1 /* Generic symbol-table support for the BFD library. 2 Copyright (C) 1990-2022 Free Software Foundation, Inc. 3 Written by Cygnus Support. 4 5 This file is part of BFD, the Binary File Descriptor library. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, write to the Free Software 19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 20 MA 02110-1301, USA. */ 21 22 /* 23 SECTION 24 Symbols 25 26 BFD tries to maintain as much symbol information as it can when 27 it moves information from file to file. BFD passes information 28 to applications though the <<asymbol>> structure. When the 29 application requests the symbol table, BFD reads the table in 30 the native form and translates parts of it into the internal 31 format. To maintain more than the information passed to 32 applications, some targets keep some information ``behind the 33 scenes'' in a structure only the particular back end knows 34 about. For example, the coff back end keeps the original 35 symbol table structure as well as the canonical structure when 36 a BFD is read in. On output, the coff back end can reconstruct 37 the output symbol table so that no information is lost, even 38 information unique to coff which BFD doesn't know or 39 understand. If a coff symbol table were read, but were written 40 through an a.out back end, all the coff specific information 41 would be lost. The symbol table of a BFD 42 is not necessarily read in until a canonicalize request is 43 made. Then the BFD back end fills in a table provided by the 44 application with pointers to the canonical information. To 45 output symbols, the application provides BFD with a table of 46 pointers to pointers to <<asymbol>>s. This allows applications 47 like the linker to output a symbol as it was read, since the ``behind 48 the scenes'' information will be still available. 49 @menu 50 @* Reading Symbols:: 51 @* Writing Symbols:: 52 @* Mini Symbols:: 53 @* typedef asymbol:: 54 @* symbol handling functions:: 55 @end menu 56 57 INODE 58 Reading Symbols, Writing Symbols, Symbols, Symbols 59 SUBSECTION 60 Reading symbols 61 62 There are two stages to reading a symbol table from a BFD: 63 allocating storage, and the actual reading process. This is an 64 excerpt from an application which reads the symbol table: 65 66 | long storage_needed; 67 | asymbol **symbol_table; 68 | long number_of_symbols; 69 | long i; 70 | 71 | storage_needed = bfd_get_symtab_upper_bound (abfd); 72 | 73 | if (storage_needed < 0) 74 | FAIL 75 | 76 | if (storage_needed == 0) 77 | return; 78 | 79 | symbol_table = xmalloc (storage_needed); 80 | ... 81 | number_of_symbols = 82 | bfd_canonicalize_symtab (abfd, symbol_table); 83 | 84 | if (number_of_symbols < 0) 85 | FAIL 86 | 87 | for (i = 0; i < number_of_symbols; i++) 88 | process_symbol (symbol_table[i]); 89 90 All storage for the symbols themselves is in an objalloc 91 connected to the BFD; it is freed when the BFD is closed. 92 93 INODE 94 Writing Symbols, Mini Symbols, Reading Symbols, Symbols 95 SUBSECTION 96 Writing symbols 97 98 Writing of a symbol table is automatic when a BFD open for 99 writing is closed. The application attaches a vector of 100 pointers to pointers to symbols to the BFD being written, and 101 fills in the symbol count. The close and cleanup code reads 102 through the table provided and performs all the necessary 103 operations. The BFD output code must always be provided with an 104 ``owned'' symbol: one which has come from another BFD, or one 105 which has been created using <<bfd_make_empty_symbol>>. Here is an 106 example showing the creation of a symbol table with only one element: 107 108 | #include "sysdep.h" 109 | #include "bfd.h" 110 | int main (void) 111 | { 112 | bfd *abfd; 113 | asymbol *ptrs[2]; 114 | asymbol *new; 115 | 116 | abfd = bfd_openw ("foo","a.out-sunos-big"); 117 | bfd_set_format (abfd, bfd_object); 118 | new = bfd_make_empty_symbol (abfd); 119 | new->name = "dummy_symbol"; 120 | new->section = bfd_make_section_old_way (abfd, ".text"); 121 | new->flags = BSF_GLOBAL; 122 | new->value = 0x12345; 123 | 124 | ptrs[0] = new; 125 | ptrs[1] = 0; 126 | 127 | bfd_set_symtab (abfd, ptrs, 1); 128 | bfd_close (abfd); 129 | return 0; 130 | } 131 | 132 | ./makesym 133 | nm foo 134 | 00012345 A dummy_symbol 135 136 Many formats cannot represent arbitrary symbol information; for 137 instance, the <<a.out>> object format does not allow an 138 arbitrary number of sections. A symbol pointing to a section 139 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot 140 be described. 141 142 INODE 143 Mini Symbols, typedef asymbol, Writing Symbols, Symbols 144 SUBSECTION 145 Mini Symbols 146 147 Mini symbols provide read-only access to the symbol table. 148 They use less memory space, but require more time to access. 149 They can be useful for tools like nm or objdump, which may 150 have to handle symbol tables of extremely large executables. 151 152 The <<bfd_read_minisymbols>> function will read the symbols 153 into memory in an internal form. It will return a <<void *>> 154 pointer to a block of memory, a symbol count, and the size of 155 each symbol. The pointer is allocated using <<malloc>>, and 156 should be freed by the caller when it is no longer needed. 157 158 The function <<bfd_minisymbol_to_symbol>> will take a pointer 159 to a minisymbol, and a pointer to a structure returned by 160 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure. 161 The return value may or may not be the same as the value from 162 <<bfd_make_empty_symbol>> which was passed in. 163 164 */ 165 166 /* 167 DOCDD 168 INODE 169 typedef asymbol, symbol handling functions, Mini Symbols, Symbols 170 171 */ 172 /* 173 SUBSECTION 174 typedef asymbol 175 176 An <<asymbol>> has the form: 177 178 */ 179 180 /* 181 CODE_FRAGMENT 182 183 . 