xref: /netbsd-src/external/gpl3/binutils/dist/gold/gdb-index.cc (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 // gdb-index.cc -- generate .gdb_index section for fast debug lookup
2 
3 // Copyright 2012 Free Software Foundation, Inc.
4 // Written by Cary Coutant <ccoutant@google.com>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 #include "gold.h"
24 
25 #include "gdb-index.h"
26 #include "dwarf_reader.h"
27 #include "dwarf.h"
28 #include "object.h"
29 #include "output.h"
30 #include "demangle.h"
31 
32 namespace gold
33 {
34 
35 const int gdb_index_version = 5;
36 
37 // Sizes of various records in the .gdb_index section.
38 const int gdb_index_offset_size = 4;
39 const int gdb_index_hdr_size = 6 * gdb_index_offset_size;
40 const int gdb_index_cu_size = 16;
41 const int gdb_index_tu_size = 24;
42 const int gdb_index_addr_size = 16 + gdb_index_offset_size;
43 const int gdb_index_sym_size = 2 * gdb_index_offset_size;
44 
45 // This class manages the hashed symbol table for the .gdb_index section.
46 // It is essentially equivalent to the hashtab implementation in libiberty,
47 // but is copied into gdb sources and here for compatibility because its
48 // data structure is exposed on disk.
49 
50 template <typename T>
51 class Gdb_hashtab
52 {
53  public:
54   Gdb_hashtab()
55     : size_(0), capacity_(0), hashtab_(NULL)
56   { }
57 
58   ~Gdb_hashtab()
59   {
60     for (size_t i = 0; i < this->capacity_; ++i)
61       if (this->hashtab_[i] != NULL)
62 	delete this->hashtab_[i];
63     delete[] this->hashtab_;
64   }
65 
66   // Add a symbol.
67   T*
68   add(T* symbol)
69   {
70     // Resize the hash table if necessary.
71     if (4 * this->size_ / 3 >= this->capacity_)
72       this->expand();
73 
74     T** slot = this->find_slot(symbol);
75     if (*slot == NULL)
76       {
77 	++this->size_;
78 	*slot = symbol;
79       }
80 
81     return *slot;
82   }
83 
84   // Return the current size.
85   size_t
86   size() const
87   { return this->size_; }
88 
89   // Return the current capacity.
90   size_t
91   capacity() const
92   { return this->capacity_; }
93 
94   // Return the contents of slot N.
95   T*
96   operator[](size_t n)
97   { return this->hashtab_[n]; }
98 
99  private:
100   // Find a symbol in the hash table, or return an empty slot if
101   // the symbol is not in the table.
102   T**
103   find_slot(T* symbol)
104   {
105     unsigned int index = symbol->hash() & (this->capacity_ - 1);
106     unsigned int step = ((symbol->hash() * 17) & (this->capacity_ - 1)) | 1;
107 
108     for (;;)
109       {
110 	if (this->hashtab_[index] == NULL
111 	    || this->hashtab_[index]->equal(symbol))
112 	  return &this->hashtab_[index];
113 	index = (index + step) & (this->capacity_ - 1);
114       }
115   }
116 
117   // Expand the hash table.
118   void
119   expand()
120   {
121     if (this->capacity_ == 0)
122       {
123 	// Allocate the hash table for the first time.
124 	this->capacity_ = Gdb_hashtab::initial_size;
125 	this->hashtab_ = new T*[this->capacity_];
126 	memset(this->hashtab_, 0, this->capacity_ * sizeof(T*));
127       }
128     else
129       {
130 	// Expand and rehash.
131 	unsigned int old_cap = this->capacity_;
132 	T** old_hashtab = this->hashtab_;
133 	this->capacity_ *= 2;
134 	this->hashtab_ = new T*[this->capacity_];
135 	memset(this->hashtab_, 0, this->capacity_ * sizeof(T*));
136 	for (size_t i = 0; i < old_cap; ++i)
137 	  {
138 	    if (old_hashtab[i] != NULL)
139 	      {
140 		T** slot = this->find_slot(old_hashtab[i]);
141 		*slot = old_hashtab[i];
142 	      }
143 	  }
144 	delete[] old_hashtab;
145       }
146   }
147 
148   // Initial size of the hash table; must be a power of 2.
149   static const int initial_size = 1024;
150   size_t size_;
151   size_t capacity_;
152   T** hashtab_;
153 };
154 
155 // The hash function for strings in the mapped index.  This is copied
156 // directly from gdb/dwarf2read.c.
157 
158 static unsigned int
159 mapped_index_string_hash(const unsigned char* str)
160 {
161   unsigned int r = 0;
162   unsigned char c;
163 
164   while ((c = *str++) != 0)
165     {
166       if (gdb_index_version >= 5)
167 	c = tolower (c);
168       r = r * 67 + c - 113;
169     }
170 
171   return r;
172 }
173 
174 // A specialization of Dwarf_info_reader, for building the .gdb_index.
175 
176 class Gdb_index_info_reader : public Dwarf_info_reader
177 {
178  public:
179   Gdb_index_info_reader(bool is_type_unit,
180 			Relobj* object,
181 			const unsigned char* symbols,
182 			off_t symbols_size,
183 			unsigned int shndx,
184 			unsigned int reloc_shndx,
185 			unsigned int reloc_type,
186 			Gdb_index* gdb_index)
187     : Dwarf_info_reader(is_type_unit, object, symbols, symbols_size, shndx,
188 			reloc_shndx, reloc_type),
189       gdb_index_(gdb_index), cu_index_(0), cu_language_(0)
190   { }
191 
192   ~Gdb_index_info_reader()
193   { this->clear_declarations(); }
194 
195   // Print usage statistics.
196   static void
197   print_stats();
198 
199  protected:
200   // Visit a compilation unit.
