_in_sections_clause_ = true; }
3313 
3314   // Return whether this output section was found in the SECTIONS
3315   // clause of a linker script.
3316   bool
3317   found_in_sections_clause() const
3318   { return this->found_in_sections_clause_; }
3319 
3320   // Write the section header into *OPHDR.
3321   template<int size, bool big_endian>
3322   void
3323   write_header(const Layout*, const Stringpool*,
3324 	       elfcpp::Shdr_write<size, big_endian>*) const;
3325 
3326   // The next few calls are for linker script support.
3327 
3328   // In some cases we need to keep a list of the input sections
3329   // associated with this output section.  We only need the list if we
3330   // might have to change the offsets of the input section within the
3331   // output section after we add the input section.  The ordinary
3332   // input sections will be written out when we process the object
3333   // file, and as such we don't need to track them here.  We do need
3334   // to track Output_section_data objects here.  We store instances of
3335   // this structure in a std::vector, so it must be a POD.  There can
3336   // be many instances of this structure, so we use a union to save
3337   // some space.
3338   class Input_section
3339   {
3340    public:
3341     Input_section()
3342       : shndx_(0), p2align_(0)
3343     {
3344       this->u1_.data_size = 0;
3345       this->u2_.object = NULL;
3346     }
3347 
3348     // For an ordinary input section.
3349     Input_section(Relobj* object, unsigned int shndx, off_t data_size,
3350 		  uint64_t addralign)
3351       : shndx_(shndx),
3352 	p2align_(ffsll(static_cast<long long>(addralign))),
3353 	section_order_index_(0)
3354     {
3355       gold_assert(shndx != OUTPUT_SECTION_CODE
3356 		  && shndx != MERGE_DATA_SECTION_CODE
3357 		  && shndx != MERGE_STRING_SECTION_CODE
3358 		  && shndx != RELAXED_INPUT_SECTION_CODE);
3359       this->u1_.data_size = data_size;
3360       this->u2_.object = object;
3361     }
3362 
3363     // For a non-merge output section.
3364     Input_section(Output_section_data* posd)
3365       : shndx_(OUTPUT_SECTION_CODE), p2align_(0),
3366 	section_order_index_(0)
3367     {
3368       this->u1_.data_size = 0;
3369       this->u2_.posd = posd;
3370     }
3371 
3372     // For a merge section.
3373     Input_section(Output_section_data* posd, bool is_string, uint64_t entsize)
3374       : shndx_(is_string
3375 	       ? MERGE_STRING_SECTION_CODE
3376 	       : MERGE_DATA_SECTION_CODE),
3377 	p2align_(0),
3378 	section_order_index_(0)
3379     {
3380       this->u1_.entsize = entsize;
3381       this->u2_.posd = posd;
3382     }
3383 
3384     // For a relaxed input section.
3385     Input_section(Output_relaxed_input_section* psection)
3386       : shndx_(RELAXED_INPUT_SECTION_CODE), p2align_(0),
3387 	section_order_index_(0)
3388     {
3389       this->u1_.data_size = 0;
3390       this->u2_.poris = psection;
3391     }
3392 
3393     unsigned int
3394     section_order_index() const
3395     {
3396       return this->section_order_index_;
3397     }
3398 
3399     void
3400     set_section_order_index(unsigned int number)
3401     {
3402       this->section_order_index_ = number;
3403     }
3404 
3405     // The required alignment.
3406     uint64_t
3407     addralign() const
3408     {
3409       if (this->p2align_ != 0)
3410 	return static_cast<uint64_t>(1) << (this->p2align_ - 1);
3411       else if (!this->is_input_section())
3412 	return this->u2_.posd->addralign();
3413       else
3414 	return 0;
3415     }
3416 
3417     // Set the required alignment, which must be either 0 or a power of 2.
3418     // For input sections that are sub-classes of Output_section_data, a
3419     // alignment of zero means asking the underlying object for alignment.
3420     void
3421     set_addralign(uint64_t addralign)
3422     {
3423       if (addralign == 0)
3424 	this->p2align_ = 0;
3425       else
3426 	{
3427 	  gold_assert((addralign & (addralign - 1)) == 0);
3428 	  this->p2align_ = ffsll(static_cast<long long>(addralign));
3429 	}
3430     }
3431 
3432     // Return the current required size, without finalization.
3433     off_t
3434     current_data_size() const;
3435 
3436     // Return the required size.
3437     off_t
3438     data_size() const;
3439 
3440     // Whether this is an input section.
3441     bool
3442     is_input_section() const
3443     {
3444       return (this->shndx_ != OUTPUT_SECTION_CODE
3445 	      && this->shndx_ != MERGE_DATA_SECTION_CODE
3446 	      && this->shndx_ != MERGE_STRING_SECTION_CODE
3447 	      && this->shndx_ != RELAXED_INPUT_SECTION_CODE);
3448     }
3449 
3450     // Return whether this is a merge section which matches the
3451     // parameters.
3452     bool
3453     is_merge_section(bool is_string, uint64_t entsize,
3454                      uint64_t addralign) const
3455     {
3456       return (this->shndx_ == (is_string
3457 			       ? MERGE_STRING_SECTION_CODE
3458 			       : MERGE_DATA_SECTION_CODE)
3459 	      && this->u1_.entsize == entsize
3460               && this->addralign() == addralign);
3461     }
3462 
3463     // Return whether this is a merge section for some input section.
3464     bool
3465     is_merge_section() const
3466     {
3467       return (this->shndx_ == MERGE_DATA_SECTION_CODE
3468 	      || this->shndx_ == MERGE_STRING_SECTION_CODE);
3469     }
3470 
3471     // Return whether this is a relaxed input section.
3472     bool
3473     is_relaxed_input_section() const
3474     { return this->shndx_ == RELAXED_INPUT_SECTION_CODE; }
3475 
3476     // Return whether this is a generic Output_section_data.
