xref: /netbsd-src/external/gpl3/binutils/dist/bfd/hash.c (revision de4fa6c51a9708fc05f88b618fa6fad87c9508ec)
1 /* hash.c -- hash table routines for BFD
2    Copyright 1993, 1994, 1995, 1997, 1999, 2001, 2002, 2003, 2004, 2005,
3    2006, 2007 Free Software Foundation, Inc.
4    Written by Steve Chamberlain <sac@cygnus.com>
5 
6    This file is part of BFD, the Binary File Descriptor library.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program; if not, write to the Free Software
20    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21    MA 02110-1301, USA.  */
22 
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "libbfd.h"
26 #include "objalloc.h"
27 #include "libiberty.h"
28 
29 /*
30 SECTION
31 	Hash Tables
32 
33 @cindex Hash tables
34 	BFD provides a simple set of hash table functions.  Routines
35 	are provided to initialize a hash table, to free a hash table,
36 	to look up a string in a hash table and optionally create an
37 	entry for it, and to traverse a hash table.  There is
38 	currently no routine to delete an string from a hash table.
39 
40 	The basic hash table does not permit any data to be stored
41 	with a string.  However, a hash table is designed to present a
42 	base class from which other types of hash tables may be
43 	derived.  These derived types may store additional information
44 	with the string.  Hash tables were implemented in this way,
45 	rather than simply providing a data pointer in a hash table
46 	entry, because they were designed for use by the linker back
47 	ends.  The linker may create thousands of hash table entries,
48 	and the overhead of allocating private data and storing and
49 	following pointers becomes noticeable.
50 
51 	The basic hash table code is in <<hash.c>>.
52 
53 @menu
54 @* Creating and Freeing a Hash Table::
55 @* Looking Up or Entering a String::
56 @* Traversing a Hash Table::
57 @* Deriving a New Hash Table Type::
58 @end menu
59 
60 INODE
61 Creating and Freeing a Hash Table, Looking Up or Entering a String, Hash Tables, Hash Tables
62 SUBSECTION
63 	Creating and freeing a hash table
64 
65 @findex bfd_hash_table_init
66 @findex bfd_hash_table_init_n
67 	To create a hash table, create an instance of a <<struct
68 	bfd_hash_table>> (defined in <<bfd.h>>) and call
69 	<<bfd_hash_table_init>> (if you know approximately how many
70 	entries you will need, the function <<bfd_hash_table_init_n>>,
71 	which takes a @var{size} argument, may be used).
72 	<<bfd_hash_table_init>> returns <<FALSE>> if some sort of
73 	error occurs.
74 
75 @findex bfd_hash_newfunc
76 	The function <<bfd_hash_table_init>> take as an argument a
77 	function to use to create new entries.  For a basic hash
78 	table, use the function <<bfd_hash_newfunc>>.  @xref{Deriving
79 	a New Hash Table Type}, for why you would want to use a
80 	different value for this argument.
81 
82 @findex bfd_hash_allocate
83 	<<bfd_hash_table_init>> will create an objalloc which will be
84 	used to allocate new entries.  You may allocate memory on this
85 	objalloc using <<bfd_hash_allocate>>.
86 
87 @findex bfd_hash_table_free
88 	Use <<bfd_hash_table_free>> to free up all the memory that has
89 	been allocated for a hash table.  This will not free up the
90 	<<struct bfd_hash_table>> itself, which you must provide.
91 
92 @findex bfd_hash_set_default_size
93 	Use <<bfd_hash_set_default_size>> to set the default size of
94 	hash table to use.
95 
96 INODE
97 Looking Up or Entering a String, Traversing a Hash Table, Creating and Freeing a Hash Table, Hash Tables
98 SUBSECTION
99 	Looking up or entering a string
100 
101 @findex bfd_hash_lookup
102 	The function <<bfd_hash_lookup>> is used both to look up a
103 	string in the hash table and to create a new entry.
104 
105 	If the @var{create} argument is <<FALSE>>, <<bfd_hash_lookup>>
106 	will look up a string.  If the string is found, it will
107 	returns a pointer to a <<struct bfd_hash_entry>>.  If the
108 	string is not found in the table <<bfd_hash_lookup>> will
109 	return <<NULL>>.  You should not modify any of the fields in
110 	the returns <<struct bfd_hash_entry>>.
