1 /* hash.c -- hash table routines for BFD 2 Copyright 1993, 1994, 1995, 1997, 1999, 2001, 2002, 2003, 2004, 2005, 3 2006, 2007 Free Software Foundation, Inc. 4 Written by Steve Chamberlain <sac@cygnus.com> 5 6 This file is part of BFD, the Binary File Descriptor library. 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License as published by 10 the Free Software Foundation; either version 3 of the License, or 11 (at your option) any later version. 12 13 This program is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 GNU General Public License for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with this program; if not, write to the Free Software 20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 21 MA 02110-1301, USA. */ 22 23 #include "sysdep.h" 24 #include "bfd.h" 25 #include "libbfd.h" 26 #include "objalloc.h" 27 #include "libiberty.h" 28 29 /* 30 SECTION 31 Hash Tables 32 33 @cindex Hash tables 34 BFD provides a simple set of hash table functions. Routines 35 are provided to initialize a hash table, to free a hash table, 36 to look up a string in a hash table and optionally create an 37 entry for it, and to traverse a hash table. There is 38 currently no routine to delete an string from a hash table. 39 40 The basic hash table does not permit any data to be stored 41 with a string. However, a hash table is designed to present a 42 base class from which other types of hash tables may be 43 derived. These derived types may store additional information 44 with the string. Hash tables were implemented in this way, 45 rather than simply providing a data pointer in a hash table 46 entry, because they were designed for use by the linker back 47 ends. The linker may create thousands of hash table entries, 48 and the overhead of allocating private data and storing and 49 following pointers becomes noticeable. 50 51 The basic hash table code is in <<hash.c>>. 52 53 @menu 54 @* Creating and Freeing a Hash Table:: 55 @* Looking Up or Entering a String:: 56 @* Traversing a Hash Table:: 57 @* Deriving a New Hash Table Type:: 58 @end menu 59 60 INODE 61 Creating and Freeing a Hash Table, Looking Up or Entering a String, Hash Tables, Hash Tables 62 SUBSECTION 63 Creating and freeing a hash table 64 65 @findex bfd_hash_table_init 66 @findex bfd_hash_table_init_n 67 To create a hash table, create an instance of a <<struct 68 bfd_hash_table>> (defined in <<bfd.h>>) and call 69 <<bfd_hash_table_init>> (if you know approximately how many 70 entries you will need, the function <<bfd_hash_table_init_n>>, 71 which takes a @var{size} argument, may be used). 72 <<bfd_hash_table_init>> returns <<FALSE>> if some sort of 73 error occurs. 74 75 @findex bfd_hash_newfunc 76 The function <<bfd_hash_table_init>> take as an argument a 77 function to use to create new entries. For a basic hash 78 table, use the function <<bfd_hash_newfunc>>. @xref{Deriving 79 a New Hash Table Type}, for why you would want to use a 80 different value for this argument. 81 82 @findex bfd_hash_allocate 83 <<bfd_hash_table_init>> will create an objalloc which will be 84 used to allocate new entries. You may allocate memory on this 85 objalloc using <<bfd_hash_allocate>>. 86 87 @findex bfd_hash_table_free 88 Use <<bfd_hash_table_free>> to free up all the memory that has 89 been allocated for a hash table. This will not free up the 90 <<struct bfd_hash_table>> itself, which you must provide. 91 92 @findex bfd_hash_set_default_size 93 Use <<bfd_hash_set_default_size>> to set the default size of 94 hash table to use. 95 96 INODE 97 Looking Up or Entering a String, Traversing a Hash Table, Creating and Freeing a Hash Table, Hash Tables 98 SUBSECTION 99 Looking up or entering a string 100 101 @findex bfd_hash_lookup 102 The function <<bfd_hash_lookup>> is used both to look up a 103 string in the hash table and to create a new entry. 