1 /* tc-crx.c -- Assembler code for the CRX CPU core. 2 Copyright 2004, 2007, 2008 Free Software Foundation, Inc. 3 4 Contributed by Tomer Levi, NSC, Israel. 5 Originally written for GAS 2.12 by Tomer Levi, NSC, Israel. 6 Updates, BFDizing, GNUifying and ELF support by Tomer Levi. 7 8 This file is part of GAS, the GNU Assembler. 9 10 GAS is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation; either version 3, or (at your option) 13 any later version. 14 15 GAS is distributed in the hope that it will be useful, 16 but WITHOUT ANY WARRANTY; without even the implied warranty of 17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 GNU General Public License for more details. 19 20 You should have received a copy of the GNU General Public License 21 along with GAS; see the file COPYING. If not, write to the 22 Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston, 23 MA 02110-1301, USA. */ 24 25 #include "as.h" 26 #include "safe-ctype.h" 27 #include "dwarf2dbg.h" 28 #include "opcode/crx.h" 29 #include "elf/crx.h" 30 31 /* Word is considered here as a 16-bit unsigned short int. */ 32 #define WORD_SHIFT 16 33 34 /* Register is 4-bit size. */ 35 #define REG_SIZE 4 36 37 /* Maximum size of a single instruction (in words). */ 38 #define INSN_MAX_SIZE 3 39 40 /* Maximum bits which may be set in a `mask16' operand. */ 41 #define MAX_REGS_IN_MASK16 8 42 43 /* Utility macros for string comparison. */ 44 #define streq(a, b) (strcmp (a, b) == 0) 45 #define strneq(a, b, c) (strncmp (a, b, c) == 0) 46 47 /* Assign a number NUM, shifted by SHIFT bytes, into a location 48 pointed by index BYTE of array 'output_opcode'. */ 49 #define CRX_PRINT(BYTE, NUM, SHIFT) output_opcode[BYTE] |= (NUM << SHIFT) 50 51 /* Operand errors. */ 52 typedef enum 53 { 54 OP_LEGAL = 0, /* Legal operand. */ 55 OP_OUT_OF_RANGE, /* Operand not within permitted range. */ 56 OP_NOT_EVEN, /* Operand is Odd number, should be even. */ 57 OP_ILLEGAL_DISPU4, /* Operand is not within DISPU4 range. */ 58 OP_ILLEGAL_CST4, /* Operand is not within CST4 range. */ 59 OP_NOT_UPPER_64KB /* Operand is not within the upper 64KB 60 (0xFFFF0000-0xFFFFFFFF). */ 61 } 62 op_err; 63 64 /* Opcode mnemonics hash table. */ 65 static struct hash_control *crx_inst_hash; 66 /* CRX registers hash table. */ 67 static struct hash_control *reg_hash; 68 /* CRX coprocessor registers hash table. */ 69 static struct hash_control *copreg_hash; 70 /* Current instruction we're assembling. */ 71 const inst *instruction; 72 73 /* Global variables. */ 74 75 /* Array to hold an instruction encoding. */ 76 long output_opcode[2]; 77 78 /* Nonzero means a relocatable symbol. */ 79 int relocatable; 80 81 /* A copy of the original instruction (used in error messages). */ 82 char ins_parse[MAX_INST_LEN]; 83 84 /* The current processed argument number. */ 85 int cur_arg_num; 86 87 /* Generic assembler global variables which must be defined by all targets. */ 88 89 /* Characters which always start a comment. */ 90 const char comment_chars[] = "#"; 91 92 /* Characters which start a comment at the beginning of a line. */ 93 const char line_comment_chars[] = "#"; 94 95 /* This array holds machine specific line separator characters. */ 96 const char line_separator_chars[] = ";"; 97 98 /* Chars that can be used to separate mant from exp in floating point nums. */ 99 const char EXP_CHARS[] = "eE"; 100 101 /* Chars that mean this number is a floating point constant as in 0f12.456 */ 102 const char FLT_CHARS[] = "f'"; 103 104 /* Target-specific multicharacter options, not const-declared at usage. */ 105 const char *md_shortopts = ""; 106 struct option md_longopts[] = 107 { 108 {NULL, no_argument, NULL, 0} 109 }; 110 size_t md_longopts_size = sizeof (md_longopts); 111 112 /* This table describes all the machine specific pseudo-ops 113 the assembler has to support. The fields are: 114 *** Pseudo-op name without dot. 115 *** Function to call to execute this pseudo-op. 116 *** Integer arg to pass to the function. */ 117 118 const pseudo_typeS md_pseudo_table[] = 119 { 120 /* In CRX machine, align is in bytes (not a ptwo boundary). */ 121 {"align", s_align_bytes, 0}, 122 {0, 0, 0} 123 }; 124 125 /* CRX relaxation table. */ 126 const relax_typeS md_relax_table[] = 127 { 128 /* bCC */ 129 {0xfa, -0x100, 2, 1}, /* 8 */ 130 {0xfffe, -0x10000, 4, 2}, /* 16 */ 131 {0xfffffffe, -0xfffffffe, 6, 0}, /* 32 */ 132 133 /* bal */ 134 {0xfffe, -0x10000, 4, 4}, /* 16 */ 135 {0xfffffffe, -0xfffffffe, 6, 0}, /* 32 */ 136 137 /* cmpbr/bcop */ 138 {0xfe, -0x100, 4, 6}, /* 8 */ 139 {0xfffffe, -0x1000000, 6, 0} /* 24 */ 140 }; 141 142 static void reset_vars (char *); 143 static reg get_register (char *); 144 static copreg get_copregister (char *); 145 static argtype get_optype (operand_type); 146 static int get_opbits (operand_type); 147 static int get_opflags (operand_type); 148 static int get_number_of_operands (void); 149 static void parse_operand (char *, ins *); 150 static int gettrap (char *); 151 static void handle_LoadStor (char *); 152 static int get_cinv_parameters (char *); 153 static long getconstant (long, int); 154 static op_err check_range (long *, int, unsigned int, int); 155 static int getreg_image (reg); 156 static void parse_operands (ins *, char *); 157 static void parse_insn (ins *, char *); 158 static void print_operand (int, int, argument *); 159 static void print_constant (int, int, argument *); 160 static int exponent2scale (int); 161 static void mask_reg (int, unsigned short *); 162 static void process_label_constant (char *, ins *); 163 static void set_operand (char *, ins *); 164 static char * preprocess_reglist (char *, int *); 165 static int assemble_insn (char *, ins *); 166 static void print_insn (ins *); 167 static void warn_if_needed (ins *); 168 static int adjust_if_needed (ins *); 169 170 /* Return the bit size for a given operand. */ 171 172 static int 173 get_opbits (operand_type op) 174 { 175 if (op < MAX_OPRD) 176 return crx_optab[op].bit_size; 177 else 178 return 0; 179 } 180 181 /* Return the argument type of a given operand. */ 182 183 static argtype 184 get_optype (operand_type op) 185 { 186 if (op < MAX_OPRD) 187 return crx_optab[op].arg_type; 188 else 189 return nullargs; 190 } 191 192 /* Return the flags of a given operand. */ 193 194 static int 195 get_opflags (operand_type op) 196 { 197 if (op < MAX_OPRD) 198 return crx_optab[op].flags; 199 else 200 return 0; 201 } 202 203 /* Get the core processor register 'reg_name'. */ 204 205 static reg 206 get_register (char *reg_name) 207 { 208 const reg_entry *reg; 209 210 reg = (const reg_entry *) hash_find (reg_hash, reg_name); 211 212 if (reg != NULL) 213 return reg->value.reg_val; 214 else 215 return nullregister; 216 } 217 218 /* Get the coprocessor register 'copreg_name'. */ 219 220 static copreg 221 get_copregister (char *copreg_name) 222 { 223 const reg_entry *copreg; 224 225 copreg = (const reg_entry *) hash_find (copreg_hash, copreg_name); 226 227 if (copreg != NULL) 228 return copreg->value.copreg_val; 229 else 230 return nullcopregister; 231 } 232 233 /* Round up a section size to the appropriate boundary. */ 234 235 valueT 236 md_section_align (segT