1 /* tc-mips.c -- assemble code for a MIPS chip. 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 3 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc. 4 Contributed by the OSF and Ralph Campbell. 5 Written by Keith Knowles and Ralph Campbell, working independently. 6 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus 7 Support. 8 9 This file is part of GAS. 10 11 GAS is free software; you can redistribute it and/or modify 12 it under the terms of the GNU General Public License as published by 13 the Free Software Foundation; either version 3, or (at your option) 14 any later version. 15 16 GAS is distributed in the hope that it will be useful, 17 but WITHOUT ANY WARRANTY; without even the implied warranty of 18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 GNU General Public License for more details. 20 21 You should have received a copy of the GNU General Public License 22 along with GAS; see the file COPYING. If not, write to the Free 23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA 24 02110-1301, USA. */ 25 26 #include "as.h" 27 #include "config.h" 28 #include "subsegs.h" 29 #include "safe-ctype.h" 30 31 #include "opcode/mips.h" 32 #include "itbl-ops.h" 33 #include "dwarf2dbg.h" 34 #include "dw2gencfi.h" 35 36 #ifdef DEBUG 37 #define DBG(x) printf x 38 #else 39 #define DBG(x) 40 #endif 41 42 #ifdef OBJ_MAYBE_ELF 43 /* Clean up namespace so we can include obj-elf.h too. */ 44 static int mips_output_flavor (void); 45 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; } 46 #undef OBJ_PROCESS_STAB 47 #undef OUTPUT_FLAVOR 48 #undef S_GET_ALIGN 49 #undef S_GET_SIZE 50 #undef S_SET_ALIGN 51 #undef S_SET_SIZE 52 #undef obj_frob_file 53 #undef obj_frob_file_after_relocs 54 #undef obj_frob_symbol 55 #undef obj_pop_insert 56 #undef obj_sec_sym_ok_for_reloc 57 #undef OBJ_COPY_SYMBOL_ATTRIBUTES 58 59 #include "obj-elf.h" 60 /* Fix any of them that we actually care about. */ 61 #undef OUTPUT_FLAVOR 62 #define OUTPUT_FLAVOR mips_output_flavor() 63 #endif 64 65 #if defined (OBJ_ELF) 66 #include "elf/mips.h" 67 #endif 68 69 #ifndef ECOFF_DEBUGGING 70 #define NO_ECOFF_DEBUGGING 71 #define ECOFF_DEBUGGING 0 72 #endif 73 74 int mips_flag_mdebug = -1; 75 76 /* Control generation of .pdr sections. Off by default on IRIX: the native 77 linker doesn't know about and discards them, but relocations against them 78 remain, leading to rld crashes. */ 79 #ifdef TE_IRIX 80 int mips_flag_pdr = FALSE; 81 #else 82 int mips_flag_pdr = TRUE; 83 #endif 84 85 #include "ecoff.h" 86 87 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) 88 static char *mips_regmask_frag; 89 #endif 90 91 #define ZERO 0 92 #define ATREG 1 93 #define TREG 24 94 #define PIC_CALL_REG 25 95 #define KT0 26 96 #define KT1 27 97 #define GP 28 98 #define SP 29 99 #define FP 30 100 #define RA 31 101 102 #define ILLEGAL_REG (32) 103 104 #define AT mips_opts.at 105 106 /* Allow override of standard little-endian ECOFF format. */ 107 108 #ifndef ECOFF_LITTLE_FORMAT 109 #define ECOFF_LITTLE_FORMAT "ecoff-littlemips" 110 #endif 111 112 extern int target_big_endian; 113 114 /* The name of the readonly data section. */ 115 #define RDATA_SECTION_NAME (OUTPUT_FLAVOR == bfd_target_ecoff_flavour \ 116 ? ".rdata" \ 117 : OUTPUT_FLAVOR == bfd_target_coff_flavour \ 118 ? ".rdata" \ 119 : OUTPUT_FLAVOR == bfd_target_elf_flavour \ 120 ? ".rodata" \ 121 : (abort (), "")) 122 123 /* Information about an instruction, including its format, operands 124 and fixups. */ 125 struct mips_cl_insn 126 { 127 /* The opcode's entry in mips_opcodes or mips16_opcodes. */ 128 const struct mips_opcode *insn_mo; 129 130 /* True if this is a mips16 instruction and if we want the extended 131 form of INSN_MO. */ 132 bfd_boolean use_extend; 133 134 /* The 16-bit extension instruction to use when USE_EXTEND is true. */ 135 unsigned short extend; 136 137 /* The 16-bit or 32-bit bitstring of the instruction itself. This is 138 a copy of INSN_MO->match with the operands filled in. */ 139 unsigned long insn_opcode; 140 141 /* The frag that contains the instruction. */ 142 struct frag *frag; 143 144 /* The offset into FRAG of the first instruction byte. */ 145 long where; 146 147 /* The relocs associated with the instruction, if any. */ 148 fixS *fixp[3]; 149 150 /* True if this entry cannot be moved from its current position. */ 151 unsigned int fixed_p : 1; 152 153 /* True if this instruction occurred in a .set noreorder block. */ 154 unsigned int noreorder_p : 1; 155 156 /* True for mips16 instructions that jump to an absolute address. */ 157 unsigned int mips16_absolute_jump_p : 1; 158 }; 159 160 /* The ABI to use. */ 161 enum mips_abi_level 162 { 163 NO_ABI = 0, 164 O32_ABI, 165 O64_ABI, 166 N32_ABI, 167 N64_ABI, 168 EABI_ABI 169 }; 170 171 /* MIPS ABI we are using for this output file. */ 172 static enum mips_abi_level mips_abi = NO_ABI; 173 174 /* Whether or not we have code that can call pic code. */ 175 int mips_abicalls = FALSE; 176 177 /* Whether or not we have code which can be put into a shared 178 library. */ 179 static bfd_boolean mips_in_shared = TRUE; 180 181 /* This is the set of options which may be modified by the .set 182 pseudo-op. We use a struct so that .set push and .set pop are more 183 reliable. */ 184 185 struct mips_set_options 186 { 187 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1 188 if it has not been initialized. Changed by `.set mipsN', and the 189 -mipsN command line option, and the default CPU. */ 190 int isa; 191 /* Enabled Application Specific Extensions (ASEs). These are set to -1 192 if they have not been initialized. Changed by `.set <asename>', by 193 command line options, and based on the default architecture. */ 194 int ase_mips3d; 195 int ase_mdmx; 196 int ase_smartmips; 197 int ase_dsp; 198 int ase_dspr2; 199 int ase_mt; 200 /* Whether we are assembling for the mips16 processor. 0 if we are 201 not, 1 if we are, and -1 if the value has not been initialized. 202 Changed by `.set mips16' and `.set nomips16', and the -mips16 and 203 -nomips16 command line options, and the default CPU. */ 204 int mips16; 205 /* Non-zero if we should not reorder instructions. Changed by `.set 206 reorder' and `.set noreorder'. */ 207 int noreorder; 208 /* Non-zero if we should not permit the register designated "assembler 209 temporary" to be used in instructions. The value is the register 210 number, normally $at ($1). Changed by `.set at=REG', `.set noat' 211 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */ 212 unsigned int at; 213 /* Non-zero if we should warn when a macro instruction expands into 214 more than one machine instruction. Changed by `.set nomacro' and 215 `.set macro'. */ 216 int warn_about_macros; 217 /* Non-zero if we should not move instructions. Changed by `.set 218 move', `.set volatile', `.set nomove', and `.set novolatile'. */ 219 int nomove; 220 /* Non-zero if we should not optimize branches by moving the target 221 of the branch into the delay slot. Actually, we don't perform 222 this optimization anyhow. Changed by `.set bopt' and `.set 223 nobopt'. */ 224 int nobopt; 225 /* Non-zero if we should not autoextend mips16 instructions. 226 Changed by `.set autoextend' and `.set noautoextend'. */ 227 int noautoextend; 228 /* Restrict general purpose registers and floating point registers 229 to 32 bit. This is initially determined when -mgp32 or -mfp32 230 is passed but can changed if the assembler code uses .set mipsN. */ 231 int gp32; 232 int fp32; 233 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march 234 command line option, and the default CPU. */ 235 int arch; 236 /* True if ".set sym32" is in effect. */ 237 bfd_boolean sym32; 238 /* True if floating-point operations are not allowed. Changed by .set 239 softfloat or .set hardfloat, by command line options -msoft-float or 240 -mhard-float. The default is false. */ 241 bfd_boolean soft_float; 242 243 /* True if only single-precision floating-point operations are allowed. 244 Changed by .set singlefloat or .set doublefloat, command-line options 245 -msingle-float or -mdouble-float. The default is false. */ 246 bfd_boolean single_float; 247 }; 248 249 /* This is the struct we use to hold the current set of options. Note 250 that we must set the isa field to ISA_UNKNOWN and the ASE fields to 251 -1 to indicate that they have not been initialized. */ 252 253 /* True if -mgp32 was passed. */ 254 static int file_mips_gp32 = -1; 255 256 /* True if -mfp32 was passed. */ 257 static int file_mips_fp32 = -1; 258 259 /* 1 if -msoft-float, 0 if -mhard-float. The default is 0. */ 260 static int file_mips_soft_float = 0; 261 262 /* 1 if -msingle-float, 0 if -mdouble-float. The default is 0. */ 263 static int file_mips_single_float = 0; 264 265 static struct mips_set_options mips_opts = 266 { 267 /* isa */ ISA_UNKNOWN, /* ase_mips3d */ -1, /* ase_mdmx */ -1, 268 /* ase_smartmips */ 0, /* ase_dsp */ -1, /* ase_dspr2 */ -1, /* ase_mt */ -1, 269 /* mips16 */ -1, /* noreorder */ 0, /* at */ ATREG, 270 /* warn_about_macros */ 0, /* nomove */ 0, /* nobopt */ 0, 271 /* noautoextend */ 0, /* gp32 */ 0, /* fp32 */ 0, /* arch */ CPU_UNKNOWN, 272 /* sym32 */ FALSE, /* soft_float */ FALSE, /* single_float */ FALSE 273 }; 274 275 /* These variables are filled in with the masks of registers used. 276 The object format code reads them and puts them in the appropriate 277 place. */ 278 unsigned long mips_gprmask; 279 unsigned long mips_cprmask[4]; 280 281 /* MIPS ISA we are using for this output file. */ 282 static int file_mips_isa = ISA_UNKNOWN; 283 284 /* True if -mips16 was passed or implied by arguments passed on the 285 command line (e.g., by -march). */ 286 static int file_ase_mips16; 287 288 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \ 289 || mips_opts.isa == ISA_MIPS32R2 \ 290 || mips_opts.isa == ISA_MIPS64 \ 291 || mips_opts.isa == ISA_MIPS64R2) 292 293 /* True if -mips3d was passed or implied by arguments passed on the 294 command line (e.g., by -march). */ 295 static int file_ase_mips3d; 296 297 /* True if -mdmx was passed or implied by arguments passed on the 298 command line (e.g., by -march). */ 299 static int file_ase_mdmx; 300 301 /* True if -msmartmips was passed or implied by arguments passed on the 302 command line (e.g., by -march). */ 303 static int file_ase_smartmips; 304 305 #define ISA_SUPPORTS_SMARTMIPS (mips_opts.isa == ISA_MIPS32 \ 306 || mips_opts.isa == ISA_MIPS32R2) 307 308 /* True if -mdsp was passed or implied by arguments passed on the 309 command line (e.g., by -march). */ 310 static int file_ase_dsp; 311 312 #define ISA_SUPPORTS_DSP_ASE (mips_opts.isa == ISA_MIPS32R2 \ 313 || mips_opts.isa == ISA_MIPS64R2) 314 315 #define ISA_SUPPORTS_DSP64_ASE (mips_opts.isa == ISA_MIPS64R2) 316 317 /* True if -mdspr2 was passed or implied by arguments passed on the 318 command line (e.g., by -march). */ 319 static int file_ase_dspr2; 320 321 #define ISA_SUPPORTS_DSPR2_ASE (mips_opts.isa == ISA_MIPS32R2 \ 322 || mips_opts.isa == ISA_MIPS64R2) 323 324 /* True if -mmt was passed or implied by arguments passed on the 325 command line (e.g., by -march). */ 326 static int file_ase_mt; 327 328 #define ISA_SUPPORTS_MT_ASE (mips_opts.isa == ISA_MIPS32R2 \ 329 || mips_opts.isa == ISA_MIPS64R2) 330 331 /* The argument of the -march= flag. The architecture we are assembling. */ 332 static int file_mips_arch = CPU_UNKNOWN; 333 static const char *mips_arch_string; 334 335 /* The argument of the -mtune= flag. The architecture for which we 336 are optimizing. */ 337 static int mips_tune = CPU_UNKNOWN; 338 static const char *mips_tune_string; 339 340 /* True when generating 32-bit code for a 64-bit processor. */ 341 static int mips_32bitmode = 0; 342 343 /* True if the given ABI requires 32-bit registers. */ 344 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI) 345 346 /* Likewise 64-bit registers. */ 347 #define ABI_NEEDS_64BIT_REGS(ABI) \ 348 ((ABI) == N32_ABI \ 349 || (ABI) == N64_ABI \ 350 || (ABI) == O64_ABI) 351 352 /* Return true if ISA supports 64 bit wide gp registers. */ 353 #define ISA_HAS_64BIT_REGS(ISA) \ 354 ((ISA) == ISA_MIPS3 \ 355 || (ISA) == ISA_MIPS4 \ 356 || (ISA) == ISA_MIPS5 \ 357 || (ISA) == ISA_MIPS64 \ 358 || (ISA) == ISA_MIPS64R2) 359 360 /* Return true if ISA supports 64 bit wide float registers. */ 361 #define ISA_HAS_64BIT_FPRS(ISA) \ 362 ((ISA) == ISA_MIPS3 \ 363 || (ISA) == ISA_MIPS4 \ 364 || (ISA) == ISA_MIPS5 \ 365 || (ISA) == ISA_MIPS32R2 \ 366 || (ISA) == ISA_MIPS64 \ 367 || (ISA) == ISA_MIPS64R2) 368 369 /* Return true if ISA supports 64-bit right rotate (dror et al.) 370 instructions. */ 371 #define ISA_HAS_DROR(ISA) \ 372 ((ISA) == ISA_MIPS64R2) 373 374 /* Return true if ISA supports 32-bit right rotate (ror et al.) 375 instructions. */ 376 #define ISA_HAS_ROR(ISA) \ 377 ((ISA) == ISA_MIPS32R2 \ 378 || (ISA) == ISA_MIPS64R2 \ 379 || mips_opts.ase_smartmips) 380 381 /* Return true if ISA supports single-precision floats in odd registers. */ 382 #define ISA_HAS_ODD_SINGLE_FPR(ISA) \ 383 ((ISA) == ISA_MIPS32 \ 384 || (ISA) == ISA_MIPS32R2 \ 385 || (ISA) == ISA_MIPS64 \ 386 || (ISA) == ISA_MIPS64R2) 387 388 /* Return true if ISA supports move to/from high part of a 64-bit 389 floating-point register. */ 390 #define ISA_HAS_MXHC1(ISA) \ 391 ((ISA) == ISA_MIPS32R2 \ 392 || (ISA) == ISA_MIPS64R2) 393 394 #define HAVE_32BIT_GPRS \ 395 (mips_opts.gp32 || !ISA_HAS_64BIT_REGS (mips_opts.isa)) 396 397 #define HAVE_32BIT_FPRS \ 398 (mips_opts.fp32 || !ISA_HAS_64BIT_FPRS (mips_opts.isa)) 399 400 #define HAVE_64BIT_GPRS (!HAVE_32BIT_GPRS) 401 #define HAVE_64BIT_FPRS (!HAVE_32BIT_FPRS) 402 403 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI) 404 405 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI) 406 407 /* True if relocations are stored in-place. */ 408 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI) 409 410 /* The ABI-derived address size. */ 411 #define HAVE_64BIT_ADDRESSES \ 412 (HAVE_64BIT_GPRS && (mips_abi == EABI_ABI || mips_abi == N64_ABI)) 413 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES) 414 415 /* The size of symbolic constants (i.e., expressions of the form 416 "SYMBOL" or "SYMBOL + OFFSET"). */ 417 #define HAVE_32BIT_SYMBOLS \ 418 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32) 419 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS) 420 421 /* Addresses are loaded in different ways, depending on the address size 422 in use. The n32 ABI Documentation also mandates the use of additions 423 with overflow checking, but existing implementations don't follow it. */ 424 #define ADDRESS_ADD_INSN \ 425 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu") 426 427 #define ADDRESS_ADDI_INSN \ 428 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu") 429 430 #define ADDRESS_LOAD_INSN \ 431 (HAVE_32BIT_ADDRESSES ? "lw" : "ld") 432 433 #define ADDRESS_STORE_INSN \ 434 (HAVE_32BIT_ADDRESSES ? "sw" : "sd") 435 436 /* Return true if the given CPU supports the MIPS16 ASE. */ 437 #define CPU_HAS_MIPS16(cpu) \ 438 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \ 439 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0) 440 441 /* True if CPU has a dror instruction. */ 442 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500) 443 444 /* True if CPU has a ror instruction. */ 445 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU) 446 447 /* True if CPU has seq/sne and seqi/snei instructions. */ 448 #define CPU_HAS_SEQ(CPU) ((CPU) == CPU_OCTEON) 449 450 /* True if CPU does not implement the all the coprocessor insns. For these 451 CPUs only those COP insns are accepted that are explicitly marked to be 452 available on the CPU. ISA membership for COP insns is ignored. */ 453 #define NO_ISA_COP(CPU) ((CPU) == CPU_OCTEON) 454 455 /* True if mflo and mfhi can be immediately followed by instructions 456 which write to the HI and LO registers. 457 458 According to MIPS specifications, MIPS ISAs I, II, and III need 459 (at least) two instructions between the reads of HI/LO and 460 instructions which write them, and later ISAs do not. Contradicting 461 the MIPS specifications, some MIPS IV processor user manuals (e.g. 462 the UM for the NEC Vr5000) document needing the instructions between 463 HI/LO reads and writes, as well. Therefore, we declare only MIPS32, 464 MIPS64 and later ISAs to have the interlocks, plus any specific 465 earlier-ISA CPUs for which CPU documentation declares that the 466 instructions are really interlocked. */ 467 #define hilo_interlocks \ 468 (mips_opts.isa == ISA_MIPS32 \ 469 || mips_opts.isa == ISA_MIPS32R2 \ 470 || mips_opts.isa == ISA_MIPS64 \ 471 || mips_opts.isa == ISA_MIPS64R2 \ 472 || mips_opts.arch == CPU_R4010 \ 473 || mips_opts.arch == CPU_R10000 \ 474 || mips_opts.arch == CPU_R12000 \ 475 || mips_opts.arch == CPU_RM7000 \ 476 || mips_opts.arch == CPU_VR5500 \ 477 ) 478 479 /* Whether the processor uses hardware interlocks to protect reads 480 from the GPRs after they are loaded from memory, and thus does not 481 require nops to be inserted. This applies to instructions marked 482 INSN_LOAD_MEMORY_DELAY. These nops are only required at MIPS ISA 483 level I. */ 484 #define gpr_interlocks \ 485 (mips_opts.isa != ISA_MIPS1 \ 486 || mips_opts.arch == CPU_R3900) 487 488 /* Whether the processor uses hardware interlocks to avoid delays 489 required by coprocessor instructions, and thus does not require 490 nops to be inserted. This applies to instructions marked 491 INSN_LOAD_COPROC_DELAY, INSN_COPROC_MOVE_DELAY, and to delays 492 between instructions marked INSN_WRITE_COND_CODE and ones marked 493 INSN_READ_COND_CODE. These nops are only required at MIPS ISA 494 levels I, II, and III. */ 495 /* Itbl support may require additional care here. */ 496 #define cop_interlocks \ 497 ((mips_opts.isa != ISA_MIPS1 \ 498 && mips_opts.isa != ISA_MIPS2 \ 499 && mips_opts.isa != ISA_MIPS3) \ 500 || mips_opts.arch == CPU_R4300 \ 501 ) 502 503 /* Whether the processor uses hardware interlocks to protect reads 504 from coprocessor registers after they are loaded from memory, and 505 thus does not require nops to be inserted. This applies to 506 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only 507 requires at MIPS ISA level I. */ 508 #define cop_mem_interlocks (mips_opts.isa != ISA_MIPS1) 509 510 /* Is this a mfhi or mflo instruction? */ 511 #define MF_HILO_INSN(PINFO) \ 512 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO)) 513 514 /* Returns true for a (non floating-point) coprocessor instruction. Reading 515 or writing the condition code is only possible on the coprocessors and 516 these insns are not marked with INSN_COP. Thus for these insns use the 517 condition-code flags. */ 518 #define COP_INSN(PINFO) \ 519 (PINFO != INSN_MACRO \ 520 && ((PINFO) & (FP_S | FP_D)) == 0 \ 521 && ((PINFO) & (INSN_COP | INSN_READ_COND_CODE | INSN_WRITE_COND_CODE))) 522 523 /* MIPS PIC level. */ 524 525 enum mips_pic_level mips_pic; 526 527 /* 1 if we should generate 32 bit offsets from the $gp register in 528 SVR4_PIC mode. Currently has no meaning in other modes. */ 529 static int mips_big_got = 0; 530 531 /* 1 if trap instructions should used for overflow rather than break 532 instructions. */ 533 static int mips_trap = 0; 534 535 /* 1 if double width floating point constants should not be constructed 536 by assembling two single width halves into two single width floating 537 point registers which just happen to alias the double width destination 538 register. On some architectures this aliasing can be disabled by a bit 539 in the status register, and the setting of this bit cannot be determined 540 automatically at assemble time. */ 541 static int mips_disable_float_construction; 542 543 /* Non-zero if any .set noreorder directives were used. */ 544 545 static int mips_any_noreorder; 546 547 /* Non-zero if nops should be inserted when the register referenced in 548 an mfhi/mflo instruction is read in the next two instructions. */ 549 static int mips_7000_hilo_fix; 550 551 /* The size of objects in the small data section. */ 552 static unsigned int g_switch_value = 8; 553 /* Whether the -G option was used. */ 554 static int g_switch_seen = 0; 555 556 #define N_RMASK 0xc4 557 #define N_VFP 0xd4 558 559 /* If we can determine in advance that GP optimization won't be 560 possible, we can skip the relaxation stuff that tries to produce 561 GP-relative references. This makes delay slot optimization work 562 better. 563 564 This function can only provide a guess, but it seems to work for 565 gcc output. It needs to guess right for gcc, otherwise gcc 566 will put what it thinks is a GP-relative instruction in a branch 567 delay slot. 568 569 I don't know if a fix is needed for the SVR4_PIC mode. I've only 570 fixed it for the non-PIC mode. KR 95/04/07 */ 571 static int nopic_need_relax (symbolS *, int); 572 573 /* handle of the OPCODE hash table */ 574 static struct hash_control *op_hash = NULL; 575 576 /* The opcode hash table we use for the mips16. */ 577 static struct hash_control *mips16_op_hash = NULL; 578 579 /* This array holds the chars that always start a comment. If the 580 pre-processor is disabled, these aren't very useful */ 581 const char comment_chars[] = "#"; 582 583 /* This array holds the chars that only start a comment at the beginning of 584 a line. If the line seems to have the form '# 123 filename' 585 .line and .file directives will appear in the pre-processed output */ 586 /* Note that input_file.c hand checks for '#' at the beginning of the 587 first line of the input file. This is because the compiler outputs 588 #NO_APP at the beginning of its output. */ 589 /* Also note that C style comments are always supported. */ 590 const char line_comment_chars[] = "#"; 591 592 /* This array holds machine specific line separator characters. */ 593 const char line_separator_chars[] = ";"; 594 595 /* Chars that can be used to separate mant from exp in floating point nums */ 596 const char EXP_CHARS[] = "eE"; 597 598 /* Chars that mean this number is a floating point constant */ 599 /* As in 0f12.456 */ 600 /* or 0d1.2345e12 */ 601 const char FLT_CHARS[] = "rRsSfFdDxXpP"; 602 603 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be 604 changed in read.c . Ideally it shouldn't have to know about it at all, 605 but nothing is ideal around here. 606 */ 607 608 static char *insn_error; 609 610 static int auto_align = 1; 611 612 /* When outputting SVR4 PIC code, the assembler needs to know the 613 offset in the stack frame from which to restore the $gp register. 614 This is set by the .cprestore pseudo-op, and saved in this 615 variable. */ 616 static offsetT mips_cprestore_offset = -1; 617 618 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some 619 more optimizations, it can use a register value instead of a memory-saved 620 offset and even an other register than $gp as global pointer. */ 621 static offsetT mips_cpreturn_offset = -1; 622 static int mips_cpreturn_register = -1; 623 static int mips_gp_register = GP; 624 static int mips_gprel_offset = 0; 625 626 /* Whether mips_cprestore_offset has been set in the current function 627 (or whether it has already been warned about, if not). */ 628 static int mips_cprestore_valid = 0; 629 630 /* This is the register which holds the stack frame, as set by the 631 .frame pseudo-op. This is needed to implement .cprestore. */ 632 static int mips_frame_reg = SP; 633 634 /* Whether mips_frame_reg has been set in the current function 635 (or whether it has already been warned about, if not). */ 636 static int mips_frame_reg_valid = 0; 637 638 /* To output NOP instructions correctly, we need to keep information 639 about the previous two instructions. */ 640 641 /* Whether we are optimizing. The default value of 2 means to remove 642 unneeded NOPs and swap branch instructions when possible. A value 643 of 1 means to not swap branches. A value of 0 means to always 644 insert NOPs. */ 645 static int mips_optimize = 2; 646 647 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is 648 equivalent to seeing no -g option at all. */ 649 static int mips_debug = 0; 650 651 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */ 652 #define MAX_VR4130_NOPS 4 653 654 /* The maximum number of NOPs needed to fill delay slots. */ 655 #define MAX_DELAY_NOPS 2 656 657 /* The maximum number of NOPs needed for any purpose. */ 658 #define MAX_NOPS 4 659 660 /* A list of previous instructions, with index 0 being the most recent. 661 We need to look back MAX_NOPS instructions when filling delay slots 662 or working around processor errata. We need to look back one 663 instruction further if we're thinking about using history[0] to 664 fill a branch delay slot. */ 665 static struct mips_cl_insn history[1 + MAX_NOPS]; 666 667 /* Nop instructions used by emit_nop. */ 668 static struct mips_cl_insn nop_insn, mips16_nop_insn; 669 670 /* The appropriate nop for the current mode. */ 671 #define NOP_INSN (mips_opts.mips16 ? &mips16_nop_insn : &nop_insn) 672 673 /* If this is set, it points to a frag holding nop instructions which 674 were inserted before the start of a noreorder section. If those 675 nops turn out to be unnecessary, the size of the frag can be 676 decreased. */ 677 static fragS *prev_nop_frag; 678 679 /* The number of nop instructions we created in prev_nop_frag. */ 680 static int prev_nop_frag_holds; 681 682 /* The number of nop instructions that we know we need in 683 prev_nop_frag. */ 684 static int prev_nop_frag_required; 685 686 /* The number of instructions we've seen since prev_nop_frag. */ 687 static int prev_nop_frag_since; 688 689 /* For ECOFF and ELF, relocations against symbols are done in two 690 parts, with a HI relocation and a LO relocation. Each relocation 691 has only 16 bits of space to store an addend. This means that in 692 order for the linker to handle carries correctly, it must be able 693 to locate both the HI and the LO relocation. This means that the 694 relocations must appear in order in the relocation table. 695 696 In order to implement this, we keep track of each unmatched HI 697 relocation. We then sort them so that they immediately precede the 698 corresponding LO relocation. */ 699 700 struct mips_hi_fixup 701 { 702 /* Next HI fixup. */ 703 struct mips_hi_fixup *next; 704 /* This fixup. */ 705 fixS *fixp; 706 /* The section this fixup is in. */ 707 segT seg; 708 }; 709 710 /* The list of unmatched HI relocs. */ 711 712 static struct mips_hi_fixup *mips_hi_fixup_list; 713 714 /* The frag containing the last explicit relocation operator. 715 Null if explicit relocations have not been used. */ 716 717 static fragS *prev_reloc_op_frag; 718 719 /* Map normal MIPS register numbers to mips16 register numbers. */ 720 721 #define X ILLEGAL_REG 722 static const int mips32_to_16_reg_map[] = 723 { 724 X, X, 2, 3, 4, 5, 6, 7, 725 X, X, X, X, X, X, X, X, 726 0, 1, X, X, X, X, X, X, 727 X, X, X, X, X, X, X, X 728 }; 729 #undef X 730 731 /* Map mips16 register numbers to normal MIPS register numbers. */ 732 733 static const unsigned int mips16_to_32_reg_map[] = 734 { 735 16, 17, 2, 3, 4, 5, 6, 7 736 }; 737 738 /* Classifies the kind of instructions we're interested in when 739 implementing -mfix-vr4120. */ 740 enum fix_vr4120_class { 741 FIX_VR4120_MACC, 742 FIX_VR4120_DMACC, 743 FIX_VR4120_MULT, 744 FIX_VR4120_DMULT, 745 FIX_VR4120_DIV, 746 FIX_VR4120_MTHILO, 747 NUM_FIX_VR4120_CLASSES 748 }; 749 750 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if 751 there must be at least one other instruction between an instruction 752 of type X and an instruction of type Y. */ 753 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES]; 754 755 /* True if -mfix-vr4120 is in force. */ 756 static int mips_fix_vr4120; 757 758 /* ...likewise -mfix-vr4130. */ 759 static int mips_fix_vr4130; 760 761 /* We don't relax branches by default, since this causes us to expand 762 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we 763 fail to compute the offset before expanding the macro to the most 764 efficient expansion. */ 765 766 static int mips_relax_branch; 767 768 /* The expansion of many macros depends on the type of symbol that 769 they refer to. For example, when generating position-dependent code, 770 a macro that refers to a symbol may have two different expansions, 771 one which uses GP-relative addresses and one which uses absolute 772 addresses. When generating SVR4-style PIC, a macro may have 773 different expansions for local and global symbols. 774 775 We handle these situations by generating both sequences and putting 776 them in variant frags. In position-dependent code, the first sequence 777 will be the GP-relative one and the second sequence will be the 778 absolute one. In SVR4 PIC, the first sequence will be for global 779 symbols and the second will be for local symbols. 780 781 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and 782 SECOND are the lengths of the two sequences in bytes. These fields 783 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition, 784 the subtype has the following flags: 785 786 RELAX_USE_SECOND 787 Set if it has been decided that we should use the second 788 sequence instead of the first. 789 790 RELAX_SECOND_LONGER 791 Set in the first variant frag if the macro's second implementation 792 is longer than its first. This refers to the macro as a whole, 793 not an individual relaxation. 794 795 RELAX_NOMACRO 796 Set in the first variant frag if the macro appeared in a .set nomacro 797 block and if one alternative requires a warning but the other does not. 798 799 RELAX_DELAY_SLOT 800 Like RELAX_NOMACRO, but indicates that the macro appears in a branch 801 delay slot. 802 803 The frag's "opcode" points to the first fixup for relaxable code. 804 805 Relaxable macros are generated using a sequence such as: 806 807 relax_start (SYMBOL); 808 ... generate first expansion ... 809 relax_switch (); 810 ... generate second expansion ... 811 relax_end (); 812 813 The code and fixups for the unwanted alternative are discarded 814 by md_convert_frag. */ 815 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND)) 816 817 #define RELAX_FIRST(X) (((X) >> 8) & 0xff) 818 #define RELAX_SECOND(X) ((X) & 0xff) 819 #define RELAX_USE_SECOND 0x10000 820 #define RELAX_SECOND_LONGER 0x20000 821 #define RELAX_NOMACRO 0x40000 822 #define RELAX_DELAY_SLOT 0x80000 823 824 /* Branch without likely bit. If label is out of range, we turn: 825 826 beq reg1, reg2, label 827 delay slot 828 829 into 830 831 bne reg1, reg2, 0f 832 nop 833 j label 834 0: delay slot 835 836 with the following opcode replacements: 837 838 beq <-> bne 839 blez <-> bgtz 840 bltz <-> bgez 841 bc1f <-> bc1t 842 843 bltzal <-> bgezal (with jal label instead of j label) 844 845 Even though keeping the delay slot instruction in the delay slot of 846 the branch would be more efficient, it would be very tricky to do 847 correctly, because we'd have to introduce a variable frag *after* 848 the delay slot instruction, and expand that instead. Let's do it 849 the easy way for now, even if the branch-not-taken case now costs 850 one additional instruction. Out-of-range branches are not supposed 851 to be common, anyway. 852 853 Branch likely. If label is out of range, we turn: 854 855 beql reg1, reg2, label 856 delay slot (annulled if branch not taken) 857 858 into 859 860 beql reg1, reg2, 1f 861 nop 862 beql $0, $0, 2f 863 nop 864 1: j[al] label 865 delay slot (executed only if branch taken) 866 2: 867 868 It would be possible to generate a shorter sequence by losing the 869 likely bit, generating something like: 870 871 bne reg1, reg2, 0f 872 nop 873 j[al] label 874 delay slot (executed only if branch taken) 875 0: 876 877 beql -> bne 878 bnel -> beq 879 blezl -> bgtz 880 bgtzl -> blez 881 bltzl -> bgez 882 bgezl -> bltz 883 bc1fl -> bc1t 884 bc1tl -> bc1f 885 886 bltzall -> bgezal (with jal label instead of j label) 887 bgezall -> bltzal (ditto) 888 889 890 but it's not clear that it would actually improve performance. */ 891 #define RELAX_BRANCH_ENCODE(uncond, likely, link, toofar) \ 892 ((relax_substateT) \ 893 (0xc0000000 \ 894 | ((toofar) ? 1 : 0) \ 895 | ((link) ? 2 : 0) \ 896 | ((likely) ? 4 : 0) \ 897 | ((uncond) ? 8 : 0))) 898 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000) 899 #define RELAX_BRANCH_UNCOND(i) (((i) & 8) != 0) 900 #define RELAX_BRANCH_LIKELY(i) (((i) & 4) != 0) 901 #define RELAX_BRANCH_LINK(i) (((i) & 2) != 0) 902 #define RELAX_BRANCH_TOOFAR(i) (((i) & 1) != 0) 903 904 /* For mips16 code, we use an entirely different form of relaxation. 905 mips16 supports two versions of most instructions which take 906 immediate values: a small one which takes some small value, and a 907 larger one which takes a 16 bit value. Since branches also follow 908 this pattern, relaxing these values is required. 909 910 We can assemble both mips16 and normal MIPS code in a single 911 object. Therefore, we need to support this type of relaxation at 912 the same time that we support the relaxation described above. We 913 use the high bit of the subtype field to distinguish these cases. 914 915 The information we store for this type of relaxation is the 916 argument code found in the opcode file for this relocation, whether 917 the user explicitly requested a small or extended form, and whether 918 the relocation is in a jump or jal delay slot. That tells us the 919 size of the value, and how it should be stored. We also store 920 whether the fragment is considered to be extended or not. We also 921 store whether this is known to be a branch to a different section, 922 whether we have tried to relax this frag yet, and whether we have 923 ever extended a PC relative fragment because of a shift count. */ 924 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \ 925 (0x80000000 \ 926 | ((type) & 0xff) \ 927 | ((small) ? 0x100 : 0) \ 928 | ((ext) ? 0x200 : 0) \ 929 | ((dslot) ? 0x400 : 0) \ 930 | ((jal_dslot) ? 0x800 : 0)) 931 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000) 932 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff) 933 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0) 934 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0) 935 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0) 936 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0) 937 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0) 938 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000) 939 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000) 940 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0) 941 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000) 942 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000) 943 944 /* Is the given value a sign-extended 32-bit value? */ 945 #define IS_SEXT_32BIT_NUM(x) \ 946 (((x) &~ (offsetT) 0x7fffffff) == 0 \ 947 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff)) 948 949 /* Is the given value a sign-extended 16-bit value? */ 950 #define IS_SEXT_16BIT_NUM(x) \ 951 (((x) &~ (offsetT) 0x7fff) == 0 \ 952 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff)) 953 954 /* Is the given value a zero-extended 32-bit value? Or a negated one? */ 955 #define IS_ZEXT_32BIT_NUM(x) \ 956 (((x) &~ (offsetT) 0xffffffff) == 0 \ 957 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff)) 958 959 /* Replace bits MASK << SHIFT of STRUCT with the equivalent bits in 960 VALUE << SHIFT. VALUE is evaluated exactly once. */ 961 #define INSERT_BITS(STRUCT, VALUE, MASK, SHIFT) \ 962 (STRUCT) = (((STRUCT) & ~((MASK) << (SHIFT))) \ 963 | (((VALUE) & (MASK)) << (SHIFT))) 964 965 /* Extract bits MASK << SHIFT from STRUCT and shift them right 966 SHIFT places. */ 967 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \ 968 (((STRUCT) >> (SHIFT)) & (MASK)) 969 970 /* Change INSN's opcode so that the operand given by FIELD has value VALUE. 971 INSN is a mips_cl_insn structure and VALUE is evaluated exactly once. 972 973 include/opcode/mips.h specifies operand fields using the macros 974 OP_MASK_<FIELD> and OP_SH_<FIELD>. The MIPS16 equivalents start 975 with "MIPS16OP" instead of "OP". */ 976 #define INSERT_OPERAND(FIELD, INSN, VALUE) \ 977 INSERT_BITS ((INSN).insn_opcode, VALUE, OP_MASK_##FIELD, OP_SH_##FIELD) 978 #define MIPS16_INSERT_OPERAND(FIELD, INSN, VALUE) \ 979 INSERT_BITS ((INSN).insn_opcode, VALUE, \ 980 MIPS16OP_MASK_##FIELD, MIPS16OP_SH_##FIELD) 981 982 /* Extract the operand given by FIELD from mips_cl_insn INSN. */ 983 #define EXTRACT_OPERAND(FIELD, INSN) \ 984 EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) 985 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \ 986 EXTRACT_BITS ((INSN).insn_opcode, \ 987 MIPS16OP_MASK_##FIELD, \ 988 MIPS16OP_SH_##FIELD) 989 990 /* Global variables used when generating relaxable macros. See the 991 comment above RELAX_ENCODE for more details about how relaxation 992 is used. */ 993 static struct { 994 /* 0 if we're not emitting a relaxable macro. 995 1 if we're emitting the first of the two relaxation alternatives. 996 2 if we're emitting the second alternative. */ 997 int sequence; 998 999 /* The first relaxable fixup in the current frag. (In other words, 1000 the first fixup that refers to relaxable code.) */ 1001 fixS *first_fixup; 1002 1003 /* sizes[0] says how many bytes of the first alternative are stored in 1004 the current frag. Likewise sizes[1] for the second alternative. */ 1005 unsigned int sizes[2]; 1006 1007 /* The symbol on which the choice of sequence depends. */ 1008 symbolS *symbol; 1009 } mips_relax; 1010 1011 /* Global variables used to decide whether a macro needs a warning. */ 1012 static struct { 1013 /* True if the macro is in a branch delay slot. */ 1014 bfd_boolean delay_slot_p; 1015 1016 /* For relaxable macros, sizes[0] is the length of the first alternative 1017 in bytes and sizes[1] is the length of the second alternative. 1018 For non-relaxable macros, both elements give the length of the 1019 macro in bytes. */ 1020 unsigned int sizes[2]; 1021 1022 /* The first variant frag for this macro. */ 1023 fragS *first_frag; 1024 } mips_macro_warning; 1025 1026 /* Prototypes for static functions. */ 1027 1028 #define internalError() \ 1029 as_fatal (_("internal Error, line %d, %s"), __LINE__, __FILE__) 1030 1031 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG }; 1032 1033 static void append_insn 1034 (struct mips_cl_insn *ip, expressionS *p, bfd_reloc_code_real_type *r); 1035 static void mips_no_prev_insn (void); 1036 static void mips16_macro_build 1037 (expressionS *, const char *, const char *, va_list); 1038 static void load_register (int, expressionS *, int); 1039 static void macro_start (void); 1040 static void macro_end (void); 1041 static void macro (struct mips_cl_insn * ip); 1042 static void mips16_macro (struct mips_cl_insn * ip); 1043 #ifdef LOSING_COMPILER 1044 static void macro2 (struct mips_cl_insn * ip); 1045 #endif 1046 static void mips_ip (char *str, struct mips_cl_insn * ip); 1047 static void mips16_ip (char *str, struct mips_cl_insn * ip); 1048 static void mips16_immed 1049 (char *, unsigned int, int, offsetT, bfd_boolean, bfd_boolean, bfd_boolean, 1050 unsigned long *, bfd_boolean *, unsigned short *); 1051 static size_t my_getSmallExpression 1052 (expressionS *, bfd_reloc_code_real_type *, char *); 1053 static void my_getExpression (expressionS *, char *); 1054 static void s_align (int); 1055 static void s_change_sec (int); 1056 static void s_change_section (int); 1057 static void s_cons (int); 1058 static void s_float_cons (int); 1059 static void s_mips_globl (int); 1060 static void s_option (int); 1061 static void s_mipsset (int); 1062 static void s_abicalls (int); 1063 static void s_cpload (int); 1064 static void s_cpsetup (int); 1065 static void s_cplocal (int); 1066 static void s_cprestore (int); 1067 static void s_cpreturn (int); 1068 static void s_dtprelword (int); 1069 static void s_dtpreldword (int); 1070 static void s_gpvalue (int); 1071 static void s_gpword (int); 1072 static void s_gpdword (int); 1073 static void s_cpadd (int); 1074 static void s_insn (int); 1075 static void md_obj_begin (void); 1076 static void md_obj_end (void); 1077 static void s_mips_ent (int); 1078 static void s_mips_end (int); 1079 static void s_mips_frame (int); 1080 static void s_mips_mask (int reg_type); 1081 static void s_mips_stab (int); 1082 static void s_mips_weakext (int); 1083 static void s_mips_file (int); 1084 static void s_mips_loc (int); 1085 static bfd_boolean pic_need_relax (symbolS *, asection *); 1086 static int relaxed_branch_length (fragS *, asection *, int); 1087 static int validate_mips_insn (const struct mips_opcode *); 1088 1089 /* Table and functions used to map between CPU/ISA names, and 1090 ISA levels, and CPU numbers. */ 1091 1092 struct mips_cpu_info 1093 { 1094 const char *name; /* CPU or ISA name. */ 1095 int flags; /* ASEs available, or ISA flag. */ 1096 int isa; /* ISA level. */ 1097 int cpu; /* CPU number (default CPU if ISA). */ 1098 }; 1099 1100 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */ 1101 #define MIPS_CPU_ASE_SMARTMIPS 0x0002 /* CPU implements SmartMIPS ASE */ 1102 #define MIPS_CPU_ASE_DSP 0x0004 /* CPU implements DSP ASE */ 1103 #define MIPS_CPU_ASE_MT 0x0008 /* CPU implements MT ASE */ 1104 #define MIPS_CPU_ASE_MIPS3D 0x0010 /* CPU implements MIPS-3D ASE */ 1105 #define MIPS_CPU_ASE_MDMX 0x0020 /* CPU implements MDMX ASE */ 1106 #define MIPS_CPU_ASE_DSPR2 0x0040 /* CPU implements DSP R2 ASE */ 1107 1108 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *); 1109 static const struct mips_cpu_info *mips_cpu_info_from_isa (int); 1110 static const struct mips_cpu_info *mips_cpu_info_from_arch (int); 1111 1112 /* Pseudo-op table. 1113 1114 The following pseudo-ops from the Kane and Heinrich MIPS book 1115 should be defined here, but are currently unsupported: .alias, 1116 .galive, .gjaldef, .gjrlive, .livereg, .noalias. 1117 1118 The following pseudo-ops from the Kane and Heinrich MIPS book are 1119 specific to the type of debugging information being generated, and 1120 should be defined by the object format: .aent, .begin, .bend, 1121 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp, 1122 .vreg. 1123 1124 The following pseudo-ops from the Kane and Heinrich MIPS book are 1125 not MIPS CPU specific, but are also not specific to the object file 1126 format. This file is probably the best place to define them, but 1127 they are not currently supported: .asm0, .endr, .lab, .struct. */ 1128 1129 static const pseudo_typeS mips_pseudo_table[] = 1130 { 1131 /* MIPS specific pseudo-ops. */ 1132 {"option", s_option, 0}, 1133 {"set", s_mipsset, 0}, 1134 {"rdata", s_change_sec, 'r'}, 1135 {"sdata", s_change_sec, 's'}, 1136 {"livereg", s_ignore, 0}, 1137 {"abicalls", s_abicalls, 0}, 1138 {"cpload", s_cpload, 0}, 1139 {"cpsetup", s_cpsetup, 0}, 1140 {"cplocal", s_cplocal, 0}, 1141 {"cprestore", s_cprestore, 0}, 1142 {"cpreturn", s_cpreturn, 0}, 1143 {"dtprelword", s_dtprelword, 0}, 1144 {"dtpreldword", s_dtpreldword, 0}, 1145 {"gpvalue", s_gpvalue, 0}, 1146 {"gpword", s_gpword, 0}, 1147 {"gpdword", s_gpdword, 0}, 1148 {"cpadd", s_cpadd, 0}, 1149 {"insn", s_insn, 0}, 1150 1151 /* Relatively generic pseudo-ops that happen to be used on MIPS 1152 chips. */ 1153 {"asciiz", stringer, 8 + 1}, 1154 {"bss", s_change_sec, 'b'}, 1155 {"err", s_err, 0}, 1156 {"half", s_cons, 1}, 1157 {"dword", s_cons, 3}, 1158 {"weakext", s_mips_weakext, 0}, 1159 {"origin", s_org, 0}, 1160 {"repeat", s_rept, 0}, 1161 1162 /* These pseudo-ops are defined in read.c, but must be overridden 1163 here for one reason or another. */ 1164 {"align", s_align, 0}, 1165 {"byte", s_cons, 0}, 1166 {"data", s_change_sec, 'd'}, 1167 {"double", s_float_cons, 'd'}, 1168 {"float", s_float_cons, 'f'}, 1169 {"globl", s_mips_globl, 0}, 1170 {"global", s_mips_globl, 0}, 1171 {"hword", s_cons, 1}, 1172 {"int", s_cons, 2}, 1173 {"long", s_cons, 2}, 1174 {"octa", s_cons, 4}, 1175 {"quad", s_cons, 3}, 1176 {"section", s_change_section, 0}, 1177 {"short", s_cons, 1}, 1178 {"single", s_float_cons, 'f'}, 1179 {"stabn", s_mips_stab, 'n'}, 1180 {"text", s_change_sec, 't'}, 1181 {"word", s_cons, 2}, 1182 1183 { "extern", ecoff_directive_extern, 0}, 1184 1185 { NULL, NULL, 0 }, 1186 }; 1187 1188 static const pseudo_typeS mips_nonecoff_pseudo_table[] = 1189 { 1190 /* These pseudo-ops should be defined by the object file format. 1191 However, a.out doesn't support them, so we have versions here. */ 1192 {"aent", s_mips_ent, 1}, 1193 {"bgnb", s_ignore, 0}, 1194 {"end", s_mips_end, 0}, 1195 {"endb", s_ignore, 0}, 1196 {"ent", s_mips_ent, 0}, 1197 {"file", s_mips_file, 0}, 1198 {"fmask", s_mips_mask, 'F'}, 1199 {"frame", s_mips_frame, 0}, 1200 {"loc", s_mips_loc, 0}, 1201 {"mask", s_mips_mask, 'R'}, 1202 {"verstamp", s_ignore, 0}, 1203 { NULL, NULL, 0 }, 1204 }; 1205 1206 extern void pop_insert (const pseudo_typeS *); 1207 1208 void 1209 mips_pop_insert (void) 1210 { 1211 pop_insert (mips_pseudo_table); 1212 if (! ECOFF_DEBUGGING) 1213 pop_insert (mips_nonecoff_pseudo_table); 1214 } 1215 1216 /* Symbols labelling the current insn. */ 1217 1218 struct insn_label_list 1219 { 1220 struct insn_label_list *next; 1221 symbolS *label; 1222 }; 1223 1224 static struct insn_label_list *free_insn_labels; 1225 #define label_list tc_segment_info_data.labels 1226 1227 static void mips_clear_insn_labels (void); 1228 1229 static inline void 1230 mips_clear_insn_labels (void) 1231 { 1232 register struct insn_label_list **pl; 1233 segment_info_type *si; 1234 1235 if (now_seg) 1236 { 1237 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next) 1238 ; 1239 1240 si = seg_info (now_seg); 1241 *pl = si->label_list; 1242 si->label_list = NULL; 1243 } 1244 } 1245 1246 1247 static char *expr_end; 1248 1249 /* Expressions which appear in instructions. These are set by 1250 mips_ip. */ 1251 1252 static expressionS imm_expr; 1253 static expressionS imm2_expr; 1254 static expressionS offset_expr; 1255 1256 /* Relocs associated with imm_expr and offset_expr. */ 1257 1258 static bfd_reloc_code_real_type imm_reloc[3] 1259 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED}; 1260 static bfd_reloc_code_real_type offset_reloc[3] 1261 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED}; 1262 1263 /* These are set by mips16_ip if an explicit extension is used. */ 1264 1265 static bfd_boolean mips16_small, mips16_ext; 1266 1267 #ifdef OBJ_ELF 1268 /* The pdr segment for per procedure frame/regmask info. Not used for 1269 ECOFF debugging. */ 1270 1271 static segT pdr_seg; 1272 #endif 1273 1274 /* The default target format to use. */ 1275 1276 const char * 1277 mips_target_format (void) 1278 { 1279 switch (OUTPUT_FLAVOR) 1280 { 1281 case bfd_target_ecoff_flavour: 1282 return target_big_endian ? "ecoff-bigmips" : ECOFF_LITTLE_FORMAT; 1283 case bfd_target_coff_flavour: 1284 return "pe-mips"; 1285 case bfd_target_elf_flavour: 1286 #ifdef TE_VXWORKS 1287 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI) 1288 return (target_big_endian 1289 ? "elf32-bigmips-vxworks" 1290 : "elf32-littlemips-vxworks"); 1291 #endif 1292 #ifdef TE_TMIPS 1293 /* This is traditional mips. */ 1294 return (target_big_endian 1295 ? (HAVE_64BIT_OBJECTS 1296 ? "elf64-tradbigmips" 1297 : (HAVE_NEWABI 1298 ? "elf32-ntradbigmips" : "elf32-tradbigmips")) 1299 : (HAVE_64BIT_OBJECTS 1300 ? "elf64-tradlittlemips" 1301 : (HAVE_NEWABI 1302 ? "elf32-ntradlittlemips" : "elf32-tradlittlemips"))); 1303 #else 1304 return (target_big_endian 1305 ? (HAVE_64BIT_OBJECTS 1306 ? "elf64-bigmips" 1307 : (HAVE_NEWABI 1308 ? "elf32-nbigmips" : "elf32-bigmips")) 1309 : (HAVE_64BIT_OBJECTS 1310 ? "elf64-littlemips" 1311 : (HAVE_NEWABI 1312 ? "elf32-nlittlemips" : "elf32-littlemips"))); 1313 #endif 1314 default: 1315 abort (); 1316 return NULL; 1317 } 1318 } 1319 1320 /* Return the length of instruction INSN. */ 1321 1322 static inline unsigned int 1323 insn_length (const struct mips_cl_insn *insn) 1324 { 1325 if (!mips_opts.mips16) 1326 return 4; 1327 return insn->mips16_absolute_jump_p || insn->use_extend ? 4 : 2; 1328 } 1329 1330 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */ 1331 1332 static void 1333 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo) 1334 { 1335 size_t i; 1336 1337 insn->insn_mo = mo; 1338 insn->use_extend = FALSE; 1339 insn->extend = 0; 1340 insn->insn_opcode = mo->match; 1341 insn->frag = NULL; 1342 insn->where = 0; 1343 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++) 1344 insn->fixp[i] = NULL; 1345 insn->fixed_p = (mips_opts.noreorder > 0); 1346 insn->noreorder_p = (mips_opts.noreorder > 0); 1347 insn->mips16_absolute_jump_p = 0; 1348 } 1349 1350 /* Record the current MIPS16 mode in now_seg. */ 1351 1352 static void 1353 mips_record_mips16_mode (void) 1354 { 1355 segment_info_type *si; 1356 1357 si = seg_info (now_seg); 1358 if (si->tc_segment_info_data.mips16 != mips_opts.mips16) 1359 si->tc_segment_info_data.mips16 = mips_opts.mips16; 1360 } 1361 1362 /* Install INSN at the location specified by its "frag" and "where" fields. */ 1363 1364 static void 1365 install_insn (const struct mips_cl_insn *insn) 1366 { 1367 char *f = insn->frag->fr_literal + insn->where; 1368 if (!mips_opts.mips16) 1369 md_number_to_chars (f, insn->insn_opcode, 4); 1370 else if (insn->mips16_absolute_jump_p) 1371 { 1372 md_number_to_chars (f, insn->insn_opcode >> 16, 2); 1373 md_number_to_chars (f + 2, insn->insn_opcode & 0xffff, 2); 1374 } 1375 else 1376 { 1377 if (insn->use_extend) 1378 { 1379 md_number_to_chars (f, 0xf000 | insn->extend, 2); 1380 f += 2; 1381 } 1382 md_number_to_chars (f, insn->insn_opcode, 2); 1383 } 1384 mips_record_mips16_mode (); 1385 } 1386 1387 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly 1388 and install the opcode in the new location. */ 1389 1390 static void 1391 move_insn (struct mips_cl_insn *insn, fragS *frag, long where) 1392 { 1393 size_t i; 1394 1395 insn->frag = frag; 1396 insn->where = where; 1397 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++) 1398 if (insn->fixp[i] != NULL) 1399 { 1400 insn->fixp[i]->fx_frag = frag; 1401 insn->fixp[i]->fx_where = where; 1402 } 1403 install_insn (insn); 1404 } 1405 1406 /* Add INSN to the end of the output. */ 1407 1408 static void 1409 add_fixed_insn (struct mips_cl_insn *insn) 1410 { 1411 char *f = frag_more (insn_length (insn)); 1412 move_insn (insn, frag_now, f - frag_now->fr_literal); 1413 } 1414 1415 /* Start a variant frag and move INSN to the start of the variant part, 1416 marking it as fixed. The other arguments are as for frag_var. */ 1417 1418 static void 1419 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var, 1420 relax_substateT subtype, symbolS *symbol, offsetT offset) 1421 { 1422 frag_grow (max_chars); 1423 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal); 1424 insn->fixed_p = 1; 1425 frag_var (rs_machine_dependent, max_chars, var, 1426 subtype, symbol, offset, NULL); 1427 } 1428 1429 /* Insert N copies of INSN into the history buffer, starting at 1430 position FIRST. Neither FIRST nor N need to be clipped. */ 1431 1432 static void 1433 insert_into_history (unsigned int first, unsigned int n, 1434 const struct mips_cl_insn *insn) 1435 { 1436 if (mips_relax.sequence != 2) 1437 { 1438 unsigned int i; 1439 1440 for (i = ARRAY_SIZE (history); i-- > first;) 1441 if (i >= first + n) 1442 history[i] = history[i - n]; 1443 else 1444 history[i] = *insn; 1445 } 1446 } 1447 1448 /* Emit a nop instruction, recording it in the history buffer. */ 1449 1450 static void 1451 emit_nop (void) 1452 { 1453 add_fixed_insn (NOP_INSN); 1454 insert_into_history (0, 1, NOP_INSN); 1455 } 1456 1457 /* Initialize vr4120_conflicts. There is a bit of duplication here: 1458 the idea is to make it obvious at a glance that each errata is 1459 included. */ 1460 1461 static void 1462 init_vr4120_conflicts (void) 1463 { 1464 #define CONFLICT(FIRST, SECOND) \ 1465 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND 1466 1467 /* Errata 21 - [D]DIV[U] after [D]MACC */ 1468 CONFLICT (MACC, DIV); 1469 CONFLICT (DMACC, DIV); 1470 1471 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */ 1472 CONFLICT (DMULT, DMULT); 1473 CONFLICT (DMULT, DMACC); 1474 CONFLICT (DMACC, DMULT); 1475 CONFLICT (DMACC, DMACC); 1476 1477 /* Errata 24 - MT{LO,HI} after [D]MACC */ 1478 CONFLICT (MACC, MTHILO); 1479 CONFLICT (DMACC, MTHILO); 1480 1481 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU 1482 instruction is executed immediately after a MACC or DMACC 1483 instruction, the result of [either instruction] is incorrect." */ 1484 CONFLICT (MACC, MULT); 1485 CONFLICT (MACC, DMULT); 1486 CONFLICT (DMACC, MULT); 1487 CONFLICT (DMACC, DMULT); 1488 1489 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is 1490 executed immediately after a DMULT, DMULTU, DIV, DIVU, 1491 DDIV or DDIVU instruction, the result of the MACC or 1492 DMACC instruction is incorrect.". */ 1493 CONFLICT (DMULT, MACC); 1494 CONFLICT (DMULT, DMACC); 1495 CONFLICT (DIV, MACC); 1496 CONFLICT (DIV, DMACC); 1497 1498 #undef CONFLICT 1499 } 1500 1501 struct regname { 1502 const char *name; 1503 unsigned int num; 1504 }; 1505 1506 #define RTYPE_MASK 0x1ff00 1507 #define RTYPE_NUM 0x00100 1508 #define RTYPE_FPU 0x00200 1509 #define RTYPE_FCC 0x00400 1510 #define RTYPE_VEC 0x00800 1511 #define RTYPE_GP 0x01000 1512 #define RTYPE_CP0 0x02000 1513 #define RTYPE_PC 0x04000 1514 #define RTYPE_ACC 0x08000 1515 #define RTYPE_CCC 0x10000 1516 #define RNUM_MASK 0x000ff 1517 #define RWARN 0x80000 1518 1519 #define GENERIC_REGISTER_NUMBERS \ 1520 {"$0", RTYPE_NUM | 0}, \ 1521 {"$1", RTYPE_NUM | 1}, \ 1522 {"$2", RTYPE_NUM | 2}, \ 1523 {"$3", RTYPE_NUM | 3}, \ 1524 {"$4", RTYPE_NUM | 4}, \ 1525 {"$5", RTYPE_NUM | 5}, \ 1526 {"$6", RTYPE_NUM | 6}, \ 1527 {"$7", RTYPE_NUM | 7}, \ 1528 {"$8", RTYPE_NUM | 8}, \ 1529 {"$9", RTYPE_NUM | 9}, \ 1530 {"$10", RTYPE_NUM | 10}, \ 1531 {"$11", RTYPE_NUM | 11}, \ 1532 {"$12", RTYPE_NUM | 12}, \ 1533 {"$13", RTYPE_NUM | 13}, \ 1534 {"$14", RTYPE_NUM | 14}, \ 1535 {"$15", RTYPE_NUM | 15}, \ 1536 {"$16", RTYPE_NUM | 16}, \ 1537 {"$17", RTYPE_NUM | 17}, \ 1538 {"$18", RTYPE_NUM | 18}, \ 1539 {"$19", RTYPE_NUM | 19}, \ 1540 {"$20", RTYPE_NUM | 20}, \ 1541 {"$21", RTYPE_NUM | 21}, \ 1542 {"$22", RTYPE_NUM | 22}, \ 1543 {"$23", RTYPE_NUM | 23}, \ 1544 {"$24", RTYPE_NUM | 24}, \ 1545 {"$25", RTYPE_NUM | 25}, \ 1546 {"$26", RTYPE_NUM | 26}, \ 1547 {"$27", RTYPE_NUM | 27}, \ 1548 {"$28", RTYPE_NUM | 28}, \ 1549 {"$29", RTYPE_NUM | 29}, \ 1550 {"$30", RTYPE_NUM | 30}, \ 1551 {"$31", RTYPE_NUM | 31} 1552 1553 #define FPU_REGISTER_NAMES \ 1554 {"$f0", RTYPE_FPU | 0}, \ 1555 {"$f1", RTYPE_FPU | 1}, \ 1556 {"$f2", RTYPE_FPU | 2}, \ 1557 {"$f3", RTYPE_FPU | 3}, \ 1558 {"$f4", RTYPE_FPU | 4}, \ 1559 {"$f5", RTYPE_FPU | 5}, \ 1560 {"$f6", RTYPE_FPU | 6}, \ 1561 {"$f7", RTYPE_FPU | 7}, \ 1562 {"$f8", RTYPE_FPU | 8}, \ 1563 {"$f9", RTYPE_FPU | 9}, \ 1564 {"$f10", RTYPE_FPU | 10}, \ 1565 {"$f11", RTYPE_FPU | 11}, \ 1566 {"$f12", RTYPE_FPU | 12}, \ 1567 {"$f13", RTYPE_FPU | 13}, \ 1568 {"$f14", RTYPE_FPU | 14}, \ 1569 {"$f15", RTYPE_FPU | 15}, \ 1570 {"$f16", RTYPE_FPU | 16}, \ 1571 {"$f17", RTYPE_FPU | 17}, \ 1572 {"$f18", RTYPE_FPU | 18}, \ 1573 {"$f19", RTYPE_FPU | 19}, \ 1574 {"$f20", RTYPE_FPU | 20}, \ 1575 {"$f21", RTYPE_FPU | 21}, \ 1576 {"$f22", RTYPE_FPU | 22}, \ 1577 {"$f23", RTYPE_FPU | 23}, \ 1578 {"$f24", RTYPE_FPU | 24}, \ 1579 {"$f25", RTYPE_FPU | 25}, \ 1580 {"$f26", RTYPE_FPU | 26}, \ 1581 {"$f27", RTYPE_FPU | 27}, \ 1582 {"$f28", RTYPE_FPU | 28}, \ 1583 {"$f29", RTYPE_FPU | 29}, \ 1584 {"$f30", RTYPE_FPU | 30}, \ 1585 {"$f31", RTYPE_FPU | 31} 1586 1587 #define FPU_CONDITION_CODE_NAMES \ 1588 {"$fcc0", RTYPE_FCC | 0}, \ 1589 {"$fcc1", RTYPE_FCC | 1}, \ 1590 {"$fcc2", RTYPE_FCC | 2}, \ 1591 {"$fcc3", RTYPE_FCC | 3}, \ 1592 {"$fcc4", RTYPE_FCC | 4}, \ 1593 {"$fcc5", RTYPE_FCC | 5}, \ 1594 {"$fcc6", RTYPE_FCC | 6}, \ 1595 {"$fcc7", RTYPE_FCC | 7} 1596 1597 #define COPROC_CONDITION_CODE_NAMES \ 1598 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \ 1599 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \ 1600 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \ 1601 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \ 1602 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \ 1603 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \ 1604 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \ 1605 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7} 1606 1607 #define N32N64_SYMBOLIC_REGISTER_NAMES \ 1608 {"$a4", RTYPE_GP | 8}, \ 1609 {"$a5", RTYPE_GP | 9}, \ 1610 {"$a6", RTYPE_GP | 10}, \ 1611 {"$a7", RTYPE_GP | 11}, \ 1612 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \ 1613 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \ 1614 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \ 1615 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \ 1616 {"$t0", RTYPE_GP | 12}, \ 1617 {"$t1", RTYPE_GP | 13}, \ 1618 {"$t2", RTYPE_GP | 14}, \ 1619 {"$t3", RTYPE_GP | 15} 1620 1621 #define O32_SYMBOLIC_REGISTER_NAMES \ 1622 {"$t0", RTYPE_GP | 8}, \ 1623 {"$t1", RTYPE_GP | 9}, \ 1624 {"$t2", RTYPE_GP | 10}, \ 1625 {"$t3", RTYPE_GP | 11}, \ 1626 {"$t4", RTYPE_GP | 12}, \ 1627 {"$t5", RTYPE_GP | 13}, \ 1628 {"$t6", RTYPE_GP | 14}, \ 1629 {"$t7", RTYPE_GP | 15}, \ 1630 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \ 1631 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \ 1632 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \ 1633 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */ 1634 1635 /* Remaining symbolic register names */ 1636 #define SYMBOLIC_REGISTER_NAMES \ 1637 {"$zero", RTYPE_GP | 0}, \ 1638 {"$at", RTYPE_GP | 1}, \ 1639 {"$AT", RTYPE_GP | 1}, \ 1640 {"$v0", RTYPE_GP | 2}, \ 1641 {"$v1", RTYPE_GP | 3}, \ 1642 {"$a0", RTYPE_GP | 4}, \ 1643 {"$a1", RTYPE_GP | 5}, \ 1644 {"$a2", RTYPE_GP | 6}, \ 1645 {"$a3", RTYPE_GP | 7}, \ 1646 {"$s0", RTYPE_GP | 16}, \ 1647 {"$s1", RTYPE_GP | 17}, \ 1648 {"$s2", RTYPE_GP | 18}, \ 1649 {"$s3", RTYPE_GP | 19}, \ 1650 {"$s4", RTYPE_GP | 20}, \ 1651 {"$s5", RTYPE_GP | 21}, \ 1652 {"$s6", RTYPE_GP | 22}, \ 1653 {"$s7", RTYPE_GP | 23}, \ 1654 {"$t8", RTYPE_GP | 24}, \ 1655 {"$t9", RTYPE_GP | 25}, \ 1656 {"$k0", RTYPE_GP | 26}, \ 1657 {"$kt0", RTYPE_GP | 26}, \ 1658 {"$k1", RTYPE_GP | 27}, \ 1659 {"$kt1", RTYPE_GP | 27}, \ 1660 {"$gp", RTYPE_GP | 28}, \ 1661 {"$sp", RTYPE_GP | 29}, \ 1662 {"$s8", RTYPE_GP | 30}, \ 1663 {"$fp", RTYPE_GP | 30}, \ 1664 {"$ra", RTYPE_GP | 31} 1665 1666 #define MIPS16_SPECIAL_REGISTER_NAMES \ 1667 {"$pc", RTYPE_PC | 0} 1668 1669 #define MDMX_VECTOR_REGISTER_NAMES \ 1670 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \ 1671 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \ 1672 {"$v2", RTYPE_VEC | 2}, \ 1673 {"$v3", RTYPE_VEC | 3}, \ 1674 {"$v4", RTYPE_VEC | 4}, \ 1675 {"$v5", RTYPE_VEC | 5}, \ 1676 {"$v6", RTYPE_VEC | 6}, \ 1677 {"$v7", RTYPE_VEC | 7}, \ 1678 {"$v8", RTYPE_VEC | 8}, \ 1679 {"$v9", RTYPE_VEC | 9}, \ 1680 {"$v10", RTYPE_VEC | 10}, \ 1681 {"$v11", RTYPE_VEC | 11}, \ 1682 {"$v12", RTYPE_VEC | 12}, \ 1683 {"$v13", RTYPE_VEC | 13}, \ 1684 {"$v14", RTYPE_VEC | 14}, \ 1685 {"$v15", RTYPE_VEC | 15}, \ 1686 {"$v16", RTYPE_VEC | 16}, \ 1687 {"$v17", RTYPE_VEC | 17}, \ 