1 // object.cc -- support for an object file for linking in gold 2 3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc. 4 // Written by Ian Lance Taylor <iant@google.com>. 5 6 // This file is part of gold. 7 8 // This program is free software; you can redistribute it and/or modify 9 // it under the terms of the GNU General Public License as published by 10 // the Free Software Foundation; either version 3 of the License, or 11 // (at your option) any later version. 12 13 // This program is distributed in the hope that it will be useful, 14 // but WITHOUT ANY WARRANTY; without even the implied warranty of 15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 // GNU General Public License for more details. 17 18 // You should have received a copy of the GNU General Public License 19 // along with this program; if not, write to the Free Software 20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 21 // MA 02110-1301, USA. 22 23 #include "gold.h" 24 25 #include <cerrno> 26 #include <cstring> 27 #include <cstdarg> 28 #include "demangle.h" 29 #include "libiberty.h" 30 31 #include "gc.h" 32 #include "target-select.h" 33 #include "dwarf_reader.h" 34 #include "layout.h" 35 #include "output.h" 36 #include "symtab.h" 37 #include "cref.h" 38 #include "reloc.h" 39 #include "object.h" 40 #include "dynobj.h" 41 #include "plugin.h" 42 #include "compressed_output.h" 43 #include "incremental.h" 44 45 namespace gold 46 { 47 48 // Struct Read_symbols_data. 49 50 // Destroy any remaining File_view objects. 51 52 Read_symbols_data::~Read_symbols_data() 53 { 54 if (this->section_headers != NULL) 55 delete this->section_headers; 56 if (this->section_names != NULL) 57 delete this->section_names; 58 if (this->symbols != NULL) 59 delete this->symbols; 60 if (this->symbol_names != NULL) 61 delete this->symbol_names; 62 if (this->versym != NULL) 63 delete this->versym; 64 if (this->verdef != NULL) 65 delete this->verdef; 66 if (this->verneed != NULL) 67 delete this->verneed; 68 } 69 70 // Class Xindex. 71 72 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX 73 // section and read it in. SYMTAB_SHNDX is the index of the symbol 74 // table we care about. 75 76 template<int size, bool big_endian> 77 void 78 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx) 79 { 80 if (!this->symtab_xindex_.empty()) 81 return; 82 83 gold_assert(symtab_shndx != 0); 84 85 // Look through the sections in reverse order, on the theory that it 86 // is more likely to be near the end than the beginning. 87 unsigned int i = object->shnum(); 88 while (i > 0) 89 { 90 --i; 91 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX 92 && this->adjust_shndx(object->section_link(i)) == symtab_shndx) 93 { 94 this->read_symtab_xindex<size, big_endian>(object, i, NULL); 95 return; 96 } 97 } 98 99 object->error(_("missing SHT_SYMTAB_SHNDX section")); 100 } 101 102 // Read in the symtab_xindex_ array, given the section index of the 103 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the 104 // section headers. 105 106 template<int size, bool big_endian> 107 void 108 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx, 109 const unsigned char* pshdrs) 110 { 111 section_size_type bytecount; 112 const unsigned char* contents; 113 if (pshdrs == NULL) 114 contents = object->section_contents(xindex_shndx, &bytecount, false); 115 else 116 { 117 const unsigned char* p = (pshdrs 118 + (xindex_shndx 119 * elfcpp::Elf_sizes<size>::shdr_size)); 120 typename elfcpp::Shdr<size, big_endian> shdr(p); 121 bytecount = convert_to_section_size_type(shdr.get_sh_size()); 122 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false); 123 } 124 125 gold_assert(this->symtab_xindex_.empty()); 126 this->symtab_xindex_.reserve(bytecount / 4); 127 for (section_size_type i = 0; i < bytecount; i += 4) 128 { 129 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i); 130 // We preadjust the section indexes we save. 131 this->symtab_xindex_.push_back(this->adjust_shndx(shndx)); 132 } 133 } 134 135 // Symbol symndx has a section of SHN_XINDEX; return the real section 136 // index. 137 138 unsigned int 139 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx) 140 { 141 if (symndx >= this->symtab_xindex_.size()) 142 { 143 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"), 144 symndx); 145 return elfcpp::SHN_UNDEF; 146 } 147 unsigned int shndx = this->symtab_xindex_[symndx]; 148 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum()) 149 { 150 object->error(_("extended index for symbol %u out of range: %u"), 151 symndx, shndx); 152 return elfcpp::SHN_UNDEF; 153 } 154 return shndx; 155 } 156 157 // Class Object. 158 159 // Report an error for this object file. This is used by the 160 // elfcpp::Elf_file interface, and also called by the Object code 161 // itself. 162 163 void 164 Object::error(const char* format, ...) const 165 { 166 va_list args; 167 va_start(args, format); 168 char* buf = NULL; 169 if (vasprintf(&buf, format, args) < 0) 170 gold_nomem(); 171 va_end(args); 172 gold_error(_("%s: %s"), this->name().c_str(), buf); 173 free(buf); 174 } 175 176 // Return a view of the contents of a section. 177 178 const unsigned char* 179 Object::section_contents(unsigned int shndx, section_size_type* plen, 180 bool cache) 181 { 182 Location loc(this->do_section_contents(shndx)); 183 *plen = convert_to_section_size_type(loc.data_size); 184 if (*plen == 0) 185 { 186 static const unsigned char empty[1] = { '\0' }; 187 return empty; 188 } 189 return this->get_view(loc.file_offset, *plen, true, cache); 190 } 191 192 // Read the section data into SD. This is code common to Sized_relobj 193 // and Sized_dynobj, so we put it into Object. 194 195 template<int size, bool big_endian> 196 void 197 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file, 198 Read_symbols_data* sd) 199 { 200 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size; 201 202 // Read the section headers. 203 const off_t shoff = elf_file->shoff(); 204 const unsigned int shnum = this->shnum(); 205 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size, 206 true, true); 207 208 // Read the section names. 209 const unsigned char* pshdrs = sd->section_headers->data(); 210 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size; 211 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames); 212 213 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB) 214 this->error(_("section name section has wrong type: %u"), 215 static_cast<unsigned int>(shdrnames.get_sh_type())); 216 217 sd->section_names_size = 218 convert_to_section_size_type(shdrnames.get_sh_size()); 219 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(), 220 sd->section_names_size, false, 221 false); 222 } 223 224 // If NAME is the name of a special .gnu.warning section, arrange for 225 // the warning to be issued. SHNDX is the section index. Return 226 // whether it is a warning section. 227 228 bool 229 Object::handle_gnu_warning_section(const char* name, unsigned int shndx, 230 Symbol_table* symtab) 231 { 232 const char warn_prefix[] = ".gnu.warning."; 233 const int warn_prefix_len = sizeof warn_prefix - 1; 234 if (strncmp(name, warn_prefix, warn_prefix_len) == 0) 235 { 236 // Read the section contents to get the warning text. It would 237 // be nicer if we only did this if we have to actually issue a 238 // warning. Unfortunately, warnings are issued as we relocate 239 // sections. That means that we can not lock the object then, 240 // as we might try to issue the same warning multiple times 241 // simultaneously. 242 section_size_type len; 243 const unsigned char* contents = this->section_contents(shndx, &len, 244 false); 245 if (len == 0) 246 { 247 const char* warning = name + warn_prefix_len; 248 contents = reinterpret_cast<const unsigned char*>(warning); 249 len = strlen(warning); 250 } 251 std::string warning(reinterpret_cast<const char*>(contents), len); 252 symtab->add_warning(name + warn_prefix_len, this, warning); 253 return true; 254 } 255 return false; 256 } 257 258 // If NAME is the name of the special section which indicates that 259 // this object was compiled with -fstack-split, mark it accordingly. 260 261 bool 262 Object::handle_split_stack_section(const char* name) 263 { 264 if (strcmp(name, ".note.GNU-split-stack") == 0) 265 { 266 this->uses_split_stack_ = true; 267 return true; 268 } 269 if (strcmp(name, ".note.GNU-no-split-stack") == 0) 270 { 271 this->has_no_split_stack_ = true; 272 return true; 273 } 274 return false; 275 } 276 277 // Class Relobj 278 279 // To copy the symbols data read from the file to a local data structure. 280 // This function is called from do_layout only while doing garbage 281 // collection. 282 283 void 284 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd, 285 unsigned int section_header_size) 286 { 287 gc_sd->section_headers_data = 288 new unsigned char[(section_header_size)]; 289 memcpy(gc_sd->section_headers_data, sd->section_headers->data(), 290 section_header_size); 291 gc_sd->section_names_data = 292 new unsigned char[sd->section_names_size]; 293 memcpy(gc_sd->section_names_data, sd->section_names->data(), 294 sd->section_names_size); 295 gc_sd->section_names_size = sd->section_names_size; 296 if (sd->symbols != NULL) 297 { 298 gc_sd->symbols_data = 299 new unsigned char[sd->symbols_size]; 300 memcpy(gc_sd->symbols_data, sd->symbols->data(), 301 sd->symbols_size); 302 } 303 else 304 { 305 gc_sd->symbols_data = NULL; 306 } 307 gc_sd->symbols_size = sd->symbols_size; 308 gc_sd->external_symbols_offset = sd->external_symbols_offset; 309 if (sd->symbol_names != NULL) 310 { 311 gc_sd->symbol_names_data = 312 new unsigned char[sd->symbol_names_size]; 313 memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(), 314 sd->symbol_names_size); 315 } 316 else 317 { 318 gc_sd->symbol_names_data = NULL; 319 } 320 gc_sd->symbol_names_size = sd->symbol_names_size; 321 } 322 323 // This function determines if a particular section name must be included 324 // in the link. This is used during garbage collection to determine the 325 // roots of the worklist. 326 327 bool 328 Relobj::is_section_name_included(const char* name) 329 { 330 if (is_prefix_of(".ctors", name) 331 || is_prefix_of(".dtors", name) 332 || is_prefix_of(".note", name) 333 || is_prefix_of(".init", name) 334 || is_prefix_of(".fini", name) 335 || is_prefix_of(".gcc_except_table", name) 336 || is_prefix_of(".jcr", name) 337 || is_prefix_of(".preinit_array", name) 338 || (is_prefix_of(".text", name) 339 && strstr(name, "personality")) 340 || (is_prefix_of(".data", name) 341 && strstr(name, "personality")) 342 || (is_prefix_of(".gnu.linkonce.d", name) 343 && strstr(name, "personality"))) 344 { 345 return true; 346 } 347 return false; 348 } 349 350 // Finalize the incremental relocation information. Allocates a block 351 // of relocation entries for each symbol, and sets the reloc_bases_ 352 // array to point to the first entry in each block. Returns the next 353 // available reloation index. 354 355 void 356 Relobj::finalize_incremental_relocs(Layout* layout) 357 { 358 unsigned int nsyms = this->get_global_symbols()->size(); 359 this->reloc_bases_ = new unsigned int[nsyms]; 360 361 gold_assert(this->reloc_bases_ != NULL); 362 gold_assert(layout->incremental_inputs() != NULL); 363 364 unsigned int rindex = layout->incremental_inputs()->get_reloc_count(); 365 for (unsigned int i = 0; i < nsyms; ++i) 366 { 367 this->reloc_bases_[i] = rindex; 368 rindex += this->reloc_counts_[i]; 369 this->reloc_counts_[i] = 0; 370 } 371 layout->incremental_inputs()->set_reloc_count(rindex); 372 } 373 374 // Class Sized_relobj. 