xref: /netbsd-src/external/gpl3/binutils/dist/gas/config/tc-mcore.c (revision cb861154c176d3dcc8ff846f449e3c16a5f5edb5)
1 /* tc-mcore.c -- Assemble code for M*Core
2    Copyright 1999, 2000, 2001, 2002, 2003, 2005, 2006, 2007
3    Free Software Foundation, Inc.
4 
5    This file is part of GAS, the GNU Assembler.
6 
7    GAS is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3, or (at your option)
10    any later version.
11 
12    GAS is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with GAS; see the file COPYING.  If not, write to the Free
19    Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
20    02110-1301, USA.  */
21 
22 #include "as.h"
23 #include "subsegs.h"
24 #define DEFINE_TABLE
25 #include "../opcodes/mcore-opc.h"
26 #include "safe-ctype.h"
27 
28 #ifdef OBJ_ELF
29 #include "elf/mcore.h"
30 #endif
31 
32 #ifndef streq
33 #define streq(a,b) (strcmp (a, b) == 0)
34 #endif
35 
36 /* Forward declarations for dumb compilers.  */
37 
38 /* Several places in this file insert raw instructions into the
39    object. They should use MCORE_INST_XXX macros to get the opcodes
40    and then use these two macros to crack the MCORE_INST value into
41    the appropriate byte values.  */
42 #define	INST_BYTE0(x)  (target_big_endian ? (((x) >> 8) & 0xFF) : ((x) & 0xFF))
43 #define	INST_BYTE1(x)  (target_big_endian ? ((x) & 0xFF) : (((x) >> 8) & 0xFF))
44 
45 const char comment_chars[] = "#/";
46 const char line_separator_chars[] = ";";
47 const char line_comment_chars[] = "#/";
48 
49 static int do_jsri2bsr = 0;	/* Change here from 1 by Cruess 19 August 97.  */
50 static int sifilter_mode = 0;
51 
52 const char EXP_CHARS[] = "eE";
53 
54 /* Chars that mean this number is a floating point constant
55     As in 0f12.456
56     or    0d1.2345e12  */
57 const char FLT_CHARS[] = "rRsSfFdDxXpP";
58 
59 #define C(what,length) (((what) << 2) + (length))
60 #define GET_WHAT(x)    ((x >> 2))
61 
62 /* These are the two types of relaxable instruction.  */
63 #define COND_JUMP  1
64 #define UNCD_JUMP  2
65 
66 #define UNDEF_DISP      0
67 #define DISP12          1
68 #define DISP32          2
69 #define UNDEF_WORD_DISP 3
70 
71 #define C12_LEN	        2
72 #define C32_LEN	       10	/* Allow for align.  */
73 #define U12_LEN	        2
74 #define U32_LEN	        8	/* Allow for align.  */
75 
76 typedef enum
77 {
78   M210,
79   M340
80 }
81 cpu_type;
82 
83 cpu_type cpu = M340;
84 
85 /* Initialize the relax table.  */
86 const relax_typeS md_relax_table[] =
87 {
88   {    0,     0, 0,	  0 },
89   {    0,     0, 0,	  0 },
90   {    0,     0, 0,	  0 },
91   {    0,     0, 0,	  0 },
92 
93   /* COND_JUMP */
94   {    0,     0, 0,	  0 },			  /* UNDEF_DISP */
95   { 2048, -2046, C12_LEN, C(COND_JUMP, DISP32) }, /* DISP12 */
96   {    0,     0, C32_LEN, 0 },			  /* DISP32 */
97   {    0,     0, C32_LEN, 0 },			  /* UNDEF_WORD_DISP */
98 
99   /* UNCD_JUMP */
100   {    0,     0, 0,	  0 },			  /* UNDEF_DISP */
101   { 2048, -2046, U12_LEN, C(UNCD_JUMP, DISP32) }, /* DISP12 */
102   {    0,     0, U32_LEN, 0 },			  /* DISP32 */
103   {    0,     0, U32_LEN, 0 }			  /* UNDEF_WORD_DISP */
104 
105 };
106 
107 /* Literal pool data structures.  */
108 struct literal
109 {
110   unsigned short  refcnt;
111   unsigned char	  ispcrel;
112   unsigned char	  unused;
113   expressionS	  e;
114 };
115 
116 #define MAX_POOL_SIZE	(1024/4)
117 static struct literal litpool [MAX_POOL_SIZE];
118 static unsigned poolsize;
119 static unsigned poolnumber;
120 static unsigned long poolspan;
121 
122 /* SPANPANIC: the point at which we get too scared and force a dump
123    of the literal pool, and perhaps put a branch in place.
124    Calculated as:
125   		 1024	span of lrw/jmpi/jsri insn (actually span+1)
126   		-2	possible alignment at the insn.
127   		-2	possible alignment to get the table aligned.
128   		-2	an inserted branch around the table.
129   	     == 1018
130    at 1018, we might be in trouble.
131    -- so we have to be smaller than 1018 and since we deal with 2-byte
132    instructions, the next good choice is 1016.
133    -- Note we have a test case that fails when we've got 1018 here.  */
134 #define SPANPANIC	(1016)		/* 1024 - 1 entry - 2 byte rounding.  */
135 #define SPANCLOSE	(900)
136 #define SPANEXIT	(600)
137 static symbolS * poolsym;		/* Label for current pool.  */
138 static char poolname[8];
139 static struct hash_control * opcode_hash_control;	/* Opcode mnemonics.  */
140 
141 #define POOL_END_LABEL   ".LE"
142 #define POOL_START_LABEL ".LS"
143 
144 static void
145 make_name (char * s, char * p, int n)
146 {
147   static const char hex[] = "0123456789ABCDEF";
148 
149   s[0] = p[0];
150   s[1] = p[1];
151   s[2] = p[2];
152   s[3] = hex[(n >> 12) & 0xF];
153   s[4] = hex[(n >>  8) & 0xF];
154   s[5] = hex[(n >>  4) & 0xF];
155   s[6] = hex[(n)       & 0xF];
156   s[7] = 0;
157 }
158 
159 static void
160 dump_literals (int isforce)
161 {
162   unsigned int i;
163   struct literal * p;
164   symbolS * brarsym = NULL;
165 
166   if (poolsize == 0)
167     return;
168 
169   /* Must we branch around the literal table?  */
170   if (isforce)
171     {
172       char * output;
173       char brarname[8];
174 
175       make_name (brarname, POOL_END_LABEL, poolnumber);
176 
177       brarsym = symbol_make (brarname);
178 
179       symbol_table_insert (brarsym);
180 
181       output = frag_var (rs_machine_dependent,
182 			 md_relax_table[C (UNCD_JUMP, DISP32)].rlx_length,
183 			 md_relax_table[C (UNCD_JUMP, DISP12)].rlx_length,
184 			 C (UNCD_JUMP, 0), brarsym, 0, 0);
185       output[0] = INST_BYTE0 (MCORE_INST_BR);	/* br .+xxx */
186       output[1] = INST_BYTE1 (MCORE_INST_BR);
187     }
188 
189   /* Make sure that the section is sufficiently aligned and that
190      the literal table is aligned within it.  */
191   record_alignment (now_seg, 2);
192   frag_align (2, 0, 0);
193 
194   colon (S_GET_NAME (poolsym));
195 
196   for (i = 0, p = litpool; i < poolsize; i++, p++)
197     emit_expr (& p->e, 4);
198 
199   if (brarsym != NULL)
200     colon (S_GET_NAME (brarsym));
201 
202    poolsize = 0;
203 }
204 
205 static void
206 mcore_s_literals (int ignore ATTRIBUTE_UNUSED)
207 {
208   dump_literals (0);
209   demand_empty_rest_of_line ();
210 }
211 
212 /* Perform FUNC (ARG), and track number of bytes added to frag.  */
213 
214 static void
215 mcore_pool_count (void (*func) (int), int arg)
216 {
217   const fragS *curr_frag = frag_now;
218   offsetT added = -frag_now_fix_octets ();
219 
220   (*func) (arg);
221 
222   while (curr_frag != frag_now)
223     {
224       added += curr_frag->fr_fix;
225       curr_frag = curr_frag->fr_next;
226     }
227 
228   added += frag_now_fix_octets ();
229   poolspan += added;
230 }
231 
232 static void
233 check_literals (int kind, int offset)
234 {
235   poolspan += offset;
236 
237   /* SPANCLOSE and SPANEXIT are smaller numbers than SPANPANIC.
238      SPANPANIC means that we must dump now.
239      kind == 0 is any old instruction.
240      kind  > 0 means we just had a control transfer instruction.
241      kind == 1 means within a function
242      kind == 2 means we just left a function
243 
244      The dump_literals (1) call inserts a branch around the table, so
245      we first look to see if its a situation where we won't have to
246      insert a branch (e.g., the previous instruction was an unconditional
247      branch).
248 
249      SPANPANIC is the point where we must dump a single-entry pool.
250      it accounts for alignments and an inserted branch.
251      the 'poolsize*2' accounts for the scenario where we do:
252        lrw r1,lit1; lrw r2,lit2; lrw r3,lit3
253      Note that the 'lit2' reference is 2 bytes further along
254      but the literal it references will be 4 bytes further along,
255      so we must consider the poolsize into this equation.