1688 {"$v18", RTYPE_VEC | 18}, \ 1689 {"$v19", RTYPE_VEC | 19}, \ 1690 {"$v20", RTYPE_VEC | 20}, \ 1691 {"$v21", RTYPE_VEC | 21}, \ 1692 {"$v22", RTYPE_VEC | 22}, \ 1693 {"$v23", RTYPE_VEC | 23}, \ 1694 {"$v24", RTYPE_VEC | 24}, \ 1695 {"$v25", RTYPE_VEC | 25}, \ 1696 {"$v26", RTYPE_VEC | 26}, \ 1697 {"$v27", RTYPE_VEC | 27}, \ 1698 {"$v28", RTYPE_VEC | 28}, \ 1699 {"$v29", RTYPE_VEC | 29}, \ 1700 {"$v30", RTYPE_VEC | 30}, \ 1701 {"$v31", RTYPE_VEC | 31} 1702 1703 #define MIPS_DSP_ACCUMULATOR_NAMES \ 1704 {"$ac0", RTYPE_ACC | 0}, \ 1705 {"$ac1", RTYPE_ACC | 1}, \ 1706 {"$ac2", RTYPE_ACC | 2}, \ 1707 {"$ac3", RTYPE_ACC | 3} 1708 1709 static const struct regname reg_names[] = { 1710 GENERIC_REGISTER_NUMBERS, 1711 FPU_REGISTER_NAMES, 1712 FPU_CONDITION_CODE_NAMES, 1713 COPROC_CONDITION_CODE_NAMES, 1714 1715 /* The $txx registers depends on the abi, 1716 these will be added later into the symbol table from 1717 one of the tables below once mips_abi is set after 1718 parsing of arguments from the command line. */ 1719 SYMBOLIC_REGISTER_NAMES, 1720 1721 MIPS16_SPECIAL_REGISTER_NAMES, 1722 MDMX_VECTOR_REGISTER_NAMES, 1723 MIPS_DSP_ACCUMULATOR_NAMES, 1724 {0, 0} 1725 }; 1726 1727 static const struct regname reg_names_o32[] = { 1728 O32_SYMBOLIC_REGISTER_NAMES, 1729 {0, 0} 1730 }; 1731 1732 static const struct regname reg_names_n32n64[] = { 1733 N32N64_SYMBOLIC_REGISTER_NAMES, 1734 {0, 0} 1735 }; 1736 1737 static int 1738 reg_lookup (char **s, unsigned int types, unsigned int *regnop) 1739 { 1740 symbolS *symbolP; 1741 char *e; 1742 char save_c; 1743 int reg = -1; 1744 1745 /* Find end of name. */ 1746 e = *s; 1747 if (is_name_beginner (*e)) 1748 ++e; 1749 while (is_part_of_name (*e)) 1750 ++e; 1751 1752 /* Terminate name. */ 1753 save_c = *e; 1754 *e = '\0'; 1755 1756 /* Look for a register symbol. */ 1757 if ((symbolP = symbol_find (*s)) && S_GET_SEGMENT (symbolP) == reg_section) 1758 { 1759 int r = S_GET_VALUE (symbolP); 1760 if (r & types) 1761 reg = r & RNUM_MASK; 1762 else if ((types & RTYPE_VEC) && (r & ~1) == (RTYPE_GP | 2)) 1763 /* Convert GP reg $v0/1 to MDMX reg $v0/1! */ 1764 reg = (r & RNUM_MASK) - 2; 1765 } 1766 /* Else see if this is a register defined in an itbl entry. */ 1767 else if ((types & RTYPE_GP) && itbl_have_entries) 1768 { 1769 char *n = *s; 1770 unsigned long r; 1771 1772 if (*n == '$') 1773 ++n; 1774 if (itbl_get_reg_val (n, &r)) 1775 reg = r & RNUM_MASK; 1776 } 1777 1778 /* Advance to next token if a register was recognised. */ 1779 if (reg >= 0) 1780 *s = e; 1781 else if (types & RWARN) 1782 as_warn ("Unrecognized register name `%s'", *s); 1783 1784 *e = save_c; 1785 if (regnop) 1786 *regnop = reg; 1787 return reg >= 0; 1788 } 1789 1790 /* Return TRUE if opcode MO is valid on the currently selected ISA and 1791 architecture. If EXPANSIONP is TRUE then this check is done while 1792 expanding a macro. Use is_opcode_valid_16 for MIPS16 opcodes. */ 1793 1794 static bfd_boolean 1795 is_opcode_valid (const struct mips_opcode *mo, bfd_boolean expansionp) 1796 { 1797 int isa = mips_opts.isa; 1798 int fp_s, fp_d; 1799 1800 if (mips_opts.ase_mdmx) 1801 isa |= INSN_MDMX; 1802 if (mips_opts.ase_dsp) 1803 isa |= INSN_DSP; 1804 if (mips_opts.ase_dsp && ISA_SUPPORTS_DSP64_ASE) 1805 isa |= INSN_DSP64; 1806 if (mips_opts.ase_dspr2) 1807 isa |= INSN_DSPR2; 1808 if (mips_opts.ase_mt) 1809 isa |= INSN_MT; 1810 if (mips_opts.ase_mips3d) 1811 isa |= INSN_MIPS3D; 1812 if (mips_opts.ase_smartmips) 1813 isa |= INSN_SMARTMIPS; 1814 1815 /* For user code we don't check for mips_opts.mips16 since we want 1816 to allow jalx if -mips16 was specified on the command line. */ 1817 if (expansionp ? mips_opts.mips16 : file_ase_mips16) 1818 isa |= INSN_MIPS16; 1819 1820 /* Don't accept instructions based on the ISA if the CPU does not implement 1821 all the coprocessor insns. */ 1822 if (NO_ISA_COP (mips_opts.arch) 1823 && COP_INSN (mo->pinfo)) 1824 isa = 0; 1825 1826 if (!OPCODE_IS_MEMBER (mo, isa, mips_opts.arch)) 1827 return FALSE; 1828 1829 /* Check whether the instruction or macro requires single-precision or 1830 double-precision floating-point support. Note that this information is 1831 stored differently in the opcode table for insns and macros. */ 1832 if (mo->pinfo == INSN_MACRO) 1833 { 1834 fp_s = mo->pinfo2 & INSN2_M_FP_S; 1835 fp_d = mo->pinfo2 & INSN2_M_FP_D; 1836 } 1837 else 1838 { 1839 fp_s = mo->pinfo & FP_S; 1840 fp_d = mo->pinfo & FP_D; 1841 } 1842 1843 if (fp_d && (mips_opts.soft_float || mips_opts.single_float)) 1844 return FALSE; 1845 1846 if (fp_s && mips_opts.soft_float) 1847 return FALSE; 1848 1849 return TRUE; 1850 } 1851 1852 /* Return TRUE if the MIPS16 opcode MO is valid on the currently 1853 selected ISA and architecture. */ 1854 1855 static bfd_boolean 1856 is_opcode_valid_16 (const struct mips_opcode *mo) 1857 { 1858 return OPCODE_IS_MEMBER (mo, mips_opts.isa, mips_opts.arch) ? TRUE : FALSE; 1859 } 1860 1861 /* This function is called once, at assembler startup time. It should set up 1862 all the tables, etc. that the MD part of the assembler will need. */ 1863 1864 void 1865 md_begin (void) 1866 { 1867 const char *retval = NULL; 1868 int i = 0; 1869 int broken = 0; 1870 1871 if (mips_pic != NO_PIC) 1872 { 1873 if (g_switch_seen && g_switch_value != 0) 1874 as_bad (_("-G may not be used in position-independent code")); 1875 g_switch_value = 0; 1876 } 1877 1878 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_arch)) 1879 as_warn (_("Could not set architecture and machine")); 1880 1881 op_hash = hash_new (); 1882 1883 for (i = 0; i < NUMOPCODES;) 1884 { 1885 const char *name = mips_opcodes[i].name; 1886 1887 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]); 1888 if (retval != NULL) 1889 { 1890 fprintf (stderr, _("internal error: can't hash `%s': %s\n"), 1891 mips_opcodes[i].name, retval); 1892 /* Probably a memory allocation problem? Give up now. */ 1893 as_fatal (_("Broken assembler. No assembly attempted.")); 1894 } 1895 do 1896 { 1897 if (mips_opcodes[i].pinfo != INSN_MACRO) 1898 { 1899 if (!validate_mips_insn (&mips_opcodes[i])) 1900 broken = 1; 1901 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0) 1902 { 1903 create_insn (&nop_insn, mips_opcodes + i); 1904 nop_insn.fixed_p = 1; 1905 } 1906 } 1907 ++i; 1908 } 1909 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name)); 1910 } 1911 1912 mips16_op_hash = hash_new (); 1913 1914 i = 0; 1915 while (i < bfd_mips16_num_opcodes) 1916 { 1917 const char *name = mips16_opcodes[i].name; 1918 1919 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]); 1920 if (retval != NULL) 1921 as_fatal (_("internal: can't hash `%s': %s"), 1922 mips16_opcodes[i].name, retval); 1923 do 1924 { 1925 if (mips16_opcodes[i].pinfo != INSN_MACRO 1926 && ((mips16_opcodes[i].match & mips16_opcodes[i].mask) 1927 != mips16_opcodes[i].match)) 1928 { 1929 fprintf (stderr, _("internal error: bad mips16 opcode: %s %s\n"), 1930 mips16_opcodes[i].name, mips16_opcodes[i].args); 1931 broken = 1; 1932 } 1933 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0) 1934 { 1935 create_insn (&mips16_nop_insn, mips16_opcodes + i); 1936 mips16_nop_insn.fixed_p = 1; 1937 } 1938 ++i; 1939 } 1940 while (i < bfd_mips16_num_opcodes 1941 && strcmp (mips16_opcodes[i].name, name) == 0); 1942 } 1943 1944 if (broken) 1945 as_fatal (_("Broken assembler. No assembly attempted.")); 1946 1947 /* We add all the general register names to the symbol table. This 1948 helps us detect invalid uses of them. */ 1949 for (i = 0; reg_names[i].name; i++) 1950 symbol_table_insert (symbol_new (reg_names[i].name, reg_section, 1951 reg_names[i].num, // & RNUM_MASK, 1952 &zero_address_frag)); 1953 if (HAVE_NEWABI) 1954 for (i = 0; reg_names_n32n64[i].name; i++) 1955 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section, 1956 reg_names_n32n64[i].num, // & RNUM_MASK, 1957 &zero_address_frag)); 1958 else 1959 for (i = 0; reg_names_o32[i].name; i++) 1960 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section, 1961 reg_names_o32[i].num, // & RNUM_MASK, 1962 &zero_address_frag)); 1963 1964 mips_no_prev_insn (); 1965 1966 mips_gprmask = 0; 1967 mips_cprmask[0] = 0; 1968 mips_cprmask[1] = 0; 1969 mips_cprmask[2] = 0; 1970 mips_cprmask[3] = 0; 1971 1972 /* set the default alignment for the text section (2**2) */ 1973 record_alignment (text_section, 2); 1974 1975 bfd_set_gp_size (stdoutput, g_switch_value); 1976 1977 #ifdef OBJ_ELF 1978 if (IS_ELF) 1979 { 1980 /* On a native system other than VxWorks, sections must be aligned 1981 to 16 byte boundaries. When configured for an embedded ELF 1982 target, we don't bother. */ 1983 if (strncmp (TARGET_OS, "elf", 3) != 0 1984 && strncmp (TARGET_OS, "vxworks", 7) != 0) 1985 { 1986 (void) bfd_set_section_alignment (stdoutput, text_section, 4); 1987 (void) bfd_set_section_alignment (stdoutput, data_section, 4); 1988 (void) bfd_set_section_alignment (stdoutput, bss_section, 4); 1989 } 1990 1991 /* Create a .reginfo section for register masks and a .mdebug 1992 section for debugging information. */ 1993 { 1994 segT seg; 1995 subsegT subseg; 1996 flagword flags; 1997 segT sec; 1998 1999 seg = now_seg; 2000 subseg = now_subseg; 2001 2002 /* The ABI says this section should be loaded so that the 2003 running program can access it. However, we don't load it 2004 if we are configured for an embedded target */ 2005 flags = SEC_READONLY | SEC_DATA; 2006 if (strncmp (TARGET_OS, "elf", 3) != 0) 2007 flags |= SEC_ALLOC | SEC_LOAD; 2008 2009 if (mips_abi != N64_ABI) 2010 { 2011 sec = subseg_new (".reginfo", (subsegT) 0); 2012 2013 bfd_set_section_flags (stdoutput, sec, flags); 2014 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2); 2015 2016 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo)); 2017 } 2018 else 2019 { 2020 /* The 64-bit ABI uses a .MIPS.options section rather than 2021 .reginfo section. */ 2022 sec = subseg_new (".MIPS.options", (subsegT) 0); 2023 bfd_set_section_flags (stdoutput, sec, flags); 2024 bfd_set_section_alignment (stdoutput, sec, 3); 2025 2026 /* Set up the option header. */ 2027 { 2028 Elf_Internal_Options opthdr; 2029 char *f; 2030 2031 opthdr.kind = ODK_REGINFO; 2032 opthdr.size = (sizeof (Elf_External_Options) 2033 + sizeof (Elf64_External_RegInfo)); 2034 opthdr.section = 0; 2035 opthdr.info = 0; 2036 f = frag_more (sizeof (Elf_External_Options)); 2037 bfd_mips_elf_swap_options_out (stdoutput, &opthdr, 2038 (Elf_External_Options *) f); 2039 2040 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo)); 2041 } 2042 } 2043 2044 if (ECOFF_DEBUGGING) 2045 { 2046 sec = subseg_new (".mdebug", (subsegT) 0); 2047 (void) bfd_set_section_flags (stdoutput, sec, 2048 SEC_HAS_CONTENTS | SEC_READONLY); 2049 (void) bfd_set_section_alignment (stdoutput, sec, 2); 2050 } 2051 else if (mips_flag_pdr) 2052 { 2053 pdr_seg = subseg_new (".pdr", (subsegT) 0); 2054 (void) bfd_set_section_flags (stdoutput, pdr_seg, 2055 SEC_READONLY | SEC_RELOC 2056 | SEC_DEBUGGING); 2057 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2); 2058 } 2059 2060 subseg_set (seg, subseg); 2061 } 2062 } 2063 #endif /* OBJ_ELF */ 2064 2065 if (! ECOFF_DEBUGGING) 2066 md_obj_begin (); 2067 2068 if (mips_fix_vr4120) 2069 init_vr4120_conflicts (); 2070 } 2071 2072 void 2073 md_mips_end (void) 2074 { 2075 if (! ECOFF_DEBUGGING) 2076 md_obj_end (); 2077 } 2078 2079 void 2080 md_assemble (char *str) 2081 { 2082 struct mips_cl_insn insn; 2083 bfd_reloc_code_real_type unused_reloc[3] 2084 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED}; 2085 2086 imm_expr.X_op = O_absent; 2087 imm2_expr.X_op = O_absent; 2088 offset_expr.X_op = O_absent; 2089 imm_reloc[0] = BFD_RELOC_UNUSED; 2090 imm_reloc[1] = BFD_RELOC_UNUSED; 2091 imm_reloc[2] = BFD_RELOC_UNUSED; 2092 offset_reloc[0] = BFD_RELOC_UNUSED; 2093 offset_reloc[1] = BFD_RELOC_UNUSED; 2094 offset_reloc[2] = BFD_RELOC_UNUSED; 2095 2096 if (mips_opts.mips16) 2097 mips16_ip (str, &insn); 2098 else 2099 { 2100 mips_ip (str, &insn); 2101 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"), 2102 str, insn.insn_opcode)); 2103 } 2104 2105 if (insn_error) 2106 { 2107 as_bad ("%s `%s'", insn_error, str); 2108 return; 2109 } 2110 2111 if (insn.insn_mo->pinfo == INSN_MACRO) 2112 { 2113 macro_start (); 2114 if (mips_opts.mips16) 2115 mips16_macro (&insn); 2116 else 2117 macro (&insn); 2118 macro_end (); 2119 } 2120 else 2121 { 2122 if (imm_expr.X_op != O_absent) 2123 append_insn (&insn, &imm_expr, imm_reloc); 2124 else if (offset_expr.X_op != O_absent) 2125 append_insn (&insn, &offset_expr, offset_reloc); 2126 else 2127 append_insn (&insn, NULL, unused_reloc); 2128 } 2129 } 2130 2131 /* Convenience functions for abstracting away the differences between 2132 MIPS16 and non-MIPS16 relocations. */ 2133 2134 static inline bfd_boolean 2135 mips16_reloc_p (bfd_reloc_code_real_type reloc) 2136 { 2137 switch (reloc) 2138 { 2139 case BFD_RELOC_MIPS16_JMP: 2140 case BFD_RELOC_MIPS16_GPREL: 2141 case BFD_RELOC_MIPS16_GOT16: 2142 case BFD_RELOC_MIPS16_CALL16: 2143 case BFD_RELOC_MIPS16_HI16_S: 2144 case BFD_RELOC_MIPS16_HI16: 2145 case BFD_RELOC_MIPS16_LO16: 2146 return TRUE; 2147 2148 default: 2149 return FALSE; 2150 } 2151 } 2152 2153 static inline bfd_boolean 2154 got16_reloc_p (bfd_reloc_code_real_type reloc) 2155 { 2156 return reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16; 2157 } 2158 2159 static inline bfd_boolean 2160 hi16_reloc_p (bfd_reloc_code_real_type reloc) 2161 { 2162 return reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S; 2163 } 2164 2165 static inline bfd_boolean 2166 lo16_reloc_p (bfd_reloc_code_real_type reloc) 2167 { 2168 return reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16; 2169 } 2170 2171 /* Return true if the given relocation might need a matching %lo(). 2172 This is only "might" because SVR4 R_MIPS_GOT16 relocations only 2173 need a matching %lo() when applied to local symbols. */ 2174 2175 static inline bfd_boolean 2176 reloc_needs_lo_p (bfd_reloc_code_real_type reloc) 2177 { 2178 return (HAVE_IN_PLACE_ADDENDS 2179 && (hi16_reloc_p (reloc) 2180 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo(); 2181 all GOT16 relocations evaluate to "G". */ 2182 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC))); 2183 } 2184 2185 /* Return the type of %lo() reloc needed by RELOC, given that 2186 reloc_needs_lo_p. */ 2187 2188 static inline bfd_reloc_code_real_type 2189 matching_lo_reloc (bfd_reloc_code_real_type reloc) 2190 { 2191 return mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16 : BFD_RELOC_LO16; 2192 } 2193 2194 /* Return true if the given fixup is followed by a matching R_MIPS_LO16 2195 relocation. */ 2196 2197 static inline bfd_boolean 2198 fixup_has_matching_lo_p (fixS *fixp) 2199 { 2200 return (fixp->fx_next != NULL 2201 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type) 2202 && fixp->fx_addsy == fixp->fx_next->fx_addsy 2203 && fixp->fx_offset == fixp->fx_next->fx_offset); 2204 } 2205 2206 /* See whether instruction IP reads register REG. CLASS is the type 2207 of register. */ 2208 2209 static int 2210 insn_uses_reg (const struct mips_cl_insn *ip, unsigned int reg, 2211 enum mips_regclass class) 2212 { 2213 if (class == MIPS16_REG) 2214 { 2215 assert (mips_opts.mips16); 2216 reg = mips16_to_32_reg_map[reg]; 2217 class = MIPS_GR_REG; 2218 } 2219 2220 /* Don't report on general register ZERO, since it never changes. */ 2221 if (class == MIPS_GR_REG && reg == ZERO) 2222 return 0; 2223 2224 if (class == MIPS_FP_REG) 2225 { 2226 assert (! mips_opts.mips16); 2227 /* If we are called with either $f0 or $f1, we must check $f0. 2228 This is not optimal, because it will introduce an unnecessary 2229 NOP between "lwc1 $f0" and "swc1 $f1". To fix this we would 2230 need to distinguish reading both $f0 and $f1 or just one of 2231 them. Note that we don't have to check the other way, 2232 because there is no instruction that sets both $f0 and $f1 2233 and requires a delay. */ 2234 if ((ip->insn_mo->pinfo & INSN_READ_FPR_S) 2235 && ((EXTRACT_OPERAND (FS, *ip) & ~(unsigned) 1) 2236 == (reg &~ (unsigned) 1))) 2237 return 1; 2238 if ((ip->insn_mo->pinfo & INSN_READ_FPR_T) 2239 && ((EXTRACT_OPERAND (FT, *ip) & ~(unsigned) 1) 2240 == (reg &~ (unsigned) 1))) 2241 return 1; 2242 } 2243 else if (! mips_opts.mips16) 2244 { 2245 if ((ip->insn_mo->pinfo & INSN_READ_GPR_S) 2246 && EXTRACT_OPERAND (RS, *ip) == reg) 2247 return 1; 2248 if ((ip->insn_mo->pinfo & INSN_READ_GPR_T) 2249 && EXTRACT_OPERAND (RT, *ip) == reg) 2250 return 1; 2251 } 2252 else 2253 { 2254 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_X) 2255 && mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, *ip)] == reg) 2256 return 1; 2257 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Y) 2258 && mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RY, *ip)] == reg) 2259 return 1; 2260 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Z) 2261 && (mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip)] 2262 == reg)) 2263 return 1; 2264 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_T) && reg == TREG) 2265 return 1; 2266 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_SP) && reg == SP) 2267 return 1; 2268 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_31) && reg == RA) 2269 return 1; 2270 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_GPR_X) 2271 && MIPS16_EXTRACT_OPERAND (REGR32, *ip) == reg) 2272 return 1; 2273 } 2274 2275 return 0; 2276 } 2277 2278 /* This function returns true if modifying a register requires a 2279 delay. */ 2280 2281 static int 2282 reg_needs_delay (unsigned int reg) 2283 { 2284 unsigned long prev_pinfo; 2285 2286 prev_pinfo = history[0].insn_mo->pinfo; 2287 if (! mips_opts.noreorder 2288 && (((prev_pinfo & INSN_LOAD_MEMORY_DELAY) 2289 && ! gpr_interlocks) 2290 || ((prev_pinfo & INSN_LOAD_COPROC_DELAY) 2291 && ! cop_interlocks))) 2292 { 2293 /* A load from a coprocessor or from memory. All load delays 2294 delay the use of general register rt for one instruction. */ 2295 /* Itbl support may require additional care here. */ 2296 know (prev_pinfo & INSN_WRITE_GPR_T); 2297 if (reg == EXTRACT_OPERAND (RT, history[0])) 2298 return 1; 2299 } 2300 2301 return 0; 2302 } 2303 2304 /* Move all labels in insn_labels to the current insertion point. */ 2305 2306 static void 2307 mips_move_labels (void) 2308 { 2309 segment_info_type *si = seg_info (now_seg); 2310 struct insn_label_list *l; 2311 valueT val; 2312 2313 for (l = si->label_list; l != NULL; l = l->next) 2314 { 2315 assert (S_GET_SEGMENT (l->label) == now_seg); 2316 symbol_set_frag (l->label, frag_now); 2317 val = (valueT) frag_now_fix (); 2318 /* mips16 text labels are stored as odd. */ 2319 if (mips_opts.mips16) 2320 ++val; 2321 S_SET_VALUE (l->label, val); 2322 } 2323 } 2324 2325 static bfd_boolean 2326 s_is_linkonce (symbolS *sym, segT from_seg) 2327 { 2328 bfd_boolean linkonce = FALSE; 2329 segT symseg = S_GET_SEGMENT (sym); 2330 2331 if (symseg != from_seg && !S_IS_LOCAL (sym)) 2332 { 2333 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE)) 2334 linkonce = TRUE; 2335 #ifdef OBJ_ELF 2336 /* The GNU toolchain uses an extension for ELF: a section 2337 beginning with the magic string .gnu.linkonce is a 2338 linkonce section. */ 2339 if (strncmp (segment_name (symseg), ".gnu.linkonce", 2340 sizeof ".gnu.linkonce" - 1) == 0) 2341 linkonce = TRUE; 2342 #endif 2343 } 2344 return linkonce; 2345 } 2346 2347 /* Mark instruction labels in mips16 mode. This permits the linker to 2348 handle them specially, such as generating jalx instructions when 2349 needed. We also make them odd for the duration of the assembly, in 2350 order to generate the right sort of code. We will make them even 2351 in the adjust_symtab routine, while leaving them marked. This is 2352 convenient for the debugger and the disassembler. The linker knows 2353 to make them odd again. */ 2354 2355 static void 2356 mips16_mark_labels (void) 2357 { 2358 segment_info_type *si = seg_info (now_seg); 2359 struct insn_label_list *l; 2360 2361 if (!mips_opts.mips16) 2362 return; 2363 2364 for (l = si->label_list; l != NULL; l = l->next) 2365 { 2366 symbolS *label = l->label; 2367 2368 #if defined(OBJ_ELF) || defined(OBJ_MAYBE_ELF) 2369 if (IS_ELF) 2370 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label))); 2371 #endif 2372 if ((S_GET_VALUE (label) & 1) == 0 2373 /* Don't adjust the address if the label is global or weak, or 2374 in a link-once section, since we'll be emitting symbol reloc 2375 references to it which will be patched up by the linker, and 2376 the final value of the symbol may or may not be MIPS16. */ 2377 && ! S_IS_WEAK (label) 2378 && ! S_IS_EXTERNAL (label) 2379 && ! s_is_linkonce (label, now_seg)) 2380 S_SET_VALUE (label, S_GET_VALUE (label) | 1); 2381 } 2382 } 2383 2384 /* End the current frag. Make it a variant frag and record the 2385 relaxation info. */ 2386 2387 static void 2388 relax_close_frag (void) 2389 { 2390 mips_macro_warning.first_frag = frag_now; 2391 frag_var (rs_machine_dependent, 0, 0, 2392 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]), 2393 mips_relax.symbol, 0, (char *) mips_relax.first_fixup); 2394 2395 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes)); 2396 mips_relax.first_fixup = 0; 2397 } 2398 2399 /* Start a new relaxation sequence whose expansion depends on SYMBOL. 2400 See the comment above RELAX_ENCODE for more details. */ 2401 2402 static void 2403 relax_start (symbolS *symbol) 2404 { 2405 assert (mips_relax.sequence == 0); 2406 mips_relax.sequence = 1; 2407 mips_relax.symbol = symbol; 2408 } 2409 2410 /* Start generating the second version of a relaxable sequence. 2411 See the comment above RELAX_ENCODE for more details. */ 2412 2413 static void 2414 relax_switch (void) 2415 { 2416 assert (mips_relax.sequence == 1); 2417 mips_relax.sequence = 2; 2418 } 2419 2420 /* End the current relaxable sequence. */ 2421 2422 static void 2423 relax_end (void) 2424 { 2425 assert (mips_relax.sequence == 2); 2426 relax_close_frag (); 2427 mips_relax.sequence = 0; 2428 } 2429 2430 /* Classify an instruction according to the FIX_VR4120_* enumeration. 2431 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected 2432 by VR4120 errata. */ 2433 2434 static unsigned int 2435 classify_vr4120_insn (const char *name) 2436 { 2437 if (strncmp (name, "macc", 4) == 0) 2438 return FIX_VR4120_MACC; 2439 if (strncmp (name, "dmacc", 5) == 0) 2440 return FIX_VR4120_DMACC; 2441 if (strncmp (name, "mult", 4) == 0) 2442 return FIX_VR4120_MULT; 2443 if (strncmp (name, "dmult", 5) == 0) 2444 return FIX_VR4120_DMULT; 2445 if (strstr (name, "div")) 2446 return FIX_VR4120_DIV; 2447 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0) 2448 return FIX_VR4120_MTHILO; 2449 return NUM_FIX_VR4120_CLASSES; 2450 } 2451 2452 /* Return the number of instructions that must separate INSN1 and INSN2, 2453 where INSN1 is the earlier instruction. Return the worst-case value 2454 for any INSN2 if INSN2 is null. */ 2455 2456 static unsigned int 2457 insns_between (const struct mips_cl_insn *insn1, 2458 const struct mips_cl_insn *insn2) 2459 { 2460 unsigned long pinfo1, pinfo2; 2461 2462 /* This function needs to know which pinfo flags are set for INSN2 2463 and which registers INSN2 uses. The former is stored in PINFO2 and 2464 the latter is tested via INSN2_USES_REG. If INSN2 is null, PINFO2 2465 will have every flag set and INSN2_USES_REG will always return true. */ 2466 pinfo1 = insn1->insn_mo->pinfo; 2467 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U; 2468 2469 #define INSN2_USES_REG(REG, CLASS) \ 2470 (insn2 == NULL || insn_uses_reg (insn2, REG, CLASS)) 2471 2472 /* For most targets, write-after-read dependencies on the HI and LO 2473 registers must be separated by at least two instructions. */ 2474 if (!hilo_interlocks) 2475 { 2476 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO)) 2477 return 2; 2478 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI)) 2479 return 2; 2480 } 2481 2482 /* If we're working around r7000 errata, there must be two instructions 2483 between an mfhi or mflo and any instruction that uses the result. */ 2484 if (mips_7000_hilo_fix 2485 && MF_HILO_INSN (pinfo1) 2486 && INSN2_USES_REG (EXTRACT_OPERAND (RD, *insn1), MIPS_GR_REG)) 2487 return 2; 2488 2489 /* If working around VR4120 errata, check for combinations that need 2490 a single intervening instruction. */ 2491 if (mips_fix_vr4120) 2492 { 2493 unsigned int class1, class2; 2494 2495 class1 = classify_vr4120_insn (insn1->insn_mo->name); 2496 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0) 2497 { 2498 if (insn2 == NULL) 2499 return 1; 2500 class2 = classify_vr4120_insn (insn2->insn_mo->name); 2501 if (vr4120_conflicts[class1] & (1 << class2)) 2502 return 1; 2503 } 2504 } 2505 2506 if (!mips_opts.mips16) 2507 { 2508 /* Check for GPR or coprocessor load delays. All such delays 2509 are on the RT register. */ 2510 /* Itbl support may require additional care here. */ 2511 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY_DELAY)) 2512 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC_DELAY))) 2513 { 2514 know (pinfo1 & INSN_WRITE_GPR_T); 2515 if (INSN2_USES_REG (EXTRACT_OPERAND (RT, *insn1), MIPS_GR_REG)) 2516 return 1; 2517 } 2518 2519 /* Check for generic coprocessor hazards. 2520 2521 This case is not handled very well. There is no special 2522 knowledge of CP0 handling, and the coprocessors other than 2523 the floating point unit are not distinguished at all. */ 2524 /* Itbl support may require additional care here. FIXME! 2525 Need to modify this to include knowledge about 2526 user specified delays! */ 2527 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE_DELAY)) 2528 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY))) 2529 { 2530 /* Handle cases where INSN1 writes to a known general coprocessor 2531 register. There must be a one instruction delay before INSN2 2532 if INSN2 reads that register, otherwise no delay is needed. */ 2533 if (pinfo1 & INSN_WRITE_FPR_T) 2534 { 2535 if (INSN2_USES_REG (EXTRACT_OPERAND (FT, *insn1), MIPS_FP_REG)) 2536 return 1; 2537 } 2538 else if (pinfo1 & INSN_WRITE_FPR_S) 2539 { 2540 if (INSN2_USES_REG (EXTRACT_OPERAND (FS, *insn1), MIPS_FP_REG)) 2541 return 1; 2542 } 2543 else 2544 { 2545 /* Read-after-write dependencies on the control registers 2546 require a two-instruction gap. */ 2547 if ((pinfo1 & INSN_WRITE_COND_CODE) 2548 && (pinfo2 & INSN_READ_COND_CODE)) 2549 return 2; 2550 2551 /* We don't know exactly what INSN1 does. If INSN2 is 2552 also a coprocessor instruction, assume there must be 2553 a one instruction gap. */ 2554 if (pinfo2 & INSN_COP) 2555 return 1; 2556 } 2557 } 2558 2559 /* Check for read-after-write dependencies on the coprocessor 2560 control registers in cases where INSN1 does not need a general 2561 coprocessor delay. This means that INSN1 is a floating point 2562 comparison instruction. */ 2563 /* Itbl support may require additional care here. */ 2564 else if (!cop_interlocks 2565 && (pinfo1 & INSN_WRITE_COND_CODE) 2566 && (pinfo2 & INSN_READ_COND_CODE)) 2567 return 1; 2568 } 2569 2570 #undef INSN2_USES_REG 2571 2572 return 0; 2573 } 2574 2575 /* Return the number of nops that would be needed to work around the 2576 VR4130 mflo/mfhi errata if instruction INSN immediately followed 2577 the MAX_VR4130_NOPS instructions described by HISTORY. */ 2578 2579 static int 2580 nops_for_vr4130 (const struct mips_cl_insn *history, 2581 const struct mips_cl_insn *insn) 2582 { 2583 int i, j, reg; 2584 2585 /* Check if the instruction writes to HI or LO. MTHI and MTLO 2586 are not affected by the errata. */ 2587 if (insn != 0 2588 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0 2589 || strcmp (insn->insn_mo->name, "mtlo") == 0 2590 || strcmp (insn->insn_mo->name, "mthi") == 0)) 2591 return 0; 2592 2593 /* Search for the first MFLO or MFHI. */ 2594 for (i = 0; i < MAX_VR4130_NOPS; i++) 2595 if (!history[i].noreorder_p && MF_HILO_INSN (history[i].insn_mo->pinfo)) 2596 { 2597 /* Extract the destination register. */ 2598 if (mips_opts.mips16) 2599 reg = mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, history[i])]; 2600 else 2601 reg = EXTRACT_OPERAND (RD, history[i]); 2602 2603 /* No nops are needed if INSN reads that register. */ 2604 if (insn != NULL && insn_uses_reg (insn, reg, MIPS_GR_REG)) 2605 return 0; 2606 2607 /* ...or if any of the intervening instructions do. */ 2608 for (j = 0; j < i; j++) 2609 if (insn_uses_reg (&history[j], reg, MIPS_GR_REG)) 2610 return 0; 2611 2612 return MAX_VR4130_NOPS - i; 2613 } 2614 return 0; 2615 } 2616 2617 /* Return the number of nops that would be needed if instruction INSN 2618 immediately followed the MAX_NOPS instructions given by HISTORY, 2619 where HISTORY[0] is the most recent instruction. If INSN is null, 2620 return the worse-case number of nops for any instruction. */ 2621 2622 static int 2623 nops_for_insn (const struct mips_cl_insn *history, 2624 const struct mips_cl_insn *insn) 2625 { 2626 int i, nops, tmp_nops; 2627 2628 nops = 0; 2629 for (i = 0; i < MAX_DELAY_NOPS; i++) 2630 if (!history[i].noreorder_p) 2631 { 2632 tmp_nops = insns_between (history + i, insn) - i; 2633 if (tmp_nops > nops) 2634 nops = tmp_nops; 2635 } 2636 2637 if (mips_fix_vr4130) 2638 { 2639 tmp_nops = nops_for_vr4130 (history, insn); 2640 if (tmp_nops > nops) 2641 nops = tmp_nops; 2642 } 2643 2644 return nops; 2645 } 2646 2647 /* The variable arguments provide NUM_INSNS extra instructions that 2648 might be added to HISTORY. Return the largest number of nops that 2649 would be needed after the extended sequence. */ 2650 2651 static int 2652 nops_for_sequence (int num_insns, const struct mips_cl_insn *history, ...) 2653 { 2654 va_list args; 2655 struct mips_cl_insn buffer[MAX_NOPS]; 2656 struct mips_cl_insn *cursor; 2657 int nops; 2658 2659 va_start (args, history); 2660 cursor = buffer + num_insns; 2661 memcpy (cursor, history, (MAX_NOPS - num_insns) * sizeof (*cursor)); 2662 while (cursor > buffer) 2663 *--cursor = *va_arg (args, const struct mips_cl_insn *); 2664 2665 nops = nops_for_insn (buffer, NULL); 2666 va_end (args); 2667 return nops; 2668 } 2669 2670 /* Like nops_for_insn, but if INSN is a branch, take into account the 2671 worst-case delay for the branch target. */ 2672 2673 static int 2674 nops_for_insn_or_target (const struct mips_cl_insn *history, 2675 const struct mips_cl_insn *insn) 2676 { 2677 int nops, tmp_nops; 2678 2679 nops = nops_for_insn (history, insn); 2680 if (insn->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY 2681 | INSN_COND_BRANCH_DELAY 2682 | INSN_COND_BRANCH_LIKELY)) 2683 { 2684 tmp_nops = nops_for_sequence (2, history, insn, NOP_INSN); 2685 if (tmp_nops > nops) 2686 nops = tmp_nops; 2687 } 2688 else if (mips_opts.mips16 && (insn->insn_mo->pinfo & MIPS16_INSN_BRANCH)) 2689 { 2690 tmp_nops = nops_for_sequence (1, history, insn); 2691 if (tmp_nops > nops) 2692 nops = tmp_nops; 2693 } 2694 return nops; 2695 } 2696 2697 /* Output an instruction. IP is the instruction information. 2698 ADDRESS_EXPR is an operand of the instruction to be used with 2699 RELOC_TYPE. */ 2700 2701 static void 2702 append_insn (struct mips_cl_insn *ip, expressionS *address_expr, 2703 bfd_reloc_code_real_type *reloc_type) 2704 { 2705 unsigned long prev_pinfo, pinfo; 2706 relax_stateT prev_insn_frag_type = 0; 2707 bfd_boolean relaxed_branch = FALSE; 2708 segment_info_type *si = seg_info (now_seg); 2709 2710 /* Mark instruction labels in mips16 mode. */ 2711 mips16_mark_labels (); 2712 2713 prev_pinfo = history[0].insn_mo->pinfo; 2714 pinfo = ip->insn_mo->pinfo; 2715 2716 if (mips_relax.sequence != 2 && !mips_opts.noreorder) 2717 { 2718 /* There are a lot of optimizations we could do that we don't. 2719 In particular, we do not, in general, reorder instructions. 2720 If you use gcc with optimization, it will reorder 2721 instructions and generally do much more optimization then we 2722 do here; repeating all that work in the assembler would only 2723 benefit hand written assembly code, and does not seem worth 2724 it. */ 2725 int nops = (mips_optimize == 0 2726 ? nops_for_insn (history, NULL) 2727 : nops_for_insn_or_target (history, ip)); 2728 if (nops > 0) 2729 { 2730 fragS *old_frag; 2731 unsigned long old_frag_offset; 2732 int i; 2733 2734 old_frag = frag_now; 2735 old_frag_offset = frag_now_fix (); 2736 2737 for (i = 0; i < nops; i++) 2738 emit_nop (); 2739 2740 if (listing) 2741 { 2742 listing_prev_line (); 2743 /* We may be at the start of a variant frag. In case we 2744 are, make sure there is enough space for the frag 2745 after the frags created by listing_prev_line. The 2746 argument to frag_grow here must be at least as large 2747 as the argument to all other calls to frag_grow in 2748 this file. We don't have to worry about being in the 2749 middle of a variant frag, because the variants insert 2750 all needed nop instructions themselves. */ 2751 frag_grow (40); 2752 } 2753 2754 mips_move_labels (); 2755 2756 #ifndef NO_ECOFF_DEBUGGING 2757 if (ECOFF_DEBUGGING) 2758 ecoff_fix_loc (old_frag, old_frag_offset); 2759 #endif 2760 } 2761 } 2762 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL) 2763 { 2764 /* Work out how many nops in prev_nop_frag are needed by IP. */ 2765 int nops = nops_for_insn_or_target (history, ip); 2766 assert (nops <= prev_nop_frag_holds); 2767 2768 /* Enforce NOPS as a minimum. */ 2769 if (nops > prev_nop_frag_required) 2770 prev_nop_frag_required = nops; 2771 2772 if (prev_nop_frag_holds == prev_nop_frag_required) 2773 { 2774 /* Settle for the current number of nops. Update the history 2775 accordingly (for the benefit of any future .set reorder code). */ 2776 prev_nop_frag = NULL; 2777 insert_into_history (prev_nop_frag_since, 2778 prev_nop_frag_holds, NOP_INSN); 2779 } 2780 else 2781 { 2782 /* Allow this instruction to replace one of the nops that was 2783 tentatively added to prev_nop_frag. */ 2784 prev_nop_frag->fr_fix -= mips_opts.mips16 ? 2 : 4; 2785 prev_nop_frag_holds--; 2786 prev_nop_frag_since++; 2787 } 2788 } 2789 2790 #ifdef OBJ_ELF 2791 /* The value passed to dwarf2_emit_insn is the distance between 2792 the beginning of the current instruction and the address that 2793 should be recorded in the debug tables. For MIPS16 debug info 2794 we want to use ISA-encoded addresses, so we pass -1 for an 2795 address higher by one than the current. */ 2796 dwarf2_emit_insn (mips_opts.mips16 ? -1 : 0); 2797 #endif 2798 2799 /* Record the frag type before frag_var. */ 2800 if (history[0].frag) 2801 prev_insn_frag_type = history[0].frag->fr_type; 2802 2803 if (address_expr 2804 && *reloc_type == BFD_RELOC_16_PCREL_S2 2805 && (pinfo & INSN_UNCOND_BRANCH_DELAY || pinfo & INSN_COND_BRANCH_DELAY 2806 || pinfo & INSN_COND_BRANCH_LIKELY) 2807 && mips_relax_branch 2808 /* Don't try branch relaxation within .set nomacro, or within 2809 .set noat if we use $at for PIC computations. If it turns 2810 out that the branch was out-of-range, we'll get an error. */ 2811 && !mips_opts.warn_about_macros 2812 && (mips_opts.at || mips_pic == NO_PIC) 2813 && !mips_opts.mips16) 2814 { 2815 relaxed_branch = TRUE; 2816 add_relaxed_insn (ip, (relaxed_branch_length 2817 (NULL, NULL, 2818 (pinfo & INSN_UNCOND_BRANCH_DELAY) ? -1 2819 : (pinfo & INSN_COND_BRANCH_LIKELY) ? 1 2820 : 0)), 4, 2821 RELAX_BRANCH_ENCODE 2822 (pinfo & INSN_UNCOND_BRANCH_DELAY, 2823 pinfo & INSN_COND_BRANCH_LIKELY, 2824 pinfo & INSN_WRITE_GPR_31, 2825 0), 2826 address_expr->X_add_symbol, 2827 address_expr->X_add_number); 2828 *reloc_type = BFD_RELOC_UNUSED; 2829 } 2830 else if (*reloc_type > BFD_RELOC_UNUSED) 2831 { 2832 /* We need to set up a variant frag. */ 2833 assert (mips_opts.mips16 && address_expr != NULL); 2834 add_relaxed_insn (ip, 4, 0, 2835 RELAX_MIPS16_ENCODE 2836 (*reloc_type - BFD_RELOC_UNUSED, 2837 mips16_small, mips16_ext, 2838 prev_pinfo & INSN_UNCOND_BRANCH_DELAY, 2839 history[0].mips16_absolute_jump_p), 2840 make_expr_symbol (address_expr), 0); 2841 } 2842 else if (mips_opts.mips16 2843 && ! ip->use_extend 2844 && *reloc_type != BFD_RELOC_MIPS16_JMP) 2845 { 2846 if ((pinfo & INSN_UNCOND_BRANCH_DELAY) == 0) 2847 /* Make sure there is enough room to swap this instruction with 2848 a following jump instruction. */ 2849 frag_grow (6); 2850 add_fixed_insn (ip); 2851 } 2852 else 2853 { 2854 if (mips_opts.mips16 2855 && mips_opts.noreorder 2856 && (prev_pinfo & INSN_UNCOND_BRANCH_DELAY) != 0) 2857 as_warn (_("extended instruction in delay slot")); 2858 2859 if (mips_relax.sequence) 2860 { 2861 /* If we've reached the end of this frag, turn it into a variant 2862 frag and record the information for the instructions we've 2863 written so far. */ 2864 if (frag_room () < 4) 2865 relax_close_frag (); 2866 mips_relax.sizes[mips_relax.sequence - 1] += 4; 2867 } 2868 2869 if (mips_relax.sequence != 2) 2870 mips_macro_warning.sizes[0] += 4; 2871 if (mips_relax.sequence != 1) 2872 mips_macro_warning.sizes[1] += 4; 2873 2874 if (mips_opts.mips16) 2875 { 2876 ip->fixed_p = 1; 2877 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP); 2878 } 2879 add_fixed_insn (ip); 2880 } 2881 2882 if (address_expr != NULL && *reloc_type <= BFD_RELOC_UNUSED) 2883 { 2884 if (address_expr->X_op == O_constant) 2885 { 2886 unsigned int tmp; 2887 2888 switch (*reloc_type) 2889 { 2890 case BFD_RELOC_32: 2891 ip->insn_opcode |= address_expr->X_add_number; 2892 break; 2893 2894 case BFD_RELOC_MIPS_HIGHEST: 2895 tmp = (address_expr->X_add_number + 0x800080008000ull) >> 48; 2896 ip->insn_opcode |= tmp & 0xffff; 2897 break; 2898 2899 case BFD_RELOC_MIPS_HIGHER: 2900 tmp = (address_expr->X_add_number + 0x80008000ull) >> 32; 2901 ip->insn_opcode |= tmp & 0xffff; 2902 break; 2903 2904 case BFD_RELOC_HI16_S: 2905 tmp = (address_expr->X_add_number + 0x8000) >> 16; 2906 ip->insn_opcode |= tmp & 0xffff; 2907 break; 2908 2909 case BFD_RELOC_HI16: 2910 ip->insn_opcode |= (address_expr->X_add_number >> 16) & 0xffff; 2911 break; 2912 2913 case BFD_RELOC_UNUSED: 2914 case BFD_RELOC_LO16: 2915 case BFD_RELOC_MIPS_GOT_DISP: 2916 ip->insn_opcode |= address_expr->X_add_number & 0xffff; 2917 break; 2918 2919 case BFD_RELOC_MIPS_JMP: 2920 if ((address_expr->X_add_number & 3) != 0) 2921 as_bad (_("jump to misaligned address (0x%lx)"), 2922 (unsigned long) address_expr->X_add_number); 2923 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0x3ffffff; 2924 break; 2925 2926 case BFD_RELOC_MIPS16_JMP: 2927 if ((address_expr->X_add_number & 3) != 0) 2928 as_bad (_("jump to misaligned address (0x%lx)"), 2929 (unsigned long) address_expr->X_add_number); 2930 ip->insn_opcode |= 2931 (((address_expr->X_add_number & 0x7c0000) << 3) 2932 | ((address_expr->X_add_number & 0xf800000) >> 7) 2933 | ((address_expr->X_add_number & 0x3fffc) >> 2)); 2934 break; 2935 2936 case BFD_RELOC_16_PCREL_S2: 2937 if ((address_expr->X_add_number & 3) != 0) 2938 as_bad (_("branch to misaligned address (0x%lx)"), 2939 (unsigned long) address_expr->X_add_number); 2940 if (mips_relax_branch) 2941 goto need_reloc; 2942 if ((address_expr->X_add_number + 0x20000) & ~0x3ffff) 2943 as_bad (_("branch address range overflow (0x%lx)"), 2944 (unsigned long) address_expr->X_add_number); 2945 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0xffff; 2946 break; 2947 2948 default: 2949 internalError (); 2950 } 2951 } 2952 else if (*reloc_type < BFD_RELOC_UNUSED) 2953 need_reloc: 2954 { 2955 reloc_howto_type *howto; 2956 int i; 2957 2958 /* In a compound relocation, it is the final (outermost) 2959 operator that determines the relocated field. */ 2960 for (i = 1; i < 3; i++) 2961 if (reloc_type[i] == BFD_RELOC_UNUSED) 2962 break; 2963 2964 howto = bfd_reloc_type_lookup (stdoutput, reloc_type[i - 1]); 2965 ip->fixp[0] = fix_new_exp (ip->frag, ip->where, 2966 bfd_get_reloc_size (howto), 2967 address_expr, 2968 reloc_type[0] == BFD_RELOC_16_PCREL_S2, 2969 reloc_type[0]); 2970 2971 /* Tag symbols that have a R_MIPS16_26 relocation against them. */ 2972 if (reloc_type[0] == BFD_RELOC_MIPS16_JMP 2973 && ip->fixp[0]->fx_addsy) 2974 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1; 2975 2976 /* These relocations can have an addend that won't fit in 2977 4 octets for 64bit assembly. */ 2978 if (HAVE_64BIT_GPRS 2979 && ! howto->partial_inplace 2980 && (reloc_type[0] == BFD_RELOC_16 2981 || reloc_type[0] == BFD_RELOC_32 2982 || reloc_type[0] == BFD_RELOC_MIPS_JMP 2983 || reloc_type[0] == BFD_RELOC_GPREL16 2984 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL 2985 || reloc_type[0] == BFD_RELOC_GPREL32 2986 || reloc_type[0] == BFD_RELOC_64 2987 || reloc_type[0] == BFD_RELOC_CTOR 2988 || reloc_type[0] == BFD_RELOC_MIPS_SUB 2989 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST 2990 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER 2991 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP 2992 || reloc_type[0] == BFD_RELOC_MIPS_REL16 2993 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT 2994 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL 2995 || hi16_reloc_p (reloc_type[0]) 2996 || lo16_reloc_p (reloc_type[0]))) 2997 ip->fixp[0]->fx_no_overflow = 1; 2998 2999 if (mips_relax.sequence) 3000 { 3001 if (mips_relax.first_fixup == 0) 3002 mips_relax.first_fixup = ip->fixp[0]; 3003 } 3004 else if (reloc_needs_lo_p (*reloc_type)) 3005 { 3006 struct mips_hi_fixup *hi_fixup; 3007 3008 /* Reuse the last entry if it already has a matching %lo. */ 3009 hi_fixup = mips_hi_fixup_list; 3010 if (hi_fixup == 0 3011 || !fixup_has_matching_lo_p (hi_fixup->fixp)) 3012 { 3013 hi_fixup = ((struct mips_hi_fixup *) 3014 xmalloc (sizeof (struct mips_hi_fixup))); 3015 hi_fixup->next = mips_hi_fixup_list; 3016 mips_hi_fixup_list = hi_fixup; 3017 } 3018 hi_fixup->fixp = ip->fixp[0]; 3019 hi_fixup->seg = now_seg; 3020 } 3021 3022 /* Add fixups for the second and third relocations, if given. 3023 Note that the ABI allows the second relocation to be 3024 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the 3025 moment we only use RSS_UNDEF, but we could add support 3026 for the others if it ever becomes necessary. */ 3027 for (i = 1; i < 3; i++) 3028 if (reloc_type[i] != BFD_RELOC_UNUSED) 3029 { 3030 ip->fixp[i] = fix_new (ip->frag, ip->where, 3031 ip->fixp[0]->fx_size, NULL, 0, 3032 FALSE, reloc_type[i]); 3033 3034 /* Use fx_tcbit to mark compound relocs. */ 3035 ip->fixp[0]->fx_tcbit = 1; 3036 ip->fixp[i]->fx_tcbit = 1; 3037 } 3038 } 3039 } 3040 install_insn (ip); 3041 3042 /* Update the register mask information. */ 3043 if (! mips_opts.mips16) 3044 { 3045 if (pinfo & INSN_WRITE_GPR_D) 3046 mips_gprmask |= 1 << EXTRACT_OPERAND (RD, *ip); 3047 if ((pinfo & (INSN_WRITE_GPR_T | INSN_READ_GPR_T)) != 0) 3048 mips_gprmask |= 1 << EXTRACT_OPERAND (RT, *ip); 3049 if (pinfo & INSN_READ_GPR_S) 3050 mips_gprmask |= 1 << EXTRACT_OPERAND (RS, *ip); 3051 if (pinfo & INSN_WRITE_GPR_31) 3052 mips_gprmask |= 1 << RA; 3053 if (pinfo & INSN_WRITE_FPR_D) 3054 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FD, *ip); 3055 if ((pinfo & (INSN_WRITE_FPR_S | INSN_READ_FPR_S)) != 0) 3056 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FS, *ip); 3057 if ((pinfo & (INSN_WRITE_FPR_T | INSN_READ_FPR_T)) != 0) 3058 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FT, *ip); 3059 if ((pinfo & INSN_READ_FPR_R) != 0) 3060 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FR, *ip); 3061 if (pinfo & INSN_COP) 3062 { 3063 /* We don't keep enough information to sort these cases out. 3064 The itbl support does keep this information however, although 3065 we currently don't support itbl fprmats as part of the cop 3066 instruction. May want to add this support in the future. */ 3067 } 3068 /* Never set the bit for $0, which is always zero. */ 3069 mips_gprmask &= ~1 << 0; 3070 } 3071 else 3072 { 3073 if (pinfo & (MIPS16_INSN_WRITE_X | MIPS16_INSN_READ_X)) 3074 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RX, *ip); 3075 if (pinfo & (MIPS16_INSN_WRITE_Y | MIPS16_INSN_READ_Y)) 3076 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RY, *ip); 3077 if (pinfo & MIPS16_INSN_WRITE_Z) 3078 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RZ, *ip); 3079 if (pinfo & (MIPS16_INSN_WRITE_T | MIPS16_INSN_READ_T)) 3080 mips_gprmask |= 1 << TREG; 3081 if (pinfo & (MIPS16_INSN_WRITE_SP | MIPS16_INSN_READ_SP)) 3082 mips_gprmask |= 1 << SP; 3083 if (pinfo & (MIPS16_INSN_WRITE_31 | MIPS16_INSN_READ_31)) 3084 mips_gprmask |= 1 << RA; 3085 if (pinfo & MIPS16_INSN_WRITE_GPR_Y) 3086 mips_gprmask |= 1 << MIPS16OP_EXTRACT_REG32R (ip->insn_opcode); 3087 if (pinfo & MIPS16_INSN_READ_Z) 3088 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip); 3089 if (pinfo & MIPS16_INSN_READ_GPR_X) 3090 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (REGR32, *ip); 3091 } 3092 3093 if (mips_relax.sequence != 2 && !mips_opts.noreorder) 3094 { 3095 /* Filling the branch delay slot is more complex. We try to 3096 switch the branch with the previous instruction, which we can 3097 do if the previous instruction does not set up a condition 3098 that the branch tests and if the branch is not itself the 3099 target of any branch. */ 3100 if ((pinfo & INSN_UNCOND_BRANCH_DELAY) 3101 || (pinfo & INSN_COND_BRANCH_DELAY)) 3102 { 3103 if (mips_optimize < 2 3104 /* If we have seen .set volatile or .set nomove, don't 3105 optimize. */ 3106 || mips_opts.nomove != 0 3107 /* We can't swap if the previous instruction's position 3108 is fixed. */ 3109 || history[0].fixed_p 3110 /* If the previous previous insn was in a .set 3111 noreorder, we can't swap. Actually, the MIPS 3112 assembler will swap in this situation. However, gcc 3113 configured -with-gnu-as will generate code like 3114 .set noreorder 3115 lw $4,XXX 3116 .set reorder 3117 INSN 3118 bne $4,$0,foo 3119 in which we can not swap the bne and INSN. If gcc is 3120 not configured -with-gnu-as, it does not output the 3121 .set pseudo-ops. */ 3122 || history[1].noreorder_p 3123 /* If the branch is itself the target of a branch, we 3124 can not swap. We cheat on this; all we check for is 3125 whether there is a label on this instruction. If 3126 there are any branches to anything other than a 3127 label, users must use .set noreorder. */ 3128 || si->label_list != NULL 3129 /* If the previous instruction is in a variant frag 3130 other than this branch's one, we cannot do the swap. 3131 This does not apply to the mips16, which uses variant 3132 frags for different purposes. */ 3133 || (! mips_opts.mips16 3134 && prev_insn_frag_type == rs_machine_dependent) 3135 /* Check for conflicts between the branch and the instructions 3136 before the candidate delay slot. */ 3137 || nops_for_insn (history + 1, ip) > 0 3138 /* Check for conflicts between the swapped sequence and the 3139 target of the branch. */ 3140 || nops_for_sequence (2, history + 1, ip, history) > 0 3141 /* We do not swap with a trap instruction, since it 3142 complicates trap handlers to have the trap 3143 instruction be in a delay slot. */ 3144 || (prev_pinfo & INSN_TRAP) 3145 /* If the branch reads a register that the previous 3146 instruction sets, we can not swap. */ 3147 || (! mips_opts.mips16 3148 && (prev_pinfo & INSN_WRITE_GPR_T) 3149 && insn_uses_reg (ip, EXTRACT_OPERAND (RT, history[0]), 3150 MIPS_GR_REG)) 3151 || (! mips_opts.mips16 3152 && (prev_pinfo & INSN_WRITE_GPR_D) 3153 && insn_uses_reg (ip, EXTRACT_OPERAND (RD, history[0]), 3154 MIPS_GR_REG)) 3155 || (mips_opts.mips16 3156 && (((prev_pinfo & MIPS16_INSN_WRITE_X) 3157 && (insn_uses_reg 3158 (ip, MIPS16_EXTRACT_OPERAND (RX, history[0]), 3159 MIPS16_REG))) 3160 || ((prev_pinfo & MIPS16_INSN_WRITE_Y) 3161 && (insn_uses_reg 3162 (ip, MIPS16_EXTRACT_OPERAND (RY, history[0]), 3163 MIPS16_REG))) 3164 || ((prev_pinfo & MIPS16_INSN_WRITE_Z) 3165 && (insn_uses_reg 3166 (ip, MIPS16_EXTRACT_OPERAND (RZ, history[0]), 3167 MIPS16_REG))) 3168 || ((prev_pinfo & MIPS16_INSN_WRITE_T) 3169 && insn_uses_reg (ip, TREG, MIPS_GR_REG)) 3170 || ((prev_pinfo & MIPS16_INSN_WRITE_31) 3171 && insn_uses_reg (ip, RA, MIPS_GR_REG)) 3172 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y) 3173 && insn_uses_reg (ip, 3174 MIPS16OP_EXTRACT_REG32R 3175 (history[0].insn_opcode), 3176 MIPS_GR_REG)))) 3177 /* If the branch writes a register that the previous 3178 instruction sets, we can not swap (we know that 3179 branches write only to RD or to $31). */ 3180 || (! mips_opts.mips16 3181 && (prev_pinfo & INSN_WRITE_GPR_T) 3182 && (((pinfo & INSN_WRITE_GPR_D) 3183 && (EXTRACT_OPERAND (RT, history[0]) 3184 == EXTRACT_OPERAND (RD, *ip))) 3185 || ((pinfo & INSN_WRITE_GPR_31) 3186 && EXTRACT_OPERAND (RT, history[0]) == RA))) 3187 || (! mips_opts.mips16 3188 && (prev_pinfo & INSN_WRITE_GPR_D) 3189 && (((pinfo & INSN_WRITE_GPR_D) 3190 && (EXTRACT_OPERAND (RD, history[0]) 3191 == EXTRACT_OPERAND (RD, *ip))) 3192 || ((pinfo & INSN_WRITE_GPR_31) 3193 && EXTRACT_OPERAND (RD, history[0]) == RA))) 3194 || (mips_opts.mips16 3195 && (pinfo & MIPS16_INSN_WRITE_31) 3196 && ((prev_pinfo & MIPS16_INSN_WRITE_31) 3197 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y) 3198 && (MIPS16OP_EXTRACT_REG32R (history[0].insn_opcode) 3199 == RA)))) 3200 /* If the branch writes a register that the previous 3201 instruction reads, we can not swap (we know that 3202 branches only write to RD or to $31). */ 3203 || (! mips_opts.mips16 3204 && (pinfo & INSN_WRITE_GPR_D) 3205 && insn_uses_reg (&history[0], 3206 EXTRACT_OPERAND (RD, *ip), 3207 MIPS_GR_REG)) 3208 || (! mips_opts.mips16 3209 && (pinfo & INSN_WRITE_GPR_31) 3210 && insn_uses_reg (&history[0], RA, MIPS_GR_REG)) 3211 || (mips_opts.mips16 3212 && (pinfo & MIPS16_INSN_WRITE_31) 3213 && insn_uses_reg (&history[0], RA, MIPS_GR_REG)) 3214 /* If one instruction sets a condition code and the 3215 other one uses a condition code, we can not swap. */ 3216 || ((pinfo & INSN_READ_COND_CODE) 3217 && (prev_pinfo & INSN_WRITE_COND_CODE)) 3218 || ((pinfo & INSN_WRITE_COND_CODE) 3219 && (prev_pinfo & INSN_READ_COND_CODE)) 3220 /* If the previous instruction uses the PC, we can not 3221 swap. */ 3222 || (mips_opts.mips16 3223 && (prev_pinfo & MIPS16_INSN_READ_PC)) 3224 /* If the previous instruction had a fixup in mips16 3225 mode, we can not swap. This normally means that the 3226 previous instruction was a 4 byte branch anyhow. */ 3227 || (mips_opts.mips16 && history[0].fixp[0]) 3228 /* If the previous instruction is a sync, sync.l, or 3229 sync.p, we can not swap. */ 3230 || (prev_pinfo & INSN_SYNC)) 3231 { 3232 if (mips_opts.mips16 3233 && (pinfo & INSN_UNCOND_BRANCH_DELAY) 3234 && (pinfo & (MIPS16_INSN_READ_X | MIPS16_INSN_READ_31)) 3235 && ISA_SUPPORTS_MIPS16E) 3236 { 3237 /* Convert MIPS16 jr/jalr into a "compact" jump. */ 3238 ip->insn_opcode |= 0x0080; 3239 install_insn (ip); 3240 insert_into_history (0, 1, ip); 3241 } 3242 else 3243 { 3244 /* We could do even better for unconditional branches to 3245 portions of this object file; we could pick up the 3246 instruction at the destination, put it in the delay 3247 slot, and bump the destination address. */ 3248 insert_into_history (0, 1, ip); 3249 emit_nop (); 3250 } 3251 3252 if (mips_relax.sequence) 3253 mips_relax.sizes[mips_relax.sequence - 1] += 4; 3254 } 3255 else 3256 { 3257 /* It looks like we can actually do the swap. */ 3258 struct mips_cl_insn delay = history[0]; 3259 if (mips_opts.mips16) 3260 { 3261 know (delay.frag == ip->frag); 3262 move_insn (ip, delay.frag, delay.where); 3263 move_insn (&delay, ip->frag, ip->where + insn_length (ip)); 3264 } 3265 else if (relaxed_branch) 3266 { 3267 /* Add the delay slot instruction to the end of the 3268 current frag and shrink the fixed part of the 3269 original frag. If the branch occupies the tail of 3270 the latter, move it backwards to cover the gap. */ 3271 delay.frag->fr_fix -= 4; 3272 if (delay.frag == ip->frag) 3273 move_insn (ip, ip->frag, ip->where - 4); 3274 add_fixed_insn (&delay); 3275 } 3276 else 3277 { 3278 move_insn (&delay, ip->frag, ip->where); 3279 move_insn (ip, history[0].frag, history[0].where); 3280 } 3281 history[0] = *ip; 3282 delay.fixed_p = 1; 3283 insert_into_history (0, 1, &delay); 3284 } 3285 3286 /* If that was an unconditional branch, forget the previous 3287 insn information. */ 3288 if (pinfo & INSN_UNCOND_BRANCH_DELAY) 3289 mips_no_prev_insn (); 3290 } 3291 else if (pinfo & INSN_COND_BRANCH_LIKELY) 3292 { 3293 /* We don't yet optimize a branch likely. What we should do 3294 is look at the target, copy the instruction found there 3295 into the delay slot, and increment the branch to jump to 3296 the next instruction. */ 3297 insert_into_history (0, 1, ip); 3298 emit_nop (); 3299 } 3300 else 3301 insert_into_history (0, 1, ip); 3302 } 3303 else 3304 insert_into_history (0, 1, ip); 3305 3306 /* We just output an insn, so the next one doesn't have a label. */ 3307 mips_clear_insn_labels (); 3308 } 3309 3310 /* Forget that there was any previous instruction or label. */ 3311 3312 static void 3313 mips_no_prev_insn (void) 3314 { 3315 prev_nop_frag = NULL; 3316 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN); 3317 mips_clear_insn_labels (); 3318 } 3319 3320 /* This function must be called before we emit something other than 3321 instructions. It is like mips_no_prev_insn except that it inserts 3322 any NOPS that might be needed by previous instructions. */ 3323 3324 void 3325 mips_emit_delays (void) 3326 { 3327 if (! mips_opts.noreorder) 3328 { 3329 int nops = nops_for_insn (history, NULL); 3330 if (nops > 0) 3331 { 3332 while (nops-- > 0) 3333 add_fixed_insn (NOP_INSN); 3334 mips_move_labels (); 3335 } 3336 } 3337 mips_no_prev_insn (); 3338 } 3339 3340 /* Start a (possibly nested) noreorder block. */ 3341 3342 static void 3343 start_noreorder (void) 3344 { 3345 if (mips_opts.noreorder == 0) 3346 { 3347 unsigned int i; 3348 int nops; 3349 3350 /* None of the instructions before the .set noreorder can be moved. */ 3351 for (i = 0; i < ARRAY_SIZE (history); i++) 3352 history[i].fixed_p = 1; 3353 3354 /* Insert any nops that might be needed between the .set noreorder 3355 block and the previous instructions. We will later remove any 3356 nops that turn out not to be needed. */ 3357 nops = nops_for_insn (history, NULL); 3358 if (nops > 0) 3359 { 3360 if (mips_optimize != 0) 3361 { 3362 /* Record the frag which holds the nop instructions, so 3363 that we can remove them if we don't need them. */ 3364 frag_grow (mips_opts.mips16 ? nops * 2 : nops * 4); 3365 prev_nop_frag = frag_now; 3366 prev_nop_frag_holds = nops; 3367 prev_nop_frag_required = 0; 3368 prev_nop_frag_since = 0; 3369 } 3370 3371 for (; nops > 0; --nops) 3372 add_fixed_insn (NOP_INSN); 3373 3374 /* Move on to a new frag, so that it is safe to simply 3375 decrease the size of prev_nop_frag. */ 3376 frag_wane (frag_now); 3377 frag_new (0); 3378 mips_move_labels (); 3379 } 3380 mips16_mark_labels (); 3381 mips_clear_insn_labels (); 3382 } 3383 mips_opts.noreorder++; 3384 mips_any_noreorder = 1; 3385 } 3386 3387 /* End a nested noreorder block. */ 3388 3389 static void 3390 end_noreorder (void) 3391 { 3392 mips_opts.noreorder--; 3393 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL) 3394 { 3395 /* Commit to inserting prev_nop_frag_required nops and go back to 3396 handling nop insertion the .set reorder way. */ 3397 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required) 3398 * (mips_opts.mips16 ? 2 : 4)); 3399 insert_into_history (prev_nop_frag_since, 3400 prev_nop_frag_required, NOP_INSN); 3401 prev_nop_frag = NULL; 3402 } 3403 } 3404 3405 /* Set up global variables for the start of a new macro. */ 3406 3407 static void 3408 macro_start (void) 3409 { 3410 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes)); 3411 mips_macro_warning.delay_slot_p = (mips_opts.noreorder 3412 && (history[0].insn_mo->pinfo 3413 & (INSN_UNCOND_BRANCH_DELAY 3414 | INSN_COND_BRANCH_DELAY 3415 | INSN_COND_BRANCH_LIKELY)) != 0); 3416 } 3417 3418 /* Given that a macro is longer than 4 bytes, return the appropriate warning 3419 for it. Return null if no warning is needed. SUBTYPE is a bitmask of 3420 RELAX_DELAY_SLOT and RELAX_NOMACRO. */ 3421 3422 static const char * 3423 macro_warning (relax_substateT subtype) 3424 { 3425 if (subtype & RELAX_DELAY_SLOT) 3426 return _("Macro instruction expanded into multiple instructions" 3427 " in a branch delay slot"); 3428 else if (subtype & RELAX_NOMACRO) 3429 return _("Macro instruction expanded into multiple instructions"); 3430 else 3431 return 0; 3432 } 3433 3434 /* Finish up a macro. Emit warnings as appropriate. */ 3435 3436 static void 3437 macro_end (void) 3438 { 3439 if (mips_macro_warning.sizes[0] > 4 || mips_macro_warning.sizes[1] > 4) 3440 { 3441 relax_substateT subtype; 3442 3443 /* Set up the relaxation warning flags. */ 3444 subtype = 0; 3445 if (mips_macro_warning.sizes[1] > mips_macro_warning.sizes[0]) 3446 subtype |= RELAX_SECOND_LONGER; 3447 if (mips_opts.warn_about_macros) 3448 subtype |= RELAX_NOMACRO; 3449 if (mips_macro_warning.delay_slot_p) 3450 subtype |= RELAX_DELAY_SLOT; 3451 3452 if (mips_macro_warning.sizes[0] > 4 && mips_macro_warning.sizes[1] > 4) 3453 { 3454 /* Either the macro has a single implementation or both 3455 implementations are longer than 4 bytes. Emit the 3456 warning now. */ 3457 const char *msg = macro_warning (subtype); 3458 if (msg != 0) 3459 as_warn ("%s", msg); 3460 } 3461 else 3462 { 3463 /* One implementation might need a warning but the other 3464 definitely doesn't. */ 3465 mips_macro_warning.first_frag->fr_subtype |= subtype; 3466 } 3467 } 3468 } 3469 3470 /* Read a macro's relocation codes from *ARGS and store them in *R. 3471 The first argument in *ARGS will be either the code for a single 3472 relocation or -1 followed by the three codes that make up a 3473 composite relocation. */ 3474 3475 static void 3476 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r) 3477 { 3478 int i, next; 3479 3480 next = va_arg (*args, int); 3481 if (next >= 0) 3482 r[0] = (bfd_reloc_code_real_type) next; 3483 else 3484 for (i = 0; i < 3; i++) 3485 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int); 3486 } 3487 3488 /* Build an instruction created by a macro expansion. This is passed 3489 a pointer to the count of instructions created so far, an 3490 expression, the name of the instruction to build, an operand format 3491 string, and corresponding arguments. */ 3492 3493 static void 3494 macro_build (expressionS *ep, const char *name, const char *fmt, ...) 