184 .typedef struct bfd_symbol 185 .{ 186 . {* A pointer to the BFD which owns the symbol. This information 187 . is necessary so that a back end can work out what additional 188 . information (invisible to the application writer) is carried 189 . with the symbol. 190 . 191 . This field is *almost* redundant, since you can use section->owner 192 . instead, except that some symbols point to the global sections 193 . bfd_{abs,com,und}_section. This could be fixed by making 194 . these globals be per-bfd (or per-target-flavor). FIXME. *} 195 . struct bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *} 196 . 197 . {* The text of the symbol. The name is left alone, and not copied; the 198 . application may not alter it. *} 199 . const char *name; 200 . 201 . {* The value of the symbol. This really should be a union of a 202 . numeric value with a pointer, since some flags indicate that 203 . a pointer to another symbol is stored here. *} 204 . symvalue value; 205 . 206 . {* Attributes of a symbol. *} 207 .#define BSF_NO_FLAGS 0 208 . 209 . {* The symbol has local scope; <<static>> in <<C>>. The value 210 . is the offset into the section of the data. *} 211 .#define BSF_LOCAL (1 << 0) 212 . 213 . {* The symbol has global scope; initialized data in <<C>>. The 214 . value is the offset into the section of the data. *} 215 .#define BSF_GLOBAL (1 << 1) 216 . 217 . {* The symbol has global scope and is exported. The value is 218 . the offset into the section of the data. *} 219 .#define BSF_EXPORT BSF_GLOBAL {* No real difference. *} 220 . 221 . {* A normal C symbol would be one of: 222 . <<BSF_LOCAL>>, <<BSF_UNDEFINED>> or <<BSF_GLOBAL>>. *} 223 . 224 . {* The symbol is a debugging record. The value has an arbitrary 225 . meaning, unless BSF_DEBUGGING_RELOC is also set. *} 226 .#define BSF_DEBUGGING (1 << 2) 227 . 228 . {* The symbol denotes a function entry point. Used in ELF, 229 . perhaps others someday. *} 230 .#define BSF_FUNCTION (1 << 3) 231 . 232 . {* Used by the linker. *} 233 .#define BSF_KEEP (1 << 5) 234 . 235 . {* An ELF common symbol. *} 236 .#define BSF_ELF_COMMON (1 << 6) 237 . 238 . {* A weak global symbol, overridable without warnings by 239 . a regular global symbol of the same name. *} 240 .#define BSF_WEAK (1 << 7) 241 . 242 . {* This symbol was created to point to a section, e.g. ELF's 243 . STT_SECTION symbols. *} 244 .#define BSF_SECTION_SYM (1 << 8) 245 . 246 . {* The symbol used to be a common symbol, but now it is 247 . allocated. *} 248 .#define BSF_OLD_COMMON (1 << 9) 249 . 250 . {* In some files the type of a symbol sometimes alters its 251 . location in an output file - ie in coff a <<ISFCN>> symbol 252 . which is also <<C_EXT>> symbol appears where it was 253 . declared and not at the end of a section. This bit is set 254 . by the target BFD part to convey this information. *} 255 .#define BSF_NOT_AT_END (1 << 10) 256 . 257 . {* Signal that the symbol is the label of constructor section. *} 258 .#define BSF_CONSTRUCTOR (1 << 11) 259 . 260 . {* Signal that the symbol is a warning symbol. The name is a 261 . warning. The name of the next symbol is the one to warn about; 262 . if a reference is made to a symbol with the same name as the next 263 . symbol, a warning is issued by the linker. *} 264 .#define BSF_WARNING (1 << 12) 265 . 266 . {* Signal that the symbol is indirect. This symbol is an indirect 267 . pointer to the symbol with the same name as the next symbol. *} 268 .#define BSF_INDIRECT (1 << 13) 269 . 270 . {* BSF_FILE marks symbols that contain a file name. This is used 271 . for ELF STT_FILE symbols. *} 272 .#define BSF_FILE (1 << 14) 273 . 274 . {* Symbol is from dynamic linking information. *} 275 .#define BSF_DYNAMIC (1 << 15) 276 . 277 . {* The symbol denotes a data object. Used in ELF, and perhaps 278 . others someday. *} 279 .#define BSF_OBJECT (1 << 16) 280 . 281 . {* This symbol is a debugging symbol. The value is the offset 282 . into the section of the data. BSF_DEBUGGING should be set 283 . as well. *} 284 .#define BSF_DEBUGGING_RELOC (1 << 17) 285 . 286 . {* This symbol is thread local. Used in ELF. *} 287 .#define BSF_THREAD_LOCAL (1 << 18) 288 . 289 . {* This symbol represents a complex relocation expression, 290 . with the expression tree serialized in the symbol name. *} 291 .#define BSF_RELC (1 << 19) 292 . 293 . {* This symbol represents a signed complex relocation expression, 294 . with the expression tree serialized in the symbol name. *} 295 .#define BSF_SRELC (1 << 20) 296 . 297 . {* This symbol was created by bfd_get_synthetic_symtab. *} 298 .#define BSF_SYNTHETIC (1 << 21) 299 . 300 . {* This symbol is an indirect code object. Unrelated to BSF_INDIRECT. 301 . The dynamic linker will compute the value of this symbol by 302 . calling the function that it points to. BSF_FUNCTION must 303 . also be also set. *} 304 .#define BSF_GNU_INDIRECT_FUNCTION (1 << 22) 305 . {* This symbol is a globally unique data object. The dynamic linker 306 . will make sure that in the entire process there is just one symbol 307 . with this name and type in use. BSF_OBJECT must also be set. *} 308 .#define BSF_GNU_UNIQUE (1 << 23) 309 . 310 . {* This section symbol should be included in the symbol table. *} 311 .#define BSF_SECTION_SYM_USED (1 << 24) 312 . 313 . flagword flags; 314 . 315 . {* A pointer to the section to which this symbol is 316 . relative. This will always be non NULL, there are special 317 . sections for undefined and absolute symbols. *} 318 . struct bfd_section *section; 319 . 