1 /* Object file "section" support for the BFD library. 2 Copyright (C) 1990-2018 Free Software Foundation, Inc. 3 Written by Cygnus Support. 4 5 This file is part of BFD, the Binary File Descriptor library. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, write to the Free Software 19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 20 MA 02110-1301, USA. */ 21 22 /* 23 SECTION 24 Sections 25 26 The raw data contained within a BFD is maintained through the 27 section abstraction. A single BFD may have any number of 28 sections. It keeps hold of them by pointing to the first; 29 each one points to the next in the list. 30 31 Sections are supported in BFD in <<section.c>>. 32 33 @menu 34 @* Section Input:: 35 @* Section Output:: 36 @* typedef asection:: 37 @* section prototypes:: 38 @end menu 39 40 INODE 41 Section Input, Section Output, Sections, Sections 42 SUBSECTION 43 Section input 44 45 When a BFD is opened for reading, the section structures are 46 created and attached to the BFD. 47 48 Each section has a name which describes the section in the 49 outside world---for example, <<a.out>> would contain at least 50 three sections, called <<.text>>, <<.data>> and <<.bss>>. 51 52 Names need not be unique; for example a COFF file may have several 53 sections named <<.data>>. 54 55 Sometimes a BFD will contain more than the ``natural'' number of 56 sections. A back end may attach other sections containing 57 constructor data, or an application may add a section (using 58 <<bfd_make_section>>) to the sections attached to an already open 59 BFD. For example, the linker creates an extra section 60 <<COMMON>> for each input file's BFD to hold information about 61 common storage. 62 63 The raw data is not necessarily read in when 64 the section descriptor is created. Some targets may leave the 65 data in place until a <<bfd_get_section_contents>> call is 66 made. Other back ends may read in all the data at once. For 67 example, an S-record file has to be read once to determine the 68 size of the data. An IEEE-695 file doesn't contain raw data in 69 sections, but data and relocation expressions intermixed, so 70 the data area has to be parsed to get out the data and 71 relocations. 72 73 INODE 74 Section Output, typedef asection, Section Input, Sections 75 76 SUBSECTION 77 Section output 78 79 To write a new object style BFD, the various sections to be 80 written have to be created. They are attached to the BFD in 81 the same way as input sections; data is written to the 82 sections using <<bfd_set_section_contents>>. 83 84 Any program that creates or combines sections (e.g., the assembler 85 and linker) must use the <<asection>> fields <<output_section>> and 86 <<output_offset>> to indicate the file sections to which each 87 section must be written. (If the section is being created from 88 scratch, <<output_section>> should probably point to the section 89 itself and <<output_offset>> should probably be zero.) 90 91 The data to be written comes from input sections attached 92 (via <<output_section>> pointers) to 93 the output sections. The output section structure can be 94 considered a filter for the input section: the output section 95 determines the vma of the output data and the name, but the 96 input section determines the offset into the output section of 97 the data to be written. 98 99 E.g., to create a section "O", starting at 0x100, 0x123 long, 100 containing two subsections, "A" at offset 0x0 (i.e., at vma 101 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>> 102 structures would look like: 103 104 | section name "A" 105 | output_offset 0x00 106 | size 0x20 107 | output_section -----------> section name "O" 108 | | vma 0x100 109 | section name "B" | size 0x123 110 | output_offset 0x20 | 111 | size 0x103 | 112 | output_section --------| 113 114 SUBSECTION 115 Link orders 116 117 The data within a section is stored in a @dfn{link_order}. 118 These are much like the fixups in <<gas>>. The link_order 119 abstraction allows a section to grow and shrink within itself. 120 121 A link_order knows how big it is, and which is the next 122 link_order and where the raw data for it is; it also points to 123 a list of relocations which apply to it. 124 125 The link_order is used by the linker to perform relaxing on 126 final code. The compiler creates code which is as big as 127 necessary to make it work without relaxing, and the user can 128 select whether to relax. Sometimes relaxing takes a lot of 129 time. The linker runs around the relocations to see if any 130 are attached to data which can be shrunk, if so it does it on 131 a link_order by link_order basis. 132 133 */ 134 135 #include "sysdep.h" 136 #include "bfd.h" 137 #include "libbfd.h" 138 #include "bfdlink.h" 139 140 /* 141 DOCDD 142 INODE 143 typedef asection, section prototypes, Section Output, Sections 144 SUBSECTION 145 typedef asection 146 147 Here is the section structure: 148 149 CODE_FRAGMENT 150 . 151 .typedef struct bfd_section 152 .{ 153 . {* The name of the section; the name isn't a copy, the pointer is 154 . the same as that passed to bfd_make_section. *} 155 . const char *name; 156 . 157 . {* A unique sequence number. *} 158 . unsigned int id; 159 . 160 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *} 161 . unsigned int index; 162 . 163 . {* The next section in the list belonging to the BFD, or NULL. *} 164 . struct bfd_section *next; 165 . 166 . {* The previous section in the list belonging to the BFD, or NULL. *} 167 . struct bfd_section *prev; 168 . 169 . {* The field flags contains attributes of the section. Some 170 . flags are read in from the object file, and some are 171 . synthesized from other information. *} 172 . flagword flags; 173 . 174 .#define SEC_NO_FLAGS 0x0 175 . 176 . {* Tells the OS to allocate space for this section when loading. 177 . This is clear for a section containing debug information only. *} 178 .#define SEC_ALLOC 0x1 179 . 180 . {* Tells the OS to load the section from the file when loading. 181 . This is clear for a .bss section. *} 182 .#define SEC_LOAD 0x2 183 . 184 . {* The section contains data still to be relocated, so there is 185 . some relocation information too. *} 186 .#define SEC_RELOC 0x4 187 . 188 . {* A signal to the OS that the section contains read only data. *} 189 .#define SEC_READONLY 0x8 190 . 191 . {* The section contains code only. *} 192 .#define SEC_CODE 0x10 193 . 194 . {* The section contains data only. *} 195 .#define SEC_DATA 0x20 196 . 197 . {* The section will reside in ROM. *} 198 .#define SEC_ROM 0x40 199 . 