256      This is slightly over-cautious, but guarantees that we won't
257      panic because a relocation is too distant.  */
258 
259   if (poolspan > SPANCLOSE && kind > 0)
260     dump_literals (0);
261   else if (poolspan > SPANEXIT && kind > 1)
262     dump_literals (0);
263   else if (poolspan >= (SPANPANIC - poolsize * 2))
264     dump_literals (1);
265 }
266 
267 static void
268 mcore_cons (int nbytes)
269 {
270   if (now_seg == text_section)
271     mcore_pool_count (cons, nbytes);
272   else
273     cons (nbytes);
274 
275   /* In theory we ought to call check_literals (2,0) here in case
276      we need to dump the literal table.  We cannot do this however,
277      as the directives that we are intercepting may be being used
278      to build a switch table, and we must not interfere with its
279      contents.  Instead we cross our fingers and pray...  */
280 }
281 
282 static void
283 mcore_float_cons (int float_type)
284 {
285   if (now_seg == text_section)
286     mcore_pool_count (float_cons, float_type);
287   else
288     float_cons (float_type);
289 
290   /* See the comment in mcore_cons () about calling check_literals.
291      It is unlikely that a switch table will be constructed using
292      floating point values, but it is still likely that an indexed
293      table of floating point constants is being created by these
294      directives, so again we must not interfere with their placement.  */
295 }
296 
297 static void
298 mcore_stringer (int append_zero)
299 {
300   if (now_seg == text_section)
301     mcore_pool_count (stringer, append_zero);
302   else
303     stringer (append_zero);
304 
305   /* We call check_literals here in case a large number of strings are
306      being placed into the text section with a sequence of stringer
307      directives.  In theory we could be upsetting something if these
308      strings are actually in an indexed table instead of referenced by
309      individual labels.  Let us hope that that never happens.  */
310   check_literals (2, 0);
311 }
312 
313 static void
314 mcore_fill (int unused)
315 {
316   if (now_seg == text_section)
317     mcore_pool_count (s_fill, unused);
318   else
319     s_fill (unused);
320 
321   check_literals (2, 0);
322 }
323 
324 /* Handle the section changing pseudo-ops.  These call through to the
325    normal implementations, but they dump the literal pool first.  */
326 
327 static void
328 mcore_s_text (int ignore)
329 {
330   dump_literals (0);
331 
332 #ifdef OBJ_ELF
333   obj_elf_text (ignore);
334 #else
335   s_text (ignore);
336 #endif
337 }
338 
339 static void
340 mcore_s_data (int ignore)
341 {
342   dump_literals (0);
343 
344 #ifdef OBJ_ELF
345   obj_elf_data (ignore);
346 #else
347   s_data (ignore);
348 #endif
349 }
350 
351 static void
352 mcore_s_section (int ignore)
353 {
354   /* Scan forwards to find the name of the section.  If the section
355      being switched to is ".line" then this is a DWARF1 debug section
356      which is arbitrarily placed inside generated code.  In this case
357      do not dump the literal pool because it is a) inefficient and
358      b) would require the generation of extra code to jump around the
359      pool.  */
360   char * ilp = input_line_pointer;
361 
362   while (*ilp != 0 && ISSPACE (*ilp))
363     ++ ilp;
364 
365   if (strncmp (ilp, ".line", 5) == 0
366       && (ISSPACE (ilp[5]) || *ilp == '\n' || *ilp == '\r'))
367     ;
368   else
369     dump_literals (0);
370 
371 #ifdef OBJ_ELF
372   obj_elf_section (ignore);
373 #endif
374 #ifdef OBJ_COFF
375   obj_coff_section (ignore);
376 #endif
377 }
378 
379 static void
380 mcore_s_bss (int needs_align)
381 {
382   dump_literals (0);
383 
384   s_lcomm_bytes (needs_align);
385 }
386 
387 #ifdef OBJ_ELF
388 static void
389 mcore_s_comm (int needs_align)
390 {
391   dump_literals (0);
392 
393   obj_elf_common (needs_align);
394 }
395 #endif
396 
397 /* This table describes all the machine specific pseudo-ops the assembler
398    has to support.  The fields are:
399      Pseudo-op name without dot
400      Function to call to execute this pseudo-op
401      Integer arg to pass to the function.   */
402 const pseudo_typeS md_pseudo_table[] =
403 {
404   { "export",   s_globl,          0 },
405   { "import",   s_ignore,         0 },
406   { "literals", mcore_s_literals, 0 },
407   { "page",     listing_eject,    0 },
408 
409   /* The following are to intercept the placement of data into the text
410      section (eg addresses for a switch table), so that the space they
411      occupy can be taken into account when deciding whether or not to
412      dump the current literal pool.
413      XXX - currently we do not cope with the .space and .dcb.d directives.  */
414   { "ascii",    mcore_stringer,       8 + 0 },
415   { "asciz",    mcore_stringer,       8 + 1 },
416   { "byte",     mcore_cons,           1 },
417   { "dc",       mcore_cons,           2 },
418   { "dc.b",     mcore_cons,           1 },
419   { "dc.d",     mcore_float_cons,    'd'},
420   { "dc.l",     mcore_cons,           4 },
421   { "dc.s",     mcore_float_cons,    'f'},
422   { "dc.w",     mcore_cons,           2 },
423   { "dc.x",     mcore_float_cons,    'x'},
424   { "double",   mcore_float_cons,    'd'},
425   { "float",    mcore_float_cons,    'f'},
426   { "hword",    mcore_cons,           2 },
427   { "int",      mcore_cons,           4 },
428   { "long",     mcore_cons,           4 },
429   { "octa",     mcore_cons,          16 },
430   { "quad",     mcore_cons,           8 },
431   { "short",    mcore_cons,           2 },
432   { "single",   mcore_float_cons,    'f'},
433   { "string",   mcore_stringer,       8 + 1 },
434   { "word",     mcore_cons,           2 },
435   { "fill",     mcore_fill,           0 },
436 
437   /* Allow for the effect of section changes.  */
438   { "text",      mcore_s_text,    0 },
439   { "data",      mcore_s_data,    0 },
440   { "bss",       mcore_s_bss,     1 },
441 #ifdef OBJ_ELF
442   { "comm",      mcore_s_comm,    0 },
443 #endif
444   { "section",   mcore_s_section, 0 },
445   { "section.s", mcore_s_section, 0 },
446   { "sect",      mcore_s_section, 0 },
447   { "sect.s",    mcore_s_section, 0 },
448 
449   { 0,          0,                0 }
450 };
451 
452 /* This function is called once, at assembler startup time.  This should
453    set up all the tables, etc that the MD part of the assembler needs.  */
454 
455 void
456 md_begin (void)
457 {
458   const mcore_opcode_info * opcode;
459   char * prev_name = "";
460 
461   opcode_hash_control = hash_new ();
462 
463   /* Insert unique names into hash table.  */
464   for (opcode = mcore_table; opcode->name; opcode ++)
465     {
466       if (! streq (prev_name, opcode->name))
467 	{
468 	  prev_name = opcode->name;
469 	  hash_insert (opcode_hash_control, opcode->name, (char *) opcode);
470 	}
471     }
472 }
473 
474 /* Get a log2(val).  */
475 
476 static int
477 mylog2 (unsigned int val)
478 {
479   int log = -1;
480 
481   while (val != 0)
482       {
483 	log ++;
484 	val >>= 1;
485       }
486 
487   return log;
488 }
489 
490 /* Try to parse a reg name.  */
491 
492 static char *
493 parse_reg (char * s, unsigned * reg)
494 {
495   /* Strip leading whitespace.  */
496   while (ISSPACE (* s))
497     ++ s;
498 
499   if (TOLOWER (s[0]) == 'r')
500     {
501       if (s[1] == '1' && s[2] >= '0' && s[2] <= '5')
502 	{
503 	  *reg = 10 + s[2] - '0';
504 	  return s + 3;
505 	}
506 
507       if (s[1] >= '0' && s[1] <= '9')
508 	{
509 	  *reg = s[1] - '0';
510 	  return s + 2;
511 	}
512     }
513   else if (   TOLOWER (s[0]) == 's'
514 	   && TOLOWER (s[1]) == 'p'
515 	   && ! ISALNUM (s[2]))
516     {
517       * reg = 0;
518       return s + 2;
519     }
520 
