xref: /netbsd-src/external/gpl3/binutils/dist/gas/atof-generic.c (revision 2d48ac808c43ea6701ba8f33cfc3645685301f79)
1 /* atof_generic.c - turn a string of digits into a Flonum
2    Copyright 1987, 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999, 2000,
3    2001, 2003, 2005, 2006, 2007 Free Software Foundation, Inc.
4 
5    This file is part of GAS, the GNU Assembler.
6 
7    GAS is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3, or (at your option)
10    any later version.
11 
12    GAS is distributed in the hope that it will be useful, but WITHOUT
13    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15    License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with GAS; see the file COPYING.  If not, write to the Free
19    Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
20    02110-1301, USA.  */
21 
22 #include "as.h"
23 #include "safe-ctype.h"
24 
25 #ifndef FALSE
26 #define FALSE (0)
27 #endif
28 #ifndef TRUE
29 #define TRUE  (1)
30 #endif
31 
32 #ifdef TRACE
33 static void flonum_print (const FLONUM_TYPE *);
34 #endif
35 
36 #define ASSUME_DECIMAL_MARK_IS_DOT
37 
38 /***********************************************************************\
39  *									*
40  *	Given a string of decimal digits , with optional decimal	*
41  *	mark and optional decimal exponent (place value) of the		*
42  *	lowest_order decimal digit: produce a floating point		*
43  *	number. The number is 'generic' floating point: our		*
44  *	caller will encode it for a specific machine architecture.	*
45  *									*
46  *	Assumptions							*
47  *		uses base (radix) 2					*
48  *		this machine uses 2's complement binary integers	*
49  *		target flonums use "      "         "       "		*
50  *		target flonums exponents fit in a long			*
51  *									*
52  \***********************************************************************/
53 
54 /*
55 
56   Syntax:
57 
58   <flonum> ::= <optional-sign> <decimal-number> <optional-exponent>
59   <optional-sign> ::= '+' | '-' | {empty}
60   <decimal-number> ::= <integer>
61   | <integer> <radix-character>
62   | <integer> <radix-character> <integer>
63   | <radix-character> <integer>
64 
65   <optional-exponent> ::= {empty}
66   | <exponent-character> <optional-sign> <integer>
67 
68   <integer> ::= <digit> | <digit> <integer>
69   <digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
70   <exponent-character> ::= {one character from "string_of_decimal_exponent_marks"}
71   <radix-character> ::= {one character from "string_of_decimal_marks"}
72 
73   */
74 
75 int
76 atof_generic (/* return pointer to just AFTER number we read.  */
77 	      char **address_of_string_pointer,
78 	      /* At most one per number.  */
79 	      const char *string_of_decimal_marks,
80 	      const char *string_of_decimal_exponent_marks,
81 	      FLONUM_TYPE *address_of_generic_floating_point_number)
82 {
83   int return_value;		/* 0 means OK.  */
84   char *first_digit;
85   unsigned int number_of_digits_before_decimal;
86   unsigned int number_of_digits_after_decimal;
87   long decimal_exponent;
88   unsigned int number_of_digits_available;
89   char digits_sign_char;
90 
91   /*
92    * Scan the input string, abstracting (1)digits (2)decimal mark (3) exponent.
93    * It would be simpler to modify the string, but we don't; just to be nice
94    * to caller.
95    * We need to know how many digits we have, so we can allocate space for
96    * the digits' value.
97    */
98 
99   char *p;
100   char c;
101   int seen_significant_digit;
102 
103 #ifdef ASSUME_DECIMAL_MARK_IS_DOT
104   assert (string_of_decimal_marks[0] == '.'
105 	  && string_of_decimal_marks[1] == 0);
106 #define IS_DECIMAL_MARK(c)	((c) == '.')