200 . {* The section contains constructor information. This section 201 . type is used by the linker to create lists of constructors and 202 . destructors used by <<g++>>. When a back end sees a symbol 203 . which should be used in a constructor list, it creates a new 204 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches 205 . the symbol to it, and builds a relocation. To build the lists 206 . of constructors, all the linker has to do is catenate all the 207 . sections called <<__CTOR_LIST__>> and relocate the data 208 . contained within - exactly the operations it would peform on 209 . standard data. *} 210 .#define SEC_CONSTRUCTOR 0x80 211 . 212 . {* The section has contents - a data section could be 213 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be 214 . <<SEC_HAS_CONTENTS>> *} 215 .#define SEC_HAS_CONTENTS 0x100 216 . 217 . {* An instruction to the linker to not output the section 218 . even if it has information which would normally be written. *} 219 .#define SEC_NEVER_LOAD 0x200 220 . 221 . {* The section contains thread local data. *} 222 .#define SEC_THREAD_LOCAL 0x400 223 . 224 . {* The section has GOT references. This flag is only for the 225 . linker, and is currently only used by the elf32-hppa back end. 226 . It will be set if global offset table references were detected 227 . in this section, which indicate to the linker that the section 228 . contains PIC code, and must be handled specially when doing a 229 . static link. *} 230 .#define SEC_HAS_GOT_REF 0x800 231 . 232 . {* The section contains common symbols (symbols may be defined 233 . multiple times, the value of a symbol is the amount of 234 . space it requires, and the largest symbol value is the one 235 . used). Most targets have exactly one of these (which we 236 . translate to bfd_com_section_ptr), but ECOFF has two. *} 237 .#define SEC_IS_COMMON 0x1000 238 . 239 . {* The section contains only debugging information. For 240 . example, this is set for ELF .debug and .stab sections. 241 . strip tests this flag to see if a section can be 242 . discarded. *} 243 .#define SEC_DEBUGGING 0x2000 244 . 245 . {* The contents of this section are held in memory pointed to 246 . by the contents field. This is checked by bfd_get_section_contents, 247 . and the data is retrieved from memory if appropriate. *} 248 .#define SEC_IN_MEMORY 0x4000 249 . 250 . {* The contents of this section are to be excluded by the 251 . linker for executable and shared objects unless those 252 . objects are to be further relocated. *} 253 .#define SEC_EXCLUDE 0x8000 254 . 255 . {* The contents of this section are to be sorted based on the sum of 256 . the symbol and addend values specified by the associated relocation 257 . entries. Entries without associated relocation entries will be 258 . appended to the end of the section in an unspecified order. *} 259 .#define SEC_SORT_ENTRIES 0x10000 260 . 261 . {* When linking, duplicate sections of the same name should be 262 . discarded, rather than being combined into a single section as 263 . is usually done. This is similar to how common symbols are 264 . handled. See SEC_LINK_DUPLICATES below. *} 265 .#define SEC_LINK_ONCE 0x20000 266 . 267 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker 268 . should handle duplicate sections. *} 269 .#define SEC_LINK_DUPLICATES 0xc0000 270 . 271 . {* This value for SEC_LINK_DUPLICATES means that duplicate 272 . sections with the same name should simply be discarded. *} 273 .#define SEC_LINK_DUPLICATES_DISCARD 0x0 274 . 275 . {* This value for SEC_LINK_DUPLICATES means that the linker 276 . should warn if there are any duplicate sections, although 277 . it should still only link one copy. *} 278 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000 279 . 280 . {* This value for SEC_LINK_DUPLICATES means that the linker 281 . should warn if any duplicate sections are a different size. *} 282 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000 283 . 284 . {* This value for SEC_LINK_DUPLICATES means that the linker 285 . should warn if any duplicate sections contain different 286 . contents. *} 287 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \ 288 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE) 289 . 290 . {* This section was created by the linker as part of dynamic 291 . relocation or other arcane processing. It is skipped when 292 . going through the first-pass output, trusting that someone 293 . else up the line will take care of it later. *} 294 .#define SEC_LINKER_CREATED 0x100000 295 . 296 . {* This section should not be subject to garbage collection. 297 . Also set to inform the linker that this section should not be 298 . listed in the link map as discarded. *} 299 .#define SEC_KEEP 0x200000 300 . 301 . {* This section contains "short" data, and should be placed 302 . "near" the GP. *} 303 .#define SEC_SMALL_DATA 0x400000 304 . 305 . {* Attempt to merge identical entities in the section. 306 . Entity size is given in the entsize field. *} 307 .#define SEC_MERGE 0x800000 308 . 309 . {* If given with SEC_MERGE, entities to merge are zero terminated 310 . strings where entsize specifies character size instead of fixed 311 . size entries. *} 312 .#define SEC_STRINGS 0x1000000 313 . 314 . {* This section contains data about section groups. *} 315 .#define SEC_GROUP 0x2000000 316 . 317 . {* The section is a COFF shared library section. This flag is 318 . only for the linker. If this type of section appears in 319 . the input file, the linker must copy it to the output file 320 . without changing the vma or size. FIXME: Although this 321 . was originally intended to be general, it really is COFF 322 . specific (and the flag was renamed to indicate this). It 323 . might be cleaner to have some more general mechanism to 324 . allow the back end to control what the linker does with 325 . sections. *} 326 .#define SEC_COFF_SHARED_LIBRARY 0x4000000 327 . 328 . {* This input section should be copied to output in reverse order 329 . as an array of pointers. This is for ELF linker internal use 330 . only. *} 331 .#define SEC_ELF_REVERSE_COPY 0x4000000 332 . 333 . {* This section contains data which may be shared with other 334 . executables or shared objects. This is for COFF only. *} 335 .#define SEC_COFF_SHARED 0x8000000 336 . 337 . {* This section should be compressed. This is for ELF linker 338 . internal use only. *} 339 .#define SEC_ELF_COMPRESS 0x8000000 340 . 