3477     bool
3478     is_output_section_data() const
3479     {
3480       return this->shndx_ == OUTPUT_SECTION_CODE;
3481     }
3482 
3483     // Return the object for an input section.
3484     Relobj*
3485     relobj() const;
3486 
3487     // Return the input section index for an input section.
3488     unsigned int
3489     shndx() const;
3490 
3491     // For non-input-sections, return the associated Output_section_data
3492     // object.
3493     Output_section_data*
3494     output_section_data() const
3495     {
3496       gold_assert(!this->is_input_section());
3497       return this->u2_.posd;
3498     }
3499 
3500     // For a merge section, return the Output_merge_base pointer.
3501     Output_merge_base*
3502     output_merge_base() const
3503     {
3504       gold_assert(this->is_merge_section());
3505       return this->u2_.pomb;
3506     }
3507 
3508     // Return the Output_relaxed_input_section object.
3509     Output_relaxed_input_section*
3510     relaxed_input_section() const
3511     {
3512       gold_assert(this->is_relaxed_input_section());
3513       return this->u2_.poris;
3514     }
3515 
3516     // Set the output section.
3517     void
3518     set_output_section(Output_section* os)
3519     {
3520       gold_assert(!this->is_input_section());
3521       Output_section_data* posd =
3522         this->is_relaxed_input_section() ? this->u2_.poris : this->u2_.posd;
3523       posd->set_output_section(os);
3524     }
3525 
3526     // Set the address and file offset.  This is called during
3527     // Layout::finalize.  SECTION_FILE_OFFSET is the file offset of
3528     // the enclosing section.
3529     void
3530     set_address_and_file_offset(uint64_t address, off_t file_offset,
3531 				off_t section_file_offset);
3532 
3533     // Reset the address and file offset.
3534     void
3535     reset_address_and_file_offset();
3536 
3537     // Finalize the data size.
3538     void
3539     finalize_data_size();
3540 
3541     // Add an input section, for SHF_MERGE sections.
3542     bool
3543     add_input_section(Relobj* object, unsigned int shndx)
3544     {
3545       gold_assert(this->shndx_ == MERGE_DATA_SECTION_CODE
3546 		  || this->shndx_ == MERGE_STRING_SECTION_CODE);
3547       return this->u2_.posd->add_input_section(object, shndx);
3548     }
3549 
3550     // Given an input OBJECT, an input section index SHNDX within that
3551     // object, and an OFFSET relative to the start of that input
3552     // section, return whether or not the output offset is known.  If
3553     // this function returns true, it sets *POUTPUT to the offset in
3554     // the output section, relative to the start of the input section
3555     // in the output section.  *POUTPUT may be different from OFFSET
3556     // for a merged section.
3557     bool
3558     output_offset(const Relobj* object, unsigned int shndx,
3559 		  section_offset_type offset,
3560 		  section_offset_type* poutput) const;
3561 
3562     // Return whether this is the merge section for the input section
3563     // SHNDX in OBJECT.
3564     bool
3565     is_merge_section_for(const Relobj* object, unsigned int shndx) const;
3566 
3567     // Write out the data.  This does nothing for an input section.
3568     void
3569     write(Output_file*);
3570 
3571     // Write the data to a buffer.  This does nothing for an input
3572     // section.
3573     void
3574     write_to_buffer(unsigned char*);
3575 
3576     // Print to a map file.
3577     void
3578     print_to_mapfile(Mapfile*) const;
3579 
3580     // Print statistics about merge sections to stderr.
3581     void
3582     print_merge_stats(const char* section_name)
3583     {
3584       if (this->shndx_ == MERGE_DATA_SECTION_CODE
3585 	  || this->shndx_ == MERGE_STRING_SECTION_CODE)
3586 	this->u2_.posd->print_merge_stats(section_name);
3587     }
3588 
3589    private:
3590     // Code values which appear in shndx_.  If the value is not one of
3591     // these codes, it is the input section index in the object file.
3592     enum
3593     {
3594       // An Output_section_data.
3595       OUTPUT_SECTION_CODE = -1U,
3596       // An Output_section_data for an SHF_MERGE section with
3597       // SHF_STRINGS not set.
3598       MERGE_DATA_SECTION_CODE = -2U,
3599       // An Output_section_data for an SHF_MERGE section with
3600       // SHF_STRINGS set.
3601       MERGE_STRING_SECTION_CODE = -3U,
3602       // An Output_section_data for a relaxed input section.
3603       RELAXED_INPUT_SECTION_CODE = -4U
3604     };
3605 
3606     // For an ordinary input section, this is the section index in the
3607     // input file.  For an Output_section_data, this is
3608     // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3609     // MERGE_STRING_SECTION_CODE.
3610     unsigned int shndx_;
3611     // The required alignment, stored as a power of 2.
3612     unsigned int p2align_;
3613     union
3614     {
3615       // For an ordinary input section, the section size.
3616       off_t data_size;
3617       // For OUTPUT_SECTION_CODE or RELAXED_INPUT_SECTION_CODE, this is not
3618       // used.  For MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
3619       // entity size.
3620       uint64_t entsize;
3621     } u1_;
3622     union
3623     {
3624       // For an ordinary input section, the object which holds the
3625       // input section.
3626       Relobj* object;
3627       // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3628       // MERGE_STRING_SECTION_CODE, the data.
3629       Output_section_data* posd;
3630       Output_merge_base* pomb;
3631       // For RELAXED_INPUT_SECTION_CODE, the data.
3632       Output_relaxed_input_section* poris;
3633     } u2_;
3634     // The line number of the pattern it matches in the --section-ordering-file
3635     // file.  It is 0 if does not match any pattern.
