1 // dynobj.cc -- dynamic object support for gold 2 3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc. 4 // Written by Ian Lance Taylor <iant@google.com>. 5 6 // This file is part of gold. 7 8 // This program is free software; you can redistribute it and/or modify 9 // it under the terms of the GNU General Public License as published by 10 // the Free Software Foundation; either version 3 of the License, or 11 // (at your option) any later version. 12 13 // This program is distributed in the hope that it will be useful, 14 // but WITHOUT ANY WARRANTY; without even the implied warranty of 15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 // GNU General Public License for more details. 17 18 // You should have received a copy of the GNU General Public License 19 // along with this program; if not, write to the Free Software 20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 21 // MA 02110-1301, USA. 22 23 #include "gold.h" 24 25 #include <vector> 26 #include <cstring> 27 28 #include "elfcpp.h" 29 #include "parameters.h" 30 #include "script.h" 31 #include "symtab.h" 32 #include "dynobj.h" 33 34 namespace gold 35 { 36 37 // Class Dynobj. 38 39 // Sets up the default soname_ to use, in the (rare) cases we never 40 // see a DT_SONAME entry. 41 42 Dynobj::Dynobj(const std::string& name, Input_file* input_file, off_t offset) 43 : Object(name, input_file, true, offset), 44 needed_(), 45 unknown_needed_(UNKNOWN_NEEDED_UNSET) 46 { 47 // This will be overridden by a DT_SONAME entry, hopefully. But if 48 // we never see a DT_SONAME entry, our rule is to use the dynamic 49 // object's filename. The only exception is when the dynamic object 50 // is part of an archive (so the filename is the archive's 51 // filename). In that case, we use just the dynobj's name-in-archive. 52 this->soname_ = this->input_file()->found_name(); 53 if (this->offset() != 0) 54 { 55 std::string::size_type open_paren = this->name().find('('); 56 std::string::size_type close_paren = this->name().find(')'); 57 if (open_paren != std::string::npos && close_paren != std::string::npos) 58 { 59 // It's an archive, and name() is of the form 'foo.a(bar.so)'. 60 this->soname_ = this->name().substr(open_paren + 1, 61 close_paren - (open_paren + 1)); 62 } 63 } 64 } 65 66 // Class Sized_dynobj. 67 68 template<int size, bool big_endian> 69 Sized_dynobj<size, big_endian>::Sized_dynobj( 70 const std::string& name, 71 Input_file* input_file, 72 off_t offset, 73 const elfcpp::Ehdr<size, big_endian>& ehdr) 74 : Dynobj(name, input_file, offset), 75 elf_file_(this, ehdr), 76 dynsym_shndx_(-1U), 77 symbols_(NULL), 78 defined_count_(0) 79 { 80 } 81 82 // Set up the object. 83 84 template<int size, bool big_endian> 85 void 86 Sized_dynobj<size, big_endian>::setup( 87 const elfcpp::Ehdr<size, big_endian>& ehdr) 88 { 89 this->set_target(ehdr.get_e_machine(), size, big_endian, 90 ehdr.get_e_ident()[elfcpp::EI_OSABI], 91 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]); 92 93 const unsigned int shnum = this->elf_file_.shnum(); 94 this->set_shnum(shnum); 95 } 96 97 // Find the SHT_DYNSYM section and the various version sections, and 98 // the dynamic section, given the section headers. 99 100 template<int size, bool big_endian> 101 void 102 Sized_dynobj<size, big_endian>::find_dynsym_sections( 103 const unsigned char* pshdrs, 104 unsigned int* pversym_shndx, 105 unsigned int* pverdef_shndx, 106 unsigned int* pverneed_shndx, 107 unsigned int* pdynamic_shndx) 108 { 109 *pversym_shndx = -1U; 110 *pverdef_shndx = -1U; 111 *pverneed_shndx = -1U; 112 *pdynamic_shndx = -1U; 113 114 unsigned int xindex_shndx = 0; 115 unsigned int xindex_link = 0; 116 const unsigned int shnum = this->shnum(); 117 const unsigned char* p = pshdrs; 118 for (unsigned int i = 0; i < shnum; ++i, p += This::shdr_size) 119 { 120 typename This::Shdr shdr(p); 121 122 unsigned int* pi; 123 switch (shdr.get_sh_type()) 124 { 125 case elfcpp::SHT_DYNSYM: 126 this->dynsym_shndx_ = i; 127 if (xindex_shndx > 0 && xindex_link == i) 128 { 129 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset()); 130 xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx, 131 pshdrs); 132 this->set_xindex(xindex); 133 } 134 pi = NULL; 135 break; 136 case elfcpp::SHT_GNU_versym: 137 pi = pversym_shndx; 138 break; 139 case elfcpp::SHT_GNU_verdef: 140 pi = pverdef_shndx; 141 break; 142 case elfcpp::SHT_GNU_verneed: 143 pi = pverneed_shndx; 144 break; 145 case elfcpp::SHT_DYNAMIC: 146 pi = pdynamic_shndx; 147 break; 148 case elfcpp::SHT_SYMTAB_SHNDX: 149 xindex_shndx = i; 150 xindex_link = this->adjust_shndx(shdr.get_sh_link()); 151 if (xindex_link == this->dynsym_shndx_) 152 { 153 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset()); 154 xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx, 155 pshdrs); 156 this->set_xindex(xindex); 157 } 158 pi = NULL; 159 break; 160 default: 161 pi = NULL; 162 break; 163 } 164 165 if (pi == NULL) 166 continue; 167 168 if (*pi != -1U) 169 this->error(_("unexpected duplicate type %u section: %u, %u"), 170 shdr.get_sh_type(), *pi, i); 171 172 *pi = i; 173 } 174 } 175 176 // Read the contents of section SHNDX. PSHDRS points to the section 177 // headers. TYPE is the expected section type. LINK is the expected 178 // section link. Store the data in *VIEW and *VIEW_SIZE. The 179 // section's sh_info field is stored in *VIEW_INFO. 180 181 template<int size, bool big_endian> 182 void 183 Sized_dynobj<size, big_endian>::read_dynsym_section( 184 const unsigned char* pshdrs, 185 unsigned int shndx, 186 elfcpp::SHT type, 187 unsigned int link, 188 File_view** view, 189 section_size_type* view_size, 190 unsigned int* view_info) 191 { 192 if (shndx == -1U) 193 { 194 *view = NULL; 195 *view_size = 0; 196 *view_info = 0; 197 return; 198 } 199 200 typename This::Shdr shdr(pshdrs + shndx * This::shdr_size); 201 202 gold_assert(shdr.get_sh_type() == type); 203 204 if (this->adjust_shndx(shdr.get_sh_link()) != link) 205 this->error(_("unexpected link in section %u header: %u != %u"), 206 shndx, this->adjust_shndx(shdr.get_sh_link()), link); 207 208 *view = this->get_lasting_view(shdr.get_sh_offset(), shdr.get_sh_size(), 209 true, false); 210 *view_size = convert_to_section_size_type(shdr.get_sh_size()); 211 *view_info = shdr.get_sh_info(); 212 } 213 214 // Read the dynamic tags. Set the soname field if this shared object 215 // has a DT_SONAME tag. Record the DT_NEEDED tags. PSHDRS points to 216 // the section headers. DYNAMIC_SHNDX is the section index of the 217 // SHT_DYNAMIC section. STRTAB_SHNDX, STRTAB, and STRTAB_SIZE are the 218 // section index and contents of a string table which may be the one 219 // associated with the SHT_DYNAMIC section. 