xref: /netbsd-src/external/gpl3/binutils/dist/gas/doc/c-arm.texi (revision f8cf1a9151c7af1cb0bd8b09c13c66bca599c027)
1@c Copyright (C) 1996-2024 Free Software Foundation, Inc.
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
4
5@ifset GENERIC
6@page
7@node ARM-Dependent
8@chapter ARM Dependent Features
9@end ifset
10
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter ARM Dependent Features
14@end ifclear
15
16@cindex ARM support
17@cindex Thumb support
18@menu
19* ARM Options::              Options
20* ARM Syntax::               Syntax
21* ARM Floating Point::       Floating Point
22* ARM Directives::           ARM Machine Directives
23* ARM Opcodes::              Opcodes
24* ARM Mapping Symbols::      Mapping Symbols
25* ARM Unwinding Tutorial::   Unwinding
26@end menu
27
28@node ARM Options
29@section Options
30@cindex ARM options (none)
31@cindex options for ARM (none)
32
33@table @code
34
35@cindex @code{-mcpu=} command-line option, ARM
36@item -mcpu=@var{processor}[+@var{extension}@dots{}]
37This option specifies the target processor.  The assembler will issue an
38error message if an attempt is made to assemble an instruction which
39will not execute on the target processor.  The following processor names are
40recognized:
41@code{arm1},
42@code{arm2},
43@code{arm250},
44@code{arm3},
45@code{arm6},
46@code{arm60},
47@code{arm600},
48@code{arm610},
49@code{arm620},
50@code{arm7},
51@code{arm7m},
52@code{arm7d},
53@code{arm7dm},
54@code{arm7di},
55@code{arm7dmi},
56@code{arm70},
57@code{arm700},
58@code{arm700i},
59@code{arm710},
60@code{arm710t},
61@code{arm720},
62@code{arm720t},
63@code{arm740t},
64@code{arm710c},
65@code{arm7100},
66@code{arm7500},
67@code{arm7500fe},
68@code{arm7t},
69@code{arm7tdmi},
70@code{arm7tdmi-s},
71@code{arm8},
72@code{arm810},
73@code{strongarm},
74@code{strongarm1},
75@code{strongarm110},
76@code{strongarm1100},
77@code{strongarm1110},
78@code{arm9},
79@code{arm920},
80@code{arm920t},
81@code{arm922t},
82@code{arm940t},
83@code{arm9tdmi},
84@code{fa526} (Faraday FA526 processor),
85@code{fa626} (Faraday FA626 processor),
86@code{arm9e},
87@code{arm926e},
88@code{arm926ej-s},
89@code{arm946e-r0},
90@code{arm946e},
91@code{arm946e-s},
92@code{arm966e-r0},
93@code{arm966e},
94@code{arm966e-s},
95@code{arm968e-s},
96@code{arm10t},
97@code{arm10tdmi},
98@code{arm10e},
99@code{arm1020},
100@code{arm1020t},
101@code{arm1020e},
102@code{arm1022e},
103@code{arm1026ej-s},
104@code{fa606te} (Faraday FA606TE processor),
105@code{fa616te} (Faraday FA616TE processor),
106@code{fa626te} (Faraday FA626TE processor),
107@code{fmp626} (Faraday FMP626 processor),
108@code{fa726te} (Faraday FA726TE processor),
109@code{arm1136j-s},
110@code{arm1136jf-s},
111@code{arm1156t2-s},
112@code{arm1156t2f-s},
113@code{arm1176jz-s},
114@code{arm1176jzf-s},
115@code{mpcore},
116@code{mpcorenovfp},
117@code{cortex-a5},
118@code{cortex-a7},
119@code{cortex-a8},
120@code{cortex-a9},
121@code{cortex-a15},
122@code{cortex-a17},
123@code{cortex-a32},
124@code{cortex-a35},
125@code{cortex-a53},
126@code{cortex-a55},
127@code{cortex-a57},
128@code{cortex-a72},
129@code{cortex-a73},
130@code{cortex-a75},
131@code{cortex-a76},
132@code{cortex-a76ae},
133@code{cortex-a77},
134@code{cortex-a78},
135@code{cortex-a78ae},
136@code{cortex-a78c},
137@code{cortex-a710},
138@code{ares},
139@code{cortex-r4},
140@code{cortex-r4f},
141@code{cortex-r5},
142@code{cortex-r7},
143@code{cortex-r8},
144@code{cortex-r52},
145@code{cortex-r52plus},
146@code{cortex-m35p},
147@code{cortex-m33},
148@code{cortex-m23},
149@code{cortex-m7},
150@code{cortex-m4},
151@code{cortex-m3},
152@code{cortex-m1},
153@code{cortex-m0},
154@code{cortex-m0plus},
155@code{cortex-x1},
156@code{cortex-x1c},
157@code{exynos-m1},
158@code{marvell-pj4},
159@code{marvell-whitney},
160@code{neoverse-n1},
161@code{neoverse-n2},
162@code{neoverse-v1},
163@code{xgene1},
164@code{xgene2},
165@code{ep9312} (ARM920 with Cirrus Maverick coprocessor),
166@code{i80200} (Intel XScale processor)
167@code{iwmmxt} (Intel XScale processor with Wireless MMX technology coprocessor)
168and
169@code{xscale}.
170The special name @code{all} may be used to allow the
171assembler to accept instructions valid for any ARM processor.
172
173In addition to the basic instruction set, the assembler can be told to
174accept various extension mnemonics that extend the processor using the
175co-processor instruction space.  For example, @code{-mcpu=arm920+maverick}
176is equivalent to specifying @code{-mcpu=ep9312}.
177
178Multiple extensions may be specified, separated by a @code{+}.  The
179extensions should be specified in ascending alphabetical order.
180
181Some extensions may be restricted to particular architectures; this is
182documented in the list of extensions below.
183
184Extension mnemonics may also be removed from those the assembler accepts.
185This is done be prepending @code{no} to the option that adds the extension.
186Extensions that are removed should be listed after all extensions which have
187been added, again in ascending alphabetical order.  For example,
188@code{-mcpu=ep9312+nomaverick} is equivalent to specifying @code{-mcpu=arm920}.
189
190
191The following extensions are currently supported:
192@code{bf16} (BFloat16 extensions for v8.6-A architecture),
193@code{i8mm} (Int8 Matrix Multiply extensions for v8.6-A architecture),
194@code{crc}
195@code{crypto} (Cryptography Extensions for v8-A architecture, implies @code{fp+simd}),
196@code{dotprod} (Dot Product Extensions for v8.2-A architecture, implies @code{fp+simd}),
197@code{fp} (Floating Point Extensions for v8-A architecture),
198@code{fp16} (FP16 Extensions for v8.2-A architecture, implies @code{fp}),
199@code{fp16fml} (FP16 Floating Point Multiplication Variant Extensions for v8.2-A architecture, implies @code{fp16}),
200@code{idiv} (Integer Divide Extensions for v7-A and v7-R architectures),
201@code{iwmmxt},
202@code{iwmmxt2},
203@code{xscale},
204@code{maverick},
205@code{mp} (Multiprocessing Extensions for v7-A and v7-R
206architectures),
207@code{os} (Operating System for v6M architecture),
208@code{predres} (Execution and Data Prediction Restriction Instruction for
209v8-A architectures, added by default from v8.5-A),
210@code{sb} (Speculation Barrier Instruction for v8-A architectures, added by
211default from v8.5-A),
212@code{sec} (Security Extensions for v6K and v7-A architectures),
213@code{simd} (Advanced SIMD Extensions for v8-A architecture, implies @code{fp}),
214@code{virt} (Virtualization Extensions for v7-A architecture, implies
215@code{idiv}),
216@code{pan} (Privileged Access Never Extensions for v8-A architecture),
217@code{ras} (Reliability, Availability and Serviceability extensions
218for v8-A architecture),
219@code{rdma} (ARMv8.1 Advanced SIMD extensions for v8-A architecture, implies
220@code{simd})
221and
222@code{xscale}.
