xref: /netbsd-src/external/gpl3/binutils/dist/gas/atof-generic.c (revision a5847cc334d9a7029f6352b847e9e8d71a0f9e0c)
1 /* atof_generic.c - turn a string of digits into a Flonum
2    Copyright 1987, 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999, 2000,
3    2001, 2003, 2005, 2006, 2007, 2009 Free Software Foundation, Inc.
4 
5    This file is part of GAS, the GNU Assembler.
6 
7    GAS is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3, or (at your option)
10    any later version.
11 
12    GAS is distributed in the hope that it will be useful, but WITHOUT
13    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15    License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with GAS; see the file COPYING.  If not, write to the Free
19    Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
20    02110-1301, USA.  */
21 
22 #include "as.h"
23 #include "safe-ctype.h"
24 
25 #ifndef FALSE
26 #define FALSE (0)
27 #endif
28 #ifndef TRUE
29 #define TRUE  (1)
30 #endif
31 
32 #ifdef TRACE
33 static void flonum_print (const FLONUM_TYPE *);
34 #endif
35 
36 #define ASSUME_DECIMAL_MARK_IS_DOT
37 
38 /***********************************************************************\
39  *									*
40  *	Given a string of decimal digits , with optional decimal	*
41  *	mark and optional decimal exponent (place value) of the		*
42  *	lowest_order decimal digit: produce a floating point		*
43  *	number. The number is 'generic' floating point: our		*
44  *	caller will encode it for a specific machine architecture.	*
45  *									*
46  *	Assumptions							*
47  *		uses base (radix) 2					*
48  *		this machine uses 2's complement binary integers	*
49  *		target flonums use "      "         "       "		*
50  *		target flonums exponents fit in a long			*
51  *									*
52  \***********************************************************************/
53 
54 /*
55 
56   Syntax:
57 
58   <flonum> ::= <optional-sign> <decimal-number> <optional-exponent>
59   <optional-sign> ::= '+' | '-' | {empty}
60   <decimal-number> ::= <integer>
61   | <integer> <radix-character>
62   | <integer> <radix-character> <integer>
63   | <radix-character> <integer>
64 
65   <optional-exponent> ::= {empty}
66   | <exponent-character> <optional-sign> <integer>
67 
68   <integer> ::= <digit> | <digit> <integer>
69   <digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
70   <exponent-character> ::= {one character from "string_of_decimal_exponent_marks"}
71   <radix-character> ::= {one character from "string_of_decimal_marks"}
72 
73   */
74 
75 int
76 atof_generic (/* return pointer to just AFTER number we read.  */
77 	      char **address_of_string_pointer,
78 	      /* At most one per number.  */
79 	      const char *string_of_decimal_marks,
80 	      const char *string_of_decimal_exponent_marks,
81 	      FLONUM_TYPE *address_of_generic_floating_point_number)
82 {
83   int return_value;		/* 0 means OK.  */
84   char *first_digit;
85   unsigned int number_of_digits_before_decimal;
86   unsigned int number_of_digits_after_decimal;
87   long decimal_exponent;
88   unsigned int number_of_digits_available;
89   char digits_sign_char;
90 
91   /*
92    * Scan the input string, abstracting (1)digits (2)decimal mark (3) exponent.
93    * It would be simpler to modify the string, but we don't; just to be nice
94    * to caller.
95    * We need to know how many digits we have, so we can allocate space for
96    * the digits' value.
97    */
98 
99   char *p;
100   char c;
101   int seen_significant_digit;
102 
103 #ifdef ASSUME_DECIMAL_MARK_IS_DOT
104   gas_assert (string_of_decimal_marks[0] == '.'
105 	  && string_of_decimal_marks[1] == 0);
106 #define IS_DECIMAL_MARK(c)	((c) == '.')