220 221 template<int size, bool big_endian> 222 void 223 Sized_dynobj<size, big_endian>::read_dynamic(const unsigned char* pshdrs, 224 unsigned int dynamic_shndx, 225 unsigned int strtab_shndx, 226 const unsigned char* strtabu, 227 off_t strtab_size) 228 { 229 typename This::Shdr dynamicshdr(pshdrs + dynamic_shndx * This::shdr_size); 230 gold_assert(dynamicshdr.get_sh_type() == elfcpp::SHT_DYNAMIC); 231 232 const off_t dynamic_size = dynamicshdr.get_sh_size(); 233 const unsigned char* pdynamic = this->get_view(dynamicshdr.get_sh_offset(), 234 dynamic_size, true, false); 235 236 const unsigned int link = this->adjust_shndx(dynamicshdr.get_sh_link()); 237 if (link != strtab_shndx) 238 { 239 if (link >= this->shnum()) 240 { 241 this->error(_("DYNAMIC section %u link out of range: %u"), 242 dynamic_shndx, link); 243 return; 244 } 245 246 typename This::Shdr strtabshdr(pshdrs + link * This::shdr_size); 247 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB) 248 { 249 this->error(_("DYNAMIC section %u link %u is not a strtab"), 250 dynamic_shndx, link); 251 return; 252 } 253 254 strtab_size = strtabshdr.get_sh_size(); 255 strtabu = this->get_view(strtabshdr.get_sh_offset(), strtab_size, false, 256 false); 257 } 258 259 const char* const strtab = reinterpret_cast<const char*>(strtabu); 260 261 for (const unsigned char* p = pdynamic; 262 p < pdynamic + dynamic_size; 263 p += This::dyn_size) 264 { 265 typename This::Dyn dyn(p); 266 267 switch (dyn.get_d_tag()) 268 { 269 case elfcpp::DT_NULL: 270 // We should always see DT_NULL at the end of the dynamic 271 // tags. 272 return; 273 274 case elfcpp::DT_SONAME: 275 { 276 off_t val = dyn.get_d_val(); 277 if (val >= strtab_size) 278 this->error(_("DT_SONAME value out of range: %lld >= %lld"), 279 static_cast<long long>(val), 280 static_cast<long long>(strtab_size)); 281 else 282 this->set_soname_string(strtab + val); 283 } 284 break; 285 286 case elfcpp::DT_NEEDED: 287 { 288 off_t val = dyn.get_d_val(); 289 if (val >= strtab_size) 290 this->error(_("DT_NEEDED value out of range: %lld >= %lld"), 291 static_cast<long long>(val), 292 static_cast<long long>(strtab_size)); 293 else 294 this->add_needed(strtab + val); 295 } 296 break; 297 298 default: 299 break; 300 } 301 } 302 303 this->error(_("missing DT_NULL in dynamic segment")); 304 } 305 306 // Read the symbols and sections from a dynamic object. We read the 307 // dynamic symbols, not the normal symbols. 308 309 template<int size, bool big_endian> 310 void 311 Sized_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd) 312 { 313 this->read_section_data(&this->elf_file_, sd); 314 315 const unsigned char* const pshdrs = sd->section_headers->data(); 316 317 unsigned int versym_shndx; 318 unsigned int verdef_shndx; 319 unsigned int verneed_shndx; 320 unsigned int dynamic_shndx; 321 this->find_dynsym_sections(pshdrs, &versym_shndx, &verdef_shndx, 322 &verneed_shndx, &dynamic_shndx); 323 324 unsigned int strtab_shndx = -1U; 325 326 sd->symbols = NULL; 327 sd->symbols_size = 0; 328 sd->external_symbols_offset = 0; 329 sd->symbol_names = NULL; 330 sd->symbol_names_size = 0; 331 332 if (this->dynsym_shndx_ != -1U) 333 { 334 // Get the dynamic symbols. 335 typename This::Shdr dynsymshdr(pshdrs 336 + this->dynsym_shndx_ * This::shdr_size); 337 gold_assert(dynsymshdr.get_sh_type() == elfcpp::SHT_DYNSYM); 338 339 sd->symbols = this->get_lasting_view(dynsymshdr.get_sh_offset(), 340 dynsymshdr.get_sh_size(), true, 341 false); 342 sd->symbols_size = 343 convert_to_section_size_type(dynsymshdr.get_sh_size()); 344 345 // Get the symbol names. 346 strtab_shndx = this->adjust_shndx(dynsymshdr.get_sh_link()); 347 if (strtab_shndx >= this->shnum()) 348 { 349 this->error(_("invalid dynamic symbol table name index: %u"), 350 strtab_shndx); 351 return; 352 } 353 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size); 354 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB) 355 { 356 this->error(_("dynamic symbol table name section " 357 "has wrong type: %u"), 358 static_cast<unsigned int>(strtabshdr.get_sh_type())); 359 return; 360 } 361 362 sd->symbol_names = this->get_lasting_view(strtabshdr.get_sh_offset(), 363 strtabshdr.get_sh_size(), 364 false, false); 365 sd->symbol_names_size = 366 convert_to_section_size_type(strtabshdr.get_sh_size()); 367 368 // Get the version information. 369 370 unsigned int dummy; 371 this->read_dynsym_section(pshdrs, versym_shndx, elfcpp::SHT_GNU_versym, 372 this->dynsym_shndx_, 373 &sd->versym, &sd->versym_size, &dummy); 374 375 // We require that the version definition and need section link 376 // to the same string table as the dynamic symbol table. This 377 // is not a technical requirement, but it always happens in 378 // practice. We could change this if necessary. 379 380 this->read_dynsym_section(pshdrs, verdef_shndx, elfcpp::SHT_GNU_verdef, 381 strtab_shndx, &sd->verdef, &sd->verdef_size, 382 &sd->verdef_info); 383 384 this->read_dynsym_section(pshdrs, verneed_shndx, elfcpp::SHT_GNU_verneed, 385 strtab_shndx, &sd->verneed, &sd->verneed_size, 386 &sd->verneed_info); 387 } 388 389 // Read the SHT_DYNAMIC section to find whether this shared object 390 // has a DT_SONAME tag and to record any DT_NEEDED tags. This 391 // doesn't really have anything to do with reading the symbols, but 392 // this is a convenient place to do it. 393 if (dynamic_shndx != -1U) 394 this->read_dynamic(pshdrs, dynamic_shndx, strtab_shndx, 395 (sd->symbol_names == NULL 396 ? NULL 397 : sd->symbol_names->data()), 398 sd->symbol_names_size); 399 } 400 401 // Return the Xindex structure to use for object with lots of 402 // sections. 403 404 template<int size, bool big_endian> 405 Xindex* 406 Sized_dynobj<size, big_endian>::do_initialize_xindex() 407 { 408 gold_assert(this->dynsym_shndx_ != -1U); 409 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset()); 410 xindex->initialize_symtab_xindex<size, big_endian>(this, this->dynsym_shndx_); 411 return xindex; 412 } 413 414 // Lay out the input sections for a dynamic object. We don't want to 415 // include sections from a dynamic object, so all that we actually do 416 // here is check for .gnu.warning sections. 417 418 template<int size, bool big_endian> 419 void 420 Sized_dynobj<size, big_endian>::do_layout(Symbol_table* symtab, 421 Layout*, 422 Read_symbols_data* sd) 423 { 424 const unsigned int shnum = this->shnum(); 425 if (shnum == 0) 426 return; 427 428 // Get the section headers. 429 const unsigned char* pshdrs = sd->section_headers->data(); 430 431 // Get the section names. 432 const unsigned char* pnamesu = sd->section_names->data(); 433 const char* pnames = reinterpret_cast<const char*>(pnamesu); 434 435 // Skip the first, dummy, section. 