111 
112 	If the @var{create} argument is <<TRUE>>, the string will be
113 	entered into the hash table if it is not already there.
114 	Either way a pointer to a <<struct bfd_hash_entry>> will be
115 	returned, either to the existing structure or to a newly
116 	created one.  In this case, a <<NULL>> return means that an
117 	error occurred.
118 
119 	If the @var{create} argument is <<TRUE>>, and a new entry is
120 	created, the @var{copy} argument is used to decide whether to
121 	copy the string onto the hash table objalloc or not.  If
122 	@var{copy} is passed as <<FALSE>>, you must be careful not to
123 	deallocate or modify the string as long as the hash table
124 	exists.
125 
126 INODE
127 Traversing a Hash Table, Deriving a New Hash Table Type, Looking Up or Entering a String, Hash Tables
128 SUBSECTION
129 	Traversing a hash table
130 
131 @findex bfd_hash_traverse
132 	The function <<bfd_hash_traverse>> may be used to traverse a
133 	hash table, calling a function on each element.  The traversal
134 	is done in a random order.
135 
136 	<<bfd_hash_traverse>> takes as arguments a function and a
137 	generic <<void *>> pointer.  The function is called with a
138 	hash table entry (a <<struct bfd_hash_entry *>>) and the
139 	generic pointer passed to <<bfd_hash_traverse>>.  The function
140 	must return a <<boolean>> value, which indicates whether to
141 	continue traversing the hash table.  If the function returns
142 	<<FALSE>>, <<bfd_hash_traverse>> will stop the traversal and
143 	return immediately.
144 
145 INODE
146 Deriving a New Hash Table Type, , Traversing a Hash Table, Hash Tables
147 SUBSECTION
148 	Deriving a new hash table type
149 
150 	Many uses of hash tables want to store additional information
151 	which each entry in the hash table.  Some also find it
152 	convenient to store additional information with the hash table
153 	itself.  This may be done using a derived hash table.
154 
155 	Since C is not an object oriented language, creating a derived
156 	hash table requires sticking together some boilerplate
157 	routines with a few differences specific to the type of hash
158 	table you want to create.
159 
160 	An example of a derived hash table is the linker hash table.
161 	The structures for this are defined in <<bfdlink.h>>.  The
162 	functions are in <<linker.c>>.
163 
164 	You may also derive a hash table from an already derived hash
165 	table.  For example, the a.out linker backend code uses a hash
166 	table derived from the linker hash table.
167 
168 @menu
169 @* Define the Derived Structures::
170 @* Write the Derived Creation Routine::
171 @* Write Other Derived Routines::
172 @end menu
173 
174 INODE
175 Define the Derived Structures, Write the Derived Creation Routine, Deriving a New Hash Table Type, Deriving a New Hash Table Type
176 SUBSUBSECTION
177 	Define the derived structures
178 
179 	You must define a structure for an entry in the hash table,
180 	and a structure for the hash table itself.
181 
182 	The first field in the structure for an entry in the hash
183 	table must be of the type used for an entry in the hash table
184 	you are deriving from.  If you are deriving from a basic hash
185 	table this is <<struct bfd_hash_entry>>, which is defined in
186 	<<bfd.h>>.  The first field in the structure for the hash
187 	table itself must be of the type of the hash table you are
188 	deriving from itself.  If you are deriving from a basic hash
189 	table, this is <<struct bfd_hash_table>>.
190 
191 	For example, the linker hash table defines <<struct
192 	bfd_link_hash_entry>> (in <<bfdlink.h>>).  The first field,
193 	<<root>>, is of type <<struct bfd_hash_entry>>.  Similarly,
194 	the first field in <<struct bfd_link_hash_table>>, <<table>>,
195 	is of type <<struct bfd_hash_table>>.
196 
197 INODE
198 Write the Derived Creation Routine, Write Other Derived Routines, Define the Derived Structures, Deriving a New Hash Table Type
199 SUBSUBSECTION
200 	Write the derived creation routine
201 
202 	You must write a routine which will create and initialize an
203 	entry in the hash table.  This routine is passed as the
204 	function argument to <<bfd_hash_table_init>>.