seg, valueT val) 237 { 238 /* Round .text section to a multiple of 2. */ 239 if (seg == text_section) 240 return (val + 1) & ~1; 241 return val; 242 } 243 244 /* Parse an operand that is machine-specific (remove '*'). */ 245 246 void 247 md_operand (expressionS * exp) 248 { 249 char c = *input_line_pointer; 250 251 switch (c) 252 { 253 case '*': 254 input_line_pointer++; 255 expression (exp); 256 break; 257 default: 258 break; 259 } 260 } 261 262 /* Reset global variables before parsing a new instruction. */ 263 264 static void 265 reset_vars (char *op) 266 { 267 cur_arg_num = relocatable = 0; 268 memset (& output_opcode, '\0', sizeof (output_opcode)); 269 270 /* Save a copy of the original OP (used in error messages). */ 271 strncpy (ins_parse, op, sizeof ins_parse - 1); 272 ins_parse [sizeof ins_parse - 1] = 0; 273 } 274 275 /* This macro decides whether a particular reloc is an entry in a 276 switch table. It is used when relaxing, because the linker needs 277 to know about all such entries so that it can adjust them if 278 necessary. */ 279 280 #define SWITCH_TABLE(fix) \ 281 ( (fix)->fx_addsy != NULL \ 282 && (fix)->fx_subsy != NULL \ 283 && S_GET_SEGMENT ((fix)->fx_addsy) == \ 284 S_GET_SEGMENT ((fix)->fx_subsy) \ 285 && S_GET_SEGMENT (fix->fx_addsy) != undefined_section \ 286 && ( (fix)->fx_r_type == BFD_RELOC_CRX_NUM8 \ 287 || (fix)->fx_r_type == BFD_RELOC_CRX_NUM16 \ 288 || (fix)->fx_r_type == BFD_RELOC_CRX_NUM32)) 289 290 /* See whether we need to force a relocation into the output file. 291 This is used to force out switch and PC relative relocations when 292 relaxing. */ 293 294 int 295 crx_force_relocation (fixS *fix) 296 { 297 if (generic_force_reloc (fix) || SWITCH_TABLE (fix)) 298 return 1; 299 300 return 0; 301 } 302 303 /* Generate a relocation entry for a fixup. */ 304 305 arelent * 306 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS * fixP) 307 { 308 arelent * reloc; 309 310 reloc = xmalloc (sizeof (arelent)); 311 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *)); 312 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixP->fx_addsy); 313 reloc->address = fixP->fx_frag->fr_address + fixP->fx_where; 314 reloc->addend = fixP->fx_offset; 315 316 if (fixP->fx_subsy != NULL) 317 { 318 if (SWITCH_TABLE (fixP)) 319 { 320 /* Keep the current difference in the addend. */ 321 reloc->addend = (S_GET_VALUE (fixP->fx_addsy) 322 - S_GET_VALUE (fixP->fx_subsy) + fixP->fx_offset); 323 324 switch (fixP->fx_r_type) 325 { 326 case BFD_RELOC_CRX_NUM8: 327 fixP->fx_r_type = BFD_RELOC_CRX_SWITCH8; 328 break; 329 case BFD_RELOC_CRX_NUM16: 330 fixP->fx_r_type = BFD_RELOC_CRX_SWITCH16; 331 break; 332 case BFD_RELOC_CRX_NUM32: 333 fixP->fx_r_type = BFD_RELOC_CRX_SWITCH32; 334 break; 335 default: 336 abort (); 337 break; 338 } 339 } 340 else 341 { 342 /* We only resolve difference expressions in the same section. */ 343 as_bad_where (fixP->fx_file, fixP->fx_line, 344 _("can't resolve `%s' {%s section} - `%s' {%s section}"), 345 fixP->fx_addsy ? S_GET_NAME (fixP->fx_addsy) : "0", 346 segment_name (fixP->fx_addsy 347 ? S_GET_SEGMENT (fixP->fx_addsy) 348 : absolute_section), 349 S_GET_NAME (fixP->fx_subsy), 350 segment_name (S_GET_SEGMENT (fixP->fx_addsy))); 351 } 352 } 353 354 assert ((int) fixP->fx_r_type > 0); 355 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type); 356 357 if (reloc->howto == (reloc_howto_type *) NULL) 358 { 359 as_bad_where (fixP->fx_file, fixP->fx_line, 360 _("internal error: reloc %d (`%s') not supported by object file format"), 361 fixP->fx_r_type, 362 bfd_get_reloc_code_name (fixP->fx_r_type)); 363 return NULL; 364 } 365 assert (!fixP->fx_pcrel == !reloc->howto->pc_relative); 366 367 return reloc; 368 } 369 370 /* Prepare machine-dependent frags for relaxation. */ 371 372 int 373 md_estimate_size_before_relax (fragS *fragp, asection *seg) 374 { 375 /* If symbol is undefined or located in a different section, 376 select the largest supported relocation. */ 377 relax_substateT subtype; 378 relax_substateT rlx_state[] = {0, 2, 379 3, 4, 380 5, 6}; 381 382 for (subtype = 0; subtype < ARRAY_SIZE (rlx_state); subtype += 2) 383 { 384 if (fragp->fr_subtype == rlx_state[subtype] 385 && (!S_IS_DEFINED (fragp->fr_symbol) 386 || seg != S_GET_SEGMENT (fragp->fr_symbol))) 387 { 388 fragp->fr_subtype = rlx_state[subtype + 1]; 389 break; 390 } 391 } 392 393 if (fragp->fr_subtype >= ARRAY_SIZE (md_relax_table)) 394 abort (); 395 396 return md_relax_table[fragp->fr_subtype].rlx_length; 397 } 398 399 void 400 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, fragS *fragP) 401 { 402 /* 'opcode' points to the start of the instruction, whether 403 we need to change the instruction's fixed encoding. */ 404 char *opcode = fragP->fr_literal + fragP->fr_fix; 405 bfd_reloc_code_real_type reloc; 406 407 subseg_change (sec, 0); 408 409 switch (fragP->fr_subtype) 410 { 411 case 0: 412 reloc = BFD_RELOC_CRX_REL8; 413 break; 414 case 1: 415 *opcode = 0x7e; 416 reloc = BFD_RELOC_CRX_REL16; 417 break; 418 case 2: 419 *opcode = 0x7f; 420 reloc = BFD_RELOC_CRX_REL32; 421 break; 422 case 3: 423 reloc = BFD_RELOC_CRX_REL16; 424 break; 425 case 4: 426 *++opcode = 0x31; 427 reloc = BFD_RELOC_CRX_REL32; 428 break; 429 case 5: 430 reloc = BFD_RELOC_CRX_REL8_CMP; 431 break; 432 case 6: 433 *++opcode = 0x31; 434 reloc = BFD_RELOC_CRX_REL24; 435 break; 436 default: 437 abort (); 438 break; 439 } 440 441 fix_new (fragP, fragP->fr_fix, 442 bfd_get_reloc_size (bfd_reloc_type_lookup (stdoutput, reloc)), 443 fragP->fr_symbol, fragP->fr_offset, 1, reloc); 444 fragP->fr_var = 0; 445 fragP->fr_fix += md_relax_table[fragP->fr_subtype].rlx_length; 446 } 447 448 /* Process machine-dependent command line options. Called once for 449 each option on the command line that the machine-independent part of 450 GAS does not understand. */ 451 452 int 453 md_parse_option (int c ATTRIBUTE_UNUSED, char *arg ATTRIBUTE_UNUSED) 454 { 455 return 0; 456 } 457 458 /* Machine-dependent usage-output. */ 459 460 void 461 md_show_usage (FILE *stream ATTRIBUTE_UNUSED) 462 { 463 return; 464 } 465 466 char * 467 md_atof (int type, char *litP, int *sizeP) 468 { 469 return ieee_md_atof (type, litP, sizeP, target_big_endian); 470 } 471 472 /* Apply a fixS (fixup of an instruction or data that we didn't have 473 enough info to complete immediately) to the data in a frag. 474 Since linkrelax is nonzero and TC_LINKRELAX_FIXUP is defined to disable 475 relaxation of debug sections, this function is called only when 476 fixuping relocations of debug sections. */ 477 478 void 479 md_apply_fix (fixS *fixP, valueT *valP, segT seg) 480 { 481 valueT val = * valP; 482 char *buf = fixP->fx_frag->fr_literal + fixP->fx_where; 483 fixP->fx_offset = 0; 484 485 switch (fixP->fx_r_type) 486 { 487 case BFD_RELOC_CRX_NUM8: 488 bfd_put_8 (stdoutput, (unsigned char) val, buf); 489 break; 490 case BFD_RELOC_CRX_NUM16: 491 bfd_put_16 (stdoutput, val, buf); 492 break; 493 case BFD_RELOC_CRX_NUM32: 494 bfd_put_32 (stdoutput, val, buf); 495 break; 496 default: 497 /* We shouldn't ever get here because linkrelax is nonzero. */ 498 abort (); 499 break; 500 } 501 502 fixP->fx_done = 0; 503 504 if (fixP->fx_addsy == NULL 505 && fixP->fx_pcrel == 0) 506 fixP->fx_done = 1; 507 508 if (fixP->fx_pcrel == 1 509 && fixP->fx_addsy != NULL 510 && S_GET_SEGMENT (fixP->fx_addsy) == seg) 511 fixP->fx_done = 1; 512 } 513 514 /* The location from which a PC relative jump should be calculated, 515 given a PC relative reloc. */ 516 517 long 518 md_pcrel_from (fixS *fixp) 519 { 520 return fixp->fx_frag->fr_address + fixp->fx_where; 521 } 522 523 /* This function is called once, at assembler startup time. This should 524 set up all the tables, etc that the MD part of the assembler needs. */ 525 526 void 527 md_begin (void) 528 { 529 const char *hashret = NULL; 530 int i = 0; 531 532 /* Set up a hash table for the instructions. */ 533 if ((crx_inst_hash = hash_new ()) == NULL) 534 as_fatal (_("Virtual memory exhausted")); 535 536 while (crx_instruction[i].mnemonic != NULL) 537 { 538 const char *mnemonic = crx_instruction[i].mnemonic; 539 540 hashret = hash_insert (crx_inst_hash, mnemonic, 541 (void *) &crx_instruction[i]); 542 543 if (hashret != NULL && *hashret != '\0') 544 as_fatal (_("Can't hash `%s': %s\n"), crx_instruction[i].mnemonic, 545 *hashret == 0 ? _("(unknown reason)") : hashret); 546 547 /* Insert unique names into hash table. The CRX instruction set 548 has many identical opcode names that have different opcodes based 549 on the operands. This hash table then provides a quick index to 550 the first opcode with a particular name in the opcode table. */ 551 do 552 { 553 ++i; 554 } 555 while (crx_instruction[i].mnemonic != NULL 556 && streq (crx_instruction[i].mnemonic, mnemonic)); 557 } 558 559 /* Initialize reg_hash hash table. */ 560 if ((reg_hash = hash_new ()) == NULL) 561 as_fatal (_("Virtual memory exhausted")); 562 563 { 564 const reg_entry *regtab; 565 566 for (regtab = crx_regtab; 567 regtab < (crx_regtab + NUMREGS); regtab++) 568 { 569 hashret = hash_insert (reg_hash, regtab->name, (void *) regtab); 570 if (hashret) 571 as_fatal (_("Internal Error: Can't hash %s: %s"), 572 regtab->name, 573 hashret); 574 } 575 } 576 577 /* Initialize copreg_hash hash table. */ 578 if ((copreg_hash = hash_new ()) == NULL) 579 as_fatal (_("Virtual memory exhausted")); 580 581 { 582 const reg_entry *copregtab; 583 584 for (copregtab = crx_copregtab; copregtab < (crx_copregtab + NUMCOPREGS); 585 copregtab++) 586 { 587 hashret = hash_insert (copreg_hash, copregtab->name, 588 (void *) copregtab); 589 if (hashret) 590 as_fatal (_("Internal Error: Can't hash %s: %s"), 591 copregtab->name, 592 hashret); 593 } 594 } 595 /* Set linkrelax here to avoid fixups in most sections. */ 596 linkrelax = 1; 597 } 598 599 /* Process constants (immediate/absolute) 600 and labels (jump targets/Memory locations). */ 601 602 static void 603 process_label_constant (char *str, ins * crx_ins) 604 { 605 char *saved_input_line_pointer; 606 argument *cur_arg = &crx_ins->arg[cur_arg_num]; /* Current argument. */ 607 608 saved_input_line_pointer = input_line_pointer; 609 input_line_pointer = str; 610 611 expression (&crx_ins->exp); 612 613 switch (crx_ins->exp.X_op) 614 { 615 case O_big: 616 case O_absent: 617 /* Missing or bad expr becomes absolute 0. */ 618 as_bad (_("missing or invalid displacement expression `%s' taken as 0"), 619 str); 620 crx_ins->exp.X_op = O_constant; 621 crx_ins->exp.X_add_number = 0; 622 crx_ins->exp.X_add_symbol = (symbolS *) 0; 623 crx_ins->exp.X_op_symbol = (symbolS *) 0; 624 /* Fall through. */ 625 626 case O_constant: 627 cur_arg->X_op = O_constant; 628 cur_arg->constant = crx_ins->exp.X_add_number; 629 break; 630 631 case O_symbol: 632 case O_subtract: 633 case O_add: 634 cur_arg->X_op = O_symbol; 635 crx_ins->rtype = BFD_RELOC_NONE; 636 relocatable = 1; 637 638 switch (cur_arg->type) 639 { 640 case arg_cr: 641 if (IS_INSN_TYPE (LD_STOR_INS_INC)) 642 crx_ins->rtype = BFD_RELOC_CRX_REGREL12; 643 else if (IS_INSN_TYPE (CSTBIT_INS) 644 || IS_INSN_TYPE (STOR_IMM_INS)) 645 crx_ins->rtype = BFD_RELOC_CRX_REGREL28; 646 else 647 crx_ins->rtype = BFD_RELOC_CRX_REGREL32; 648 break; 649 650 case arg_idxr: 651 crx_ins->rtype = BFD_RELOC_CRX_REGREL22; 652 break; 653 654 case arg_c: 655 if (IS_INSN_MNEMONIC ("bal") || IS_INSN_TYPE (DCR_BRANCH_INS)) 656 crx_ins->rtype = BFD_RELOC_CRX_REL16; 657 else if (IS_INSN_TYPE (BRANCH_INS)) 658 crx_ins->rtype = BFD_RELOC_CRX_REL8; 659 else if (IS_INSN_TYPE (LD_STOR_INS) || IS_INSN_TYPE (STOR_IMM_INS) 660 || IS_INSN_TYPE (CSTBIT_INS)) 661 crx_ins->rtype = BFD_RELOC_CRX_ABS32; 662 else if (IS_INSN_TYPE (BRANCH_NEQ_INS)) 663 crx_ins->rtype = BFD_RELOC_CRX_REL4; 664 else if (IS_INSN_TYPE (CMPBR_INS) || IS_INSN_TYPE (COP_BRANCH_INS)) 665 crx_ins->rtype = BFD_RELOC_CRX_REL8_CMP; 666 break; 667 668 case arg_ic: 669 if (IS_INSN_TYPE (ARITH_INS)) 670 crx_ins->rtype = BFD_RELOC_CRX_IMM32; 671 else if (IS_INSN_TYPE (ARITH_BYTE_INS)) 672 crx_ins->rtype = BFD_RELOC_CRX_IMM16; 673 break; 674 default: 675 break; 676 } 677 break; 678 679 default: 680 cur_arg->X_op = crx_ins->exp.X_op; 681 break; 682 } 683 684 input_line_pointer = saved_input_line_pointer; 685 return; 686 } 687 688 /* Get the values of the scale to be encoded - 689 used for the scaled index mode of addressing. */ 690 691 static int 692 exponent2scale (int val) 693 { 694 int exponent; 695 696 /* If 'val' is 0, the following 'for' will be an endless loop. */ 697 if (val == 0) 698 return 0; 699 700 for (exponent = 0; (val != 1); val >>= 1, exponent++) 701 ; 702 703 return exponent; 704 } 705 706 /* Parsing different types of operands 707 -> constants Immediate/Absolute/Relative numbers 708 -> Labels Relocatable symbols 709 -> (rbase) Register base 710 -> disp(rbase) Register relative 711 -> disp(rbase)+ Post-increment mode 712 -> disp(rbase,ridx,scl) Register index mode */ 713 714 static void 715 set_operand (char *operand, ins * crx_ins) 716 { 717 char *operandS; /* Pointer to start of sub-opearand. */ 718 char *operandE; /* Pointer to end of sub-opearand. */ 719 expressionS scale; 720 int scale_val; 721 char *input_save, c; 722 argument *cur_arg = &crx_ins->arg[cur_arg_num]; /* Current argument. */ 723 724 /* Initialize pointers. */ 725 operandS = operandE = operand; 726 727 switch (cur_arg->type) 728 { 729 case arg_sc: /* Case *+0x18. */ 730 case arg_ic: /* Case $0x18. */ 731 operandS++; 732 case arg_c: /* Case 0x18. */ 733 /* Set constant. */ 734 process_label_constant (operandS, crx_ins); 735 736 if (cur_arg->type != arg_ic) 737 cur_arg->type = arg_c; 738 break; 739 740 case arg_icr: /* Case $0x18(r1). */ 741 operandS++; 742 case arg_cr: /* Case 0x18(r1). */ 743 /* Set displacement constant. */ 744 while (*operandE != '(') 745 operandE++; 746 *operandE = '\0'; 747 process_label_constant (operandS, crx_ins); 748 operandS = operandE; 749 case arg_rbase: /* Case (r1). */ 750 operandS++; 751 /* Set register base. */ 752 while (*operandE != ')') 753 operandE++; 754 *operandE = '\0'; 755 if ((cur_arg->r = get_register (operandS)) == nullregister) 756 as_bad (_("Illegal register `%s' in Instruction `%s'"), 757 operandS, ins_parse); 758 759 if (cur_arg->type != arg_rbase) 760 cur_arg->type = arg_cr; 761 break; 762 763 case arg_idxr: 764 /* Set displacement constant. */ 