436 pshdrs += This::shdr_size; 437 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size) 438 { 439 typename This::Shdr shdr(pshdrs); 440 441 if (shdr.get_sh_name() >= sd->section_names_size) 442 { 443 this->error(_("bad section name offset for section %u: %lu"), 444 i, static_cast<unsigned long>(shdr.get_sh_name())); 445 return; 446 } 447 448 const char* name = pnames + shdr.get_sh_name(); 449 450 this->handle_gnu_warning_section(name, i, symtab); 451 } 452 453 delete sd->section_headers; 454 sd->section_headers = NULL; 455 delete sd->section_names; 456 sd->section_names = NULL; 457 } 458 459 // Add an entry to the vector mapping version numbers to version 460 // strings. 461 462 template<int size, bool big_endian> 463 void 464 Sized_dynobj<size, big_endian>::set_version_map( 465 Version_map* version_map, 466 unsigned int ndx, 467 const char* name) const 468 { 469 if (ndx >= version_map->size()) 470 version_map->resize(ndx + 1); 471 if ((*version_map)[ndx] != NULL) 472 this->error(_("duplicate definition for version %u"), ndx); 473 (*version_map)[ndx] = name; 474 } 475 476 // Add mappings for the version definitions to VERSION_MAP. 477 478 template<int size, bool big_endian> 479 void 480 Sized_dynobj<size, big_endian>::make_verdef_map( 481 Read_symbols_data* sd, 482 Version_map* version_map) const 483 { 484 if (sd->verdef == NULL) 485 return; 486 487 const char* names = reinterpret_cast<const char*>(sd->symbol_names->data()); 488 section_size_type names_size = sd->symbol_names_size; 489 490 const unsigned char* pverdef = sd->verdef->data(); 491 section_size_type verdef_size = sd->verdef_size; 492 const unsigned int count = sd->verdef_info; 493 494 const unsigned char* p = pverdef; 495 for (unsigned int i = 0; i < count; ++i) 496 { 497 elfcpp::Verdef<size, big_endian> verdef(p); 498 499 if (verdef.get_vd_version() != elfcpp::VER_DEF_CURRENT) 500 { 501 this->error(_("unexpected verdef version %u"), 502 verdef.get_vd_version()); 503 return; 504 } 505 506 const section_size_type vd_ndx = verdef.get_vd_ndx(); 507 508 // The GNU linker clears the VERSYM_HIDDEN bit. I'm not 509 // sure why. 510 511 // The first Verdaux holds the name of this version. Subsequent 512 // ones are versions that this one depends upon, which we don't 513 // care about here. 514 const section_size_type vd_cnt = verdef.get_vd_cnt(); 515 if (vd_cnt < 1) 516 { 517 this->error(_("verdef vd_cnt field too small: %u"), 518 static_cast<unsigned int>(vd_cnt)); 519 return; 520 } 521 522 const section_size_type vd_aux = verdef.get_vd_aux(); 523 if ((p - pverdef) + vd_aux >= verdef_size) 524 { 525 this->error(_("verdef vd_aux field out of range: %u"), 526 static_cast<unsigned int>(vd_aux)); 527 return; 528 } 529 530 const unsigned char* pvda = p + vd_aux; 531 elfcpp::Verdaux<size, big_endian> verdaux(pvda); 532 533 const section_size_type vda_name = verdaux.get_vda_name(); 534 if (vda_name >= names_size) 535 { 536 this->error(_("verdaux vda_name field out of range: %u"), 537 static_cast<unsigned int>(vda_name)); 538 return; 539 } 540 541 this->set_version_map(version_map, vd_ndx, names + vda_name); 542 543 const section_size_type vd_next = verdef.get_vd_next(); 544 if ((p - pverdef) + vd_next >= verdef_size) 545 { 546 this->error(_("verdef vd_next field out of range: %u"), 547 static_cast<unsigned int>(vd_next)); 548 return; 549 } 550 551 p += vd_next; 552 } 553 } 554 555 // Add mappings for the required versions to VERSION_MAP. 556 557 template<int size, bool big_endian> 558 void 559 Sized_dynobj<size, big_endian>::make_verneed_map( 560 Read_symbols_data* sd, 561 Version_map* version_map) const 562 { 563 if (sd->verneed == NULL) 564 return; 565 566 const char* names = reinterpret_cast<const char*>(sd->symbol_names->data()); 567 section_size_type names_size = sd->symbol_names_size; 568 569 const unsigned char* pverneed = sd->verneed->data(); 570 const section_size_type verneed_size = sd->verneed_size; 571 const unsigned int count = sd->verneed_info; 572 573 const unsigned char* p = pverneed; 574 for (unsigned int i = 0; i < count; ++i) 575 { 576 elfcpp::Verneed<size, big_endian> verneed(p); 577 578 if (verneed.get_vn_version() != elfcpp::VER_NEED_CURRENT) 579 { 580 this->error(_("unexpected verneed version %u"), 581 verneed.get_vn_version()); 582 return; 583 } 584 585 const section_size_type vn_aux = verneed.get_vn_aux(); 586 587 if ((p - pverneed) + vn_aux >= verneed_size) 588 { 589 this->error(_("verneed vn_aux field out of range: %u"), 590 static_cast<unsigned int>(vn_aux)); 591 return; 592 } 593 594 const unsigned int vn_cnt = verneed.get_vn_cnt(); 595 const unsigned char* pvna = p + vn_aux; 596 for (unsigned int j = 0; j < vn_cnt; ++j) 597 { 598 elfcpp::Vernaux<size, big_endian> vernaux(pvna); 599 600 const unsigned int vna_name = vernaux.get_vna_name(); 601 if (vna_name >= names_size) 602 { 603 this->error(_("vernaux vna_name field out of range: %u"), 604 static_cast<unsigned int>(vna_name)); 605 return; 606 } 607 608 this->set_version_map(version_map, vernaux.get_vna_other(), 609 names + vna_name); 610 611 const section_size_type vna_next = vernaux.get_vna_next(); 612 if ((pvna - pverneed) + vna_next >= verneed_size) 613 { 614 this->error(_("verneed vna_next field out of range: %u"), 615 static_cast<unsigned int>(vna_next)); 616 return; 617 } 618 619 pvna += vna_next; 620 } 621 622 const section_size_type vn_next = verneed.get_vn_next(); 623 if ((p - pverneed) + vn_next >= verneed_size) 624 { 625 this->error(_("verneed vn_next field out of range: %u"), 626 static_cast<unsigned int>(vn_next)); 627 return; 628 } 629 630 p += vn_next; 631 } 632 } 633 634 // Create a vector mapping version numbers to version strings. 635 636 template<int size, bool big_endian> 637 void 638 Sized_dynobj<size, big_endian>::make_version_map( 639 Read_symbols_data* sd, 640 Version_map* version_map) const 641 { 642 if (sd->verdef == NULL && sd->verneed == NULL) 643 return; 644 645 // A guess at the maximum version number we will see. If this is 646 // wrong we will be less efficient but still correct. 647 version_map->reserve(sd->verdef_info + sd->verneed_info * 10); 648 649 this->make_verdef_map(sd, version_map); 650 this->make_verneed_map(sd, version_map); 651 } 652 653 // Add the dynamic symbols to the symbol table. 