3636     unsigned int section_order_index_;
3637   };
3638 
3639   // Store the list of input sections for this Output_section into the
3640   // list passed in.  This removes the input sections, leaving only
3641   // any Output_section_data elements.  This returns the size of those
3642   // Output_section_data elements.  ADDRESS is the address of this
3643   // output section.  FILL is the fill value to use, in case there are
3644   // any spaces between the remaining Output_section_data elements.
3645   uint64_t
3646   get_input_sections(uint64_t address, const std::string& fill,
3647 		     std::list<Input_section>*);
3648 
3649   // Add a script input section.  A script input section can either be
3650   // a plain input section or a sub-class of Output_section_data.
3651   void
3652   add_script_input_section(const Input_section& input_section);
3653 
3654   // Set the current size of the output section.
3655   void
3656   set_current_data_size(off_t size)
3657   { this->set_current_data_size_for_child(size); }
3658 
3659   // End of linker script support.
3660 
3661   // Save states before doing section layout.
3662   // This is used for relaxation.
3663   void
3664   save_states();
3665 
3666   // Restore states prior to section layout.
3667   void
3668   restore_states();
3669 
3670   // Discard states.
3671   void
3672   discard_states();
3673 
3674   // Convert existing input sections to relaxed input sections.
3675   void
3676   convert_input_sections_to_relaxed_sections(
3677       const std::vector<Output_relaxed_input_section*>& sections);
3678 
3679   // Find a relaxed input section to an input section in OBJECT
3680   // with index SHNDX.  Return NULL if none is found.
3681   const Output_relaxed_input_section*
3682   find_relaxed_input_section(const Relobj* object, unsigned int shndx) const;
3683 
3684   // Whether section offsets need adjustment due to relaxation.
3685   bool
3686   section_offsets_need_adjustment() const
3687   { return this->section_offsets_need_adjustment_; }
3688 
3689   // Set section_offsets_need_adjustment to be true.
3690   void
3691   set_section_offsets_need_adjustment()
3692   { this->section_offsets_need_adjustment_ = true; }
3693 
3694   // Adjust section offsets of input sections in this.  This is
3695   // requires if relaxation caused some input sections to change sizes.
3696   void
3697   adjust_section_offsets();
3698 
3699   // Whether this is a NOLOAD section.
3700   bool
3701   is_noload() const
3702   { return this->is_noload_; }
3703 
3704   // Set NOLOAD flag.
3705   void
3706   set_is_noload()
3707   { this->is_noload_ = true; }
3708 
3709   // Print merge statistics to stderr.
3710   void
3711   print_merge_stats();
3712 
3713   // Set a fixed layout for the section.  Used for incremental update links.
3714   void
3715   set_fixed_layout(uint64_t sh_addr, off_t sh_offset, off_t sh_size,
3716 		   uint64_t sh_addralign);
3717 
3718   // Return TRUE if the section has a fixed layout.
3719   bool
3720   has_fixed_layout() const
3721   { return this->has_fixed_layout_; }
3722 
3723   // Set flag to allow patch space for this section.  Used for full
3724   // incremental links.
3725   void
3726   set_is_patch_space_allowed()
3727   { this->is_patch_space_allowed_ = true; }
3728 
3729   // Set a fill method to use for free space left in the output section
3730   // during incremental links.
3731   void
3732   set_free_space_fill(Output_fill* free_space_fill)
3733   {
3734     this->free_space_fill_ = free_space_fill;
3735     this->free_list_.set_min_hole_size(free_space_fill->minimum_hole_size());
3736   }
3737 
3738   // Reserve space within the fixed layout for the section.  Used for
3739   // incremental update links.
3740   void
3741   reserve(uint64_t sh_offset, uint64_t sh_size);
3742 
3743   // Allocate space from the free list for the section.  Used for
3744   // incremental update links.
3745   off_t
3746   allocate(off_t len, uint64_t addralign);
3747 
3748  protected:
3749   // Return the output section--i.e., the object itself.
3750   Output_section*
3751   do_output_section()
3752   { return this; }
3753 
3754   const Output_section*
3755   do_output_section() const
3756   { return this; }
3757 
3758   // Return the section index in the output file.
3759   unsigned int
3760   do_out_shndx() const
3761   {
3762     gold_assert(this->out_shndx_ != -1U);
3763     return this->out_shndx_;
3764   }
3765 
3766   // Set the output section index.
3767   void
3768   do_set_out_shndx(unsigned int shndx)
3769   {
3770     gold_assert(this->out_shndx_ == -1U || this->out_shndx_ == shndx);
3771     this->out_shndx_ = shndx;
3772   }
3773 
3774   // Update the data size of the Output_section.  For a typical
3775   // Output_section, there is nothing to do, but if there are any
3776   // Output_section_data objects we need to do a trial layout
3777   // here.
3778   virtual void
3779   update_data_size();
3780 
3781   // Set the final data size of the Output_section.  For a typical
3782   // Output_section, there is nothing to do, but if there are any
3783   // Output_section_data objects we need to set their final addresses
3784   // here.
3785   virtual void
3786   set_final_data_size();
3787 
3788   // Reset the address and file offset.
3789   void
3790   do_reset_address_and_file_offset();
3791 
3792   // Return true if address and file offset already have reset values. In
3793   // other words, calling reset_address_and_file_offset will not change them.
3794   bool
3795   do_address_and_file_offset_have_reset_values() const;
3796 
3797   // Write the data to the file.  For a typical Output_section, this
3798   // does nothing: the data is written out by calling Object::Relocate
3799   // on each input object.  But if there are any Output_section_data
3800   // objects we do need to write them out here.
3801   virtual void
3802   do_write(Output_file*);
3803 
3804   // Return the address alignment--function required by parent class.
3805   uint64_t
3806   do_addralign() const
3807   { return this->addralign_; }
3808 
3809   // Return whether there is a load address.
3810   bool
3811   do_has_load_address() const
3812   { return this->has_load_address_; }
3813 
3814   // Return the load address.