201   virtual void
202   visit_compilation_unit(off_t cu_offset, off_t cu_length, Dwarf_die*);
203 
204   // Visit a type unit.
205   virtual void
206   visit_type_unit(off_t tu_offset, off_t type_offset, uint64_t signature,
207 		  Dwarf_die*);
208 
209  private:
210   // A map for recording DIEs we've seen that may be referred to be
211   // later DIEs (via DW_AT_specification or DW_AT_abstract_origin).
212   // The map is indexed by a DIE offset within the compile unit.
213   // PARENT_OFFSET_ is the offset of the DIE that represents the
214   // outer context, and NAME_ is a pointer to a component of the
215   // fully-qualified name.
216   // Normally, the names we point to are in a string table, so we don't
217   // have to manage them, but when we have a fully-qualified name
218   // computed, we put it in the table, and set PARENT_OFFSET_ to -1
219   // indicate a string that we are managing.
220   struct Declaration_pair
221   {
222     Declaration_pair(off_t parent_offset, const char* name)
223       : parent_offset_(parent_offset), name_(name)
224     { }
225 
226     off_t parent_offset_;
227     const char* name_;
228   };
229   typedef Unordered_map<off_t, Declaration_pair> Declaration_map;
230 
231   // Visit a top-level DIE.
232   void
233   visit_top_die(Dwarf_die* die);
234 
235   // Visit the children of a DIE.
236   void
237   visit_children(Dwarf_die* die, Dwarf_die* context);
238 
239   // Visit a DIE.
240   void
241   visit_die(Dwarf_die* die, Dwarf_die* context);
242 
243   // Visit the children of a DIE.
244   void
245   visit_children_for_decls(Dwarf_die* die);
246 
247   // Visit a DIE.
248   void
249   visit_die_for_decls(Dwarf_die* die, Dwarf_die* context);
250 
251   // Guess a fully-qualified name for a class type, based on member function
252   // linkage names.
253   std::string
254   guess_full_class_name(Dwarf_die* die);
255 
256   // Add a declaration DIE to the table of declarations.
257   void
258   add_declaration(Dwarf_die* die, Dwarf_die* context);
259 
260   // Add a declaration whose fully-qualified name is already known.
261   void
262   add_declaration_with_full_name(Dwarf_die* die, const char* full_name);
263 
264   // Return the context for a DIE whose parent is at DIE_OFFSET.
265   std::string
266   get_context(off_t die_offset);
267 
268   // Construct a fully-qualified name for DIE.
269   std::string
270   get_qualified_name(Dwarf_die* die, Dwarf_die* context);
271 
272   // Record the address ranges for a compilation unit.
273   void
274   record_cu_ranges(Dwarf_die* die);
275 
276   // Read the .debug_pubnames and .debug_pubtypes tables.
277   bool
278   read_pubnames_and_pubtypes(Dwarf_die* die);
279 
280   // Clear the declarations map.
281   void
282   clear_declarations();
283 
284   // The Gdb_index section.
285   Gdb_index* gdb_index_;
286   // The current CU index (negative for a TU).
287   int cu_index_;
288   // The language of the current CU or TU.
289   unsigned int cu_language_;
290   // Map from DIE offset to (parent offset, name) pair,
291   // for DW_AT_specification.
292   Declaration_map declarations_;
293 
294   // Statistics.
295   // Total number of DWARF compilation units processed.
296   static unsigned int dwarf_cu_count;
297   // Number of DWARF compilation units with pubnames/pubtypes.
298   static unsigned int dwarf_cu_nopubnames_count;
299   // Total number of DWARF type units processed.
300   static unsigned int dwarf_tu_count;
301   // Number of DWARF type units with pubnames/pubtypes.
302   static unsigned int dwarf_tu_nopubnames_count;
303 };
304 
305 // Total number of DWARF compilation units processed.
306 unsigned int Gdb_index_info_reader::dwarf_cu_count = 0;
307 // Number of DWARF compilation units without pubnames/pubtypes.
308 unsigned int Gdb_index_info_reader::dwarf_cu_nopubnames_count = 0;
309 // Total number of DWARF type units processed.
310 unsigned int Gdb_index_info_reader::dwarf_tu_count = 0;
311 // Number of DWARF type units without pubnames/pubtypes.
312 unsigned int Gdb_index_info_reader::dwarf_tu_nopubnames_count = 0;
313 
314 // Process a compilation unit and parse its child DIE.
315 
316 void
317 Gdb_index_info_reader::visit_compilation_unit(off_t cu_offset, off_t cu_length,
318 					      Dwarf_die* root_die)
319 {
320   ++Gdb_index_info_reader::dwarf_cu_count;
321   this->cu_index_ = this->gdb_index_->add_comp_unit(cu_offset, cu_length);
322   this->visit_top_die(root_die);
323 }
324 
325 // Process a type unit and parse its child DIE.
326 
327 void
328 Gdb_index_info_reader::visit_type_unit(off_t tu_offset, off_t type_offset,
329 				       uint64_t signature, Dwarf_die* root_die)
330 {
331   ++Gdb_index_info_reader::dwarf_tu_count;
332   // Use a negative index to flag this as a TU instead of a CU.
333   this->cu_index_ = -1 - this->gdb_index_->add_type_unit(tu_offset, type_offset,
334 							 signature);
335   this->visit_top_die(root_die);
336 }
337 
338 // Process a top-level DIE.
339 // For compile_unit DIEs, record the address ranges.  For all
340 // interesting tags, add qualified names to the symbol table
341 // and process interesting children.  We may need to process
342 // certain children just for saving declarations that might be
343 // referenced by later DIEs with a DW_AT_specification attribute.