107 #else
108 #define IS_DECIMAL_MARK(c)	(0 != strchr (string_of_decimal_marks, (c)))
109 #endif
110 
111   first_digit = *address_of_string_pointer;
112   c = *first_digit;
113 
114   if (c == '-' || c == '+')
115     {
116       digits_sign_char = c;
117       first_digit++;
118     }
119   else
120     digits_sign_char = '+';
121 
122   switch (first_digit[0])
123     {
124     case 's':
125     case 'S':
126       if (!strncasecmp ("snan", first_digit, 4))
127 	{
128 	  address_of_generic_floating_point_number->sign = 0;
129 	  address_of_generic_floating_point_number->exponent = 0;
130 	  address_of_generic_floating_point_number->leader =
131 	    address_of_generic_floating_point_number->low;
132 	  *address_of_string_pointer = first_digit + 4;
133 	  return 0;
134 	}
135       break;
136 
137     case 'q':
138     case 'Q':
139       if (!strncasecmp ("qnan", first_digit, 4))
140 	{
141 	  address_of_generic_floating_point_number->sign = 0;
142 	  address_of_generic_floating_point_number->exponent = 0;
143 	  address_of_generic_floating_point_number->leader =
144 	    address_of_generic_floating_point_number->low;
145 	  *address_of_string_pointer = first_digit + 4;
146 	  return 0;
147 	}
148       break;
149 
150     case 'n':
151     case 'N':
152       if (!strncasecmp ("nan", first_digit, 3))
153 	{
154 	  address_of_generic_floating_point_number->sign = 0;
155 	  address_of_generic_floating_point_number->exponent = 0;
156 	  address_of_generic_floating_point_number->leader =
157 	    address_of_generic_floating_point_number->low;
158 	  *address_of_string_pointer = first_digit + 3;
159 	  return 0;
160 	}
161       break;
162 
163     case 'i':
164     case 'I':
165       if (!strncasecmp ("inf", first_digit, 3))
166 	{
167 	  address_of_generic_floating_point_number->sign =
168 	    digits_sign_char == '+' ? 'P' : 'N';
169 	  address_of_generic_floating_point_number->exponent = 0;
170 	  address_of_generic_floating_point_number->leader =
171 	    address_of_generic_floating_point_number->low;
172 
173 	  first_digit += 3;
174 	  if (!strncasecmp ("inity", first_digit, 5))
175 	    first_digit += 5;
176 
177 	  *address_of_string_pointer = first_digit;
178 
179 	  return 0;
180 	}
181       break;
182     }
183 
184   number_of_digits_before_decimal = 0;
185   number_of_digits_after_decimal = 0;
186   decimal_exponent = 0;
187   seen_significant_digit = 0;
188   for (p = first_digit;
189        (((c = *p) != '\0')
190 	&& (!c || !IS_DECIMAL_MARK (c))
191 	&& (!c || !strchr (string_of_decimal_exponent_marks, c)));
192        p++)
193     {
194       if (ISDIGIT (c))
195 	{
196 	  if (seen_significant_digit || c > '0')
197 	    {
198 	      ++number_of_digits_before_decimal;
199 	      seen_significant_digit = 1;
200 	    }
201 	  else
202 	    {
203 	      first_digit++;
204 	    }
205 	}
206       else
207 	{
208 	  break;		/* p -> char after pre-decimal digits.  */
209 	}
210     }				/* For each digit before decimal mark.  */
211 
212 #ifndef OLD_FLOAT_READS
213   /* Ignore trailing 0's after the decimal point.  The original code here
214    * (ifdef'd out) does not do this, and numbers like
215    *	4.29496729600000000000e+09	(2**31)
216    * come out inexact for some reason related to length of the digit
217    * string.