521   as_bad (_("register expected, but saw '%.6s'"), s);
522   return s;
523 }
524 
525 static struct Cregs
526 {
527   char * name;
528   unsigned int crnum;
529 }
530 cregs[] =
531 {
532   { "psr",	 0},
533   { "vbr",	 1},
534   { "epsr",	 2},
535   { "fpsr",	 3},
536   { "epc",	 4},
537   { "fpc",	 5},
538   { "ss0",	 6},
539   { "ss1",	 7},
540   { "ss2",	 8},
541   { "ss3",	 9},
542   { "ss4",	10},
543   { "gcr",	11},
544   { "gsr",	12},
545   { "",		 0}
546 };
547 
548 static char *
549 parse_creg (char * s, unsigned * reg)
550 {
551   int i;
552 
553   /* Strip leading whitespace.  */
554   while (ISSPACE (* s))
555     ++s;
556 
557   if ((TOLOWER (s[0]) == 'c' && TOLOWER (s[1]) == 'r'))
558     {
559       if (s[2] == '3' && s[3] >= '0' && s[3] <= '1')
560 	{
561 	  *reg = 30 + s[3] - '0';
562 	  return s + 4;
563 	}
564 
565       if (s[2] == '2' && s[3] >= '0' && s[3] <= '9')
566 	{
567 	  *reg = 20 + s[3] - '0';
568 	  return s + 4;
569 	}
570 
571       if (s[2] == '1' && s[3] >= '0' && s[3] <= '9')
572 	{
573 	  *reg = 10 + s[3] - '0';
574 	  return s + 4;
575 	}
576 
577       if (s[2] >= '0' && s[2] <= '9')
578 	{
579 	  *reg = s[2] - '0';
580 	  return s + 3;
581 	}
582     }
583 
584   /* Look at alternate creg names before giving error.  */
585   for (i = 0; cregs[i].name[0] != '\0'; i++)
586     {
587       char buf [10];
588       int  length;
589       int  j;
590 
591       length = strlen (cregs[i].name);
592 
593       for (j = 0; j < length; j++)
594 	buf[j] = TOLOWER (s[j]);
595 
596       if (strncmp (cregs[i].name, buf, length) == 0)
597 	{
598 	  *reg = cregs[i].crnum;
599 	  return s + length;
600 	}
601     }
602 
603   as_bad (_("control register expected, but saw '%.6s'"), s);
604 
605   return s;
606 }
607 
608 static char *
609 parse_psrmod (char * s, unsigned * reg)
610 {
611   int  i;
612   char buf[10];
613   static struct psrmods
614   {
615     char *       name;
616     unsigned int value;
617   }
618   psrmods[] =
619   {
620     { "ie", 1 },
621     { "fe", 2 },
622     { "ee", 4 },
623     { "af", 8 }	/* Really 0 and non-combinable.  */
624   };
625 
626   for (i = 0; i < 2; i++)
627     buf[i] = TOLOWER (s[i]);
628 
629   for (i = sizeof (psrmods) / sizeof (psrmods[0]); i--;)
630     {
631       if (! strncmp (psrmods[i].name, buf, 2))
632 	{
633 	  * reg = psrmods[i].value;
634 
635 	  return s + 2;
636 	}
637     }
638 
639   as_bad (_("bad/missing psr specifier"));
640 
641   * reg = 0;
642 
643   return s;
644 }
645 
646 static char *
647 parse_exp (char * s, expressionS * e)
648 {
649   char * save;
650   char * new;
651 
652   /* Skip whitespace.  */
653   while (ISSPACE (* s))
654     ++ s;
655 
656   save = input_line_pointer;
657   input_line_pointer = s;
658 
659   expression (e);
660 
661   if (e->X_op == O_absent)
662     as_bad (_("missing operand"));
663 
664   new = input_line_pointer;
665   input_line_pointer = save;
666 
667   return new;
668 }
669 
670 static int
671 enter_literal (expressionS * e, int ispcrel)
672 {
673   unsigned int i;
674   struct literal * p;
675 
676   if (poolsize >= MAX_POOL_SIZE - 2)
677     /* The literal pool is as full as we can handle. We have
678        to be 2 entries shy of the 1024/4=256 entries because we
679        have to allow for the branch (2 bytes) and the alignment
680        (2 bytes before the first insn referencing the pool and
681        2 bytes before the pool itself) == 6 bytes, rounds up
682        to 2 entries.  */
683     dump_literals (1);
684 
685   if (poolsize == 0)
686     {
687       /* Create new literal pool.  */
688       if (++ poolnumber > 0xFFFF)
689 	as_fatal (_("more than 65K literal pools"));
690 
691       make_name (poolname, POOL_START_LABEL, poolnumber);
692       poolsym = symbol_make (poolname);
693       symbol_table_insert (poolsym);
694       poolspan = 0;
695     }
696 
697   /* Search pool for value so we don't have duplicates.  */
698   for (p = litpool, i = 0; i < poolsize; i++, p++)
699     {
700       if (e->X_op == p->e.X_op
701 	  && e->X_add_symbol == p->e.X_add_symbol
702 	  && e->X_add_number == p->e.X_add_number
703 	  && ispcrel == p->ispcrel)
704 	{
705 	  p->refcnt ++;
706 	  return i;
707 	}
708     }
709 
710   p->refcnt  = 1;
711   p->ispcrel = ispcrel;
712   p->e       = * e;
713 
714   poolsize ++;
715 
716   return i;
717 }
718 
719 /* Parse a literal specification. -- either new or old syntax.
720    old syntax: the user supplies the label and places the literal.
721    new syntax: we put it into the literal pool.  */
722 
723 static char *
724 parse_rt (char * s,
725 	  char ** outputp,
726 	  int ispcrel,
727 	  expressionS * ep)
728 {
729   expressionS e;
730   int n;
731 
732   if (ep)
733     /* Indicate nothing there.  */
734     ep->X_op = O_absent;
735 
736   if (*s == '[')
737     {
738       s = parse_exp (s + 1, & e);
739 
740       if (*s == ']')
741 	s++;
742       else
743 	as_bad (_("missing ']'"));
744     }
745   else
746     {
747       s = parse_exp (s, & e);
748 
749       n = enter_literal (& e, ispcrel);
750 
751       if (ep)
752 	*ep = e;
753 
754       /* Create a reference to pool entry.  */
755       e.X_op         = O_symbol;
756       e.X_add_symbol = poolsym;
757       e.X_add_number = n << 2;
758     }
759 
760   * outputp = frag_more (2);
761 
762   fix_new_exp (frag_now, (*outputp) - frag_now->fr_literal, 2, & e, 1,
763 	       BFD_RELOC_MCORE_PCREL_IMM8BY4);
764 
765   return s;
766 }
767 
768 static char *
769 parse_imm (char * s,
770 	   unsigned * val,
771 	   unsigned min,
772 	   unsigned max)
773 {
774   char * new;
775   expressionS e;
776 
777   new = parse_exp (s, & e);
778 
779   if (e.X_op == O_absent)
780     ; /* An error message has already been emitted.  */
781   else if (e.X_op != O_constant)
782     as_bad (_("operand must be a constant"));
783   else if ((addressT) e.X_add_number < min || (addressT) e.X_add_number > max)
784     as_bad (_("operand must be absolute in range %u..%u, not %ld"),
785 	    min, max, (long) e.X_add_number);
786 
787   * val = e.X_add_number;
788 
789   return new;
790 }
791 
792 static char *
793 parse_mem (char * s,
794 	   unsigned * reg,
795 	   unsigned * off,
796 	   unsigned siz)
797 {
798   * off = 0;
799 
800   while (ISSPACE (* s))
801     ++ s;
802 
803   if (* s == '(')
804     {
805       s = parse_reg (s + 1, reg);
806 
807       while (ISSPACE (* s))
808 	++ s;
809 
810       if (* s == ',')
811 	{
812 	  s = parse_imm (s + 1, off, 0, 63);
813 
814 	  if (siz > 1)
815 	    {
816 	      if (siz > 2)
817 		{
818 		  if (* off & 0x3)
819 		    as_bad (_("operand must be a multiple of 4"));
820 
821 		  * off >>= 2;
822 		}
823 	      else
824 		{
825 		  if (* off & 0x1)
826 		    as_bad (_("operand must be a multiple of 2"));
827 
828 		  * off >>= 1;
829 		}
830 	    }
831 	}
832 
833       while (ISSPACE (* s))
834 	++ s;
835 
836       if (* s == ')')
837 	s ++;
838     }
839   else
840     as_bad (_("base register expected"));
841 
842   return s;
843 }
844 
845 /* This is the guts of the machine-dependent assembler.  STR points to a
846    machine dependent instruction.  This function is supposed to emit
847    the frags/bytes it assembles to.  */
848 
849 void
850 md_assemble (char * str)
851 {
852   char * op_start;
853   char * op_end;
854   mcore_opcode_info * opcode;
855   char * output;
856   int nlen = 0;
857   unsigned short inst;
858   unsigned reg;
859   unsigned off;
860   unsigned isize;
861   expressionS e;
862   char name[21];
863 
864   /* Drop leading whitespace.  */
865   while (ISSPACE (* str))
866     str ++;
867 
868   /* Find the op code end.  */
869   for (op_start = op_end = str;
870        nlen < 20 && !is_end_of_line [(unsigned char) *op_end] && *op_end != ' ';
871        op_end++)
872     {