344 
345 void
346 Gdb_index_info_reader::visit_top_die(Dwarf_die* die)
347 {
348   this->clear_declarations();
349 
350   switch (die->tag())
351     {
352       case elfcpp::DW_TAG_compile_unit:
353       case elfcpp::DW_TAG_type_unit:
354 	this->cu_language_ = die->int_attribute(elfcpp::DW_AT_language);
355 	// Check for languages that require specialized knowledge to
356 	// construct fully-qualified names, that we don't yet support.
357 	if (this->cu_language_ == elfcpp::DW_LANG_Ada83
358 	    || this->cu_language_ == elfcpp::DW_LANG_Fortran77
359 	    || this->cu_language_ == elfcpp::DW_LANG_Fortran90
360 	    || this->cu_language_ == elfcpp::DW_LANG_Java
361 	    || this->cu_language_ == elfcpp::DW_LANG_Ada95
362 	    || this->cu_language_ == elfcpp::DW_LANG_Fortran95)
363 	  {
364 	    gold_warning(_("%s: --gdb-index currently supports "
365 			   "only C and C++ languages"),
366 			 this->object()->name().c_str());
367 	    return;
368 	  }
369 	if (die->tag() == elfcpp::DW_TAG_compile_unit)
370 	  this->record_cu_ranges(die);
371 	// If there is a pubnames and/or pubtypes section for this
372 	// compilation unit, use those; otherwise, parse the DWARF
373 	// info to extract the names.
374 	if (!this->read_pubnames_and_pubtypes(die))
375 	  {
376 	    if (die->tag() == elfcpp::DW_TAG_compile_unit)
377 	      ++Gdb_index_info_reader::dwarf_cu_nopubnames_count;
378 	    else
379 	      ++Gdb_index_info_reader::dwarf_tu_nopubnames_count;
380 	    this->visit_children(die, NULL);
381 	  }
382 	break;
383       default:
384 	// The top level DIE should be one of the above.
385 	gold_warning(_("%s: top level DIE is not DW_TAG_compile_unit "
386 		       "or DW_TAG_type_unit"),
387 		     this->object()->name().c_str());
388 	return;
389     }
390 
391 }
392 
393 // Visit the children of PARENT, looking for symbols to add to the index.
394 // CONTEXT points to the DIE to use for constructing the qualified name --
395 // NULL if PARENT is the top-level DIE; otherwise it is the same as PARENT.
396 
397 void
398 Gdb_index_info_reader::visit_children(Dwarf_die* parent, Dwarf_die* context)
399 {
400   off_t next_offset = 0;
401   for (off_t die_offset = parent->child_offset();
402        die_offset != 0;
403        die_offset = next_offset)
404     {
405       Dwarf_die die(this, die_offset, parent);
406       if (die.tag() == 0)
407 	break;
408       this->visit_die(&die, context);
409       next_offset = die.sibling_offset();
410     }
411 }
412 
413 // Visit a child DIE, looking for symbols to add to the index.
414 // CONTEXT is the parent DIE, used for constructing the qualified name;
415 // it is NULL if the parent DIE is the top-level DIE.
416 
417 void
418 Gdb_index_info_reader::visit_die(Dwarf_die* die, Dwarf_die* context)
419 {
420   switch (die->tag())
421     {
422       case elfcpp::DW_TAG_subprogram:
423       case elfcpp::DW_TAG_constant:
424       case elfcpp::DW_TAG_variable:
425       case elfcpp::DW_TAG_enumerator:
426       case elfcpp::DW_TAG_base_type:
427 	if (die->is_declaration())
428 	  this->add_declaration(die, context);
429 	else
430 	  {
431 	    // If the DIE is not a declaration, add it to the index.
432 	    std::string full_name = this->get_qualified_name(die, context);
433 	    if (!full_name.empty())
434 	      this->gdb_index_->add_symbol(this->cu_index_, full_name.c_str());
435 	  }
436 	break;
437       case elfcpp::DW_TAG_typedef:
438       case elfcpp::DW_TAG_union_type:
439       case elfcpp::DW_TAG_class_type:
440       case elfcpp::DW_TAG_interface_type:
441       case elfcpp::DW_TAG_structure_type:
442       case elfcpp::DW_TAG_enumeration_type:
443       case elfcpp::DW_TAG_subrange_type:
444       case elfcpp::DW_TAG_namespace:
445 	{
446 	  std::string full_name;
447 
448 	  // For classes at the top level, we need to look for a
449 	  // member function with a linkage name in order to get
450 	  // the properly-canonicalized name.
451 	  if (context == NULL
452 	      && (die->tag() == elfcpp::DW_TAG_class_type
453 		  || die->tag() == elfcpp::DW_TAG_structure_type
454 		  || die->tag() == elfcpp::DW_TAG_union_type))
455 	    full_name.assign(this->guess_full_class_name(die));
456 
457 	  // Because we will visit the children, we need to add this DIE
458 	  // to the declarations table.
459 	  if (full_name.empty())
460 	    this->add_declaration(die, context);
461 	  else
462 	    this->add_declaration_with_full_name(die, full_name.c_str());
463 
464 	  // If the DIE is not a declaration, add it to the index.
465 	  // Gdb stores a namespace in the index even when it is
466 	  // a declaration.
467 	  if (die->tag() == elfcpp::DW_TAG_namespace
468 	      || !die->is_declaration())
469 	    {
470 	      if (full_name.empty())
471 		full_name = this->get_qualified_name(die, context);
472 	      if (!full_name.empty())
473 		this->gdb_index_->add_symbol(this->cu_index_,
474 					     full_name.c_str());
475 	    }
476 
477 	  // We're interested in the children only for namespaces and
478 	  // enumeration types.  For enumeration types, we do not include
479 	  // the enumeration tag as part of the full name.  For other tags,
480 	  // visit the children only to collect declarations.