765 while (*operandE != '(') 766 operandE++; 767 *operandE = '\0'; 768 process_label_constant (operandS, crx_ins); 769 operandS = ++operandE; 770 771 /* Set register base. */ 772 while ((*operandE != ',') && (! ISSPACE (*operandE))) 773 operandE++; 774 *operandE++ = '\0'; 775 if ((cur_arg->r = get_register (operandS)) == nullregister) 776 as_bad (_("Illegal register `%s' in Instruction `%s'"), 777 operandS, ins_parse); 778 779 /* Skip leading white space. */ 780 while (ISSPACE (*operandE)) 781 operandE++; 782 operandS = operandE; 783 784 /* Set register index. */ 785 while ((*operandE != ')') && (*operandE != ',')) 786 operandE++; 787 c = *operandE; 788 *operandE++ = '\0'; 789 790 if ((cur_arg->i_r = get_register (operandS)) == nullregister) 791 as_bad (_("Illegal register `%s' in Instruction `%s'"), 792 operandS, ins_parse); 793 794 /* Skip leading white space. */ 795 while (ISSPACE (*operandE)) 796 operandE++; 797 operandS = operandE; 798 799 /* Set the scale. */ 800 if (c == ')') 801 cur_arg->scale = 0; 802 else 803 { 804 while (*operandE != ')') 805 operandE++; 806 *operandE = '\0'; 807 808 /* Preprocess the scale string. */ 809 input_save = input_line_pointer; 810 input_line_pointer = operandS; 811 expression (&scale); 812 input_line_pointer = input_save; 813 814 scale_val = scale.X_add_number; 815 816 /* Check if the scale value is legal. */ 817 if (scale_val != 1 && scale_val != 2 818 && scale_val != 4 && scale_val != 8) 819 as_bad (_("Illegal Scale - `%d'"), scale_val); 820 821 cur_arg->scale = exponent2scale (scale_val); 822 } 823 break; 824 825 default: 826 break; 827 } 828 } 829 830 /* Parse a single operand. 831 operand - Current operand to parse. 832 crx_ins - Current assembled instruction. */ 833 834 static void 835 parse_operand (char *operand, ins * crx_ins) 836 { 837 int ret_val; 838 argument *cur_arg = &crx_ins->arg[cur_arg_num]; /* Current argument. */ 839 840 /* Initialize the type to NULL before parsing. */ 841 cur_arg->type = nullargs; 842 843 /* Check whether this is a general processor register. */ 844 if ((ret_val = get_register (operand)) != nullregister) 845 { 846 cur_arg->type = arg_r; 847 cur_arg->r = ret_val; 848 cur_arg->X_op = O_register; 849 return; 850 } 851 852 /* Check whether this is a core [special] coprocessor register. */ 853 if ((ret_val = get_copregister (operand)) != nullcopregister) 854 { 855 cur_arg->type = arg_copr; 856 if (ret_val >= cs0) 857 cur_arg->type = arg_copsr; 858 cur_arg->cr = ret_val; 859 cur_arg->X_op = O_register; 860 return; 861 } 862 863 /* Deal with special characters. */ 864 switch (operand[0]) 865 { 866 case '$': 867 if (strchr (operand, '(') != NULL) 868 cur_arg->type = arg_icr; 869 else 870 cur_arg->type = arg_ic; 871 goto set_params; 872 break; 873 874 case '*': 875 cur_arg->type = arg_sc; 876 goto set_params; 877 break; 878 879 case '(': 880 cur_arg->type = arg_rbase; 881 goto set_params; 882 break; 883 884 default: 885 break; 886 } 887 888 if (strchr (operand, '(') != NULL) 889 { 890 if (strchr (operand, ',') != NULL 891 && (strchr (operand, ',') > strchr (operand, '('))) 892 cur_arg->type = arg_idxr; 893 else 894 cur_arg->type = arg_cr; 895 } 896 else 897 cur_arg->type = arg_c; 898 goto set_params; 899 900 /* Parse an operand according to its type. */ 901 set_params: 902 cur_arg->constant = 0; 903 set_operand (operand, crx_ins); 904 } 905 906 /* Parse the various operands. Each operand is then analyzed to fillup 907 the fields in the crx_ins data structure. */ 908 909 static void 910 parse_operands (ins * crx_ins, char *operands) 911 { 912 char *operandS; /* Operands string. */ 913 char *operandH, *operandT; /* Single operand head/tail pointers. */ 914 int allocated = 0; /* Indicates a new operands string was allocated. */ 915 char *operand[MAX_OPERANDS]; /* Separating the operands. */ 916 int op_num = 0; /* Current operand number we are parsing. */ 917 int bracket_flag = 0; /* Indicates a bracket '(' was found. */ 918 int sq_bracket_flag = 0; /* Indicates a square bracket '[' was found. */ 919 920 /* Preprocess the list of registers, if necessary. */ 921 operandS = operandH = operandT = (INST_HAS_REG_LIST) ? 922 preprocess_reglist (operands, &allocated) : operands; 923 924 while (*operandT != '\0') 925 { 926 if (*operandT == ',' && bracket_flag != 1 && sq_bracket_flag != 1) 927 { 928 *operandT++ = '\0'; 929 operand[op_num++] = strdup (operandH); 930 operandH = operandT; 931 continue; 932 } 933 934 if (*operandT == ' ') 935 as_bad (_("Illegal operands (whitespace): `%s'"), ins_parse); 936 937 if (*operandT == '(') 938 bracket_flag = 1; 939 else if (*operandT == '[') 940 sq_bracket_flag = 1; 941 942 if (*operandT == ')') 943 { 944 if (bracket_flag) 945 bracket_flag = 0; 946 else 947 as_fatal (_("Missing matching brackets : `%s'"), ins_parse); 948 } 949 else if (*operandT == ']') 950 { 951 if (sq_bracket_flag) 952 sq_bracket_flag = 0; 953 else 954 as_fatal (_("Missing matching brackets : `%s'"), ins_parse); 955 } 956 957 if (bracket_flag == 1 && *operandT == ')') 958 bracket_flag = 0; 959 else if (sq_bracket_flag == 1 && *operandT == ']') 960 sq_bracket_flag = 0; 961 962 operandT++; 963 } 964 965 /* Adding the last operand. */ 966 operand[op_num++] = strdup (operandH); 967 crx_ins->nargs = op_num; 968 969 /* Verifying correct syntax of operands (all brackets should be closed). */ 970 if (bracket_flag || sq_bracket_flag) 971 as_fatal (_("Missing matching brackets : `%s'"), ins_parse); 972 973 /* Now we parse each operand separately. */ 974 for (op_num = 0; op_num < crx_ins->nargs; op_num++) 975 { 976 cur_arg_num = op_num; 977 parse_operand (operand[op_num], crx_ins); 978 free (operand[op_num]); 979 } 980 981 if (allocated) 982 free (operandS); 983 } 984 985 /* Get the trap index in dispatch table, given its name. 986 This routine is used by assembling the 'excp' instruction. */ 987 988 static int 989 gettrap (char *s) 990 { 991 const trap_entry *trap; 992 993 for (trap = crx_traps; trap < (crx_traps + NUMTRAPS); trap++) 994 if (strcasecmp (trap->name, s) == 0) 995 return trap->entry; 996 997 as_bad (_("Unknown exception: `%s'"), s); 998 return 0; 999 } 1000 1001 /* Post-Increment instructions, as well as Store-Immediate instructions, are a 1002 sub-group within load/stor instruction groups. 1003 Therefore, when parsing a Post-Increment/Store-Immediate insn, we have to 1004 advance the instruction pointer to the start of that sub-group (that is, up 1005 to the first instruction of that type). 1006 Otherwise, the insn will be mistakenly identified as of type LD_STOR_INS. */ 1007 1008 static void 1009 handle_LoadStor (char *operands) 1010 { 1011 /* Post-Increment instructions precede Store-Immediate instructions in 1012 CRX instruction table, hence they are handled before. 1013 This synchronization should be kept. */ 1014 1015 /* Assuming Post-Increment insn has the following format : 1016 'MNEMONIC DISP(REG)+, REG' (e.g. 'loadw 12(r5)+, r6'). 1017 LD_STOR_INS_INC are the only store insns containing a plus sign (+). */ 1018 if (strstr (operands, ")+") != NULL) 1019 { 1020 while (! IS_INSN_TYPE (LD_STOR_INS_INC)) 1021 instruction++; 1022 return; 1023 } 1024 1025 /* Assuming Store-Immediate insn has the following format : 1026 'MNEMONIC $DISP, ...' (e.g. 