873       name[nlen] = op_start[nlen];
874       nlen++;
875     }
876 
877   name [nlen] = 0;
878 
879   if (nlen == 0)
880     {
881       as_bad (_("can't find opcode "));
882       return;
883     }
884 
885   opcode = (mcore_opcode_info *) hash_find (opcode_hash_control, name);
886   if (opcode == NULL)
887     {
888       as_bad (_("unknown opcode \"%s\""), name);
889       return;
890     }
891 
892   inst = opcode->inst;
893   isize = 2;
894 
895   switch (opcode->opclass)
896     {
897     case O0:
898       output = frag_more (2);
899       break;
900 
901     case OT:
902       op_end = parse_imm (op_end + 1, & reg, 0, 3);
903       inst |= reg;
904       output = frag_more (2);
905       break;
906 
907     case O1:
908       op_end = parse_reg (op_end + 1, & reg);
909       inst |= reg;
910       output = frag_more (2);
911       break;
912 
913     case JMP:
914       op_end = parse_reg (op_end + 1, & reg);
915       inst |= reg;
916       output = frag_more (2);
917       /* In a sifilter mode, we emit this insn 2 times,
918 	 fixes problem of an interrupt during a jmp..  */
919       if (sifilter_mode)
920 	{
921 	  output[0] = INST_BYTE0 (inst);
922 	  output[1] = INST_BYTE1 (inst);
923 	  output = frag_more (2);
924 	}
925       break;
926 
927     case JSR:
928       op_end = parse_reg (op_end + 1, & reg);
929 
930       if (reg == 15)
931 	as_bad (_("invalid register: r15 illegal"));
932 
933       inst |= reg;
934       output = frag_more (2);
935 
936       if (sifilter_mode)
937 	{
938 	  /* Replace with:  bsr .+2 ; addi r15,6; jmp rx ; jmp rx.  */
939 	  inst = MCORE_INST_BSR;	/* With 0 displacement.  */
940 	  output[0] = INST_BYTE0 (inst);
941 	  output[1] = INST_BYTE1 (inst);
942 
943 	  output = frag_more (2);
944 	  inst = MCORE_INST_ADDI;
945 	  inst |= 15;			/* addi r15,6  */
946 	  inst |= (6 - 1) << 4;		/* Over the jmp's.  */
947 	  output[0] = INST_BYTE0 (inst);
948 	  output[1] = INST_BYTE1 (inst);
949 
950 	  output = frag_more (2);
951 	  inst = MCORE_INST_JMP | reg;
952 	  output[0] = INST_BYTE0 (inst);
953 	  output[1] = INST_BYTE1 (inst);
954 
955 	  /* 2nd emitted in fallthrough.  */
956 	  output = frag_more (2);
957 	}
958       break;
959 
960     case OC:
961       op_end = parse_reg (op_end + 1, & reg);
962       inst |= reg;
963 
964       /* Skip whitespace.  */
965       while (ISSPACE (* op_end))
966 	++ op_end;
967 
968       if (*op_end == ',')
969 	{
970 	  op_end = parse_creg (op_end + 1, & reg);
971 	  inst |= reg << 4;
972 	}
973 
974       output = frag_more (2);
975       break;
976 
977     case MULSH:
978       if (cpu == M210)
979 	{
980 	  as_bad (_("M340 specific opcode used when assembling for M210"));
981 	  break;
982 	}
983       /* drop through...  */
984     case O2:
985       op_end = parse_reg (op_end + 1, & reg);
986       inst |= reg;
987 
988       /* Skip whitespace.  */
989       while (ISSPACE (* op_end))
990 	++ op_end;
991 
992       if (* op_end == ',')
993 	{
994 	  op_end = parse_reg (op_end + 1, & reg);
995 	  inst |= reg << 4;
996 	}
997       else
998 	as_bad (_("second operand missing"));
999 
1000       output = frag_more (2);
1001       break;
1002 
1003     case X1:
1004       /* Handle both syntax-> xtrb- r1,rx OR xtrb- rx.  */
1005       op_end = parse_reg (op_end + 1, & reg);
1006 
1007       /* Skip whitespace.  */
1008       while (ISSPACE (* op_end))
1009 	++ op_end;
1010 
1011       if (* op_end == ',')	/* xtrb- r1,rx.  */
1012 	{
1013 	  if (reg != 1)
1014 	    as_bad (_("destination register must be r1"));
1015 
1016 	  op_end = parse_reg (op_end + 1, & reg);
1017 	}
1018 
1019       inst |= reg;
1020       output = frag_more (2);
1021       break;
1022 
1023     case O1R1:  /* div- rx,r1.  */
1024       op_end = parse_reg (op_end + 1, & reg);
1025       inst |= reg;
1026 
1027       /* Skip whitespace.  */
1028       while (ISSPACE (* op_end))
1029 	++ op_end;
1030 
1031       if (* op_end == ',')
1032 	{
1033 	  op_end = parse_reg (op_end + 1, & reg);
1034 	  if (reg != 1)
1035 	    as_bad (_("source register must be r1"));
1036 	}
1037       else
1038 	as_bad (_("second operand missing"));
1039 
1040       output = frag_more (2);
1041       break;
1042 
1043     case OI:
1044       op_end = parse_reg (op_end + 1, & reg);
1045       inst |= reg;
1046 
1047       /* Skip whitespace.  */
1048       while (ISSPACE (* op_end))
1049 	++ op_end;
1050 
1051       if (* op_end == ',')
1052 	{
1053 	  op_end = parse_imm (op_end + 1, & reg, 1, 32);
1054 	  inst |= (reg - 1) << 4;
1055 	}
1056       else
1057 	as_bad (_("second operand missing"));
1058 
1059       output = frag_more (2);
1060       break;
1061 
1062     case OB:
1063       op_end = parse_reg (op_end + 1, & reg);
1064       inst |= reg;
1065 
1066       /* Skip whitespace.  */
1067       while (ISSPACE (* op_end))
1068 	++ op_end;
1069 
1070       if (* op_end == ',')
1071 	{
1072 	  op_end = parse_imm (op_end + 1, & reg, 0, 31);
1073 	  inst |= reg << 4;
1074 	}
1075       else
1076 	as_bad (_("second operand missing"));
1077 
1078       output = frag_more (2);
1079       break;
1080 
1081     case OB2:
1082       /* Like OB, but arg is 2^n instead of n.  */
1083       op_end = parse_reg (op_end + 1, & reg);
1084       inst |= reg;
1085 
1086       /* Skip whitespace.  */
1087       while (ISSPACE (* op_end))
1088 	++ op_end;
1089 
1090       if (* op_end == ',')
1091 	{
1092 	  op_end = parse_imm (op_end + 1, & reg, 1, 1 << 31);
1093 	  /* Further restrict the immediate to a power of two.  */
1094 	  if ((reg & (reg - 1)) == 0)
1095 	    reg = mylog2 (reg);
1096 	  else
1097 	    {
1098 	      reg = 0;
1099 	      as_bad (_("immediate is not a power of two"));
1100 	    }
1101 	  inst |= (reg) << 4;
1102 	}
1103       else
1104 	as_bad (_("second operand missing"));
1105 
1106       output = frag_more (2);
1107       break;
1108 
1109     case OBRa:	/* Specific for bgeni: imm of 0->6 translate to movi.  */
1110     case OBRb:
1111     case OBRc:
1112       op_end = parse_reg (op_end + 1, & reg);
1113       inst |= reg;
1114 
1115       /* Skip whitespace.  */
1116       while (ISSPACE (* op_end))
1117 	++ op_end;
1118 
1119       if (* op_end == ',')
1120 	{
1121 	  op_end = parse_imm (op_end + 1, & reg, 0, 31);
1122 	  /* Immediate values of 0 -> 6 translate to movi.  */
1123 	  if (reg <= 6)
1124 	    {
1125 	      inst = (inst & 0xF) | MCORE_INST_BGENI_ALT;
1126 	      reg = 0x1 << reg;
1127 	      as_warn (_("translating bgeni to movi"));
1128 	    }
1129 	  inst &= ~ 0x01f0;
1130 	  inst |= reg << 4;
1131 	}
1132       else
1133 	as_bad (_("second operand missing"));
1134 
1135       output = frag_more (2);
1136       break;
1137 
1138     case OBR2:	/* Like OBR, but arg is 2^n instead of n.  */
1139       op_end = parse_reg (op_end + 1, & reg);
1140       inst |= reg;
1141 
1142       /* Skip whitespace.  */
1143       while (ISSPACE (* op_end))
1144 	++ op_end;
1145 
1146       if (* op_end == ',')
1147 	{
1148 	  op_end = parse_imm (op_end + 1, & reg, 1, 1 << 31);
1149 
1150 	  /* Further restrict the immediate to a power of two.  */
1151 	  if ((reg & (reg - 1)) == 0)
1152 	    reg = mylog2 (reg);
1153 	  else
1154 	    {
1155 	      reg = 0;
1156 	      as_bad (_("immediate is not a power of two"));
1157 	    }
1158 
1159 	  /* Immediate values of 0 -> 6 translate to movi.  */
1160 	  if (reg <= 6)
1161 	    {
1162 	      inst = (inst & 0xF) | MCORE_INST_BGENI_ALT;
1163 	      reg = 0x1 << reg;
1164 	      as_warn (_("translating mgeni to movi"));
1165 	    }
1166 
1167 	  inst |= reg << 4;
1168 	}
1169       else
1170 	as_bad (_("second operand missing"));
1171 
1172       output = frag_more (2);
1173       break;
1174 
1175     case OMa:	/* Specific for bmaski: imm 1->7 translate to movi.  */
