1 /* tc-cr16.c -- Assembler code for the CR16 CPU core. 2 Copyright 2007 Free Software Foundation, Inc. 3 4 Contributed by M R Swami Reddy <MR.Swami.Reddy@nsc.com> 5 6 This file is part of GAS, the GNU Assembler. 7 8 GAS is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License as published by 10 the Free Software Foundation; either version 3, or (at your option) 11 any later version. 12 13 GAS is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 GNU General Public License for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with GAS; see the file COPYING. If not, write to the 20 Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston, 21 MA 02110-1301, USA. */ 22 23 #include "as.h" 24 #include "safe-ctype.h" 25 #include "dwarf2dbg.h" 26 #include "opcode/cr16.h" 27 #include "elf/cr16.h" 28 29 30 /* Word is considered here as a 16-bit unsigned short int. */ 31 #define WORD_SHIFT 16 32 33 /* Register is 2-byte size. */ 34 #define REG_SIZE 2 35 36 /* Maximum size of a single instruction (in words). */ 37 #define INSN_MAX_SIZE 3 38 39 /* Maximum bits which may be set in a `mask16' operand. */ 40 #define MAX_REGS_IN_MASK16 8 41 42 /* Assign a number NUM, shifted by SHIFT bytes, into a location 43 pointed by index BYTE of array 'output_opcode'. */ 44 #define CR16_PRINT(BYTE, NUM, SHIFT) output_opcode[BYTE] |= (NUM << SHIFT) 45 46 /* Operand errors. */ 47 typedef enum 48 { 49 OP_LEGAL = 0, /* Legal operand. */ 50 OP_OUT_OF_RANGE, /* Operand not within permitted range. */ 51 OP_NOT_EVEN /* Operand is Odd number, should be even. */ 52 } 53 op_err; 54 55 /* Opcode mnemonics hash table. */ 56 static struct hash_control *cr16_inst_hash; 57 /* CR16 registers hash table. */ 58 static struct hash_control *reg_hash; 59 /* CR16 register pair hash table. */ 60 static struct hash_control *regp_hash; 61 /* CR16 processor registers hash table. */ 62 static struct hash_control *preg_hash; 63 /* CR16 processor registers 32 bit hash table. */ 64 static struct hash_control *pregp_hash; 65 /* Current instruction we're assembling. */ 66 const inst *instruction; 67 68 69 static int code_label = 0; 70 71 /* Global variables. */ 72 73 /* Array to hold an instruction encoding. */ 74 long output_opcode[2]; 75 76 /* Nonzero means a relocatable symbol. */ 77 int relocatable; 78 79 /* A copy of the original instruction (used in error messages). */ 80 char ins_parse[MAX_INST_LEN]; 81 82 /* The current processed argument number. */ 83 int cur_arg_num; 84 85 /* Generic assembler global variables which must be defined by all targets. */ 86 87 /* Characters which always start a comment. */ 88 const char comment_chars[] = "#"; 89 90 /* Characters which start a comment at the beginning of a line. */ 91 const char line_comment_chars[] = "#"; 92 93 /* This array holds machine specific line separator characters. */ 94 const char line_separator_chars[] = ";"; 95 96 /* Chars that can be used to separate mant from exp in floating point nums. */ 97 const char EXP_CHARS[] = "eE"; 98 99 /* Chars that mean this number is a floating point constant as in 0f12.456 */ 100 const char FLT_CHARS[] = "f'"; 101 102 /* Target-specific multicharacter options, not const-declared at usage. */ 103 const char *md_shortopts = ""; 104 struct option md_longopts[] = 105 { 106 {NULL, no_argument, NULL, 0} 107 }; 108 size_t md_longopts_size = sizeof (md_longopts); 109 110 static void 111 l_cons (int nbytes) 112 { 113 int c; 114 expressionS exp; 115 116 #ifdef md_flush_pending_output 117 md_flush_pending_output (); 118 #endif 119 120 if (is_it_end_of_statement ()) 121 { 122 demand_empty_rest_of_line (); 123 return; 124 } 125 126 #ifdef TC_ADDRESS_BYTES 127 if (nbytes == 0) 128 nbytes = TC_ADDRESS_BYTES (); 129 #endif 130 131 #ifdef md_cons_align 132 md_cons_align (nbytes); 133 #endif 134 135 c = 0; 136 do 137 { 138 unsigned int bits_available = BITS_PER_CHAR * nbytes; 139 char *hold = input_line_pointer; 140 141 expression (&exp); 142 143 if (*input_line_pointer == ':') 144 { 145 /* Bitfields. */ 146 long value = 0; 147 148 for (;;) 149 { 150 unsigned long width; 151 152 if (*input_line_pointer != ':') 153 { 154 input_line_pointer = hold; 155 break; 156 } 157 if (exp.X_op == O_absent) 158 { 159 as_warn (_("using a bit field width of zero")); 160 exp.X_add_number = 0; 161 exp.X_op = O_constant; 162 } 163 164 if (exp.X_op != O_constant) 165 { 166 *input_line_pointer = '\0'; 167 as_bad (_("field width \"%s\" too complex for a bitfield"), hold); 168 *input_line_pointer = ':'; 169 demand_empty_rest_of_line (); 170 return; 171 } 172 173 if ((width = exp.X_add_number) > 174 (unsigned int)(BITS_PER_CHAR * nbytes)) 175 { 176 as_warn (_("field width %lu too big to fit in %d bytes: truncated to %d bits"), width, nbytes, (BITS_PER_CHAR * nbytes)); 177 width = BITS_PER_CHAR * nbytes; 178 } /* Too big. */ 179 180 181 if (width > bits_available) 182 { 183 /* FIXME-SOMEDAY: backing up and reparsing is wasteful. */ 184 input_line_pointer = hold; 185 exp.X_add_number = value; 186 break; 187 } 188 189 /* Skip ':'. */ 190 hold = ++input_line_pointer; 191 192 expression (&exp); 193 if (exp.X_op != O_constant) 194 { 195 char cache = *input_line_pointer; 196 197 *input_line_pointer = '\0'; 198 as_bad (_("field value \"%s\" too complex for a bitfield"), hold); 199 *input_line_pointer = cache; 200 demand_empty_rest_of_line (); 201 return; 202 } 203 204 value |= ((~(-1 << width) & exp.X_add_number) 205 << ((BITS_PER_CHAR * nbytes) - bits_available)); 206 207 if ((bits_available -= width) == 0 208 || is_it_end_of_statement () 209 || *input_line_pointer != ',') 210 break; 211 212 hold = ++input_line_pointer; 213 expression (&exp); 214 } 215 216 exp.X_add_number = value; 217 exp.X_op = O_constant; 218 exp.X_unsigned = 1; 219 } 220 221 if ((*(input_line_pointer) == '@') && (*(input_line_pointer +1) == 'c')) 222 code_label = 1; 223 emit_expr (&exp, (unsigned int) nbytes); 224 ++c; 225 if ((*(input_line_pointer) == '@') && (*(input_line_pointer +1) == 'c')) 226 { 227 input_line_pointer +=3; 228 break; 229 } 230 } 231 while ((*input_line_pointer++ == ',')); 232 233 /* Put terminator back into stream. */ 234 input_line_pointer--; 235 236 demand_empty_rest_of_line (); 237 } 238 239 240 /* This table describes all the machine specific pseudo-ops 241 the assembler has to support. The fields are: 242 *** Pseudo-op name without dot. 243 *** Function to call to execute this pseudo-op. 244 *** Integer arg to pass to the function. */ 245 246 const pseudo_typeS md_pseudo_table[] = 247 { 248 /* In CR16 machine, align is in bytes (not a ptwo boundary). */ 249 {"align", s_align_bytes, 0}, 250 {"long", l_cons, 4 }, 251 {0, 0, 0} 252 }; 253 254 /* CR16 relaxation table. */ 255 const relax_typeS md_relax_table[] = 256 { 257 /* bCC */ 258 {0x7f, -0x80, 2, 1}, /* 8 */ 259 {0xfffe, -0x10000, 4, 2}, /* 16 */ 260 {0xfffffe, -0x1000000, 6, 0}, /* 24 */ 261 }; 262 263 /* Return the bit size for a given operand. */ 264 265 static int 266 get_opbits (operand_type op) 267 { 268 if (op < MAX_OPRD) 269 return cr16_optab[op].bit_size; 270 271 return 0; 272 } 273 274 /* Return the argument type of a given operand. */ 275 276 static argtype 277 get_optype (operand_type op) 278 { 279 if (op < MAX_OPRD) 280 return cr16_optab[op].arg_type; 281 else 282 return nullargs; 283 } 284 285 /* Return the flags of a given operand. */ 286 287 static int 288 get_opflags (operand_type op) 289 { 290 if (op < MAX_OPRD) 291 return cr16_optab[op].flags; 292 293 return 0; 294 } 295 296 /* Get the cc code. */ 297 298 static int 299 get_cc (char *cc_name) 300 { 301 unsigned int i; 302 303 for (i = 0; i < cr16_num_cc; i++) 304 if (strcmp (cc_name, cr16_b_cond_tab[i]) == 0) 305 return i; 306 307 return -1; 308 } 309 310 /* Get the core processor register 'reg_name'. */ 311 312 static reg 313 get_register (char *reg_name) 314 { 315 const reg_entry *reg; 316 317 reg = (const reg_entry *) hash_find (reg_hash, reg_name); 318 319 if (reg != NULL) 320 return reg->value.reg_val; 321 322 return nullregister; 323 } 324 /* Get the core processor register-pair 'reg_name'. */ 325 326 static reg 327 get_register_pair (char *reg_name) 328 { 329 const reg_entry *reg; 330 char tmp_rp[16]="\0"; 331 332 /* Add '(' and ')' to the reg pair, if its not present. */ 333 if (reg_name[0] != '(') 334 { 335 tmp_rp[0] = '('; 336 strcat (tmp_rp, reg_name); 337 strcat (tmp_rp,")"); 338 reg = (const reg_entry *) hash_find (regp_hash, tmp_rp); 339 } 340 