'storb $1, 12(r5)'). 1027 STOR_IMM_INS are the only store insns containing a dollar sign ($). */ 1028 if (strstr (operands, "$") != NULL) 1029 while (! IS_INSN_TYPE (STOR_IMM_INS)) 1030 instruction++; 1031 } 1032 1033 /* Top level module where instruction parsing starts. 1034 crx_ins - data structure holds some information. 1035 operands - holds the operands part of the whole instruction. */ 1036 1037 static void 1038 parse_insn (ins *insn, char *operands) 1039 { 1040 int i; 1041 1042 /* Handle instructions with no operands. */ 1043 for (i = 0; no_op_insn[i] != NULL; i++) 1044 { 1045 if (streq (no_op_insn[i], instruction->mnemonic)) 1046 { 1047 insn->nargs = 0; 1048 return; 1049 } 1050 } 1051 1052 /* Handle 'excp'/'cinv' instructions. */ 1053 if (IS_INSN_MNEMONIC ("excp") || IS_INSN_MNEMONIC ("cinv")) 1054 { 1055 insn->nargs = 1; 1056 insn->arg[0].type = arg_ic; 1057 insn->arg[0].constant = IS_INSN_MNEMONIC ("excp") ? 1058 gettrap (operands) : get_cinv_parameters (operands); 1059 insn->arg[0].X_op = O_constant; 1060 return; 1061 } 1062 1063 /* Handle load/stor unique instructions before parsing. */ 1064 if (IS_INSN_TYPE (LD_STOR_INS)) 1065 handle_LoadStor (operands); 1066 1067 if (operands != NULL) 1068 parse_operands (insn, operands); 1069 } 1070 1071 /* Cinv instruction requires special handling. */ 1072 1073 static int 1074 get_cinv_parameters (char * operand) 1075 { 1076 char *p = operand; 1077 int d_used = 0, i_used = 0, u_used = 0, b_used = 0; 1078 1079 while (*++p != ']') 1080 { 1081 if (*p == ',' || *p == ' ') 1082 continue; 1083 1084 if (*p == 'd') 1085 d_used = 1; 1086 else if (*p == 'i') 1087 i_used = 1; 1088 else if (*p == 'u') 1089 u_used = 1; 1090 else if (*p == 'b') 1091 b_used = 1; 1092 else 1093 as_bad (_("Illegal `cinv' parameter: `%c'"), *p); 1094 } 1095 1096 return ((b_used ? 8 : 0) 1097 + (d_used ? 4 : 0) 1098 + (i_used ? 2 : 0) 1099 + (u_used ? 1 : 0)); 1100 } 1101 1102 /* Retrieve the opcode image of a given register. 1103 If the register is illegal for the current instruction, 1104 issue an error. */ 1105 1106 static int 1107 getreg_image (reg r) 1108 { 1109 const reg_entry *reg; 1110 char *reg_name; 1111 int is_procreg = 0; /* Nonzero means argument should be processor reg. */ 1112 1113 if (((IS_INSN_MNEMONIC ("mtpr")) && (cur_arg_num == 1)) 1114 || ((IS_INSN_MNEMONIC ("mfpr")) && (cur_arg_num == 0)) ) 1115 is_procreg = 1; 1116 1117 /* Check whether the register is in registers table. */ 1118 if (r < MAX_REG) 1119 reg = &crx_regtab[r]; 1120 /* Check whether the register is in coprocessor registers table. */ 1121 else if (r < MAX_COPREG) 1122 reg = &crx_copregtab[r-MAX_REG]; 1123 /* Register not found. */ 1124 else 1125 { 1126 as_bad (_("Unknown register: `%d'"), r); 1127 return 0; 1128 } 1129 1130 reg_name = reg->name; 1131 1132 /* Issue a error message when register is illegal. */ 1133 #define IMAGE_ERR \ 1134 as_bad (_("Illegal register (`%s') in Instruction: `%s'"), \ 1135 reg_name, ins_parse); \ 1136 break; 1137 1138 switch (reg->type) 1139 { 1140 case CRX_U_REGTYPE: 1141 if (is_procreg || (instruction->flags & USER_REG)) 1142 return reg->image; 1143 else 1144 IMAGE_ERR; 1145 1146 case CRX_CFG_REGTYPE: 1147 if (is_procreg) 1148 return reg->image; 1149 else 1150 IMAGE_ERR; 1151 1152 case CRX_R_REGTYPE: 1153 if (! is_procreg) 1154 return reg->image; 1155 else 1156 IMAGE_ERR; 1157 1158 case CRX_C_REGTYPE: 1159 case CRX_CS_REGTYPE: 1160 return reg->image; 1161 break; 1162 1163 default: 1164 IMAGE_ERR; 1165 } 1166 1167 return 0; 1168 } 1169 1170 /* Routine used to represent integer X using NBITS bits. */ 1171 1172 static long 1173 getconstant (long x, int nbits) 1174 { 1175 /* The following expression avoids overflow if 1176 'nbits' is the number of bits in 'bfd_vma'. */ 1177 return (x & ((((1 << (nbits - 1)) - 1) << 1) | 1)); 1178 } 1179 1180 /* Print a constant value to 'output_opcode': 1181 ARG holds the operand's type and value. 1182 SHIFT represents the location of the operand to be print into. 1183 NBITS determines the size (in bits) of the constant. */ 1184 1185 static void 1186 print_constant (int nbits, int shift, argument *arg) 1187 { 1188 unsigned long mask = 0; 1189 1190 long constant = getconstant (arg->constant, nbits); 1191 1192 switch (nbits) 1193 { 1194 case 32: 1195 case 28: 1196 case 24: 1197 case 22: 1198 /* mask the upper part of the constant, that is, the bits 1199 going to the lowest byte of output_opcode[0]. 1200 The upper part of output_opcode[1] is always filled, 1201 therefore it is always masked with 0xFFFF. */ 1202 mask = (1 << (nbits - 16)) - 1; 1203 /* Divide the constant between two consecutive words : 1204 0 1 2 3 1205 +---------+---------+---------+---------+ 1206 | | X X X X | X X X X | | 1207 +---------+---------+---------+---------+ 1208 output_opcode[0] output_opcode[1] */ 1209 1210 CRX_PRINT (0, (constant >> WORD_SHIFT) & mask, 0); 1211 CRX_PRINT (1, (constant & 0xFFFF), WORD_SHIFT); 1212 break; 1213 1214 case 16: 1215 case 12: 1216 /* Special case - in arg_cr, the SHIFT represents the location 1217 of the REGISTER, not the constant, which is itself not shifted. */ 1218 if (arg->type == arg_cr) 1219 { 1220 CRX_PRINT (0, constant, 0); 1221 break; 1222 } 1223 1224 /* When instruction size is 3 and 'shift' is 16, a 16-bit constant is 1225 always filling the upper part of output_opcode[1]. If we mistakenly 1226 write it to output_opcode[0], the constant prefix (that is, 'match') 1227 will be overridden. 1228 0 1 2 3 1229 +---------+---------+---------+---------+ 1230 | 'match' | | X X X X | | 1231 +---------+---------+---------+---------+ 1232 output_opcode[0] output_opcode[1] */ 1233 1234 if ((instruction->size > 2) && (shift == WORD_SHIFT)) 1235 CRX_PRINT (1, constant, WORD_SHIFT); 1236 else 1237 CRX_PRINT (0, constant, shift); 1238 break; 1239 1240 default: 1241 CRX_PRINT (0, constant, shift); 1242 break; 1243 } 1244 } 1245 1246 /* Print an operand to 'output_opcode', which later on will be 1247 printed to the object file: 1248 ARG holds the operand's type, size and value. 1249 SHIFT represents the printing location of operand. 