3815   uint64_t
3816   do_load_address() const
3817   {
3818     gold_assert(this->has_load_address_);
3819     return this->load_address_;
3820   }
3821 
3822   // Return whether this is an Output_section.
3823   bool
3824   do_is_section() const
3825   { return true; }
3826 
3827   // Return whether this is a section of the specified type.
3828   bool
3829   do_is_section_type(elfcpp::Elf_Word type) const
3830   { return this->type_ == type; }
3831 
3832   // Return whether the specified section flag is set.
3833   bool
3834   do_is_section_flag_set(elfcpp::Elf_Xword flag) const
3835   { return (this->flags_ & flag) != 0; }
3836 
3837   // Set the TLS offset.  Called only for SHT_TLS sections.
3838   void
3839   do_set_tls_offset(uint64_t tls_base);
3840 
3841   // Return the TLS offset, relative to the base of the TLS segment.
3842   // Valid only for SHT_TLS sections.
3843   uint64_t
3844   do_tls_offset() const
3845   { return this->tls_offset_; }
3846 
3847   // This may be implemented by a child class.
3848   virtual void
3849   do_finalize_name(Layout*)
3850   { }
3851 
3852   // Print to the map file.
3853   virtual void
3854   do_print_to_mapfile(Mapfile*) const;
3855 
3856   // Record that this section requires postprocessing after all
3857   // relocations have been applied.  This is called by a child class.
3858   void
3859   set_requires_postprocessing()
3860   {
3861     this->requires_postprocessing_ = true;
3862     this->after_input_sections_ = true;
3863   }
3864 
3865   // Write all the data of an Output_section into the postprocessing
3866   // buffer.
3867   void
3868   write_to_postprocessing_buffer();
3869 
3870   typedef std::vector<Input_section> Input_section_list;
3871 
3872   // Allow a child class to access the input sections.
3873   const Input_section_list&
3874   input_sections() const
3875   { return this->input_sections_; }
3876 
3877   // Whether this always keeps an input section list
3878   bool
3879   always_keeps_input_sections() const
3880   { return this->always_keeps_input_sections_; }
3881 
3882   // Always keep an input section list.
3883   void
3884   set_always_keeps_input_sections()
3885   {
3886     gold_assert(this->current_data_size_for_child() == 0);
3887     this->always_keeps_input_sections_ = true;
3888   }
3889 
3890  private:
3891   // We only save enough information to undo the effects of section layout.
3892   class Checkpoint_output_section
3893   {
3894    public:
3895     Checkpoint_output_section(uint64_t addralign, elfcpp::Elf_Xword flags,
3896 			      const Input_section_list& input_sections,
3897 			      off_t first_input_offset,
3898 			      bool attached_input_sections_are_sorted)
3899       : addralign_(addralign), flags_(flags),
3900 	input_sections_(input_sections),
3901 	input_sections_size_(input_sections_.size()),
3902 	input_sections_copy_(), first_input_offset_(first_input_offset),
3903 	attached_input_sections_are_sorted_(attached_input_sections_are_sorted)
3904     { }
3905 
3906     virtual
3907     ~Checkpoint_output_section()
3908     { }
3909 
3910     // Return the address alignment.
3911     uint64_t
3912     addralign() const
3913     { return this->addralign_; }
3914 
3915     // Return the section flags.
3916     elfcpp::Elf_Xword
3917     flags() const
3918     { return this->flags_; }
3919 
3920     // Return a reference to the input section list copy.
3921     Input_section_list*
3922     input_sections()
3923     { return &this->input_sections_copy_; }
3924 
3925     // Return the size of input_sections at the time when checkpoint is
3926     // taken.
3927     size_t
3928     input_sections_size() const
3929     { return this->input_sections_size_; }
3930 
3931     // Whether input sections are copied.
3932     bool
3933     input_sections_saved() const
3934     { return this->input_sections_copy_.size() == this->input_sections_size_; }
3935 
3936     off_t
3937     first_input_offset() const
3938     { return this->first_input_offset_; }
3939 
3940     bool
3941     attached_input_sections_are_sorted() const
3942     { return this->attached_input_sections_are_sorted_; }
3943 
3944     // Save input sections.
3945     void
3946     save_input_sections()
3947     {
3948       this->input_sections_copy_.reserve(this->input_sections_size_);
3949       this->input_sections_copy_.clear();
3950       Input_section_list::const_iterator p = this->input_sections_.begin();
3951       gold_assert(this->input_sections_size_ >= this->input_sections_.size());
3952       for(size_t i = 0; i < this->input_sections_size_ ; i++, ++p)
3953 	this->input_sections_copy_.push_back(*p);
3954     }
3955 
3956    private:
3957     // The section alignment.
3958     uint64_t addralign_;
3959     // The section flags.
3960     elfcpp::Elf_Xword flags_;
3961     // Reference to the input sections to be checkpointed.
3962     const Input_section_list& input_sections_;
3963     // Size of the checkpointed portion of input_sections_;
3964     size_t input_sections_size_;
3965     // Copy of input sections.
3966     Input_section_list input_sections_copy_;
3967     // The offset of the first entry in input_sections_.
3968     off_t first_input_offset_;
3969     // True if the input sections attached to this output section have
3970     // already been sorted.
3971     bool attached_input_sections_are_sorted_;
3972   };
3973 
3974   // This class is used to sort the input sections.
3975   class Input_section_sort_entry;
3976 
3977   // This is the sort comparison function for ctors and dtors.
3978   struct Input_section_sort_compare
3979   {
3980     bool
3981     operator()(const Input_section_sort_entry&,
3982 	       const Input_section_sort_entry&) const;
3983   };
3984 
3985   // This is the sort comparison function for .init_array and .fini_array.