341 . {* When a section with this flag is being linked, then if the size of 342 . the input section is less than a page, it should not cross a page 343 . boundary. If the size of the input section is one page or more, 344 . it should be aligned on a page boundary. This is for TI 345 . TMS320C54X only. *} 346 .#define SEC_TIC54X_BLOCK 0x10000000 347 . 348 . {* This section should be renamed. This is for ELF linker 349 . internal use only. *} 350 .#define SEC_ELF_RENAME 0x10000000 351 . 352 . {* Conditionally link this section; do not link if there are no 353 . references found to any symbol in the section. This is for TI 354 . TMS320C54X only. *} 355 .#define SEC_TIC54X_CLINK 0x20000000 356 . 357 . {* This section contains vliw code. This is for Toshiba MeP only. *} 358 .#define SEC_MEP_VLIW 0x20000000 359 . 360 . {* Indicate that section has the no read flag set. This happens 361 . when memory read flag isn't set. *} 362 .#define SEC_COFF_NOREAD 0x40000000 363 . 364 . {* Indicate that section has the purecode flag set. *} 365 .#define SEC_ELF_PURECODE 0x80000000 366 . 367 . {* End of section flags. *} 368 . 369 . {* Some internal packed boolean fields. *} 370 . 371 . {* See the vma field. *} 372 . unsigned int user_set_vma : 1; 373 . 374 . {* A mark flag used by some of the linker backends. *} 375 . unsigned int linker_mark : 1; 376 . 377 . {* Another mark flag used by some of the linker backends. Set for 378 . output sections that have an input section. *} 379 . unsigned int linker_has_input : 1; 380 . 381 . {* Mark flag used by some linker backends for garbage collection. *} 382 . unsigned int gc_mark : 1; 383 . 384 . {* Section compression status. *} 385 . unsigned int compress_status : 2; 386 .#define COMPRESS_SECTION_NONE 0 387 .#define COMPRESS_SECTION_DONE 1 388 .#define DECOMPRESS_SECTION_SIZED 2 389 . 390 . {* The following flags are used by the ELF linker. *} 391 . 392 . {* Mark sections which have been allocated to segments. *} 393 . unsigned int segment_mark : 1; 394 . 395 . {* Type of sec_info information. *} 396 . unsigned int sec_info_type:3; 397 .#define SEC_INFO_TYPE_NONE 0 398 .#define SEC_INFO_TYPE_STABS 1 399 .#define SEC_INFO_TYPE_MERGE 2 400 .#define SEC_INFO_TYPE_EH_FRAME 3 401 .#define SEC_INFO_TYPE_JUST_SYMS 4 402 .#define SEC_INFO_TYPE_TARGET 5 403 .#define SEC_INFO_TYPE_EH_FRAME_ENTRY 6 404 . 405 . {* Nonzero if this section uses RELA relocations, rather than REL. *} 406 . unsigned int use_rela_p:1; 407 . 408 . {* Bits used by various backends. The generic code doesn't touch 409 . these fields. *} 410 . 411 . unsigned int sec_flg0:1; 412 . unsigned int sec_flg1:1; 413 . unsigned int sec_flg2:1; 414 . unsigned int sec_flg3:1; 415 . unsigned int sec_flg4:1; 416 . unsigned int sec_flg5:1; 417 . 418 . {* End of internal packed boolean fields. *} 419 . 420 . {* The virtual memory address of the section - where it will be 421 . at run time. The symbols are relocated against this. The 422 . user_set_vma flag is maintained by bfd; if it's not set, the 423 . backend can assign addresses (for example, in <<a.out>>, where 424 . the default address for <<.data>> is dependent on the specific 425 . target and various flags). *} 426 . bfd_vma vma; 427 . 428 . {* The load address of the section - where it would be in a 429 . rom image; really only used for writing section header 430 . information. *} 431 . bfd_vma lma; 432 . 433 . {* The size of the section in *octets*, as it will be output. 434 . Contains a value even if the section has no contents (e.g., the 435 . size of <<.bss>>). *} 436 . bfd_size_type size; 437 . 438 . {* For input sections, the original size on disk of the section, in 439 . octets. This field should be set for any section whose size is 440 . changed by linker relaxation. It is required for sections where 441 . the linker relaxation scheme doesn't cache altered section and 442 . reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing 443 . targets), and thus the original size needs to be kept to read the 444 . section multiple times. For output sections, rawsize holds the 445 . section size calculated on a previous linker relaxation pass. *} 446 . bfd_size_type rawsize; 447 . 448 . {* The compressed size of the section in octets. *} 449 . bfd_size_type compressed_size; 450 . 451 . {* Relaxation table. *} 452 . struct relax_table *relax; 453 . 454 . {* Count of used relaxation table entries. *} 455 . int relax_count; 456 . 457 . 458 . {* If this section is going to be output, then this value is the 459 . offset in *bytes* into the output section of the first byte in the 460 . input section (byte ==> smallest addressable unit on the 461 . target). In most cases, if this was going to start at the 462 . 100th octet (8-bit quantity) in the output section, this value 463 . would be 100. However, if the target byte size is 16 bits 464 . (bfd_octets_per_byte is "2"), this value would be 50. *} 465 . bfd_vma output_offset; 466 . 467 . {* The output section through which to map on output. *} 468 . struct bfd_section *output_section; 469 . 470 . {* The alignment requirement of the section, as an exponent of 2 - 471 . e.g., 3 aligns to 2^3 (or 8). *} 472 . unsigned int alignment_power; 473 . 474 . {* If an input section, a pointer to a vector of relocation 475 . records for the data in this section. *} 476 . struct reloc_cache_entry *relocation; 477 . 478 . {* If an output section, a pointer to a vector of pointers to 479 . relocation records for the data in this section. *} 480 . struct reloc_cache_entry **orelocation; 481 . 482 . {* The number of relocation records in one of the above. *} 483 . unsigned reloc_count; 484 . 485 . {* Information below is back end specific - and not always used 486 . or updated. *} 487 . 488 . {* File position of section data. *} 489 . file_ptr filepos; 490 . 491 . {* File position of relocation info. *} 492 . file_ptr rel_filepos; 493 . 494 . {* File position of line data. *} 495 . file_ptr line_filepos; 496 . 497 . {* Pointer to data for applications. *} 498 . void *userdata; 499 . 500 . {* If the SEC_IN_MEMORY flag is set, this points to the actual 501 . contents. *} 502 . unsigned char *contents; 503 . 504 . {* Attached line number information. *} 505 . alent *lineno; 506 . 507 . {* Number of line number records. *} 508 . unsigned int lineno_count; 509 . 510 . {* Entity size for merging purposes. *} 511 . unsigned int entsize; 512 . 513 . {* Points to the kept section if this section is a link-once section, 514 . and is discarded. *} 515 . struct bfd_section *kept_section; 516 . 517 . {* When a section is being output, this value changes as more 518 . linenumbers are written out. *} 519 . file_ptr moving_line_filepos; 520 . 