1 // gdb-index.cc -- generate .gdb_index section for fast debug lookup 2 3 // Copyright 2012 Free Software Foundation, Inc. 4 // Written by Cary Coutant <ccoutant@google.com>. 5 6 // This file is part of gold. 7 8 // This program is free software; you can redistribute it and/or modify 9 // it under the terms of the GNU General Public License as published by 10 // the Free Software Foundation; either version 3 of the License, or 11 // (at your option) any later version. 12 13 // This program is distributed in the hope that it will be useful, 14 // but WITHOUT ANY WARRANTY; without even the implied warranty of 15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 // GNU General Public License for more details. 17 18 // You should have received a copy of the GNU General Public License 19 // along with this program; if not, write to the Free Software 20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 21 // MA 02110-1301, USA. 22 23 #include "gold.h" 24 25 #include "gdb-index.h" 26 #include "dwarf_reader.h" 27 #include "dwarf.h" 28 #include "object.h" 29 #include "output.h" 30 #include "demangle.h" 31 32 namespace gold 33 { 34 35 const int gdb_index_version = 5; 36 37 // Sizes of various records in the .gdb_index section. 38 const int gdb_index_offset_size = 4; 39 const int gdb_index_hdr_size = 6 * gdb_index_offset_size; 40 const int gdb_index_cu_size = 16; 41 const int gdb_index_tu_size = 24; 42 const int gdb_index_addr_size = 16 + gdb_index_offset_size; 43 const int gdb_index_sym_size = 2 * gdb_index_offset_size; 44 45 // This class manages the hashed symbol table for the .gdb_index section. 46 // It is essentially equivalent to the hashtab implementation in libiberty, 47 // but is copied into gdb sources and here for compatibility because its 48 // data structure is exposed on disk. 49 50 template <typename T> 51 class Gdb_hashtab 52 { 53 public: 54 Gdb_hashtab() 55 : size_(0), capacity_(0), hashtab_(NULL) 56 { } 57 58 ~Gdb_hashtab() 59 { 60 for (size_t i = 0; i < this->capacity_; ++i) 61 if (this->hashtab_[i] != NULL) 62 delete this->hashtab_[i]; 63 delete[] this->hashtab_; 64 } 65 66 // Add a symbol. 67 T* 68 add(T* symbol) 69 { 70 // Resize the hash table if necessary. 71 if (4 * this->size_ / 3 >= this->capacity_) 72 this->expand(); 73 74 T** slot = this->find_slot(symbol); 75 if (*slot == NULL) 76 { 77 ++this->size_; 78 *slot = symbol; 79 } 80 81 return *slot; 82 } 83 84 // Return the current size. 85 size_t 86 size() const 87 { return this->size_; } 88 89 // Return the current capacity. 90 size_t 91 capacity() const 92 { return this->capacity_; } 93 94 // Return the contents of slot N. 95 T* 96 operator[](size_t n) 97 { return this->hashtab_[n]; } 98 99 private: 100 // Find a symbol in the hash table, or return an empty slot if 101 // the symbol is not in the table. 102 T** 103 find_slot(T* symbol) 104 { 105 unsigned int index = symbol->hash() & (this->capacity_ - 1); 106 unsigned int step = ((symbol->hash() * 17) & (this->capacity_ - 1)) | 1; 107 108 for (;;) 109 { 110 if (this->hashtab_[index] == NULL 111 || this->hashtab_[index]->equal(symbol)) 112 return &this->hashtab_[index]; 113 index = (index + step) & (this->capacity_ - 1); 114 } 115 } 116 117 // Expand the hash table. 118 void 119 expand() 120 { 121 if (this->capacity_ == 0) 122 { 123 // Allocate the hash table for the first time. 124 this->capacity_ = Gdb_hashtab::initial_size; 125 this->hashtab_ = new T*[this->capacity_]; 126 memset(this->hashtab_, 0, this->capacity_ * sizeof(T*)); 127 } 128 else 129 { 130 // Expand and rehash. 131 unsigned int old_cap = this->capacity_; 132 T** old_hashtab = this->hashtab_; 133 this->capacity_ *= 2; 134 this->hashtab_ = new T*[this->capacity_]; 135 memset(this->hashtab_, 0, this->capacity_ * sizeof(T*)); 136 for (size_t i = 0; i < old_cap; ++i) 137 { 138 if (old_hashtab[i] != NULL) 139 { 140 T** slot = this->find_slot(old_hashtab[i]); 141 *slot = old_hashtab[i]; 142 } 143 } 144 delete[] old_hashtab; 145 } 146 } 147 148 // Initial size of the hash table; must be a power of 2. 149 static const int initial_size = 1024; 150 size_t size_; 151 size_t capacity_; 152 T** hashtab_; 153 }; 154 155 // The hash function for strings in the mapped index. This is copied 156 // directly from gdb/dwarf2read.c. 157 158 static unsigned int 159 mapped_index_string_hash(const unsigned char* str) 160 { 161 unsigned int r = 0; 162 unsigned char c; 163 164 while ((c = *str++) != 0) 165 { 166 if (gdb_index_version >= 5) 167 c = tolower (c); 168 r = r * 67 + c - 113; 169 } 170 171 return r; 172 } 173 174 // A specialization of Dwarf_info_reader, for building the .gdb_index. 