3986   struct Input_section_sort_init_fini_compare
3987   {
3988     bool
3989     operator()(const Input_section_sort_entry&,
3990 	       const Input_section_sort_entry&) const;
3991   };
3992 
3993   // This is the sort comparison function when a section order is specified
3994   // from an input file.
3995   struct Input_section_sort_section_order_index_compare
3996   {
3997     bool
3998     operator()(const Input_section_sort_entry&,
3999 	       const Input_section_sort_entry&) const;
4000   };
4001 
4002   // Fill data.  This is used to fill in data between input sections.
4003   // It is also used for data statements (BYTE, WORD, etc.) in linker
4004   // scripts.  When we have to keep track of the input sections, we
4005   // can use an Output_data_const, but we don't want to have to keep
4006   // track of input sections just to implement fills.
4007   class Fill
4008   {
4009    public:
4010     Fill(off_t section_offset, off_t length)
4011       : section_offset_(section_offset),
4012 	length_(convert_to_section_size_type(length))
4013     { }
4014 
4015     // Return section offset.
4016     off_t
4017     section_offset() const
4018     { return this->section_offset_; }
4019 
4020     // Return fill length.
4021     section_size_type
4022     length() const
4023     { return this->length_; }
4024 
4025    private:
4026     // The offset within the output section.
4027     off_t section_offset_;
4028     // The length of the space to fill.
4029     section_size_type length_;
4030   };
4031 
4032   typedef std::vector<Fill> Fill_list;
4033 
4034   // Map used during relaxation of existing sections.  This map
4035   // a section id an input section list index.  We assume that
4036   // Input_section_list is a vector.
4037   typedef Unordered_map<Section_id, size_t, Section_id_hash> Relaxation_map;
4038 
4039   // Add a new output section by Input_section.
4040   void
4041   add_output_section_data(Input_section*);
4042 
4043   // Add an SHF_MERGE input section.  Returns true if the section was
4044   // handled.  If KEEPS_INPUT_SECTIONS is true, the output merge section
4045   // stores information about the merged input sections.
4046   bool
4047   add_merge_input_section(Relobj* object, unsigned int shndx, uint64_t flags,
4048 			  uint64_t entsize, uint64_t addralign,
4049 			  bool keeps_input_sections);
4050 
4051   // Add an output SHF_MERGE section POSD to this output section.
4052   // IS_STRING indicates whether it is a SHF_STRINGS section, and
4053   // ENTSIZE is the entity size.  This returns the entry added to
4054   // input_sections_.
4055   void
4056   add_output_merge_section(Output_section_data* posd, bool is_string,
4057 			   uint64_t entsize);
4058 
4059   // Sort the attached input sections.
4060   void
4061   sort_attached_input_sections();
4062 
4063   // Find the merge section into which an input section with index SHNDX in
4064   // OBJECT has been added.  Return NULL if none found.
4065   Output_section_data*
4066   find_merge_section(const Relobj* object, unsigned int shndx) const;
4067 
4068   // Build a relaxation map.
4069   void
4070   build_relaxation_map(
4071       const Input_section_list& input_sections,
4072       size_t limit,
4073       Relaxation_map* map) const;
4074 
4075   // Convert input sections in an input section list into relaxed sections.
4076   void
4077   convert_input_sections_in_list_to_relaxed_sections(
4078       const std::vector<Output_relaxed_input_section*>& relaxed_sections,
4079       const Relaxation_map& map,
4080       Input_section_list* input_sections);
4081 
4082   // Build the lookup maps for merge and relaxed input sections.
4083   void
4084   build_lookup_maps() const;
4085 
4086   // Most of these fields are only valid after layout.
4087 
4088   // The name of the section.  This will point into a Stringpool.
4089   const char* name_;
4090   // The section address is in the parent class.
4091   // The section alignment.
4092   uint64_t addralign_;
4093   // The section entry size.
4094   uint64_t entsize_;
4095   // The load address.  This is only used when using a linker script
4096   // with a SECTIONS clause.  The has_load_address_ field indicates
4097   // whether this field is valid.
4098   uint64_t load_address_;
4099   // The file offset is in the parent class.
4100   // Set the section link field to the index of this section.
4101   const Output_data* link_section_;
4102   // If link_section_ is NULL, this is the link field.
4103   unsigned int link_;
4104   // Set the section info field to the index of this section.
4105   const Output_section* info_section_;
4106   // If info_section_ is NULL, set the info field to the symbol table
4107   // index of this symbol.
4108   const Symbol* info_symndx_;
4109   // If info_section_ and info_symndx_ are NULL, this is the section
4110   // info field.
4111   unsigned int info_;
4112   // The section type.
4113   const elfcpp::Elf_Word type_;
4114   // The section flags.
4115   elfcpp::Elf_Xword flags_;
4116   // The order of this section in the output segment.
4117   Output_section_order order_;
4118   // The section index.
4119   unsigned int out_shndx_;
4120   // If there is a STT_SECTION for this output section in the normal
4121   // symbol table, this is the symbol index.  This starts out as zero.
4122   // It is initialized in Layout::finalize() to be the index, or -1U
4123   // if there isn't one.
4124   unsigned int symtab_index_;
4125   // If there is a STT_SECTION for this output section in the dynamic
4126   // symbol table, this is the symbol index.  This starts out as zero.
4127   // It is initialized in Layout::finalize() to be the index, or -1U
4128   // if there isn't one.
4129   unsigned int dynsym_index_;
4130   // The input sections.  This will be empty in cases where we don't
4131   // need to keep track of them.
4132   Input_section_list input_sections_;
4133   // The offset of the first entry in input_sections_.
4134   off_t first_input_offset_;
4135   // The fill data.  This is separate from input_sections_ because we
4136   // often will need fill sections without needing to keep track of
4137   // input sections.
4138   Fill_list fills_;
4139   // If the section requires postprocessing, this buffer holds the
4140   // section contents during relocation.