218    */
219   if (c && IS_DECIMAL_MARK (c))
220     {
221       unsigned int zeros = 0;	/* Length of current string of zeros */
222 
223       for (p++; (c = *p) && ISDIGIT (c); p++)
224 	{
225 	  if (c == '0')
226 	    {
227 	      zeros++;
228 	    }
229 	  else
230 	    {
231 	      number_of_digits_after_decimal += 1 + zeros;
232 	      zeros = 0;
233 	    }
234 	}
235     }
236 #else
237   if (c && IS_DECIMAL_MARK (c))
238     {
239       for (p++;
240 	   (((c = *p) != '\0')
241 	    && (!c || !strchr (string_of_decimal_exponent_marks, c)));
242 	   p++)
243 	{
244 	  if (ISDIGIT (c))
245 	    {
246 	      /* This may be retracted below.  */
247 	      number_of_digits_after_decimal++;
248 
249 	      if ( /* seen_significant_digit || */ c > '0')
250 		{
251 		  seen_significant_digit = TRUE;
252 		}
253 	    }
254 	  else
255 	    {
256 	      if (!seen_significant_digit)
257 		{
258 		  number_of_digits_after_decimal = 0;
259 		}
260 	      break;
261 	    }
262 	}			/* For each digit after decimal mark.  */
263     }
264 
265   while (number_of_digits_after_decimal
266 	 && first_digit[number_of_digits_before_decimal
267 			+ number_of_digits_after_decimal] == '0')
268     --number_of_digits_after_decimal;
269 #endif
270 
271   if (flag_m68k_mri)
272     {
273       while (c == '_')
274 	c = *++p;
275     }
276   if (c && strchr (string_of_decimal_exponent_marks, c))
277     {
278       char digits_exponent_sign_char;
279 
280       c = *++p;
281       if (flag_m68k_mri)
282 	{
283 	  while (c == '_')
284 	    c = *++p;
285 	}
286       if (c && strchr ("+-", c))
287 	{
288 	  digits_exponent_sign_char = c;
289 	  c = *++p;
290 	}
291       else
292 	{
293 	  digits_exponent_sign_char = '+';
294 	}
295 
296       for (; (c); c = *++p)
297 	{
298 	  if (ISDIGIT (c))
299 	    {
300 	      decimal_exponent = decimal_exponent * 10 + c - '0';
301 	      /*
302 	       * BUG! If we overflow here, we lose!
303 	       */
304 	    }
305 	  else
306 	    {
307 	      break;
308 	    }
309 	}
310 
311       if (digits_exponent_sign_char == '-')
312 	{
313 	  decimal_exponent = -decimal_exponent;
314 	}
315     }
316 
317   *address_of_string_pointer = p;
318 
319   number_of_digits_available =
320     number_of_digits_before_decimal + number_of_digits_after_decimal;
321   return_value = 0;
322   if (number_of_digits_available == 0)
323     {
324       address_of_generic_floating_point_number->exponent = 0;	/* Not strictly necessary */
325       address_of_generic_floating_point_number->leader
326 	= -1 + address_of_generic_floating_point_number->low;
327       address_of_generic_floating_point_number->sign = digits_sign_char;
328       /* We have just concocted (+/-)0.0E0 */
329 
330     }
331   else
332     {
333       int count;		/* Number of useful digits left to scan.  */
334 
335       LITTLENUM_TYPE *digits_binary_low;
336       unsigned int precision;
337       unsigned int maximum_useful_digits;
338       unsigned int number_of_digits_to_use;
339       unsigned int more_than_enough_bits_for_digits;
340       unsigned int more_than_enough_littlenums_for_digits;
341       unsigned int size_of_digits_in_littlenums;
342       unsigned int size_of_digits_in_chars;
343       FLONUM_TYPE power_of_10_flonum;
344       FLONUM_TYPE digits_flonum;
345 
346       precision = (address_of_generic_floating_point_number->high
347 		   - address_of_generic_floating_point_number->low
348 		   + 1);	/* Number of destination littlenums.  */
349 
350       /* Includes guard bits (two littlenums worth) */
351       maximum_useful_digits = (((precision - 2))
352 			       * ( (LITTLENUM_NUMBER_OF_BITS))
353 			       * 1000000 / 3321928)
354 	+ 2;			/* 2 :: guard digits.  */
355 
356       if (number_of_digits_available > maximum_useful_digits)
357 	{
358 	  number_of_digits_to_use = maximum_useful_digits;
359 	}
360       else
361 	{
362 	  number_of_digits_to_use = number_of_digits_available;
363 	}
364 
365       /* Cast these to SIGNED LONG first, otherwise, on systems with
366 	 LONG wider than INT (such as Alpha OSF/1), unsignedness may
367 	 cause unexpected results.  */
368       decimal_exponent += ((long) number_of_digits_before_decimal
369 			   - (long) number_of_digits_to_use);
370 
371       more_than_enough_bits_for_digits
372 	= (number_of_digits_to_use * 3321928 / 1000000 + 1);
373 
374       more_than_enough_littlenums_for_digits
375 	= (more_than_enough_bits_for_digits
376 	   / LITTLENUM_NUMBER_OF_BITS)
377 	+ 2;
378 
379       /* Compute (digits) part. In "12.34E56" this is the "1234" part.