3495 { 3496 const struct mips_opcode *mo; 3497 struct mips_cl_insn insn; 3498 bfd_reloc_code_real_type r[3]; 3499 va_list args; 3500 3501 va_start (args, fmt); 3502 3503 if (mips_opts.mips16) 3504 { 3505 mips16_macro_build (ep, name, fmt, args); 3506 va_end (args); 3507 return; 3508 } 3509 3510 r[0] = BFD_RELOC_UNUSED; 3511 r[1] = BFD_RELOC_UNUSED; 3512 r[2] = BFD_RELOC_UNUSED; 3513 mo = (struct mips_opcode *) hash_find (op_hash, name); 3514 assert (mo); 3515 assert (strcmp (name, mo->name) == 0); 3516 3517 while (1) 3518 { 3519 /* Search until we get a match for NAME. It is assumed here that 3520 macros will never generate MDMX, MIPS-3D, or MT instructions. */ 3521 if (strcmp (fmt, mo->args) == 0 3522 && mo->pinfo != INSN_MACRO 3523 && is_opcode_valid (mo, TRUE)) 3524 break; 3525 3526 ++mo; 3527 assert (mo->name); 3528 assert (strcmp (name, mo->name) == 0); 3529 } 3530 3531 create_insn (&insn, mo); 3532 for (;;) 3533 { 3534 switch (*fmt++) 3535 { 3536 case '\0': 3537 break; 3538 3539 case ',': 3540 case '(': 3541 case ')': 3542 continue; 3543 3544 case '+': 3545 switch (*fmt++) 3546 { 3547 case 'A': 3548 case 'E': 3549 INSERT_OPERAND (SHAMT, insn, va_arg (args, int)); 3550 continue; 3551 3552 case 'B': 3553 case 'F': 3554 /* Note that in the macro case, these arguments are already 3555 in MSB form. (When handling the instruction in the 3556 non-macro case, these arguments are sizes from which 3557 MSB values must be calculated.) */ 3558 INSERT_OPERAND (INSMSB, insn, va_arg (args, int)); 3559 continue; 3560 3561 case 'C': 3562 case 'G': 3563 case 'H': 3564 /* Note that in the macro case, these arguments are already 3565 in MSBD form. (When handling the instruction in the 3566 non-macro case, these arguments are sizes from which 3567 MSBD values must be calculated.) */ 3568 INSERT_OPERAND (EXTMSBD, insn, va_arg (args, int)); 3569 continue; 3570 3571 case 'Q': 3572 INSERT_OPERAND (SEQI, insn, va_arg (args, int)); 3573 continue; 3574 3575 default: 3576 internalError (); 3577 } 3578 continue; 3579 3580 case '2': 3581 INSERT_OPERAND (BP, insn, va_arg (args, int)); 3582 continue; 3583 3584 case 't': 3585 case 'w': 3586 case 'E': 3587 INSERT_OPERAND (RT, insn, va_arg (args, int)); 3588 continue; 3589 3590 case 'c': 3591 INSERT_OPERAND (CODE, insn, va_arg (args, int)); 3592 continue; 3593 3594 case 'T': 3595 case 'W': 3596 INSERT_OPERAND (FT, insn, va_arg (args, int)); 3597 continue; 3598 3599 case 'd': 3600 case 'G': 3601 case 'K': 3602 INSERT_OPERAND (RD, insn, va_arg (args, int)); 3603 continue; 3604 3605 case 'U': 3606 { 3607 int tmp = va_arg (args, int); 3608 3609 INSERT_OPERAND (RT, insn, tmp); 3610 INSERT_OPERAND (RD, insn, tmp); 3611 continue; 3612 } 3613 3614 case 'V': 3615 case 'S': 3616 INSERT_OPERAND (FS, insn, va_arg (args, int)); 3617 continue; 3618 3619 case 'z': 3620 continue; 3621 3622 case '<': 3623 INSERT_OPERAND (SHAMT, insn, va_arg (args, int)); 3624 continue; 3625 3626 case 'D': 3627 INSERT_OPERAND (FD, insn, va_arg (args, int)); 3628 continue; 3629 3630 case 'B': 3631 INSERT_OPERAND (CODE20, insn, va_arg (args, int)); 3632 continue; 3633 3634 case 'J': 3635 INSERT_OPERAND (CODE19, insn, va_arg (args, int)); 3636 continue; 3637 3638 case 'q': 3639 INSERT_OPERAND (CODE2, insn, va_arg (args, int)); 3640 continue; 3641 3642 case 'b': 3643 case 's': 3644 case 'r': 3645 case 'v': 3646 INSERT_OPERAND (RS, insn, va_arg (args, int)); 3647 continue; 3648 3649 case 'i': 3650 case 'j': 3651 case 'o': 3652 macro_read_relocs (&args, r); 3653 assert (*r == BFD_RELOC_GPREL16 3654 || *r == BFD_RELOC_MIPS_LITERAL 3655 || *r == BFD_RELOC_MIPS_HIGHER 3656 || *r == BFD_RELOC_HI16_S 3657 || *r == BFD_RELOC_LO16 3658 || *r == BFD_RELOC_MIPS_GOT16 3659 || *r == BFD_RELOC_MIPS_CALL16 3660 || *r == BFD_RELOC_MIPS_GOT_DISP 3661 || *r == BFD_RELOC_MIPS_GOT_PAGE 3662 || *r == BFD_RELOC_MIPS_GOT_OFST 3663 || *r == BFD_RELOC_MIPS_GOT_LO16 3664 || *r == BFD_RELOC_MIPS_CALL_LO16); 3665 continue; 3666 3667 case 'u': 3668 macro_read_relocs (&args, r); 3669 assert (ep != NULL 3670 && (ep->X_op == O_constant 3671 || (ep->X_op == O_symbol 3672 && (*r == BFD_RELOC_MIPS_HIGHEST 3673 || *r == BFD_RELOC_HI16_S 3674 || *r == BFD_RELOC_HI16 3675 || *r == BFD_RELOC_GPREL16 3676 || *r == BFD_RELOC_MIPS_GOT_HI16 3677 || *r == BFD_RELOC_MIPS_CALL_HI16)))); 3678 continue; 3679 3680 case 'p': 3681 assert (ep != NULL); 3682 3683 /* 3684 * This allows macro() to pass an immediate expression for 3685 * creating short branches without creating a symbol. 3686 * 3687 * We don't allow branch relaxation for these branches, as 3688 * they should only appear in ".set nomacro" anyway. 3689 */ 3690 if (ep->X_op == O_constant) 3691 { 3692 if ((ep->X_add_number & 3) != 0) 3693 as_bad (_("branch to misaligned address (0x%lx)"), 3694 (unsigned long) ep->X_add_number); 3695 if ((ep->X_add_number + 0x20000) & ~0x3ffff) 3696 as_bad (_("branch address range overflow (0x%lx)"), 3697 (unsigned long) ep->X_add_number); 3698 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff; 3699 ep = NULL; 3700 } 3701 else 3702 *r = BFD_RELOC_16_PCREL_S2; 3703 continue; 3704 3705 case 'a': 3706 assert (ep != NULL); 3707 *r = BFD_RELOC_MIPS_JMP; 3708 continue; 3709 3710 case 'C': 3711 INSERT_OPERAND (COPZ, insn, va_arg (args, unsigned long)); 3712 continue; 3713 3714 case 'k': 3715 INSERT_OPERAND (CACHE, insn, va_arg (args, unsigned long)); 3716 continue; 3717 3718 default: 3719 internalError (); 3720 } 3721 break; 3722 } 3723 va_end (args); 3724 assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL); 3725 3726 append_insn (&insn, ep, r); 3727 } 3728 3729 static void 3730 mips16_macro_build (expressionS *ep, const char *name, const char *fmt, 3731 va_list args) 3732 { 3733 struct mips_opcode *mo; 3734 struct mips_cl_insn insn; 3735 bfd_reloc_code_real_type r[3] 3736 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED}; 3737 3738 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name); 3739 assert (mo); 3740 assert (strcmp (name, mo->name) == 0); 3741 3742 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO) 3743 { 3744 ++mo; 3745 assert (mo->name); 3746 assert (strcmp (name, mo->name) == 0); 3747 } 3748 3749 create_insn (&insn, mo); 3750 for (;;) 3751 { 3752 int c; 3753 3754 c = *fmt++; 3755 switch (c) 3756 { 3757 case '\0': 3758 break; 3759 3760 case ',': 3761 case '(': 3762 case ')': 3763 continue; 3764 3765 case 'y': 3766 case 'w': 3767 MIPS16_INSERT_OPERAND (RY, insn, va_arg (args, int)); 3768 continue; 3769 3770 case 'x': 3771 case 'v': 3772 MIPS16_INSERT_OPERAND (RX, insn, va_arg (args, int)); 3773 continue; 3774 3775 case 'z': 3776 MIPS16_INSERT_OPERAND (RZ, insn, va_arg (args, int)); 3777 continue; 3778 3779 case 'Z': 3780 MIPS16_INSERT_OPERAND (MOVE32Z, insn, va_arg (args, int)); 3781 continue; 3782 3783 case '0': 3784 case 'S': 3785 case 'P': 3786 case 'R': 3787 continue; 3788 3789 case 'X': 3790 MIPS16_INSERT_OPERAND (REGR32, insn, va_arg (args, int)); 3791 continue; 3792 3793 case 'Y': 3794 { 3795 int regno; 3796 3797 regno = va_arg (args, int); 3798 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3); 3799 MIPS16_INSERT_OPERAND (REG32R, insn, regno); 3800 } 3801 continue; 3802 3803 case '<': 3804 case '>': 3805 case '4': 3806 case '5': 3807 case 'H': 3808 case 'W': 3809 case 'D': 3810 case 'j': 3811 case '8': 3812 case 'V': 3813 case 'C': 3814 case 'U': 3815 case 'k': 3816 case 'K': 3817 case 'p': 3818 case 'q': 3819 { 3820 assert (ep != NULL); 3821 3822 if (ep->X_op != O_constant) 3823 *r = (int) BFD_RELOC_UNUSED + c; 3824 else 3825 { 3826 mips16_immed (NULL, 0, c, ep->X_add_number, FALSE, FALSE, 3827 FALSE, &insn.insn_opcode, &insn.use_extend, 3828 &insn.extend); 3829 ep = NULL; 3830 *r = BFD_RELOC_UNUSED; 3831 } 3832 } 3833 continue; 3834 3835 case '6': 3836 MIPS16_INSERT_OPERAND (IMM6, insn, va_arg (args, int)); 3837 continue; 3838 } 3839 3840 break; 3841 } 3842 3843 assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL); 3844 3845 append_insn (&insn, ep, r); 3846 } 3847 3848 /* 3849 * Sign-extend 32-bit mode constants that have bit 31 set and all 3850 * higher bits unset. 3851 */ 3852 static void 3853 normalize_constant_expr (expressionS *ex) 3854 { 3855 if (ex->X_op == O_constant 3856 && IS_ZEXT_32BIT_NUM (ex->X_add_number)) 3857 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000) 3858 - 0x80000000); 3859 } 3860 3861 /* 3862 * Sign-extend 32-bit mode address offsets that have bit 31 set and 3863 * all higher bits unset. 3864 */ 3865 static void 3866 normalize_address_expr (expressionS *ex) 3867 { 3868 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES) 3869 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS)) 3870 && IS_ZEXT_32BIT_NUM (ex->X_add_number)) 3871 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000) 3872 - 0x80000000); 3873 } 3874 3875 /* 3876 * Generate a "jalr" instruction with a relocation hint to the called 3877 * function. This occurs in NewABI PIC code. 3878 */ 3879 static void 3880 macro_build_jalr (expressionS *ep) 3881 { 3882 char *f = NULL; 3883 3884 if (HAVE_NEWABI) 3885 { 3886 frag_grow (8); 3887 f = frag_more (0); 3888 } 3889 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG); 3890 if (HAVE_NEWABI) 3891 fix_new_exp (frag_now, f - frag_now->fr_literal, 3892 4, ep, FALSE, BFD_RELOC_MIPS_JALR); 3893 } 3894 3895 /* 3896 * Generate a "lui" instruction. 3897 */ 3898 static void 3899 macro_build_lui (expressionS *ep, int regnum) 3900 { 3901 expressionS high_expr; 3902 const struct mips_opcode *mo; 3903 struct mips_cl_insn insn; 3904 bfd_reloc_code_real_type r[3] 3905 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED}; 3906 const char *name = "lui"; 3907 const char *fmt = "t,u"; 3908 3909 assert (! mips_opts.mips16); 3910 3911 high_expr = *ep; 3912 3913 if (high_expr.X_op == O_constant) 3914 { 3915 /* We can compute the instruction now without a relocation entry. */ 3916 high_expr.X_add_number = ((high_expr.X_add_number + 0x8000) 3917 >> 16) & 0xffff; 3918 *r = BFD_RELOC_UNUSED; 3919 } 3920 else 3921 { 3922 assert (ep->X_op == O_symbol); 3923 /* _gp_disp is a special case, used from s_cpload. 3924 __gnu_local_gp is used if mips_no_shared. */ 3925 assert (mips_pic == NO_PIC 3926 || (! HAVE_NEWABI 3927 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0) 3928 || (! mips_in_shared 3929 && strcmp (S_GET_NAME (ep->X_add_symbol), 3930 "__gnu_local_gp") == 0)); 3931 *r = BFD_RELOC_HI16_S; 3932 } 3933 3934 mo = hash_find (op_hash, name); 3935 assert (strcmp (name, mo->name) == 0); 3936 assert (strcmp (fmt, mo->args) == 0); 3937 create_insn (&insn, mo); 3938 3939 insn.insn_opcode = insn.insn_mo->match; 3940 INSERT_OPERAND (RT, insn, regnum); 3941 if (*r == BFD_RELOC_UNUSED) 3942 { 3943 insn.insn_opcode |= high_expr.X_add_number; 3944 append_insn (&insn, NULL, r); 3945 } 3946 else 3947 append_insn (&insn, &high_expr, r); 3948 } 3949 3950 /* Generate a sequence of instructions to do a load or store from a constant 3951 offset off of a base register (breg) into/from a target register (treg), 3952 using AT if necessary. */ 3953 static void 3954 macro_build_ldst_constoffset (expressionS *ep, const char *op, 3955 int treg, int breg, int dbl) 3956 { 3957 assert (ep->X_op == O_constant); 3958 3959 /* Sign-extending 32-bit constants makes their handling easier. */ 3960 if (!dbl) 3961 normalize_constant_expr (ep); 3962 3963 /* Right now, this routine can only handle signed 32-bit constants. */ 3964 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000)) 3965 as_warn (_("operand overflow")); 3966 3967 if (IS_SEXT_16BIT_NUM(ep->X_add_number)) 3968 { 3969 /* Signed 16-bit offset will fit in the op. Easy! */ 3970 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg); 3971 } 3972 else 3973 { 3974 /* 32-bit offset, need multiple instructions and AT, like: 3975 lui $tempreg,const_hi (BFD_RELOC_HI16_S) 3976 addu $tempreg,$tempreg,$breg 3977 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16) 3978 to handle the complete offset. */ 3979 macro_build_lui (ep, AT); 3980 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg); 3981 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT); 3982 3983 if (!mips_opts.at) 3984 as_bad (_("Macro used $at after \".set noat\"")); 3985 } 3986 } 3987 3988 /* set_at() 3989 * Generates code to set the $at register to true (one) 3990 * if reg is less than the immediate expression. 3991 */ 3992 static void 3993 set_at (int reg, int unsignedp) 3994 { 3995 if (imm_expr.X_op == O_constant 3996 && imm_expr.X_add_number >= -0x8000 3997 && imm_expr.X_add_number < 0x8000) 3998 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j", 3999 AT, reg, BFD_RELOC_LO16); 4000 else 4001 { 4002 load_register (AT, &imm_expr, HAVE_64BIT_GPRS); 4003 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT); 4004 } 4005 } 4006 4007 /* Warn if an expression is not a constant. */ 4008 4009 static void 4010 check_absolute_expr (struct mips_cl_insn *ip, expressionS *ex) 4011 { 4012 if (ex->X_op == O_big) 4013 as_bad (_("unsupported large constant")); 4014 else if (ex->X_op != O_constant) 4015 as_bad (_("Instruction %s requires absolute expression"), 4016 ip->insn_mo->name); 4017 4018 if (HAVE_32BIT_GPRS) 4019 normalize_constant_expr (ex); 4020 } 4021 4022 /* Count the leading zeroes by performing a binary chop. This is a 4023 bulky bit of source, but performance is a LOT better for the 4024 majority of values than a simple loop to count the bits: 4025 for (lcnt = 0; (lcnt < 32); lcnt++) 4026 if ((v) & (1 << (31 - lcnt))) 4027 break; 4028 However it is not code size friendly, and the gain will drop a bit 4029 on certain cached systems. 4030 */ 4031 #define COUNT_TOP_ZEROES(v) \ 4032 (((v) & ~0xffff) == 0 \ 4033 ? ((v) & ~0xff) == 0 \ 4034 ? ((v) & ~0xf) == 0 \ 4035 ? ((v) & ~0x3) == 0 \ 4036 ? ((v) & ~0x1) == 0 \ 4037 ? !(v) \ 4038 ? 32 \ 4039 : 31 \ 4040 : 30 \ 4041 : ((v) & ~0x7) == 0 \ 4042 ? 29 \ 4043 : 28 \ 4044 : ((v) & ~0x3f) == 0 \ 4045 ? ((v) & ~0x1f) == 0 \ 4046 ? 27 \ 4047 : 26 \ 4048 : ((v) & ~0x7f) == 0 \ 4049 ? 25 \ 4050 : 24 \ 4051 : ((v) & ~0xfff) == 0 \ 4052 ? ((v) & ~0x3ff) == 0 \ 4053 ? ((v) & ~0x1ff) == 0 \ 4054 ? 23 \ 4055 : 22 \ 4056 : ((v) & ~0x7ff) == 0 \ 4057 ? 21 \ 4058 : 20 \ 4059 : ((v) & ~0x3fff) == 0 \ 4060 ? ((v) & ~0x1fff) == 0 \ 4061 ? 19 \ 4062 : 18 \ 4063 : ((v) & ~0x7fff) == 0 \ 4064 ? 17 \ 4065 : 16 \ 4066 : ((v) & ~0xffffff) == 0 \ 4067 ? ((v) & ~0xfffff) == 0 \ 4068 ? ((v) & ~0x3ffff) == 0 \ 4069 ? ((v) & ~0x1ffff) == 0 \ 4070 ? 15 \ 4071 : 14 \ 4072 : ((v) & ~0x7ffff) == 0 \ 4073 ? 13 \ 4074 : 12 \ 4075 : ((v) & ~0x3fffff) == 0 \ 4076 ? ((v) & ~0x1fffff) == 0 \ 4077 ? 11 \ 4078 : 10 \ 4079 : ((v) & ~0x7fffff) == 0 \ 4080 ? 9 \ 4081 : 8 \ 4082 : ((v) & ~0xfffffff) == 0 \ 4083 ? ((v) & ~0x3ffffff) == 0 \ 4084 ? ((v) & ~0x1ffffff) == 0 \ 4085 ? 7 \ 4086 : 6 \ 4087 : ((v) & ~0x7ffffff) == 0 \ 4088 ? 5 \ 4089 : 4 \ 4090 : ((v) & ~0x3fffffff) == 0 \ 4091 ? ((v) & ~0x1fffffff) == 0 \ 4092 ? 3 \ 4093 : 2 \ 4094 : ((v) & ~0x7fffffff) == 0 \ 4095 ? 1 \ 4096 : 0) 4097 4098 /* load_register() 4099 * This routine generates the least number of instructions necessary to load 4100 * an absolute expression value into a register. 4101 */ 4102 static void 4103 load_register (int reg, expressionS *ep, int dbl) 4104 { 4105 int freg; 4106 expressionS hi32, lo32; 4107 4108 if (ep->X_op != O_big) 4109 { 4110 assert (ep->X_op == O_constant); 4111 4112 /* Sign-extending 32-bit constants makes their handling easier. */ 4113 if (!dbl) 4114 normalize_constant_expr (ep); 4115 4116 if (IS_SEXT_16BIT_NUM (ep->X_add_number)) 4117 { 4118 /* We can handle 16 bit signed values with an addiu to 4119 $zero. No need to ever use daddiu here, since $zero and 4120 the result are always correct in 32 bit mode. */ 4121 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16); 4122 return; 4123 } 4124 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000) 4125 { 4126 /* We can handle 16 bit unsigned values with an ori to 4127 $zero. */ 4128 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16); 4129 return; 4130 } 4131 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number))) 4132 { 4133 /* 32 bit values require an lui. */ 4134 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_HI16); 4135 if ((ep->X_add_number & 0xffff) != 0) 4136 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16); 4137 return; 4138 } 4139 } 4140 4141 /* The value is larger than 32 bits. */ 4142 4143 if (!dbl || HAVE_32BIT_GPRS) 4144 { 4145 char value[32]; 4146 4147 sprintf_vma (value, ep->X_add_number); 4148 as_bad (_("Number (0x%s) larger than 32 bits"), value); 4149 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16); 4150 return; 4151 } 4152 4153 if (ep->X_op != O_big) 4154 { 4155 hi32 = *ep; 4156 hi32.X_add_number = (valueT) hi32.X_add_number >> 16; 4157 hi32.X_add_number = (valueT) hi32.X_add_number >> 16; 4158 hi32.X_add_number &= 0xffffffff; 4159 lo32 = *ep; 4160 lo32.X_add_number &= 0xffffffff; 4161 } 4162 else 4163 { 4164 assert (ep->X_add_number > 2); 4165 if (ep->X_add_number == 3) 4166 generic_bignum[3] = 0; 4167 else if (ep->X_add_number > 4) 4168 as_bad (_("Number larger than 64 bits")); 4169 lo32.X_op = O_constant; 4170 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16); 4171 hi32.X_op = O_constant; 4172 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16); 4173 } 4174 4175 if (hi32.X_add_number == 0) 4176 freg = 0; 4177 else 4178 { 4179 int shift, bit; 4180 unsigned long hi, lo; 4181 4182 if (hi32.X_add_number == (offsetT) 0xffffffff) 4183 { 4184 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000) 4185 { 4186 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16); 4187 return; 4188 } 4189 if (lo32.X_add_number & 0x80000000) 4190 { 4191 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16); 4192 if (lo32.X_add_number & 0xffff) 4193 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16); 4194 return; 4195 } 4196 } 4197 4198 /* Check for 16bit shifted constant. We know that hi32 is 4199 non-zero, so start the mask on the first bit of the hi32 4200 value. */ 4201 shift = 17; 4202 do 4203 { 4204 unsigned long himask, lomask; 4205 4206 if (shift < 32) 4207 { 4208 himask = 0xffff >> (32 - shift); 4209 lomask = (0xffff << shift) & 0xffffffff; 4210 } 4211 else 4212 { 4213 himask = 0xffff << (shift - 32); 4214 lomask = 0; 4215 } 4216 if ((hi32.X_add_number & ~(offsetT) himask) == 0 4217 && (lo32.X_add_number & ~(offsetT) lomask) == 0) 4218 { 4219 expressionS tmp; 4220 4221 tmp.X_op = O_constant; 4222 if (shift < 32) 4223 tmp.X_add_number = ((hi32.X_add_number << (32 - shift)) 4224 | (lo32.X_add_number >> shift)); 4225 else 4226 tmp.X_add_number = hi32.X_add_number >> (shift - 32); 4227 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16); 4228 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", "d,w,<", 4229 reg, reg, (shift >= 32) ? shift - 32 : shift); 4230 return; 4231 } 4232 ++shift; 4233 } 4234 while (shift <= (64 - 16)); 4235 4236 /* Find the bit number of the lowest one bit, and store the 4237 shifted value in hi/lo. */ 4238 hi = (unsigned long) (hi32.X_add_number & 0xffffffff); 4239 lo = (unsigned long) (lo32.X_add_number & 0xffffffff); 4240 if (lo != 0) 4241 { 4242 bit = 0; 4243 while ((lo & 1) == 0) 4244 { 4245 lo >>= 1; 4246 ++bit; 4247 } 4248 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit); 4249 hi >>= bit; 4250 } 4251 else 4252 { 4253 bit = 32; 4254 while ((hi & 1) == 0) 4255 { 4256 hi >>= 1; 4257 ++bit; 4258 } 4259 lo = hi; 4260 hi = 0; 4261 } 4262 4263 /* Optimize if the shifted value is a (power of 2) - 1. */ 4264 if ((hi == 0 && ((lo + 1) & lo) == 0) 4265 || (lo == 0xffffffff && ((hi + 1) & hi) == 0)) 4266 { 4267 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number); 4268 if (shift != 0) 4269 { 4270 expressionS tmp; 4271 4272 /* This instruction will set the register to be all 4273 ones. */ 4274 tmp.X_op = O_constant; 4275 tmp.X_add_number = (offsetT) -1; 4276 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16); 4277 if (bit != 0) 4278 { 4279 bit += shift; 4280 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", "d,w,<", 4281 reg, reg, (bit >= 32) ? bit - 32 : bit); 4282 } 4283 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", "d,w,<", 4284 reg, reg, (shift >= 32) ? shift - 32 : shift); 4285 return; 4286 } 4287 } 4288 4289 /* Sign extend hi32 before calling load_register, because we can 4290 generally get better code when we load a sign extended value. */ 4291 if ((hi32.X_add_number & 0x80000000) != 0) 4292 hi32.X_add_number |= ~(offsetT) 0xffffffff; 4293 load_register (reg, &hi32, 0); 4294 freg = reg; 4295 } 4296 if ((lo32.X_add_number & 0xffff0000) == 0) 4297 { 4298 if (freg != 0) 4299 { 4300 macro_build (NULL, "dsll32", "d,w,<", reg, freg, 0); 4301 freg = reg; 4302 } 4303 } 4304 else 4305 { 4306 expressionS mid16; 4307 4308 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff)) 4309 { 4310 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16); 4311 macro_build (NULL, "dsrl32", "d,w,<", reg, reg, 0); 4312 return; 4313 } 4314 4315 if (freg != 0) 4316 { 4317 macro_build (NULL, "dsll", "d,w,<", reg, freg, 16); 4318 freg = reg; 4319 } 4320 mid16 = lo32; 4321 mid16.X_add_number >>= 16; 4322 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16); 4323 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16); 4324 freg = reg; 4325 } 4326 if ((lo32.X_add_number & 0xffff) != 0) 4327 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16); 4328 } 4329 4330 static inline void 4331 load_delay_nop (void) 4332 { 4333 if (!gpr_interlocks) 4334 macro_build (NULL, "nop", ""); 4335 } 4336 4337 /* Load an address into a register. */ 4338 4339 static void 4340 load_address (int reg, expressionS *ep, int *used_at) 4341 { 4342 if (ep->X_op != O_constant 4343 && ep->X_op != O_symbol) 4344 { 4345 as_bad (_("expression too complex")); 4346 ep->X_op = O_constant; 4347 } 4348 4349 if (ep->X_op == O_constant) 4350 { 4351 load_register (reg, ep, HAVE_64BIT_ADDRESSES); 4352 return; 4353 } 4354 4355 if (mips_pic == NO_PIC) 4356 { 4357 /* If this is a reference to a GP relative symbol, we want 4358 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16) 4359 Otherwise we want 4360 lui $reg,<sym> (BFD_RELOC_HI16_S) 4361 addiu $reg,$reg,<sym> (BFD_RELOC_LO16) 4362 If we have an addend, we always use the latter form. 4363 4364 With 64bit address space and a usable $at we want 4365 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST) 4366 lui $at,<sym> (BFD_RELOC_HI16_S) 4367 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER) 4368 daddiu $at,<sym> (BFD_RELOC_LO16) 4369 dsll32 $reg,0 4370 daddu $reg,$reg,$at 4371 4372 If $at is already in use, we use a path which is suboptimal 4373 on superscalar processors. 4374 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST) 4375 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER) 4376 dsll $reg,16 4377 daddiu $reg,<sym> (BFD_RELOC_HI16_S) 4378 dsll $reg,16 4379 daddiu $reg,<sym> (BFD_RELOC_LO16) 4380 4381 For GP relative symbols in 64bit address space we can use 4382 the same sequence as in 32bit address space. */ 4383 if (HAVE_64BIT_SYMBOLS) 4384 { 4385 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET 4386 && !nopic_need_relax (ep->X_add_symbol, 1)) 4387 { 4388 relax_start (ep->X_add_symbol); 4389 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, 4390 mips_gp_register, BFD_RELOC_GPREL16); 4391 relax_switch (); 4392 } 4393 4394 if (*used_at == 0 && mips_opts.at) 4395 { 4396 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST); 4397 macro_build (ep, "lui", "t,u", AT, BFD_RELOC_HI16_S); 4398 macro_build (ep, "daddiu", "t,r,j", reg, reg, 4399 BFD_RELOC_MIPS_HIGHER); 4400 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16); 4401 macro_build (NULL, "dsll32", "d,w,<", reg, reg, 0); 4402 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT); 4403 *used_at = 1; 4404 } 4405 else 4406 { 4407 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST); 4408 macro_build (ep, "daddiu", "t,r,j", reg, reg, 4409 BFD_RELOC_MIPS_HIGHER); 4410 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16); 4411 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S); 4412 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16); 4413 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16); 4414 } 4415 4416 if (mips_relax.sequence) 4417 relax_end (); 4418 } 4419 else 4420 { 4421 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET 4422 && !nopic_need_relax (ep->X_add_symbol, 1)) 4423 { 4424 relax_start (ep->X_add_symbol); 4425 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, 4426 mips_gp_register, BFD_RELOC_GPREL16); 4427 relax_switch (); 4428 } 4429 macro_build_lui (ep, reg); 4430 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", 4431 reg, reg, BFD_RELOC_LO16); 4432 if (mips_relax.sequence) 4433 relax_end (); 4434 } 4435 } 4436 else if (!mips_big_got) 4437 { 4438 expressionS ex; 4439 4440 /* If this is a reference to an external symbol, we want 4441 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16) 4442 Otherwise we want 4443 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16) 4444 nop 4445 addiu $reg,$reg,<sym> (BFD_RELOC_LO16) 4446 If there is a constant, it must be added in after. 4447 4448 If we have NewABI, we want 4449 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP) 4450 unless we're referencing a global symbol with a non-zero 4451 offset, in which case cst must be added separately. */ 4452 if (HAVE_NEWABI) 4453 { 4454 if (ep->X_add_number) 4455 { 4456 ex.X_add_number = ep->X_add_number; 4457 ep->X_add_number = 0; 4458 relax_start (ep->X_add_symbol); 4459 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg, 4460 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register); 4461 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000) 4462 as_bad (_("PIC code offset overflow (max 16 signed bits)")); 4463 ex.X_op = O_constant; 4464 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", 4465 reg, reg, BFD_RELOC_LO16); 4466 ep->X_add_number = ex.X_add_number; 4467 relax_switch (); 4468 } 4469 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg, 4470 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register); 4471 if (mips_relax.sequence) 4472 relax_end (); 4473 } 4474 else 4475 { 4476 ex.X_add_number = ep->X_add_number; 4477 ep->X_add_number = 0; 4478 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg, 4479 BFD_RELOC_MIPS_GOT16, mips_gp_register); 4480 load_delay_nop (); 4481 relax_start (ep->X_add_symbol); 4482 relax_switch (); 4483 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg, 4484 BFD_RELOC_LO16); 4485 relax_end (); 4486 4487 if (ex.X_add_number != 0) 4488 { 4489 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000) 4490 as_bad (_("PIC code offset overflow (max 16 signed bits)")); 4491 ex.X_op = O_constant; 4492 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", 4493 reg, reg, BFD_RELOC_LO16); 4494 } 4495 } 4496 } 4497 else if (mips_big_got) 4498 { 4499 expressionS ex; 4500 4501 /* This is the large GOT case. If this is a reference to an 4502 external symbol, we want 4503 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16) 4504 addu $reg,$reg,$gp 4505 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16) 4506 4507 Otherwise, for a reference to a local symbol in old ABI, we want 4508 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16) 4509 nop 4510 addiu $reg,$reg,<sym> (BFD_RELOC_LO16) 4511 If there is a constant, it must be added in after. 4512 4513 In the NewABI, for local symbols, with or without offsets, we want: 4514 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE) 4515 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST) 4516 */ 4517 if (HAVE_NEWABI) 4518 { 4519 ex.X_add_number = ep->X_add_number; 4520 ep->X_add_number = 0; 4521 relax_start (ep->X_add_symbol); 4522 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16); 4523 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", 4524 reg, reg, mips_gp_register); 4525 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", 4526 reg, BFD_RELOC_MIPS_GOT_LO16, reg); 4527 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000) 4528 as_bad (_("PIC code offset overflow (max 16 signed bits)")); 4529 else if (ex.X_add_number) 4530 { 4531 ex.X_op = O_constant; 4532 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg, 4533 BFD_RELOC_LO16); 4534 } 4535 4536 ep->X_add_number = ex.X_add_number; 4537 relax_switch (); 4538 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg, 4539 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register); 4540 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg, 4541 BFD_RELOC_MIPS_GOT_OFST); 4542 relax_end (); 4543 } 4544 else 4545 { 4546 ex.X_add_number = ep->X_add_number; 4547 ep->X_add_number = 0; 4548 relax_start (ep->X_add_symbol); 4549 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16); 4550 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", 4551 reg, reg, mips_gp_register); 4552 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", 4553 reg, BFD_RELOC_MIPS_GOT_LO16, reg); 4554 relax_switch (); 4555 if (reg_needs_delay (mips_gp_register)) 4556 { 4557 /* We need a nop before loading from $gp. This special 4558 check is required because the lui which starts the main 4559 instruction stream does not refer to $gp, and so will not 4560 insert the nop which may be required. */ 4561 macro_build (NULL, "nop", ""); 4562 } 4563 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg, 4564 BFD_RELOC_MIPS_GOT16, mips_gp_register); 4565 load_delay_nop (); 4566 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg, 4567 BFD_RELOC_LO16); 4568 relax_end (); 4569 4570 if (ex.X_add_number != 0) 4571 { 4572 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000) 4573 as_bad (_("PIC code offset overflow (max 16 signed bits)")); 4574 ex.X_op = O_constant; 4575 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg, 4576 BFD_RELOC_LO16); 4577 } 4578 } 4579 } 4580 else 4581 abort (); 4582 4583 if (!mips_opts.at && *used_at == 1) 4584 as_bad (_("Macro used $at after \".set noat\"")); 4585 } 4586 4587 /* Move the contents of register SOURCE into register DEST. */ 4588 4589 static void 4590 move_register (int dest, int source) 4591 { 4592 macro_build (NULL, HAVE_32BIT_GPRS ? "addu" : "daddu", "d,v,t", 4593 dest, source, 0); 4594 } 4595 4596 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where 4597 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement. 4598 The two alternatives are: 4599 4600 Global symbol Local sybmol 4601 ------------- ------------ 4602 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET) 4603 ... ... 4604 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET) 4605 4606 load_got_offset emits the first instruction and add_got_offset 4607 emits the second for a 16-bit offset or add_got_offset_hilo emits 4608 a sequence to add a 32-bit offset using a scratch register. */ 4609 4610 static void 4611 load_got_offset (int dest, expressionS *local) 4612 { 4613 expressionS global; 4614 4615 global = *local; 4616 global.X_add_number = 0; 4617 4618 relax_start (local->X_add_symbol); 4619 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest, 4620 BFD_RELOC_MIPS_GOT16, mips_gp_register); 4621 relax_switch (); 4622 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest, 4623 BFD_RELOC_MIPS_GOT16, mips_gp_register); 4624 relax_end (); 4625 } 4626 4627 static void 4628 add_got_offset (int dest, expressionS *local) 4629 { 4630 expressionS global; 4631 4632 global.X_op = O_constant; 4633 global.X_op_symbol = NULL; 4634 global.X_add_symbol = NULL; 4635 global.X_add_number = local->X_add_number; 4636 4637 relax_start (local->X_add_symbol); 4638 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j", 4639 dest, dest, BFD_RELOC_LO16); 4640 relax_switch (); 4641 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16); 4642 relax_end (); 4643 } 4644 4645 static void 4646 add_got_offset_hilo (int dest, expressionS *local, int tmp) 4647 { 4648 expressionS global; 4649 int hold_mips_optimize; 4650 4651 global.X_op = O_constant; 4652 global.X_op_symbol = NULL; 4653 global.X_add_symbol = NULL; 4654 global.X_add_number = local->X_add_number; 4655 4656 relax_start (local->X_add_symbol); 4657 load_register (tmp, &global, HAVE_64BIT_ADDRESSES); 4658 relax_switch (); 4659 /* Set mips_optimize around the lui instruction to avoid 4660 inserting an unnecessary nop after the lw. */ 4661 hold_mips_optimize = mips_optimize; 4662 mips_optimize = 2; 4663 macro_build_lui (&global, tmp); 4664 mips_optimize = hold_mips_optimize; 4665 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16); 4666 relax_end (); 4667 4668 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp); 4669 } 4670 4671 /* 4672 * Build macros 4673 * This routine implements the seemingly endless macro or synthesized 4674 * instructions and addressing modes in the mips assembly language. Many 4675 * of these macros are simple and are similar to each other. These could 4676 * probably be handled by some kind of table or grammar approach instead of 4677 * this verbose method. Others are not simple macros but are more like 4678 * optimizing code generation. 4679 * One interesting optimization is when several store macros appear 4680 * consecutively that would load AT with the upper half of the same address. 4681 * The ensuing load upper instructions are ommited. This implies some kind 4682 * of global optimization. We currently only optimize within a single macro. 4683 * For many of the load and store macros if the address is specified as a 4684 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we 4685 * first load register 'at' with zero and use it as the base register. The 4686 * mips assembler simply uses register $zero. Just one tiny optimization 4687 * we're missing. 4688 */ 4689 static void 4690 macro (struct mips_cl_insn *ip) 4691 { 4692 unsigned int treg, sreg, dreg, breg; 4693 unsigned int tempreg; 4694 int mask; 4695 int used_at = 0; 4696 expressionS expr1; 4697 const char *s; 4698 const char *s2; 4699 const char *fmt; 4700 int likely = 0; 4701 int dbl = 0; 4702 int coproc = 0; 4703 int lr = 0; 4704 int imm = 0; 4705 int call = 0; 4706 int off; 4707 offsetT maxnum; 4708 bfd_reloc_code_real_type r; 4709 int hold_mips_optimize; 4710 4711 assert (! mips_opts.mips16); 4712 4713 treg = (ip->insn_opcode >> 16) & 0x1f; 4714 dreg = (ip->insn_opcode >> 11) & 0x1f; 4715 sreg = breg = (ip->insn_opcode >> 21) & 0x1f; 4716 mask = ip->insn_mo->mask; 4717 4718 expr1.X_op = O_constant; 4719 expr1.X_op_symbol = NULL; 4720 expr1.X_add_symbol = NULL; 4721 expr1.X_add_number = 1; 4722 4723 switch (mask) 4724 { 4725 case M_DABS: 4726 dbl = 1; 4727 case M_ABS: 4728 /* bgez $a0,.+12 4729 move v0,$a0 4730 sub v0,$zero,$a0 4731 */ 4732 4733 start_noreorder (); 4734 4735 expr1.X_add_number = 8; 4736 macro_build (&expr1, "bgez", "s,p", sreg); 4737 if (dreg == sreg) 4738 macro_build (NULL, "nop", "", 0); 4739 else 4740 move_register (dreg, sreg); 4741 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, 0, sreg); 4742 4743 end_noreorder (); 4744 break; 4745 4746 case M_ADD_I: 4747 s = "addi"; 4748 s2 = "add"; 4749 goto do_addi; 4750 case M_ADDU_I: 4751 s = "addiu"; 4752 s2 = "addu"; 4753 goto do_addi; 4754 case M_DADD_I: 4755 dbl = 1; 4756 s = "daddi"; 4757 s2 = "dadd"; 4758 goto do_addi; 4759 case M_DADDU_I: 4760 dbl = 1; 4761 s = "daddiu"; 4762 s2 = "daddu"; 4763 do_addi: 4764 if (imm_expr.X_op == O_constant 4765 && imm_expr.X_add_number >= -0x8000 4766 && imm_expr.X_add_number < 0x8000) 4767 { 4768 macro_build (&imm_expr, s, "t,r,j", treg, sreg, BFD_RELOC_LO16); 4769 break; 4770 } 4771 used_at = 1; 4772 load_register (AT, &imm_expr, dbl); 4773 macro_build (NULL, s2, "d,v,t", treg, sreg, AT); 4774 break; 4775 4776 case M_AND_I: 4777 s = "andi"; 4778 s2 = "and"; 4779 goto do_bit; 4780 case M_OR_I: 4781 s = "ori"; 4782 s2 = "or"; 4783 goto do_bit; 4784 case M_NOR_I: 4785 s = ""; 4786 s2 = "nor"; 4787 goto do_bit; 4788 case M_XOR_I: 4789 s = "xori"; 4790 s2 = "xor"; 4791 do_bit: 4792 if (imm_expr.X_op == O_constant 4793 && imm_expr.X_add_number >= 0 4794 && imm_expr.X_add_number < 0x10000) 4795 { 4796 if (mask != M_NOR_I) 4797 macro_build (&imm_expr, s, "t,r,i", treg, sreg, BFD_RELOC_LO16); 4798 else 4799 { 4800 macro_build (&imm_expr, "ori", "t,r,i", 4801 treg, sreg, BFD_RELOC_LO16); 4802 macro_build (NULL, "nor", "d,v,t", treg, treg, 0); 4803 } 4804 break; 4805 } 4806 4807 used_at = 1; 4808 load_register (AT, &imm_expr, HAVE_64BIT_GPRS); 4809 macro_build (NULL, s2, "d,v,t", treg, sreg, AT); 4810 break; 4811 4812 case M_BALIGN: 4813 switch (imm_expr.X_add_number) 4814 { 4815 case 0: 4816 macro_build (NULL, "nop", ""); 4817 break; 4818 case 2: 4819 macro_build (NULL, "packrl.ph", "d,s,t", treg, treg, sreg); 4820 break; 4821 default: 4822 macro_build (NULL, "balign", "t,s,2", treg, sreg, 4823 (int)imm_expr.X_add_number); 4824 break; 4825 } 4826 break; 4827 4828 case M_BEQ_I: 4829 s = "beq"; 4830 goto beq_i; 4831 case M_BEQL_I: 4832 s = "beql"; 4833 likely = 1; 4834 goto beq_i; 4835 case M_BNE_I: 4836 s = "bne"; 4837 goto beq_i; 4838 case M_BNEL_I: 4839 s = "bnel"; 4840 likely = 1; 4841 beq_i: 4842 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0) 4843 { 4844 macro_build (&offset_expr, s, "s,t,p", sreg, 0); 4845 break; 4846 } 4847 used_at = 1; 4848 load_register (AT, &imm_expr, HAVE_64BIT_GPRS); 4849 macro_build (&offset_expr, s, "s,t,p", sreg, AT); 4850 break; 4851 4852 case M_BGEL: 4853 likely = 1; 4854 case M_BGE: 4855 if (treg == 0) 4856 { 4857 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg); 4858 break; 4859 } 4860 if (sreg == 0) 4861 { 4862 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", treg); 4863 break; 4864 } 4865 used_at = 1; 4866 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg); 4867 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0); 4868 break; 4869 4870 case M_BGTL_I: 4871 likely = 1; 4872 case M_BGT_I: 4873 /* check for > max integer */ 4874 maxnum = 0x7fffffff; 4875 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4) 4876 { 4877 maxnum <<= 16; 4878 maxnum |= 0xffff; 4879 maxnum <<= 16; 4880 maxnum |= 0xffff; 4881 } 4882 if (imm_expr.X_op == O_constant 4883 && imm_expr.X_add_number >= maxnum 4884 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4)) 4885 { 4886 do_false: 4887 /* result is always false */ 4888 if (! likely) 4889 macro_build (NULL, "nop", "", 0); 4890 else 4891 macro_build (&offset_expr, "bnel", "s,t,p", 0, 0); 4892 break; 4893 } 4894 if (imm_expr.X_op != O_constant) 4895 as_bad (_("Unsupported large constant")); 4896 ++imm_expr.X_add_number; 4897 /* FALLTHROUGH */ 4898 case M_BGE_I: 4899 case M_BGEL_I: 4900 if (mask == M_BGEL_I) 4901 likely = 1; 4902 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0) 4903 { 4904 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg); 4905 break; 4906 } 4907 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1) 4908 { 4909 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg); 4910 break; 4911 } 4912 maxnum = 0x7fffffff; 4913 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4) 4914 { 4915 maxnum <<= 16; 4916 maxnum |= 0xffff; 4917 maxnum <<= 16; 4918 maxnum |= 0xffff; 4919 } 4920 maxnum = - maxnum - 1; 4921 if (imm_expr.X_op == O_constant 4922 && imm_expr.X_add_number <= maxnum 4923 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4)) 4924 { 4925 do_true: 4926 /* result is always true */ 4927 as_warn (_("Branch %s is always true"), ip->insn_mo->name); 4928 macro_build (&offset_expr, "b", "p"); 4929 break; 4930 } 4931 used_at = 1; 4932 set_at (sreg, 0); 4933 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0); 4934 break; 4935 4936 case M_BGEUL: 4937 likely = 1; 4938 case M_BGEU: 4939 if (treg == 0) 4940 goto do_true; 4941 if (sreg == 0) 4942 { 4943 macro_build (&offset_expr, likely ? "beql" : "beq", 4944 "s,t,p", 0, treg); 4945 break; 4946 } 4947 used_at = 1; 4948 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg); 4949 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0); 4950 break; 4951 4952 case M_BGTUL_I: 4953 likely = 1; 4954 case M_BGTU_I: 4955 if (sreg == 0 4956 || (HAVE_32BIT_GPRS 4957 && imm_expr.X_op == O_constant 4958 && imm_expr.X_add_number == (offsetT) 0xffffffff)) 4959 goto do_false; 4960 if (imm_expr.X_op != O_constant) 4961 as_bad (_("Unsupported large constant")); 4962 ++imm_expr.X_add_number; 4963 /* FALLTHROUGH */ 4964 case M_BGEU_I: 4965 case M_BGEUL_I: 4966 if (mask == M_BGEUL_I) 4967 likely = 1; 4968 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0) 4969 goto do_true; 4970 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1) 4971 { 4972 macro_build (&offset_expr, likely ? "bnel" : "bne", 4973 "s,t,p", sreg, 0); 4974 break; 4975 } 4976 used_at = 1; 4977 set_at (sreg, 1); 4978 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0); 4979 break; 4980 4981 case M_BGTL: 4982 likely = 1; 4983 case M_BGT: 4984 if (treg == 0) 4985 { 4986 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg); 4987 break; 4988 } 4989 if (sreg == 0) 4990 { 4991 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", treg); 4992 break; 4993 } 4994 used_at = 1; 4995 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg); 4996 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0); 4997 break; 4998 4999 case M_BGTUL: 5000 likely = 1; 5001 case M_BGTU: 5002 if (treg == 0) 5003 { 5004 macro_build (&offset_expr, likely ? "bnel" : "bne", 5005 "s,t,p", sreg, 0); 5006 break; 5007 } 5008 if (sreg == 0) 5009 goto do_false; 5010 used_at = 1; 5011 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg); 5012 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0); 5013 break; 5014 5015 case M_BLEL: 5016 likely = 1; 5017 case M_BLE: 5018 if (treg == 0) 5019 { 5020 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg); 5021 break; 5022 } 5023 if (sreg == 0) 5024 { 5025 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", treg); 5026 break; 5027 } 5028 used_at = 1; 5029 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg); 5030 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0); 5031 break; 5032 5033 case M_BLEL_I: 5034 likely = 1; 5035 case M_BLE_I: 5036 maxnum = 0x7fffffff; 5037 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4) 5038 { 5039 maxnum <<= 16; 5040 maxnum |= 0xffff; 5041 maxnum <<= 16; 5042 maxnum |= 0xffff; 5043 } 5044 if (imm_expr.X_op == O_constant 5045 && imm_expr.X_add_number >= maxnum 5046 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4)) 5047 goto do_true; 5048 if (imm_expr.X_op != O_constant) 5049 as_bad (_("Unsupported large constant")); 5050 ++imm_expr.X_add_number; 5051 /* FALLTHROUGH */ 5052 case M_BLT_I: 5053 case M_BLTL_I: 5054 if (mask == M_BLTL_I) 5055 likely = 1; 5056 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0) 5057 { 5058 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg); 5059 break; 5060 } 5061 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1) 5062 { 5063 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg); 5064 break; 5065 } 5066 used_at = 1; 5067 set_at (sreg, 0); 5068 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0); 5069 break; 5070 5071 case M_BLEUL: 5072 likely = 1; 5073 case M_BLEU: 5074 if (treg == 0) 5075 { 5076 macro_build (&offset_expr, likely ? "beql" : "beq", 5077 "s,t,p", sreg, 0); 5078 break; 5079 } 5080 if (sreg == 0) 5081 goto do_true; 5082 used_at = 1; 5083 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg); 5084 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0); 5085 break; 5086 5087 case M_BLEUL_I: 5088 likely = 1; 5089 case M_BLEU_I: 5090 if (sreg == 0 5091 || (HAVE_32BIT_GPRS 5092 && imm_expr.X_op == O_constant 5093 && imm_expr.X_add_number == (offsetT) 0xffffffff)) 5094 goto do_true; 5095 if (imm_expr.X_op != O_constant) 5096 as_bad (_("Unsupported large constant")); 5097 ++imm_expr.X_add_number; 5098 /* FALLTHROUGH */ 5099 case M_BLTU_I: 5100 case M_BLTUL_I: 5101 if (mask == M_BLTUL_I) 5102 likely = 1; 5103 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0) 5104 goto do_false; 5105 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1) 5106 { 5107 macro_build (&offset_expr, likely ? "beql" : "beq", 5108 "s,t,p", sreg, 0); 5109 break; 5110 } 5111 used_at = 1; 5112 set_at (sreg, 1); 5113 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0); 5114 break; 5115 5116 case M_BLTL: 5117 likely = 1; 5118 case M_BLT: 5119 if (treg == 0) 5120 { 5121 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg); 5122 break; 5123 } 5124 if (sreg == 0) 5125 { 5126 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", treg); 5127 break; 5128 } 5129 used_at = 1; 5130 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg); 5131 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0); 5132 break; 5133 5134 case M_BLTUL: 5135 likely = 1; 5136 case M_BLTU: 5137 if (treg == 0) 5138 goto do_false; 5139 if (sreg == 0) 5140 { 5141 macro_build (&offset_expr, likely ? "bnel" : "bne", 5142 "s,t,p", 0, treg); 5143 break; 5144 } 5145 used_at = 1; 5146 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg); 5147 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0); 5148 break; 5149 5150 case M_DEXT: 5151 { 5152 unsigned long pos; 5153 unsigned long size; 5154 5155 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant) 5156 { 5157 as_bad (_("Unsupported large constant")); 5158 pos = size = 1; 5159 } 5160 else 5161 { 5162 pos = (unsigned long) imm_expr.X_add_number; 5163 size = (unsigned long) imm2_expr.X_add_number; 5164 } 5165 5166 if (pos > 63) 5167 { 5168 as_bad (_("Improper position (%lu)"), pos); 5169 pos = 1; 5170 } 5171 if (size == 0 || size > 64 5172 || (pos + size - 1) > 63) 5173 { 5174 as_bad (_("Improper extract size (%lu, position %lu)"), 5175 size, pos); 5176 size = 1; 5177 } 5178 5179 if (size <= 32 && pos < 32) 5180 { 5181 s = "dext"; 5182 fmt = "t,r,+A,+C"; 5183 } 5184 else if (size <= 32) 5185 { 5186 s = "dextu"; 5187 fmt = "t,r,+E,+H"; 5188 } 5189 else 5190 { 5191 s = "dextm"; 5192 fmt = "t,r,+A,+G"; 5193 } 5194 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, pos, size - 1); 5195 } 5196 break; 5197 5198 case M_DINS: 5199 { 5200 unsigned long pos; 5201 unsigned long size; 5202 5203 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant) 5204 { 5205 as_bad (_("Unsupported large constant")); 5206 pos = size = 1; 5207 } 5208 else 5209 { 5210 pos = (unsigned long) imm_expr.X_add_number; 5211 size = (unsigned long) imm2_expr.X_add_number; 5212 } 5213 5214 if (pos > 63) 5215 { 5216 as_bad (_("Improper position (%lu)"), pos); 5217 pos = 1; 5218 } 5219 if (size == 0 || size > 64 5220 || (pos + size - 1) > 63) 5221 { 5222 as_bad (_("Improper insert size (%lu, position %lu)"), 5223 size, pos); 5224 size = 1; 5225 } 5226 5227 if (pos < 32 && (pos + size - 1) < 32) 5228 { 5229 s = "dins"; 5230 fmt = "t,r,+A,+B"; 5231 } 5232 else if (pos >= 32) 5233 { 5234 s = "dinsu"; 5235 fmt = "t,r,+E,+F"; 5236 } 5237 else 5238 { 5239 s = "dinsm"; 5240 fmt = "t,r,+A,+F"; 5241 } 5242 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, pos, 5243 pos + size - 1); 5244 } 5245 break; 5246 5247 case M_DDIV_3: 5248 dbl = 1; 5249 case M_DIV_3: 5250 s = "mflo"; 5251 goto do_div3; 5252 case M_DREM_3: 5253 dbl = 1; 5254 case M_REM_3: 5255 s = "mfhi"; 5256 do_div3: 5257 if (treg == 0) 5258 { 5259 as_warn (_("Divide by zero.")); 5260 if (mips_trap) 5261 macro_build (NULL, "teq", "s,t,q", 0, 0, 7); 5262 else 5263 macro_build (NULL, "break", "c", 7); 5264 break; 5265 } 5266 5267 start_noreorder (); 5268 if (mips_trap) 5269 { 5270 macro_build (NULL, "teq", "s,t,q", treg, 0, 7); 5271 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg); 5272 } 5273 else 5274 { 5275 expr1.X_add_number = 8; 5276 macro_build (&expr1, "bne", "s,t,p", treg, 0); 5277 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg); 5278 macro_build (NULL, "break", "c", 7); 5279 } 5280 expr1.X_add_number = -1; 5281 used_at = 1; 5282 load_register (AT, &expr1, dbl); 5283 expr1.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16); 5284 macro_build (&expr1, "bne", "s,t,p", treg, AT); 5285 if (dbl) 5286 { 5287 expr1.X_add_number = 1; 5288 load_register (AT, &expr1, dbl); 5289 macro_build (NULL, "dsll32", "d,w,<", AT, AT, 31); 5290 } 5291 else 5292 { 5293 expr1.X_add_number = 0x80000000; 5294 macro_build (&expr1, "lui", "t,u", AT, BFD_RELOC_HI16); 5295 } 5296 if (mips_trap) 5297 { 5298 macro_build (NULL, "teq", "s,t,q", sreg, AT, 6); 5299 /* We want to close the noreorder block as soon as possible, so 5300 that later insns are available for delay slot filling. */ 5301 end_noreorder (); 5302 } 5303 else 5304 { 5305 expr1.X_add_number = 8; 5306 macro_build (&expr1, "bne", "s,t,p", sreg, AT); 5307 macro_build (NULL, "nop", "", 0); 5308 5309 /* We want to close the noreorder block as soon as possible, so 5310 that later insns are available for delay slot filling. */ 5311 end_noreorder (); 5312 5313 macro_build (NULL, "break", "c", 6); 5314 } 5315 macro_build (NULL, s, "d", dreg); 5316 break; 5317 5318 case M_DIV_3I: 5319 s = "div"; 5320 s2 = "mflo"; 5321 goto do_divi; 5322 case M_DIVU_3I: 5323 s = "divu"; 5324 s2 = "mflo"; 5325 goto do_divi; 5326 case M_REM_3I: 5327 s = "div"; 5328 s2 = "mfhi"; 5329 goto do_divi; 5330 case M_REMU_3I: 5331 s = "divu"; 5332 s2 = "mfhi"; 5333 goto do_divi; 5334 case M_DDIV_3I: 5335 dbl = 1; 5336 s = "ddiv"; 5337 s2 = "mflo"; 5338 goto do_divi; 5339 case M_DDIVU_3I: 5340 dbl = 1; 5341 s = "ddivu"; 5342 s2 = "mflo"; 5343 goto do_divi; 5344 case M_DREM_3I: 5345 dbl = 1; 5346 s = "ddiv"; 5347 s2 = "mfhi"; 5348 goto do_divi; 5349 case M_DREMU_3I: 5350 dbl = 1; 5351 s = "ddivu"; 5352 s2 = "mfhi"; 5353 do_divi: 5354 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0) 5355 { 5356 as_warn (_("Divide by zero.")); 5357 if (mips_trap) 5358 macro_build (NULL, "teq", "s,t,q", 0, 0, 7); 5359 else 5360 macro_build (NULL, "break", "c", 7); 5361 break; 5362 } 5363 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1) 5364 { 5365 if (strcmp (s2, "mflo") == 0) 5366 move_register (dreg, sreg); 5367 else 5368 move_register (dreg, 0); 5369 break; 5370 } 5371 if (imm_expr.X_op == O_constant 5372 && imm_expr.X_add_number == -1 5373 && s[strlen (s) - 1] != 'u') 5374 { 5375 if (strcmp (s2, "mflo") == 0) 5376 { 5377 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", dreg, sreg); 5378 } 5379 else 5380 move_register (dreg, 0); 5381 break; 5382 } 5383 5384 used_at = 1; 5385 load_register (AT, &imm_expr, dbl); 5386 macro_build (NULL, s, "z,s,t", sreg, AT); 5387 macro_build (NULL, s2, "d", dreg); 5388 break; 5389 5390 case M_DIVU_3: 5391 s = "divu"; 5392 s2 = "mflo"; 5393 goto do_divu3; 5394 case M_REMU_3: 5395 s = "divu"; 5396 s2 = "mfhi"; 5397 goto do_divu3; 5398 case M_DDIVU_3: 5399 s = "ddivu"; 5400 s2 = "mflo"; 5401 goto do_divu3; 5402 case M_DREMU_3: 5403 s = "ddivu"; 5404 s2 = "mfhi"; 5405 do_divu3: 5406 start_noreorder (); 5407 if (mips_trap) 5408 { 5409 macro_build (NULL, "teq", "s,t,q", treg, 0, 7); 5410 macro_build (NULL, s, "z,s,t", sreg, treg); 5411 /* We want to close the noreorder block as soon as possible, so 5412 that later insns are available for delay slot filling. */ 5413 end_noreorder (); 5414 } 5415 else 5416 { 5417 expr1.X_add_number = 8; 5418 macro_build (&expr1, "bne", "s,t,p", treg, 0); 5419 macro_build (NULL, s, "z,s,t", sreg, treg); 5420 5421 /* We want to close the noreorder block as soon as possible, so 5422 that later insns are available for delay slot filling. */ 5423 end_noreorder (); 5424 macro_build (NULL, "break", "c", 7); 5425 } 5426 macro_build (NULL, s2, "d", dreg); 5427 break; 5428 5429 case M_DLCA_AB: 5430 dbl = 1; 5431 case M_LCA_AB: 5432 call = 1; 5433 goto do_la; 5434 case M_DLA_AB: 5435 dbl = 1; 5436 case M_LA_AB: 5437 do_la: 5438 /* Load the address of a symbol into a register. If breg is not 5439 zero, we then add a base register to it. */ 5440 5441 if (dbl && HAVE_32BIT_GPRS) 5442 as_warn (_("dla used to load 32-bit register")); 5443 5444 if (! dbl && HAVE_64BIT_OBJECTS) 5445 as_warn (_("la used to load 64-bit address")); 5446 5447 if (offset_expr.X_op == O_constant 5448 && offset_expr.X_add_number >= -0x8000 5449 && offset_expr.X_add_number < 0x8000) 5450 { 5451 macro_build (&offset_expr, ADDRESS_ADDI_INSN, 5452 "t,r,j", treg, sreg, BFD_RELOC_LO16); 5453 break; 5454 } 5455 5456 if (mips_opts.at && (treg == breg)) 5457 { 5458 tempreg = AT; 5459 used_at = 1; 5460 } 5461 else 5462 { 5463 tempreg = treg; 5464 } 5465 5466 if (offset_expr.X_op != O_symbol 5467 && offset_expr.X_op != O_constant) 5468 { 5469 as_bad (_("expression too complex")); 5470 offset_expr.X_op = O_constant; 5471 } 5472 5473 if (offset_expr.X_op == O_constant) 5474 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES); 5475 else if (mips_pic == NO_PIC) 5476 { 5477 /* If this is a reference to a GP relative symbol, we want 5478 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16) 5479 Otherwise we want 5480 lui $tempreg,<sym> (BFD_RELOC_HI16_S) 5481 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16) 5482 If we have a constant, we need two instructions anyhow, 5483 so we may as well always use the latter form. 5484 5485 With 64bit address space and a usable $at we want 5486 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST) 5487 lui $at,<sym> (BFD_RELOC_HI16_S) 5488 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER) 5489 daddiu $at,<sym> (BFD_RELOC_LO16) 5490 dsll32 $tempreg,0 5491 daddu $tempreg,$tempreg,$at 5492 5493 If $at is already in use, we use a path which is suboptimal 5494 on superscalar processors. 5495 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST) 5496 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER) 5497 dsll $tempreg,16 5498 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S) 5499 dsll $tempreg,16 5500 daddiu $tempreg,<sym> (BFD_RELOC_LO16) 5501 5502 For GP relative symbols in 64bit address space we can use 5503 the same sequence as in 32bit address space. */ 5504 if (HAVE_64BIT_SYMBOLS) 5505 { 5506 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET 5507 && !nopic_need_relax (offset_expr.X_add_symbol, 1)) 5508 { 5509 relax_start (offset_expr.X_add_symbol); 5510 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", 5511 tempreg, mips_gp_register, BFD_RELOC_GPREL16); 5512 relax_switch (); 5513 } 5514 5515 if (used_at == 0 && mips_opts.at) 5516 { 5517 macro_build (&offset_expr, "lui", "t,u", 5518 tempreg, BFD_RELOC_MIPS_HIGHEST); 5519 macro_build (&offset_expr, "lui", "t,u", 5520 AT, BFD_RELOC_HI16_S); 5521 macro_build (&offset_expr, "daddiu", "t,r,j", 5522 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER); 5523 macro_build (&offset_expr, "daddiu", "t,r,j", 5524 AT, AT, BFD_RELOC_LO16); 5525 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0); 5526 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT); 5527 used_at = 1; 5528 } 5529 else 5530 { 5531 macro_build (&offset_expr, "lui", "t,u", 5532 tempreg, BFD_RELOC_MIPS_HIGHEST); 5533 macro_build (&offset_expr, "daddiu", "t,r,j", 5534 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER); 5535 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16); 5536 macro_build (&offset_expr, "daddiu", "t,r,j", 5537 tempreg, tempreg, BFD_RELOC_HI16_S); 5538 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16); 5539 macro_build (&offset_expr, "daddiu", "t,r,j", 5540 tempreg, tempreg, BFD_RELOC_LO16); 5541 } 5542 5543 if (mips_relax.sequence) 5544 relax_end (); 5545 } 5546 else 5547 { 5548 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET 5549 && !nopic_need_relax (offset_expr.X_add_symbol, 1)) 5550 { 5551 relax_start (offset_expr.X_add_symbol); 5552 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", 5553 tempreg, mips_gp_register, BFD_RELOC_GPREL16); 5554 relax_switch (); 5555 } 5556 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number)) 5557 as_bad (_("offset too large")); 5558 macro_build_lui (&offset_expr, tempreg); 5559 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", 5560 tempreg, tempreg, BFD_RELOC_LO16); 5561 if (mips_relax.sequence) 5562 relax_end (); 5563 } 5564 } 5565 else if (!mips_big_got && !HAVE_NEWABI) 5566 { 5567 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16; 5568 5569 /* If this is a reference to an external symbol, and there 5570 is no constant, we want 5571 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16) 5572 or for lca or if tempreg is PIC_CALL_REG 5573 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16) 5574 For a local symbol, we want 5575 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16) 5576 nop 5577 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16) 5578 5579 If we have a small constant, and this is a reference to 5580 an external symbol, we want 5581 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16) 5582 nop 5583 addiu $tempreg,$tempreg,<constant> 5584 For a local symbol, we want the same instruction 5585 sequence, but we output a BFD_RELOC_LO16 reloc on the 5586 addiu instruction. 5587 5588 If we have a large constant, and this is a reference to 5589 an external symbol, we want 5590 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16) 5591 lui $at,<hiconstant> 5592 addiu $at,$at,<loconstant> 5593 addu $tempreg,$tempreg,$at 5594 For a local symbol, we want the same instruction 5595 sequence, but we output a BFD_RELOC_LO16 reloc on the 5596 addiu instruction. 