320 . {* Back end special data. *} 321 . union 322 . { 323 . void *p; 324 . bfd_vma i; 325 . } 326 . udata; 327 .} 328 .asymbol; 329 . 330 */ 331 332 #include "sysdep.h" 333 #include "bfd.h" 334 #include "libbfd.h" 335 #include "safe-ctype.h" 336 #include "bfdlink.h" 337 #include "aout/stab_gnu.h" 338 339 /* 340 DOCDD 341 INODE 342 symbol handling functions, , typedef asymbol, Symbols 343 SUBSECTION 344 Symbol handling functions 345 */ 346 347 /* 348 FUNCTION 349 bfd_get_symtab_upper_bound 350 351 DESCRIPTION 352 Return the number of bytes required to store a vector of pointers 353 to <<asymbols>> for all the symbols in the BFD @var{abfd}, 354 including a terminal NULL pointer. If there are no symbols in 355 the BFD, then return 0. If an error occurs, return -1. 356 357 .#define bfd_get_symtab_upper_bound(abfd) \ 358 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd)) 359 . 360 */ 361 362 /* 363 FUNCTION 364 bfd_is_local_label 365 366 SYNOPSIS 367 bool bfd_is_local_label (bfd *abfd, asymbol *sym); 368 369 DESCRIPTION 370 Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is 371 a compiler generated local label, else return FALSE. 372 */ 373 374 bool 375 bfd_is_local_label (bfd *abfd, asymbol *sym) 376 { 377 /* The BSF_SECTION_SYM check is needed for IA-64, where every label that 378 starts with '.' is local. This would accidentally catch section names 379 if we didn't reject them here. */ 380 if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_FILE | BSF_SECTION_SYM)) != 0) 381 return false; 382 if (sym->name == NULL) 383 return false; 384 return bfd_is_local_label_name (abfd, sym->name); 385 } 386 387 /* 388 FUNCTION 389 bfd_is_local_label_name 390 391 SYNOPSIS 392 bool bfd_is_local_label_name (bfd *abfd, const char *name); 393 394 DESCRIPTION 395 Return TRUE if a symbol with the name @var{name} in the BFD 396 @var{abfd} is a compiler generated local label, else return 397 FALSE. This just checks whether the name has the form of a 398 local label. 399 400 .#define bfd_is_local_label_name(abfd, name) \ 401 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name)) 402 . 403 */ 404 405 /* 406 FUNCTION 407 bfd_is_target_special_symbol 408 409 SYNOPSIS 410 bool bfd_is_target_special_symbol (bfd *abfd, asymbol *sym); 411 412 DESCRIPTION 413 Return TRUE iff a symbol @var{sym} in the BFD @var{abfd} is something 414 special to the particular target represented by the BFD. Such symbols 415 should normally not be mentioned to the user. 416 417 .#define bfd_is_target_special_symbol(abfd, sym) \ 418 . BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym)) 419 . 420 */ 421 422 /* 423 FUNCTION 424 bfd_canonicalize_symtab 425 426 DESCRIPTION 427 Read the symbols from the BFD @var{abfd}, and fills in 428 the vector @var{location} with pointers to the symbols and 429 a trailing NULL. 430 Return the actual number of symbol pointers, not 431 including the NULL. 432 433 .#define bfd_canonicalize_symtab(abfd, location) \ 434 . BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location)) 435 . 436 */ 437 438 /* 439 FUNCTION 440 bfd_set_symtab 441 442 SYNOPSIS 443 bool bfd_set_symtab 444 (bfd *abfd, asymbol **location, unsigned int count); 445 446 DESCRIPTION 447 Arrange that when the output BFD @var{abfd} is closed, 448 the table @var{location} of @var{count} pointers to symbols 449 will be written. 450 */ 451 452 bool 453 bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int symcount) 454 { 455 if (abfd->format != bfd_object || bfd_read_p (abfd)) 456 { 457 bfd_set_error (bfd_error_invalid_operation); 458 return false; 459 } 460 461 abfd->outsymbols = location; 462 abfd->symcount = symcount; 463 return true; 464 } 465 466 /* 467 FUNCTION 468 bfd_print_symbol_vandf 469 470 SYNOPSIS 471 void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol); 472 473 DESCRIPTION 474 Print the value and flags of the @var{symbol} supplied to the 475 stream @var{file}. 476 */ 477 void 478 bfd_print_symbol_vandf (bfd *abfd, void *arg, asymbol *symbol) 479 { 480 FILE *file = (FILE *) arg; 481 482 flagword type = symbol->flags; 483 484 if (symbol->section != NULL) 485 bfd_fprintf_vma (abfd, file, symbol->value + symbol->section->vma); 486 else 487 bfd_fprintf_vma (abfd, file, symbol->value); 488 489 /* This presumes that a symbol can not be both BSF_DEBUGGING and 490 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and 491 BSF_OBJECT. */ 492 fprintf (file, " %c%c%c%c%c%c%c", 493 ((type & BSF_LOCAL) 494 ? (type & BSF_GLOBAL) ? '!' : 'l' 495 : (type & BSF_GLOBAL) ? 'g' 496 : (type & BSF_GNU_UNIQUE) ? 'u' : ' '), 497 (type & BSF_WEAK) ? 'w' : ' ', 498 (type & BSF_CONSTRUCTOR) ? 'C' : ' ', 499 (type & BSF_WARNING) ? 'W' : ' ', 500 (type & BSF_INDIRECT) ? 'I' : (type & BSF_GNU_INDIRECT_FUNCTION) ? 'i' : ' ', 501 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ', 502 ((type & BSF_FUNCTION) 503 ? 'F' 504 : ((type & BSF_FILE) 505 ? 'f' 506 : ((type & BSF_OBJECT) ? 'O' : ' ')))); 507 } 508 509 /* 510 FUNCTION 511 bfd_make_empty_symbol 512 513 DESCRIPTION 514 Create a new <<asymbol>> structure for the BFD @var{abfd} 515 and return a pointer to it. 516 517 This routine is necessary because each back end has private 518 information surrounding the <<asymbol>>. Building your own 519 <<asymbol>> and pointing to it will not create the private 520 information, and will cause problems later on. 521 522 .#define bfd_make_empty_symbol(abfd) \ 523 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd)) 524 . 525 */ 526 527 /* 528 FUNCTION 529 _bfd_generic_make_empty_symbol 530 531 SYNOPSIS 532 asymbol *_bfd_generic_make_empty_symbol (bfd *); 533 534 DESCRIPTION 535 Create a new <<asymbol>> structure for the BFD @var{abfd} 536 and return a pointer to it. Used by core file routines, 537 binary back-end and anywhere else where no private info 538 is needed. 