380 	 Arithmetic is exact here. If no digits are supplied then this
381 	 part is a 0 valued binary integer.  Allocate room to build up
382 	 the binary number as littlenums.  We want this memory to
383 	 disappear when we leave this function.  Assume no alignment
384 	 problems => (room for n objects) == n * (room for 1
385 	 object).  */
386 
387       size_of_digits_in_littlenums = more_than_enough_littlenums_for_digits;
388       size_of_digits_in_chars = size_of_digits_in_littlenums
389 	* sizeof (LITTLENUM_TYPE);
390 
391       digits_binary_low = (LITTLENUM_TYPE *)
392 	alloca (size_of_digits_in_chars);
393 
394       memset ((char *) digits_binary_low, '\0', size_of_digits_in_chars);
395 
396       /* Digits_binary_low[] is allocated and zeroed.  */
397 
398       /*
399        * Parse the decimal digits as if * digits_low was in the units position.
400        * Emit a binary number into digits_binary_low[].
401        *
402        * Use a large-precision version of:
403        * (((1st-digit) * 10 + 2nd-digit) * 10 + 3rd-digit ...) * 10 + last-digit
404        */
405 
406       for (p = first_digit, count = number_of_digits_to_use; count; p++, --count)
407 	{
408 	  c = *p;
409 	  if (ISDIGIT (c))
410 	    {
411 	      /*
412 	       * Multiply by 10. Assume can never overflow.
413 	       * Add this digit to digits_binary_low[].
414 	       */
415 
416 	      long carry;
417 	      LITTLENUM_TYPE *littlenum_pointer;
418 	      LITTLENUM_TYPE *littlenum_limit;
419 
420 	      littlenum_limit = digits_binary_low
421 		+ more_than_enough_littlenums_for_digits
422 		- 1;
423 
424 	      carry = c - '0';	/* char -> binary */
425 
426 	      for (littlenum_pointer = digits_binary_low;
427 		   littlenum_pointer <= littlenum_limit;
428 		   littlenum_pointer++)
429 		{
430 		  long work;
431 
432 		  work = carry + 10 * (long) (*littlenum_pointer);
433 		  *littlenum_pointer = work & LITTLENUM_MASK;
434 		  carry = work >> LITTLENUM_NUMBER_OF_BITS;
435 		}
436 
437 	      if (carry != 0)
438 		{
439 		  /*
440 		   * We have a GROSS internal error.
441 		   * This should never happen.
442 		   */
443 		  as_fatal (_("failed sanity check"));
444 		}
445 	    }
446 	  else
447 	    {
448 	      ++count;		/* '.' doesn't alter digits used count.  */
449 	    }
450 	}
451 
452       /*
453        * Digits_binary_low[] properly encodes the value of the digits.