4141   unsigned char* postprocessing_buffer_;
4142   // Whether this output section needs a STT_SECTION symbol in the
4143   // normal symbol table.  This will be true if there is a relocation
4144   // which needs it.
4145   bool needs_symtab_index_ : 1;
4146   // Whether this output section needs a STT_SECTION symbol in the
4147   // dynamic symbol table.  This will be true if there is a dynamic
4148   // relocation which needs it.
4149   bool needs_dynsym_index_ : 1;
4150   // Whether the link field of this output section should point to the
4151   // normal symbol table.
4152   bool should_link_to_symtab_ : 1;
4153   // Whether the link field of this output section should point to the
4154   // dynamic symbol table.
4155   bool should_link_to_dynsym_ : 1;
4156   // Whether this section should be written after all the input
4157   // sections are complete.
4158   bool after_input_sections_ : 1;
4159   // Whether this section requires post processing after all
4160   // relocations have been applied.
4161   bool requires_postprocessing_ : 1;
4162   // Whether an input section was mapped to this output section
4163   // because of a SECTIONS clause in a linker script.
4164   bool found_in_sections_clause_ : 1;
4165   // Whether this section has an explicitly specified load address.
4166   bool has_load_address_ : 1;
4167   // True if the info_section_ field means the section index of the
4168   // section, false if it means the symbol index of the corresponding
4169   // section symbol.
4170   bool info_uses_section_index_ : 1;
4171   // True if input sections attached to this output section have to be
4172   // sorted according to a specified order.
4173   bool input_section_order_specified_ : 1;
4174   // True if the input sections attached to this output section may
4175   // need sorting.
4176   bool may_sort_attached_input_sections_ : 1;
4177   // True if the input sections attached to this output section must
4178   // be sorted.
4179   bool must_sort_attached_input_sections_ : 1;
4180   // True if the input sections attached to this output section have
4181   // already been sorted.
4182   bool attached_input_sections_are_sorted_ : 1;
4183   // True if this section holds relro data.
4184   bool is_relro_ : 1;
4185   // True if this is a small section.
4186   bool is_small_section_ : 1;
4187   // True if this is a large section.
4188   bool is_large_section_ : 1;
4189   // Whether code-fills are generated at write.
4190   bool generate_code_fills_at_write_ : 1;
4191   // Whether the entry size field should be zero.
4192   bool is_entsize_zero_ : 1;
4193   // Whether section offsets need adjustment due to relaxation.
4194   bool section_offsets_need_adjustment_ : 1;
4195   // Whether this is a NOLOAD section.
4196   bool is_noload_ : 1;
4197   // Whether this always keeps input section.
4198   bool always_keeps_input_sections_ : 1;
4199   // Whether this section has a fixed layout, for incremental update links.
4200   bool has_fixed_layout_ : 1;
4201   // True if we can add patch space to this section.
4202   bool is_patch_space_allowed_ : 1;
4203   // For SHT_TLS sections, the offset of this section relative to the base
4204   // of the TLS segment.
4205   uint64_t tls_offset_;
4206   // Saved checkpoint.
4207   Checkpoint_output_section* checkpoint_;
4208   // Fast lookup maps for merged and relaxed input sections.
4209   Output_section_lookup_maps* lookup_maps_;
4210   // List of available regions within the section, for incremental
4211   // update links.
4212   Free_list free_list_;
4213   // Method for filling chunks of free space.
4214   Output_fill* free_space_fill_;
4215   // Amount added as patch space for incremental linking.
4216   off_t patch_space_;
4217 };
4218 
4219 // An output segment.  PT_LOAD segments are built from collections of
4220 // output sections.  Other segments typically point within PT_LOAD
4221 // segments, and are built directly as needed.
4222 //
4223 // NOTE: We want to use the copy constructor for this class.  During
4224 // relaxation, we may try built the segments multiple times.  We do
4225 // that by copying the original segment list before lay-out, doing
4226 // a trial lay-out and roll-back to the saved copied if we need to
4227 // to the lay-out again.
4228 
4229 class Output_segment
4230 {
4231  public:
4232   // Create an output segment, specifying the type and flags.
4233   Output_segment(elfcpp::Elf_Word, elfcpp::Elf_Word);
4234 
4235   // Return the virtual address.
4236   uint64_t
4237   vaddr() const
4238   { return this->vaddr_; }
4239 
4240   // Return the physical address.
4241   uint64_t
4242   paddr() const
4243   { return this->paddr_; }
4244 
4245   // Return the segment type.
4246   elfcpp::Elf_Word
4247   type() const
4248   { return this->type_; }
4249 
4250   // Return the segment flags.
4251   elfcpp::Elf_Word
4252   flags() const
4253   { return this->flags_; }
4254 
4255   // Return the memory size.
4256   uint64_t
4257   memsz() const
4258   { return this->memsz_; }
4259 
4260   // Return the file size.
4261   off_t
4262   filesz() const
4263   { return this->filesz_; }
4264 
4265   // Return the file offset.
4266   off_t
4267   offset() const
4268   { return this->offset_; }
4269 
4270   // Whether this is a segment created to hold large data sections.
4271   bool
4272   is_large_data_segment() const
4273   { return this->is_large_data_segment_; }
4274 
4275   // Record that this is a segment created to hold large data
4276   // sections.
4277   void
4278   set_is_large_data_segment()
4279   { this->is_large_data_segment_ = true; }
4280 
4281   // Return the maximum alignment of the Output_data.
4282   uint64_t
4283   maximum_alignment();
4284 
4285   // Add the Output_section OS to this PT_LOAD segment.  SEG_FLAGS is
4286   // the segment flags to use.
4287   void
4288   add_output_section_to_load(Layout* layout, Output_section* os,
4289 			     elfcpp::Elf_Word seg_flags);
4290 
4291   // Add the Output_section OS to this non-PT_LOAD segment.  SEG_FLAGS
4292   // is the segment flags to use.