104 105 If the @var{create} argument is <<FALSE>>, <<bfd_hash_lookup>> 106 will look up a string. If the string is found, it will 107 returns a pointer to a <<struct bfd_hash_entry>>. If the 108 string is not found in the table <<bfd_hash_lookup>> will 109 return <<NULL>>. You should not modify any of the fields in 110 the returns <<struct bfd_hash_entry>>. 111 112 If the @var{create} argument is <<TRUE>>, the string will be 113 entered into the hash table if it is not already there. 114 Either way a pointer to a <<struct bfd_hash_entry>> will be 115 returned, either to the existing structure or to a newly 116 created one. In this case, a <<NULL>> return means that an 117 error occurred. 118 119 If the @var{create} argument is <<TRUE>>, and a new entry is 120 created, the @var{copy} argument is used to decide whether to 121 copy the string onto the hash table objalloc or not. If 122 @var{copy} is passed as <<FALSE>>, you must be careful not to 123 deallocate or modify the string as long as the hash table 124 exists. 125 126 INODE 127 Traversing a Hash Table, Deriving a New Hash Table Type, Looking Up or Entering a String, Hash Tables 128 SUBSECTION 129 Traversing a hash table 130 131 @findex bfd_hash_traverse 132 The function <<bfd_hash_traverse>> may be used to traverse a 133 hash table, calling a function on each element. The traversal 134 is done in a random order. 135 136 <<bfd_hash_traverse>> takes as arguments a function and a 137 generic <<void *>> pointer. The function is called with a 138 hash table entry (a <<struct bfd_hash_entry *>>) and the 139 generic pointer passed to <<bfd_hash_traverse>>. The function 140 must return a <<boolean>> value, which indicates whether to 141 continue traversing the hash table. If the function returns 142 <<FALSE>>, <<bfd_hash_traverse>> will stop the traversal and 143 return immediately. 144 145 INODE 146 Deriving a New Hash Table Type, , Traversing a Hash Table, Hash Tables 147 SUBSECTION 148 Deriving a new hash table type 149 150 Many uses of hash tables want to store additional information 151 which each entry in the hash table. Some also find it 152 convenient to store additional information with the hash table 153 itself. This may be done using a derived hash table. 154 155 Since C is not an object oriented language, creating a derived 156 hash table requires sticking together some boilerplate 157 routines with a few differences specific to the type of hash 158 table you want to create. 159 160 An example of a derived hash table is the linker hash table. 161 The structures for this are defined in <<bfdlink.h>>. The 162 functions are in <<linker.c>>. 163 164 You may also derive a hash table from an already derived hash 165 table. For example, the a.out linker backend code uses a hash 166 table derived from the linker hash table. 167 168 @menu 169 @* Define the Derived Structures:: 170 @* Write the Derived Creation Routine:: 171 @* Write Other Derived Routines:: 172 @end menu 173 174 INODE 175 Define the Derived Structures, Write the Derived Creation Routine, Deriving a New Hash Table Type, Deriving a New Hash Table Type 176 SUBSUBSECTION 177 Define the derived structures 178 179 You must define a structure for an entry in the hash table, 180 and a structure for the hash table itself. 