454        * Forget about any high-order littlenums that are 0.
455        */
456       while (digits_binary_low[size_of_digits_in_littlenums - 1] == 0
457 	     && size_of_digits_in_littlenums >= 2)
458 	size_of_digits_in_littlenums--;
459 
460       digits_flonum.low = digits_binary_low;
461       digits_flonum.high = digits_binary_low + size_of_digits_in_littlenums - 1;
462       digits_flonum.leader = digits_flonum.high;
463       digits_flonum.exponent = 0;
464       /*
465        * The value of digits_flonum . sign should not be important.
466        * We have already decided the output's sign.
467        * We trust that the sign won't influence the other parts of the number!
468        * So we give it a value for these reasons:
469        * (1) courtesy to humans reading/debugging
470        *     these numbers so they don't get excited about strange values
471        * (2) in future there may be more meaning attached to sign,
472        *     and what was
473        *     harmless noise may become disruptive, ill-conditioned (or worse)
474        *     input.
475        */
476       digits_flonum.sign = '+';
477 
478       {
479 	/*
480 	 * Compute the mantssa (& exponent) of the power of 10.
481 	 * If successful, then multiply the power of 10 by the digits
482 	 * giving return_binary_mantissa and return_binary_exponent.
483 	 */
484 
485 	LITTLENUM_TYPE *power_binary_low;
486 	int decimal_exponent_is_negative;
487 	/* This refers to the "-56" in "12.34E-56".  */
488 	/* FALSE: decimal_exponent is positive (or 0) */
489 	/* TRUE:  decimal_exponent is negative */
490 	FLONUM_TYPE temporary_flonum;
491 	LITTLENUM_TYPE *temporary_binary_low;
492 	unsigned int size_of_power_in_littlenums;
493 	unsigned int size_of_power_in_chars;
494 
495 	size_of_power_in_littlenums = precision;
496 	/* Precision has a built-in fudge factor so we get a few guard bits.  */
497 
498 	decimal_exponent_is_negative = decimal_exponent < 0;
499 	if (decimal_exponent_is_negative)
500 	  {
501 	    decimal_exponent = -decimal_exponent;
502 	  }
503 
504 	/* From now on: the decimal exponent is > 0. Its sign is separate.  */
505 
506 	size_of_power_in_chars = size_of_power_in_littlenums
507 	  * sizeof (LITTLENUM_TYPE) + 2;
508 
509 	power_binary_low = (LITTLENUM_TYPE *) alloca (size_of_power_in_chars);
510 	temporary_binary_low = (LITTLENUM_TYPE *) alloca (size_of_power_in_chars);
511 	memset ((char *) power_binary_low, '\0', size_of_power_in_chars);
512 	*power_binary_low = 1;
513 	power_of_10_flonum.exponent = 0;
514 	power_of_10_flonum.low = power_binary_low;
515 	power_of_10_flonum.leader = power_binary_low;
516 	power_of_10_flonum.high = power_binary_low + size_of_power_in_littlenums - 1;
517 	power_of_10_flonum.sign = '+';
518 	temporary_flonum.low = temporary_binary_low;
519 	temporary_flonum.high = temporary_binary_low + size_of_power_in_littlenums - 1;
520 	/*
521 	 * (power) == 1.
522 	 * Space for temporary_flonum allocated.
523 	 */
524 
525 	/*
526 	 * ...