107 #else
108 #define IS_DECIMAL_MARK(c)	(0 != strchr (string_of_decimal_marks, (c)))
109 #endif
110 
111   first_digit = *address_of_string_pointer;
112   c = *first_digit;
113 
114   if (c == '-' || c == '+')
115     {
116       digits_sign_char = c;
117       first_digit++;
118     }
119   else
120     digits_sign_char = '+';
121 
122   switch (first_digit[0])
123     {
124     case 'n':
125     case 'N':
126       if (!strncasecmp ("nan", first_digit, 3))
127 	{
128 	  address_of_generic_floating_point_number->sign = 0;
129 	  address_of_generic_floating_point_number->exponent = 0;
130 	  address_of_generic_floating_point_number->leader =
131 	    address_of_generic_floating_point_number->low;
132 	  *address_of_string_pointer = first_digit + 3;
133 	  return 0;
134 	}
135       break;
136 
137     case 'i':
138     case 'I':
139       if (!strncasecmp ("inf", first_digit, 3))
140 	{
141 	  address_of_generic_floating_point_number->sign =
142 	    digits_sign_char == '+' ? 'P' : 'N';
143 	  address_of_generic_floating_point_number->exponent = 0;
144 	  address_of_generic_floating_point_number->leader =
145 	    address_of_generic_floating_point_number->low;
146 
147 	  first_digit += 3;
148 	  if (!strncasecmp ("inity", first_digit, 5))
149 	    first_digit += 5;
150 
151 	  *address_of_string_pointer = first_digit;
152 
153 	  return 0;
154 	}
155       break;
156     }
157 
158   number_of_digits_before_decimal = 0;
159   number_of_digits_after_decimal = 0;
160   decimal_exponent = 0;
161   seen_significant_digit = 0;
162   for (p = first_digit;
163        (((c = *p) != '\0')
164 	&& (!c || !IS_DECIMAL_MARK (c))
165 	&& (!c || !strchr (string_of_decimal_exponent_marks, c)));
166        p++)
167     {
168       if (ISDIGIT (c))
169 	{
170 	  if (seen_significant_digit || c > '0')
171 	    {
172 	      ++number_of_digits_before_decimal;
173 	      seen_significant_digit = 1;
174 	    }
175 	  else
176 	    {
177 	      first_digit++;
178 	    }
179 	}
180       else
181 	{
182 	  break;		/* p -> char after pre-decimal digits.  */
183 	}
184     }				/* For each digit before decimal mark.  */
185 
186 #ifndef OLD_FLOAT_READS
187   /* Ignore trailing 0's after the decimal point.  The original code here
188    * (ifdef'd out) does not do this, and numbers like
189    *	4.29496729600000000000e+09	(2**31)
190    * come out inexact for some reason related to length of the digit
191    * string.
192    */
193   if (c && IS_DECIMAL_MARK (c))
194     {
195       unsigned int zeros = 0;	/* Length of current string of zeros */
196 
197       for (p++; (c = *p) && ISDIGIT (c); p++)
198 	{
199 	  if (c == '0')
200 	    {
201 	      zeros++;
202 	    }
203 	  else
204 	    {
205 	      number_of_digits_after_decimal += 1 + zeros;
206 	      zeros = 0;
207 	    }
208 	}
209     }
210 #else
211   if (c && IS_DECIMAL_MARK (c))
212     {
213       for (p++;
214 	   (((c = *p) != '\0')
215 	    && (!c || !strchr (string_of_decimal_exponent_marks, c)));
216 	   p++)
217 	{
218 	  if (ISDIGIT (c))
219 	    {
220 	      /* This may be retracted below.  */
221 	      number_of_digits_after_decimal++;
222 
223 	      if ( /* seen_significant_digit || */ c > '0')
224 		{
225 		  seen_significant_digit = TRUE;
226 		}
227 	    }
228 	  else
229 	    {
230 	      if (!seen_significant_digit)
231 		{
232 		  number_of_digits_after_decimal = 0;
233 		}
234 	      break;
235 	    }
236 	}			/* For each digit after decimal mark.  */
237     }
238 
239   while (number_of_digits_after_decimal
240 	 && first_digit[number_of_digits_before_decimal
241 			+ number_of_digits_after_decimal] == '0')
242     --number_of_digits_after_decimal;
243 #endif
244 
245   if (flag_m68k_mri)
246     {
247       while (c == '_')
248 	c = *++p;
249     }
250   if (c && strchr (string_of_decimal_exponent_marks, c))
251     {
252       char digits_exponent_sign_char;
253 
254       c = *++p;
255       if (flag_m68k_mri)
256 	{
257 	  while (c == '_')
258 	    c = *++p;
259 	}
260       if (c && strchr ("+-", c))
261 	{
262 	  digits_exponent_sign_char = c;
263 	  c = *++p;
264 	}
265       else
266 	{
267 	  digits_exponent_sign_char = '+';
268 	}
269 
270       for (; (c); c = *++p)
271 	{
272 	  if (ISDIGIT (c))
273 	    {
274 	      decimal_exponent = decimal_exponent * 10 + c - '0';
275 	      /*
276 	       * BUG! If we overflow here, we lose!