181 182 The first field in the structure for an entry in the hash 183 table must be of the type used for an entry in the hash table 184 you are deriving from. If you are deriving from a basic hash 185 table this is <<struct bfd_hash_entry>>, which is defined in 186 <<bfd.h>>. The first field in the structure for the hash 187 table itself must be of the type of the hash table you are 188 deriving from itself. If you are deriving from a basic hash 189 table, this is <<struct bfd_hash_table>>. 190 191 For example, the linker hash table defines <<struct 192 bfd_link_hash_entry>> (in <<bfdlink.h>>). The first field, 193 <<root>>, is of type <<struct bfd_hash_entry>>. Similarly, 194 the first field in <<struct bfd_link_hash_table>>, <<table>>, 195 is of type <<struct bfd_hash_table>>. 196 197 INODE 198 Write the Derived Creation Routine, Write Other Derived Routines, Define the Derived Structures, Deriving a New Hash Table Type 199 SUBSUBSECTION 200 Write the derived creation routine 201 202 You must write a routine which will create and initialize an 203 entry in the hash table. This routine is passed as the 204 function argument to <<bfd_hash_table_init>>. 205 206 In order to permit other hash tables to be derived from the 207 hash table you are creating, this routine must be written in a 208 standard way. 209 210 The first argument to the creation routine is a pointer to a 211 hash table entry. This may be <<NULL>>, in which case the 212 routine should allocate the right amount of space. Otherwise 213 the space has already been allocated by a hash table type 214 derived from this one. 215 216 After allocating space, the creation routine must call the 217 creation routine of the hash table type it is derived from, 218 passing in a pointer to the space it just allocated. This 219 will initialize any fields used by the base hash table. 220 221 Finally the creation routine must initialize any local fields 222 for the new hash table type. 223 224 Here is a boilerplate example of a creation routine. 225 @var{function_name} is the name of the routine. 226 @var{entry_type} is the type of an entry in the hash table you 227 are creating. @var{base_newfunc} is the name of the creation 228 routine of the hash table type your hash table is derived 229 from. 230 231 EXAMPLE 232 233 .struct bfd_hash_entry * 234 .@var{function_name} (struct bfd_hash_entry *entry, 235 . struct bfd_hash_table *table, 236 . const char *string) 237 .{ 238 . struct @var{entry_type} *ret = (@var{entry_type} *) entry; 239 . 240 . {* Allocate the structure if it has not already been allocated by a 241 . derived class. *} 242 . if (ret == NULL) 243 . { 244 . ret = bfd_hash_allocate (table, sizeof (* ret)); 245 . if (ret == NULL) 246 . return NULL; 247 . } 248 . 249 . {* Call the allocation method of the base class. *} 250 . ret = ((@var{entry_type} *) 251 . @var{base_newfunc} ((struct bfd_hash_entry *) ret, table, string)); 252 . 253 . {* Initialize the local fields here. *} 254 . 255 . return (struct bfd_hash_entry *) ret; 256 .} 257 258 DESCRIPTION 259 The creation routine for the linker hash table, which is in 260 <<linker.c>>, looks just like this example. 261 @var{function_name} is <<_bfd_link_hash_newfunc>>. 262 @var{entry_type} is <<struct bfd_link_hash_entry>>. 263 @var{base_newfunc} is <<bfd_hash_newfunc>>, the creation 264 routine for a basic hash table. 265 266 <<_bfd_link_hash_newfunc>> also initializes the local fields 267 in a linker hash table entry: <<type>>, <<written>> and 268 <<next>>. 269 270 INODE 271 Write Other Derived Routines, , Write the Derived Creation Routine, Deriving a New Hash Table Type 272 SUBSUBSECTION 273 Write other derived routines 274 275 You will want to write other routines for your new hash table, 276 as well. 277 278 You will want an initialization routine which calls the 279 initialization routine of the hash table you are deriving from 280 and initializes any other local fields. For the linker hash 281 table, this is <<_bfd_link_hash_table_init>> in <<linker.c>>. 