539 */ 540 541 asymbol * 542 _bfd_generic_make_empty_symbol (bfd *abfd) 543 { 544 size_t amt = sizeof (asymbol); 545 asymbol *new_symbol = (asymbol *) bfd_zalloc (abfd, amt); 546 if (new_symbol) 547 new_symbol->the_bfd = abfd; 548 return new_symbol; 549 } 550 551 /* 552 FUNCTION 553 bfd_make_debug_symbol 554 555 DESCRIPTION 556 Create a new <<asymbol>> structure for the BFD @var{abfd}, 557 to be used as a debugging symbol. Further details of its use have 558 yet to be worked out. 559 560 .#define bfd_make_debug_symbol(abfd,ptr,size) \ 561 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size)) 562 . 563 */ 564 565 struct section_to_type 566 { 567 const char *section; 568 char type; 569 }; 570 571 /* Map special section names to POSIX/BSD single-character symbol types. 572 This table is probably incomplete. It is sorted for convenience of 573 adding entries. Since it is so short, a linear search is used. */ 574 static const struct section_to_type stt[] = 575 { 576 {".drectve", 'i'}, /* MSVC's .drective section */ 577 {".edata", 'e'}, /* MSVC's .edata (export) section */ 578 {".idata", 'i'}, /* MSVC's .idata (import) section */ 579 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */ 580 {0, 0} 581 }; 582 583 /* Return the single-character symbol type corresponding to 584 section S, or '?' for an unknown COFF section. 585 586 Check for leading strings which match, followed by a number, '.', 587 or '$' so .idata5 matches the .idata entry. */ 588 589 static char 590 coff_section_type (const char *s) 591 { 592 const struct section_to_type *t; 593 594 for (t = &stt[0]; t->section; t++) 595 { 596 size_t len = strlen (t->section); 597 if (strncmp (s, t->section, len) == 0 598 && memchr (".$0123456789", s[len], 13) != 0) 599 return t->type; 600 } 601 602 return '?'; 603 } 604 605 /* Return the single-character symbol type corresponding to section 606 SECTION, or '?' for an unknown section. This uses section flags to 607 identify sections. 608 609 FIXME These types are unhandled: e, i, p. If we handled these also, 610 we could perhaps obsolete coff_section_type. */ 611 612 static char 613 decode_section_type (const struct bfd_section *section) 614 { 615 if (section->flags & SEC_CODE) 616 return 't'; 617 if (section->flags & SEC_DATA) 618 { 619 if (section->flags & SEC_READONLY) 620 return 'r'; 621 else if (section->flags & SEC_SMALL_DATA) 622 return 'g'; 623 else 624 return 'd'; 625 } 626 if ((section->flags & SEC_HAS_CONTENTS) == 0) 627 { 628 if (section->flags & SEC_SMALL_DATA) 629 return 's'; 630 else 631 return 'b'; 632 } 633 if (section->flags & SEC_DEBUGGING) 634 return 'N'; 635 if ((section->flags & SEC_HAS_CONTENTS) && (section->flags & SEC_READONLY)) 636 return 'n'; 637 638 return '?'; 639 } 640 641 /* 642 FUNCTION 643 bfd_decode_symclass 644 645 DESCRIPTION 646 Return a character corresponding to the symbol 647 class of @var{symbol}, or '?' for an unknown class. 648 649 SYNOPSIS 650 int bfd_decode_symclass (asymbol *symbol); 651 */ 652 int 653 bfd_decode_symclass (asymbol *symbol) 654 { 655 char c; 656 657 /* Paranoia... */ 658 if (symbol == NULL || symbol->section == NULL) 659 return '?'; 660 661 if (symbol->section && bfd_is_com_section (symbol->section)) 662 { 663 if (symbol->section->flags & SEC_SMALL_DATA) 664 return 'c'; 665 else 666 return 'C'; 667 } 668 if (bfd_is_und_section (symbol->section)) 669 { 670 if (symbol->flags & BSF_WEAK) 671 { 672 /* If weak, determine if it's specifically an object 673 or non-object weak. */ 674 if (symbol->flags & BSF_OBJECT) 675 return 'v'; 676 else 677 return 'w'; 678 } 679 else 680 return 'U'; 681 } 682 if (bfd_is_ind_section (symbol->section)) 683 return 'I'; 684 if (symbol->flags & BSF_GNU_INDIRECT_FUNCTION) 685 return 'i'; 686 if (symbol->flags & BSF_WEAK) 687 { 688 /* If weak, determine if it's specifically an object 689 or non-object weak. */ 690 if (symbol->flags & BSF_OBJECT) 691 return 'V'; 692 else 693 return 'W'; 694 } 695 if (symbol->flags & BSF_GNU_UNIQUE) 696 return 'u'; 697 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL))) 698 return '?'; 699 700 if (bfd_is_abs_section (symbol->section)) 701 c = 'a'; 702 else if (symbol->section) 703 { 704 c = coff_section_type (symbol->section->name); 705 if (c == '?') 706 c = decode_section_type (symbol->section); 707 } 708 else 709 return '?'; 710 if (symbol->flags & BSF_GLOBAL) 711 c = TOUPPER (c); 712 return c; 713 714 /* We don't have to handle these cases just yet, but we will soon: 715 N_SETV: 'v'; 716 N_SETA: 'l'; 717 N_SETT: 'x'; 718 N_SETD: 'z'; 719 N_SETB: 's'; 720 N_INDR: 'i'; 721 */ 722 } 723 724 /* 725 FUNCTION 726 bfd_is_undefined_symclass 727 728 DESCRIPTION 729 Returns non-zero if the class symbol returned by 730 bfd_decode_symclass represents an undefined symbol. 731 Returns zero otherwise. 732 733 SYNOPSIS 734 bool bfd_is_undefined_symclass (int symclass); 735 */ 736 737 bool 738 bfd_is_undefined_symclass (int symclass) 739 { 740 return symclass == 'U' || symclass == 'w' || symclass == 'v'; 741 } 742 743 /* 744 FUNCTION 745 bfd_symbol_info 746 747 DESCRIPTION 748 Fill in the basic info about symbol that nm needs. 749 Additional info may be added by the back-ends after 750 calling this function. 