375 376 template<int size, bool big_endian> 377 Sized_relobj<size, big_endian>::Sized_relobj( 378 const std::string& name, 379 Input_file* input_file, 380 off_t offset, 381 const elfcpp::Ehdr<size, big_endian>& ehdr) 382 : Relobj(name, input_file, offset), 383 elf_file_(this, ehdr), 384 symtab_shndx_(-1U), 385 local_symbol_count_(0), 386 output_local_symbol_count_(0), 387 output_local_dynsym_count_(0), 388 symbols_(), 389 defined_count_(0), 390 local_symbol_offset_(0), 391 local_dynsym_offset_(0), 392 local_values_(), 393 local_got_offsets_(), 394 local_plt_offsets_(), 395 kept_comdat_sections_(), 396 has_eh_frame_(false), 397 discarded_eh_frame_shndx_(-1U), 398 deferred_layout_(), 399 deferred_layout_relocs_(), 400 compressed_sections_() 401 { 402 } 403 404 template<int size, bool big_endian> 405 Sized_relobj<size, big_endian>::~Sized_relobj() 406 { 407 } 408 409 // Set up an object file based on the file header. This sets up the 410 // section information. 411 412 template<int size, bool big_endian> 413 void 414 Sized_relobj<size, big_endian>::do_setup() 415 { 416 const unsigned int shnum = this->elf_file_.shnum(); 417 this->set_shnum(shnum); 418 } 419 420 // Find the SHT_SYMTAB section, given the section headers. The ELF 421 // standard says that maybe in the future there can be more than one 422 // SHT_SYMTAB section. Until somebody figures out how that could 423 // work, we assume there is only one. 424 425 template<int size, bool big_endian> 426 void 427 Sized_relobj<size, big_endian>::find_symtab(const unsigned char* pshdrs) 428 { 429 const unsigned int shnum = this->shnum(); 430 this->symtab_shndx_ = 0; 431 if (shnum > 0) 432 { 433 // Look through the sections in reverse order, since gas tends 434 // to put the symbol table at the end. 435 const unsigned char* p = pshdrs + shnum * This::shdr_size; 436 unsigned int i = shnum; 437 unsigned int xindex_shndx = 0; 438 unsigned int xindex_link = 0; 439 while (i > 0) 440 { 441 --i; 442 p -= This::shdr_size; 443 typename This::Shdr shdr(p); 444 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB) 445 { 446 this->symtab_shndx_ = i; 447 if (xindex_shndx > 0 && xindex_link == i) 448 { 449 Xindex* xindex = 450 new Xindex(this->elf_file_.large_shndx_offset()); 451 xindex->read_symtab_xindex<size, big_endian>(this, 452 xindex_shndx, 453 pshdrs); 454 this->set_xindex(xindex); 455 } 456 break; 457 } 458 459 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is 460 // one. This will work if it follows the SHT_SYMTAB 461 // section. 462 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX) 463 { 464 xindex_shndx = i; 465 xindex_link = this->adjust_shndx(shdr.get_sh_link()); 466 } 467 } 468 } 469 } 470 471 // Return the Xindex structure to use for object with lots of 472 // sections. 473 474 template<int size, bool big_endian> 475 Xindex* 476 Sized_relobj<size, big_endian>::do_initialize_xindex() 477 { 478 gold_assert(this->symtab_shndx_ != -1U); 479 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset()); 480 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_); 481 return xindex; 482 } 483 484 // Return whether SHDR has the right type and flags to be a GNU 485 // .eh_frame section. 486 487 template<int size, bool big_endian> 488 bool 489 Sized_relobj<size, big_endian>::check_eh_frame_flags( 490 const elfcpp::Shdr<size, big_endian>* shdr) const 491 { 492 return (shdr->get_sh_type() == elfcpp::SHT_PROGBITS 493 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0); 494 } 495 496 // Return whether there is a GNU .eh_frame section, given the section 497 // headers and the section names. 498 499 template<int size, bool big_endian> 500 bool 501 Sized_relobj<size, big_endian>::find_eh_frame( 502 const unsigned char* pshdrs, 503 const char* names, 504 section_size_type names_size) const 505 { 506 const unsigned int shnum = this->shnum(); 507 const unsigned char* p = pshdrs + This::shdr_size; 508 for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size) 509 { 510 typename This::Shdr shdr(p); 511 if (this->check_eh_frame_flags(&shdr)) 512 { 513 if (shdr.get_sh_name() >= names_size) 514 { 515 this->error(_("bad section name offset for section %u: %lu"), 516 i, static_cast<unsigned long>(shdr.get_sh_name())); 517 continue; 518 } 519 520 const char* name = names + shdr.get_sh_name(); 521 if (strcmp(name, ".eh_frame") == 0) 522 return true; 523 } 524 } 525 return false; 526 } 527 528 // Build a table for any compressed debug sections, mapping each section index 529 // to the uncompressed size. 530 531 template<int size, bool big_endian> 532 Compressed_section_map* 533 build_compressed_section_map( 534 const unsigned char* pshdrs, 535 unsigned int shnum, 536 const char* names, 537 section_size_type names_size, 538 Sized_relobj<size, big_endian>* obj) 539 { 540 Compressed_section_map* uncompressed_sizes = new Compressed_section_map(); 541 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size; 542 const unsigned char* p = pshdrs + shdr_size; 543 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size) 544 { 545 typename elfcpp::Shdr<size, big_endian> shdr(p); 546 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS 547 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0) 548 { 549 if (shdr.get_sh_name() >= names_size) 550 { 551 obj->error(_("bad section name offset for section %u: %lu"), 552 i, static_cast<unsigned long>(shdr.get_sh_name())); 553 continue; 554 } 555 556 const char* name = names + shdr.get_sh_name(); 557 if (is_compressed_debug_section(name)) 558 { 559 section_size_type len; 560 const unsigned char* contents = 561 obj->section_contents(i, &len, false); 562 uint64_t uncompressed_size = get_uncompressed_size(contents, len); 563 if (uncompressed_size != -1ULL) 564 (*uncompressed_sizes)[i] = 565 convert_to_section_size_type(uncompressed_size); 566 } 567 } 568 } 569 return uncompressed_sizes; 570 } 571 572 // Read the sections and symbols from an object file. 573 574 template<int size, bool big_endian> 575 void 576 Sized_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd) 577 { 578 this->read_section_data(&this->elf_file_, sd); 579 580 const unsigned char* const pshdrs = sd->section_headers->data(); 581 582 this->find_symtab(pshdrs); 583 584 const unsigned char* namesu = sd->section_names->data(); 585 const char* names = reinterpret_cast<const char*>(namesu); 586 if (memmem(names, sd->section_names_size, ".eh_frame", 10) != NULL) 587 { 588 if (this->find_eh_frame(pshdrs, names, sd->section_names_size)) 589 this->has_eh_frame_ = true; 590 } 591 if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL) 592 this->compressed_sections_ = 593 build_compressed_section_map(pshdrs, this->shnum(), names, 594 sd->section_names_size, this); 595 596 sd->symbols = NULL; 597 sd->symbols_size = 0; 598 sd->external_symbols_offset = 0; 599 sd->symbol_names = NULL; 600 sd->symbol_names_size = 0; 601 602 if (this->symtab_shndx_ == 0) 603 { 604 // No symbol table. Weird but legal. 605 return; 606 } 607 608 // Get the symbol table section header. 609 typename This::Shdr symtabshdr(pshdrs 610 + this->symtab_shndx_ * This::shdr_size); 611 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB); 612 613 // If this object has a .eh_frame section, we need all the symbols. 614 // Otherwise we only need the external symbols. While it would be 615 // simpler to just always read all the symbols, I've seen object 616 // files with well over 2000 local symbols, which for a 64-bit 617 // object file format is over 5 pages that we don't need to read 618 // now. 619 620 const int sym_size = This::sym_size; 621 const unsigned int loccount = symtabshdr.get_sh_info(); 622 this->local_symbol_count_ = loccount; 623 this->local_values_.resize(loccount); 624 section_offset_type locsize = loccount * sym_size; 625 off_t dataoff = symtabshdr.get_sh_offset(); 626 section_size_type datasize = 627 convert_to_section_size_type(symtabshdr.get_sh_size()); 628 off_t extoff = dataoff + locsize; 629 section_size_type extsize = datasize - locsize; 630 631 off_t readoff = this->has_eh_frame_ ? dataoff : extoff; 632 section_size_type readsize = this->has_eh_frame_ ? datasize : extsize; 633 634 if (readsize == 0) 635 { 636 // No external symbols. Also weird but also legal. 637 return; 638 } 639 640 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false); 641 642 // Read the section header for the symbol names. 643 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link()); 644 if (strtab_shndx >= this->shnum()) 645 { 646 this->error(_("invalid symbol table name index: %u"), strtab_shndx); 647 return; 648 } 649 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size); 650 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB) 651 { 652 this->error(_("symbol table name section has wrong type: %u"), 653 static_cast<unsigned int>(strtabshdr.get_sh_type())); 654 return; 655 } 656 657 // Read the symbol names. 658 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(), 659 strtabshdr.get_sh_size(), 660 false, true); 661 662 sd->symbols = fvsymtab; 663 sd->symbols_size = readsize; 664 sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0; 665 sd->symbol_names = fvstrtab; 666 sd->symbol_names_size = 667 convert_to_section_size_type(strtabshdr.get_sh_size()); 668 } 669 670 // Return the section index of symbol SYM. Set *VALUE to its value in 671 // the object file. Set *IS_ORDINARY if this is an ordinary section 672 // index. not a special cod between SHN_LORESERVE and SHN_HIRESERVE. 673 // Note that for a symbol which is not defined in this object file, 674 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return 675 // the final value of the symbol in the link. 676 677 template<int size, bool big_endian> 678 unsigned int 679 Sized_relobj<size, big_endian>::symbol_section_and_value(unsigned int sym, 680 Address* value, 681 bool* is_ordinary) 682 { 683 section_size_type symbols_size; 684 const unsigned char* symbols = this->section_contents(this->symtab_shndx_, 685 &symbols_size, 686 false); 687 688 const size_t count = symbols_size / This::sym_size; 689 gold_assert(sym < count); 690 691 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size); 692 *value = elfsym.get_st_value(); 693 694 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary); 695 } 696 697 // Return whether to include a section group in the link. LAYOUT is 698 // used to keep track of which section groups we have already seen. 699 // INDEX is the index of the section group and SHDR is the section 700 // header. If we do not want to include this group, we set bits in 701 // OMIT for each section which should be discarded. 702 703 template<int size, bool big_endian> 704 bool 705 Sized_relobj<size, big_endian>::include_section_group( 706 Symbol_table* symtab, 707 Layout* layout, 708 unsigned int index, 709 const char* name, 710 const unsigned char* shdrs, 711 const char* section_names, 712 section_size_type section_names_size, 713 std::vector<bool>* omit) 714 { 715 // Read the section contents. 716 typename This::Shdr shdr(shdrs + index * This::shdr_size); 717 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(), 718 shdr.get_sh_size(), true, false); 719 const elfcpp::Elf_Word* pword = 720 reinterpret_cast<const elfcpp::Elf_Word*>(pcon); 721 722 // The first word contains flags. We only care about COMDAT section 723 // groups. Other section groups are always included in the link 724 // just like ordinary sections. 