xref: /netbsd-src/external/gpl3/binutils/dist/bfd/linker.c (revision a5847cc334d9a7029f6352b847e9e8d71a0f9e0c)
1 /* linker.c -- BFD linker routines
2    Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3    2003, 2004, 2005, 2006, 2007, 2008, 2009
4    Free Software Foundation, Inc.
5    Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
6 
7    This file is part of BFD, the Binary File Descriptor library.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; if not, write to the Free Software
21    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22    MA 02110-1301, USA.  */
23 
24 #include "sysdep.h"
25 #include "bfd.h"
26 #include "libbfd.h"
27 #include "bfdlink.h"
28 #include "genlink.h"
29 
30 /*
31 SECTION
32 	Linker Functions
33 
34 @cindex Linker
35 	The linker uses three special entry points in the BFD target
36 	vector.  It is not necessary to write special routines for
37 	these entry points when creating a new BFD back end, since
38 	generic versions are provided.  However, writing them can
39 	speed up linking and make it use significantly less runtime
40 	memory.
41 
42 	The first routine creates a hash table used by the other
43 	routines.  The second routine adds the symbols from an object
44 	file to the hash table.  The third routine takes all the
45 	object files and links them together to create the output
46 	file.  These routines are designed so that the linker proper
47 	does not need to know anything about the symbols in the object
48 	files that it is linking.  The linker merely arranges the
49 	sections as directed by the linker script and lets BFD handle
50 	the details of symbols and relocs.
51 
52 	The second routine and third routines are passed a pointer to
53 	a <<struct bfd_link_info>> structure (defined in
54 	<<bfdlink.h>>) which holds information relevant to the link,
55 	including the linker hash table (which was created by the
56 	first routine) and a set of callback functions to the linker
57 	proper.
58 
59 	The generic linker routines are in <<linker.c>>, and use the
60 	header file <<genlink.h>>.  As of this writing, the only back
61 	ends which have implemented versions of these routines are
62 	a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>).  The a.out
63 	routines are used as examples throughout this section.
64 
65 @menu
66 @* Creating a Linker Hash Table::
67 @* Adding Symbols to the Hash Table::
68 @* Performing the Final Link::
69 @end menu
70 
71 INODE
72 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
73 SUBSECTION
74 	Creating a linker hash table
75 
76 @cindex _bfd_link_hash_table_create in target vector
77 @cindex target vector (_bfd_link_hash_table_create)
78 	The linker routines must create a hash table, which must be
79 	derived from <<struct bfd_link_hash_table>> described in
80 	<<bfdlink.c>>.  @xref{Hash Tables}, for information on how to
81 	create a derived hash table.  This entry point is called using
82 	the target vector of the linker output file.
83 
84 	The <<_bfd_link_hash_table_create>> entry point must allocate
85 	and initialize an instance of the desired hash table.  If the
86 	back end does not require any additional information to be
87 	stored with the entries in the hash table, the entry point may
88 	simply create a <<struct bfd_link_hash_table>>.  Most likely,
89 	however, some additional information will be needed.
90 
91 	For example, with each entry in the hash table the a.out
92 	linker keeps the index the symbol has in the final output file
93 	(this index number is used so that when doing a relocatable
94 	link the symbol index used in the output file can be quickly
95 	filled in when copying over a reloc).  The a.out linker code
96 	defines the required structures and functions for a hash table
97 	derived from <<struct bfd_link_hash_table>>.  The a.out linker
98 	hash table is created by the function
99 	<<NAME(aout,link_hash_table_create)>>; it simply allocates
100 	space for the hash table, initializes it, and returns a
101 	pointer to it.
102 
103 	When writing the linker routines for a new back end, you will
104 	generally not know exactly which fields will be required until
105 	you have finished.  You should simply create a new hash table
106 	which defines no additional fields, and then simply add fields
107 	as they become necessary.
108 
109 INODE
110 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
111 SUBSECTION
112 	Adding symbols to the hash table
113 
114 @cindex _bfd_link_add_symbols in target vector
115 @cindex target vector (_bfd_link_add_symbols)
116 	The linker proper will call the <<_bfd_link_add_symbols>>
117 	entry point for each object file or archive which is to be
118 	linked (typically these are the files named on the command
119 	line, but some may also come from the linker script).  The
120 	entry point is responsible for examining the file.  For an
121 	object file, BFD must add any relevant symbol information to
122 	the hash table.  For an archive, BFD must determine which
123 	elements of the archive should be used and adding them to the
124 	link.
125 
126 	The a.out version of this entry point is
127 	<<NAME(aout,link_add_symbols)>>.
128 
129 @menu
130 @* Differing file formats::
131 @* Adding symbols from an object file::
132 @* Adding symbols from an archive::
133 @end menu
134 
135 INODE
136 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
137 SUBSUBSECTION
138 	Differing file formats
139 
140 	Normally all the files involved in a link will be of the same
141 	format, but it is also possible to link together different
142 	format object files, and the back end must support that.  The
143 	<<_bfd_link_add_symbols>> entry point is called via the target
144 	vector of the file to be added.  This has an important
145 	consequence: the function may not assume that the hash table
146 	is the type created by the corresponding
147 	<<_bfd_link_hash_table_create>> vector.  All the
148 	<<_bfd_link_add_symbols>> function can assume about the hash
149 	table is that it is derived from <<struct
150 	bfd_link_hash_table>>.
151 
152 	Sometimes the <<_bfd_link_add_symbols>> function must store
153 	some information in the hash table entry to be used by the
154 	<<_bfd_final_link>> function.  In such a case the output bfd
155 	xvec must be checked to make sure that the hash table was
156 	created by an object file of the same format.
157 
158 	The <<_bfd_final_link>> routine must be prepared to handle a
159 	hash entry without any extra information added by the
160 	<<_bfd_link_add_symbols>> function.  A hash entry without
161 	extra information will also occur when the linker script
162 	directs the linker to create a symbol.  Note that, regardless
163 	of how a hash table entry is added, all the fields will be
164 	initialized to some sort of null value by the hash table entry
165 	initialization function.
166 
167 	See <<ecoff_link_add_externals>> for an example of how to
168 	check the output bfd before saving information (in this
169 	case, the ECOFF external symbol debugging information) in a
170 	hash table entry.
171 
172 INODE
173 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
174 SUBSUBSECTION
175 	Adding symbols from an object file
176 
177 	When the <<_bfd_link_add_symbols>> routine is passed an object
178 	file, it must add all externally visible symbols in that
179 	object file to the hash table.  The actual work of adding the
180 	symbol to the hash table is normally handled by the function
181 	<<_bfd_generic_link_add_one_symbol>>.  The
182 	<<_bfd_link_add_symbols>> routine is responsible for reading
183 	all the symbols from the object file and passing the correct
184 	information to <<_bfd_generic_link_add_one_symbol>>.
185 
186 	The <<_bfd_link_add_symbols>> routine should not use
187 	<<bfd_canonicalize_symtab>> to read the symbols.  The point of
188 	providing this routine is to avoid the overhead of converting
189 	the symbols into generic <<asymbol>> structures.
190 
191 @findex _bfd_generic_link_add_one_symbol
192 	<<_bfd_generic_link_add_one_symbol>> handles the details of
193 	combining common symbols, warning about multiple definitions,
194 	and so forth.  It takes arguments which describe the symbol to
195 	add, notably symbol flags, a section, and an offset.  The
196 	symbol flags include such things as <<BSF_WEAK>> or
197 	<<BSF_INDIRECT>>.  The section is a section in the object
198 	file, or something like <<bfd_und_section_ptr>> for an undefined
199 	symbol or <<bfd_com_section_ptr>> for a common symbol.
200 
201 	If the <<_bfd_final_link>> routine is also going to need to
202 	read the symbol information, the <<_bfd_link_add_symbols>>
203 	routine should save it somewhere attached to the object file
204 	BFD.  However, the information should only be saved if the
205 	<<keep_memory>> field of the <<info>> argument is TRUE, so
206 	that the <<-no-keep-memory>> linker switch is effective.
207 
208 	The a.out function which adds symbols from an object file is
209 	<<aout_link_add_object_symbols>>, and most of the interesting
210 	work is in <<aout_link_add_symbols>>.  The latter saves
211 	pointers to the hash tables entries created by
212 	<<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
213 	so that the <<_bfd_final_link>> routine does not have to call
214 	the hash table lookup routine to locate the entry.
215 
216 INODE
217 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
218 SUBSUBSECTION
219 	Adding symbols from an archive
220 
221 	When the <<_bfd_link_add_symbols>> routine is passed an
222 	archive, it must look through the symbols defined by the
223 	archive and decide which elements of the archive should be
224 	included in the link.  For each such element it must call the
225 	<<add_archive_element>> linker callback, and it must add the
226 	symbols from the object file to the linker hash table.  (The
227 	callback may in fact indicate that a replacement BFD should be
228 	used, in which case the symbols from that BFD should be added
229 	to the linker hash table instead.)
230 
231 @findex _bfd_generic_link_add_archive_symbols
232 	In most cases the work of looking through the symbols in the
233 	archive should be done by the
234 	<<_bfd_generic_link_add_archive_symbols>> function.  This
235 	function builds a hash table from the archive symbol table and
236 	looks through the list of undefined symbols to see which
237 	elements should be included.
238 	<<_bfd_generic_link_add_archive_symbols>> is passed a function
239 	to call to make the final decision about adding an archive
240 	element to the link and to do the actual work of adding the
241 	symbols to the linker hash table.
242 
243 	The function passed to
244 	<<_bfd_generic_link_add_archive_symbols>> must read the
245 	symbols of the archive element and decide whether the archive
246 	element should be included in the link.  If the element is to
247 	be included, the <<add_archive_element>> linker callback
248 	routine must be called with the element as an argument, and
249 	the element's symbols must be added to the linker hash table
250 	just as though the element had itself been passed to the
251 	<<_bfd_link_add_symbols>> function.  The <<add_archive_element>>
252 	callback has the option to indicate that it would like to
253 	replace the element archive with a substitute BFD, in which
254 	case it is the symbols of that substitute BFD that must be
255 	added to the linker hash table instead.
256 
257 	When the a.out <<_bfd_link_add_symbols>> function receives an
258 	archive, it calls <<_bfd_generic_link_add_archive_symbols>>
259 	passing <<aout_link_check_archive_element>> as the function
260 	argument. <<aout_link_check_archive_element>> calls
261 	<<aout_link_check_ar_symbols>>.  If the latter decides to add
262 	the element (an element is only added if it provides a real,
263 	non-common, definition for a previously undefined or common
264 	symbol) it calls the <<add_archive_element>> callback and then
265 	<<aout_link_check_archive_element>> calls
266 	<<aout_link_add_symbols>> to actually add the symbols to the
267 	linker hash table - possibly those of a substitute BFD, if the
268 	<<add_archive_element>> callback avails itself of that option.
269 
270 	The ECOFF back end is unusual in that it does not normally
271 	call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
272 	archives already contain a hash table of symbols.  The ECOFF
273 	back end searches the archive itself to avoid the overhead of
274 	creating a new hash table.
275 
276 INODE
277 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
278 SUBSECTION
279 	Performing the final link
280 
281 @cindex _bfd_link_final_link in target vector
282 @cindex target vector (_bfd_final_link)
283 	When all the input files have been processed, the linker calls
284 	the <<_bfd_final_link>> entry point of the output BFD.  This
285 	routine is responsible for producing the final output file,
286 	which has several aspects.  It must relocate the contents of
287 	the input sections and copy the data into the output sections.
288 	It must build an output symbol table including any local
289 	symbols from the input files and the global symbols from the
290 	hash table.  When producing relocatable output, it must
291 	modify the input relocs and write them into the output file.
292 	There may also be object format dependent work to be done.
293 
294 	The linker will also call the <<write_object_contents>> entry
295 	point when the BFD is closed.  The two entry points must work
296 	together in order to produce the correct output file.
297 
298 	The details of how this works are inevitably dependent upon
299 	the specific object file format.  The a.out
300 	<<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
301 
302 @menu
303 @* Information provided by the linker::
304 @* Relocating the section contents::
305 @* Writing the symbol table::
306 @end menu
307 
308 INODE
309 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
310 SUBSUBSECTION
311 	Information provided by the linker
312 
313 	Before the linker calls the <<_bfd_final_link>> entry point,
314 	it sets up some data structures for the function to use.
315 
316 	The <<input_bfds>> field of the <<bfd_link_info>> structure
317 	will point to a list of all the input files included in the
318 	link.  These files are linked through the <<link_next>> field
319 	of the <<bfd>> structure.
320 
321 	Each section in the output file will have a list of
322 	<<link_order>> structures attached to the <<map_head.link_order>>
323 	field (the <<link_order>> structure is defined in
324 	<<bfdlink.h>>).  These structures describe how to create the
325 	contents of the output section in terms of the contents of
326 	various input sections, fill constants, and, eventually, other
327 	types of information.  They also describe relocs that must be
328 	created by the BFD backend, but do not correspond to any input
329 	file; this is used to support -Ur, which builds constructors
330 	while generating a relocatable object file.
331 
332 INODE
333 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
334 SUBSUBSECTION
335 	Relocating the section contents
336 
337 	The <<_bfd_final_link>> function should look through the
338 	<<link_order>> structures attached to each section of the
339 	output file.  Each <<link_order>> structure should either be
340 	handled specially, or it should be passed to the function
341 	<<_bfd_default_link_order>> which will do the right thing
342 	(<<_bfd_default_link_order>> is defined in <<linker.c>>).
343 
344 	For efficiency, a <<link_order>> of type
345 	<<bfd_indirect_link_order>> whose associated section belongs
346 	to a BFD of the same format as the output BFD must be handled
347 	specially.  This type of <<link_order>> describes part of an
348 	output section in terms of a section belonging to one of the
349 	input files.  The <<_bfd_final_link>> function should read the
350 	contents of the section and any associated relocs, apply the
351 	relocs to the section contents, and write out the modified
352 	section contents.  If performing a relocatable link, the
353 	relocs themselves must also be modified and written out.
354 
355 @findex _bfd_relocate_contents
356 @findex _bfd_final_link_relocate
357 	The functions <<_bfd_relocate_contents>> and
358 	<<_bfd_final_link_relocate>> provide some general support for
359 	performing the actual relocations, notably overflow checking.
360 	Their arguments include information about the symbol the
361 	relocation is against and a <<reloc_howto_type>> argument
362 	which describes the relocation to perform.  These functions
363 	are defined in <<reloc.c>>.
364 
365 	The a.out function which handles reading, relocating, and
366 	writing section contents is <<aout_link_input_section>>.  The
367 	actual relocation is done in <<aout_link_input_section_std>>
368 	and <<aout_link_input_section_ext>>.
369 
370 INODE
371 Writing the symbol table, , Relocating the section contents, Performing the Final Link
372 SUBSUBSECTION
373 	Writing the symbol table
374 
375 	The <<_bfd_final_link>> function must gather all the symbols
376 	in the input files and write them out.  It must also write out
377 	all the symbols in the global hash table.  This must be
378 	controlled by the <<strip>> and <<discard>> fields of the
379 	<<bfd_link_info>> structure.