1250 NBITS determines the size (in bits) of a constant operand. */ 1251 1252 static void 1253 print_operand (int nbits, int shift, argument *arg) 1254 { 1255 switch (arg->type) 1256 { 1257 case arg_r: 1258 CRX_PRINT (0, getreg_image (arg->r), shift); 1259 break; 1260 1261 case arg_copr: 1262 if (arg->cr < c0 || arg->cr > c15) 1263 as_bad (_("Illegal Co-processor register in Instruction `%s' "), 1264 ins_parse); 1265 CRX_PRINT (0, getreg_image (arg->cr), shift); 1266 break; 1267 1268 case arg_copsr: 1269 if (arg->cr < cs0 || arg->cr > cs15) 1270 as_bad (_("Illegal Co-processor special register in Instruction `%s' "), 1271 ins_parse); 1272 CRX_PRINT (0, getreg_image (arg->cr), shift); 1273 break; 1274 1275 case arg_idxr: 1276 /* 16 12 8 6 0 1277 +--------------------------------+ 1278 | r_base | r_idx | scl| disp | 1279 +--------------------------------+ */ 1280 CRX_PRINT (0, getreg_image (arg->r), 12); 1281 CRX_PRINT (0, getreg_image (arg->i_r), 8); 1282 CRX_PRINT (0, arg->scale, 6); 1283 case arg_ic: 1284 case arg_c: 1285 print_constant (nbits, shift, arg); 1286 break; 1287 1288 case arg_rbase: 1289 CRX_PRINT (0, getreg_image (arg->r), shift); 1290 break; 1291 1292 case arg_cr: 1293 /* case base_cst4. */ 1294 if (instruction->flags & DISPU4MAP) 1295 print_constant (nbits, shift + REG_SIZE, arg); 1296 else 1297 /* rbase_disps<NN> and other such cases. */ 1298 print_constant (nbits, shift, arg); 1299 /* Add the register argument to the output_opcode. */ 1300 CRX_PRINT (0, getreg_image (arg->r), shift); 1301 break; 1302 1303 default: 1304 break; 1305 } 1306 } 1307 1308 /* Retrieve the number of operands for the current assembled instruction. */ 1309 1310 static int 1311 get_number_of_operands (void) 1312 { 1313 int i; 1314 1315 for (i = 0; instruction->operands[i].op_type && i < MAX_OPERANDS; i++) 1316 ; 1317 return i; 1318 } 1319 1320 /* Verify that the number NUM can be represented in BITS bits (that is, 1321 within its permitted range), based on the instruction's FLAGS. 1322 If UPDATE is nonzero, update the value of NUM if necessary. 1323 Return OP_LEGAL upon success, actual error type upon failure. */ 1324 1325 static op_err 1326 check_range (long *num, int bits, int unsigned flags, int update) 1327 { 1328 long min, max; 1329 int retval = OP_LEGAL; 1330 int bin; 1331 long upper_64kb = 0xFFFF0000; 1332 long value = *num; 1333 1334 /* For hosts witah longs bigger than 32-bits make sure that the top 1335 bits of a 32-bit negative value read in by the parser are set, 1336 so that the correct comparisons are made. */ 1337 if (value & 0x80000000) 1338 value |= (-1L << 31); 1339 1340 /* Verify operand value is even. */ 1341 if (flags & OP_EVEN) 1342 { 1343 if (value % 2) 1344 return OP_NOT_EVEN; 1345 } 1346 1347 if (flags & OP_UPPER_64KB) 1348 { 1349 /* Check if value is to be mapped to upper 64 KB memory area. */ 1350 if ((value & upper_64kb) == upper_64kb) 1351 { 1352 value -= upper_64kb; 1353 if (update) 1354 *num = value; 1355 } 1356 else 1357 return OP_NOT_UPPER_64KB; 1358 } 1359 1360 if (flags & OP_SHIFT) 1361 { 1362 value >>= 1; 1363 if (update) 1364 *num = value; 1365 } 1366 else if (flags & OP_SHIFT_DEC) 1367 { 1368 value = (value >> 1) - 1; 1369 if (update) 1370 *num = value; 1371 } 1372 1373 if (flags & OP_ESC) 1374 { 1375 /* 0x7e and 0x7f are reserved escape sequences of dispe9. */ 1376 if (value == 0x7e || value == 0x7f) 1377 return OP_OUT_OF_RANGE; 1378 } 1379 1380 if (flags & OP_DISPU4) 1381 { 1382 int is_dispu4 = 0; 1383 1384 int mul = (instruction->flags & DISPUB4) ? 1 1385 : (instruction->flags & DISPUW4) ? 2 1386 : (instruction->flags & DISPUD4) ? 4 : 0; 1387 1388 for (bin = 0; bin < cst4_maps; bin++) 1389 { 1390 if (value == (mul * bin)) 1391 { 1392 is_dispu4 = 1; 1393 if (update) 1394 *num = bin; 1395 break; 1396 } 1397 } 1398 if (!is_dispu4) 1399 retval = OP_ILLEGAL_DISPU4; 1400 } 1401 else if (flags & OP_CST4) 1402 { 1403 int is_cst4 = 0; 1404 1405 for (bin = 0; bin < cst4_maps; bin++) 1406 { 1407 if (value == cst4_map[bin]) 1408 { 1409 is_cst4 = 1; 1410 if (update) 1411 *num = bin; 1412 break; 1413 } 1414 } 1415 if (!is_cst4) 1416 retval = OP_ILLEGAL_CST4; 1417 } 1418 else if (flags & OP_SIGNED) 1419 { 1420 max = (1 << (bits - 1)) - 1; 1421 min = - (1 << (bits - 1)); 1422 if ((value > max) || (value < min)) 1423 retval = OP_OUT_OF_RANGE; 1424 } 1425 else if (flags & OP_UNSIGNED) 1426 { 1427 max = ((((1 << (bits - 1)) - 1) << 1) | 1); 1428 min = 0; 1429 if (((unsigned long) value > (unsigned long) max) 1430 || ((unsigned long) value < (unsigned long) min)) 1431 retval = OP_OUT_OF_RANGE; 1432 } 1433 return retval; 1434 } 1435 1436 /* Assemble a single instruction: 1437 INSN is already parsed (that is, all operand values and types are set). 1438 For instruction to be assembled, we need to find an appropriate template in 1439 the instruction table, meeting the following conditions: 1440 1: Has the same number of operands. 1441 2: Has the same operand types. 1442 3: Each operand size is sufficient to represent the instruction's values. 1443 Returns 1 upon success, 0 upon failure. */ 1444 1445 static int 1446 assemble_insn (char *mnemonic, ins *insn) 1447 { 1448 /* Type of each operand in the current template. */ 1449 argtype cur_type[MAX_OPERANDS]; 1450 /* Size (in bits) of each operand in the current template. */ 1451 unsigned int cur_size[MAX_OPERANDS]; 1452 /* Flags of each operand in the current template. */ 1453 unsigned int cur_flags[MAX_OPERANDS]; 1454 /* Instruction type to match. */ 1455 unsigned int ins_type; 1456 /* Boolean flag to mark whether a match was found. */ 1457 int match = 0; 1458 int i; 1459 /* Nonzero if an instruction with same number of operands was found. */ 1460 int found_same_number_of_operands = 0; 1461 /* Nonzero if an instruction with same argument types was found. */ 1462 int found_same_argument_types = 0; 1463 /* Nonzero if a constant was found within the required range. */ 1464 int found_const_within_range = 0; 1465 /* Argument number of an operand with invalid type. */ 1466 int invalid_optype = -1; 1467 /* Argument number of an operand with invalid constant value. */ 1468 int invalid_const = -1; 1469 /* Operand error (used for issuing various constant error messages). */ 1470 op_err op_error, const_err = OP_LEGAL; 1471 1472 /* Retrieve data (based on FUNC) for each operand of a given instruction. */ 1473 #define GET_CURRENT_DATA(FUNC, ARRAY) \ 1474 for (i = 0; i < insn->nargs; i++) \ 1475 ARRAY[i] = FUNC (instruction->operands[i].op_type) 1476 1477 #define GET_CURRENT_TYPE GET_CURRENT_DATA(get_optype, cur_type) 1478 #define GET_CURRENT_SIZE GET_CURRENT_DATA(get_opbits, cur_size) 1479 #define GET_CURRENT_FLAGS GET_CURRENT_DATA(get_opflags, cur_flags) 1480 1481 /* Instruction has no operands -> only copy the constant opcode. */ 1482 if (insn->nargs == 0) 1483 { 1484 output_opcode[0] = BIN (instruction->match, instruction->match_bits); 1485 return 1; 1486 } 1487 1488 /* In some case, same mnemonic can appear with different instruction types. 1489 For example, 'storb' is supported with 3 different types : 1490 LD_STOR_INS, LD_STOR_INS_INC, STOR_IMM_INS. 1491 We assume that when reaching this point, the instruction type was 1492 pre-determined. We need to make sure that the type stays the same 1493 during a search for matching instruction. */ 1494 ins_type = CRX_INS_TYPE(instruction->flags); 1495 1496 while (/* Check that match is still not found. */ 1497 match != 1 1498 /* Check we didn't get to end of table. */ 1499 && instruction->mnemonic != NULL 1500 /* Check that the actual mnemonic is still available. */ 1501 && IS_INSN_MNEMONIC (mnemonic) 1502 /* Check that the instruction type wasn't changed. */ 1503 && IS_INSN_TYPE(ins_type)) 1504 { 1505 /* Check whether number of arguments is legal. */ 1506 if (get_number_of_operands () != insn->nargs) 1507 goto next_insn; 1508 found_same_number_of_operands = 1; 1509 1510 /* Initialize arrays with data of each operand in current template. */ 1511 GET_CURRENT_TYPE; 1512 GET_CURRENT_SIZE; 1513 GET_CURRENT_FLAGS; 1514 1515 /* Check for type compatibility. */ 1516 for (i = 0; i < insn->nargs; i++) 1517 { 1518 if (cur_type[i] != insn->arg[i].type) 1519 { 1520 if (invalid_optype == -1) 1521 invalid_optype = i + 1; 1522 goto next_insn; 1523 } 1524 } 1525 found_same_argument_types = 1; 1526 1527 for (i = 0; i < insn->nargs; i++) 1528 { 1529 /* Reverse the operand indices for certain opcodes: 1530 Index 0 -->> 1 1531 Index 1 -->> 0 1532 Other index -->> stays the same. */ 1533 int j = instruction->flags & REVERSE_MATCH ? 