205 
206 	In order to permit other hash tables to be derived from the
207 	hash table you are creating, this routine must be written in a
208 	standard way.
209 
210 	The first argument to the creation routine is a pointer to a
211 	hash table entry.  This may be <<NULL>>, in which case the
212 	routine should allocate the right amount of space.  Otherwise
213 	the space has already been allocated by a hash table type
214 	derived from this one.
215 
216 	After allocating space, the creation routine must call the
217 	creation routine of the hash table type it is derived from,
218 	passing in a pointer to the space it just allocated.  This
219 	will initialize any fields used by the base hash table.
220 
221 	Finally the creation routine must initialize any local fields
222 	for the new hash table type.
223 
224 	Here is a boilerplate example of a creation routine.
225 	@var{function_name} is the name of the routine.
226 	@var{entry_type} is the type of an entry in the hash table you
227 	are creating.  @var{base_newfunc} is the name of the creation
228 	routine of the hash table type your hash table is derived
229 	from.
230 
231 EXAMPLE
232 
233 .struct bfd_hash_entry *
234 .@var{function_name} (struct bfd_hash_entry *entry,
235 .                     struct bfd_hash_table *table,
236 .                     const char *string)
237 .{
238 .  struct @var{entry_type} *ret = (@var{entry_type} *) entry;
239 .
240 . {* Allocate the structure if it has not already been allocated by a
241 .    derived class.  *}
242 .  if (ret == NULL)
243 .    {
244 .      ret = bfd_hash_allocate (table, sizeof (* ret));
245 .      if (ret == NULL)
246 .        return NULL;
247 .    }
248 .
249 . {* Call the allocation method of the base class.  *}
250 .  ret = ((@var{entry_type} *)
251 .	 @var{base_newfunc} ((struct bfd_hash_entry *) ret, table, string));
252 .
253 . {* Initialize the local fields here.  *}
254 .
255 .  return (struct bfd_hash_entry *) ret;
256 .}
257 
258 DESCRIPTION
259 	The creation routine for the linker hash table, which is in
260 	<<linker.c>>, looks just like this example.
261 	@var{function_name} is <<_bfd_link_hash_newfunc>>.
262 	@var{entry_type} is <<struct bfd_link_hash_entry>>.
263 	@var{base_newfunc} is <<bfd_hash_newfunc>>, the creation
264 	routine for a basic hash table.
265 
266 	<<_bfd_link_hash_newfunc>> also initializes the local fields
267 	in a linker hash table entry: <<type>>, <<written>> and
268 	<<next>>.
269 
270 INODE
271 Write Other Derived Routines, , Write the Derived Creation Routine, Deriving a New Hash Table Type
272 SUBSUBSECTION
273 	Write other derived routines
274 
275 	You will want to write other routines for your new hash table,
276 	as well.
277 
278 	You will want an initialization routine which calls the
279 	initialization routine of the hash table you are deriving from
280 	and initializes any other local fields.  For the linker hash
281 	table, this is <<_bfd_link_hash_table_init>> in <<linker.c>>.
282 
283 	You will want a lookup routine which calls the lookup routine
284 	of the hash table you are deriving from and casts the result.
285 	The linker hash table uses <<bfd_link_hash_lookup>> in
286 	<<linker.c>> (this actually takes an additional argument which
287 	it uses to decide how to return the looked up value).
288 
289 	You may want a traversal routine.  This should just call the
290 	traversal routine of the hash table you are deriving from with
291 	appropriate casts.  The linker hash table uses
292 	<<bfd_link_hash_traverse>> in <<linker.c>>.
293 
294 	These routines may simply be defined as macros.  For example,
295 	the a.out backend linker hash table, which is derived from the
296 	linker hash table, uses macros for the lookup and traversal
297 	routines.  These are <<aout_link_hash_lookup>> and
298 	<<aout_link_hash_traverse>> in aoutx.h.
299 */
300 
301 /* The default number of entries to use when creating a hash table.  */
302 #define DEFAULT_SIZE 4051
303 
304 /* The following function returns a nearest prime number which is
305    greater than N, and near a power of two.  Copied from libiberty.