else 341 reg = (const reg_entry *) hash_find (regp_hash, reg_name); 342 343 if (reg != NULL) 344 return reg->value.reg_val; 345 346 return nullregister; 347 } 348 349 /* Get the index register 'reg_name'. */ 350 351 static reg 352 get_index_register (char *reg_name) 353 { 354 const reg_entry *reg; 355 356 reg = (const reg_entry *) hash_find (reg_hash, reg_name); 357 358 if ((reg != NULL) 359 && ((reg->value.reg_val == 12) || (reg->value.reg_val == 13))) 360 return reg->value.reg_val; 361 362 return nullregister; 363 } 364 /* Get the core processor index register-pair 'reg_name'. */ 365 366 static reg 367 get_index_register_pair (char *reg_name) 368 { 369 const reg_entry *reg; 370 371 reg = (const reg_entry *) hash_find (regp_hash, reg_name); 372 373 if (reg != NULL) 374 { 375 if ((reg->value.reg_val != 1) || (reg->value.reg_val != 7) 376 || (reg->value.reg_val != 9) || (reg->value.reg_val > 10)) 377 return reg->value.reg_val; 378 379 as_bad (_("Unknown register pair - index relative mode: `%d'"), reg->value.reg_val); 380 } 381 382 return nullregister; 383 } 384 385 /* Get the processor register 'preg_name'. */ 386 387 static preg 388 get_pregister (char *preg_name) 389 { 390 const reg_entry *preg; 391 392 preg = (const reg_entry *) hash_find (preg_hash, preg_name); 393 394 if (preg != NULL) 395 return preg->value.preg_val; 396 397 return nullpregister; 398 } 399 400 /* Get the processor register 'preg_name 32 bit'. */ 401 402 static preg 403 get_pregisterp (char *preg_name) 404 { 405 const reg_entry *preg; 406 407 preg = (const reg_entry *) hash_find (pregp_hash, preg_name); 408 409 if (preg != NULL) 410 return preg->value.preg_val; 411 412 return nullpregister; 413 } 414 415 416 /* Round up a section size to the appropriate boundary. */ 417 418 valueT 419 md_section_align (segT seg, valueT val) 420 { 421 /* Round .text section to a multiple of 2. */ 422 if (seg == text_section) 423 return (val + 1) & ~1; 424 return val; 425 } 426 427 /* Parse an operand that is machine-specific (remove '*'). */ 428 429 void 430 md_operand (expressionS * exp) 431 { 432 char c = *input_line_pointer; 433 434 switch (c) 435 { 436 case '*': 437 input_line_pointer++; 438 expression (exp); 439 break; 440 default: 441 break; 442 } 443 } 444 445 /* Reset global variables before parsing a new instruction. */ 446 447 static void 448 reset_vars (char *op) 449 { 450 cur_arg_num = relocatable = 0; 451 memset (& output_opcode, '\0', sizeof (output_opcode)); 452 453 /* Save a copy of the original OP (used in error messages). */ 454 strncpy (ins_parse, op, sizeof ins_parse - 1); 455 ins_parse [sizeof ins_parse - 1] = 0; 456 } 457 458 /* This macro decides whether a particular reloc is an entry in a 459 switch table. It is used when relaxing, because the linker needs 460 to know about all such entries so that it can adjust them if 461 necessary. */ 462 463 #define SWITCH_TABLE(fix) \ 464 ( (fix)->fx_addsy != NULL \ 465 && (fix)->fx_subsy != NULL \ 466 && S_GET_SEGMENT ((fix)->fx_addsy) == \ 467 S_GET_SEGMENT ((fix)->fx_subsy) \ 468 && S_GET_SEGMENT (fix->fx_addsy) != undefined_section \ 469 && ( (fix)->fx_r_type == BFD_RELOC_CR16_NUM8 \ 470 || (fix)->fx_r_type == BFD_RELOC_CR16_NUM16 \ 471 || (fix)->fx_r_type == BFD_RELOC_CR16_NUM32 \ 472 || (fix)->fx_r_type == BFD_RELOC_CR16_NUM32a)) 473 474 /* See whether we need to force a relocation into the output file. 475 This is used to force out switch and PC relative relocations when 476 relaxing. */ 477 478 int 479 cr16_force_relocation (fixS *fix) 480 { 481 if (generic_force_reloc (fix) || SWITCH_TABLE (fix)) 482 return 1; 483 484 return 0; 485 } 486 487 /* Record a fixup for a cons expression. */ 488 489 void 490 cr16_cons_fix_new (fragS *frag, int offset, int len, expressionS *exp) 491 { 492 int rtype; 493 switch (len) 494 { 495 default: rtype = BFD_RELOC_NONE; break; 496 case 1: rtype = BFD_RELOC_CR16_NUM8 ; break; 497 case 2: rtype = BFD_RELOC_CR16_NUM16; break; 498 case 4: 499 if (code_label) 500 { 501 rtype = BFD_RELOC_CR16_NUM32a; 502 code_label = 0; 503 } 504 else 505 rtype = BFD_RELOC_CR16_NUM32; 506 break; 507 } 508 509 fix_new_exp (frag, offset, len, exp, 0, rtype); 510 } 511 512 /* Generate a relocation entry for a fixup. */ 513 514 arelent * 515 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS * fixP) 516 { 517 arelent * reloc; 518 519 reloc = xmalloc (sizeof (arelent)); 520 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *)); 521 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixP->fx_addsy); 522 reloc->address = fixP->fx_frag->fr_address + fixP->fx_where; 523 reloc->addend = fixP->fx_offset; 524 525 if (fixP->fx_subsy != NULL) 526 { 527 if (SWITCH_TABLE (fixP)) 528 { 529 /* Keep the current difference in the addend. */ 530 reloc->addend = (S_GET_VALUE (fixP->fx_addsy) 531 - S_GET_VALUE (fixP->fx_subsy) + fixP->fx_offset); 532 533 switch (fixP->fx_r_type) 534 { 535 case BFD_RELOC_CR16_NUM8: 536 fixP->fx_r_type = BFD_RELOC_CR16_SWITCH8; 537 break; 538 case BFD_RELOC_CR16_NUM16: 539 fixP->fx_r_type = BFD_RELOC_CR16_SWITCH16; 540 break; 541 case BFD_RELOC_CR16_NUM32: 542 fixP->fx_r_type = BFD_RELOC_CR16_SWITCH32; 543 break; 544 case BFD_RELOC_CR16_NUM32a: 545 fixP->fx_r_type = BFD_RELOC_CR16_NUM32a; 546 break; 547 default: 548 abort (); 549 break; 550 } 551 } 552 else 553 { 554 /* We only resolve difference expressions in the same section. */ 555 as_bad_where (fixP->fx_file, fixP->fx_line, 556 _("can't resolve `%s' {%s section} - `%s' {%s section}"), 557 fixP->fx_addsy ? S_GET_NAME (fixP->fx_addsy) : "0", 558 segment_name (fixP->fx_addsy 559 ? S_GET_SEGMENT (fixP->fx_addsy) 560 : absolute_section), 561 S_GET_NAME (fixP->fx_subsy), 562 segment_name (S_GET_SEGMENT (fixP->fx_addsy))); 563 } 564 } 565 566 assert ((int) fixP->fx_r_type > 0); 567 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type); 568 569 if (reloc->howto == NULL) 570 { 571 as_bad_where (fixP->fx_file, fixP->fx_line, 572 _("internal error: reloc %d (`%s') not supported by object file format"), 573 fixP->fx_r_type, 574 bfd_get_reloc_code_name (fixP->fx_r_type)); 575 return NULL; 576 } 577 assert (!fixP->fx_pcrel == !reloc->howto->pc_relative); 578 579 return reloc; 580 } 581 582 /* Prepare machine-dependent frags for relaxation. */ 583 584 int 585 md_estimate_size_before_relax (fragS *fragp, asection *seg) 586 { 587 /* If symbol is undefined or located in a different section, 588 select the largest supported relocation. */ 589 relax_substateT subtype; 590 relax_substateT rlx_state[] = {0, 2}; 591 592 for (subtype = 0; subtype < ARRAY_SIZE (rlx_state); subtype += 2) 593 { 594 if (fragp->fr_subtype == rlx_state[subtype] 595 && (!S_IS_DEFINED (fragp->fr_symbol) 596 || seg != S_GET_SEGMENT (fragp->fr_symbol))) 597 { 598 fragp->fr_subtype = rlx_state[subtype + 1]; 599 break; 600 } 601 } 602 603 if (fragp->fr_subtype >= ARRAY_SIZE (md_relax_table)) 604 abort (); 605 606 return md_relax_table[fragp->fr_subtype].rlx_length; 607 } 608 609 void 610 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, fragS *fragP) 611 { 612 /* 'opcode' points to the start of the instruction, whether 613 we need to change the instruction's fixed encoding. */ 614 char *opcode = fragP->fr_literal + fragP->fr_fix; 615 bfd_reloc_code_real_type reloc; 616 617 subseg_change (sec, 0); 618 619 switch (fragP->fr_subtype) 620 { 621 case 0: 622 reloc = BFD_RELOC_CR16_DISP8; 623 break; 624 case 1: 625 /* If the subtype is not changed due to :m operand qualifier, 626 then no need to update the opcode value. */ 627 if ((int)opcode[1] != 0x18) 628 { 629 opcode[0] = (opcode[0] & 0xf0); 630 opcode[1] = 0x18; 631 } 632 reloc = BFD_RELOC_CR16_DISP16; 633 break; 634 case 2: 635 /* If the subtype is not changed due to :l operand qualifier, 636 then no need to update the opcode value. */ 637 if ((int)opcode[1] != 0) 638 { 639 opcode[2] = opcode[0]; 640 opcode[0] = opcode[1]; 641 opcode[1] = 0x0; 642 } 643 reloc = BFD_RELOC_CR16_DISP24; 644 break; 645 default: 646 abort(); 647 } 648 649 fix_new (fragP, fragP->fr_fix, 650 bfd_get_reloc_size (bfd_reloc_type_lookup (stdoutput, reloc)), 651 fragP->fr_symbol, fragP->fr_offset, 1, reloc); 652 fragP->fr_var = 0; 653 fragP->fr_fix += md_relax_table[fragP->fr_subtype].rlx_length; 654 } 655 656 /* Process machine-dependent command line options. Called once for 657 each option on the command line that the machine-independent part of 658 GAS does not understand. */ 659 660 int 661 