223
224@cindex @code{-march=} command-line option, ARM
225@item -march=@var{architecture}[+@var{extension}@dots{}]
226This option specifies the target architecture.  The assembler will issue
227an error message if an attempt is made to assemble an instruction which
228will not execute on the target architecture.  The following architecture
229names are recognized:
230@code{armv1},
231@code{armv2},
232@code{armv2a},
233@code{armv2s},
234@code{armv3},
235@code{armv3m},
236@code{armv4},
237@code{armv4xm},
238@code{armv4t},
239@code{armv4txm},
240@code{armv5},
241@code{armv5t},
242@code{armv5txm},
243@code{armv5te},
244@code{armv5texp},
245@code{armv6},
246@code{armv6j},
247@code{armv6k},
248@code{armv6z},
249@code{armv6kz},
250@code{armv6-m},
251@code{armv6s-m},
252@code{armv7},
253@code{armv7-a},
254@code{armv7ve},
255@code{armv7-r},
256@code{armv7-m},
257@code{armv7e-m},
258@code{armv8-a},
259@code{armv8.1-a},
260@code{armv8.2-a},
261@code{armv8.3-a},
262@code{armv8-r},
263@code{armv8.4-a},
264@code{armv8.5-a},
265@code{armv8-m.base},
266@code{armv8-m.main},
267@code{armv8.1-m.main},
268@code{armv8.6-a},
269@code{armv8.7-a},
270@code{armv8.8-a},
271@code{armv8.9-a},
272@code{armv9-a},
273@code{armv9.1-a},
274@code{armv9.2-a},
275@code{armv9.3-a},
276@code{armv9.4-a},
277@code{iwmmxt},
278@code{iwmmxt2}
279and
280@code{xscale}.
281If both @code{-mcpu} and
282@code{-march} are specified, the assembler will use
283the setting for @code{-mcpu}.
284
285The architecture option can be extended with a set extension options.  These
286extensions are context sensitive, i.e. the same extension may mean different
287things when used with different architectures.  When used together with a
288@code{-mfpu} option, the union of both feature enablement is taken.
289See their availability and meaning below:
290
291For @code{armv5te}, @code{armv5texp}, @code{armv5tej}, @code{armv6}, @code{armv6j}, @code{armv6k}, @code{armv6z}, @code{armv6kz}, @code{armv6zk}, @code{armv6t2}, @code{armv6kt2} and @code{armv6zt2}:
292
293@itemize @w{}
294@item @code{+fp}: Enables VFPv2 instructions.
295@item @code{+nofp}: Disables all FPU instrunctions.
296@end itemize
297
298For @code{armv7}:
299
300@itemize @w{}
301@item @code{+fp}: Enables VFPv3 instructions with 16 double-word registers.
302@item @code{+nofp}: Disables all FPU instructions.
303@end itemize
304
305For @code{armv7-a}:
306
307@itemize @w{}
308@item @code{+fp}: Enables VFPv3 instructions with 16 double-word registers.
309@item @code{+vfpv3-d16}: Alias for @code{+fp}.
310@item @code{+vfpv3}: Enables VFPv3 instructions with 32 double-word registers.
311@item @code{+vfpv3-d16-fp16}: Enables VFPv3 with half precision floating-point
312conversion instructions and 16 double-word registers.
313@item @code{+vfpv3-fp16}: Enables VFPv3 with half precision floating-point conversion
314instructions and 32 double-word registers.
315@item @code{+vfpv4-d16}: Enables VFPv4 instructions with 16 double-word registers.
316@item @code{+vfpv4}: Enables VFPv4 instructions with 32 double-word registers.
317@item @code{+simd}: Enables VFPv3 and NEONv1 instructions with 32 double-word
318registers.
319@item @code{+neon}: Alias for @code{+simd}.
320@item @code{+neon-vfpv3}: Alias for @code{+simd}.
321@item @code{+neon-fp16}: Enables VFPv3, half precision floating-point conversion and
322NEONv1 instructions with 32 double-word registers.
323@item @code{+neon-vfpv4}: Enables VFPv4 and NEONv1 with Fused-MAC instructions and 32
324double-word registers.
325@item @code{+mp}: Enables Multiprocessing Extensions.
326@item @code{+sec}: Enables Security Extensions.
327@item @code{+nofp}: Disables all FPU and NEON instructions.
328@item @code{+nosimd}: Disables all NEON instructions.
329@end itemize
330
331For @code{armv7ve}:
332
333@itemize @w{}
334@item @code{+fp}: Enables VFPv4 instructions with 16 double-word registers.
335@item @code{+vfpv4-d16}: Alias for @code{+fp}.
336@item @code{+vfpv3-d16}: Enables VFPv3 instructions with 16 double-word registers.
337@item @code{+vfpv3}: Enables VFPv3 instructions with 32 double-word registers.
338@item @code{+vfpv3-d16-fp16}: Enables VFPv3 with half precision floating-point
339conversion instructions and 16 double-word registers.
340@item @code{+vfpv3-fp16}: Enables VFPv3 with half precision floating-point conversion
341instructions and 32 double-word registers.
342@item @code{+vfpv4}: Enables VFPv4 instructions with 32 double-word registers.
343@item @code{+simd}: Enables VFPv4 and NEONv1 with Fused-MAC instructions and 32
344double-word registers.
345@item @code{+neon-vfpv4}: Alias for @code{+simd}.
346@item @code{+neon}: Enables VFPv3 and NEONv1 instructions with 32 double-word
347registers.
348@item @code{+neon-vfpv3}: Alias for @code{+neon}.
349@item @code{+neon-fp16}: Enables VFPv3, half precision floating-point conversion and
350NEONv1 instructions with 32 double-word registers.
351double-word registers.
352@item @code{+nofp}: Disables all FPU and NEON instructions.
353@item @code{+nosimd}: Disables all NEON instructions.
354@end itemize
355
356For @code{armv7-r}:
357
358@itemize @w{}
359@item @code{+fp.sp}: Enables single-precision only VFPv3 instructions with 16
360double-word registers.
361@item @code{+vfpv3xd}: Alias for @code{+fp.sp}.
362@item @code{+fp}: Enables VFPv3 instructions with 16 double-word registers.
363@item @code{+vfpv3-d16}: Alias for @code{+fp}.
364@item @code{+vfpv3xd-fp16}: Enables single-precision only VFPv3 and half
365floating-point conversion instructions with 16 double-word registers.
366@item @code{+vfpv3-d16-fp16}: Enables VFPv3 and half precision floating-point
367conversion instructions with 16 double-word registers.
368@item @code{+idiv}: Enables integer division instructions in ARM mode.
369@item @code{+nofp}: Disables all FPU instructions.
370@end itemize
371
372For @code{armv7e-m}:
373
374@itemize @w{}
375@item @code{+fp}: Enables single-precision only VFPv4 instructions with 16
376double-word registers.
377@item @code{+vfpvf4-sp-d16}: Alias for @code{+fp}.
378@item @code{+fpv5}: Enables single-precision only VFPv5 instructions with 16
379double-word registers.
380@item @code{+fp.dp}: Enables VFPv5 instructions with 16 double-word registers.
381@item @code{+fpv5-d16"}: Alias for @code{+fp.dp}.
382@item @code{+nofp}: Disables all FPU instructions.
383@end itemize
384
385For @code{armv8-m.main}:
386
387@itemize @w{}
388@item @code{+dsp}: Enables DSP Extension.
389@item @code{+fp}: Enables single-precision only VFPv5 instructions with 16
390double-word registers.
391@item @code{+fp.dp}: Enables VFPv5 instructions with 16 double-word registers.