725 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword); 726 727 // Look up the group signature, which is the name of a symbol. This 728 // is a lot of effort to go to to read a string. Why didn't they 729 // just have the group signature point into the string table, rather 730 // than indirect through a symbol? 731 732 // Get the appropriate symbol table header (this will normally be 733 // the single SHT_SYMTAB section, but in principle it need not be). 734 const unsigned int link = this->adjust_shndx(shdr.get_sh_link()); 735 typename This::Shdr symshdr(this, this->elf_file_.section_header(link)); 736 737 // Read the symbol table entry. 738 unsigned int symndx = shdr.get_sh_info(); 739 if (symndx >= symshdr.get_sh_size() / This::sym_size) 740 { 741 this->error(_("section group %u info %u out of range"), 742 index, symndx); 743 return false; 744 } 745 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size; 746 const unsigned char* psym = this->get_view(symoff, This::sym_size, true, 747 false); 748 elfcpp::Sym<size, big_endian> sym(psym); 749 750 // Read the symbol table names. 751 section_size_type symnamelen; 752 const unsigned char* psymnamesu; 753 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()), 754 &symnamelen, true); 755 const char* psymnames = reinterpret_cast<const char*>(psymnamesu); 756 757 // Get the section group signature. 758 if (sym.get_st_name() >= symnamelen) 759 { 760 this->error(_("symbol %u name offset %u out of range"), 761 symndx, sym.get_st_name()); 762 return false; 763 } 764 765 std::string signature(psymnames + sym.get_st_name()); 766 767 // It seems that some versions of gas will create a section group 768 // associated with a section symbol, and then fail to give a name to 769 // the section symbol. In such a case, use the name of the section. 770 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION) 771 { 772 bool is_ordinary; 773 unsigned int sym_shndx = this->adjust_sym_shndx(symndx, 774 sym.get_st_shndx(), 775 &is_ordinary); 776 if (!is_ordinary || sym_shndx >= this->shnum()) 777 { 778 this->error(_("symbol %u invalid section index %u"), 779 symndx, sym_shndx); 780 return false; 781 } 782 typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size); 783 if (member_shdr.get_sh_name() < section_names_size) 784 signature = section_names + member_shdr.get_sh_name(); 785 } 786 787 // Record this section group in the layout, and see whether we've already 788 // seen one with the same signature. 789 bool include_group; 790 bool is_comdat; 791 Kept_section* kept_section = NULL; 792 793 if ((flags & elfcpp::GRP_COMDAT) == 0) 794 { 795 include_group = true; 796 is_comdat = false; 797 } 798 else 799 { 800 include_group = layout->find_or_add_kept_section(signature, 801 this, index, true, 802 true, &kept_section); 803 is_comdat = true; 804 } 805 806 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word); 807 808 std::vector<unsigned int> shndxes; 809 bool relocate_group = include_group && parameters->options().relocatable(); 810 if (relocate_group) 811 shndxes.reserve(count - 1); 812 813 for (size_t i = 1; i < count; ++i) 814 { 815 elfcpp::Elf_Word shndx = 816 this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i)); 817 818 if (relocate_group) 819 shndxes.push_back(shndx); 820 821 if (shndx >= this->shnum()) 822 { 823 this->error(_("section %u in section group %u out of range"), 824 shndx, index); 825 continue; 826 } 827 828 // Check for an earlier section number, since we're going to get 829 // it wrong--we may have already decided to include the section. 830 if (shndx < index) 831 this->error(_("invalid section group %u refers to earlier section %u"), 832 index, shndx); 833 834 // Get the name of the member section. 835 typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size); 836 if (member_shdr.get_sh_name() >= section_names_size) 837 { 838 // This is an error, but it will be diagnosed eventually 839 // in do_layout, so we don't need to do anything here but 840 // ignore it. 841 continue; 842 } 843 std::string mname(section_names + member_shdr.get_sh_name()); 844 845 if (include_group) 846 { 847 if (is_comdat) 848 kept_section->add_comdat_section(mname, shndx, 849 member_shdr.get_sh_size()); 850 } 851 else 852 { 853 (*omit)[shndx] = true; 854 855 if (is_comdat) 856 { 857 Relobj* kept_object = kept_section->object(); 858 if (kept_section->is_comdat()) 859 { 860 // Find the corresponding kept section, and store 861 // that info in the discarded section table. 862 unsigned int kept_shndx; 863 uint64_t kept_size; 864 if (kept_section->find_comdat_section(mname, &kept_shndx, 865 &kept_size)) 866 { 867 // We don't keep a mapping for this section if 868 // it has a different size. The mapping is only 869 // used for relocation processing, and we don't 870 // want to treat the sections as similar if the 871 // sizes are different. Checking the section 872 // size is the approach used by the GNU linker. 873 if (kept_size == member_shdr.get_sh_size()) 874 this->set_kept_comdat_section(shndx, kept_object, 875 kept_shndx); 876 } 877 } 878 else 879 { 880 // The existing section is a linkonce section. Add 881 // a mapping if there is exactly one section in the 882 // group (which is true when COUNT == 2) and if it 883 // is the same size. 884 if (count == 2 885 && (kept_section->linkonce_size() 886 == member_shdr.get_sh_size())) 887 this->set_kept_comdat_section(shndx, kept_object, 888 kept_section->shndx()); 889 } 890 } 891 } 892 } 893 894 if (relocate_group) 895 layout->layout_group(symtab, this, index, name, signature.c_str(), 896 shdr, flags, &shndxes); 897 898 return include_group; 899 } 900 901 // Whether to include a linkonce section in the link. NAME is the 902 // name of the section and SHDR is the section header. 903 904 // Linkonce sections are a GNU extension implemented in the original 905 // GNU linker before section groups were defined. The semantics are 906 // that we only include one linkonce section with a given name. The 907 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME, 908 // where T is the type of section and SYMNAME is the name of a symbol. 909 // In an attempt to make linkonce sections interact well with section 910 // groups, we try to identify SYMNAME and use it like a section group 911 // signature. We want to block section groups with that signature, 912 // but not other linkonce sections with that signature. We also use 913 // the full name of the linkonce section as a normal section group 914 // signature. 915 916 template<int size, bool big_endian> 917 bool 918 Sized_relobj<size, big_endian>::include_linkonce_section( 919 Layout* layout, 920 unsigned int index, 921 const char* name, 922 const elfcpp::Shdr<size, big_endian>& shdr) 923 { 924 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size(); 925 // In general the symbol name we want will be the string following 926 // the last '.'. However, we have to handle the case of 927 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by 928 // some versions of gcc. So we use a heuristic: if the name starts 929 // with ".gnu.linkonce.t.", we use everything after that. Otherwise 930 // we look for the last '.'. We can't always simply skip 931 // ".gnu.linkonce.X", because we have to deal with cases like 932 // ".gnu.linkonce.d.rel.ro.local". 933 const char* const linkonce_t = ".gnu.linkonce.t."; 934 const char* symname; 935 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0) 936 symname = name + strlen(linkonce_t); 937 else 938 symname = strrchr(name, '.') + 1; 939 std::string sig1(symname); 940 std::string sig2(name); 941 Kept_section* kept1; 942 Kept_section* kept2; 943 bool include1 = layout->find_or_add_kept_section(sig1, this, index, false, 944 false, &kept1); 945 bool include2 = layout->find_or_add_kept_section(sig2, this, index, false, 946 true, &kept2); 947 948 if (!include2) 949 { 950 // We are not including this section because we already saw the 951 // name of the section as a signature. This normally implies 952 // that the kept section is another linkonce section. If it is 953 // the same size, record it as the section which corresponds to 954 // this one. 955 if (kept2->object() != NULL 956 && !kept2->is_comdat() 957 && kept2->linkonce_size() == sh_size) 958 this->set_kept_comdat_section(index, kept2->object(), kept2->shndx()); 959 } 960 else if (!include1) 961 { 962 // The section is being discarded on the basis of its symbol 963 // name. This means that the corresponding kept section was 964 // part of a comdat group, and it will be difficult to identify 965 // the specific section within that group that corresponds to 966 // this linkonce section. We'll handle the simple case where 967 // the group has only one member section. Otherwise, it's not 968 // worth the effort. 969 unsigned int kept_shndx; 970 uint64_t kept_size; 971 if (kept1->object() != NULL 972 && kept1->is_comdat() 973 && kept1->find_single_comdat_section(&kept_shndx, &kept_size) 974 && kept_size == sh_size) 975 this->set_kept_comdat_section(index, kept1->object(), kept_shndx); 976 } 977 else 978 { 979 kept1->set_linkonce_size(sh_size); 980 kept2->set_linkonce_size(sh_size); 981 } 982 983 return include1 && include2; 984 } 985 986 // Layout an input section. 987 988 template<int size, bool big_endian> 989 inline void 990 Sized_relobj<size, big_endian>::layout_section(Layout* layout, 991 unsigned int shndx, 992 const char* name, 993 typename This::Shdr& shdr, 994 unsigned int reloc_shndx, 995 unsigned int reloc_type) 996 { 997 off_t offset; 998 Output_section* os = layout->layout(this, shndx, name, shdr, 999 reloc_shndx, reloc_type, &offset); 1000 1001 this->output_sections()[shndx] = os; 1002 if (offset == -1) 1003 this->section_offsets_[shndx] = invalid_address; 1004 else 1005 this->section_offsets_[shndx] = convert_types<Address, off_t>(offset); 1006 1007 // If this section requires special handling, and if there are 1008 // relocs that apply to it, then we must do the special handling 1009 // before we apply the relocs. 1010 if (offset == -1 && reloc_shndx != 0) 1011 this->set_relocs_must_follow_section_writes(); 1012 } 1013 1014 // Lay out the input sections. We walk through the sections and check 1015 // whether they should be included in the link. If they should, we 1016 // pass them to the Layout object, which will return an output section 1017 // and an offset. 1018 // During garbage collection (--gc-sections) and identical code folding 1019 // (--icf), this function is called twice. When it is called the first 1020 // time, it is for setting up some sections as roots to a work-list for 1021 // --gc-sections and to do comdat processing. Actual layout happens the 1022 // second time around after all the relevant sections have been determined. 1023 // The first time, is_worklist_ready or is_icf_ready is false. It is then 1024 // set to true after the garbage collection worklist or identical code 1025 // folding is processed and the relevant sections to be kept are 1026 // determined. Then, this function is called again to layout the sections. 1027 1028 template<int size, bool big_endian> 1029 void 1030 Sized_relobj<size, big_endian>::do_layout(Symbol_table* symtab, 1031 Layout* layout, 1032 Read_symbols_data* sd) 1033 { 1034 const unsigned int shnum = this->shnum(); 1035 bool is_gc_pass_one = ((parameters->options().gc_sections() 1036 && !symtab->gc()->is_worklist_ready()) 1037 || (parameters->options().icf_enabled() 1038 && !symtab->icf()->is_icf_ready())); 1039 1040 bool is_gc_pass_two = ((parameters->options().gc_sections() 1041 && symtab->gc()->is_worklist_ready()) 1042 || (parameters->options().icf_enabled() 1043 && symtab->icf()->is_icf_ready())); 1044 1045 bool is_gc_or_icf = (parameters->options().gc_sections() 1046 || parameters->options().icf_enabled()); 1047 1048 // Both is_gc_pass_one and is_gc_pass_two should not be true. 1049 gold_assert(!