md_parse_option (int c ATTRIBUTE_UNUSED, char *arg ATTRIBUTE_UNUSED) 662 { 663 return 0; 664 } 665 666 /* Machine-dependent usage-output. */ 667 668 void 669 md_show_usage (FILE *stream ATTRIBUTE_UNUSED) 670 { 671 return; 672 } 673 674 char * 675 md_atof (int type, char *litP, int *sizeP) 676 { 677 return ieee_md_atof (type, litP, sizeP, target_big_endian); 678 } 679 680 /* Apply a fixS (fixup of an instruction or data that we didn't have 681 enough info to complete immediately) to the data in a frag. 682 Since linkrelax is nonzero and TC_LINKRELAX_FIXUP is defined to disable 683 relaxation of debug sections, this function is called only when 684 fixuping relocations of debug sections. */ 685 686 void 687 md_apply_fix (fixS *fixP, valueT *valP, segT seg) 688 { 689 valueT val = * valP; 690 char *buf = fixP->fx_frag->fr_literal + fixP->fx_where; 691 fixP->fx_offset = 0; 692 693 switch (fixP->fx_r_type) 694 { 695 case BFD_RELOC_CR16_NUM8: 696 bfd_put_8 (stdoutput, (unsigned char) val, buf); 697 break; 698 case BFD_RELOC_CR16_NUM16: 699 bfd_put_16 (stdoutput, val, buf); 700 break; 701 case BFD_RELOC_CR16_NUM32: 702 bfd_put_32 (stdoutput, val, buf); 703 break; 704 case BFD_RELOC_CR16_NUM32a: 705 bfd_put_32 (stdoutput, val, buf); 706 break; 707 default: 708 /* We shouldn't ever get here because linkrelax is nonzero. */ 709 abort (); 710 break; 711 } 712 713 fixP->fx_done = 0; 714 715 if (fixP->fx_addsy == NULL 716 && fixP->fx_pcrel == 0) 717 fixP->fx_done = 1; 718 719 if (fixP->fx_pcrel == 1 720 && fixP->fx_addsy != NULL 721 && S_GET_SEGMENT (fixP->fx_addsy) == seg) 722 fixP->fx_done = 1; 723 } 724 725 /* The location from which a PC relative jump should be calculated, 726 given a PC relative reloc. */ 727 728 long 729 md_pcrel_from (fixS *fixp) 730 { 731 return fixp->fx_frag->fr_address + fixp->fx_where; 732 } 733 734 static void 735 initialise_reg_hash_table (struct hash_control ** hash_table, 736 const reg_entry * register_table, 737 const unsigned int num_entries) 738 { 739 const reg_entry * reg; 740 const char *hashret; 741 742 if ((* hash_table = hash_new ()) == NULL) 743 as_fatal (_("Virtual memory exhausted")); 744 745 for (reg = register_table; 746 reg < (register_table + num_entries); 747 reg++) 748 { 749 hashret = hash_insert (* hash_table, reg->name, (char *) reg); 750 if (hashret) 751 as_fatal (_("Internal Error: Can't hash %s: %s"), 752 reg->name, hashret); 753 } 754 } 755 756 /* This function is called once, at assembler startup time. This should 757 set up all the tables, etc that the MD part of the assembler needs. */ 758 759 void 760 md_begin (void) 761 { 762 int i = 0; 763 764 /* Set up a hash table for the instructions. */ 765 if ((cr16_inst_hash = hash_new ()) == NULL) 766 as_fatal (_("Virtual memory exhausted")); 767 768 while (cr16_instruction[i].mnemonic != NULL) 769 { 770 const char *hashret; 771 const char *mnemonic = cr16_instruction[i].mnemonic; 772 773 hashret = hash_insert (cr16_inst_hash, mnemonic, 774 (char *)(cr16_instruction + i)); 775 776 if (hashret != NULL && *hashret != '\0') 777 as_fatal (_("Can't hash `%s': %s\n"), cr16_instruction[i].mnemonic, 778 *hashret == 0 ? _("(unknown reason)") : hashret); 779 780 /* Insert unique names into hash table. The CR16 instruction set 781 has many identical opcode names that have different opcodes based 782 on the operands. This hash table then provides a quick index to 783 the first opcode with a particular name in the opcode table. */ 784 do 785 { 786 ++i; 787 } 788 while (cr16_instruction[i].mnemonic != NULL 789 && streq (cr16_instruction[i].mnemonic, mnemonic)); 790 } 791 792 /* Initialize reg_hash hash table. */ 793 initialise_reg_hash_table (& reg_hash, cr16_regtab, NUMREGS); 794 /* Initialize regp_hash hash table. */ 795 initialise_reg_hash_table (& regp_hash, cr16_regptab, NUMREGPS); 796 /* Initialize preg_hash hash table. */ 797 initialise_reg_hash_table (& preg_hash, cr16_pregtab, NUMPREGS); 798 /* Initialize pregp_hash hash table. */ 799 initialise_reg_hash_table (& pregp_hash, cr16_pregptab, NUMPREGPS); 800 801 /* Set linkrelax here to avoid fixups in most sections. */ 802 linkrelax = 1; 803 } 804 805 /* Process constants (immediate/absolute) 806 and labels (jump targets/Memory locations). */ 807 808 static void 809 process_label_constant (char *str, ins * cr16_ins) 810 { 811 char *saved_input_line_pointer; 812 int symbol_with_at = 0; 813 int symbol_with_s = 0; 814 int symbol_with_m = 0; 815 int symbol_with_l = 0; 816 argument *cur_arg = cr16_ins->arg + cur_arg_num; /* Current argument. */ 817 818 saved_input_line_pointer = input_line_pointer; 819 input_line_pointer = str; 820 821 expression (&cr16_ins->exp); 822 823 switch (cr16_ins->exp.X_op) 824 { 825 case O_big: 826 case O_absent: 827 /* Missing or bad expr becomes absolute 0. */ 828 as_bad (_("missing or invalid displacement expression `%s' taken as 0"), 829 str); 830 cr16_ins->exp.X_op = O_constant; 831 cr16_ins->exp.X_add_number = 0; 832 cr16_ins->exp.X_add_symbol = NULL; 833 cr16_ins->exp.X_op_symbol = NULL; 834 /* Fall through. */ 835 836 case O_constant: 837 cur_arg->X_op = O_constant; 838 cur_arg->constant = cr16_ins->exp.X_add_number; 839 break; 840 841 case O_symbol: 842 case O_subtract: 843 case O_add: 844 cur_arg->X_op = O_symbol; 845 cr16_ins->rtype = BFD_RELOC_NONE; 846 relocatable = 1; 847 848 if (strneq (input_line_pointer, "@c", 2)) 849 symbol_with_at = 1; 850 851 if (strneq (input_line_pointer, "@l", 2) 852 || strneq (input_line_pointer, ":l", 2)) 853 symbol_with_l = 1; 854 855 if (strneq (input_line_pointer, "@m", 2) 856 || strneq (input_line_pointer, ":m", 2)) 857 symbol_with_m = 1; 858 859 if (strneq (input_line_pointer, "@s", 2) 860 || strneq (input_line_pointer, ":s", 2)) 861 symbol_with_s = 1; 862 863 switch (cur_arg->type) 864 { 865 case arg_cr: 866 if (IS_INSN_TYPE (LD_STOR_INS) || IS_INSN_TYPE (CSTBIT_INS)) 867 { 868 if (cur_arg->size == 20) 869 cr16_ins->rtype = BFD_RELOC_CR16_REGREL20; 870 else 871 cr16_ins->rtype = BFD_RELOC_CR16_REGREL20a; 872 } 873 break; 874 875 case arg_crp: 876 if (IS_INSN_TYPE (LD_STOR_INS) || IS_INSN_TYPE (CSTBIT_INS)) 877 switch (instruction->size) 878 { 879 case 1: 880 switch (cur_arg->size) 881 { 882 case 0: 883 cr16_ins->rtype = BFD_RELOC_CR16_REGREL0; 884 break; 885 case 4: 886 if (IS_INSN_MNEMONIC ("loadb") || IS_INSN_MNEMONIC ("storb")) 887 cr16_ins->rtype = BFD_RELOC_CR16_REGREL4; 888 else 889 cr16_ins->rtype = BFD_RELOC_CR16_REGREL4a; 890 break; 891 default: break; 892 } 893 break; 894 case 2: 895 cr16_ins->rtype = BFD_RELOC_CR16_REGREL16; 896 break; 897 case 3: 898 if (cur_arg->size == 20) 899 cr16_ins->rtype = BFD_RELOC_CR16_REGREL20; 900 else 901 cr16_ins->rtype = BFD_RELOC_CR16_REGREL20a; 902 break; 903 default: 904 break; 905 } 906 break; 907 908 case arg_idxr: 909 if (IS_INSN_TYPE (LD_STOR_INS) || IS_INSN_TYPE (CSTBIT_INS)) 910 cr16_ins->rtype = BFD_RELOC_CR16_REGREL20; 911 break; 912 913 case arg_idxrp: 914 if (IS_INSN_TYPE (LD_STOR_INS) || IS_INSN_TYPE (CSTBIT_INS)) 915 switch (instruction->size) 916 { 917 case 1: cr16_ins->rtype = BFD_RELOC_CR16_REGREL0; break; 918 case 2: cr16_ins->rtype = BFD_RELOC_CR16_REGREL14; break; 919 case 3: cr16_ins->rtype = BFD_RELOC_CR16_REGREL20; break; 920 default: break; 921 } 922 break; 923 924 case arg_c: 925 if (IS_INSN_MNEMONIC ("bal")) 926 cr16_ins->rtype = BFD_RELOC_CR16_DISP24; 927 else if (IS_INSN_TYPE (BRANCH_INS)) 928 { 929 if (symbol_with_l) 930 cr16_ins->rtype = BFD_RELOC_CR16_DISP24; 931 else if (symbol_with_m) 932 cr16_ins->rtype = BFD_RELOC_CR16_DISP16; 933 else 934 cr16_ins->rtype = BFD_RELOC_CR16_DISP8; 935 } 936 else if (IS_INSN_TYPE (STOR_IMM_INS) || IS_INSN_TYPE (LD_STOR_INS) 937 || IS_INSN_TYPE (CSTBIT_INS)) 938 { 939 if (symbol_with_s) 940 as_bad (_("operand %d: illegal use expression: `%s`"), cur_arg_num + 1, str); 941 if (symbol_with_m) 942 cr16_ins->rtype = BFD_RELOC_CR16_ABS20; 943 else /* Default to (symbol_with_l) */ 944 cr16_ins->rtype = BFD_RELOC_CR16_ABS24; 945 } 946 else if (IS_INSN_TYPE (BRANCH_NEQ_INS)) 947 cr16_ins->rtype = BFD_RELOC_CR16_DISP4; 948 break; 949 950 case arg_ic: 951 if (IS_INSN_TYPE (ARITH_INS)) 952 { 953 if (symbol_with_s) 954 cr16_ins->rtype = BFD_RELOC_CR16_IMM4; 955 else if (symbol_with_m) 956 cr16_ins->rtype = BFD_RELOC_CR16_IMM20; 957 else if (symbol_with_at) 958 cr16_ins->rtype = BFD_RELOC_CR16_IMM32a; 959 else /* Default to (symbol_with_l) */ 960 cr16_ins->rtype = BFD_RELOC_CR16_IMM32; 961 } 962 else if (IS_INSN_TYPE (ARITH_BYTE_INS)) 963 { 964 cr16_ins->rtype = BFD_RELOC_CR16_IMM16; 965 } 966 break; 967 default: 968 break; 969 } 970 break; 971 972 default: 973 cur_arg->X_op = cr16_ins->exp.X_op; 974 break; 975 } 976 977 input_line_pointer = saved_input_line_pointer; 978 return; 979 } 980 981 /* Retrieve the opcode image of a given register. 