4293   void
4294   add_output_section_to_nonload(Output_section* os,
4295 				elfcpp::Elf_Word seg_flags);
4296 
4297   // Remove an Output_section from this segment.  It is an error if it
4298   // is not present.
4299   void
4300   remove_output_section(Output_section* os);
4301 
4302   // Add an Output_data (which need not be an Output_section) to the
4303   // start of this segment.
4304   void
4305   add_initial_output_data(Output_data*);
4306 
4307   // Return true if this segment has any sections which hold actual
4308   // data, rather than being a BSS section.
4309   bool
4310   has_any_data_sections() const;
4311 
4312   // Whether this segment has a dynamic relocs.
4313   bool
4314   has_dynamic_reloc() const;
4315 
4316   // Return the address of the first section.
4317   uint64_t
4318   first_section_load_address() const;
4319 
4320   // Return whether the addresses have been set already.
4321   bool
4322   are_addresses_set() const
4323   { return this->are_addresses_set_; }
4324 
4325   // Set the addresses.
4326   void
4327   set_addresses(uint64_t vaddr, uint64_t paddr)
4328   {
4329     this->vaddr_ = vaddr;
4330     this->paddr_ = paddr;
4331     this->are_addresses_set_ = true;
4332   }
4333 
4334   // Update the flags for the flags of an output section added to this
4335   // segment.
4336   void
4337   update_flags_for_output_section(elfcpp::Elf_Xword flags)
4338   {
4339     // The ELF ABI specifies that a PT_TLS segment should always have
4340     // PF_R as the flags.
4341     if (this->type() != elfcpp::PT_TLS)
4342       this->flags_ |= flags;
4343   }
4344 
4345   // Set the segment flags.  This is only used if we have a PHDRS
4346   // clause which explicitly specifies the flags.
4347   void
4348   set_flags(elfcpp::Elf_Word flags)
4349   { this->flags_ = flags; }
4350 
4351   // Set the address of the segment to ADDR and the offset to *POFF
4352   // and set the addresses and offsets of all contained output
4353   // sections accordingly.  Set the section indexes of all contained
4354   // output sections starting with *PSHNDX.  If RESET is true, first
4355   // reset the addresses of the contained sections.  Return the
4356   // address of the immediately following segment.  Update *POFF and
4357   // *PSHNDX.  This should only be called for a PT_LOAD segment.
4358   uint64_t
4359   set_section_addresses(Layout*, bool reset, uint64_t addr,
4360 			unsigned int* increase_relro, bool* has_relro,
4361 			off_t* poff, unsigned int* pshndx);
4362 
4363   // Set the minimum alignment of this segment.  This may be adjusted
4364   // upward based on the section alignments.
4365   void
4366   set_minimum_p_align(uint64_t align)
4367   {
4368     if (align > this->min_p_align_)
4369       this->min_p_align_ = align;
4370   }
4371 
4372   // Set the offset of this segment based on the section.  This should
4373   // only be called for a non-PT_LOAD segment.
4374   void
4375   set_offset(unsigned int increase);
4376 
4377   // Set the TLS offsets of the sections contained in the PT_TLS segment.
4378   void
4379   set_tls_offsets();
4380 
4381   // Return the number of output sections.
4382   unsigned int
4383   output_section_count() const;
4384 
4385   // Return the section attached to the list segment with the lowest
4386   // load address.  This is used when handling a PHDRS clause in a
4387   // linker script.
4388   Output_section*
4389   section_with_lowest_load_address() const;
4390 
4391   // Write the segment header into *OPHDR.
4392   template<int size, bool big_endian>
4393   void
4394   write_header(elfcpp::Phdr_write<size, big_endian>*);
4395 
4396   // Write the section headers of associated sections into V.
4397   template<int size, bool big_endian>
4398   unsigned char*
4399   write_section_headers(const Layout*, const Stringpool*, unsigned char* v,
4400 			unsigned int* pshndx) const;
4401 
4402   // Print the output sections in the map file.
4403   void
4404   print_sections_to_mapfile(Mapfile*) const;
4405 
4406  private:
4407   typedef std::vector<Output_data*> Output_data_list;
4408 
4409   // Find the maximum alignment in an Output_data_list.
4410   static uint64_t
4411   maximum_alignment_list(const Output_data_list*);
4412 
4413   // Return whether the first data section is a relro section.
4414   bool
4415   is_first_section_relro() const;
4416 
4417   // Set the section addresses in an Output_data_list.
4418   uint64_t
4419   set_section_list_addresses(Layout*, bool reset, Output_data_list*,
4420                              uint64_t addr, off_t* poff, unsigned int* pshndx,
4421                              bool* in_tls);
4422 
4423   // Return the number of Output_sections in an Output_data_list.
4424   unsigned int
4425   output_section_count_list(const Output_data_list*) const;
4426 
4427   // Return whether an Output_data_list has a dynamic reloc.
4428   bool
4429   has_dynamic_reloc_list(const Output_data_list*) const;
4430 
4431   // Find the section with the lowest load address in an
4432   // Output_data_list.
4433   void
4434   lowest_load_address_in_list(const Output_data_list* pdl,
4435 			      Output_section** found,
4436 			      uint64_t* found_lma) const;
4437 
4438   // Find the first and last entries by address.
4439   void
4440   find_first_and_last_list(const Output_data_list* pdl,
4441 			   const Output_data** pfirst,
4442 			   const Output_data** plast) const;
4443 
4444   // Write the section headers in the list into V.
4445   template<int size, bool big_endian>
4446   unsigned char*
4447   write_section_headers_list(const Layout*, const Stringpool*,
4448 			     const Output_data_list*, unsigned char* v,
4449 			     unsigned int* pshdx) const;
4450 
4451   // Print a section list to the mapfile.