(is_gc_pass_one && is_gc_pass_two)); 1050 1051 if (shnum == 0) 1052 return; 1053 Symbols_data* gc_sd = NULL; 1054 if (is_gc_pass_one) 1055 { 1056 // During garbage collection save the symbols data to use it when 1057 // re-entering this function. 1058 gc_sd = new Symbols_data; 1059 this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum); 1060 this->set_symbols_data(gc_sd); 1061 } 1062 else if (is_gc_pass_two) 1063 { 1064 gc_sd = this->get_symbols_data(); 1065 } 1066 1067 const unsigned char* section_headers_data = NULL; 1068 section_size_type section_names_size; 1069 const unsigned char* symbols_data = NULL; 1070 section_size_type symbols_size; 1071 section_offset_type external_symbols_offset; 1072 const unsigned char* symbol_names_data = NULL; 1073 section_size_type symbol_names_size; 1074 1075 if (is_gc_or_icf) 1076 { 1077 section_headers_data = gc_sd->section_headers_data; 1078 section_names_size = gc_sd->section_names_size; 1079 symbols_data = gc_sd->symbols_data; 1080 symbols_size = gc_sd->symbols_size; 1081 external_symbols_offset = gc_sd->external_symbols_offset; 1082 symbol_names_data = gc_sd->symbol_names_data; 1083 symbol_names_size = gc_sd->symbol_names_size; 1084 } 1085 else 1086 { 1087 section_headers_data = sd->section_headers->data(); 1088 section_names_size = sd->section_names_size; 1089 if (sd->symbols != NULL) 1090 symbols_data = sd->symbols->data(); 1091 symbols_size = sd->symbols_size; 1092 external_symbols_offset = sd->external_symbols_offset; 1093 if (sd->symbol_names != NULL) 1094 symbol_names_data = sd->symbol_names->data(); 1095 symbol_names_size = sd->symbol_names_size; 1096 } 1097 1098 // Get the section headers. 1099 const unsigned char* shdrs = section_headers_data; 1100 const unsigned char* pshdrs; 1101 1102 // Get the section names. 1103 const unsigned char* pnamesu = (is_gc_or_icf) 1104 ? gc_sd->section_names_data 1105 : sd->section_names->data(); 1106 1107 const char* pnames = reinterpret_cast<const char*>(pnamesu); 1108 1109 // If any input files have been claimed by plugins, we need to defer 1110 // actual layout until the replacement files have arrived. 1111 const bool should_defer_layout = 1112 (parameters->options().has_plugins() 1113 && parameters->options().plugins()->should_defer_layout()); 1114 unsigned int num_sections_to_defer = 0; 1115 1116 // For each section, record the index of the reloc section if any. 1117 // Use 0 to mean that there is no reloc section, -1U to mean that 1118 // there is more than one. 1119 std::vector<unsigned int> reloc_shndx(shnum, 0); 1120 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL); 1121 // Skip the first, dummy, section. 1122 pshdrs = shdrs + This::shdr_size; 1123 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size) 1124 { 1125 typename This::Shdr shdr(pshdrs); 1126 1127 // Count the number of sections whose layout will be deferred. 1128 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC)) 1129 ++num_sections_to_defer; 1130 1131 unsigned int sh_type = shdr.get_sh_type(); 1132 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA) 1133 { 1134 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info()); 1135 if (target_shndx == 0 || target_shndx >= shnum) 1136 { 1137 this->error(_("relocation section %u has bad info %u"), 1138 i, target_shndx); 1139 continue; 1140 } 1141 1142 if (reloc_shndx[target_shndx] != 0) 1143 reloc_shndx[target_shndx] = -1U; 1144 else 1145 { 1146 reloc_shndx[target_shndx] = i; 1147 reloc_type[target_shndx] = sh_type; 1148 } 1149 } 1150 } 1151 1152 Output_sections& out_sections(this->output_sections()); 1153 std::vector<Address>& out_section_offsets(this->section_offsets_); 1154 1155 if (!is_gc_pass_two) 1156 { 1157 out_sections.resize(shnum); 1158 out_section_offsets.resize(shnum); 1159 } 1160 1161 // If we are only linking for symbols, then there is nothing else to 1162 // do here. 1163 if (this->input_file()->just_symbols()) 1164 { 1165 if (!is_gc_pass_two) 1166 { 1167 delete sd->section_headers; 1168 sd->section_headers = NULL; 1169 delete sd->section_names; 1170 sd->section_names = NULL; 1171 } 1172 return; 1173 } 1174 1175 if (num_sections_to_defer > 0) 1176 { 1177 parameters->options().plugins()->add_deferred_layout_object(this); 1178 this->deferred_layout_.reserve(num_sections_to_defer); 1179 } 1180 1181 // Whether we've seen a .note.GNU-stack section. 1182 bool seen_gnu_stack = false; 1183 // The flags of a .note.GNU-stack section. 1184 uint64_t gnu_stack_flags = 0; 1185 1186 // Keep track of which sections to omit. 1187 std::vector<bool> omit(shnum, false); 1188 1189 // Keep track of reloc sections when emitting relocations. 1190 const bool relocatable = parameters->options().relocatable(); 1191 const bool emit_relocs = (relocatable 1192 || parameters->options().emit_relocs()); 1193 std::vector<unsigned int> reloc_sections; 1194 1195 // Keep track of .eh_frame sections. 1196 std::vector<unsigned int> eh_frame_sections; 1197 1198 // Skip the first, dummy, section. 1199 pshdrs = shdrs + This::shdr_size; 1200 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size) 1201 { 1202 typename This::Shdr shdr(pshdrs); 1203 1204 if (shdr.get_sh_name() >= section_names_size) 1205 { 1206 this->error(_("bad section name offset for section %u: %lu"), 1207 i, static_cast<unsigned long>(shdr.get_sh_name())); 1208 return; 1209 } 1210 1211 const char* name = pnames + shdr.get_sh_name(); 1212 1213 if (!is_gc_pass_two) 1214 { 1215 if (this->handle_gnu_warning_section(name, i, symtab)) 1216 { 1217 if (!relocatable && !parameters->options().shared()) 1218 omit[i] = true; 1219 } 1220 1221 // The .note.GNU-stack section is special. It gives the 1222 // protection flags that this object file requires for the stack 1223 // in memory. 1224 if (strcmp(name, ".note.GNU-stack") == 0) 1225 { 1226 seen_gnu_stack = true; 1227 gnu_stack_flags |= shdr.get_sh_flags(); 1228 omit[i] = true; 1229 } 1230 1231 // The .note.GNU-split-stack section is also special. It 1232 // indicates that the object was compiled with 1233 // -fsplit-stack. 1234 if (this->handle_split_stack_section(name)) 1235 { 1236 if (!relocatable && !parameters->options().shared()) 1237 omit[i] = true; 1238 } 1239 1240 // Skip attributes section. 1241 if (parameters->target().is_attributes_section(name)) 1242 { 1243 omit[i] = true; 1244 } 1245 1246 bool discard = omit[i]; 1247 if (!discard) 1248 { 1249 if (shdr.get_sh_type() == elfcpp::SHT_GROUP) 1250 { 1251 if (!this->include_section_group(symtab, layout, i, name, 1252 shdrs, pnames, 1253 section_names_size, 1254 &omit)) 1255 discard = true; 1256 } 1257 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0 1258 && Layout::is_linkonce(name)) 1259 { 1260 if (!this->include_linkonce_section(layout, i, name, shdr)) 1261 discard = true; 1262 } 1263 } 1264 1265 // Add the section to the incremental inputs layout. 1266 Incremental_inputs* incremental_inputs = layout->incremental_inputs(); 1267 if (incremental_inputs != NULL) 1268 incremental_inputs->report_input_section(this, i, 1269 discard ? NULL : name, 1270 shdr.get_sh_size()); 1271 1272 if (discard) 1273 { 1274 // Do not include this section in the link. 1275 out_sections[i] = NULL; 1276 out_section_offsets[i] = invalid_address; 1277 continue; 1278 } 1279 } 1280 1281 if (is_gc_pass_one && parameters->options().gc_sections()) 1282 { 1283 if (is_section_name_included(name) 1284 || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY 1285 || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY) 1286 { 1287 symtab->gc()->worklist().push(Section_id(this, i)); 1288 } 1289 // If the section name XXX can be represented as a C identifier 1290 // it cannot be discarded if there are references to 1291 // __start_XXX and __stop_XXX symbols. These need to be 1292 // specially handled. 1293 if (is_cident(name)) 1294 { 1295 symtab->gc()->add_cident_section(name, Section_id(this, i)); 1296 } 1297 } 1298 1299 // When doing a relocatable link we are going to copy input 1300 // reloc sections into the output. We only want to copy the 1301 // ones associated with sections which are not being discarded. 1302 // However, we don't know that yet for all sections. So save 1303 // reloc sections and process them later. Garbage collection is 1304 // not triggered when relocatable code is desired. 1305 if (emit_relocs 1306 && (shdr.get_sh_type() == elfcpp::SHT_REL 1307 || shdr.get_sh_type() == elfcpp::SHT_RELA)) 1308 { 1309 reloc_sections.push_back(i); 1310 continue; 1311 } 1312 1313 if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP) 1314 continue; 1315 1316 // The .eh_frame section is special. It holds exception frame 1317 // information that we need to read in order to generate the 1318 // exception frame header. We process these after all the other 1319 // sections so that the exception frame reader can reliably 1320 // determine which sections are being discarded, and discard the 1321 // corresponding information. 1322 if (!relocatable 1323 && strcmp(name, ".eh_frame") == 0 1324 && this->check_eh_frame_flags(&shdr)) 1325 { 1326 if (is_gc_pass_one) 1327 { 1328 out_sections[i] = reinterpret_cast<Output_section*>(1); 1329 out_section_offsets[i] = invalid_address; 1330 } 1331 else 1332 eh_frame_sections.push_back(i); 1333 continue; 1334 } 1335 1336 if (is_gc_pass_two && parameters->options().gc_sections()) 1337 { 1338 // This is executed during the second pass of garbage 1339 // collection. do_layout has been called before and some 1340 // sections have been already discarded. Simply ignore 1341 // such sections this time around. 1342 if (out_sections[i] == NULL) 1343 { 1344 gold_assert(out_section_offsets[i] == invalid_address); 1345 continue; 1346 } 1347 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0) 1348 && symtab->gc()->is_section_garbage(this, i)) 1349 { 1350 if (parameters->options().print_gc_sections()) 1351 gold_info(_("%s: removing unused section from '%s'" 1352 " in file '%s'"), 1353 program_name, this->section_name(i).c_str(), 1354 this->name().c_str()); 1355 out_sections[i] = NULL; 1356 out_section_offsets[i] = invalid_address; 1357 continue; 1358 } 1359 } 1360 1361 if (is_gc_pass_two && parameters->options().icf_enabled()) 1362 { 1363 if (out_sections[i] == NULL) 1364 { 1365 gold_assert(out_section_offsets[i] == invalid_address); 1366 continue; 1367 } 1368 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0) 1369 && symtab->icf()->is_section_folded(this, i)) 1370 { 1371 if (parameters->options().print_icf_sections()) 1372 { 1373 Section_id folded = 1374 symtab->icf()->get_folded_section(this, i); 1375 Relobj* folded_obj = 1376 reinterpret_cast<Relobj*>(folded.first); 1377 gold_info(_("%s: ICF folding section '%s' in file '%s'" 1378 "into '%s' in file '%s'"), 1379 program_name, this->section_name(i).c_str(), 1380 this->name().c_str(), 1381 folded_obj->section_name(folded.second).c_str(), 1382 folded_obj->name().c_str()); 1383 } 1384 out_sections[i] = NULL; 1385 out_section_offsets[i] = invalid_address; 1386 continue; 1387 } 1388 } 1389 1390 // Defer layout here if input files are claimed by plugins. When gc 1391 // is turned on this function is called twice. For the second call 1392 // should_defer_layout should be false. 