175 176 class Gdb_index_info_reader : public Dwarf_info_reader 177 { 178 public: 179 Gdb_index_info_reader(bool is_type_unit, 180 Relobj* object, 181 const unsigned char* symbols, 182 off_t symbols_size, 183 unsigned int shndx, 184 unsigned int reloc_shndx, 185 unsigned int reloc_type, 186 Gdb_index* gdb_index) 187 : Dwarf_info_reader(is_type_unit, object, symbols, symbols_size, shndx, 188 reloc_shndx, reloc_type), 189 gdb_index_(gdb_index), cu_index_(0), cu_language_(0) 190 { } 191 192 ~Gdb_index_info_reader() 193 { this->clear_declarations(); } 194 195 // Print usage statistics. 196 static void 197 print_stats(); 198 199 protected: 200 // Visit a compilation unit. 201 virtual void 202 visit_compilation_unit(off_t cu_offset, off_t cu_length, Dwarf_die*); 203 204 // Visit a type unit. 205 virtual void 206 visit_type_unit(off_t tu_offset, off_t type_offset, uint64_t signature, 207 Dwarf_die*); 208 209 private: 210 // A map for recording DIEs we've seen that may be referred to be 211 // later DIEs (via DW_AT_specification or DW_AT_abstract_origin). 212 // The map is indexed by a DIE offset within the compile unit. 213 // PARENT_OFFSET_ is the offset of the DIE that represents the 214 // outer context, and NAME_ is a pointer to a component of the 215 // fully-qualified name. 216 // Normally, the names we point to are in a string table, so we don't 217 // have to manage them, but when we have a fully-qualified name 218 // computed, we put it in the table, and set PARENT_OFFSET_ to -1 219 // indicate a string that we are managing. 220 struct Declaration_pair 221 { 222 Declaration_pair(off_t parent_offset, const char* name) 223 : parent_offset_(parent_offset), name_(name) 224 { } 225 226 off_t parent_offset_; 227 const char* name_; 228 }; 229 typedef Unordered_map<off_t, Declaration_pair> Declaration_map; 230 231 // Visit a top-level DIE. 232 void 233 visit_top_die(Dwarf_die* die); 234 235 // Visit the children of a DIE. 236 void 237 visit_children(Dwarf_die* die, Dwarf_die* context); 238 239 // Visit a DIE. 240 void 241 visit_die(Dwarf_die* die, Dwarf_die* context); 242 243 // Visit the children of a DIE. 244 void 245 visit_children_for_decls(Dwarf_die* die); 246 247 // Visit a DIE. 248 void 249 visit_die_for_decls(Dwarf_die* die, Dwarf_die* context); 250 251 // Guess a fully-qualified name for a class type, based on member function 252 // linkage names. 253 std::string 254 guess_full_class_name(Dwarf_die* die); 255 256 // Add a declaration DIE to the table of declarations. 257 void 258 add_declaration(Dwarf_die* die, Dwarf_die* context); 259 260 // Add a declaration whose fully-qualified name is already known. 261 void 262 add_declaration_with_full_name(Dwarf_die* die, const char* full_name); 263 264 // Return the context for a DIE whose parent is at DIE_OFFSET. 265 std::string 266 get_context(off_t die_offset); 267 268 // Construct a fully-qualified name for DIE. 269 std::string 270 get_qualified_name(Dwarf_die* die, Dwarf_die* context); 271 272 // Record the address ranges for a compilation unit. 273 void 274 record_cu_ranges(Dwarf_die* die); 275 276 // Read the .debug_pubnames and .debug_pubtypes tables. 277 bool 278 read_pubnames_and_pubtypes(Dwarf_die* die); 279 280 // Clear the declarations map. 281 void 282 clear_declarations(); 283 284 // The Gdb_index section. 285 Gdb_index* gdb_index_; 286 // The current CU index (negative for a TU). 287 int cu_index_; 288 // The language of the current CU or TU. 289 unsigned int cu_language_; 290 // Map from DIE offset to (parent offset, name) pair, 291 // for DW_AT_specification. 292 Declaration_map declarations_; 293 294 // Statistics. 295 // Total number of DWARF compilation units processed. 296 static unsigned int dwarf_cu_count; 297 // Number of DWARF compilation units with pubnames/pubtypes. 298 static unsigned int dwarf_cu_nopubnames_count; 299 // Total number of DWARF type units processed. 300 static unsigned int dwarf_tu_count; 301 // Number of DWARF type units with pubnames/pubtypes. 302 static unsigned int dwarf_tu_nopubnames_count; 303 }; 304 305 // Total number of DWARF compilation units processed. 306 unsigned int Gdb_index_info_reader::dwarf_cu_count = 0; 307 // Number of DWARF compilation units without pubnames/pubtypes. 308 unsigned int Gdb_index_info_reader::dwarf_cu_nopubnames_count = 0; 309 // Total number of DWARF type units processed. 310 unsigned int Gdb_index_info_reader::dwarf_tu_count = 0; 311 // Number of DWARF type units without pubnames/pubtypes. 