982 If the register is illegal for the current instruction, 983 issue an error. */ 984 985 static int 986 getreg_image (reg r) 987 { 988 const reg_entry *reg; 989 char *reg_name; 990 int is_procreg = 0; /* Nonzero means argument should be processor reg. */ 991 992 /* Check whether the register is in registers table. */ 993 if (r < MAX_REG) 994 reg = cr16_regtab + r; 995 else /* Register not found. */ 996 { 997 as_bad (_("Unknown register: `%d'"), r); 998 return 0; 999 } 1000 1001 reg_name = reg->name; 1002 1003 /* Issue a error message when register is illegal. */ 1004 #define IMAGE_ERR \ 1005 as_bad (_("Illegal register (`%s') in Instruction: `%s'"), \ 1006 reg_name, ins_parse); \ 1007 break; 1008 1009 switch (reg->type) 1010 { 1011 case CR16_R_REGTYPE: 1012 if (! is_procreg) 1013 return reg->image; 1014 else 1015 IMAGE_ERR; 1016 1017 case CR16_P_REGTYPE: 1018 return reg->image; 1019 break; 1020 1021 default: 1022 IMAGE_ERR; 1023 } 1024 1025 return 0; 1026 } 1027 1028 /* Parsing different types of operands 1029 -> constants Immediate/Absolute/Relative numbers 1030 -> Labels Relocatable symbols 1031 -> (reg pair base) Register pair base 1032 -> (rbase) Register base 1033 -> disp(rbase) Register relative 1034 -> [rinx]disp(reg pair) Register index with reg pair mode 1035 -> disp(rbase,ridx,scl) Register index mode. */ 1036 1037 static void 1038 set_operand (char *operand, ins * cr16_ins) 1039 { 1040 char *operandS; /* Pointer to start of sub-opearand. */ 1041 char *operandE; /* Pointer to end of sub-opearand. */ 1042 1043 argument *cur_arg = &cr16_ins->arg[cur_arg_num]; /* Current argument. */ 1044 1045 /* Initialize pointers. */ 1046 operandS = operandE = operand; 1047 1048 switch (cur_arg->type) 1049 { 1050 case arg_ic: /* Case $0x18. */ 1051 operandS++; 1052 case arg_c: /* Case 0x18. */ 1053 /* Set constant. */ 1054 process_label_constant (operandS, cr16_ins); 1055 1056 if (cur_arg->type != arg_ic) 1057 cur_arg->type = arg_c; 1058 break; 1059 1060 case arg_icr: /* Case $0x18(r1). */ 1061 operandS++; 1062 case arg_cr: /* Case 0x18(r1). */ 1063 /* Set displacement constant. */ 1064 while (*operandE != '(') 1065 operandE++; 1066 *operandE = '\0'; 1067 process_label_constant (operandS, cr16_ins); 1068 operandS = operandE; 1069 case arg_rbase: /* Case (r1) or (r1,r0). */ 1070 operandS++; 1071 /* Set register base. */ 1072 while (*operandE != ')') 1073 operandE++; 1074 *operandE = '\0'; 1075 if ((cur_arg->r = get_register (operandS)) == nullregister) 1076 as_bad (_("Illegal register `%s' in Instruction `%s'"), 1077 operandS, ins_parse); 1078 1079 /* set the arg->rp, if reg is "r12" or "r13" or "14" or "15" */ 1080 if ((cur_arg->type != arg_rbase) 1081 && ((getreg_image (cur_arg->r) == 12) 1082 || (getreg_image (cur_arg->r) == 13) 1083 || (getreg_image (cur_arg->r) == 14) 1084 || (getreg_image (cur_arg->r) == 15))) 1085 { 1086 cur_arg->type = arg_crp; 1087 cur_arg->rp = cur_arg->r; 1088 } 1089 break; 1090 1091 case arg_crp: /* Case 0x18(r1,r0). */ 1092 /* Set displacement constant. */ 1093 while (*operandE != '(') 1094 operandE++; 1095 *operandE = '\0'; 1096 process_label_constant (operandS, cr16_ins); 1097 operandS = operandE; 1098 operandS++; 1099 /* Set register pair base. */ 1100 while (*operandE != ')') 1101 operandE++; 1102 *operandE = '\0'; 1103 if ((cur_arg->rp = get_register_pair (operandS)) == nullregister) 1104 as_bad (_("Illegal register pair `%s' in Instruction `%s'"), 1105 operandS, ins_parse); 1106 break; 1107 1108 case arg_idxr: 1109 /* Set register pair base. */ 1110 if ((strchr (operandS,'(') != NULL)) 1111 { 1112 while ((*operandE != '(') && (! ISSPACE (*operandE))) 1113 operandE++; 1114 if ((cur_arg->rp = get_index_register_pair (operandE)) == nullregister) 1115 as_bad (_("Illegal register pair `%s' in Instruction `%s'"), 1116 operandS, ins_parse); 1117 *operandE++ = '\0'; 1118 cur_arg->type = arg_idxrp; 1119 } 1120 else 1121 cur_arg->rp = -1; 1122 1123 operandE = operandS; 1124 /* Set displacement constant. */ 1125 while (*operandE != ']') 1126 operandE++; 1127 process_label_constant (++operandE, cr16_ins); 1128 *operandE++ = '\0'; 1129 operandE = operandS; 1130 1131 /* Set index register . */ 1132 operandS = strchr (operandE,'['); 1133 if (operandS != NULL) 1134 { /* Eliminate '[', detach from rest of operand. */ 1135 *operandS++ = '\0'; 1136 1137 operandE = strchr (operandS, ']'); 1138 1139 if (operandE == NULL) 1140 as_bad (_("unmatched '['")); 1141 else 1142 { /* Eliminate ']' and make sure it was the last thing 1143 in the string. */ 1144 *operandE = '\0'; 1145 if (*(operandE + 1) != '\0') 1146 as_bad (_("garbage after index spec ignored")); 1147 } 1148 } 1149 1150 if ((cur_arg->i_r = get_index_register (operandS)) == nullregister) 1151 as_bad (_("Illegal register `%s' in Instruction `%s'"), 1152 operandS, ins_parse); 1153 *operandE = '\0'; 1154 *operandS = '\0'; 1155 break; 1156 1157 default: 1158 break; 1159 } 1160 } 1161 1162 /* Parse a single operand. 1163 operand - Current operand to parse. 1164 cr16_ins - Current assembled instruction. */ 1165 1166 static void 1167 parse_operand (char *operand, ins * cr16_ins) 1168 { 1169 int ret_val; 1170 argument *cur_arg = cr16_ins->arg + cur_arg_num; /* Current argument. */ 1171 1172 /* Initialize the type to NULL before parsing. */ 1173 cur_arg->type = nullargs; 1174 1175 /* Check whether this is a condition code . */ 1176 if ((IS_INSN_MNEMONIC ("b")) && ((ret_val = get_cc (operand)) != -1)) 1177 { 1178 cur_arg->type = arg_cc; 1179 cur_arg->cc = ret_val; 1180 cur_arg->X_op = O_register; 1181 return; 1182 } 1183 1184 /* Check whether this is a general processor register. */ 1185 if ((ret_val = get_register (operand)) != nullregister) 1186 { 1187 cur_arg->type = arg_r; 1188 cur_arg->r = ret_val; 1189 cur_arg->X_op = 0; 1190 return; 1191 } 1192 1193 /* Check whether this is a general processor register pair. */ 1194 if ((operand[0] == '(') 1195 && ((ret_val = get_register_pair (operand)) != nullregister)) 1196 { 1197 cur_arg->type = arg_rp; 1198 cur_arg->rp = ret_val; 1199 cur_arg->X_op = O_register; 1200 return; 1201 } 1202 1203 /* Check whether the operand is a processor register. 1204 For "lprd" and "sprd" instruction, only 32 bit 1205 processor registers used. */ 1206 if (!(IS_INSN_MNEMONIC ("lprd") || (IS_INSN_MNEMONIC ("sprd"))) 1207 && ((ret_val = get_pregister (operand)) != nullpregister)) 1208 { 1209 cur_arg->type = arg_pr; 1210 cur_arg->pr = ret_val; 1211 cur_arg->X_op = O_register; 1212 return; 1213 } 1214 1215 /* Check whether this is a processor register - 32 bit. */ 1216 if ((ret_val = get_pregisterp (operand)) != nullpregister) 1217 { 1218 cur_arg->type = arg_prp; 1219 cur_arg->prp = ret_val; 1220 cur_arg->X_op = O_register; 1221 return; 1222 } 1223 1224 /* Deal with special characters. */ 1225 switch (operand[0]) 1226 { 1227 case '$': 1228 if (strchr (operand, '(') != NULL) 1229 cur_arg->type = arg_icr; 1230 else 1231 cur_arg->type = arg_ic; 1232 goto set_params; 1233 break; 1234 1235 case '(': 1236 cur_arg->type = arg_rbase; 1237 goto set_params; 1238 break; 1239 1240 case '[': 1241 cur_arg->type = arg_idxr; 1242 goto set_params; 1243 break; 1244 1245 default: 1246 break; 1247 } 1248 1249 if (strchr (operand, '(') != NULL) 1250 { 1251 if (strchr (operand, ',') != NULL 1252 && (strchr (operand, ',') > strchr (operand, '('))) 1253 cur_arg->type = arg_crp; 1254 else 1255 cur_arg->type = arg_cr; 1256 } 1257 else 1258 cur_arg->type = arg_c; 1259 1260 /* Parse an operand according to its type. */ 1261 set_params: 1262 cur_arg->constant = 0; 1263 set_operand (operand, cr16_ins); 1264 } 1265 1266 /* Parse the various operands. Each operand is then analyzed to fillup 1267 the fields in the cr16_ins data structure. */ 1268 1269 static void 1270 parse_operands (ins * cr16_ins, char *operands) 1271 { 1272 char *operandS; /* Operands string. */ 1273 char *operandH, *operandT; /* Single operand head/tail pointers. */ 1274 int allocated = 0; /* Indicates a new operands string was allocated.