392@item @code{+cdecp0} (CDE extensions for v8-m architecture with coprocessor 0),
393@item @code{+cdecp1} (CDE extensions for v8-m architecture with coprocessor 1),
394@item @code{+cdecp2} (CDE extensions for v8-m architecture with coprocessor 2),
395@item @code{+cdecp3} (CDE extensions for v8-m architecture with coprocessor 3),
396@item @code{+cdecp4} (CDE extensions for v8-m architecture with coprocessor 4),
397@item @code{+cdecp5} (CDE extensions for v8-m architecture with coprocessor 5),
398@item @code{+cdecp6} (CDE extensions for v8-m architecture with coprocessor 6),
399@item @code{+cdecp7} (CDE extensions for v8-m architecture with coprocessor 7),
400@item @code{+nofp}: Disables all FPU instructions.
401@item @code{+nodsp}: Disables DSP Extension.
402@end itemize
403
404For @code{armv8.1-m.main}:
405
406@itemize @w{}
407@item @code{+dsp}: Enables DSP Extension.
408@item @code{+fp}: Enables single and half precision scalar Floating Point Extensions
409for Armv8.1-M Mainline with 16 double-word registers.
410@item @code{+fp.dp}: Enables double precision scalar Floating Point Extensions for
411Armv8.1-M Mainline, implies @code{+fp}.
412@item @code{+mve}: Enables integer only M-profile Vector Extension for
413Armv8.1-M Mainline, implies @code{+dsp}.
414@item @code{+mve.fp}: Enables Floating Point M-profile Vector Extension for
415Armv8.1-M Mainline, implies @code{+mve} and @code{+fp}.
416@item @code{+nofp}: Disables all FPU instructions.
417@item @code{+nodsp}: Disables DSP Extension.
418@item @code{+nomve}: Disables all M-profile Vector Extensions.
419@end itemize
420
421For @code{armv8-a}:
422
423@itemize @w{}
424@item @code{+crc}: Enables CRC32 Extension.
425@item @code{+simd}: Enables VFP and NEON for Armv8-A.
426@item @code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies @code{+simd}.
427@item @code{+sb}: Enables Speculation Barrier Instruction for Armv8-A.
428@item @code{+predres}: Enables Execution and Data Prediction Restriction Instruction
429for Armv8-A.
430@item @code{+nofp}: Disables all FPU, NEON and Cryptography Extensions.
431@item @code{+nocrypto}: Disables Cryptography Extensions.
432@end itemize
433
434For @code{armv8.1-a}:
435
436@itemize @w{}
437@item @code{+simd}: Enables VFP and NEON for Armv8.1-A.
438@item @code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies @code{+simd}.
439@item @code{+sb}: Enables Speculation Barrier Instruction for Armv8-A.
440@item @code{+predres}: Enables Execution and Data Prediction Restriction Instruction
441for Armv8-A.
442@item @code{+nofp}: Disables all FPU, NEON and Cryptography Extensions.
443@item @code{+nocrypto}: Disables Cryptography Extensions.
444@end itemize
445
446For @code{armv8.2-a} and @code{armv8.3-a}:
447
448@itemize @w{}
449@item @code{+simd}: Enables VFP and NEON for Armv8.1-A.
450@item @code{+fp16}: Enables FP16 Extension for Armv8.2-A, implies @code{+simd}.
451@item @code{+fp16fml}: Enables FP16 Floating Point Multiplication Variant Extensions
452for Armv8.2-A, implies @code{+fp16}.
453@item @code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies @code{+simd}.
454@item @code{+dotprod}: Enables Dot Product Extensions for Armv8.2-A, implies @code{+simd}.
455@item @code{+sb}: Enables Speculation Barrier Instruction for Armv8-A.
456@item @code{+predres}: Enables Execution and Data Prediction Restriction Instruction
457for Armv8-A.
458@item @code{+nofp}: Disables all FPU, NEON, Cryptography and Dot Product Extensions.
459@item @code{+nocrypto}: Disables Cryptography Extensions.
460@end itemize
461
462For @code{armv8.4-a}:
463
464@itemize @w{}
465@item @code{+simd}: Enables VFP and NEON for Armv8.1-A and Dot Product Extensions for
466Armv8.2-A.
467@item @code{+fp16}: Enables FP16 Floating Point and Floating Point Multiplication
468Variant Extensions for Armv8.2-A, implies @code{+simd}.
469@item @code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies @code{+simd}.
470@item @code{+sb}: Enables Speculation Barrier Instruction for Armv8-A.
471@item @code{+predres}: Enables Execution and Data Prediction Restriction Instruction
472for Armv8-A.
473@item @code{+nofp}: Disables all FPU, NEON, Cryptography and Dot Product Extensions.
474@item @code{+nocryptp}: Disables Cryptography Extensions.
475@end itemize
476
477For @code{armv8.5-a}:
478
479@itemize @w{}
480@item @code{+simd}: Enables VFP and NEON for Armv8.1-A and Dot Product Extensions for
481Armv8.2-A.
482@item @code{+fp16}: Enables FP16 Floating Point and Floating Point Multiplication
483Variant Extensions for Armv8.2-A, implies @code{+simd}.
484@item @code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies @code{+simd}.
485@item @code{+nofp}: Disables all FPU, NEON, Cryptography and Dot Product Extensions.
486@item @code{+nocryptp}: Disables Cryptography Extensions.
487@end itemize
488
489@cindex @code{-mfpu=} command-line option, ARM
490@item -mfpu=@var{floating-point-format}
491
492This option specifies the floating point format to assemble for.  The
493assembler will issue an error message if an attempt is made to assemble
494an instruction which will not execute on the target floating point unit.
495The following format options are recognized:
496@code{softfpa},
497@code{fpe},
498@code{fpe2},
499@code{fpe3},
500@code{fpa},
501@code{fpa10},
502@code{fpa11},
503@code{arm7500fe},
504@code{softvfp},
505@code{softvfp+vfp},
506@code{vfp},
507@code{vfp10},
508@code{vfp10-r0},
509@code{vfp9},
510@code{vfpxd},
511@code{vfpv2},
512@code{vfpv3},
513@code{vfpv3-fp16},
514@code{vfpv3-d16},
515@code{vfpv3-d16-fp16},
516@code{vfpv3xd},
517@code{vfpv3xd-d16},
518@code{vfpv4},
519@code{vfpv4-d16},
520@code{fpv4-sp-d16},
521@code{fpv5-sp-d16},
522@code{fpv5-d16},
523@code{fp-armv8},
524@code{arm1020t},
525@code{arm1020e},
526@code{arm1136jf-s},
527@code{maverick},
528@code{neon},
529@code{neon-vfpv3},
530@code{neon-fp16},
531@code{neon-vfpv4},
532@code{neon-fp-armv8},
533@code{crypto-neon-fp-armv8},
534@code{neon-fp-armv8.1}
535and
536@code{crypto-neon-fp-armv8.1}.
537
538In addition to determining which instructions are assembled, this option
539also affects the way in which the @code{.double} assembler directive behaves
540when assembling little-endian code.
541
542The default is dependent on the processor selected.  For Architecture 5 or
543later, the default is to assemble for VFP instructions; for earlier
544architectures the default is to assemble for FPA instructions.
545
546@cindex @code{-mfp16-format=} command-line option
547@item -mfp16-format=@var{format}
548This option specifies the half-precision floating point format to use
549when assembling floating point numbers emitted by the @code{.float16}
550directive.
551The following format options are recognized:
552@code{ieee},
553@code{alternative}.
554If @code{ieee} is specified then the IEEE 754-2008 half-precision floating
555point format is used, if @code{alternative} is specified then the Arm
556alternative half-precision format is used. If this option is set on the
557command line then the format is fixed and cannot be changed with
558the @code{float16_format} directive. If this value is not set then
559the IEEE 754-2008 format is used until the format is explicitly set with
560the @code{float16_format} directive.
561
562@cindex @code{-mthumb} command-line option, ARM
563@item -mthumb
564This option specifies that the assembler should start assembling Thumb
565instructions; that is, it should behave as though the file starts with a
566@code{.code 16} directive.