312 unsigned int Gdb_index_info_reader::dwarf_tu_nopubnames_count = 0; 313 314 // Process a compilation unit and parse its child DIE. 315 316 void 317 Gdb_index_info_reader::visit_compilation_unit(off_t cu_offset, off_t cu_length, 318 Dwarf_die* root_die) 319 { 320 ++Gdb_index_info_reader::dwarf_cu_count; 321 this->cu_index_ = this->gdb_index_->add_comp_unit(cu_offset, cu_length); 322 this->visit_top_die(root_die); 323 } 324 325 // Process a type unit and parse its child DIE. 326 327 void 328 Gdb_index_info_reader::visit_type_unit(off_t tu_offset, off_t type_offset, 329 uint64_t signature, Dwarf_die* root_die) 330 { 331 ++Gdb_index_info_reader::dwarf_tu_count; 332 // Use a negative index to flag this as a TU instead of a CU. 333 this->cu_index_ = -1 - this->gdb_index_->add_type_unit(tu_offset, type_offset, 334 signature); 335 this->visit_top_die(root_die); 336 } 337 338 // Process a top-level DIE. 339 // For compile_unit DIEs, record the address ranges. For all 340 // interesting tags, add qualified names to the symbol table 341 // and process interesting children. We may need to process 342 // certain children just for saving declarations that might be 343 // referenced by later DIEs with a DW_AT_specification attribute. 344 345 void 346 Gdb_index_info_reader::visit_top_die(Dwarf_die* die) 347 { 348 this->clear_declarations(); 349 350 switch (die->tag()) 351 { 352 case elfcpp::DW_TAG_compile_unit: 353 case elfcpp::DW_TAG_type_unit: 354 this->cu_language_ = die->int_attribute(elfcpp::DW_AT_language); 355 // Check for languages that require specialized knowledge to 356 // construct fully-qualified names, that we don't yet support. 357 if (this->cu_language_ == elfcpp::DW_LANG_Ada83 358 || this->cu_language_ == elfcpp::DW_LANG_Fortran77 359 || this->cu_language_ == elfcpp::DW_LANG_Fortran90 360 || this->cu_language_ == elfcpp::DW_LANG_Java 361 || this->cu_language_ == elfcpp::DW_LANG_Ada95 362 || this->cu_language_ == elfcpp::DW_LANG_Fortran95) 363 { 364 gold_warning(_("%s: --gdb-index currently supports " 365 "only C and C++ languages"), 366 this->object()->name().c_str()); 367 return; 368 } 369 if (die->tag() == elfcpp::DW_TAG_compile_unit) 370 this->record_cu_ranges(die); 371 // If there is a pubnames and/or pubtypes section for this 372 // compilation unit, use those; otherwise, parse the DWARF 373 // info to extract the names. 374 if (!this->read_pubnames_and_pubtypes(die)) 375 { 376 if (die->tag() == elfcpp::DW_TAG_compile_unit) 377 ++Gdb_index_info_reader::dwarf_cu_nopubnames_count; 378 else 379 ++Gdb_index_info_reader::dwarf_tu_nopubnames_count; 380 this->visit_children(die, NULL); 381 } 382 break; 383 default: 384 // The top level DIE should be one of the above. 385 gold_warning(_("%s: top level DIE is not DW_TAG_compile_unit " 386 "or DW_TAG_type_unit"), 387 this->object()->name().c_str()); 388 return; 389 } 390 391 } 392 393 // Visit the children of PARENT, looking for symbols to add to the index. 394 // CONTEXT points to the DIE to use for constructing the qualified name -- 395 // NULL if PARENT is the top-level DIE; otherwise it is the same as PARENT. 396 397 void 398 Gdb_index_info_reader::visit_children(Dwarf_die* parent, Dwarf_die* context) 399 { 400 off_t next_offset = 0; 401 for (off_t die_offset = parent->child_offset(); 402 die_offset != 0; 403 die_offset = next_offset) 404 { 405 Dwarf_die die(this, die_offset, parent); 406 if (die.tag() == 0) 407 break; 408 this->visit_die(&die, context); 409 next_offset = die.sibling_offset(); 410 } 411 } 412 413 // Visit a child DIE, looking for symbols to add to the index. 414 // CONTEXT is the parent DIE, used for constructing the qualified name; 415 // it is NULL if the parent DIE is the top-level DIE. 416 417 void 418 Gdb_index_info_reader::visit_die(Dwarf_die* die, Dwarf_die* context) 419 { 420 switch (die->tag()) 421 { 422 case elfcpp::DW_TAG_subprogram: 423 case elfcpp::DW_TAG_constant: 424 case elfcpp::DW_TAG_variable: 425 case elfcpp::DW_TAG_enumerator: 426 case elfcpp::DW_TAG_base_type: 427 if (die->is_declaration()) 428 this->add_declaration(die, context); 429 else 430 { 431 // If the DIE is not a declaration, add it to the index. 432 std::string full_name = this->get_qualified_name(die, context); 433 if (!full_name.empty()) 434 this->gdb_index_->add_symbol(this->cu_index_, full_name.c_str()); 435 } 436 break; 437 case elfcpp::DW_TAG_typedef: 438 case elfcpp::DW_TAG_union_type: 439 case elfcpp::DW_TAG_class_type: 440 case elfcpp::DW_TAG_interface_type: 441 case elfcpp::DW_TAG_structure_type: 442 case elfcpp::DW_TAG_enumeration_type: 443 case elfcpp::DW_TAG_subrange_type: 444 case elfcpp::DW_TAG_namespace: 445 { 446 std::string full_name; 447 448 // For classes at the top level, we need to look for a 449 // member function with a linkage name in order to get 450 // the properly-canonicalized name. 451 if (context == NULL 452 && (die->tag() == elfcpp::DW_TAG_class_type 453 || die->tag() == elfcpp::DW_TAG_structure_type 454 || die->tag() == elfcpp::DW_TAG_union_type)) 455 full_name.assign(this->guess_full_class_name(die)); 456 457 // Because we will visit the children, we need to add this DIE 458 // to the declarations table. 