654 655 template<int size, bool big_endian> 656 void 657 Sized_dynobj<size, big_endian>::do_add_symbols(Symbol_table* symtab, 658 Read_symbols_data* sd) 659 { 660 if (sd->symbols == NULL) 661 { 662 gold_assert(sd->symbol_names == NULL); 663 gold_assert(sd->versym == NULL && sd->verdef == NULL 664 && sd->verneed == NULL); 665 return; 666 } 667 668 const int sym_size = This::sym_size; 669 const size_t symcount = sd->symbols_size / sym_size; 670 gold_assert(sd->external_symbols_offset == 0); 671 if (symcount * sym_size != sd->symbols_size) 672 { 673 this->error(_("size of dynamic symbols is not multiple of symbol size")); 674 return; 675 } 676 677 Version_map version_map; 678 this->make_version_map(sd, &version_map); 679 680 // If printing symbol counts, we want to track symbols. 681 682 if (parameters->options().user_set_print_symbol_counts()) 683 { 684 this->symbols_ = new Symbols(); 685 this->symbols_->resize(symcount); 686 } 687 688 const char* sym_names = 689 reinterpret_cast<const char*>(sd->symbol_names->data()); 690 symtab->add_from_dynobj(this, sd->symbols->data(), symcount, 691 sym_names, sd->symbol_names_size, 692 (sd->versym == NULL 693 ? NULL 694 : sd->versym->data()), 695 sd->versym_size, 696 &version_map, 697 this->symbols_, 698 &this->defined_count_); 699 700 delete sd->symbols; 701 sd->symbols = NULL; 702 delete sd->symbol_names; 703 sd->symbol_names = NULL; 704 if (sd->versym != NULL) 705 { 706 delete sd->versym; 707 sd->versym = NULL; 708 } 709 if (sd->verdef != NULL) 710 { 711 delete sd->verdef; 712 sd->verdef = NULL; 713 } 714 if (sd->verneed != NULL) 715 { 716 delete sd->verneed; 717 sd->verneed = NULL; 718 } 719 720 // This is normally the last time we will read any data from this 721 // file. 722 this->clear_view_cache_marks(); 723 } 724 725 // Get symbol counts. 726 727 template<int size, bool big_endian> 728 void 729 Sized_dynobj<size, big_endian>::do_get_global_symbol_counts( 730 const Symbol_table*, 731 size_t* defined, 732 size_t* used) const 733 { 734 *defined = this->defined_count_; 735 size_t count = 0; 736 for (typename Symbols::const_iterator p = this->symbols_->begin(); 737 p != this->symbols_->end(); 738 ++p) 739 if (*p != NULL 740 && (*p)->source() == Symbol::FROM_OBJECT 741 && (*p)->object() == this 742 && (*p)->is_defined() 743 && (*p)->dynsym_index() != -1U) 744 ++count; 745 *used = count; 746 } 747 748 // Given a vector of hash codes, compute the number of hash buckets to 749 // use. 750 751 unsigned int 752 Dynobj::compute_bucket_count(const std::vector<uint32_t>& hashcodes, 753 bool for_gnu_hash_table) 754 { 755 // FIXME: Implement optional hash table optimization. 756 757 // Array used to determine the number of hash table buckets to use 758 // based on the number of symbols there are. If there are fewer 759 // than 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 760 // buckets, fewer than 37 we use 17 buckets, and so forth. We never 761 // use more than 262147 buckets. This is straight from the old GNU 762 // linker. 763 static const unsigned int buckets[] = 764 { 765 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209, 766 16411, 32771, 65537, 131101, 262147 767 }; 768 const int buckets_count = sizeof buckets / sizeof buckets[0]; 769 770 unsigned int symcount = hashcodes.size(); 771 unsigned int ret = 1; 772 const double full_fraction 773 = 1.0 - parameters->options().hash_bucket_empty_fraction(); 774 for (int i = 0; i < buckets_count; ++i) 775 { 776 if (symcount < buckets[i] * full_fraction) 777 break; 778 ret = buckets[i]; 779 } 780 781 if (for_gnu_hash_table && ret < 2) 782 ret = 2; 783 784 return ret; 785 } 786 787 // The standard ELF hash function. This hash function must not 788 // change, as the dynamic linker uses it also. 789 790 uint32_t 791 Dynobj::elf_hash(const char* name) 792 { 793 const unsigned char* nameu = reinterpret_cast<const unsigned char*>(name); 794 uint32_t h = 0; 795 unsigned char c; 796 while ((c = *nameu++) != '\0') 797 { 798 h = (h << 4) + c; 799 uint32_t g = h & 0xf0000000; 800 if (g != 0) 801 { 802 h ^= g >> 24; 803 // The ELF ABI says h &= ~g, but using xor is equivalent in 804 // this case (since g was set from h) and may save one 805 // instruction. 806 h ^= g; 807 } 808 } 809 return h; 810 } 811 812 // Create a standard ELF hash table, setting *PPHASH and *PHASHLEN. 813 // DYNSYMS is a vector with all the global dynamic symbols. 814 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic 815 // symbol table. 816 817 void 818 Dynobj::create_elf_hash_table(const std::vector<Symbol*>& dynsyms, 819 unsigned int local_dynsym_count, 820 unsigned char** pphash, 821 unsigned int* phashlen) 822 { 823 unsigned int dynsym_count = dynsyms.size(); 824 825 // Get the hash values for all the symbols. 826 std::vector<uint32_t> dynsym_hashvals(dynsym_count); 827 for (unsigned int i = 0; i < dynsym_count; ++i) 828 dynsym_hashvals[i] = Dynobj::elf_hash(dynsyms[i]->name()); 829 830 const unsigned int bucketcount = 831 Dynobj::compute_bucket_count(dynsym_hashvals, false); 832 833 std::vector<uint32_t> bucket(bucketcount); 834 std::vector<uint32_t> chain(local_dynsym_count + dynsym_count); 835 836 for (unsigned int i = 0; i < dynsym_count; ++i) 837 { 838 unsigned int dynsym_index = dynsyms[i]->dynsym_index(); 839 unsigned int bucketpos = dynsym_hashvals[i] % bucketcount; 840 chain[dynsym_index] = bucket[bucketpos]; 841 bucket[bucketpos] = dynsym_index; 842 } 843 844 unsigned int hashlen = ((2 845 + bucketcount 846 + local_dynsym_count 847 + dynsym_count) 848 * 4); 849 unsigned char* phash = new unsigned char[hashlen]; 850 851 if (parameters->target().is_big_endian()) 852 { 853 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG) 854 Dynobj::sized_create_elf_hash_table<true>(bucket, chain, phash, 855 hashlen); 856 #else 857 gold_unreachable(); 858 #endif 859 } 860 else 861 { 862 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE) 863 Dynobj::sized_create_elf_hash_table<false>(bucket, chain, phash, 864 hashlen); 865 #else 866 gold_unreachable(); 867 #endif 868 } 869 870 *pphash = phash; 871 *phashlen = hashlen; 872 } 873 874 // Fill in an ELF hash table. 875 876 template<bool big_endian> 877 void 878 Dynobj::sized_create_elf_hash_table(const std::vector<uint32_t>& bucket, 879 const std::vector<uint32_t>& chain, 880 unsigned char* phash, 881 unsigned int hashlen) 882 { 883 unsigned char* p = phash; 884 885 const unsigned int bucketcount = bucket.size(); 886 const unsigned int chaincount = chain.size(); 887 888 elfcpp::Swap<32, big_endian>::writeval(p, bucketcount); 889 p += 4; 890 elfcpp::Swap<32, big_endian>::writeval(p, chaincount); 891 p += 4; 892 893 for (unsigned int i = 0; i < bucketcount; ++i) 894 { 895 elfcpp::Swap<32, big_endian>::writeval(p, bucket[i]); 896 p += 4; 897 } 898 899 for (unsigned int i = 0; i < chaincount; ++i) 900 { 901 elfcpp::Swap<32, big_endian>::writeval(p, chain[i]); 902 p += 4; 903 } 904 905 gold_assert(static_cast<unsigned int>(p - phash) == hashlen); 906 } 907 908 // The hash function used for the GNU hash table. This hash function 909 // must not change, as the dynamic linker uses it also. 910 911 uint32_t 912 Dynobj::gnu_hash(const char* name) 913 { 914 const unsigned char* nameu = reinterpret_cast<const unsigned char*>(name); 915 uint32_t h = 5381; 916 unsigned char c; 917 while ((c = *nameu++) != '\0') 918 h = (h << 5) + h + c; 919 return h; 920 } 921 922 // Create a GNU hash table, setting *PPHASH and *PHASHLEN. GNU hash 923 // tables are an extension to ELF which are recognized by the GNU 924 // dynamic linker. They are referenced using dynamic tag DT_GNU_HASH. 925 // TARGET is the target. DYNSYMS is a vector with all the global 926 // symbols which will be going into the dynamic symbol table. 