567
568@cindex @code{-mthumb-interwork} command-line option, ARM
569@item -mthumb-interwork
570This option specifies that the output generated by the assembler should
571be marked as supporting interworking.  It also affects the behaviour
572of the @code{ADR} and @code{ADRL} pseudo opcodes.
573
574@cindex @code{-mimplicit-it} command-line option, ARM
575@item -mimplicit-it=never
576@itemx -mimplicit-it=always
577@itemx -mimplicit-it=arm
578@itemx -mimplicit-it=thumb
579The @code{-mimplicit-it} option controls the behavior of the assembler when
580conditional instructions are not enclosed in IT blocks.
581There are four possible behaviors.
582If @code{never} is specified, such constructs cause a warning in ARM
583code and an error in Thumb-2 code.
584If @code{always} is specified, such constructs are accepted in both
585ARM and Thumb-2 code, where the IT instruction is added implicitly.
586If @code{arm} is specified, such constructs are accepted in ARM code
587and cause an error in Thumb-2 code.
588If @code{thumb} is specified, such constructs cause a warning in ARM
589code and are accepted in Thumb-2 code.  If you omit this option, the
590behavior is equivalent to @code{-mimplicit-it=arm}.
591
592@cindex @code{-mapcs-26} command-line option, ARM
593@cindex @code{-mapcs-32} command-line option, ARM
594@item -mapcs-26
595@itemx -mapcs-32
596These options specify that the output generated by the assembler should
597be marked as supporting the indicated version of the Arm Procedure.
598Calling Standard.
599
600@cindex @code{-matpcs} command-line option, ARM
601@item -matpcs
602This option specifies that the output generated by the assembler should
603be marked as supporting the Arm/Thumb Procedure Calling Standard.  If
604enabled this option will cause the assembler to create an empty
605debugging section in the object file called .arm.atpcs.  Debuggers can
606use this to determine the ABI being used by.
607
608@cindex @code{-mapcs-float} command-line option, ARM
609@item -mapcs-float
610This indicates the floating point variant of the APCS should be
611used.  In this variant floating point arguments are passed in FP
612registers rather than integer registers.
613
614@cindex @code{-mapcs-reentrant} command-line option, ARM
615@item -mapcs-reentrant
616This indicates that the reentrant variant of the APCS should be used.
617This variant supports position independent code.
618
619@cindex @code{-mfloat-abi=} command-line option, ARM
620@item -mfloat-abi=@var{abi}
621This option specifies that the output generated by the assembler should be
622marked as using specified floating point ABI.
623The following values are recognized:
624@code{soft},
625@code{softfp}
626and
627@code{hard}.
628
629@cindex @code{-eabi=} command-line option, ARM
630@item -meabi=@var{ver}
631This option specifies which EABI version the produced object files should
632conform to.
633The following values are recognized:
634@code{gnu},
635@code{4}
636and
637@code{5}.
638
639@cindex @code{-EB} command-line option, ARM
640@item -EB
641This option specifies that the output generated by the assembler should
642be marked as being encoded for a big-endian processor.
643
644Note: If a program is being built for a system with big-endian data
645and little-endian instructions then it should be assembled with the
646@option{-EB} option, (all of it, code and data) and then linked with
647the @option{--be8} option.  This will reverse the endianness of the
648instructions back to little-endian, but leave the data as big-endian.
649
650@cindex @code{-EL} command-line option, ARM
651@item -EL
652This option specifies that the output generated by the assembler should
653be marked as being encoded for a little-endian processor.
654
655@cindex @code{-k} command-line option, ARM
656@cindex PIC code generation for ARM
657@item -k
658This option specifies that the output of the assembler should be marked
659as position-independent code (PIC).
660
661@cindex @code{--fix-v4bx} command-line option, ARM
662@item --fix-v4bx
663Allow @code{BX} instructions in ARMv4 code.  This is intended for use with
664the linker option of the same name.
665
666@cindex @code{-mwarn-deprecated} command-line option, ARM
667@item -mwarn-deprecated
668@itemx -mno-warn-deprecated
669Enable or disable warnings about using deprecated options or
670features.  The default is to warn.
671
672@cindex @code{-mccs} command-line option, ARM
673@item -mccs
674Turns on CodeComposer Studio assembly syntax compatibility mode.
675
676@cindex @code{-mwarn-syms} command-line option, ARM
677@item -mwarn-syms
678@itemx -mno-warn-syms
679Enable or disable warnings about symbols that match the names of ARM
680instructions.  The default is to warn.
681
682@end table
683
684
685@node ARM Syntax
686@section Syntax
687@menu
688* ARM-Instruction-Set::      Instruction Set
689* ARM-Chars::                Special Characters
690* ARM-Regs::                 Register Names
691* ARM-Relocations::	     Relocations
692* ARM-Neon-Alignment::	     NEON Alignment Specifiers
693@end menu
694
695@node ARM-Instruction-Set
696@subsection Instruction Set Syntax
697Two slightly different syntaxes are support for ARM and THUMB
698instructions.  The default, @code{divided}, uses the old style where
699ARM and THUMB instructions had their own, separate syntaxes.  The new,
700@code{unified} syntax, which can be selected via the @code{.syntax}
701directive, and has the following main features:
702
703@itemize @bullet
704@item
705Immediate operands do not require a @code{#} prefix.
706
707@item
708The @code{IT} instruction may appear, and if it does it is validated
709against subsequent conditional affixes.  In ARM mode it does not
710generate machine code, in THUMB mode it does.
711
712@item
713For ARM instructions the conditional affixes always appear at the end
714of the instruction.  For THUMB instructions conditional affixes can be
715used, but only inside the scope of an @code{IT} instruction.
716
717@item
718All of the instructions new to the V6T2 architecture (and later) are
719available.  (Only a few such instructions can be written in the
720@code{divided} syntax).
721
722@item
723The @code{.N} and @code{.W} suffixes are recognized and honored.
724
725@item
726All instructions set the flags if and only if they have an @code{s}
727affix.
728@end itemize
729
730@node ARM-Chars
731@subsection Special Characters
732
733@cindex line comment character, ARM
734@cindex ARM line comment character
735The presence of a @samp{@@} anywhere on a line indicates the start of
736a comment that extends to the end of that line.
737
738If a @samp{#} appears as the first character of a line then the whole
739line is treated as a comment, but in this case the line could also be
740a logical line number directive (@pxref{Comments}) or a preprocessor
741control command (@pxref{Preprocessing}).
742
743@cindex line separator, ARM
744@cindex statement separator, ARM
745@cindex ARM line separator
746The @samp{;} character can be used instead of a newline to separate
747statements.
748
749@cindex immediate character, ARM
750@cindex ARM immediate character
751Either @samp{#} or @samp{$} can be used to indicate immediate operands.
752
753@cindex identifiers, ARM
754@cindex ARM identifiers
755*TODO* Explain about /data modifier on symbols.
756
757@node ARM-Regs
758@subsection Register Names
759
760@cindex ARM register names
761@cindex register names, ARM
762*TODO* Explain about ARM register naming, and the predefined names.
763
764@node ARM-Relocations
765@subsection ARM relocation generation
766
767@cindex data relocations, ARM
768@cindex ARM data relocations
769Specific data relocations can be generated by putting the relocation name
770in parentheses after the symbol name.  For example:
771
772@smallexample
773        .word foo(TARGET1)
774@end smallexample
775
776This will generate an @samp{R_ARM_TARGET1} relocation against the symbol
777@var{foo}.
778The following relocations are supported:
779@code{GOT},
780@code{GOTOFF},
781@code{TARGET1},
782@code{TARGET2},
783@code{SBREL},
784@code{TLSGD},
785@code{TLSLDM},
786@code{TLSLDO},
787@code{TLSDESC},
788@code{TLSCALL},
789@code{GOTTPOFF},
790@code{GOT_PREL}
791and
792@code{TPOFF}.