459 if (full_name.empty()) 460 this->add_declaration(die, context); 461 else 462 this->add_declaration_with_full_name(die, full_name.c_str()); 463 464 // If the DIE is not a declaration, add it to the index. 465 // Gdb stores a namespace in the index even when it is 466 // a declaration. 467 if (die->tag() == elfcpp::DW_TAG_namespace 468 || !die->is_declaration()) 469 { 470 if (full_name.empty()) 471 full_name = this->get_qualified_name(die, context); 472 if (!full_name.empty()) 473 this->gdb_index_->add_symbol(this->cu_index_, 474 full_name.c_str()); 475 } 476 477 // We're interested in the children only for namespaces and 478 // enumeration types. For enumeration types, we do not include 479 // the enumeration tag as part of the full name. For other tags, 480 // visit the children only to collect declarations. 481 if (die->tag() == elfcpp::DW_TAG_namespace 482 || die->tag() == elfcpp::DW_TAG_enumeration_type) 483 this->visit_children(die, die); 484 else 485 this->visit_children_for_decls(die); 486 } 487 break; 488 default: 489 break; 490 } 491 } 492 493 // Visit the children of PARENT, looking only for declarations that 494 // may be referenced by later specification DIEs. 495 496 void 497 Gdb_index_info_reader::visit_children_for_decls(Dwarf_die* parent) 498 { 499 off_t next_offset = 0; 500 for (off_t die_offset = parent->child_offset(); 501 die_offset != 0; 502 die_offset = next_offset) 503 { 504 Dwarf_die die(this, die_offset, parent); 505 if (die.tag() == 0) 506 break; 507 this->visit_die_for_decls(&die, parent); 508 next_offset = die.sibling_offset(); 509 } 510 } 511 512 // Visit a child DIE, looking only for declarations that 513 // may be referenced by later specification DIEs. 514 515 void 516 Gdb_index_info_reader::visit_die_for_decls(Dwarf_die* die, Dwarf_die* context) 517 { 518 switch (die->tag()) 519 { 520 case elfcpp::DW_TAG_subprogram: 521 case elfcpp::DW_TAG_constant: 522 case elfcpp::DW_TAG_variable: 523 case elfcpp::DW_TAG_enumerator: 524 case elfcpp::DW_TAG_base_type: 525 { 526 if (die->is_declaration()) 527 this->add_declaration(die, context); 528 } 529 break; 530 case elfcpp::DW_TAG_typedef: 531 case elfcpp::DW_TAG_union_type: 532 case elfcpp::DW_TAG_class_type: 533 case elfcpp::DW_TAG_interface_type: 534 case elfcpp::DW_TAG_structure_type: 535 case elfcpp::DW_TAG_enumeration_type: 536 case elfcpp::DW_TAG_subrange_type: 537 case elfcpp::DW_TAG_namespace: 538 { 539 if (die->is_declaration()) 540 this->add_declaration(die, context); 541 this->visit_children_for_decls(die); 542 } 543 break; 544 default: 545 break; 546 } 547 } 548 549 // Extract the class name from the linkage name of a member function. 550 // This code is adapted from ../gdb/cp-support.c. 551 552 #define d_left(dc) (dc)->u.s_binary.left 553 #define d_right(dc) (dc)->u.s_binary.right 554 555 static char* 556 class_name_from_linkage_name(const char* linkage_name) 557 { 558 void* storage; 559 struct demangle_component* tree = 560 cplus_demangle_v3_components(linkage_name, DMGL_NO_OPTS, &storage); 561 if (tree == NULL) 562 return NULL; 563 564 int done = 0; 565 566 // First strip off any qualifiers, if we have a function or 567 // method. 568 while (!done) 569 switch (tree->type) 570 { 571 case DEMANGLE_COMPONENT_CONST: 572 case DEMANGLE_COMPONENT_RESTRICT: 573 case DEMANGLE_COMPONENT_VOLATILE: 574 case DEMANGLE_COMPONENT_CONST_THIS: 575 case DEMANGLE_COMPONENT_RESTRICT_THIS: 576 case DEMANGLE_COMPONENT_VOLATILE_THIS: 577 case DEMANGLE_COMPONENT_VENDOR_TYPE_QUAL: 578 tree = d_left(tree); 579 break; 580 default: 581 done = 1; 582 break; 583 } 584 585 // If what we have now is a function, discard the argument list. 586 if (tree->type == DEMANGLE_COMPONENT_TYPED_NAME) 587 tree = d_left(tree); 588 589 // If what we have now is a template, strip off the template 590 // arguments. The left subtree may be a qualified name. 591 if (tree->type == DEMANGLE_COMPONENT_TEMPLATE) 592 tree = d_left(tree); 593 594 // What we have now should be a name, possibly qualified. 595 // Additional qualifiers could live in the left subtree or the right 596 // subtree. Find the last piece. 