5597 */ 5598 5599 if (offset_expr.X_add_number == 0) 5600 { 5601 if (mips_pic == SVR4_PIC 5602 && breg == 0 5603 && (call || tempreg == PIC_CALL_REG)) 5604 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16; 5605 5606 relax_start (offset_expr.X_add_symbol); 5607 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg, 5608 lw_reloc_type, mips_gp_register); 5609 if (breg != 0) 5610 { 5611 /* We're going to put in an addu instruction using 5612 tempreg, so we may as well insert the nop right 5613 now. */ 5614 load_delay_nop (); 5615 } 5616 relax_switch (); 5617 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", 5618 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register); 5619 load_delay_nop (); 5620 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", 5621 tempreg, tempreg, BFD_RELOC_LO16); 5622 relax_end (); 5623 /* FIXME: If breg == 0, and the next instruction uses 5624 $tempreg, then if this variant case is used an extra 5625 nop will be generated. */ 5626 } 5627 else if (offset_expr.X_add_number >= -0x8000 5628 && offset_expr.X_add_number < 0x8000) 5629 { 5630 load_got_offset (tempreg, &offset_expr); 5631 load_delay_nop (); 5632 add_got_offset (tempreg, &offset_expr); 5633 } 5634 else 5635 { 5636 expr1.X_add_number = offset_expr.X_add_number; 5637 offset_expr.X_add_number = 5638 ((offset_expr.X_add_number + 0x8000) & 0xffff) - 0x8000; 5639 load_got_offset (tempreg, &offset_expr); 5640 offset_expr.X_add_number = expr1.X_add_number; 5641 /* If we are going to add in a base register, and the 5642 target register and the base register are the same, 5643 then we are using AT as a temporary register. Since 5644 we want to load the constant into AT, we add our 5645 current AT (from the global offset table) and the 5646 register into the register now, and pretend we were 5647 not using a base register. */ 5648 if (breg == treg) 5649 { 5650 load_delay_nop (); 5651 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", 5652 treg, AT, breg); 5653 breg = 0; 5654 tempreg = treg; 5655 } 5656 add_got_offset_hilo (tempreg, &offset_expr, AT); 5657 used_at = 1; 5658 } 5659 } 5660 else if (!mips_big_got && HAVE_NEWABI) 5661 { 5662 int add_breg_early = 0; 5663 5664 /* If this is a reference to an external, and there is no 5665 constant, or local symbol (*), with or without a 5666 constant, we want 5667 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP) 5668 or for lca or if tempreg is PIC_CALL_REG 5669 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16) 5670 5671 If we have a small constant, and this is a reference to 5672 an external symbol, we want 5673 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP) 5674 addiu $tempreg,$tempreg,<constant> 5675 5676 If we have a large constant, and this is a reference to 5677 an external symbol, we want 5678 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP) 5679 lui $at,<hiconstant> 5680 addiu $at,$at,<loconstant> 5681 addu $tempreg,$tempreg,$at 5682 5683 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for 5684 local symbols, even though it introduces an additional 5685 instruction. */ 5686 5687 if (offset_expr.X_add_number) 5688 { 5689 expr1.X_add_number = offset_expr.X_add_number; 5690 offset_expr.X_add_number = 0; 5691 5692 relax_start (offset_expr.X_add_symbol); 5693 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg, 5694 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register); 5695 5696 if (expr1.X_add_number >= -0x8000 5697 && expr1.X_add_number < 0x8000) 5698 { 5699 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j", 5700 tempreg, tempreg, BFD_RELOC_LO16); 5701 } 5702 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000)) 5703 { 5704 int dreg; 5705 5706 /* If we are going to add in a base register, and the 5707 target register and the base register are the same, 5708 then we are using AT as a temporary register. Since 5709 we want to load the constant into AT, we add our 5710 current AT (from the global offset table) and the 5711 register into the register now, and pretend we were 5712 not using a base register. */ 5713 if (breg != treg) 5714 dreg = tempreg; 5715 else 5716 { 5717 assert (tempreg == AT); 5718 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", 5719 treg, AT, breg); 5720 dreg = treg; 5721 add_breg_early = 1; 5722 } 5723 5724 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES); 5725 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", 5726 dreg, dreg, AT); 5727 5728 used_at = 1; 5729 } 5730 else 5731 as_bad (_("PIC code offset overflow (max 32 signed bits)")); 5732 5733 relax_switch (); 5734 offset_expr.X_add_number = expr1.X_add_number; 5735 5736 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg, 5737 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register); 5738 if (add_breg_early) 5739 { 5740 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", 5741 treg, tempreg, breg); 5742 breg = 0; 5743 tempreg = treg; 5744 } 5745 relax_end (); 5746 } 5747 else if (breg == 0 && (call || tempreg == PIC_CALL_REG)) 5748 { 5749 relax_start (offset_expr.X_add_symbol); 5750 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg, 5751 BFD_RELOC_MIPS_CALL16, mips_gp_register); 5752 relax_switch (); 5753 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg, 5754 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register); 5755 relax_end (); 5756 } 5757 else 5758 { 5759 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg, 5760 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register); 5761 } 5762 } 5763 else if (mips_big_got && !HAVE_NEWABI) 5764 { 5765 int gpdelay; 5766 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16; 5767 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16; 5768 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16; 5769 5770 /* This is the large GOT case. If this is a reference to an 5771 external symbol, and there is no constant, we want 5772 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16) 5773 addu $tempreg,$tempreg,$gp 5774 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16) 5775 or for lca or if tempreg is PIC_CALL_REG 5776 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16) 5777 addu $tempreg,$tempreg,$gp 5778 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16) 5779 For a local symbol, we want 5780 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16) 5781 nop 5782 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16) 5783 5784 If we have a small constant, and this is a reference to 5785 an external symbol, we want 5786 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16) 5787 addu $tempreg,$tempreg,$gp 5788 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16) 5789 nop 5790 addiu $tempreg,$tempreg,<constant> 5791 For a local symbol, we want 5792 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16) 5793 nop 5794 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16) 5795 5796 If we have a large constant, and this is a reference to 5797 an external symbol, we want 5798 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16) 5799 addu $tempreg,$tempreg,$gp 5800 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16) 5801 lui $at,<hiconstant> 5802 addiu $at,$at,<loconstant> 5803 addu $tempreg,$tempreg,$at 5804 For a local symbol, we want 5805 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16) 5806 lui $at,<hiconstant> 5807 addiu $at,$at,<loconstant> (BFD_RELOC_LO16) 5808 addu $tempreg,$tempreg,$at 5809 */ 5810 5811 expr1.X_add_number = offset_expr.X_add_number; 5812 offset_expr.X_add_number = 0; 5813 relax_start (offset_expr.X_add_symbol); 5814 gpdelay = reg_needs_delay (mips_gp_register); 5815 if (expr1.X_add_number == 0 && breg == 0 5816 && (call || tempreg == PIC_CALL_REG)) 5817 { 5818 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16; 5819 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16; 5820 } 5821 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type); 5822 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", 5823 tempreg, tempreg, mips_gp_register); 5824 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", 5825 tempreg, lw_reloc_type, tempreg); 5826 if (expr1.X_add_number == 0) 5827 { 5828 if (breg != 0) 5829 { 5830 /* We're going to put in an addu instruction using 5831 tempreg, so we may as well insert the nop right 5832 now. */ 5833 load_delay_nop (); 5834 } 5835 } 5836 else if (expr1.X_add_number >= -0x8000 5837 && expr1.X_add_number < 0x8000) 5838 { 5839 load_delay_nop (); 5840 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j", 5841 tempreg, tempreg, BFD_RELOC_LO16); 5842 } 5843 else 5844 { 5845 int dreg; 5846 5847 /* If we are going to add in a base register, and the 5848 target register and the base register are the same, 5849 then we are using AT as a temporary register. Since 5850 we want to load the constant into AT, we add our 5851 current AT (from the global offset table) and the 5852 register into the register now, and pretend we were 5853 not using a base register. */ 5854 if (breg != treg) 5855 dreg = tempreg; 5856 else 5857 { 5858 assert (tempreg == AT); 5859 load_delay_nop (); 5860 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", 5861 treg, AT, breg); 5862 dreg = treg; 5863 } 5864 5865 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES); 5866 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT); 5867 5868 used_at = 1; 5869 } 5870 offset_expr.X_add_number = 5871 ((expr1.X_add_number + 0x8000) & 0xffff) - 0x8000; 5872 relax_switch (); 5873 5874 if (gpdelay) 5875 { 5876 /* This is needed because this instruction uses $gp, but 5877 the first instruction on the main stream does not. */ 5878 macro_build (NULL, "nop", ""); 5879 } 5880 5881 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg, 5882 local_reloc_type, mips_gp_register); 5883 if (expr1.X_add_number >= -0x8000 5884 && expr1.X_add_number < 0x8000) 5885 { 5886 load_delay_nop (); 5887 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", 5888 tempreg, tempreg, BFD_RELOC_LO16); 5889 /* FIXME: If add_number is 0, and there was no base 5890 register, the external symbol case ended with a load, 5891 so if the symbol turns out to not be external, and 5892 the next instruction uses tempreg, an unnecessary nop 5893 will be inserted. */ 5894 } 5895 else 5896 { 5897 if (breg == treg) 5898 { 5899 /* We must add in the base register now, as in the 5900 external symbol case. */ 5901 assert (tempreg == AT); 5902 load_delay_nop (); 5903 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", 5904 treg, AT, breg); 5905 tempreg = treg; 5906 /* We set breg to 0 because we have arranged to add 5907 it in in both cases. */ 5908 breg = 0; 5909 } 5910 5911 macro_build_lui (&expr1, AT); 5912 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", 5913 AT, AT, BFD_RELOC_LO16); 5914 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", 5915 tempreg, tempreg, AT); 5916 used_at = 1; 5917 } 5918 relax_end (); 5919 } 5920 else if (mips_big_got && HAVE_NEWABI) 5921 { 5922 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16; 5923 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16; 5924 int add_breg_early = 0; 5925 5926 /* This is the large GOT case. If this is a reference to an 5927 external symbol, and there is no constant, we want 5928 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16) 5929 add $tempreg,$tempreg,$gp 5930 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16) 5931 or for lca or if tempreg is PIC_CALL_REG 5932 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16) 5933 add $tempreg,$tempreg,$gp 5934 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16) 5935 5936 If we have a small constant, and this is a reference to 5937 an external symbol, we want 5938 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16) 5939 add $tempreg,$tempreg,$gp 5940 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16) 5941 addi $tempreg,$tempreg,<constant> 5942 5943 If we have a large constant, and this is a reference to 5944 an external symbol, we want 5945 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16) 5946 addu $tempreg,$tempreg,$gp 5947 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16) 5948 lui $at,<hiconstant> 5949 addi $at,$at,<loconstant> 5950 add $tempreg,$tempreg,$at 5951 5952 If we have NewABI, and we know it's a local symbol, we want 5953 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE) 5954 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST) 5955 otherwise we have to resort to GOT_HI16/GOT_LO16. */ 5956 5957 relax_start (offset_expr.X_add_symbol); 5958 5959 expr1.X_add_number = offset_expr.X_add_number; 5960 offset_expr.X_add_number = 0; 5961 5962 if (expr1.X_add_number == 0 && breg == 0 5963 && (call || tempreg == PIC_CALL_REG)) 5964 { 5965 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16; 5966 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16; 5967 } 5968 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type); 5969 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", 5970 tempreg, tempreg, mips_gp_register); 5971 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", 5972 tempreg, lw_reloc_type, tempreg); 5973 5974 if (expr1.X_add_number == 0) 5975 ; 5976 else if (expr1.X_add_number >= -0x8000 5977 && expr1.X_add_number < 0x8000) 5978 { 5979 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j", 5980 tempreg, tempreg, BFD_RELOC_LO16); 5981 } 5982 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000)) 5983 { 5984 int dreg; 5985 5986 /* If we are going to add in a base register, and the 5987 target register and the base register are the same, 5988 then we are using AT as a temporary register. Since 5989 we want to load the constant into AT, we add our 5990 current AT (from the global offset table) and the 5991 register into the register now, and pretend we were 5992 not using a base register. */ 5993 if (breg != treg) 5994 dreg = tempreg; 5995 else 5996 { 5997 assert (tempreg == AT); 5998 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", 5999 treg, AT, breg); 6000 dreg = treg; 6001 add_breg_early = 1; 6002 } 6003 6004 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES); 6005 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT); 6006 6007 used_at = 1; 6008 } 6009 else 6010 as_bad (_("PIC code offset overflow (max 32 signed bits)")); 6011 6012 relax_switch (); 6013 offset_expr.X_add_number = expr1.X_add_number; 6014 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg, 6015 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register); 6016 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg, 6017 tempreg, BFD_RELOC_MIPS_GOT_OFST); 6018 if (add_breg_early) 6019 { 6020 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", 6021 treg, tempreg, breg); 6022 breg = 0; 6023 tempreg = treg; 6024 } 6025 relax_end (); 6026 } 6027 else 6028 abort (); 6029 6030 if (breg != 0) 6031 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", treg, tempreg, breg); 6032 break; 6033 6034 case M_J_A: 6035 /* The j instruction may not be used in PIC code, since it 6036 requires an absolute address. We convert it to a b 6037 instruction. */ 6038 if (mips_pic == NO_PIC) 6039 macro_build (&offset_expr, "j", "a"); 6040 else 6041 macro_build (&offset_expr, "b", "p"); 6042 break; 6043 6044 /* The jal instructions must be handled as macros because when 6045 generating PIC code they expand to multi-instruction 6046 sequences. Normally they are simple instructions. */ 6047 case M_JAL_1: 6048 dreg = RA; 6049 /* Fall through. */ 6050 case M_JAL_2: 6051 if (mips_pic == NO_PIC) 6052 macro_build (NULL, "jalr", "d,s", dreg, sreg); 6053 else 6054 { 6055 if (sreg != PIC_CALL_REG) 6056 as_warn (_("MIPS PIC call to register other than $25")); 6057 6058 macro_build (NULL, "jalr", "d,s", dreg, sreg); 6059 if (mips_pic == SVR4_PIC && !HAVE_NEWABI) 6060 { 6061 if (mips_cprestore_offset < 0) 6062 as_warn (_("No .cprestore pseudo-op used in PIC code")); 6063 else 6064 { 6065 if (! mips_frame_reg_valid) 6066 { 6067 as_warn (_("No .frame pseudo-op used in PIC code")); 6068 /* Quiet this warning. */ 6069 mips_frame_reg_valid = 1; 6070 } 6071 if (! mips_cprestore_valid) 6072 { 6073 as_warn (_("No .cprestore pseudo-op used in PIC code")); 6074 /* Quiet this warning. */ 6075 mips_cprestore_valid = 1; 6076 } 6077 expr1.X_add_number = mips_cprestore_offset; 6078 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN, 6079 mips_gp_register, 6080 mips_frame_reg, 6081 HAVE_64BIT_ADDRESSES); 6082 } 6083 } 6084 } 6085 6086 break; 6087 6088 case M_JAL_A: 6089 if (mips_pic == NO_PIC) 6090 macro_build (&offset_expr, "jal", "a"); 6091 else if (mips_pic == SVR4_PIC) 6092 { 6093 /* If this is a reference to an external symbol, and we are 6094 using a small GOT, we want 6095 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16) 6096 nop 6097 jalr $ra,$25 6098 nop 6099 lw $gp,cprestore($sp) 6100 The cprestore value is set using the .cprestore 6101 pseudo-op. If we are using a big GOT, we want 6102 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16) 6103 addu $25,$25,$gp 6104 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16) 6105 nop 6106 jalr $ra,$25 6107 nop 6108 lw $gp,cprestore($sp) 6109 If the symbol is not external, we want 6110 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16) 6111 nop 6112 addiu $25,$25,<sym> (BFD_RELOC_LO16) 6113 jalr $ra,$25 6114 nop 6115 lw $gp,cprestore($sp) 6116 6117 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16 6118 sequences above, minus nops, unless the symbol is local, 6119 which enables us to use GOT_PAGE/GOT_OFST (big got) or 6120 GOT_DISP. */ 6121 if (HAVE_NEWABI) 6122 { 6123 if (! mips_big_got) 6124 { 6125 relax_start (offset_expr.X_add_symbol); 6126 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", 6127 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16, 6128 mips_gp_register); 6129 relax_switch (); 6130 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", 6131 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP, 6132 mips_gp_register); 6133 relax_end (); 6134 } 6135 else 6136 { 6137 relax_start (offset_expr.X_add_symbol); 6138 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG, 6139 BFD_RELOC_MIPS_CALL_HI16); 6140 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG, 6141 PIC_CALL_REG, mips_gp_register); 6142 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", 6143 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16, 6144 PIC_CALL_REG); 6145 relax_switch (); 6146 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", 6147 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE, 6148 mips_gp_register); 6149 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", 6150 PIC_CALL_REG, PIC_CALL_REG, 6151 BFD_RELOC_MIPS_GOT_OFST); 6152 relax_end (); 6153 } 6154 6155 macro_build_jalr (&offset_expr); 6156 } 6157 else 6158 { 6159 relax_start (offset_expr.X_add_symbol); 6160 if (! mips_big_got) 6161 { 6162 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", 6163 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16, 6164 mips_gp_register); 6165 load_delay_nop (); 6166 relax_switch (); 6167 } 6168 else 6169 { 6170 int gpdelay; 6171 6172 gpdelay = reg_needs_delay (mips_gp_register); 6173 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG, 6174 BFD_RELOC_MIPS_CALL_HI16); 6175 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG, 6176 PIC_CALL_REG, mips_gp_register); 6177 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", 6178 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16, 6179 PIC_CALL_REG); 6180 load_delay_nop (); 6181 relax_switch (); 6182 if (gpdelay) 6183 macro_build (NULL, "nop", ""); 6184 } 6185 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", 6186 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16, 6187 mips_gp_register); 6188 load_delay_nop (); 6189 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", 6190 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16); 6191 relax_end (); 6192 macro_build_jalr (&offset_expr); 6193 6194 if (mips_cprestore_offset < 0) 6195 as_warn (_("No .cprestore pseudo-op used in PIC code")); 6196 else 6197 { 6198 if (! mips_frame_reg_valid) 6199 { 6200 as_warn (_("No .frame pseudo-op used in PIC code")); 6201 /* Quiet this warning. */ 6202 mips_frame_reg_valid = 1; 6203 } 6204 if (! mips_cprestore_valid) 6205 { 6206 as_warn (_("No .cprestore pseudo-op used in PIC code")); 6207 /* Quiet this warning. */ 6208 mips_cprestore_valid = 1; 6209 } 6210 if (mips_opts.noreorder) 6211 macro_build (NULL, "nop", ""); 6212 expr1.X_add_number = mips_cprestore_offset; 6213 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN, 6214 mips_gp_register, 6215 mips_frame_reg, 6216 HAVE_64BIT_ADDRESSES); 6217 } 6218 } 6219 } 6220 else if (mips_pic == VXWORKS_PIC) 6221 as_bad (_("Non-PIC jump used in PIC library")); 6222 else 6223 abort (); 6224 6225 break; 6226 6227 case M_LB_AB: 6228 s = "lb"; 6229 goto ld; 6230 case M_LBU_AB: 6231 s = "lbu"; 6232 goto ld; 6233 case M_LH_AB: 6234 s = "lh"; 6235 goto ld; 6236 case M_LHU_AB: 6237 s = "lhu"; 6238 goto ld; 6239 case M_LW_AB: 6240 s = "lw"; 6241 goto ld; 6242 case M_LWC0_AB: 6243 s = "lwc0"; 6244 /* Itbl support may require additional care here. */ 6245 coproc = 1; 6246 goto ld; 6247 case M_LWC1_AB: 6248 s = "lwc1"; 6249 /* Itbl support may require additional care here. */ 6250 coproc = 1; 6251 goto ld; 6252 case M_LWC2_AB: 6253 s = "lwc2"; 6254 /* Itbl support may require additional care here. */ 6255 coproc = 1; 6256 goto ld; 6257 case M_LWC3_AB: 6258 s = "lwc3"; 6259 /* Itbl support may require additional care here. */ 6260 coproc = 1; 6261 goto ld; 6262 case M_LWL_AB: 6263 s = "lwl"; 6264 lr = 1; 6265 goto ld; 6266 case M_LWR_AB: 6267 s = "lwr"; 6268 lr = 1; 6269 goto ld; 6270 case M_LDC1_AB: 6271 s = "ldc1"; 6272 /* Itbl support may require additional care here. */ 6273 coproc = 1; 6274 goto ld; 6275 case M_LDC2_AB: 6276 s = "ldc2"; 6277 /* Itbl support may require additional care here. */ 6278 coproc = 1; 6279 goto ld; 6280 case M_LDC3_AB: 6281 s = "ldc3"; 6282 /* Itbl support may require additional care here. */ 6283 coproc = 1; 6284 goto ld; 6285 case M_LDL_AB: 6286 s = "ldl"; 6287 lr = 1; 6288 goto ld; 6289 case M_LDR_AB: 6290 s = "ldr"; 6291 lr = 1; 6292 goto ld; 6293 case M_LL_AB: 6294 s = "ll"; 6295 goto ld; 6296 case M_LLD_AB: 6297 s = "lld"; 6298 goto ld; 6299 case M_LWU_AB: 6300 s = "lwu"; 6301 ld: 6302 if (breg == treg || coproc || lr) 6303 { 6304 tempreg = AT; 6305 used_at = 1; 6306 } 6307 else 6308 { 6309 tempreg = treg; 6310 } 6311 goto ld_st; 6312 case M_SB_AB: 6313 s = "sb"; 6314 goto st; 6315 case M_SH_AB: 6316 s = "sh"; 6317 goto st; 6318 case M_SW_AB: 6319 s = "sw"; 6320 goto st; 6321 case M_SWC0_AB: 6322 s = "swc0"; 6323 /* Itbl support may require additional care here. */ 6324 coproc = 1; 6325 goto st; 6326 case M_SWC1_AB: 6327 s = "swc1"; 6328 /* Itbl support may require additional care here. */ 6329 coproc = 1; 6330 goto st; 6331 case M_SWC2_AB: 6332 s = "swc2"; 6333 /* Itbl support may require additional care here. */ 6334 coproc = 1; 6335 goto st; 6336 case M_SWC3_AB: 6337 s = "swc3"; 6338 /* Itbl support may require additional care here. */ 6339 coproc = 1; 6340 goto st; 6341 case M_SWL_AB: 6342 s = "swl"; 6343 goto st; 6344 case M_SWR_AB: 6345 s = "swr"; 6346 goto st; 6347 case M_SC_AB: 6348 s = "sc"; 6349 goto st; 6350 case M_SCD_AB: 6351 s = "scd"; 6352 goto st; 6353 case M_CACHE_AB: 6354 s = "cache"; 6355 goto st; 6356 case M_SDC1_AB: 6357 s = "sdc1"; 6358 coproc = 1; 6359 /* Itbl support may require additional care here. */ 6360 goto st; 6361 case M_SDC2_AB: 6362 s = "sdc2"; 6363 /* Itbl support may require additional care here. */ 6364 coproc = 1; 6365 goto st; 6366 case M_SDC3_AB: 6367 s = "sdc3"; 6368 /* Itbl support may require additional care here. */ 6369 coproc = 1; 6370 goto st; 6371 case M_SDL_AB: 6372 s = "sdl"; 6373 goto st; 6374 case M_SDR_AB: 6375 s = "sdr"; 6376 st: 6377 tempreg = AT; 6378 used_at = 1; 6379 ld_st: 6380 if (coproc 6381 && NO_ISA_COP (mips_opts.arch) 6382 && (ip->insn_mo->pinfo2 & (INSN2_M_FP_S | INSN2_M_FP_D)) == 0) 6383 { 6384 as_bad (_("opcode not supported on this processor: %s"), 6385 mips_cpu_info_from_arch (mips_opts.arch)->name); 6386 break; 6387 } 6388 6389 /* Itbl support may require additional care here. */ 6390 if (mask == M_LWC1_AB 6391 || mask == M_SWC1_AB 6392 || mask == M_LDC1_AB 6393 || mask == M_SDC1_AB 6394 || mask == M_L_DAB 6395 || mask == M_S_DAB) 6396 fmt = "T,o(b)"; 6397 else if (mask == M_CACHE_AB) 6398 fmt = "k,o(b)"; 6399 else if (coproc) 6400 fmt = "E,o(b)"; 6401 else 6402 fmt = "t,o(b)"; 6403 6404 if (offset_expr.X_op != O_constant 6405 && offset_expr.X_op != O_symbol) 6406 { 6407 as_bad (_("expression too complex")); 6408 offset_expr.X_op = O_constant; 6409 } 6410 6411 if (HAVE_32BIT_ADDRESSES 6412 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number)) 6413 { 6414 char value [32]; 6415 6416 sprintf_vma (value, offset_expr.X_add_number); 6417 as_bad (_("Number (0x%s) larger than 32 bits"), value); 6418 } 6419 6420 /* A constant expression in PIC code can be handled just as it 6421 is in non PIC code. */ 6422 if (offset_expr.X_op == O_constant) 6423 { 6424 expr1.X_add_number = ((offset_expr.X_add_number + 0x8000) 6425 & ~(bfd_vma) 0xffff); 6426 normalize_address_expr (&expr1); 6427 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES); 6428 if (breg != 0) 6429 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", 6430 tempreg, tempreg, breg); 6431 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16, tempreg); 6432 } 6433 else if (mips_pic == NO_PIC) 6434 { 6435 /* If this is a reference to a GP relative symbol, and there 6436 is no base register, we want 6437 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16) 6438 Otherwise, if there is no base register, we want 6439 lui $tempreg,<sym> (BFD_RELOC_HI16_S) 6440 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16) 6441 If we have a constant, we need two instructions anyhow, 6442 so we always use the latter form. 6443 6444 If we have a base register, and this is a reference to a 6445 GP relative symbol, we want 6446 addu $tempreg,$breg,$gp 6447 <op> $treg,<sym>($tempreg) (BFD_RELOC_GPREL16) 6448 Otherwise we want 6449 lui $tempreg,<sym> (BFD_RELOC_HI16_S) 6450 addu $tempreg,$tempreg,$breg 6451 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16) 6452 With a constant we always use the latter case. 6453 6454 With 64bit address space and no base register and $at usable, 6455 we want 6456 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST) 6457 lui $at,<sym> (BFD_RELOC_HI16_S) 6458 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER) 6459 dsll32 $tempreg,0 6460 daddu $tempreg,$at 6461 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16) 6462 If we have a base register, we want 6463 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST) 6464 lui $at,<sym> (BFD_RELOC_HI16_S) 6465 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER) 6466 daddu $at,$breg 6467 dsll32 $tempreg,0 6468 daddu $tempreg,$at 6469 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16) 6470 6471 Without $at we can't generate the optimal path for superscalar 6472 processors here since this would require two temporary registers. 6473 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST) 6474 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER) 6475 dsll $tempreg,16 6476 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S) 6477 dsll $tempreg,16 6478 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16) 6479 If we have a base register, we want 6480 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST) 6481 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER) 6482 dsll $tempreg,16 6483 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S) 6484 dsll $tempreg,16 6485 daddu $tempreg,$tempreg,$breg 6486 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16) 6487 6488 For GP relative symbols in 64bit address space we can use 6489 the same sequence as in 32bit address space. */ 6490 if (HAVE_64BIT_SYMBOLS) 6491 { 6492 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET 6493 && !nopic_need_relax (offset_expr.X_add_symbol, 1)) 6494 { 6495 relax_start (offset_expr.X_add_symbol); 6496 if (breg == 0) 6497 { 6498 macro_build (&offset_expr, s, fmt, treg, 6499 BFD_RELOC_GPREL16, mips_gp_register); 6500 } 6501 else 6502 { 6503 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", 6504 tempreg, breg, mips_gp_register); 6505 macro_build (&offset_expr, s, fmt, treg, 6506 BFD_RELOC_GPREL16, tempreg); 6507 } 6508 relax_switch (); 6509 } 6510 6511 if (used_at == 0 && mips_opts.at) 6512 { 6513 macro_build (&offset_expr, "lui", "t,u", tempreg, 6514 BFD_RELOC_MIPS_HIGHEST); 6515 macro_build (&offset_expr, "lui", "t,u", AT, 6516 BFD_RELOC_HI16_S); 6517 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg, 6518 tempreg, BFD_RELOC_MIPS_HIGHER); 6519 if (breg != 0) 6520 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg); 6521 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0); 6522 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT); 6523 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16, 6524 tempreg); 6525 used_at = 1; 6526 } 6527 else 6528 { 6529 macro_build (&offset_expr, "lui", "t,u", tempreg, 6530 BFD_RELOC_MIPS_HIGHEST); 6531 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg, 6532 tempreg, BFD_RELOC_MIPS_HIGHER); 6533 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16); 6534 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg, 6535 tempreg, BFD_RELOC_HI16_S); 6536 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16); 6537 if (breg != 0) 6538 macro_build (NULL, "daddu", "d,v,t", 6539 tempreg, tempreg, breg); 6540 macro_build (&offset_expr, s, fmt, treg, 6541 BFD_RELOC_LO16, tempreg); 6542 } 6543 6544 if (mips_relax.sequence) 6545 relax_end (); 6546 break; 6547 } 6548 6549 if (breg == 0) 6550 { 6551 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET 6552 && !nopic_need_relax (offset_expr.X_add_symbol, 1)) 6553 { 6554 relax_start (offset_expr.X_add_symbol); 6555 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_GPREL16, 6556 mips_gp_register); 6557 relax_switch (); 6558 } 6559 macro_build_lui (&offset_expr, tempreg); 6560 macro_build (&offset_expr, s, fmt, treg, 6561 BFD_RELOC_LO16, tempreg); 6562 if (mips_relax.sequence) 6563 relax_end (); 6564 } 6565 else 6566 { 6567 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET 6568 && !nopic_need_relax (offset_expr.X_add_symbol, 1)) 6569 { 6570 relax_start (offset_expr.X_add_symbol); 6571 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", 6572 tempreg, breg, mips_gp_register); 6573 macro_build (&offset_expr, s, fmt, treg, 6574 BFD_RELOC_GPREL16, tempreg); 6575 relax_switch (); 6576 } 6577 macro_build_lui (&offset_expr, tempreg); 6578 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", 6579 tempreg, tempreg, breg); 6580 macro_build (&offset_expr, s, fmt, treg, 6581 BFD_RELOC_LO16, tempreg); 6582 if (mips_relax.sequence) 6583 relax_end (); 6584 } 6585 } 6586 else if (!mips_big_got) 6587 { 6588 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16; 6589 6590 /* If this is a reference to an external symbol, we want 6591 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16) 6592 nop 6593 <op> $treg,0($tempreg) 6594 Otherwise we want 6595 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16) 6596 nop 6597 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16) 6598 <op> $treg,0($tempreg) 6599 6600 For NewABI, we want 6601 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE) 6602 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) 6603 6604 If there is a base register, we add it to $tempreg before 6605 the <op>. If there is a constant, we stick it in the 6606 <op> instruction. We don't handle constants larger than 6607 16 bits, because we have no way to load the upper 16 bits 6608 (actually, we could handle them for the subset of cases 6609 in which we are not using $at). */ 6610 assert (offset_expr.X_op == O_symbol); 6611 if (HAVE_NEWABI) 6612 { 6613 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg, 6614 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register); 6615 if (breg != 0) 6616 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", 6617 tempreg, tempreg, breg); 6618 macro_build (&offset_expr, s, fmt, treg, 6619 BFD_RELOC_MIPS_GOT_OFST, tempreg); 6620 break; 6621 } 6622 expr1.X_add_number = offset_expr.X_add_number; 6623 offset_expr.X_add_number = 0; 6624 if (expr1.X_add_number < -0x8000 6625 || expr1.X_add_number >= 0x8000) 6626 as_bad (_("PIC code offset overflow (max 16 signed bits)")); 6627 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg, 6628 lw_reloc_type, mips_gp_register); 6629 load_delay_nop (); 6630 relax_start (offset_expr.X_add_symbol); 6631 relax_switch (); 6632 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg, 6633 tempreg, BFD_RELOC_LO16); 6634 relax_end (); 6635 if (breg != 0) 6636 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", 6637 tempreg, tempreg, breg); 6638 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg); 6639 } 6640 else if (mips_big_got && !HAVE_NEWABI) 6641 { 6642 int gpdelay; 6643 6644 /* If this is a reference to an external symbol, we want 6645 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16) 6646 addu $tempreg,$tempreg,$gp 6647 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16) 6648 <op> $treg,0($tempreg) 6649 Otherwise we want 6650 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16) 6651 nop 6652 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16) 6653 <op> $treg,0($tempreg) 6654 If there is a base register, we add it to $tempreg before 6655 the <op>. If there is a constant, we stick it in the 6656 <op> instruction. We don't handle constants larger than 6657 16 bits, because we have no way to load the upper 16 bits 6658 (actually, we could handle them for the subset of cases 6659 in which we are not using $at). */ 6660 assert (offset_expr.X_op == O_symbol); 6661 expr1.X_add_number = offset_expr.X_add_number; 6662 offset_expr.X_add_number = 0; 6663 if (expr1.X_add_number < -0x8000 6664 || expr1.X_add_number >= 0x8000) 6665 as_bad (_("PIC code offset overflow (max 16 signed bits)")); 6666 gpdelay = reg_needs_delay (mips_gp_register); 6667 relax_start (offset_expr.X_add_symbol); 6668 macro_build (&offset_expr, "lui", "t,u", tempreg, 6669 BFD_RELOC_MIPS_GOT_HI16); 6670 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg, 6671 mips_gp_register); 6672 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg, 6673 BFD_RELOC_MIPS_GOT_LO16, tempreg); 6674 relax_switch (); 6675 if (gpdelay) 6676 macro_build (NULL, "nop", ""); 6677 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg, 6678 BFD_RELOC_MIPS_GOT16, mips_gp_register); 6679 load_delay_nop (); 6680 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg, 6681 tempreg, BFD_RELOC_LO16); 6682 relax_end (); 6683 6684 if (breg != 0) 6685 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", 6686 tempreg, tempreg, breg); 6687 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg); 6688 } 6689 else if (mips_big_got && HAVE_NEWABI) 6690 { 6691 /* If this is a reference to an external symbol, we want 6692 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16) 6693 add $tempreg,$tempreg,$gp 6694 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16) 6695 <op> $treg,<ofst>($tempreg) 6696 Otherwise, for local symbols, we want: 6697 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE) 6698 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */ 6699 assert (offset_expr.X_op == O_symbol); 6700 expr1.X_add_number = offset_expr.X_add_number; 6701 offset_expr.X_add_number = 0; 6702 if (expr1.X_add_number < -0x8000 6703 || expr1.X_add_number >= 0x8000) 6704 as_bad (_("PIC code offset overflow (max 16 signed bits)")); 6705 relax_start (offset_expr.X_add_symbol); 6706 macro_build (&offset_expr, "lui", "t,u", tempreg, 6707 BFD_RELOC_MIPS_GOT_HI16); 6708 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg, 6709 mips_gp_register); 6710 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg, 6711 BFD_RELOC_MIPS_GOT_LO16, tempreg); 6712 if (breg != 0) 6713 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", 6714 tempreg, tempreg, breg); 6715 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg); 6716 6717 relax_switch (); 6718 offset_expr.X_add_number = expr1.X_add_number; 6719 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg, 6720 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register); 6721 if (breg != 0) 6722 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", 6723 tempreg, tempreg, breg); 6724 macro_build (&offset_expr, s, fmt, treg, 6725 BFD_RELOC_MIPS_GOT_OFST, tempreg); 6726 relax_end (); 6727 } 6728 else 6729 abort (); 6730 6731 break; 6732 6733 case M_LI: 6734 case M_LI_S: 6735 load_register (treg, &imm_expr, 0); 6736 break; 6737 6738 case M_DLI: 6739 load_register (treg, &imm_expr, 1); 6740 break; 6741 6742 case M_LI_SS: 6743 if (imm_expr.X_op == O_constant) 6744 { 6745 used_at = 1; 6746 load_register (AT, &imm_expr, 0); 6747 macro_build (NULL, "mtc1", "t,G", AT, treg); 6748 break; 6749 } 6750 else 6751 { 6752 assert (offset_expr.X_op == O_symbol 6753 && strcmp (segment_name (S_GET_SEGMENT 6754 (offset_expr.X_add_symbol)), 6755 ".lit4") == 0 6756 && offset_expr.X_add_number == 0); 6757 macro_build (&offset_expr, "lwc1", "T,o(b)", treg, 6758 BFD_RELOC_MIPS_LITERAL, mips_gp_register); 6759 break; 6760 } 6761 6762 case M_LI_D: 6763 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits 6764 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high 6765 order 32 bits of the value and the low order 32 bits are either 6766 zero or in OFFSET_EXPR. */ 6767 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big) 6768 { 6769 if (HAVE_64BIT_GPRS) 6770 load_register (treg, &imm_expr, 1); 6771 else 6772 { 6773 int hreg, lreg; 6774 6775 if (target_big_endian) 6776 { 6777 hreg = treg; 6778 lreg = treg + 1; 6779 } 6780 else 6781 { 6782 hreg = treg + 1; 6783 lreg = treg; 6784 } 6785 6786 if (hreg <= 31) 6787 load_register (hreg, &imm_expr, 0); 6788 if (lreg <= 31) 6789 { 6790 if (offset_expr.X_op == O_absent) 6791 move_register (lreg, 0); 6792 else 6793 { 6794 assert (offset_expr.X_op == O_constant); 6795 load_register (lreg, &offset_expr, 0); 6796 } 6797 } 6798 } 6799 break; 6800 } 6801 6802 /* We know that sym is in the .rdata section. First we get the 6803 upper 16 bits of the address. */ 6804 if (mips_pic == NO_PIC) 6805 { 6806 macro_build_lui (&offset_expr, AT); 6807 used_at = 1; 6808 } 6809 else 6810 { 6811 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT, 6812 BFD_RELOC_MIPS_GOT16, mips_gp_register); 6813 used_at = 1; 6814 } 6815 6816 /* Now we load the register(s). */ 6817 if (HAVE_64BIT_GPRS) 6818 { 6819 used_at = 1; 6820 macro_build (&offset_expr, "ld", "t,o(b)", treg, BFD_RELOC_LO16, AT); 6821 } 6822 else 6823 { 6824 used_at = 1; 6825 macro_build (&offset_expr, "lw", "t,o(b)", treg, BFD_RELOC_LO16, AT); 6826 if (treg != RA) 6827 { 6828 /* FIXME: How in the world do we deal with the possible 6829 overflow here? */ 6830 offset_expr.X_add_number += 4; 6831 macro_build (&offset_expr, "lw", "t,o(b)", 6832 treg + 1, BFD_RELOC_LO16, AT); 6833 } 6834 } 6835 break; 6836 6837 case M_LI_DD: 6838 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits 6839 wide, IMM_EXPR is the entire value and the GPRs are known to be 64 6840 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of 6841 the value and the low order 32 bits are either zero or in 6842 OFFSET_EXPR. */ 6843 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big) 6844 { 6845 used_at = 1; 6846 load_register (AT, &imm_expr, HAVE_64BIT_FPRS); 6847 if (HAVE_64BIT_FPRS) 6848 { 6849 assert (HAVE_64BIT_GPRS); 6850 macro_build (NULL, "dmtc1", "t,S", AT, treg); 6851 } 6852 else 6853 { 6854 macro_build (NULL, "mtc1", "t,G", AT, treg + 1); 6855 if (offset_expr.X_op == O_absent) 6856 macro_build (NULL, "mtc1", "t,G", 0, treg); 6857 else 6858 { 6859 assert (offset_expr.X_op == O_constant); 6860 load_register (AT, &offset_expr, 0); 6861 macro_build (NULL, "mtc1", "t,G", AT, treg); 6862 } 6863 } 6864 break; 6865 } 6866 6867 assert (offset_expr.X_op == O_symbol 6868 && offset_expr.X_add_number == 0); 6869 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol)); 6870 if (strcmp (s, ".lit8") == 0) 6871 { 6872 if (mips_opts.isa != ISA_MIPS1) 6873 { 6874 macro_build (&offset_expr, "ldc1", "T,o(b)", treg, 6875 BFD_RELOC_MIPS_LITERAL, mips_gp_register); 6876 break; 6877 } 6878 breg = mips_gp_register; 6879 r = BFD_RELOC_MIPS_LITERAL; 6880 goto dob; 6881 } 6882 else 6883 { 6884 assert (strcmp (s, RDATA_SECTION_NAME) == 0); 6885 used_at = 1; 6886 if (mips_pic != NO_PIC) 6887 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT, 6888 BFD_RELOC_MIPS_GOT16, mips_gp_register); 6889 else 6890 { 6891 /* FIXME: This won't work for a 64 bit address. */ 6892 macro_build_lui (&offset_expr, AT); 6893 } 6894 6895 if (mips_opts.isa != ISA_MIPS1) 6896 { 6897 macro_build (&offset_expr, "ldc1", "T,o(b)", 6898 treg, BFD_RELOC_LO16, AT); 6899 break; 6900 } 6901 breg = AT; 6902 r = BFD_RELOC_LO16; 6903 goto dob; 6904 } 6905 6906 case M_L_DOB: 6907 /* Even on a big endian machine $fn comes before $fn+1. We have 6908 to adjust when loading from memory. */ 6909 r = BFD_RELOC_LO16; 6910 dob: 6911 assert (mips_opts.isa == ISA_MIPS1); 6912 macro_build (&offset_expr, "lwc1", "T,o(b)", 6913 target_big_endian ? treg + 1 : treg, r, breg); 6914 /* FIXME: A possible overflow which I don't know how to deal 6915 with. */ 6916 offset_expr.X_add_number += 4; 6917 macro_build (&offset_expr, "lwc1", "T,o(b)", 6918 target_big_endian ? treg : treg + 1, r, breg); 6919 break; 6920 6921 case M_L_DAB: 6922 /* 6923 * The MIPS assembler seems to check for X_add_number not 6924 * being double aligned and generating: 6925 * lui at,%hi(foo+1) 6926 * addu at,at,v1 6927 * addiu at,at,%lo(foo+1) 6928 * lwc1 f2,0(at) 6929 * lwc1 f3,4(at) 6930 * But, the resulting address is the same after relocation so why 6931 * generate the extra instruction? 6932 */ 6933 /* Itbl support may require additional care here. */ 6934 coproc = 1; 6935 if (mips_opts.isa != ISA_MIPS1) 6936 { 6937 s = "ldc1"; 6938 goto ld; 6939 } 6940 6941 s = "lwc1"; 6942 fmt = "T,o(b)"; 6943 goto ldd_std; 6944 6945 case M_S_DAB: 6946 if (mips_opts.isa != ISA_MIPS1) 6947 { 6948 s = "sdc1"; 6949 goto st; 6950 } 6951 6952 s = "swc1"; 6953 fmt = "T,o(b)"; 6954 /* Itbl support may require additional care here. */ 6955 coproc = 1; 6956 goto ldd_std; 6957 6958 case M_LD_AB: 6959 if (HAVE_64BIT_GPRS) 6960 { 6961 s = "ld"; 6962 goto ld; 6963 } 6964 6965 s = "lw"; 6966 fmt = "t,o(b)"; 6967 goto ldd_std; 6968 6969 case M_SD_AB: 6970 if (HAVE_64BIT_GPRS) 6971 { 6972 s = "sd"; 6973 goto st; 6974 } 6975 6976 s = "sw"; 6977 fmt = "t,o(b)"; 6978 6979 ldd_std: 6980 if (offset_expr.X_op != O_symbol 6981 && offset_expr.X_op != O_constant) 6982 { 6983 as_bad (_("expression too complex")); 6984 offset_expr.X_op = O_constant; 6985 } 6986 6987 if (HAVE_32BIT_ADDRESSES 6988 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number)) 6989 { 6990 char value [32]; 6991 6992 sprintf_vma (value, offset_expr.X_add_number); 6993 as_bad (_("Number (0x%s) larger than 32 bits"), value); 6994 } 6995 6996 /* Even on a big endian machine $fn comes before $fn+1. We have 6997 to adjust when loading from memory. We set coproc if we must 6998 load $fn+1 first. */ 6999 /* Itbl support may require additional care here. */ 7000 if (! target_big_endian) 7001 coproc = 0; 7002 7003 if (mips_pic == NO_PIC 7004 || offset_expr.X_op == O_constant) 7005 { 7006 /* If this is a reference to a GP relative symbol, we want 7007 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16) 7008 <op> $treg+1,<sym>+4($gp) (BFD_RELOC_GPREL16) 7009 If we have a base register, we use this 7010 addu $at,$breg,$gp 7011 <op> $treg,<sym>($at) (BFD_RELOC_GPREL16) 7012 <op> $treg+1,<sym>+4($at) (BFD_RELOC_GPREL16) 7013 If this is not a GP relative symbol, we want 7014 lui $at,<sym> (BFD_RELOC_HI16_S) 7015 <op> $treg,<sym>($at) (BFD_RELOC_LO16) 7016 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16) 7017 If there is a base register, we add it to $at after the 7018 lui instruction. If there is a constant, we always use 7019 the last case. */ 7020 if (offset_expr.X_op == O_symbol 7021 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET 7022 && !nopic_need_relax (offset_expr.X_add_symbol, 1)) 7023 { 7024 relax_start (offset_expr.X_add_symbol); 7025 if (breg == 0) 7026 { 7027 tempreg = mips_gp_register; 7028 } 7029 else 7030 { 7031 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", 7032 AT, breg, mips_gp_register); 7033 tempreg = AT; 7034 used_at = 1; 7035 } 7036 7037 /* Itbl support may require additional care here. */ 7038 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg, 7039 BFD_RELOC_GPREL16, tempreg); 7040 offset_expr.X_add_number += 4; 7041 7042 /* Set mips_optimize to 2 to avoid inserting an 7043 undesired nop. */ 7044 hold_mips_optimize = mips_optimize; 7045 mips_optimize = 2; 7046 /* Itbl support may require additional care here. */ 7047 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1, 7048 BFD_RELOC_GPREL16, tempreg); 7049 mips_optimize = hold_mips_optimize; 7050 7051 relax_switch (); 7052 7053 /* We just generated two relocs. When tc_gen_reloc 7054 handles this case, it will skip the first reloc and 7055 handle the second. The second reloc already has an 7056 extra addend of 4, which we added above. We must 7057 subtract it out, and then subtract another 4 to make 7058 the first reloc come out right. The second reloc 7059 will come out right because we are going to add 4 to 7060 offset_expr when we build its instruction below. 7061 7062 If we have a symbol, then we don't want to include 7063 the offset, because it will wind up being included 7064 when we generate the reloc. */ 7065 7066 if (offset_expr.X_op == O_constant) 7067 offset_expr.X_add_number -= 8; 7068 else 7069 { 7070 offset_expr.X_add_number = -4; 7071 offset_expr.X_op = O_constant; 7072 } 7073 } 7074 used_at = 1; 7075 macro_build_lui (&offset_expr, AT); 7076 if (breg != 0) 7077 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT); 7078 /* Itbl support may require additional care here. */ 7079 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg, 7080 BFD_RELOC_LO16, AT); 7081 /* FIXME: How do we handle overflow here? */ 7082 offset_expr.X_add_number += 4; 7083 /* Itbl support may require additional care here. */ 7084 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1, 7085 BFD_RELOC_LO16, AT); 7086 if (mips_relax.sequence) 7087 relax_end (); 7088 } 7089 else if (!mips_big_got) 7090 { 7091 /* If this is a reference to an external symbol, we want 7092 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16) 7093 nop 7094 <op> $treg,0($at) 7095 <op> $treg+1,4($at) 7096 Otherwise we want 7097 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16) 7098 nop 7099 <op> $treg,<sym>($at) (BFD_RELOC_LO16) 7100 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16) 7101 If there is a base register we add it to $at before the 7102 lwc1 instructions. If there is a constant we include it 7103 in the lwc1 instructions. */ 7104 used_at = 1; 7105 expr1.X_add_number = offset_expr.X_add_number; 7106 if (expr1.X_add_number < -0x8000 7107 || expr1.X_add_number >= 0x8000 - 4) 7108 as_bad (_("PIC code offset overflow (max 16 signed bits)")); 7109 load_got_offset (AT, &offset_expr); 7110 load_delay_nop (); 7111 if (breg != 0) 7112 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT); 7113 7114 /* Set mips_optimize to 2 to avoid inserting an undesired 7115 nop. */ 7116 hold_mips_optimize = mips_optimize; 7117 mips_optimize = 2; 7118 7119 /* Itbl support may require additional care here. */ 7120 relax_start (offset_expr.X_add_symbol); 7121 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg, 7122 BFD_RELOC_LO16, AT); 7123 expr1.X_add_number += 4; 7124 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1, 7125 BFD_RELOC_LO16, AT); 7126 relax_switch (); 7127 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg, 7128 BFD_RELOC_LO16, AT); 7129 offset_expr.X_add_number += 4; 7130 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1, 7131 BFD_RELOC_LO16, AT); 7132 relax_end (); 7133 7134 mips_optimize = hold_mips_optimize; 7135 } 7136 else if (mips_big_got) 7137 { 7138 int gpdelay; 7139 7140 /* If this is a reference to an external symbol, we want 7141 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16) 7142 addu $at,$at,$gp 7143 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16) 7144 nop 7145 <op> $treg,0($at) 7146 <op> $treg+1,4($at) 7147 Otherwise we want 7148 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16) 7149 nop 7150 <op> $treg,<sym>($at) (BFD_RELOC_LO16) 7151 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16) 7152 If there is a base register we add it to $at before the 7153 lwc1 instructions. If there is a constant we include it 7154 in the lwc1 instructions. */ 7155 used_at = 1; 7156 expr1.X_add_number = offset_expr.X_add_number; 7157 offset_expr.X_add_number = 0; 7158 if (expr1.X_add_number < -0x8000 7159 || expr1.X_add_number >= 0x8000 - 4) 7160 as_bad (_("PIC code offset overflow (max 16 signed bits)")); 7161 gpdelay = reg_needs_delay (mips_gp_register); 7162 relax_start (offset_expr.X_add_symbol); 7163 macro_build (&offset_expr, "lui", "t,u", 7164 AT, BFD_RELOC_MIPS_GOT_HI16); 7165 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", 7166 AT, AT, mips_gp_register); 7167 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", 7168 AT, BFD_RELOC_MIPS_GOT_LO16, AT); 7169 load_delay_nop (); 7170 if (breg != 0) 7171 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT); 7172 /* Itbl support may require additional care here. */ 7173 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg, 7174 BFD_RELOC_LO16, AT); 7175 expr1.X_add_number += 4; 7176 7177 /* Set mips_optimize to 2 to avoid inserting an undesired 7178 nop. */ 7179 hold_mips_optimize = mips_optimize; 7180 mips_optimize = 2; 7181 /* Itbl support may require additional care here. */ 7182 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1, 7183 BFD_RELOC_LO16, AT); 7184 mips_optimize = hold_mips_optimize; 7185 expr1.X_add_number -= 4; 7186 7187 relax_switch (); 7188 offset_expr.X_add_number = expr1.X_add_number; 7189 if (gpdelay) 7190 macro_build (NULL, "nop", ""); 7191 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT, 7192 BFD_RELOC_MIPS_GOT16, mips_gp_register); 7193 load_delay_nop (); 7194 if (breg != 0) 7195 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT); 7196 /* Itbl support may require additional care here. */ 7197 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg, 7198 BFD_RELOC_LO16, AT); 7199 offset_expr.X_add_number += 4; 7200 7201 /* Set mips_optimize to 2 to avoid inserting an undesired 7202 nop. */ 7203 hold_mips_optimize = mips_optimize; 7204 mips_optimize = 2; 7205 /* Itbl support may require additional care here. */ 7206 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1, 7207 BFD_RELOC_LO16, AT); 7208 mips_optimize = hold_mips_optimize; 7209 relax_end (); 7210 } 7211 else 7212 abort (); 7213 7214 break; 7215 7216 case M_LD_OB: 7217 s = "lw"; 7218 goto sd_ob; 7219 case M_SD_OB: 7220 s = "sw"; 7221 sd_ob: 7222 assert (HAVE_32BIT_ADDRESSES); 7223 macro_build (&offset_expr, s, "t,o(b)", treg, BFD_RELOC_LO16, breg); 7224 offset_expr.X_add_number += 4; 7225 macro_build (&offset_expr, s, "t,o(b)", treg + 1, BFD_RELOC_LO16, breg); 7226 break; 7227 7228 /* New code added to support COPZ instructions. 7229 This code builds table entries out of the macros in mip_opcodes. 7230 R4000 uses interlocks to handle coproc delays. 7231 Other chips (like the R3000) require nops to be inserted for delays. 7232 7233 FIXME: Currently, we require that the user handle delays. 7234 In order to fill delay slots for non-interlocked chips, 7235 we must have a way to specify delays based on the coprocessor. 7236 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc. 7237 What are the side-effects of the cop instruction? 7238 What cache support might we have and what are its effects? 7239 Both coprocessor & memory require delays. how long??? 7240 What registers are read/set/modified? 7241 7242 If an itbl is provided to interpret cop instructions, 7243 this knowledge can be encoded in the itbl spec. */ 7244 7245 case M_COP0: 7246 s = "c0"; 7247 goto copz; 7248 case M_COP1: 7249 s = "c1"; 7250 goto copz; 7251 case M_COP2: 7252 s = "c2"; 7253 goto copz; 7254 case M_COP3: 7255 s = "c3"; 7256 copz: 7257 if (NO_ISA_COP (mips_opts.arch) 7258 && (ip->insn_mo->pinfo2 & INSN2_M_FP_S) == 0) 7259 { 7260 as_bad (_("opcode not supported on this processor: %s"), 7261 mips_cpu_info_from_arch (mips_opts.arch)->name); 7262 break; 7263 } 7264 7265 /* For now we just do C (same as Cz). The parameter will be 7266 stored in insn_opcode by mips_ip. */ 7267 macro_build (NULL, s, "C", ip->insn_opcode); 7268 break; 7269 7270 case M_MOVE: 7271 move_register (dreg, sreg); 7272 break; 7273 7274 #ifdef LOSING_COMPILER 7275 default: 7276 /* Try and see if this is a new itbl instruction. 7277 This code builds table entries out of the macros in mip_opcodes. 7278 FIXME: For now we just assemble the expression and pass it's 7279 value along as a 32-bit immediate. 