481 	  if (die->tag() == elfcpp::DW_TAG_namespace
482 	      || die->tag() == elfcpp::DW_TAG_enumeration_type)
483 	    this->visit_children(die, die);
484 	  else
485 	    this->visit_children_for_decls(die);
486 	}
487 	break;
488       default:
489 	break;
490     }
491 }
492 
493 // Visit the children of PARENT, looking only for declarations that
494 // may be referenced by later specification DIEs.
495 
496 void
497 Gdb_index_info_reader::visit_children_for_decls(Dwarf_die* parent)
498 {
499   off_t next_offset = 0;
500   for (off_t die_offset = parent->child_offset();
501        die_offset != 0;
502        die_offset = next_offset)
503     {
504       Dwarf_die die(this, die_offset, parent);
505       if (die.tag() == 0)
506 	break;
507       this->visit_die_for_decls(&die, parent);
508       next_offset = die.sibling_offset();
509     }
510 }
511 
512 // Visit a child DIE, looking only for declarations that
513 // may be referenced by later specification DIEs.
514 
515 void
516 Gdb_index_info_reader::visit_die_for_decls(Dwarf_die* die, Dwarf_die* context)
517 {
518   switch (die->tag())
519     {
520       case elfcpp::DW_TAG_subprogram:
521       case elfcpp::DW_TAG_constant:
522       case elfcpp::DW_TAG_variable:
523       case elfcpp::DW_TAG_enumerator:
524       case elfcpp::DW_TAG_base_type:
525 	{
526 	  if (die->is_declaration())
527 	    this->add_declaration(die, context);
528 	}
529 	break;
530       case elfcpp::DW_TAG_typedef:
531       case elfcpp::DW_TAG_union_type:
532       case elfcpp::DW_TAG_class_type:
533       case elfcpp::DW_TAG_interface_type:
534       case elfcpp::DW_TAG_structure_type:
535       case elfcpp::DW_TAG_enumeration_type:
536       case elfcpp::DW_TAG_subrange_type:
537       case elfcpp::DW_TAG_namespace:
538 	{
539 	  if (die->is_declaration())
540 	    this->add_declaration(die, context);
541 	  this->visit_children_for_decls(die);
542 	}
543 	break;
544       default:
545 	break;
546     }
547 }
548 
549 // Extract the class name from the linkage name of a member function.
550 // This code is adapted from ../gdb/cp-support.c.
551 
552 #define d_left(dc) (dc)->u.s_binary.left
553 #define d_right(dc) (dc)->u.s_binary.right
554 
555 static char*
556 class_name_from_linkage_name(const char* linkage_name)
557 {
558   void* storage;
559   struct demangle_component* tree =
560       cplus_demangle_v3_components(linkage_name, DMGL_NO_OPTS, &storage);
561   if (tree == NULL)
562     return NULL;
563 
564   int done = 0;
565 
566   // First strip off any qualifiers, if we have a function or
567   // method.
568   while (!done)
569     switch (tree->type)
570       {
571 	case DEMANGLE_COMPONENT_CONST:
572 	case DEMANGLE_COMPONENT_RESTRICT:
573 	case DEMANGLE_COMPONENT_VOLATILE:
574 	case DEMANGLE_COMPONENT_CONST_THIS:
575 	case DEMANGLE_COMPONENT_RESTRICT_THIS:
576 	case DEMANGLE_COMPONENT_VOLATILE_THIS:
577 	case DEMANGLE_COMPONENT_VENDOR_TYPE_QUAL:
578 	  tree = d_left(tree);
579 	  break;
580 	default:
581 	  done = 1;
582 	  break;
583       }
584 
585   // If what we have now is a function, discard the argument list.
586   if (tree->type == DEMANGLE_COMPONENT_TYPED_NAME)
587     tree = d_left(tree);
588 
589   // If what we have now is a template, strip off the template
590   // arguments.  The left subtree may be a qualified name.
591   if (tree->type == DEMANGLE_COMPONENT_TEMPLATE)
592     tree = d_left(tree);
593 
594   // What we have now should be a name, possibly qualified.
595   // Additional qualifiers could live in the left subtree or the right
596   // subtree.  Find the last piece.
597   done = 0;
598   struct demangle_component* prev_comp = NULL;
599   struct demangle_component* cur_comp = tree;
600   while (!done)
601     switch (cur_comp->type)
602       {
603 	case DEMANGLE_COMPONENT_QUAL_NAME:
604 	case DEMANGLE_COMPONENT_LOCAL_NAME:
605 	  prev_comp = cur_comp;
606 	  cur_comp = d_right(cur_comp);
607 	  break;
608 	case DEMANGLE_COMPONENT_TEMPLATE:
609 	case DEMANGLE_COMPONENT_NAME:
610 	case DEMANGLE_COMPONENT_CTOR:
611 	case DEMANGLE_COMPONENT_DTOR:
612 	case DEMANGLE_COMPONENT_OPERATOR:
613 	case DEMANGLE_COMPONENT_EXTENDED_OPERATOR:
614 	  done = 1;
615 	  break;
616 	default:
617 	  done = 1;
618 	  cur_comp = NULL;
619 	  break;
620       }
621 
622   char* ret = NULL;
623   if (cur_comp != NULL && prev_comp != NULL)
624     {
625       // We want to discard the rightmost child of PREV_COMP.
626       *prev_comp = *d_left(prev_comp);
627       size_t allocated_size;
628       ret = cplus_demangle_print(DMGL_NO_OPTS, tree, 30, &allocated_size);
629     }
630 
631   free(storage);
632   return ret;
633 }
634 
635 // Guess a fully-qualified name for a class type, based on member function
636 // linkage names.  This is needed for class/struct/union types at the
637 // top level, because GCC does not always properly embed them within
638 // the namespace.  As in gdb, we look for a member function with a linkage
639 // name and extract the qualified name from the demangled name.