282 283 You will want a lookup routine which calls the lookup routine 284 of the hash table you are deriving from and casts the result. 285 The linker hash table uses <<bfd_link_hash_lookup>> in 286 <<linker.c>> (this actually takes an additional argument which 287 it uses to decide how to return the looked up value). 288 289 You may want a traversal routine. This should just call the 290 traversal routine of the hash table you are deriving from with 291 appropriate casts. The linker hash table uses 292 <<bfd_link_hash_traverse>> in <<linker.c>>. 293 294 These routines may simply be defined as macros. For example, 295 the a.out backend linker hash table, which is derived from the 296 linker hash table, uses macros for the lookup and traversal 297 routines. These are <<aout_link_hash_lookup>> and 298 <<aout_link_hash_traverse>> in aoutx.h. 299 */ 300 301 /* The default number of entries to use when creating a hash table. */ 302 #define DEFAULT_SIZE 4051 303 304 /* The following function returns a nearest prime number which is 305 greater than N, and near a power of two. Copied from libiberty. 306 Returns zero for ridiculously large N to signify an error. */ 307 308 static unsigned long 309 higher_prime_number (unsigned long n) 310 { 311 /* These are primes that are near, but slightly smaller than, a 312 power of two. */ 313 static const unsigned long primes[] = { 314 (unsigned long) 127, 315 (unsigned long) 2039, 316 (unsigned long) 32749, 317 (unsigned long) 65521, 318 (unsigned long) 131071, 319 (unsigned long) 262139, 320 (unsigned long) 524287, 321 (unsigned long) 1048573, 322 (unsigned long) 2097143, 323 (unsigned long) 4194301, 324 (unsigned long) 8388593, 325 (unsigned long) 16777213, 326 (unsigned long) 33554393, 327 (unsigned long) 67108859, 328 (unsigned long) 134217689, 329 (unsigned long) 268435399, 330 (unsigned long) 536870909, 331 (unsigned long) 1073741789, 332 (unsigned long) 2147483647, 333 /* 4294967291L */ 334 ((unsigned long) 2147483647) + ((unsigned long) 2147483644), 335 }; 336 337 const unsigned long *low = &primes[0]; 338 const unsigned long *high = &primes[sizeof (primes) / sizeof (primes[0])]; 339 340 while (low != high) 341 { 342 const unsigned long *mid = low + (high - low) / 2; 343 if (n >= *mid) 344 low = mid + 1; 345 else 346 high = mid; 347 } 348 349 if (n >= *low) 350 return 0; 351 352 return *low; 353 } 354 355 static size_t bfd_default_hash_table_size = DEFAULT_SIZE; 356 357 /* Create a new hash table, given a number of entries. */ 358 359 bfd_boolean 360 bfd_hash_table_init_n (struct bfd_hash_table *table, 361 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *, 362 struct bfd_hash_table *, 363 const char *), 364 unsigned int entsize, 365 unsigned int size) 366 { 367 unsigned int alloc; 368 369 alloc = size * sizeof (struct bfd_hash_entry *); 370 371 table->memory = (void *) objalloc_create (); 372 if (table->memory == NULL) 373 { 374 bfd_set_error (bfd_error_no_memory); 375 return FALSE; 376 } 377 table->table = objalloc_alloc ((struct objalloc *) table->memory, alloc); 378 if (table->table == NULL) 379 { 380 bfd_set_error (bfd_error_no_memory); 381 return FALSE; 382 } 383 memset ((void *) table->table, 0, alloc); 384 table->size = size; 385 table->entsize = entsize; 386 table->count = 0; 387 table->frozen = 0; 388 table->newfunc = newfunc; 389 return TRUE; 390 } 391 392 /* Create a new hash table with the default number of entries. */ 393 394 bfd_boolean 395 bfd_hash_table_init (struct bfd_hash_table *table, 396 