521 . {* What the section number is in the target world. *} 522 . int target_index; 523 . 524 . void *used_by_bfd; 525 . 526 . {* If this is a constructor section then here is a list of the 527 . relocations created to relocate items within it. *} 528 . struct relent_chain *constructor_chain; 529 . 530 . {* The BFD which owns the section. *} 531 . bfd *owner; 532 . 533 . {* A symbol which points at this section only. *} 534 . struct bfd_symbol *symbol; 535 . struct bfd_symbol **symbol_ptr_ptr; 536 . 537 . {* Early in the link process, map_head and map_tail are used to build 538 . a list of input sections attached to an output section. Later, 539 . output sections use these fields for a list of bfd_link_order 540 . structs. *} 541 . union { 542 . struct bfd_link_order *link_order; 543 . struct bfd_section *s; 544 . } map_head, map_tail; 545 .} asection; 546 . 547 .{* Relax table contains information about instructions which can 548 . be removed by relaxation -- replacing a long address with a 549 . short address. *} 550 .struct relax_table { 551 . {* Address where bytes may be deleted. *} 552 . bfd_vma addr; 553 . 554 . {* Number of bytes to be deleted. *} 555 . int size; 556 .}; 557 . 558 .{* Note: the following are provided as inline functions rather than macros 559 . because not all callers use the return value. A macro implementation 560 . would use a comma expression, eg: "((ptr)->foo = val, TRUE)" and some 561 . compilers will complain about comma expressions that have no effect. *} 562 .static inline bfd_boolean 563 .bfd_set_section_userdata (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, 564 . void * val) 565 .{ 566 . ptr->userdata = val; 567 . return TRUE; 568 .} 569 . 570 .static inline bfd_boolean 571 .bfd_set_section_vma (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, bfd_vma val) 572 .{ 573 . ptr->vma = ptr->lma = val; 574 . ptr->user_set_vma = TRUE; 575 . return TRUE; 576 .} 577 . 578 .static inline bfd_boolean 579 .bfd_set_section_alignment (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, 580 . unsigned int val) 581 .{ 582 . ptr->alignment_power = val; 583 . return TRUE; 584 .} 585 . 586 .{* These sections are global, and are managed by BFD. The application 587 . and target back end are not permitted to change the values in 588 . these sections. *} 589 .extern asection _bfd_std_section[4]; 590 . 591 .#define BFD_ABS_SECTION_NAME "*ABS*" 592 .#define BFD_UND_SECTION_NAME "*UND*" 593 .#define BFD_COM_SECTION_NAME "*COM*" 594 .#define BFD_IND_SECTION_NAME "*IND*" 595 . 596 .{* Pointer to the common section. *} 597 .#define bfd_com_section_ptr (&_bfd_std_section[0]) 598 .{* Pointer to the undefined section. *} 599 .#define bfd_und_section_ptr (&_bfd_std_section[1]) 600 .{* Pointer to the absolute section. *} 601 .#define bfd_abs_section_ptr (&_bfd_std_section[2]) 602 .{* Pointer to the indirect section. *} 603 .#define bfd_ind_section_ptr (&_bfd_std_section[3]) 604 . 605 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr) 606 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr) 607 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr) 608 . 609 .#define bfd_is_const_section(SEC) \ 610 . ( ((SEC) == bfd_abs_section_ptr) \ 611 . || ((SEC) == bfd_und_section_ptr) \ 612 . || ((SEC) == bfd_com_section_ptr) \ 613 . || ((SEC) == bfd_ind_section_ptr)) 614 . 615 .{* Macros to handle insertion and deletion of a bfd's sections. These 616 . only handle the list pointers, ie. do not adjust section_count, 617 . target_index etc. *} 618 .#define bfd_section_list_remove(ABFD, S) \ 619 . do \ 620 . { \ 621 . asection *_s = S; \ 622 . asection *_next = _s->next; \ 623 . asection *_prev = _s->prev; \ 624 . if (_prev) \ 625 . _prev->next = _next; \ 626 . else \ 627 . (ABFD)->sections = _next; \ 628 . if (_next) \ 629 . _next->prev = _prev; \ 630 . else \ 631 . (ABFD)->section_last = _prev; \ 632 . } \ 633 . while (0) 634 .#define bfd_section_list_append(ABFD, S) \ 635 . do \ 636 . { \ 637 . asection *_s = S; \ 638 . bfd *_abfd = ABFD; \ 639 . _s->next = NULL; \ 640 . if (_abfd->section_last) \ 641 . { \ 642 . _s->prev = _abfd->section_last; \ 643 . _abfd->section_last->next = _s; \ 644 . } \ 645 . else \ 646 . { \ 647 . _s->prev = NULL; \ 648 . _abfd->sections = _s; \ 649 . } \ 650 . _abfd->section_last = _s; \ 651 . } \ 652 . while (0) 653 .#define bfd_section_list_prepend(ABFD, S) \ 654 . do \ 655 . { \ 656 . asection *_s = S; \ 657 . bfd *_abfd = ABFD; \ 658 . _s->prev = NULL; \ 659 . if (_abfd->sections) \ 660 . { \ 661 . _s->next = _abfd->sections; \ 662 . _abfd->sections->prev = _s; \ 663 . } \ 664 . else \ 665 . { \ 666 . _s->next = NULL; \ 667 . _abfd->section_last = _s; \ 668 . } \ 669 . _abfd->sections = _s; \ 670 . } \ 671 . while (0) 672 .#define bfd_section_list_insert_after(ABFD, A, S) \ 673 . do \ 674 . { \ 675 . asection *_a = A; \ 676 . asection *_s = S; \ 677 . asection *_next = _a->next; \ 678 . _s->next = _next; \ 679 . _s->prev = _a; \ 680 . _a->next = _s; \ 681 . if (_next) \ 682 . _next->prev = _s; \ 683 . else \ 684 . (ABFD)->section_last = _s; \ 685 . } \ 686 . while (0) 687 .#define bfd_section_list_insert_before(ABFD, B, S) \ 688 . do \ 689 . { \ 690 . asection *_b = B; \ 691 . asection *_s = S; \ 692 . asection *_prev = _b->prev; \ 693 . _s->prev = _prev; \ 694 . _s->next = _b; \ 695 . _b->prev = _s; \ 696 . if (_prev) \ 697 . _prev->next = _s; \ 698 . else \ 699 . (ABFD)->sections = _s; \ 700 . } \ 701 . while (0) 702 .#define bfd_section_removed_from_list(ABFD, S) \ 703 . ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S)) 704 . 705 .#define BFD_FAKE_SECTION(SEC, SYM, NAME, IDX, FLAGS) \ 706 . {* name, id, index, next, prev, flags, user_set_vma, *} \ 707 . { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \ 708 . \ 709 . {* linker_mark, linker_has_input, gc_mark, decompress_status, *} \ 710 . 0, 0, 1, 0, \ 711 . \ 712 . {* segment_mark, sec_info_type, use_rela_p, *} \ 713 . 0, 0, 0, \ 714 . \ 715 . {* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5, *} \ 716 . 0, 0, 0, 0, 0, 0, \ 717 . \ 718 . {* vma, lma, size, rawsize, compressed_size, relax, relax_count, *} \ 719 . 0, 0, 0, 0, 0, 0, 0, \ 720 . \ 721 . {* output_offset, output_section, alignment_power, *} \ 722 . 0, &SEC, 0, \ 723 . \ 724 . {* relocation, orelocation, reloc_count, filepos, rel_filepos, *} \ 725 . NULL, NULL, 0, 0, 0, \ 726 . \ 727 . {* line_filepos, userdata, contents, lineno, lineno_count, *} \ 728 . 0, NULL, NULL, NULL, 0, \ 729 . \ 730 . {* entsize, kept_section, moving_line_filepos, *} \ 731 . 0, NULL, 0, \ 732 . \ 733 . {* target_index, used_by_bfd, constructor_chain, owner, *} \ 734 . 