597 done = 0; 598 struct demangle_component* prev_comp = NULL; 599 struct demangle_component* cur_comp = tree; 600 while (!done) 601 switch (cur_comp->type) 602 { 603 case DEMANGLE_COMPONENT_QUAL_NAME: 604 case DEMANGLE_COMPONENT_LOCAL_NAME: 605 prev_comp = cur_comp; 606 cur_comp = d_right(cur_comp); 607 break; 608 case DEMANGLE_COMPONENT_TEMPLATE: 609 case DEMANGLE_COMPONENT_NAME: 610 case DEMANGLE_COMPONENT_CTOR: 611 case DEMANGLE_COMPONENT_DTOR: 612 case DEMANGLE_COMPONENT_OPERATOR: 613 case DEMANGLE_COMPONENT_EXTENDED_OPERATOR: 614 done = 1; 615 break; 616 default: 617 done = 1; 618 cur_comp = NULL; 619 break; 620 } 621 622 char* ret = NULL; 623 if (cur_comp != NULL && prev_comp != NULL) 624 { 625 // We want to discard the rightmost child of PREV_COMP. 626 *prev_comp = *d_left(prev_comp); 627 size_t allocated_size; 628 ret = cplus_demangle_print(DMGL_NO_OPTS, tree, 30, &allocated_size); 629 } 630 631 free(storage); 632 return ret; 633 } 634 635 // Guess a fully-qualified name for a class type, based on member function 636 // linkage names. This is needed for class/struct/union types at the 637 // top level, because GCC does not always properly embed them within 638 // the namespace. As in gdb, we look for a member function with a linkage 639 // name and extract the qualified name from the demangled name. 640 641 std::string 642 Gdb_index_info_reader::guess_full_class_name(Dwarf_die* die) 643 { 644 std::string full_name; 645 off_t next_offset = 0; 646 647 // This routine scans ahead in the DIE structure, possibly advancing 648 // the relocation tracker beyond the current DIE. We need to checkpoint 649 // the tracker and reset it when we're done. 650 uint64_t checkpoint = this->get_reloc_checkpoint(); 651 652 for (off_t child_offset = die->child_offset(); 653 child_offset != 0; 654 child_offset = next_offset) 655 { 656 Dwarf_die child(this, child_offset, die); 657 if (child.tag() == 0) 658 break; 659 if (child.tag() == elfcpp::DW_TAG_subprogram) 660 { 661 const char* linkage_name = child.linkage_name(); 662 if (linkage_name != NULL) 663 { 664 char* guess = class_name_from_linkage_name(linkage_name); 665 if (guess != NULL) 666 { 667 full_name.assign(guess); 668 free(guess); 669 break; 670 } 671 } 672 } 673 next_offset = child.sibling_offset(); 674 } 675 676 this->reset_relocs(checkpoint); 677 return full_name; 678 } 679 680 // Add a declaration DIE to the table of declarations. 681 682 void 683 Gdb_index_info_reader::add_declaration(Dwarf_die* die, Dwarf_die* context) 684 { 685 const char* name = die->name(); 686 687 off_t parent_offset = context != NULL ? context->offset() : 0; 688 689 // If this DIE has a DW_AT_specification or DW_AT_abstract_origin 690 // attribute, use the parent and name from the earlier declaration. 691 off_t spec = die->specification(); 692 if (spec == 0) 693 spec = die->abstract_origin(); 694 if (spec > 0) 695 { 696 Declaration_map::iterator it = this->declarations_.find(spec); 697 if (it != this->declarations_.end()) 698 { 699 parent_offset = it->second.parent_offset_; 700 name = it->second.name_; 701 } 702 } 703 704 if (name == NULL) 705 { 706 if (die->tag() == elfcpp::DW_TAG_namespace) 707 name = "(anonymous namespace)"; 708 else if (die->tag() == elfcpp::DW_TAG_union_type) 709 name = "(anonymous union)"; 710 else 711 name = "(unknown)"; 712 } 713 714 Declaration_pair decl(parent_offset, name); 715 this->declarations_.insert(std::make_pair(die->offset(), decl)); 716 } 717 718 // Add a declaration whose fully-qualified name is already known. 719 // In the case where we had to get the canonical name by demangling 720 // a linkage name, this ensures we use that name instead of the one 721 // provided in DW_AT_name. 722 723 void 724 Gdb_index_info_reader::add_declaration_with_full_name( 725 Dwarf_die* die, 726 const char* full_name) 727 { 728 // We need to copy the name. 729 int len = strlen(full_name); 730 char* copy = new char[len + 1]; 731 memcpy(copy, full_name, len + 1); 732 733 // Flag that we now manage the memory this points to. 734 Declaration_pair decl(-1, copy); 735 this->declarations_.insert(std::make_pair(die->offset(), decl)); 736 } 737 738 // Return the context for a DIE whose parent is at DIE_OFFSET. 739 740 std::string 741 Gdb_index_info_reader::get_context(off_t die_offset) 742 { 743 std::string context; 744 Declaration_map::iterator it = this->declarations_.find(die_offset); 745 if (it != this->declarations_.end()) 746 { 747 off_t parent_offset = it->second.parent_offset_; 748 if (parent_offset > 0) 749 { 750 context = get_context(parent_offset); 751 context.append("::"); 752 } 753 if (it->second.name_ != NULL) 754 context.append(it->second.name_); 755 } 756 return context; 757 } 758 759 // Construct the fully-qualified name for DIE. 760 761 std::string 762 Gdb_index_info_reader::get_qualified_name(Dwarf_die* die, Dwarf_die* context) 763 { 764 std::string full_name; 765 const char* name = die->name(); 766 767 off_t parent_offset = context != NULL ? context->offset() : 0; 768 769 // If this DIE has a DW_AT_specification or DW_AT_abstract_origin 770 // attribute, use the parent and name from the earlier declaration. 