380 
381 	The local symbols of the input files will not have been
382 	entered into the linker hash table.  The <<_bfd_final_link>>
383 	routine must consider each input file and include the symbols
384 	in the output file.  It may be convenient to do this when
385 	looking through the <<link_order>> structures, or it may be
386 	done by stepping through the <<input_bfds>> list.
387 
388 	The <<_bfd_final_link>> routine must also traverse the global
389 	hash table to gather all the externally visible symbols.  It
390 	is possible that most of the externally visible symbols may be
391 	written out when considering the symbols of each input file,
392 	but it is still necessary to traverse the hash table since the
393 	linker script may have defined some symbols that are not in
394 	any of the input files.
395 
396 	The <<strip>> field of the <<bfd_link_info>> structure
397 	controls which symbols are written out.  The possible values
398 	are listed in <<bfdlink.h>>.  If the value is <<strip_some>>,
399 	then the <<keep_hash>> field of the <<bfd_link_info>>
400 	structure is a hash table of symbols to keep; each symbol
401 	should be looked up in this hash table, and only symbols which
402 	are present should be included in the output file.
403 
404 	If the <<strip>> field of the <<bfd_link_info>> structure
405 	permits local symbols to be written out, the <<discard>> field
406 	is used to further controls which local symbols are included
407 	in the output file.  If the value is <<discard_l>>, then all
408 	local symbols which begin with a certain prefix are discarded;
409 	this is controlled by the <<bfd_is_local_label_name>> entry point.
410 
411 	The a.out backend handles symbols by calling
412 	<<aout_link_write_symbols>> on each input BFD and then
413 	traversing the global hash table with the function
414 	<<aout_link_write_other_symbol>>.  It builds a string table
415 	while writing out the symbols, which is written to the output
416 	file at the end of <<NAME(aout,final_link)>>.
417 */
418 
419 static bfd_boolean generic_link_add_object_symbols
420   (bfd *, struct bfd_link_info *, bfd_boolean collect);
421 static bfd_boolean generic_link_add_symbols
422   (bfd *, struct bfd_link_info *, bfd_boolean);
423 static bfd_boolean generic_link_check_archive_element_no_collect
424   (bfd *, struct bfd_link_info *, bfd_boolean *);
425 static bfd_boolean generic_link_check_archive_element_collect
426   (bfd *, struct bfd_link_info *, bfd_boolean *);
427 static bfd_boolean generic_link_check_archive_element
428   (bfd *, struct bfd_link_info *, bfd_boolean *, bfd_boolean);
429 static bfd_boolean generic_link_add_symbol_list
430   (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
431    bfd_boolean);
432 static bfd_boolean generic_add_output_symbol
433   (bfd *, size_t *psymalloc, asymbol *);
434 static bfd_boolean default_data_link_order
435   (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
436 static bfd_boolean default_indirect_link_order
437   (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
438    bfd_boolean);
439 
440 /* The link hash table structure is defined in bfdlink.h.  It provides
441    a base hash table which the backend specific hash tables are built
442    upon.  */
443 
444 /* Routine to create an entry in the link hash table.  */
445 
446 struct bfd_hash_entry *
447 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
448 			struct bfd_hash_table *table,
449 			const char *string)
450 {
451   /* Allocate the structure if it has not already been allocated by a
452      subclass.  */
453   if (entry == NULL)
454     {
455       entry = (struct bfd_hash_entry *)
456           bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
457       if (entry == NULL)
458 	return entry;
459     }
460 
461   /* Call the allocation method of the superclass.  */
462   entry = bfd_hash_newfunc (entry, table, string);
463   if (entry)
464     {
465       struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
466 
467       /* Initialize the local fields.  */
468       memset ((char *) &h->root + sizeof (h->root), 0,
469 	      sizeof (*h) - sizeof (h->root));
470     }
471 
472   return entry;
473 }
474 
475 /* Initialize a link hash table.  The BFD argument is the one
476    responsible for creating this table.  */
477 
478 bfd_boolean
479 _bfd_link_hash_table_init
480   (struct bfd_link_hash_table *table,
481    bfd *abfd ATTRIBUTE_UNUSED,
482    struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
483 				      struct bfd_hash_table *,
484 				      const char *),
485    unsigned int entsize)
486 {
487   table->undefs = NULL;
488   table->undefs_tail = NULL;
489   table->type = bfd_link_generic_hash_table;
490 
491   return bfd_hash_table_init (&table->table, newfunc, entsize);
492 }
493 
494 /* Look up a symbol in a link hash table.  If follow is TRUE, we
495    follow bfd_link_hash_indirect and bfd_link_hash_warning links to
496    the real symbol.  */
497 
498 struct bfd_link_hash_entry *
499 bfd_link_hash_lookup (struct bfd_link_hash_table *table,
500 		      const char *string,
501 		      bfd_boolean create,
502 		      bfd_boolean copy,
503 		      bfd_boolean follow)
504 {
505   struct bfd_link_hash_entry *ret;
506 
507   ret = ((struct bfd_link_hash_entry *)
508 	 bfd_hash_lookup (&table->table, string, create, copy));
509 
510   if (follow && ret != NULL)
511     {
512       while (ret->type == bfd_link_hash_indirect
513 	     || ret->type == bfd_link_hash_warning)
514 	ret = ret->u.i.link;
515     }
516 
517   return ret;
518 }
519 
520 /* Look up a symbol in the main linker hash table if the symbol might
521    be wrapped.  This should only be used for references to an
522    undefined symbol, not for definitions of a symbol.  */
523 
524 struct bfd_link_hash_entry *
525 bfd_wrapped_link_hash_lookup (bfd *abfd,
526 			      struct bfd_link_info *info,
527 			      const char *string,
528 			      bfd_boolean create,
529 			      bfd_boolean copy,
530 			      bfd_boolean follow)
531 {
532   bfd_size_type amt;
533 
534   if (info->wrap_hash != NULL)
535     {
536       const char *l;
537       char prefix = '\0';
538 
539       l = string;
540       if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
541 	{
542 	  prefix = *l;
543 	  ++l;
544 	}
545 
546 #undef WRAP
547 #define WRAP "__wrap_"
548 
549       if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
550 	{
551 	  char *n;
552 	  struct bfd_link_hash_entry *h;
553 
554 	  /* This symbol is being wrapped.  We want to replace all
555              references to SYM with references to __wrap_SYM.  */
556 
557 	  amt = strlen (l) + sizeof WRAP + 1;
558 	  n = (char *) bfd_malloc (amt);
559 	  if (n == NULL)
560 	    return NULL;
561 
562 	  n[0] = prefix;
563 	  n[1] = '\0';
564 	  strcat (n, WRAP);
565 	  strcat (n, l);
566 	  h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
567 	  free (n);
568 	  return h;
569 	}
570 
571 #undef WRAP
572 
573 #undef  REAL
574 #define REAL "__real_"
575 
576       if (*l == '_'
577 	  && CONST_STRNEQ (l, REAL)
578 	  && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
579 			      FALSE, FALSE) != NULL)
580 	{
581 	  char *n;
582 	  struct bfd_link_hash_entry *h;
583 
584 	  /* This is a reference to __real_SYM, where SYM is being
585              wrapped.  We want to replace all references to __real_SYM
586              with references to SYM.  */
587 
588 	  amt = strlen (l + sizeof REAL - 1) + 2;
589 	  n = (char *) bfd_malloc (amt);
590 	  if (n == NULL)
591 	    return NULL;
592 
593 	  n[0] = prefix;
594 	  n[1] = '\0';
595 	  strcat (n, l + sizeof REAL - 1);
596 	  h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
597 	  free (n);
598 	  return h;
599 	}
600 
601 #undef REAL
602     }
603 
604   return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
605 }
606 
607 /* Traverse a generic link hash table.  The only reason this is not a
608    macro is to do better type checking.  This code presumes that an
609    argument passed as a struct bfd_hash_entry * may be caught as a
610    struct bfd_link_hash_entry * with no explicit cast required on the
611    call.  */
612 
613 void
614 bfd_link_hash_traverse
615   (struct bfd_link_hash_table *table,
616    bfd_boolean (*func) (struct bfd_link_hash_entry *, void *),
617    void *info)
618 {
619   bfd_hash_traverse (&table->table,
620 		     (bfd_boolean (*) (struct bfd_hash_entry *, void *)) func,
621 		     info);
622 }
623 
624 /* Add a symbol to the linker hash table undefs list.  */
625 
626 void
627 bfd_link_add_undef (struct bfd_link_hash_table *table,
628 		    struct bfd_link_hash_entry *h)
629 {
630   BFD_ASSERT (h->u.undef.next == NULL);
631   if (table->undefs_tail != NULL)
632     table->undefs_tail->u.undef.next = h;
633   if (table->undefs == NULL)
634     table->undefs = h;
635   table->undefs_tail = h;
636 }
637 
638 /* The undefs list was designed so that in normal use we don't need to
639    remove entries.  However, if symbols on the list are changed from
640    bfd_link_hash_undefined to either bfd_link_hash_undefweak or
641    bfd_link_hash_new for some reason, then they must be removed from the
642    list.  Failure to do so might result in the linker attempting to add
643    the symbol to the list again at a later stage.  */
644 
645 void
646 bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
647 {
648   struct bfd_link_hash_entry **pun;
649 
650   pun = &table->undefs;
651   while (*pun != NULL)
652     {
653       struct bfd_link_hash_entry *h = *pun;
654 
655       if (h->type == bfd_link_hash_new
656 	  || h->type == bfd_link_hash_undefweak)
657 	{
658 	  *pun = h->u.undef.next;
659 	  h->u.undef.next = NULL;
660 	  if (h == table->undefs_tail)
661 	    {
662 	      if (pun == &table->undefs)
663 		table->undefs_tail = NULL;
664 	      else
665 		/* pun points at an u.undef.next field.  Go back to
666 		   the start of the link_hash_entry.  */
667 		table->undefs_tail = (struct bfd_link_hash_entry *)
668 		  ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
669 	      break;
670 	    }
671 	}
672       else
673 	pun = &h->u.undef.next;
674     }
675 }
676 
677 /* Routine to create an entry in a generic link hash table.  */
678 
679 struct bfd_hash_entry *
680 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
681 				struct bfd_hash_table *table,
682 				const char *string)
683 {
684   /* Allocate the structure if it has not already been allocated by a
685      subclass.  */
686   if (entry == NULL)
687     {
688       entry = (struct bfd_hash_entry *)
689 	bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
690       if (entry == NULL)
691 	return entry;
692     }
693 
694   /* Call the allocation method of the superclass.  */
695   entry = _bfd_link_hash_newfunc (entry, table, string);
696   if (entry)
697     {
698       struct generic_link_hash_entry *ret;
699 
700       /* Set local fields.  */
701       ret = (struct generic_link_hash_entry *) entry;
702       ret->written = FALSE;
703       ret->sym = NULL;
704     }
705 
706   return entry;
707 }
708 
709 /* Create a generic link hash table.  */
710 
711 struct bfd_link_hash_table *
712 _bfd_generic_link_hash_table_create (bfd *abfd)
713 {
714   struct generic_link_hash_table *ret;
715   bfd_size_type amt = sizeof (struct generic_link_hash_table);
716 
717   ret = (struct generic_link_hash_table *) bfd_malloc (amt);
718   if (ret == NULL)
719     return NULL;
720   if (! _bfd_link_hash_table_init (&ret->root, abfd,
721 				   _bfd_generic_link_hash_newfunc,
722 				   sizeof (struct generic_link_hash_entry)))
723     {
724       free (ret);
725       return NULL;
726     }
727   return &ret->root;
728 }
729 
730 void
731 _bfd_generic_link_hash_table_free (struct bfd_link_hash_table *hash)
732 {
733   struct generic_link_hash_table *ret
734     = (struct generic_link_hash_table *) hash;
735 
736   bfd_hash_table_free (&ret->root.table);
737   free (ret);
738 }
739 
740 /* Grab the symbols for an object file when doing a generic link.  We
741    store the symbols in the outsymbols field.  We need to keep them
742    around for the entire link to ensure that we only read them once.
743    If we read them multiple times, we might wind up with relocs and
744    the hash table pointing to different instances of the symbol
745    structure.  */
746 
747 bfd_boolean
748 bfd_generic_link_read_symbols (bfd *abfd)
749 {
750   if (bfd_get_outsymbols (abfd) == NULL)
751     {
752       long symsize;
753       long symcount;
754 
755       symsize = bfd_get_symtab_upper_bound (abfd);
756       if (symsize < 0)
757 	return FALSE;
758       bfd_get_outsymbols (abfd) = (struct bfd_symbol **) bfd_alloc (abfd,
759                                                                     symsize);
760       if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
761 	return FALSE;
762       symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
763       if (symcount < 0)
764 	return FALSE;
765       bfd_get_symcount (abfd) = symcount;
766     }
767 
768   return TRUE;
769 }
770 
771 /* Generic function to add symbols to from an object file to the
772    global hash table.  This version does not automatically collect
773    constructors by name.  */
774 
775 bfd_boolean
776 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
777 {
778   return generic_link_add_symbols (abfd, info, FALSE);
779 }
780 
781 /* Generic function to add symbols from an object file to the global
782    hash table.  This version automatically collects constructors by
783    name, as the collect2 program does.  It should be used for any
784    target which does not provide some other mechanism for setting up
785    constructors and destructors; these are approximately those targets
786    for which gcc uses collect2 and do not support stabs.  */
787 
788 bfd_boolean
789 _bfd_generic_link_add_symbols_collect (bfd *abfd, struct bfd_link_info *info)
790 {
791   return generic_link_add_symbols (abfd, info, TRUE);
792 }
793 
794 /* Indicate that we are only retrieving symbol values from this
795    section.  We want the symbols to act as though the values in the
796    file are absolute.  */
797 
798 void
799 _bfd_generic_link_just_syms (asection *sec,
800 			     struct bfd_link_info *info ATTRIBUTE_UNUSED)
801 {
802   sec->output_section = bfd_abs_section_ptr;
803   sec->output_offset = sec->vma;
804 }
805 
806 /* Copy the type of a symbol assiciated with a linker hast table entry.
807    Override this so that symbols created in linker scripts get their
808    type from the RHS of the assignment.