7280 We may want to have the assembler assemble this value, 7281 so that we gain the assembler's knowledge of delay slots, 7282 symbols, etc. 7283 Would it be more efficient to use mask (id) here? */ 7284 if (itbl_have_entries 7285 && (immed_expr = itbl_assemble (ip->insn_mo->name, ""))) 7286 { 7287 s = ip->insn_mo->name; 7288 s2 = "cop3"; 7289 coproc = ITBL_DECODE_PNUM (immed_expr);; 7290 macro_build (&immed_expr, s, "C"); 7291 break; 7292 } 7293 macro2 (ip); 7294 break; 7295 } 7296 if (!mips_opts.at && used_at) 7297 as_bad (_("Macro used $at after \".set noat\"")); 7298 } 7299 7300 static void 7301 macro2 (struct mips_cl_insn *ip) 7302 { 7303 unsigned int treg, sreg, dreg, breg; 7304 unsigned int tempreg; 7305 int mask; 7306 int used_at; 7307 expressionS expr1; 7308 const char *s; 7309 const char *s2; 7310 const char *fmt; 7311 int likely = 0; 7312 int dbl = 0; 7313 int coproc = 0; 7314 int lr = 0; 7315 int imm = 0; 7316 int off; 7317 offsetT maxnum; 7318 bfd_reloc_code_real_type r; 7319 7320 treg = (ip->insn_opcode >> 16) & 0x1f; 7321 dreg = (ip->insn_opcode >> 11) & 0x1f; 7322 sreg = breg = (ip->insn_opcode >> 21) & 0x1f; 7323 mask = ip->insn_mo->mask; 7324 7325 expr1.X_op = O_constant; 7326 expr1.X_op_symbol = NULL; 7327 expr1.X_add_symbol = NULL; 7328 expr1.X_add_number = 1; 7329 7330 switch (mask) 7331 { 7332 #endif /* LOSING_COMPILER */ 7333 7334 case M_DMUL: 7335 dbl = 1; 7336 case M_MUL: 7337 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", sreg, treg); 7338 macro_build (NULL, "mflo", "d", dreg); 7339 break; 7340 7341 case M_DMUL_I: 7342 dbl = 1; 7343 case M_MUL_I: 7344 /* The MIPS assembler some times generates shifts and adds. I'm 7345 not trying to be that fancy. GCC should do this for us 7346 anyway. */ 7347 used_at = 1; 7348 load_register (AT, &imm_expr, dbl); 7349 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, AT); 7350 macro_build (NULL, "mflo", "d", dreg); 7351 break; 7352 7353 case M_DMULO_I: 7354 dbl = 1; 7355 case M_MULO_I: 7356 imm = 1; 7357 goto do_mulo; 7358 7359 case M_DMULO: 7360 dbl = 1; 7361 case M_MULO: 7362 do_mulo: 7363 start_noreorder (); 7364 used_at = 1; 7365 if (imm) 7366 load_register (AT, &imm_expr, dbl); 7367 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, imm ? AT : treg); 7368 macro_build (NULL, "mflo", "d", dreg); 7369 macro_build (NULL, dbl ? "dsra32" : "sra", "d,w,<", dreg, dreg, RA); 7370 macro_build (NULL, "mfhi", "d", AT); 7371 if (mips_trap) 7372 macro_build (NULL, "tne", "s,t,q", dreg, AT, 6); 7373 else 7374 { 7375 expr1.X_add_number = 8; 7376 macro_build (&expr1, "beq", "s,t,p", dreg, AT); 7377 macro_build (NULL, "nop", "", 0); 7378 macro_build (NULL, "break", "c", 6); 7379 } 7380 end_noreorder (); 7381 macro_build (NULL, "mflo", "d", dreg); 7382 break; 7383 7384 case M_DMULOU_I: 7385 dbl = 1; 7386 case M_MULOU_I: 7387 imm = 1; 7388 goto do_mulou; 7389 7390 case M_DMULOU: 7391 dbl = 1; 7392 case M_MULOU: 7393 do_mulou: 7394 start_noreorder (); 7395 used_at = 1; 7396 if (imm) 7397 load_register (AT, &imm_expr, dbl); 7398 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", 7399 sreg, imm ? AT : treg); 7400 macro_build (NULL, "mfhi", "d", AT); 7401 macro_build (NULL, "mflo", "d", dreg); 7402 if (mips_trap) 7403 macro_build (NULL, "tne", "s,t,q", AT, 0, 6); 7404 else 7405 { 7406 expr1.X_add_number = 8; 7407 macro_build (&expr1, "beq", "s,t,p", AT, 0); 7408 macro_build (NULL, "nop", "", 0); 7409 macro_build (NULL, "break", "c", 6); 7410 } 7411 end_noreorder (); 7412 break; 7413 7414 case M_DROL: 7415 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch)) 7416 { 7417 if (dreg == sreg) 7418 { 7419 tempreg = AT; 7420 used_at = 1; 7421 } 7422 else 7423 { 7424 tempreg = dreg; 7425 } 7426 macro_build (NULL, "dnegu", "d,w", tempreg, treg); 7427 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, tempreg); 7428 break; 7429 } 7430 used_at = 1; 7431 macro_build (NULL, "dsubu", "d,v,t", AT, 0, treg); 7432 macro_build (NULL, "dsrlv", "d,t,s", AT, sreg, AT); 7433 macro_build (NULL, "dsllv", "d,t,s", dreg, sreg, treg); 7434 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT); 7435 break; 7436 7437 case M_ROL: 7438 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch)) 7439 { 7440 if (dreg == sreg) 7441 { 7442 tempreg = AT; 7443 used_at = 1; 7444 } 7445 else 7446 { 7447 tempreg = dreg; 7448 } 7449 macro_build (NULL, "negu", "d,w", tempreg, treg); 7450 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, tempreg); 7451 break; 7452 } 7453 used_at = 1; 7454 macro_build (NULL, "subu", "d,v,t", AT, 0, treg); 7455 macro_build (NULL, "srlv", "d,t,s", AT, sreg, AT); 7456 macro_build (NULL, "sllv", "d,t,s", dreg, sreg, treg); 7457 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT); 7458 break; 7459 7460 case M_DROL_I: 7461 { 7462 unsigned int rot; 7463 char *l, *r; 7464 7465 if (imm_expr.X_op != O_constant) 7466 as_bad (_("Improper rotate count")); 7467 rot = imm_expr.X_add_number & 0x3f; 7468 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch)) 7469 { 7470 rot = (64 - rot) & 0x3f; 7471 if (rot >= 32) 7472 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32); 7473 else 7474 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot); 7475 break; 7476 } 7477 if (rot == 0) 7478 { 7479 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0); 7480 break; 7481 } 7482 l = (rot < 0x20) ? "dsll" : "dsll32"; 7483 r = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32"; 7484 rot &= 0x1f; 7485 used_at = 1; 7486 macro_build (NULL, l, "d,w,<", AT, sreg, rot); 7487 macro_build (NULL, r, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f); 7488 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT); 7489 } 7490 break; 7491 7492 case M_ROL_I: 7493 { 7494 unsigned int rot; 7495 7496 if (imm_expr.X_op != O_constant) 7497 as_bad (_("Improper rotate count")); 7498 rot = imm_expr.X_add_number & 0x1f; 7499 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch)) 7500 { 7501 macro_build (NULL, "ror", "d,w,<", dreg, sreg, (32 - rot) & 0x1f); 7502 break; 7503 } 7504 if (rot == 0) 7505 { 7506 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0); 7507 break; 7508 } 7509 used_at = 1; 7510 macro_build (NULL, "sll", "d,w,<", AT, sreg, rot); 7511 macro_build (NULL, "srl", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f); 7512 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT); 7513 } 7514 break; 7515 7516 case M_DROR: 7517 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch)) 7518 { 7519 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, treg); 7520 break; 7521 } 7522 used_at = 1; 7523 macro_build (NULL, "dsubu", "d,v,t", AT, 0, treg); 7524 macro_build (NULL, "dsllv", "d,t,s", AT, sreg, AT); 7525 macro_build (NULL, "dsrlv", "d,t,s", dreg, sreg, treg); 7526 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT); 7527 break; 7528 7529 case M_ROR: 7530 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch)) 7531 { 7532 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, treg); 7533 break; 7534 } 7535 used_at = 1; 7536 macro_build (NULL, "subu", "d,v,t", AT, 0, treg); 7537 macro_build (NULL, "sllv", "d,t,s", AT, sreg, AT); 7538 macro_build (NULL, "srlv", "d,t,s", dreg, sreg, treg); 7539 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT); 7540 break; 7541 7542 case M_DROR_I: 7543 { 7544 unsigned int rot; 7545 char *l, *r; 7546 7547 if (imm_expr.X_op != O_constant) 7548 as_bad (_("Improper rotate count")); 7549 rot = imm_expr.X_add_number & 0x3f; 7550 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch)) 7551 { 7552 if (rot >= 32) 7553 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32); 7554 else 7555 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot); 7556 break; 7557 } 7558 if (rot == 0) 7559 { 7560 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0); 7561 break; 7562 } 7563 r = (rot < 0x20) ? "dsrl" : "dsrl32"; 7564 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32"; 7565 rot &= 0x1f; 7566 used_at = 1; 7567 macro_build (NULL, r, "d,w,<", AT, sreg, rot); 7568 macro_build (NULL, l, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f); 7569 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT); 7570 } 7571 break; 7572 7573 case M_ROR_I: 7574 { 7575 unsigned int rot; 7576 7577 if (imm_expr.X_op != O_constant) 7578 as_bad (_("Improper rotate count")); 7579 rot = imm_expr.X_add_number & 0x1f; 7580 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch)) 7581 { 7582 macro_build (NULL, "ror", "d,w,<", dreg, sreg, rot); 7583 break; 7584 } 7585 if (rot == 0) 7586 { 7587 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0); 7588 break; 7589 } 7590 used_at = 1; 7591 macro_build (NULL, "srl", "d,w,<", AT, sreg, rot); 7592 macro_build (NULL, "sll", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f); 7593 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT); 7594 } 7595 break; 7596 7597 case M_S_DOB: 7598 assert (mips_opts.isa == ISA_MIPS1); 7599 /* Even on a big endian machine $fn comes before $fn+1. We have 7600 to adjust when storing to memory. */ 7601 macro_build (&offset_expr, "swc1", "T,o(b)", 7602 target_big_endian ? treg + 1 : treg, BFD_RELOC_LO16, breg); 7603 offset_expr.X_add_number += 4; 7604 macro_build (&offset_expr, "swc1", "T,o(b)", 7605 target_big_endian ? treg : treg + 1, BFD_RELOC_LO16, breg); 7606 break; 7607 7608 case M_SEQ: 7609 if (sreg == 0) 7610 macro_build (&expr1, "sltiu", "t,r,j", dreg, treg, BFD_RELOC_LO16); 7611 else if (treg == 0) 7612 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16); 7613 else 7614 { 7615 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg); 7616 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16); 7617 } 7618 break; 7619 7620 case M_SEQ_I: 7621 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0) 7622 { 7623 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16); 7624 break; 7625 } 7626 if (sreg == 0) 7627 { 7628 as_warn (_("Instruction %s: result is always false"), 7629 ip->insn_mo->name); 7630 move_register (dreg, 0); 7631 break; 7632 } 7633 if (CPU_HAS_SEQ (mips_opts.arch) 7634 && -512 <= imm_expr.X_add_number 7635 && imm_expr.X_add_number < 512) 7636 { 7637 macro_build (NULL, "seqi", "t,r,+Q", dreg, sreg, 7638 imm_expr.X_add_number); 7639 break; 7640 } 7641 if (imm_expr.X_op == O_constant 7642 && imm_expr.X_add_number >= 0 7643 && imm_expr.X_add_number < 0x10000) 7644 { 7645 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16); 7646 } 7647 else if (imm_expr.X_op == O_constant 7648 && imm_expr.X_add_number > -0x8000 7649 && imm_expr.X_add_number < 0) 7650 { 7651 imm_expr.X_add_number = -imm_expr.X_add_number; 7652 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu", 7653 "t,r,j", dreg, sreg, BFD_RELOC_LO16); 7654 } 7655 else if (CPU_HAS_SEQ (mips_opts.arch)) 7656 { 7657 used_at = 1; 7658 load_register (AT, &imm_expr, HAVE_64BIT_GPRS); 7659 macro_build (NULL, "seq", "d,v,t", dreg, sreg, AT); 7660 break; 7661 } 7662 else 7663 { 7664 load_register (AT, &imm_expr, HAVE_64BIT_GPRS); 7665 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT); 7666 used_at = 1; 7667 } 7668 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16); 7669 break; 7670 7671 case M_SGE: /* sreg >= treg <==> not (sreg < treg) */ 7672 s = "slt"; 7673 goto sge; 7674 case M_SGEU: 7675 s = "sltu"; 7676 sge: 7677 macro_build (NULL, s, "d,v,t", dreg, sreg, treg); 7678 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16); 7679 break; 7680 7681 case M_SGE_I: /* sreg >= I <==> not (sreg < I) */ 7682 case M_SGEU_I: 7683 if (imm_expr.X_op == O_constant 7684 && imm_expr.X_add_number >= -0x8000 7685 && imm_expr.X_add_number < 0x8000) 7686 { 7687 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j", 7688 dreg, sreg, BFD_RELOC_LO16); 7689 } 7690 else 7691 { 7692 load_register (AT, &imm_expr, HAVE_64BIT_GPRS); 7693 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t", 7694 dreg, sreg, AT); 7695 used_at = 1; 7696 } 7697 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16); 7698 break; 7699 7700 case M_SGT: /* sreg > treg <==> treg < sreg */ 7701 s = "slt"; 7702 goto sgt; 7703 case M_SGTU: 7704 s = "sltu"; 7705 sgt: 7706 macro_build (NULL, s, "d,v,t", dreg, treg, sreg); 7707 break; 7708 7709 case M_SGT_I: /* sreg > I <==> I < sreg */ 7710 s = "slt"; 7711 goto sgti; 7712 case M_SGTU_I: 7713 s = "sltu"; 7714 sgti: 7715 used_at = 1; 7716 load_register (AT, &imm_expr, HAVE_64BIT_GPRS); 7717 macro_build (NULL, s, "d,v,t", dreg, AT, sreg); 7718 break; 7719 7720 case M_SLE: /* sreg <= treg <==> treg >= sreg <==> not (treg < sreg) */ 7721 s = "slt"; 7722 goto sle; 7723 case M_SLEU: 7724 s = "sltu"; 7725 sle: 7726 macro_build (NULL, s, "d,v,t", dreg, treg, sreg); 7727 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16); 7728 break; 7729 7730 case M_SLE_I: /* sreg <= I <==> I >= sreg <==> not (I < sreg) */ 7731 s = "slt"; 7732 goto slei; 7733 case M_SLEU_I: 7734 s = "sltu"; 7735 slei: 7736 used_at = 1; 7737 load_register (AT, &imm_expr, HAVE_64BIT_GPRS); 7738 macro_build (NULL, s, "d,v,t", dreg, AT, sreg); 7739 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16); 7740 break; 7741 7742 case M_SLT_I: 7743 if (imm_expr.X_op == O_constant 7744 && imm_expr.X_add_number >= -0x8000 7745 && imm_expr.X_add_number < 0x8000) 7746 { 7747 macro_build (&imm_expr, "slti", "t,r,j", dreg, sreg, BFD_RELOC_LO16); 7748 break; 7749 } 7750 used_at = 1; 7751 load_register (AT, &imm_expr, HAVE_64BIT_GPRS); 7752 macro_build (NULL, "slt", "d,v,t", dreg, sreg, AT); 7753 break; 7754 7755 case M_SLTU_I: 7756 if (imm_expr.X_op == O_constant 7757 && imm_expr.X_add_number >= -0x8000 7758 && imm_expr.X_add_number < 0x8000) 7759 { 7760 macro_build (&imm_expr, "sltiu", "t,r,j", dreg, sreg, 7761 BFD_RELOC_LO16); 7762 break; 7763 } 7764 used_at = 1; 7765 load_register (AT, &imm_expr, HAVE_64BIT_GPRS); 7766 macro_build (NULL, "sltu", "d,v,t", dreg, sreg, AT); 7767 break; 7768 7769 case M_SNE: 7770 if (sreg == 0) 7771 macro_build (NULL, "sltu", "d,v,t", dreg, 0, treg); 7772 else if (treg == 0) 7773 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg); 7774 else 7775 { 7776 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg); 7777 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg); 7778 } 7779 break; 7780 7781 case M_SNE_I: 7782 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0) 7783 { 7784 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg); 7785 break; 7786 } 7787 if (sreg == 0) 7788 { 7789 as_warn (_("Instruction %s: result is always true"), 7790 ip->insn_mo->name); 7791 macro_build (&expr1, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j", 7792 dreg, 0, BFD_RELOC_LO16); 7793 break; 7794 } 7795 if (CPU_HAS_SEQ (mips_opts.arch) 7796 && -512 <= imm_expr.X_add_number 7797 && imm_expr.X_add_number < 512) 7798 { 7799 macro_build (NULL, "snei", "t,r,+Q", dreg, sreg, 7800 imm_expr.X_add_number); 7801 break; 7802 } 7803 if (imm_expr.X_op == O_constant 7804 && imm_expr.X_add_number >= 0 7805 && imm_expr.X_add_number < 0x10000) 7806 { 7807 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16); 7808 } 7809 else if (imm_expr.X_op == O_constant 7810 && imm_expr.X_add_number > -0x8000 7811 && imm_expr.X_add_number < 0) 7812 { 7813 imm_expr.X_add_number = -imm_expr.X_add_number; 7814 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu", 7815 "t,r,j", dreg, sreg, BFD_RELOC_LO16); 7816 } 7817 else if (CPU_HAS_SEQ (mips_opts.arch)) 7818 { 7819 used_at = 1; 7820 load_register (AT, &imm_expr, HAVE_64BIT_GPRS); 7821 macro_build (NULL, "sne", "d,v,t", dreg, sreg, AT); 7822 break; 7823 } 7824 else 7825 { 7826 load_register (AT, &imm_expr, HAVE_64BIT_GPRS); 7827 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT); 7828 used_at = 1; 7829 } 7830 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg); 7831 break; 7832 7833 case M_DSUB_I: 7834 dbl = 1; 7835 case M_SUB_I: 7836 if (imm_expr.X_op == O_constant 7837 && imm_expr.X_add_number > -0x8000 7838 && imm_expr.X_add_number <= 0x8000) 7839 { 7840 imm_expr.X_add_number = -imm_expr.X_add_number; 7841 macro_build (&imm_expr, dbl ? "daddi" : "addi", "t,r,j", 7842 dreg, sreg, BFD_RELOC_LO16); 7843 break; 7844 } 7845 used_at = 1; 7846 load_register (AT, &imm_expr, dbl); 7847 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, sreg, AT); 7848 break; 7849 7850 case M_DSUBU_I: 7851 dbl = 1; 7852 case M_SUBU_I: 7853 if (imm_expr.X_op == O_constant 7854 && imm_expr.X_add_number > -0x8000 7855 && imm_expr.X_add_number <= 0x8000) 7856 { 7857 imm_expr.X_add_number = -imm_expr.X_add_number; 7858 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "t,r,j", 7859 dreg, sreg, BFD_RELOC_LO16); 7860 break; 7861 } 7862 used_at = 1; 7863 load_register (AT, &imm_expr, dbl); 7864 macro_build (NULL, dbl ? "dsubu" : "subu", "d,v,t", dreg, sreg, AT); 7865 break; 7866 7867 case M_TEQ_I: 7868 s = "teq"; 7869 goto trap; 7870 case M_TGE_I: 7871 s = "tge"; 7872 goto trap; 7873 case M_TGEU_I: 7874 s = "tgeu"; 7875 goto trap; 7876 case M_TLT_I: 7877 s = "tlt"; 7878 goto trap; 7879 case M_TLTU_I: 7880 s = "tltu"; 7881 goto trap; 7882 case M_TNE_I: 7883 s = "tne"; 7884 trap: 7885 used_at = 1; 7886 load_register (AT, &imm_expr, HAVE_64BIT_GPRS); 7887 macro_build (NULL, s, "s,t", sreg, AT); 7888 break; 7889 7890 case M_TRUNCWS: 7891 case M_TRUNCWD: 7892 assert (mips_opts.isa == ISA_MIPS1); 7893 used_at = 1; 7894 sreg = (ip->insn_opcode >> 11) & 0x1f; /* floating reg */ 7895 dreg = (ip->insn_opcode >> 06) & 0x1f; /* floating reg */ 7896 7897 /* 7898 * Is the double cfc1 instruction a bug in the mips assembler; 7899 * or is there a reason for it? 7900 */ 7901 start_noreorder (); 7902 macro_build (NULL, "cfc1", "t,G", treg, RA); 7903 macro_build (NULL, "cfc1", "t,G", treg, RA); 7904 macro_build (NULL, "nop", ""); 7905 expr1.X_add_number = 3; 7906 macro_build (&expr1, "ori", "t,r,i", AT, treg, BFD_RELOC_LO16); 7907 expr1.X_add_number = 2; 7908 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16); 7909 macro_build (NULL, "ctc1", "t,G", AT, RA); 7910 macro_build (NULL, "nop", ""); 7911 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S", 7912 dreg, sreg); 7913 macro_build (NULL, "ctc1", "t,G", treg, RA); 7914 macro_build (NULL, "nop", ""); 7915 end_noreorder (); 7916 break; 7917 7918 case M_ULH: 7919 s = "lb"; 7920 goto ulh; 7921 case M_ULHU: 7922 s = "lbu"; 7923 ulh: 7924 used_at = 1; 7925 if (offset_expr.X_add_number >= 0x7fff) 7926 as_bad (_("operand overflow")); 7927 if (! target_big_endian) 7928 ++offset_expr.X_add_number; 7929 macro_build (&offset_expr, s, "t,o(b)", AT, BFD_RELOC_LO16, breg); 7930 if (! target_big_endian) 7931 --offset_expr.X_add_number; 7932 else 7933 ++offset_expr.X_add_number; 7934 macro_build (&offset_expr, "lbu", "t,o(b)", treg, BFD_RELOC_LO16, breg); 7935 macro_build (NULL, "sll", "d,w,<", AT, AT, 8); 7936 macro_build (NULL, "or", "d,v,t", treg, treg, AT); 7937 break; 7938 7939 case M_ULD: 7940 s = "ldl"; 7941 s2 = "ldr"; 7942 off = 7; 7943 goto ulw; 7944 case M_ULW: 7945 s = "lwl"; 7946 s2 = "lwr"; 7947 off = 3; 7948 ulw: 7949 if (offset_expr.X_add_number >= 0x8000 - off) 7950 as_bad (_("operand overflow")); 7951 if (treg != breg) 7952 tempreg = treg; 7953 else 7954 { 7955 used_at = 1; 7956 tempreg = AT; 7957 } 7958 if (! target_big_endian) 7959 offset_expr.X_add_number += off; 7960 macro_build (&offset_expr, s, "t,o(b)", tempreg, BFD_RELOC_LO16, breg); 7961 if (! target_big_endian) 7962 offset_expr.X_add_number -= off; 7963 else 7964 offset_expr.X_add_number += off; 7965 macro_build (&offset_expr, s2, "t,o(b)", tempreg, BFD_RELOC_LO16, breg); 7966 7967 /* If necessary, move the result in tempreg the final destination. */ 7968 if (treg == tempreg) 7969 break; 7970 /* Protect second load's delay slot. */ 7971 load_delay_nop (); 7972 move_register (treg, tempreg); 7973 break; 7974 7975 case M_ULD_A: 7976 s = "ldl"; 7977 s2 = "ldr"; 7978 off = 7; 7979 goto ulwa; 7980 case M_ULW_A: 7981 s = "lwl"; 7982 s2 = "lwr"; 7983 off = 3; 7984 ulwa: 7985 used_at = 1; 7986 load_address (AT, &offset_expr, &used_at); 7987 if (breg != 0) 7988 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg); 7989 if (! target_big_endian) 7990 expr1.X_add_number = off; 7991 else 7992 expr1.X_add_number = 0; 7993 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT); 7994 if (! target_big_endian) 7995 expr1.X_add_number = 0; 7996 else 7997 expr1.X_add_number = off; 7998 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT); 7999 break; 8000 8001 case M_ULH_A: 8002 case M_ULHU_A: 8003 used_at = 1; 8004 load_address (AT, &offset_expr, &used_at); 8005 if (breg != 0) 8006 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg); 8007 if (target_big_endian) 8008 expr1.X_add_number = 0; 8009 macro_build (&expr1, mask == M_ULH_A ? "lb" : "lbu", "t,o(b)", 8010 treg, BFD_RELOC_LO16, AT); 8011 if (target_big_endian) 8012 expr1.X_add_number = 1; 8013 else 8014 expr1.X_add_number = 0; 8015 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT); 8016 macro_build (NULL, "sll", "d,w,<", treg, treg, 8); 8017 macro_build (NULL, "or", "d,v,t", treg, treg, AT); 8018 break; 8019 8020 case M_USH: 8021 used_at = 1; 8022 if (offset_expr.X_add_number >= 0x7fff) 8023 as_bad (_("operand overflow")); 8024 if (target_big_endian) 8025 ++offset_expr.X_add_number; 8026 macro_build (&offset_expr, "sb", "t,o(b)", treg, BFD_RELOC_LO16, breg); 8027 macro_build (NULL, "srl", "d,w,<", AT, treg, 8); 8028 if (target_big_endian) 8029 --offset_expr.X_add_number; 8030 else 8031 ++offset_expr.X_add_number; 8032 macro_build (&offset_expr, "sb", "t,o(b)", AT, BFD_RELOC_LO16, breg); 8033 break; 8034 8035 case M_USD: 8036 s = "sdl"; 8037 s2 = "sdr"; 8038 off = 7; 8039 goto usw; 8040 case M_USW: 8041 s = "swl"; 8042 s2 = "swr"; 8043 off = 3; 8044 usw: 8045 if (offset_expr.X_add_number >= 0x8000 - off) 8046 as_bad (_("operand overflow")); 8047 if (! target_big_endian) 8048 offset_expr.X_add_number += off; 8049 macro_build (&offset_expr, s, "t,o(b)", treg, BFD_RELOC_LO16, breg); 8050 if (! target_big_endian) 8051 offset_expr.X_add_number -= off; 8052 else 8053 offset_expr.X_add_number += off; 8054 macro_build (&offset_expr, s2, "t,o(b)", treg, BFD_RELOC_LO16, breg); 8055 break; 8056 8057 case M_USD_A: 8058 s = "sdl"; 8059 s2 = "sdr"; 8060 off = 7; 8061 goto uswa; 8062 case M_USW_A: 8063 s = "swl"; 8064 s2 = "swr"; 8065 off = 3; 8066 uswa: 8067 used_at = 1; 8068 load_address (AT, &offset_expr, &used_at); 8069 if (breg != 0) 8070 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg); 8071 if (! target_big_endian) 8072 expr1.X_add_number = off; 8073 else 8074 expr1.X_add_number = 0; 8075 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT); 8076 if (! target_big_endian) 8077 expr1.X_add_number = 0; 8078 else 8079 expr1.X_add_number = off; 8080 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT); 8081 break; 8082 8083 case M_USH_A: 8084 used_at = 1; 8085 load_address (AT, &offset_expr, &used_at); 8086 if (breg != 0) 8087 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg); 8088 if (! target_big_endian) 8089 expr1.X_add_number = 0; 8090 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT); 8091 macro_build (NULL, "srl", "d,w,<", treg, treg, 8); 8092 if (! target_big_endian) 8093 expr1.X_add_number = 1; 8094 else 8095 expr1.X_add_number = 0; 8096 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT); 8097 if (! target_big_endian) 8098 expr1.X_add_number = 0; 8099 else 8100 expr1.X_add_number = 1; 8101 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT); 8102 macro_build (NULL, "sll", "d,w,<", treg, treg, 8); 8103 macro_build (NULL, "or", "d,v,t", treg, treg, AT); 8104 break; 8105 8106 default: 8107 /* FIXME: Check if this is one of the itbl macros, since they 8108 are added dynamically. */ 8109 as_bad (_("Macro %s not implemented yet"), ip->insn_mo->name); 8110 break; 8111 } 8112 if (!mips_opts.at && used_at) 8113 as_bad (_("Macro used $at after \".set noat\"")); 8114 } 8115 8116 /* Implement macros in mips16 mode. */ 8117 8118 static void 8119 mips16_macro (struct mips_cl_insn *ip) 8120 { 8121 int mask; 8122 int xreg, yreg, zreg, tmp; 8123 expressionS expr1; 8124 int dbl; 8125 const char *s, *s2, *s3; 8126 8127 mask = ip->insn_mo->mask; 8128 8129 xreg = MIPS16_EXTRACT_OPERAND (RX, *ip); 8130 yreg = MIPS16_EXTRACT_OPERAND (RY, *ip); 8131 zreg = MIPS16_EXTRACT_OPERAND (RZ, *ip); 8132 8133 expr1.X_op = O_constant; 8134 expr1.X_op_symbol = NULL; 8135 expr1.X_add_symbol = NULL; 8136 expr1.X_add_number = 1; 8137 8138 dbl = 0; 8139 8140 switch (mask) 8141 { 8142 default: 8143 internalError (); 8144 8145 case M_DDIV_3: 8146 dbl = 1; 8147 case M_DIV_3: 8148 s = "mflo"; 8149 goto do_div3; 8150 case M_DREM_3: 8151 dbl = 1; 8152 case M_REM_3: 8153 s = "mfhi"; 8154 do_div3: 8155 start_noreorder (); 8156 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", xreg, yreg); 8157 expr1.X_add_number = 2; 8158 macro_build (&expr1, "bnez", "x,p", yreg); 8159 macro_build (NULL, "break", "6", 7); 8160 8161 /* FIXME: The normal code checks for of -1 / -0x80000000 here, 8162 since that causes an overflow. We should do that as well, 8163 but I don't see how to do the comparisons without a temporary 8164 register. */ 8165 end_noreorder (); 8166 macro_build (NULL, s, "x", zreg); 8167 break; 8168 8169 case M_DIVU_3: 8170 s = "divu"; 8171 s2 = "mflo"; 8172 goto do_divu3; 8173 case M_REMU_3: 8174 s = "divu"; 8175 s2 = "mfhi"; 8176 goto do_divu3; 8177 case M_DDIVU_3: 8178 s = "ddivu"; 8179 s2 = "mflo"; 8180 goto do_divu3; 8181 case M_DREMU_3: 8182 s = "ddivu"; 8183 s2 = "mfhi"; 8184 do_divu3: 8185 start_noreorder (); 8186 macro_build (NULL, s, "0,x,y", xreg, yreg); 8187 expr1.X_add_number = 2; 8188 macro_build (&expr1, "bnez", "x,p", yreg); 8189 macro_build (NULL, "break", "6", 7); 8190 end_noreorder (); 8191 macro_build (NULL, s2, "x", zreg); 8192 break; 8193 8194 case M_DMUL: 8195 dbl = 1; 8196 case M_MUL: 8197 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", xreg, yreg); 8198 macro_build (NULL, "mflo", "x", zreg); 8199 break; 8200 8201 case M_DSUBU_I: 8202 dbl = 1; 8203 goto do_subu; 8204 case M_SUBU_I: 8205 do_subu: 8206 if (imm_expr.X_op != O_constant) 8207 as_bad (_("Unsupported large constant")); 8208 imm_expr.X_add_number = -imm_expr.X_add_number; 8209 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", yreg, xreg); 8210 break; 8211 8212 case M_SUBU_I_2: 8213 if (imm_expr.X_op != O_constant) 8214 as_bad (_("Unsupported large constant")); 8215 imm_expr.X_add_number = -imm_expr.X_add_number; 8216 macro_build (&imm_expr, "addiu", "x,k", xreg); 8217 break; 8218 8219 case M_DSUBU_I_2: 8220 if (imm_expr.X_op != O_constant) 8221 as_bad (_("Unsupported large constant")); 8222 imm_expr.X_add_number = -imm_expr.X_add_number; 8223 macro_build (&imm_expr, "daddiu", "y,j", yreg); 8224 break; 8225 8226 case M_BEQ: 8227 s = "cmp"; 8228 s2 = "bteqz"; 8229 goto do_branch; 8230 case M_BNE: 8231 s = "cmp"; 8232 s2 = "btnez"; 8233 goto do_branch; 8234 case M_BLT: 8235 s = "slt"; 8236 s2 = "btnez"; 8237 goto do_branch; 8238 case M_BLTU: 8239 s = "sltu"; 8240 s2 = "btnez"; 8241 goto do_branch; 8242 case M_BLE: 8243 s = "slt"; 8244 s2 = "bteqz"; 8245 goto do_reverse_branch; 8246 case M_BLEU: 8247 s = "sltu"; 8248 s2 = "bteqz"; 8249 goto do_reverse_branch; 8250 case M_BGE: 8251 s = "slt"; 8252 s2 = "bteqz"; 8253 goto do_branch; 8254 case M_BGEU: 8255 s = "sltu"; 8256 s2 = "bteqz"; 8257 goto do_branch; 8258 case M_BGT: 8259 s = "slt"; 8260 s2 = "btnez"; 8261 goto do_reverse_branch; 8262 case M_BGTU: 8263 s = "sltu"; 8264 s2 = "btnez"; 8265 8266 do_reverse_branch: 8267 tmp = xreg; 8268 xreg = yreg; 8269 yreg = tmp; 8270 8271 do_branch: 8272 macro_build (NULL, s, "x,y", xreg, yreg); 8273 macro_build (&offset_expr, s2, "p"); 8274 break; 8275 8276 case M_BEQ_I: 8277 s = "cmpi"; 8278 s2 = "bteqz"; 8279 s3 = "x,U"; 8280 goto do_branch_i; 8281 case M_BNE_I: 8282 s = "cmpi"; 8283 s2 = "btnez"; 8284 s3 = "x,U"; 8285 goto do_branch_i; 8286 case M_BLT_I: 8287 s = "slti"; 8288 s2 = "btnez"; 8289 s3 = "x,8"; 8290 goto do_branch_i; 8291 case M_BLTU_I: 8292 s = "sltiu"; 8293 s2 = "btnez"; 8294 s3 = "x,8"; 8295 goto do_branch_i; 8296 case M_BLE_I: 8297 s = "slti"; 8298 s2 = "btnez"; 8299 s3 = "x,8"; 8300 goto do_addone_branch_i; 8301 case M_BLEU_I: 8302 s = "sltiu"; 8303 s2 = "btnez"; 8304 s3 = "x,8"; 8305 goto do_addone_branch_i; 8306 case M_BGE_I: 8307 s = "slti"; 8308 s2 = "bteqz"; 8309 s3 = "x,8"; 8310 goto do_branch_i; 8311 case M_BGEU_I: 8312 s = "sltiu"; 8313 s2 = "bteqz"; 8314 s3 = "x,8"; 8315 goto do_branch_i; 8316 case M_BGT_I: 8317 s = "slti"; 8318 s2 = "bteqz"; 8319 s3 = "x,8"; 8320 goto do_addone_branch_i; 8321 case M_BGTU_I: 8322 s = "sltiu"; 8323 s2 = "bteqz"; 8324 s3 = "x,8"; 8325 8326 do_addone_branch_i: 8327 if (imm_expr.X_op != O_constant) 8328 as_bad (_("Unsupported large constant")); 8329 ++imm_expr.X_add_number; 8330 8331 do_branch_i: 8332 macro_build (&imm_expr, s, s3, xreg); 8333 macro_build (&offset_expr, s2, "p"); 8334 break; 8335 8336 case M_ABS: 8337 expr1.X_add_number = 0; 8338 macro_build (&expr1, "slti", "x,8", yreg); 8339 if (xreg != yreg) 8340 move_register (xreg, yreg); 8341 expr1.X_add_number = 2; 8342 macro_build (&expr1, "bteqz", "p"); 8343 macro_build (NULL, "neg", "x,w", xreg, xreg); 8344 } 8345 } 8346 8347 /* For consistency checking, verify that all bits are specified either 8348 by the match/mask part of the instruction definition, or by the 8349 operand list. */ 8350 static int 8351 validate_mips_insn (const struct mips_opcode *opc) 8352 { 8353 const char *p = opc->args; 8354 char c; 8355 unsigned long used_bits = opc->mask; 8356 8357 if ((used_bits & opc->match) != opc->match) 8358 { 8359 as_bad (_("internal: bad mips opcode (mask error): %s %s"), 8360 opc->name, opc->args); 8361 return 0; 8362 } 8363 #define USE_BITS(mask,shift) (used_bits |= ((mask) << (shift))) 8364 while (*p) 8365 switch (c = *p++) 8366 { 8367 case ',': break; 8368 case '(': break; 8369 case ')': break; 8370 case '+': 8371 switch (c = *p++) 8372 { 8373 case '1': USE_BITS (OP_MASK_UDI1, OP_SH_UDI1); break; 8374 case '2': USE_BITS (OP_MASK_UDI2, OP_SH_UDI2); break; 8375 case '3': USE_BITS (OP_MASK_UDI3, OP_SH_UDI3); break; 8376 case '4': USE_BITS (OP_MASK_UDI4, OP_SH_UDI4); break; 8377 case 'A': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break; 8378 case 'B': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break; 8379 case 'C': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break; 8380 case 'D': USE_BITS (OP_MASK_RD, OP_SH_RD); 8381 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break; 8382 case 'E': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break; 8383 case 'F': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break; 8384 case 'G': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break; 8385 case 'H': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break; 8386 case 'I': break; 8387 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break; 8388 case 'T': USE_BITS (OP_MASK_RT, OP_SH_RT); 8389 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break; 8390 case 'x': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break; 8391 case 'X': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break; 8392 case 'p': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break; 8393 case 'P': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break; 8394 case 'Q': USE_BITS (OP_MASK_SEQI, OP_SH_SEQI); break; 8395 case 's': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break; 8396 case 'S': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break; 8397 8398 default: 8399 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"), 8400 c, opc->name, opc->args); 8401 return 0; 8402 } 8403 break; 8404 case '<': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break; 8405 case '>': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break; 8406 case 'A': break; 8407 case 'B': USE_BITS (OP_MASK_CODE20, OP_SH_CODE20); break; 8408 case 'C': USE_BITS (OP_MASK_COPZ, OP_SH_COPZ); break; 8409 case 'D': USE_BITS (OP_MASK_FD, OP_SH_FD); break; 8410 case 'E': USE_BITS (OP_MASK_RT, OP_SH_RT); break; 8411 case 'F': break; 8412 case 'G': USE_BITS (OP_MASK_RD, OP_SH_RD); break; 8413 case 'H': USE_BITS (OP_MASK_SEL, OP_SH_SEL); break; 8414 case 'I': break; 8415 case 'J': USE_BITS (OP_MASK_CODE19, OP_SH_CODE19); break; 8416 case 'K': USE_BITS (OP_MASK_RD, OP_SH_RD); break; 8417 case 'L': break; 8418 case 'M': USE_BITS (OP_MASK_CCC, OP_SH_CCC); break; 8419 case 'N': USE_BITS (OP_MASK_BCC, OP_SH_BCC); break; 8420 case 'O': USE_BITS (OP_MASK_ALN, OP_SH_ALN); break; 8421 case 'Q': USE_BITS (OP_MASK_VSEL, OP_SH_VSEL); 8422 USE_BITS (OP_MASK_FT, OP_SH_FT); break; 8423 case 'R': USE_BITS (OP_MASK_FR, OP_SH_FR); break; 8424 case 'S': USE_BITS (OP_MASK_FS, OP_SH_FS); break; 8425 case 'T': USE_BITS (OP_MASK_FT, OP_SH_FT); break; 8426 case 'V': USE_BITS (OP_MASK_FS, OP_SH_FS); break; 8427 case 'W': USE_BITS (OP_MASK_FT, OP_SH_FT); break; 8428 case 'X': USE_BITS (OP_MASK_FD, OP_SH_FD); break; 8429 case 'Y': USE_BITS (OP_MASK_FS, OP_SH_FS); break; 8430 case 'Z': USE_BITS (OP_MASK_FT, OP_SH_FT); break; 8431 case 'a': USE_BITS (OP_MASK_TARGET, OP_SH_TARGET); break; 8432 case 'b': USE_BITS (OP_MASK_RS, OP_SH_RS); break; 8433 case 'c': USE_BITS (OP_MASK_CODE, OP_SH_CODE); break; 8434 case 'd': USE_BITS (OP_MASK_RD, OP_SH_RD); break; 8435 case 'f': break; 8436 case 'h': USE_BITS (OP_MASK_PREFX, OP_SH_PREFX); break; 8437 case 'i': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break; 8438 case 'j': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break; 8439 case 'k': USE_BITS (OP_MASK_CACHE, OP_SH_CACHE); break; 8440 case 'l': break; 8441 case 'o': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break; 8442 case 'p': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break; 8443 case 'q': USE_BITS (OP_MASK_CODE2, OP_SH_CODE2); break; 8444 case 'r': USE_BITS (OP_MASK_RS, OP_SH_RS); break; 8445 case 's': USE_BITS (OP_MASK_RS, OP_SH_RS); break; 8446 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break; 8447 case 'u': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break; 8448 case 'v': USE_BITS (OP_MASK_RS, OP_SH_RS); break; 8449 case 'w': USE_BITS (OP_MASK_RT, OP_SH_RT); break; 8450 case 'x': break; 8451 case 'z': break; 8452 case 'P': USE_BITS (OP_MASK_PERFREG, OP_SH_PERFREG); break; 8453 case 'U': USE_BITS (OP_MASK_RD, OP_SH_RD); 8454 USE_BITS (OP_MASK_RT, OP_SH_RT); break; 8455 case 'e': USE_BITS (OP_MASK_VECBYTE, OP_SH_VECBYTE); break; 8456 case '%': USE_BITS (OP_MASK_VECALIGN, OP_SH_VECALIGN); break; 8457 case '[': break; 8458 case ']': break; 8459 case '2': USE_BITS (OP_MASK_BP, OP_SH_BP); break; 8460 case '3': USE_BITS (OP_MASK_SA3, OP_SH_SA3); break; 8461 case '4': USE_BITS (OP_MASK_SA4, OP_SH_SA4); break; 8462 case '5': USE_BITS (OP_MASK_IMM8, OP_SH_IMM8); break; 8463 case '6': USE_BITS (OP_MASK_RS, OP_SH_RS); break; 8464 case '7': USE_BITS (OP_MASK_DSPACC, OP_SH_DSPACC); break; 8465 case '8': USE_BITS (OP_MASK_WRDSP, OP_SH_WRDSP); break; 8466 case '9': USE_BITS (OP_MASK_DSPACC_S, OP_SH_DSPACC_S);break; 8467 case '0': USE_BITS (OP_MASK_DSPSFT, OP_SH_DSPSFT); break; 8468 case '\'': USE_BITS (OP_MASK_RDDSP, OP_SH_RDDSP); break; 8469 case ':': USE_BITS (OP_MASK_DSPSFT_7, OP_SH_DSPSFT_7);break; 8470 case '@': USE_BITS (OP_MASK_IMM10, OP_SH_IMM10); break; 8471 case '!': USE_BITS (OP_MASK_MT_U, OP_SH_MT_U); break; 8472 case '$': USE_BITS (OP_MASK_MT_H, OP_SH_MT_H); break; 8473 case '*': USE_BITS (OP_MASK_MTACC_T, OP_SH_MTACC_T); break; 8474 case '&': USE_BITS (OP_MASK_MTACC_D, OP_SH_MTACC_D); break; 8475 case 'g': USE_BITS (OP_MASK_RD, OP_SH_RD); break; 8476 default: 8477 as_bad (_("internal: bad mips opcode (unknown operand type `%c'): %s %s"), 8478 c, opc->name, opc->args); 8479 return 0; 8480 } 8481 #undef USE_BITS 8482 if (used_bits != 0xffffffff) 8483 { 8484 as_bad (_("internal: bad mips opcode (bits 0x%lx undefined): %s %s"), 8485 ~used_bits & 0xffffffff, opc->name, opc->args); 8486 return 0; 8487 } 8488 return 1; 8489 } 8490 8491 /* UDI immediates. */ 8492 struct mips_immed { 8493 char type; 8494 unsigned int shift; 8495 unsigned long mask; 8496 const char * desc; 8497 }; 8498 8499 static const struct mips_immed mips_immed[] = { 8500 { '1', OP_SH_UDI1, OP_MASK_UDI1, 0}, 8501 { '2', OP_SH_UDI2, OP_MASK_UDI2, 0}, 8502 { '3', OP_SH_UDI3, OP_MASK_UDI3, 0}, 8503 { '4', OP_SH_UDI4, OP_MASK_UDI4, 0}, 8504 { 0,0,0,0 } 8505 }; 8506 8507 /* Check whether an odd floating-point register is allowed. */ 8508 static int 8509 mips_oddfpreg_ok (const struct mips_opcode *insn, int argnum) 8510 { 8511 const char *s = insn->name; 8512 8513 if (insn->pinfo == INSN_MACRO) 8514 /* Let a macro pass, we'll catch it later when it is expanded. */ 8515 return 1; 8516 8517 if (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa)) 8518 { 8519 /* Allow odd registers for single-precision ops. */ 8520 switch (insn->pinfo & (FP_S | FP_D)) 8521 { 8522 case FP_S: 8523 case 0: 8524 return 1; /* both single precision - ok */ 8525 case FP_D: 8526 return 0; /* both double precision - fail */ 8527 default: 8528 break; 8529 } 8530 8531 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */ 8532 s = strchr (insn->name, '.'); 8533 if (argnum == 2) 8534 s = s != NULL ? strchr (s + 1, '.') : NULL; 8535 return (s != NULL && (s[1] == 'w' || s[1] == 's')); 8536 } 8537 8538 /* Single-precision coprocessor loads and moves are OK too. */ 8539 if ((insn->pinfo & FP_S) 8540 && (insn->pinfo & (INSN_COPROC_MEMORY_DELAY | INSN_STORE_MEMORY 8541 | INSN_LOAD_COPROC_DELAY | INSN_COPROC_MOVE_DELAY))) 8542 return 1; 8543 8544 return 0; 8545 } 8546 8547 /* This routine assembles an instruction into its binary format. As a 8548 side effect, it sets one of the global variables imm_reloc or 8549 offset_reloc to the type of relocation to do if one of the operands 8550 is an address expression. */ 8551 8552 static void 8553 mips_ip (char *str, struct mips_cl_insn *ip) 8554 { 8555 char *s; 8556 const char *args; 8557 char c = 0; 8558 struct mips_opcode *insn; 8559 char *argsStart; 8560 unsigned int regno; 8561 unsigned int lastregno = 0; 8562 unsigned int lastpos = 0; 8563 unsigned int limlo, limhi; 8564 char *s_reset; 8565 char save_c = 0; 8566 offsetT min_range, max_range; 8567 int argnum; 8568 unsigned int rtype; 8569 8570 insn_error = NULL; 8571 8572 /* If the instruction contains a '.', we first try to match an instruction 8573 including the '.'. Then we try again without the '.'. */ 8574 insn = NULL; 8575 for (s = str; *s != '\0' && !ISSPACE (*s); ++s) 8576 continue; 8577 8578 /* If we stopped on whitespace, then replace the whitespace with null for 8579 the call to hash_find. Save the character we replaced just in case we 8580 have to re-parse the instruction. */ 8581 if (ISSPACE (*s)) 8582 { 8583 save_c = *s; 8584 *s++ = '\0'; 8585 } 8586 8587 insn = (struct mips_opcode *) hash_find (op_hash, str); 8588 8589 /* If we didn't find the instruction in the opcode table, try again, but 8590 this time with just the instruction up to, but not including the 8591 first '.'. */ 8592 if (insn == NULL) 8593 { 8594 /* Restore the character we overwrite above (if any). */ 8595 if (save_c) 8596 *(--s) = save_c; 8597 8598 /* Scan up to the first '.' or whitespace. */ 8599 for (s = str; 8600 *s != '\0' && *s != '.' && !ISSPACE (*s); 8601 ++s) 8602 continue; 8603 8604 /* If we did not find a '.', then we can quit now. */ 8605 if (*s != '.') 8606 { 8607 insn_error = "unrecognized opcode"; 8608 return; 8609 } 8610 8611 /* Lookup the instruction in the hash table. */ 8612 *s++ = '\0'; 8613 if ((insn = (struct mips_opcode *) hash_find (op_hash, str)) == NULL) 8614 { 8615 insn_error = "unrecognized opcode"; 8616 return; 8617 } 8618 } 8619 8620 argsStart = s; 8621 for (;;) 8622 { 8623 bfd_boolean ok; 8624 8625 assert (strcmp (insn->name, str) == 0); 8626 8627 ok = is_opcode_valid (insn, FALSE); 8628 if (! ok) 8629 { 8630 if (insn + 1 < &mips_opcodes[NUMOPCODES] 8631 && strcmp (insn->name, insn[1].name) == 0) 8632 { 8633 ++insn; 8634 continue; 8635 } 8636 else 8637 { 8638 if (!insn_error) 8639 { 8640 static char buf[100]; 8641 sprintf (buf, 8642 _("opcode not supported on this processor: %s (%s)"), 8643 mips_cpu_info_from_arch (mips_opts.arch)->name, 8644 mips_cpu_info_from_isa (mips_opts.isa)->name); 8645 insn_error = buf; 8646 } 8647 if (save_c) 8648 *(--s) = save_c; 8649 return; 8650 } 8651 } 8652 8653 create_insn (ip, insn); 8654 insn_error = NULL; 8655 argnum = 1; 8656 for (args = insn->args;; ++args) 8657 { 8658 int is_mdmx; 8659 8660 s += strspn (s, " \t"); 8661 is_mdmx = 0; 8662 switch (*args) 8663 { 8664 case '\0': /* end of args */ 8665 if (*s == '\0') 8666 return; 8667 break; 8668 8669 case '2': /* dsp 2-bit unsigned immediate in bit 11 */ 8670 my_getExpression (&imm_expr, s); 8671 check_absolute_expr (ip, &imm_expr); 8672 if ((unsigned long) imm_expr.X_add_number != 1 8673 && (unsigned long) imm_expr.X_add_number != 3) 8674 { 8675 as_bad (_("BALIGN immediate not 1 or 3 (%lu)"), 8676 (unsigned long) imm_expr.X_add_number); 8677 } 8678 INSERT_OPERAND (BP, *ip, imm_expr.X_add_number); 8679 imm_expr.X_op = O_absent; 8680 s = expr_end; 8681 continue; 8682 8683 case '3': /* dsp 3-bit unsigned immediate in bit 21 */ 8684 my_getExpression (&imm_expr, s); 8685 check_absolute_expr (ip, &imm_expr); 8686 if (imm_expr.X_add_number & ~OP_MASK_SA3) 8687 { 8688 as_bad (_("DSP immediate not in range 0..%d (%lu)"), 8689 OP_MASK_SA3, (unsigned long) imm_expr.X_add_number); 8690 } 8691 INSERT_OPERAND (SA3, *ip, imm_expr.X_add_number); 8692 imm_expr.X_op = O_absent; 8693 s = expr_end; 8694 continue; 8695 8696 case '4': /* dsp 4-bit unsigned immediate in bit 21 */ 8697 my_getExpression (&imm_expr, s); 8698 check_absolute_expr (ip, &imm_expr); 8699 if (imm_expr.X_add_number & ~OP_MASK_SA4) 8700 { 8701 as_bad (_("DSP immediate not in range 0..%d (%lu)"), 8702 OP_MASK_SA4, (unsigned long) imm_expr.X_add_number); 8703 } 8704 INSERT_OPERAND (SA4, *ip, imm_expr.X_add_number); 8705 imm_expr.X_op = O_absent; 8706 s = expr_end; 8707 continue; 8708 8709 case '5': /* dsp 8-bit unsigned immediate in bit 16 */ 8710 my_getExpression (&imm_expr, s); 8711 check_absolute_expr (ip, &imm_expr); 8712 if (imm_expr.X_add_number & ~OP_MASK_IMM8) 8713 { 8714 as_bad (_("DSP immediate not in range 0..%d (%lu)"), 8715 OP_MASK_IMM8, (unsigned long) imm_expr.X_add_number); 8716 } 8717 INSERT_OPERAND (IMM8, *ip, imm_expr.X_add_number); 8718 imm_expr.X_op = O_absent; 8719 s = expr_end; 8720 continue; 8721 8722 case '6': /* dsp 5-bit unsigned immediate in bit 21 */ 8723 my_getExpression (&imm_expr, s); 8724 check_absolute_expr (ip, &imm_expr); 8725 if (imm_expr.X_add_number & ~OP_MASK_RS) 8726 { 8727 as_bad (_("DSP immediate not in range 0..%d (%lu)"), 8728 OP_MASK_RS, (unsigned long) imm_expr.X_add_number); 8729 } 8730 INSERT_OPERAND (RS, *ip, imm_expr.X_add_number); 8731 imm_expr.X_op = O_absent; 8732 s = expr_end; 8733 continue; 8734 8735 case '7': /* four dsp accumulators in bits 11,12 */ 8736 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' && 8737 s[3] >= '0' && s[3] <= '3') 8738 { 8739 regno = s[3] - '0'; 8740 s += 4; 8741 INSERT_OPERAND (DSPACC, *ip, regno); 8742 continue; 8743 } 8744 else 8745 as_bad (_("Invalid dsp acc register")); 8746 break; 8747 8748 case '8': /* dsp 6-bit unsigned immediate in bit 11 */ 8749 my_getExpression (&imm_expr, s); 8750 check_absolute_expr (ip, &imm_expr); 8751 if (imm_expr.X_add_number & ~OP_MASK_WRDSP) 8752 { 8753 as_bad (_("DSP immediate not in range 0..%d (%lu)"), 8754 OP_MASK_WRDSP, 8755 (unsigned long) imm_expr.X_add_number); 8756 } 8757 INSERT_OPERAND (WRDSP, *ip, imm_expr.X_add_number); 8758 imm_expr.X_op = O_absent; 8759 s = expr_end; 8760 continue; 8761 8762 case '9': /* four dsp accumulators in bits 21,22 */ 8763 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' && 8764 s[3] >= '0' && s[3] <= '3') 8765 { 8766 regno = s[3] - '0'; 8767 s += 4; 8768 INSERT_OPERAND (DSPACC_S, *ip, regno); 8769 continue; 8770 } 8771 else 8772 as_bad (_("Invalid dsp acc register")); 8773 break; 8774 8775 case '0': /* dsp 6-bit signed immediate in bit 20 */ 8776 my_getExpression (&imm_expr, s); 8777 check_absolute_expr (ip, &imm_expr); 8778 min_range = -((OP_MASK_DSPSFT + 1) >> 1); 8779 max_range = ((OP_MASK_DSPSFT + 1) >> 1) - 1; 8780 if (imm_expr.X_add_number < min_range || 8781 imm_expr.X_add_number > max_range) 8782 { 8783 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"), 8784 (long) min_range, (long) max_range, 8785 (long) imm_expr.X_add_number); 8786 } 8787 INSERT_OPERAND (DSPSFT, *ip, imm_expr.X_add_number); 8788 imm_expr.X_op = O_absent; 8789 s = expr_end; 8790 continue; 8791 8792 case '\'': /* dsp 6-bit unsigned immediate in bit 16 */ 8793 my_getExpression (&imm_expr, s); 8794 check_absolute_expr (ip, &imm_expr); 8795 if (imm_expr.X_add_number & ~OP_MASK_RDDSP) 8796 { 8797 as_bad (_("DSP immediate not in range 0..%d (%lu)"), 8798 OP_MASK_RDDSP, 8799 (unsigned long) imm_expr.X_add_number); 8800 } 8801 INSERT_OPERAND (RDDSP, *ip, imm_expr.X_add_number); 8802 imm_expr.X_op = O_absent; 8803 s = expr_end; 8804 continue; 8805 8806 case ':': /* dsp 7-bit signed immediate in bit 19 */ 8807 my_getExpression (&imm_expr, s); 8808 check_absolute_expr (ip, &imm_expr); 8809 min_range = -((OP_MASK_DSPSFT_7 + 1) >> 1); 8810 max_range = ((OP_MASK_DSPSFT_7 + 1) >> 1) - 1; 8811 if (imm_expr.X_add_number < min_range || 8812 imm_expr.X_add_number > max_range) 8813 { 8814 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"), 8815 (long) min_range, (long) max_range, 8816 (long) imm_expr.X_add_number); 8817 } 8818 INSERT_OPERAND (DSPSFT_7, *ip, imm_expr.X_add_number); 8819 imm_expr.X_op = O_absent; 8820 s = expr_end; 8821 continue; 8822 8823 case '@': /* dsp 10-bit signed immediate in bit 16 */ 8824 my_getExpression (&imm_expr, s); 8825 check_absolute_expr (ip, &imm_expr); 8826 min_range = -((OP_MASK_IMM10 + 1) >> 1); 8827 max_range = ((OP_MASK_IMM10 + 1) >> 1) - 1; 8828 if (imm_expr.X_add_number < min_range || 8829 imm_expr.X_add_number > max_range) 8830 { 8831 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"), 8832 (long) min_range, (long) max_range, 8833 (long) imm_expr.X_add_number); 8834 } 8835 INSERT_OPERAND (IMM10, *ip, imm_expr.X_add_number); 8836 imm_expr.X_op = O_absent; 8837 s = expr_end; 8838 continue; 8839 8840 case '!': /* MT usermode flag bit. */ 8841 my_getExpression (&imm_expr, s); 8842 check_absolute_expr (ip, &imm_expr); 8843 if (imm_expr.X_add_number & ~OP_MASK_MT_U) 8844 as_bad (_("MT usermode bit not 0 or 1 (%lu)"), 8845 (unsigned long) imm_expr.X_add_number); 8846 INSERT_OPERAND (MT_U, *ip, imm_expr.X_add_number); 8847 imm_expr.X_op = O_absent; 8848 s = expr_end; 8849 continue; 8850 8851 case '$': /* MT load high flag bit. */ 8852 my_getExpression (&imm_expr, s); 8853 check_absolute_expr (ip, &imm_expr); 8854 if (imm_expr.X_add_number & ~OP_MASK_MT_H) 8855 as_bad (_("MT load high bit not 0 or 1 (%lu)"), 8856 (unsigned long) imm_expr.X_add_number); 8857 INSERT_OPERAND (MT_H, *ip, imm_expr.X_add_number); 8858 imm_expr.X_op = O_absent; 8859 s = expr_end; 8860 continue; 8861 8862 case '*': /* four dsp accumulators in bits 18,19 */ 8863 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' && 8864 s[3] >= '0' && s[3] <= '3') 8865 { 8866 regno = s[3] - '0'; 8867 s += 4; 8868 INSERT_OPERAND (MTACC_T, *ip, regno); 8869 continue; 8870 } 8871 else 8872 as_bad (_("Invalid dsp/smartmips acc register")); 8873 break; 8874 8875 case '&': /* four dsp accumulators in bits 13,14 */ 8876 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' && 8877 s[3] >= '0' && s[3] <= '3') 8878 { 8879 regno = s[3] - '0'; 8880 s += 4; 8881 INSERT_OPERAND (MTACC_D, *ip, regno); 8882 continue; 8883 } 8884 else 8885 as_bad (_("Invalid dsp/smartmips acc register")); 8886 break; 8887 8888 case ',': 8889 ++argnum; 8890 if (*s++ == *args) 8891 continue; 8892 s--; 8893 switch (*++args) 8894 { 8895 case 'r': 8896 case 'v': 8897 INSERT_OPERAND (RS, *ip, lastregno); 8898 continue; 8899 8900 case 'w': 8901 INSERT_OPERAND (RT, *ip, lastregno); 8902 continue; 8903 8904 case 'W': 8905 INSERT_OPERAND (FT, *ip, lastregno); 8906 continue; 8907 8908 case 'V': 8909 INSERT_OPERAND (FS, *ip, lastregno); 8910 continue; 8911 } 8912 break; 8913 8914 case '(': 8915 /* Handle optional base register. 8916 Either the base register is omitted or 8917 we must have a left paren. */ 8918 /* This is dependent on the next operand specifier 8919 is a base register specification. */ 8920 assert (args[1] == 'b' || args[1] == '5' 8921 || args[1] == '-' || args[1] == '4'); 8922 if (*s == '\0') 8923 return; 8924 8925 case ')': /* these must match exactly */ 8926 case '[': 8927 case ']': 8928 if (*s++ == *args) 8929 continue; 8930 break; 8931 8932 case '+': /* Opcode extension character. */ 8933 switch (*++args) 8934 { 8935 case '1': /* UDI immediates. */ 8936 case '2': 8937 case '3': 8938 case '4': 8939 { 8940 const struct mips_immed *imm = mips_immed; 8941 8942 while (imm->type && imm->type != *args) 8943 ++imm; 8944 if (! imm->type) 8945 internalError (); 8946 my_getExpression (&imm_expr, s); 8947 check_absolute_expr (ip, &imm_expr); 8948 if ((unsigned long) imm_expr.X_add_number & ~imm->mask) 8949 { 8950 as_warn (_("Illegal %s number (%lu, 0x%lx)"), 8951 imm->desc ? imm->desc : ip->insn_mo->name, 8952 (unsigned long) imm_expr.X_add_number, 8953 (unsigned long) imm_expr.X_add_number); 8954 imm_expr.X_add_number &= imm->mask; 8955 } 8956 ip->insn_opcode |= ((unsigned long) imm_expr.X_add_number 8957 << imm->shift); 8958 imm_expr.X_op = O_absent; 8959 s = expr_end; 8960 } 8961 continue; 8962 8963 case 'A': /* ins/ext position, becomes LSB. */ 8964 limlo = 0; 8965 limhi = 31; 8966 goto do_lsb; 8967 case 'E': 8968 limlo = 32; 8969 limhi = 63; 8970 goto do_lsb; 8971 do_lsb: 8972 my_getExpression (&imm_expr, s); 8973 check_absolute_expr (ip, &imm_expr); 8974 if ((unsigned long) imm_expr.X_add_number < limlo 8975 || (unsigned long) imm_expr.X_add_number > limhi) 8976 { 8977 as_bad (_("Improper position (%lu)"), 8978 (unsigned long) imm_expr.X_add_number); 8979 imm_expr.X_add_number = limlo; 8980 } 8981 lastpos = imm_expr.X_add_number; 8982 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number); 8983 imm_expr.X_op = O_absent; 8984 s = expr_end; 8985 continue; 8986 8987 case 'B': /* ins size, becomes MSB. */ 8988 limlo = 1; 8989 limhi = 32; 8990 goto do_msb; 8991 case 'F': 8992 limlo = 33; 8993 limhi = 64; 8994 goto do_msb; 8995 do_msb: 8996 my_getExpression (&imm_expr, s); 8997 check_absolute_expr (ip, &imm_expr); 8998 /* Check for negative input so that small negative numbers 8999 will not succeed incorrectly. The checks against 9000 (pos+size) transitively check "size" itself, 9001 assuming that "pos" is reasonable. */ 9002 if ((long) imm_expr.X_add_number < 0 9003 || ((unsigned long) imm_expr.X_add_number 9004 + lastpos) < limlo 9005 || ((unsigned long) imm_expr.X_add_number 9006 + lastpos) > limhi) 9007 { 9008 as_bad (_("Improper insert size (%lu, position %lu)"), 9009 (unsigned long) imm_expr.X_add_number, 9010 (unsigned long) lastpos); 9011 imm_expr.X_add_number = limlo - lastpos; 9012 } 9013 INSERT_OPERAND (INSMSB, *ip, 9014 lastpos + imm_expr.X_add_number - 1); 9015 imm_expr.X_op = O_absent; 9016 s = expr_end; 9017 continue; 9018 9019 case 'C': /* ext size, becomes MSBD. */ 9020 limlo = 1; 9021 limhi = 32; 9022 goto do_msbd; 9023 case 'G': 9024 limlo = 33; 9025 limhi = 64; 9026 goto do_msbd; 9027 case 'H': 9028 limlo = 33; 9029 limhi = 64; 9030 goto do_msbd; 9031 do_msbd: 9032 my_getExpression (&imm_expr, s); 9033 check_absolute_expr (ip, &imm_expr); 9034 /* Check for negative input so that small negative numbers 9035 will not succeed incorrectly. The checks against 9036 (pos+size) transitively check "size" itself, 9037 assuming that "pos" is reasonable. */ 9038 if ((long) imm_expr.X_add_number < 0 9039 || ((unsigned long) imm_expr.X_add_number 9040 + lastpos) < limlo 9041 || ((unsigned long) imm_expr.X_add_number 9042 + lastpos) > limhi) 9043 { 9044 as_bad (_("Improper extract size (%lu, position %lu)"), 9045 (unsigned long) imm_expr.X_add_number, 9046 (unsigned long) lastpos); 9047 imm_expr.X_add_number = limlo - lastpos; 9048 } 9049 INSERT_OPERAND (EXTMSBD, *ip, imm_expr.X_add_number - 1); 9050 imm_expr.X_op = O_absent; 9051 s = expr_end; 9052 continue; 9053 9054 case 'D': 9055 /* +D is for disassembly only; never match. */ 9056 break; 9057 9058 case 'I': 9059 /* "+I" is like "I", except that imm2_expr is used. */ 9060 my_getExpression (&imm2_expr, s); 9061 if (imm2_expr.X_op != O_big 9062 && imm2_expr.X_op != O_constant) 9063 insn_error = _("absolute expression required"); 9064 if (HAVE_32BIT_GPRS) 9065 normalize_constant_expr (&imm2_expr); 9066 s = expr_end; 9067 continue; 9068 9069 case 'T': /* Coprocessor register. */ 9070 /* +T is for disassembly only; never match. */ 9071 break; 9072 9073 case 't': /* Coprocessor register number. */ 9074 if (s[0] == '$' && ISDIGIT (s[1])) 9075 { 9076 ++s; 9077 regno = 0; 9078 do 9079 { 9080 regno *= 10; 9081 regno += *s - '0'; 9082 ++s; 9083 } 9084 while (ISDIGIT (*s)); 9085 if (regno > 31) 9086 as_bad (_("Invalid register number (%d)"), regno); 9087 else 9088 { 9089 INSERT_OPERAND (RT, *ip, regno); 9090 continue; 9091 } 9092 } 9093 else 9094 as_bad (_("Invalid coprocessor 0 register number")); 9095 break; 9096 9097 case 'x': 9098 /* bbit[01] and bbit[01]32 bit index. Give error if index 9099 is not in the valid range. */ 9100 my_getExpression (&imm_expr, s); 9101 check_absolute_expr (ip, &imm_expr); 9102 if ((unsigned) imm_expr.X_add_number > 31) 9103 { 9104 as_bad (_("Improper bit index (%lu)"), 9105 (unsigned long) imm_expr.X_add_number); 9106 imm_expr.X_add_number = 0; 9107 } 9108 INSERT_OPERAND (BBITIND, *ip, imm_expr.X_add_number); 9109 imm_expr.X_op = O_absent; 9110 s = expr_end; 9111 continue; 9112 9113 case 'X': 9114 /* bbit[01] bit index when bbit is used but we generate 9115 bbit[01]32 because the index is over 32. Move to the 9116 next candidate if index is not in the valid range. */ 9117 my_getExpression (&imm_expr, s); 9118 check_absolute_expr (ip, &imm_expr); 9119 if ((unsigned) imm_expr.X_add_number < 32 9120 || (unsigned) imm_expr.X_add_number > 63) 9121 break; 9122 INSERT_OPERAND (BBITIND, *ip, imm_expr.X_add_number - 32); 9123 imm_expr.X_op = O_absent; 9124 s = expr_end; 9125 continue; 9126 9127 case 'p': 9128 /* cins, cins32, exts and exts32 position field. Give error 9129 if it's not in the valid range. */ 9130 my_getExpression (&imm_expr, s); 9131 check_absolute_expr (ip, &imm_expr); 9132 if ((unsigned) imm_expr.X_add_number > 31) 9133 { 9134 as_bad (_("Improper position (%lu)"), 9135 (unsigned long) imm_expr.X_add_number); 9136 imm_expr.X_add_number = 0; 9137 } 9138 /* Make the pos explicit to simplify +S. */ 9139 lastpos = imm_expr.X_add_number + 32; 9140 INSERT_OPERAND (CINSPOS, *ip, imm_expr.X_add_number); 9141 imm_expr.X_op = O_absent; 9142 s = expr_end; 9143 continue; 9144 9145 case 'P': 9146 /* cins, cins32, exts and exts32 position field. Move to 9147 the next candidate if it's not in the valid range. */ 9148 my_getExpression (&imm_expr, s); 9149 check_absolute_expr (ip, &imm_expr); 9150 if ((unsigned) imm_expr.X_add_number < 32 9151 || (unsigned) imm_expr.X_add_number > 63) 9152 break; 9153 lastpos = imm_expr.X_add_number; 9154 INSERT_OPERAND (CINSPOS, *ip, imm_expr.X_add_number - 32); 9155 imm_expr.X_op = O_absent; 9156 s = expr_end; 9157 continue; 9158 9159 case 's': 9160 /* cins and exts length-minus-one field. */ 9161 my_getExpression (&imm_expr, s); 9162 check_absolute_expr (ip, &imm_expr); 9163 if ((unsigned long) imm_expr.X_add_number > 31) 9164 { 9165 as_bad (_("Improper size (%lu)"), 9166 (unsigned long) imm_expr.X_add_number); 9167 imm_expr.X_add_number = 0; 9168 } 9169 INSERT_OPERAND (CINSLM1, *ip, imm_expr.X_add_number); 9170 imm_expr.X_op = O_absent; 9171 s = expr_end; 9172 continue; 9173 9174 case 'S': 9175 /* cins32/exts32 and cins/exts aliasing cint32/exts32 9176 length-minus-one field. */ 9177 my_getExpression (&imm_expr, s); 9178 check_absolute_expr (ip, &imm_expr); 9179 if ((long) imm_expr.X_add_number < 0 9180 || (unsigned long) imm_expr.X_add_number + lastpos > 63) 9181 { 9182 as_bad (_("Improper size (%lu)"), 9183 (unsigned long) imm_expr.X_add_number); 9184 imm_expr.X_add_number = 0; 9185 } 9186 INSERT_OPERAND (CINSLM1, *ip, imm_expr.X_add_number); 9187 imm_expr.X_op = O_absent; 9188 s = expr_end; 9189 continue; 9190 9191 case 'Q': 9192 /* seqi/snei immediate field. */ 9193 my_getExpression (&imm_expr, s); 9194 check_absolute_expr (ip, &imm_expr); 9195 if ((long) imm_expr.X_add_number < -512 9196 || (long) imm_expr.X_add_number >= 512) 9197 { 9198 as_bad (_("Improper immediate (%ld)"), 9199 (long) imm_expr.X_add_number); 9200 imm_expr.X_add_number = 0; 9201 } 9202 INSERT_OPERAND (SEQI, *ip, imm_expr.X_add_number); 9203 imm_expr.X_op = O_absent; 9204 s = expr_end; 9205 continue; 9206 9207 default: 9208 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"), 9209 *args, insn->name, insn->args); 9210 /* Further processing is fruitless. */ 9211 return; 9212 } 9213 break; 9214 9215 case '<': /* must be at least one digit */ 9216 /* 9217 * According to the manual, if the shift amount is greater 9218 * than 31 or less than 0, then the shift amount should be 9219 * mod 32. In reality the mips assembler issues an error. 9220 * We issue a warning and mask out all but the low 5 bits. 9221 */ 9222 my_getExpression (&imm_expr, s); 9223 check_absolute_expr (ip, &imm_expr); 9224 if ((unsigned long) imm_expr.X_add_number > 31) 9225 as_warn (_("Improper shift amount (%lu)"), 9226 (unsigned long) imm_expr.X_add_number); 9227 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number); 9228 imm_expr.X_op = O_absent; 9229 s = expr_end; 9230 continue; 9231 9232 case '>': /* shift amount minus 32 */ 9233 my_getExpression (&imm_expr, s); 9234 check_absolute_expr (ip, &imm_expr); 9235 if ((unsigned long) imm_expr.X_add_number < 32 9236 || (unsigned long) imm_expr.X_add_number > 63) 9237 break; 9238 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number - 32); 9239 imm_expr.X_op = O_absent; 9240 s = expr_end; 9241 continue; 9242 9243 case 'k': /* cache code */ 9244 case 'h': /* prefx code */ 9245 my_getExpression (&imm_expr, s); 9246 check_absolute_expr (ip, &imm_expr); 9247 if ((unsigned long) imm_expr.X_add_number > 31) 9248 as_warn (_("Invalid value for `%s' (%lu)"), 9249 ip->insn_mo->name, 9250 (unsigned long) imm_expr.X_add_number); 9251 if (*args == 'k') 9252 INSERT_OPERAND (CACHE, *ip, imm_expr.X_add_number); 9253 else 9254 INSERT_OPERAND (PREFX, *ip, imm_expr.X_add_number); 9255 imm_expr.X_op = O_absent; 9256 s = expr_end; 9257 continue; 9258 9259 case 'c': /* break code */ 9260 my_getExpression (&imm_expr, s); 9261 check_absolute_expr (ip, &imm_expr); 9262 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE) 9263 as_warn (_("Code for %s not in range 0..1023 (%lu)"), 9264 ip->insn_mo->name, 9265 (unsigned long) imm_expr.X_add_number); 9266 INSERT_OPERAND (CODE, *ip, imm_expr.X_add_number); 9267 imm_expr.X_op = O_absent; 9268 s = expr_end; 9269 continue; 9270 9271 case 'q': /* lower break code */ 9272 my_getExpression (&imm_expr, s); 9273 check_absolute_expr (ip, &imm_expr); 9274 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE2) 9275 as_warn (_("Lower code for %s not in range 0..1023 (%lu)"), 9276 ip->insn_mo->name, 9277 (unsigned long) imm_expr.X_add_number); 9278 INSERT_OPERAND (CODE2, *ip, imm_expr.X_add_number); 9279 imm_expr.X_op = O_absent; 9280 s = expr_end; 9281 continue; 9282 9283 case 'B': /* 20-bit syscall/break code. */ 9284 my_getExpression (&imm_expr, s); 9285 check_absolute_expr (ip, &imm_expr); 9286 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE20) 9287 as_warn (_("Code for %s not in range 0..1048575 (%lu)"), 9288 ip->insn_mo->name, 9289 (unsigned long) imm_expr.X_add_number); 9290 INSERT_OPERAND (CODE20, *ip, imm_expr.X_add_number); 9291 imm_expr.X_op = O_absent; 9292 s = expr_end; 9293 continue; 9294 9295 case 'C': /* Coprocessor code */ 9296 my_getExpression (&imm_expr, s); 9297 check_absolute_expr (ip, &imm_expr); 9298 if ((unsigned long) imm_expr.X_add_number > OP_MASK_COPZ) 9299 { 9300 as_warn (_("Coproccesor code > 25 bits (%lu)"), 9301 (unsigned long) imm_expr.X_add_number); 9302 imm_expr.X_add_number &= OP_MASK_COPZ; 9303 } 9304 INSERT_OPERAND (COPZ, *ip, imm_expr.X_add_number); 9305 imm_expr.X_op = O_absent; 9306 s = expr_end; 9307 continue; 9308 9309 case 'J': /* 19-bit wait code. */ 9310 my_getExpression (&imm_expr, s); 9311 check_absolute_expr (ip, &imm_expr); 9312 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE19) 9313 { 9314 as_warn (_("Illegal 19-bit code (%lu)"), 9315 (unsigned long) imm_expr.X_add_number); 9316 imm_expr.X_add_number &= OP_MASK_CODE19; 9317 } 9318 INSERT_OPERAND (CODE19, *ip, imm_expr.X_add_number); 9319 imm_expr.X_op = O_absent; 9320 s = expr_end; 9321 continue; 9322 9323 case 'P': /* Performance register. */ 9324 my_getExpression (&imm_expr, s); 9325 check_absolute_expr (ip, &imm_expr); 9326 if (imm_expr.X_add_number != 0 && imm_expr.X_add_number != 1) 9327 as_warn (_("Invalid performance register (%lu)"), 9328 (unsigned long) imm_expr.X_add_number); 9329 INSERT_OPERAND (PERFREG, *ip, imm_expr.X_add_number); 9330 imm_expr.X_op = O_absent; 9331 s = expr_end; 9332 continue; 9333 9334 case 'G': /* Coprocessor destination register. */ 9335 if (((ip->insn_opcode >> OP_SH_OP) & OP_MASK_OP) == OP_OP_COP0) 9336 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_CP0, ®no); 9337 else 9338 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, ®no); 9339 INSERT_OPERAND (RD, *ip, regno); 9340 if (ok) 9341 { 9342 lastregno = regno; 9343 continue; 9344 } 9345 else 9346 break; 9347 9348 case 'b': /* base register */ 9349 case 'd': /* destination register */ 9350 case 's': /* source register */ 9351 case 't': /* target register */ 9352 case 'r': /* both target and source */ 9353 case 'v': /* both dest and source */ 9354 case 'w': /* both dest and target */ 9355 case 'E': /* coprocessor target register */ 9356 case 'K': /* 'rdhwr' destination register */ 9357 case 'x': /* ignore register name */ 9358 case 'z': /* must be zero register */ 9359 case 'U': /* destination register (clo/clz). */ 9360 case 'g': /* coprocessor destination register */ 9361 s_reset = s; 9362 if (*args == 'E' || *args == 'K') 9363 ok = reg_lookup (&s, RTYPE_NUM, ®no); 9364 else 9365 { 9366 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, ®no); 9367 if (regno == AT && mips_opts.at) 9368 { 9369 if (mips_opts.at == ATREG) 9370 as_warn (_("used $at without \".set noat\"")); 9371 else 9372 as_warn (_("used $%u with \".set at=$%u\""), 9373 regno, mips_opts.at); 9374 } 9375 } 9376 if (ok) 9377 { 9378 c = *args; 9379 if (*s == ' ') 9380 ++s; 9381 if (args[1] != *s) 9382 { 9383 if (c == 'r' || c == 'v' || c == 'w') 9384 { 9385 regno = lastregno; 9386 s = s_reset; 9387 ++args; 9388 } 9389 } 9390 /* 'z' only matches $0. */ 9391 if (c == 'z' && regno != 0) 9392 break; 9393 9394 if (c == 's' && !strcmp (ip->insn_mo->name, "jalr")) 9395 { 9396 if (regno == lastregno) 9397 { 9398 insn_error = _("source and destinationations must be different"); 9399 continue; 9400 } 9401 if (regno == 31 && lastregno == 0) 9402 { 9403 insn_error = _("a destination register must be supplied"); 9404 continue; 9405 } 9406 } 9407 /* Now that we have assembled one operand, we use the args string 9408 * to figure out where it goes in the instruction. */ 9409 switch (c) 9410 { 9411 case 'r': 9412 case 's': 9413 case 'v': 9414 case 'b': 9415 INSERT_OPERAND (RS, *ip, regno); 9416 break; 9417 case 'd': 9418 case 'G': 9419 case 'K': 9420 case 'g': 9421 INSERT_OPERAND (RD, *ip, regno); 9422 break; 9423 case 'U': 9424 INSERT_OPERAND (RD, *ip, regno); 9425 INSERT_OPERAND (RT, *ip, regno); 9426 break; 9427 case 'w': 9428 case 't': 9429 case 'E': 9430 INSERT_OPERAND (RT, *ip, regno); 9431 break; 9432 case 'x': 9433 /* This case exists because on the r3000 trunc 9434 expands into a macro which requires a gp 9435 register. On the r6000 or r4000 it is 9436 assembled into a single instruction which 9437 ignores the register. Thus the insn version 9438 is MIPS_ISA2 and uses 'x', and the macro 9439 version is MIPS_ISA1 and uses 't'. */ 9440 break; 9441 case 'z': 9442 /* This case is for the div instruction, which 9443 acts differently if the destination argument 9444 is $0. This only matches $0, and is checked 9445 outside the switch. */ 9446 break; 9447 case 'D': 9448 /* Itbl operand; not yet implemented. FIXME ?? */ 9449 break; 9450 /* What about all other operands like 'i', which 9451 can be specified in the opcode table? */ 9452 } 9453 lastregno = regno; 9454 continue; 9455 } 9456 switch (*args++) 9457 { 9458 case 'r': 9459 case 'v': 9460 INSERT_OPERAND (RS, *ip, lastregno); 9461 continue; 9462 case 'w': 9463 INSERT_OPERAND (RT, *ip, lastregno); 9464 continue; 9465 } 9466 break; 9467 9468 case 'O': /* MDMX alignment immediate constant. */ 9469 my_getExpression (&imm_expr, s); 9470 check_absolute_expr (ip, &imm_expr); 9471 if ((unsigned long) imm_expr.X_add_number > OP_MASK_ALN) 9472 as_warn ("Improper align amount (%ld), using low bits", 9473 (long) imm_expr.X_add_number); 9474 INSERT_OPERAND (ALN, *ip, imm_expr.X_add_number); 9475 imm_expr.X_op = O_absent; 9476 s = expr_end; 9477 continue; 9478 9479 case 'Q': /* MDMX vector, element sel, or const. */ 9480 if (s[0] != '$') 9481 { 9482 /* MDMX Immediate. */ 9483 my_getExpression (&imm_expr, s); 9484 check_absolute_expr (ip, &imm_expr); 9485 if ((unsigned long) imm_expr.X_add_number > OP_MASK_FT) 9486 as_warn (_("Invalid MDMX Immediate (%ld)"), 9487 (long) imm_expr.X_add_number); 9488 INSERT_OPERAND (FT, *ip, imm_expr.X_add_number); 9489 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL)) 9490 ip->insn_opcode |= MDMX_FMTSEL_IMM_QH << OP_SH_VSEL; 9491 else 9492 ip->insn_opcode |= MDMX_FMTSEL_IMM_OB << OP_SH_VSEL; 9493 imm_expr.X_op = O_absent; 9494 s = expr_end; 9495 continue; 9496 } 9497 /* Not MDMX Immediate. Fall through. */ 9498 case 'X': /* MDMX destination register. */ 9499 case 'Y': /* MDMX source register. */ 9500 case 'Z': /* MDMX target register. */ 9501 is_mdmx = 1; 9502 case 'D': /* floating point destination register */ 9503 case 'S': /* floating point source register */ 9504 case 'T': /* floating point target register */ 9505 case 'R': /* floating point source register */ 9506 case 'V': 9507 case 'W': 9508 rtype = RTYPE_FPU; 9509 if (is_mdmx 9510 || (mips_opts.ase_mdmx 9511 && (ip->insn_mo->pinfo & FP_D) 9512 && (ip->insn_mo->pinfo & (INSN_COPROC_MOVE_DELAY 9513 | INSN_COPROC_MEMORY_DELAY 9514 | INSN_LOAD_COPROC_DELAY 9515 | INSN_LOAD_MEMORY_DELAY 9516 | INSN_STORE_MEMORY)))) 9517 rtype |= RTYPE_VEC; 9518 s_reset = s; 9519 if (reg_lookup (&s, rtype, ®no)) 9520 { 9521 if ((regno & 1) != 0 9522 && HAVE_32BIT_FPRS 9523 && ! mips_oddfpreg_ok (ip->insn_mo, argnum)) 9524 as_warn (_("Float register should be even, was %d"), 9525 regno); 9526 9527 c = *args; 9528 if (*s == ' ') 9529 ++s; 9530 if (args[1] != *s) 9531 { 9532 if (c == 'V' || c == 'W') 9533 { 9534 regno = lastregno; 9535 s = s_reset; 9536 ++args; 9537 } 9538 } 9539 switch (c) 9540 { 9541 case 'D': 9542 case 'X': 9543 INSERT_OPERAND (FD, *ip, regno); 9544 break; 9545 case 'V': 9546 case 'S': 9547 case 'Y': 9548 INSERT_OPERAND (FS, *ip, regno); 9549 break; 9550 case 'Q': 9551 /* This is like 'Z', but also needs to fix the MDMX 9552 vector/scalar select bits. Note that the 9553 scalar immediate case is handled above. */ 9554 if (*s == '[') 9555 { 9556 int is_qh = (ip->insn_opcode & (1 << OP_SH_VSEL)); 9557 int max_el = (is_qh ? 