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *, 397 struct bfd_hash_table *, 398 const char *), 399 unsigned int entsize) 400 { 401 return bfd_hash_table_init_n (table, newfunc, entsize, 402 bfd_default_hash_table_size); 403 } 404 405 /* Free a hash table. */ 406 407 void 408 bfd_hash_table_free (struct bfd_hash_table *table) 409 { 410 objalloc_free (table->memory); 411 table->memory = NULL; 412 } 413 414 /* Look up a string in a hash table. */ 415 416 struct bfd_hash_entry * 417 bfd_hash_lookup (struct bfd_hash_table *table, 418 const char *string, 419 bfd_boolean create, 420 bfd_boolean copy) 421 { 422 const unsigned char *s; 423 unsigned long hash; 424 unsigned int c; 425 struct bfd_hash_entry *hashp; 426 unsigned int len; 427 unsigned int index; 428 429 hash = 0; 430 len = 0; 431 s = (const unsigned char *) string; 432 while ((c = *s++) != '\0') 433 { 434 hash += c + (c << 17); 435 hash ^= hash >> 2; 436 } 437 len = (s - (const unsigned char *) string) - 1; 438 hash += len + (len << 17); 439 hash ^= hash >> 2; 440 441 index = hash % table->size; 442 for (hashp = table->table[index]; 443 hashp != NULL; 444 hashp = hashp->next) 445 { 446 if (hashp->hash == hash 447 && strcmp (hashp->string, string) == 0) 448 return hashp; 449 } 450 451 if (! create) 452 return NULL; 453 454 if (copy) 455 { 456 char *new; 457 458 new = objalloc_alloc ((struct objalloc *) table->memory, len + 1); 459 if (!new) 460 { 461 bfd_set_error (bfd_error_no_memory); 462 return NULL; 463 } 464 memcpy (new, string, len + 1); 465 string = new; 466 } 467 468 return bfd_hash_insert (table, string, hash); 469 } 470 471 /* Insert an entry in a hash table. */ 472 473 struct bfd_hash_entry * 474 bfd_hash_insert (struct bfd_hash_table *table, 475 const char *string, 476 unsigned long hash) 477 { 478 struct bfd_hash_entry *hashp; 479 unsigned int index; 480 481 hashp = (*table->newfunc) (NULL, table, string); 482 if (hashp == NULL) 483 return NULL; 484 hashp->string = string; 485 hashp->hash = hash; 486 index = hash % table->size; 487 hashp->next = table->table[index]; 488 table->table[index] = hashp; 489 table->count++; 490 491 if (!table->frozen && table->count > table->size * 3 / 4) 492 { 493 unsigned long newsize = higher_prime_number (table->size); 494 struct bfd_hash_entry **newtable; 495 unsigned int hi; 496 unsigned long alloc = newsize * sizeof (struct bfd_hash_entry *); 497 498 /* If we can't find a higher prime, or we can't possibly alloc 499 that much memory, don't try to grow the table. */ 500 if (newsize == 0 || alloc / sizeof (struct bfd_hash_entry *) != newsize) 501 { 502 table->frozen = 1; 503 return hashp; 504 } 505 506 newtable = ((struct bfd_hash_entry **) 507 objalloc_alloc ((struct objalloc *) table->memory, alloc)); 508 if (newtable == NULL) 509 { 510 table->frozen = 1; 511 return hashp; 512 } 513 memset ((PTR) newtable, 0, alloc); 514 515 for (hi = 0; hi < table->size; hi ++) 516 while (table->table[hi]) 517 { 518 struct bfd_hash_entry *chain = table->table[hi]; 519 struct bfd_hash_entry *chain_end = chain; 520 521 while (chain_end->next && chain_end->next->hash == chain->hash) 522 chain_end = chain_end->next; 523 524 table->table[hi] = chain_end->next; 525 index = chain->hash % newsize; 526 chain_end->next = newtable[index]; 527 newtable[index] = chain; 528 } 529 table->table = newtable; 530 table->size = newsize; 531 } 532 533 return hashp; 534 } 535 536 /* Replace an entry in a hash table. */ 537 538 void 539 bfd_hash_replace (struct bfd_hash_table *table, 540 struct bfd_hash_entry *old, 541 struct bfd_hash_entry *nw) 542 { 543 unsigned int index; 544 struct bfd_hash_entry **pph; 545 546 index = old->hash % table->size; 