*/ 1275 char *operand[MAX_OPERANDS];/* Separating the operands. */ 1276 int op_num = 0; /* Current operand number we are parsing. */ 1277 int bracket_flag = 0; /* Indicates a bracket '(' was found. */ 1278 int sq_bracket_flag = 0; /* Indicates a square bracket '[' was found. */ 1279 1280 /* Preprocess the list of registers, if necessary. */ 1281 operandS = operandH = operandT = operands; 1282 1283 while (*operandT != '\0') 1284 { 1285 if (*operandT == ',' && bracket_flag != 1 && sq_bracket_flag != 1) 1286 { 1287 *operandT++ = '\0'; 1288 operand[op_num++] = strdup (operandH); 1289 operandH = operandT; 1290 continue; 1291 } 1292 1293 if (*operandT == ' ') 1294 as_bad (_("Illegal operands (whitespace): `%s'"), ins_parse); 1295 1296 if (*operandT == '(') 1297 bracket_flag = 1; 1298 else if (*operandT == '[') 1299 sq_bracket_flag = 1; 1300 1301 if (*operandT == ')') 1302 { 1303 if (bracket_flag) 1304 bracket_flag = 0; 1305 else 1306 as_fatal (_("Missing matching brackets : `%s'"), ins_parse); 1307 } 1308 else if (*operandT == ']') 1309 { 1310 if (sq_bracket_flag) 1311 sq_bracket_flag = 0; 1312 else 1313 as_fatal (_("Missing matching brackets : `%s'"), ins_parse); 1314 } 1315 1316 if (bracket_flag == 1 && *operandT == ')') 1317 bracket_flag = 0; 1318 else if (sq_bracket_flag == 1 && *operandT == ']') 1319 sq_bracket_flag = 0; 1320 1321 operandT++; 1322 } 1323 1324 /* Adding the last operand. */ 1325 operand[op_num++] = strdup (operandH); 1326 cr16_ins->nargs = op_num; 1327 1328 /* Verifying correct syntax of operands (all brackets should be closed). */ 1329 if (bracket_flag || sq_bracket_flag) 1330 as_fatal (_("Missing matching brackets : `%s'"), ins_parse); 1331 1332 /* Now we parse each operand separately. */ 1333 for (op_num = 0; op_num < cr16_ins->nargs; op_num++) 1334 { 1335 cur_arg_num = op_num; 1336 parse_operand (operand[op_num], cr16_ins); 1337 free (operand[op_num]); 1338 } 1339 1340 if (allocated) 1341 free (operandS); 1342 } 1343 1344 /* Get the trap index in dispatch table, given its name. 1345 This routine is used by assembling the 'excp' instruction. */ 1346 1347 static int 1348 gettrap (char *s) 1349 { 1350 const trap_entry *trap; 1351 1352 for (trap = cr16_traps; trap < (cr16_traps + NUMTRAPS); trap++) 1353 if (strcasecmp (trap->name, s) == 0) 1354 return trap->entry; 1355 1356 /* To make compatable with CR16 4.1 tools, the below 3-lines of 1357 * code added. Refer: Development Tracker item #123 */ 1358 for (trap = cr16_traps; trap < (cr16_traps + NUMTRAPS); trap++) 1359 if (trap->entry == (unsigned int) atoi (s)) 1360 return trap->entry; 1361 1362 as_bad (_("Unknown exception: `%s'"), s); 1363 return 0; 1364 } 1365 1366 /* Top level module where instruction parsing starts. 1367 cr16_ins - data structure holds some information. 1368 operands - holds the operands part of the whole instruction. */ 1369 1370 static void 1371 parse_insn (ins *insn, char *operands) 1372 { 1373 int i; 1374 1375 /* Handle instructions with no operands. */ 1376 for (i = 0; cr16_no_op_insn[i] != NULL; i++) 1377 { 1378 if (streq (cr16_no_op_insn[i], instruction->mnemonic)) 1379 { 1380 insn->nargs = 0; 1381 return; 1382 } 1383 } 1384 1385 /* Handle 'excp' instructions. */ 1386 if (IS_INSN_MNEMONIC ("excp")) 1387 { 1388 insn->nargs = 1; 1389 insn->arg[0].type = arg_ic; 1390 insn->arg[0].constant = gettrap (operands); 1391 insn->arg[0].X_op = O_constant; 1392 return; 1393 } 1394 1395 if (operands != NULL) 1396 parse_operands (insn, operands); 1397 } 1398 1399 /* bCC instruction requires special handling. */ 1400 static char * 1401 get_b_cc (char * op) 1402 { 1403 unsigned int i; 1404 char op1[5]; 1405 1406 for (i = 1; i < strlen (op); i++) 1407 op1[i-1] = op[i]; 1408 1409 op1[i-1] = '\0'; 1410 1411 for (i = 0; i < cr16_num_cc ; i++) 1412 if (streq (op1, cr16_b_cond_tab[i])) 1413 return (char *) cr16_b_cond_tab[i]; 1414 1415 return NULL; 1416 } 1417 1418 /* bCC instruction requires special handling. */ 1419 static int 1420 is_bcc_insn (char * op) 1421 { 1422 if (!(streq (op, "bal") || streq (op, "beq0b") || streq (op, "bnq0b") 1423 || streq (op, "beq0w") || streq (op, "bnq0w"))) 1424 if ((op[0] == 'b') && (get_b_cc (op) != NULL)) 1425 return 1; 1426 return 0; 1427 } 1428 1429 /* Cinv instruction requires special handling. */ 1430 1431 static int 1432 check_cinv_options (char * operand) 1433 { 1434 char *p = operand; 1435 int i_used = 0, u_used = 0, d_used = 0; 1436 1437 while (*++p != ']') 1438 { 1439 if (*p == ',' || *p == ' ') 1440 continue; 1441 1442 else if (*p == 'i') 1443 i_used = 1; 1444 else if (*p == 'u') 1445 u_used = 1; 1446 else if (*p == 'd') 1447 d_used = 1; 1448 else 1449 as_bad (_("Illegal `cinv' parameter: `%c'"), *p); 1450 } 1451 1452 return 0; 1453 } 1454 1455 /* Retrieve the opcode image of a given register pair. 1456 If the register is illegal for the current instruction, 1457 issue an error. */ 1458 1459 static int 1460 getregp_image (reg r) 1461 { 1462 const reg_entry *reg; 1463 char *reg_name; 1464 1465 /* Check whether the register is in registers table. */ 1466 if (r < MAX_REG) 1467 reg = cr16_regptab + r; 1468 /* Register not found. */ 1469 else 1470 { 1471 as_bad (_("Unknown register pair: `%d'"), r); 1472 return 0; 1473 } 1474 1475 reg_name = reg->name; 1476 1477 /* Issue a error message when register pair is illegal. */ 1478 #define RPAIR_IMAGE_ERR \ 1479 as_bad (_("Illegal register pair (`%s') in Instruction: `%s'"), \ 1480 reg_name, ins_parse); \ 1481 break; 1482 1483 switch (reg->type) 1484 { 1485 case CR16_RP_REGTYPE: 1486 return reg->image; 1487 default: 1488 RPAIR_IMAGE_ERR; 1489 } 1490 1491 return 0; 1492 } 1493 1494 /* Retrieve the opcode image of a given index register pair. 1495 If the register is illegal for the current instruction, 1496 issue an error. */ 1497 1498 static int 1499 getidxregp_image (reg r) 1500 { 1501 const reg_entry *reg; 1502 char *reg_name; 1503 1504 /* Check whether the register is in registers table. */ 1505 if (r < MAX_REG) 1506 reg = cr16_regptab + r; 1507 /* Register not found. */ 1508 else 1509 { 1510 as_bad (_("Unknown register pair: `%d'"), r); 1511 return 0; 1512 } 1513 1514 reg_name = reg->name; 1515 1516 /* Issue a error message when register pair is illegal. */ 1517 #define IDX_RPAIR_IMAGE_ERR \ 1518 as_bad (_("Illegal index register pair (`%s') in Instruction: `%s'"), \ 1519 reg_name, ins_parse); \ 1520 1521 if (reg->type == CR16_RP_REGTYPE) 1522 { 1523 switch (reg->image) 1524 { 1525 case 0: return 0; break; 1526 case 2: return 1; break; 1527 case 4: return 2; break; 1528 case 6: return 3; break; 1529 case 8: return 4; break; 1530 case 10: return 5; break; 1531 case 3: return 6; break; 1532 case 5: return 7; break; 1533 default: 1534 break; 1535 } 1536 } 1537 1538 IDX_RPAIR_IMAGE_ERR; 1539 return 0; 1540 } 1541 1542 /* Retrieve the opcode image of a given processort register. 1543 If the register is illegal for the current instruction, 1544 issue an error. */ 1545 static int 1546 getprocreg_image (reg r) 1547 { 1548 const reg_entry *reg; 1549 char *reg_name; 1550 1551 /* Check whether the register is in registers table. */ 1552 if (r < MAX_PREG) 1553 reg = &cr16_pregtab[r - MAX_REG]; 1554 /* Register not found. */ 1555 else 1556 { 1557 as_bad (_("Unknown processor register : `%d'"), r); 1558 return 0; 1559 } 1560 1561 reg_name = reg->name; 1562 1563 /* Issue a error message when register pair is illegal. */ 1564 #define PROCREG_IMAGE_ERR \ 1565 as_bad (_("Illegal processor register (`%s') in Instruction: `%s'"), \ 1566 reg_name, ins_parse); \ 1567 break; 1568 1569 switch (reg->type) 1570 { 1571 case CR16_P_REGTYPE: 1572 return reg->image; 1573 default: 1574 PROCREG_IMAGE_ERR; 1575 } 1576 1577 return 0; 1578 } 1579 1580 /* Retrieve the opcode image of a given processort register. 