306    Returns zero for ridiculously large N to signify an error.  */
307 
308 static unsigned long
309 higher_prime_number (unsigned long n)
310 {
311   /* These are primes that are near, but slightly smaller than, a
312      power of two.  */
313   static const unsigned long primes[] = {
314     (unsigned long) 127,
315     (unsigned long) 2039,
316     (unsigned long) 32749,
317     (unsigned long) 65521,
318     (unsigned long) 131071,
319     (unsigned long) 262139,
320     (unsigned long) 524287,
321     (unsigned long) 1048573,
322     (unsigned long) 2097143,
323     (unsigned long) 4194301,
324     (unsigned long) 8388593,
325     (unsigned long) 16777213,
326     (unsigned long) 33554393,
327     (unsigned long) 67108859,
328     (unsigned long) 134217689,
329     (unsigned long) 268435399,
330     (unsigned long) 536870909,
331     (unsigned long) 1073741789,
332     (unsigned long) 2147483647,
333 					/* 4294967291L */
334     ((unsigned long) 2147483647) + ((unsigned long) 2147483644),
335   };
336 
337   const unsigned long *low = &primes[0];
338   const unsigned long *high = &primes[sizeof (primes) / sizeof (primes[0])];
339 
340   while (low != high)
341     {
342       const unsigned long *mid = low + (high - low) / 2;
343       if (n >= *mid)
344 	low = mid + 1;
345       else
346 	high = mid;
347     }
348 
349   if (n >= *low)
350     return 0;
351 
352   return *low;
353 }
354 
355 static size_t bfd_default_hash_table_size = DEFAULT_SIZE;
356 
357 /* Create a new hash table, given a number of entries.  */
358 
359 bfd_boolean
360 bfd_hash_table_init_n (struct bfd_hash_table *table,
361 		       struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
362 							  struct bfd_hash_table *,
363 							  const char *),
364 		       unsigned int entsize,
365 		       unsigned int size)
366 {
367   unsigned int alloc;
368 
369   alloc = size * sizeof (struct bfd_hash_entry *);
370 
371   table->memory = (void *) objalloc_create ();
372   if (table->memory == NULL)
373     {
374       bfd_set_error (bfd_error_no_memory);
375       return FALSE;
376     }
377   table->table = objalloc_alloc ((struct objalloc *) table->memory, alloc);
378   if (table->table == NULL)
379     {
380       bfd_set_error (bfd_error_no_memory);
381       return FALSE;
382     }
383   memset ((void *) table->table, 0, alloc);
384   table->size = size;
385   table->entsize = entsize;
386   table->count = 0;
387   table->frozen = 0;
388   table->newfunc = newfunc;
389   return TRUE;
390 }
391 
392 /* Create a new hash table with the default number of entries.  */
393 
394 bfd_boolean
395 bfd_hash_table_init (struct bfd_hash_table *table,
396 		     struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
397 							struct bfd_hash_table *,
398 							const char *),
399 		     unsigned int entsize)
400 {
401   return bfd_hash_table_init_n (table, newfunc, entsize,
402 				bfd_default_hash_table_size);
403 }
404 
405 /* Free a hash table.  */
406 
407 void
408 bfd_hash_table_free (struct bfd_hash_table *table)
409 {
410   objalloc_free (table->memory);
411   table->memory = NULL;
412 }
413 
414 /* Look up a string in a hash table.  */
415 
416 struct bfd_hash_entry *
417 bfd_hash_lookup (struct bfd_hash_table *table,
418 		 const char *string,
419 		 bfd_boolean create,
420 		 bfd_boolean copy)
421 {
422   const unsigned char *s;
423   unsigned long hash;
424   unsigned int c;
425   struct bfd_hash_entry *hashp;
426   unsigned int len;
427   unsigned int index;
428 
429   hash = 0;
430   len = 0;
431   s = (const unsigned char *) string;
432   while ((c = *s++) != '\0')
433     {
434       hash += c + (c << 17);
435       hash ^= hash >> 2;
436     }
437   len = (s - (const unsigned char *) string) - 1;