927 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic 928 // symbol table. 929 930 void 931 Dynobj::create_gnu_hash_table(const std::vector<Symbol*>& dynsyms, 932 unsigned int local_dynsym_count, 933 unsigned char** pphash, 934 unsigned int* phashlen) 935 { 936 const unsigned int count = dynsyms.size(); 937 938 // Sort the dynamic symbols into two vectors. Symbols which we do 939 // not want to put into the hash table we store into 940 // UNHASHED_DYNSYMS. Symbols which we do want to store we put into 941 // HASHED_DYNSYMS. DYNSYM_HASHVALS is parallel to HASHED_DYNSYMS, 942 // and records the hash codes. 943 944 std::vector<Symbol*> unhashed_dynsyms; 945 unhashed_dynsyms.reserve(count); 946 947 std::vector<Symbol*> hashed_dynsyms; 948 hashed_dynsyms.reserve(count); 949 950 std::vector<uint32_t> dynsym_hashvals; 951 dynsym_hashvals.reserve(count); 952 953 for (unsigned int i = 0; i < count; ++i) 954 { 955 Symbol* sym = dynsyms[i]; 956 957 // FIXME: Should put on unhashed_dynsyms if the symbol is 958 // hidden. 959 if (sym->is_undefined()) 960 unhashed_dynsyms.push_back(sym); 961 else 962 { 963 hashed_dynsyms.push_back(sym); 964 dynsym_hashvals.push_back(Dynobj::gnu_hash(sym->name())); 965 } 966 } 967 968 // Put the unhashed symbols at the start of the global portion of 969 // the dynamic symbol table. 970 const unsigned int unhashed_count = unhashed_dynsyms.size(); 971 unsigned int unhashed_dynsym_index = local_dynsym_count; 972 for (unsigned int i = 0; i < unhashed_count; ++i) 973 { 974 unhashed_dynsyms[i]->set_dynsym_index(unhashed_dynsym_index); 975 ++unhashed_dynsym_index; 976 } 977 978 // For the actual data generation we call out to a templatized 979 // function. 980 int size = parameters->target().get_size(); 981 bool big_endian = parameters->target().is_big_endian(); 982 if (size == 32) 983 { 984 if (big_endian) 985 { 986 #ifdef HAVE_TARGET_32_BIG 987 Dynobj::sized_create_gnu_hash_table<32, true>(hashed_dynsyms, 988 dynsym_hashvals, 989 unhashed_dynsym_index, 990 pphash, 991 phashlen); 992 #else 993 gold_unreachable(); 994 #endif 995 } 996 else 997 { 998 #ifdef HAVE_TARGET_32_LITTLE 999 Dynobj::sized_create_gnu_hash_table<32, false>(hashed_dynsyms, 1000 dynsym_hashvals, 1001 unhashed_dynsym_index, 1002 pphash, 1003 phashlen); 1004 #else 1005 gold_unreachable(); 1006 #endif 1007 } 1008 } 1009 else if (size == 64) 1010 { 1011 if (big_endian) 1012 { 1013 #ifdef HAVE_TARGET_64_BIG 1014 Dynobj::sized_create_gnu_hash_table<64, true>(hashed_dynsyms, 1015 dynsym_hashvals, 1016 unhashed_dynsym_index, 1017 pphash, 1018 phashlen); 1019 #else 1020 gold_unreachable(); 1021 #endif 1022 } 1023 else 1024 { 1025 #ifdef HAVE_TARGET_64_LITTLE 1026 Dynobj::sized_create_gnu_hash_table<64, false>(hashed_dynsyms, 1027 dynsym_hashvals, 1028 unhashed_dynsym_index, 1029 pphash, 1030 phashlen); 1031 #else 1032 gold_unreachable(); 1033 #endif 1034 } 1035 } 1036 else 1037 gold_unreachable(); 1038 } 1039 1040 // Create the actual data for a GNU hash table. This is just a copy 1041 // of the code from the old GNU linker. 1042 1043 template<int size, bool big_endian> 1044 void 1045 Dynobj::sized_create_gnu_hash_table( 1046 const std::vector<Symbol*>& hashed_dynsyms, 1047 const std::vector<uint32_t>& dynsym_hashvals, 1048 unsigned int unhashed_dynsym_count, 1049 unsigned char** pphash, 1050 unsigned int* phashlen) 1051 { 1052 if (hashed_dynsyms.empty()) 1053 { 1054 // Special case for the empty hash table. 1055 unsigned int hashlen = 5 * 4 + size / 8; 1056 unsigned char* phash = new unsigned char[hashlen]; 1057 // One empty bucket. 1058 elfcpp::Swap<32, big_endian>::writeval(phash, 1); 1059 // Symbol index above unhashed symbols. 1060 elfcpp::Swap<32, big_endian>::writeval(phash + 4, unhashed_dynsym_count); 1061 // One word for bitmask. 1062 elfcpp::Swap<32, big_endian>::writeval(phash + 8, 1); 1063 // Only bloom filter. 1064 elfcpp::Swap<32, big_endian>::writeval(phash + 12, 0); 1065 // No valid hashes. 1066 elfcpp::Swap<size, big_endian>::writeval(phash + 16, 0); 1067 // No hashes in only bucket. 1068 elfcpp::Swap<32, big_endian>::writeval(phash + 16 + size / 8, 0); 1069 1070 *phashlen = hashlen; 1071 *pphash = phash; 1072 1073 return; 1074 } 1075 1076 const unsigned int bucketcount = 1077 Dynobj::compute_bucket_count(dynsym_hashvals, true); 1078 1079 const unsigned int nsyms = hashed_dynsyms.size(); 1080 1081 uint32_t maskbitslog2 = 1; 1082 uint32_t x = nsyms >> 1; 1083 while (x != 0) 1084 { 1085 ++maskbitslog2; 1086 x >>= 1; 1087 } 1088 if (maskbitslog2 < 3) 1089 maskbitslog2 = 5; 1090 else if (((1U << (maskbitslog2 - 2)) & nsyms) != 0) 1091 maskbitslog2 += 3; 1092 else 1093 maskbitslog2 += 2; 1094 1095 uint32_t shift1; 1096 if (size == 32) 1097 shift1 = 5; 1098 else 1099 { 1100 if (maskbitslog2 == 5) 1101 maskbitslog2 = 6; 1102 shift1 = 6; 1103 } 1104 uint32_t mask = (1U << shift1) - 1U; 1105 uint32_t shift2 = maskbitslog2; 1106 uint32_t maskbits = 1U << maskbitslog2; 1107 uint32_t maskwords = 1U << (maskbitslog2 - shift1); 1108 1109 typedef typename elfcpp::Elf_types<size>::Elf_WXword Word; 1110 std::vector<Word> bitmask(maskwords); 1111 std::vector<uint32_t> counts(bucketcount); 1112 std::vector<uint32_t> indx(bucketcount); 1113 uint32_t symindx = unhashed_dynsym_count; 1114 1115 // Count the number of times each hash bucket is used. 1116 for (unsigned int i = 0; i < nsyms; ++i) 1117 ++counts[dynsym_hashvals[i] % bucketcount]; 1118 1119 unsigned int cnt = symindx; 1120 for (unsigned int i = 0; i < bucketcount; ++i) 1121 { 1122 indx[i] = cnt; 1123 cnt += counts[i]; 1124 } 1125 1126 unsigned int hashlen = (4 + bucketcount + nsyms) * 4; 1127 hashlen += maskbits / 8; 1128 unsigned char* phash = new unsigned char[hashlen]; 1129 1130 elfcpp::Swap<32, big_endian>::writeval(phash, bucketcount); 1131 elfcpp::Swap<32, big_endian>::writeval(phash + 4, symindx); 1132 elfcpp::Swap<32, big_endian>::writeval(phash + 8, maskwords); 1133 elfcpp::Swap<32, big_endian>::writeval(phash + 12, shift2); 1134 1135 unsigned char* p = phash + 16 + maskbits / 8; 1136 for (unsigned int i = 0; i < bucketcount; ++i) 1137 { 1138 if (counts[i] == 0) 1139 elfcpp::Swap<32, big_endian>::writeval(p, 0); 1140 else 1141 elfcpp::Swap<32, big_endian>::writeval(p, indx[i]); 1142 p += 4; 1143 } 1144 1145 for (unsigned int i = 0; i < nsyms; ++i) 1146 { 1147 Symbol* sym = hashed_dynsyms[i]; 1148 uint32_t hashval = dynsym_hashvals[i]; 1149 1150 unsigned int bucket = hashval % bucketcount; 1151 unsigned int val = ((hashval >> shift1) 1152 & ((maskbits >> shift1) - 1)); 1153 bitmask[val] |= (static_cast<Word>(1U)) << (hashval & mask); 1154 bitmask[val] |= (static_cast<Word>(1U)) << ((hashval >> shift2) & mask); 1155 val = hashval & ~ 1U; 1156 if (counts[bucket] == 1) 1157 { 1158 // Last element terminates the chain. 