1176     case OMb:
1177     case OMc:
1178       op_end = parse_reg (op_end + 1, & reg);
1179       inst |= reg;
1180 
1181       /* Skip whitespace.  */
1182       while (ISSPACE (* op_end))
1183 	++ op_end;
1184 
1185       if (* op_end == ',')
1186 	{
1187 	  op_end = parse_imm (op_end + 1, & reg, 1, 32);
1188 
1189 	  /* Immediate values of 1 -> 7 translate to movi.  */
1190 	  if (reg <= 7)
1191 	    {
1192 	      inst = (inst & 0xF) | MCORE_INST_BMASKI_ALT;
1193 	      reg = (0x1 << reg) - 1;
1194 	      inst |= reg << 4;
1195 
1196 	      as_warn (_("translating bmaski to movi"));
1197 	    }
1198 	  else
1199 	    {
1200 	      inst &= ~ 0x01F0;
1201 	      inst |= (reg & 0x1F) << 4;
1202 	    }
1203 	}
1204       else
1205 	as_bad (_("second operand missing"));
1206 
1207       output = frag_more (2);
1208       break;
1209 
1210     case SI:
1211       op_end = parse_reg (op_end + 1, & reg);
1212       inst |= reg;
1213 
1214       /* Skip whitespace.  */
1215       while (ISSPACE (* op_end))
1216 	++ op_end;
1217 
1218       if (* op_end == ',')
1219 	{
1220 	  op_end = parse_imm (op_end + 1, & reg, 1, 31);
1221 	  inst |= reg << 4;
1222 	}
1223       else
1224 	as_bad (_("second operand missing"));
1225 
1226       output = frag_more (2);
1227       break;
1228 
1229     case I7:
1230       op_end = parse_reg (op_end + 1, & reg);
1231       inst |= reg;
1232 
1233       /* Skip whitespace.  */
1234       while (ISSPACE (* op_end))
1235 	++ op_end;
1236 
1237       if (* op_end == ',')
1238 	{
1239 	  op_end = parse_imm (op_end + 1, & reg, 0, 0x7F);
1240 	  inst |= reg << 4;
1241 	}
1242       else
1243 	as_bad (_("second operand missing"));
1244 
1245       output = frag_more (2);
1246       break;
1247 
1248     case LS:
1249       op_end = parse_reg (op_end + 1, & reg);
1250       inst |= reg << 8;
1251 
1252       /* Skip whitespace.  */
1253       while (ISSPACE (* op_end))
1254 	++ op_end;
1255 
1256       if (* op_end == ',')
1257 	{
1258 	  int size;
1259 
1260 	  if ((inst & 0x6000) == 0)
1261 	    size = 4;
1262 	  else if ((inst & 0x6000) == 0x4000)
1263 	    size = 2;
1264 	  else if ((inst & 0x6000) == 0x2000)
1265 	    size = 1;
1266 	  else
1267 	    abort ();
1268 
1269 	  op_end = parse_mem (op_end + 1, & reg, & off, size);
1270 
1271 	  if (off > 16)
1272 	    as_bad (_("displacement too large (%d)"), off);
1273 	  else
1274 	    inst |= (reg) | (off << 4);
1275 	}
1276       else
1277 	as_bad (_("second operand missing"));
1278 
1279       output = frag_more (2);
1280       break;
1281 
1282     case LR:
1283       op_end = parse_reg (op_end + 1, & reg);
1284 
1285       if (reg == 0 || reg == 15)
1286 	as_bad (_("Invalid register: r0 and r15 illegal"));
1287 
1288       inst |= (reg << 8);
1289 
1290       /* Skip whitespace.  */
1291       while (ISSPACE (* op_end))
1292 	++ op_end;
1293 
1294       if (* op_end == ',')
1295 	{
1296 	  /* parse_rt calls frag_more() for us.  */
1297 	  input_line_pointer = parse_rt (op_end + 1, & output, 0, 0);
1298 	  op_end = input_line_pointer;
1299 	}
1300       else
1301 	{
1302 	  as_bad (_("second operand missing"));
1303 	  output = frag_more (2);		/* save its space */
1304 	}
1305       break;
1306 
1307     case LJ:
1308       input_line_pointer = parse_rt (op_end + 1, & output, 1, 0);
1309       /* parse_rt() calls frag_more() for us.  */
1310       op_end = input_line_pointer;
1311       break;
1312 
1313     case RM:
1314       op_end = parse_reg (op_end + 1, & reg);
1315 
1316       if (reg == 0 || reg == 15)
1317 	as_bad (_("bad starting register: r0 and r15 invalid"));
1318 
1319       inst |= reg;
1320 
1321       /* Skip whitespace.  */
1322       while (ISSPACE (* op_end))
1323 	++ op_end;
1324 
1325       if (* op_end == '-')
1326 	{
1327 	  op_end = parse_reg (op_end + 1, & reg);
1328 
1329 	  if (reg != 15)
1330 	    as_bad (_("ending register must be r15"));
1331 
1332 	  /* Skip whitespace.  */
1333 	  while (ISSPACE (* op_end))
1334 	    ++ op_end;
1335 	}
1336 
1337       if (* op_end == ',')
1338 	{
1339 	  op_end ++;
1340 
1341 	  /* Skip whitespace.  */
1342 	  while (ISSPACE (* op_end))
1343 	    ++ op_end;
1344 
1345 	  if (* op_end == '(')
1346 	    {
1347 	      op_end = parse_reg (op_end + 1, & reg);
1348 
1349 	      if (reg != 0)
1350 		as_bad (_("bad base register: must be r0"));
1351 
1352 	      if (* op_end == ')')
1353 		op_end ++;
1354 	    }
1355 	  else
1356 	    as_bad (_("base register expected"));
1357 	}
1358       else
1359 	as_bad (_("second operand missing"));
1360 
1361       output = frag_more (2);
1362       break;
1363 
1364     case RQ:
1365       op_end = parse_reg (op_end + 1, & reg);
1366 
1367       if (reg != 4)
1368 	as_fatal (_("first register must be r4"));
1369 
1370       /* Skip whitespace.  */
1371       while (ISSPACE (* op_end))
1372 	++ op_end;
1373 
1374       if (* op_end == '-')
1375 	{
1376 	  op_end = parse_reg (op_end + 1, & reg);
1377 
1378 	  if (reg != 7)
1379 	    as_fatal (_("last register must be r7"));
1380 
1381 	  /* Skip whitespace.  */
1382 	  while (ISSPACE (* op_end))
1383 	    ++ op_end;
1384 
1385 	  if (* op_end == ',')
1386 	    {
1387 	      op_end ++;
1388 
1389 	      /* Skip whitespace.  */
1390 	      while (ISSPACE (* op_end))
1391 		++ op_end;
1392 
1393 	      if (* op_end == '(')
1394 		{
1395 		  op_end = parse_reg (op_end + 1, & reg);
1396 
1397 		  if (reg >= 4 && reg <= 7)
1398 		    as_fatal ("base register cannot be r4, r5, r6, or r7");
1399 
1400 		  inst |= reg;
1401 
1402 		  /* Skip whitespace.  */
1403 		  while (ISSPACE (* op_end))
1404 		    ++ op_end;
1405 
1406 		  if (* op_end == ')')
1407 		    op_end ++;
1408 		}
1409 	      else
1410 		as_bad (_("base register expected"));
1411 	    }
1412 	  else
1413 	    as_bad (_("second operand missing"));
1414 	}
1415       else
1416 	as_bad (_("reg-reg expected"));
1417 
1418       output = frag_more (2);
1419       break;
1420 
1421     case BR:
1422       input_line_pointer = parse_exp (op_end + 1, & e);
1423       op_end = input_line_pointer;
1424 
1425       output = frag_more (2);
1426 
1427       fix_new_exp (frag_now, output-frag_now->fr_literal,
1428 		   2, & e, 1, BFD_RELOC_MCORE_PCREL_IMM11BY2);
1429       break;
1430 
1431     case BL:
1432       op_end = parse_reg (op_end + 1, & reg);
1433       inst |= reg << 4;
1434 
1435       /* Skip whitespace.  */
1436       while (ISSPACE (* op_end))
1437 	++ op_end;
1438 
1439       if (* op_end == ',')
1440 	{
1441 	  op_end = parse_exp (op_end + 1, & e);
1442 	  output = frag_more (2);
1443 
1444 	  fix_new_exp (frag_now, output-frag_now->fr_literal,
1445 		       2, & e, 1, BFD_RELOC_MCORE_PCREL_IMM4BY2);
1446 	}
1447       else
1448 	{
1449 	  as_bad (_("second operand missing"));
1450 	  output = frag_more (2);
1451 	}
1452       break;
1453 
1454     case JC:
1455       input_line_pointer = parse_exp (op_end + 1, & e);
1456       op_end = input_line_pointer;
1457 
1458       output = frag_var (rs_machine_dependent,
1459 			 md_relax_table[C (COND_JUMP, DISP32)].rlx_length,
1460 			 md_relax_table[C (COND_JUMP, DISP12)].rlx_length,
1461 			 C (COND_JUMP, 0), e.X_add_symbol, e.X_add_number, 0);
1462       isize = C32_LEN;
1463       break;
1464 
1465     case JU:
1466       input_line_pointer = parse_exp (op_end + 1, & e);
1467       op_end = input_line_pointer;
1468 
1469       output = frag_var (rs_machine_dependent,
1470 			 md_relax_table[C (UNCD_JUMP, DISP32)].rlx_length,
1471 			 md_relax_table[C (UNCD_JUMP, DISP12)].rlx_length,
1472 			 C (UNCD_JUMP, 0), e.X_add_symbol, e.X_add_number, 0);
1473       isize = U32_LEN;
1474       break;
1475 
1476     case JL:
1477       inst = MCORE_INST_JSRI;		/* jsri */
1478       input_line_pointer = parse_rt (op_end + 1, & output, 1, & e);
