xref: /netbsd-src/external/gpl3/binutils/dist/gas/atof-generic.c (revision 5f4eaf394b6f0907d2595dda08113fa31178492c)
1 /* atof_generic.c - turn a string of digits into a Flonum
2    Copyright (C) 1987-2015 Free Software Foundation, Inc.
3 
4    This file is part of GAS, the GNU Assembler.
5 
6    GAS is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3, or (at your option)
9    any later version.
10 
11    GAS is distributed in the hope that it will be useful, but WITHOUT
12    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
14    License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with GAS; see the file COPYING.  If not, write to the Free
18    Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19    02110-1301, USA.  */
20 
21 #include "as.h"
22 #include "safe-ctype.h"
23 
24 #ifndef FALSE
25 #define FALSE (0)
26 #endif
27 #ifndef TRUE
28 #define TRUE  (1)
29 #endif
30 
31 #ifdef TRACE
32 static void flonum_print (const FLONUM_TYPE *);
33 #endif
34 
35 #define ASSUME_DECIMAL_MARK_IS_DOT
36 
37 /***********************************************************************\
38  *									*
39  *	Given a string of decimal digits , with optional decimal	*
40  *	mark and optional decimal exponent (place value) of the		*
41  *	lowest_order decimal digit: produce a floating point		*
42  *	number. The number is 'generic' floating point: our		*
43  *	caller will encode it for a specific machine architecture.	*
44  *									*
45  *	Assumptions							*
46  *		uses base (radix) 2					*
47  *		this machine uses 2's complement binary integers	*
48  *		target flonums use "      "         "       "		*
49  *		target flonums exponents fit in a long			*
50  *									*
51  \***********************************************************************/
52 
53 /*
54 
55   Syntax:
56 
57   <flonum> ::= <optional-sign> <decimal-number> <optional-exponent>
58   <optional-sign> ::= '+' | '-' | {empty}
59   <decimal-number> ::= <integer>
60   | <integer> <radix-character>
61   | <integer> <radix-character> <integer>
62   | <radix-character> <integer>
63 
64   <optional-exponent> ::= {empty}
65   | <exponent-character> <optional-sign> <integer>
66 
67   <integer> ::= <digit> | <digit> <integer>
68   <digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
69   <exponent-character> ::= {one character from "string_of_decimal_exponent_marks"}
70   <radix-character> ::= {one character from "string_of_decimal_marks"}
71 
72   */
73 
74 int
75 atof_generic (/* return pointer to just AFTER number we read.  */
76 	      char **address_of_string_pointer,
77 	      /* At most one per number.  */
78 	      const char *string_of_decimal_marks,
79 	      const char *string_of_decimal_exponent_marks,
80 	      FLONUM_TYPE *address_of_generic_floating_point_number)
81 {
82   int return_value;		/* 0 means OK.  */
83   char *first_digit;
84   unsigned int number_of_digits_before_decimal;
85   unsigned int number_of_digits_after_decimal;
86   long decimal_exponent;
87   unsigned int number_of_digits_available;
88   char digits_sign_char;
89 
90   /*
91    * Scan the input string, abstracting (1)digits (2)decimal mark (3) exponent.
92    * It would be simpler to modify the string, but we don't; just to be nice
93    * to caller.
94    * We need to know how many digits we have, so we can allocate space for
95    * the digits' value.
96    */
97 
98   char *p;
99   char c;
100   int seen_significant_digit;
101 
102 #ifdef ASSUME_DECIMAL_MARK_IS_DOT
103   gas_assert (string_of_decimal_marks[0] == '.'
104 	  && string_of_decimal_marks[1] == 0);
105 #define IS_DECIMAL_MARK(c)	((c) == '.')