1159 val |= 1; 1160 } 1161 elfcpp::Swap<32, big_endian>::writeval(p + (indx[bucket] - symindx) * 4, 1162 val); 1163 --counts[bucket]; 1164 1165 sym->set_dynsym_index(indx[bucket]); 1166 ++indx[bucket]; 1167 } 1168 1169 p = phash + 16; 1170 for (unsigned int i = 0; i < maskwords; ++i) 1171 { 1172 elfcpp::Swap<size, big_endian>::writeval(p, bitmask[i]); 1173 p += size / 8; 1174 } 1175 1176 *phashlen = hashlen; 1177 *pphash = phash; 1178 } 1179 1180 // Verdef methods. 1181 1182 // Write this definition to a buffer for the output section. 1183 1184 template<int size, bool big_endian> 1185 unsigned char* 1186 Verdef::write(const Stringpool* dynpool, bool is_last, unsigned char* pb) const 1187 { 1188 const int verdef_size = elfcpp::Elf_sizes<size>::verdef_size; 1189 const int verdaux_size = elfcpp::Elf_sizes<size>::verdaux_size; 1190 1191 elfcpp::Verdef_write<size, big_endian> vd(pb); 1192 vd.set_vd_version(elfcpp::VER_DEF_CURRENT); 1193 vd.set_vd_flags((this->is_base_ ? elfcpp::VER_FLG_BASE : 0) 1194 | (this->is_weak_ ? elfcpp::VER_FLG_WEAK : 0)); 1195 vd.set_vd_ndx(this->index()); 1196 vd.set_vd_cnt(1 + this->deps_.size()); 1197 vd.set_vd_hash(Dynobj::elf_hash(this->name())); 1198 vd.set_vd_aux(verdef_size); 1199 vd.set_vd_next(is_last 1200 ? 0 1201 : verdef_size + (1 + this->deps_.size()) * verdaux_size); 1202 pb += verdef_size; 1203 1204 elfcpp::Verdaux_write<size, big_endian> vda(pb); 1205 vda.set_vda_name(dynpool->get_offset(this->name())); 1206 vda.set_vda_next(this->deps_.empty() ? 0 : verdaux_size); 1207 pb += verdaux_size; 1208 1209 Deps::const_iterator p; 1210 unsigned int i; 1211 for (p = this->deps_.begin(), i = 0; 1212 p != this->deps_.end(); 1213 ++p, ++i) 1214 { 1215 elfcpp::Verdaux_write<size, big_endian> vda(pb); 1216 vda.set_vda_name(dynpool->get_offset(*p)); 1217 vda.set_vda_next(i + 1 >= this->deps_.size() ? 0 : verdaux_size); 1218 pb += verdaux_size; 1219 } 1220 1221 return pb; 1222 } 1223 1224 // Verneed methods. 1225 1226 Verneed::~Verneed() 1227 { 1228 for (Need_versions::iterator p = this->need_versions_.begin(); 1229 p != this->need_versions_.end(); 1230 ++p) 1231 delete *p; 1232 } 1233 1234 // Add a new version to this file reference. 1235 1236 Verneed_version* 1237 Verneed::add_name(const char* name) 1238 { 1239 Verneed_version* vv = new Verneed_version(name); 1240 this->need_versions_.push_back(vv); 1241 return vv; 1242 } 1243 1244 // Set the version indexes starting at INDEX. 1245 1246 unsigned int 1247 Verneed::finalize(unsigned int index) 1248 { 1249 for (Need_versions::iterator p = this->need_versions_.begin(); 1250 p != this->need_versions_.end(); 1251 ++p) 1252 { 1253 (*p)->set_index(index); 1254 ++index; 1255 } 1256 return index; 1257 } 1258 1259 // Write this list of referenced versions to a buffer for the output 1260 // section. 1261 1262 template<int size, bool big_endian> 1263 unsigned char* 1264 Verneed::write(const Stringpool* dynpool, bool is_last, 1265 unsigned char* pb) const 1266 { 1267 const int verneed_size = elfcpp::Elf_sizes<size>::verneed_size; 1268 const int vernaux_size = elfcpp::Elf_sizes<size>::vernaux_size; 1269 1270 elfcpp::Verneed_write<size, big_endian> vn(pb); 1271 vn.set_vn_version(elfcpp::VER_NEED_CURRENT); 1272 vn.set_vn_cnt(this->need_versions_.size()); 1273 vn.set_vn_file(dynpool->get_offset(this->filename())); 1274 vn.set_vn_aux(verneed_size); 1275 vn.set_vn_next(is_last 1276 ? 0 1277 : verneed_size + this->need_versions_.size() * vernaux_size); 1278 pb += verneed_size; 1279 1280 Need_versions::const_iterator p; 1281 unsigned int i; 1282 for (p = this->need_versions_.begin(), i = 0; 1283 p != this->need_versions_.end(); 1284 ++p, ++i) 1285 { 1286 elfcpp::Vernaux_write<size, big_endian> vna(pb); 1287 vna.set_vna_hash(Dynobj::elf_hash((*p)->version())); 1288 // FIXME: We need to sometimes set VER_FLG_WEAK here. 1289 vna.set_vna_flags(0); 1290 vna.set_vna_other((*p)->index()); 1291 vna.set_vna_name(dynpool->get_offset((*p)->version())); 1292 vna.set_vna_next(i + 1 >= this->need_versions_.size() 1293 ? 0 1294 : vernaux_size); 1295 pb += vernaux_size; 1296 } 1297 1298 return pb; 1299 } 1300 1301 // Versions methods. 1302 1303 Versions::Versions(const Version_script_info& version_script, 1304 Stringpool* dynpool) 1305 : defs_(), needs_(), version_table_(), 1306 is_finalized_(false), version_script_(version_script) 1307 { 1308 // We always need a base version, so define that first. Nothing 1309 // explicitly declares itself as part of base, so it doesn't need to 1310 // be in version_table_. 1311 if (parameters->options().shared()) 1312 { 1313 const char* name = parameters->options().soname(); 1314 if (name == NULL) 1315 name = parameters->options().output_file_name(); 1316 name = dynpool->add(name, false, NULL); 1317 Verdef* vdbase = new Verdef(name, std::vector<std::string>(), 1318 true, false, true); 1319 this->defs_.push_back(vdbase); 1320 } 1321 1322 if (!this->version_script_.empty()) 1323 { 1324 // Parse the version script, and insert each declared version into 1325 // defs_ and version_table_. 1326 std::vector<std::string> versions = this->version_script_.get_versions(); 1327 for (size_t k = 0; k < versions.size(); ++k) 1328 { 1329 Stringpool::Key version_key; 1330 const char* version = dynpool->add(versions[k].c_str(), 1331 true, &version_key); 1332 Verdef* const vd = new Verdef( 1333 version, 1334 this->version_script_.get_dependencies(version), 1335 false, false, false); 1336 this->defs_.push_back(vd); 1337 Key key(version_key, 0); 1338 this->version_table_.insert(std::make_pair(key, vd)); 1339 } 1340 } 1341 } 1342 1343 Versions::~Versions() 1344 { 1345 for (Defs::iterator p = this->defs_.begin(); 1346 p != this->defs_.end(); 1347 ++p) 1348 delete *p; 1349 1350 for (Needs::iterator p = this->needs_.begin(); 1351 p != this->needs_.end(); 1352 ++p) 1353 delete *p; 1354 } 1355 1356 // Return the dynamic object which a symbol refers to. 1357 1358 Dynobj* 1359 Versions::get_dynobj_for_sym(const Symbol_table* symtab, 1360 const Symbol* sym) const 1361 { 1362 if (sym->is_copied_from_dynobj()) 1363 return symtab->get_copy_source(sym); 1364 else 1365 { 1366 Object* object = sym->object(); 1367 gold_assert(object->is_dynamic()); 1368 return static_cast<Dynobj*>(object); 1369 } 1370 } 1371 1372 // Record version information for a symbol going into the dynamic 1373 // symbol table. 