0, NULL, NULL, NULL, \ 735 . \ 736 . {* symbol, symbol_ptr_ptr, *} \ 737 . (struct bfd_symbol *) SYM, &SEC.symbol, \ 738 . \ 739 . {* map_head, map_tail *} \ 740 . { NULL }, { NULL } \ 741 . } 742 . 743 .{* We use a macro to initialize the static asymbol structures because 744 . traditional C does not permit us to initialize a union member while 745 . gcc warns if we don't initialize it. 746 . the_bfd, name, value, attr, section [, udata] *} 747 .#ifdef __STDC__ 748 .#define GLOBAL_SYM_INIT(NAME, SECTION) \ 749 . { 0, NAME, 0, BSF_SECTION_SYM, SECTION, { 0 }} 750 .#else 751 .#define GLOBAL_SYM_INIT(NAME, SECTION) \ 752 . { 0, NAME, 0, BSF_SECTION_SYM, SECTION } 753 .#endif 754 . 755 */ 756 757 /* These symbols are global, not specific to any BFD. Therefore, anything 758 that tries to change them is broken, and should be repaired. */ 759 760 static const asymbol global_syms[] = 761 { 762 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, bfd_com_section_ptr), 763 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, bfd_und_section_ptr), 764 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, bfd_abs_section_ptr), 765 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, bfd_ind_section_ptr) 766 }; 767 768 #define STD_SECTION(NAME, IDX, FLAGS) \ 769 BFD_FAKE_SECTION(_bfd_std_section[IDX], &global_syms[IDX], NAME, IDX, FLAGS) 770 771 asection _bfd_std_section[] = { 772 STD_SECTION (BFD_COM_SECTION_NAME, 0, SEC_IS_COMMON), 773 STD_SECTION (BFD_UND_SECTION_NAME, 1, 0), 774 STD_SECTION (BFD_ABS_SECTION_NAME, 2, 0), 775 STD_SECTION (BFD_IND_SECTION_NAME, 3, 0) 776 }; 777 #undef STD_SECTION 778 779 /* Initialize an entry in the section hash table. */ 780 781 struct bfd_hash_entry * 782 bfd_section_hash_newfunc (struct bfd_hash_entry *entry, 783 struct bfd_hash_table *table, 784 const char *string) 785 { 786 /* Allocate the structure if it has not already been allocated by a 787 subclass. */ 788 if (entry == NULL) 789 { 790 entry = (struct bfd_hash_entry *) 791 bfd_hash_allocate (table, sizeof (struct section_hash_entry)); 792 if (entry == NULL) 793 return entry; 794 } 795 796 /* Call the allocation method of the superclass. */ 797 entry = bfd_hash_newfunc (entry, table, string); 798 if (entry != NULL) 799 memset (&((struct section_hash_entry *) entry)->section, 0, 800 sizeof (asection)); 801 802 return entry; 803 } 804 805 #define section_hash_lookup(table, string, create, copy) \ 806 ((struct section_hash_entry *) \ 807 bfd_hash_lookup ((table), (string), (create), (copy))) 808 809 /* Create a symbol whose only job is to point to this section. This 810 is useful for things like relocs which are relative to the base 811 of a section. */ 812 813 bfd_boolean 814 _bfd_generic_new_section_hook (bfd *abfd, asection *newsect) 815 { 816 newsect->symbol = bfd_make_empty_symbol (abfd); 817 if (newsect->symbol == NULL) 818 return FALSE; 819 820 newsect->symbol->name = newsect->name; 821 newsect->symbol->value = 0; 822 newsect->symbol->section = newsect; 823 newsect->symbol->flags = BSF_SECTION_SYM; 824 825 newsect->symbol_ptr_ptr = &newsect->symbol; 826 return TRUE; 827 } 828 829 static unsigned int section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */ 830 831 /* Initializes a new section. NEWSECT->NAME is already set. */ 832 833 static asection * 834 bfd_section_init (bfd *abfd, asection *newsect) 835 { 836 newsect->id = section_id; 837 newsect->index = abfd->section_count; 838 newsect->owner = abfd; 839 840 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect))) 841 return NULL; 842 843 section_id++; 844 abfd->section_count++; 845 bfd_section_list_append (abfd, newsect); 846 return newsect; 847 } 848 849 /* 850 DOCDD 851 INODE 852 section prototypes, , typedef asection, Sections 853 SUBSECTION 854 Section prototypes 855 856 These are the functions exported by the section handling part of BFD. 857 */ 858 859 /* 860 FUNCTION 861 bfd_section_list_clear 862 863 SYNOPSIS 864 void bfd_section_list_clear (bfd *); 865 866 DESCRIPTION 867 Clears the section list, and also resets the section count and 868 hash table entries. 869 */ 870 871 void 872 bfd_section_list_clear (bfd *abfd) 873 { 874 abfd->sections = NULL; 875 abfd->section_last = NULL; 876 abfd->section_count = 0; 877 memset (abfd->section_htab.table, 0, 878 abfd->section_htab.size * sizeof (struct bfd_hash_entry *)); 879 abfd->section_htab.count = 0; 880 } 881 882 /* 883 FUNCTION 884 bfd_get_section_by_name 885 886 SYNOPSIS 887 asection *bfd_get_section_by_name (bfd *abfd, const char *name); 888 889 DESCRIPTION 890 Return the most recently created section attached to @var{abfd} 891 named @var{name}. Return NULL if no such section exists. 892 */ 893 894 asection * 895 bfd_get_section_by_name (bfd *abfd, const char *name) 896 { 897 struct section_hash_entry *sh; 898 899 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE); 900 if (sh != NULL) 901 return &sh->section; 902 903 return NULL; 904 } 905 906 /* 907 FUNCTION 908 bfd_get_next_section_by_name 909 910 SYNOPSIS 911 asection *bfd_get_next_section_by_name (bfd *ibfd, asection *sec); 912 913 DESCRIPTION 914 Given @var{sec} is a section returned by @code{bfd_get_section_by_name}, 915 return the next most recently created section attached to the same 916 BFD with the same name, or if no such section exists in the same BFD and 917 IBFD is non-NULL, the next section with the same name in any input 918 BFD following IBFD. Return NULL on finding no section. 919 */ 920 921 asection * 922 bfd_get_next_section_by_name (bfd *ibfd, asection *sec) 923 { 924 struct section_hash_entry *sh; 925 const char *name; 926 unsigned long hash; 927 928 sh = ((struct section_hash_entry *) 929 ((char *) sec - offsetof (struct section_hash_entry, section))); 930 931 hash = sh->root.hash; 932 name = sec->name; 933 for (sh = (struct section_hash_entry *) sh->root.next; 934 sh != NULL; 935 sh = (struct section_hash_entry *) sh->root.next) 936 if (sh->root.hash == hash 937 && strcmp (sh->root.string, name) == 0) 938 return &sh->section; 939 940 if (ibfd != NULL) 941 { 942 while ((ibfd = ibfd->link.next) != NULL) 943 { 944 asection *s = bfd_get_section_by_name (ibfd, name); 945 if (s != NULL) 946 return s; 947 } 948 } 949 950 return NULL; 951 } 952 953 /* 954 FUNCTION 955 bfd_get_linker_section 956 957 SYNOPSIS 958 asection *bfd_get_linker_section (bfd *abfd, const char *name); 959 960 DESCRIPTION 961 Return the linker created section attached to @var{abfd} 962 named @var{name}. Return NULL if no such section exists. 