793
794For compatibility with older toolchains the assembler also accepts
795@code{(PLT)} after branch targets.  On legacy targets this will
796generate the deprecated @samp{R_ARM_PLT32} relocation.  On EABI
797targets it will encode either the @samp{R_ARM_CALL} or
798@samp{R_ARM_JUMP24} relocation, as appropriate.
799
800@cindex MOVW and MOVT relocations, ARM
801Relocations for @samp{MOVW} and @samp{MOVT} instructions can be generated
802by prefixing the value with @samp{#:lower16:} and @samp{#:upper16}
803respectively.  For example to load the 32-bit address of foo into r0:
804
805@smallexample
806        MOVW r0, #:lower16:foo
807        MOVT r0, #:upper16:foo
808@end smallexample
809
810Relocations @samp{R_ARM_THM_ALU_ABS_G0_NC}, @samp{R_ARM_THM_ALU_ABS_G1_NC},
811@samp{R_ARM_THM_ALU_ABS_G2_NC} and @samp{R_ARM_THM_ALU_ABS_G3_NC} can be
812generated by prefixing the value with @samp{#:lower0_7:#},
813@samp{#:lower8_15:#}, @samp{#:upper0_7:#} and @samp{#:upper8_15:#}
814respectively.  For example to load the 32-bit address of foo into r0:
815
816@smallexample
817        MOVS r0, #:upper8_15:#foo
818        LSLS r0, r0, #8
819        ADDS r0, #:upper0_7:#foo
820        LSLS r0, r0, #8
821        ADDS r0, #:lower8_15:#foo
822        LSLS r0, r0, #8
823        ADDS r0, #:lower0_7:#foo
824@end smallexample
825
826@node ARM-Neon-Alignment
827@subsection NEON Alignment Specifiers
828
829@cindex alignment for NEON instructions
830Some NEON load/store instructions allow an optional address
831alignment qualifier.
832The ARM documentation specifies that this is indicated by
833@samp{@@ @var{align}}. However GAS already interprets
834the @samp{@@} character as a "line comment" start,
835so @samp{: @var{align}} is used instead.  For example:
836
837@smallexample
838        vld1.8 @{q0@}, [r0, :128]
839@end smallexample
840
841@node ARM Floating Point
842@section Floating Point
843
844@cindex floating point, ARM (@sc{ieee})
845@cindex ARM floating point (@sc{ieee})
846The ARM family uses @sc{ieee} floating-point numbers.
847
848@node ARM Directives
849@section ARM Machine Directives
850
851@cindex machine directives, ARM
852@cindex ARM machine directives
853@table @code
854
855@c AAAAAAAAAAAAAAAAAAAAAAAAA
856
857@ifclear ELF
858@cindex @code{.2byte} directive, ARM
859@cindex @code{.4byte} directive, ARM
860@cindex @code{.8byte} directive, ARM
861@item .2byte @var{expression} [, @var{expression}]*
862@itemx .4byte @var{expression} [, @var{expression}]*
863@itemx .8byte @var{expression} [, @var{expression}]*
864These directives write 2, 4 or 8 byte values to the output section.
865@end ifclear
866
867@cindex @code{.align} directive, ARM
868@item .align @var{expression} [, @var{expression}]
869This is the generic @var{.align} directive.  For the ARM however if the
870first argument is zero (ie no alignment is needed) the assembler will
871behave as if the argument had been 2 (ie pad to the next four byte
872boundary).  This is for compatibility with ARM's own assembler.
873
874@cindex @code{.arch} directive, ARM
875@item .arch @var{name}
876Select the target architecture.  Valid values for @var{name} are the same as
877for the @option{-march} command-line option without the instruction set
878extension.
879
880Specifying @code{.arch} clears any previously selected architecture
881extensions.
882
883@cindex @code{.arch_extension} directive, ARM
884@item .arch_extension @var{name}
885Add or remove an architecture extension to the target architecture.  Valid
886values for @var{name} are the same as those accepted as architectural
887extensions by the @option{-mcpu} and @option{-march} command-line options.
888
889@code{.arch_extension} may be used multiple times to add or remove extensions
890incrementally to the architecture being compiled for.
891
892@cindex @code{.arm} directive, ARM
893@item .arm
894This performs the same action as @var{.code 32}.
895
896@c BBBBBBBBBBBBBBBBBBBBBBBBBB
897@c CCCCCCCCCCCCCCCCCCCCCCCCCC
898
899@cindex @code{.cantunwind} directive, ARM
900@item .cantunwind
901Prevents unwinding through the current function.  No personality routine
902or exception table data is required or permitted.
903
904@cindex @code{.code} directive, ARM
905@item .code @code{[16|32]}
906This directive selects the instruction set being generated. The value 16
907selects Thumb, with the value 32 selecting ARM.
908
909@cindex @code{.cpu} directive, ARM
910@item .cpu @var{name}
911Select the target processor.  Valid values for @var{name} are the same as
912for the @option{-mcpu} command-line option without the instruction set
913extension.
914
915Specifying @code{.cpu} clears any previously selected architecture
916extensions.
917
918@c DDDDDDDDDDDDDDDDDDDDDDDDDD
919
920@cindex @code{.dn} and @code{.qn} directives, ARM
921@item @var{name} .dn @var{register name} [@var{.type}] [[@var{index}]]
922@itemx @var{name} .qn @var{register name} [@var{.type}] [[@var{index}]]
923
924The @code{dn} and @code{qn} directives are used to create typed
925and/or indexed register aliases for use in Advanced SIMD Extension
926(Neon) instructions.  The former should be used to create aliases
927of double-precision registers, and the latter to create aliases of
928quad-precision registers.
929
930If these directives are used to create typed aliases, those aliases can
931be used in Neon instructions instead of writing types after the mnemonic
932or after each operand.  For example:
933
934@smallexample
935        x .dn d2.f32
936        y .dn d3.f32
937        z .dn d4.f32[1]
938        vmul x,y,z
939@end smallexample
940
941This is equivalent to writing the following:
942
943@smallexample
944        vmul.f32 d2,d3,d4[1]
945@end smallexample
946
947Aliases created using @code{dn} or @code{qn} can be destroyed using
948@code{unreq}.
949
950@c EEEEEEEEEEEEEEEEEEEEEEEEEE
951
952@cindex @code{.eabi_attribute} directive, ARM
953@item .eabi_attribute @var{tag}, @var{value}
954Set the EABI object attribute @var{tag} to @var{value}.
955
956The @var{tag} is either an attribute number, or one of the following:
957@code{Tag_CPU_raw_name}, @code{Tag_CPU_name}, @code{Tag_CPU_arch},
958@code{Tag_CPU_arch_profile}, @code{Tag_ARM_ISA_use},
959@code{Tag_THUMB_ISA_use}, @code{Tag_FP_arch}, @code{Tag_WMMX_arch},
960@code{Tag_Advanced_SIMD_arch}, @code{Tag_MVE_arch}, @code{Tag_PCS_config},
961@code{Tag_ABI_PCS_R9_use}, @code{Tag_ABI_PCS_RW_data},
962@code{Tag_ABI_PCS_RO_data}, @code{Tag_ABI_PCS_GOT_use},
963@code{Tag_ABI_PCS_wchar_t}, @code{Tag_ABI_FP_rounding},
964@code{Tag_ABI_FP_denormal}, @code{Tag_ABI_FP_exceptions},
965@code{Tag_ABI_FP_user_exceptions}, @code{Tag_ABI_FP_number_model},
966@code{Tag_ABI_align_needed}, @code{Tag_ABI_align_preserved},
967@code{Tag_ABI_enum_size}, @code{Tag_ABI_HardFP_use},
968@code{Tag_ABI_VFP_args}, @code{Tag_ABI_WMMX_args},
969@code{Tag_ABI_optimization_goals}, @code{Tag_ABI_FP_optimization_goals},
970@code{Tag_compatibility}, @code{Tag_CPU_unaligned_access},
971@code{Tag_FP_HP_extension}, @code{Tag_ABI_FP_16bit_format},
972@code{Tag_MPextension_use}, @code{Tag_DIV_use},
973@code{Tag_nodefaults}, @code{Tag_also_compatible_with},
974@code{Tag_conformance}, @code{Tag_T2EE_use},
975@code{Tag_Virtualization_use}
976
977The @var{value} is either a @code{number}, @code{"string"}, or
978@code{number, "string"} depending on the tag.