1374 1375 void 1376 Versions::record_version(const Symbol_table* symtab, 1377 Stringpool* dynpool, const Symbol* sym) 1378 { 1379 gold_assert(!this->is_finalized_); 1380 gold_assert(sym->version() != NULL); 1381 1382 Stringpool::Key version_key; 1383 const char* version = dynpool->add(sym->version(), false, &version_key); 1384 1385 if (!sym->is_from_dynobj() && !sym->is_copied_from_dynobj()) 1386 { 1387 if (parameters->options().shared()) 1388 this->add_def(sym, version, version_key); 1389 } 1390 else 1391 { 1392 // This is a version reference. 1393 Dynobj* dynobj = this->get_dynobj_for_sym(symtab, sym); 1394 this->add_need(dynpool, dynobj->soname(), version, version_key); 1395 } 1396 } 1397 1398 // We've found a symbol SYM defined in version VERSION. 1399 1400 void 1401 Versions::add_def(const Symbol* sym, const char* version, 1402 Stringpool::Key version_key) 1403 { 1404 Key k(version_key, 0); 1405 Version_base* const vbnull = NULL; 1406 std::pair<Version_table::iterator, bool> ins = 1407 this->version_table_.insert(std::make_pair(k, vbnull)); 1408 1409 if (!ins.second) 1410 { 1411 // We already have an entry for this version. 1412 Version_base* vb = ins.first->second; 1413 1414 // We have now seen a symbol in this version, so it is not 1415 // weak. 1416 gold_assert(vb != NULL); 1417 vb->clear_weak(); 1418 } 1419 else 1420 { 1421 // If we are creating a shared object, it is an error to 1422 // find a definition of a symbol with a version which is not 1423 // in the version script. 1424 if (parameters->options().shared()) 1425 gold_error(_("symbol %s has undefined version %s"), 1426 sym->demangled_name().c_str(), version); 1427 1428 // When creating a regular executable, automatically define 1429 // a new version. 1430 Verdef* vd = new Verdef(version, std::vector<std::string>(), 1431 false, false, false); 1432 this->defs_.push_back(vd); 1433 ins.first->second = vd; 1434 } 1435 } 1436 1437 // Add a reference to version NAME in file FILENAME. 1438 1439 void 1440 Versions::add_need(Stringpool* dynpool, const char* filename, const char* name, 1441 Stringpool::Key name_key) 1442 { 1443 Stringpool::Key filename_key; 1444 filename = dynpool->add(filename, true, &filename_key); 1445 1446 Key k(name_key, filename_key); 1447 Version_base* const vbnull = NULL; 1448 std::pair<Version_table::iterator, bool> ins = 1449 this->version_table_.insert(std::make_pair(k, vbnull)); 1450 1451 if (!ins.second) 1452 { 1453 // We already have an entry for this filename/version. 1454 return; 1455 } 1456 1457 // See whether we already have this filename. We don't expect many 1458 // version references, so we just do a linear search. This could be 1459 // replaced by a hash table. 1460 Verneed* vn = NULL; 1461 for (Needs::iterator p = this->needs_.begin(); 1462 p != this->needs_.end(); 1463 ++p) 1464 { 1465 if ((*p)->filename() == filename) 1466 { 1467 vn = *p; 1468 break; 1469 } 1470 } 1471 1472 if (vn == NULL) 1473 { 1474 // We have a new filename. 1475 vn = new Verneed(filename); 1476 this->needs_.push_back(vn); 1477 } 1478 1479 ins.first->second = vn->add_name(name); 1480 } 1481 1482 // Set the version indexes. Create a new dynamic version symbol for 1483 // each new version definition. 1484 1485 unsigned int 1486 Versions::finalize(Symbol_table* symtab, unsigned int dynsym_index, 1487 std::vector<Symbol*>* syms) 1488 { 1489 gold_assert(!this->is_finalized_); 1490 1491 unsigned int vi = 1; 1492 1493 for (Defs::iterator p = this->defs_.begin(); 1494 p != this->defs_.end(); 1495 ++p) 1496 { 1497 (*p)->set_index(vi); 1498 ++vi; 1499 1500 // Create a version symbol if necessary. 1501 if (!(*p)->is_symbol_created()) 1502 { 1503 Symbol* vsym = symtab->define_as_constant((*p)->name(), 1504 (*p)->name(), 0, 0, 1505 elfcpp::STT_OBJECT, 1506 elfcpp::STB_GLOBAL, 1507 elfcpp::STV_DEFAULT, 0, 1508 false, false); 1509 vsym->set_needs_dynsym_entry(); 1510 vsym->set_dynsym_index(dynsym_index); 1511 ++dynsym_index; 1512 syms->push_back(vsym); 1513 // The name is already in the dynamic pool. 1514 } 1515 } 1516 1517 // Index 1 is used for global symbols. 1518 if (vi == 1) 1519 { 1520 gold_assert(this->defs_.empty()); 1521 vi = 2; 1522 } 1523 1524 for (Needs::iterator p = this->needs_.begin(); 1525 p != this->needs_.end(); 1526 ++p) 1527 vi = (*p)->finalize(vi); 1528 1529 this->is_finalized_ = true; 1530 1531 return dynsym_index; 1532 } 1533 1534 // Return the version index to use for a symbol. This does two hash 1535 // table lookups: one in DYNPOOL and one in this->version_table_. 1536 // Another approach alternative would be store a pointer in SYM, which 1537 // would increase the size of the symbol table. Or perhaps we could 1538 // use a hash table from dynamic symbol pointer values to Version_base 1539 // pointers. 1540 1541 unsigned int 1542 Versions::version_index(const Symbol_table* symtab, const Stringpool* dynpool, 1543 const Symbol* sym) const 1544 { 1545 Stringpool::Key version_key; 1546 const char* version = dynpool->find(sym->version(), &version_key); 1547 gold_assert(version != NULL); 1548 1549 Key k; 1550 if (!sym->is_from_dynobj() && !sym->is_copied_from_dynobj()) 1551 { 1552 if (!parameters->options().shared()) 1553 return elfcpp::VER_NDX_GLOBAL; 1554 k = Key(version_key, 0); 1555 } 1556 else 1557 { 1558 Dynobj* dynobj = this->get_dynobj_for_sym(symtab, sym); 1559 1560 Stringpool::Key filename_key; 1561 const char* filename = dynpool->find(dynobj->soname(), &filename_key); 1562 gold_assert(filename != NULL); 1563 1564 k = Key(version_key, filename_key); 1565 } 1566 1567 Version_table::const_iterator p = this->version_table_.find(k); 1568 gold_assert(p != this->version_table_.end()); 1569 1570 return p->second->index(); 1571 } 1572 1573 // Return an allocated buffer holding the contents of the symbol 1574 // version section. 