106 #else
107 #define IS_DECIMAL_MARK(c)	(0 != strchr (string_of_decimal_marks, (c)))
108 #endif
109 
110   first_digit = *address_of_string_pointer;
111   c = *first_digit;
112 
113   if (c == '-' || c == '+')
114     {
115       digits_sign_char = c;
116       first_digit++;
117     }
118   else
119     digits_sign_char = '+';
120 
121   switch (first_digit[0])
122     {
123     case 's':
124     case 'S':
125       if (!strncasecmp ("snan", first_digit, 4))
126 	{
127 	  address_of_generic_floating_point_number->sign = 0;
128 	  address_of_generic_floating_point_number->exponent = 0;
129 	  address_of_generic_floating_point_number->leader =
130 	    address_of_generic_floating_point_number->low;
131 	  *address_of_string_pointer = first_digit + 4;
132 	  return 0;
133 	}
134       break;
135 
136     case 'q':
137     case 'Q':
138       if (!strncasecmp ("qnan", first_digit, 4))
139 	{
140 	  address_of_generic_floating_point_number->sign = 0;
141 	  address_of_generic_floating_point_number->exponent = 0;
142 	  address_of_generic_floating_point_number->leader =
143 	    address_of_generic_floating_point_number->low;
144 	  *address_of_string_pointer = first_digit + 4;
145 	  return 0;
146 	}
147       break;
148 
149     case 'n':
150     case 'N':
151       if (!strncasecmp ("nan", first_digit, 3))
152 	{
153 	  address_of_generic_floating_point_number->sign = 0;
154 	  address_of_generic_floating_point_number->exponent = 0;
155 	  address_of_generic_floating_point_number->leader =
156 	    address_of_generic_floating_point_number->low;
157 	  *address_of_string_pointer = first_digit + 3;
158 	  return 0;
159 	}
160       break;
161 
162     case 'i':
163     case 'I':
164       if (!strncasecmp ("inf", first_digit, 3))
165 	{
166 	  address_of_generic_floating_point_number->sign =
167 	    digits_sign_char == '+' ? 'P' : 'N';
168 	  address_of_generic_floating_point_number->exponent = 0;
169 	  address_of_generic_floating_point_number->leader =
170 	    address_of_generic_floating_point_number->low;
171 
172 	  first_digit += 3;
173 	  if (!strncasecmp ("inity", first_digit, 5))
174 	    first_digit += 5;
175 
176 	  *address_of_string_pointer = first_digit;
177 
178 	  return 0;
179 	}
180       break;
181     }
182 
183   number_of_digits_before_decimal = 0;
184   number_of_digits_after_decimal = 0;
185   decimal_exponent = 0;
186   seen_significant_digit = 0;
187   for (p = first_digit;
188        (((c = *p) != '\0')
189 	&& (!c || !IS_DECIMAL_MARK (c))
190 	&& (!c || !strchr (string_of_decimal_exponent_marks, c)));
191        p++)
192     {
193       if (ISDIGIT (c))
194 	{
195 	  if (seen_significant_digit || c > '0')
196 	    {
197 	      ++number_of_digits_before_decimal;
198 	      seen_significant_digit = 1;
199 	    }
200 	  else
201 	    {
202 	      first_digit++;
203 	    }
204 	}
205       else
206 	{
207 	  break;		/* p -> char after pre-decimal digits.  */
208 	}
209     }				/* For each digit before decimal mark.  */
210 
211 #ifndef OLD_FLOAT_READS
212   /* Ignore trailing 0's after the decimal point.  The original code here
213    * (ifdef'd out) does not do this, and numbers like
214    *	4.29496729600000000000e+09	(2**31)
215    * come out inexact for some reason related to length of the digit
216    * string.