640 
641 std::string
642 Gdb_index_info_reader::guess_full_class_name(Dwarf_die* die)
643 {
644   std::string full_name;
645   off_t next_offset = 0;
646 
647   // This routine scans ahead in the DIE structure, possibly advancing
648   // the relocation tracker beyond the current DIE.  We need to checkpoint
649   // the tracker and reset it when we're done.
650   uint64_t checkpoint = this->get_reloc_checkpoint();
651 
652   for (off_t child_offset = die->child_offset();
653        child_offset != 0;
654        child_offset = next_offset)
655     {
656       Dwarf_die child(this, child_offset, die);
657       if (child.tag() == 0)
658 	break;
659       if (child.tag() == elfcpp::DW_TAG_subprogram)
660         {
661           const char* linkage_name = child.linkage_name();
662 	  if (linkage_name != NULL)
663 	    {
664 	      char* guess = class_name_from_linkage_name(linkage_name);
665 	      if (guess != NULL)
666 	        {
667 		  full_name.assign(guess);
668 		  free(guess);
669 		  break;
670 	        }
671 	    }
672         }
673       next_offset = child.sibling_offset();
674     }
675 
676   this->reset_relocs(checkpoint);
677   return full_name;
678 }
679 
680 // Add a declaration DIE to the table of declarations.
681 
682 void
683 Gdb_index_info_reader::add_declaration(Dwarf_die* die, Dwarf_die* context)
684 {
685   const char* name = die->name();
686 
687   off_t parent_offset = context != NULL ? context->offset() : 0;
688 
689   // If this DIE has a DW_AT_specification or DW_AT_abstract_origin
690   // attribute, use the parent and name from the earlier declaration.
691   off_t spec = die->specification();
692   if (spec == 0)
693     spec = die->abstract_origin();
694   if (spec > 0)
695     {
696       Declaration_map::iterator it = this->declarations_.find(spec);
697       if (it != this->declarations_.end())
698         {
699 	  parent_offset = it->second.parent_offset_;
700 	  name = it->second.name_;
701         }
702     }
703 
704   if (name == NULL)
705     {
706       if (die->tag() == elfcpp::DW_TAG_namespace)
707         name = "(anonymous namespace)";
708       else if (die->tag() == elfcpp::DW_TAG_union_type)
709         name = "(anonymous union)";
710       else
711         name = "(unknown)";
712     }
713 
714   Declaration_pair decl(parent_offset, name);
715   this->declarations_.insert(std::make_pair(die->offset(), decl));
716 }
717 
718 // Add a declaration whose fully-qualified name is already known.
719 // In the case where we had to get the canonical name by demangling
720 // a linkage name, this ensures we use that name instead of the one
721 // provided in DW_AT_name.
722 
723 void
724 Gdb_index_info_reader::add_declaration_with_full_name(
725     Dwarf_die* die,
726     const char* full_name)
727 {
728   // We need to copy the name.
729   int len = strlen(full_name);
730   char* copy = new char[len + 1];
731   memcpy(copy, full_name, len + 1);
732 
733   // Flag that we now manage the memory this points to.
734   Declaration_pair decl(-1, copy);
735   this->declarations_.insert(std::make_pair(die->offset(), decl));
736 }
737 
738 // Return the context for a DIE whose parent is at DIE_OFFSET.
739 
740 std::string
741 Gdb_index_info_reader::get_context(off_t die_offset)
742 {
743   std::string context;
744   Declaration_map::iterator it = this->declarations_.find(die_offset);
745   if (it != this->declarations_.end())
746     {
747       off_t parent_offset = it->second.parent_offset_;
748       if (parent_offset > 0)
749 	{
750 	  context = get_context(parent_offset);
751 	  context.append("::");
752 	}
753       if (it->second.name_ != NULL)
754         context.append(it->second.name_);
755     }
756   return context;
757 }
758 
759 // Construct the fully-qualified name for DIE.
760 
761 std::string
762 Gdb_index_info_reader::get_qualified_name(Dwarf_die* die, Dwarf_die* context)
763 {
764   std::string full_name;
765   const char* name = die->name();
766 
767   off_t parent_offset = context != NULL ? context->offset() : 0;
768 
769   // If this DIE has a DW_AT_specification or DW_AT_abstract_origin
770   // attribute, use the parent and name from the earlier declaration.
771   off_t spec = die->specification();
772   if (spec == 0)
773     spec = die->abstract_origin();
774   if (spec > 0)
775     {
776       Declaration_map::iterator it = this->declarations_.find(spec);
777       if (it != this->declarations_.end())
778         {
779 	  parent_offset = it->second.parent_offset_;
780 	  name = it->second.name_;
781         }
782     }
783 
784   if (name == NULL && die->tag() == elfcpp::DW_TAG_namespace)
785     name = "(anonymous namespace)";
786   else if (name == NULL)
787     return full_name;
788 
789   // If this is an enumerator constant, skip the immediate parent,
790   // which is the enumeration tag.
791   if (die->tag() == elfcpp::DW_TAG_enumerator)
792     {
793       Declaration_map::iterator it = this->declarations_.find(parent_offset);
794       if (it != this->declarations_.end())
795 	parent_offset = it->second.parent_offset_;
796     }
797 
798   if (parent_offset > 0)
799     {
800       full_name.assign(this->get_context(parent_offset));
801       full_name.append("::");
802     }
803   full_name.append(name);
804 
805   return full_name;
806 }
807 
808 // Record the address ranges for a compilation unit.