771 off_t spec = die->specification(); 772 if (spec == 0) 773 spec = die->abstract_origin(); 774 if (spec > 0) 775 { 776 Declaration_map::iterator it = this->declarations_.find(spec); 777 if (it != this->declarations_.end()) 778 { 779 parent_offset = it->second.parent_offset_; 780 name = it->second.name_; 781 } 782 } 783 784 if (name == NULL && die->tag() == elfcpp::DW_TAG_namespace) 785 name = "(anonymous namespace)"; 786 else if (name == NULL) 787 return full_name; 788 789 // If this is an enumerator constant, skip the immediate parent, 790 // which is the enumeration tag. 791 if (die->tag() == elfcpp::DW_TAG_enumerator) 792 { 793 Declaration_map::iterator it = this->declarations_.find(parent_offset); 794 if (it != this->declarations_.end()) 795 parent_offset = it->second.parent_offset_; 796 } 797 798 if (parent_offset > 0) 799 { 800 full_name.assign(this->get_context(parent_offset)); 801 full_name.append("::"); 802 } 803 full_name.append(name); 804 805 return full_name; 806 } 807 808 // Record the address ranges for a compilation unit. 809 810 void 811 Gdb_index_info_reader::record_cu_ranges(Dwarf_die* die) 812 { 813 unsigned int shndx; 814 unsigned int shndx2; 815 816 off_t ranges_offset = die->ref_attribute(elfcpp::DW_AT_ranges, &shndx); 817 if (ranges_offset != -1) 818 { 819 Dwarf_range_list* ranges = this->read_range_list(shndx, ranges_offset); 820 if (ranges != NULL) 821 this->gdb_index_->add_address_range_list(this->object(), 822 this->cu_index_, ranges); 823 return; 824 } 825 826 off_t low_pc = die->address_attribute(elfcpp::DW_AT_low_pc, &shndx); 827 off_t high_pc = die->address_attribute(elfcpp::DW_AT_high_pc, &shndx2); 828 if (high_pc == -1) 829 { 830 high_pc = die->uint_attribute(elfcpp::DW_AT_high_pc); 831 high_pc += low_pc; 832 shndx2 = shndx; 833 } 834 if ((low_pc != 0 || high_pc != 0) && low_pc != -1) 835 { 836 if (shndx != shndx2) 837 { 838 gold_warning(_("%s: DWARF info may be corrupt; low_pc and high_pc " 839 "are in different sections"), 840 this->object()->name().c_str()); 841 return; 842 } 843 if (shndx == 0 || this->object()->is_section_included(shndx)) 844 { 845 Dwarf_range_list* ranges = new Dwarf_range_list(); 846 ranges->add(shndx, low_pc, high_pc); 847 this->gdb_index_->add_address_range_list(this->object(), 848 this->cu_index_, ranges); 849 } 850 } 851 } 852 853 // Read the .debug_pubnames and .debug_pubtypes tables for the CU or TU. 854 // Returns TRUE if either a pubnames or pubtypes section was found. 855 856 bool 857 Gdb_index_info_reader::read_pubnames_and_pubtypes(Dwarf_die* die) 858 { 859 bool ret = false; 860 861 // If we find a DW_AT_GNU_pubnames attribute, read the pubnames table. 862 unsigned int pubnames_shndx; 863 off_t pubnames_offset = die->ref_attribute(elfcpp::DW_AT_GNU_pubnames, 864 &pubnames_shndx); 865 if (pubnames_offset != -1) 866 { 867 if (this->gdb_index_->pubnames_read(pubnames_shndx, pubnames_offset)) 868 ret = true; 869 else 870 { 871 Dwarf_pubnames_table pubnames(false); 872 if (!pubnames.read_section(this->object(), pubnames_shndx)) 873 return false; 874 if (!pubnames.read_header(pubnames_offset)) 875 return false; 876 while (true) 877 { 878 const char* name = pubnames.next_name(); 879 if (name == NULL) 880 break; 881 this->gdb_index_->add_symbol(this->cu_index_, name); 882 } 883 ret = true; 884 } 885 } 886 887 // If we find a DW_AT_GNU_pubtypes attribute, read the pubtypes table. 888 unsigned int pubtypes_shndx; 889 off_t pubtypes_offset = die->ref_attribute(elfcpp::DW_AT_GNU_pubtypes, 890 &pubtypes_shndx); 891 if (pubtypes_offset != -1) 892 { 893 if (this->gdb_index_->pubtypes_read(pubtypes_shndx, pubtypes_offset)) 894 ret = true; 895 else 896 { 897 Dwarf_pubnames_table pubtypes(true); 898 if (!pubtypes.read_section(this->object(), pubtypes_shndx)) 899 return false; 900 if (!pubtypes.read_header(pubtypes_offset)) 901 return false; 902 while (true) 903 { 904 const char* name = pubtypes.next_name(); 905 if (name == NULL) 906 break; 907 this->gdb_index_->add_symbol(this->cu_index_, name); 908 } 909 ret = true; 910 } 911 } 912 913 return ret; 914 } 915 916 // Clear the declarations map. 917 void 918 Gdb_index_info_reader::clear_declarations() 919 { 920 // Free strings in memory we manage. 921 for (Declaration_map::iterator it = this->declarations_.begin(); 922 it != this->declarations_.end(); 923 ++it) 924 { 925 if (it->second.parent_offset_ == -1) 926 delete[] it->second.name_; 927 } 928 929 this->declarations_.clear(); 930 } 931 932 // Print usage statistics. 933 void 934 Gdb_index_info_reader::print_stats() 935 { 936 fprintf(stderr, _("%s: DWARF CUs: %u\n"), 937 program_name, Gdb_index_info_reader::dwarf_cu_count); 938 fprintf(stderr, _("%s: DWARF CUs without pubnames/pubtypes: %u\n"), 939 program_name, Gdb_index_info_reader::dwarf_cu_nopubnames_count); 940 fprintf(stderr, _("%s: DWARF TUs: %u\n"), 941 program_name, Gdb_index_info_reader::dwarf_tu_count); 942 fprintf(stderr, _("%s: DWARF TUs without pubnames/pubtypes: %u\n"), 943 program_name, Gdb_index_info_reader::dwarf_tu_nopubnames_count); 944 } 945 946 // Class Gdb_index. 