751 752 SYNOPSIS 753 void bfd_symbol_info (asymbol *symbol, symbol_info *ret); 754 */ 755 756 void 757 bfd_symbol_info (asymbol *symbol, symbol_info *ret) 758 { 759 ret->type = bfd_decode_symclass (symbol); 760 761 if (bfd_is_undefined_symclass (ret->type)) 762 ret->value = 0; 763 else 764 ret->value = symbol->value + symbol->section->vma; 765 766 ret->name = symbol->name; 767 } 768 769 /* 770 FUNCTION 771 bfd_copy_private_symbol_data 772 773 SYNOPSIS 774 bool bfd_copy_private_symbol_data 775 (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym); 776 777 DESCRIPTION 778 Copy private symbol information from @var{isym} in the BFD 779 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}. 780 Return <<TRUE>> on success, <<FALSE>> on error. Possible error 781 returns are: 782 783 o <<bfd_error_no_memory>> - 784 Not enough memory exists to create private data for @var{osec}. 785 786 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \ 787 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \ 788 . (ibfd, isymbol, obfd, osymbol)) 789 . 790 */ 791 792 /* The generic version of the function which returns mini symbols. 793 This is used when the backend does not provide a more efficient 794 version. It just uses BFD asymbol structures as mini symbols. */ 795 796 long 797 _bfd_generic_read_minisymbols (bfd *abfd, 798 bool dynamic, 799 void **minisymsp, 800 unsigned int *sizep) 801 { 802 long storage; 803 asymbol **syms = NULL; 804 long symcount; 805 806 if (dynamic) 807 storage = bfd_get_dynamic_symtab_upper_bound (abfd); 808 else 809 storage = bfd_get_symtab_upper_bound (abfd); 810 if (storage < 0) 811 goto error_return; 812 if (storage == 0) 813 return 0; 814 815 syms = (asymbol **) bfd_malloc (storage); 816 if (syms == NULL) 817 goto error_return; 818 819 if (dynamic) 820 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms); 821 else 822 symcount = bfd_canonicalize_symtab (abfd, syms); 823 if (symcount < 0) 824 goto error_return; 825 826 if (symcount == 0) 827 /* We return 0 above when storage is 0. Exit in the same state 828 here, so as to not complicate callers with having to deal with 829 freeing memory for zero symcount. */ 830 free (syms); 831 else 832 { 833 *minisymsp = syms; 834 *sizep = sizeof (asymbol *); 835 } 836 return symcount; 837 838 error_return: 839 bfd_set_error (bfd_error_no_symbols); 840 free (syms); 841 return -1; 842 } 843 844 /* The generic version of the function which converts a minisymbol to 845 an asymbol. We don't worry about the sym argument we are passed; 846 we just return the asymbol the minisymbol points to. */ 847 848 asymbol * 849 _bfd_generic_minisymbol_to_symbol (bfd *abfd ATTRIBUTE_UNUSED, 850 bool dynamic ATTRIBUTE_UNUSED, 851 const void *minisym, 852 asymbol *sym ATTRIBUTE_UNUSED) 853 { 854 return *(asymbol **) minisym; 855 } 856 857 /* Look through stabs debugging information in .stab and .stabstr 858 sections to find the source file and line closest to a desired 859 location. This is used by COFF and ELF targets. It sets *pfound 860 to TRUE if it finds some information. The *pinfo field is used to 861 pass cached information in and out of this routine; this first time 862 the routine is called for a BFD, *pinfo should be NULL. The value 863 placed in *pinfo should be saved with the BFD, and passed back each 864 time this function is called. */ 865 866 /* We use a cache by default. */ 867 868 #define ENABLE_CACHING 869 870 /* We keep an array of indexentry structures to record where in the 871 stabs section we should look to find line number information for a 872 particular address. */ 873 874 struct indexentry 875 { 876 bfd_vma val; 877 bfd_byte *stab; 878 bfd_byte *str; 879 char *directory_name; 880 char *file_name; 881 char *function_name; 882 int idx; 883 }; 884 885 /* Compare two indexentry structures. This is called via qsort. */ 886 887 static int 888 cmpindexentry (const void *a, const void *b) 889 { 890 const struct indexentry *contestantA = (const struct indexentry *) a; 891 const struct indexentry *contestantB = (const struct indexentry *) b; 892 893 if (contestantA->val < contestantB->val) 894 return -1; 895 if (contestantA->val > contestantB->val) 896 return 1; 897 return contestantA->idx - contestantB->idx; 898 } 899 900 /* A pointer to this structure is stored in *pinfo. */ 901 902 struct stab_find_info 903 { 904 /* The .stab section. */ 905 asection *stabsec; 906 /* The .stabstr section. */ 907 asection *strsec; 908 /* The contents of the .stab section. */ 909 bfd_byte *stabs; 910 /* The contents of the .stabstr section. */ 911 bfd_byte *strs; 912 913 /* A table that indexes stabs by memory address. */ 914 struct indexentry *indextable; 915 /* The number of entries in indextable. */ 916 int indextablesize; 917 918 #ifdef ENABLE_CACHING 919 /* Cached values to restart quickly. */ 920 struct indexentry *cached_indexentry; 921 bfd_vma cached_offset; 922 bfd_byte *cached_stab; 923 char *cached_file_name; 924 #endif 925 926 /* Saved ptr to malloc'ed filename. */ 927 char *filename; 928 }; 929 930 bool 931 _bfd_stab_section_find_nearest_line (bfd *abfd, 932 asymbol **symbols, 933 asection *section, 934 bfd_vma offset, 935 bool *pfound, 936 const char **pfilename, 937 const char **pfnname, 938 unsigned int *pline, 939 void **pinfo) 940 { 941 struct stab_find_info *info; 942 bfd_size_type stabsize, strsize; 943 bfd_byte *stab, *str; 944 bfd_byte *nul_fun, *nul_str; 945 bfd_size_type stroff; 946 struct indexentry *indexentry; 947 char *file_name; 948 char *directory_name; 949 bool saw_line, saw_func; 950 951 *pfound = false; 952 *pfilename = bfd_get_filename (abfd); 953 *pfnname = NULL; 954 *pline = 0; 955 956 /* Stabs entries use a 12 byte format: 957 4 byte string table index 958 1 byte stab type 959 1 byte stab other field 960 2 byte stab desc field 961 4 byte stab value 962 FIXME: This will have to change for a 64 bit object format. 