1479       /* parse_rt() calls frag_more for us.  */
1480       op_end = input_line_pointer;
1481 
1482       /* Only do this if we know how to do it ...  */
1483       if (e.X_op != O_absent && do_jsri2bsr)
1484 	{
1485 	  /* Look at adding the R_PCREL_JSRIMM11BY2.  */
1486 	  fix_new_exp (frag_now, output-frag_now->fr_literal,
1487 		       2, & e, 1, BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2);
1488 	}
1489       break;
1490 
1491     case RSI:
1492       /* SI, but imm becomes 32-imm.  */
1493       op_end = parse_reg (op_end + 1, & reg);
1494       inst |= reg;
1495 
1496       /* Skip whitespace.  */
1497       while (ISSPACE (* op_end))
1498 	++ op_end;
1499 
1500       if (* op_end == ',')
1501 	{
1502 	  op_end = parse_imm (op_end + 1, & reg, 1, 31);
1503 
1504 	  reg = 32 - reg;
1505 	  inst |= reg << 4;
1506 	}
1507       else
1508 	as_bad (_("second operand missing"));
1509 
1510       output = frag_more (2);
1511       break;
1512 
1513     case DO21:			/* O2, dup rd, lit must be 1 */
1514       op_end = parse_reg (op_end + 1, & reg);
1515       inst |= reg;
1516       inst |= reg << 4;
1517 
1518       /* Skip whitespace.  */
1519       while (ISSPACE (* op_end))
1520 	++ op_end;
1521 
1522       if (* op_end == ',')
1523 	{
1524 	  op_end = parse_imm (op_end + 1, & reg, 1, 31);
1525 
1526 	  if (reg != 1)
1527 	    as_bad (_("second operand must be 1"));
1528 	}
1529       else
1530 	as_bad (_("second operand missing"));
1531 
1532       output = frag_more (2);
1533       break;
1534 
1535     case SIa:
1536       op_end = parse_reg (op_end + 1, & reg);
1537       inst |= reg;
1538 
1539       /* Skip whitespace.  */
1540       while (ISSPACE (* op_end))
1541 	++ op_end;
1542 
1543       if (* op_end == ',')
1544 	{
1545 	  op_end = parse_imm (op_end + 1, & reg, 1, 31);
1546 
1547 	  if (reg == 0)
1548 	    as_bad (_("zero used as immediate value"));
1549 
1550 	  inst |= reg << 4;
1551 	}
1552       else
1553 	as_bad (_("second operand missing"));
1554 
1555       output = frag_more (2);
1556       break;
1557 
1558     case OPSR:
1559       if (cpu == M210)
1560 	{
1561 	  as_bad (_("M340 specific opcode used when assembling for M210"));
1562 	  break;
1563 	}
1564 
1565       op_end = parse_psrmod (op_end + 1, & reg);
1566 
1567       /* Look for further selectors.  */
1568       while (* op_end == ',')
1569 	{
1570 	  unsigned value;
1571 
1572 	  op_end = parse_psrmod (op_end + 1, & value);
1573 
1574 	  if (value & reg)
1575 	    as_bad (_("duplicated psr bit specifier"));
1576 
1577 	  reg |= value;
1578 	}
1579 
1580       if (reg > 8)
1581 	as_bad (_("`af' must appear alone"));
1582 
1583       inst |= (reg & 0x7);
1584       output = frag_more (2);
1585       break;
1586 
1587     default:
1588       as_bad (_("unimplemented opcode \"%s\""), name);
1589     }
1590 
1591   /* Drop whitespace after all the operands have been parsed.  */
1592   while (ISSPACE (* op_end))
1593     op_end ++;
1594 
1595   /* Give warning message if the insn has more operands than required.  */
1596   if (strcmp (op_end, opcode->name) && strcmp (op_end, ""))
1597     as_warn (_("ignoring operands: %s "), op_end);
1598 
1599   output[0] = INST_BYTE0 (inst);
1600   output[1] = INST_BYTE1 (inst);
1601 
1602   check_literals (opcode->transfer, isize);
1603 }
1604 
1605 symbolS *
1606 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
1607 {
1608   return 0;
1609 }
1610 
1611 void
1612 md_mcore_end (void)
1613 {
1614   dump_literals (0);
1615   subseg_set (text_section, 0);
1616 }
1617 
1618 /* Various routines to kill one day.  */
1619 
1620 char *
1621 md_atof (int type, char * litP, int * sizeP)
1622 {
1623   return ieee_md_atof (type, litP, sizeP, target_big_endian);
1624 }
1625 
1626 const char * md_shortopts = "";
1627 
1628 enum options
1629 {
1630   OPTION_JSRI2BSR_ON = OPTION_MD_BASE,
1631   OPTION_JSRI2BSR_OFF,
1632   OPTION_SIFILTER_ON,
1633   OPTION_SIFILTER_OFF,
1634   OPTION_CPU,
1635   OPTION_EB,
1636   OPTION_EL,
1637 };
1638 
1639 struct option md_longopts[] =
1640 {
1641   { "no-jsri2bsr", no_argument, NULL, OPTION_JSRI2BSR_OFF},
1642   { "jsri2bsr",    no_argument, NULL, OPTION_JSRI2BSR_ON},
1643   { "sifilter",    no_argument, NULL, OPTION_SIFILTER_ON},
1644   { "no-sifilter", no_argument, NULL, OPTION_SIFILTER_OFF},
1645   { "cpu",         required_argument, NULL, OPTION_CPU},
1646   { "EB",          no_argument, NULL, OPTION_EB},
1647   { "EL",          no_argument, NULL, OPTION_EL},
1648   { NULL,          no_argument, NULL, 0}
1649 };
1650 
1651 size_t md_longopts_size = sizeof (md_longopts);
1652 
1653 int
1654 md_parse_option (int c, char * arg)
1655 {
1656   switch (c)
1657     {
1658     case OPTION_CPU:
1659       if (streq (arg, "210"))
1660 	{
1661 	  cpu = M210;
1662 	  target_big_endian = 1;
1663 	}
1664       else if (streq (arg, "340"))
1665 	cpu = M340;
1666       else
1667 	as_warn (_("unrecognised cpu type '%s'"), arg);
1668       break;
1669 
1670     case OPTION_EB: target_big_endian = 1; break;
1671     case OPTION_EL: target_big_endian = 0; cpu = M340; break;
1672     case OPTION_JSRI2BSR_ON:  do_jsri2bsr = 1;   break;
1673     case OPTION_JSRI2BSR_OFF: do_jsri2bsr = 0;   break;
1674     case OPTION_SIFILTER_ON:  sifilter_mode = 1; break;
1675     case OPTION_SIFILTER_OFF: sifilter_mode = 0; break;
1676     default:                  return 0;
1677     }
1678 
1679   return 1;
1680 }
1681 
1682 void
1683 md_show_usage (FILE * stream)
1684 {
1685   fprintf (stream, _("\
1686 MCORE specific options:\n\
1687   -{no-}jsri2bsr	  {dis}able jsri to bsr transformation (def: dis)\n\
1688   -{no-}sifilter	  {dis}able silicon filter behavior (def: dis)\n\
1689   -cpu=[210|340]          select CPU type\n\
1690   -EB                     assemble for a big endian system (default)\n\
1691   -EL                     assemble for a little endian system\n"));
1692 }
1693 
1694 int md_short_jump_size;
1695 
1696 void
1697 md_create_short_jump (char * ptr ATTRIBUTE_UNUSED,
1698 		      addressT from_Nddr ATTRIBUTE_UNUSED,
1699 		      addressT to_Nddr ATTRIBUTE_UNUSED,
1700 		      fragS * frag ATTRIBUTE_UNUSED,
1701 		      symbolS * to_symbol ATTRIBUTE_UNUSED)
1702 {
1703   as_fatal (_("failed sanity check: short_jump"));
1704 }
1705 
1706 void
1707 md_create_long_jump (char * ptr ATTRIBUTE_UNUSED,
1708 		     addressT from_Nddr ATTRIBUTE_UNUSED,
1709 		     addressT to_Nddr ATTRIBUTE_UNUSED,
1710 		     fragS * frag ATTRIBUTE_UNUSED,
1711 		     symbolS * to_symbol ATTRIBUTE_UNUSED)
1712 {
1713   as_fatal (_("failed sanity check: long_jump"));
1714 }
1715 
1716 /* Called after relaxing, change the frags so they know how big they are.  */
1717 
1718 void
1719 md_convert_frag (bfd * abfd ATTRIBUTE_UNUSED,
1720 		 segT sec ATTRIBUTE_UNUSED,
1721 		 fragS * fragP)
1722 {
1723   char *buffer;
1724   int targ_addr = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
1725 
1726   buffer = fragP->fr_fix + fragP->fr_literal;
1727 
1728   switch (fragP->fr_subtype)
1729     {
1730     case C (COND_JUMP, DISP12):
1731     case C (UNCD_JUMP, DISP12):
1732       {
1733 	/* Get the address of the end of the instruction.  */
1734 	int next_inst = fragP->fr_fix + fragP->fr_address + 2;
1735 	unsigned char t0;
1736 	int disp = targ_addr - next_inst;
1737 
1738 	if (disp & 1)
1739 	  as_bad (_("odd displacement at %x"), next_inst - 2);
1740 
1741 	disp >>= 1;
1742 
1743 	if (! target_big_endian)
1744 	  {
1745 	    t0 = buffer[1] & 0xF8;
1746 
1747 	    md_number_to_chars (buffer, disp, 2);
1748 
1749 	    buffer[1] = (buffer[1] & 0x07) | t0;
1750 	  }
1751 	else
1752 	  {
1753 	    t0 = buffer[0] & 0xF8;
1754 
1755 	    md_number_to_chars (buffer, disp, 2);
1756 
1757 	    buffer[0] = (buffer[0] & 0x07) | t0;
1758 	  }