438   hash += len + (len << 17);
439   hash ^= hash >> 2;
440 
441   index = hash % table->size;
442   for (hashp = table->table[index];
443        hashp != NULL;
444        hashp = hashp->next)
445     {
446       if (hashp->hash == hash
447 	  && strcmp (hashp->string, string) == 0)
448 	return hashp;
449     }
450 
451   if (! create)
452     return NULL;
453 
454   if (copy)
455     {
456       char *new;
457 
458       new = objalloc_alloc ((struct objalloc *) table->memory, len + 1);
459       if (!new)
460 	{
461 	  bfd_set_error (bfd_error_no_memory);
462 	  return NULL;
463 	}
464       memcpy (new, string, len + 1);
465       string = new;
466     }
467 
468   return bfd_hash_insert (table, string, hash);
469 }
470 
471 /* Insert an entry in a hash table.  */
472 
473 struct bfd_hash_entry *
474 bfd_hash_insert (struct bfd_hash_table *table,
475 		 const char *string,
476 		 unsigned long hash)
477 {
478   struct bfd_hash_entry *hashp;
479   unsigned int index;
480 
481   hashp = (*table->newfunc) (NULL, table, string);
482   if (hashp == NULL)
483     return NULL;
484   hashp->string = string;
485   hashp->hash = hash;
486   index = hash % table->size;
487   hashp->next = table->table[index];
488   table->table[index] = hashp;
489   table->count++;
490 
491   if (!table->frozen && table->count > table->size * 3 / 4)
492     {
493       unsigned long newsize = higher_prime_number (table->size);
494       struct bfd_hash_entry **newtable;
495       unsigned int hi;
496       unsigned long alloc = newsize * sizeof (struct bfd_hash_entry *);
497 
498       /* If we can't find a higher prime, or we can't possibly alloc
499 	 that much memory, don't try to grow the table.  */
500       if (newsize == 0 || alloc / sizeof (struct bfd_hash_entry *) != newsize)
501 	{
502 	  table->frozen = 1;
503 	  return hashp;
504 	}
505 
506       newtable = ((struct bfd_hash_entry **)
507 		  objalloc_alloc ((struct objalloc *) table->memory, alloc));
508       if (newtable == NULL)
509 	{
510 	  table->frozen = 1;
511 	  return hashp;
512 	}
513       memset ((PTR) newtable, 0, alloc);
514 
515       for (hi = 0; hi < table->size; hi ++)
516 	while (table->table[hi])
517 	  {
518 	    struct bfd_hash_entry *chain = table->table[hi];
519 	    struct bfd_hash_entry *chain_end = chain;
520 
521 	    while (chain_end->next && chain_end->next->hash == chain->hash)
522 	      chain_end = chain_end->next;
523 
524 	    table->table[hi] = chain_end->next;
525 	    index = chain->hash % newsize;
526 	    chain_end->next = newtable[index];
527 	    newtable[index] = chain;
528 	  }
529       table->table = newtable;
530       table->size = newsize;
531     }
532 
533   return hashp;
534 }
535 
536 /* Replace an entry in a hash table.  */
537 
538 void
539 bfd_hash_replace (struct bfd_hash_table *table,
540 		  struct bfd_hash_entry *old,
541 		  struct bfd_hash_entry *nw)
542 {
543   unsigned int index;
544   struct bfd_hash_entry **pph;
545 
546   index = old->hash % table->size;
547   for (pph = &table->table[index];
548        (*pph) != NULL;
549        pph = &(*pph)->next)
550     {
551       if (*pph == old)
552 	{
553 	  *pph = nw;
554 	  return;
555 	}
556     }
557 
558   abort ();
559 }
560 
561 /* Allocate space in a hash table.  */
562 
563 void *
564 bfd_hash_allocate (struct bfd_hash_table *table,
565 		   unsigned int size)
566 {
567   void * ret;
568 
569   ret = objalloc_alloc ((struct objalloc *) table->memory, size);
570   if (ret == NULL && size != 0)
571     bfd_set_error (bfd_error_no_memory);
572   return ret;
573 }
574 
575 /* Base method for creating a new hash table entry.  */
576 
577 struct bfd_hash_entry *
578 bfd_hash_newfunc (struct bfd_hash_entry *entry,