809    The default implementation does nothing.  */
810 void
811 _bfd_generic_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
812     struct bfd_link_hash_entry * hdest ATTRIBUTE_UNUSED,
813     struct bfd_link_hash_entry * hsrc ATTRIBUTE_UNUSED)
814 {
815 }
816 
817 /* Add symbols from an object file to the global hash table.  */
818 
819 static bfd_boolean
820 generic_link_add_symbols (bfd *abfd,
821 			  struct bfd_link_info *info,
822 			  bfd_boolean collect)
823 {
824   bfd_boolean ret;
825 
826   switch (bfd_get_format (abfd))
827     {
828     case bfd_object:
829       ret = generic_link_add_object_symbols (abfd, info, collect);
830       break;
831     case bfd_archive:
832       ret = (_bfd_generic_link_add_archive_symbols
833 	     (abfd, info,
834 	      (collect
835 	       ? generic_link_check_archive_element_collect
836 	       : generic_link_check_archive_element_no_collect)));
837       break;
838     default:
839       bfd_set_error (bfd_error_wrong_format);
840       ret = FALSE;
841     }
842 
843   return ret;
844 }
845 
846 /* Add symbols from an object file to the global hash table.  */
847 
848 static bfd_boolean
849 generic_link_add_object_symbols (bfd *abfd,
850 				 struct bfd_link_info *info,
851 				 bfd_boolean collect)
852 {
853   bfd_size_type symcount;
854   struct bfd_symbol **outsyms;
855 
856   if (!bfd_generic_link_read_symbols (abfd))
857     return FALSE;
858   symcount = _bfd_generic_link_get_symcount (abfd);
859   outsyms = _bfd_generic_link_get_symbols (abfd);
860   return generic_link_add_symbol_list (abfd, info, symcount, outsyms, collect);
861 }
862 
863 /* We build a hash table of all symbols defined in an archive.  */
864 
865 /* An archive symbol may be defined by multiple archive elements.
866    This linked list is used to hold the elements.  */
867 
868 struct archive_list
869 {
870   struct archive_list *next;
871   unsigned int indx;
872 };
873 
874 /* An entry in an archive hash table.  */
875 
876 struct archive_hash_entry
877 {
878   struct bfd_hash_entry root;
879   /* Where the symbol is defined.  */
880   struct archive_list *defs;
881 };
882 
883 /* An archive hash table itself.  */
884 
885 struct archive_hash_table
886 {
887   struct bfd_hash_table table;
888 };
889 
890 /* Create a new entry for an archive hash table.  */
891 
892 static struct bfd_hash_entry *
893 archive_hash_newfunc (struct bfd_hash_entry *entry,
894 		      struct bfd_hash_table *table,
895 		      const char *string)
896 {
897   struct archive_hash_entry *ret = (struct archive_hash_entry *) entry;
898 
899   /* Allocate the structure if it has not already been allocated by a
900      subclass.  */
901   if (ret == NULL)
902     ret = (struct archive_hash_entry *)
903         bfd_hash_allocate (table, sizeof (struct archive_hash_entry));
904   if (ret == NULL)
905     return NULL;
906 
907   /* Call the allocation method of the superclass.  */
908   ret = ((struct archive_hash_entry *)
909 	 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
910 
911   if (ret)
912     {
913       /* Initialize the local fields.  */
914       ret->defs = NULL;
915     }
916 
917   return &ret->root;
918 }
919 
920 /* Initialize an archive hash table.  */
921 
922 static bfd_boolean
923 archive_hash_table_init
924   (struct archive_hash_table *table,
925    struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
926 				      struct bfd_hash_table *,
927 				      const char *),
928    unsigned int entsize)
929 {
930   return bfd_hash_table_init (&table->table, newfunc, entsize);
931 }
932 
933 /* Look up an entry in an archive hash table.  */
934 
935 #define archive_hash_lookup(t, string, create, copy) \
936   ((struct archive_hash_entry *) \
937    bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
938 
939 /* Allocate space in an archive hash table.  */
940 
941 #define archive_hash_allocate(t, size) bfd_hash_allocate (&(t)->table, (size))
942 
943 /* Free an archive hash table.  */
944 
945 #define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
946 
947 /* Generic function to add symbols from an archive file to the global
948    hash file.  This function presumes that the archive symbol table
949    has already been read in (this is normally done by the
950    bfd_check_format entry point).  It looks through the undefined and
951    common symbols and searches the archive symbol table for them.  If
952    it finds an entry, it includes the associated object file in the
953    link.
954 
955    The old linker looked through the archive symbol table for
956    undefined symbols.  We do it the other way around, looking through
957    undefined symbols for symbols defined in the archive.  The
958    advantage of the newer scheme is that we only have to look through
959    the list of undefined symbols once, whereas the old method had to
960    re-search the symbol table each time a new object file was added.
961 
962    The CHECKFN argument is used to see if an object file should be
963    included.  CHECKFN should set *PNEEDED to TRUE if the object file
964    should be included, and must also call the bfd_link_info
965    add_archive_element callback function and handle adding the symbols
966    to the global hash table.  CHECKFN must notice if the callback
967    indicates a substitute BFD, and arrange to add those symbols instead
968    if it does so.  CHECKFN should only return FALSE if some sort of
969    error occurs.
970 
971    For some formats, such as a.out, it is possible to look through an
972    object file but not actually include it in the link.  The
973    archive_pass field in a BFD is used to avoid checking the symbols
974    of an object files too many times.  When an object is included in
975    the link, archive_pass is set to -1.  If an object is scanned but
976    not included, archive_pass is set to the pass number.  The pass
977    number is incremented each time a new object file is included.  The
978    pass number is used because when a new object file is included it
979    may create new undefined symbols which cause a previously examined
980    object file to be included.  */
981 
982 bfd_boolean
983 _bfd_generic_link_add_archive_symbols
984   (bfd *abfd,
985    struct bfd_link_info *info,
986    bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *, bfd_boolean *))
987 {
988   carsym *arsyms;
989   carsym *arsym_end;
990   register carsym *arsym;
991   int pass;
992   struct archive_hash_table arsym_hash;
993   unsigned int indx;
994   struct bfd_link_hash_entry **pundef;
995 
996   if (! bfd_has_map (abfd))
997     {
998       /* An empty archive is a special case.  */
999       if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
1000 	return TRUE;
1001       bfd_set_error (bfd_error_no_armap);
1002       return FALSE;
1003     }
1004 
1005   arsyms = bfd_ardata (abfd)->symdefs;
1006   arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
1007 
1008   /* In order to quickly determine whether an symbol is defined in
1009      this archive, we build a hash table of the symbols.  */
1010   if (! archive_hash_table_init (&arsym_hash, archive_hash_newfunc,
1011 				 sizeof (struct archive_hash_entry)))
1012     return FALSE;
1013   for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
1014     {
1015       struct archive_hash_entry *arh;
1016       struct archive_list *l, **pp;
1017 
1018       arh = archive_hash_lookup (&arsym_hash, arsym->name, TRUE, FALSE);
1019       if (arh == NULL)
1020 	goto error_return;
1021       l = ((struct archive_list *)
1022 	   archive_hash_allocate (&arsym_hash, sizeof (struct archive_list)));
1023       if (l == NULL)
1024 	goto error_return;
1025       l->indx = indx;
1026       for (pp = &arh->defs; *pp != NULL; pp = &(*pp)->next)
1027 	;
1028       *pp = l;
1029       l->next = NULL;
1030     }
1031 
1032   /* The archive_pass field in the archive itself is used to
1033      initialize PASS, sine we may search the same archive multiple
1034      times.  */
1035   pass = abfd->archive_pass + 1;
1036 
1037   /* New undefined symbols are added to the end of the list, so we
1038      only need to look through it once.  */
1039   pundef = &info->hash->undefs;
1040   while (*pundef != NULL)
1041     {
1042       struct bfd_link_hash_entry *h;
1043       struct archive_hash_entry *arh;
1044       struct archive_list *l;
1045 
1046       h = *pundef;
1047 
1048       /* When a symbol is defined, it is not necessarily removed from
1049 	 the list.  */
1050       if (h->type != bfd_link_hash_undefined
1051 	  && h->type != bfd_link_hash_common)
1052 	{
1053 	  /* Remove this entry from the list, for general cleanliness
1054 	     and because we are going to look through the list again
1055 	     if we search any more libraries.  We can't remove the
1056 	     entry if it is the tail, because that would lose any
1057 	     entries we add to the list later on (it would also cause
1058 	     us to lose track of whether the symbol has been
1059 	     referenced).  */
1060 	  if (*pundef != info->hash->undefs_tail)
1061 	    *pundef = (*pundef)->u.undef.next;
1062 	  else
1063 	    pundef = &(*pundef)->u.undef.next;
1064 	  continue;
1065 	}
1066 
1067       /* Look for this symbol in the archive symbol map.  */
1068       arh = archive_hash_lookup (&arsym_hash, h->root.string, FALSE, FALSE);
1069       if (arh == NULL)
1070 	{
1071 	  /* If we haven't found the exact symbol we're looking for,
1072 	     let's look for its import thunk */
1073 	  if (info->pei386_auto_import)
1074 	    {
1075 	      bfd_size_type amt = strlen (h->root.string) + 10;
1076 	      char *buf = (char *) bfd_malloc (amt);
1077 	      if (buf == NULL)
1078 		return FALSE;
1079 
1080 	      sprintf (buf, "__imp_%s", h->root.string);
1081 	      arh = archive_hash_lookup (&arsym_hash, buf, FALSE, FALSE);
1082 	      free(buf);
1083 	    }
1084 	  if (arh == NULL)
1085 	    {
1086 	      pundef = &(*pundef)->u.undef.next;
1087 	      continue;
1088 	    }
1089 	}
1090       /* Look at all the objects which define this symbol.  */
1091       for (l = arh->defs; l != NULL; l = l->next)
1092 	{
1093 	  bfd *element;
1094 	  bfd_boolean needed;
1095 
1096 	  /* If the symbol has gotten defined along the way, quit.  */
1097 	  if (h->type != bfd_link_hash_undefined
1098 	      && h->type != bfd_link_hash_common)
1099 	    break;
1100 
1101 	  element = bfd_get_elt_at_index (abfd, l->indx);
1102 	  if (element == NULL)
1103 	    goto error_return;
1104 
1105 	  /* If we've already included this element, or if we've
1106 	     already checked it on this pass, continue.  */
1107 	  if (element->archive_pass == -1
1108 	      || element->archive_pass == pass)
1109 	    continue;
1110 
1111 	  /* If we can't figure this element out, just ignore it.  */
1112 	  if (! bfd_check_format (element, bfd_object))
1113 	    {
1114 	      element->archive_pass = -1;
1115 	      continue;
1116 	    }
1117 
1118 	  /* CHECKFN will see if this element should be included, and
1119 	     go ahead and include it if appropriate.  */
1120 	  if (! (*checkfn) (element, info, &needed))
1121 	    goto error_return;
1122 
1123 	  if (! needed)
1124 	    element->archive_pass = pass;
1125 	  else
1126 	    {
1127 	      element->archive_pass = -1;
1128 
1129 	      /* Increment the pass count to show that we may need to
1130 		 recheck object files which were already checked.  */
1131 	      ++pass;
1132 	    }
1133 	}
1134 
1135       pundef = &(*pundef)->u.undef.next;
1136     }
1137 
1138   archive_hash_table_free (&arsym_hash);
1139 
1140   /* Save PASS in case we are called again.  */
1141   abfd->archive_pass = pass;
1142 
1143   return TRUE;
1144 
1145  error_return:
1146   archive_hash_table_free (&arsym_hash);
1147   return FALSE;
1148 }
1149 
1150 /* See if we should include an archive element.  This version is used
1151    when we do not want to automatically collect constructors based on
1152    the symbol name, presumably because we have some other mechanism
1153    for finding them.  */
1154 
1155 static bfd_boolean
1156 generic_link_check_archive_element_no_collect (
1157 					       bfd *abfd,
1158 					       struct bfd_link_info *info,
1159 					       bfd_boolean *pneeded)
1160 {
1161   return generic_link_check_archive_element (abfd, info, pneeded, FALSE);
1162 }
1163 
1164 /* See if we should include an archive element.  This version is used
1165    when we want to automatically collect constructors based on the
1166    symbol name, as collect2 does.  */
1167 
1168 static bfd_boolean
1169 generic_link_check_archive_element_collect (bfd *abfd,
1170 					    struct bfd_link_info *info,
1171 					    bfd_boolean *pneeded)
1172 {
1173   return generic_link_check_archive_element (abfd, info, pneeded, TRUE);
1174 }
1175 
1176 /* See if we should include an archive element.  Optionally collect
1177    constructors.  */
1178 
1179 static bfd_boolean
1180 generic_link_check_archive_element (bfd *abfd,
1181 				    struct bfd_link_info *info,
1182 				    bfd_boolean *pneeded,
1183 				    bfd_boolean collect)
1184 {
1185   asymbol **pp, **ppend;
1186 
1187   *pneeded = FALSE;
1188 
1189   if (!bfd_generic_link_read_symbols (abfd))
1190     return FALSE;
1191 
1192   pp = _bfd_generic_link_get_symbols (abfd);
1193   ppend = pp + _bfd_generic_link_get_symcount (abfd);
1194   for (; pp < ppend; pp++)
1195     {
1196       asymbol *p;
1197       struct bfd_link_hash_entry *h;
1198 
1199       p = *pp;
1200 