217    */
218   if (c && IS_DECIMAL_MARK (c))
219     {
220       unsigned int zeros = 0;	/* Length of current string of zeros */
221 
222       for (p++; (c = *p) && ISDIGIT (c); p++)
223 	{
224 	  if (c == '0')
225 	    {
226 	      zeros++;
227 	    }
228 	  else
229 	    {
230 	      number_of_digits_after_decimal += 1 + zeros;
231 	      zeros = 0;
232 	    }
233 	}
234     }
235 #else
236   if (c && IS_DECIMAL_MARK (c))
237     {
238       for (p++;
239 	   (((c = *p) != '\0')
240 	    && (!c || !strchr (string_of_decimal_exponent_marks, c)));
241 	   p++)
242 	{
243 	  if (ISDIGIT (c))
244 	    {
245 	      /* This may be retracted below.  */
246 	      number_of_digits_after_decimal++;
247 
248 	      if ( /* seen_significant_digit || */ c > '0')
249 		{
250 		  seen_significant_digit = TRUE;
251 		}
252 	    }
253 	  else
254 	    {
255 	      if (!seen_significant_digit)
256 		{
257 		  number_of_digits_after_decimal = 0;
258 		}
259 	      break;
260 	    }
261 	}			/* For each digit after decimal mark.  */
262     }
263 
264   while (number_of_digits_after_decimal
265 	 && first_digit[number_of_digits_before_decimal
266 			+ number_of_digits_after_decimal] == '0')
267     --number_of_digits_after_decimal;
268 #endif
269 
270   if (flag_m68k_mri)
271     {
272       while (c == '_')
273 	c = *++p;
274     }
275   if (c && strchr (string_of_decimal_exponent_marks, c))
276     {
277       char digits_exponent_sign_char;
278 
279       c = *++p;
280       if (flag_m68k_mri)
281 	{
282 	  while (c == '_')
283 	    c = *++p;
284 	}
285       if (c && strchr ("+-", c))
286 	{
287 	  digits_exponent_sign_char = c;
288 	  c = *++p;
289 	}
290       else
291 	{
292 	  digits_exponent_sign_char = '+';
293 	}
294 
295       for (; (c); c = *++p)
296 	{
297 	  if (ISDIGIT (c))
298 	    {
299 	      decimal_exponent = decimal_exponent * 10 + c - '0';
300 	      /*
301 	       * BUG! If we overflow here, we lose!
302 	       */
303 	    }
304 	  else
305 	    {
306 	      break;
307 	    }
308 	}
309 
310       if (digits_exponent_sign_char == '-')
311 	{
312 	  decimal_exponent = -decimal_exponent;
313 	}
314     }
315 
316   *address_of_string_pointer = p;
317 
318   number_of_digits_available =
319     number_of_digits_before_decimal + number_of_digits_after_decimal;
320   return_value = 0;
321   if (number_of_digits_available == 0)
322     {
323       address_of_generic_floating_point_number->exponent = 0;	/* Not strictly necessary */
324       address_of_generic_floating_point_number->leader
325 	= -1 + address_of_generic_floating_point_number->low;
326       address_of_generic_floating_point_number->sign = digits_sign_char;
327       /* We have just concocted (+/-)0.0E0 */
328 
329     }
330   else
331     {
332       int count;		/* Number of useful digits left to scan.  */
333 
334       LITTLENUM_TYPE *digits_binary_low;
335       unsigned int precision;
336       unsigned int maximum_useful_digits;
337       unsigned int number_of_digits_to_use;
338       unsigned int more_than_enough_bits_for_digits;
339       unsigned int more_than_enough_littlenums_for_digits;
340       unsigned int size_of_digits_in_littlenums;
341       unsigned int size_of_digits_in_chars;
342       FLONUM_TYPE power_of_10_flonum;
343       FLONUM_TYPE digits_flonum;
344 
345       precision = (address_of_generic_floating_point_number->high
346 		   - address_of_generic_floating_point_number->low
347 		   + 1);	/* Number of destination littlenums.  */
348 
349       /* Includes guard bits (two littlenums worth) */
350       maximum_useful_digits = (((precision - 2))
351 			       * ( (LITTLENUM_NUMBER_OF_BITS))
352 			       * 1000000 / 3321928)
353 	+ 2;			/* 2 :: guard digits.  */
354 
355       if (number_of_digits_available > maximum_useful_digits)
356 	{
357 	  number_of_digits_to_use = maximum_useful_digits;
358 	}
359       else
360 	{
361 	  number_of_digits_to_use = number_of_digits_available;
362 	}
363 
364       /* Cast these to SIGNED LONG first, otherwise, on systems with
365 	 LONG wider than INT (such as Alpha OSF/1), unsignedness may
366 	 cause unexpected results.  */
367       decimal_exponent += ((long) number_of_digits_before_decimal
368 			   - (long) number_of_digits_to_use);
369 
370       more_than_enough_bits_for_digits
371 	= (number_of_digits_to_use * 3321928 / 1000000 + 1);
372 
373       more_than_enough_littlenums_for_digits
374 	= (more_than_enough_bits_for_digits
375 	   / LITTLENUM_NUMBER_OF_BITS)
376 	+ 2;
377 
378       /* Compute (digits) part. In "12.34E56" this is the "1234" part.