963 */ 964 965 asection * 966 bfd_get_linker_section (bfd *abfd, const char *name) 967 { 968 asection *sec = bfd_get_section_by_name (abfd, name); 969 970 while (sec != NULL && (sec->flags & SEC_LINKER_CREATED) == 0) 971 sec = bfd_get_next_section_by_name (NULL, sec); 972 return sec; 973 } 974 975 /* 976 FUNCTION 977 bfd_get_section_by_name_if 978 979 SYNOPSIS 980 asection *bfd_get_section_by_name_if 981 (bfd *abfd, 982 const char *name, 983 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj), 984 void *obj); 985 986 DESCRIPTION 987 Call the provided function @var{func} for each section 988 attached to the BFD @var{abfd} whose name matches @var{name}, 989 passing @var{obj} as an argument. The function will be called 990 as if by 991 992 | func (abfd, the_section, obj); 993 994 It returns the first section for which @var{func} returns true, 995 otherwise <<NULL>>. 996 997 */ 998 999 asection * 1000 bfd_get_section_by_name_if (bfd *abfd, const char *name, 1001 bfd_boolean (*operation) (bfd *, 1002 asection *, 1003 void *), 1004 void *user_storage) 1005 { 1006 struct section_hash_entry *sh; 1007 unsigned long hash; 1008 1009 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE); 1010 if (sh == NULL) 1011 return NULL; 1012 1013 hash = sh->root.hash; 1014 for (; sh != NULL; sh = (struct section_hash_entry *) sh->root.next) 1015 if (sh->root.hash == hash 1016 && strcmp (sh->root.string, name) == 0 1017 && (*operation) (abfd, &sh->section, user_storage)) 1018 return &sh->section; 1019 1020 return NULL; 1021 } 1022 1023 /* 1024 FUNCTION 1025 bfd_get_unique_section_name 1026 1027 SYNOPSIS 1028 char *bfd_get_unique_section_name 1029 (bfd *abfd, const char *templat, int *count); 1030 1031 DESCRIPTION 1032 Invent a section name that is unique in @var{abfd} by tacking 1033 a dot and a digit suffix onto the original @var{templat}. If 1034 @var{count} is non-NULL, then it specifies the first number 1035 tried as a suffix to generate a unique name. The value 1036 pointed to by @var{count} will be incremented in this case. 1037 */ 1038 1039 char * 1040 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count) 1041 { 1042 int num; 1043 unsigned int len; 1044 char *sname; 1045 1046 len = strlen (templat); 1047 sname = (char *) bfd_malloc (len + 8); 1048 if (sname == NULL) 1049 return NULL; 1050 memcpy (sname, templat, len); 1051 num = 1; 1052 if (count != NULL) 1053 num = *count; 1054 1055 do 1056 { 1057 /* If we have a million sections, something is badly wrong. */ 1058 if (num > 999999) 1059 abort (); 1060 sprintf (sname + len, ".%d", num++); 1061 } 1062 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE)); 1063 1064 if (count != NULL) 1065 *count = num; 1066 return sname; 1067 } 1068 1069 /* 1070 FUNCTION 1071 bfd_make_section_old_way 1072 1073 SYNOPSIS 1074 asection *bfd_make_section_old_way (bfd *abfd, const char *name); 1075 1076 DESCRIPTION 1077 Create a new empty section called @var{name} 1078 and attach it to the end of the chain of sections for the 1079 BFD @var{abfd}. An attempt to create a section with a name which 1080 is already in use returns its pointer without changing the 1081 section chain. 1082 1083 It has the funny name since this is the way it used to be 1084 before it was rewritten.... 1085 1086 Possible errors are: 1087 o <<bfd_error_invalid_operation>> - 1088 If output has already started for this BFD. 1089 o <<bfd_error_no_memory>> - 1090 If memory allocation fails. 1091 1092 */ 1093 1094 asection * 1095 bfd_make_section_old_way (bfd *abfd, const char *name) 1096 { 1097 asection *newsect; 1098 1099 if (abfd->output_has_begun) 1100 { 1101 bfd_set_error (bfd_error_invalid_operation); 1102 return NULL; 1103 } 1104 1105 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0) 1106 newsect = bfd_abs_section_ptr; 1107 else if (strcmp (name, BFD_COM_SECTION_NAME) == 0) 1108 newsect = bfd_com_section_ptr; 1109 else if (strcmp (name, BFD_UND_SECTION_NAME) == 0) 1110 newsect = bfd_und_section_ptr; 1111 else if (strcmp (name, BFD_IND_SECTION_NAME) == 0) 1112 newsect = bfd_ind_section_ptr; 1113 else 1114 { 1115 struct section_hash_entry *sh; 1116 1117 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE); 1118 if (sh == NULL) 1119 return NULL; 1120 1121 newsect = &sh->section; 1122 if (newsect->name != NULL) 1123 { 1124 /* Section already exists. */ 1125 return newsect; 1126 } 1127 1128 newsect->name = name; 1129 return bfd_section_init (abfd, newsect); 1130 } 1131 1132 /* Call new_section_hook when "creating" the standard abs, com, und 1133 and ind sections to tack on format specific section data. 1134 Also, create a proper section symbol. */ 1135 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect))) 1136 return NULL; 1137 return newsect; 1138 } 1139 1140 /* 1141 FUNCTION 1142 bfd_make_section_anyway_with_flags 1143 1144 SYNOPSIS 1145 asection *bfd_make_section_anyway_with_flags 1146 (bfd *abfd, const char *name, flagword flags); 1147 1148 DESCRIPTION 1149 Create a new empty section called @var{name} and attach it to the end of 1150 the chain of sections for @var{abfd}. Create a new section even if there 1151 is already a section with that name. Also set the attributes of the 1152 new section to the value @var{flags}. 1153 1154 Return <<NULL>> and set <<bfd_error>> on error; possible errors are: 1155 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}. 1156 o <<bfd_error_no_memory>> - If memory allocation fails. 1157 */ 1158 1159 sec_ptr 1160 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name, 1161 flagword flags) 1162 { 1163 struct section_hash_entry *sh; 1164 asection *newsect; 1165 1166 if (abfd->output_has_begun) 1167 { 1168 bfd_set_error (bfd_error_invalid_operation); 1169 return NULL; 1170 } 1171 1172 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE); 1173 if (sh == NULL) 1174 return NULL; 1175 1176 newsect = &sh->section; 1177 if (newsect->name != NULL) 1178 { 1179 /* We are making a section of the same name. Put it in the 1180 section hash table. Even though we can't find it directly by a 1181 hash lookup, we'll be able to find the section by traversing 1182 sh->root.next quicker than looking at all the bfd sections. */ 1183 struct section_hash_entry *new_sh; 1184 new_sh = (struct section_hash_entry *) 1185 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name); 1186 if (new_sh == NULL) 1187 return NULL; 1188 1189 new_sh->root = sh->root; 1190 sh->root.next = &new_sh->root; 1191 newsect = &new_sh->section; 1192 } 1193 1194 newsect->flags = flags; 1195 newsect->name = name; 1196 return bfd_section_init (abfd, newsect); 1197 } 1198 1199 /* 1200 FUNCTION 1201 bfd_make_section_anyway 1202 1203 SYNOPSIS 1204 asection *bfd_make_section_anyway (bfd *abfd, const char *name); 1205 1206 DESCRIPTION 1207 Create a new empty section called @var{name} and attach it to the end of 1208 the chain of sections for @var{abfd}. Create a new section even if there 1209 is already a section with that name. 1210 1211 Return <<NULL>> and set <<bfd_error>> on error; possible errors are: 1212 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}. 