277 	       */
278 	    }
279 	  else
280 	    {
281 	      break;
282 	    }
283 	}
284 
285       if (digits_exponent_sign_char == '-')
286 	{
287 	  decimal_exponent = -decimal_exponent;
288 	}
289     }
290 
291   *address_of_string_pointer = p;
292 
293   number_of_digits_available =
294     number_of_digits_before_decimal + number_of_digits_after_decimal;
295   return_value = 0;
296   if (number_of_digits_available == 0)
297     {
298       address_of_generic_floating_point_number->exponent = 0;	/* Not strictly necessary */
299       address_of_generic_floating_point_number->leader
300 	= -1 + address_of_generic_floating_point_number->low;
301       address_of_generic_floating_point_number->sign = digits_sign_char;
302       /* We have just concocted (+/-)0.0E0 */
303 
304     }
305   else
306     {
307       int count;		/* Number of useful digits left to scan.  */
308 
309       LITTLENUM_TYPE *digits_binary_low;
310       unsigned int precision;
311       unsigned int maximum_useful_digits;
312       unsigned int number_of_digits_to_use;
313       unsigned int more_than_enough_bits_for_digits;
314       unsigned int more_than_enough_littlenums_for_digits;
315       unsigned int size_of_digits_in_littlenums;
316       unsigned int size_of_digits_in_chars;
317       FLONUM_TYPE power_of_10_flonum;
318       FLONUM_TYPE digits_flonum;
319 
320       precision = (address_of_generic_floating_point_number->high
321 		   - address_of_generic_floating_point_number->low
322 		   + 1);	/* Number of destination littlenums.  */
323 
324       /* Includes guard bits (two littlenums worth) */
325       maximum_useful_digits = (((precision - 2))
326 			       * ( (LITTLENUM_NUMBER_OF_BITS))
327 			       * 1000000 / 3321928)
328 	+ 2;			/* 2 :: guard digits.  */
329 
330       if (number_of_digits_available > maximum_useful_digits)
331 	{
332 	  number_of_digits_to_use = maximum_useful_digits;
333 	}
334       else
335 	{
336 	  number_of_digits_to_use = number_of_digits_available;
337 	}
338 
339       /* Cast these to SIGNED LONG first, otherwise, on systems with
340 	 LONG wider than INT (such as Alpha OSF/1), unsignedness may
341 	 cause unexpected results.  */
342       decimal_exponent += ((long) number_of_digits_before_decimal
343 			   - (long) number_of_digits_to_use);
344 
345       more_than_enough_bits_for_digits
346 	= (number_of_digits_to_use * 3321928 / 1000000 + 1);
347 
348       more_than_enough_littlenums_for_digits
349 	= (more_than_enough_bits_for_digits
350 	   / LITTLENUM_NUMBER_OF_BITS)
351 	+ 2;
352 
353       /* Compute (digits) part. In "12.34E56" this is the "1234" part.
354 	 Arithmetic is exact here. If no digits are supplied then this
355 	 part is a 0 valued binary integer.  Allocate room to build up
356 	 the binary number as littlenums.  We want this memory to
357 	 disappear when we leave this function.  Assume no alignment
358 	 problems => (room for n objects) == n * (room for 1
359 	 object).  */
360 
361       size_of_digits_in_littlenums = more_than_enough_littlenums_for_digits;
362       size_of_digits_in_chars = size_of_digits_in_littlenums
363 	* sizeof (LITTLENUM_TYPE);
364 
365       digits_binary_low = (LITTLENUM_TYPE *)
366 	alloca (size_of_digits_in_chars);
367 
368       memset ((char *) digits_binary_low, '\0', size_of_digits_in_chars);
369 
370       /* Digits_binary_low[] is allocated and zeroed.  */
371 
372       /*
373        * Parse the decimal digits as if * digits_low was in the units position.
374        * Emit a binary number into digits_binary_low[].
375        *
376        * Use a large-precision version of:
377        * (((1st-digit) * 10 + 2nd-digit) * 10 + 3rd-digit ...) * 10 + last-digit
378        */
379 
380       for (p = first_digit, count = number_of_digits_to_use; count; p++, --count)
381 	{
382 	  c = *p;
383 	  if (ISDIGIT (c))
384 	    {
385 	      /*
386 	       * Multiply by 10. Assume can never overflow.
387 	       * Add this digit to digits_binary_low[].