579 		  struct bfd_hash_table *table,
580 		  const char *string ATTRIBUTE_UNUSED)
581 {
582   if (entry == NULL)
583     entry = bfd_hash_allocate (table, sizeof (* entry));
584   return entry;
585 }
586 
587 /* Traverse a hash table.  */
588 
589 void
590 bfd_hash_traverse (struct bfd_hash_table *table,
591 		   bfd_boolean (*func) (struct bfd_hash_entry *, void *),
592 		   void * info)
593 {
594   unsigned int i;
595 
596   table->frozen = 1;
597   for (i = 0; i < table->size; i++)
598     {
599       struct bfd_hash_entry *p;
600 
601       for (p = table->table[i]; p != NULL; p = p->next)
602 	if (! (*func) (p, info))
603 	  goto out;
604     }
605  out:
606   table->frozen = 0;
607 }
608 
609 void
610 bfd_hash_set_default_size (bfd_size_type hash_size)
611 {
612   /* Extend this prime list if you want more granularity of hash table size.  */
613   static const bfd_size_type hash_size_primes[] =
614     {
615       251, 509, 1021, 2039, 4051, 8599, 16699, 32749
616     };
617   size_t index;
618 
619   /* Work out best prime number near the hash_size.  */
620   for (index = 0; index < ARRAY_SIZE (hash_size_primes) - 1; ++index)
621     if (hash_size <= hash_size_primes[index])
622       break;
623 
624   bfd_default_hash_table_size = hash_size_primes[index];
625 }
626 
627 /* A few different object file formats (a.out, COFF, ELF) use a string
628    table.  These functions support adding strings to a string table,
629    returning the byte offset, and writing out the table.
630 
631    Possible improvements:
632    + look for strings matching trailing substrings of other strings
633    + better data structures?  balanced trees?
634    + look at reducing memory use elsewhere -- maybe if we didn't have
635      to construct the entire symbol table at once, we could get by
636      with smaller amounts of VM?  (What effect does that have on the
637      string table reductions?)  */
638 
639 /* An entry in the strtab hash table.  */
640 
641 struct strtab_hash_entry
642 {
643   struct bfd_hash_entry root;
644   /* Index in string table.  */
645   bfd_size_type index;
646   /* Next string in strtab.  */
647   struct strtab_hash_entry *next;
648 };
649 
650 /* The strtab hash table.  */
651 
652 struct bfd_strtab_hash
653 {
654   struct bfd_hash_table table;
655   /* Size of strtab--also next available index.  */
656   bfd_size_type size;
657   /* First string in strtab.  */
658   struct strtab_hash_entry *first;
659   /* Last string in strtab.  */
660   struct strtab_hash_entry *last;
661   /* Whether to precede strings with a two byte length, as in the
662      XCOFF .debug section.  */
663   bfd_boolean xcoff;
664 };
665 
666 /* Routine to create an entry in a strtab.  */
667 
668 static struct bfd_hash_entry *
669 strtab_hash_newfunc (struct bfd_hash_entry *entry,
670 		     struct bfd_hash_table *table,
671 		     const char *string)
672 {
673   struct strtab_hash_entry *ret = (struct strtab_hash_entry *) entry;
674 
675   /* Allocate the structure if it has not already been allocated by a
676      subclass.  */
677   if (ret == NULL)
678     ret = bfd_hash_allocate (table, sizeof (* ret));
679   if (ret == NULL)
680     return NULL;
681 
682   /* Call the allocation method of the superclass.  */
683   ret = (struct strtab_hash_entry *)
684 	 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string);
685 
686   if (ret)
687     {
688       /* Initialize the local fields.  */
689       ret->index = (bfd_size_type) -1;
690       ret->next = NULL;
691     }
692 
693   return (struct bfd_hash_entry *) ret;
694 }
695 
696 /* Look up an entry in an strtab.  */
697 
698 #define strtab_hash_lookup(t, string, create, copy) \
699   ((struct strtab_hash_entry *) \