3 : 7); 9558 s++; 9559 my_getExpression(&imm_expr, s); 9560 check_absolute_expr (ip, &imm_expr); 9561 s = expr_end; 9562 if (imm_expr.X_add_number > max_el) 9563 as_bad(_("Bad element selector %ld"), 9564 (long) imm_expr.X_add_number); 9565 imm_expr.X_add_number &= max_el; 9566 ip->insn_opcode |= (imm_expr.X_add_number 9567 << (OP_SH_VSEL + 9568 (is_qh ? 2 : 1))); 9569 imm_expr.X_op = O_absent; 9570 if (*s != ']') 9571 as_warn(_("Expecting ']' found '%s'"), s); 9572 else 9573 s++; 9574 } 9575 else 9576 { 9577 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL)) 9578 ip->insn_opcode |= (MDMX_FMTSEL_VEC_QH 9579 << OP_SH_VSEL); 9580 else 9581 ip->insn_opcode |= (MDMX_FMTSEL_VEC_OB << 9582 OP_SH_VSEL); 9583 } 9584 /* Fall through */ 9585 case 'W': 9586 case 'T': 9587 case 'Z': 9588 INSERT_OPERAND (FT, *ip, regno); 9589 break; 9590 case 'R': 9591 INSERT_OPERAND (FR, *ip, regno); 9592 break; 9593 } 9594 lastregno = regno; 9595 continue; 9596 } 9597 9598 switch (*args++) 9599 { 9600 case 'V': 9601 INSERT_OPERAND (FS, *ip, lastregno); 9602 continue; 9603 case 'W': 9604 INSERT_OPERAND (FT, *ip, lastregno); 9605 continue; 9606 } 9607 break; 9608 9609 case 'I': 9610 my_getExpression (&imm_expr, s); 9611 if (imm_expr.X_op != O_big 9612 && imm_expr.X_op != O_constant) 9613 insn_error = _("absolute expression required"); 9614 if (HAVE_32BIT_GPRS) 9615 normalize_constant_expr (&imm_expr); 9616 s = expr_end; 9617 continue; 9618 9619 case 'A': 9620 my_getExpression (&offset_expr, s); 9621 normalize_address_expr (&offset_expr); 9622 *imm_reloc = BFD_RELOC_32; 9623 s = expr_end; 9624 continue; 9625 9626 case 'F': 9627 case 'L': 9628 case 'f': 9629 case 'l': 9630 { 9631 int f64; 9632 int using_gprs; 9633 char *save_in; 9634 char *err; 9635 unsigned char temp[8]; 9636 int len; 9637 unsigned int length; 9638 segT seg; 9639 subsegT subseg; 9640 char *p; 9641 9642 /* These only appear as the last operand in an 9643 instruction, and every instruction that accepts 9644 them in any variant accepts them in all variants. 9645 This means we don't have to worry about backing out 9646 any changes if the instruction does not match. 9647 9648 The difference between them is the size of the 9649 floating point constant and where it goes. For 'F' 9650 and 'L' the constant is 64 bits; for 'f' and 'l' it 9651 is 32 bits. Where the constant is placed is based 9652 on how the MIPS assembler does things: 9653 F -- .rdata 9654 L -- .lit8 9655 f -- immediate value 9656 l -- .lit4 9657 9658 The .lit4 and .lit8 sections are only used if 9659 permitted by the -G argument. 9660 9661 The code below needs to know whether the target register 9662 is 32 or 64 bits wide. It relies on the fact 'f' and 9663 'F' are used with GPR-based instructions and 'l' and 9664 'L' are used with FPR-based instructions. */ 9665 9666 f64 = *args == 'F' || *args == 'L'; 9667 using_gprs = *args == 'F' || *args == 'f'; 9668 9669 save_in = input_line_pointer; 9670 input_line_pointer = s; 9671 err = md_atof (f64 ? 'd' : 'f', (char *) temp, &len); 9672 length = len; 9673 s = input_line_pointer; 9674 input_line_pointer = save_in; 9675 if (err != NULL && *err != '\0') 9676 { 9677 as_bad (_("Bad floating point constant: %s"), err); 9678 memset (temp, '\0', sizeof temp); 9679 length = f64 ? 8 : 4; 9680 } 9681 9682 assert (length == (unsigned) (f64 ? 8 : 4)); 9683 9684 if (*args == 'f' 9685 || (*args == 'l' 9686 && (g_switch_value < 4 9687 || (temp[0] == 0 && temp[1] == 0) 9688 || (temp[2] == 0 && temp[3] == 0)))) 9689 { 9690 imm_expr.X_op = O_constant; 9691 if (! target_big_endian) 9692 imm_expr.X_add_number = bfd_getl32 (temp); 9693 else 9694 imm_expr.X_add_number = bfd_getb32 (temp); 9695 } 9696 else if (length > 4 9697 && ! mips_disable_float_construction 9698 /* Constants can only be constructed in GPRs and 9699 copied to FPRs if the GPRs are at least as wide 9700 as the FPRs. Force the constant into memory if 9701 we are using 64-bit FPRs but the GPRs are only 9702 32 bits wide. */ 9703 && (using_gprs 9704 || ! (HAVE_64BIT_FPRS && HAVE_32BIT_GPRS)) 9705 && ((temp[0] == 0 && temp[1] == 0) 9706 || (temp[2] == 0 && temp[3] == 0)) 9707 && ((temp[4] == 0 && temp[5] == 0) 9708 || (temp[6] == 0 && temp[7] == 0))) 9709 { 9710 /* The value is simple enough to load with a couple of 9711 instructions. If using 32-bit registers, set 9712 imm_expr to the high order 32 bits and offset_expr to 9713 the low order 32 bits. Otherwise, set imm_expr to 9714 the entire 64 bit constant. */ 9715 if (using_gprs ? HAVE_32BIT_GPRS : HAVE_32BIT_FPRS) 9716 { 9717 imm_expr.X_op = O_constant; 9718 offset_expr.X_op = O_constant; 9719 if (! target_big_endian) 9720 { 9721 imm_expr.X_add_number = bfd_getl32 (temp + 4); 9722 offset_expr.X_add_number = bfd_getl32 (temp); 9723 } 9724 else 9725 { 9726 imm_expr.X_add_number = bfd_getb32 (temp); 9727 offset_expr.X_add_number = bfd_getb32 (temp + 4); 9728 } 9729 if (offset_expr.X_add_number == 0) 9730 offset_expr.X_op = O_absent; 9731 } 9732 else if (sizeof (imm_expr.X_add_number) > 4) 9733 { 9734 imm_expr.X_op = O_constant; 9735 if (! target_big_endian) 9736 imm_expr.X_add_number = bfd_getl64 (temp); 9737 else 9738 imm_expr.X_add_number = bfd_getb64 (temp); 9739 } 9740 else 9741 { 9742 imm_expr.X_op = O_big; 9743 imm_expr.X_add_number = 4; 9744 if (! target_big_endian) 9745 { 9746 generic_bignum[0] = bfd_getl16 (temp); 9747 generic_bignum[1] = bfd_getl16 (temp + 2); 9748 generic_bignum[2] = bfd_getl16 (temp + 4); 9749 generic_bignum[3] = bfd_getl16 (temp + 6); 9750 } 9751 else 9752 { 9753 generic_bignum[0] = bfd_getb16 (temp + 6); 9754 generic_bignum[1] = bfd_getb16 (temp + 4); 9755 generic_bignum[2] = bfd_getb16 (temp + 2); 9756 generic_bignum[3] = bfd_getb16 (temp); 9757 } 9758 } 9759 } 9760 else 9761 { 9762 const char *newname; 9763 segT new_seg; 9764 9765 /* Switch to the right section. */ 9766 seg = now_seg; 9767 subseg = now_subseg; 9768 switch (*args) 9769 { 9770 default: /* unused default case avoids warnings. */ 9771 case 'L': 9772 newname = RDATA_SECTION_NAME; 9773 if (g_switch_value >= 8) 9774 newname = ".lit8"; 9775 break; 9776 case 'F': 9777 newname = RDATA_SECTION_NAME; 9778 break; 9779 case 'l': 9780 assert (g_switch_value >= 4); 9781 newname = ".lit4"; 9782 break; 9783 } 9784 new_seg = subseg_new (newname, (subsegT) 0); 9785 if (IS_ELF) 9786 bfd_set_section_flags (stdoutput, new_seg, 9787 (SEC_ALLOC 9788 | SEC_LOAD 9789 | SEC_READONLY 9790 | SEC_DATA)); 9791 frag_align (*args == 'l' ? 2 : 3, 0, 0); 9792 if (IS_ELF && strncmp (TARGET_OS, "elf", 3) != 0) 9793 record_alignment (new_seg, 4); 9794 else 9795 record_alignment (new_seg, *args == 'l' ? 2 : 3); 9796 if (seg == now_seg) 9797 as_bad (_("Can't use floating point insn in this section")); 9798 9799 /* Set the argument to the current address in the 9800 section. */ 9801 offset_expr.X_op = O_symbol; 9802 offset_expr.X_add_symbol = 9803 symbol_new ("L0\001", now_seg, 9804 (valueT) frag_now_fix (), frag_now); 9805 offset_expr.X_add_number = 0; 9806 9807 /* Put the floating point number into the section. */ 9808 p = frag_more ((int) length); 9809 memcpy (p, temp, length); 9810 9811 /* Switch back to the original section. */ 9812 subseg_set (seg, subseg); 9813 } 9814 } 9815 continue; 9816 9817 case 'i': /* 16 bit unsigned immediate */ 9818 case 'j': /* 16 bit signed immediate */ 9819 *imm_reloc = BFD_RELOC_LO16; 9820 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0) 9821 { 9822 int more; 9823 offsetT minval, maxval; 9824 9825 more = (insn + 1 < &mips_opcodes[NUMOPCODES] 9826 && strcmp (insn->name, insn[1].name) == 0); 9827 9828 /* If the expression was written as an unsigned number, 9829 only treat it as signed if there are no more 9830 alternatives. */ 9831 if (more 9832 && *args == 'j' 9833 && sizeof (imm_expr.X_add_number) <= 4 9834 && imm_expr.X_op == O_constant 9835 && imm_expr.X_add_number < 0 9836 && imm_expr.X_unsigned 9837 && HAVE_64BIT_GPRS) 9838 break; 9839 9840 /* For compatibility with older assemblers, we accept 9841 0x8000-0xffff as signed 16-bit numbers when only 9842 signed numbers are allowed. */ 9843 if (*args == 'i') 9844 minval = 0, maxval = 0xffff; 9845 else if (more) 9846 minval = -0x8000, maxval = 0x7fff; 9847 else 9848 minval = -0x8000, maxval = 0xffff; 9849 9850 if (imm_expr.X_op != O_constant 9851 || imm_expr.X_add_number < minval 9852 || imm_expr.X_add_number > maxval) 9853 { 9854 if (more) 9855 break; 9856 if (imm_expr.X_op == O_constant 9857 || imm_expr.X_op == O_big) 9858 as_bad (_("expression out of range")); 9859 } 9860 } 9861 s = expr_end; 9862 continue; 9863 9864 case 'o': /* 16 bit offset */ 9865 /* Check whether there is only a single bracketed expression 9866 left. If so, it must be the base register and the 9867 constant must be zero. */ 9868 if (*s == '(' && strchr (s + 1, '(') == 0) 9869 { 9870 offset_expr.X_op = O_constant; 9871 offset_expr.X_add_number = 0; 9872 continue; 9873 } 9874 9875 /* If this value won't fit into a 16 bit offset, then go 9876 find a macro that will generate the 32 bit offset 9877 code pattern. */ 9878 if (my_getSmallExpression (&offset_expr, offset_reloc, s) == 0 9879 && (offset_expr.X_op != O_constant 9880 || offset_expr.X_add_number >= 0x8000 9881 || offset_expr.X_add_number < -0x8000)) 9882 break; 9883 9884 s = expr_end; 9885 continue; 9886 9887 case 'p': /* pc relative offset */ 9888 *offset_reloc = BFD_RELOC_16_PCREL_S2; 9889 my_getExpression (&offset_expr, s); 9890 s = expr_end; 9891 continue; 9892 9893 case 'u': /* upper 16 bits */ 9894 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0 9895 && imm_expr.X_op == O_constant 9896 && (imm_expr.X_add_number < 0 9897 || imm_expr.X_add_number >= 0x10000)) 9898 as_bad (_("lui expression not in range 0..65535")); 9899 s = expr_end; 9900 continue; 9901 9902 case 'a': /* 26 bit address */ 9903 my_getExpression (&offset_expr, s); 9904 s = expr_end; 9905 *offset_reloc = BFD_RELOC_MIPS_JMP; 9906 continue; 9907 9908 case 'N': /* 3 bit branch condition code */ 9909 case 'M': /* 3 bit compare condition code */ 9910 rtype = RTYPE_CCC; 9911 if (ip->insn_mo->pinfo & (FP_D| FP_S)) 9912 rtype |= RTYPE_FCC; 9913 if (!reg_lookup (&s, rtype, ®no)) 9914 break; 9915 if ((strcmp(str + strlen(str) - 3, ".ps") == 0 9916 || strcmp(str + strlen(str) - 5, "any2f") == 0 9917 || strcmp(str + strlen(str) - 5, "any2t") == 0) 9918 && (regno & 1) != 0) 9919 as_warn(_("Condition code register should be even for %s, was %d"), 9920 str, regno); 9921 if ((strcmp(str + strlen(str) - 5, "any4f") == 0 9922 || strcmp(str + strlen(str) - 5, "any4t") == 0) 9923 && (regno & 3) != 0) 9924 as_warn(_("Condition code register should be 0 or 4 for %s, was %d"), 9925 str, regno); 9926 if (*args == 'N') 9927 INSERT_OPERAND (BCC, *ip, regno); 9928 else 9929 INSERT_OPERAND (CCC, *ip, regno); 9930 continue; 9931 9932 case 'H': 9933 if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X')) 9934 s += 2; 9935 if (ISDIGIT (*s)) 9936 { 9937 c = 0; 9938 do 9939 { 9940 c *= 10; 9941 c += *s - '0'; 9942 ++s; 9943 } 9944 while (ISDIGIT (*s)); 9945 } 9946 else 9947 c = 8; /* Invalid sel value. */ 9948 9949 if (c > 7) 9950 as_bad (_("invalid coprocessor sub-selection value (0-7)")); 9951 ip->insn_opcode |= c; 9952 continue; 9953 9954 case 'e': 9955 /* Must be at least one digit. */ 9956 my_getExpression (&imm_expr, s); 9957 check_absolute_expr (ip, &imm_expr); 9958 9959 if ((unsigned long) imm_expr.X_add_number 9960 > (unsigned long) OP_MASK_VECBYTE) 9961 { 9962 as_bad (_("bad byte vector index (%ld)"), 9963 (long) imm_expr.X_add_number); 9964 imm_expr.X_add_number = 0; 9965 } 9966 9967 INSERT_OPERAND (VECBYTE, *ip, imm_expr.X_add_number); 9968 imm_expr.X_op = O_absent; 9969 s = expr_end; 9970 continue; 9971 9972 case '%': 9973 my_getExpression (&imm_expr, s); 9974 check_absolute_expr (ip, &imm_expr); 9975 9976 if ((unsigned long) imm_expr.X_add_number 9977 > (unsigned long) OP_MASK_VECALIGN) 9978 { 9979 as_bad (_("bad byte vector index (%ld)"), 9980 (long) imm_expr.X_add_number); 9981 imm_expr.X_add_number = 0; 9982 } 9983 9984 INSERT_OPERAND (VECALIGN, *ip, imm_expr.X_add_number); 9985 imm_expr.X_op = O_absent; 9986 s = expr_end; 9987 continue; 9988 9989 default: 9990 as_bad (_("bad char = '%c'\n"), *args); 9991 internalError (); 9992 } 9993 break; 9994 } 9995 /* Args don't match. */ 9996 if (insn + 1 < &mips_opcodes[NUMOPCODES] && 9997 !strcmp (insn->name, insn[1].name)) 9998 { 9999 ++insn; 10000 s = argsStart; 10001 insn_error = _("illegal operands"); 10002 continue; 10003 } 10004 if (save_c) 10005 *(--argsStart) = save_c; 10006 insn_error = _("illegal operands"); 10007 return; 10008 } 10009 } 10010 10011 #define SKIP_SPACE_TABS(S) { while (*(S) == ' ' || *(S) == '\t') ++(S); } 10012 10013 /* This routine assembles an instruction into its binary format when 10014 assembling for the mips16. As a side effect, it sets one of the 10015 global variables imm_reloc or offset_reloc to the type of 10016 relocation to do if one of the operands is an address expression. 10017 It also sets mips16_small and mips16_ext if the user explicitly 10018 requested a small or extended instruction. */ 10019 10020 static void 10021 mips16_ip (char *str, struct mips_cl_insn *ip) 10022 { 10023 char *s; 10024 const char *args; 10025 struct mips_opcode *insn; 10026 char *argsstart; 10027 unsigned int regno; 10028 unsigned int lastregno = 0; 10029 char *s_reset; 10030 size_t i; 10031 10032 insn_error = NULL; 10033 10034 mips16_small = FALSE; 10035 mips16_ext = FALSE; 10036 10037 for (s = str; ISLOWER (*s); ++s) 10038 ; 10039 switch (*s) 10040 { 10041 case '\0': 10042 break; 10043 10044 case ' ': 10045 *s++ = '\0'; 10046 break; 10047 10048 case '.': 10049 if (s[1] == 't' && s[2] == ' ') 10050 { 10051 *s = '\0'; 10052 mips16_small = TRUE; 10053 s += 3; 10054 break; 10055 } 10056 else if (s[1] == 'e' && s[2] == ' ') 10057 { 10058 *s = '\0'; 10059 mips16_ext = TRUE; 10060 s += 3; 10061 break; 10062 } 10063 /* Fall through. */ 10064 default: 10065 insn_error = _("unknown opcode"); 10066 return; 10067 } 10068 10069 if (mips_opts.noautoextend && ! mips16_ext) 10070 mips16_small = TRUE; 10071 10072 if ((insn = (struct mips_opcode *) hash_find (mips16_op_hash, str)) == NULL) 10073 { 10074 insn_error = _("unrecognized opcode"); 10075 return; 10076 } 10077 10078 argsstart = s; 10079 for (;;) 10080 { 10081 bfd_boolean ok; 10082 10083 assert (strcmp (insn->name, str) == 0); 10084 10085 ok = is_opcode_valid_16 (insn); 10086 if (! ok) 10087 { 10088 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes] 10089 && strcmp (insn->name, insn[1].name) == 0) 10090 { 10091 ++insn; 10092 continue; 10093 } 10094 else 10095 { 10096 if (!insn_error) 10097 { 10098 static char buf[100]; 10099 sprintf (buf, 10100 _("opcode not supported on this processor: %s (%s)"), 10101 mips_cpu_info_from_arch (mips_opts.arch)->name, 10102 mips_cpu_info_from_isa (mips_opts.isa)->name); 10103 insn_error = buf; 10104 } 10105 return; 10106 } 10107 } 10108 10109 create_insn (ip, insn); 10110 imm_expr.X_op = O_absent; 10111 imm_reloc[0] = BFD_RELOC_UNUSED; 10112 imm_reloc[1] = BFD_RELOC_UNUSED; 10113 imm_reloc[2] = BFD_RELOC_UNUSED; 10114 imm2_expr.X_op = O_absent; 10115 offset_expr.X_op = O_absent; 10116 offset_reloc[0] = BFD_RELOC_UNUSED; 10117 offset_reloc[1] = BFD_RELOC_UNUSED; 10118 offset_reloc[2] = BFD_RELOC_UNUSED; 10119 for (args = insn->args; 1; ++args) 10120 { 10121 int c; 10122 10123 if (*s == ' ') 10124 ++s; 10125 10126 /* In this switch statement we call break if we did not find 10127 a match, continue if we did find a match, or return if we 10128 are done. */ 10129 10130 c = *args; 10131 switch (c) 10132 { 10133 case '\0': 10134 if (*s == '\0') 10135 { 10136 /* Stuff the immediate value in now, if we can. */ 10137 if (imm_expr.X_op == O_constant 10138 && *imm_reloc > BFD_RELOC_UNUSED 10139 && *imm_reloc != BFD_RELOC_MIPS16_GOT16 10140 && *imm_reloc != BFD_RELOC_MIPS16_CALL16 10141 && insn->pinfo != INSN_MACRO) 10142 { 10143 valueT tmp; 10144 10145 switch (*offset_reloc) 10146 { 10147 case BFD_RELOC_MIPS16_HI16_S: 10148 tmp = (imm_expr.X_add_number + 0x8000) >> 16; 10149 break; 10150 10151 case BFD_RELOC_MIPS16_HI16: 10152 tmp = imm_expr.X_add_number >> 16; 10153 break; 10154 10155 case BFD_RELOC_MIPS16_LO16: 10156 tmp = ((imm_expr.X_add_number + 0x8000) & 0xffff) 10157 - 0x8000; 10158 break; 10159 10160 case BFD_RELOC_UNUSED: 10161 tmp = imm_expr.X_add_number; 10162 break; 10163 10164 default: 10165 internalError (); 10166 } 10167 *offset_reloc = BFD_RELOC_UNUSED; 10168 10169 mips16_immed (NULL, 0, *imm_reloc - BFD_RELOC_UNUSED, 10170 tmp, TRUE, mips16_small, 10171 mips16_ext, &ip->insn_opcode, 10172 &ip->use_extend, &ip->extend); 10173 imm_expr.X_op = O_absent; 10174 *imm_reloc = BFD_RELOC_UNUSED; 10175 } 10176 10177 return; 10178 } 10179 break; 10180 10181 case ',': 10182 if (*s++ == c) 10183 continue; 10184 s--; 10185 switch (*++args) 10186 { 10187 case 'v': 10188 MIPS16_INSERT_OPERAND (RX, *ip, lastregno); 10189 continue; 10190 case 'w': 10191 MIPS16_INSERT_OPERAND (RY, *ip, lastregno); 10192 continue; 10193 } 10194 break; 10195 10196 case '(': 10197 case ')': 10198 if (*s++ == c) 10199 continue; 10200 break; 10201 10202 case 'v': 10203 case 'w': 10204 if (s[0] != '$') 10205 { 10206 if (c == 'v') 10207 MIPS16_INSERT_OPERAND (RX, *ip, lastregno); 10208 else 10209 MIPS16_INSERT_OPERAND (RY, *ip, lastregno); 10210 ++args; 10211 continue; 10212 } 10213 /* Fall through. */ 10214 case 'x': 10215 case 'y': 10216 case 'z': 10217 case 'Z': 10218 case '0': 10219 case 'S': 10220 case 'R': 10221 case 'X': 10222 case 'Y': 10223 s_reset = s; 10224 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, ®no)) 10225 { 10226 if (c == 'v' || c == 'w') 10227 { 10228 if (c == 'v') 10229 MIPS16_INSERT_OPERAND (RX, *ip, lastregno); 10230 else 10231 MIPS16_INSERT_OPERAND (RY, *ip, lastregno); 10232 ++args; 10233 continue; 10234 } 10235 break; 10236 } 10237 10238 if (*s == ' ') 10239 ++s; 10240 if (args[1] != *s) 10241 { 10242 if (c == 'v' || c == 'w') 10243 { 10244 regno = mips16_to_32_reg_map[lastregno]; 10245 s = s_reset; 10246 ++args; 10247 } 10248 } 10249 10250 switch (c) 10251 { 10252 case 'x': 10253 case 'y': 10254 case 'z': 10255 case 'v': 10256 case 'w': 10257 case 'Z': 10258 regno = mips32_to_16_reg_map[regno]; 10259 break; 10260 10261 case '0': 10262 if (regno != 0) 10263 regno = ILLEGAL_REG; 10264 break; 10265 10266 case 'S': 10267 if (regno != SP) 10268 regno = ILLEGAL_REG; 10269 break; 10270 10271 case 'R': 10272 if (regno != RA) 10273 regno = ILLEGAL_REG; 10274 break; 10275 10276 case 'X': 10277 case 'Y': 10278 if (regno == AT && mips_opts.at) 10279 { 10280 if (mips_opts.at == ATREG) 10281 as_warn (_("used $at without \".set noat\"")); 10282 else 10283 as_warn (_("used $%u with \".set at=$%u\""), 10284 regno, mips_opts.at); 10285 } 10286 break; 10287 10288 default: 10289 internalError (); 10290 } 10291 10292 if (regno == ILLEGAL_REG) 10293 break; 10294 10295 switch (c) 10296 { 10297 case 'x': 10298 case 'v': 10299 MIPS16_INSERT_OPERAND (RX, *ip, regno); 10300 break; 10301 case 'y': 10302 case 'w': 10303 MIPS16_INSERT_OPERAND (RY, *ip, regno); 10304 break; 10305 case 'z': 10306 MIPS16_INSERT_OPERAND (RZ, *ip, regno); 10307 break; 10308 case 'Z': 10309 MIPS16_INSERT_OPERAND (MOVE32Z, *ip, regno); 10310 case '0': 10311 case 'S': 10312 case 'R': 10313 break; 10314 case 'X': 10315 MIPS16_INSERT_OPERAND (REGR32, *ip, regno); 10316 break; 10317 case 'Y': 10318 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3); 10319 MIPS16_INSERT_OPERAND (REG32R, *ip, regno); 10320 break; 10321 default: 10322 internalError (); 10323 } 10324 10325 lastregno = regno; 10326 continue; 10327 10328 case 'P': 10329 if (strncmp (s, "$pc", 3) == 0) 10330 { 10331 s += 3; 10332 continue; 10333 } 10334 break; 10335 10336 case '5': 10337 case 'H': 10338 case 'W': 10339 case 'D': 10340 case 'j': 10341 case 'V': 10342 case 'C': 10343 case 'U': 10344 case 'k': 10345 case 'K': 10346 i = my_getSmallExpression (&imm_expr, imm_reloc, s); 10347 if (i > 0) 10348 { 10349 if (imm_expr.X_op != O_constant) 10350 { 10351 mips16_ext = TRUE; 10352 ip->use_extend = TRUE; 10353 ip->extend = 0; 10354 } 10355 else 10356 { 10357 /* We need to relax this instruction. */ 10358 *offset_reloc = *imm_reloc; 10359 *imm_reloc = (int) BFD_RELOC_UNUSED + c; 10360 } 10361 s = expr_end; 10362 continue; 10363 } 10364 *imm_reloc = BFD_RELOC_UNUSED; 10365 /* Fall through. */ 10366 case '<': 10367 case '>': 10368 case '[': 10369 case ']': 10370 case '4': 10371 case '8': 10372 my_getExpression (&imm_expr, s); 10373 if (imm_expr.X_op == O_register) 10374 { 10375 /* What we thought was an expression turned out to 10376 be a register. */ 10377 10378 if (s[0] == '(' && args[1] == '(') 10379 { 10380 /* It looks like the expression was omitted 10381 before a register indirection, which means 10382 that the expression is implicitly zero. We 10383 still set up imm_expr, so that we handle 10384 explicit extensions correctly. */ 10385 imm_expr.X_op = O_constant; 10386 imm_expr.X_add_number = 0; 10387 *imm_reloc = (int) BFD_RELOC_UNUSED + c; 10388 continue; 10389 } 10390 10391 break; 10392 } 10393 10394 /* We need to relax this instruction. */ 10395 *imm_reloc = (int) BFD_RELOC_UNUSED + c; 10396 s = expr_end; 10397 continue; 10398 10399 case 'p': 10400 case 'q': 10401 case 'A': 10402 case 'B': 10403 case 'E': 10404 /* We use offset_reloc rather than imm_reloc for the PC 10405 relative operands. This lets macros with both 10406 immediate and address operands work correctly. */ 10407 my_getExpression (&offset_expr, s); 10408 10409 if (offset_expr.X_op == O_register) 10410 break; 10411 10412 /* We need to relax this instruction. */ 10413 *offset_reloc = (int) BFD_RELOC_UNUSED + c; 10414 s = expr_end; 10415 continue; 10416 10417 case '6': /* break code */ 10418 my_getExpression (&imm_expr, s); 10419 check_absolute_expr (ip, &imm_expr); 10420 if ((unsigned long) imm_expr.X_add_number > 63) 10421 as_warn (_("Invalid value for `%s' (%lu)"), 10422 ip->insn_mo->name, 10423 (unsigned long) imm_expr.X_add_number); 10424 MIPS16_INSERT_OPERAND (IMM6, *ip, imm_expr.X_add_number); 10425 imm_expr.X_op = O_absent; 10426 s = expr_end; 10427 continue; 10428 10429 case 'a': /* 26 bit address */ 10430 my_getExpression (&offset_expr, s); 10431 s = expr_end; 10432 *offset_reloc = BFD_RELOC_MIPS16_JMP; 10433 ip->insn_opcode <<= 16; 10434 continue; 10435 10436 case 'l': /* register list for entry macro */ 10437 case 'L': /* register list for exit macro */ 10438 { 10439 int mask; 10440 10441 if (c == 'l') 10442 mask = 0; 10443 else 10444 mask = 7 << 3; 10445 while (*s != '\0') 10446 { 10447 unsigned int freg, reg1, reg2; 10448 10449 while (*s == ' ' || *s == ',') 10450 ++s; 10451 if (reg_lookup (&s, RTYPE_GP | RTYPE_NUM, ®1)) 10452 freg = 0; 10453 else if (reg_lookup (&s, RTYPE_FPU, ®1)) 10454 freg = 1; 10455 else 10456 { 10457 as_bad (_("can't parse register list")); 10458 break; 10459 } 10460 if (*s == ' ') 10461 ++s; 10462 if (*s != '-') 10463 reg2 = reg1; 10464 else 10465 { 10466 ++s; 10467 if (!reg_lookup (&s, freg ? RTYPE_FPU 10468 : (RTYPE_GP | RTYPE_NUM), ®2)) 10469 { 10470 as_bad (_("invalid register list")); 10471 break; 10472 } 10473 } 10474 if (freg && reg1 == 0 && reg2 == 0 && c == 'L') 10475 { 10476 mask &= ~ (7 << 3); 10477 mask |= 5 << 3; 10478 } 10479 else if (freg && reg1 == 0 && reg2 == 1 && c == 'L') 10480 { 10481 mask &= ~ (7 << 3); 10482 mask |= 6 << 3; 10483 } 10484 else if (reg1 == 4 && reg2 >= 4 && reg2 <= 7 && c != 'L') 10485 mask |= (reg2 - 3) << 3; 10486 else if (reg1 == 16 && reg2 >= 16 && reg2 <= 17) 10487 mask |= (reg2 - 15) << 1; 10488 else if (reg1 == RA && reg2 == RA) 10489 mask |= 1; 10490 else 10491 { 10492 as_bad (_("invalid register list")); 10493 break; 10494 } 10495 } 10496 /* The mask is filled in in the opcode table for the 10497 benefit of the disassembler. We remove it before 10498 applying the actual mask. */ 10499 ip->insn_opcode &= ~ ((7 << 3) << MIPS16OP_SH_IMM6); 10500 ip->insn_opcode |= mask << MIPS16OP_SH_IMM6; 10501 } 10502 continue; 10503 10504 case 'm': /* Register list for save insn. */ 10505 case 'M': /* Register list for restore insn. */ 10506 { 10507 int opcode = 0; 10508 int framesz = 0, seen_framesz = 0; 10509 int args = 0, statics = 0, sregs = 0; 10510 10511 while (*s != '\0') 10512 { 10513 unsigned int reg1, reg2; 10514 10515 SKIP_SPACE_TABS (s); 10516 while (*s == ',') 10517 ++s; 10518 SKIP_SPACE_TABS (s); 10519 10520 my_getExpression (&imm_expr, s); 10521 if (imm_expr.X_op == O_constant) 10522 { 10523 /* Handle the frame size. */ 10524 if (seen_framesz) 10525 { 10526 as_bad (_("more than one frame size in list")); 10527 break; 10528 } 10529 seen_framesz = 1; 10530 framesz = imm_expr.X_add_number; 10531 imm_expr.X_op = O_absent; 10532 s = expr_end; 10533 continue; 10534 } 10535 10536 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, ®1)) 10537 { 10538 as_bad (_("can't parse register list")); 10539 break; 10540 } 10541 10542 while (*s == ' ') 10543 ++s; 10544 10545 if (*s != '-') 10546 reg2 = reg1; 10547 else 10548 { 10549 ++s; 10550 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, ®2) 10551 || reg2 < reg1) 10552 { 10553 as_bad (_("can't parse register list")); 10554 break; 10555 } 10556 } 10557 10558 while (reg1 <= reg2) 10559 { 10560 if (reg1 >= 4 && reg1 <= 7) 10561 { 10562 if (!seen_framesz) 10563 /* args $a0-$a3 */ 10564 args |= 1 << (reg1 - 4); 10565 else 10566 /* statics $a0-$a3 */ 10567 statics |= 1 << (reg1 - 4); 10568 } 10569 else if ((reg1 >= 16 && reg1 <= 23) || reg1 == 30) 10570 { 10571 /* $s0-$s8 */ 10572 sregs |= 1 << ((reg1 == 30) ? 8 : (reg1 - 16)); 10573 } 10574 else if (reg1 == 31) 10575 { 10576 /* Add $ra to insn. */ 10577 opcode |= 0x40; 10578 } 10579 else 10580 { 10581 as_bad (_("unexpected register in list")); 10582 break; 10583 } 10584 if (++reg1 == 24) 10585 reg1 = 30; 10586 } 10587 } 10588 10589 /* Encode args/statics combination. */ 10590 if (args & statics) 10591 as_bad (_("arg/static registers overlap")); 10592 else if (args == 0xf) 10593 /* All $a0-$a3 are args. */ 10594 opcode |= MIPS16_ALL_ARGS << 16; 10595 else if (statics == 0xf) 10596 /* All $a0-$a3 are statics. */ 10597 opcode |= MIPS16_ALL_STATICS << 16; 10598 else 10599 { 10600 int narg = 0, nstat = 0; 10601 10602 /* Count arg registers. */ 10603 while (args & 0x1) 10604 { 10605 args >>= 1; 10606 narg++; 10607 } 10608 if (args != 0) 10609 as_bad (_("invalid arg register list")); 10610 10611 /* Count static registers. */ 10612 while (statics & 0x8) 10613 { 10614 statics = (statics << 1) & 0xf; 10615 nstat++; 10616 } 10617 if (statics != 0) 10618 as_bad (_("invalid static register list")); 10619 10620 /* Encode args/statics. */ 10621 opcode |= ((narg << 2) | nstat) << 16; 10622 } 10623 10624 /* Encode $s0/$s1. */ 10625 if (sregs & (1 << 0)) /* $s0 */ 10626 opcode |= 0x20; 10627 if (sregs & (1 << 1)) /* $s1 */ 10628 opcode |= 0x10; 10629 sregs >>= 2; 10630 10631 if (sregs != 0) 10632 { 10633 /* Count regs $s2-$s8. */ 10634 int nsreg = 0; 10635 while (sregs & 1) 10636 { 10637 sregs >>= 1; 10638 nsreg++; 10639 } 10640 if (sregs != 0) 10641 as_bad (_("invalid static register list")); 10642 /* Encode $s2-$s8. */ 10643 opcode |= nsreg << 24; 10644 } 10645 10646 /* Encode frame size. */ 10647 if (!seen_framesz) 10648 as_bad (_("missing frame size")); 10649 else if ((framesz & 7) != 0 || framesz < 0 10650 || framesz > 0xff * 8) 10651 as_bad (_("invalid frame size")); 10652 else if (framesz != 128 || (opcode >> 16) != 0) 10653 { 10654 framesz /= 8; 10655 opcode |= (((framesz & 0xf0) << 16) 10656 | (framesz & 0x0f)); 10657 } 10658 10659 /* Finally build the instruction. */ 10660 if ((opcode >> 16) != 0 || framesz == 0) 10661 { 10662 ip->use_extend = TRUE; 10663 ip->extend = opcode >> 16; 10664 } 10665 ip->insn_opcode |= opcode & 0x7f; 10666 } 10667 continue; 10668 10669 case 'e': /* extend code */ 10670 my_getExpression (&imm_expr, s); 10671 check_absolute_expr (ip, &imm_expr); 10672 if ((unsigned long) imm_expr.X_add_number > 0x7ff) 10673 { 10674 as_warn (_("Invalid value for `%s' (%lu)"), 10675 ip->insn_mo->name, 10676 (unsigned long) imm_expr.X_add_number); 10677 imm_expr.X_add_number &= 0x7ff; 10678 } 10679 ip->insn_opcode |= imm_expr.X_add_number; 10680 imm_expr.X_op = O_absent; 10681 s = expr_end; 10682 continue; 10683 10684 default: 10685 internalError (); 10686 } 10687 break; 10688 } 10689 10690 /* Args don't match. */ 10691 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes] && 10692 strcmp (insn->name, insn[1].name) == 0) 10693 { 10694 ++insn; 10695 s = argsstart; 10696 continue; 10697 } 10698 10699 insn_error = _("illegal operands"); 10700 10701 return; 10702 } 10703 } 10704 10705 /* This structure holds information we know about a mips16 immediate 10706 argument type. */ 10707 10708 struct mips16_immed_operand 10709 { 10710 /* The type code used in the argument string in the opcode table. */ 10711 int type; 10712 /* The number of bits in the short form of the opcode. */ 10713 int nbits; 10714 /* The number of bits in the extended form of the opcode. */ 10715 int extbits; 10716 /* The amount by which the short form is shifted when it is used; 10717 for example, the sw instruction has a shift count of 2. */ 10718 int shift; 10719 /* The amount by which the short form is shifted when it is stored 10720 into the instruction code. */ 10721 int op_shift; 10722 /* Non-zero if the short form is unsigned. */ 10723 int unsp; 10724 /* Non-zero if the extended form is unsigned. */ 10725 int extu; 10726 /* Non-zero if the value is PC relative. */ 10727 int pcrel; 10728 }; 10729 10730 /* The mips16 immediate operand types. */ 10731 10732 static const struct mips16_immed_operand mips16_immed_operands[] = 10733 { 10734 { '<', 3, 5, 0, MIPS16OP_SH_RZ, 1, 1, 0 }, 10735 { '>', 3, 5, 0, MIPS16OP_SH_RX, 1, 1, 0 }, 10736 { '[', 3, 6, 0, MIPS16OP_SH_RZ, 1, 1, 0 }, 10737 { ']', 3, 6, 0, MIPS16OP_SH_RX, 1, 1, 0 }, 10738 { '4', 4, 15, 0, MIPS16OP_SH_IMM4, 0, 0, 0 }, 10739 { '5', 5, 16, 0, MIPS16OP_SH_IMM5, 1, 0, 0 }, 10740 { 'H', 5, 16, 1, MIPS16OP_SH_IMM5, 1, 0, 0 }, 10741 { 'W', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 0 }, 10742 { 'D', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 0 }, 10743 { 'j', 5, 16, 0, MIPS16OP_SH_IMM5, 0, 0, 0 }, 10744 { '8', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 0, 0 }, 10745 { 'V', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 0 }, 10746 { 'C', 8, 16, 3, MIPS16OP_SH_IMM8, 1, 0, 0 }, 10747 { 'U', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 1, 0 }, 10748 { 'k', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 0 }, 10749 { 'K', 8, 16, 3, MIPS16OP_SH_IMM8, 0, 0, 0 }, 10750 { 'p', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 }, 10751 { 'q', 11, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 }, 10752 { 'A', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 1 }, 10753 { 'B', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 1 }, 10754 { 'E', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 1 } 10755 }; 10756 10757 #define MIPS16_NUM_IMMED \ 10758 (sizeof mips16_immed_operands / sizeof mips16_immed_operands[0]) 10759 10760 /* Handle a mips16 instruction with an immediate value. This or's the 10761 small immediate value into *INSN. It sets *USE_EXTEND to indicate 10762 whether an extended value is needed; if one is needed, it sets 10763 *EXTEND to the value. The argument type is TYPE. The value is VAL. 10764 If SMALL is true, an unextended opcode was explicitly requested. 10765 If EXT is true, an extended opcode was explicitly requested. If 10766 WARN is true, warn if EXT does not match reality. */ 10767 10768 static void 10769 mips16_immed (char *file, unsigned int line, int type, offsetT val, 10770 bfd_boolean warn, bfd_boolean small, bfd_boolean ext, 10771 unsigned long *insn, bfd_boolean *use_extend, 10772 unsigned short *extend) 10773 { 10774 const struct mips16_immed_operand *op; 10775 int mintiny, maxtiny; 10776 bfd_boolean needext; 10777 10778 op = mips16_immed_operands; 10779 while (op->type != type) 10780 { 10781 ++op; 10782 assert (op < mips16_immed_operands + MIPS16_NUM_IMMED); 10783 } 10784 10785 if (op->unsp) 10786 { 10787 if (type == '<' || type == '>' || type == '[' || type == ']') 10788 { 10789 mintiny = 1; 10790 maxtiny = 1 << op->nbits; 10791 } 10792 else 10793 { 10794 mintiny = 0; 10795 maxtiny = (1 << op->nbits) - 1; 10796 } 10797 } 10798 else 10799 { 10800 mintiny = - (1 << (op->nbits - 1)); 10801 maxtiny = (1 << (op->nbits - 1)) - 1; 10802 } 10803 10804 /* Branch offsets have an implicit 0 in the lowest bit. */ 10805 if (type == 'p' || type == 'q') 10806 val /= 2; 10807 10808 if ((val & ((1 << op->shift) - 1)) != 0 10809 || val < (mintiny << op->shift) 10810 || val > (maxtiny << op->shift)) 10811 needext = TRUE; 10812 else 10813 needext = FALSE; 10814 10815 if (warn && ext && ! needext) 10816 as_warn_where (file, line, 10817 _("extended operand requested but not required")); 10818 if (small && needext) 10819 as_bad_where (file, line, _("invalid unextended operand value")); 10820 10821 if (small || (! ext && ! needext)) 10822 { 10823 int insnval; 10824 10825 *use_extend = FALSE; 10826 insnval = ((val >> op->shift) & ((1 << op->nbits) - 1)); 10827 insnval <<= op->op_shift; 10828 *insn |= insnval; 10829 } 10830 else 10831 { 10832 long minext, maxext; 10833 int extval; 10834 10835 if (op->extu) 10836 { 10837 minext = 0; 10838 maxext = (1 << op->extbits) - 1; 10839 } 10840 else 10841 { 10842 minext = - (1 << (op->extbits - 1)); 10843 maxext = (1 << (op->extbits - 1)) - 1; 10844 } 10845 if (val < minext || val > maxext) 10846 as_bad_where (file, line, 10847 _("operand value out of range for instruction")); 10848 10849 *use_extend = TRUE; 10850 if (op->extbits == 16) 10851 { 10852 extval = ((val >> 11) & 0x1f) | (val & 0x7e0); 10853 val &= 0x1f; 10854 } 10855 else if (op->extbits == 15) 10856 { 10857 extval = ((val >> 11) & 0xf) | (val & 0x7f0); 10858 val &= 0xf; 10859 } 10860 else 10861 { 10862 extval = ((val & 0x1f) << 6) | (val & 0x20); 10863 val = 0; 10864 } 10865 10866 *extend = (unsigned short) extval; 10867 *insn |= val; 10868 } 10869 } 10870 10871 struct percent_op_match 10872 { 10873 const char *str; 10874 bfd_reloc_code_real_type reloc; 10875 }; 10876 10877 static const struct percent_op_match mips_percent_op[] = 10878 { 10879 {"%lo", BFD_RELOC_LO16}, 10880 #ifdef OBJ_ELF 10881 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16}, 10882 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16}, 10883 {"%call16", BFD_RELOC_MIPS_CALL16}, 10884 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP}, 10885 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE}, 10886 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST}, 10887 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16}, 10888 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16}, 10889 {"%got", BFD_RELOC_MIPS_GOT16}, 10890 {"%gp_rel", BFD_RELOC_GPREL16}, 10891 {"%half", BFD_RELOC_16}, 10892 {"%highest", BFD_RELOC_MIPS_HIGHEST}, 10893 {"%higher", BFD_RELOC_MIPS_HIGHER}, 10894 {"%neg", BFD_RELOC_MIPS_SUB}, 10895 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD}, 10896 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM}, 10897 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16}, 10898 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16}, 10899 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16}, 10900 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16}, 10901 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL}, 10902 #endif 10903 {"%hi", BFD_RELOC_HI16_S} 10904 }; 10905 10906 static const struct percent_op_match mips16_percent_op[] = 10907 { 10908 {"%lo", BFD_RELOC_MIPS16_LO16}, 10909 {"%gprel", BFD_RELOC_MIPS16_GPREL}, 10910 {"%got", BFD_RELOC_MIPS16_GOT16}, 10911 {"%call16", BFD_RELOC_MIPS16_CALL16}, 10912 {"%hi", BFD_RELOC_MIPS16_HI16_S} 10913 }; 10914 10915 10916 /* Return true if *STR points to a relocation operator. When returning true, 10917 move *STR over the operator and store its relocation code in *RELOC. 10918 Leave both *STR and *RELOC alone when returning false. */ 10919 10920 static bfd_boolean 10921 parse_relocation (char **str, bfd_reloc_code_real_type *reloc) 10922 { 10923 const struct percent_op_match *percent_op; 10924 size_t limit, i; 10925 10926 if (mips_opts.mips16) 10927 { 10928 percent_op = mips16_percent_op; 10929 limit = ARRAY_SIZE (mips16_percent_op); 10930 } 10931 else 10932 { 10933 percent_op = mips_percent_op; 10934 limit = ARRAY_SIZE (mips_percent_op); 10935 } 10936 10937 for (i = 0; i < limit; i++) 10938 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0) 10939 { 10940 int len = strlen (percent_op[i].str); 10941 10942 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(') 10943 continue; 10944 10945 *str += strlen (percent_op[i].str); 10946 *reloc = percent_op[i].reloc; 10947 10948 /* Check whether the output BFD supports this relocation. 10949 If not, issue an error and fall back on something safe. */ 10950 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc)) 10951 { 10952 as_bad ("relocation %s isn't supported by the current ABI", 10953 percent_op[i].str); 10954 *reloc = BFD_RELOC_UNUSED; 10955 } 10956 return TRUE; 10957 } 10958 return FALSE; 10959 } 10960 10961 10962 /* Parse string STR as a 16-bit relocatable operand. Store the 10963 expression in *EP and the relocations in the array starting 10964 at RELOC. Return the number of relocation operators used. 10965 10966 On exit, EXPR_END points to the first character after the expression. */ 10967 10968 static size_t 10969 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc, 10970 char *str) 10971 { 10972 bfd_reloc_code_real_type reversed_reloc[3]; 10973 size_t reloc_index, i; 10974 int crux_depth, str_depth; 10975 char *crux; 10976 10977 /* Search for the start of the main expression, recoding relocations 10978 in REVERSED_RELOC. End the loop with CRUX pointing to the start 10979 of the main expression and with CRUX_DEPTH containing the number 10980 of open brackets at that point. */ 10981 reloc_index = -1; 10982 str_depth = 0; 10983 do 10984 { 10985 reloc_index++; 10986 crux = str; 10987 crux_depth = str_depth; 10988 10989 /* Skip over whitespace and brackets, keeping count of the number 10990 of brackets. */ 10991 while (*str == ' ' || *str == '\t' || *str == '(') 10992 if (*str++ == '(') 10993 str_depth++; 10994 } 10995 while (*str == '%' 10996 && reloc_index < (HAVE_NEWABI ? 3 : 1) 10997 && parse_relocation (&str, &reversed_reloc[reloc_index])); 10998 10999 my_getExpression (ep, crux); 11000 str = expr_end; 11001 11002 /* Match every open bracket. */ 11003 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t')) 11004 if (*str++ == ')') 11005 crux_depth--; 11006 11007 if (crux_depth > 0) 11008 as_bad ("unclosed '('"); 11009 11010 expr_end = str; 11011 11012 if (reloc_index != 0) 11013 { 11014 prev_reloc_op_frag = frag_now; 11015 for (i = 0; i < reloc_index; i++) 11016 reloc[i] = reversed_reloc[reloc_index - 1 - i]; 11017 } 11018 11019 return reloc_index; 11020 } 11021 11022 static void 11023 my_getExpression (expressionS *ep, char *str) 11024 { 11025 char *save_in; 11026 valueT val; 11027 11028 save_in = input_line_pointer; 11029 input_line_pointer = str; 11030 expression (ep); 11031 expr_end = input_line_pointer; 11032 input_line_pointer = save_in; 11033 11034 /* If we are in mips16 mode, and this is an expression based on `.', 11035 then we bump the value of the symbol by 1 since that is how other 11036 text symbols are handled. We don't bother to handle complex 11037 expressions, just `.' plus or minus a constant. */ 11038 if (mips_opts.mips16 11039 && ep->X_op == O_symbol 11040 && strcmp (S_GET_NAME (ep->X_add_symbol), FAKE_LABEL_NAME) == 0 11041 && S_GET_SEGMENT (ep->X_add_symbol) == now_seg 11042 && symbol_get_frag (ep->X_add_symbol) == frag_now 11043 && symbol_constant_p (ep->X_add_symbol) 11044 && (val = S_GET_VALUE (ep->X_add_symbol)) == frag_now_fix ()) 11045 S_SET_VALUE (ep->X_add_symbol, val + 1); 11046 } 11047 11048 char * 11049 md_atof (int type, char *litP, int *sizeP) 11050 { 11051 return ieee_md_atof (type, litP, sizeP, target_big_endian); 11052 } 11053 11054 void 11055 md_number_to_chars (char *buf, valueT val, int n) 11056 { 11057 if (target_big_endian) 11058 number_to_chars_bigendian (buf, val, n); 11059 else 11060 number_to_chars_littleendian (buf, val, n); 11061 } 11062 11063 #ifdef OBJ_ELF 11064 static int support_64bit_objects(void) 11065 { 11066 const char **list, **l; 11067 int yes; 11068 11069 list = bfd_target_list (); 11070 for (l = list; *l != NULL; l++) 11071 #ifdef TE_TMIPS 11072 /* This is traditional mips */ 11073 if (strcmp (*l, "elf64-tradbigmips") == 0 11074 || strcmp (*l, "elf64-tradlittlemips") == 0) 11075 #else 11076 if (strcmp (*l, "elf64-bigmips") == 0 11077 || strcmp (*l, "elf64-littlemips") == 0) 11078 #endif 11079 break; 11080 yes = (*l != NULL); 11081 free (list); 11082 return yes; 11083 } 11084 #endif /* OBJ_ELF */ 11085 11086 const char *md_shortopts = "O::g::G:"; 11087 11088 struct option md_longopts[] = 11089 { 11090 /* Options which specify architecture. */ 11091 #define OPTION_ARCH_BASE (OPTION_MD_BASE) 11092 #define OPTION_MARCH (OPTION_ARCH_BASE + 0) 11093 {"march", required_argument, NULL, OPTION_MARCH}, 11094 #define OPTION_MTUNE (OPTION_ARCH_BASE + 1) 11095 {"mtune", required_argument, NULL, OPTION_MTUNE}, 11096 #define OPTION_MIPS1 (OPTION_ARCH_BASE + 2) 11097 {"mips0", no_argument, NULL, OPTION_MIPS1}, 11098 {"mips1", no_argument, NULL, OPTION_MIPS1}, 11099 #define OPTION_MIPS2 (OPTION_ARCH_BASE + 3) 11100 {"mips2", no_argument, NULL, OPTION_MIPS2}, 11101 #define OPTION_MIPS3 (OPTION_ARCH_BASE + 4) 11102 {"mips3", no_argument, NULL, OPTION_MIPS3}, 11103 #define OPTION_MIPS4 (OPTION_ARCH_BASE + 5) 11104 {"mips4", no_argument, NULL, OPTION_MIPS4}, 11105 #define OPTION_MIPS5 (OPTION_ARCH_BASE + 6) 11106 {"mips5", no_argument, NULL, OPTION_MIPS5}, 11107 #define OPTION_MIPS32 (OPTION_ARCH_BASE + 7) 11108 {"mips32", no_argument, NULL, OPTION_MIPS32}, 11109 #define OPTION_MIPS64 (OPTION_ARCH_BASE + 8) 11110 {"mips64", no_argument, NULL, OPTION_MIPS64}, 11111 #define OPTION_MIPS32R2 (OPTION_ARCH_BASE + 9) 11112 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2}, 11113 #define OPTION_MIPS64R2 (OPTION_ARCH_BASE + 10) 11114 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2}, 11115 11116 /* Options which specify Application Specific Extensions (ASEs). */ 11117 #define OPTION_ASE_BASE (OPTION_ARCH_BASE + 11) 11118 #define OPTION_MIPS16 (OPTION_ASE_BASE + 0) 11119 {"mips16", no_argument, NULL, OPTION_MIPS16}, 11120 #define OPTION_NO_MIPS16 (OPTION_ASE_BASE + 1) 11121 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16}, 11122 #define OPTION_MIPS3D (OPTION_ASE_BASE + 2) 11123 {"mips3d", no_argument, NULL, OPTION_MIPS3D}, 11124 #define OPTION_NO_MIPS3D (OPTION_ASE_BASE + 3) 11125 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D}, 11126 #define OPTION_MDMX (OPTION_ASE_BASE + 4) 11127 {"mdmx", no_argument, NULL, OPTION_MDMX}, 11128 #define OPTION_NO_MDMX (OPTION_ASE_BASE + 5) 11129 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX}, 11130 #define OPTION_DSP (OPTION_ASE_BASE + 6) 11131 {"mdsp", no_argument, NULL, OPTION_DSP}, 11132 #define OPTION_NO_DSP (OPTION_ASE_BASE + 7) 11133 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP}, 11134 #define OPTION_MT (OPTION_ASE_BASE + 8) 11135 {"mmt", no_argument, NULL, OPTION_MT}, 11136 #define OPTION_NO_MT (OPTION_ASE_BASE + 9) 11137 {"mno-mt", no_argument, NULL, OPTION_NO_MT}, 11138 #define OPTION_SMARTMIPS (OPTION_ASE_BASE + 10) 11139 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS}, 11140 #define OPTION_NO_SMARTMIPS (OPTION_ASE_BASE + 11) 11141 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS}, 11142 #define OPTION_DSPR2 (OPTION_ASE_BASE + 12) 11143 {"mdspr2", no_argument, NULL, OPTION_DSPR2}, 11144 #define OPTION_NO_DSPR2 (OPTION_ASE_BASE + 13) 11145 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2}, 11146 11147 /* Old-style architecture options. Don't add more of these. */ 11148 #define OPTION_COMPAT_ARCH_BASE (OPTION_ASE_BASE + 14) 11149 #define OPTION_M4650 (OPTION_COMPAT_ARCH_BASE + 0) 11150 {"m4650", no_argument, NULL, OPTION_M4650}, 11151 #define OPTION_NO_M4650 (OPTION_COMPAT_ARCH_BASE + 1) 11152 {"no-m4650", no_argument, NULL, OPTION_NO_M4650}, 11153 #define OPTION_M4010 (OPTION_COMPAT_ARCH_BASE + 2) 11154 {"m4010", no_argument, NULL, OPTION_M4010}, 11155 #define OPTION_NO_M4010 (OPTION_COMPAT_ARCH_BASE + 3) 11156 {"no-m4010", no_argument, NULL, OPTION_NO_M4010}, 11157 #define OPTION_M4100 (OPTION_COMPAT_ARCH_BASE + 4) 11158 {"m4100", no_argument, NULL, OPTION_M4100}, 11159 #define OPTION_NO_M4100 (OPTION_COMPAT_ARCH_BASE + 5) 11160 {"no-m4100", no_argument, NULL, OPTION_NO_M4100}, 11161 #define OPTION_M3900 (OPTION_COMPAT_ARCH_BASE + 6) 11162 {"m3900", no_argument, NULL, OPTION_M3900}, 11163 #define OPTION_NO_M3900 (OPTION_COMPAT_ARCH_BASE + 7) 11164 {"no-m3900", no_argument, NULL, OPTION_NO_M3900}, 11165 11166 /* Options which enable bug fixes. */ 11167 #define OPTION_FIX_BASE (OPTION_COMPAT_ARCH_BASE + 8) 11168 #define OPTION_M7000_HILO_FIX (OPTION_FIX_BASE + 0) 11169 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX}, 11170 #define OPTION_MNO_7000_HILO_FIX (OPTION_FIX_BASE + 1) 11171 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX}, 11172 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX}, 11173 #define OPTION_FIX_VR4120 (OPTION_FIX_BASE + 2) 11174 #define OPTION_NO_FIX_VR4120 (OPTION_FIX_BASE + 3) 11175 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120}, 11176 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120}, 11177 #define OPTION_FIX_VR4130 (OPTION_FIX_BASE + 4) 11178 #define OPTION_NO_FIX_VR4130 (OPTION_FIX_BASE + 5) 11179 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130}, 11180 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130}, 11181 11182 /* Miscellaneous options. */ 11183 #define OPTION_MISC_BASE (OPTION_FIX_BASE + 6) 11184 #define OPTION_TRAP (OPTION_MISC_BASE + 0) 11185 {"trap", no_argument, NULL, OPTION_TRAP}, 11186 {"no-break", no_argument, NULL, OPTION_TRAP}, 11187 #define OPTION_BREAK (OPTION_MISC_BASE + 1) 11188 {"break", no_argument, NULL, OPTION_BREAK}, 11189 {"no-trap", no_argument, NULL, OPTION_BREAK}, 11190 #define OPTION_EB (OPTION_MISC_BASE + 2) 11191 {"EB", no_argument, NULL, OPTION_EB}, 11192 #define OPTION_EL (OPTION_MISC_BASE + 3) 11193 {"EL", no_argument, NULL, OPTION_EL}, 11194 #define OPTION_FP32 (OPTION_MISC_BASE + 4) 11195 {"mfp32", no_argument, NULL, OPTION_FP32}, 11196 #define OPTION_GP32 (OPTION_MISC_BASE + 5) 11197 {"mgp32", no_argument, NULL, OPTION_GP32}, 11198 #define OPTION_CONSTRUCT_FLOATS (OPTION_MISC_BASE + 6) 11199 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS}, 11200 #define OPTION_NO_CONSTRUCT_FLOATS (OPTION_MISC_BASE + 7) 11201 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS}, 11202 #define OPTION_FP64 (OPTION_MISC_BASE + 8) 11203 {"mfp64", no_argument, NULL, OPTION_FP64}, 11204 #define OPTION_GP64 (OPTION_MISC_BASE + 9) 11205 {"mgp64", no_argument, NULL, OPTION_GP64}, 11206 #define OPTION_RELAX_BRANCH (OPTION_MISC_BASE + 10) 11207 #define OPTION_NO_RELAX_BRANCH (OPTION_MISC_BASE + 11) 11208 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH}, 11209 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH}, 11210 #define OPTION_MSHARED (OPTION_MISC_BASE + 12) 11211 #define OPTION_MNO_SHARED (OPTION_MISC_BASE + 13) 11212 {"mshared", no_argument, NULL, OPTION_MSHARED}, 11213 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED}, 11214 #define OPTION_MSYM32 (OPTION_MISC_BASE + 14) 11215 #define OPTION_MNO_SYM32 (OPTION_MISC_BASE + 15) 11216 {"msym32", no_argument, NULL, OPTION_MSYM32}, 11217 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32}, 11218 #define OPTION_SOFT_FLOAT (OPTION_MISC_BASE + 16) 11219 #define OPTION_HARD_FLOAT (OPTION_MISC_BASE + 17) 11220 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT}, 11221 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT}, 11222 #define OPTION_SINGLE_FLOAT (OPTION_MISC_BASE + 18) 11223 #define OPTION_DOUBLE_FLOAT (OPTION_MISC_BASE + 19) 11224 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT}, 11225 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT}, 11226 11227 /* ELF-specific options. */ 11228 #ifdef OBJ_ELF 11229 #define OPTION_ELF_BASE (OPTION_MISC_BASE + 20) 11230 #define OPTION_CALL_SHARED (OPTION_ELF_BASE + 0) 11231 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED}, 11232 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED}, 11233 #define OPTION_CALL_NONPIC (OPTION_ELF_BASE + 1) 11234 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC}, 11235 #define OPTION_NON_SHARED (OPTION_ELF_BASE + 2) 11236 {"non_shared", no_argument, NULL, OPTION_NON_SHARED}, 11237 #define OPTION_XGOT (OPTION_ELF_BASE + 3) 11238 {"xgot", no_argument, NULL, OPTION_XGOT}, 11239 #define OPTION_MABI (OPTION_ELF_BASE + 4) 11240 {"mabi", required_argument, NULL, OPTION_MABI}, 11241 #define OPTION_32 (OPTION_ELF_BASE + 5) 11242 {"32", no_argument, NULL, OPTION_32}, 11243 #define OPTION_N32 (OPTION_ELF_BASE + 6) 11244 {"n32", no_argument, NULL, OPTION_N32}, 11245 #define OPTION_64 (OPTION_ELF_BASE + 7) 11246 {"64", no_argument, NULL, OPTION_64}, 11247 #define OPTION_MDEBUG (OPTION_ELF_BASE + 8) 11248 {"mdebug", no_argument, NULL, OPTION_MDEBUG}, 11249 #define OPTION_NO_MDEBUG (OPTION_ELF_BASE + 9) 11250 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG}, 11251 #define OPTION_PDR (OPTION_ELF_BASE + 10) 11252 {"mpdr", no_argument, NULL, OPTION_PDR}, 11253 #define OPTION_NO_PDR (OPTION_ELF_BASE + 11) 11254 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR}, 11255 #define OPTION_MVXWORKS_PIC (OPTION_ELF_BASE + 12) 11256 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC}, 11257 #endif /* OBJ_ELF */ 11258 11259 {NULL, no_argument, NULL, 0} 11260 }; 11261 size_t md_longopts_size = sizeof (md_longopts); 11262 11263 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to 11264 NEW_VALUE. Warn if another value was already specified. Note: 11265 we have to defer parsing the -march and -mtune arguments in order 11266 to handle 'from-abi' correctly, since the ABI might be specified 11267 in a later argument. */ 11268 11269 static void 11270 mips_set_option_string (const char **string_ptr, const char *new_value) 11271 { 11272 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0) 11273 as_warn (_("A different %s was already specified, is now %s"), 11274 string_ptr == &mips_arch_string ? "-march" : "-mtune", 11275 new_value); 11276 11277 *string_ptr = new_value; 11278 } 11279 11280 int 11281 md_parse_option (int c, char *arg) 11282 { 11283 switch (c) 11284 { 11285 case OPTION_CONSTRUCT_FLOATS: 11286 mips_disable_float_construction = 0; 11287 break; 11288 11289 case OPTION_NO_CONSTRUCT_FLOATS: 11290 mips_disable_float_construction = 1; 11291 break; 11292 11293 case OPTION_TRAP: 11294 mips_trap = 1; 11295 break; 11296 11297 case OPTION_BREAK: 11298 mips_trap = 0; 11299 break; 11300 11301 case OPTION_EB: 11302 target_big_endian = 1; 11303 break; 11304 11305 case OPTION_EL: 11306 target_big_endian = 0; 11307 break; 11308 11309 case 'O': 11310 if (arg == NULL) 11311 mips_optimize = 1; 11312 else if (arg[0] == '0') 11313 mips_optimize = 0; 11314 else if (arg[0] == '1') 11315 mips_optimize = 1; 11316 else 11317 mips_optimize = 2; 11318 break; 11319 11320 case 'g': 11321 if (arg == NULL) 11322 mips_debug = 2; 11323 else 11324 mips_debug = atoi (arg); 11325 break; 11326 11327 case OPTION_MIPS1: 11328 file_mips_isa = ISA_MIPS1; 11329 break; 11330 11331 case OPTION_MIPS2: 11332 file_mips_isa = ISA_MIPS2; 11333 break; 11334 11335 case OPTION_MIPS3: 11336 file_mips_isa = ISA_MIPS3; 11337 break; 11338 11339 case OPTION_MIPS4: 11340 file_mips_isa = ISA_MIPS4; 11341 break; 11342 11343 case OPTION_MIPS5: 11344 file_mips_isa = ISA_MIPS5; 11345 break; 11346 11347 case OPTION_MIPS32: 11348 file_mips_isa = ISA_MIPS32; 11349 break; 11350 11351 case OPTION_MIPS32R2: 11352 file_mips_isa = ISA_MIPS32R2; 11353 break; 11354 11355 case OPTION_MIPS64R2: 11356 file_mips_isa = ISA_MIPS64R2; 11357 break; 11358 11359 case OPTION_MIPS64: 11360 file_mips_isa = ISA_MIPS64; 11361 break; 11362 11363 case OPTION_MTUNE: 11364 mips_set_option_string (&mips_tune_string, arg); 11365 break; 11366 11367 case OPTION_MARCH: 11368 mips_set_option_string (&mips_arch_string, arg); 11369 break; 11370 11371 case OPTION_M4650: 11372 mips_set_option_string (&mips_arch_string, "4650"); 11373 mips_set_option_string (&mips_tune_string, "4650"); 11374 break; 11375 11376 case OPTION_NO_M4650: 11377 break; 11378 11379 case OPTION_M4010: 11380 mips_set_option_string (&mips_arch_string, "4010"); 11381 mips_set_option_string (&mips_tune_string, "4010"); 11382 break; 11383 11384 case OPTION_NO_M4010: 11385 break; 11386 11387 case OPTION_M4100: 11388 mips_set_option_string (&mips_arch_string, "4100"); 11389 mips_set_option_string (&mips_tune_string, "4100"); 11390 break; 11391 11392 case OPTION_NO_M4100: 11393 break; 11394 11395 case OPTION_M3900: 11396 mips_set_option_string (&mips_arch_string, "3900"); 11397 mips_set_option_string (&mips_tune_string, "3900"); 11398 break; 11399 11400 case OPTION_NO_M3900: 11401 break; 11402 11403 case OPTION_MDMX: 11404 mips_opts.ase_mdmx = 1; 11405 break; 11406 11407 case OPTION_NO_MDMX: 11408 mips_opts.ase_mdmx = 0; 11409 break; 11410 11411 case OPTION_DSP: 11412 mips_opts.ase_dsp = 1; 11413 mips_opts.ase_dspr2 = 0; 11414 break; 11415 11416 case OPTION_NO_DSP: 11417 mips_opts.ase_dsp = 0; 11418 mips_opts.ase_dspr2 = 0; 11419 break; 11420 11421 case OPTION_DSPR2: 11422 mips_opts.ase_dspr2 = 1; 11423 mips_opts.ase_dsp = 1; 11424 break; 11425 11426 case OPTION_NO_DSPR2: 11427 mips_opts.ase_dspr2 = 0; 11428 mips_opts.ase_dsp = 0; 11429 break; 11430 11431 case OPTION_MT: 11432 mips_opts.ase_mt = 1; 11433 break; 11434 11435 case OPTION_NO_MT: 11436 mips_opts.ase_mt = 0; 11437 break; 11438 11439 case OPTION_MIPS16: 11440 mips_opts.mips16 = 1; 11441 mips_no_prev_insn (); 11442 break; 11443 11444 case OPTION_NO_MIPS16: 11445 mips_opts.mips16 = 0; 11446 mips_no_prev_insn (); 11447 break; 11448 11449 case OPTION_MIPS3D: 11450 mips_opts.ase_mips3d = 1; 11451 break; 11452 11453 case OPTION_NO_MIPS3D: 11454 mips_opts.ase_mips3d = 0; 11455 break; 11456 11457 case OPTION_SMARTMIPS: 11458 mips_opts.ase_smartmips = 1; 11459 break; 11460 11461 case OPTION_NO_SMARTMIPS: 11462 mips_opts.ase_smartmips = 0; 11463 break; 11464 11465 case OPTION_FIX_VR4120: 11466 mips_fix_vr4120 = 1; 11467 break; 11468 11469 case OPTION_NO_FIX_VR4120: 11470 mips_fix_vr4120 = 0; 11471 break; 11472 11473 case OPTION_FIX_VR4130: 11474 mips_fix_vr4130 = 1; 11475 break; 11476 11477 case OPTION_NO_FIX_VR4130: 11478 mips_fix_vr4130 = 0; 11479 break; 11480 11481 case OPTION_RELAX_BRANCH: 11482 mips_relax_branch = 1; 11483 break; 11484 11485 case OPTION_NO_RELAX_BRANCH: 11486 mips_relax_branch = 0; 11487 break; 11488 11489 case OPTION_MSHARED: 11490 mips_in_shared = TRUE; 11491 break; 11492 11493 case OPTION_MNO_SHARED: 11494 mips_in_shared = FALSE; 11495 break; 11496 11497 case OPTION_MSYM32: 11498 mips_opts.sym32 = TRUE; 11499 break; 11500 11501 case OPTION_MNO_SYM32: 11502 mips_opts.sym32 = FALSE; 11503 break; 11504 11505 #ifdef OBJ_ELF 11506 /* When generating ELF code, we permit -KPIC and -call_shared to 11507 select SVR4_PIC, and -non_shared to select no PIC. This is 11508 intended to be compatible with Irix 5. */ 11509 case OPTION_CALL_SHARED: 11510 if (!IS_ELF) 11511 { 11512 as_bad (_("-call_shared is supported only for ELF format")); 11513 return 0; 11514 } 11515 mips_pic = SVR4_PIC; 11516 mips_abicalls = TRUE; 11517 break; 11518 11519 case OPTION_CALL_NONPIC: 11520 if (!IS_ELF) 11521 { 11522 as_bad (_("-call_nonpic is supported only for ELF format")); 11523 return 0; 11524 } 11525 mips_pic = NO_PIC; 11526 mips_abicalls = TRUE; 11527 break; 11528 11529 case OPTION_NON_SHARED: 11530 if (!IS_ELF) 11531 { 11532 as_bad (_("-non_shared is supported only for ELF format")); 11533 return 0; 11534 } 11535 mips_pic = NO_PIC; 11536 mips_abicalls = FALSE; 11537 break; 11538 11539 /* The -xgot option tells the assembler to use 32 bit offsets 11540 when accessing the got in SVR4_PIC mode. It is for Irix 11541 compatibility. */ 11542 case OPTION_XGOT: 11543 mips_big_got = 1; 11544 break; 11545 #endif /* OBJ_ELF */ 11546 11547 case 'G': 11548 g_switch_value = atoi (arg); 11549 g_switch_seen = 1; 11550 break; 11551 11552 #ifdef OBJ_ELF 11553 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32 11554 and -mabi=64. */ 11555 case OPTION_32: 11556 if (!IS_ELF) 11557 { 11558 as_bad (_("-32 is supported for ELF format only")); 11559 return 0; 11560 } 11561 mips_abi = O32_ABI; 11562 break; 11563 11564 case OPTION_N32: 11565 if (!IS_ELF) 11566 { 11567 as_bad (_("-n32 is supported for ELF format only")); 11568 return 0; 11569 } 11570 mips_abi = N32_ABI; 11571 break; 11572 11573 case OPTION_64: 11574 if (!IS_ELF) 11575 { 11576 as_bad (_("-64 is supported for ELF format only")); 11577 return 0; 11578 } 11579 mips_abi = N64_ABI; 11580 if (!support_64bit_objects()) 11581 as_fatal (_("No compiled in support for 64 bit object file format")); 11582 break; 11583 #endif /* OBJ_ELF */ 11584 11585 case OPTION_GP32: 11586 file_mips_gp32 = 1; 11587 break; 11588 11589 case OPTION_GP64: 11590 file_mips_gp32 = 0; 11591 break; 11592 11593 case OPTION_FP32: 11594 file_mips_fp32 = 1; 11595 break; 11596 11597 case OPTION_FP64: 11598 file_mips_fp32 = 0; 11599 break; 11600 11601 case OPTION_SINGLE_FLOAT: 11602 file_mips_single_float = 1; 11603 break; 11604 11605 case OPTION_DOUBLE_FLOAT: 11606 file_mips_single_float = 0; 11607 break; 11608 11609 case OPTION_SOFT_FLOAT: 11610 file_mips_soft_float = 1; 11611 break; 11612 11613 case OPTION_HARD_FLOAT: 11614 file_mips_soft_float = 0; 11615 break; 11616 11617 #ifdef OBJ_ELF 11618 case OPTION_MABI: 11619 if (!IS_ELF) 11620 { 11621 as_bad (_("-mabi is supported for ELF format only")); 11622 return 0; 11623 } 11624 if (strcmp (arg, "32") == 0) 11625 mips_abi = O32_ABI; 11626 else if (strcmp (arg, "o64") == 0) 11627 mips_abi = O64_ABI; 11628 else if (strcmp (arg, "n32") == 0) 11629 mips_abi = N32_ABI; 11630 else if (strcmp (arg, "64") == 0) 11631 { 11632 mips_abi = N64_ABI; 11633 if (! support_64bit_objects()) 11634 as_fatal (_("No compiled in support for 64 bit object file " 11635 "format")); 11636 } 11637 else if (strcmp (arg, "eabi") == 0) 11638 mips_abi = EABI_ABI; 11639 else 11640 { 11641 as_fatal (_("invalid abi -mabi=%s"), arg); 11642 return 0; 11643 } 11644 break; 11645 #endif /* OBJ_ELF */ 11646 11647 case OPTION_M7000_HILO_FIX: 11648 mips_7000_hilo_fix = TRUE; 11649 break; 11650 11651 case OPTION_MNO_7000_HILO_FIX: 11652 mips_7000_hilo_fix = FALSE; 11653 break; 11654 11655 #ifdef OBJ_ELF 11656 case OPTION_MDEBUG: 11657 mips_flag_mdebug = TRUE; 11658 break; 11659 11660 case OPTION_NO_MDEBUG: 11661 mips_flag_mdebug = FALSE; 11662 break; 11663 11664 case OPTION_PDR: 11665 mips_flag_pdr = TRUE; 11666 break; 11667 11668 case OPTION_NO_PDR: 11669 mips_flag_pdr = FALSE; 11670 break; 11671 11672 case OPTION_MVXWORKS_PIC: 11673 mips_pic = VXWORKS_PIC; 11674 break; 11675 #endif /* OBJ_ELF */ 11676 11677 default: 11678 return 0; 11679 } 11680 11681 return 1; 11682 } 11683 11684 /* Set up globals to generate code for the ISA or processor 11685 described by INFO. */ 11686 11687 static void 11688 mips_set_architecture (const struct mips_cpu_info *info) 11689 { 11690 if (info != 0) 11691 { 11692 file_mips_arch = info->cpu; 11693 mips_opts.arch = info->cpu; 11694 mips_opts.isa = info->isa; 11695 } 11696 } 11697 11698 11699 /* Likewise for tuning. */ 11700 11701 static void 11702 mips_set_tune (const struct mips_cpu_info *info) 11703 { 11704 if (info != 0) 11705 mips_tune = info->cpu; 11706 } 11707 11708 11709 void 11710 mips_after_parse_args (void) 11711 { 11712 const struct mips_cpu_info *arch_info = 0; 11713 const struct mips_cpu_info *tune_info = 0; 11714 11715 /* GP relative stuff not working for PE */ 11716 if (strncmp (TARGET_OS, "pe", 2) == 0) 11717 { 11718 if (g_switch_seen && g_switch_value != 0) 11719 as_bad (_("-G not supported in this configuration.")); 11720 g_switch_value = 0; 11721 } 11722 11723 if (mips_abi == NO_ABI) 11724 mips_abi = MIPS_DEFAULT_ABI; 11725 11726 /* The following code determines the architecture and register size. 11727 Similar code was added to GCC 3.3 (see override_options() in 11728 config/mips/mips.c). The GAS and GCC code should be kept in sync 11729 as much as possible. */ 11730 11731 if (mips_arch_string != 0) 11732 arch_info = mips_parse_cpu ("-march", mips_arch_string); 11733 11734 if (file_mips_isa != ISA_UNKNOWN) 11735 { 11736 /* Handle -mipsN. At this point, file_mips_isa contains the 11737 ISA level specified by -mipsN, while arch_info->isa contains 11738 the -march selection (if any). */ 11739 if (arch_info != 0) 11740 { 11741 /* -march takes precedence over -mipsN, since it is more descriptive. 