527 	 *
528 	 * WHILE	more bits
529 	 * DO	find next bit (with place value)
530 	 *	multiply into power mantissa
531 	 * OD
532 	 */
533 	{
534 	  int place_number_limit;
535 	  /* Any 10^(2^n) whose "n" exceeds this */
536 	  /* value will fall off the end of */
537 	  /* flonum_XXXX_powers_of_ten[].  */
538 	  int place_number;
539 	  const FLONUM_TYPE *multiplicand;	/* -> 10^(2^n) */
540 
541 	  place_number_limit = table_size_of_flonum_powers_of_ten;
542 
543 	  multiplicand = (decimal_exponent_is_negative
544 			  ? flonum_negative_powers_of_ten
545 			  : flonum_positive_powers_of_ten);
546 
547 	  for (place_number = 1;/* Place value of this bit of exponent.  */
548 	       decimal_exponent;/* Quit when no more 1 bits in exponent.  */
549 	       decimal_exponent >>= 1, place_number++)
550 	    {
551 	      if (decimal_exponent & 1)
552 		{
553 		  if (place_number > place_number_limit)
554 		    {
555 		      /* The decimal exponent has a magnitude so great
556 			 that our tables can't help us fragment it.
557 			 Although this routine is in error because it
558 			 can't imagine a number that big, signal an
559 			 error as if it is the user's fault for
560 			 presenting such a big number.  */
561 		      return_value = ERROR_EXPONENT_OVERFLOW;
562 		      /* quit out of loop gracefully */
563 		      decimal_exponent = 0;
564 		    }
565 		  else
566 		    {
567 #ifdef TRACE
568 		      printf ("before multiply, place_number = %d., power_of_10_flonum:\n",
569 			      place_number);
570 
571 		      flonum_print (&power_of_10_flonum);
572 		      (void) putchar ('\n');
573 #endif
574 #ifdef TRACE
575 		      printf ("multiplier:\n");
576 		      flonum_print (multiplicand + place_number);
577 		      (void) putchar ('\n');
578 #endif
579 		      flonum_multip (multiplicand + place_number,
580 				     &power_of_10_flonum, &temporary_flonum);
581 #ifdef TRACE
582 		      printf ("after multiply:\n");
583 		      flonum_print (&temporary_flonum);
584 		      (void) putchar ('\n');
585 #endif
586 		      flonum_copy (&temporary_flonum, &power_of_10_flonum);
587 #ifdef TRACE
588 		      printf ("after copy:\n");
589 		      flonum_print (&power_of_10_flonum);
590 		      (void) putchar ('\n');
591 #endif
592 		    } /* If this bit of decimal_exponent was computable.*/
593 		} /* If this bit of decimal_exponent was set.  */
594 	    } /* For each bit of binary representation of exponent */
595 #ifdef TRACE
596 	  printf ("after computing power_of_10_flonum:\n");
597 	  flonum_print (&power_of_10_flonum);
598 	  (void) putchar ('\n');
599 #endif
600 	}
601 
602       }
603 
604       /*
605        * power_of_10_flonum is power of ten in binary (mantissa) , (exponent).
606        * It may be the number 1, in which case we don't NEED to multiply.
607        *
608        * Multiply (decimal digits) by power_of_10_flonum.
609        */
610 
611       flonum_multip (&power_of_10_flonum, &digits_flonum, address_of_generic_floating_point_number);
612       /* Assert sign of the number we made is '+'.  */
613       address_of_generic_floating_point_number->sign = digits_sign_char;
614 
615     }
616   return return_value;
617 }
618 
619 #ifdef TRACE
620 static void
621 flonum_print (f)
622      const FLONUM_TYPE *f;
623 {
624   LITTLENUM_TYPE *lp;
625   char littlenum_format[10];
626   sprintf (littlenum_format, " %%0%dx", sizeof (LITTLENUM_TYPE) * 2);
627 #define print_littlenum(LP)	(printf (littlenum_format, LP))
628   printf ("flonum @%p %c e%ld", f, f->sign, f->exponent);
629   if (f->low < f->high)
630     for (lp = f->high; lp >= f->low; lp--)
631       print_littlenum (*lp);
632   else
633     for (lp = f->low; lp <= f->high; lp++)
634       print_littlenum (*lp);
635   printf ("\n");
636   fflush (stdout);
637 }
638 #endif
639 
640 /* end of atof_generic.c */
641