700    bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
701 
702 /* Create a new strtab.  */
703 
704 struct bfd_strtab_hash *
705 _bfd_stringtab_init (void)
706 {
707   struct bfd_strtab_hash *table;
708   bfd_size_type amt = sizeof (* table);
709 
710   table = bfd_malloc (amt);
711   if (table == NULL)
712     return NULL;
713 
714   if (!bfd_hash_table_init (&table->table, strtab_hash_newfunc,
715 			    sizeof (struct strtab_hash_entry)))
716     {
717       free (table);
718       return NULL;
719     }
720 
721   table->size = 0;
722   table->first = NULL;
723   table->last = NULL;
724   table->xcoff = FALSE;
725 
726   return table;
727 }
728 
729 /* Create a new strtab in which the strings are output in the format
730    used in the XCOFF .debug section: a two byte length precedes each
731    string.  */
732 
733 struct bfd_strtab_hash *
734 _bfd_xcoff_stringtab_init (void)
735 {
736   struct bfd_strtab_hash *ret;
737 
738   ret = _bfd_stringtab_init ();
739   if (ret != NULL)
740     ret->xcoff = TRUE;
741   return ret;
742 }
743 
744 /* Free a strtab.  */
745 
746 void
747 _bfd_stringtab_free (struct bfd_strtab_hash *table)
748 {
749   bfd_hash_table_free (&table->table);
750   free (table);
751 }
752 
753 /* Get the index of a string in a strtab, adding it if it is not
754    already present.  If HASH is FALSE, we don't really use the hash
755    table, and we don't eliminate duplicate strings.  */
756 
757 bfd_size_type
758 _bfd_stringtab_add (struct bfd_strtab_hash *tab,
759 		    const char *str,
760 		    bfd_boolean hash,
761 		    bfd_boolean copy)
762 {
763   struct strtab_hash_entry *entry;
764 
765   if (hash)
766     {
767       entry = strtab_hash_lookup (tab, str, TRUE, copy);
768       if (entry == NULL)
769 	return (bfd_size_type) -1;
770     }
771   else
772     {
773       entry = bfd_hash_allocate (&tab->table, sizeof (* entry));
774       if (entry == NULL)
775 	return (bfd_size_type) -1;
776       if (! copy)
777 	entry->root.string = str;
778       else
779 	{
780 	  char *n;
781 
782 	  n = bfd_hash_allocate (&tab->table, strlen (str) + 1);
783 	  if (n == NULL)
784 	    return (bfd_size_type) -1;
785 	  entry->root.string = n;
786 	}
787       entry->index = (bfd_size_type) -1;
788       entry->next = NULL;
789     }
790 
791   if (entry->index == (bfd_size_type) -1)
792     {
793       entry->index = tab->size;
794       tab->size += strlen (str) + 1;
795       if (tab->xcoff)
796 	{
797 	  entry->index += 2;
798 	  tab->size += 2;
799 	}
800       if (tab->first == NULL)
801 	tab->first = entry;
802       else
803 	tab->last->next = entry;
804       tab->last = entry;
805     }
806 
807   return entry->index;
808 }
809 
810 /* Get the number of bytes in a strtab.  */
811 
812 bfd_size_type
813 _bfd_stringtab_size (struct bfd_strtab_hash *tab)
814 {
815   return tab->size;
816 }
817 
818 /* Write out a strtab.  ABFD must already be at the right location in
819    the file.  */
820 
821 bfd_boolean
822 _bfd_stringtab_emit (bfd *abfd, struct bfd_strtab_hash *tab)
823 {
824   bfd_boolean xcoff;
825   struct strtab_hash_entry *entry;
826 
827   xcoff = tab->xcoff;
828 
829   for (entry = tab->first; entry != NULL; entry = entry->next)
830     {
831       const char *str;
832       size_t len;
833 
834       str = entry->root.string;
835       len = strlen (str) + 1;
836 
837       if (xcoff)
838 	{
839 	  bfd_byte buf[2];
840 
841 	  /* The output length includes the null byte.  */
842 	  bfd_put_16 (abfd, (bfd_vma) len, buf);
843 	  if (bfd_bwrite ((void *) buf, (bfd_size_type) 2, abfd) != 2)
844 	    return FALSE;
845 	}
846 
847       if (bfd_bwrite ((void *) str, (bfd_size_type) len, abfd) != len)
848 	return FALSE;
849     }
850 
851   return TRUE;
852 }
853