4452   void
4453   print_section_list_to_mapfile(Mapfile*, const Output_data_list*) const;
4454 
4455   // NOTE: We want to use the copy constructor.  Currently, shallow copy
4456   // works for us so we do not need to write our own copy constructor.
4457 
4458   // The list of output data attached to this segment.
4459   Output_data_list output_lists_[ORDER_MAX];
4460   // The segment virtual address.
4461   uint64_t vaddr_;
4462   // The segment physical address.
4463   uint64_t paddr_;
4464   // The size of the segment in memory.
4465   uint64_t memsz_;
4466   // The maximum section alignment.  The is_max_align_known_ field
4467   // indicates whether this has been finalized.
4468   uint64_t max_align_;
4469   // The required minimum value for the p_align field.  This is used
4470   // for PT_LOAD segments.  Note that this does not mean that
4471   // addresses should be aligned to this value; it means the p_paddr
4472   // and p_vaddr fields must be congruent modulo this value.  For
4473   // non-PT_LOAD segments, the dynamic linker works more efficiently
4474   // if the p_align field has the more conventional value, although it
4475   // can align as needed.
4476   uint64_t min_p_align_;
4477   // The offset of the segment data within the file.
4478   off_t offset_;
4479   // The size of the segment data in the file.
4480   off_t filesz_;
4481   // The segment type;
4482   elfcpp::Elf_Word type_;
4483   // The segment flags.
4484   elfcpp::Elf_Word flags_;
4485   // Whether we have finalized max_align_.
4486   bool is_max_align_known_ : 1;
4487   // Whether vaddr and paddr were set by a linker script.
4488   bool are_addresses_set_ : 1;
4489   // Whether this segment holds large data sections.
4490   bool is_large_data_segment_ : 1;
4491 };
4492 
4493 // This class represents the output file.
4494 
4495 class Output_file
4496 {
4497  public:
4498   Output_file(const char* name);
4499 
4500   // Indicate that this is a temporary file which should not be
4501   // output.
4502   void
4503   set_is_temporary()
4504   { this->is_temporary_ = true; }
4505 
4506   // Try to open an existing file. Returns false if the file doesn't
4507   // exist, has a size of 0 or can't be mmaped.  This method is
4508   // thread-unsafe.  If BASE_NAME is not NULL, use the contents of
4509   // that file as the base for incremental linking.
4510   bool
4511   open_base_file(const char* base_name, bool writable);
4512 
4513   // Open the output file.  FILE_SIZE is the final size of the file.
4514   // If the file already exists, it is deleted/truncated.  This method
4515   // is thread-unsafe.
4516   void
4517   open(off_t file_size);
4518 
4519   // Resize the output file.  This method is thread-unsafe.
4520   void
4521   resize(off_t file_size);
4522 
4523   // Close the output file (flushing all buffered data) and make sure
4524   // there are no errors.  This method is thread-unsafe.
4525   void
4526   close();
4527 
4528   // Return the size of this file.
4529   off_t
4530   filesize()
4531   { return this->file_size_; }
4532 
4533   // Return the name of this file.
4534   const char*
4535   filename()
4536   { return this->name_; }
4537 
4538   // We currently always use mmap which makes the view handling quite
4539   // simple.  In the future we may support other approaches.
4540 
4541   // Write data to the output file.
4542   void
4543   write(off_t offset, const void* data, size_t len)
4544   { memcpy(this->base_ + offset, data, len); }
4545 
4546   // Get a buffer to use to write to the file, given the offset into
4547   // the file and the size.
4548   unsigned char*
4549   get_output_view(off_t start, size_t size)
4550   {
4551     gold_assert(start >= 0
4552                 && start + static_cast<off_t>(size) <= this->file_size_);
4553     return this->base_ + start;
4554   }
4555 
4556   // VIEW must have been returned by get_output_view.  Write the
4557   // buffer to the file, passing in the offset and the size.
4558   void
4559   write_output_view(off_t, size_t, unsigned char*)
4560   { }
4561 
4562   // Get a read/write buffer.  This is used when we want to write part
4563   // of the file, read it in, and write it again.
4564   unsigned char*
4565   get_input_output_view(off_t start, size_t size)
4566   { return this->get_output_view(start, size); }
4567 
4568   // Write a read/write buffer back to the file.
4569   void
4570   write_input_output_view(off_t, size_t, unsigned char*)
4571   { }
4572 
4573   // Get a read buffer.  This is used when we just want to read part
4574   // of the file back it in.
4575   const unsigned char*
4576   get_input_view(off_t start, size_t size)
4577   { return this->get_output_view(start, size); }
4578 
4579   // Release a read bfufer.
4580   void
4581   free_input_view(off_t, size_t, const unsigned char*)
4582   { }
4583 
4584  private:
4585   // Map the file into memory or, if that fails, allocate anonymous
4586   // memory.
4587   void
4588   map();
4589 
4590   // Allocate anonymous memory for the file.
4591   bool
4592   map_anonymous();
4593 
4594   // Map the file into memory.
4595   bool
4596   map_no_anonymous(bool);
4597 
4598   // Unmap the file from memory (and flush to disk buffers).
4599   void
4600   unmap();
4601 
4602   // File name.
4603   const char* name_;
4604   // File descriptor.
4605   int o_;
4606   // File size.
4607   off_t file_size_;
4608   // Base of file mapped into memory.
4609   unsigned char* base_;
4610   // True iff base_ points to a memory buffer rather than an output file.
4611   bool map_is_anonymous_;
4612   // True if base_ was allocated using new rather than mmap.
4613   bool map_is_allocated_;
4614   // True if this is a temporary file which should not be output.
4615   bool is_temporary_;
4616 };
4617 
4618 } // End namespace gold.
4619 
4620 #endif // !defined(GOLD_OUTPUT_H)
4621