809 
810 void
811 Gdb_index_info_reader::record_cu_ranges(Dwarf_die* die)
812 {
813   unsigned int shndx;
814   unsigned int shndx2;
815 
816   off_t ranges_offset = die->ref_attribute(elfcpp::DW_AT_ranges, &shndx);
817   if (ranges_offset != -1)
818     {
819       Dwarf_range_list* ranges = this->read_range_list(shndx, ranges_offset);
820       if (ranges != NULL)
821 	this->gdb_index_->add_address_range_list(this->object(),
822 						 this->cu_index_, ranges);
823       return;
824     }
825 
826   off_t low_pc = die->address_attribute(elfcpp::DW_AT_low_pc, &shndx);
827   off_t high_pc = die->address_attribute(elfcpp::DW_AT_high_pc, &shndx2);
828   if (high_pc == -1)
829     {
830       high_pc = die->uint_attribute(elfcpp::DW_AT_high_pc);
831       high_pc += low_pc;
832       shndx2 = shndx;
833     }
834   if ((low_pc != 0 || high_pc != 0) && low_pc != -1)
835     {
836       if (shndx != shndx2)
837         {
838 	  gold_warning(_("%s: DWARF info may be corrupt; low_pc and high_pc "
839 			 "are in different sections"),
840 		       this->object()->name().c_str());
841 	  return;
842 	}
843       if (shndx == 0 || this->object()->is_section_included(shndx))
844         {
845 	  Dwarf_range_list* ranges = new Dwarf_range_list();
846 	  ranges->add(shndx, low_pc, high_pc);
847 	  this->gdb_index_->add_address_range_list(this->object(),
848 						   this->cu_index_, ranges);
849         }
850     }
851 }
852 
853 // Read the .debug_pubnames and .debug_pubtypes tables for the CU or TU.
854 // Returns TRUE if either a pubnames or pubtypes section was found.
855 
856 bool
857 Gdb_index_info_reader::read_pubnames_and_pubtypes(Dwarf_die* die)
858 {
859   bool ret = false;
860 
861   // If we find a DW_AT_GNU_pubnames attribute, read the pubnames table.
862   unsigned int pubnames_shndx;
863   off_t pubnames_offset = die->ref_attribute(elfcpp::DW_AT_GNU_pubnames,
864 					     &pubnames_shndx);
865   if (pubnames_offset != -1)
866     {
867       if (this->gdb_index_->pubnames_read(pubnames_shndx, pubnames_offset))
868 	ret = true;
869       else
870 	{
871 	  Dwarf_pubnames_table pubnames(false);
872 	  if (!pubnames.read_section(this->object(), pubnames_shndx))
873 	    return false;
874 	  if (!pubnames.read_header(pubnames_offset))
875 	    return false;
876 	  while (true)
877 	    {
878 	      const char* name = pubnames.next_name();
879 	      if (name == NULL)
880 		break;
881 	      this->gdb_index_->add_symbol(this->cu_index_, name);
882 	    }
883 	  ret = true;
884 	}
885     }
886 
887   // If we find a DW_AT_GNU_pubtypes attribute, read the pubtypes table.
888   unsigned int pubtypes_shndx;
889   off_t pubtypes_offset = die->ref_attribute(elfcpp::DW_AT_GNU_pubtypes,
890 					     &pubtypes_shndx);
891   if (pubtypes_offset != -1)
892     {
893       if (this->gdb_index_->pubtypes_read(pubtypes_shndx, pubtypes_offset))
894 	ret = true;
895       else
896 	{
897 	  Dwarf_pubnames_table pubtypes(true);
898 	  if (!pubtypes.read_section(this->object(), pubtypes_shndx))
899 	    return false;
900 	  if (!pubtypes.read_header(pubtypes_offset))
901 	    return false;
902 	  while (true)
903 	    {
904 	      const char* name = pubtypes.next_name();
905 	      if (name == NULL)
906 		break;
907 	      this->gdb_index_->add_symbol(this->cu_index_, name);
908 	    }
909 	  ret = true;
910 	}
911     }
912 
913   return ret;
914 }
915 
916 // Clear the declarations map.
917 void
918 Gdb_index_info_reader::clear_declarations()
919 {
920   // Free strings in memory we manage.
921   for (Declaration_map::iterator it = this->declarations_.begin();
922        it != this->declarations_.end();
923        ++it)
924     {
925       if (it->second.parent_offset_ == -1)
926 	delete[] it->second.name_;
927     }
928 
929   this->declarations_.clear();
930 }
931 
932 // Print usage statistics.
933 void
934 Gdb_index_info_reader::print_stats()
935 {
936   fprintf(stderr, _("%s: DWARF CUs: %u\n"),
937           program_name, Gdb_index_info_reader::dwarf_cu_count);
938   fprintf(stderr, _("%s: DWARF CUs without pubnames/pubtypes: %u\n"),
939           program_name, Gdb_index_info_reader::dwarf_cu_nopubnames_count);
940   fprintf(stderr, _("%s: DWARF TUs: %u\n"),
941           program_name, Gdb_index_info_reader::dwarf_tu_count);
942   fprintf(stderr, _("%s: DWARF TUs without pubnames/pubtypes: %u\n"),
943           program_name, Gdb_index_info_reader::dwarf_tu_nopubnames_count);
944 }
945 
946 // Class Gdb_index.
947 
948 // Construct the .gdb_index section.
949 
950 Gdb_index::Gdb_index(Output_section* gdb_index_section)
951   : Output_section_data(4),
952     gdb_index_section_(gdb_index_section),
953     comp_units_(),
954     type_units_(),
955     ranges_(),
956     cu_vector_list_(),
957     cu_vector_offsets_(NULL),
958     stringpool_(),
959     tu_offset_(0),
960     addr_offset_(0),
961     symtab_offset_(0),
962     cu_pool_offset_(0),
963     stringpool_offset_(0),
964     pubnames_shndx_(0),
965     pubnames_offset_(0),
966     pubtypes_shndx_(0),
967     pubtypes_offset_(0)
968 {
969   this->gdb_symtab_ = new Gdb_hashtab<Gdb_symbol>();
970 }
971 
972 Gdb_index::~Gdb_index()
973 {
974   // Free the memory used by the symbol table.