1581 If the register is illegal for the current instruction, 1582 issue an error. */ 1583 static int 1584 getprocregp_image (reg r) 1585 { 1586 const reg_entry *reg; 1587 char *reg_name; 1588 int pregptab_disp = 0; 1589 1590 /* Check whether the register is in registers table. */ 1591 if (r < MAX_PREG) 1592 { 1593 r = r - MAX_REG; 1594 switch (r) 1595 { 1596 case 4: pregptab_disp = 1; break; 1597 case 6: pregptab_disp = 2; break; 1598 case 8: 1599 case 9: 1600 case 10: 1601 pregptab_disp = 3; break; 1602 case 12: 1603 pregptab_disp = 4; break; 1604 case 14: 1605 pregptab_disp = 5; break; 1606 default: break; 1607 } 1608 reg = &cr16_pregptab[r - pregptab_disp]; 1609 } 1610 /* Register not found. */ 1611 else 1612 { 1613 as_bad (_("Unknown processor register (32 bit) : `%d'"), r); 1614 return 0; 1615 } 1616 1617 reg_name = reg->name; 1618 1619 /* Issue a error message when register pair is illegal. */ 1620 #define PROCREGP_IMAGE_ERR \ 1621 as_bad (_("Illegal 32 bit - processor register (`%s') in Instruction: `%s'"),\ 1622 reg_name, ins_parse); \ 1623 break; 1624 1625 switch (reg->type) 1626 { 1627 case CR16_P_REGTYPE: 1628 return reg->image; 1629 default: 1630 PROCREGP_IMAGE_ERR; 1631 } 1632 1633 return 0; 1634 } 1635 1636 /* Routine used to represent integer X using NBITS bits. */ 1637 1638 static long 1639 getconstant (long x, int nbits) 1640 { 1641 /* The following expression avoids overflow if 1642 'nbits' is the number of bits in 'bfd_vma'. */ 1643 return (x & ((((1 << (nbits - 1)) - 1) << 1) | 1)); 1644 } 1645 1646 /* Print a constant value to 'output_opcode': 1647 ARG holds the operand's type and value. 1648 SHIFT represents the location of the operand to be print into. 1649 NBITS determines the size (in bits) of the constant. */ 1650 1651 static void 1652 print_constant (int nbits, int shift, argument *arg) 1653 { 1654 unsigned long mask = 0; 1655 1656 long constant = getconstant (arg->constant, nbits); 1657 1658 switch (nbits) 1659 { 1660 case 32: 1661 case 28: 1662 /* mask the upper part of the constant, that is, the bits 1663 going to the lowest byte of output_opcode[0]. 1664 The upper part of output_opcode[1] is always filled, 1665 therefore it is always masked with 0xFFFF. */ 1666 mask = (1 << (nbits - 16)) - 1; 1667 /* Divide the constant between two consecutive words : 1668 0 1 2 3 1669 +---------+---------+---------+---------+ 1670 | | X X X X | x X x X | | 1671 +---------+---------+---------+---------+ 1672 output_opcode[0] output_opcode[1] */ 1673 1674 CR16_PRINT (0, (constant >> WORD_SHIFT) & mask, 0); 1675 CR16_PRINT (1, (constant & 0xFFFF), WORD_SHIFT); 1676 break; 1677 1678 case 21: 1679 if ((nbits == 21) && (IS_INSN_TYPE (LD_STOR_INS))) nbits = 20; 1680 case 24: 1681 case 22: 1682 case 20: 1683 /* mask the upper part of the constant, that is, the bits 1684 going to the lowest byte of output_opcode[0]. 1685 The upper part of output_opcode[1] is always filled, 1686 therefore it is always masked with 0xFFFF. */ 1687 mask = (1 << (nbits - 16)) - 1; 1688 /* Divide the constant between two consecutive words : 1689 0 1 2 3 1690 +---------+---------+---------+---------+ 1691 | | X X X X | - X - X | | 1692 +---------+---------+---------+---------+ 1693 output_opcode[0] output_opcode[1] */ 1694 1695 if ((instruction->size > 2) && (shift == WORD_SHIFT)) 1696 { 1697 if (arg->type == arg_idxrp) 1698 { 1699 CR16_PRINT (0, ((constant >> WORD_SHIFT) & mask) << 8, 0); 1700 CR16_PRINT (1, (constant & 0xFFFF), WORD_SHIFT); 1701 } 1702 else 1703 { 1704 CR16_PRINT (0, (((((constant >> WORD_SHIFT) & mask) << 8) & 0x0f00) | ((((constant >> WORD_SHIFT) & mask) >> 4) & 0xf)),0); 1705 CR16_PRINT (1, (constant & 0xFFFF), WORD_SHIFT); 1706 } 1707 } 1708 else 1709 CR16_PRINT (0, constant, shift); 1710 break; 1711 1712 case 14: 1713 if (arg->type == arg_idxrp) 1714 { 1715 if (instruction->size == 2) 1716 { 1717 CR16_PRINT (0, ((constant) & 0xf), shift); /* 0-3 bits. */ 1718 CR16_PRINT (0, ((constant >> 4) & 0x3), (shift + 20)); /* 4-5 bits. */ 1719 CR16_PRINT (0, ((constant >> 6) & 0x3), (shift + 14)); /* 6-7 bits. */ 1720 CR16_PRINT (0, ((constant >> 8) & 0x3f), (shift + 8)); /* 8-13 bits. */ 1721 } 1722 else 1723 CR16_PRINT (0, constant, shift); 1724 } 1725 break; 1726 1727 case 16: 1728 case 12: 1729 /* When instruction size is 3 and 'shift' is 16, a 16-bit constant is 1730 always filling the upper part of output_opcode[1]. If we mistakenly 1731 write it to output_opcode[0], the constant prefix (that is, 'match') 1732 will be overriden. 1733 0 1 2 3 1734 +---------+---------+---------+---------+ 1735 | 'match' | | X X X X | | 1736 +---------+---------+---------+---------+ 1737 output_opcode[0] output_opcode[1] */ 1738 1739 if ((instruction->size > 2) && (shift == WORD_SHIFT)) 1740 CR16_PRINT (1, constant, WORD_SHIFT); 1741 else 1742 CR16_PRINT (0, constant, shift); 1743 break; 1744 1745 case 8: 1746 CR16_PRINT (0, ((constant / 2) & 0xf), shift); 1747 CR16_PRINT (0, ((constant / 2) >> 4), (shift + 8)); 1748 break; 1749 1750 default: 1751 CR16_PRINT (0, constant, shift); 1752 break; 1753 } 1754 } 1755 1756 /* Print an operand to 'output_opcode', which later on will be 1757 printed to the object file: 1758 ARG holds the operand's type, size and value. 1759 SHIFT represents the printing location of operand. 1760 NBITS determines the size (in bits) of a constant operand. */ 1761 1762 static void 1763 print_operand (int nbits, int shift, argument *arg) 1764 { 1765 switch (arg->type) 1766 { 1767 case arg_cc: 1768 CR16_PRINT (0, arg->cc, shift); 1769 break; 1770 1771 case arg_r: 1772 CR16_PRINT (0, getreg_image (arg->r), shift); 1773 break; 1774 1775 case arg_rp: 1776 CR16_PRINT (0, getregp_image (arg->rp), shift); 1777 break; 1778 1779 case arg_pr: 1780 CR16_PRINT (0, getprocreg_image (arg->pr), shift); 1781 break; 1782 1783 case arg_prp: 1784 CR16_PRINT (0, getprocregp_image (arg->prp), shift); 1785 break; 1786 1787 case arg_idxrp: 1788 /* 16 12 8 6 0 1789 +-----------------------------+ 1790 | r_index | disp | rp_base | 1791 +-----------------------------+ */ 1792 1793 if (instruction->size == 3) 1794 { 1795 CR16_PRINT (0, getidxregp_image (arg->rp), 0); 1796 if (getreg_image (arg->i_r) == 12) 1797 CR16_PRINT (0, 0, 3); 1798 else 1799 CR16_PRINT (0, 1, 3); 1800 } 1801 else 1802 { 1803 CR16_PRINT (0, getidxregp_image (arg->rp), 16); 1804 if (getreg_image (arg->i_r) == 12) 1805 CR16_PRINT (0, 0, 19); 1806 else 1807 CR16_PRINT (0, 1, 19); 1808 } 1809 print_constant (nbits, shift, arg); 1810 break; 1811 1812 case arg_idxr: 1813 if (getreg_image (arg->i_r) == 12) 1814 if (IS_INSN_MNEMONIC ("cbitb") || IS_INSN_MNEMONIC ("sbitb") 1815 || IS_INSN_MNEMONIC ("tbitb")) 1816 CR16_PRINT (0, 0, 23); 1817 else CR16_PRINT (0, 0, 24); 1818 else 1819 if (IS_INSN_MNEMONIC ("cbitb") || IS_INSN_MNEMONIC ("sbitb") 1820 || IS_INSN_MNEMONIC ("tbitb")) 1821 CR16_PRINT (0, 1, 23); 1822 else CR16_PRINT (0, 1, 24); 1823 1824 print_constant (nbits, shift, arg); 1825 break; 1826 1827 case arg_ic: 1828 case arg_c: 1829 print_constant (nbits, shift, arg); 1830 break; 1831 1832 case arg_rbase: 1833 CR16_PRINT (0, getreg_image (arg->r), shift); 1834 break; 1835 1836 case arg_cr: 1837 print_constant (nbits, shift , arg); 1838 /* Add the register argument to the output_opcode. */ 1839 CR16_PRINT (0, getreg_image (arg->r), (shift+16)); 1840 break; 1841 1842 case arg_crp: 1843 print_constant (nbits, shift , arg); 1844 if (instruction->size > 1) 1845 CR16_PRINT (0, getregp_image (arg->rp), (shift + 16)); 1846 else if (IS_INSN_TYPE (LD_STOR_INS) || (IS_INSN_TYPE (CSTBIT_INS))) 1847 { 1848 if (instruction->size == 2) 1849 CR16_PRINT (0, getregp_image (arg->rp), (shift - 8)); 1850 else if (instruction->size == 1) 1851 CR16_PRINT (0, getregp_image (arg->rp), 16); 1852 } 1853 else 1854 CR16_PRINT (0, getregp_image (arg->rp), shift); 1855 break; 1856 1857 default: 1858 break; 1859 } 1860 } 1861 1862 /* Retrieve the number of operands for the current assembled instruction. */ 1863 1864 static int 1865 get_number_of_operands (void) 1866 { 1867 int i; 1868 1869 for (i = 0; instruction->operands[i].op_type && i < MAX_OPERANDS; i++) 1870 ; 1871 return i; 1872 } 1873 1874 /* Verify that the number NUM can be represented in BITS bits (that is, 1875 within its permitted range), based on the instruction's FLAGS. 1876 If UPDATE is nonzero, update the value of NUM if necessary. 