379 	 Arithmetic is exact here. If no digits are supplied then this
380 	 part is a 0 valued binary integer.  Allocate room to build up
381 	 the binary number as littlenums.  We want this memory to
382 	 disappear when we leave this function.  Assume no alignment
383 	 problems => (room for n objects) == n * (room for 1
384 	 object).  */
385 
386       size_of_digits_in_littlenums = more_than_enough_littlenums_for_digits;
387       size_of_digits_in_chars = size_of_digits_in_littlenums
388 	* sizeof (LITTLENUM_TYPE);
389 
390       digits_binary_low = (LITTLENUM_TYPE *)
391 	alloca (size_of_digits_in_chars);
392 
393       memset ((char *) digits_binary_low, '\0', size_of_digits_in_chars);
394 
395       /* Digits_binary_low[] is allocated and zeroed.  */
396 
397       /*
398        * Parse the decimal digits as if * digits_low was in the units position.
399        * Emit a binary number into digits_binary_low[].
400        *
401        * Use a large-precision version of:
402        * (((1st-digit) * 10 + 2nd-digit) * 10 + 3rd-digit ...) * 10 + last-digit
403        */
404 
405       for (p = first_digit, count = number_of_digits_to_use; count; p++, --count)
406 	{
407 	  c = *p;
408 	  if (ISDIGIT (c))
409 	    {
410 	      /*
411 	       * Multiply by 10. Assume can never overflow.
412 	       * Add this digit to digits_binary_low[].
413 	       */
414 
415 	      long carry;
416 	      LITTLENUM_TYPE *littlenum_pointer;
417 	      LITTLENUM_TYPE *littlenum_limit;
418 
419 	      littlenum_limit = digits_binary_low
420 		+ more_than_enough_littlenums_for_digits
421 		- 1;
422 
423 	      carry = c - '0';	/* char -> binary */
424 
425 	      for (littlenum_pointer = digits_binary_low;
426 		   littlenum_pointer <= littlenum_limit;
427 		   littlenum_pointer++)
428 		{
429 		  long work;
430 
431 		  work = carry + 10 * (long) (*littlenum_pointer);
432 		  *littlenum_pointer = work & LITTLENUM_MASK;
433 		  carry = work >> LITTLENUM_NUMBER_OF_BITS;
434 		}
435 
436 	      if (carry != 0)
437 		{
438 		  /*
439 		   * We have a GROSS internal error.
440 		   * This should never happen.
441 		   */
442 		  as_fatal (_("failed sanity check"));
443 		}
444 	    }
445 	  else
446 	    {
447 	      ++count;		/* '.' doesn't alter digits used count.  */
448 	    }
449 	}
450 
451       /*
452        * Digits_binary_low[] properly encodes the value of the digits.