1213 o <<bfd_error_no_memory>> - If memory allocation fails. 1214 */ 1215 1216 sec_ptr 1217 bfd_make_section_anyway (bfd *abfd, const char *name) 1218 { 1219 return bfd_make_section_anyway_with_flags (abfd, name, 0); 1220 } 1221 1222 /* 1223 FUNCTION 1224 bfd_make_section_with_flags 1225 1226 SYNOPSIS 1227 asection *bfd_make_section_with_flags 1228 (bfd *, const char *name, flagword flags); 1229 1230 DESCRIPTION 1231 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling 1232 bfd_set_error ()) without changing the section chain if there is already a 1233 section named @var{name}. Also set the attributes of the new section to 1234 the value @var{flags}. If there is an error, return <<NULL>> and set 1235 <<bfd_error>>. 1236 */ 1237 1238 asection * 1239 bfd_make_section_with_flags (bfd *abfd, const char *name, 1240 flagword flags) 1241 { 1242 struct section_hash_entry *sh; 1243 asection *newsect; 1244 1245 if (abfd == NULL || name == NULL || abfd->output_has_begun) 1246 { 1247 bfd_set_error (bfd_error_invalid_operation); 1248 return NULL; 1249 } 1250 1251 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0 1252 || strcmp (name, BFD_COM_SECTION_NAME) == 0 1253 || strcmp (name, BFD_UND_SECTION_NAME) == 0 1254 || strcmp (name, BFD_IND_SECTION_NAME) == 0) 1255 return NULL; 1256 1257 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE); 1258 if (sh == NULL) 1259 return NULL; 1260 1261 newsect = &sh->section; 1262 if (newsect->name != NULL) 1263 { 1264 /* Section already exists. */ 1265 return NULL; 1266 } 1267 1268 newsect->name = name; 1269 newsect->flags = flags; 1270 return bfd_section_init (abfd, newsect); 1271 } 1272 1273 /* 1274 FUNCTION 1275 bfd_make_section 1276 1277 SYNOPSIS 1278 asection *bfd_make_section (bfd *, const char *name); 1279 1280 DESCRIPTION 1281 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling 1282 bfd_set_error ()) without changing the section chain if there is already a 1283 section named @var{name}. If there is an error, return <<NULL>> and set 1284 <<bfd_error>>. 1285 */ 1286 1287 asection * 1288 bfd_make_section (bfd *abfd, const char *name) 1289 { 1290 return bfd_make_section_with_flags (abfd, name, 0); 1291 } 1292 1293 /* 1294 FUNCTION 1295 bfd_get_next_section_id 1296 1297 SYNOPSIS 1298 int bfd_get_next_section_id (void); 1299 1300 DESCRIPTION 1301 Returns the id that the next section created will have. 1302 */ 1303 1304 int 1305 bfd_get_next_section_id (void) 1306 { 1307 return section_id; 1308 } 1309 1310 /* 1311 FUNCTION 1312 bfd_set_section_flags 1313 1314 SYNOPSIS 1315 bfd_boolean bfd_set_section_flags 1316 (bfd *abfd, asection *sec, flagword flags); 1317 1318 DESCRIPTION 1319 Set the attributes of the section @var{sec} in the BFD 1320 @var{abfd} to the value @var{flags}. Return <<TRUE>> on success, 1321 <<FALSE>> on error. Possible error returns are: 1322 1323 o <<bfd_error_invalid_operation>> - 1324 The section cannot have one or more of the attributes 1325 requested. For example, a .bss section in <<a.out>> may not 1326 have the <<SEC_HAS_CONTENTS>> field set. 1327 1328 */ 1329 1330 bfd_boolean 1331 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED, 1332 sec_ptr section, 1333 flagword flags) 1334 { 1335 section->flags = flags; 1336 return TRUE; 1337 } 1338 1339 /* 1340 FUNCTION 1341 bfd_rename_section 1342 1343 SYNOPSIS 1344 void bfd_rename_section 1345 (bfd *abfd, asection *sec, const char *newname); 1346 1347 DESCRIPTION 1348 Rename section @var{sec} in @var{abfd} to @var{newname}. 1349 */ 1350 1351 void 1352 bfd_rename_section (bfd *abfd, sec_ptr sec, const char *newname) 1353 { 1354 struct section_hash_entry *sh; 1355 1356 sh = (struct section_hash_entry *) 1357 ((char *) sec - offsetof (struct section_hash_entry, section)); 1358 sh->section.name = newname; 1359 bfd_hash_rename (&abfd->section_htab, newname, &sh->root); 1360 } 1361 1362 /* 1363 FUNCTION 1364 bfd_map_over_sections 1365 1366 SYNOPSIS 1367 void bfd_map_over_sections 1368 (bfd *abfd, 1369 void (*func) (bfd *abfd, asection *sect, void *obj), 1370 void *obj); 1371 1372 DESCRIPTION 1373 Call the provided function @var{func} for each section 1374 attached to the BFD @var{abfd}, passing @var{obj} as an 1375 argument. The function will be called as if by 1376 1377 | func (abfd, the_section, obj); 1378 1379 This is the preferred method for iterating over sections; an 1380 alternative would be to use a loop: 1381 1382 | asection *p; 1383 | for (p = abfd->sections; p != NULL; p = p->next) 1384 | func (abfd, p, ...) 1385 1386 */ 1387 1388 void 1389 bfd_map_over_sections (bfd *abfd, 1390 void (*operation) (bfd *, asection *, void *), 1391 void *user_storage) 1392 { 1393 asection *sect; 1394 unsigned int i = 0; 1395 1396 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next) 1397 (*operation) (abfd, sect, user_storage); 1398 1399 if (i != abfd->section_count) /* Debugging */ 1400 abort (); 1401 } 1402 1403 /* 1404 FUNCTION 1405 bfd_sections_find_if 1406 1407 SYNOPSIS 1408 asection *bfd_sections_find_if 1409 (bfd *abfd, 1410 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj), 1411 void *obj); 1412 1413 DESCRIPTION 1414 Call the provided function @var{operation} for each section 1415 attached to the BFD @var{abfd}, passing @var{obj} as an 1416 argument. The function will be called as if by 1417 1418 | operation (abfd, the_section, obj); 1419 1420 It returns the first section for which @var{operation} returns true. 1421 1422 */ 1423 1424 asection * 1425 bfd_sections_find_if (bfd *abfd, 1426 bfd_boolean (*operation) (bfd *, asection *, void *), 1427 void *user_storage) 1428 { 1429 asection *sect; 1430 1431 for (sect = abfd->sections; sect != NULL; sect = sect->next) 1432 if ((*operation) (abfd, sect, user_storage)) 1433 break; 1434 1435 return sect; 1436 } 1437 1438 /* 1439 FUNCTION 1440 bfd_set_section_size 1441 1442 SYNOPSIS 1443 bfd_boolean bfd_set_section_size 1444 (bfd *abfd, asection *sec, bfd_size_type val); 1445 1446 DESCRIPTION 1447 Set @var{sec} to the size @var{val}. If the operation is 1448 ok, then <<TRUE>> is returned, else <<FALSE>>. 