1201       /* We are only interested in globally visible symbols.  */
1202       if (! bfd_is_com_section (p->section)
1203 	  && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1204 	continue;
1205 
1206       /* We are only interested if we know something about this
1207 	 symbol, and it is undefined or common.  An undefined weak
1208 	 symbol (type bfd_link_hash_undefweak) is not considered to be
1209 	 a reference when pulling files out of an archive.  See the
1210 	 SVR4 ABI, p. 4-27.  */
1211       h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE,
1212 				FALSE, TRUE);
1213       if (h == NULL
1214 	  || (h->type != bfd_link_hash_undefined
1215 	      && h->type != bfd_link_hash_common))
1216 	continue;
1217 
1218       /* P is a symbol we are looking for.  */
1219 
1220       if (! bfd_is_com_section (p->section))
1221 	{
1222 	  bfd_size_type symcount;
1223 	  asymbol **symbols;
1224 	  bfd *oldbfd = abfd;
1225 
1226 	  /* This object file defines this symbol, so pull it in.  */
1227 	  if (!(*info->callbacks
1228 		->add_archive_element) (info, abfd, bfd_asymbol_name (p),
1229 					&abfd))
1230 	    return FALSE;
1231 	  /* Potentially, the add_archive_element hook may have set a
1232 	     substitute BFD for us.  */
1233 	  if (abfd != oldbfd
1234 	      && !bfd_generic_link_read_symbols (abfd))
1235 	    return FALSE;
1236 	  symcount = _bfd_generic_link_get_symcount (abfd);
1237 	  symbols = _bfd_generic_link_get_symbols (abfd);
1238 	  if (! generic_link_add_symbol_list (abfd, info, symcount,
1239 					      symbols, collect))
1240 	    return FALSE;
1241 	  *pneeded = TRUE;
1242 	  return TRUE;
1243 	}
1244 
1245       /* P is a common symbol.  */
1246 
1247       if (h->type == bfd_link_hash_undefined)
1248 	{
1249 	  bfd *symbfd;
1250 	  bfd_vma size;
1251 	  unsigned int power;
1252 
1253 	  symbfd = h->u.undef.abfd;
1254 	  if (symbfd == NULL)
1255 	    {
1256 	      /* This symbol was created as undefined from outside
1257 		 BFD.  We assume that we should link in the object
1258 		 file.  This is for the -u option in the linker.  */
1259 	      if (!(*info->callbacks
1260 		    ->add_archive_element) (info, abfd, bfd_asymbol_name (p),
1261 					    &abfd))
1262 		return FALSE;
1263 	      /* Potentially, the add_archive_element hook may have set a
1264 		 substitute BFD for us.  But no symbols are going to get
1265 		 registered by anything we're returning to from here.  */
1266 	      *pneeded = TRUE;
1267 	      return TRUE;
1268 	    }
1269 
1270 	  /* Turn the symbol into a common symbol but do not link in
1271 	     the object file.  This is how a.out works.  Object
1272 	     formats that require different semantics must implement
1273 	     this function differently.  This symbol is already on the
1274 	     undefs list.  We add the section to a common section
1275 	     attached to symbfd to ensure that it is in a BFD which
1276 	     will be linked in.  */
1277 	  h->type = bfd_link_hash_common;
1278 	  h->u.c.p = (struct bfd_link_hash_common_entry *)
1279 	    bfd_hash_allocate (&info->hash->table,
1280 			       sizeof (struct bfd_link_hash_common_entry));
1281 	  if (h->u.c.p == NULL)
1282 	    return FALSE;
1283 
1284 	  size = bfd_asymbol_value (p);
1285 	  h->u.c.size = size;
1286 
1287 	  power = bfd_log2 (size);
1288 	  if (power > 4)
1289 	    power = 4;
1290 	  h->u.c.p->alignment_power = power;
1291 
1292 	  if (p->section == bfd_com_section_ptr)
1293 	    h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1294 	  else
1295 	    h->u.c.p->section = bfd_make_section_old_way (symbfd,
1296 							  p->section->name);
1297 	  h->u.c.p->section->flags |= SEC_ALLOC;
1298 	}
1299       else
1300 	{
1301 	  /* Adjust the size of the common symbol if necessary.  This
1302 	     is how a.out works.  Object formats that require
1303 	     different semantics must implement this function
1304 	     differently.  */
1305 	  if (bfd_asymbol_value (p) > h->u.c.size)
1306 	    h->u.c.size = bfd_asymbol_value (p);
1307 	}
1308     }
1309 
1310   /* This archive element is not needed.  */
1311   return TRUE;
1312 }
1313 
1314 /* Add the symbols from an object file to the global hash table.  ABFD
1315    is the object file.  INFO is the linker information.  SYMBOL_COUNT
1316    is the number of symbols.  SYMBOLS is the list of symbols.  COLLECT
1317    is TRUE if constructors should be automatically collected by name
1318    as is done by collect2.  */
1319 
1320 static bfd_boolean
1321 generic_link_add_symbol_list (bfd *abfd,
1322 			      struct bfd_link_info *info,
1323 			      bfd_size_type symbol_count,
1324 			      asymbol **symbols,
1325 			      bfd_boolean collect)
1326 {
1327   asymbol **pp, **ppend;
1328 
1329   pp = symbols;
1330   ppend = symbols + symbol_count;
1331   for (; pp < ppend; pp++)
1332     {
1333       asymbol *p;
1334 
1335       p = *pp;
1336 
1337       if ((p->flags & (BSF_INDIRECT
1338 		       | BSF_WARNING
1339 		       | BSF_GLOBAL
1340 		       | BSF_CONSTRUCTOR
1341 		       | BSF_WEAK)) != 0
1342 	  || bfd_is_und_section (bfd_get_section (p))
1343 	  || bfd_is_com_section (bfd_get_section (p))
1344 	  || bfd_is_ind_section (bfd_get_section (p)))
1345 	{
1346 	  const char *name;
1347 	  const char *string;
1348 	  struct generic_link_hash_entry *h;
1349 	  struct bfd_link_hash_entry *bh;
1350 
1351 	  string = name = bfd_asymbol_name (p);
1352 	  if (((p->flags & BSF_INDIRECT) != 0
1353 	       || bfd_is_ind_section (p->section))
1354 	      && pp + 1 < ppend)
1355 	    {
1356 	      pp++;
1357 	      string = bfd_asymbol_name (*pp);
1358 	    }
1359 	  else if ((p->flags & BSF_WARNING) != 0
1360 		   && pp + 1 < ppend)
1361 	    {
1362 	      /* The name of P is actually the warning string, and the
1363 		 next symbol is the one to warn about.  */
1364 	      pp++;
1365 	      name = bfd_asymbol_name (*pp);
1366 	    }
1367 
1368 	  bh = NULL;
1369 	  if (! (_bfd_generic_link_add_one_symbol
1370 		 (info, abfd, name, p->flags, bfd_get_section (p),
1371 		  p->value, string, FALSE, collect, &bh)))
1372 	    return FALSE;
1373 	  h = (struct generic_link_hash_entry *) bh;
1374 
1375 	  /* If this is a constructor symbol, and the linker didn't do
1376              anything with it, then we want to just pass the symbol
1377              through to the output file.  This will happen when
1378              linking with -r.  */
1379 	  if ((p->flags & BSF_CONSTRUCTOR) != 0
1380 	      && (h == NULL || h->root.type == bfd_link_hash_new))
1381 	    {
1382 	      p->udata.p = NULL;
1383 	      continue;
1384 	    }
1385 
1386 	  /* Save the BFD symbol so that we don't lose any backend
1387 	     specific information that may be attached to it.  We only
1388 	     want this one if it gives more information than the
1389 	     existing one; we don't want to replace a defined symbol
1390 	     with an undefined one.  This routine may be called with a
1391 	     hash table other than the generic hash table, so we only
1392 	     do this if we are certain that the hash table is a
1393 	     generic one.  */
1394 	  if (info->output_bfd->xvec == abfd->xvec)
1395 	    {
1396 	      if (h->sym == NULL
1397 		  || (! bfd_is_und_section (bfd_get_section (p))
1398 		      && (! bfd_is_com_section (bfd_get_section (p))
1399 			  || bfd_is_und_section (bfd_get_section (h->sym)))))
1400 		{
1401 		  h->sym = p;
1402 		  /* BSF_OLD_COMMON is a hack to support COFF reloc
1403 		     reading, and it should go away when the COFF
1404 		     linker is switched to the new version.  */
1405 		  if (bfd_is_com_section (bfd_get_section (p)))
1406 		    p->flags |= BSF_OLD_COMMON;
1407 		}
1408 	    }
1409 
1410 	  /* Store a back pointer from the symbol to the hash
1411 	     table entry for the benefit of relaxation code until
1412 	     it gets rewritten to not use asymbol structures.
1413 	     Setting this is also used to check whether these
1414 	     symbols were set up by the generic linker.  */
1415 	  p->udata.p = h;
1416 	}
1417     }
1418 
1419   return TRUE;
1420 }
1421 
1422 /* We use a state table to deal with adding symbols from an object
1423    file.  The first index into the state table describes the symbol
1424    from the object file.  The second index into the state table is the
1425    type of the symbol in the hash table.  */
1426 
1427 /* The symbol from the object file is turned into one of these row
1428    values.  */
1429 
1430 enum link_row
1431 {
1432   UNDEF_ROW,		/* Undefined.  */
1433   UNDEFW_ROW,		/* Weak undefined.  */
1434   DEF_ROW,		/* Defined.  */
1435   DEFW_ROW,		/* Weak defined.  */
1436   COMMON_ROW,		/* Common.  */
1437   INDR_ROW,		/* Indirect.  */
1438   WARN_ROW,		/* Warning.  */
1439   SET_ROW		/* Member of set.  */
1440 };
1441 
1442 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1443 #undef FAIL
1444 
1445 /* The actions to take in the state table.  */
1446 
1447 enum link_action
1448 {
1449   FAIL,		/* Abort.  */
1450   UND,		/* Mark symbol undefined.  */
1451   WEAK,		/* Mark symbol weak undefined.  */
1452   DEF,		/* Mark symbol defined.  */
1453   DEFW,		/* Mark symbol weak defined.  */
1454   COM,		/* Mark symbol common.  */
1455   REF,		/* Mark defined symbol referenced.  */
1456   CREF,		/* Possibly warn about common reference to defined symbol.  */
1457   CDEF,		/* Define existing common symbol.  */
1458   NOACT,	/* No action.  */
1459   BIG,		/* Mark symbol common using largest size.  */
1460   MDEF,		/* Multiple definition error.  */
1461   MIND,		/* Multiple indirect symbols.  */
1462   IND,		/* Make indirect symbol.  */
1463   CIND,		/* Make indirect symbol from existing common symbol.  */
1464   SET,		/* Add value to set.  */
1465   MWARN,	/* Make warning symbol.  */
1466   WARN,		/* Issue warning.  */
1467   CWARN,	/* Warn if referenced, else MWARN.  */
1468   CYCLE,	/* Repeat with symbol pointed to.  */
1469   REFC,		/* Mark indirect symbol referenced and then CYCLE.  */
1470   WARNC		/* Issue warning and then CYCLE.  */
1471 };
1472 
1473 /* The state table itself.  The first index is a link_row and the
1474    second index is a bfd_link_hash_type.  */
1475 
1476 static const enum link_action link_action[8][8] =
1477 {
1478   /* current\prev    new    undef  undefw def    defw   com    indr   warn  */
1479   /* UNDEF_ROW 	*/  {UND,   NOACT, UND,   REF,   REF,   NOACT, REFC,  WARNC },
1480   /* UNDEFW_ROW	*/  {WEAK,  NOACT, NOACT, REF,   REF,   NOACT, REFC,  WARNC },
1481   /* DEF_ROW 	*/  {DEF,   DEF,   DEF,   MDEF,  DEF,   CDEF,  MDEF,  CYCLE },
1482   /* DEFW_ROW 	*/  {DEFW,  DEFW,  DEFW,  NOACT, NOACT, NOACT, NOACT, CYCLE },
1483   /* COMMON_ROW	*/  {COM,   COM,   COM,   CREF,  COM,   BIG,   REFC,  WARNC },
1484   /* INDR_ROW	*/  {IND,   IND,   IND,   MDEF,  IND,   CIND,  MIND,  CYCLE },
1485   /* WARN_ROW   */  {MWARN, WARN,  WARN,  CWARN, CWARN, WARN,  CWARN, NOACT },
1486   /* SET_ROW	*/  {SET,   SET,   SET,   SET,   SET,   SET,   CYCLE, CYCLE }
1487 };
1488 
1489 /* Most of the entries in the LINK_ACTION table are straightforward,
1490    but a few are somewhat subtle.
1491 
1492    A reference to an indirect symbol (UNDEF_ROW/indr or
1493    UNDEFW_ROW/indr) is counted as a reference both to the indirect
1494    symbol and to the symbol the indirect symbol points to.
1495 
1496    A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1497    causes the warning to be issued.
1498 
1499    A common definition of an indirect symbol (COMMON_ROW/indr) is
1500    treated as a multiple definition error.  Likewise for an indirect
1501    definition of a common symbol (INDR_ROW/com).
1502 
1503    An indirect definition of a warning (INDR_ROW/warn) does not cause
1504    the warning to be issued.
1505 
1506    If a warning is created for an indirect symbol (WARN_ROW/indr) no
1507    warning is created for the symbol the indirect symbol points to.
1508 
1509    Adding an entry to a set does not count as a reference to a set,
1510    and no warning is issued (SET_ROW/warn).  */
1511 
1512 /* Return the BFD in which a hash entry has been defined, if known.  */
1513 
1514 static bfd *
1515 hash_entry_bfd (struct bfd_link_hash_entry *h)
1516 {
1517   while (h->type == bfd_link_hash_warning)
1518     h = h->u.i.link;
1519   switch (h->type)
1520     {
1521     default:
1522       return NULL;
1523     case bfd_link_hash_undefined:
1524     case bfd_link_hash_undefweak:
1525       return h->u.undef.abfd;
1526     case bfd_link_hash_defined:
1527     case bfd_link_hash_defweak:
1528       return h->u.def.section->owner;
1529     case bfd_link_hash_common:
1530       return h->u.c.p->section->owner;
1531     }
1532   /*NOTREACHED*/
1533 }
1534 
1535 /* Add a symbol to the global hash table.
1536    ABFD is the BFD the symbol comes from.
1537    NAME is the name of the symbol.
1538    FLAGS is the BSF_* bits associated with the symbol.
1539    SECTION is the section in which the symbol is defined; this may be
1540      bfd_und_section_ptr or bfd_com_section_ptr.
1541    VALUE is the value of the symbol, relative to the section.
1542    STRING is used for either an indirect symbol, in which case it is
1543      the name of the symbol to indirect to, or a warning symbol, in
1544      which case it is the warning string.
1545    COPY is TRUE if NAME or STRING must be copied into locally
1546      allocated memory if they need to be saved.
1547    COLLECT is TRUE if we should automatically collect gcc constructor
1548      or destructor names as collect2 does.