11742 There's no harm in specifying both as long as the ISA levels 11743 are the same. */ 11744 if (file_mips_isa != arch_info->isa) 11745 as_bad (_("-%s conflicts with the other architecture options, which imply -%s"), 11746 mips_cpu_info_from_isa (file_mips_isa)->name, 11747 mips_cpu_info_from_isa (arch_info->isa)->name); 11748 } 11749 else 11750 arch_info = mips_cpu_info_from_isa (file_mips_isa); 11751 } 11752 11753 if (arch_info == 0) 11754 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT); 11755 11756 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa)) 11757 as_bad ("-march=%s is not compatible with the selected ABI", 11758 arch_info->name); 11759 11760 mips_set_architecture (arch_info); 11761 11762 /* Optimize for file_mips_arch, unless -mtune selects a different processor. */ 11763 if (mips_tune_string != 0) 11764 tune_info = mips_parse_cpu ("-mtune", mips_tune_string); 11765 11766 if (tune_info == 0) 11767 mips_set_tune (arch_info); 11768 else 11769 mips_set_tune (tune_info); 11770 11771 if (file_mips_gp32 >= 0) 11772 { 11773 /* The user specified the size of the integer registers. Make sure 11774 it agrees with the ABI and ISA. */ 11775 if (file_mips_gp32 == 0 && !ISA_HAS_64BIT_REGS (mips_opts.isa)) 11776 as_bad (_("-mgp64 used with a 32-bit processor")); 11777 else if (file_mips_gp32 == 1 && ABI_NEEDS_64BIT_REGS (mips_abi)) 11778 as_bad (_("-mgp32 used with a 64-bit ABI")); 11779 else if (file_mips_gp32 == 0 && ABI_NEEDS_32BIT_REGS (mips_abi)) 11780 as_bad (_("-mgp64 used with a 32-bit ABI")); 11781 } 11782 else 11783 { 11784 /* Infer the integer register size from the ABI and processor. 11785 Restrict ourselves to 32-bit registers if that's all the 11786 processor has, or if the ABI cannot handle 64-bit registers. */ 11787 file_mips_gp32 = (ABI_NEEDS_32BIT_REGS (mips_abi) 11788 || !ISA_HAS_64BIT_REGS (mips_opts.isa)); 11789 } 11790 11791 switch (file_mips_fp32) 11792 { 11793 default: 11794 case -1: 11795 /* No user specified float register size. 11796 ??? GAS treats single-float processors as though they had 64-bit 11797 float registers (although it complains when double-precision 11798 instructions are used). As things stand, saying they have 32-bit 11799 registers would lead to spurious "register must be even" messages. 11800 So here we assume float registers are never smaller than the 11801 integer ones. */ 11802 if (file_mips_gp32 == 0) 11803 /* 64-bit integer registers implies 64-bit float registers. */ 11804 file_mips_fp32 = 0; 11805 else if ((mips_opts.ase_mips3d > 0 || mips_opts.ase_mdmx > 0) 11806 && ISA_HAS_64BIT_FPRS (mips_opts.isa)) 11807 /* -mips3d and -mdmx imply 64-bit float registers, if possible. */ 11808 file_mips_fp32 = 0; 11809 else 11810 /* 32-bit float registers. */ 11811 file_mips_fp32 = 1; 11812 break; 11813 11814 /* The user specified the size of the float registers. Check if it 11815 agrees with the ABI and ISA. */ 11816 case 0: 11817 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa)) 11818 as_bad (_("-mfp64 used with a 32-bit fpu")); 11819 else if (ABI_NEEDS_32BIT_REGS (mips_abi) 11820 && !ISA_HAS_MXHC1 (mips_opts.isa)) 11821 as_warn (_("-mfp64 used with a 32-bit ABI")); 11822 break; 11823 case 1: 11824 if (ABI_NEEDS_64BIT_REGS (mips_abi)) 11825 as_warn (_("-mfp32 used with a 64-bit ABI")); 11826 break; 11827 } 11828 11829 /* End of GCC-shared inference code. */ 11830 11831 /* This flag is set when we have a 64-bit capable CPU but use only 11832 32-bit wide registers. Note that EABI does not use it. */ 11833 if (ISA_HAS_64BIT_REGS (mips_opts.isa) 11834 && ((mips_abi == NO_ABI && file_mips_gp32 == 1) 11835 || mips_abi == O32_ABI)) 11836 mips_32bitmode = 1; 11837 11838 if (mips_opts.isa == ISA_MIPS1 && mips_trap) 11839 as_bad (_("trap exception not supported at ISA 1")); 11840 11841 /* If the selected architecture includes support for ASEs, enable 11842 generation of code for them. */ 11843 if (mips_opts.mips16 == -1) 11844 mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_arch)) ? 1 : 0; 11845 if (mips_opts.ase_mips3d == -1) 11846 mips_opts.ase_mips3d = ((arch_info->flags & MIPS_CPU_ASE_MIPS3D) 11847 && file_mips_fp32 == 0) ? 1 : 0; 11848 if (mips_opts.ase_mips3d && file_mips_fp32 == 1) 11849 as_bad (_("-mfp32 used with -mips3d")); 11850 11851 if (mips_opts.ase_mdmx == -1) 11852 mips_opts.ase_mdmx = ((arch_info->flags & MIPS_CPU_ASE_MDMX) 11853 && file_mips_fp32 == 0) ? 1 : 0; 11854 if (mips_opts.ase_mdmx && file_mips_fp32 == 1) 11855 as_bad (_("-mfp32 used with -mdmx")); 11856 11857 if (mips_opts.ase_smartmips == -1) 11858 mips_opts.ase_smartmips = (arch_info->flags & MIPS_CPU_ASE_SMARTMIPS) ? 1 : 0; 11859 if (mips_opts.ase_smartmips && !ISA_SUPPORTS_SMARTMIPS) 11860 as_warn ("%s ISA does not support SmartMIPS", 11861 mips_cpu_info_from_isa (mips_opts.isa)->name); 11862 11863 if (mips_opts.ase_dsp == -1) 11864 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0; 11865 if (mips_opts.ase_dsp && !ISA_SUPPORTS_DSP_ASE) 11866 as_warn ("%s ISA does not support DSP ASE", 11867 mips_cpu_info_from_isa (mips_opts.isa)->name); 11868 11869 if (mips_opts.ase_dspr2 == -1) 11870 { 11871 mips_opts.ase_dspr2 = (arch_info->flags & MIPS_CPU_ASE_DSPR2) ? 1 : 0; 11872 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0; 11873 } 11874 if (mips_opts.ase_dspr2 && !ISA_SUPPORTS_DSPR2_ASE) 11875 as_warn ("%s ISA does not support DSP R2 ASE", 11876 mips_cpu_info_from_isa (mips_opts.isa)->name); 11877 11878 if (mips_opts.ase_mt == -1) 11879 mips_opts.ase_mt = (arch_info->flags & MIPS_CPU_ASE_MT) ? 1 : 0; 11880 if (mips_opts.ase_mt && !ISA_SUPPORTS_MT_ASE) 11881 as_warn ("%s ISA does not support MT ASE", 11882 mips_cpu_info_from_isa (mips_opts.isa)->name); 11883 11884 file_mips_isa = mips_opts.isa; 11885 file_ase_mips16 = mips_opts.mips16; 11886 file_ase_mips3d = mips_opts.ase_mips3d; 11887 file_ase_mdmx = mips_opts.ase_mdmx; 11888 file_ase_smartmips = mips_opts.ase_smartmips; 11889 file_ase_dsp = mips_opts.ase_dsp; 11890 file_ase_dspr2 = mips_opts.ase_dspr2; 11891 file_ase_mt = mips_opts.ase_mt; 11892 mips_opts.gp32 = file_mips_gp32; 11893 mips_opts.fp32 = file_mips_fp32; 11894 mips_opts.soft_float = file_mips_soft_float; 11895 mips_opts.single_float = file_mips_single_float; 11896 11897 if (mips_flag_mdebug < 0) 11898 { 11899 #ifdef OBJ_MAYBE_ECOFF 11900 if (OUTPUT_FLAVOR == bfd_target_ecoff_flavour) 11901 mips_flag_mdebug = 1; 11902 else 11903 #endif /* OBJ_MAYBE_ECOFF */ 11904 mips_flag_mdebug = 0; 11905 } 11906 } 11907 11908 void 11909 mips_init_after_args (void) 11910 { 11911 /* initialize opcodes */ 11912 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes; 11913 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes; 11914 } 11915 11916 long 11917 md_pcrel_from (fixS *fixP) 11918 { 11919 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address; 11920 switch (fixP->fx_r_type) 11921 { 11922 case BFD_RELOC_16_PCREL_S2: 11923 case BFD_RELOC_MIPS_JMP: 11924 /* Return the address of the delay slot. */ 11925 return addr + 4; 11926 default: 11927 /* We have no relocation type for PC relative MIPS16 instructions. */ 11928 if (fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != now_seg) 11929 as_bad_where (fixP->fx_file, fixP->fx_line, 11930 _("PC relative MIPS16 instruction references a different section")); 11931 return addr; 11932 } 11933 } 11934 11935 /* This is called before the symbol table is processed. In order to 11936 work with gcc when using mips-tfile, we must keep all local labels. 11937 However, in other cases, we want to discard them. If we were 11938 called with -g, but we didn't see any debugging information, it may 11939 mean that gcc is smuggling debugging information through to 11940 mips-tfile, in which case we must generate all local labels. */ 11941 11942 void 11943 mips_frob_file_before_adjust (void) 11944 { 11945 #ifndef NO_ECOFF_DEBUGGING 11946 if (ECOFF_DEBUGGING 11947 && mips_debug != 0 11948 && ! ecoff_debugging_seen) 11949 flag_keep_locals = 1; 11950 #endif 11951 } 11952 11953 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede 11954 the corresponding LO16 reloc. This is called before md_apply_fix and 11955 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit 11956 relocation operators. 11957 11958 For our purposes, a %lo() expression matches a %got() or %hi() 11959 expression if: 11960 11961 (a) it refers to the same symbol; and 11962 (b) the offset applied in the %lo() expression is no lower than 11963 the offset applied in the %got() or %hi(). 11964 11965 (b) allows us to cope with code like: 11966 11967 lui $4,%hi(foo) 11968 lh $4,%lo(foo+2)($4) 11969 11970 ...which is legal on RELA targets, and has a well-defined behaviour 11971 if the user knows that adding 2 to "foo" will not induce a carry to 11972 the high 16 bits. 11973 11974 When several %lo()s match a particular %got() or %hi(), we use the 11975 following rules to distinguish them: 11976 11977 (1) %lo()s with smaller offsets are a better match than %lo()s with 11978 higher offsets. 11979 11980 (2) %lo()s with no matching %got() or %hi() are better than those 11981 that already have a matching %got() or %hi(). 11982 11983 (3) later %lo()s are better than earlier %lo()s. 11984 11985 These rules are applied in order. 11986 11987 (1) means, among other things, that %lo()s with identical offsets are 11988 chosen if they exist. 11989 11990 (2) means that we won't associate several high-part relocations with 11991 the same low-part relocation unless there's no alternative. Having 11992 several high parts for the same low part is a GNU extension; this rule 11993 allows careful users to avoid it. 11994 11995 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order, 11996 with the last high-part relocation being at the front of the list. 11997 It therefore makes sense to choose the last matching low-part 11998 relocation, all other things being equal. It's also easier 11999 to code that way. */ 12000 12001 void 12002 mips_frob_file (void) 12003 { 12004 struct mips_hi_fixup *l; 12005 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED; 12006 12007 for (l = mips_hi_fixup_list; l != NULL; l = l->next) 12008 { 12009 segment_info_type *seginfo; 12010 bfd_boolean matched_lo_p; 12011 fixS **hi_pos, **lo_pos, **pos; 12012 12013 assert (reloc_needs_lo_p (l->fixp->fx_r_type)); 12014 12015 /* If a GOT16 relocation turns out to be against a global symbol, 12016 there isn't supposed to be a matching LO. */ 12017 if (got16_reloc_p (l->fixp->fx_r_type) 12018 && !pic_need_relax (l->fixp->fx_addsy, l->seg)) 12019 continue; 12020 12021 /* Check quickly whether the next fixup happens to be a matching %lo. */ 12022 if (fixup_has_matching_lo_p (l->fixp)) 12023 continue; 12024 12025 seginfo = seg_info (l->seg); 12026 12027 /* Set HI_POS to the position of this relocation in the chain. 12028 Set LO_POS to the position of the chosen low-part relocation. 12029 MATCHED_LO_P is true on entry to the loop if *POS is a low-part 12030 relocation that matches an immediately-preceding high-part 12031 relocation. */ 12032 hi_pos = NULL; 12033 lo_pos = NULL; 12034 matched_lo_p = FALSE; 12035 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type); 12036 12037 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next) 12038 { 12039 if (*pos == l->fixp) 12040 hi_pos = pos; 12041 12042 if ((*pos)->fx_r_type == looking_for_rtype 12043 && (*pos)->fx_addsy == l->fixp->fx_addsy 12044 && (*pos)->fx_offset >= l->fixp->fx_offset 12045 && (lo_pos == NULL 12046 || (*pos)->fx_offset < (*lo_pos)->fx_offset 12047 || (!matched_lo_p 12048 && (*pos)->fx_offset == (*lo_pos)->fx_offset))) 12049 lo_pos = pos; 12050 12051 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type) 12052 && fixup_has_matching_lo_p (*pos)); 12053 } 12054 12055 /* If we found a match, remove the high-part relocation from its 12056 current position and insert it before the low-part relocation. 12057 Make the offsets match so that fixup_has_matching_lo_p() 12058 will return true. 12059 12060 We don't warn about unmatched high-part relocations since some 12061 versions of gcc have been known to emit dead "lui ...%hi(...)" 12062 instructions. */ 12063 if (lo_pos != NULL) 12064 { 12065 l->fixp->fx_offset = (*lo_pos)->fx_offset; 12066 if (l->fixp->fx_next != *lo_pos) 12067 { 12068 *hi_pos = l->fixp->fx_next; 12069 l->fixp->fx_next = *lo_pos; 12070 *lo_pos = l->fixp; 12071 } 12072 } 12073 } 12074 } 12075 12076 /* We may have combined relocations without symbols in the N32/N64 ABI. 12077 We have to prevent gas from dropping them. */ 12078 12079 int 12080 mips_force_relocation (fixS *fixp) 12081 { 12082 if (generic_force_reloc (fixp)) 12083 return 1; 12084 12085 if (HAVE_NEWABI 12086 && S_GET_SEGMENT (fixp->fx_addsy) == bfd_abs_section_ptr 12087 && (fixp->fx_r_type == BFD_RELOC_MIPS_SUB 12088 || hi16_reloc_p (fixp->fx_r_type) 12089 || lo16_reloc_p (fixp->fx_r_type))) 12090 return 1; 12091 12092 return 0; 12093 } 12094 12095 /* Apply a fixup to the object file. */ 12096 12097 void 12098 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED) 12099 { 12100 bfd_byte *buf; 12101 long insn; 12102 reloc_howto_type *howto; 12103 12104 /* We ignore generic BFD relocations we don't know about. */ 12105 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type); 12106 if (! howto) 12107 return; 12108 12109 assert (fixP->fx_size == 4 12110 || fixP->fx_r_type == BFD_RELOC_16 12111 || fixP->fx_r_type == BFD_RELOC_64 12112 || fixP->fx_r_type == BFD_RELOC_CTOR 12113 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB 12114 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT 12115 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY 12116 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64); 12117 12118 buf = (bfd_byte *) (fixP->fx_frag->fr_literal + fixP->fx_where); 12119 12120 assert (!fixP->fx_pcrel || fixP->fx_r_type == BFD_RELOC_16_PCREL_S2); 12121 12122 /* Don't treat parts of a composite relocation as done. There are two 12123 reasons for this: 12124 12125 (1) The second and third parts will be against 0 (RSS_UNDEF) but 12126 should nevertheless be emitted if the first part is. 12127 12128 (2) In normal usage, composite relocations are never assembly-time 12129 constants. The easiest way of dealing with the pathological 12130 exceptions is to generate a relocation against STN_UNDEF and 12131 leave everything up to the linker. */ 12132 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0) 12133 fixP->fx_done = 1; 12134 12135 switch (fixP->fx_r_type) 12136 { 12137 case BFD_RELOC_MIPS_TLS_GD: 12138 case BFD_RELOC_MIPS_TLS_LDM: 12139 case BFD_RELOC_MIPS_TLS_DTPREL32: 12140 case BFD_RELOC_MIPS_TLS_DTPREL64: 12141 case BFD_RELOC_MIPS_TLS_DTPREL_HI16: 12142 case BFD_RELOC_MIPS_TLS_DTPREL_LO16: 12143 case BFD_RELOC_MIPS_TLS_GOTTPREL: 12144 case BFD_RELOC_MIPS_TLS_TPREL_HI16: 12145 case BFD_RELOC_MIPS_TLS_TPREL_LO16: 12146 S_SET_THREAD_LOCAL (fixP->fx_addsy); 12147 /* fall through */ 12148 12149 case BFD_RELOC_MIPS_JMP: 12150 case BFD_RELOC_MIPS_SHIFT5: 12151 case BFD_RELOC_MIPS_SHIFT6: 12152 case BFD_RELOC_MIPS_GOT_DISP: 12153 case BFD_RELOC_MIPS_GOT_PAGE: 12154 case BFD_RELOC_MIPS_GOT_OFST: 12155 case BFD_RELOC_MIPS_SUB: 12156 case BFD_RELOC_MIPS_INSERT_A: 12157 case BFD_RELOC_MIPS_INSERT_B: 12158 case BFD_RELOC_MIPS_DELETE: 12159 case BFD_RELOC_MIPS_HIGHEST: 12160 case BFD_RELOC_MIPS_HIGHER: 12161 case BFD_RELOC_MIPS_SCN_DISP: 12162 case BFD_RELOC_MIPS_REL16: 12163 case BFD_RELOC_MIPS_RELGOT: 12164 case BFD_RELOC_MIPS_JALR: 12165 case BFD_RELOC_HI16: 12166 case BFD_RELOC_HI16_S: 12167 case BFD_RELOC_GPREL16: 12168 case BFD_RELOC_MIPS_LITERAL: 12169 case BFD_RELOC_MIPS_CALL16: 12170 case BFD_RELOC_MIPS_GOT16: 12171 case BFD_RELOC_GPREL32: 12172 case BFD_RELOC_MIPS_GOT_HI16: 12173 case BFD_RELOC_MIPS_GOT_LO16: 12174 case BFD_RELOC_MIPS_CALL_HI16: 12175 case BFD_RELOC_MIPS_CALL_LO16: 12176 case BFD_RELOC_MIPS16_GPREL: 12177 case BFD_RELOC_MIPS16_GOT16: 12178 case BFD_RELOC_MIPS16_CALL16: 12179 case BFD_RELOC_MIPS16_HI16: 12180 case BFD_RELOC_MIPS16_HI16_S: 12181 case BFD_RELOC_MIPS16_JMP: 12182 /* Nothing needed to do. The value comes from the reloc entry. */ 12183 break; 12184 12185 case BFD_RELOC_64: 12186 /* This is handled like BFD_RELOC_32, but we output a sign 12187 extended value if we are only 32 bits. */ 12188 if (fixP->fx_done) 12189 { 12190 if (8 <= sizeof (valueT)) 12191 md_number_to_chars ((char *) buf, *valP, 8); 12192 else 12193 { 12194 valueT hiv; 12195 12196 if ((*valP & 0x80000000) != 0) 12197 hiv = 0xffffffff; 12198 else 12199 hiv = 0; 12200 md_number_to_chars ((char *)(buf + (target_big_endian ? 4 : 0)), 12201 *valP, 4); 12202 md_number_to_chars ((char *)(buf + (target_big_endian ? 0 : 4)), 12203 hiv, 4); 12204 } 12205 } 12206 break; 12207 12208 case BFD_RELOC_RVA: 12209 case BFD_RELOC_32: 12210 case BFD_RELOC_16: 12211 /* If we are deleting this reloc entry, we must fill in the 12212 value now. This can happen if we have a .word which is not 12213 resolved when it appears but is later defined. */ 12214 if (fixP->fx_done) 12215 md_number_to_chars ((char *) buf, *valP, fixP->fx_size); 12216 break; 12217 12218 case BFD_RELOC_LO16: 12219 case BFD_RELOC_MIPS16_LO16: 12220 /* FIXME: Now that embedded-PIC is gone, some of this code/comment 12221 may be safe to remove, but if so it's not obvious. */ 12222 /* When handling an embedded PIC switch statement, we can wind 12223 up deleting a LO16 reloc. See the 'o' case in mips_ip. */ 12224 if (fixP->fx_done) 12225 { 12226 if (*valP + 0x8000 > 0xffff) 12227 as_bad_where (fixP->fx_file, fixP->fx_line, 12228 _("relocation overflow")); 12229 if (target_big_endian) 12230 buf += 2; 12231 md_number_to_chars ((char *) buf, *valP, 2); 12232 } 12233 break; 12234 12235 case BFD_RELOC_16_PCREL_S2: 12236 if ((*valP & 0x3) != 0) 12237 as_bad_where (fixP->fx_file, fixP->fx_line, 12238 _("Branch to misaligned address (%lx)"), (long) *valP); 12239 12240 /* We need to save the bits in the instruction since fixup_segment() 12241 might be deleting the relocation entry (i.e., a branch within 12242 the current segment). */ 12243 if (! fixP->fx_done) 12244 break; 12245 12246 /* Update old instruction data. */ 12247 if (target_big_endian) 12248 insn = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3]; 12249 else 12250 insn = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0]; 12251 12252 if (*valP + 0x20000 <= 0x3ffff) 12253 { 12254 insn |= (*valP >> 2) & 0xffff; 12255 md_number_to_chars ((char *) buf, insn, 4); 12256 } 12257 else if (mips_pic == NO_PIC 12258 && fixP->fx_done 12259 && fixP->fx_frag->fr_address >= text_section->vma 12260 && (fixP->fx_frag->fr_address 12261 < text_section->vma + bfd_get_section_size (text_section)) 12262 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */ 12263 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */ 12264 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */ 12265 { 12266 /* The branch offset is too large. If this is an 12267 unconditional branch, and we are not generating PIC code, 12268 we can convert it to an absolute jump instruction. */ 12269 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */ 12270 insn = 0x0c000000; /* jal */ 12271 else 12272 insn = 0x08000000; /* j */ 12273 fixP->fx_r_type = BFD_RELOC_MIPS_JMP; 12274 fixP->fx_done = 0; 12275 fixP->fx_addsy = section_symbol (text_section); 12276 *valP += md_pcrel_from (fixP); 12277 md_number_to_chars ((char *) buf, insn, 4); 12278 } 12279 else 12280 { 12281 /* If we got here, we have branch-relaxation disabled, 12282 and there's nothing we can do to fix this instruction 12283 without turning it into a longer sequence. */ 12284 as_bad_where (fixP->fx_file, fixP->fx_line, 12285 _("Branch out of range")); 12286 } 12287 break; 12288 12289 case BFD_RELOC_VTABLE_INHERIT: 12290 fixP->fx_done = 0; 12291 if (fixP->fx_addsy 12292 && !S_IS_DEFINED (fixP->fx_addsy) 12293 && !S_IS_WEAK (fixP->fx_addsy)) 12294 S_SET_WEAK (fixP->fx_addsy); 12295 break; 12296 12297 case BFD_RELOC_VTABLE_ENTRY: 12298 fixP->fx_done = 0; 12299 break; 12300 12301 default: 12302 internalError (); 12303 } 12304 12305 /* Remember value for tc_gen_reloc. */ 12306 fixP->fx_addnumber = *valP; 12307 } 12308 12309 static symbolS * 12310 get_symbol (void) 12311 { 12312 int c; 12313 char *name; 12314 symbolS *p; 12315 12316 name = input_line_pointer; 12317 c = get_symbol_end (); 12318 p = (symbolS *) symbol_find_or_make (name); 12319 *input_line_pointer = c; 12320 return p; 12321 } 12322 12323 /* Align the current frag to a given power of two. If a particular 12324 fill byte should be used, FILL points to an integer that contains 12325 that byte, otherwise FILL is null. 12326 12327 The MIPS assembler also automatically adjusts any preceding 12328 label. */ 12329 12330 static void 12331 mips_align (int to, int *fill, symbolS *label) 12332 { 12333 mips_emit_delays (); 12334 mips_record_mips16_mode (); 12335 if (fill == NULL && subseg_text_p (now_seg)) 12336 frag_align_code (to, 0); 12337 else 12338 frag_align (to, fill ? *fill : 0, 0); 12339 record_alignment (now_seg, to); 12340 if (label != NULL) 12341 { 12342 assert (S_GET_SEGMENT (label) == now_seg); 12343 symbol_set_frag (label, frag_now); 12344 S_SET_VALUE (label, (valueT) frag_now_fix ()); 12345 } 12346 } 12347 12348 /* Align to a given power of two. .align 0 turns off the automatic 12349 alignment used by the data creating pseudo-ops. */ 12350 12351 static void 12352 s_align (int x ATTRIBUTE_UNUSED) 12353 { 12354 int temp, fill_value, *fill_ptr; 12355 long max_alignment = 28; 12356 12357 /* o Note that the assembler pulls down any immediately preceding label 12358 to the aligned address. 12359 o It's not documented but auto alignment is reinstated by 12360 a .align pseudo instruction. 12361 o Note also that after auto alignment is turned off the mips assembler 12362 issues an error on attempt to assemble an improperly aligned data item. 12363 We don't. */ 12364 12365 temp = get_absolute_expression (); 12366 if (temp > max_alignment) 12367 as_bad (_("Alignment too large: %d. assumed."), temp = max_alignment); 12368 else if (temp < 0) 12369 { 12370 as_warn (_("Alignment negative: 0 assumed.")); 12371 temp = 0; 12372 } 12373 if (*input_line_pointer == ',') 12374 { 12375 ++input_line_pointer; 12376 fill_value = get_absolute_expression (); 12377 fill_ptr = &fill_value; 12378 } 12379 else 12380 fill_ptr = 0; 12381 if (temp) 12382 { 12383 segment_info_type *si = seg_info (now_seg); 12384 struct insn_label_list *l = si->label_list; 12385 /* Auto alignment should be switched on by next section change. */ 12386 auto_align = 1; 12387 mips_align (temp, fill_ptr, l != NULL ? l->label : NULL); 12388 } 12389 else 12390 { 12391 auto_align = 0; 12392 } 12393 12394 demand_empty_rest_of_line (); 12395 } 12396 12397 static void 12398 s_change_sec (int sec) 12399 { 12400 segT seg; 12401 12402 #ifdef OBJ_ELF 12403 /* The ELF backend needs to know that we are changing sections, so 12404 that .previous works correctly. We could do something like check 12405 for an obj_section_change_hook macro, but that might be confusing 12406 as it would not be appropriate to use it in the section changing 12407 functions in read.c, since obj-elf.c intercepts those. FIXME: 12408 This should be cleaner, somehow. */ 12409 if (IS_ELF) 12410 obj_elf_section_change_hook (); 12411 #endif 12412 12413 mips_emit_delays (); 12414 switch (sec) 12415 { 12416 case 't': 12417 s_text (0); 12418 break; 12419 case 'd': 12420 s_data (0); 12421 break; 12422 case 'b': 12423 subseg_set (bss_section, (subsegT) get_absolute_expression ()); 12424 demand_empty_rest_of_line (); 12425 break; 12426 12427 case 'r': 12428 seg = subseg_new (RDATA_SECTION_NAME, 12429 (subsegT) get_absolute_expression ()); 12430 if (IS_ELF) 12431 { 12432 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD 12433 | SEC_READONLY | SEC_RELOC 12434 | SEC_DATA)); 12435 if (strncmp (TARGET_OS, "elf", 3) != 0) 12436 record_alignment (seg, 4); 12437 } 12438 demand_empty_rest_of_line (); 12439 break; 12440 12441 case 's': 12442 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ()); 12443 if (IS_ELF) 12444 { 12445 bfd_set_section_flags (stdoutput, seg, 12446 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA); 12447 if (strncmp (TARGET_OS, "elf", 3) != 0) 12448 record_alignment (seg, 4); 12449 } 12450 demand_empty_rest_of_line (); 12451 break; 12452 } 12453 12454 auto_align = 1; 12455 } 12456 12457 void 12458 s_change_section (int ignore ATTRIBUTE_UNUSED) 12459 { 12460 #ifdef OBJ_ELF 12461 char *section_name; 12462 char c; 12463 char next_c = 0; 12464 int section_type; 12465 int section_flag; 12466 int section_entry_size; 12467 int section_alignment; 12468 12469 if (!IS_ELF) 12470 return; 12471 12472 section_name = input_line_pointer; 12473 c = get_symbol_end (); 12474 if (c) 12475 next_c = *(input_line_pointer + 1); 12476 12477 /* Do we have .section Name<,"flags">? */ 12478 if (c != ',' || (c == ',' && next_c == '"')) 12479 { 12480 /* just after name is now '\0'. */ 12481 *input_line_pointer = c; 12482 input_line_pointer = section_name; 12483 obj_elf_section (ignore); 12484 return; 12485 } 12486 input_line_pointer++; 12487 12488 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */ 12489 if (c == ',') 12490 section_type = get_absolute_expression (); 12491 else 12492 section_type = 0; 12493 if (*input_line_pointer++ == ',') 12494 section_flag = get_absolute_expression (); 12495 else 12496 section_flag = 0; 12497 if (*input_line_pointer++ == ',') 12498 section_entry_size = get_absolute_expression (); 12499 else 12500 section_entry_size = 0; 12501 if (*input_line_pointer++ == ',') 12502 section_alignment = get_absolute_expression (); 12503 else 12504 section_alignment = 0; 12505 12506 section_name = xstrdup (section_name); 12507 12508 /* When using the generic form of .section (as implemented by obj-elf.c), 12509 there's no way to set the section type to SHT_MIPS_DWARF. Users have 12510 traditionally had to fall back on the more common @progbits instead. 12511 12512 There's nothing really harmful in this, since bfd will correct 12513 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it 12514 means that, for backwards compatibility, the special_section entries 12515 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF. 12516 12517 Even so, we shouldn't force users of the MIPS .section syntax to 12518 incorrectly label the sections as SHT_PROGBITS. The best compromise 12519 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the 12520 generic type-checking code. */ 12521 if (section_type == SHT_MIPS_DWARF) 12522 section_type = SHT_PROGBITS; 12523 12524 obj_elf_change_section (section_name, section_type, section_flag, 12525 section_entry_size, 0, 0, 0); 12526 12527 if (now_seg->name != section_name) 12528 free (section_name); 12529 #endif /* OBJ_ELF */ 12530 } 12531 12532 void 12533 mips_enable_auto_align (void) 12534 { 12535 auto_align = 1; 12536 } 12537 12538 static void 12539 s_cons (int log_size) 12540 { 12541 segment_info_type *si = seg_info (now_seg); 12542 struct insn_label_list *l = si->label_list; 12543 symbolS *label; 12544 12545 label = l != NULL ? l->label : NULL; 12546 mips_emit_delays (); 12547 if (log_size > 0 && auto_align) 12548 mips_align (log_size, 0, label); 12549 mips_clear_insn_labels (); 12550 cons (1 << log_size); 12551 } 12552 12553 static void 12554 s_float_cons (int type) 12555 { 12556 segment_info_type *si = seg_info (now_seg); 12557 struct insn_label_list *l = si->label_list; 12558 symbolS *label; 12559 12560 label = l != NULL ? l->label : NULL; 12561 12562 mips_emit_delays (); 12563 12564 if (auto_align) 12565 { 12566 if (type == 'd') 12567 mips_align (3, 0, label); 12568 else 12569 mips_align (2, 0, label); 12570 } 12571 12572 mips_clear_insn_labels (); 12573 12574 float_cons (type); 12575 } 12576 12577 /* Handle .globl. We need to override it because on Irix 5 you are 12578 permitted to say 12579 .globl foo .text 12580 where foo is an undefined symbol, to mean that foo should be 12581 considered to be the address of a function. */ 12582 12583 static void 12584 s_mips_globl (int x ATTRIBUTE_UNUSED) 12585 { 12586 char *name; 12587 int c; 12588 symbolS *symbolP; 12589 flagword flag; 12590 12591 do 12592 { 12593 name = input_line_pointer; 12594 c = get_symbol_end (); 12595 symbolP = symbol_find_or_make (name); 12596 S_SET_EXTERNAL (symbolP); 12597 12598 *input_line_pointer = c; 12599 SKIP_WHITESPACE (); 12600 12601 /* On Irix 5, every global symbol that is not explicitly labelled as 12602 being a function is apparently labelled as being an object. */ 12603 flag = BSF_OBJECT; 12604 12605 if (!is_end_of_line[(unsigned char) *input_line_pointer] 12606 && (*input_line_pointer != ',')) 12607 { 12608 char *secname; 12609 asection *sec; 12610 12611 secname = input_line_pointer; 12612 c = get_symbol_end (); 12613 sec = bfd_get_section_by_name (stdoutput, secname); 12614 if (sec == NULL) 12615 as_bad (_("%s: no such section"), secname); 12616 *input_line_pointer = c; 12617 12618 if (sec != NULL && (sec->flags & SEC_CODE) != 0) 12619 flag = BSF_FUNCTION; 12620 } 12621 12622 symbol_get_bfdsym (symbolP)->flags |= flag; 12623 12624 c = *input_line_pointer; 12625 if (c == ',') 12626 { 12627 input_line_pointer++; 12628 SKIP_WHITESPACE (); 12629 if (is_end_of_line[(unsigned char) *input_line_pointer]) 12630 c = '\n'; 12631 } 12632 } 12633 while (c == ','); 12634 12635 demand_empty_rest_of_line (); 12636 } 12637 12638 static void 12639 s_option (int x ATTRIBUTE_UNUSED) 12640 { 12641 char *opt; 12642 char c; 12643 12644 opt = input_line_pointer; 12645 c = get_symbol_end (); 12646 12647 if (*opt == 'O') 12648 { 12649 /* FIXME: What does this mean? */ 12650 } 12651 else if (strncmp (opt, "pic", 3) == 0) 12652 { 12653 int i; 12654 12655 i = atoi (opt + 3); 12656 if (i == 0) 12657 mips_pic = NO_PIC; 12658 else if (i == 2) 12659 { 12660 mips_pic = SVR4_PIC; 12661 mips_abicalls = TRUE; 12662 } 12663 else 12664 as_bad (_(".option pic%d not supported"), i); 12665 12666 if (mips_pic == SVR4_PIC) 12667 { 12668 if (g_switch_seen && g_switch_value != 0) 12669 as_warn (_("-G may not be used with SVR4 PIC code")); 12670 g_switch_value = 0; 12671 bfd_set_gp_size (stdoutput, 0); 12672 } 12673 } 12674 else 12675 as_warn (_("Unrecognized option \"%s\""), opt); 12676 12677 *input_line_pointer = c; 12678 demand_empty_rest_of_line (); 12679 } 12680 12681 /* This structure is used to hold a stack of .set values. */ 12682 12683 struct mips_option_stack 12684 { 12685 struct mips_option_stack *next; 12686 struct mips_set_options options; 12687 }; 12688 12689 static struct mips_option_stack *mips_opts_stack; 12690 12691 /* Handle the .set pseudo-op. */ 12692 12693 static void 12694 s_mipsset (int x ATTRIBUTE_UNUSED) 12695 { 12696 char *name = input_line_pointer, ch; 12697 12698 while (!is_end_of_line[(unsigned char) *input_line_pointer]) 12699 ++input_line_pointer; 12700 ch = *input_line_pointer; 12701 *input_line_pointer = '\0'; 12702 12703 if (strcmp (name, "reorder") == 0) 12704 { 12705 if (mips_opts.noreorder) 12706 end_noreorder (); 12707 } 12708 else if (strcmp (name, "noreorder") == 0) 12709 { 12710 if (!mips_opts.noreorder) 12711 start_noreorder (); 12712 } 12713 else if (strncmp (name, "at=", 3) == 0) 12714 { 12715 char *s = name + 3; 12716 12717 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at)) 12718 as_bad (_("Unrecognized register name `%s'"), s); 12719 } 12720 else if (strcmp (name, "at") == 0) 12721 { 12722 mips_opts.at = ATREG; 12723 } 12724 else if (strcmp (name, "noat") == 0) 12725 { 12726 mips_opts.at = ZERO; 12727 } 12728 else if (strcmp (name, "macro") == 0) 12729 { 12730 mips_opts.warn_about_macros = 0; 12731 } 12732 else if (strcmp (name, "nomacro") == 0) 12733 { 12734 if (mips_opts.noreorder == 0) 12735 as_bad (_("`noreorder' must be set before `nomacro'")); 12736 mips_opts.warn_about_macros = 1; 12737 } 12738 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0) 12739 { 12740 mips_opts.nomove = 0; 12741 } 12742 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0) 12743 { 12744 mips_opts.nomove = 1; 12745 } 12746 else if (strcmp (name, "bopt") == 0) 12747 { 12748 mips_opts.nobopt = 0; 12749 } 12750 else if (strcmp (name, "nobopt") == 0) 12751 { 12752 mips_opts.nobopt = 1; 12753 } 12754 else if (strcmp (name, "gp=default") == 0) 12755 mips_opts.gp32 = file_mips_gp32; 12756 else if (strcmp (name, "gp=32") == 0) 12757 mips_opts.gp32 = 1; 12758 else if (strcmp (name, "gp=64") == 0) 12759 { 12760 if (!ISA_HAS_64BIT_REGS (mips_opts.isa)) 12761 as_warn ("%s isa does not support 64-bit registers", 12762 mips_cpu_info_from_isa (mips_opts.isa)->name); 12763 mips_opts.gp32 = 0; 12764 } 12765 else if (strcmp (name, "fp=default") == 0) 12766 mips_opts.fp32 = file_mips_fp32; 12767 else if (strcmp (name, "fp=32") == 0) 12768 mips_opts.fp32 = 1; 12769 else if (strcmp (name, "fp=64") == 0) 12770 { 12771 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa)) 12772 as_warn ("%s isa does not support 64-bit floating point registers", 12773 mips_cpu_info_from_isa (mips_opts.isa)->name); 12774 mips_opts.fp32 = 0; 12775 } 12776 else if (strcmp (name, "softfloat") == 0) 12777 mips_opts.soft_float = 1; 12778 else if (strcmp (name, "hardfloat") == 0) 12779 mips_opts.soft_float = 0; 12780 else if (strcmp (name, "singlefloat") == 0) 12781 mips_opts.single_float = 1; 12782 else if (strcmp (name, "doublefloat") == 0) 12783 mips_opts.single_float = 0; 12784 else if (strcmp (name, "mips16") == 0 12785 || strcmp (name, "MIPS-16") == 0) 12786 mips_opts.mips16 = 1; 12787 else if (strcmp (name, "nomips16") == 0 12788 || strcmp (name, "noMIPS-16") == 0) 12789 mips_opts.mips16 = 0; 12790 else if (strcmp (name, "smartmips") == 0) 12791 { 12792 if (!ISA_SUPPORTS_SMARTMIPS) 12793 as_warn ("%s ISA does not support SmartMIPS ASE", 12794 mips_cpu_info_from_isa (mips_opts.isa)->name); 12795 mips_opts.ase_smartmips = 1; 12796 } 12797 else if (strcmp (name, "nosmartmips") == 0) 12798 mips_opts.ase_smartmips = 0; 12799 else if (strcmp (name, "mips3d") == 0) 12800 mips_opts.ase_mips3d = 1; 12801 else if (strcmp (name, "nomips3d") == 0) 12802 mips_opts.ase_mips3d = 0; 12803 else if (strcmp (name, "mdmx") == 0) 12804 mips_opts.ase_mdmx = 1; 12805 else if (strcmp (name, "nomdmx") == 0) 12806 mips_opts.ase_mdmx = 0; 12807 else if (strcmp (name, "dsp") == 0) 12808 { 12809 if (!ISA_SUPPORTS_DSP_ASE) 12810 as_warn ("%s ISA does not support DSP ASE", 12811 mips_cpu_info_from_isa (mips_opts.isa)->name); 12812 mips_opts.ase_dsp = 1; 12813 mips_opts.ase_dspr2 = 0; 12814 } 12815 else if (strcmp (name, "nodsp") == 0) 12816 { 12817 mips_opts.ase_dsp = 0; 12818 mips_opts.ase_dspr2 = 0; 12819 } 12820 else if (strcmp (name, "dspr2") == 0) 12821 { 12822 if (!ISA_SUPPORTS_DSPR2_ASE) 12823 as_warn ("%s ISA does not support DSP R2 ASE", 12824 mips_cpu_info_from_isa (mips_opts.isa)->name); 12825 mips_opts.ase_dspr2 = 1; 12826 mips_opts.ase_dsp = 1; 12827 } 12828 else if (strcmp (name, "nodspr2") == 0) 12829 { 12830 mips_opts.ase_dspr2 = 0; 12831 mips_opts.ase_dsp = 0; 12832 } 12833 else if (strcmp (name, "mt") == 0) 12834 { 12835 if (!ISA_SUPPORTS_MT_ASE) 12836 as_warn ("%s ISA does not support MT ASE", 12837 mips_cpu_info_from_isa (mips_opts.isa)->name); 12838 mips_opts.ase_mt = 1; 12839 } 12840 else if (strcmp (name, "nomt") == 0) 12841 mips_opts.ase_mt = 0; 12842 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0) 12843 { 12844 int reset = 0; 12845 12846 /* Permit the user to change the ISA and architecture on the fly. 12847 Needless to say, misuse can cause serious problems. */ 12848 if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0) 12849 { 12850 reset = 1; 12851 mips_opts.isa = file_mips_isa; 12852 mips_opts.arch = file_mips_arch; 12853 } 12854 else if (strncmp (name, "arch=", 5) == 0) 12855 { 12856 const struct mips_cpu_info *p; 12857 12858 p = mips_parse_cpu("internal use", name + 5); 12859 if (!p) 12860 as_bad (_("unknown architecture %s"), name + 5); 12861 else 12862 { 12863 mips_opts.arch = p->cpu; 12864 mips_opts.isa = p->isa; 12865 } 12866 } 12867 else if (strncmp (name, "mips", 4) == 0) 12868 { 12869 const struct mips_cpu_info *p; 12870 12871 p = mips_parse_cpu("internal use", name); 12872 if (!p) 12873 as_bad (_("unknown ISA level %s"), name + 4); 12874 else 12875 { 12876 mips_opts.arch = p->cpu; 12877 mips_opts.isa = p->isa; 12878 } 12879 } 12880 else 12881 as_bad (_("unknown ISA or architecture %s"), name); 12882 12883 switch (mips_opts.isa) 12884 { 12885 case 0: 12886 break; 12887 case ISA_MIPS1: 12888 case ISA_MIPS2: 12889 case ISA_MIPS32: 12890 case ISA_MIPS32R2: 12891 mips_opts.gp32 = 1; 12892 mips_opts.fp32 = 1; 12893 break; 12894 case ISA_MIPS3: 12895 case ISA_MIPS4: 12896 case ISA_MIPS5: 12897 case ISA_MIPS64: 12898 case ISA_MIPS64R2: 12899 mips_opts.gp32 = 0; 12900 mips_opts.fp32 = 0; 12901 break; 12902 default: 12903 as_bad (_("unknown ISA level %s"), name + 4); 12904 break; 12905 } 12906 if (reset) 12907 { 12908 mips_opts.gp32 = file_mips_gp32; 12909 mips_opts.fp32 = file_mips_fp32; 12910 } 12911 } 12912 else if (strcmp (name, "autoextend") == 0) 12913 mips_opts.noautoextend = 0; 12914 else if (strcmp (name, "noautoextend") == 0) 12915 mips_opts.noautoextend = 1; 12916 else if (strcmp (name, "push") == 0) 12917 { 12918 struct mips_option_stack *s; 12919 12920 s = (struct mips_option_stack *) xmalloc (sizeof *s); 12921 s->next = mips_opts_stack; 12922 s->options = mips_opts; 12923 mips_opts_stack = s; 12924 } 12925 else if (strcmp (name, "pop") == 0) 12926 { 12927 struct mips_option_stack *s; 12928 12929 s = mips_opts_stack; 12930 if (s == NULL) 12931 as_bad (_(".set pop with no .set push")); 12932 else 12933 { 12934 /* If we're changing the reorder mode we need to handle 12935 delay slots correctly. */ 12936 if (s->options.noreorder && ! mips_opts.noreorder) 12937 start_noreorder (); 12938 else if (! s->options.noreorder && mips_opts.noreorder) 12939 end_noreorder (); 12940 12941 mips_opts = s->options; 12942 mips_opts_stack = s->next; 12943 free (s); 12944 } 12945 } 12946 else if (strcmp (name, "sym32") == 0) 12947 mips_opts.sym32 = TRUE; 12948 else if (strcmp (name, "nosym32") == 0) 12949 mips_opts.sym32 = FALSE; 12950 else if (strchr (name, ',')) 12951 { 12952 /* Generic ".set" directive; use the generic handler. */ 12953 *input_line_pointer = ch; 12954 input_line_pointer = name; 12955 s_set (0); 12956 return; 12957 } 12958 else 12959 { 12960 as_warn (_("Tried to set unrecognized symbol: %s\n"), name); 12961 } 12962 *input_line_pointer = ch; 12963 demand_empty_rest_of_line (); 12964 } 12965 12966 /* Handle the .abicalls pseudo-op. I believe this is equivalent to 12967 .option pic2. It means to generate SVR4 PIC calls. */ 12968 12969 static void 12970 s_abicalls (int ignore ATTRIBUTE_UNUSED) 12971 { 12972 mips_pic = SVR4_PIC; 12973 mips_abicalls = TRUE; 12974 12975 if (g_switch_seen && g_switch_value != 0) 12976 as_warn (_("-G may not be used with SVR4 PIC code")); 12977 g_switch_value = 0; 12978 12979 bfd_set_gp_size (stdoutput, 0); 12980 demand_empty_rest_of_line (); 12981 } 12982 12983 /* Handle the .cpload pseudo-op. This is used when generating SVR4 12984 PIC code. It sets the $gp register for the function based on the 12985 function address, which is in the register named in the argument. 12986 This uses a relocation against _gp_disp, which is handled specially 12987 by the linker. The result is: 12988 lui $gp,%hi(_gp_disp) 12989 addiu $gp,$gp,%lo(_gp_disp) 12990 addu $gp,$gp,.cpload argument 12991 The .cpload argument is normally $25 == $t9. 12992 12993 The -mno-shared option changes this to: 12994 lui $gp,%hi(__gnu_local_gp) 12995 addiu $gp,$gp,%lo(__gnu_local_gp) 12996 and the argument is ignored. This saves an instruction, but the 12997 resulting code is not position independent; it uses an absolute 12998 address for __gnu_local_gp. Thus code assembled with -mno-shared 12999 can go into an ordinary executable, but not into a shared library. */ 13000 13001 static void 13002 s_cpload (int ignore ATTRIBUTE_UNUSED) 13003 { 13004 expressionS ex; 13005 int reg; 13006 int in_shared; 13007 13008 /* If we are not generating SVR4 PIC code, or if this is NewABI code, 13009 .cpload is ignored. */ 13010 if (mips_pic != SVR4_PIC || HAVE_NEWABI) 13011 { 13012 s_ignore (0); 13013 return; 13014 } 13015 13016 /* .cpload should be in a .set noreorder section. */ 13017 if (mips_opts.noreorder == 0) 13018 as_warn (_(".cpload not in noreorder section")); 13019 13020 reg = tc_get_register (0); 13021 13022 /* If we need to produce a 64-bit address, we are better off using 13023 the default instruction sequence. */ 13024 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS; 13025 13026 ex.X_op = O_symbol; 13027 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" : 13028 "__gnu_local_gp"); 13029 ex.X_op_symbol = NULL; 13030 ex.X_add_number = 0; 13031 13032 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */ 13033 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT; 13034 13035 macro_start (); 13036 macro_build_lui (&ex, mips_gp_register); 13037 macro_build (&ex, "addiu", "t,r,j", mips_gp_register, 13038 mips_gp_register, BFD_RELOC_LO16); 13039 if (in_shared) 13040 macro_build (NULL, "addu", "d,v,t", mips_gp_register, 13041 mips_gp_register, reg); 13042 macro_end (); 13043 13044 demand_empty_rest_of_line (); 13045 } 13046 13047 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is: 13048 .cpsetup $reg1, offset|$reg2, label 13049 13050 If offset is given, this results in: 13051 sd $gp, offset($sp) 13052 lui $gp, %hi(%neg(%gp_rel(label))) 13053 addiu $gp, $gp, %lo(%neg(%gp_rel(label))) 13054 daddu $gp, $gp, $reg1 13055 13056 If $reg2 is given, this results in: 13057 daddu $reg2, $gp, $0 13058 lui $gp, %hi(%neg(%gp_rel(label))) 13059 addiu $gp, $gp, %lo(%neg(%gp_rel(label))) 13060 daddu $gp, $gp, $reg1 13061 $reg1 is normally $25 == $t9. 13062 13063 The -mno-shared option replaces the last three instructions with 13064 lui $gp,%hi(_gp) 13065 addiu $gp,$gp,%lo(_gp) */ 13066 13067 static void 13068 s_cpsetup (int ignore ATTRIBUTE_UNUSED) 13069 { 13070 expressionS ex_off; 13071 expressionS ex_sym; 13072 int reg1; 13073 13074 /* If we are not generating SVR4 PIC code, .cpsetup is ignored. 13075 We also need NewABI support. */ 13076 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI) 13077 { 13078 s_ignore (0); 13079 return; 13080 } 13081 13082 reg1 = tc_get_register (0); 13083 SKIP_WHITESPACE (); 13084 if (*input_line_pointer != ',') 13085 { 13086 as_bad (_("missing argument separator ',' for .cpsetup")); 13087 return; 13088 } 13089 else 13090 ++input_line_pointer; 13091 SKIP_WHITESPACE (); 13092 if (*input_line_pointer == '$') 13093 { 13094 mips_cpreturn_register = tc_get_register (0); 13095 mips_cpreturn_offset = -1; 13096 } 13097 else 13098 { 13099 mips_cpreturn_offset = get_absolute_expression (); 13100 mips_cpreturn_register = -1; 13101 } 13102 SKIP_WHITESPACE (); 13103 if (*input_line_pointer != ',') 13104 { 13105 as_bad (_("missing argument separator ',' for .cpsetup")); 13106 return; 13107 } 13108 else 13109 ++input_line_pointer; 13110 SKIP_WHITESPACE (); 13111 expression (&ex_sym); 13112 13113 macro_start (); 13114 if (mips_cpreturn_register == -1) 13115 { 13116 ex_off.X_op = O_constant; 13117 ex_off.X_add_symbol = NULL; 13118 ex_off.X_op_symbol = NULL; 13119 ex_off.X_add_number = mips_cpreturn_offset; 13120 13121 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register, 13122 BFD_RELOC_LO16, SP); 13123 } 13124 else 13125 macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register, 13126 mips_gp_register, 0); 13127 13128 if (mips_in_shared || HAVE_64BIT_SYMBOLS) 13129 { 13130 macro_build (&ex_sym, "lui", "t,u", mips_gp_register, 13131 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB, 13132 BFD_RELOC_HI16_S); 13133 13134 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register, 13135 mips_gp_register, -1, BFD_RELOC_GPREL16, 13136 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16); 13137 13138 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register, 13139 mips_gp_register, reg1); 13140 } 13141 else 13142 { 13143 expressionS ex; 13144 13145 ex.X_op = O_symbol; 13146 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp"); 13147 ex.X_op_symbol = NULL; 13148 ex.X_add_number = 0; 13149 13150 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */ 13151 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT; 13152 13153 macro_build_lui (&ex, mips_gp_register); 13154 macro_build (&ex, "addiu", "t,r,j", mips_gp_register, 13155 mips_gp_register, BFD_RELOC_LO16); 13156 } 13157 13158 macro_end (); 13159 13160 demand_empty_rest_of_line (); 13161 } 13162 13163 static void 13164 s_cplocal (int ignore ATTRIBUTE_UNUSED) 13165 { 13166 /* If we are not generating SVR4 PIC code, or if this is not NewABI code, 13167 .cplocal is ignored. */ 13168 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI) 13169 { 13170 s_ignore (0); 13171 return; 13172 } 13173 13174 mips_gp_register = tc_get_register (0); 13175 demand_empty_rest_of_line (); 13176 } 13177 13178 /* Handle the .cprestore pseudo-op. This stores $gp into a given 13179 offset from $sp. The offset is remembered, and after making a PIC 13180 call $gp is restored from that location. */ 13181 13182 static void 13183 s_cprestore (int ignore ATTRIBUTE_UNUSED) 13184 { 13185 expressionS ex; 13186 13187 /* If we are not generating SVR4 PIC code, or if this is NewABI code, 13188 .cprestore is ignored. */ 13189 if (mips_pic != SVR4_PIC || HAVE_NEWABI) 13190 { 13191 s_ignore (0); 13192 return; 13193 } 13194 13195 mips_cprestore_offset = get_absolute_expression (); 13196 mips_cprestore_valid = 1; 13197 13198 ex.X_op = O_constant; 13199 ex.X_add_symbol = NULL; 13200 ex.X_op_symbol = NULL; 13201 ex.X_add_number = mips_cprestore_offset; 13202 13203 macro_start (); 13204 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register, 13205 SP, HAVE_64BIT_ADDRESSES); 13206 macro_end (); 13207 13208 demand_empty_rest_of_line (); 13209 } 13210 13211 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset 13212 was given in the preceding .cpsetup, it results in: 13213 ld $gp, offset($sp) 13214 13215 If a register $reg2 was given there, it results in: 13216 daddu $gp, $reg2, $0 */ 13217 13218 static void 13219 s_cpreturn (int ignore ATTRIBUTE_UNUSED) 13220 { 13221 expressionS ex; 13222 13223 /* If we are not generating SVR4 PIC code, .cpreturn is ignored. 13224 We also need NewABI support. */ 13225 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI) 13226 { 13227 s_ignore (0); 13228 return; 13229 } 13230 13231 macro_start (); 13232 if (mips_cpreturn_register == -1) 13233 { 13234 ex.X_op = O_constant; 13235 ex.X_add_symbol = NULL; 13236 ex.X_op_symbol = NULL; 13237 ex.X_add_number = mips_cpreturn_offset; 13238 13239 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP); 13240 } 13241 else 13242 macro_build (NULL, "daddu", "d,v,t", mips_gp_register, 13243 mips_cpreturn_register, 0); 13244 macro_end (); 13245 13246 demand_empty_rest_of_line (); 13247 } 13248 13249 /* Handle the .dtprelword and .dtpreldword pseudo-ops. They generate 13250 a 32-bit or 64-bit DTP-relative relocation (BYTES says which) for 13251 use in DWARF debug information. */ 13252 13253 static void 13254 s_dtprel_internal (size_t bytes) 13255 { 13256 expressionS ex; 13257 char *p; 13258 13259 expression (&ex); 13260 13261 if (ex.X_op != O_symbol) 13262 { 13263 as_bad (_("Unsupported use of %s"), (bytes == 8 13264 ? ".dtpreldword" 13265 : ".dtprelword")); 13266 ignore_rest_of_line (); 13267 } 13268 13269 p = frag_more (bytes); 13270 md_number_to_chars (p, 0, bytes); 13271 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, 13272 (bytes == 8 13273 ? BFD_RELOC_MIPS_TLS_DTPREL64 13274 : BFD_RELOC_MIPS_TLS_DTPREL32)); 13275 13276 demand_empty_rest_of_line (); 13277 } 13278 13279 /* Handle .dtprelword. */ 13280 13281 static void 13282 s_dtprelword (int ignore ATTRIBUTE_UNUSED) 13283 { 13284 s_dtprel_internal (4); 13285 } 13286 13287 /* Handle .dtpreldword. */ 13288 13289 static void 13290 s_dtpreldword (int ignore ATTRIBUTE_UNUSED) 13291 { 13292 s_dtprel_internal (8); 13293 } 13294 13295 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC 13296 code. It sets the offset to use in gp_rel relocations. */ 13297 13298 static void 13299 s_gpvalue (int ignore ATTRIBUTE_UNUSED) 13300 { 13301 /* If we are not generating SVR4 PIC code, .gpvalue is ignored. 13302 We also need NewABI support. */ 13303 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI) 13304 { 13305 s_ignore (0); 13306 return; 13307 } 13308 13309 mips_gprel_offset = get_absolute_expression (); 13310 13311 demand_empty_rest_of_line (); 13312 } 13313 13314 /* Handle the .gpword pseudo-op. This is used when generating PIC 13315 code. It generates a 32 bit GP relative reloc. */ 13316 13317 static void 13318 s_gpword (int ignore ATTRIBUTE_UNUSED) 13319 { 13320 segment_info_type *si; 13321 struct insn_label_list *l; 13322 symbolS *label; 13323 expressionS ex; 13324 char *p; 13325 13326 /* When not generating PIC code, this is treated as .word. */ 13327 if (mips_pic != SVR4_PIC) 13328 { 13329 s_cons (2); 13330 return; 13331 } 13332 13333 si = seg_info (now_seg); 13334 l = si->label_list; 13335 label = l != NULL ? l->label : NULL; 13336 mips_emit_delays (); 13337 if (auto_align) 13338 mips_align (2, 0, label); 13339 mips_clear_insn_labels (); 13340 13341 expression (&ex); 13342 13343 if (ex.X_op != O_symbol || ex.X_add_number != 0) 13344 { 13345 as_bad (_("Unsupported use of .gpword")); 13346 ignore_rest_of_line (); 13347 } 13348 13349 p = frag_more (4); 13350 md_number_to_chars (p, 0, 4); 13351 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE, 13352 BFD_RELOC_GPREL32); 13353 13354 demand_empty_rest_of_line (); 13355 } 13356 13357 static void 13358 s_gpdword (int ignore ATTRIBUTE_UNUSED) 13359 { 13360 segment_info_type *si; 13361 struct insn_label_list *l; 13362 symbolS *label; 13363 expressionS ex; 13364 char *p; 13365 13366 /* When not generating PIC code, this is treated as .dword. */ 13367 if (mips_pic != SVR4_PIC) 13368 { 13369 s_cons (3); 13370 return; 13371 } 13372 13373 si = seg_info (now_seg); 13374 l = si->label_list; 13375 label = l != NULL ? l->label : NULL; 13376 mips_emit_delays (); 13377 if (auto_align) 13378 mips_align (3, 0, label); 13379 mips_clear_insn_labels (); 13380 13381 expression (&ex); 13382 13383 if (ex.X_op != O_symbol || ex.X_add_number != 0) 13384 { 13385 as_bad (_("Unsupported use of .gpdword")); 13386 ignore_rest_of_line (); 13387 } 13388 13389 p = frag_more (8); 13390 md_number_to_chars (p, 0, 8); 13391 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE, 13392 BFD_RELOC_GPREL32)->fx_tcbit = 1; 13393 13394 /* GPREL32 composed with 64 gives a 64-bit GP offset. */ 13395 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0, 13396 FALSE, BFD_RELOC_64)->fx_tcbit = 1; 13397 13398 demand_empty_rest_of_line (); 13399 } 13400 13401 /* Handle the .cpadd pseudo-op. This is used when dealing with switch 13402 tables in SVR4 PIC code. */ 13403 13404 static void 13405 s_cpadd (int ignore ATTRIBUTE_UNUSED) 13406 { 13407 int reg; 13408 13409 /* This is ignored when not generating SVR4 PIC code. */ 13410 if (mips_pic != SVR4_PIC) 13411 { 13412 s_ignore (0); 13413 return; 13414 } 13415 13416 /* Add $gp to the register named as an argument. */ 13417 macro_start (); 13418 reg = tc_get_register (0); 13419 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register); 13420 macro_end (); 13421 13422 demand_empty_rest_of_line (); 13423 } 13424 13425 /* Handle the .insn pseudo-op. This marks instruction labels in 13426 mips16 mode. This permits the linker to handle them specially, 13427 such as generating jalx instructions when needed. We also make 13428 them odd for the duration of the assembly, in order to generate the 13429 right sort of code. We will make them even in the adjust_symtab 13430 routine, while leaving them marked. This is convenient for the 13431 debugger and the disassembler. The linker knows to make them odd 13432 again. */ 13433 13434 static void 13435 s_insn (int ignore ATTRIBUTE_UNUSED) 13436 { 13437 mips16_mark_labels (); 13438 13439 demand_empty_rest_of_line (); 13440 } 13441 13442 /* Handle a .stabn directive. We need these in order to mark a label 13443 as being a mips16 text label correctly. Sometimes the compiler 13444 will emit a label, followed by a .stabn, and then switch sections. 13445 If the label and .stabn are in mips16 mode, then the label is 13446 really a mips16 text label. */ 13447 13448 static void 13449 s_mips_stab (int type) 13450 { 13451 if (type == 'n') 13452 mips16_mark_labels (); 13453 13454 s_stab (type); 13455 } 13456 13457 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */ 13458 13459 static void 13460 s_mips_weakext (int ignore ATTRIBUTE_UNUSED) 13461 { 13462 char *name; 13463 int c; 13464 symbolS *symbolP; 13465 expressionS exp; 13466 13467 name = input_line_pointer; 13468 c = get_symbol_end (); 13469 symbolP = symbol_find_or_make (name); 13470 S_SET_WEAK (symbolP); 13471 *input_line_pointer = c; 13472 13473 SKIP_WHITESPACE (); 13474 13475 if (! is_end_of_line[(unsigned char) *input_line_pointer]) 13476 { 13477 if (S_IS_DEFINED (symbolP)) 13478 { 13479 as_bad ("ignoring attempt to redefine symbol %s", 13480 S_GET_NAME (symbolP)); 13481 ignore_rest_of_line (); 13482 return; 13483 } 13484 13485 if (*input_line_pointer == ',') 13486 { 13487 ++input_line_pointer; 13488 SKIP_WHITESPACE (); 13489 } 13490 13491 expression (&exp); 13492 if (exp.X_op != O_symbol) 13493 { 13494 as_bad ("bad .weakext directive"); 13495 ignore_rest_of_line (); 13496 return; 13497 } 13498 symbol_set_value_expression (symbolP, &exp); 13499 } 13500 13501 demand_empty_rest_of_line (); 13502 } 13503 13504 /* Parse a register string into a number. Called from the ECOFF code 13505 to parse .frame. The argument is non-zero if this is the frame 13506 register, so that we can record it in mips_frame_reg. */ 13507 13508 int 13509 tc_get_register (int frame) 13510 { 13511 unsigned int reg; 13512 13513 SKIP_WHITESPACE (); 13514 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, ®)) 13515 reg = 0; 13516 if (frame) 13517 { 13518 mips_frame_reg = reg != 0 ? reg : SP; 13519 mips_frame_reg_valid = 1; 13520 mips_cprestore_valid = 0; 13521 } 13522 return reg; 13523 } 13524 13525 valueT 13526 md_section_align (asection *seg, valueT addr) 13527 { 13528 int align = bfd_get_section_alignment (stdoutput, seg); 13529 13530 if (IS_ELF) 13531 { 13532 /* We don't need to align ELF sections to the full alignment. 