975   delete this->gdb_symtab_;
976   // Free the memory used by the CU vectors.
977   for (unsigned int i = 0; i < this->cu_vector_list_.size(); ++i)
978     delete this->cu_vector_list_[i];
979 }
980 
981 // Scan a .debug_info or .debug_types input section.
982 
983 void
984 Gdb_index::scan_debug_info(bool is_type_unit,
985 			   Relobj* object,
986 			   const unsigned char* symbols,
987 			   off_t symbols_size,
988 			   unsigned int shndx,
989 			   unsigned int reloc_shndx,
990 			   unsigned int reloc_type)
991 {
992   Gdb_index_info_reader dwinfo(is_type_unit, object,
993 			       symbols, symbols_size,
994 			       shndx, reloc_shndx,
995 			       reloc_type, this);
996   dwinfo.parse();
997 }
998 
999 // Add a symbol.
1000 
1001 void
1002 Gdb_index::add_symbol(int cu_index, const char* sym_name)
1003 {
1004   unsigned int hash = mapped_index_string_hash(
1005       reinterpret_cast<const unsigned char*>(sym_name));
1006   Gdb_symbol* sym = new Gdb_symbol();
1007   this->stringpool_.add(sym_name, true, &sym->name_key);
1008   sym->hashval = hash;
1009   sym->cu_vector_index = 0;
1010 
1011   Gdb_symbol* found = this->gdb_symtab_->add(sym);
1012   if (found == sym)
1013     {
1014       // New symbol -- allocate a new CU index vector.
1015       found->cu_vector_index = this->cu_vector_list_.size();
1016       this->cu_vector_list_.push_back(new Cu_vector());
1017     }
1018   else
1019     {
1020       // Found an existing symbol -- append to the existing
1021       // CU index vector.
1022       delete sym;
1023     }
1024 
1025   // Add the CU index to the vector list for this symbol,
1026   // if it's not already on the list.  We only need to
1027   // check the last added entry.
1028   Cu_vector* cu_vec = this->cu_vector_list_[found->cu_vector_index];
1029   if (cu_vec->size() == 0 || cu_vec->back() != cu_index)
1030     cu_vec->push_back(cu_index);
1031 }
1032 
1033 // Return TRUE if we have already processed the pubnames set at
1034 // OFFSET in section SHNDX
1035 
1036 bool
1037 Gdb_index::pubnames_read(unsigned int shndx, off_t offset)
1038 {
1039   bool ret = (this->pubnames_shndx_ == shndx
1040 	      && this->pubnames_offset_ == offset);
1041   this->pubnames_shndx_ = shndx;
1042   this->pubnames_offset_ = offset;
1043   return ret;
1044 }
1045 
1046 // Return TRUE if we have already processed the pubtypes set at
1047 // OFFSET in section SHNDX
1048 
1049 bool
1050 Gdb_index::pubtypes_read(unsigned int shndx, off_t offset)
1051 {
1052   bool ret = (this->pubtypes_shndx_ == shndx
1053 	      && this->pubtypes_offset_ == offset);
1054   this->pubtypes_shndx_ = shndx;
1055   this->pubtypes_offset_ = offset;
1056   return ret;
1057 }
1058 
1059 // Set the size of the .gdb_index section.
1060 
1061 void
1062 Gdb_index::set_final_data_size()
1063 {
1064   // Finalize the string pool.
1065   this->stringpool_.set_string_offsets();
1066 
1067   // Compute the total size of the CU vectors.
1068   // For each CU vector, include one entry for the count at the
1069   // beginning of the vector.
1070   unsigned int cu_vector_count = this->cu_vector_list_.size();
1071   unsigned int cu_vector_size = 0;
1072   this->cu_vector_offsets_ = new off_t[cu_vector_count];
1073   for (unsigned int i = 0; i < cu_vector_count; ++i)
1074     {
1075       Cu_vector* cu_vec = this->cu_vector_list_[i];
1076       cu_vector_offsets_[i] = cu_vector_size;
1077       cu_vector_size += gdb_index_offset_size * (cu_vec->size() + 1);
1078     }
1079 
1080   // Assign relative offsets to each portion of the index,
1081   // and find the total size of the section.
1082   section_size_type data_size = gdb_index_hdr_size;
1083   data_size += this->comp_units_.size() * gdb_index_cu_size;
1084   this->tu_offset_ = data_size;
1085   data_size += this->type_units_.size() * gdb_index_tu_size;
1086   this->addr_offset_ = data_size;
1087   for (unsigned int i = 0; i < this->ranges_.size(); ++i)
1088     data_size += this->ranges_[i].ranges->size() * gdb_index_addr_size;
1089   this->symtab_offset_ = data_size;
1090   data_size += this->gdb_symtab_->capacity() * gdb_index_sym_size;
1091   this->cu_pool_offset_ = data_size;
1092   data_size += cu_vector_size;
1093   this->stringpool_offset_ = data_size;
1094   data_size += this->stringpool_.get_strtab_size();
1095 
1096   this->set_data_size(data_size);
1097 }
1098 
1099 // Write the data to the file.
1100 
1101 void
1102 Gdb_index::do_write(Output_file* of)
1103 {
1104   const off_t off = this->offset();
1105   const off_t oview_size = this->data_size();
1106   unsigned char* const oview = of->get_output_view(off, oview_size);
1107   unsigned char* pov = oview;
1108 
1109   // Write the file header.
1110   // (1) Version number.