1534 i == 0 ? 1 : 1535 i == 1 ? 0 : i : 1536 i; 1537 1538 /* Only check range - don't update the constant's value, since the 1539 current instruction may not be the last we try to match. 1540 The constant's value will be updated later, right before printing 1541 it to the object file. */ 1542 if ((insn->arg[j].X_op == O_constant) 1543 && (op_error = check_range (&insn->arg[j].constant, cur_size[j], 1544 cur_flags[j], 0))) 1545 { 1546 if (invalid_const == -1) 1547 { 1548 invalid_const = j + 1; 1549 const_err = op_error; 1550 } 1551 goto next_insn; 1552 } 1553 /* For symbols, we make sure the relocation size (which was already 1554 determined) is sufficient. */ 1555 else if ((insn->arg[j].X_op == O_symbol) 1556 && ((bfd_reloc_type_lookup (stdoutput, insn->rtype))->bitsize 1557 > cur_size[j])) 1558 goto next_insn; 1559 } 1560 found_const_within_range = 1; 1561 1562 /* If we got till here -> Full match is found. */ 1563 match = 1; 1564 break; 1565 1566 /* Try again with next instruction. */ 1567 next_insn: 1568 instruction++; 1569 } 1570 1571 if (!match) 1572 { 1573 /* We haven't found a match - instruction can't be assembled. */ 1574 if (!found_same_number_of_operands) 1575 as_bad (_("Incorrect number of operands")); 1576 else if (!found_same_argument_types) 1577 as_bad (_("Illegal type of operand (arg %d)"), invalid_optype); 1578 else if (!found_const_within_range) 1579 { 1580 switch (const_err) 1581 { 1582 case OP_OUT_OF_RANGE: 1583 as_bad (_("Operand out of range (arg %d)"), invalid_const); 1584 break; 1585 case OP_NOT_EVEN: 1586 as_bad (_("Operand has odd displacement (arg %d)"), invalid_const); 1587 break; 1588 case OP_ILLEGAL_DISPU4: 1589 as_bad (_("Invalid DISPU4 operand value (arg %d)"), invalid_const); 1590 break; 1591 case OP_ILLEGAL_CST4: 1592 as_bad (_("Invalid CST4 operand value (arg %d)"), invalid_const); 1593 break; 1594 case OP_NOT_UPPER_64KB: 1595 as_bad (_("Operand value is not within upper 64 KB (arg %d)"), 1596 invalid_const); 1597 break; 1598 default: 1599 as_bad (_("Illegal operand (arg %d)"), invalid_const); 1600 break; 1601 } 1602 } 1603 1604 return 0; 1605 } 1606 else 1607 /* Full match - print the encoding to output file. */ 1608 { 1609 /* Make further checkings (such that couldn't be made earlier). 1610 Warn the user if necessary. */ 1611 warn_if_needed (insn); 1612 1613 /* Check whether we need to adjust the instruction pointer. */ 1614 if (adjust_if_needed (insn)) 1615 /* If instruction pointer was adjusted, we need to update 1616 the size of the current template operands. */ 1617 GET_CURRENT_SIZE; 1618 1619 for (i = 0; i < insn->nargs; i++) 1620 { 1621 int j = instruction->flags & REVERSE_MATCH ? 1622 i == 0 ? 1 : 1623 i == 1 ? 0 : i : 1624 i; 1625 1626 /* This time, update constant value before printing it. */ 1627 if ((insn->arg[j].X_op == O_constant) 1628 && (check_range (&insn->arg[j].constant, cur_size[j], 1629 cur_flags[j], 1) != OP_LEGAL)) 1630 as_fatal (_("Illegal operand (arg %d)"), j+1); 1631 } 1632 1633 /* First, copy the instruction's opcode. */ 1634 output_opcode[0] = BIN (instruction->match, instruction->match_bits); 1635 1636 for (i = 0; i < insn->nargs; i++) 1637 { 1638 cur_arg_num = i; 1639 print_operand (cur_size[i], instruction->operands[i].shift, 1640 &insn->arg[i]); 1641 } 1642 } 1643 1644 return 1; 1645 } 1646 1647 /* Bunch of error checkings. 1648 The checks are made after a matching instruction was found. */ 1649 1650 void 1651 warn_if_needed (ins *insn) 1652 { 1653 /* If the post-increment address mode is used and the load/store 1654 source register is the same as rbase, the result of the 1655 instruction is undefined. */ 1656 if (IS_INSN_TYPE (LD_STOR_INS_INC)) 1657 { 1658 /* Enough to verify that one of the arguments is a simple reg. */ 1659 if ((insn->arg[0].type == arg_r) || (insn->arg[1].type == arg_r)) 1660 if (insn->arg[0].r == insn->arg[1].r) 1661 as_bad (_("Same src/dest register is used (`r%d'), result is undefined"), 1662 insn->arg[0].r); 1663 } 1664 1665 /* Some instruction assume the stack pointer as rptr operand. 1666 Issue an error when the register to be loaded is also SP. */ 1667 if (instruction->flags & NO_SP) 1668 { 1669 if (getreg_image (insn->arg[0].r) == getreg_image (sp)) 1670 as_bad (_("`%s' has undefined result"), ins_parse); 1671 } 1672 1673 /* If the rptr register is specified as one of the registers to be loaded, 1674 the final contents of rptr are undefined. Thus, we issue an error. */ 1675 if (instruction->flags & NO_RPTR) 1676 { 1677 if ((1 << getreg_image (insn->arg[0].r)) & insn->arg[1].constant) 1678 as_bad (_("Same src/dest register is used (`r%d'), result is undefined"), 1679 getreg_image (insn->arg[0].r)); 1680 } 1681 } 1682 1683 /* In some cases, we need to adjust the instruction pointer although a 1684 match was already found. Here, we gather all these cases. 1685 Returns 1 if instruction pointer was adjusted, otherwise 0. */ 1686 1687 int 1688 adjust_if_needed (ins *insn) 1689 { 1690 int ret_value = 0; 1691 1692 /* Special check for 'addub $0, r0' instruction - 1693 The opcode '0000 0000 0000 0000' is not allowed. */ 1694 if (IS_INSN_MNEMONIC ("addub")) 1695 { 1696 if ((instruction->operands[0].op_type == cst4) 1697 && instruction->operands[1].op_type == regr) 1698 { 1699 if (insn->arg[0].constant == 0 && insn->arg[1].r == r0) 1700 { 1701 instruction++; 1702 ret_value = 1; 1703 } 1704 } 1705 } 1706 1707 /* Optimization: Omit a zero displacement in bit operations, 1708 saving 2-byte encoding space (e.g., 'cbitw $8, 0(r1)'). */ 1709 if (IS_INSN_TYPE (CSTBIT_INS)) 1710 { 1711 if ((instruction->operands[1].op_type == rbase_disps12) 1712 && (insn->arg[1].X_op == O_constant) 1713 && (insn->arg[1].constant == 0)) 1714 { 1715 instruction--; 1716 ret_value = 1; 1717 } 1718 } 1719 1720 return ret_value; 1721 } 1722 1723 /* Set the appropriate bit for register 'r' in 'mask'. 