1393 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC)) 1394 { 1395 gold_assert(!is_gc_pass_two); 1396 this->deferred_layout_.push_back(Deferred_layout(i, name, 1397 pshdrs, 1398 reloc_shndx[i], 1399 reloc_type[i])); 1400 // Put dummy values here; real values will be supplied by 1401 // do_layout_deferred_sections. 1402 out_sections[i] = reinterpret_cast<Output_section*>(2); 1403 out_section_offsets[i] = invalid_address; 1404 continue; 1405 } 1406 1407 // During gc_pass_two if a section that was previously deferred is 1408 // found, do not layout the section as layout_deferred_sections will 1409 // do it later from gold.cc. 1410 if (is_gc_pass_two 1411 && (out_sections[i] == reinterpret_cast<Output_section*>(2))) 1412 continue; 1413 1414 if (is_gc_pass_one) 1415 { 1416 // This is during garbage collection. The out_sections are 1417 // assigned in the second call to this function. 1418 out_sections[i] = reinterpret_cast<Output_section*>(1); 1419 out_section_offsets[i] = invalid_address; 1420 } 1421 else 1422 { 1423 // When garbage collection is switched on the actual layout 1424 // only happens in the second call. 1425 this->layout_section(layout, i, name, shdr, reloc_shndx[i], 1426 reloc_type[i]); 1427 } 1428 } 1429 1430 if (!is_gc_pass_two) 1431 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags); 1432 1433 // When doing a relocatable link handle the reloc sections at the 1434 // end. Garbage collection and Identical Code Folding is not 1435 // turned on for relocatable code. 1436 if (emit_relocs) 1437 this->size_relocatable_relocs(); 1438 1439 gold_assert(!(is_gc_or_icf) || reloc_sections.empty()); 1440 1441 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin(); 1442 p != reloc_sections.end(); 1443 ++p) 1444 { 1445 unsigned int i = *p; 1446 const unsigned char* pshdr; 1447 pshdr = section_headers_data + i * This::shdr_size; 1448 typename This::Shdr shdr(pshdr); 1449 1450 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info()); 1451 if (data_shndx >= shnum) 1452 { 1453 // We already warned about this above. 1454 continue; 1455 } 1456 1457 Output_section* data_section = out_sections[data_shndx]; 1458 if (data_section == reinterpret_cast<Output_section*>(2)) 1459 { 1460 // The layout for the data section was deferred, so we need 1461 // to defer the relocation section, too. 1462 const char* name = pnames + shdr.get_sh_name(); 1463 this->deferred_layout_relocs_.push_back( 1464 Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL)); 1465 out_sections[i] = reinterpret_cast<Output_section*>(2); 1466 out_section_offsets[i] = invalid_address; 1467 continue; 1468 } 1469 if (data_section == NULL) 1470 { 1471 out_sections[i] = NULL; 1472 out_section_offsets[i] = invalid_address; 1473 continue; 1474 } 1475 1476 Relocatable_relocs* rr = new Relocatable_relocs(); 1477 this->set_relocatable_relocs(i, rr); 1478 1479 Output_section* os = layout->layout_reloc(this, i, shdr, data_section, 1480 rr); 1481 out_sections[i] = os; 1482 out_section_offsets[i] = invalid_address; 1483 } 1484 1485 // Handle the .eh_frame sections at the end. 1486 gold_assert(!is_gc_pass_one || eh_frame_sections.empty()); 1487 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin(); 1488 p != eh_frame_sections.end(); 1489 ++p) 1490 { 1491 gold_assert(this->has_eh_frame_); 1492 gold_assert(external_symbols_offset != 0); 1493 1494 unsigned int i = *p; 1495 const unsigned char* pshdr; 1496 pshdr = section_headers_data + i * This::shdr_size; 1497 typename This::Shdr shdr(pshdr); 1498 1499 off_t offset; 1500 Output_section* os = layout->layout_eh_frame(this, 1501 symbols_data, 1502 symbols_size, 1503 symbol_names_data, 1504 symbol_names_size, 1505 i, shdr, 1506 reloc_shndx[i], 1507 reloc_type[i], 1508 &offset); 1509 out_sections[i] = os; 1510 if (os == NULL || offset == -1) 1511 { 1512 // An object can contain at most one section holding exception 1513 // frame information. 1514 gold_assert(this->discarded_eh_frame_shndx_ == -1U); 1515 this->discarded_eh_frame_shndx_ = i; 1516 out_section_offsets[i] = invalid_address; 1517 } 1518 else 1519 out_section_offsets[i] = convert_types<Address, off_t>(offset); 1520 1521 // If this section requires special handling, and if there are 1522 // relocs that apply to it, then we must do the special handling 1523 // before we apply the relocs. 1524 if (os != NULL && offset == -1 && reloc_shndx[i] != 0) 1525 this->set_relocs_must_follow_section_writes(); 1526 } 1527 1528 if (is_gc_pass_two) 1529 { 1530 delete[] gc_sd->section_headers_data; 1531 delete[] gc_sd->section_names_data; 1532 delete[] gc_sd->symbols_data; 1533 delete[] gc_sd->symbol_names_data; 1534 this->set_symbols_data(NULL); 1535 } 1536 else 1537 { 1538 delete sd->section_headers; 1539 sd->section_headers = NULL; 1540 delete sd->section_names; 1541 sd->section_names = NULL; 1542 } 1543 } 1544 1545 // Layout sections whose layout was deferred while waiting for 1546 // input files from a plugin. 1547 1548 template<int size, bool big_endian> 1549 void 1550 Sized_relobj<size, big_endian>::do_layout_deferred_sections(Layout* layout) 1551 { 1552 typename std::vector<Deferred_layout>::iterator deferred; 1553 1554 for (deferred = this->deferred_layout_.begin(); 1555 deferred != this->deferred_layout_.end(); 1556 ++deferred) 1557 { 1558 typename This::Shdr shdr(deferred->shdr_data_); 1559 // If the section is not included, it is because the garbage collector 1560 // decided it is not needed. Avoid reverting that decision. 1561 if (!this->is_section_included(deferred->shndx_)) 1562 continue; 1563 1564 this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(), 1565 shdr, deferred->reloc_shndx_, deferred->reloc_type_); 1566 } 1567 1568 this->deferred_layout_.clear(); 1569 1570 // Now handle the deferred relocation sections. 1571 1572 Output_sections& out_sections(this->output_sections()); 1573 std::vector<Address>& out_section_offsets(this->section_offsets_); 1574 1575 for (deferred = this->deferred_layout_relocs_.begin(); 1576 deferred != this->deferred_layout_relocs_.end(); 1577 ++deferred) 1578 { 1579 unsigned int shndx = deferred->shndx_; 1580 typename This::Shdr shdr(deferred->shdr_data_); 1581 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info()); 1582 1583 Output_section* data_section = out_sections[data_shndx]; 1584 if (data_section == NULL) 1585 { 1586 out_sections[shndx] = NULL; 1587 out_section_offsets[shndx] = invalid_address; 1588 continue; 1589 } 1590 1591 Relocatable_relocs* rr = new Relocatable_relocs(); 1592 this->set_relocatable_relocs(shndx, rr); 1593 1594 Output_section* os = layout->layout_reloc(this, shndx, shdr, 1595 data_section, rr); 1596 out_sections[shndx] = os; 1597 out_section_offsets[shndx] = invalid_address; 1598 } 1599 } 1600 1601 // Add the symbols to the symbol table. 1602 1603 template<int size, bool big_endian> 1604 void 1605 Sized_relobj<size, big_endian>::do_add_symbols(Symbol_table* symtab, 1606 Read_symbols_data* sd, 1607 Layout*) 1608 { 1609 if (sd->symbols == NULL) 1610 { 1611 gold_assert(sd->symbol_names == NULL); 1612 return; 1613 } 1614 1615 const int sym_size = This::sym_size; 1616 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset) 1617 / sym_size); 1618 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset) 1619 { 1620 this->error(_("size of symbols is not multiple of symbol size")); 1621 return; 1622 } 1623 1624 this->symbols_.resize(symcount); 1625 1626 const char* sym_names = 1627 reinterpret_cast<const char*>(sd->symbol_names->data()); 1628 symtab->add_from_relobj(this, 1629 sd->symbols->data() + sd->external_symbols_offset, 1630 symcount, this->local_symbol_count_, 1631 sym_names, sd->symbol_names_size, 1632 &this->symbols_, 1633 &this->defined_count_); 1634 1635 delete sd->symbols; 1636 sd->symbols = NULL; 1637 delete sd->symbol_names; 1638 sd->symbol_names = NULL; 1639 } 1640 1641 // Find out if this object, that is a member of a lib group, should be included 1642 // in the link. We check every symbol defined by this object. If the symbol 1643 // table has a strong undefined reference to that symbol, we have to include 1644 // the object. 1645 1646 template<int size, bool big_endian> 1647 Archive::Should_include 1648 Sized_relobj<size, big_endian>::do_should_include_member(Symbol_table* symtab, 1649 Layout* layout, 1650 Read_symbols_data* sd, 1651 std::string* why) 1652 { 1653 char* tmpbuf = NULL; 1654 size_t tmpbuflen = 0; 1655 const char* sym_names = 1656 reinterpret_cast<const char*>(sd->symbol_names->data()); 1657 const unsigned char* syms = 1658 sd->symbols->data() + sd->external_symbols_offset; 1659 const int sym_size = elfcpp::Elf_sizes<size>::sym_size; 1660 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset) 1661 / sym_size); 1662 1663 const unsigned char* p = syms; 1664 1665 for (size_t i = 0; i < symcount; ++i, p += sym_size) 1666 { 1667 elfcpp::Sym<size, big_endian> sym(p); 1668 unsigned int st_shndx = sym.get_st_shndx(); 1669 if (st_shndx == elfcpp::SHN_UNDEF) 1670 continue; 1671 1672 unsigned int st_name = sym.get_st_name(); 1673 const char* name = sym_names + st_name; 1674 Symbol* symbol; 1675 Archive::Should_include t = Archive::should_include_member(symtab, 1676 layout, 1677 name, 1678 &symbol, why, 1679 &tmpbuf, 1680 &tmpbuflen); 1681 if (t == Archive::SHOULD_INCLUDE_YES) 1682 { 1683 if (tmpbuf != NULL) 1684 free(tmpbuf); 1685 return t; 1686 } 1687 } 1688 if (tmpbuf != NULL) 1689 free(tmpbuf); 1690 return Archive::SHOULD_INCLUDE_UNKNOWN; 1691 } 1692 1693 // Return whether the local symbol SYMNDX has a PLT offset. 1694 1695 template<int size, bool big_endian> 1696 bool 1697 Sized_relobj<size, big_endian>::local_has_plt_offset(unsigned int symndx) const 1698 { 1699 typename Local_plt_offsets::const_iterator p = 1700 this->local_plt_offsets_.find(symndx); 1701 return p != this->local_plt_offsets_.end(); 1702 } 1703 1704 // Get the PLT offset of a local symbol. 1705 1706 template<int size, bool big_endian> 1707 unsigned int 1708 Sized_relobj<size, big_endian>::local_plt_offset(unsigned int symndx) const 1709 { 1710 typename Local_plt_offsets::const_iterator p = 1711 this->local_plt_offsets_.find(symndx); 1712 gold_assert(p != this->local_plt_offsets_.end()); 1713 return p->second; 1714 } 1715 1716 // Set the PLT offset of a local symbol. 1717 1718 template<int size, bool big_endian> 1719 void 1720 Sized_relobj<size, big_endian>::set_local_plt_offset(unsigned int symndx, 1721 unsigned int plt_offset) 1722 { 1723 std::pair<typename Local_plt_offsets::iterator, bool> ins = 1724 this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset)); 1725 gold_assert(ins.second); 1726 } 1727 1728 // First pass over the local symbols. Here we add their names to 1729 // *POOL and *DYNPOOL, and we store the symbol value in 1730 // THIS->LOCAL_VALUES_. This function is always called from a 1731 // singleton thread. This is followed by a call to 1732 // finalize_local_symbols. 1733 1734 template<int size, bool big_endian> 1735 void 1736 Sized_relobj<size, big_endian>::do_count_local_symbols(Stringpool* pool, 1737 Stringpool* dynpool) 1738 { 1739 gold_assert(this->symtab_shndx_ != -1U); 1740 if (this->symtab_shndx_ == 0) 1741 { 1742 // This object has no symbols. Weird but legal. 1743 return; 1744 } 1745 1746 // Read the symbol table section header. 1747 const unsigned int symtab_shndx = this->symtab_shndx_; 1748 typename This::Shdr symtabshdr(this, 1749 this->elf_file_.section_header(symtab_shndx)); 1750 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB); 1751 1752 // Read the local symbols. 