1449 1450 Possible error returns: 1451 o <<bfd_error_invalid_operation>> - 1452 Writing has started to the BFD, so setting the size is invalid. 1453 1454 */ 1455 1456 bfd_boolean 1457 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val) 1458 { 1459 /* Once you've started writing to any section you cannot create or change 1460 the size of any others. */ 1461 1462 if (abfd->output_has_begun) 1463 { 1464 bfd_set_error (bfd_error_invalid_operation); 1465 return FALSE; 1466 } 1467 1468 ptr->size = val; 1469 return TRUE; 1470 } 1471 1472 /* 1473 FUNCTION 1474 bfd_set_section_contents 1475 1476 SYNOPSIS 1477 bfd_boolean bfd_set_section_contents 1478 (bfd *abfd, asection *section, const void *data, 1479 file_ptr offset, bfd_size_type count); 1480 1481 DESCRIPTION 1482 Sets the contents of the section @var{section} in BFD 1483 @var{abfd} to the data starting in memory at @var{data}. The 1484 data is written to the output section starting at offset 1485 @var{offset} for @var{count} octets. 1486 1487 Normally <<TRUE>> is returned, else <<FALSE>>. Possible error 1488 returns are: 1489 o <<bfd_error_no_contents>> - 1490 The output section does not have the <<SEC_HAS_CONTENTS>> 1491 attribute, so nothing can be written to it. 1492 o and some more too 1493 1494 This routine is front end to the back end function 1495 <<_bfd_set_section_contents>>. 1496 1497 */ 1498 1499 bfd_boolean 1500 bfd_set_section_contents (bfd *abfd, 1501 sec_ptr section, 1502 const void *location, 1503 file_ptr offset, 1504 bfd_size_type count) 1505 { 1506 bfd_size_type sz; 1507 1508 if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS)) 1509 { 1510 bfd_set_error (bfd_error_no_contents); 1511 return FALSE; 1512 } 1513 1514 sz = section->size; 1515 if ((bfd_size_type) offset > sz 1516 || count > sz 1517 || offset + count > sz 1518 || count != (size_t) count) 1519 { 1520 bfd_set_error (bfd_error_bad_value); 1521 return FALSE; 1522 } 1523 1524 if (!bfd_write_p (abfd)) 1525 { 1526 bfd_set_error (bfd_error_invalid_operation); 1527 return FALSE; 1528 } 1529 1530 /* Record a copy of the data in memory if desired. */ 1531 if (section->contents 1532 && location != section->contents + offset) 1533 memcpy (section->contents + offset, location, (size_t) count); 1534 1535 if (BFD_SEND (abfd, _bfd_set_section_contents, 1536 (abfd, section, location, offset, count))) 1537 { 1538 abfd->output_has_begun = TRUE; 1539 return TRUE; 1540 } 1541 1542 return FALSE; 1543 } 1544 1545 /* 1546 FUNCTION 1547 bfd_get_section_contents 1548 1549 SYNOPSIS 1550 bfd_boolean bfd_get_section_contents 1551 (bfd *abfd, asection *section, void *location, file_ptr offset, 1552 bfd_size_type count); 1553 1554 DESCRIPTION 1555 Read data from @var{section} in BFD @var{abfd} 1556 into memory starting at @var{location}. The data is read at an 1557 offset of @var{offset} from the start of the input section, 1558 and is read for @var{count} bytes. 1559 1560 If the contents of a constructor with the <<SEC_CONSTRUCTOR>> 1561 flag set are requested or if the section does not have the 1562 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled 1563 with zeroes. If no errors occur, <<TRUE>> is returned, else 1564 <<FALSE>>. 1565 1566 */ 1567 bfd_boolean 1568 bfd_get_section_contents (bfd *abfd, 1569 sec_ptr section, 1570 void *location, 1571 file_ptr offset, 1572 bfd_size_type count) 1573 { 1574 bfd_size_type sz; 1575 1576 if (section->flags & SEC_CONSTRUCTOR) 1577 { 1578 memset (location, 0, (size_t) count); 1579 return TRUE; 1580 } 1581 1582 if (abfd->direction != write_direction && section->rawsize != 0) 1583 sz = section->rawsize; 1584 else 1585 sz = section->size; 1586 if ((bfd_size_type) offset > sz 1587 || count > sz 1588 || offset + count > sz 1589 || count != (size_t) count) 1590 { 1591 bfd_set_error (bfd_error_bad_value); 1592 return FALSE; 1593 } 1594 1595 if (count == 0) 1596 /* Don't bother. */ 1597 return TRUE; 1598 1599 if ((section->flags & SEC_HAS_CONTENTS) == 0) 1600 { 1601 memset (location, 0, (size_t) count); 1602 return TRUE; 1603 } 1604 1605 if ((section->flags & SEC_IN_MEMORY) != 0) 1606 { 1607 if (section->contents == NULL) 1608 { 1609 /* This can happen because of errors earlier on in the linking process. 1610 We do not want to seg-fault here, so clear the flag and return an 1611 error code. */ 1612 section->flags &= ~ SEC_IN_MEMORY; 1613 bfd_set_error (bfd_error_invalid_operation); 1614 return FALSE; 1615 } 1616 1617 memmove (location, section->contents + offset, (size_t) count); 1618 return TRUE; 1619 } 1620 1621 return BFD_SEND (abfd, _bfd_get_section_contents, 1622 (abfd, section, location, offset, count)); 1623 } 1624 1625 /* 1626 FUNCTION 1627 bfd_malloc_and_get_section 1628 1629 SYNOPSIS 1630 bfd_boolean bfd_malloc_and_get_section 1631 (bfd *abfd, asection *section, bfd_byte **buf); 1632 1633 DESCRIPTION 1634 Read all data from @var{section} in BFD @var{abfd} 1635 into a buffer, *@var{buf}, malloc'd by this function. 1636 */ 1637 1638 bfd_boolean 1639 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf) 1640 { 1641 *buf = NULL; 1642 return bfd_get_full_section_contents (abfd, sec, buf); 1643 } 1644 /* 1645 FUNCTION 1646 bfd_copy_private_section_data 1647 1648 SYNOPSIS 1649 bfd_boolean bfd_copy_private_section_data 1650 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec); 1651 1652 DESCRIPTION 1653 Copy private section information from @var{isec} in the BFD 1654 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}. 1655 Return <<TRUE>> on success, <<FALSE>> on error. Possible error 1656 returns are: 1657 1658 o <<bfd_error_no_memory>> - 1659 Not enough memory exists to create private data for @var{osec}. 1660 1661 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \ 1662 . BFD_SEND (obfd, _bfd_copy_private_section_data, \ 1663 . (ibfd, isection, obfd, osection)) 1664 */ 1665 1666 /* 1667 FUNCTION 1668 bfd_generic_is_group_section 1669 1670 SYNOPSIS 1671 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec); 1672 1673 DESCRIPTION 1674 Returns TRUE if @var{sec} is a member of a group. 1675 */ 1676 1677 bfd_boolean 1678 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, 1679 const asection *sec ATTRIBUTE_UNUSED) 1680 { 1681 return FALSE; 1682 } 1683 1684 /* 1685 FUNCTION 1686 bfd_generic_discard_group 1687 1688 SYNOPSIS 1689 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group); 1690 1691 DESCRIPTION 1692 Remove all members of @var{group} from the output. 1693 */ 1694 1695 bfd_boolean 1696 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED, 1697 asection *group ATTRIBUTE_UNUSED) 1698 { 1699 return TRUE; 1700 } 1701