1759 
1760 	fragP->fr_fix += 2;
1761       }
1762       break;
1763 
1764     case C (COND_JUMP, DISP32):
1765     case C (COND_JUMP, UNDEF_WORD_DISP):
1766       {
1767 	/* A conditional branch wont fit into 12 bits so:
1768 	  	b!cond	1f
1769 	  	jmpi	0f
1770 	  	.align 2
1771 	   0:	.long disp
1772 	   1:
1773 
1774 	   If the b!cond is 4 byte aligned, the literal which would
1775 	   go at x+4 will also be aligned.  */
1776 	int first_inst = fragP->fr_fix + fragP->fr_address;
1777 	int needpad = (first_inst & 3);
1778 
1779 	if (! target_big_endian)
1780 	  buffer[1] ^= 0x08;
1781 	else
1782 	  buffer[0] ^= 0x08;	/* Toggle T/F bit.  */
1783 
1784 	buffer[2] = INST_BYTE0 (MCORE_INST_JMPI);	/* Build jmpi.  */
1785 	buffer[3] = INST_BYTE1 (MCORE_INST_JMPI);
1786 
1787 	if (needpad)
1788 	  {
1789 	    if (! target_big_endian)
1790 	      {
1791 		buffer[0] = 4;	/* Branch over jmpi, pad, and ptr.  */
1792 		buffer[2] = 1;	/* Jmpi offset of 1 gets the pointer.  */
1793 	      }
1794 	    else
1795 	      {
1796 		buffer[1] = 4;	/* Branch over jmpi, pad, and ptr.  */
1797 		buffer[3] = 1;	/* Jmpi offset of 1 gets the pointer.  */
1798 	      }
1799 
1800 	    buffer[4] = 0;	/* Alignment/pad.  */
1801 	    buffer[5] = 0;
1802 	    buffer[6] = 0;	/* Space for 32 bit address.  */
1803 	    buffer[7] = 0;
1804 	    buffer[8] = 0;
1805 	    buffer[9] = 0;
1806 
1807 	    /* Make reloc for the long disp.  */
1808 	    fix_new (fragP, fragP->fr_fix + 6, 4,
1809 		     fragP->fr_symbol, fragP->fr_offset, 0, BFD_RELOC_32);
1810 
1811 	    fragP->fr_fix += C32_LEN;
1812 	  }
1813 	else
1814 	  {
1815 	    /* See comment below about this given gas' limitations for
1816 	       shrinking the fragment. '3' is the amount of code that
1817 	       we inserted here, but '4' is right for the space we reserved
1818 	       for this fragment.  */
1819 	    if (! target_big_endian)
1820 	      {
1821 		buffer[0] = 3;	/* Branch over jmpi, and ptr.  */
1822 		buffer[2] = 0;	/* Jmpi offset of 0 gets the pointer.  */
1823 	      }
1824 	    else
1825 	      {
1826 		buffer[1] = 3;	/* Branch over jmpi, and ptr.  */
1827 		buffer[3] = 0;	/* Jmpi offset of 0 gets the pointer.  */
1828 	      }
1829 
1830 	    buffer[4] = 0;	/* Space for 32 bit address.  */
1831 	    buffer[5] = 0;
1832 	    buffer[6] = 0;
1833 	    buffer[7] = 0;
1834 
1835 	    /* Make reloc for the long disp.  */
1836 	    fix_new (fragP, fragP->fr_fix + 4, 4,
1837 		     fragP->fr_symbol, fragP->fr_offset, 0, BFD_RELOC_32);
1838 	    fragP->fr_fix += C32_LEN;
1839 
1840 	    /* Frag is actually shorter (see the other side of this ifdef)
1841 	       but gas isn't prepared for that.  We have to re-adjust
1842 	       the branch displacement so that it goes beyond the
1843 	       full length of the fragment, not just what we actually
1844 	       filled in.  */
1845 	    if (! target_big_endian)
1846 	      buffer[0] = 4;	/* Jmpi, ptr, and the 'tail pad'.  */
1847 	    else
1848 	      buffer[1] = 4;	/* Jmpi, ptr, and the 'tail pad'.  */
1849 	  }
1850       }
1851       break;
1852 
1853     case C (UNCD_JUMP, DISP32):
1854     case C (UNCD_JUMP, UNDEF_WORD_DISP):
1855       {
1856 	/* An unconditional branch will not fit in 12 bits, make code which
1857 	   looks like:
1858 	  	jmpi	0f
1859 	  	.align 2
1860 	     0:	.long disp
1861 	   we need a pad if "first_inst" is 4 byte aligned.
1862 	   [because the natural literal place is x + 2].  */
1863 	int first_inst = fragP->fr_fix + fragP->fr_address;
1864 	int needpad = !(first_inst & 3);
1865 
1866 	buffer[0] = INST_BYTE0 (MCORE_INST_JMPI);	/* Build jmpi.  */
1867 	buffer[1] = INST_BYTE1 (MCORE_INST_JMPI);
1868 
1869 	if (needpad)
1870 	  {
1871 	    if (! target_big_endian)
1872 	      buffer[0] = 1;	/* Jmpi offset of 1 since padded.  */
1873 	    else
1874 	      buffer[1] = 1;	/* Jmpi offset of 1 since padded.  */
1875 	    buffer[2] = 0;	/* Alignment.  */
1876 	    buffer[3] = 0;
1877 	    buffer[4] = 0;	/* Space for 32 bit address.  */
1878 	    buffer[5] = 0;
1879 	    buffer[6] = 0;
1880 	    buffer[7] = 0;
1881 
1882 	    /* Make reloc for the long disp.  */
1883 	    fix_new (fragP, fragP->fr_fix + 4, 4,
1884 		     fragP->fr_symbol, fragP->fr_offset, 0, BFD_RELOC_32);
1885 
1886 	    fragP->fr_fix += U32_LEN;
1887 	  }
1888 	else
1889 	  {
1890 	    if (! target_big_endian)
1891 	      buffer[0] = 0;	/* Jmpi offset of 0 if no pad.  */
1892 	    else
1893 	      buffer[1] = 0;	/* Jmpi offset of 0 if no pad.  */
1894 	    buffer[2] = 0;	/* Space for 32 bit address.  */
1895 	    buffer[3] = 0;
1896 	    buffer[4] = 0;
1897 	    buffer[5] = 0;
1898 
1899 	    /* Make reloc for the long disp.  */
1900 	    fix_new (fragP, fragP->fr_fix + 2, 4,
1901 		     fragP->fr_symbol, fragP->fr_offset, 0, BFD_RELOC_32);
1902 	    fragP->fr_fix += U32_LEN;
1903 	  }
1904       }
1905       break;
1906 
1907     default:
1908       abort ();
1909     }
1910 }
1911 
1912 /* Applies the desired value to the specified location.
1913    Also sets up addends for 'rela' type relocations.  */
1914 
1915 void
1916 md_apply_fix (fixS *   fixP,
1917 	       valueT * valP,
1918 	       segT     segment ATTRIBUTE_UNUSED)
1919 {
1920   char *       buf  = fixP->fx_where + fixP->fx_frag->fr_literal;
1921   char *       file = fixP->fx_file ? fixP->fx_file : _("unknown");
1922   const char * symname;
1923   /* Note: use offsetT because it is signed, valueT is unsigned.  */
1924   offsetT      val  = *valP;
1925 
1926   symname = fixP->fx_addsy ? S_GET_NAME (fixP->fx_addsy) : _("<unknown>");
1927   /* Save this for the addend in the relocation record.  */
1928   fixP->fx_addnumber = val;
1929 
1930   if (fixP->fx_addsy != NULL)
1931     {
1932 #ifdef OBJ_ELF
1933       /* For ELF we can just return and let the reloc that will be generated
1934 	 take care of everything.  For COFF we still have to insert 'val'
1935 	 into the insn since the addend field will be ignored.  */
1936       return;
1937 #endif
1938     }
1939   else
1940     fixP->fx_done = 1;
1941 
1942   switch (fixP->fx_r_type)
1943     {
1944       /* Second byte of 2 byte opcode.  */
1945     case BFD_RELOC_MCORE_PCREL_IMM11BY2:
1946       if ((val & 1) != 0)
1947 	as_bad_where (file, fixP->fx_line,
1948 		      _("odd distance branch (0x%lx bytes)"), (long) val);
1949       val /= 2;
1950       if (((val & ~0x3ff) != 0) && ((val | 0x3ff) != -1))
1951 	as_bad_where (file, fixP->fx_line,
1952 		      _("pcrel for branch to %s too far (0x%lx)"),
1953 		      symname, (long) val);
1954       if (target_big_endian)
1955 	{
1956 	  buf[0] |= ((val >> 8) & 0x7);
1957 	  buf[1] |= (val & 0xff);
1958 	}
1959       else
1960 	{
1961 	  buf[1] |= ((val >> 8) & 0x7);
1962 	  buf[0] |= (val & 0xff);
1963 	}
1964       break;
1965 
1966       /* Lower 8 bits of 2 byte opcode.  */
1967     case BFD_RELOC_MCORE_PCREL_IMM8BY4:
1968       val += 3;
1969       val /= 4;
1970       if (val & ~0xff)
1971 	as_bad_where (file, fixP->fx_line,
1972 		      _("pcrel for lrw/jmpi/jsri to %s too far (0x%lx)"),
1973 		      symname, (long) val);
1974       else if (! target_big_endian)
1975 	buf[0] |= (val & 0xff);
1976       else
1977 	buf[1] |= (val & 0xff);
1978       break;
1979 
1980       /* Loopt instruction.  */
1981     case BFD_RELOC_MCORE_PCREL_IMM4BY2:
1982       if ((val < -32) || (val > -2))
1983 	as_bad_where (file, fixP->fx_line,
1984 		      _("pcrel for loopt too far (0x%lx)"), (long) val);
1985       val /= 2;
1986       if (! target_big_endian)
1987 	buf[0] |= (val & 0xf);
1988       else
1989 	buf[1] |= (val & 0xf);
1990       break;
1991 
1992     case BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2:
1993       /* Conditional linker map jsri to bsr.  */
1994       /* If its a local target and close enough, fix it.