947 948 // Construct the .gdb_index section. 949 950 Gdb_index::Gdb_index(Output_section* gdb_index_section) 951 : Output_section_data(4), 952 gdb_index_section_(gdb_index_section), 953 comp_units_(), 954 type_units_(), 955 ranges_(), 956 cu_vector_list_(), 957 cu_vector_offsets_(NULL), 958 stringpool_(), 959 tu_offset_(0), 960 addr_offset_(0), 961 symtab_offset_(0), 962 cu_pool_offset_(0), 963 stringpool_offset_(0), 964 pubnames_shndx_(0), 965 pubnames_offset_(0), 966 pubtypes_shndx_(0), 967 pubtypes_offset_(0) 968 { 969 this->gdb_symtab_ = new Gdb_hashtab<Gdb_symbol>(); 970 } 971 972 Gdb_index::~Gdb_index() 973 { 974 // Free the memory used by the symbol table. 975 delete this->gdb_symtab_; 976 // Free the memory used by the CU vectors. 977 for (unsigned int i = 0; i < this->cu_vector_list_.size(); ++i) 978 delete this->cu_vector_list_[i]; 979 } 980 981 // Scan a .debug_info or .debug_types input section. 982 983 void 984 Gdb_index::scan_debug_info(bool is_type_unit, 985 Relobj* object, 986 const unsigned char* symbols, 987 off_t symbols_size, 988 unsigned int shndx, 989 unsigned int reloc_shndx, 990 unsigned int reloc_type) 991 { 992 Gdb_index_info_reader dwinfo(is_type_unit, object, 993 symbols, symbols_size, 994 shndx, reloc_shndx, 995 reloc_type, this); 996 dwinfo.parse(); 997 } 998 999 // Add a symbol. 1000 1001 void 1002 Gdb_index::add_symbol(int cu_index, const char* sym_name) 1003 { 1004 unsigned int hash = mapped_index_string_hash( 1005 reinterpret_cast<const unsigned char*>(sym_name)); 1006 Gdb_symbol* sym = new Gdb_symbol(); 1007 this->stringpool_.add(sym_name, true, &sym->name_key); 1008 sym->hashval = hash; 1009 sym->cu_vector_index = 0; 1010 1011 Gdb_symbol* found = this->gdb_symtab_->add(sym); 1012 if (found == sym) 1013 { 1014 // New symbol -- allocate a new CU index vector. 1015 found->cu_vector_index = this->cu_vector_list_.size(); 1016 this->cu_vector_list_.push_back(new Cu_vector()); 1017 } 1018 else 1019 { 1020 // Found an existing symbol -- append to the existing 1021 // CU index vector. 1022 delete sym; 1023 } 1024 1025 // Add the CU index to the vector list for this symbol, 1026 // if it's not already on the list. We only need to 1027 // check the last added entry. 1028 Cu_vector* cu_vec = this->cu_vector_list_[found->cu_vector_index]; 1029 if (cu_vec->size() == 0 || cu_vec->back() != cu_index) 1030 cu_vec->push_back(cu_index); 1031 } 1032 1033 // Return TRUE if we have already processed the pubnames set at 1034 // OFFSET in section SHNDX 1035 1036 bool 1037 Gdb_index::pubnames_read(unsigned int shndx, off_t offset) 1038 { 1039 bool ret = (this->pubnames_shndx_ == shndx 1040 && this->pubnames_offset_ == offset); 1041 this->pubnames_shndx_ = shndx; 1042 this->pubnames_offset_ = offset; 1043 return ret; 1044 } 1045 1046 // Return TRUE if we have already processed the pubtypes set at 1047 // OFFSET in section SHNDX 1048 1049 bool 1050 Gdb_index::pubtypes_read(unsigned int shndx, off_t offset) 1051 { 1052 bool ret = (this->pubtypes_shndx_ == shndx 1053 && this->pubtypes_offset_ == offset); 1054 this->pubtypes_shndx_ = shndx; 1055 this->pubtypes_offset_ = offset; 1056 return ret; 1057 } 1058 1059 // Set the size of the .gdb_index section. 1060 1061 void 1062 Gdb_index::set_final_data_size() 1063 { 1064 // Finalize the string pool. 1065 this->stringpool_.set_string_offsets(); 1066 1067 // Compute the total size of the CU vectors. 1068 // For each CU vector, include one entry for the count at the 1069 // beginning of the vector. 1070 unsigned int cu_vector_count = this->cu_vector_list_.size(); 1071 unsigned int cu_vector_size = 0; 1072 this->cu_vector_offsets_ = new off_t[cu_vector_count]; 1073 for (unsigned int i = 0; i < cu_vector_count; ++i) 1074 { 1075 Cu_vector* cu_vec = this->cu_vector_list_[i]; 1076 cu_vector_offsets_[i] = cu_vector_size; 1077 cu_vector_size += gdb_index_offset_size * (cu_vec->size() + 1); 1078 } 1079 1080 // Assign relative offsets to each portion of the index, 1081 // and find the total size of the section. 1082 section_size_type data_size = gdb_index_hdr_size; 1083 data_size += this->comp_units_.size() * gdb_index_cu_size; 1084 this->tu_offset_ = data_size; 1085 data_size += this->type_units_.size() * gdb_index_tu_size; 1086 this->addr_offset_ = data_size; 1087 for (unsigned int i = 0; i < this->ranges_.size(); ++i) 1088 data_size += this->ranges_[i].ranges->size() * gdb_index_addr_size; 1089 this->symtab_offset_ = data_size; 1090 data_size += this->gdb_symtab_->capacity() * gdb_index_sym_size; 1091 this->cu_pool_offset_ = data_size; 1092 data_size += cu_vector_size; 1093 this->stringpool_offset_ = data_size; 1094 data_size += this->stringpool_.get_strtab_size(); 1095 1096 this->set_data_size(data_size); 1097 } 1098 1099 // Write the data to the file. 1100 1101 void 1102 Gdb_index::do_write(Output_file* of) 1103 { 1104 const off_t off = this->offset(); 1105 const off_t oview_size = this->data_size(); 1106 unsigned char* const oview = of->get_output_view(off, oview_size); 1107 unsigned char* pov = oview; 1108 1109 // Write the file header. 