388 	       */
389 
390 	      long carry;
391 	      LITTLENUM_TYPE *littlenum_pointer;
392 	      LITTLENUM_TYPE *littlenum_limit;
393 
394 	      littlenum_limit = digits_binary_low
395 		+ more_than_enough_littlenums_for_digits
396 		- 1;
397 
398 	      carry = c - '0';	/* char -> binary */
399 
400 	      for (littlenum_pointer = digits_binary_low;
401 		   littlenum_pointer <= littlenum_limit;
402 		   littlenum_pointer++)
403 		{
404 		  long work;
405 
406 		  work = carry + 10 * (long) (*littlenum_pointer);
407 		  *littlenum_pointer = work & LITTLENUM_MASK;
408 		  carry = work >> LITTLENUM_NUMBER_OF_BITS;
409 		}
410 
411 	      if (carry != 0)
412 		{
413 		  /*
414 		   * We have a GROSS internal error.
415 		   * This should never happen.
416 		   */
417 		  as_fatal (_("failed sanity check"));
418 		}
419 	    }
420 	  else
421 	    {
422 	      ++count;		/* '.' doesn't alter digits used count.  */
423 	    }
424 	}
425 
426       /*
427        * Digits_binary_low[] properly encodes the value of the digits.
428        * Forget about any high-order littlenums that are 0.
429        */
430       while (digits_binary_low[size_of_digits_in_littlenums - 1] == 0
431 	     && size_of_digits_in_littlenums >= 2)
432 	size_of_digits_in_littlenums--;
433 
434       digits_flonum.low = digits_binary_low;
435       digits_flonum.high = digits_binary_low + size_of_digits_in_littlenums - 1;
436       digits_flonum.leader = digits_flonum.high;
437       digits_flonum.exponent = 0;
438       /*
439        * The value of digits_flonum . sign should not be important.
440        * We have already decided the output's sign.
441        * We trust that the sign won't influence the other parts of the number!
442        * So we give it a value for these reasons:
443        * (1) courtesy to humans reading/debugging
444        *     these numbers so they don't get excited about strange values
445        * (2) in future there may be more meaning attached to sign,
446        *     and what was
447        *     harmless noise may become disruptive, ill-conditioned (or worse)
448        *     input.
449        */
450       digits_flonum.sign = '+';
451 
452       {
453 	/*
454 	 * Compute the mantssa (& exponent) of the power of 10.
455 	 * If successful, then multiply the power of 10 by the digits
456 	 * giving return_binary_mantissa and return_binary_exponent.
457 	 */
458 
459 	LITTLENUM_TYPE *power_binary_low;
460 	int decimal_exponent_is_negative;
461 	/* This refers to the "-56" in "12.34E-56".  */
462 	/* FALSE: decimal_exponent is positive (or 0) */
463 	/* TRUE:  decimal_exponent is negative */
464 	FLONUM_TYPE temporary_flonum;
465 	LITTLENUM_TYPE *temporary_binary_low;
466 	unsigned int size_of_power_in_littlenums;
467 	unsigned int size_of_power_in_chars;
468 
469 	size_of_power_in_littlenums = precision;
470 	/* Precision has a built-in fudge factor so we get a few guard bits.  */
471 
472 	decimal_exponent_is_negative = decimal_exponent < 0;
473 	if (decimal_exponent_is_negative)
474 	  {
475 	    decimal_exponent = -decimal_exponent;
476 	  }
477 
478 	/* From now on: the decimal exponent is > 0. Its sign is separate.  */
479 
480 	size_of_power_in_chars = size_of_power_in_littlenums
481 	  * sizeof (LITTLENUM_TYPE) + 2;
482 
483 	power_binary_low = (LITTLENUM_TYPE *) alloca (size_of_power_in_chars);
484 	temporary_binary_low = (LITTLENUM_TYPE *) alloca (size_of_power_in_chars);
485 	memset ((char *) power_binary_low, '\0', size_of_power_in_chars);
486 	*power_binary_low = 1;
487 	power_of_10_flonum.exponent = 0;
488 	power_of_10_flonum.low = power_binary_low;
489 	power_of_10_flonum.leader = power_binary_low;
490 	power_of_10_flonum.high = power_binary_low + size_of_power_in_littlenums - 1;
491 	power_of_10_flonum.sign = '+';
492 	temporary_flonum.low = temporary_binary_low;
493 	temporary_flonum.high = temporary_binary_low + size_of_power_in_littlenums - 1;
494 	/*
495 	 * (power) == 1.
496 	 * Space for temporary_flonum allocated.