1753 const int sym_size = This::sym_size; 1754 const unsigned int loccount = this->local_symbol_count_; 1755 gold_assert(loccount == symtabshdr.get_sh_info()); 1756 off_t locsize = loccount * sym_size; 1757 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(), 1758 locsize, true, true); 1759 1760 // Read the symbol names. 1761 const unsigned int strtab_shndx = 1762 this->adjust_shndx(symtabshdr.get_sh_link()); 1763 section_size_type strtab_size; 1764 const unsigned char* pnamesu = this->section_contents(strtab_shndx, 1765 &strtab_size, 1766 true); 1767 const char* pnames = reinterpret_cast<const char*>(pnamesu); 1768 1769 // Loop over the local symbols. 1770 1771 const Output_sections& out_sections(this->output_sections()); 1772 unsigned int shnum = this->shnum(); 1773 unsigned int count = 0; 1774 unsigned int dyncount = 0; 1775 // Skip the first, dummy, symbol. 1776 psyms += sym_size; 1777 bool discard_all = parameters->options().discard_all(); 1778 bool discard_locals = parameters->options().discard_locals(); 1779 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size) 1780 { 1781 elfcpp::Sym<size, big_endian> sym(psyms); 1782 1783 Symbol_value<size>& lv(this->local_values_[i]); 1784 1785 bool is_ordinary; 1786 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(), 1787 &is_ordinary); 1788 lv.set_input_shndx(shndx, is_ordinary); 1789 1790 if (sym.get_st_type() == elfcpp::STT_SECTION) 1791 lv.set_is_section_symbol(); 1792 else if (sym.get_st_type() == elfcpp::STT_TLS) 1793 lv.set_is_tls_symbol(); 1794 else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC) 1795 lv.set_is_ifunc_symbol(); 1796 1797 // Save the input symbol value for use in do_finalize_local_symbols(). 1798 lv.set_input_value(sym.get_st_value()); 1799 1800 // Decide whether this symbol should go into the output file. 1801 1802 if ((shndx < shnum && out_sections[shndx] == NULL) 1803 || shndx == this->discarded_eh_frame_shndx_) 1804 { 1805 lv.set_no_output_symtab_entry(); 1806 gold_assert(!lv.needs_output_dynsym_entry()); 1807 continue; 1808 } 1809 1810 if (sym.get_st_type() == elfcpp::STT_SECTION) 1811 { 1812 lv.set_no_output_symtab_entry(); 1813 gold_assert(!lv.needs_output_dynsym_entry()); 1814 continue; 1815 } 1816 1817 if (sym.get_st_name() >= strtab_size) 1818 { 1819 this->error(_("local symbol %u section name out of range: %u >= %u"), 1820 i, sym.get_st_name(), 1821 static_cast<unsigned int>(strtab_size)); 1822 lv.set_no_output_symtab_entry(); 1823 continue; 1824 } 1825 1826 const char* name = pnames + sym.get_st_name(); 1827 1828 // If needed, add the symbol to the dynamic symbol table string pool. 1829 if (lv.needs_output_dynsym_entry()) 1830 { 1831 dynpool->add(name, true, NULL); 1832 ++dyncount; 1833 } 1834 1835 if (discard_all && lv.may_be_discarded_from_output_symtab()) 1836 { 1837 lv.set_no_output_symtab_entry(); 1838 continue; 1839 } 1840 1841 // If --discard-locals option is used, discard all temporary local 1842 // symbols. These symbols start with system-specific local label 1843 // prefixes, typically .L for ELF system. We want to be compatible 1844 // with GNU ld so here we essentially use the same check in 1845 // bfd_is_local_label(). The code is different because we already 1846 // know that: 1847 // 1848 // - the symbol is local and thus cannot have global or weak binding. 1849 // - the symbol is not a section symbol. 1850 // - the symbol has a name. 1851 // 1852 // We do not discard a symbol if it needs a dynamic symbol entry. 1853 if (discard_locals 1854 && sym.get_st_type() != elfcpp::STT_FILE 1855 && !lv.needs_output_dynsym_entry() 1856 && lv.may_be_discarded_from_output_symtab() 1857 && parameters->target().is_local_label_name(name)) 1858 { 1859 lv.set_no_output_symtab_entry(); 1860 continue; 1861 } 1862 1863 // Discard the local symbol if -retain_symbols_file is specified 1864 // and the local symbol is not in that file. 1865 if (!parameters->options().should_retain_symbol(name)) 1866 { 1867 lv.set_no_output_symtab_entry(); 1868 continue; 1869 } 1870 1871 // Add the symbol to the symbol table string pool. 1872 pool->add(name, true, NULL); 1873 ++count; 1874 } 1875 1876 this->output_local_symbol_count_ = count; 1877 this->output_local_dynsym_count_ = dyncount; 1878 } 1879 1880 // Compute the final value of a local symbol. 1881 1882 template<int size, bool big_endian> 1883 typename Sized_relobj<size, big_endian>::Compute_final_local_value_status 1884 Sized_relobj<size, big_endian>::compute_final_local_value_internal( 1885 unsigned int r_sym, 1886 const Symbol_value<size>* lv_in, 1887 Symbol_value<size>* lv_out, 1888 bool relocatable, 1889 const Output_sections& out_sections, 1890 const std::vector<Address>& out_offsets, 1891 const Symbol_table* symtab) 1892 { 1893 // We are going to overwrite *LV_OUT, if it has a merged symbol value, 1894 // we may have a memory leak. 1895 gold_assert(lv_out->has_output_value()); 1896 1897 bool is_ordinary; 1898 unsigned int shndx = lv_in->input_shndx(&is_ordinary); 1899 1900 // Set the output symbol value. 1901 1902 if (!is_ordinary) 1903 { 1904 if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx)) 1905 lv_out->set_output_value(lv_in->input_value()); 1906 else 1907 { 1908 this->error(_("unknown section index %u for local symbol %u"), 1909 shndx, r_sym); 1910 lv_out->set_output_value(0); 1911 return This::CFLV_ERROR; 1912 } 1913 } 1914 else 1915 { 1916 if (shndx >= this->shnum()) 1917 { 1918 this->error(_("local symbol %u section index %u out of range"), 1919 r_sym, shndx); 1920 lv_out->set_output_value(0); 1921 return This::CFLV_ERROR; 1922 } 1923 1924 Output_section* os = out_sections[shndx]; 1925 Address secoffset = out_offsets[shndx]; 1926 if (symtab->is_section_folded(this, shndx)) 1927 { 1928 gold_assert(os == NULL && secoffset == invalid_address); 1929 // Get the os of the section it is folded onto. 1930 Section_id folded = symtab->icf()->get_folded_section(this, 1931 shndx); 1932 gold_assert(folded.first != NULL); 1933 Sized_relobj<size, big_endian>* folded_obj = reinterpret_cast 1934 <Sized_relobj<size, big_endian>*>(folded.first); 1935 os = folded_obj->output_section(folded.second); 1936 gold_assert(os != NULL); 1937 secoffset = folded_obj->get_output_section_offset(folded.second); 1938 1939 // This could be a relaxed input section. 1940 if (secoffset == invalid_address) 1941 { 1942 const Output_relaxed_input_section* relaxed_section = 1943 os->find_relaxed_input_section(folded_obj, folded.second); 1944 gold_assert(relaxed_section != NULL); 1945 secoffset = relaxed_section->address() - os->address(); 1946 } 1947 } 1948 1949 if (os == NULL) 1950 { 1951 // This local symbol belongs to a section we are discarding. 1952 // In some cases when applying relocations later, we will 1953 // attempt to match it to the corresponding kept section, 1954 // so we leave the input value unchanged here. 1955 return This::CFLV_DISCARDED; 1956 } 1957 else if (secoffset == invalid_address) 1958 { 1959 uint64_t start; 1960 1961 // This is a SHF_MERGE section or one which otherwise 1962 // requires special handling. 1963 if (shndx == this->discarded_eh_frame_shndx_) 1964 { 1965 // This local symbol belongs to a discarded .eh_frame 1966 // section. Just treat it like the case in which 1967 // os == NULL above. 1968 gold_assert(this->has_eh_frame_); 1969 return This::CFLV_DISCARDED; 1970 } 1971 else if (!lv_in->is_section_symbol()) 1972 { 1973 // This is not a section symbol. We can determine 1974 // the final value now. 1975 lv_out->set_output_value( 1976 os->output_address(this, shndx, lv_in->input_value())); 1977 } 1978 else if (!os->find_starting_output_address(this, shndx, &start)) 1979 { 1980 // This is a section symbol, but apparently not one in a 1981 // merged section. First check to see if this is a relaxed 1982 // input section. If so, use its address. Otherwise just 1983 // use the start of the output section. This happens with 1984 // relocatable links when the input object has section 1985 // symbols for arbitrary non-merge sections. 1986 const Output_section_data* posd = 1987 os->find_relaxed_input_section(this, shndx); 1988 if (posd != NULL) 1989 { 1990 Address relocatable_link_adjustment = 1991 relocatable ? os->address() : 0; 1992 lv_out->set_output_value(posd->address() 1993 - relocatable_link_adjustment); 1994 } 1995 else 1996 lv_out->set_output_value(os->address()); 1997 } 1998 else 1999 { 2000 // We have to consider the addend to determine the 2001 // value to use in a relocation. START is the start 2002 // of this input section. If we are doing a relocatable 2003 // link, use offset from start output section instead of 2004 // address. 2005 Address adjusted_start = 2006 relocatable ? start - os->address() : start; 2007 Merged_symbol_value<size>* msv = 2008 new Merged_symbol_value<size>(lv_in->input_value(), 2009 adjusted_start); 2010 lv_out->set_merged_symbol_value(msv); 2011 } 2012 } 2013 else if (lv_in->is_tls_symbol()) 2014 lv_out->set_output_value(os->tls_offset() 2015 + secoffset 2016 + lv_in->input_value()); 2017 else 2018 lv_out->set_output_value((relocatable ? 0 : os->address()) 2019 + secoffset 2020 + lv_in->input_value()); 2021 } 2022 return This::CFLV_OK; 2023 } 2024 2025 // Compute final local symbol value. R_SYM is the index of a local 2026 // symbol in symbol table. LV points to a symbol value, which is 2027 // expected to hold the input value and to be over-written by the 2028 // final value. SYMTAB points to a symbol table. Some targets may want 2029 // to know would-be-finalized local symbol values in relaxation. 2030 // Hence we provide this method. Since this method updates *LV, a 2031 // callee should make a copy of the original local symbol value and 2032 // use the copy instead of modifying an object's local symbols before 2033 // everything is finalized. The caller should also free up any allocated 2034 // memory in the return value in *LV. 2035 template<int size, bool big_endian> 2036 typename Sized_relobj<size, big_endian>::Compute_final_local_value_status 2037 Sized_relobj<size, big_endian>::compute_final_local_value( 2038 unsigned int r_sym, 2039 const Symbol_value<size>* lv_in, 2040 Symbol_value<size>* lv_out, 2041 const Symbol_table* symtab) 2042 { 2043 // This is just a wrapper of compute_final_local_value_internal. 2044 const bool relocatable = parameters->options().relocatable(); 2045 const Output_sections& out_sections(this->output_sections()); 2046 const std::vector<Address>& out_offsets(this->section_offsets_); 2047 return this->compute_final_local_value_internal(r_sym, lv_in, lv_out, 2048 relocatable, out_sections, 2049 out_offsets, symtab); 2050 } 2051 2052 // Finalize the local symbols. Here we set the final value in 2053 // THIS->LOCAL_VALUES_ and set their output symbol table indexes. 2054 // This function is always called from a singleton thread. The actual 2055 // output of the local symbols will occur in a separate task. 2056 2057 template<int size, bool big_endian> 2058 unsigned int 2059 Sized_relobj<size, big_endian>::do_finalize_local_symbols(unsigned int index, 2060 off_t off, 2061 Symbol_table* symtab) 2062 { 2063 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3))); 2064 2065 const unsigned int loccount = this->local_symbol_count_; 2066 this->local_symbol_offset_ = off; 2067 2068 const bool relocatable = parameters->options().relocatable(); 2069 const Output_sections& out_sections(this->output_sections()); 2070 const std::vector<Address>& out_offsets(this->section_offsets_); 2071 2072 for (unsigned int i = 1; i < loccount; ++i) 2073 { 2074 Symbol_value<size>* lv = &this->local_values_[i]; 2075 2076 Compute_final_local_value_status cflv_status = 2077 this->compute_final_local_value_internal(i, lv, lv, relocatable, 2078 out_sections, out_offsets, 2079 symtab); 2080 switch (cflv_status) 2081 { 2082 case CFLV_OK: 2083 if (!lv->is_output_symtab_index_set()) 2084 { 2085 lv->set_output_symtab_index(index); 2086 ++index; 2087 } 2088 break; 2089 case CFLV_DISCARDED: 2090 case CFLV_ERROR: 2091 // Do nothing. 