1549    HASHP, if not NULL, is a place to store the created hash table
1550      entry; if *HASHP is not NULL, the caller has already looked up
1551      the hash table entry, and stored it in *HASHP.  */
1552 
1553 bfd_boolean
1554 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1555 				  bfd *abfd,
1556 				  const char *name,
1557 				  flagword flags,
1558 				  asection *section,
1559 				  bfd_vma value,
1560 				  const char *string,
1561 				  bfd_boolean copy,
1562 				  bfd_boolean collect,
1563 				  struct bfd_link_hash_entry **hashp)
1564 {
1565   enum link_row row;
1566   struct bfd_link_hash_entry *h;
1567   bfd_boolean cycle;
1568 
1569   if (bfd_is_ind_section (section)
1570       || (flags & BSF_INDIRECT) != 0)
1571     row = INDR_ROW;
1572   else if ((flags & BSF_WARNING) != 0)
1573     row = WARN_ROW;
1574   else if ((flags & BSF_CONSTRUCTOR) != 0)
1575     row = SET_ROW;
1576   else if (bfd_is_und_section (section))
1577     {
1578       if ((flags & BSF_WEAK) != 0)
1579 	row = UNDEFW_ROW;
1580       else
1581 	row = UNDEF_ROW;
1582     }
1583   else if ((flags & BSF_WEAK) != 0)
1584     row = DEFW_ROW;
1585   else if (bfd_is_com_section (section))
1586     row = COMMON_ROW;
1587   else
1588     row = DEF_ROW;
1589 
1590   if (hashp != NULL && *hashp != NULL)
1591     h = *hashp;
1592   else
1593     {
1594       if (row == UNDEF_ROW || row == UNDEFW_ROW)
1595 	h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE);
1596       else
1597 	h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE);
1598       if (h == NULL)
1599 	{
1600 	  if (hashp != NULL)
1601 	    *hashp = NULL;
1602 	  return FALSE;
1603 	}
1604     }
1605 
1606   if (info->notice_all
1607       || (info->notice_hash != NULL
1608 	  && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL))
1609     {
1610       if (! (*info->callbacks->notice) (info, h,
1611 					abfd, section, value, flags, string))
1612 	return FALSE;
1613     }
1614 
1615   if (hashp != NULL)
1616     *hashp = h;
1617 
1618   do
1619     {
1620       enum link_action action;
1621 
1622       cycle = FALSE;
1623       action = link_action[(int) row][(int) h->type];
1624       switch (action)
1625 	{
1626 	case FAIL:
1627 	  abort ();
1628 
1629 	case NOACT:
1630 	  /* Do nothing.  */
1631 	  break;
1632 
1633 	case UND:
1634 	  /* Make a new undefined symbol.  */
1635 	  h->type = bfd_link_hash_undefined;
1636 	  h->u.undef.abfd = abfd;
1637 	  bfd_link_add_undef (info->hash, h);
1638 	  break;
1639 
1640 	case WEAK:
1641 	  /* Make a new weak undefined symbol.  */
1642 	  h->type = bfd_link_hash_undefweak;
1643 	  h->u.undef.abfd = abfd;
1644 	  break;
1645 
1646 	case CDEF:
1647 	  /* We have found a definition for a symbol which was
1648 	     previously common.  */
1649 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1650 	  if (! ((*info->callbacks->multiple_common)
1651 		 (info, h, abfd, bfd_link_hash_defined, 0)))
1652 	    return FALSE;
1653 	  /* Fall through.  */
1654 	case DEF:
1655 	case DEFW:
1656 	  {
1657 	    enum bfd_link_hash_type oldtype;
1658 
1659 	    /* Define a symbol.  */
1660 	    oldtype = h->type;
1661 	    if (action == DEFW)
1662 	      h->type = bfd_link_hash_defweak;
1663 	    else
1664 	      h->type = bfd_link_hash_defined;
1665 	    h->u.def.section = section;
1666 	    h->u.def.value = value;
1667 
1668 	    /* If we have been asked to, we act like collect2 and
1669 	       identify all functions that might be global
1670 	       constructors and destructors and pass them up in a
1671 	       callback.  We only do this for certain object file
1672 	       types, since many object file types can handle this
1673 	       automatically.  */
1674 	    if (collect && name[0] == '_')
1675 	      {
1676 		const char *s;
1677 
1678 		/* A constructor or destructor name starts like this:
1679 		   _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1680 		   the second are the same character (we accept any
1681 		   character there, in case a new object file format
1682 		   comes along with even worse naming restrictions).  */
1683 
1684 #define CONS_PREFIX "GLOBAL_"
1685 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1686 
1687 		s = name + 1;
1688 		while (*s == '_')
1689 		  ++s;
1690 		if (s[0] == 'G' && CONST_STRNEQ (s, CONS_PREFIX))
1691 		  {
1692 		    char c;
1693 
1694 		    c = s[CONS_PREFIX_LEN + 1];
1695 		    if ((c == 'I' || c == 'D')
1696 			&& s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1697 		      {
1698 			/* If this is a definition of a symbol which
1699                            was previously weakly defined, we are in
1700                            trouble.  We have already added a
1701                            constructor entry for the weak defined
1702                            symbol, and now we are trying to add one
1703                            for the new symbol.  Fortunately, this case
1704                            should never arise in practice.  */
1705 			if (oldtype == bfd_link_hash_defweak)
1706 			  abort ();
1707 
1708 			if (! ((*info->callbacks->constructor)
1709 			       (info, c == 'I',
1710 				h->root.string, abfd, section, value)))
1711 			  return FALSE;
1712 		      }
1713 		  }
1714 	      }
1715 	  }
1716 
1717 	  break;
1718 
1719 	case COM:
1720 	  /* We have found a common definition for a symbol.  */
1721 	  if (h->type == bfd_link_hash_new)
1722 	    bfd_link_add_undef (info->hash, h);
1723 	  h->type = bfd_link_hash_common;
1724 	  h->u.c.p = (struct bfd_link_hash_common_entry *)
1725 	    bfd_hash_allocate (&info->hash->table,
1726 			       sizeof (struct bfd_link_hash_common_entry));
1727 	  if (h->u.c.p == NULL)
1728 	    return FALSE;
1729 
1730 	  h->u.c.size = value;
1731 
1732 	  /* Select a default alignment based on the size.  This may
1733              be overridden by the caller.  */
1734 	  {
1735 	    unsigned int power;
1736 
1737 	    power = bfd_log2 (value);
1738 	    if (power > 4)
1739 	      power = 4;
1740 	    h->u.c.p->alignment_power = power;
1741 	  }
1742 
1743 	  /* The section of a common symbol is only used if the common
1744              symbol is actually allocated.  It basically provides a
1745              hook for the linker script to decide which output section
1746              the common symbols should be put in.  In most cases, the
1747              section of a common symbol will be bfd_com_section_ptr,
1748              the code here will choose a common symbol section named
1749              "COMMON", and the linker script will contain *(COMMON) in
1750              the appropriate place.  A few targets use separate common
1751              sections for small symbols, and they require special
1752              handling.  */
1753 	  if (section == bfd_com_section_ptr)
1754 	    {
1755 	      h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1756 	      h->u.c.p->section->flags |= SEC_ALLOC;
1757 	    }
1758 	  else if (section->owner != abfd)
1759 	    {
1760 	      h->u.c.p->section = bfd_make_section_old_way (abfd,
1761 							    section->name);
1762 	      h->u.c.p->section->flags |= SEC_ALLOC;
1763 	    }
1764 	  else
1765 	    h->u.c.p->section = section;
1766 	  break;
1767 
1768 	case REF:
1769 	  /* A reference to a defined symbol.  */
1770 	  if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1771 	    h->u.undef.next = h;
1772 	  break;
1773 
1774 	case BIG:
1775 	  /* We have found a common definition for a symbol which
1776 	     already had a common definition.  Use the maximum of the
1777 	     two sizes, and use the section required by the larger symbol.  */
1778 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1779 	  if (! ((*info->callbacks->multiple_common)
1780 		 (info, h, abfd, bfd_link_hash_common, value)))
1781 	    return FALSE;
1782 	  if (value > h->u.c.size)
1783 	    {
1784 	      unsigned int power;
1785 
1786 	      h->u.c.size = value;
1787 
1788 	      /* Select a default alignment based on the size.  This may
1789 		 be overridden by the caller.  */
1790 	      power = bfd_log2 (value);
1791 	      if (power > 4)
1792 		power = 4;
1793 	      h->u.c.p->alignment_power = power;
1794 
1795 	      /* Some systems have special treatment for small commons,
1796 		 hence we want to select the section used by the larger
1797 		 symbol.  This makes sure the symbol does not go in a
1798 		 small common section if it is now too large.  */
1799 	      if (section == bfd_com_section_ptr)
1800 		{
1801 		  h->u.c.p->section
1802 		    = bfd_make_section_old_way (abfd, "COMMON");
1803 		  h->u.c.p->section->flags |= SEC_ALLOC;
1804 		}
1805 	      else if (section->owner != abfd)
1806 		{
1807 		  h->u.c.p->section
1808 		    = bfd_make_section_old_way (abfd, section->name);
1809 		  h->u.c.p->section->flags |= SEC_ALLOC;
1810 		}
1811 	      else
1812 		h->u.c.p->section = section;
1813 	    }
1814 	  break;
1815 
1816 	case CREF:
1817 	  /* We have found a common definition for a symbol which
1818 	     was already defined.  */
1819 	  if (! ((*info->callbacks->multiple_common)
1820 		 (info, h, abfd, bfd_link_hash_common, value)))
1821 	    return FALSE;
1822 	  break;
1823 
1824 	case MIND:
1825 	  /* Multiple indirect symbols.  This is OK if they both point
1826 	     to the same symbol.  */
1827 	  if (strcmp (h->u.i.link->root.string, string) == 0)
1828 	    break;
1829 	  /* Fall through.  */
1830 	case MDEF:
1831 	  /* Handle a multiple definition.  */
1832 	  if (! ((*info->callbacks->multiple_definition)
1833 		 (info, h, abfd, section, value)))
1834 	    return FALSE;
1835 	  break;
1836 
1837 	case CIND:
1838 	  /* Create an indirect symbol from an existing common symbol.  */
1839 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1840 	  if (! ((*info->callbacks->multiple_common)
1841 		 (info, h, abfd, bfd_link_hash_indirect, 0)))
1842 	    return FALSE;
1843 	  /* Fall through.  */
1844 	case IND:
1845 	  /* Create an indirect symbol.  */
1846 	  {
1847 	    struct bfd_link_hash_entry *inh;
1848 
1849 	    /* STRING is the name of the symbol we want to indirect
1850 	       to.  */
1851 	    inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE,
1852 						copy, FALSE);
1853 	    if (inh == NULL)
1854 	      return FALSE;
1855 	    if (inh->type == bfd_link_hash_indirect
1856 		&& inh->u.i.link == h)
1857 	      {
1858 		(*_bfd_error_handler)
1859 		  (_("%B: indirect symbol `%s' to `%s' is a loop"),
1860 		   abfd, name, string);
1861 		bfd_set_error (bfd_error_invalid_operation);
1862 		return FALSE;
1863 	      }
1864 	    if (inh->type == bfd_link_hash_new)
1865 	      {
1866 		inh->type = bfd_link_hash_undefined;
1867 		inh->u.undef.abfd = abfd;
1868 		bfd_link_add_undef (info->hash, inh);
1869 	      }
1870 
1871 	    /* If the indirect symbol has been referenced, we need to
1872 	       push the reference down to the symbol we are
1873 	       referencing.  */
1874 	    if (h->type != bfd_link_hash_new)
1875 	      {
1876 		row = UNDEF_ROW;
1877 		cycle = TRUE;
1878 	      }
1879 
1880 	    h->type = bfd_link_hash_indirect;
1881 	    h->u.i.link = inh;
1882 	  }
1883 	  break;
1884 
1885 	case SET:
1886 	  /* Add an entry to a set.  */
1887 	  if (! (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1888 						abfd, section, value))
1889 	    return FALSE;
1890 	  break;
1891 
1892 	case WARNC:
1893 	  /* Issue a warning and cycle.  */
1894 	  if (h->u.i.warning != NULL)
1895 	    {
1896 	      if (! (*info->callbacks->warning) (info, h->u.i.warning,
1897 						 h->root.string, abfd,
1898 						 NULL, 0))
1899 		return FALSE;
1900 	      /* Only issue a warning once.  */
1901 	      h->u.i.warning = NULL;
1902 	    }
1903 	  /* Fall through.  */
1904 	case CYCLE:
1905 	  /* Try again with the referenced symbol.  */
1906 	  h = h->u.i.link;
1907 	  cycle = TRUE;
1908 	  break;
1909 
1910 	case REFC:
1911 	  /* A reference to an indirect symbol.  */
1912 	  if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1913 	    h->u.undef.next = h;
1914 	  h = h->u.i.link;
1915 	  cycle = TRUE;
1916 	  break;
1917 
1918 	case WARN:
1919 	  /* Issue a warning.  */
1920 	  if (! (*info->callbacks->warning) (info, string, h->root.string,
1921 					     hash_entry_bfd (h), NULL, 0))
1922 	    return FALSE;
1923 	  break;
1924 
1925 	case CWARN:
1926 	  /* Warn if this symbol has been referenced already,
1927 	     otherwise add a warning.  A symbol has been referenced if
1928 	     the u.undef.next field is not NULL, or it is the tail of the
1929 	     undefined symbol list.  The REF case above helps to
1930 	     ensure this.  */
1931 	  if (h->u.undef.next != NULL || info->hash->undefs_tail == h)
1932 	    {
1933 	      if (! (*info->callbacks->warning) (info, string, h->root.string,
1934 						 hash_entry_bfd (h), NULL, 0))
1935 		return FALSE;
1936 	      break;
1937 	    }
1938 	  /* Fall through.  */
1939 	case MWARN:
1940 	  /* Make a warning symbol.  */
1941 	  {
1942 	    struct bfd_link_hash_entry *sub;
1943 
1944 	    /* STRING is the warning to give.  */
1945 	    sub = ((struct bfd_link_hash_entry *)
1946 		   ((*info->hash->table.newfunc)
1947 		    (NULL, &info->hash->table, h->root.string)));
1948 	    if (sub == NULL)
1949 	      return FALSE;
1950 	    *sub = *h;
1951 	    sub->type = bfd_link_hash_warning;
1952 	    sub->u.i.link = h;
1953 	    if (! copy)
1954 	      sub->u.i.warning = string;
1955 	    else
1956 	      {
1957 		char *w;
1958 		size_t len = strlen (string) + 1;
1959 
1960 		w = (char *) bfd_hash_allocate (&info->hash->table, len);
1961 		if (w == NULL)
1962 		  return FALSE;
1963 		memcpy (w, string, len);
1964 		sub->u.i.warning = w;
1965 	      }
1966 
1967 	    bfd_hash_replace (&info->hash->table,
1968 			      (struct bfd_hash_entry *) h,
1969 			      (struct bfd_hash_entry *) sub);
1970 	    if (hashp != NULL)
1971 	      *hashp = sub;
1972 	  }
1973 	  break;
1974 	}
1975     }
1976   while (cycle);
1977 
1978   return TRUE;
1979 }
1980 
1981 /* Generic final link routine.  */
1982 
1983 bfd_boolean
1984 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
1985 {
1986   bfd *sub;
1987   asection *o;
1988   struct bfd_link_order *p;
1989   size_t outsymalloc;
1990   struct generic_write_global_symbol_info wginfo;
1991 
1992   bfd_get_outsymbols (abfd) = NULL;