497 	 */
498 
499 	/*
500 	 * ...
501 	 *
502 	 * WHILE	more bits
503 	 * DO	find next bit (with place value)
504 	 *	multiply into power mantissa
505 	 * OD
506 	 */
507 	{
508 	  int place_number_limit;
509 	  /* Any 10^(2^n) whose "n" exceeds this */
510 	  /* value will fall off the end of */
511 	  /* flonum_XXXX_powers_of_ten[].  */
512 	  int place_number;
513 	  const FLONUM_TYPE *multiplicand;	/* -> 10^(2^n) */
514 
515 	  place_number_limit = table_size_of_flonum_powers_of_ten;
516 
517 	  multiplicand = (decimal_exponent_is_negative
518 			  ? flonum_negative_powers_of_ten
519 			  : flonum_positive_powers_of_ten);
520 
521 	  for (place_number = 1;/* Place value of this bit of exponent.  */
522 	       decimal_exponent;/* Quit when no more 1 bits in exponent.  */
523 	       decimal_exponent >>= 1, place_number++)
524 	    {
525 	      if (decimal_exponent & 1)
526 		{
527 		  if (place_number > place_number_limit)
528 		    {
529 		      /* The decimal exponent has a magnitude so great
530 			 that our tables can't help us fragment it.
531 			 Although this routine is in error because it
532 			 can't imagine a number that big, signal an
533 			 error as if it is the user's fault for
534 			 presenting such a big number.  */
535 		      return_value = ERROR_EXPONENT_OVERFLOW;
536 		      /* quit out of loop gracefully */
537 		      decimal_exponent = 0;
538 		    }
539 		  else
540 		    {
541 #ifdef TRACE
542 		      printf ("before multiply, place_number = %d., power_of_10_flonum:\n",
543 			      place_number);
544 
545 		      flonum_print (&power_of_10_flonum);
546 		      (void) putchar ('\n');
547 #endif
548 #ifdef TRACE
549 		      printf ("multiplier:\n");
550 		      flonum_print (multiplicand + place_number);
551 		      (void) putchar ('\n');
552 #endif
553 		      flonum_multip (multiplicand + place_number,
554 				     &power_of_10_flonum, &temporary_flonum);
555 #ifdef TRACE
556 		      printf ("after multiply:\n");
557 		      flonum_print (&temporary_flonum);
558 		      (void) putchar ('\n');
559 #endif
560 		      flonum_copy (&temporary_flonum, &power_of_10_flonum);
561 #ifdef TRACE
562 		      printf ("after copy:\n");
563 		      flonum_print (&power_of_10_flonum);
564 		      (void) putchar ('\n');
565 #endif
566 		    } /* If this bit of decimal_exponent was computable.*/
567 		} /* If this bit of decimal_exponent was set.  */
568 	    } /* For each bit of binary representation of exponent */
569 #ifdef TRACE
570 	  printf ("after computing power_of_10_flonum:\n");
571 	  flonum_print (&power_of_10_flonum);
572 	  (void) putchar ('\n');
573 #endif
574 	}
575 
576       }
577 
578       /*
579        * power_of_10_flonum is power of ten in binary (mantissa) , (exponent).
580        * It may be the number 1, in which case we don't NEED to multiply.
581        *
582        * Multiply (decimal digits) by power_of_10_flonum.
583        */
584 
585       flonum_multip (&power_of_10_flonum, &digits_flonum, address_of_generic_floating_point_number);
586       /* Assert sign of the number we made is '+'.  */
587       address_of_generic_floating_point_number->sign = digits_sign_char;
588 
589     }
590   return return_value;
591 }
592 
593 #ifdef TRACE
594 static void
595 flonum_print (f)
596      const FLONUM_TYPE *f;
597 {
598   LITTLENUM_TYPE *lp;
599   char littlenum_format[10];
600   sprintf (littlenum_format, " %%0%dx", sizeof (LITTLENUM_TYPE) * 2);
601 #define print_littlenum(LP)	(printf (littlenum_format, LP))
602   printf ("flonum @%p %c e%ld", f, f->sign, f->exponent);
603   if (f->low < f->high)
604     for (lp = f->high; lp >= f->low; lp--)
605       print_littlenum (*lp);
606   else
607     for (lp = f->low; lp <= f->high; lp++)
608       print_littlenum (*lp);
609   printf ("\n");
610   fflush (stdout);
611 }
612 #endif
613 
614 /* end of atof_generic.c */
615