979
980Note - the following legacy values are also accepted by @var{tag}:
981@code{Tag_VFP_arch}, @code{Tag_ABI_align8_needed},
982@code{Tag_ABI_align8_preserved}, @code{Tag_VFP_HP_extension},
983
984@cindex @code{.even} directive, ARM
985@item .even
986This directive aligns to an even-numbered address.
987
988@cindex @code{.extend} directive, ARM
989@cindex @code{.ldouble} directive, ARM
990@item .extend  @var{expression} [, @var{expression}]*
991@itemx .ldouble  @var{expression} [, @var{expression}]*
992These directives write 12byte long double floating-point values to the
993output section.  These are not compatible with current ARM processors
994or ABIs.
995
996@c FFFFFFFFFFFFFFFFFFFFFFFFFF
997
998@cindex @code{.float16} directive, ARM
999@item .float16 @var{value [,...,value_n]}
1000Place the half precision floating point representation of one or more
1001floating-point values into the current section. The exact format of the
1002encoding is specified by @code{.float16_format}. If the format has not
1003been explicitly set yet (either via the @code{.float16_format} directive or
1004the command line option) then the IEEE 754-2008 format is used.
1005
1006@cindex @code{.float16_format} directive, ARM
1007@item .float16_format @var{format}
1008Set the format to use when encoding float16 values emitted by
1009the @code{.float16} directive.
1010Once the format has been set it cannot be changed.
1011@code{format} should be one of the following: @code{ieee} (encode in
1012the IEEE 754-2008 half precision format) or @code{alternative} (encode in
1013the Arm alternative half precision format).
1014
1015@anchor{arm_fnend}
1016@cindex @code{.fnend} directive, ARM
1017@item .fnend
1018Marks the end of a function with an unwind table entry.  The unwind index
1019table entry is created when this directive is processed.
1020
1021If no personality routine has been specified then standard personality
1022routine 0 or 1 will be used, depending on the number of unwind opcodes
1023required.
1024
1025@anchor{arm_fnstart}
1026@cindex @code{.fnstart} directive, ARM
1027@item .fnstart
1028Marks the start of a function with an unwind table entry.
1029
1030@cindex @code{.force_thumb} directive, ARM
1031@item .force_thumb
1032This directive forces the selection of Thumb instructions, even if the
1033target processor does not support those instructions
1034
1035@cindex @code{.fpu} directive, ARM
1036@item .fpu @var{name}
1037Select the floating-point unit to assemble for.  Valid values for @var{name}
1038are the same as for the @option{-mfpu} command-line option.
1039
1040@c GGGGGGGGGGGGGGGGGGGGGGGGGG
1041@c HHHHHHHHHHHHHHHHHHHHHHHHHH
1042
1043@cindex @code{.handlerdata} directive, ARM
1044@item .handlerdata
1045Marks the end of the current function, and the start of the exception table
1046entry for that function.  Anything between this directive and the
1047@code{.fnend} directive will be added to the exception table entry.
1048
1049Must be preceded by a @code{.personality} or @code{.personalityindex}
1050directive.
1051
1052@c IIIIIIIIIIIIIIIIIIIIIIIIII
1053
1054@cindex @code{.inst} directive, ARM
1055@item .inst @var{opcode} [ , @dots{} ]
1056@itemx .inst.n @var{opcode} [ , @dots{} ]
1057@itemx .inst.w @var{opcode} [ , @dots{} ]
1058Generates the instruction corresponding to the numerical value @var{opcode}.
1059@code{.inst.n} and @code{.inst.w} allow the Thumb instruction size to be
1060specified explicitly, overriding the normal encoding rules.
1061
1062@c JJJJJJJJJJJJJJJJJJJJJJJJJJ
1063@c KKKKKKKKKKKKKKKKKKKKKKKKKK
1064@c LLLLLLLLLLLLLLLLLLLLLLLLLL
1065
1066@item .ldouble  @var{expression} [, @var{expression}]*
1067See @code{.extend}.
1068
1069@cindex @code{.ltorg} directive, ARM
1070@item .ltorg
1071This directive causes the current contents of the literal pool to be
1072dumped into the current section (which is assumed to be the .text
1073section) at the current location (aligned to a word boundary).
1074@code{GAS} maintains a separate literal pool for each section and each
1075sub-section.  The @code{.ltorg} directive will only affect the literal
1076pool of the current section and sub-section.  At the end of assembly
1077all remaining, un-empty literal pools will automatically be dumped.
1078
1079Note - older versions of @code{GAS} would dump the current literal
1080pool any time a section change occurred.  This is no longer done, since
1081it prevents accurate control of the placement of literal pools.
1082
1083@c MMMMMMMMMMMMMMMMMMMMMMMMMM
1084
1085@cindex @code{.movsp} directive, ARM
1086@item .movsp @var{reg} [, #@var{offset}]
1087Tell the unwinder that @var{reg} contains an offset from the current
1088stack pointer.  If @var{offset} is not specified then it is assumed to be
1089zero.
1090
1091@c NNNNNNNNNNNNNNNNNNNNNNNNNN
1092@c OOOOOOOOOOOOOOOOOOOOOOOOOO
1093
1094@cindex @code{.object_arch} directive, ARM
1095@item .object_arch @var{name}
1096Override the architecture recorded in the EABI object attribute section.
1097Valid values for @var{name} are the same as for the @code{.arch} directive.
1098Typically this is useful when code uses runtime detection of CPU features.
1099
1100@c PPPPPPPPPPPPPPPPPPPPPPPPPP
1101
1102@cindex @code{.packed} directive, ARM
1103@item .packed  @var{expression} [, @var{expression}]*
1104This directive writes 12-byte packed floating-point values to the
1105output section.  These are not compatible with current ARM processors
1106or ABIs.
1107
1108@anchor{arm_pacspval}
1109@cindex @code{.pacspval} directive, ARM
1110@item .pacspval
1111Generate unwinder annotations to use effective vsp as modifier in PAC
1112validation.
1113
1114@anchor{arm_pad}
1115@cindex @code{.pad} directive, ARM
1116@item .pad #@var{count}
1117Generate unwinder annotations for a stack adjustment of @var{count} bytes.
1118A positive value indicates the function prologue allocated stack space by
1119decrementing the stack pointer.
1120
1121@cindex @code{.personality} directive, ARM
1122@item .personality @var{name}
1123Sets the personality routine for the current function to @var{name}.
1124
1125@cindex @code{.personalityindex} directive, ARM
1126@item .personalityindex @var{index}
1127Sets the personality routine for the current function to the EABI standard
1128routine number @var{index}
1129
1130@cindex @code{.pool} directive, ARM
1131@item .pool
1132This is a synonym for .ltorg.
1133
1134@c QQQQQQQQQQQQQQQQQQQQQQQQQQ
1135@c RRRRRRRRRRRRRRRRRRRRRRRRRR
1136
1137@cindex @code{.req} directive, ARM
1138@item @var{name} .req @var{register name}
1139This creates an alias for @var{register name} called @var{name}.  For
1140example:
1141
1142@smallexample
1143        foo .req r0
1144@end smallexample
1145
1146@c SSSSSSSSSSSSSSSSSSSSSSSSSS
1147
1148@anchor{arm_save}
1149@cindex @code{.save} directive, ARM
1150@item .save @var{reglist}
1151Generate unwinder annotations to restore the registers in @var{reglist}.