453        * Forget about any high-order littlenums that are 0.
454        */
455       while (digits_binary_low[size_of_digits_in_littlenums - 1] == 0
456 	     && size_of_digits_in_littlenums >= 2)
457 	size_of_digits_in_littlenums--;
458 
459       digits_flonum.low = digits_binary_low;
460       digits_flonum.high = digits_binary_low + size_of_digits_in_littlenums - 1;
461       digits_flonum.leader = digits_flonum.high;
462       digits_flonum.exponent = 0;
463       /*
464        * The value of digits_flonum . sign should not be important.
465        * We have already decided the output's sign.
466        * We trust that the sign won't influence the other parts of the number!
467        * So we give it a value for these reasons:
468        * (1) courtesy to humans reading/debugging
469        *     these numbers so they don't get excited about strange values
470        * (2) in future there may be more meaning attached to sign,
471        *     and what was
472        *     harmless noise may become disruptive, ill-conditioned (or worse)
473        *     input.
474        */
475       digits_flonum.sign = '+';
476 
477       {
478 	/*
479 	 * Compute the mantssa (& exponent) of the power of 10.
480 	 * If successful, then multiply the power of 10 by the digits
481 	 * giving return_binary_mantissa and return_binary_exponent.
482 	 */
483 
484 	LITTLENUM_TYPE *power_binary_low;
485 	int decimal_exponent_is_negative;
486 	/* This refers to the "-56" in "12.34E-56".  */
487 	/* FALSE: decimal_exponent is positive (or 0) */
488 	/* TRUE:  decimal_exponent is negative */
489 	FLONUM_TYPE temporary_flonum;
490 	LITTLENUM_TYPE *temporary_binary_low;
491 	unsigned int size_of_power_in_littlenums;
492 	unsigned int size_of_power_in_chars;
493 
494 	size_of_power_in_littlenums = precision;
495 	/* Precision has a built-in fudge factor so we get a few guard bits.  */
496 
497 	decimal_exponent_is_negative = decimal_exponent < 0;
498 	if (decimal_exponent_is_negative)
499 	  {
500 	    decimal_exponent = -decimal_exponent;
501 	  }
502 
503 	/* From now on: the decimal exponent is > 0. Its sign is separate.  */
504 
505 	size_of_power_in_chars = size_of_power_in_littlenums
506 	  * sizeof (LITTLENUM_TYPE) + 2;
507 
508 	power_binary_low = (LITTLENUM_TYPE *) alloca (size_of_power_in_chars);
509 	temporary_binary_low = (LITTLENUM_TYPE *) alloca (size_of_power_in_chars);
510 	memset ((char *) power_binary_low, '\0', size_of_power_in_chars);
511 	*power_binary_low = 1;
512 	power_of_10_flonum.exponent = 0;
513 	power_of_10_flonum.low = power_binary_low;
514 	power_of_10_flonum.leader = power_binary_low;
515 	power_of_10_flonum.high = power_binary_low + size_of_power_in_littlenums - 1;
516 	power_of_10_flonum.sign = '+';
517 	temporary_flonum.low = temporary_binary_low;
518 	temporary_flonum.high = temporary_binary_low + size_of_power_in_littlenums - 1;
519 	/*
520 	 * (power) == 1.
521 	 * Space for temporary_flonum allocated.
522 	 */
523 
524 	/*
525 	 * ...