1995 	 NB: >= -2k for backwards bsr; < 2k for forwards...  */
1996       if (fixP->fx_addsy == 0 && val >= -2048  && val < 2048)
1997 	{
1998 	  long nval = (val / 2) & 0x7ff;
1999 	  nval |= MCORE_INST_BSR;
2000 
2001 	  /* REPLACE the instruction, don't just modify it.  */
2002 	  buf[0] = INST_BYTE0 (nval);
2003 	  buf[1] = INST_BYTE1 (nval);
2004 	}
2005       else
2006 	fixP->fx_done = 0;
2007       break;
2008 
2009     case BFD_RELOC_MCORE_PCREL_32:
2010     case BFD_RELOC_VTABLE_INHERIT:
2011     case BFD_RELOC_VTABLE_ENTRY:
2012       fixP->fx_done = 0;
2013       break;
2014 
2015     default:
2016       if (fixP->fx_addsy != NULL)
2017 	{
2018 	  /* If the fix is an absolute reloc based on a symbol's
2019 	     address, then it cannot be resolved until the final link.  */
2020 	  fixP->fx_done = 0;
2021 	}
2022 #ifdef OBJ_ELF
2023       else
2024 #endif
2025 	{
2026 	  if (fixP->fx_size == 4)
2027 	    ;
2028 	  else if (fixP->fx_size == 2 && val >= -32768 && val <= 32767)
2029 	    ;
2030 	  else if (fixP->fx_size == 1 && val >= -256 && val <= 255)
2031 	    ;
2032 	  else
2033 	    abort ();
2034 	  md_number_to_chars (buf, val, fixP->fx_size);
2035 	}
2036       break;
2037     }
2038 }
2039 
2040 void
2041 md_operand (expressionS * expressionP)
2042 {
2043   /* Ignore leading hash symbol, if poresent.  */
2044   if (* input_line_pointer == '#')
2045     {
2046       input_line_pointer ++;
2047       expression (expressionP);
2048     }
2049 }
2050 
2051 int md_long_jump_size;
2052 
2053 /* Called just before address relaxation, return the length
2054    by which a fragment must grow to reach it's destination.  */
2055 int
2056 md_estimate_size_before_relax (fragS * fragP, segT segment_type)
2057 {
2058   switch (fragP->fr_subtype)
2059     {
2060     default:
2061       abort ();
2062 
2063     case C (UNCD_JUMP, UNDEF_DISP):
2064       /* Used to be a branch to somewhere which was unknown.  */
2065       if (!fragP->fr_symbol)
2066 	fragP->fr_subtype = C (UNCD_JUMP, DISP12);
2067       else if (S_GET_SEGMENT (fragP->fr_symbol) == segment_type)
2068 	fragP->fr_subtype = C (UNCD_JUMP, DISP12);
2069       else
2070 	fragP->fr_subtype = C (UNCD_JUMP, UNDEF_WORD_DISP);
2071       break;
2072 
2073     case C (COND_JUMP, UNDEF_DISP):
2074       /* Used to be a branch to somewhere which was unknown.  */
2075       if (fragP->fr_symbol
2076 	  && S_GET_SEGMENT (fragP->fr_symbol) == segment_type)
2077 	/* Got a symbol and it's defined in this segment, become byte
2078 	   sized - maybe it will fix up */
2079 	fragP->fr_subtype = C (COND_JUMP, DISP12);
2080       else if (fragP->fr_symbol)
2081 	/* Its got a segment, but its not ours, so it will always be long.  */
2082 	fragP->fr_subtype = C (COND_JUMP, UNDEF_WORD_DISP);
2083       else
2084 	/* We know the abs value.  */
2085 	fragP->fr_subtype = C (COND_JUMP, DISP12);
2086       break;
2087 
2088     case C (UNCD_JUMP, DISP12):
2089     case C (UNCD_JUMP, DISP32):
2090     case C (UNCD_JUMP, UNDEF_WORD_DISP):
2091     case C (COND_JUMP, DISP12):
2092     case C (COND_JUMP, DISP32):
2093     case C (COND_JUMP, UNDEF_WORD_DISP):
2094       /* When relaxing a section for the second time, we don't need to
2095 	 do anything besides return the current size.  */
2096       break;
2097     }
2098 
2099   return md_relax_table[fragP->fr_subtype].rlx_length;
2100 }
2101 
2102 /* Put number into target byte order.  */
2103 
2104 void
2105 md_number_to_chars (char * ptr, valueT use, int nbytes)
2106 {
2107   if (target_big_endian)
2108     number_to_chars_bigendian (ptr, use, nbytes);
2109   else
2110     number_to_chars_littleendian (ptr, use, nbytes);
2111 }
2112 
2113 /* Round up a section size to the appropriate boundary.  */
2114 
2115 valueT
2116 md_section_align (segT segment ATTRIBUTE_UNUSED,
2117 		  valueT size)
2118 {
2119   /* Byte alignment is fine.  */
2120   return size;
2121 }
2122 
2123 /* The location from which a PC relative jump should be calculated,
2124    given a PC relative reloc.  */
2125 
2126 long
2127 md_pcrel_from_section (fixS * fixp, segT sec ATTRIBUTE_UNUSED)
2128 {
2129 #ifdef OBJ_ELF
2130   /* If the symbol is undefined or defined in another section
2131      we leave the add number alone for the linker to fix it later.
2132      Only account for the PC pre-bump (which is 2 bytes on the MCore).  */
2133   if (fixp->fx_addsy != (symbolS *) NULL
2134       && (! S_IS_DEFINED (fixp->fx_addsy)
2135 	  || (S_GET_SEGMENT (fixp->fx_addsy) != sec)))
2136 
2137   {
2138     assert (fixp->fx_size == 2);	/* must be an insn */
2139     return fixp->fx_size;
2140   }
2141 #endif
2142 
2143   /* The case where we are going to resolve things...  */
2144   return  fixp->fx_size + fixp->fx_where + fixp->fx_frag->fr_address;
2145 }
2146 
2147 #define F(SZ,PCREL)		(((SZ) << 1) + (PCREL))
2148 #define MAP(SZ,PCREL,TYPE)	case F (SZ, PCREL): code = (TYPE); break
2149 
2150 arelent *
2151 tc_gen_reloc (asection * section ATTRIBUTE_UNUSED, fixS * fixp)
2152 {
2153   arelent * rel;
2154   bfd_reloc_code_real_type code;
2155 
2156   switch (fixp->fx_r_type)
2157     {
2158       /* These confuse the size/pcrel macro approach.  */
2159     case BFD_RELOC_VTABLE_INHERIT:
2160     case BFD_RELOC_VTABLE_ENTRY:
2161     case BFD_RELOC_MCORE_PCREL_IMM4BY2:
2162     case BFD_RELOC_MCORE_PCREL_IMM8BY4:
2163     case BFD_RELOC_MCORE_PCREL_IMM11BY2:
2164     case BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2:
2165     case BFD_RELOC_RVA:
2166       code = fixp->fx_r_type;
2167       break;
2168 
2169     default:
2170       switch (F (fixp->fx_size, fixp->fx_pcrel))
2171 	{
2172 	  MAP (1, 0, BFD_RELOC_8);
2173 	  MAP (2, 0, BFD_RELOC_16);
2174 	  MAP (4, 0, BFD_RELOC_32);
2175 	  MAP (1, 1, BFD_RELOC_8_PCREL);
2176 	  MAP (2, 1, BFD_RELOC_16_PCREL);
2177 	  MAP (4, 1, BFD_RELOC_32_PCREL);
2178 	default:
2179 	  code = fixp->fx_r_type;
2180 	  as_bad (_("Can not do %d byte %srelocation"),
2181 		  fixp->fx_size,
2182 		  fixp->fx_pcrel ? _("pc-relative") : "");
2183 	}
2184       break;
2185   }
2186 
2187   rel = xmalloc (sizeof (arelent));
2188   rel->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
2189   *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
2190   rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
2191   /* Always pass the addend along!  */
2192   rel->addend = fixp->fx_addnumber;
2193 
2194   rel->howto = bfd_reloc_type_lookup (stdoutput, code);
2195 
2196   if (rel->howto == NULL)
2197     {
2198       as_bad_where (fixp->fx_file, fixp->fx_line,
2199 		    _("Cannot represent relocation type %s"),
2200 		    bfd_get_reloc_code_name (code));
2201 
2202       /* Set howto to a garbage value so that we can keep going.  */
2203       rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
2204       assert (rel->howto != NULL);
2205     }
2206 
2207   return rel;
2208 }
2209 
2210 #ifdef OBJ_ELF
2211 /* See whether we need to force a relocation into the output file.
2212    This is used to force out switch and PC relative relocations when
2213    relaxing.  */
2214 int
2215 mcore_force_relocation (fixS * fix)
2216 {
2217   if (fix->fx_r_type == BFD_RELOC_RVA)
2218     return 1;
2219 
2220   return generic_force_reloc (fix);
2221 }
2222 
2223 /* Return true if the fix can be handled by GAS, false if it must
2224    be passed through to the linker.  */
2225 
2226 bfd_boolean
2227 mcore_fix_adjustable (fixS * fixP)
2228 {
2229   /* We need the symbol name for the VTABLE entries.  */
2230   if (   fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2231       || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2232     return 0;
2233 
2234   return 1;
2235 }
2236 #endif /* OBJ_ELF */
2237