1152The format of @var{reglist} is the same as the corresponding store-multiple
1153instruction.
1154
1155@smallexample
1156@exdent @emph{core registers}
1157  .save @{r4, r5, r6, lr@}
1158  stmfd sp!, @{r4, r5, r6, lr@}
1159@exdent @emph{FPA registers}
1160  .save f4, 2
1161  sfmfd f4, 2, [sp]!
1162@exdent @emph{VFP registers}
1163  .save @{d8, d9, d10@}
1164  fstmdx sp!, @{d8, d9, d10@}
1165@exdent @emph{iWMMXt registers}
1166  .save @{wr10, wr11@}
1167  wstrd wr11, [sp, #-8]!
1168  wstrd wr10, [sp, #-8]!
1169or
1170  .save wr11
1171  wstrd wr11, [sp, #-8]!
1172  .save wr10
1173  wstrd wr10, [sp, #-8]!
1174@end smallexample
1175
1176@anchor{arm_setfp}
1177@cindex @code{.setfp} directive, ARM
1178@item .setfp @var{fpreg}, @var{spreg} [, #@var{offset}]
1179Make all unwinder annotations relative to a frame pointer.  Without this
1180the unwinder will use offsets from the stack pointer.
1181
1182The syntax of this directive is the same as the @code{add} or @code{mov}
1183instruction used to set the frame pointer.  @var{spreg} must be either
1184@code{sp} or mentioned in a previous @code{.movsp} directive.
1185
1186@smallexample
1187.movsp ip
1188mov ip, sp
1189@dots{}
1190.setfp fp, ip, #4
1191add fp, ip, #4
1192@end smallexample
1193
1194@cindex @code{.secrel32} directive, ARM
1195@item .secrel32 @var{expression} [, @var{expression}]*
1196This directive emits relocations that evaluate to the section-relative
1197offset of each expression's symbol.  This directive is only supported
1198for PE targets.
1199
1200@cindex @code{.syntax} directive, ARM
1201@item .syntax [@code{unified} | @code{divided}]
1202This directive sets the Instruction Set Syntax as described in the
1203@ref{ARM-Instruction-Set} section.
1204
1205@c TTTTTTTTTTTTTTTTTTTTTTTTTT
1206
1207@cindex @code{.thumb} directive, ARM
1208@item .thumb
1209This performs the same action as @var{.code 16}.
1210
1211@cindex @code{.thumb_func} directive, ARM
1212@item .thumb_func
1213This directive specifies that the following symbol is the name of a
1214Thumb encoded function.  This information is necessary in order to allow
1215the assembler and linker to generate correct code for interworking
1216between Arm and Thumb instructions and should be used even if
1217interworking is not going to be performed.  The presence of this
1218directive also implies @code{.thumb}
1219
1220This directive is not necessary when generating EABI objects.  On these
1221targets the encoding is implicit when generating Thumb code.
1222
1223@cindex @code{.thumb_set} directive, ARM
1224@item .thumb_set
1225This performs the equivalent of a @code{.set} directive in that it
1226creates a symbol which is an alias for another symbol (possibly not yet
1227defined).  This directive also has the added property in that it marks
1228the aliased symbol as being a thumb function entry point, in the same
1229way that the @code{.thumb_func} directive does.
1230
1231@cindex @code{.tlsdescseq} directive, ARM
1232@item .tlsdescseq @var{tls-variable}
1233This directive is used to annotate parts of an inlined TLS descriptor
1234trampoline.  Normally the trampoline is provided by the linker, and
1235this directive is not needed.
1236
1237@c UUUUUUUUUUUUUUUUUUUUUUUUUU
1238
1239@cindex @code{.unreq} directive, ARM
1240@item .unreq @var{alias-name}
1241This undefines a register alias which was previously defined using the
1242@code{req}, @code{dn} or @code{qn} directives.  For example:
1243
1244@smallexample
1245        foo .req r0
1246        .unreq foo
1247@end smallexample
1248
1249An error occurs if the name is undefined.  Note - this pseudo op can
1250be used to delete builtin in register name aliases (eg 'r0').  This
1251should only be done if it is really necessary.
1252
1253@cindex @code{.unwind_raw} directive, ARM
1254@item .unwind_raw @var{offset}, @var{byte1}, @dots{}
1255Insert one of more arbitrary unwind opcode bytes, which are known to adjust
1256the stack pointer by @var{offset} bytes.
1257
1258For example @code{.unwind_raw 4, 0xb1, 0x01} is equivalent to
1259@code{.save @{r0@}}
1260
1261@c VVVVVVVVVVVVVVVVVVVVVVVVVV
1262
1263@cindex @code{.vsave} directive, ARM
1264@item .vsave @var{vfp-reglist}
1265Generate unwinder annotations to restore the VFP registers in @var{vfp-reglist}
1266using FLDMD.  Also works for VFPv3 registers
1267that are to be restored using VLDM.
1268The format of @var{vfp-reglist} is the same as the corresponding store-multiple
1269instruction.
1270
1271@smallexample
1272@exdent @emph{VFP registers}
1273  .vsave @{d8, d9, d10@}
1274  fstmdd sp!, @{d8, d9, d10@}
1275@exdent @emph{VFPv3 registers}
1276  .vsave @{d15, d16, d17@}
1277  vstm sp!, @{d15, d16, d17@}
1278@end smallexample
1279
1280Since FLDMX and FSTMX are now deprecated, this directive should be
1281used in favour of @code{.save} for saving VFP registers for ARMv6 and above.
1282
1283@c WWWWWWWWWWWWWWWWWWWWWWWWWW
1284@c XXXXXXXXXXXXXXXXXXXXXXXXXX
1285@c YYYYYYYYYYYYYYYYYYYYYYYYYY
1286@c ZZZZZZZZZZZZZZZZZZZZZZZZZZ
1287
1288@end table
1289
1290@node ARM Opcodes
1291@section Opcodes
1292
1293@cindex ARM opcodes
1294@cindex opcodes for ARM
1295@code{@value{AS}} implements all the standard ARM opcodes.  It also
1296implements several pseudo opcodes, including several synthetic load
1297instructions.
1298
1299@table @code
1300
1301@cindex @code{NOP} pseudo op, ARM
1302@item NOP
1303@smallexample
1304  nop
1305@end smallexample
1306
1307This pseudo op will always evaluate to a legal ARM instruction that does
1308nothing.  Currently it will evaluate to MOV r0, r0.
1309
1310@cindex @code{LDR reg,=<label>} pseudo op, ARM
1311@item LDR
1312@smallexample
1313  ldr <register> , = <expression>
1314@end smallexample
1315
1316If expression evaluates to a numeric constant then a MOV or MVN
1317instruction will be used in place of the LDR instruction, if the
1318constant can be generated by either of these instructions.  Otherwise
1319the constant will be placed into the nearest literal pool (if it not
1320already there) and a PC relative LDR instruction will be generated.
1321
1322@cindex @code{ADR reg,<label>} pseudo op, ARM
1323@item ADR
1324@smallexample
1325  adr <register> <label>
1326@end smallexample
1327
1328This instruction will load the address of @var{label} into the indicated
1329register.  The instruction will evaluate to a PC relative ADD or SUB
1330instruction depending upon where the label is located.  If the label is
1331out of range, or if it is not defined in the same file (and section) as
1332the ADR instruction, then an error will be generated.  This instruction
1333will not make use of the literal pool.
1334
1335If @var{label} is a thumb function symbol, and thumb interworking has
1336been enabled via the @option{-mthumb-interwork} option then the bottom
1337bit of the value stored into @var{register} will be set.  This allows
1338the following sequence to work as expected:
1339
1340@smallexample
1341  adr     r0, thumb_function
1342  blx     r0
1343@end smallexample
1344
1345@cindex @code{ADRL reg,<label>} pseudo op, ARM
1346@item ADRL
1347@smallexample
1348  adrl <register> <label>
1349@end smallexample
1350
1351This instruction will load the address of @var{label} into the indicated
1352register.  The instruction will evaluate to one or two PC relative ADD
1353or SUB instructions depending upon where the label is located.  If a
1354second instruction is not needed a NOP instruction will be generated in
1355its place, so that this instruction is always 8 bytes long.