1993   bfd_get_symcount (abfd) = 0;
1994   outsymalloc = 0;
1995 
1996   /* Mark all sections which will be included in the output file.  */
1997   for (o = abfd->sections; o != NULL; o = o->next)
1998     for (p = o->map_head.link_order; p != NULL; p = p->next)
1999       if (p->type == bfd_indirect_link_order)
2000 	p->u.indirect.section->linker_mark = TRUE;
2001 
2002   /* Build the output symbol table.  */
2003   for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
2004     if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
2005       return FALSE;
2006 
2007   /* Accumulate the global symbols.  */
2008   wginfo.info = info;
2009   wginfo.output_bfd = abfd;
2010   wginfo.psymalloc = &outsymalloc;
2011   _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
2012 				   _bfd_generic_link_write_global_symbol,
2013 				   &wginfo);
2014 
2015   /* Make sure we have a trailing NULL pointer on OUTSYMBOLS.  We
2016      shouldn't really need one, since we have SYMCOUNT, but some old
2017      code still expects one.  */
2018   if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
2019     return FALSE;
2020 
2021   if (info->relocatable)
2022     {
2023       /* Allocate space for the output relocs for each section.  */
2024       for (o = abfd->sections; o != NULL; o = o->next)
2025 	{
2026 	  o->reloc_count = 0;
2027 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
2028 	    {
2029 	      if (p->type == bfd_section_reloc_link_order
2030 		  || p->type == bfd_symbol_reloc_link_order)
2031 		++o->reloc_count;
2032 	      else if (p->type == bfd_indirect_link_order)
2033 		{
2034 		  asection *input_section;
2035 		  bfd *input_bfd;
2036 		  long relsize;
2037 		  arelent **relocs;
2038 		  asymbol **symbols;
2039 		  long reloc_count;
2040 
2041 		  input_section = p->u.indirect.section;
2042 		  input_bfd = input_section->owner;
2043 		  relsize = bfd_get_reloc_upper_bound (input_bfd,
2044 						       input_section);
2045 		  if (relsize < 0)
2046 		    return FALSE;
2047 		  relocs = (arelent **) bfd_malloc (relsize);
2048 		  if (!relocs && relsize != 0)
2049 		    return FALSE;
2050 		  symbols = _bfd_generic_link_get_symbols (input_bfd);
2051 		  reloc_count = bfd_canonicalize_reloc (input_bfd,
2052 							input_section,
2053 							relocs,
2054 							symbols);
2055 		  free (relocs);
2056 		  if (reloc_count < 0)
2057 		    return FALSE;
2058 		  BFD_ASSERT ((unsigned long) reloc_count
2059 			      == input_section->reloc_count);
2060 		  o->reloc_count += reloc_count;
2061 		}
2062 	    }
2063 	  if (o->reloc_count > 0)
2064 	    {
2065 	      bfd_size_type amt;
2066 
2067 	      amt = o->reloc_count;
2068 	      amt *= sizeof (arelent *);
2069 	      o->orelocation = (struct reloc_cache_entry **) bfd_alloc (abfd, amt);
2070 	      if (!o->orelocation)
2071 		return FALSE;
2072 	      o->flags |= SEC_RELOC;
2073 	      /* Reset the count so that it can be used as an index
2074 		 when putting in the output relocs.  */
2075 	      o->reloc_count = 0;
2076 	    }
2077 	}
2078     }
2079 
2080   /* Handle all the link order information for the sections.  */
2081   for (o = abfd->sections; o != NULL; o = o->next)
2082     {
2083       for (p = o->map_head.link_order; p != NULL; p = p->next)
2084 	{
2085 	  switch (p->type)
2086 	    {
2087 	    case bfd_section_reloc_link_order:
2088 	    case bfd_symbol_reloc_link_order:
2089 	      if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
2090 		return FALSE;
2091 	      break;
2092 	    case bfd_indirect_link_order:
2093 	      if (! default_indirect_link_order (abfd, info, o, p, TRUE))
2094 		return FALSE;
2095 	      break;
2096 	    default:
2097 	      if (! _bfd_default_link_order (abfd, info, o, p))
2098 		return FALSE;
2099 	      break;
2100 	    }
2101 	}
2102     }
2103 
2104   return TRUE;
2105 }
2106 
2107 /* Add an output symbol to the output BFD.  */
2108 
2109 static bfd_boolean
2110 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
2111 {
2112   if (bfd_get_symcount (output_bfd) >= *psymalloc)
2113     {
2114       asymbol **newsyms;
2115       bfd_size_type amt;
2116 
2117       if (*psymalloc == 0)
2118 	*psymalloc = 124;
2119       else
2120 	*psymalloc *= 2;
2121       amt = *psymalloc;
2122       amt *= sizeof (asymbol *);
2123       newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
2124       if (newsyms == NULL)
2125 	return FALSE;
2126       bfd_get_outsymbols (output_bfd) = newsyms;
2127     }
2128 
2129   bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
2130   if (sym != NULL)
2131     ++ bfd_get_symcount (output_bfd);
2132 
2133   return TRUE;
2134 }
2135 
2136 /* Handle the symbols for an input BFD.  */
2137 
2138 bfd_boolean
2139 _bfd_generic_link_output_symbols (bfd *output_bfd,
2140 				  bfd *input_bfd,
2141 				  struct bfd_link_info *info,
2142 				  size_t *psymalloc)
2143 {
2144   asymbol **sym_ptr;
2145   asymbol **sym_end;
2146 
2147   if (!bfd_generic_link_read_symbols (input_bfd))
2148     return FALSE;
2149 
2150   /* Create a filename symbol if we are supposed to.  */
2151   if (info->create_object_symbols_section != NULL)
2152     {
2153       asection *sec;
2154 
2155       for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
2156 	{
2157 	  if (sec->output_section == info->create_object_symbols_section)
2158 	    {
2159 	      asymbol *newsym;
2160 
2161 	      newsym = bfd_make_empty_symbol (input_bfd);
2162 	      if (!newsym)
2163 		return FALSE;
2164 	      newsym->name = input_bfd->filename;
2165 	      newsym->value = 0;
2166 	      newsym->flags = BSF_LOCAL | BSF_FILE;
2167 	      newsym->section = sec;
2168 
2169 	      if (! generic_add_output_symbol (output_bfd, psymalloc,
2170 					       newsym))
2171 		return FALSE;
2172 
2173 	      break;
2174 	    }
2175 	}
2176     }
2177 
2178   /* Adjust the values of the globally visible symbols, and write out
2179      local symbols.  */
2180   sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2181   sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2182   for (; sym_ptr < sym_end; sym_ptr++)
2183     {
2184       asymbol *sym;
2185       struct generic_link_hash_entry *h;
2186       bfd_boolean output;
2187 
2188       h = NULL;
2189       sym = *sym_ptr;
2190       if ((sym->flags & (BSF_INDIRECT
2191 			 | BSF_WARNING
2192 			 | BSF_GLOBAL
2193 			 | BSF_CONSTRUCTOR
2194 			 | BSF_WEAK)) != 0
2195 	  || bfd_is_und_section (bfd_get_section (sym))
2196 	  || bfd_is_com_section (bfd_get_section (sym))
2197 	  || bfd_is_ind_section (bfd_get_section (sym)))
2198 	{
2199 	  if (sym->udata.p != NULL)
2200 	    h = (struct generic_link_hash_entry *) sym->udata.p;
2201 	  else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2202 	    {
2203 	      /* This case normally means that the main linker code
2204                  deliberately ignored this constructor symbol.  We
2205                  should just pass it through.  This will screw up if
2206                  the constructor symbol is from a different,
2207                  non-generic, object file format, but the case will
2208                  only arise when linking with -r, which will probably
2209                  fail anyhow, since there will be no way to represent
2210                  the relocs in the output format being used.  */
2211 	      h = NULL;
2212 	    }
2213 	  else if (bfd_is_und_section (bfd_get_section (sym)))
2214 	    h = ((struct generic_link_hash_entry *)
2215 		 bfd_wrapped_link_hash_lookup (output_bfd, info,
2216 					       bfd_asymbol_name (sym),
2217 					       FALSE, FALSE, TRUE));
2218 	  else
2219 	    h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2220 					       bfd_asymbol_name (sym),
2221 					       FALSE, FALSE, TRUE);
2222 
2223 	  if (h != NULL)
2224 	    {
2225 	      /* Force all references to this symbol to point to
2226 		 the same area in memory.  It is possible that
2227 		 this routine will be called with a hash table
2228 		 other than a generic hash table, so we double
2229 		 check that.  */
2230 	      if (info->output_bfd->xvec == input_bfd->xvec)
2231 		{
2232 		  if (h->sym != NULL)
2233 		    *sym_ptr = sym = h->sym;
2234 		}
2235 
2236 	      switch (h->root.type)
2237 		{
2238 		default:
2239 		case bfd_link_hash_new:
2240 		  abort ();
2241 		case bfd_link_hash_undefined:
2242 		  break;
2243 		case bfd_link_hash_undefweak:
2244 		  sym->flags |= BSF_WEAK;
2245 		  break;
2246 		case bfd_link_hash_indirect:
2247 		  h = (struct generic_link_hash_entry *) h->root.u.i.link;
2248 		  /* fall through */
2249 		case bfd_link_hash_defined:
2250 		  sym->flags |= BSF_GLOBAL;
2251 		  sym->flags &=~ BSF_CONSTRUCTOR;
2252 		  sym->value = h->root.u.def.value;
2253 		  sym->section = h->root.u.def.section;
2254 		  break;
2255 		case bfd_link_hash_defweak:
2256 		  sym->flags |= BSF_WEAK;
2257 		  sym->flags &=~ BSF_CONSTRUCTOR;
2258 		  sym->value = h->root.u.def.value;
2259 		  sym->section = h->root.u.def.section;
2260 		  break;
2261 		case bfd_link_hash_common:
2262 		  sym->value = h->root.u.c.size;
2263 		  sym->flags |= BSF_GLOBAL;
2264 		  if (! bfd_is_com_section (sym->section))
2265 		    {
2266 		      BFD_ASSERT (bfd_is_und_section (sym->section));
2267 		      sym->section = bfd_com_section_ptr;
2268 		    }
2269 		  /* We do not set the section of the symbol to
2270 		     h->root.u.c.p->section.  That value was saved so
2271 		     that we would know where to allocate the symbol
2272 		     if it was defined.  In this case the type is
2273 		     still bfd_link_hash_common, so we did not define
2274 		     it, so we do not want to use that section.  */
2275 		  break;
2276 		}
2277 	    }
2278 	}
2279 
2280       /* This switch is straight from the old code in
2281 	 write_file_locals in ldsym.c.  */
2282       if (info->strip == strip_all
2283 	  || (info->strip == strip_some
2284 	      && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2285 				  FALSE, FALSE) == NULL))
2286 	output = FALSE;
2287       else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
2288 	{
2289 	  /* If this symbol is marked as occurring now, rather
2290 	     than at the end, output it now.  This is used for
2291 	     COFF C_EXT FCN symbols.  FIXME: There must be a
2292 	     better way.  */
2293 	  if (bfd_asymbol_bfd (sym) == input_bfd
2294 	      && (sym->flags & BSF_NOT_AT_END) != 0)
2295 	    output = TRUE;
2296 	  else
2297 	    output = FALSE;
2298 	}
2299       else if (bfd_is_ind_section (sym->section))
2300 	output = FALSE;
2301       else if ((sym->flags & BSF_DEBUGGING) != 0)
2302 	{
2303 	  if (info->strip == strip_none)
2304 	    output = TRUE;
2305 	  else
2306 	    output = FALSE;
2307 	}
2308       else if (bfd_is_und_section (sym->section)
2309 	       || bfd_is_com_section (sym->section))
2310 	output = FALSE;
2311       else if ((sym->flags & BSF_LOCAL) != 0)
2312 	{
2313 	  if ((sym->flags & BSF_WARNING) != 0)
2314 	    output = FALSE;
2315 	  else
2316 	    {
2317 	      switch (info->discard)
2318 		{
2319 		default:
2320 		case discard_all:
2321 		  output = FALSE;
2322 		  break;
2323 		case discard_sec_merge:
2324 		  output = TRUE;
2325 		  if (info->relocatable
2326 		      || ! (sym->section->flags & SEC_MERGE))
2327 		    break;
2328 		  /* FALLTHROUGH */
2329 		case discard_l:
2330 		  if (bfd_is_local_label (input_bfd, sym))
2331 		    output = FALSE;
2332 		  else
2333 		    output = TRUE;
2334 		  break;
2335 		case discard_none:
2336 		  output = TRUE;
2337 		  break;
2338 		}
2339 	    }
2340 	}
2341       else if ((sym->flags & BSF_CONSTRUCTOR))
2342 	{
2343 	  if (info->strip != strip_all)
2344 	    output = TRUE;
2345 	  else
2346 	    output = FALSE;
2347 	}
2348       else
2349 	abort ();
2350 
2351       /* If this symbol is in a section which is not being included
2352 	 in the output file, then we don't want to output the
2353 	 symbol.  */
2354       if (!bfd_is_abs_section (sym->section)
2355 	  && bfd_section_removed_from_list (output_bfd,
2356 					    sym->section->output_section))
2357 	output = FALSE;
2358 
2359       if (output)
2360 	{
2361 	  if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2362 	    return FALSE;
2363 	  if (h != NULL)
2364 	    h->written = TRUE;
2365 	}
2366     }
2367 
2368   return TRUE;
2369 }
2370 
2371 /* Set the section and value of a generic BFD symbol based on a linker
2372    hash table entry.  */
2373 
2374 static void
2375 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2376 {
2377   switch (h->type)
2378     {
2379     default:
2380       abort ();
2381       break;
2382     case bfd_link_hash_new:
2383       /* This can happen when a constructor symbol is seen but we are
2384          not building constructors.  */
2385       if (sym->section != NULL)
2386 	{
2387 	  BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2388 	}
2389       else
2390 	{
2391 	  sym->flags |= BSF_CONSTRUCTOR;
2392 	  sym->section = bfd_abs_section_ptr;
2393 	  sym->value = 0;
2394 	}
2395       break;
2396     case bfd_link_hash_undefined:
2397       sym->section = bfd_und_section_ptr;
2398       sym->value = 0;
2399       break;
2400     case bfd_link_hash_undefweak:
2401       sym->section = bfd_und_section_ptr;
2402       sym->value = 0;
2403       sym->flags |= BSF_WEAK;
2404       break;
2405     case bfd_link_hash_defined:
2406       sym->section = h->u.def.section;
2407       sym->value = h->u.def.value;
2408       break;
2409     case bfd_link_hash_defweak:
2410       sym->flags |= BSF_WEAK;
2411       sym->section = h->u.def.section;
2412       sym->value = h->u.def.value;
2413       break;
2414     case bfd_link_hash_common:
2415       sym->value = h->u.c.size;
2416       if (sym->section == NULL)
2417 	sym->section = bfd_com_section_ptr;
2418       else if (! bfd_is_com_section (sym->section))
2419 	{
2420 	  BFD_ASSERT (bfd_is_und_section (sym->section));
2421 	  sym->section = bfd_com_section_ptr;
2422 	}
2423       /* Do not set the section; see _bfd_generic_link_output_symbols.  */
2424       break;
2425     case bfd_link_hash_indirect:
2426     case bfd_link_hash_warning:
2427       /* FIXME: What should we do here?  */
2428       break;
2429     }
2430 }
2431 
2432 /* Write out a global symbol, if it hasn't already been written out.