963 964 The stabs symbols are divided into compilation units. For the 965 first entry in each unit, the type of 0, the value is the length 966 of the string table for this unit, and the desc field is the 967 number of stabs symbols for this unit. */ 968 969 #define STRDXOFF (0) 970 #define TYPEOFF (4) 971 #define OTHEROFF (5) 972 #define DESCOFF (6) 973 #define VALOFF (8) 974 #define STABSIZE (12) 975 976 info = (struct stab_find_info *) *pinfo; 977 if (info != NULL) 978 { 979 if (info->stabsec == NULL || info->strsec == NULL) 980 { 981 /* No stabs debugging information. */ 982 return true; 983 } 984 985 stabsize = (info->stabsec->rawsize 986 ? info->stabsec->rawsize 987 : info->stabsec->size); 988 strsize = (info->strsec->rawsize 989 ? info->strsec->rawsize 990 : info->strsec->size); 991 } 992 else 993 { 994 long reloc_size, reloc_count; 995 arelent **reloc_vector; 996 int i; 997 char *function_name; 998 bfd_size_type amt = sizeof *info; 999 1000 info = (struct stab_find_info *) bfd_zalloc (abfd, amt); 1001 if (info == NULL) 1002 return false; 1003 1004 /* FIXME: When using the linker --split-by-file or 1005 --split-by-reloc options, it is possible for the .stab and 1006 .stabstr sections to be split. We should handle that. */ 1007 1008 info->stabsec = bfd_get_section_by_name (abfd, ".stab"); 1009 info->strsec = bfd_get_section_by_name (abfd, ".stabstr"); 1010 1011 if (info->stabsec == NULL || info->strsec == NULL) 1012 { 1013 /* Try SOM section names. */ 1014 info->stabsec = bfd_get_section_by_name (abfd, "$GDB_SYMBOLS$"); 1015 info->strsec = bfd_get_section_by_name (abfd, "$GDB_STRINGS$"); 1016 1017 if (info->stabsec == NULL || info->strsec == NULL) 1018 { 1019 /* No stabs debugging information. Set *pinfo so that we 1020 can return quickly in the info != NULL case above. */ 1021 *pinfo = info; 1022 return true; 1023 } 1024 } 1025 1026 stabsize = (info->stabsec->rawsize 1027 ? info->stabsec->rawsize 1028 : info->stabsec->size); 1029 stabsize = (stabsize / STABSIZE) * STABSIZE; 1030 strsize = (info->strsec->rawsize 1031 ? info->strsec->rawsize 1032 : info->strsec->size); 1033 1034 info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize); 1035 info->strs = (bfd_byte *) bfd_alloc (abfd, strsize); 1036 if (info->stabs == NULL || info->strs == NULL) 1037 return false; 1038 1039 if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs, 1040 0, stabsize) 1041 || ! bfd_get_section_contents (abfd, info->strsec, info->strs, 1042 0, strsize)) 1043 return false; 1044 1045 /* Stab strings ought to be nul terminated. Ensure the last one 1046 is, to prevent running off the end of the buffer. */ 1047 info->strs[strsize - 1] = 0; 1048 1049 /* If this is a relocatable object file, we have to relocate 1050 the entries in .stab. This should always be simple 32 bit 1051 relocations against symbols defined in this object file, so 1052 this should be no big deal. */ 1053 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec); 1054 if (reloc_size < 0) 1055 return false; 1056 reloc_vector = (arelent **) bfd_malloc (reloc_size); 1057 if (reloc_vector == NULL && reloc_size != 0) 1058 return false; 1059 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector, 1060 symbols); 1061 if (reloc_count < 0) 1062 { 1063 free (reloc_vector); 1064 return false; 1065 } 1066 if (reloc_count > 0) 1067 { 1068 arelent **pr; 1069 1070 for (pr = reloc_vector; *pr != NULL; pr++) 1071 { 1072 arelent *r; 1073 unsigned long val; 1074 asymbol *sym; 1075 bfd_size_type octets; 1076 1077 r = *pr; 1078 /* Ignore R_*_NONE relocs. */ 1079 if (r->howto->dst_mask == 0) 1080 continue; 1081 1082 octets = r->address * bfd_octets_per_byte (abfd, NULL); 1083 if (r->howto->rightshift != 0 1084 || bfd_get_reloc_size (r->howto) != 4 1085 || r->howto->bitsize != 32 1086 || r->howto->pc_relative 1087 || r->howto->bitpos != 0 1088 || r->howto->dst_mask != 0xffffffff 1089 || octets + 4 > stabsize) 1090 { 1091 _bfd_error_handler 1092 (_("unsupported .stab relocation")); 1093 bfd_set_error (bfd_error_invalid_operation); 1094 free (reloc_vector); 1095 return false; 1096 } 1097 1098 val = bfd_get_32 (abfd, info->stabs + octets); 1099 val &= r->howto->src_mask; 1100 sym = *r->sym_ptr_ptr; 1101 val += sym->value + sym->section->vma + r->addend; 1102 bfd_put_32 (abfd, (bfd_vma) val, info->stabs + octets); 1103 } 1104 } 1105 1106 free (reloc_vector); 1107 1108 /* First time through this function, build a table matching 1109 function VM addresses to stabs, then sort based on starting 1110 VM address. Do this in two passes: once to count how many 1111 table entries we'll need, and a second to actually build the 1112 table. */ 1113 1114 info->indextablesize = 0; 1115 nul_fun = NULL; 1116 for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE) 1117 { 1118 if (stab[TYPEOFF] == (bfd_byte) N_SO) 1119 { 1120 /* if we did not see a function def, leave space for one. */ 1121 if (nul_fun != NULL) 1122 ++info->indextablesize; 1123 1124 /* N_SO with null name indicates EOF */ 1125 if (bfd_get_32 (abfd, stab + STRDXOFF) == 0) 1126 nul_fun = NULL; 1127 else 1128 { 1129 nul_fun = stab; 1130 1131 /* two N_SO's in a row is a filename and directory. Skip */ 1132 if (stab + STABSIZE + TYPEOFF < info->stabs + stabsize 1133 && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO) 1134 stab += STABSIZE; 1135 } 1136 } 1137 else if (stab[TYPEOFF] == (bfd_byte) N_FUN 1138 && bfd_get_32 (abfd, stab + STRDXOFF) != 0) 1139 { 1140 nul_fun = NULL; 1141 ++info->indextablesize; 1142 } 1143 } 1144 1145 if (nul_fun != NULL) 1146 ++info->indextablesize; 1147 1148 if (info->indextablesize == 0) 1149 return true; 1150 ++info->indextablesize; 1151 1152 amt = info->indextablesize; 1153 amt *= sizeof (struct indexentry); 1154 info->indextable = (struct indexentry *) bfd_alloc (abfd, amt); 1155 if (info->indextable == NULL) 1156 return false; 1157 1158 file_name = NULL; 1159 directory_name = NULL; 1160 nul_fun = NULL; 1161 stroff = 0; 1162 1163 for (i = 0, stab = info->stabs, nul_str = str = info->strs; 1164 i < info->indextablesize && stab < info->stabs + stabsize; 1165 stab += STABSIZE) 1166 { 1167 switch (stab[TYPEOFF]) 1168 { 1169 case 0: 1170 /* This is the first entry in a compilation unit. */ 1171 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff) 1172 break; 1173 str += stroff; 1174 stroff = bfd_get_32 (abfd, stab + VALOFF); 1175 break; 1176 1177 case N_SO: 1178 /* The main file name. */ 1179 1180 /* The following code creates a new indextable entry with 1181 a NULL function name if there were no N_FUNs in a file. 1182 Note that a N_SO without a file name is an EOF and 1183 there could be 2 N_SO following it with the new filename 1184 and directory. */ 1185 if (nul_fun != NULL) 1186 { 1187 info->indextable[i].val = bfd_get_32 (abfd, nul_fun + VALOFF); 1188 info->indextable[i].stab = nul_fun; 1189 info->indextable[i].str = nul_str; 1190 info->indextable[i].directory_name = directory_name; 1191 info->indextable[i].file_name = file_name; 1192 info->indextable[i].function_name = NULL; 1193 info->indextable[i].idx = i; 1194 ++i; 1195 } 1196 1197 directory_name = NULL; 1198 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF); 1199 if (file_name == (char *) str) 1200 { 1201 file_name = NULL; 1202 nul_fun = NULL; 1203 } 1204 else 1205 { 1206 nul_fun = stab; 1207 nul_str = str; 1208 if (file_name >= (char *) info->strs + strsize 1209 || file_name < (char *) str) 1210 file_name = NULL; 1211 if (stab + STABSIZE + TYPEOFF < info->stabs + stabsize 1212 && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO) 1213 { 1214 /* Two consecutive N_SOs are a directory and a 1215 file name. */ 1216 stab += STABSIZE; 1217 directory_name = file_name; 1218 file_name = ((char *) str 1219 + bfd_get_32 (abfd, stab + STRDXOFF)); 1220 if (file_name >= (char *) info->strs + strsize 1221 || file_name < (char *) str) 1222 file_name = NULL; 1223 } 1224 } 1225 break; 1226 1227 case N_SOL: 1228 /* The name of an include file. */ 1229 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF); 1230 /* PR 17512: file: 0c680a1f. */ 1231 /* PR 17512: file: 5da8aec4. */ 1232 if (file_name >= (char *) info->strs + strsize 1233 || file_name < (char *) str) 1234 file_name = NULL; 1235 break; 1236 1237 case N_FUN: 1238 /* A function name. */ 1239 function_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF); 1240 if (function_name == (char *) str) 1241 continue; 1242 if (function_name >= (char *) info->strs + strsize 1243 || function_name < (char *) str) 1244 function_name = NULL; 1245 1246 nul_fun = NULL; 1247 info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF); 1248 info->indextable[i].stab = stab; 1249 info->indextable[i].str = str; 1250 info->indextable[i].directory_name = directory_name; 1251 info->indextable[i].file_name = file_name; 1252 info->indextable[i].function_name = function_name; 1253 info->indextable[i].idx = i; 1254 ++i; 1255 break; 1256 } 1257 } 1258 1259 if (nul_fun != NULL) 1260 { 1261 info->indextable[i].val = bfd_get_32 (abfd, nul_fun + VALOFF); 1262 info->indextable[i].stab = nul_fun; 1263 info->indextable[i].str = nul_str; 1264 info->indextable[i].directory_name = directory_name; 1265 info->indextable[i].file_name = file_name; 1266 info->indextable[i].function_name = NULL; 1267 info->indextable[i].idx = i; 1268 ++i; 1269 } 1270 1271 info->indextable[i].val = (bfd_vma) -1; 1272 info->indextable[i].stab = info->stabs + stabsize; 1273 info->indextable[i].str = str; 1274 info->indextable[i].directory_name = NULL; 1275 info->indextable[i].file_name = NULL; 1276 info->indextable[i].function_name = NULL; 1277 info->indextable[i].idx = i; 1278 ++i; 1279 1280 info->indextablesize = i; 1281 qsort (info->indextable, (size_t) i, sizeof (struct indexentry), 1282 cmpindexentry); 1283 1284 *pinfo = info; 1285 } 1286 1287 /* We are passed a section relative offset. The offsets in the 1288 stabs information are absolute. */ 1289 offset += bfd_section_vma (section); 1290 1291 #ifdef ENABLE_CACHING 1292 if (info->cached_indexentry != NULL 1293 && offset >= info->cached_offset 1294 && offset < (info->cached_indexentry + 1)->val) 1295 { 1296 stab = info->cached_stab; 1297 indexentry = info->cached_indexentry; 1298 file_name = info->cached_file_name; 1299 } 1300 else 1301 #endif 1302 { 1303 long low, high; 1304 long mid = -1; 1305 1306 /* Cache non-existent or invalid. Do binary search on 1307 indextable. */ 1308 indexentry = NULL; 1309 1310 low = 0; 1311 high = info->indextablesize - 1; 1312 while (low != high) 1313 { 1314 mid = (high + low) / 2; 1315 if (offset >= info->indextable[mid].val 1316 && offset < info->indextable[mid + 1].val) 1317 { 1318 indexentry = &info->indextable[mid]; 1319 break; 1320 } 1321 1322 if (info->indextable[mid].val > offset) 1323 high = mid; 1324 else 1325 low = mid + 1; 1326 } 1327 1328 if (indexentry == NULL) 1329 return true; 1330 1331 stab = indexentry->stab + STABSIZE; 1332 file_name = indexentry->file_name; 1333 } 1334 1335 directory_name = indexentry->directory_name; 1336 str = indexentry->str; 1337 1338 saw_line = false; 1339 saw_func = false; 1340 for (; stab < (indexentry+1)->stab; stab += STABSIZE) 1341 { 1342 bool done; 1343 bfd_vma val; 1344 1345 done = false; 1346 1347 switch (stab[TYPEOFF]) 1348 { 1349 case N_SOL: 1350 /* The name of an include file. */ 1351 val = bfd_get_32 (abfd, stab + VALOFF); 1352 if (val <= offset) 1353 { 1354 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF); 1355 if (file_name >= (char *) info->strs + strsize 1356 || file_name < (char *) str) 1357 file_name = NULL; 1358 *pline = 0; 1359 } 1360 break; 1361 1362 case N_SLINE: 1363 case N_DSLINE: 1364 case N_BSLINE: 1365 /* A line number. If the function was specified, then the value 1366 is relative to the start of the function. Otherwise, the 1367 value is an absolute address. */ 1368 val = ((indexentry->function_name ? indexentry->val : 0) 1369 + bfd_get_32 (abfd, stab + VALOFF)); 1370 /* If this line starts before our desired offset, or if it's 1371 the first line we've been able to find, use it. The 1372 !saw_line check works around a bug in GCC 2.95.3, which emits 1373 the first N_SLINE late. */ 1374 if (!saw_line || val <= offset) 1375 { 1376 *pline = bfd_get_16 (abfd, stab + DESCOFF); 1377 1378 #ifdef ENABLE_CACHING 1379 info->cached_stab = stab; 1380 info->cached_offset = val; 1381 info->cached_file_name = file_name; 1382 info->cached_indexentry = indexentry; 1383 #endif 1384 } 1385 if (val > offset) 1386 done = true; 1387 saw_line = true; 1388 break; 1389 1390 case N_FUN: 1391 case N_SO: 1392 if (saw_func || saw_line) 1393 done = true; 1394 saw_func = true; 1395 break; 1396 } 1397 1398 if (done) 1399 break; 1400 } 1401 1402 *pfound = true; 1403 1404 if (file_name == NULL || IS_ABSOLUTE_PATH (file_name) 1405 || directory_name == NULL) 1406 *pfilename = file_name; 1407 else 1408 { 1409 size_t dirlen; 1410 1411 dirlen = strlen (directory_name); 1412 if (info->filename == NULL 1413 || filename_ncmp (info->filename, directory_name, dirlen) != 0 1414 || filename_cmp (info->filename + dirlen, file_name) != 0) 1415 { 1416 size_t len; 1417 1418 /* Don't free info->filename here. objdump and other 1419 apps keep a copy of a previously returned file name 1420 pointer. */ 1421 len = strlen (file_name) + 1; 1422 info->filename = (char *) bfd_alloc (abfd, dirlen + len); 1423 if (info->filename == NULL) 1424 return false; 1425 memcpy (info->filename, directory_name, dirlen); 1426 memcpy (info->filename + dirlen, file_name, len); 1427 } 1428 1429 *pfilename = info->filename; 1430 } 1431 1432 if (indexentry->function_name != NULL) 1433 { 1434 char *s; 1435 1436 /* This will typically be something like main:F(0,1), so we want 1437 to clobber the colon. It's OK to change the name, since the 1438 string is in our own local storage anyhow. */ 1439 s = strchr (indexentry->function_name, ':'); 1440 if (s != NULL) 1441 *s = '\0'; 1442 1443 *pfnname = indexentry->function_name; 1444 } 1445 1446 return true; 1447 } 1448 1449 long 1450 _bfd_nosymbols_canonicalize_symtab (bfd *abfd ATTRIBUTE_UNUSED, 1451 asymbol **location ATTRIBUTE_UNUSED) 1452 { 1453 return 0; 1454 } 1455 1456 void 1457 _bfd_nosymbols_print_symbol (bfd *abfd ATTRIBUTE_UNUSED, 1458 void *afile ATTRIBUTE_UNUSED, 1459 asymbol *symbol ATTRIBUTE_UNUSED, 1460 bfd_print_symbol_type how ATTRIBUTE_UNUSED) 1461 { 1462 } 1463 1464 void 1465 _bfd_nosymbols_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED, 1466 asymbol *sym ATTRIBUTE_UNUSED, 1467 symbol_info *ret ATTRIBUTE_UNUSED) 1468 { 1469 } 1470 1471 const char * 1472 _bfd_nosymbols_get_symbol_version_string (bfd *abfd, 1473 asymbol *symbol ATTRIBUTE_UNUSED, 1474 bool base_p ATTRIBUTE_UNUSED, 1475 bool *hidden ATTRIBUTE_UNUSED) 1476 { 1477 return (const char *) _bfd_ptr_bfd_null_error (abfd); 1478 } 1479 1480 bool 1481 _bfd_nosymbols_bfd_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED, 1482 const char *name ATTRIBUTE_UNUSED) 1483 { 1484 return false; 1485 } 1486 1487 alent * 1488 _bfd_nosymbols_get_lineno (bfd *abfd, asymbol *sym ATTRIBUTE_UNUSED) 1489 { 1490 return (alent *) _bfd_ptr_bfd_null_error (abfd); 1491 } 1492 1493 bool 1494 _bfd_nosymbols_find_nearest_line 1495 (bfd *abfd, 1496 asymbol **symbols ATTRIBUTE_UNUSED, 1497 asection *section ATTRIBUTE_UNUSED, 1498 bfd_vma offset ATTRIBUTE_UNUSED, 1499 const char **filename_ptr ATTRIBUTE_UNUSED, 1500 const char **functionname_ptr ATTRIBUTE_UNUSED, 1501 unsigned int *line_ptr ATTRIBUTE_UNUSED, 1502 unsigned int *discriminator_ptr ATTRIBUTE_UNUSED) 1503 { 1504 return _bfd_bool_bfd_false_error (abfd); 1505 } 1506 1507 bool 1508 _bfd_nosymbols_find_line (bfd *abfd, 1509 asymbol **symbols ATTRIBUTE_UNUSED, 1510 asymbol *symbol ATTRIBUTE_UNUSED, 1511 const char **filename_ptr ATTRIBUTE_UNUSED, 1512 unsigned int *line_ptr ATTRIBUTE_UNUSED) 1513 { 1514 return _bfd_bool_bfd_false_error (abfd); 1515 } 1516 1517 bool 1518 _bfd_nosymbols_find_inliner_info 1519 (bfd *abfd, 1520 const char **filename_ptr ATTRIBUTE_UNUSED, 1521 const char **functionname_ptr ATTRIBUTE_UNUSED, 1522 unsigned int *line_ptr ATTRIBUTE_UNUSED) 1523 { 1524 return _bfd_bool_bfd_false_error (abfd); 1525 } 1526 1527 asymbol * 1528 _bfd_nosymbols_bfd_make_debug_symbol (bfd *abfd, 1529 void *ptr ATTRIBUTE_UNUSED, 1530 unsigned long sz ATTRIBUTE_UNUSED) 1531 { 1532 return (asymbol *) _bfd_ptr_bfd_null_error (abfd); 1533 } 1534 1535 long 1536 _bfd_nosymbols_read_minisymbols (bfd *abfd, 1537 bool dynamic ATTRIBUTE_UNUSED, 1538 void **minisymsp ATTRIBUTE_UNUSED, 1539 unsigned int *sizep ATTRIBUTE_UNUSED) 1540 { 1541 return _bfd_long_bfd_n1_error (abfd); 1542 } 1543 1544 asymbol * 1545 _bfd_nosymbols_minisymbol_to_symbol (bfd *abfd, 1546 bool dynamic ATTRIBUTE_UNUSED, 1547 const void *minisym ATTRIBUTE_UNUSED, 1548 asymbol *sym ATTRIBUTE_UNUSED) 1549 { 1550 return (asymbol *) _bfd_ptr_bfd_null_error (abfd); 1551 } 1552 1553 long 1554 _bfd_nodynamic_get_synthetic_symtab (bfd *abfd, 1555 long symcount ATTRIBUTE_UNUSED, 1556 asymbol **syms ATTRIBUTE_UNUSED, 1557 long dynsymcount ATTRIBUTE_UNUSED, 1558 asymbol **dynsyms ATTRIBUTE_UNUSED, 1559 asymbol **ret ATTRIBUTE_UNUSED) 1560 { 1561 return _bfd_long_bfd_n1_error (abfd); 1562 } 1563