1356
1357If the label is out of range, or if it is not defined in the same file
1358(and section) as the ADRL instruction, then an error will be generated.
1359This instruction will not make use of the literal pool.
1360
1361If @var{label} is a thumb function symbol, and thumb interworking has
1362been enabled via the @option{-mthumb-interwork} option then the bottom
1363bit of the value stored into @var{register} will be set.
1364
1365@end table
1366
1367For information on the ARM or Thumb instruction sets, see @cite{ARM
1368Software Development Toolkit Reference Manual}, Advanced RISC Machines
1369Ltd.
1370
1371@node ARM Mapping Symbols
1372@section Mapping Symbols
1373
1374The ARM ELF specification requires that special symbols be inserted
1375into object files to mark certain features:
1376
1377@table @code
1378
1379@cindex @code{$a}
1380@item $a
1381At the start of a region of code containing ARM instructions.
1382
1383@cindex @code{$t}
1384@item $t
1385At the start of a region of code containing THUMB instructions.
1386
1387@cindex @code{$d}
1388@item $d
1389At the start of a region of data.
1390
1391@end table
1392
1393The assembler will automatically insert these symbols for you - there
1394is no need to code them yourself.  Support for tagging symbols ($b,
1395$f, $p and $m) which is also mentioned in the current ARM ELF
1396specification is not implemented.  This is because they have been
1397dropped from the new EABI and so tools cannot rely upon their
1398presence.
1399
1400@node ARM Unwinding Tutorial
1401@section Unwinding
1402
1403The ABI for the ARM Architecture specifies a standard format for
1404exception unwind information.  This information is used when an
1405exception is thrown to determine where control should be transferred.
1406In particular, the unwind information is used to determine which
1407function called the function that threw the exception, and which
1408function called that one, and so forth.  This information is also used
1409to restore the values of callee-saved registers in the function
1410catching the exception.
1411
1412If you are writing functions in assembly code, and those functions
1413call other functions that throw exceptions, you must use assembly
1414pseudo ops to ensure that appropriate exception unwind information is
1415generated.  Otherwise, if one of the functions called by your assembly
1416code throws an exception, the run-time library will be unable to
1417unwind the stack through your assembly code and your program will not
1418behave correctly.
1419
1420To illustrate the use of these pseudo ops, we will examine the code
1421that G++ generates for the following C++ input:
1422
1423@verbatim
1424void callee (int *);
1425
1426int
1427caller ()
1428{
1429  int i;
1430  callee (&i);
1431  return i;
1432}
1433@end verbatim
1434
1435This example does not show how to throw or catch an exception from
1436assembly code.  That is a much more complex operation and should
1437always be done in a high-level language, such as C++, that directly
1438supports exceptions.
1439
1440The code generated by one particular version of G++ when compiling the
1441example above is:
1442
1443@verbatim
1444_Z6callerv:
1445	.fnstart
1446.LFB2:
1447	@ Function supports interworking.
1448	@ args = 0, pretend = 0, frame = 8
1449	@ frame_needed = 1, uses_anonymous_args = 0
1450	stmfd	sp!, {fp, lr}
1451	.save {fp, lr}
1452.LCFI0:
1453	.setfp fp, sp, #4
1454	add	fp, sp, #4
1455.LCFI1:
1456	.pad #8
1457	sub	sp, sp, #8
1458.LCFI2:
1459	sub	r3, fp, #8
1460	mov	r0, r3
1461	bl	_Z6calleePi
1462	ldr	r3, [fp, #-8]
1463	mov	r0, r3
1464	sub	sp, fp, #4
1465	ldmfd	sp!, {fp, lr}
1466	bx	lr
1467.LFE2:
1468	.fnend
1469@end verbatim
1470
1471Of course, the sequence of instructions varies based on the options
1472you pass to GCC and on the version of GCC in use.  The exact
1473instructions are not important since we are focusing on the pseudo ops
1474that are used to generate unwind information.
1475
1476An important assumption made by the unwinder is that the stack frame
1477does not change during the body of the function.  In particular, since
1478we assume that the assembly code does not itself throw an exception,
1479the only point where an exception can be thrown is from a call, such
1480as the @code{bl} instruction above.  At each call site, the same saved
1481registers (including @code{lr}, which indicates the return address)
1482must be located in the same locations relative to the frame pointer.
1483
1484The @code{.fnstart} (@pxref{arm_fnstart,,.fnstart pseudo op}) pseudo
1485op appears immediately before the first instruction of the function
1486while the @code{.fnend} (@pxref{arm_fnend,,.fnend pseudo op}) pseudo
1487op appears immediately after the last instruction of the function.
1488These pseudo ops specify the range of the function.
1489
1490Only the order of the other pseudos ops (e.g., @code{.setfp} or
1491@code{.pad}) matters; their exact locations are irrelevant.  In the
1492example above, the compiler emits the pseudo ops with particular
1493instructions.  That makes it easier to understand the code, but it is
1494not required for correctness.  It would work just as well to emit all
1495of the pseudo ops other than @code{.fnend} in the same order, but
1496immediately after @code{.fnstart}.
1497
1498The @code{.save} (@pxref{arm_save,,.save pseudo op}) pseudo op
1499indicates registers that have been saved to the stack so that they can
1500be restored before the function returns.  The argument to the
1501@code{.save} pseudo op is a list of registers to save.  If a register
1502is ``callee-saved'' (as specified by the ABI) and is modified by the
1503function you are writing, then your code must save the value before it
1504is modified and restore the original value before the function
1505returns.  If an exception is thrown, the run-time library restores the
1506values of these registers from their locations on the stack before
1507returning control to the exception handler.  (Of course, if an
1508exception is not thrown, the function that contains the @code{.save}
1509pseudo op restores these registers in the function epilogue, as is
1510done with the @code{ldmfd} instruction above.)
1511
1512You do not have to save callee-saved registers at the very beginning
1513of the function and you do not need to use the @code{.save} pseudo op
1514immediately following the point at which the registers are saved.
1515However, if you modify a callee-saved register, you must save it on
1516the stack before modifying it and before calling any functions which
1517might throw an exception.  And, you must use the @code{.save} pseudo
1518op to indicate that you have done so.
1519
1520The @code{.pad} (@pxref{arm_pad,,.pad}) pseudo op indicates a
1521modification of the stack pointer that does not save any registers.
1522The argument is the number of bytes (in decimal) that are subtracted
1523from the stack pointer.  (On ARM CPUs, the stack grows downwards, so
1524subtracting from the stack pointer increases the size of the stack.)
1525
1526The @code{.setfp} (@pxref{arm_setfp,,.setfp pseudo op}) pseudo op
1527indicates the register that contains the frame pointer.  The first
1528argument is the register that is set, which is typically @code{fp}.
1529The second argument indicates the register from which the frame
1530pointer takes its value.  The third argument, if present, is the value
1531(in decimal) added to the register specified by the second argument to
1532compute the value of the frame pointer.  You should not modify the
1533frame pointer in the body of the function.
1534
1535If you do not use a frame pointer, then you should not use the
1536@code{.setfp} pseudo op.  If you do not use a frame pointer, then you
1537should avoid modifying the stack pointer outside of the function
1538prologue.  Otherwise, the run-time library will be unable to find
1539saved registers when it is unwinding the stack.
1540
1541The pseudo ops described above are sufficient for writing assembly
1542code that calls functions which may throw exceptions.  If you need to
1543know more about the object-file format used to represent unwind
1544information, you may consult the @cite{Exception Handling ABI for the
1545ARM Architecture} available from @uref{http://infocenter.arm.com}.
1546
1547