2433    This is called for each symbol in the hash table.  */
2434 
2435 bfd_boolean
2436 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2437 				       void *data)
2438 {
2439   struct generic_write_global_symbol_info *wginfo =
2440       (struct generic_write_global_symbol_info *) data;
2441   asymbol *sym;
2442 
2443   if (h->root.type == bfd_link_hash_warning)
2444     h = (struct generic_link_hash_entry *) h->root.u.i.link;
2445 
2446   if (h->written)
2447     return TRUE;
2448 
2449   h->written = TRUE;
2450 
2451   if (wginfo->info->strip == strip_all
2452       || (wginfo->info->strip == strip_some
2453 	  && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2454 			      FALSE, FALSE) == NULL))
2455     return TRUE;
2456 
2457   if (h->sym != NULL)
2458     sym = h->sym;
2459   else
2460     {
2461       sym = bfd_make_empty_symbol (wginfo->output_bfd);
2462       if (!sym)
2463 	return FALSE;
2464       sym->name = h->root.root.string;
2465       sym->flags = 0;
2466     }
2467 
2468   set_symbol_from_hash (sym, &h->root);
2469 
2470   sym->flags |= BSF_GLOBAL;
2471 
2472   if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2473 				   sym))
2474     {
2475       /* FIXME: No way to return failure.  */
2476       abort ();
2477     }
2478 
2479   return TRUE;
2480 }
2481 
2482 /* Create a relocation.  */
2483 
2484 bfd_boolean
2485 _bfd_generic_reloc_link_order (bfd *abfd,
2486 			       struct bfd_link_info *info,
2487 			       asection *sec,
2488 			       struct bfd_link_order *link_order)
2489 {
2490   arelent *r;
2491 
2492   if (! info->relocatable)
2493     abort ();
2494   if (sec->orelocation == NULL)
2495     abort ();
2496 
2497   r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2498   if (r == NULL)
2499     return FALSE;
2500 
2501   r->address = link_order->offset;
2502   r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2503   if (r->howto == 0)
2504     {
2505       bfd_set_error (bfd_error_bad_value);
2506       return FALSE;
2507     }
2508 
2509   /* Get the symbol to use for the relocation.  */
2510   if (link_order->type == bfd_section_reloc_link_order)
2511     r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2512   else
2513     {
2514       struct generic_link_hash_entry *h;
2515 
2516       h = ((struct generic_link_hash_entry *)
2517 	   bfd_wrapped_link_hash_lookup (abfd, info,
2518 					 link_order->u.reloc.p->u.name,
2519 					 FALSE, FALSE, TRUE));
2520       if (h == NULL
2521 	  || ! h->written)
2522 	{
2523 	  if (! ((*info->callbacks->unattached_reloc)
2524 		 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
2525 	    return FALSE;
2526 	  bfd_set_error (bfd_error_bad_value);
2527 	  return FALSE;
2528 	}
2529       r->sym_ptr_ptr = &h->sym;
2530     }
2531 
2532   /* If this is an inplace reloc, write the addend to the object file.
2533      Otherwise, store it in the reloc addend.  */
2534   if (! r->howto->partial_inplace)
2535     r->addend = link_order->u.reloc.p->addend;
2536   else
2537     {
2538       bfd_size_type size;
2539       bfd_reloc_status_type rstat;
2540       bfd_byte *buf;
2541       bfd_boolean ok;
2542       file_ptr loc;
2543 
2544       size = bfd_get_reloc_size (r->howto);
2545       buf = (bfd_byte *) bfd_zmalloc (size);
2546       if (buf == NULL)
2547 	return FALSE;
2548       rstat = _bfd_relocate_contents (r->howto, abfd,
2549 				      (bfd_vma) link_order->u.reloc.p->addend,
2550 				      buf);
2551       switch (rstat)
2552 	{
2553 	case bfd_reloc_ok:
2554 	  break;
2555 	default:
2556 	case bfd_reloc_outofrange:
2557 	  abort ();
2558 	case bfd_reloc_overflow:
2559 	  if (! ((*info->callbacks->reloc_overflow)
2560 		 (info, NULL,
2561 		  (link_order->type == bfd_section_reloc_link_order
2562 		   ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2563 		   : link_order->u.reloc.p->u.name),
2564 		  r->howto->name, link_order->u.reloc.p->addend,
2565 		  NULL, NULL, 0)))
2566 	    {
2567 	      free (buf);
2568 	      return FALSE;
2569 	    }
2570 	  break;
2571 	}
2572       loc = link_order->offset * bfd_octets_per_byte (abfd);
2573       ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2574       free (buf);
2575       if (! ok)
2576 	return FALSE;
2577 
2578       r->addend = 0;
2579     }
2580 
2581   sec->orelocation[sec->reloc_count] = r;
2582   ++sec->reloc_count;
2583 
2584   return TRUE;
2585 }
2586 
2587 /* Allocate a new link_order for a section.  */
2588 
2589 struct bfd_link_order *
2590 bfd_new_link_order (bfd *abfd, asection *section)
2591 {
2592   bfd_size_type amt = sizeof (struct bfd_link_order);
2593   struct bfd_link_order *new_lo;
2594 
2595   new_lo = (struct bfd_link_order *) bfd_zalloc (abfd, amt);
2596   if (!new_lo)
2597     return NULL;
2598 
2599   new_lo->type = bfd_undefined_link_order;
2600 
2601   if (section->map_tail.link_order != NULL)
2602     section->map_tail.link_order->next = new_lo;
2603   else
2604     section->map_head.link_order = new_lo;
2605   section->map_tail.link_order = new_lo;
2606 
2607   return new_lo;
2608 }
2609 
2610 /* Default link order processing routine.  Note that we can not handle
2611    the reloc_link_order types here, since they depend upon the details
2612    of how the particular backends generates relocs.  */
2613 
2614 bfd_boolean
2615 _bfd_default_link_order (bfd *abfd,
2616 			 struct bfd_link_info *info,
2617 			 asection *sec,
2618 			 struct bfd_link_order *link_order)
2619 {
2620   switch (link_order->type)
2621     {
2622     case bfd_undefined_link_order:
2623     case bfd_section_reloc_link_order:
2624     case bfd_symbol_reloc_link_order:
2625     default:
2626       abort ();
2627     case bfd_indirect_link_order:
2628       return default_indirect_link_order (abfd, info, sec, link_order,
2629 					  FALSE);
2630     case bfd_data_link_order:
2631       return default_data_link_order (abfd, info, sec, link_order);
2632     }
2633 }
2634 
2635 /* Default routine to handle a bfd_data_link_order.  */
2636 
2637 static bfd_boolean
2638 default_data_link_order (bfd *abfd,
2639 			 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2640 			 asection *sec,
2641 			 struct bfd_link_order *link_order)
2642 {
2643   bfd_size_type size;
2644   size_t fill_size;
2645   bfd_byte *fill;
2646   file_ptr loc;
2647   bfd_boolean result;
2648 
2649   BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2650 
2651   size = link_order->size;
2652   if (size == 0)
2653     return TRUE;
2654 
2655   fill = link_order->u.data.contents;
2656   fill_size = link_order->u.data.size;
2657   if (fill_size != 0 && fill_size < size)
2658     {
2659       bfd_byte *p;
2660       fill = (bfd_byte *) bfd_malloc (size);
2661       if (fill == NULL)
2662 	return FALSE;
2663       p = fill;
2664       if (fill_size == 1)
2665 	memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2666       else
2667 	{
2668 	  do
2669 	    {
2670 	      memcpy (p, link_order->u.data.contents, fill_size);
2671 	      p += fill_size;
2672 	      size -= fill_size;
2673 	    }
2674 	  while (size >= fill_size);
2675 	  if (size != 0)
2676 	    memcpy (p, link_order->u.data.contents, (size_t) size);
2677 	  size = link_order->size;
2678 	}
2679     }
2680 
2681   loc = link_order->offset * bfd_octets_per_byte (abfd);
2682   result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2683 
2684   if (fill != link_order->u.data.contents)
2685     free (fill);
2686   return result;
2687 }
2688 
2689 /* Default routine to handle a bfd_indirect_link_order.  */
2690 
2691 static bfd_boolean
2692 default_indirect_link_order (bfd *output_bfd,
2693 			     struct bfd_link_info *info,
2694 			     asection *output_section,
2695 			     struct bfd_link_order *link_order,
2696 			     bfd_boolean generic_linker)
2697 {
2698   asection *input_section;
2699   bfd *input_bfd;
2700   bfd_byte *contents = NULL;
2701   bfd_byte *new_contents;
2702   bfd_size_type sec_size;
2703   file_ptr loc;
2704 
2705   BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2706 
2707   input_section = link_order->u.indirect.section;
2708   input_bfd = input_section->owner;
2709   if (input_section->size == 0)
2710     return TRUE;
2711 
2712   BFD_ASSERT (input_section->output_section == output_section);
2713   BFD_ASSERT (input_section->output_offset == link_order->offset);
2714   BFD_ASSERT (input_section->size == link_order->size);
2715 
2716   if (info->relocatable
2717       && input_section->reloc_count > 0
2718       && output_section->orelocation == NULL)
2719     {
2720       /* Space has not been allocated for the output relocations.
2721 	 This can happen when we are called by a specific backend
2722 	 because somebody is attempting to link together different
2723 	 types of object files.  Handling this case correctly is
2724 	 difficult, and sometimes impossible.  */
2725       (*_bfd_error_handler)
2726 	(_("Attempt to do relocatable link with %s input and %s output"),
2727 	 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2728       bfd_set_error (bfd_error_wrong_format);
2729       return FALSE;
2730     }
2731 
2732   if (! generic_linker)
2733     {
2734       asymbol **sympp;
2735       asymbol **symppend;
2736 
2737       /* Get the canonical symbols.  The generic linker will always
2738 	 have retrieved them by this point, but we are being called by
2739 	 a specific linker, presumably because we are linking
2740 	 different types of object files together.  */
2741       if (!bfd_generic_link_read_symbols (input_bfd))
2742 	return FALSE;
2743 
2744       /* Since we have been called by a specific linker, rather than
2745 	 the generic linker, the values of the symbols will not be
2746 	 right.  They will be the values as seen in the input file,
2747 	 not the values of the final link.  We need to fix them up
2748 	 before we can relocate the section.  */
2749       sympp = _bfd_generic_link_get_symbols (input_bfd);
2750       symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2751       for (; sympp < symppend; sympp++)
2752 	{
2753 	  asymbol *sym;
2754 	  struct bfd_link_hash_entry *h;
2755 
2756 	  sym = *sympp;
2757 
2758 	  if ((sym->flags & (BSF_INDIRECT
2759 			     | BSF_WARNING
2760 			     | BSF_GLOBAL
2761 			     | BSF_CONSTRUCTOR
2762 			     | BSF_WEAK)) != 0
2763 	      || bfd_is_und_section (bfd_get_section (sym))
2764 	      || bfd_is_com_section (bfd_get_section (sym))
2765 	      || bfd_is_ind_section (bfd_get_section (sym)))
2766 	    {
2767 	      /* sym->udata may have been set by
2768 		 generic_link_add_symbol_list.  */
2769 	      if (sym->udata.p != NULL)
2770 		h = (struct bfd_link_hash_entry *) sym->udata.p;
2771 	      else if (bfd_is_und_section (bfd_get_section (sym)))
2772 		h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2773 						  bfd_asymbol_name (sym),
2774 						  FALSE, FALSE, TRUE);
2775 	      else
2776 		h = bfd_link_hash_lookup (info->hash,
2777 					  bfd_asymbol_name (sym),
2778 					  FALSE, FALSE, TRUE);
2779 	      if (h != NULL)
2780 		set_symbol_from_hash (sym, h);
2781 	    }
2782 	}
2783     }
2784 
2785   if ((output_section->flags & (SEC_GROUP | SEC_LINKER_CREATED)) == SEC_GROUP
2786       && input_section->size != 0)
2787     {
2788       /* Group section contents are set by bfd_elf_set_group_contents.  */
2789       if (!output_bfd->output_has_begun)
2790 	{
2791 	  /* FIXME: This hack ensures bfd_elf_set_group_contents is called.  */
2792 	  if (!bfd_set_section_contents (output_bfd, output_section, "", 0, 1))
2793 	    goto error_return;
2794 	}
2795       new_contents = output_section->contents;
2796       BFD_ASSERT (new_contents != NULL);
2797       BFD_ASSERT (input_section->output_offset == 0);
2798     }
2799   else
2800     {
2801       /* Get and relocate the section contents.  */
2802       sec_size = (input_section->rawsize > input_section->size
2803 		  ? input_section->rawsize
2804 		  : input_section->size);
2805       contents = (bfd_byte *) bfd_malloc (sec_size);
2806       if (contents == NULL && sec_size != 0)
2807 	goto error_return;
2808       new_contents = (bfd_get_relocated_section_contents
2809 		      (output_bfd, info, link_order, contents,
2810 		       info->relocatable,
2811 		       _bfd_generic_link_get_symbols (input_bfd)));
2812       if (!new_contents)
2813 	goto error_return;
2814     }
2815 
2816   /* Output the section contents.  */
2817   loc = input_section->output_offset * bfd_octets_per_byte (output_bfd);
2818   if (! bfd_set_section_contents (output_bfd, output_section,
2819 				  new_contents, loc, input_section->size))
2820     goto error_return;
2821 
2822   if (contents != NULL)
2823     free (contents);
2824   return TRUE;
2825 
2826  error_return:
2827   if (contents != NULL)
2828     free (contents);
2829   return FALSE;
2830 }
2831 
2832 /* A little routine to count the number of relocs in a link_order
2833    list.  */
2834 
2835 unsigned int
2836 _bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2837 {
2838   register unsigned int c;
2839   register struct bfd_link_order *l;
2840 
2841   c = 0;
2842   for (l = link_order; l != NULL; l = l->next)
2843     {
2844       if (l->type == bfd_section_reloc_link_order
2845 	  || l->type == bfd_symbol_reloc_link_order)
2846 	++c;
2847     }
2848 
2849   return c;
2850 }
2851 
2852 /*
2853 FUNCTION
2854 	bfd_link_split_section
2855 
2856 SYNOPSIS
2857         bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2858 
2859 DESCRIPTION
2860 	Return nonzero if @var{sec} should be split during a
2861 	reloceatable or final link.
2862 
2863 .#define bfd_link_split_section(abfd, sec) \
2864 .       BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2865 .
2866 
2867 */
2868 
2869 bfd_boolean
2870 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2871 				 asection *sec ATTRIBUTE_UNUSED)
2872 {
2873   return FALSE;
2874 }
2875 
2876 /*
2877 FUNCTION
2878 	bfd_section_already_linked
2879 
2880 SYNOPSIS
2881         void bfd_section_already_linked (bfd *abfd, asection *sec,
2882 					 struct bfd_link_info *info);
2883 
2884 DESCRIPTION
2885 	Check if @var{sec} has been already linked during a reloceatable
2886 	or final link.
2887 
2888 .#define bfd_section_already_linked(abfd, sec, info) \
2889 .       BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2890 .