1575 1576 template<int size, bool big_endian> 1577 void 1578 Versions::symbol_section_contents(const Symbol_table* symtab, 1579 const Stringpool* dynpool, 1580 unsigned int local_symcount, 1581 const std::vector<Symbol*>& syms, 1582 unsigned char** pp, 1583 unsigned int* psize) const 1584 { 1585 gold_assert(this->is_finalized_); 1586 1587 unsigned int sz = (local_symcount + syms.size()) * 2; 1588 unsigned char* pbuf = new unsigned char[sz]; 1589 1590 for (unsigned int i = 0; i < local_symcount; ++i) 1591 elfcpp::Swap<16, big_endian>::writeval(pbuf + i * 2, 1592 elfcpp::VER_NDX_LOCAL); 1593 1594 for (std::vector<Symbol*>::const_iterator p = syms.begin(); 1595 p != syms.end(); 1596 ++p) 1597 { 1598 unsigned int version_index; 1599 const char* version = (*p)->version(); 1600 if (version == NULL) 1601 version_index = elfcpp::VER_NDX_GLOBAL; 1602 else 1603 version_index = this->version_index(symtab, dynpool, *p); 1604 // If the symbol was defined as foo@V1 instead of foo@@V1, add 1605 // the hidden bit. 1606 if ((*p)->version() != NULL && !(*p)->is_default()) 1607 version_index |= elfcpp::VERSYM_HIDDEN; 1608 elfcpp::Swap<16, big_endian>::writeval(pbuf + (*p)->dynsym_index() * 2, 1609 version_index); 1610 } 1611 1612 *pp = pbuf; 1613 *psize = sz; 1614 } 1615 1616 // Return an allocated buffer holding the contents of the version 1617 // definition section. 1618 1619 template<int size, bool big_endian> 1620 void 1621 Versions::def_section_contents(const Stringpool* dynpool, 1622 unsigned char** pp, unsigned int* psize, 1623 unsigned int* pentries) const 1624 { 1625 gold_assert(this->is_finalized_); 1626 gold_assert(!this->defs_.empty()); 1627 1628 const int verdef_size = elfcpp::Elf_sizes<size>::verdef_size; 1629 const int verdaux_size = elfcpp::Elf_sizes<size>::verdaux_size; 1630 1631 unsigned int sz = 0; 1632 for (Defs::const_iterator p = this->defs_.begin(); 1633 p != this->defs_.end(); 1634 ++p) 1635 { 1636 sz += verdef_size + verdaux_size; 1637 sz += (*p)->count_dependencies() * verdaux_size; 1638 } 1639 1640 unsigned char* pbuf = new unsigned char[sz]; 1641 1642 unsigned char* pb = pbuf; 1643 Defs::const_iterator p; 1644 unsigned int i; 1645 for (p = this->defs_.begin(), i = 0; 1646 p != this->defs_.end(); 1647 ++p, ++i) 1648 pb = (*p)->write<size, big_endian>(dynpool, 1649 i + 1 >= this->defs_.size(), 1650 pb); 1651 1652 gold_assert(static_cast<unsigned int>(pb - pbuf) == sz); 1653 1654 *pp = pbuf; 1655 *psize = sz; 1656 *pentries = this->defs_.size(); 1657 } 1658 1659 // Return an allocated buffer holding the contents of the version 1660 // reference section. 1661 1662 template<int size, bool big_endian> 1663 void 1664 Versions::need_section_contents(const Stringpool* dynpool, 1665 unsigned char** pp, unsigned int *psize, 1666 unsigned int *pentries) const 1667 { 1668 gold_assert(this->is_finalized_); 1669 gold_assert(!this->needs_.empty()); 1670 1671 const int verneed_size = elfcpp::Elf_sizes<size>::verneed_size; 1672 const int vernaux_size = elfcpp::Elf_sizes<size>::vernaux_size; 1673 1674 unsigned int sz = 0; 1675 for (Needs::const_iterator p = this->needs_.begin(); 1676 p != this->needs_.end(); 1677 ++p) 1678 { 1679 sz += verneed_size; 1680 sz += (*p)->count_versions() * vernaux_size; 1681 } 1682 1683 unsigned char* pbuf = new unsigned char[sz]; 1684 1685 unsigned char* pb = pbuf; 1686 Needs::const_iterator p; 1687 unsigned int i; 1688 for (p = this->needs_.begin(), i = 0; 1689 p != this->needs_.end(); 1690 ++p, ++i) 1691 pb = (*p)->write<size, big_endian>(dynpool, 1692 i + 1 >= this->needs_.size(), 1693 pb); 1694 1695 gold_assert(static_cast<unsigned int>(pb - pbuf) == sz); 1696 1697 *pp = pbuf; 1698 *psize = sz; 1699 *pentries = this->needs_.size(); 1700 } 1701 1702 // Instantiate the templates we need. We could use the configure 1703 // script to restrict this to only the ones for implemented targets. 1704 1705 #ifdef HAVE_TARGET_32_LITTLE 1706 template 1707 class Sized_dynobj<32, false>; 1708 #endif 1709 1710 #ifdef HAVE_TARGET_32_BIG 1711 template 1712 class Sized_dynobj<32, true>; 1713 #endif 1714 1715 #ifdef HAVE_TARGET_64_LITTLE 1716 template 1717 class Sized_dynobj<64, false>; 1718 #endif 1719 1720 #ifdef HAVE_TARGET_64_BIG 1721 template 1722 class Sized_dynobj<64, true>; 1723 #endif 1724 1725 #ifdef HAVE_TARGET_32_LITTLE 1726 template 1727 void 1728 Versions::symbol_section_contents<32, false>( 1729 const Symbol_table*, 1730 const Stringpool*, 1731 unsigned int, 1732 const std::vector<Symbol*>&, 1733 unsigned char**, 1734 unsigned int*) const; 1735 #endif 1736 1737 #ifdef HAVE_TARGET_32_BIG 1738 template 1739 void 1740 Versions::symbol_section_contents<32, true>( 1741 const Symbol_table*, 1742 const Stringpool*, 1743 unsigned int, 1744 const std::vector<Symbol*>&, 1745 unsigned char**, 1746 unsigned int*) const; 1747 #endif 1748 1749 #ifdef HAVE_TARGET_64_LITTLE 1750 template 1751 void 1752 Versions::symbol_section_contents<64, false>( 1753 const Symbol_table*, 1754 const Stringpool*, 1755 unsigned int, 1756 const std::vector<Symbol*>&, 1757 unsigned char**, 1758 unsigned int*) const; 1759 #endif 1760 1761 #ifdef HAVE_TARGET_64_BIG 1762 template 1763 void 1764 Versions::symbol_section_contents<64, true>( 1765 const Symbol_table*, 1766 const Stringpool*, 1767 unsigned int, 1768 const std::vector<Symbol*>&, 1769 unsigned char**, 1770 unsigned int*) const; 1771 #endif 1772 1773 #ifdef HAVE_TARGET_32_LITTLE 1774 template 1775 void 1776 Versions::def_section_contents<32, false>( 1777 const Stringpool*, 1778 unsigned char**, 1779 unsigned int*, 1780 unsigned int*) const; 1781 #endif 1782 1783 #ifdef HAVE_TARGET_32_BIG 1784 template 1785 void 1786 Versions::def_section_contents<32, true>( 1787 const Stringpool*, 1788 unsigned char**, 1789 unsigned int*, 1790 unsigned int*) const; 1791 #endif 1792 1793 #ifdef HAVE_TARGET_64_LITTLE 1794 template 1795 void 1796 Versions::def_section_contents<64, false>( 1797 const Stringpool*, 1798 unsigned char**, 1799 unsigned int*, 1800 unsigned int*) const; 1801 #endif 1802 1803 #ifdef HAVE_TARGET_64_BIG 1804 template 1805 void 1806 Versions::def_section_contents<64, true>( 1807 const Stringpool*, 1808 unsigned char**, 1809 unsigned int*, 1810 unsigned int*) const; 1811 #endif 1812 1813 #ifdef HAVE_TARGET_32_LITTLE 1814 template 1815 void 1816 Versions::need_section_contents<32, false>( 1817 const Stringpool*, 1818 unsigned char**, 1819 unsigned int*, 1820 unsigned int*) const; 1821 #endif 1822 1823 #ifdef HAVE_TARGET_32_BIG 1824 template 1825 void 1826 Versions::need_section_contents<32, true>( 1827 const Stringpool*, 1828 unsigned char**, 1829 unsigned int*, 1830 unsigned int*) const; 1831 #endif 1832 1833 #ifdef HAVE_TARGET_64_LITTLE 1834 template 1835 void 1836 Versions::need_section_contents<64, false>( 1837 const Stringpool*, 1838 unsigned char**, 1839 unsigned int*, 1840 unsigned int*) const; 1841 #endif 1842 1843 #ifdef HAVE_TARGET_64_BIG 1844 template 1845 void 1846 Versions::need_section_contents<64, true>( 1847 const Stringpool*, 1848 unsigned char**, 1849 unsigned int*, 1850 unsigned int*) const; 1851 #endif 1852 1853 } // End namespace gold. 1854