1724 This indicates that this register is loaded or stored by 1725 the instruction. */ 1726 1727 static void 1728 mask_reg (int r, unsigned short int *mask) 1729 { 1730 if ((reg)r > (reg)sp) 1731 { 1732 as_bad (_("Invalid Register in Register List")); 1733 return; 1734 } 1735 1736 *mask |= (1 << r); 1737 } 1738 1739 /* Preprocess register list - create a 16-bit mask with one bit for each 1740 of the 16 general purpose registers. If a bit is set, it indicates 1741 that this register is loaded or stored by the instruction. */ 1742 1743 static char * 1744 preprocess_reglist (char *param, int *allocated) 1745 { 1746 char reg_name[MAX_REGNAME_LEN]; /* Current parsed register name. */ 1747 char *regP; /* Pointer to 'reg_name' string. */ 1748 int reg_counter = 0; /* Count number of parsed registers. */ 1749 unsigned short int mask = 0; /* Mask for 16 general purpose registers. */ 1750 char *new_param; /* New created operands string. */ 1751 char *paramP = param; /* Pointer to original opearands string. */ 1752 char maskstring[10]; /* Array to print the mask as a string. */ 1753 int hi_found = 0, lo_found = 0; /* Boolean flags for hi/lo registers. */ 1754 reg r; 1755 copreg cr; 1756 1757 /* If 'param' is already in form of a number, no need to preprocess. */ 1758 if (strchr (paramP, '{') == NULL) 1759 return param; 1760 1761 /* Verifying correct syntax of operand. */ 1762 if (strchr (paramP, '}') == NULL) 1763 as_fatal (_("Missing matching brackets : `%s'"), ins_parse); 1764 1765 while (*paramP++ != '{'); 1766 1767 new_param = (char *)xcalloc (MAX_INST_LEN, sizeof (char)); 1768 *allocated = 1; 1769 strncpy (new_param, param, paramP - param - 1); 1770 1771 while (*paramP != '}') 1772 { 1773 regP = paramP; 1774 memset (®_name, '\0', sizeof (reg_name)); 1775 1776 while (ISALNUM (*paramP)) 1777 paramP++; 1778 1779 strncpy (reg_name, regP, paramP - regP); 1780 1781 /* Coprocessor register c<N>. */ 1782 if (IS_INSN_TYPE (COP_REG_INS)) 1783 { 1784 if (((cr = get_copregister (reg_name)) == nullcopregister) 1785 || (crx_copregtab[cr-MAX_REG].type != CRX_C_REGTYPE)) 1786 as_fatal (_("Illegal register `%s' in cop-register list"), reg_name); 1787 mask_reg (getreg_image (cr - c0), &mask); 1788 } 1789 /* Coprocessor Special register cs<N>. */ 1790 else if (IS_INSN_TYPE (COPS_REG_INS)) 1791 { 1792 if (((cr = get_copregister (reg_name)) == nullcopregister) 1793 || (crx_copregtab[cr-MAX_REG].type != CRX_CS_REGTYPE)) 1794 as_fatal (_("Illegal register `%s' in cop-special-register list"), 1795 reg_name); 1796 mask_reg (getreg_image (cr - cs0), &mask); 1797 } 1798 /* User register u<N>. */ 1799 else if (instruction->flags & USER_REG) 1800 { 1801 if (streq(reg_name, "uhi")) 1802 { 1803 hi_found = 1; 1804 goto next_inst; 1805 } 1806 else if (streq(reg_name, "ulo")) 1807 { 1808 lo_found = 1; 1809 goto next_inst; 1810 } 1811 else if (((r = get_register (reg_name)) == nullregister) 1812 || (crx_regtab[r].type != CRX_U_REGTYPE)) 1813 as_fatal (_("Illegal register `%s' in user register list"), reg_name); 1814 1815 mask_reg (getreg_image (r - u0), &mask); 1816 } 1817 /* General purpose register r<N>. */ 1818 else 1819 { 1820 if (streq(reg_name, "hi")) 1821 { 1822 hi_found = 1; 1823 goto next_inst; 1824 } 1825 else if (streq(reg_name, "lo")) 1826 { 1827 lo_found = 1; 1828 goto next_inst; 1829 } 1830 else if (((r = get_register (reg_name)) == nullregister) 1831 || (crx_regtab[r].type != CRX_R_REGTYPE)) 1832 as_fatal (_("Illegal register `%s' in register list"), reg_name); 1833 1834 mask_reg (getreg_image (r - r0), &mask); 1835 } 1836 1837 if (++reg_counter > MAX_REGS_IN_MASK16) 1838 as_bad (_("Maximum %d bits may be set in `mask16' operand"), 1839 MAX_REGS_IN_MASK16); 1840 1841 next_inst: 1842 while (!ISALNUM (*paramP) && *paramP != '}') 1843 paramP++; 1844 } 1845 1846 if (*++paramP != '\0') 1847 as_warn (_("rest of line ignored; first ignored character is `%c'"), 1848 *paramP); 1849 1850 switch (hi_found + lo_found) 1851 { 1852 case 0: 1853 /* At least one register should be specified. */ 1854 if (mask == 0) 1855 as_bad (_("Illegal `mask16' operand, operation is undefined - `%s'"), 1856 ins_parse); 1857 break; 1858 1859 case 1: 1860 /* HI can't be specified without LO (and vise-versa). */ 1861 as_bad (_("HI/LO registers should be specified together")); 1862 break; 1863 1864 case 2: 1865 /* HI/LO registers mustn't be masked with additional registers. */ 1866 if (mask != 0) 1867 as_bad (_("HI/LO registers should be specified without additional registers")); 1868 1869 default: 1870 break; 1871 } 1872 1873 sprintf (maskstring, "$0x%x", mask); 1874 strcat (new_param, maskstring); 1875 return new_param; 1876 } 1877 1878 /* Print the instruction. 1879 Handle also cases where the instruction is relaxable/relocatable. */ 1880 1881 void 1882 print_insn (ins *insn) 1883 { 1884 unsigned int i, j, insn_size; 1885 char *this_frag; 1886 unsigned short words[4]; 1887 int addr_mod; 1888 1889 /* Arrange the insn encodings in a WORD size array. */ 1890 for (i = 0, j = 0; i < 2; i++) 1891 { 1892 words[j++] = (output_opcode[i] >> 16) & 0xFFFF; 1893 words[j++] = output_opcode[i] & 0xFFFF; 1894 } 1895 1896 /* Handle relaxtion. */ 1897 if ((instruction->flags & RELAXABLE) && relocatable) 1898 { 1899 int relax_subtype; 1900 1901 /* Write the maximal instruction size supported. */ 1902 insn_size = INSN_MAX_SIZE; 1903 1904 /* bCC */ 1905 if (IS_INSN_TYPE (BRANCH_INS)) 1906 relax_subtype = 0; 1907 /* bal */ 1908 else if (IS_INSN_TYPE (DCR_BRANCH_INS) || IS_INSN_MNEMONIC ("bal")) 1909 relax_subtype = 3; 1910 /* cmpbr/bcop */ 1911 else if (IS_INSN_TYPE (CMPBR_INS) || IS_INSN_TYPE (COP_BRANCH_INS)) 1912 relax_subtype = 5; 1913 else 1914 abort (); 1915 1916 this_frag = frag_var (rs_machine_dependent, insn_size * 2, 1917 4, relax_subtype, 1918 insn->exp.X_add_symbol, 1919 insn->exp.X_add_number, 1920 0); 1921 } 1922 else 1923 { 1924 insn_size = instruction->size; 1925 this_frag = frag_more (insn_size * 2); 1926 1927 /* Handle relocation. */ 1928 if ((relocatable) && (insn->rtype != BFD_RELOC_NONE)) 1929 { 1930 reloc_howto_type *reloc_howto; 1931 int size; 1932 1933 reloc_howto = bfd_reloc_type_lookup (stdoutput, insn->rtype); 1934 1935 if (!reloc_howto) 1936 abort (); 1937 1938 size = bfd_get_reloc_size (reloc_howto); 1939 1940 if (size < 1 || size > 4) 1941 abort (); 1942 1943 fix_new_exp (frag_now, this_frag - frag_now->fr_literal, 1944 size, &insn->exp, reloc_howto->pc_relative, 1945 insn->rtype); 1946 } 1947 } 1948 1949 /* Verify a 2-byte code alignment. */ 1950 addr_mod = frag_now_fix () & 1; 1951 if (frag_now->has_code && frag_now->insn_addr != addr_mod) 1952 as_bad (_("instruction address is not a multiple of 2")); 1953 frag_now->insn_addr = addr_mod; 1954 frag_now->has_code = 1; 1955 1956 /* Write the instruction encoding to frag. */ 1957 for (i = 0; i < insn_size; i++) 1958 { 1959 md_number_to_chars (this_frag, (valueT) words[i], 2); 1960 this_frag += 2; 1961 } 1962 } 1963 1964 /* This is the guts of the machine-dependent assembler. OP points to a 1965 machine dependent instruction. This function is supposed to emit 1966 the frags/bytes it assembles to. */ 1967 1968 void 1969 md_assemble (char *op) 1970 { 1971 ins crx_ins; 1972 char *param; 1973 char c; 1974 1975 /* Reset global variables for a new instruction. */ 1976 reset_vars (op); 1977 1978 /* Strip the mnemonic. */ 1979 for (param = op; *param != 0 && !ISSPACE (*param); param++) 1980 ; 1981 c = *param; 1982 *param++ = '\0'; 1983 1984 /* Find the instruction. */ 1985 instruction = (const inst *) hash_find (crx_inst_hash, op); 1986 if (instruction == NULL) 1987 { 1988 as_bad (_("Unknown opcode: `%s'"), op); 1989 return; 1990 } 1991 1992 /* Tie dwarf2 debug info to the address at the start of the insn. */ 1993 dwarf2_emit_insn (0); 1994 1995 /* Parse the instruction's operands. */ 1996 parse_insn (&crx_ins, param); 1997 1998 /* Assemble the instruction - return upon failure. */ 1999 if (assemble_insn (op, &crx_ins) == 0) 2000 return; 2001 2002 /* Print the instruction. */ 2003 print_insn (&crx_ins); 2004 } 2005