2092 break; 2093 default: 2094 gold_unreachable(); 2095 } 2096 } 2097 return index; 2098 } 2099 2100 // Set the output dynamic symbol table indexes for the local variables. 2101 2102 template<int size, bool big_endian> 2103 unsigned int 2104 Sized_relobj<size, big_endian>::do_set_local_dynsym_indexes(unsigned int index) 2105 { 2106 const unsigned int loccount = this->local_symbol_count_; 2107 for (unsigned int i = 1; i < loccount; ++i) 2108 { 2109 Symbol_value<size>& lv(this->local_values_[i]); 2110 if (lv.needs_output_dynsym_entry()) 2111 { 2112 lv.set_output_dynsym_index(index); 2113 ++index; 2114 } 2115 } 2116 return index; 2117 } 2118 2119 // Set the offset where local dynamic symbol information will be stored. 2120 // Returns the count of local symbols contributed to the symbol table by 2121 // this object. 2122 2123 template<int size, bool big_endian> 2124 unsigned int 2125 Sized_relobj<size, big_endian>::do_set_local_dynsym_offset(off_t off) 2126 { 2127 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3))); 2128 this->local_dynsym_offset_ = off; 2129 return this->output_local_dynsym_count_; 2130 } 2131 2132 // If Symbols_data is not NULL get the section flags from here otherwise 2133 // get it from the file. 2134 2135 template<int size, bool big_endian> 2136 uint64_t 2137 Sized_relobj<size, big_endian>::do_section_flags(unsigned int shndx) 2138 { 2139 Symbols_data* sd = this->get_symbols_data(); 2140 if (sd != NULL) 2141 { 2142 const unsigned char* pshdrs = sd->section_headers_data 2143 + This::shdr_size * shndx; 2144 typename This::Shdr shdr(pshdrs); 2145 return shdr.get_sh_flags(); 2146 } 2147 // If sd is NULL, read the section header from the file. 2148 return this->elf_file_.section_flags(shndx); 2149 } 2150 2151 // Get the section's ent size from Symbols_data. Called by get_section_contents 2152 // in icf.cc 2153 2154 template<int size, bool big_endian> 2155 uint64_t 2156 Sized_relobj<size, big_endian>::do_section_entsize(unsigned int shndx) 2157 { 2158 Symbols_data* sd = this->get_symbols_data(); 2159 gold_assert(sd != NULL); 2160 2161 const unsigned char* pshdrs = sd->section_headers_data 2162 + This::shdr_size * shndx; 2163 typename This::Shdr shdr(pshdrs); 2164 return shdr.get_sh_entsize(); 2165 } 2166 2167 // Write out the local symbols. 2168 2169 template<int size, bool big_endian> 2170 void 2171 Sized_relobj<size, big_endian>::write_local_symbols( 2172 Output_file* of, 2173 const Stringpool* sympool, 2174 const Stringpool* dynpool, 2175 Output_symtab_xindex* symtab_xindex, 2176 Output_symtab_xindex* dynsym_xindex) 2177 { 2178 const bool strip_all = parameters->options().strip_all(); 2179 if (strip_all) 2180 { 2181 if (this->output_local_dynsym_count_ == 0) 2182 return; 2183 this->output_local_symbol_count_ = 0; 2184 } 2185 2186 gold_assert(this->symtab_shndx_ != -1U); 2187 if (this->symtab_shndx_ == 0) 2188 { 2189 // This object has no symbols. Weird but legal. 2190 return; 2191 } 2192 2193 // Read the symbol table section header. 2194 const unsigned int symtab_shndx = this->symtab_shndx_; 2195 typename This::Shdr symtabshdr(this, 2196 this->elf_file_.section_header(symtab_shndx)); 2197 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB); 2198 const unsigned int loccount = this->local_symbol_count_; 2199 gold_assert(loccount == symtabshdr.get_sh_info()); 2200 2201 // Read the local symbols. 2202 const int sym_size = This::sym_size; 2203 off_t locsize = loccount * sym_size; 2204 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(), 2205 locsize, true, false); 2206 2207 // Read the symbol names. 2208 const unsigned int strtab_shndx = 2209 this->adjust_shndx(symtabshdr.get_sh_link()); 2210 section_size_type strtab_size; 2211 const unsigned char* pnamesu = this->section_contents(strtab_shndx, 2212 &strtab_size, 2213 false); 2214 const char* pnames = reinterpret_cast<const char*>(pnamesu); 2215 2216 // Get views into the output file for the portions of the symbol table 2217 // and the dynamic symbol table that we will be writing. 2218 off_t output_size = this->output_local_symbol_count_ * sym_size; 2219 unsigned char* oview = NULL; 2220 if (output_size > 0) 2221 oview = of->get_output_view(this->local_symbol_offset_, output_size); 2222 2223 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size; 2224 unsigned char* dyn_oview = NULL; 2225 if (dyn_output_size > 0) 2226 dyn_oview = of->get_output_view(this->local_dynsym_offset_, 2227 dyn_output_size); 2228 2229 const Output_sections out_sections(this->output_sections()); 2230 2231 gold_assert(this->local_values_.size() == loccount); 2232 2233 unsigned char* ov = oview; 2234 unsigned char* dyn_ov = dyn_oview; 2235 psyms += sym_size; 2236 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size) 2237 { 2238 elfcpp::Sym<size, big_endian> isym(psyms); 2239 2240 Symbol_value<size>& lv(this->local_values_[i]); 2241 2242 bool is_ordinary; 2243 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(), 2244 &is_ordinary); 2245 if (is_ordinary) 2246 { 2247 gold_assert(st_shndx < out_sections.size()); 2248 if (out_sections[st_shndx] == NULL) 2249 continue; 2250 st_shndx = out_sections[st_shndx]->out_shndx(); 2251 if (st_shndx >= elfcpp::SHN_LORESERVE) 2252 { 2253 if (lv.has_output_symtab_entry()) 2254 symtab_xindex->add(lv.output_symtab_index(), st_shndx); 2255 if (lv.has_output_dynsym_entry()) 2256 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx); 2257 st_shndx = elfcpp::SHN_XINDEX; 2258 } 2259 } 2260 2261 // Write the symbol to the output symbol table. 2262 if (lv.has_output_symtab_entry()) 2263 { 2264 elfcpp::Sym_write<size, big_endian> osym(ov); 2265 2266 gold_assert(isym.get_st_name() < strtab_size); 2267 const char* name = pnames + isym.get_st_name(); 2268 osym.put_st_name(sympool->get_offset(name)); 2269 osym.put_st_value(this->local_values_[i].value(this, 0)); 2270 osym.put_st_size(isym.get_st_size()); 2271 osym.put_st_info(isym.get_st_info()); 2272 osym.put_st_other(isym.get_st_other()); 2273 osym.put_st_shndx(st_shndx); 2274 2275 ov += sym_size; 2276 } 2277 2278 // Write the symbol to the output dynamic symbol table. 2279 if (lv.has_output_dynsym_entry()) 2280 { 2281 gold_assert(dyn_ov < dyn_oview + dyn_output_size); 2282 elfcpp::Sym_write<size, big_endian> osym(dyn_ov); 2283 2284 gold_assert(isym.get_st_name() < strtab_size); 2285 const char* name = pnames + isym.get_st_name(); 2286 osym.put_st_name(dynpool->get_offset(name)); 2287 osym.put_st_value(this->local_values_[i].value(this, 0)); 2288 osym.put_st_size(isym.get_st_size()); 2289 osym.put_st_info(isym.get_st_info()); 2290 osym.put_st_other(isym.get_st_other()); 2291 osym.put_st_shndx(st_shndx); 2292 2293 dyn_ov += sym_size; 2294 } 2295 } 2296 2297 2298 if (output_size > 0) 2299 { 2300 gold_assert(ov - oview == output_size); 2301 of->write_output_view(this->local_symbol_offset_, output_size, oview); 2302 } 2303 2304 if (dyn_output_size > 0) 2305 { 2306 gold_assert(dyn_ov - dyn_oview == dyn_output_size); 2307 of->write_output_view(this->local_dynsym_offset_, dyn_output_size, 2308 dyn_oview); 2309 } 2310 } 2311 2312 // Set *INFO to symbolic information about the offset OFFSET in the 2313 // section SHNDX. Return true if we found something, false if we 2314 // found nothing. 2315 2316 template<int size, bool big_endian> 2317 bool 2318 Sized_relobj<size, big_endian>::get_symbol_location_info( 2319 unsigned int shndx, 2320 off_t offset, 2321 Symbol_location_info* info) 2322 { 2323 if (this->symtab_shndx_ == 0) 2324 return false; 2325 2326 section_size_type symbols_size; 2327 const unsigned char* symbols = this->section_contents(this->symtab_shndx_, 2328 &symbols_size, 2329 false); 2330 2331 unsigned int symbol_names_shndx = 2332 this->adjust_shndx(this->section_link(this->symtab_shndx_)); 2333 section_size_type names_size; 2334 const unsigned char* symbol_names_u = 2335 this->section_contents(symbol_names_shndx, &names_size, false); 2336 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u); 2337 2338 const int sym_size = This::sym_size; 2339 const size_t count = symbols_size / sym_size; 2340 2341 const unsigned char* p = symbols; 2342 for (size_t i = 0; i < count; ++i, p += sym_size) 2343 { 2344 elfcpp::Sym<size, big_endian> sym(p); 2345 2346 if (sym.get_st_type() == elfcpp::STT_FILE) 2347 { 2348 if (sym.get_st_name() >= names_size) 2349 info->source_file = "(invalid)"; 2350 else 2351 info->source_file = symbol_names + sym.get_st_name(); 2352 continue; 2353 } 2354 2355 bool is_ordinary; 2356 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(), 2357 &is_ordinary); 2358 if (is_ordinary 2359 && st_shndx == shndx 2360 && static_cast<off_t>(sym.get_st_value()) <= offset 2361 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size()) 2362 > offset)) 2363 { 2364 if (sym.get_st_name() > names_size) 2365 info->enclosing_symbol_name = "(invalid)"; 2366 else 2367 { 2368 info->enclosing_symbol_name = symbol_names + sym.get_st_name(); 2369 if (parameters->options().do_demangle()) 2370 { 2371 char* demangled_name = cplus_demangle( 2372 info->enclosing_symbol_name.c_str(), 2373 DMGL_ANSI | DMGL_PARAMS); 2374 if (demangled_name != NULL) 2375 { 2376 info->enclosing_symbol_name.assign(demangled_name); 2377 free(demangled_name); 2378 } 2379 } 2380 } 2381 return true; 2382 } 2383 } 2384 2385 return false; 2386 } 2387 2388 // Look for a kept section corresponding to the given discarded section, 2389 // and return its output address. This is used only for relocations in 2390 // debugging sections. If we can't find the kept section, return 0. 2391 2392 template<int size, bool big_endian> 2393 typename Sized_relobj<size, big_endian>::Address 2394 Sized_relobj<size, big_endian>::map_to_kept_section( 2395 unsigned int shndx, 2396 bool* found) const 2397 { 2398 Relobj* kept_object; 2399 unsigned int kept_shndx; 2400 if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx)) 2401 { 2402 Sized_relobj<size, big_endian>* kept_relobj = 2403 static_cast<Sized_relobj<size, big_endian>*>(kept_object); 2404 Output_section* os = kept_relobj->output_section(kept_shndx); 2405 Address offset = kept_relobj->get_output_section_offset(kept_shndx); 2406 if (os != NULL && offset != invalid_address) 2407 { 2408 *found = true; 2409 return os->address() + offset; 2410 } 2411 } 2412 *found = false; 2413 return 0; 2414 } 2415 2416 // Get symbol counts. 2417 2418 template<int size, bool big_endian> 2419 void 2420 Sized_relobj<size, big_endian>::do_get_global_symbol_counts( 2421 const Symbol_table*, 2422 size_t* defined, 2423 size_t* used) const 2424 { 2425 *defined = this->defined_count_; 2426 size_t count = 0; 2427 for (Symbols::const_iterator p = this->symbols_.begin(); 2428 p != this->symbols_.end(); 2429 ++p) 2430 if (*p != NULL 2431 && (*p)->source() == Symbol::FROM_OBJECT 2432 && (*p)->object() == this 2433 && (*p)->is_defined()) 2434 ++count; 2435 *used = count; 2436 } 2437 2438 // Input_objects methods. 2439 2440 // Add a regular relocatable object to the list. Return false if this 2441 // object should be ignored. 2442 2443 bool 2444 Input_objects::add_object(Object* obj) 2445 { 2446 // Print the filename if the -t/--trace option is selected. 