1110 // (1) Version number. 1111 elfcpp::Swap<32, false>::writeval(pov, gdb_index_version); 1112 pov += 4; 1113 // (2) Offset of the CU list. 1114 elfcpp::Swap<32, false>::writeval(pov, gdb_index_hdr_size); 1115 pov += 4; 1116 // (3) Offset of the types CU list. 1117 elfcpp::Swap<32, false>::writeval(pov, this->tu_offset_); 1118 pov += 4; 1119 // (4) Offset of the address area. 1120 elfcpp::Swap<32, false>::writeval(pov, this->addr_offset_); 1121 pov += 4; 1122 // (5) Offset of the symbol table. 1123 elfcpp::Swap<32, false>::writeval(pov, this->symtab_offset_); 1124 pov += 4; 1125 // (6) Offset of the constant pool. 1126 elfcpp::Swap<32, false>::writeval(pov, this->cu_pool_offset_); 1127 pov += 4; 1128 1129 gold_assert(pov - oview == gdb_index_hdr_size); 1130 1131 // Write the CU list. 1132 unsigned int comp_units_count = this->comp_units_.size(); 1133 for (unsigned int i = 0; i < comp_units_count; ++i) 1134 { 1135 const Comp_unit& cu = this->comp_units_[i]; 1136 elfcpp::Swap<64, false>::writeval(pov, cu.cu_offset); 1137 elfcpp::Swap<64, false>::writeval(pov + 8, cu.cu_length); 1138 pov += 16; 1139 } 1140 1141 gold_assert(pov - oview == this->tu_offset_); 1142 1143 // Write the types CU list. 1144 for (unsigned int i = 0; i < this->type_units_.size(); ++i) 1145 { 1146 const Type_unit& tu = this->type_units_[i]; 1147 elfcpp::Swap<64, false>::writeval(pov, tu.tu_offset); 1148 elfcpp::Swap<64, false>::writeval(pov + 8, tu.type_offset); 1149 elfcpp::Swap<64, false>::writeval(pov + 16, tu.type_signature); 1150 pov += 24; 1151 } 1152 1153 gold_assert(pov - oview == this->addr_offset_); 1154 1155 // Write the address area. 1156 for (unsigned int i = 0; i < this->ranges_.size(); ++i) 1157 { 1158 int cu_index = this->ranges_[i].cu_index; 1159 // Translate negative indexes, which refer to a TU, to a 1160 // logical index into a concatenated CU/TU list. 1161 if (cu_index < 0) 1162 cu_index = comp_units_count + (-1 - cu_index); 1163 Relobj* object = this->ranges_[i].object; 1164 const Dwarf_range_list& ranges = *this->ranges_[i].ranges; 1165 for (unsigned int j = 0; j < ranges.size(); ++j) 1166 { 1167 const Dwarf_range_list::Range& range = ranges[j]; 1168 uint64_t base = 0; 1169 if (range.shndx > 0) 1170 { 1171 const Output_section* os = object->output_section(range.shndx); 1172 base = (os->address() 1173 + object->output_section_offset(range.shndx)); 1174 } 1175 elfcpp::Swap_aligned32<64, false>::writeval(pov, base + range.start); 1176 elfcpp::Swap_aligned32<64, false>::writeval(pov + 8, 1177 base + range.end); 1178 elfcpp::Swap<32, false>::writeval(pov + 16, cu_index); 1179 pov += 20; 1180 } 1181 } 1182 1183 gold_assert(pov - oview == this->symtab_offset_); 1184 1185 // Write the symbol table. 1186 for (unsigned int i = 0; i < this->gdb_symtab_->capacity(); ++i) 1187 { 1188 const Gdb_symbol* sym = (*this->gdb_symtab_)[i]; 1189 section_offset_type name_offset = 0; 1190 unsigned int cu_vector_offset = 0; 1191 if (sym != NULL) 1192 { 1193 name_offset = (this->stringpool_.get_offset_from_key(sym->name_key) 1194 + this->stringpool_offset_ - this->cu_pool_offset_); 1195 cu_vector_offset = this->cu_vector_offsets_[sym->cu_vector_index]; 1196 } 1197 elfcpp::Swap<32, false>::writeval(pov, name_offset); 1198 elfcpp::Swap<32, false>::writeval(pov + 4, cu_vector_offset); 1199 pov += 8; 1200 } 1201 1202 gold_assert(pov - oview == this->cu_pool_offset_); 1203 1204 // Write the CU vectors into the constant pool. 1205 for (unsigned int i = 0; i < this->cu_vector_list_.size(); ++i) 1206 { 1207 Cu_vector* cu_vec = this->cu_vector_list_[i]; 1208 elfcpp::Swap<32, false>::writeval(pov, cu_vec->size()); 1209 pov += 4; 1210 for (unsigned int j = 0; j < cu_vec->size(); ++j) 1211 { 1212 int cu_index = (*cu_vec)[j]; 1213 if (cu_index < 0) 1214 cu_index = comp_units_count + (-1 - cu_index); 1215 elfcpp::Swap<32, false>::writeval(pov, cu_index); 1216 pov += 4; 1217 } 1218 } 1219 1220 gold_assert(pov - oview == this->stringpool_offset_); 1221 1222 // Write the strings into the constant pool. 1223 this->stringpool_.write_to_buffer(pov, oview_size - this->stringpool_offset_); 1224 1225 of->write_output_view(off, oview_size, oview); 1226 } 1227 1228 // Print usage statistics. 1229 void 1230 Gdb_index::print_stats() 1231 { 1232 if (parameters->options().gdb_index()) 1233 Gdb_index_info_reader::print_stats(); 1234 } 1235 1236 } // End namespace gold. 1237