2891 
2892 */
2893 
2894 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
2895    once into the output.  This routine checks each section, and
2896    arrange to discard it if a section of the same name has already
2897    been linked.  This code assumes that all relevant sections have the
2898    SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2899    section name.  bfd_section_already_linked is called via
2900    bfd_map_over_sections.  */
2901 
2902 /* The hash table.  */
2903 
2904 static struct bfd_hash_table _bfd_section_already_linked_table;
2905 
2906 /* Support routines for the hash table used by section_already_linked,
2907    initialize the table, traverse, lookup, fill in an entry and remove
2908    the table.  */
2909 
2910 void
2911 bfd_section_already_linked_table_traverse
2912   (bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *,
2913 			void *), void *info)
2914 {
2915   bfd_hash_traverse (&_bfd_section_already_linked_table,
2916 		     (bfd_boolean (*) (struct bfd_hash_entry *,
2917 				       void *)) func,
2918 		     info);
2919 }
2920 
2921 struct bfd_section_already_linked_hash_entry *
2922 bfd_section_already_linked_table_lookup (const char *name)
2923 {
2924   return ((struct bfd_section_already_linked_hash_entry *)
2925 	  bfd_hash_lookup (&_bfd_section_already_linked_table, name,
2926 			   TRUE, FALSE));
2927 }
2928 
2929 bfd_boolean
2930 bfd_section_already_linked_table_insert
2931   (struct bfd_section_already_linked_hash_entry *already_linked_list,
2932    asection *sec)
2933 {
2934   struct bfd_section_already_linked *l;
2935 
2936   /* Allocate the memory from the same obstack as the hash table is
2937      kept in.  */
2938   l = (struct bfd_section_already_linked *)
2939       bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
2940   if (l == NULL)
2941     return FALSE;
2942   l->sec = sec;
2943   l->next = already_linked_list->entry;
2944   already_linked_list->entry = l;
2945   return TRUE;
2946 }
2947 
2948 static struct bfd_hash_entry *
2949 already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
2950 			struct bfd_hash_table *table,
2951 			const char *string ATTRIBUTE_UNUSED)
2952 {
2953   struct bfd_section_already_linked_hash_entry *ret =
2954     (struct bfd_section_already_linked_hash_entry *)
2955       bfd_hash_allocate (table, sizeof *ret);
2956 
2957   if (ret == NULL)
2958     return NULL;
2959 
2960   ret->entry = NULL;
2961 
2962   return &ret->root;
2963 }
2964 
2965 bfd_boolean
2966 bfd_section_already_linked_table_init (void)
2967 {
2968   return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
2969 				already_linked_newfunc,
2970 				sizeof (struct bfd_section_already_linked_hash_entry),
2971 				42);
2972 }
2973 
2974 void
2975 bfd_section_already_linked_table_free (void)
2976 {
2977   bfd_hash_table_free (&_bfd_section_already_linked_table);
2978 }
2979 
2980 /* This is used on non-ELF inputs.  */
2981 
2982 void
2983 _bfd_generic_section_already_linked (bfd *abfd, asection *sec,
2984 				     struct bfd_link_info *info)
2985 {
2986   flagword flags;
2987   const char *name;
2988   struct bfd_section_already_linked *l;
2989   struct bfd_section_already_linked_hash_entry *already_linked_list;
2990 
2991   flags = sec->flags;
2992   if ((flags & SEC_LINK_ONCE) == 0)
2993     return;
2994 
2995   /* FIXME: When doing a relocatable link, we may have trouble
2996      copying relocations in other sections that refer to local symbols
2997      in the section being discarded.  Those relocations will have to
2998      be converted somehow; as of this writing I'm not sure that any of
2999      the backends handle that correctly.
3000 
3001      It is tempting to instead not discard link once sections when
3002      doing a relocatable link (technically, they should be discarded
3003      whenever we are building constructors).  However, that fails,
3004      because the linker winds up combining all the link once sections
3005      into a single large link once section, which defeats the purpose
3006      of having link once sections in the first place.  */
3007 
3008   name = bfd_get_section_name (abfd, sec);
3009 
3010   already_linked_list = bfd_section_already_linked_table_lookup (name);
3011 
3012   for (l = already_linked_list->entry; l != NULL; l = l->next)
3013     {
3014       bfd_boolean skip = FALSE;
3015       struct coff_comdat_info *s_comdat
3016 	= bfd_coff_get_comdat_section (abfd, sec);
3017       struct coff_comdat_info *l_comdat
3018 	= bfd_coff_get_comdat_section (l->sec->owner, l->sec);
3019 
3020       /* We may have 3 different sections on the list: group section,
3021 	 comdat section and linkonce section. SEC may be a linkonce or
3022 	 comdat section. We always ignore group section. For non-COFF
3023 	 inputs, we also ignore comdat section.
3024 
3025 	 FIXME: Is that safe to match a linkonce section with a comdat
3026 	 section for COFF inputs?  */
3027       if ((l->sec->flags & SEC_GROUP) != 0)
3028 	skip = TRUE;
3029       else if (bfd_get_flavour (abfd) == bfd_target_coff_flavour)
3030 	{
3031 	  if (s_comdat != NULL
3032 	      && l_comdat != NULL
3033 	      && strcmp (s_comdat->name, l_comdat->name) != 0)
3034 	    skip = TRUE;
3035 	}
3036       else if (l_comdat != NULL)
3037 	skip = TRUE;
3038 
3039       if (!skip)
3040 	{
3041 	  /* The section has already been linked.  See if we should
3042              issue a warning.  */
3043 	  switch (flags & SEC_LINK_DUPLICATES)
3044 	    {
3045 	    default:
3046 	      abort ();
3047 
3048 	    case SEC_LINK_DUPLICATES_DISCARD:
3049 	      break;
3050 
3051 	    case SEC_LINK_DUPLICATES_ONE_ONLY:
3052 	      (*_bfd_error_handler)
3053 		(_("%B: warning: ignoring duplicate section `%A'\n"),
3054 		 abfd, sec);
3055 	      break;
3056 
3057 	    case SEC_LINK_DUPLICATES_SAME_CONTENTS:
3058 	      /* FIXME: We should really dig out the contents of both
3059                  sections and memcmp them.  The COFF/PE spec says that
3060                  the Microsoft linker does not implement this
3061                  correctly, so I'm not going to bother doing it
3062                  either.  */
3063 	      /* Fall through.  */
3064 	    case SEC_LINK_DUPLICATES_SAME_SIZE:
3065 	      if (sec->size != l->sec->size)
3066 		(*_bfd_error_handler)
3067 		  (_("%B: warning: duplicate section `%A' has different size\n"),
3068 		   abfd, sec);
3069 	      break;
3070 	    }
3071 
3072 	  /* Set the output_section field so that lang_add_section
3073 	     does not create a lang_input_section structure for this
3074 	     section.  Since there might be a symbol in the section
3075 	     being discarded, we must retain a pointer to the section
3076 	     which we are really going to use.  */
3077 	  sec->output_section = bfd_abs_section_ptr;
3078 	  sec->kept_section = l->sec;
3079 
3080 	  return;
3081 	}
3082     }
3083 
3084   /* This is the first section with this name.  Record it.  */
3085   if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
3086     info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
3087 }
3088 
3089 /* Convert symbols in excluded output sections to use a kept section.  */
3090 
3091 static bfd_boolean
3092 fix_syms (struct bfd_link_hash_entry *h, void *data)
3093 {
3094   bfd *obfd = (bfd *) data;
3095 
3096   if (h->type == bfd_link_hash_warning)
3097     h = h->u.i.link;
3098 
3099   if (h->type == bfd_link_hash_defined
3100       || h->type == bfd_link_hash_defweak)
3101     {
3102       asection *s = h->u.def.section;
3103       if (s != NULL
3104 	  && s->output_section != NULL
3105 	  && (s->output_section->flags & SEC_EXCLUDE) != 0
3106 	  && bfd_section_removed_from_list (obfd, s->output_section))
3107 	{
3108 	  asection *op, *op1;
3109 
3110 	  h->u.def.value += s->output_offset + s->output_section->vma;
3111 
3112 	  /* Find preceding kept section.  */
3113 	  for (op1 = s->output_section->prev; op1 != NULL; op1 = op1->prev)
3114 	    if ((op1->flags & SEC_EXCLUDE) == 0
3115 		&& !bfd_section_removed_from_list (obfd, op1))
3116 	      break;
3117 
3118 	  /* Find following kept section.  Start at prev->next because
3119 	     other sections may have been added after S was removed.  */
3120 	  if (s->output_section->prev != NULL)
3121 	    op = s->output_section->prev->next;
3122 	  else
3123 	    op = s->output_section->owner->sections;
3124 	  for (; op != NULL; op = op->next)
3125 	    if ((op->flags & SEC_EXCLUDE) == 0
3126 		&& !bfd_section_removed_from_list (obfd, op))
3127 	      break;
3128 
3129 	  /* Choose better of two sections, based on flags.  The idea
3130 	     is to choose a section that will be in the same segment
3131 	     as S would have been if it was kept.  */
3132 	  if (op1 == NULL)
3133 	    {
3134 	      if (op == NULL)
3135 		op = bfd_abs_section_ptr;
3136 	    }
3137 	  else if (op == NULL)
3138 	    op = op1;
3139 	  else if (((op1->flags ^ op->flags)
3140 		    & (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_LOAD)) != 0)
3141 	    {
3142 	      if (((op->flags ^ s->flags)
3143 		   & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0
3144 		  /* We prefer to choose a loaded section.  Section S
3145 		     doesn't have SEC_LOAD set (it being excluded, that
3146 		     part of the flag processing didn't happen) so we
3147 		     can't compare that flag to those of OP and OP1.  */
3148 		  || ((op1->flags & SEC_LOAD) != 0
3149 		      && (op->flags & SEC_LOAD) == 0))
3150 		op = op1;
3151 	    }
3152 	  else if (((op1->flags ^ op->flags) & SEC_READONLY) != 0)
3153 	    {
3154 	      if (((op->flags ^ s->flags) & SEC_READONLY) != 0)
3155 		op = op1;
3156 	    }
3157 	  else if (((op1->flags ^ op->flags) & SEC_CODE) != 0)
3158 	    {
3159 	      if (((op->flags ^ s->flags) & SEC_CODE) != 0)
3160 		op = op1;
3161 	    }
3162 	  else
3163 	    {
3164 	      /* Flags we care about are the same.  Prefer the following
3165 		 section if that will result in a positive valued sym.  */
3166 	      if (h->u.def.value < op->vma)
3167 		op = op1;
3168 	    }
3169 
3170 	  h->u.def.value -= op->vma;
3171 	  h->u.def.section = op;
3172 	}
3173     }
3174 
3175   return TRUE;
3176 }
3177 
3178 void
3179 _bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
3180 {
3181   bfd_link_hash_traverse (info->hash, fix_syms, obfd);
3182 }
3183 
3184 /*
3185 FUNCTION
3186 	bfd_generic_define_common_symbol
3187 
3188 SYNOPSIS
3189 	bfd_boolean bfd_generic_define_common_symbol
3190 	  (bfd *output_bfd, struct bfd_link_info *info,
3191 	   struct bfd_link_hash_entry *h);
3192 
3193 DESCRIPTION
3194 	Convert common symbol @var{h} into a defined symbol.
3195 	Return TRUE on success and FALSE on failure.
3196 
3197 .#define bfd_define_common_symbol(output_bfd, info, h) \
3198 .       BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))
3199 .
3200 */
3201 
3202 bfd_boolean
3203 bfd_generic_define_common_symbol (bfd *output_bfd,
3204 				  struct bfd_link_info *info ATTRIBUTE_UNUSED,
3205 				  struct bfd_link_hash_entry *h)
3206 {
3207   unsigned int power_of_two;
3208   bfd_vma alignment, size;
3209   asection *section;
3210 
3211   BFD_ASSERT (h != NULL && h->type == bfd_link_hash_common);
3212 
3213   size = h->u.c.size;
3214   power_of_two = h->u.c.p->alignment_power;
3215   section = h->u.c.p->section;
3216 
3217   /* Increase the size of the section to align the common symbol.
3218      The alignment must be a power of two.  */
3219   alignment = bfd_octets_per_byte (output_bfd) << power_of_two;
3220   BFD_ASSERT (alignment != 0 && (alignment & -alignment) == alignment);
3221   section->size += alignment - 1;
3222   section->size &= -alignment;
3223 
3224   /* Adjust the section's overall alignment if necessary.  */
3225   if (power_of_two > section->alignment_power)
3226     section->alignment_power = power_of_two;
3227 
3228   /* Change the symbol from common to defined.  */
3229   h->type = bfd_link_hash_defined;
3230   h->u.def.section = section;
3231   h->u.def.value = section->size;
3232 
3233   /* Increase the size of the section.  */
3234   section->size += size;
3235 
3236   /* Make sure the section is allocated in memory, and make sure that
3237      it is no longer a common section.  */
3238   section->flags |= SEC_ALLOC;
3239   section->flags &= ~SEC_IS_COMMON;
3240   return TRUE;
3241 }
3242 
3243 /*
3244 FUNCTION
3245 	bfd_find_version_for_sym
3246 
3247 SYNOPSIS
3248 	struct bfd_elf_version_tree * bfd_find_version_for_sym
3249 	  (struct bfd_elf_version_tree *verdefs,
3250 	   const char *sym_name, bfd_boolean *hide);
3251 
3252 DESCRIPTION
3253 	Search an elf version script tree for symbol versioning
3254 	info and export / don't-export status for a given symbol.
3255 	Return non-NULL on success and NULL on failure; also sets
3256 	the output @samp{hide} boolean parameter.
3257 
3258 */
3259 
3260 struct bfd_elf_version_tree *
3261 bfd_find_version_for_sym (struct bfd_elf_version_tree *verdefs,
3262 			  const char *sym_name,
3263 			  bfd_boolean *hide)
3264 {
3265   struct bfd_elf_version_tree *t;
3266   struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver;
3267   struct bfd_elf_version_tree *star_local_ver, *star_global_ver;
3268 
3269   local_ver = NULL;
3270   global_ver = NULL;
3271   star_local_ver = NULL;
3272   star_global_ver = NULL;
3273   exist_ver = NULL;
3274   for (t = verdefs; t != NULL; t = t->next)
3275     {
3276       if (t->globals.list != NULL)
3277 	{
3278 	  struct bfd_elf_version_expr *d = NULL;
3279 
3280 	  while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL)
3281 	    {
3282 	      if (d->literal || strcmp (d->pattern, "*") != 0)
3283 		global_ver = t;
3284 	      else
3285 		star_global_ver = t;
3286 	      if (d->symver)
3287 		exist_ver = t;
3288 	      d->script = 1;
3289 	      /* If the match is a wildcard pattern, keep looking for
3290 		 a more explicit, perhaps even local, match.  */
3291 	      if (d->literal)
3292 		break;
3293 	    }
3294 
3295 	  if (d != NULL)
3296 	    break;
3297 	}
3298 
3299       if (t->locals.list != NULL)
3300 	{
3301 	  struct bfd_elf_version_expr *d = NULL;
3302 
3303 	  while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL)
3304 	    {
3305 	      if (d->literal || strcmp (d->pattern, "*") != 0)
3306 		local_ver = t;
3307 	      else
3308 		star_local_ver = t;
3309 	      /* If the match is a wildcard pattern, keep looking for
3310 		 a more explicit, perhaps even global, match.  */
3311 	      if (d->literal)
3312 		{
3313 		  /* An exact match overrides a global wildcard.  */
3314 		  global_ver = NULL;
3315 		  star_global_ver = NULL;
3316 		  break;
3317 		}
3318 	    }
3319 
3320 	  if (d != NULL)
3321 	    break;
3322 	}
3323     }
3324 
3325   if (global_ver == NULL && local_ver == NULL)
3326     global_ver = star_global_ver;
3327 
3328   if (global_ver != NULL)
3329     {
3330       /* If we already have a versioned symbol that matches the
3331 	 node for this symbol, then we don't want to create a
3332 	 duplicate from the unversioned symbol.  Instead hide the
3333 	 unversioned symbol.  */
3334       *hide = exist_ver == global_ver;
3335       return global_ver;
3336     }
3337 
3338   if (local_ver == NULL)
3339     local_ver = star_local_ver;
3340 
3341   if (local_ver != NULL)
3342     {
3343       *hide = TRUE;
3344       return local_ver;
3345     }
3346 
3347   return NULL;
3348 }
3349