1877 Return OP_LEGAL upon success, actual error type upon failure. */ 1878 1879 static op_err 1880 check_range (long *num, int bits, int unsigned flags, int update) 1881 { 1882 long min, max; 1883 int retval = OP_LEGAL; 1884 long value = *num; 1885 1886 if (bits == 0 && value > 0) return OP_OUT_OF_RANGE; 1887 1888 /* For hosts witah longs bigger than 32-bits make sure that the top 1889 bits of a 32-bit negative value read in by the parser are set, 1890 so that the correct comparisons are made. */ 1891 if (value & 0x80000000) 1892 value |= (-1L << 31); 1893 1894 1895 /* Verify operand value is even. */ 1896 if (flags & OP_EVEN) 1897 { 1898 if (value % 2) 1899 return OP_NOT_EVEN; 1900 } 1901 1902 if (flags & OP_DEC) 1903 { 1904 value -= 1; 1905 if (update) 1906 *num = value; 1907 } 1908 1909 if (flags & OP_SHIFT) 1910 { 1911 value >>= 1; 1912 if (update) 1913 *num = value; 1914 } 1915 else if (flags & OP_SHIFT_DEC) 1916 { 1917 value = (value >> 1) - 1; 1918 if (update) 1919 *num = value; 1920 } 1921 1922 if (flags & OP_ABS20) 1923 { 1924 if (value > 0xEFFFF) 1925 return OP_OUT_OF_RANGE; 1926 } 1927 1928 if (flags & OP_ESC) 1929 { 1930 if (value == 0xB || value == 0x9) 1931 return OP_OUT_OF_RANGE; 1932 else if (value == -1) 1933 { 1934 if (update) 1935 *num = 9; 1936 return retval; 1937 } 1938 } 1939 1940 if (flags & OP_ESC1) 1941 { 1942 if (value > 13) 1943 return OP_OUT_OF_RANGE; 1944 } 1945 1946 if (flags & OP_SIGNED) 1947 { 1948 max = (1 << (bits - 1)) - 1; 1949 min = - (1 << (bits - 1)); 1950 if ((value > max) || (value < min)) 1951 retval = OP_OUT_OF_RANGE; 1952 } 1953 else if (flags & OP_UNSIGNED) 1954 { 1955 max = ((((1 << (bits - 1)) - 1) << 1) | 1); 1956 min = 0; 1957 if (((unsigned long) value > (unsigned long) max) 1958 || ((unsigned long) value < (unsigned long) min)) 1959 retval = OP_OUT_OF_RANGE; 1960 } 1961 else if (flags & OP_NEG) 1962 { 1963 max = - 1; 1964 min = - ((1 << (bits - 1)) - 1); 1965 if ((value > max) || (value < min)) 1966 retval = OP_OUT_OF_RANGE; 1967 } 1968 return retval; 1969 } 1970 1971 /* Bunch of error checkings. 1972 The checks are made after a matching instruction was found. */ 1973 1974 static void 1975 warn_if_needed (ins *insn) 1976 { 1977 /* If the post-increment address mode is used and the load/store 1978 source register is the same as rbase, the result of the 1979 instruction is undefined. */ 1980 if (IS_INSN_TYPE (LD_STOR_INS_INC)) 1981 { 1982 /* Enough to verify that one of the arguments is a simple reg. */ 1983 if ((insn->arg[0].type == arg_r) || (insn->arg[1].type == arg_r)) 1984 if (insn->arg[0].r == insn->arg[1].r) 1985 as_bad (_("Same src/dest register is used (`r%d'), result is undefined"), insn->arg[0].r); 1986 } 1987 1988 if (IS_INSN_MNEMONIC ("pop") 1989 || IS_INSN_MNEMONIC ("push") 1990 || IS_INSN_MNEMONIC ("popret")) 1991 { 1992 unsigned int count = insn->arg[0].constant, reg_val; 1993 1994 /* Check if count operand caused to save/retrive the RA twice 1995 to generate warning message. */ 1996 if (insn->nargs > 2) 1997 { 1998 reg_val = getreg_image (insn->arg[1].r); 1999 2000 if ( ((reg_val == 9) && (count > 7)) 2001 || ((reg_val == 10) && (count > 6)) 2002 || ((reg_val == 11) && (count > 5)) 2003 || ((reg_val == 12) && (count > 4)) 2004 || ((reg_val == 13) && (count > 2)) 2005 || ((reg_val == 14) && (count > 0))) 2006 as_warn (_("RA register is saved twice.")); 2007 2008 /* Check if the third operand is "RA" or "ra" */ 2009 if (!(((insn->arg[2].r) == ra) || ((insn->arg[2].r) == RA))) 2010 as_bad (_("`%s' Illegal use of registers."), ins_parse); 2011 } 2012 2013 if (insn->nargs > 1) 2014 { 2015 reg_val = getreg_image (insn->arg[1].r); 2016 2017 /* If register is a register pair ie r12/r13/r14 in operand1, then 2018 the count constant should be validated. */ 2019 if (((reg_val == 11) && (count > 7)) 2020 || ((reg_val == 12) && (count > 6)) 2021 || ((reg_val == 13) && (count > 4)) 2022 || ((reg_val == 14) && (count > 2)) 2023 || ((reg_val == 15) && (count > 0))) 2024 as_bad (_("`%s' Illegal count-register combination."), ins_parse); 2025 } 2026 else 2027 { 2028 /* Check if the operand is "RA" or "ra" */ 2029 if (!(((insn->arg[0].r) == ra) || ((insn->arg[0].r) == RA))) 2030 as_bad (_("`%s' Illegal use of register."), ins_parse); 2031 } 2032 } 2033 2034 /* Some instruction assume the stack pointer as rptr operand. 2035 Issue an error when the register to be loaded is also SP. */ 2036 if (instruction->flags & NO_SP) 2037 { 2038 if (getreg_image (insn->arg[1].r) == getreg_image (sp)) 2039 as_bad (_("`%s' has undefined result"), ins_parse); 2040 } 2041 2042 /* If the rptr register is specified as one of the registers to be loaded, 2043 the final contents of rptr are undefined. Thus, we issue an error. */ 2044 if (instruction->flags & NO_RPTR) 2045 { 2046 if ((1 << getreg_image (insn->arg[0].r)) & insn->arg[1].constant) 2047 as_bad (_("Same src/dest register is used (`r%d'),result is undefined"), 2048 getreg_image (insn->arg[0].r)); 2049 } 2050 } 2051 2052 /* In some cases, we need to adjust the instruction pointer although a 2053 match was already found. Here, we gather all these cases. 2054 Returns 1 if instruction pointer was adjusted, otherwise 0. */ 2055 2056 static int 2057 adjust_if_needed (ins *insn ATTRIBUTE_UNUSED) 2058 { 2059 int ret_value = 0; 2060 2061 if ((IS_INSN_TYPE (CSTBIT_INS)) || (IS_INSN_TYPE (LD_STOR_INS))) 2062 { 2063 if ((instruction->operands[0].op_type == abs24) 2064 && ((insn->arg[0].constant) > 0xF00000)) 2065 { 2066 insn->arg[0].constant &= 0xFFFFF; 2067 instruction--; 2068 ret_value = 1; 2069 } 2070 } 2071 2072 return ret_value; 2073 } 2074 2075 /* Assemble a single instruction: 2076 INSN is already parsed (that is, all operand values and types are set). 2077 For instruction to be assembled, we need to find an appropriate template in 2078 the instruction table, meeting the following conditions: 2079 1: Has the same number of operands. 2080 2: Has the same operand types. 2081 3: Each operand size is sufficient to represent the instruction's values. 2082 Returns 1 upon success, 0 upon failure. */ 2083 2084 static int 2085 assemble_insn (char *mnemonic, ins *insn) 2086 { 2087 /* Type of each operand in the current template. */ 2088 argtype cur_type[MAX_OPERANDS]; 2089 /* Size (in bits) of each operand in the current template. */ 2090 unsigned int cur_size[MAX_OPERANDS]; 2091 /* Flags of each operand in the current template. */ 2092 unsigned int cur_flags[MAX_OPERANDS]; 2093 /* Instruction type to match. */ 2094 unsigned int ins_type; 2095 /* Boolean flag to mark whether a match was found. */ 2096 int match = 0; 2097 int i; 2098 /* Nonzero if an instruction with same number of operands was found. */ 2099 int found_same_number_of_operands = 0; 2100 /* Nonzero if an instruction with same argument types was found. */ 2101 int found_same_argument_types = 0; 2102 /* Nonzero if a constant was found within the required range. */ 2103 int found_const_within_range = 0; 2104 /* Argument number of an operand with invalid type. */ 2105 int invalid_optype = -1; 2106 /* Argument number of an operand with invalid constant value. */ 2107 int invalid_const = -1; 2108 /* Operand error (used for issuing various constant error messages). */ 2109 op_err op_error, const_err = OP_LEGAL; 2110 2111 /* Retrieve data (based on FUNC) for each operand of a given instruction. */ 2112 #define GET_CURRENT_DATA(FUNC, ARRAY) \ 2113 for (i = 0; i < insn->nargs; i++) \ 2114 ARRAY[i] = FUNC (instruction->operands[i].op_type) 2115 2116 #define GET_CURRENT_TYPE GET_CURRENT_DATA (get_optype, cur_type) 2117 #define GET_CURRENT_SIZE GET_CURRENT_DATA (get_opbits, cur_size) 2118 #define GET_CURRENT_FLAGS GET_CURRENT_DATA (get_opflags, cur_flags) 2119 2120 /* Instruction has no operands -> only copy the constant opcode. */ 2121 if (insn->nargs == 0) 2122 { 2123 output_opcode[0] = BIN (instruction->match, instruction->match_bits); 2124 return 1; 2125 } 2126 2127 /* In some case, same mnemonic can appear with different instruction types. 2128 For example, 'storb' is supported with 3 different types : 2129 LD_STOR_INS, LD_STOR_INS_INC, STOR_IMM_INS. 2130 We assume that when reaching this point, the instruction type was 2131 pre-determined. We need to make sure that the type stays the same 2132 during a search for matching instruction. */ 2133 ins_type = CR16_INS_TYPE (instruction->flags); 2134 2135 while (/* Check that match is still not found. */ 2136 match != 1 2137 /* Check we didn't get to end of table. */ 2138 && instruction->mnemonic != NULL 2139 /* Check that the actual mnemonic is still available. */ 2140 && IS_INSN_MNEMONIC (mnemonic) 2141 /* Check that the instruction type wasn't changed. */ 2142 && IS_INSN_TYPE (ins_type)) 2143 { 2144 /* Check whether number of arguments is legal. */ 2145 if (get_number_of_operands () != insn->nargs) 2146 goto next_insn; 2147 found_same_number_of_operands = 1; 2148 2149 /* Initialize arrays with data of each operand in current template. */ 2150 GET_CURRENT_TYPE; 2151 GET_CURRENT_SIZE; 2152 GET_CURRENT_FLAGS; 2153 2154 /* Check for type compatibility. */ 2155 for (i = 0; i < insn->nargs; i++) 2156 { 2157 if (cur_type[i] != insn->arg[i].type) 2158 { 2159 if (invalid_optype == -1) 2160 invalid_optype = i + 1; 2161 goto next_insn; 2162 } 2163 } 2164 found_same_argument_types = 1; 2165 2166 for (i = 0; i < insn->nargs; i++) 2167 { 2168 /* If 'bal' instruction size is '2' and reg operand is not 'ra' 2169 then goto next instruction. */ 2170 if (IS_INSN_MNEMONIC ("bal") && (i == 0) 2171 && (instruction->size == 2) && (insn->arg[i].rp != 14)) 2172 goto next_insn; 2173 2174 /* If 'storb' instruction with 'sp' reg and 16-bit disp of 2175 * reg-pair, leads to undifined trap, so this should use 2176 * 20-bit disp of reg-pair. */ 2177 if (IS_INSN_MNEMONIC ("storb") && (instruction->size == 2) 2178 && (insn->arg[i].r == 15) && (insn->arg[i + 1].type == arg_crp)) 2179 goto next_insn; 2180 2181 /* Only check range - don't update the constant's value, since the 2182 current instruction may not be the last we try to match. 