1111   elfcpp::Swap<32, false>::writeval(pov, gdb_index_version);
1112   pov += 4;
1113   // (2) Offset of the CU list.
1114   elfcpp::Swap<32, false>::writeval(pov, gdb_index_hdr_size);
1115   pov += 4;
1116   // (3) Offset of the types CU list.
1117   elfcpp::Swap<32, false>::writeval(pov, this->tu_offset_);
1118   pov += 4;
1119   // (4) Offset of the address area.
1120   elfcpp::Swap<32, false>::writeval(pov, this->addr_offset_);
1121   pov += 4;
1122   // (5) Offset of the symbol table.
1123   elfcpp::Swap<32, false>::writeval(pov, this->symtab_offset_);
1124   pov += 4;
1125   // (6) Offset of the constant pool.
1126   elfcpp::Swap<32, false>::writeval(pov, this->cu_pool_offset_);
1127   pov += 4;
1128 
1129   gold_assert(pov - oview == gdb_index_hdr_size);
1130 
1131   // Write the CU list.
1132   unsigned int comp_units_count = this->comp_units_.size();
1133   for (unsigned int i = 0; i < comp_units_count; ++i)
1134     {
1135       const Comp_unit& cu = this->comp_units_[i];
1136       elfcpp::Swap<64, false>::writeval(pov, cu.cu_offset);
1137       elfcpp::Swap<64, false>::writeval(pov + 8, cu.cu_length);
1138       pov += 16;
1139     }
1140 
1141   gold_assert(pov - oview == this->tu_offset_);
1142 
1143   // Write the types CU list.
1144   for (unsigned int i = 0; i < this->type_units_.size(); ++i)
1145     {
1146       const Type_unit& tu = this->type_units_[i];
1147       elfcpp::Swap<64, false>::writeval(pov, tu.tu_offset);
1148       elfcpp::Swap<64, false>::writeval(pov + 8, tu.type_offset);
1149       elfcpp::Swap<64, false>::writeval(pov + 16, tu.type_signature);
1150       pov += 24;
1151     }
1152 
1153   gold_assert(pov - oview == this->addr_offset_);
1154 
1155   // Write the address area.
1156   for (unsigned int i = 0; i < this->ranges_.size(); ++i)
1157     {
1158       int cu_index = this->ranges_[i].cu_index;
1159       // Translate negative indexes, which refer to a TU, to a
1160       // logical index into a concatenated CU/TU list.
1161       if (cu_index < 0)
1162         cu_index = comp_units_count + (-1 - cu_index);
1163       Relobj* object = this->ranges_[i].object;
1164       const Dwarf_range_list& ranges = *this->ranges_[i].ranges;
1165       for (unsigned int j = 0; j < ranges.size(); ++j)
1166         {
1167 	  const Dwarf_range_list::Range& range = ranges[j];
1168 	  uint64_t base = 0;
1169 	  if (range.shndx > 0)
1170 	    {
1171 	      const Output_section* os = object->output_section(range.shndx);
1172 	      base = (os->address()
1173 		      + object->output_section_offset(range.shndx));
1174 	    }
1175 	  elfcpp::Swap_aligned32<64, false>::writeval(pov, base + range.start);
1176 	  elfcpp::Swap_aligned32<64, false>::writeval(pov + 8,
1177 						      base + range.end);
1178 	  elfcpp::Swap<32, false>::writeval(pov + 16, cu_index);
1179 	  pov += 20;
1180 	}
1181     }
1182 
1183   gold_assert(pov - oview == this->symtab_offset_);
1184 
1185   // Write the symbol table.
1186   for (unsigned int i = 0; i < this->gdb_symtab_->capacity(); ++i)
1187     {
1188       const Gdb_symbol* sym = (*this->gdb_symtab_)[i];
1189       section_offset_type name_offset = 0;
1190       unsigned int cu_vector_offset = 0;
1191       if (sym != NULL)
1192 	{
1193 	  name_offset = (this->stringpool_.get_offset_from_key(sym->name_key)
1194 			 + this->stringpool_offset_ - this->cu_pool_offset_);
1195 	  cu_vector_offset = this->cu_vector_offsets_[sym->cu_vector_index];
1196 	}
1197       elfcpp::Swap<32, false>::writeval(pov, name_offset);
1198       elfcpp::Swap<32, false>::writeval(pov + 4, cu_vector_offset);
1199       pov += 8;
1200     }
1201 
1202   gold_assert(pov - oview == this->cu_pool_offset_);
1203 
1204   // Write the CU vectors into the constant pool.
1205   for (unsigned int i = 0; i < this->cu_vector_list_.size(); ++i)
1206     {
1207       Cu_vector* cu_vec = this->cu_vector_list_[i];
1208       elfcpp::Swap<32, false>::writeval(pov, cu_vec->size());
1209       pov += 4;
1210       for (unsigned int j = 0; j < cu_vec->size(); ++j)
1211 	{
1212 	  int cu_index = (*cu_vec)[j];
1213 	  if (cu_index < 0)
1214 	    cu_index = comp_units_count + (-1 - cu_index);
1215 	  elfcpp::Swap<32, false>::writeval(pov, cu_index);
1216 	  pov += 4;
1217 	}
1218     }
1219 
1220   gold_assert(pov - oview == this->stringpool_offset_);
1221 
1222   // Write the strings into the constant pool.
1223   this->stringpool_.write_to_buffer(pov, oview_size - this->stringpool_offset_);
1224 
1225   of->write_output_view(off, oview_size, oview);
1226 }
1227 
1228 // Print usage statistics.
1229 void
1230 Gdb_index::print_stats()
1231 {
1232   if (parameters->options().gdb_index())
1233     Gdb_index_info_reader::print_stats();
1234 }
1235 
1236 } // End namespace gold.
1237