526 	 *
527 	 * WHILE	more bits
528 	 * DO	find next bit (with place value)
529 	 *	multiply into power mantissa
530 	 * OD
531 	 */
532 	{
533 	  int place_number_limit;
534 	  /* Any 10^(2^n) whose "n" exceeds this */
535 	  /* value will fall off the end of */
536 	  /* flonum_XXXX_powers_of_ten[].  */
537 	  int place_number;
538 	  const FLONUM_TYPE *multiplicand;	/* -> 10^(2^n) */
539 
540 	  place_number_limit = table_size_of_flonum_powers_of_ten;
541 
542 	  multiplicand = (decimal_exponent_is_negative
543 			  ? flonum_negative_powers_of_ten
544 			  : flonum_positive_powers_of_ten);
545 
546 	  for (place_number = 1;/* Place value of this bit of exponent.  */
547 	       decimal_exponent;/* Quit when no more 1 bits in exponent.  */
548 	       decimal_exponent >>= 1, place_number++)
549 	    {
550 	      if (decimal_exponent & 1)
551 		{
552 		  if (place_number > place_number_limit)
553 		    {
554 		      /* The decimal exponent has a magnitude so great
555 			 that our tables can't help us fragment it.
556 			 Although this routine is in error because it
557 			 can't imagine a number that big, signal an
558 			 error as if it is the user's fault for
559 			 presenting such a big number.  */
560 		      return_value = ERROR_EXPONENT_OVERFLOW;
561 		      /* quit out of loop gracefully */
562 		      decimal_exponent = 0;
563 		    }
564 		  else
565 		    {
566 #ifdef TRACE
567 		      printf ("before multiply, place_number = %d., power_of_10_flonum:\n",
568 			      place_number);
569 
570 		      flonum_print (&power_of_10_flonum);
571 		      (void) putchar ('\n');
572 #endif
573 #ifdef TRACE
574 		      printf ("multiplier:\n");
575 		      flonum_print (multiplicand + place_number);
576 		      (void) putchar ('\n');
577 #endif
578 		      flonum_multip (multiplicand + place_number,
579 				     &power_of_10_flonum, &temporary_flonum);
580 #ifdef TRACE
581 		      printf ("after multiply:\n");
582 		      flonum_print (&temporary_flonum);
583 		      (void) putchar ('\n');
584 #endif
585 		      flonum_copy (&temporary_flonum, &power_of_10_flonum);
586 #ifdef TRACE
587 		      printf ("after copy:\n");
588 		      flonum_print (&power_of_10_flonum);
589 		      (void) putchar ('\n');
590 #endif
591 		    } /* If this bit of decimal_exponent was computable.*/
592 		} /* If this bit of decimal_exponent was set.  */
593 	    } /* For each bit of binary representation of exponent */
594 #ifdef TRACE
595 	  printf ("after computing power_of_10_flonum:\n");
596 	  flonum_print (&power_of_10_flonum);
597 	  (void) putchar ('\n');
598 #endif
599 	}
600 
601       }
602 
603       /*
604        * power_of_10_flonum is power of ten in binary (mantissa) , (exponent).
605        * It may be the number 1, in which case we don't NEED to multiply.
606        *
607        * Multiply (decimal digits) by power_of_10_flonum.
608        */
609 
610       flonum_multip (&power_of_10_flonum, &digits_flonum, address_of_generic_floating_point_number);
611       /* Assert sign of the number we made is '+'.  */
612       address_of_generic_floating_point_number->sign = digits_sign_char;
613 
614     }
615   return return_value;
616 }
617 
618 #ifdef TRACE
619 static void
620 flonum_print (f)
621      const FLONUM_TYPE *f;
622 {
623   LITTLENUM_TYPE *lp;
624   char littlenum_format[10];
625   sprintf (littlenum_format, " %%0%dx", sizeof (LITTLENUM_TYPE) * 2);
626 #define print_littlenum(LP)	(printf (littlenum_format, LP))
627   printf ("flonum @%p %c e%ld", f, f->sign, f->exponent);
628   if (f->low < f->high)
629     for (lp = f->high; lp >= f->low; lp--)
630       print_littlenum (*lp);
631   else
632     for (lp = f->low; lp <= f->high; lp++)
633       print_littlenum (*lp);
634   printf ("\n");
635   fflush (stdout);
636 }
637 #endif
638 
639 /* end of atof_generic.c */
640