2447 if (parameters->options().trace()) 2448 gold_info("%s", obj->name().c_str()); 2449 2450 if (!obj->is_dynamic()) 2451 this->relobj_list_.push_back(static_cast<Relobj*>(obj)); 2452 else 2453 { 2454 // See if this is a duplicate SONAME. 2455 Dynobj* dynobj = static_cast<Dynobj*>(obj); 2456 const char* soname = dynobj->soname(); 2457 2458 std::pair<Unordered_set<std::string>::iterator, bool> ins = 2459 this->sonames_.insert(soname); 2460 if (!ins.second) 2461 { 2462 // We have already seen a dynamic object with this soname. 2463 return false; 2464 } 2465 2466 this->dynobj_list_.push_back(dynobj); 2467 } 2468 2469 // Add this object to the cross-referencer if requested. 2470 if (parameters->options().user_set_print_symbol_counts() 2471 || parameters->options().cref()) 2472 { 2473 if (this->cref_ == NULL) 2474 this->cref_ = new Cref(); 2475 this->cref_->add_object(obj); 2476 } 2477 2478 return true; 2479 } 2480 2481 // For each dynamic object, record whether we've seen all of its 2482 // explicit dependencies. 2483 2484 void 2485 Input_objects::check_dynamic_dependencies() const 2486 { 2487 bool issued_copy_dt_needed_error = false; 2488 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin(); 2489 p != this->dynobj_list_.end(); 2490 ++p) 2491 { 2492 const Dynobj::Needed& needed((*p)->needed()); 2493 bool found_all = true; 2494 Dynobj::Needed::const_iterator pneeded; 2495 for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded) 2496 { 2497 if (this->sonames_.find(*pneeded) == this->sonames_.end()) 2498 { 2499 found_all = false; 2500 break; 2501 } 2502 } 2503 (*p)->set_has_unknown_needed_entries(!found_all); 2504 2505 // --copy-dt-needed-entries aka --add-needed is a GNU ld option 2506 // that gold does not support. However, they cause no trouble 2507 // unless there is a DT_NEEDED entry that we don't know about; 2508 // warn only in that case. 2509 if (!found_all 2510 && !issued_copy_dt_needed_error 2511 && (parameters->options().copy_dt_needed_entries() 2512 || parameters->options().add_needed())) 2513 { 2514 const char* optname; 2515 if (parameters->options().copy_dt_needed_entries()) 2516 optname = "--copy-dt-needed-entries"; 2517 else 2518 optname = "--add-needed"; 2519 gold_error(_("%s is not supported but is required for %s in %s"), 2520 optname, (*pneeded).c_str(), (*p)->name().c_str()); 2521 issued_copy_dt_needed_error = true; 2522 } 2523 } 2524 } 2525 2526 // Start processing an archive. 2527 2528 void 2529 Input_objects::archive_start(Archive* archive) 2530 { 2531 if (parameters->options().user_set_print_symbol_counts() 2532 || parameters->options().cref()) 2533 { 2534 if (this->cref_ == NULL) 2535 this->cref_ = new Cref(); 2536 this->cref_->add_archive_start(archive); 2537 } 2538 } 2539 2540 // Stop processing an archive. 2541 2542 void 2543 Input_objects::archive_stop(Archive* archive) 2544 { 2545 if (parameters->options().user_set_print_symbol_counts() 2546 || parameters->options().cref()) 2547 this->cref_->add_archive_stop(archive); 2548 } 2549 2550 // Print symbol counts 2551 2552 void 2553 Input_objects::print_symbol_counts(const Symbol_table* symtab) const 2554 { 2555 if (parameters->options().user_set_print_symbol_counts() 2556 && this->cref_ != NULL) 2557 this->cref_->print_symbol_counts(symtab); 2558 } 2559 2560 // Print a cross reference table. 2561 2562 void 2563 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const 2564 { 2565 if (parameters->options().cref() && this->cref_ != NULL) 2566 this->cref_->print_cref(symtab, f); 2567 } 2568 2569 // Relocate_info methods. 2570 2571 // Return a string describing the location of a relocation. This is 2572 // only used in error messages. 2573 2574 template<int size, bool big_endian> 2575 std::string 2576 Relocate_info<size, big_endian>::location(size_t, off_t offset) const 2577 { 2578 // See if we can get line-number information from debugging sections. 2579 std::string filename; 2580 std::string file_and_lineno; // Better than filename-only, if available. 2581 2582 Sized_dwarf_line_info<size, big_endian> line_info(this->object); 2583 // This will be "" if we failed to parse the debug info for any reason. 2584 file_and_lineno = line_info.addr2line(this->data_shndx, offset); 2585 2586 std::string ret(this->object->name()); 2587 ret += ':'; 2588 Symbol_location_info info; 2589 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info)) 2590 { 2591 ret += " in function "; 2592 ret += info.enclosing_symbol_name; 2593 ret += ":"; 2594 filename = info.source_file; 2595 } 2596 2597 if (!file_and_lineno.empty()) 2598 ret += file_and_lineno; 2599 else 2600 { 2601 if (!filename.empty()) 2602 ret += filename; 2603 ret += "("; 2604 ret += this->object->section_name(this->data_shndx); 2605 char buf[100]; 2606 // Offsets into sections have to be positive. 2607 snprintf(buf, sizeof(buf), "+0x%lx", static_cast<long>(offset)); 2608 ret += buf; 2609 ret += ")"; 2610 } 2611 return ret; 2612 } 2613 2614 } // End namespace gold. 2615 2616 namespace 2617 { 2618 2619 using namespace gold; 2620 2621 // Read an ELF file with the header and return the appropriate 2622 // instance of Object. 2623 2624 template<int size, bool big_endian> 2625 Object* 2626 make_elf_sized_object(const std::string& name, Input_file* input_file, 2627 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr, 2628 bool* punconfigured) 2629 { 2630 Target* target = select_target(ehdr.get_e_machine(), size, big_endian, 2631 ehdr.get_e_ident()[elfcpp::EI_OSABI], 2632 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]); 2633 if (target == NULL) 2634 gold_fatal(_("%s: unsupported ELF machine number %d"), 2635 name.c_str(), ehdr.get_e_machine()); 2636 2637 if (!parameters->target_valid()) 2638 set_parameters_target(target); 2639 else if (target != ¶meters->target()) 2640 { 2641 if (punconfigured != NULL) 2642 *punconfigured = true; 2643 else 2644 gold_error(_("%s: incompatible target"), name.c_str()); 2645 return NULL; 2646 } 2647 2648 return target->make_elf_object<size, big_endian>(name, input_file, offset, 2649 ehdr); 2650 } 2651 2652 } // End anonymous namespace. 2653 2654 namespace gold 2655 { 2656 2657 // Return whether INPUT_FILE is an ELF object. 2658 2659 bool 2660 is_elf_object(Input_file* input_file, off_t offset, 2661 const unsigned char** start, int* read_size) 2662 { 2663 off_t filesize = input_file->file().filesize(); 2664 int want = elfcpp::Elf_recognizer::max_header_size; 2665 if (filesize - offset < want) 2666 want = filesize - offset; 2667 2668 const unsigned char* p = input_file->file().get_view(offset, 0, want, 2669 true, false); 2670 *start = p; 2671 *read_size = want; 2672 2673 return elfcpp::Elf_recognizer::is_elf_file(p, want); 2674 } 2675 2676 // Read an ELF file and return the appropriate instance of Object. 2677 2678 Object* 2679 make_elf_object(const std::string& name, Input_file* input_file, off_t offset, 2680 const unsigned char* p, section_offset_type bytes, 2681 bool* punconfigured) 2682 { 2683 if (punconfigured != NULL) 2684 *punconfigured = false; 2685 2686 std::string error; 2687 bool big_endian = false; 2688 int size = 0; 2689 if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size, 2690 &big_endian, &error)) 2691 { 2692 gold_error(_("%s: %s"), name.c_str(), error.c_str()); 2693 return NULL; 2694 } 2695 2696 if (size == 32) 2697 { 2698 if (big_endian) 2699 { 2700 #ifdef HAVE_TARGET_32_BIG 2701 elfcpp::Ehdr<32, true> ehdr(p); 2702 return make_elf_sized_object<32, true>(name, input_file, 2703 offset, ehdr, punconfigured); 2704 #else 2705 if (punconfigured != NULL) 2706 *punconfigured = true; 2707 else 2708 gold_error(_("%s: not configured to support " 2709 "32-bit big-endian object"), 2710 name.c_str()); 2711 return NULL; 2712 #endif 2713 } 2714 else 2715 { 2716 #ifdef HAVE_TARGET_32_LITTLE 2717 elfcpp::Ehdr<32, false> ehdr(p); 2718 return make_elf_sized_object<32, false>(name, input_file, 2719 offset, ehdr, punconfigured); 2720 #else 2721 if (punconfigured != NULL) 2722 *punconfigured = true; 2723 else 2724 gold_error(_("%s: not configured to support " 2725 "32-bit little-endian object"), 2726 name.c_str()); 2727 return NULL; 2728 #endif 2729 } 2730 } 2731 else if (size == 64) 2732 { 2733 if (big_endian) 2734 { 2735 #ifdef HAVE_TARGET_64_BIG 2736 elfcpp::Ehdr<64, true> ehdr(p); 2737 return make_elf_sized_object<64, true>(name, input_file, 2738 offset, ehdr, punconfigured); 2739 #else 2740 if (punconfigured != NULL) 2741 *punconfigured = true; 2742 else 2743 gold_error(_("%s: not configured to support " 2744 "64-bit big-endian object"), 2745 name.c_str()); 2746 return NULL; 2747 #endif 2748 } 2749 else 2750 { 2751 #ifdef HAVE_TARGET_64_LITTLE 2752 elfcpp::Ehdr<64, false> ehdr(p); 2753 return make_elf_sized_object<64, false>(name, input_file, 2754 offset, ehdr, punconfigured); 2755 #else 2756 if (punconfigured != NULL) 2757 *punconfigured = true; 2758 else 2759 gold_error(_("%s: not configured to support " 2760 "64-bit little-endian object"), 2761 name.c_str()); 2762 return NULL; 2763 #endif 2764 } 2765 } 2766 else 2767 gold_unreachable(); 2768 } 2769 2770 // Instantiate the templates we need. 2771 2772 #ifdef HAVE_TARGET_32_LITTLE 2773 template 2774 void 2775 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*, 2776 Read_symbols_data*); 2777 #endif 2778 2779 #ifdef HAVE_TARGET_32_BIG 2780 template 2781 void 2782 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*, 2783 Read_symbols_data*); 2784 #endif 2785 2786 #ifdef HAVE_TARGET_64_LITTLE 2787 template 2788 void 2789 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*, 2790 Read_symbols_data*); 2791 #endif 2792 2793 #ifdef HAVE_TARGET_64_BIG 2794 template 2795 void 2796 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*, 2797 Read_symbols_data*); 2798 #endif 2799 2800 #ifdef HAVE_TARGET_32_LITTLE 2801 template 2802 class Sized_relobj<32, false>; 2803 #endif 2804 2805 #ifdef HAVE_TARGET_32_BIG 2806 template 2807 class Sized_relobj<32, true>; 2808 #endif 2809 2810 #ifdef HAVE_TARGET_64_LITTLE 2811 template 2812 class Sized_relobj<64, false>; 2813 #endif 2814 2815 #ifdef HAVE_TARGET_64_BIG 2816 template 2817 class Sized_relobj<64, true>; 2818 #endif 2819 2820 #ifdef HAVE_TARGET_32_LITTLE 2821 template 2822 struct Relocate_info<32, false>; 2823 #endif 2824 2825 #ifdef HAVE_TARGET_32_BIG 2826 template 2827 struct Relocate_info<32, true>; 2828 #endif 2829 2830 #ifdef HAVE_TARGET_64_LITTLE 2831 template 2832 struct Relocate_info<64, false>; 2833 #endif 2834 2835 #ifdef HAVE_TARGET_64_BIG 2836 template 2837 struct Relocate_info<64, true>; 2838 #endif 2839 2840 #ifdef HAVE_TARGET_32_LITTLE 2841 template 2842 void 2843 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int); 2844 2845 template 2846 void 2847 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int, 2848 const unsigned char*); 2849 #endif 2850 2851 #ifdef HAVE_TARGET_32_BIG 2852 template 2853 void 2854 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int); 2855 2856 template 2857 void 2858 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int, 2859 const unsigned char*); 2860 #endif 2861 2862 #ifdef HAVE_TARGET_64_LITTLE 2863 template 2864 void 2865 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int); 2866 2867 template 2868 void 2869 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int, 2870 const unsigned char*); 2871 #endif 2872 2873 #ifdef HAVE_TARGET_64_BIG 2874 template 2875 void 2876 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int); 2877 2878 template 2879 void 2880 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int, 2881 const unsigned char*); 2882 #endif 2883 2884 } // End namespace gold. 2885