2183 The constant's value will be updated later, right before printing 2184 it to the object file. */ 2185 if ((insn->arg[i].X_op == O_constant) 2186 && (op_error = check_range (&insn->arg[i].constant, cur_size[i], 2187 cur_flags[i], 0))) 2188 { 2189 if (invalid_const == -1) 2190 { 2191 invalid_const = i + 1; 2192 const_err = op_error; 2193 } 2194 goto next_insn; 2195 } 2196 /* For symbols, we make sure the relocation size (which was already 2197 determined) is sufficient. */ 2198 else if ((insn->arg[i].X_op == O_symbol) 2199 && ((bfd_reloc_type_lookup (stdoutput, insn->rtype))->bitsize 2200 > cur_size[i])) 2201 goto next_insn; 2202 } 2203 found_const_within_range = 1; 2204 2205 /* If we got till here -> Full match is found. */ 2206 match = 1; 2207 break; 2208 2209 /* Try again with next instruction. */ 2210 next_insn: 2211 instruction++; 2212 } 2213 2214 if (!match) 2215 { 2216 /* We haven't found a match - instruction can't be assembled. */ 2217 if (!found_same_number_of_operands) 2218 as_bad (_("Incorrect number of operands")); 2219 else if (!found_same_argument_types) 2220 as_bad (_("Illegal type of operand (arg %d)"), invalid_optype); 2221 else if (!found_const_within_range) 2222 { 2223 switch (const_err) 2224 { 2225 case OP_OUT_OF_RANGE: 2226 as_bad (_("Operand out of range (arg %d)"), invalid_const); 2227 break; 2228 case OP_NOT_EVEN: 2229 as_bad (_("Operand has odd displacement (arg %d)"), invalid_const); 2230 break; 2231 default: 2232 as_bad (_("Illegal operand (arg %d)"), invalid_const); 2233 break; 2234 } 2235 } 2236 2237 return 0; 2238 } 2239 else 2240 /* Full match - print the encoding to output file. */ 2241 { 2242 /* Make further checkings (such that couldn't be made earlier). 2243 Warn the user if necessary. */ 2244 warn_if_needed (insn); 2245 2246 /* Check whether we need to adjust the instruction pointer. */ 2247 if (adjust_if_needed (insn)) 2248 /* If instruction pointer was adjusted, we need to update 2249 the size of the current template operands. */ 2250 GET_CURRENT_SIZE; 2251 2252 for (i = 0; i < insn->nargs; i++) 2253 { 2254 int j = instruction->flags & REVERSE_MATCH ? 2255 i == 0 ? 1 : 2256 i == 1 ? 0 : i : 2257 i; 2258 2259 /* This time, update constant value before printing it. */ 2260 if ((insn->arg[j].X_op == O_constant) 2261 && (check_range (&insn->arg[j].constant, cur_size[j], 2262 cur_flags[j], 1) != OP_LEGAL)) 2263 as_fatal (_("Illegal operand (arg %d)"), j+1); 2264 } 2265 2266 /* First, copy the instruction's opcode. */ 2267 output_opcode[0] = BIN (instruction->match, instruction->match_bits); 2268 2269 for (i = 0; i < insn->nargs; i++) 2270 { 2271 /* For BAL (ra),disp17 instuction only. And also set the 2272 DISP24a relocation type. */ 2273 if (IS_INSN_MNEMONIC ("bal") && (instruction->size == 2) && i == 0) 2274 { 2275 insn->rtype = BFD_RELOC_CR16_DISP24a; 2276 continue; 2277 } 2278 cur_arg_num = i; 2279 print_operand (cur_size[i], instruction->operands[i].shift, 2280 &insn->arg[i]); 2281 } 2282 } 2283 2284 return 1; 2285 } 2286 2287 /* Print the instruction. 2288 Handle also cases where the instruction is relaxable/relocatable. */ 2289 2290 static void 2291 print_insn (ins *insn) 2292 { 2293 unsigned int i, j, insn_size; 2294 char *this_frag; 2295 unsigned short words[4]; 2296 int addr_mod; 2297 2298 /* Arrange the insn encodings in a WORD size array. */ 2299 for (i = 0, j = 0; i < 2; i++) 2300 { 2301 words[j++] = (output_opcode[i] >> 16) & 0xFFFF; 2302 words[j++] = output_opcode[i] & 0xFFFF; 2303 } 2304 2305 /* Handle relocation. */ 2306 if ((instruction->flags & RELAXABLE) && relocatable) 2307 { 2308 int relax_subtype; 2309 /* Write the maximal instruction size supported. */ 2310 insn_size = INSN_MAX_SIZE; 2311 2312 if (IS_INSN_TYPE (BRANCH_INS)) 2313 { 2314 switch (insn->rtype) 2315 { 2316 case BFD_RELOC_CR16_DISP24: 2317 relax_subtype = 2; 2318 break; 2319 case BFD_RELOC_CR16_DISP16: 2320 relax_subtype = 1; 2321 break; 2322 default: 2323 relax_subtype = 0; 2324 break; 2325 } 2326 } 2327 else 2328 abort (); 2329 2330 this_frag = frag_var (rs_machine_dependent, insn_size *2, 2331 4, relax_subtype, 2332 insn->exp.X_add_symbol, 2333 insn->exp.X_add_number, 2334 0); 2335 } 2336 else 2337 { 2338 insn_size = instruction->size; 2339 this_frag = frag_more (insn_size * 2); 2340 2341 if ((relocatable) && (insn->rtype != BFD_RELOC_NONE)) 2342 { 2343 reloc_howto_type *reloc_howto; 2344 int size; 2345 2346 reloc_howto = bfd_reloc_type_lookup (stdoutput, insn->rtype); 2347 2348 if (!reloc_howto) 2349 abort (); 2350 2351 size = bfd_get_reloc_size (reloc_howto); 2352 2353 if (size < 1 || size > 4) 2354 abort (); 2355 2356 fix_new_exp (frag_now, this_frag - frag_now->fr_literal, 2357 size, &insn->exp, reloc_howto->pc_relative, 2358 insn->rtype); 2359 } 2360 } 2361 2362 /* Verify a 2-byte code alignment. */ 2363 addr_mod = frag_now_fix () & 1; 2364 if (frag_now->has_code && frag_now->insn_addr != addr_mod) 2365 as_bad (_("instruction address is not a multiple of 2")); 2366 frag_now->insn_addr = addr_mod; 2367 frag_now->has_code = 1; 2368 2369 /* Write the instruction encoding to frag. */ 2370 for (i = 0; i < insn_size; i++) 2371 { 2372 md_number_to_chars (this_frag, (valueT) words[i], 2); 2373 this_frag += 2; 2374 } 2375 } 2376 2377 /* This is the guts of the machine-dependent assembler. OP points to a 2378 machine dependent instruction. This function is supposed to emit 2379 the frags/bytes it assembles to. */ 2380 2381 void 2382 md_assemble (char *op) 2383 { 2384 ins cr16_ins; 2385 char *param, param1[32]; 2386 char c; 2387 2388 /* Reset global variables for a new instruction. */ 2389 reset_vars (op); 2390 2391 /* Strip the mnemonic. */ 2392 for (param = op; *param != 0 && !ISSPACE (*param); param++) 2393 ; 2394 c = *param; 2395 *param++ = '\0'; 2396 2397 /* bCC instuctions and adjust the mnemonic by adding extra white spaces. */ 2398 if (is_bcc_insn (op)) 2399 { 2400 strcpy (param1, get_b_cc (op)); 2401 op = "b"; 2402 strcat (param1,","); 2403 strcat (param1, param); 2404 param = (char *) ¶m1; 2405 } 2406 2407 /* Checking the cinv options and adjust the mnemonic by removing the 2408 extra white spaces. */ 2409 if (streq ("cinv", op)) 2410 { 2411 /* Validate the cinv options. */ 2412 check_cinv_options (param); 2413 strcat (op, param); 2414 } 2415 2416 /* MAPPING - SHIFT INSN, if imm4/imm16 positive values 2417 lsh[b/w] imm4/imm6, reg ==> ashu[b/w] imm4/imm16, reg 2418 as CR16 core doesn't support lsh[b/w] right shift operaions. */ 2419 if ((streq ("lshb", op) || streq ("lshw", op) || streq ("lshd", op)) 2420 && (param [0] == '$')) 2421 { 2422 strcpy (param1, param); 2423 /* Find the instruction. */ 2424 instruction = (const inst *) hash_find (cr16_inst_hash, op); 2425 parse_operands (&cr16_ins, param1); 2426 if (((&cr16_ins)->arg[0].type == arg_ic) 2427 && ((&cr16_ins)->arg[0].constant >= 0)) 2428 { 2429 if (streq ("lshb", op)) 2430 op = "ashub"; 2431 else if (streq ("lshd", op)) 2432 op = "ashud"; 2433 else 2434 op = "ashuw"; 2435 } 2436 } 2437 2438 /* Find the instruction. */ 2439 instruction = (const inst *) hash_find (cr16_inst_hash, op); 2440 if (instruction == NULL) 2441 { 2442 as_bad (_("Unknown opcode: `%s'"), op); 2443 return; 2444 } 2445 2446 /* Tie dwarf2 debug info to the address at the start of the insn. */ 2447 dwarf2_emit_insn (0); 2448 2449 /* Parse the instruction's operands. */ 2450 parse_insn (&cr16_ins, param); 2451 2452 /* Assemble the instruction - return upon failure. */ 2453 if (assemble_insn (op, &cr16_ins) == 0) 2454 return; 2455 2456 /* Print the instruction. */ 2457 print_insn (&cr16_ins); 2458 } 2459