13533 However, Irix 5 may prefer that we align them at least to a 16 13534 byte boundary. We don't bother to align the sections if we 13535 are targeted for an embedded system. */ 13536 if (strncmp (TARGET_OS, "elf", 3) == 0) 13537 return addr; 13538 if (align > 4) 13539 align = 4; 13540 } 13541 13542 return ((addr + (1 << align) - 1) & (-1 << align)); 13543 } 13544 13545 /* Utility routine, called from above as well. If called while the 13546 input file is still being read, it's only an approximation. (For 13547 example, a symbol may later become defined which appeared to be 13548 undefined earlier.) */ 13549 13550 static int 13551 nopic_need_relax (symbolS *sym, int before_relaxing) 13552 { 13553 if (sym == 0) 13554 return 0; 13555 13556 if (g_switch_value > 0) 13557 { 13558 const char *symname; 13559 int change; 13560 13561 /* Find out whether this symbol can be referenced off the $gp 13562 register. It can be if it is smaller than the -G size or if 13563 it is in the .sdata or .sbss section. Certain symbols can 13564 not be referenced off the $gp, although it appears as though 13565 they can. */ 13566 symname = S_GET_NAME (sym); 13567 if (symname != (const char *) NULL 13568 && (strcmp (symname, "eprol") == 0 13569 || strcmp (symname, "etext") == 0 13570 || strcmp (symname, "_gp") == 0 13571 || strcmp (symname, "edata") == 0 13572 || strcmp (symname, "_fbss") == 0 13573 || strcmp (symname, "_fdata") == 0 13574 || strcmp (symname, "_ftext") == 0 13575 || strcmp (symname, "end") == 0 13576 || strcmp (symname, "_gp_disp") == 0)) 13577 change = 1; 13578 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym)) 13579 && (0 13580 #ifndef NO_ECOFF_DEBUGGING 13581 || (symbol_get_obj (sym)->ecoff_extern_size != 0 13582 && (symbol_get_obj (sym)->ecoff_extern_size 13583 <= g_switch_value)) 13584 #endif 13585 /* We must defer this decision until after the whole 13586 file has been read, since there might be a .extern 13587 after the first use of this symbol. */ 13588 || (before_relaxing 13589 #ifndef NO_ECOFF_DEBUGGING 13590 && symbol_get_obj (sym)->ecoff_extern_size == 0 13591 #endif 13592 && S_GET_VALUE (sym) == 0) 13593 || (S_GET_VALUE (sym) != 0 13594 && S_GET_VALUE (sym) <= g_switch_value))) 13595 change = 0; 13596 else 13597 { 13598 const char *segname; 13599 13600 segname = segment_name (S_GET_SEGMENT (sym)); 13601 assert (strcmp (segname, ".lit8") != 0 13602 && strcmp (segname, ".lit4") != 0); 13603 change = (strcmp (segname, ".sdata") != 0 13604 && strcmp (segname, ".sbss") != 0 13605 && strncmp (segname, ".sdata.", 7) != 0 13606 && strncmp (segname, ".sbss.", 6) != 0 13607 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0 13608 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0); 13609 } 13610 return change; 13611 } 13612 else 13613 /* We are not optimizing for the $gp register. */ 13614 return 1; 13615 } 13616 13617 13618 /* Return true if the given symbol should be considered local for SVR4 PIC. */ 13619 13620 static bfd_boolean 13621 pic_need_relax (symbolS *sym, asection *segtype) 13622 { 13623 asection *symsec; 13624 13625 /* Handle the case of a symbol equated to another symbol. */ 13626 while (symbol_equated_reloc_p (sym)) 13627 { 13628 symbolS *n; 13629 13630 /* It's possible to get a loop here in a badly written program. */ 13631 n = symbol_get_value_expression (sym)->X_add_symbol; 13632 if (n == sym) 13633 break; 13634 sym = n; 13635 } 13636 13637 if (symbol_section_p (sym)) 13638 return TRUE; 13639 13640 symsec = S_GET_SEGMENT (sym); 13641 13642 /* This must duplicate the test in adjust_reloc_syms. */ 13643 return (symsec != &bfd_und_section 13644 && symsec != &bfd_abs_section 13645 && !bfd_is_com_section (symsec) 13646 && !s_is_linkonce (sym, segtype) 13647 #ifdef OBJ_ELF 13648 /* A global or weak symbol is treated as external. */ 13649 && (!IS_ELF || (! S_IS_WEAK (sym) && ! S_IS_EXTERNAL (sym))) 13650 #endif 13651 ); 13652 } 13653 13654 13655 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an 13656 extended opcode. SEC is the section the frag is in. */ 13657 13658 static int 13659 mips16_extended_frag (fragS *fragp, asection *sec, long stretch) 13660 { 13661 int type; 13662 const struct mips16_immed_operand *op; 13663 offsetT val; 13664 int mintiny, maxtiny; 13665 segT symsec; 13666 fragS *sym_frag; 13667 13668 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype)) 13669 return 0; 13670 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype)) 13671 return 1; 13672 13673 type = RELAX_MIPS16_TYPE (fragp->fr_subtype); 13674 op = mips16_immed_operands; 13675 while (op->type != type) 13676 { 13677 ++op; 13678 assert (op < mips16_immed_operands + MIPS16_NUM_IMMED); 13679 } 13680 13681 if (op->unsp) 13682 { 13683 if (type == '<' || type == '>' || type == '[' || type == ']') 13684 { 13685 mintiny = 1; 13686 maxtiny = 1 << op->nbits; 13687 } 13688 else 13689 { 13690 mintiny = 0; 13691 maxtiny = (1 << op->nbits) - 1; 13692 } 13693 } 13694 else 13695 { 13696 mintiny = - (1 << (op->nbits - 1)); 13697 maxtiny = (1 << (op->nbits - 1)) - 1; 13698 } 13699 13700 sym_frag = symbol_get_frag (fragp->fr_symbol); 13701 val = S_GET_VALUE (fragp->fr_symbol); 13702 symsec = S_GET_SEGMENT (fragp->fr_symbol); 13703 13704 if (op->pcrel) 13705 { 13706 addressT addr; 13707 13708 /* We won't have the section when we are called from 13709 mips_relax_frag. However, we will always have been called 13710 from md_estimate_size_before_relax first. If this is a 13711 branch to a different section, we mark it as such. If SEC is 13712 NULL, and the frag is not marked, then it must be a branch to 13713 the same section. */ 13714 if (sec == NULL) 13715 { 13716 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype)) 13717 return 1; 13718 } 13719 else 13720 { 13721 /* Must have been called from md_estimate_size_before_relax. */ 13722 if (symsec != sec) 13723 { 13724 fragp->fr_subtype = 13725 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype); 13726 13727 /* FIXME: We should support this, and let the linker 13728 catch branches and loads that are out of range. */ 13729 as_bad_where (fragp->fr_file, fragp->fr_line, 13730 _("unsupported PC relative reference to different section")); 13731 13732 return 1; 13733 } 13734 if (fragp != sym_frag && sym_frag->fr_address == 0) 13735 /* Assume non-extended on the first relaxation pass. 13736 The address we have calculated will be bogus if this is 13737 a forward branch to another frag, as the forward frag 13738 will have fr_address == 0. */ 13739 return 0; 13740 } 13741 13742 /* In this case, we know for sure that the symbol fragment is in 13743 the same section. If the relax_marker of the symbol fragment 13744 differs from the relax_marker of this fragment, we have not 13745 yet adjusted the symbol fragment fr_address. We want to add 13746 in STRETCH in order to get a better estimate of the address. 13747 This particularly matters because of the shift bits. */ 13748 if (stretch != 0 13749 && sym_frag->relax_marker != fragp->relax_marker) 13750 { 13751 fragS *f; 13752 13753 /* Adjust stretch for any alignment frag. Note that if have 13754 been expanding the earlier code, the symbol may be 13755 defined in what appears to be an earlier frag. FIXME: 13756 This doesn't handle the fr_subtype field, which specifies 13757 a maximum number of bytes to skip when doing an 13758 alignment. */ 13759 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next) 13760 { 13761 if (f->fr_type == rs_align || f->fr_type == rs_align_code) 13762 { 13763 if (stretch < 0) 13764 stretch = - ((- stretch) 13765 & ~ ((1 << (int) f->fr_offset) - 1)); 13766 else 13767 stretch &= ~ ((1 << (int) f->fr_offset) - 1); 13768 if (stretch == 0) 13769 break; 13770 } 13771 } 13772 if (f != NULL) 13773 val += stretch; 13774 } 13775 13776 addr = fragp->fr_address + fragp->fr_fix; 13777 13778 /* The base address rules are complicated. The base address of 13779 a branch is the following instruction. The base address of a 13780 PC relative load or add is the instruction itself, but if it 13781 is in a delay slot (in which case it can not be extended) use 13782 the address of the instruction whose delay slot it is in. */ 13783 if (type == 'p' || type == 'q') 13784 { 13785 addr += 2; 13786 13787 /* If we are currently assuming that this frag should be 13788 extended, then, the current address is two bytes 13789 higher. */ 13790 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype)) 13791 addr += 2; 13792 13793 /* Ignore the low bit in the target, since it will be set 13794 for a text label. */ 13795 if ((val & 1) != 0) 13796 --val; 13797 } 13798 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)) 13799 addr -= 4; 13800 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype)) 13801 addr -= 2; 13802 13803 val -= addr & ~ ((1 << op->shift) - 1); 13804 13805 /* Branch offsets have an implicit 0 in the lowest bit. */ 13806 if (type == 'p' || type == 'q') 13807 val /= 2; 13808 13809 /* If any of the shifted bits are set, we must use an extended 13810 opcode. If the address depends on the size of this 13811 instruction, this can lead to a loop, so we arrange to always 13812 use an extended opcode. We only check this when we are in 13813 the main relaxation loop, when SEC is NULL. */ 13814 if ((val & ((1 << op->shift) - 1)) != 0 && sec == NULL) 13815 { 13816 fragp->fr_subtype = 13817 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype); 13818 return 1; 13819 } 13820 13821 /* If we are about to mark a frag as extended because the value 13822 is precisely maxtiny + 1, then there is a chance of an 13823 infinite loop as in the following code: 13824 la $4,foo 13825 .skip 1020 13826 .align 2 13827 foo: 13828 In this case when the la is extended, foo is 0x3fc bytes 13829 away, so the la can be shrunk, but then foo is 0x400 away, so 13830 the la must be extended. To avoid this loop, we mark the 13831 frag as extended if it was small, and is about to become 13832 extended with a value of maxtiny + 1. */ 13833 if (val == ((maxtiny + 1) << op->shift) 13834 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype) 13835 && sec == NULL) 13836 { 13837 fragp->fr_subtype = 13838 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype); 13839 return 1; 13840 } 13841 } 13842 else if (symsec != absolute_section && sec != NULL) 13843 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation")); 13844 13845 if ((val & ((1 << op->shift) - 1)) != 0 13846 || val < (mintiny << op->shift) 13847 || val > (maxtiny << op->shift)) 13848 return 1; 13849 else 13850 return 0; 13851 } 13852 13853 /* Compute the length of a branch sequence, and adjust the 13854 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the 13855 worst-case length is computed, with UPDATE being used to indicate 13856 whether an unconditional (-1), branch-likely (+1) or regular (0) 13857 branch is to be computed. */ 13858 static int 13859 relaxed_branch_length (fragS *fragp, asection *sec, int update) 13860 { 13861 bfd_boolean toofar; 13862 int length; 13863 13864 if (fragp 13865 && S_IS_DEFINED (fragp->fr_symbol) 13866 && sec == S_GET_SEGMENT (fragp->fr_symbol)) 13867 { 13868 addressT addr; 13869 offsetT val; 13870 13871 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset; 13872 13873 addr = fragp->fr_address + fragp->fr_fix + 4; 13874 13875 val -= addr; 13876 13877 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2); 13878 } 13879 else if (fragp) 13880 /* If the symbol is not defined or it's in a different segment, 13881 assume the user knows what's going on and emit a short 13882 branch. */ 13883 toofar = FALSE; 13884 else 13885 toofar = TRUE; 13886 13887 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype)) 13888 fragp->fr_subtype 13889 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_UNCOND (fragp->fr_subtype), 13890 RELAX_BRANCH_LIKELY (fragp->fr_subtype), 13891 RELAX_BRANCH_LINK (fragp->fr_subtype), 13892 toofar); 13893 13894 length = 4; 13895 if (toofar) 13896 { 13897 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0)) 13898 length += 8; 13899 13900 if (mips_pic != NO_PIC) 13901 { 13902 /* Additional space for PIC loading of target address. */ 13903 length += 8; 13904 if (mips_opts.isa == ISA_MIPS1) 13905 /* Additional space for $at-stabilizing nop. */ 13906 length += 4; 13907 } 13908 13909 /* If branch is conditional. */ 13910 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0)) 13911 length += 8; 13912 } 13913 13914 return length; 13915 } 13916 13917 /* Estimate the size of a frag before relaxing. Unless this is the 13918 mips16, we are not really relaxing here, and the final size is 13919 encoded in the subtype information. For the mips16, we have to 13920 decide whether we are using an extended opcode or not. */ 13921 13922 int 13923 md_estimate_size_before_relax (fragS *fragp, asection *segtype) 13924 { 13925 int change; 13926 13927 if (RELAX_BRANCH_P (fragp->fr_subtype)) 13928 { 13929 13930 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE); 13931 13932 return fragp->fr_var; 13933 } 13934 13935 if (RELAX_MIPS16_P (fragp->fr_subtype)) 13936 /* We don't want to modify the EXTENDED bit here; it might get us 13937 into infinite loops. We change it only in mips_relax_frag(). */ 13938 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2); 13939 13940 if (mips_pic == NO_PIC) 13941 change = nopic_need_relax (fragp->fr_symbol, 0); 13942 else if (mips_pic == SVR4_PIC) 13943 change = pic_need_relax (fragp->fr_symbol, segtype); 13944 else if (mips_pic == VXWORKS_PIC) 13945 /* For vxworks, GOT16 relocations never have a corresponding LO16. */ 13946 change = 0; 13947 else 13948 abort (); 13949 13950 if (change) 13951 { 13952 fragp->fr_subtype |= RELAX_USE_SECOND; 13953 return -RELAX_FIRST (fragp->fr_subtype); 13954 } 13955 else 13956 return -RELAX_SECOND (fragp->fr_subtype); 13957 } 13958 13959 /* This is called to see whether a reloc against a defined symbol 13960 should be converted into a reloc against a section. */ 13961 13962 int 13963 mips_fix_adjustable (fixS *fixp) 13964 { 13965 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT 13966 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY) 13967 return 0; 13968 13969 if (fixp->fx_addsy == NULL) 13970 return 1; 13971 13972 /* If symbol SYM is in a mergeable section, relocations of the form 13973 SYM + 0 can usually be made section-relative. The mergeable data 13974 is then identified by the section offset rather than by the symbol. 13975 13976 However, if we're generating REL LO16 relocations, the offset is split 13977 between the LO16 and parterning high part relocation. The linker will 13978 need to recalculate the complete offset in order to correctly identify 13979 the merge data. 13980 13981 The linker has traditionally not looked for the parterning high part 13982 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be 13983 placed anywhere. Rather than break backwards compatibility by changing 13984 this, it seems better not to force the issue, and instead keep the 13985 original symbol. This will work with either linker behavior. */ 13986 if ((lo16_reloc_p (fixp->fx_r_type) 13987 || reloc_needs_lo_p (fixp->fx_r_type)) 13988 && HAVE_IN_PLACE_ADDENDS 13989 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0) 13990 return 0; 13991 13992 #ifdef OBJ_ELF 13993 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve 13994 to a floating-point stub. The same is true for non-R_MIPS16_26 13995 relocations against MIPS16 functions; in this case, the stub becomes 13996 the function's canonical address. 13997 13998 Floating-point stubs are stored in unique .mips16.call.* or 13999 .mips16.fn.* sections. If a stub T for function F is in section S, 14000 the first relocation in section S must be against F; this is how the 14001 linker determines the target function. All relocations that might 14002 resolve to T must also be against F. We therefore have the following 14003 restrictions, which are given in an intentionally-redundant way: 14004 14005 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16 14006 symbols. 14007 14008 2. We cannot reduce a stub's relocations against non-MIPS16 symbols 14009 if that stub might be used. 14010 14011 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16 14012 symbols. 14013 14014 4. We cannot reduce a stub's relocations against MIPS16 symbols if 14015 that stub might be used. 14016 14017 There is a further restriction: 14018 14019 5. We cannot reduce R_MIPS16_26 relocations against MIPS16 symbols 14020 on targets with in-place addends; the relocation field cannot 14021 encode the low bit. 14022 14023 For simplicity, we deal with (3)-(5) by not reducing _any_ relocation 14024 against a MIPS16 symbol. 14025 14026 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26 14027 relocation against some symbol R, no relocation against R may be 14028 reduced. (Note that this deals with (2) as well as (1) because 14029 relocations against global symbols will never be reduced on ELF 14030 targets.) This approach is a little simpler than trying to detect 14031 stub sections, and gives the "all or nothing" per-symbol consistency 14032 that we have for MIPS16 symbols. */ 14033 if (IS_ELF 14034 && fixp->fx_subsy == NULL 14035 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy)) 14036 || *symbol_get_tc (fixp->fx_addsy))) 14037 return 0; 14038 #endif 14039 14040 return 1; 14041 } 14042 14043 /* Translate internal representation of relocation info to BFD target 14044 format. */ 14045 14046 arelent ** 14047 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp) 14048 { 14049 static arelent *retval[4]; 14050 arelent *reloc; 14051 bfd_reloc_code_real_type code; 14052 14053 memset (retval, 0, sizeof(retval)); 14054 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent)); 14055 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *)); 14056 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy); 14057 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where; 14058 14059 if (fixp->fx_pcrel) 14060 { 14061 assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2); 14062 14063 /* At this point, fx_addnumber is "symbol offset - pcrel address". 14064 Relocations want only the symbol offset. */ 14065 reloc->addend = fixp->fx_addnumber + reloc->address; 14066 if (!IS_ELF) 14067 { 14068 /* A gruesome hack which is a result of the gruesome gas 14069 reloc handling. What's worse, for COFF (as opposed to 14070 ECOFF), we might need yet another copy of reloc->address. 14071 See bfd_install_relocation. */ 14072 reloc->addend += reloc->address; 14073 } 14074 } 14075 else 14076 reloc->addend = fixp->fx_addnumber; 14077 14078 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable 14079 entry to be used in the relocation's section offset. */ 14080 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY) 14081 { 14082 reloc->address = reloc->addend; 14083 reloc->addend = 0; 14084 } 14085 14086 code = fixp->fx_r_type; 14087 14088 reloc->howto = bfd_reloc_type_lookup (stdoutput, code); 14089 if (reloc->howto == NULL) 14090 { 14091 as_bad_where (fixp->fx_file, fixp->fx_line, 14092 _("Can not represent %s relocation in this object file format"), 14093 bfd_get_reloc_code_name (code)); 14094 retval[0] = NULL; 14095 } 14096 14097 return retval; 14098 } 14099 14100 /* Relax a machine dependent frag. This returns the amount by which 14101 the current size of the frag should change. */ 14102 14103 int 14104 mips_relax_frag (asection *sec, fragS *fragp, long stretch) 14105 { 14106 if (RELAX_BRANCH_P (fragp->fr_subtype)) 14107 { 14108 offsetT old_var = fragp->fr_var; 14109 14110 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE); 14111 14112 return fragp->fr_var - old_var; 14113 } 14114 14115 if (! RELAX_MIPS16_P (fragp->fr_subtype)) 14116 return 0; 14117 14118 if (mips16_extended_frag (fragp, NULL, stretch)) 14119 { 14120 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype)) 14121 return 0; 14122 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype); 14123 return 2; 14124 } 14125 else 14126 { 14127 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)) 14128 return 0; 14129 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype); 14130 return -2; 14131 } 14132 14133 return 0; 14134 } 14135 14136 /* Convert a machine dependent frag. */ 14137 14138 void 14139 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp) 14140 { 14141 if (RELAX_BRANCH_P (fragp->fr_subtype)) 14142 { 14143 bfd_byte *buf; 14144 unsigned long insn; 14145 expressionS exp; 14146 fixS *fixp; 14147 14148 buf = (bfd_byte *)fragp->fr_literal + fragp->fr_fix; 14149 14150 if (target_big_endian) 14151 insn = bfd_getb32 (buf); 14152 else 14153 insn = bfd_getl32 (buf); 14154 14155 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype)) 14156 { 14157 /* We generate a fixup instead of applying it right now 14158 because, if there are linker relaxations, we're going to 14159 need the relocations. */ 14160 exp.X_op = O_symbol; 14161 exp.X_add_symbol = fragp->fr_symbol; 14162 exp.X_add_number = fragp->fr_offset; 14163 14164 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal, 14165 4, &exp, TRUE, BFD_RELOC_16_PCREL_S2); 14166 fixp->fx_file = fragp->fr_file; 14167 fixp->fx_line = fragp->fr_line; 14168 14169 md_number_to_chars ((char *) buf, insn, 4); 14170 buf += 4; 14171 } 14172 else 14173 { 14174 int i; 14175 14176 as_warn_where (fragp->fr_file, fragp->fr_line, 14177 _("relaxed out-of-range branch into a jump")); 14178 14179 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype)) 14180 goto uncond; 14181 14182 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype)) 14183 { 14184 /* Reverse the branch. */ 14185 switch ((insn >> 28) & 0xf) 14186 { 14187 case 4: 14188 /* bc[0-3][tf]l? and bc1any[24][ft] instructions can 14189 have the condition reversed by tweaking a single 14190 bit, and their opcodes all have 0x4???????. */ 14191 assert ((insn & 0xf1000000) == 0x41000000); 14192 insn ^= 0x00010000; 14193 break; 14194 14195 case 0: 14196 /* bltz 0x04000000 bgez 0x04010000 14197 bltzal 0x04100000 bgezal 0x04110000 */ 14198 assert ((insn & 0xfc0e0000) == 0x04000000); 14199 insn ^= 0x00010000; 14200 break; 14201 14202 case 1: 14203 /* beq 0x10000000 bne 0x14000000 14204 blez 0x18000000 bgtz 0x1c000000 */ 14205 insn ^= 0x04000000; 14206 break; 14207 14208 default: 14209 abort (); 14210 } 14211 } 14212 14213 if (RELAX_BRANCH_LINK (fragp->fr_subtype)) 14214 { 14215 /* Clear the and-link bit. */ 14216 assert ((insn & 0xfc1c0000) == 0x04100000); 14217 14218 /* bltzal 0x04100000 bgezal 0x04110000 14219 bltzall 0x04120000 bgezall 0x04130000 */ 14220 insn &= ~0x00100000; 14221 } 14222 14223 /* Branch over the branch (if the branch was likely) or the 14224 full jump (not likely case). Compute the offset from the 14225 current instruction to branch to. */ 14226 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype)) 14227 i = 16; 14228 else 14229 { 14230 /* How many bytes in instructions we've already emitted? */ 14231 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix; 14232 /* How many bytes in instructions from here to the end? */ 14233 i = fragp->fr_var - i; 14234 } 14235 /* Convert to instruction count. */ 14236 i >>= 2; 14237 /* Branch counts from the next instruction. */ 14238 i--; 14239 insn |= i; 14240 /* Branch over the jump. */ 14241 md_number_to_chars ((char *) buf, insn, 4); 14242 buf += 4; 14243 14244 /* nop */ 14245 md_number_to_chars ((char *) buf, 0, 4); 14246 buf += 4; 14247 14248 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype)) 14249 { 14250 /* beql $0, $0, 2f */ 14251 insn = 0x50000000; 14252 /* Compute the PC offset from the current instruction to 14253 the end of the variable frag. */ 14254 /* How many bytes in instructions we've already emitted? */ 14255 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix; 14256 /* How many bytes in instructions from here to the end? */ 14257 i = fragp->fr_var - i; 14258 /* Convert to instruction count. */ 14259 i >>= 2; 14260 /* Don't decrement i, because we want to branch over the 14261 delay slot. */ 14262 14263 insn |= i; 14264 md_number_to_chars ((char *) buf, insn, 4); 14265 buf += 4; 14266 14267 md_number_to_chars ((char *) buf, 0, 4); 14268 buf += 4; 14269 } 14270 14271 uncond: 14272 if (mips_pic == NO_PIC) 14273 { 14274 /* j or jal. */ 14275 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype) 14276 ? 0x0c000000 : 0x08000000); 14277 exp.X_op = O_symbol; 14278 exp.X_add_symbol = fragp->fr_symbol; 14279 exp.X_add_number = fragp->fr_offset; 14280 14281 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal, 14282 4, &exp, FALSE, BFD_RELOC_MIPS_JMP); 14283 fixp->fx_file = fragp->fr_file; 14284 fixp->fx_line = fragp->fr_line; 14285 14286 md_number_to_chars ((char *) buf, insn, 4); 14287 buf += 4; 14288 } 14289 else 14290 { 14291 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */ 14292 insn = HAVE_64BIT_ADDRESSES ? 0xdf810000 : 0x8f810000; 14293 exp.X_op = O_symbol; 14294 exp.X_add_symbol = fragp->fr_symbol; 14295 exp.X_add_number = fragp->fr_offset; 14296 14297 if (fragp->fr_offset) 14298 { 14299 exp.X_add_symbol = make_expr_symbol (&exp); 14300 exp.X_add_number = 0; 14301 } 14302 14303 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal, 14304 4, &exp, FALSE, BFD_RELOC_MIPS_GOT16); 14305 fixp->fx_file = fragp->fr_file; 14306 fixp->fx_line = fragp->fr_line; 14307 14308 md_number_to_chars ((char *) buf, insn, 4); 14309 buf += 4; 14310 14311 if (mips_opts.isa == ISA_MIPS1) 14312 { 14313 /* nop */ 14314 md_number_to_chars ((char *) buf, 0, 4); 14315 buf += 4; 14316 } 14317 14318 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */ 14319 insn = HAVE_64BIT_ADDRESSES ? 0x64210000 : 0x24210000; 14320 14321 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal, 14322 4, &exp, FALSE, BFD_RELOC_LO16); 14323 fixp->fx_file = fragp->fr_file; 14324 fixp->fx_line = fragp->fr_line; 14325 14326 md_number_to_chars ((char *) buf, insn, 4); 14327 buf += 4; 14328 14329 /* j(al)r $at. */ 14330 if (RELAX_BRANCH_LINK (fragp->fr_subtype)) 14331 insn = 0x0020f809; 14332 else 14333 insn = 0x00200008; 14334 14335 md_number_to_chars ((char *) buf, insn, 4); 14336 buf += 4; 14337 } 14338 } 14339 14340 assert (buf == (bfd_byte *)fragp->fr_literal 14341 + fragp->fr_fix + fragp->fr_var); 14342 14343 fragp->fr_fix += fragp->fr_var; 14344 14345 return; 14346 } 14347 14348 if (RELAX_MIPS16_P (fragp->fr_subtype)) 14349 { 14350 int type; 14351 const struct mips16_immed_operand *op; 14352 bfd_boolean small, ext; 14353 offsetT val; 14354 bfd_byte *buf; 14355 unsigned long insn; 14356 bfd_boolean use_extend; 14357 unsigned short extend; 14358 14359 type = RELAX_MIPS16_TYPE (fragp->fr_subtype); 14360 op = mips16_immed_operands; 14361 while (op->type != type) 14362 ++op; 14363 14364 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype)) 14365 { 14366 small = FALSE; 14367 ext = TRUE; 14368 } 14369 else 14370 { 14371 small = TRUE; 14372 ext = FALSE; 14373 } 14374 14375 resolve_symbol_value (fragp->fr_symbol); 14376 val = S_GET_VALUE (fragp->fr_symbol); 14377 if (op->pcrel) 14378 { 14379 addressT addr; 14380 14381 addr = fragp->fr_address + fragp->fr_fix; 14382 14383 /* The rules for the base address of a PC relative reloc are 14384 complicated; see mips16_extended_frag. */ 14385 if (type == 'p' || type == 'q') 14386 { 14387 addr += 2; 14388 if (ext) 14389 addr += 2; 14390 /* Ignore the low bit in the target, since it will be 14391 set for a text label. */ 14392 if ((val & 1) != 0) 14393 --val; 14394 } 14395 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)) 14396 addr -= 4; 14397 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype)) 14398 addr -= 2; 14399 14400 addr &= ~ (addressT) ((1 << op->shift) - 1); 14401 val -= addr; 14402 14403 /* Make sure the section winds up with the alignment we have 14404 assumed. */ 14405 if (op->shift > 0) 14406 record_alignment (asec, op->shift); 14407 } 14408 14409 if (ext 14410 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype) 14411 || RELAX_MIPS16_DSLOT (fragp->fr_subtype))) 14412 as_warn_where (fragp->fr_file, fragp->fr_line, 14413 _("extended instruction in delay slot")); 14414 14415 buf = (bfd_byte *) (fragp->fr_literal + fragp->fr_fix); 14416 14417 if (target_big_endian) 14418 insn = bfd_getb16 (buf); 14419 else 14420 insn = bfd_getl16 (buf); 14421 14422 mips16_immed (fragp->fr_file, fragp->fr_line, type, val, 14423 RELAX_MIPS16_USER_EXT (fragp->fr_subtype), 14424 small, ext, &insn, &use_extend, &extend); 14425 14426 if (use_extend) 14427 { 14428 md_number_to_chars ((char *) buf, 0xf000 | extend, 2); 14429 fragp->fr_fix += 2; 14430 buf += 2; 14431 } 14432 14433 md_number_to_chars ((char *) buf, insn, 2); 14434 fragp->fr_fix += 2; 14435 buf += 2; 14436 } 14437 else 14438 { 14439 int first, second; 14440 fixS *fixp; 14441 14442 first = RELAX_FIRST (fragp->fr_subtype); 14443 second = RELAX_SECOND (fragp->fr_subtype); 14444 fixp = (fixS *) fragp->fr_opcode; 14445 14446 /* Possibly emit a warning if we've chosen the longer option. */ 14447 if (((fragp->fr_subtype & RELAX_USE_SECOND) != 0) 14448 == ((fragp->fr_subtype & RELAX_SECOND_LONGER) != 0)) 14449 { 14450 const char *msg = macro_warning (fragp->fr_subtype); 14451 if (msg != 0) 14452 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg); 14453 } 14454 14455 /* Go through all the fixups for the first sequence. Disable them 14456 (by marking them as done) if we're going to use the second 14457 sequence instead. */ 14458 while (fixp 14459 && fixp->fx_frag == fragp 14460 && fixp->fx_where < fragp->fr_fix - second) 14461 { 14462 if (fragp->fr_subtype & RELAX_USE_SECOND) 14463 fixp->fx_done = 1; 14464 fixp = fixp->fx_next; 14465 } 14466 14467 /* Go through the fixups for the second sequence. Disable them if 14468 we're going to use the first sequence, otherwise adjust their 14469 addresses to account for the relaxation. */ 14470 while (fixp && fixp->fx_frag == fragp) 14471 { 14472 if (fragp->fr_subtype & RELAX_USE_SECOND) 14473 fixp->fx_where -= first; 14474 else 14475 fixp->fx_done = 1; 14476 fixp = fixp->fx_next; 14477 } 14478 14479 /* Now modify the frag contents. */ 14480 if (fragp->fr_subtype & RELAX_USE_SECOND) 14481 { 14482 char *start; 14483 14484 start = fragp->fr_literal + fragp->fr_fix - first - second; 14485 memmove (start, start + first, second); 14486 fragp->fr_fix -= first; 14487 } 14488 else 14489 fragp->fr_fix -= second; 14490 } 14491 } 14492 14493 #ifdef OBJ_ELF 14494 14495 /* This function is called after the relocs have been generated. 14496 We've been storing mips16 text labels as odd. Here we convert them 14497 back to even for the convenience of the debugger. */ 14498 14499 void 14500 mips_frob_file_after_relocs (void) 14501 { 14502 asymbol **syms; 14503 unsigned int count, i; 14504 14505 if (!IS_ELF) 14506 return; 14507 14508 syms = bfd_get_outsymbols (stdoutput); 14509 count = bfd_get_symcount (stdoutput); 14510 for (i = 0; i < count; i++, syms++) 14511 { 14512 if (ELF_ST_IS_MIPS16 (elf_symbol (*syms)->internal_elf_sym.st_other) 14513 && ((*syms)->value & 1) != 0) 14514 { 14515 (*syms)->value &= ~1; 14516 /* If the symbol has an odd size, it was probably computed 14517 incorrectly, so adjust that as well. */ 14518 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0) 14519 ++elf_symbol (*syms)->internal_elf_sym.st_size; 14520 } 14521 } 14522 } 14523 14524 #endif 14525 14526 /* This function is called whenever a label is defined. It is used 14527 when handling branch delays; if a branch has a label, we assume we 14528 can not move it. */ 14529 14530 void 14531 mips_define_label (symbolS *sym) 14532 { 14533 segment_info_type *si = seg_info (now_seg); 14534 struct insn_label_list *l; 14535 14536 if (free_insn_labels == NULL) 14537 l = (struct insn_label_list *) xmalloc (sizeof *l); 14538 else 14539 { 14540 l = free_insn_labels; 14541 free_insn_labels = l->next; 14542 } 14543 14544 l->label = sym; 14545 l->next = si->label_list; 14546 si->label_list = l; 14547 14548 #ifdef OBJ_ELF 14549 dwarf2_emit_label (sym); 14550 #endif 14551 } 14552 14553 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) 14554 14555 /* Some special processing for a MIPS ELF file. */ 14556 14557 void 14558 mips_elf_final_processing (void) 14559 { 14560 /* Write out the register information. */ 14561 if (mips_abi != N64_ABI) 14562 { 14563 Elf32_RegInfo s; 14564 14565 s.ri_gprmask = mips_gprmask; 14566 s.ri_cprmask[0] = mips_cprmask[0]; 14567 s.ri_cprmask[1] = mips_cprmask[1]; 14568 s.ri_cprmask[2] = mips_cprmask[2]; 14569 s.ri_cprmask[3] = mips_cprmask[3]; 14570 /* The gp_value field is set by the MIPS ELF backend. */ 14571 14572 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s, 14573 ((Elf32_External_RegInfo *) 14574 mips_regmask_frag)); 14575 } 14576 else 14577 { 14578 Elf64_Internal_RegInfo s; 14579 14580 s.ri_gprmask = mips_gprmask; 14581 s.ri_pad = 0; 14582 s.ri_cprmask[0] = mips_cprmask[0]; 14583 s.ri_cprmask[1] = mips_cprmask[1]; 14584 s.ri_cprmask[2] = mips_cprmask[2]; 14585 s.ri_cprmask[3] = mips_cprmask[3]; 14586 /* The gp_value field is set by the MIPS ELF backend. */ 14587 14588 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s, 14589 ((Elf64_External_RegInfo *) 14590 mips_regmask_frag)); 14591 } 14592 14593 /* Set the MIPS ELF flag bits. FIXME: There should probably be some 14594 sort of BFD interface for this. */ 14595 if (mips_any_noreorder) 14596 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER; 14597 if (mips_pic != NO_PIC) 14598 { 14599 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC; 14600 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC; 14601 } 14602 if (mips_abicalls) 14603 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC; 14604 14605 /* Set MIPS ELF flags for ASEs. */ 14606 /* We may need to define a new flag for DSP ASE, and set this flag when 14607 file_ase_dsp is true. */ 14608 /* Same for DSP R2. */ 14609 /* We may need to define a new flag for MT ASE, and set this flag when 14610 file_ase_mt is true. */ 14611 if (file_ase_mips16) 14612 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16; 14613 #if 0 /* XXX FIXME */ 14614 if (file_ase_mips3d) 14615 elf_elfheader (stdoutput)->e_flags |= ???; 14616 #endif 14617 if (file_ase_mdmx) 14618 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX; 14619 14620 /* Set the MIPS ELF ABI flags. */ 14621 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32) 14622 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32; 14623 else if (mips_abi == O64_ABI) 14624 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64; 14625 else if (mips_abi == EABI_ABI) 14626 { 14627 if (!file_mips_gp32) 14628 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64; 14629 else 14630 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32; 14631 } 14632 else if (mips_abi == N32_ABI) 14633 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2; 14634 14635 /* Nothing to do for N64_ABI. */ 14636 14637 if (mips_32bitmode) 14638 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE; 14639 14640 #if 0 /* XXX FIXME */ 14641 /* 32 bit code with 64 bit FP registers. */ 14642 if (!file_mips_fp32 && ABI_NEEDS_32BIT_REGS (mips_abi)) 14643 elf_elfheader (stdoutput)->e_flags |= ???; 14644 #endif 14645 } 14646 14647 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */ 14648 14649 typedef struct proc { 14650 symbolS *func_sym; 14651 symbolS *func_end_sym; 14652 unsigned long reg_mask; 14653 unsigned long reg_offset; 14654 unsigned long fpreg_mask; 14655 unsigned long fpreg_offset; 14656 unsigned long frame_offset; 14657 unsigned long frame_reg; 14658 unsigned long pc_reg; 14659 } procS; 14660 14661 static procS cur_proc; 14662 static procS *cur_proc_ptr; 14663 static int numprocs; 14664 14665 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1" and a normal 14666 nop as "0". */ 14667 14668 char 14669 mips_nop_opcode (void) 14670 { 14671 return seg_info (now_seg)->tc_segment_info_data.mips16; 14672 } 14673 14674 /* Fill in an rs_align_code fragment. This only needs to do something 14675 for MIPS16 code, where 0 is not a nop. */ 14676 14677 void 14678 mips_handle_align (fragS *fragp) 14679 { 14680 char *p; 14681 14682 if (fragp->fr_type != rs_align_code) 14683 return; 14684 14685 p = fragp->fr_literal + fragp->fr_fix; 14686 if (*p) 14687 { 14688 int bytes; 14689 14690 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix; 14691 if (bytes & 1) 14692 { 14693 *p++ = 0; 14694 fragp->fr_fix++; 14695 } 14696 md_number_to_chars (p, mips16_nop_insn.insn_opcode, 2); 14697 fragp->fr_var = 2; 14698 } 14699 } 14700 14701 static void 14702 md_obj_begin (void) 14703 { 14704 } 14705 14706 static void 14707 md_obj_end (void) 14708 { 14709 /* Check for premature end, nesting errors, etc. */ 14710 if (cur_proc_ptr) 14711 as_warn (_("missing .end at end of assembly")); 14712 } 14713 14714 static long 14715 get_number (void) 14716 { 14717 int negative = 0; 14718 long val = 0; 14719 14720 if (*input_line_pointer == '-') 14721 { 14722 ++input_line_pointer; 14723 negative = 1; 14724 } 14725 if (!ISDIGIT (*input_line_pointer)) 14726 as_bad (_("expected simple number")); 14727 if (input_line_pointer[0] == '0') 14728 { 14729 if (input_line_pointer[1] == 'x') 14730 { 14731 input_line_pointer += 2; 14732 while (ISXDIGIT (*input_line_pointer)) 14733 { 14734 val <<= 4; 14735 val |= hex_value (*input_line_pointer++); 14736 } 14737 return negative ? -val : val; 14738 } 14739 else 14740 { 14741 ++input_line_pointer; 14742 while (ISDIGIT (*input_line_pointer)) 14743 { 14744 val <<= 3; 14745 val |= *input_line_pointer++ - '0'; 14746 } 14747 return negative ? -val : val; 14748 } 14749 } 14750 if (!ISDIGIT (*input_line_pointer)) 14751 { 14752 printf (_(" *input_line_pointer == '%c' 0x%02x\n"), 14753 *input_line_pointer, *input_line_pointer); 14754 as_warn (_("invalid number")); 14755 return -1; 14756 } 14757 while (ISDIGIT (*input_line_pointer)) 14758 { 14759 val *= 10; 14760 val += *input_line_pointer++ - '0'; 14761 } 14762 return negative ? -val : val; 14763 } 14764 14765 /* The .file directive; just like the usual .file directive, but there 14766 is an initial number which is the ECOFF file index. In the non-ECOFF 14767 case .file implies DWARF-2. */ 14768 14769 static void 14770 s_mips_file (int x ATTRIBUTE_UNUSED) 14771 { 14772 static int first_file_directive = 0; 14773 14774 if (ECOFF_DEBUGGING) 14775 { 14776 get_number (); 14777 s_app_file (0); 14778 } 14779 else 14780 { 14781 char *filename; 14782 14783 filename = dwarf2_directive_file (0); 14784 14785 /* Versions of GCC up to 3.1 start files with a ".file" 14786 directive even for stabs output. Make sure that this 14787 ".file" is handled. Note that you need a version of GCC 14788 after 3.1 in order to support DWARF-2 on MIPS. */ 14789 if (filename != NULL && ! first_file_directive) 14790 { 14791 (void) new_logical_line (filename, -1); 14792 s_app_file_string (filename, 0); 14793 } 14794 first_file_directive = 1; 14795 } 14796 } 14797 14798 /* The .loc directive, implying DWARF-2. */ 14799 14800 static void 14801 s_mips_loc (int x ATTRIBUTE_UNUSED) 14802 { 14803 if (!ECOFF_DEBUGGING) 14804 dwarf2_directive_loc (0); 14805 } 14806 14807 /* The .end directive. */ 14808 14809 static void 14810 s_mips_end (int x ATTRIBUTE_UNUSED) 14811 { 14812 symbolS *p; 14813 14814 /* Following functions need their own .frame and .cprestore directives. */ 14815 mips_frame_reg_valid = 0; 14816 mips_cprestore_valid = 0; 14817 14818 if (!is_end_of_line[(unsigned char) *input_line_pointer]) 14819 { 14820 p = get_symbol (); 14821 demand_empty_rest_of_line (); 14822 } 14823 else 14824 p = NULL; 14825 14826 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0) 14827 as_warn (_(".end not in text section")); 14828 14829 if (!cur_proc_ptr) 14830 { 14831 as_warn (_(".end directive without a preceding .ent directive.")); 14832 demand_empty_rest_of_line (); 14833 return; 14834 } 14835 14836 if (p != NULL) 14837 { 14838 assert (S_GET_NAME (p)); 14839 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym))) 14840 as_warn (_(".end symbol does not match .ent symbol.")); 14841 14842 if (debug_type == DEBUG_STABS) 14843 stabs_generate_asm_endfunc (S_GET_NAME (p), 14844 S_GET_NAME (p)); 14845 } 14846 else 14847 as_warn (_(".end directive missing or unknown symbol")); 14848 14849 #ifdef OBJ_ELF 14850 /* Create an expression to calculate the size of the function. */ 14851 if (p && cur_proc_ptr) 14852 { 14853 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p); 14854 expressionS *exp = xmalloc (sizeof (expressionS)); 14855 14856 obj->size = exp; 14857 exp->X_op = O_subtract; 14858 exp->X_add_symbol = symbol_temp_new_now (); 14859 exp->X_op_symbol = p; 14860 exp->X_add_number = 0; 14861 14862 cur_proc_ptr->func_end_sym = exp->X_add_symbol; 14863 } 14864 14865 /* Generate a .pdr section. */ 14866 if (IS_ELF && !ECOFF_DEBUGGING && mips_flag_pdr) 14867 { 14868 segT saved_seg = now_seg; 14869 subsegT saved_subseg = now_subseg; 14870 valueT dot; 14871 expressionS exp; 14872 char *fragp; 14873 14874 dot = frag_now_fix (); 14875 14876 #ifdef md_flush_pending_output 14877 md_flush_pending_output (); 14878 #endif 14879 14880 assert (pdr_seg); 14881 subseg_set (pdr_seg, 0); 14882 14883 /* Write the symbol. */ 14884 exp.X_op = O_symbol; 14885 exp.X_add_symbol = p; 14886 exp.X_add_number = 0; 14887 emit_expr (&exp, 4); 14888 14889 fragp = frag_more (7 * 4); 14890 14891 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4); 14892 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4); 14893 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4); 14894 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4); 14895 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4); 14896 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4); 14897 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4); 14898 14899 subseg_set (saved_seg, saved_subseg); 14900 } 14901 #endif /* OBJ_ELF */ 14902 14903 cur_proc_ptr = NULL; 14904 } 14905 14906 /* The .aent and .ent directives. */ 14907 14908 static void 14909 s_mips_ent (int aent) 14910 { 14911 symbolS *symbolP; 14912 14913 symbolP = get_symbol (); 14914 if (*input_line_pointer == ',') 14915 ++input_line_pointer; 14916 SKIP_WHITESPACE (); 14917 if (ISDIGIT (*input_line_pointer) 14918 || *input_line_pointer == '-') 14919 get_number (); 14920 14921 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0) 14922 as_warn (_(".ent or .aent not in text section.")); 14923 14924 if (!aent && cur_proc_ptr) 14925 as_warn (_("missing .end")); 14926 14927 if (!aent) 14928 { 14929 /* This function needs its own .frame and .cprestore directives. */ 14930 mips_frame_reg_valid = 0; 14931 mips_cprestore_valid = 0; 14932 14933 cur_proc_ptr = &cur_proc; 14934 memset (cur_proc_ptr, '\0', sizeof (procS)); 14935 14936 cur_proc_ptr->func_sym = symbolP; 14937 14938 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION; 14939 14940 ++numprocs; 14941 14942 if (debug_type == DEBUG_STABS) 14943 stabs_generate_asm_func (S_GET_NAME (symbolP), 14944 S_GET_NAME (symbolP)); 14945 } 14946 14947 demand_empty_rest_of_line (); 14948 } 14949 14950 /* The .frame directive. If the mdebug section is present (IRIX 5 native) 14951 then ecoff.c (ecoff_directive_frame) is used. For embedded targets, 14952 s_mips_frame is used so that we can set the PDR information correctly. 14953 We can't use the ecoff routines because they make reference to the ecoff 14954 symbol table (in the mdebug section). */ 14955 14956 static void 14957 s_mips_frame (int ignore ATTRIBUTE_UNUSED) 14958 { 14959 #ifdef OBJ_ELF 14960 if (IS_ELF && !ECOFF_DEBUGGING) 14961 { 14962 long val; 14963 14964 if (cur_proc_ptr == (procS *) NULL) 14965 { 14966 as_warn (_(".frame outside of .ent")); 14967 demand_empty_rest_of_line (); 14968 return; 14969 } 14970 14971 cur_proc_ptr->frame_reg = tc_get_register (1); 14972 14973 SKIP_WHITESPACE (); 14974 if (*input_line_pointer++ != ',' 14975 || get_absolute_expression_and_terminator (&val) != ',') 14976 { 14977 as_warn (_("Bad .frame directive")); 14978 --input_line_pointer; 14979 demand_empty_rest_of_line (); 14980 return; 14981 } 14982 14983 cur_proc_ptr->frame_offset = val; 14984 cur_proc_ptr->pc_reg = tc_get_register (0); 14985 14986 demand_empty_rest_of_line (); 14987 } 14988 else 14989 #endif /* OBJ_ELF */ 14990 s_ignore (ignore); 14991 } 14992 14993 /* The .fmask and .mask directives. If the mdebug section is present 14994 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For 14995 embedded targets, s_mips_mask is used so that we can set the PDR 14996 information correctly. We can't use the ecoff routines because they 14997 make reference to the ecoff symbol table (in the mdebug section). */ 14998 14999 static void 15000 s_mips_mask (int reg_type) 15001 { 15002 #ifdef OBJ_ELF 15003 if (IS_ELF && !ECOFF_DEBUGGING) 15004 { 15005 long mask, off; 15006 15007 if (cur_proc_ptr == (procS *) NULL) 15008 { 15009 as_warn (_(".mask/.fmask outside of .ent")); 15010 demand_empty_rest_of_line (); 15011 return; 15012 } 15013 15014 if (get_absolute_expression_and_terminator (&mask) != ',') 15015 { 15016 as_warn (_("Bad .mask/.fmask directive")); 15017 --input_line_pointer; 15018 demand_empty_rest_of_line (); 15019 return; 15020 } 15021 15022 off = get_absolute_expression (); 15023 15024 if (reg_type == 'F') 15025 { 15026 cur_proc_ptr->fpreg_mask = mask; 15027 cur_proc_ptr->fpreg_offset = off; 15028 } 15029 else 15030 { 15031 cur_proc_ptr->reg_mask = mask; 15032 cur_proc_ptr->reg_offset = off; 15033 } 15034 15035 demand_empty_rest_of_line (); 15036 } 15037 else 15038 #endif /* OBJ_ELF */ 15039 s_ignore (reg_type); 15040 } 15041 15042 /* A table describing all the processors gas knows about. Names are 15043 matched in the order listed. 15044 15045 To ease comparison, please keep this table in the same order as 15046 gcc's mips_cpu_info_table[]. */ 15047 static const struct mips_cpu_info mips_cpu_info_table[] = 15048 { 15049 /* Entries for generic ISAs */ 15050 { "mips1", MIPS_CPU_IS_ISA, ISA_MIPS1, CPU_R3000 }, 15051 { "mips2", MIPS_CPU_IS_ISA, ISA_MIPS2, CPU_R6000 }, 15052 { "mips3", MIPS_CPU_IS_ISA, ISA_MIPS3, CPU_R4000 }, 15053 { "mips4", MIPS_CPU_IS_ISA, ISA_MIPS4, CPU_R8000 }, 15054 { "mips5", MIPS_CPU_IS_ISA, ISA_MIPS5, CPU_MIPS5 }, 15055 { "mips32", MIPS_CPU_IS_ISA, ISA_MIPS32, CPU_MIPS32 }, 15056 { "mips32r2", MIPS_CPU_IS_ISA, ISA_MIPS32R2, CPU_MIPS32R2 }, 15057 { "mips64", MIPS_CPU_IS_ISA, ISA_MIPS64, CPU_MIPS64 }, 15058 { "mips64r2", MIPS_CPU_IS_ISA, ISA_MIPS64R2, CPU_MIPS64R2 }, 15059 15060 /* MIPS I */ 15061 { "r3000", 0, ISA_MIPS1, CPU_R3000 }, 15062 { "r2000", 0, ISA_MIPS1, CPU_R3000 }, 15063 { "r3900", 0, ISA_MIPS1, CPU_R3900 }, 15064 15065 /* MIPS II */ 15066 { "r6000", 0, ISA_MIPS2, CPU_R6000 }, 15067 15068 /* MIPS III */ 15069 { "r4000", 0, ISA_MIPS3, CPU_R4000 }, 15070 { "r4010", 0, ISA_MIPS2, CPU_R4010 }, 15071 { "vr4100", 0, ISA_MIPS3, CPU_VR4100 }, 15072 { "vr4111", 0, ISA_MIPS3, CPU_R4111 }, 15073 { "vr4120", 0, ISA_MIPS3, CPU_VR4120 }, 15074 { "vr4130", 0, ISA_MIPS3, CPU_VR4120 }, 15075 { "vr4181", 0, ISA_MIPS3, CPU_R4111 }, 15076 { "vr4300", 0, ISA_MIPS3, CPU_R4300 }, 15077 { "r4400", 0, ISA_MIPS3, CPU_R4400 }, 15078 { "r4600", 0, ISA_MIPS3, CPU_R4600 }, 15079 { "orion", 0, ISA_MIPS3, CPU_R4600 }, 15080 { "r4650", 0, ISA_MIPS3, CPU_R4650 }, 15081 /* ST Microelectronics Loongson 2E and 2F cores */ 15082 { "loongson2e", 0, ISA_MIPS3, CPU_LOONGSON_2E }, 15083 { "loongson2f", 0, ISA_MIPS3, CPU_LOONGSON_2F }, 15084 15085 /* MIPS IV */ 15086 { "r8000", 0, ISA_MIPS4, CPU_R8000 }, 15087 { "r10000", 0, ISA_MIPS4, CPU_R10000 }, 15088 { "r12000", 0, ISA_MIPS4, CPU_R12000 }, 15089 { "vr5000", 0, ISA_MIPS4, CPU_R5000 }, 15090 { "vr5400", 0, ISA_MIPS4, CPU_VR5400 }, 15091 { "vr5500", 0, ISA_MIPS4, CPU_VR5500 }, 15092 { "rm5200", 0, ISA_MIPS4, CPU_R5000 }, 15093 { "rm5230", 0, ISA_MIPS4, CPU_R5000 }, 15094 { "rm5231", 0, ISA_MIPS4, CPU_R5000 }, 15095 { "rm5261", 0, ISA_MIPS4, CPU_R5000 }, 15096 { "rm5721", 0, ISA_MIPS4, CPU_R5000 }, 15097 { "rm7000", 0, ISA_MIPS4, CPU_RM7000 }, 15098 { "rm9000", 0, ISA_MIPS4, CPU_RM9000 }, 15099 15100 /* MIPS 32 */ 15101 { "4kc", 0, ISA_MIPS32, CPU_MIPS32 }, 15102 { "4km", 0, ISA_MIPS32, CPU_MIPS32 }, 15103 { "4kp", 0, ISA_MIPS32, CPU_MIPS32 }, 15104 { "4ksc", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 }, 15105 15106 /* MIPS 32 Release 2 */ 15107 { "4kec", 0, ISA_MIPS32R2, CPU_MIPS32R2 }, 15108 { "4kem", 0, ISA_MIPS32R2, CPU_MIPS32R2 }, 15109 { "4kep", 0, ISA_MIPS32R2, CPU_MIPS32R2 }, 15110 { "4ksd", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 }, 15111 { "m4k", 0, ISA_MIPS32R2, CPU_MIPS32R2 }, 15112 { "m4kp", 0, ISA_MIPS32R2, CPU_MIPS32R2 }, 15113 { "24kc", 0, ISA_MIPS32R2, CPU_MIPS32R2 }, 15114 { "24kf2_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 }, 15115 { "24kf", 0, ISA_MIPS32R2, CPU_MIPS32R2 }, 15116 { "24kf1_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 }, 15117 /* Deprecated forms of the above. */ 15118 { "24kfx", 0, ISA_MIPS32R2, CPU_MIPS32R2 }, 15119 { "24kx", 0, ISA_MIPS32R2, CPU_MIPS32R2 }, 15120 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */ 15121 { "24kec", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 }, 15122 { "24kef2_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 }, 15123 { "24kef", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 }, 15124 { "24kef1_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 }, 15125 /* Deprecated forms of the above. */ 15126 { "24kefx", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 }, 15127 { "24kex", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 }, 15128 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */ 15129 { "34kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT, 15130 ISA_MIPS32R2, CPU_MIPS32R2 }, 15131 { "34kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT, 15132 ISA_MIPS32R2, CPU_MIPS32R2 }, 15133 { "34kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT, 15134 ISA_MIPS32R2, CPU_MIPS32R2 }, 15135 { "34kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT, 15136 ISA_MIPS32R2, CPU_MIPS32R2 }, 15137 /* Deprecated forms of the above. */ 15138 { "34kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT, 15139 ISA_MIPS32R2, CPU_MIPS32R2 }, 15140 { "34kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT, 15141 ISA_MIPS32R2, CPU_MIPS32R2 }, 15142 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */ 15143 { "74kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2, 15144 ISA_MIPS32R2, CPU_MIPS32R2 }, 15145 { "74kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2, 15146 ISA_MIPS32R2, CPU_MIPS32R2 }, 15147 { "74kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2, 15148 ISA_MIPS32R2, CPU_MIPS32R2 }, 15149 { "74kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2, 15150 ISA_MIPS32R2, CPU_MIPS32R2 }, 15151 { "74kf3_2", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2, 15152 ISA_MIPS32R2, CPU_MIPS32R2 }, 15153 /* Deprecated forms of the above. */ 15154 { "74kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2, 15155 ISA_MIPS32R2, CPU_MIPS32R2 }, 15156 { "74kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2, 15157 ISA_MIPS32R2, CPU_MIPS32R2 }, 15158 15159 /* MIPS 64 */ 15160 { "5kc", 0, ISA_MIPS64, CPU_MIPS64 }, 15161 { "5kf", 0, ISA_MIPS64, CPU_MIPS64 }, 15162 { "20kc", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 }, 15163 { "25kf", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 }, 15164 15165 /* MIPS 64 Release 2 */ 15166 15167 /* Broadcom SB-1 CPU core */ 15168 { "sb1", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX, 15169 ISA_MIPS64, CPU_SB1 }, 15170 /* Broadcom SB-1A CPU core */ 15171 { "sb1a", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX, 15172 ISA_MIPS64, CPU_SB1 }, 15173 15174 /* Cavium Networks Octeon CPU core */ 15175 { "octeon", 0, ISA_MIPS64R2, CPU_OCTEON }, 15176 15177 /* End marker */ 15178 { NULL, 0, 0, 0 } 15179 }; 15180 15181 15182 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL 15183 with a final "000" replaced by "k". Ignore case. 15184 15185 Note: this function is shared between GCC and GAS. */ 15186 15187 static bfd_boolean 15188 mips_strict_matching_cpu_name_p (const char *canonical, const char *given) 15189 { 15190 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical)) 15191 given++, canonical++; 15192 15193 return ((*given == 0 && *canonical == 0) 15194 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0)); 15195 } 15196 15197 15198 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied 15199 CPU name. We've traditionally allowed a lot of variation here. 15200 15201 Note: this function is shared between GCC and GAS. */ 15202 15203 static bfd_boolean 15204 mips_matching_cpu_name_p (const char *canonical, const char *given) 15205 { 15206 /* First see if the name matches exactly, or with a final "000" 15207 turned into "k". */ 15208 if (mips_strict_matching_cpu_name_p (canonical, given)) 15209 return TRUE; 15210 15211 /* If not, try comparing based on numerical designation alone. 15212 See if GIVEN is an unadorned number, or 'r' followed by a number. */ 15213 if (TOLOWER (*given) == 'r') 15214 given++; 15215 if (!ISDIGIT (*given)) 15216 return FALSE; 15217 15218 /* Skip over some well-known prefixes in the canonical name, 15219 hoping to find a number there too. */ 15220 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r') 15221 canonical += 2; 15222 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm') 15223 canonical += 2; 15224 else if (TOLOWER (canonical[0]) == 'r') 15225 canonical += 1; 15226 15227 return mips_strict_matching_cpu_name_p (canonical, given); 15228 } 15229 15230 15231 /* Parse an option that takes the name of a processor as its argument. 15232 OPTION is the name of the option and CPU_STRING is the argument. 15233 Return the corresponding processor enumeration if the CPU_STRING is 15234 recognized, otherwise report an error and return null. 15235 15236 A similar function exists in GCC. */ 15237 15238 static const struct mips_cpu_info * 15239 mips_parse_cpu (const char *option, const char *cpu_string) 15240 { 15241 const struct mips_cpu_info *p; 15242 15243 /* 'from-abi' selects the most compatible architecture for the given 15244 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the 15245 EABIs, we have to decide whether we're using the 32-bit or 64-bit 15246 version. Look first at the -mgp options, if given, otherwise base 15247 the choice on MIPS_DEFAULT_64BIT. 15248 15249 Treat NO_ABI like the EABIs. One reason to do this is that the 15250 plain 'mips' and 'mips64' configs have 'from-abi' as their default 15251 architecture. This code picks MIPS I for 'mips' and MIPS III for 15252 'mips64', just as we did in the days before 'from-abi'. */ 15253 if (strcasecmp (cpu_string, "from-abi") == 0) 15254 { 15255 if (ABI_NEEDS_32BIT_REGS (mips_abi)) 15256 return mips_cpu_info_from_isa (ISA_MIPS1); 15257 15258 if (ABI_NEEDS_64BIT_REGS (mips_abi)) 15259 return mips_cpu_info_from_isa (ISA_MIPS3); 15260 15261 if (file_mips_gp32 >= 0) 15262 return mips_cpu_info_from_isa (file_mips_gp32 ? ISA_MIPS1 : ISA_MIPS3); 15263 15264 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT 15265 ? ISA_MIPS3 15266 : ISA_MIPS1); 15267 } 15268 15269 /* 'default' has traditionally been a no-op. Probably not very useful. */ 15270 if (strcasecmp (cpu_string, "default") == 0) 15271 return 0; 15272 15273 for (p = mips_cpu_info_table; p->name != 0; p++) 15274 if (mips_matching_cpu_name_p (p->name, cpu_string)) 15275 return p; 15276 15277 as_bad ("Bad value (%s) for %s", cpu_string, option); 15278 return 0; 15279 } 15280 15281 /* Return the canonical processor information for ISA (a member of the 15282 ISA_MIPS* enumeration). */ 15283 15284 static const struct mips_cpu_info * 15285 mips_cpu_info_from_isa (int isa) 15286 { 15287 int i; 15288 15289 for (i = 0; mips_cpu_info_table[i].name != NULL; i++) 15290 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA) 15291 && isa == mips_cpu_info_table[i].isa) 15292 return (&mips_cpu_info_table[i]); 15293 15294 return NULL; 15295 } 15296 15297 static const struct mips_cpu_info * 15298 mips_cpu_info_from_arch (int arch) 15299 { 15300 int i; 15301 15302 for (i = 0; mips_cpu_info_table[i].name != NULL; i++) 15303 if (arch == mips_cpu_info_table[i].cpu) 15304 return (&mips_cpu_info_table[i]); 15305 15306 return NULL; 15307 } 15308 15309 static void 15310 show (FILE *stream, const char *string, int *col_p, int *first_p) 15311 { 15312 if (*first_p) 15313 { 15314 fprintf (stream, "%24s", ""); 15315 *col_p = 24; 15316 } 15317 else 15318 { 15319 fprintf (stream, ", "); 15320 *col_p += 2; 15321 } 15322 15323 if (*col_p + strlen (string) > 72) 15324 { 15325 fprintf (stream, "\n%24s", ""); 15326 *col_p = 24; 15327 } 15328 15329 fprintf (stream, "%s", string); 15330 *col_p += strlen (string); 15331 15332 *first_p = 0; 15333 } 15334 15335 void 15336 md_show_usage (FILE *stream) 15337 { 15338 int column, first; 15339 size_t i; 15340 15341 fprintf (stream, _("\ 15342 MIPS options:\n\ 15343 -EB generate big endian output\n\ 15344 -EL generate little endian output\n\ 15345 -g, -g2 do not remove unneeded NOPs or swap branches\n\ 15346 -G NUM allow referencing objects up to NUM bytes\n\ 15347 implicitly with the gp register [default 8]\n")); 15348 fprintf (stream, _("\ 15349 -mips1 generate MIPS ISA I instructions\n\ 15350 -mips2 generate MIPS ISA II instructions\n\ 15351 -mips3 generate MIPS ISA III instructions\n\ 15352 -mips4 generate MIPS ISA IV instructions\n\ 15353 -mips5 generate MIPS ISA V instructions\n\ 15354 -mips32 generate MIPS32 ISA instructions\n\ 15355 -mips32r2 generate MIPS32 release 2 ISA instructions\n\ 15356 -mips64 generate MIPS64 ISA instructions\n\ 15357 -mips64r2 generate MIPS64 release 2 ISA instructions\n\ 15358 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n")); 15359 15360 first = 1; 15361 15362 for (i = 0; mips_cpu_info_table[i].name != NULL; i++) 15363 show (stream, mips_cpu_info_table[i].name, &column, &first); 15364 show (stream, "from-abi", &column, &first); 15365 fputc ('\n', stream); 15366 15367 fprintf (stream, _("\ 15368 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\ 15369 -no-mCPU don't generate code specific to CPU.\n\ 15370 For -mCPU and -no-mCPU, CPU must be one of:\n")); 15371 15372 first = 1; 15373 15374 show (stream, "3900", &column, &first); 15375 show (stream, "4010", &column, &first); 15376 show (stream, "4100", &column, &first); 15377 show (stream, "4650", &column, &first); 15378 fputc ('\n', stream); 15379 15380 fprintf (stream, _("\ 15381 -mips16 generate mips16 instructions\n\ 15382 -no-mips16 do not generate mips16 instructions\n")); 15383 fprintf (stream, _("\ 15384 -msmartmips generate smartmips instructions\n\ 15385 -mno-smartmips do not generate smartmips instructions\n")); 15386 fprintf (stream, _("\ 15387 -mdsp generate DSP instructions\n\ 15388 -mno-dsp do not generate DSP instructions\n")); 15389 fprintf (stream, _("\ 15390 -mdspr2 generate DSP R2 instructions\n\ 15391 -mno-dspr2 do not generate DSP R2 instructions\n")); 15392 fprintf (stream, _("\ 15393 -mmt generate MT instructions\n\ 15394 -mno-mt do not generate MT instructions\n")); 15395 fprintf (stream, _("\ 15396 -mfix-vr4120 work around certain VR4120 errata\n\ 15397 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\ 15398 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\ 15399 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\ 15400 -msym32 assume all symbols have 32-bit values\n\ 15401 -O0 remove unneeded NOPs, do not swap branches\n\ 15402 -O remove unneeded NOPs and swap branches\n\ 15403 --trap, --no-break trap exception on div by 0 and mult overflow\n\ 15404 --break, --no-trap break exception on div by 0 and mult overflow\n")); 15405 fprintf (stream, _("\ 15406 -mhard-float allow floating-point instructions\n\ 15407 -msoft-float do not allow floating-point instructions\n\ 15408 -msingle-float only allow 32-bit floating-point operations\n\ 15409 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\ 15410 --[no-]construct-floats [dis]allow floating point values to be constructed\n" 15411 )); 15412 #ifdef OBJ_ELF 15413 fprintf (stream, _("\ 15414 -KPIC, -call_shared generate SVR4 position independent code\n\ 15415 -call_nonpic generate non-PIC code that can operate with DSOs\n\ 15416 -mvxworks-pic generate VxWorks position independent code\n\ 15417 -non_shared do not generate code that can operate with DSOs\n\ 15418 -xgot assume a 32 bit GOT\n\ 15419 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\ 15420 -mshared, -mno-shared disable/enable .cpload optimization for\n\ 15421 position dependent (non shared) code\n\ 15422 -mabi=ABI create ABI conformant object file for:\n")); 15423 15424 first = 1; 15425 15426 show (stream, "32", &column, &first); 15427 show (stream, "o64", &column, &first); 15428 show (stream, "n32", &column, &first); 15429 show (stream, "64", &column, &first); 15430 show (stream, "eabi", &column, &first); 15431 15432 fputc ('\n', stream); 15433 15434 fprintf (stream, _("\ 15435 -32 create o32 ABI object file (default)\n\ 15436 -n32 create n32 ABI object file\n\ 15437 -64 create 64 ABI object file\n")); 15438 #endif 15439 } 15440 15441 enum dwarf2_format 15442 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED) 15443 { 15444 if (HAVE_64BIT_SYMBOLS) 15445 { 15446 #ifdef TE_IRIX 15447 return dwarf2_format_64bit_irix; 15448 #else 15449 return dwarf2_format_64bit; 15450 #endif 15451 } 15452 else 15453 return dwarf2_format_32bit; 15454 } 15455 15456 int 15457 mips_dwarf2_addr_size (void) 15458 { 15459 if (HAVE_64BIT_SYMBOLS) 15460 return 8; 15461 else 15462 return 4; 15463 } 15464 15465 /* Standard calling conventions leave the CFA at SP on entry. */ 15466 void 15467 mips_cfi_frame_initial_instructions (void) 15468 { 15469 cfi_add_CFA_def_cfa_register (SP); 15470 } 15471 15472 int 15473 tc_mips_regname_to_dw2regnum (char *regname) 15474 { 15475 unsigned int regnum = -1; 15476 unsigned int reg; 15477 15478 if (reg_lookup (®name, RTYPE_GP | RTYPE_NUM, ®)) 15479 regnum = reg; 15480 15481 return regnum; 15482 } 15483