547 for (pph = &table->table[index]; 548 (*pph) != NULL; 549 pph = &(*pph)->next) 550 { 551 if (*pph == old) 552 { 553 *pph = nw; 554 return; 555 } 556 } 557 558 abort (); 559 } 560 561 /* Allocate space in a hash table. */ 562 563 void * 564 bfd_hash_allocate (struct bfd_hash_table *table, 565 unsigned int size) 566 { 567 void * ret; 568 569 ret = objalloc_alloc ((struct objalloc *) table->memory, size); 570 if (ret == NULL && size != 0) 571 bfd_set_error (bfd_error_no_memory); 572 return ret; 573 } 574 575 /* Base method for creating a new hash table entry. */ 576 577 struct bfd_hash_entry * 578 bfd_hash_newfunc (struct bfd_hash_entry *entry, 579 struct bfd_hash_table *table, 580 const char *string ATTRIBUTE_UNUSED) 581 { 582 if (entry == NULL) 583 entry = bfd_hash_allocate (table, sizeof (* entry)); 584 return entry; 585 } 586 587 /* Traverse a hash table. */ 588 589 void 590 bfd_hash_traverse (struct bfd_hash_table *table, 591 bfd_boolean (*func) (struct bfd_hash_entry *, void *), 592 void * info) 593 { 594 unsigned int i; 595 596 table->frozen = 1; 597 for (i = 0; i < table->size; i++) 598 { 599 struct bfd_hash_entry *p; 600 601 for (p = table->table[i]; p != NULL; p = p->next) 602 if (! (*func) (p, info)) 603 goto out; 604 } 605 out: 606 table->frozen = 0; 607 } 608 609 void 610 bfd_hash_set_default_size (bfd_size_type hash_size) 611 { 612 /* Extend this prime list if you want more granularity of hash table size. */ 613 static const bfd_size_type hash_size_primes[] = 614 { 615 251, 509, 1021, 2039, 4051, 8599, 16699, 32749 616 }; 617 size_t index; 618 619 /* Work out best prime number near the hash_size. */ 620 for (index = 0; index < ARRAY_SIZE (hash_size_primes) - 1; ++index) 621 if (hash_size <= hash_size_primes[index]) 622 break; 623 624 bfd_default_hash_table_size = hash_size_primes[index]; 625 } 626 627 /* A few different object file formats (a.out, COFF, ELF) use a string 628 table. These functions support adding strings to a string table, 629 returning the byte offset, and writing out the table. 630 631 Possible improvements: 632 + look for strings matching trailing substrings of other strings 633 + better data structures? balanced trees? 634 + look at reducing memory use elsewhere -- maybe if we didn't have 635 to construct the entire symbol table at once, we could get by 636 with smaller amounts of VM? (What effect does that have on the 637 string table reductions?) */ 638 639 /* An entry in the strtab hash table. */ 640 641 struct strtab_hash_entry 642 { 643 struct bfd_hash_entry root; 644 /* Index in string table. */ 645 bfd_size_type index; 646 /* Next string in strtab. */ 647 struct strtab_hash_entry *next; 648 }; 649 650 /* The strtab hash table. */ 651 652 struct bfd_strtab_hash 653 { 654 struct bfd_hash_table table; 655 /* Size of strtab--also next available index. */ 656 bfd_size_type size; 657 /* First string in strtab. */ 658 struct strtab_hash_entry *first; 659 /* Last string in strtab. */ 660 struct strtab_hash_entry *last; 661 /* Whether to precede strings with a two byte length, as in the 662 XCOFF .debug section. */ 663 bfd_boolean xcoff; 664 }; 665 666 /* Routine to create an entry in a strtab. */ 667 668 static struct bfd_hash_entry * 669 strtab_hash_newfunc (struct bfd_hash_entry *entry, 670 struct bfd_hash_table *table, 671 const char *string) 672 { 673 struct strtab_hash_entry *ret = (struct strtab_hash_entry *) entry; 674 675 /* Allocate the structure if it has not already been allocated by a 676 subclass. */ 677 if (ret == NULL) 678 ret = bfd_hash_allocate (table, sizeof (* ret)); 679 if (ret == NULL) 680 return NULL; 681 682 /* Call the allocation method of the superclass. */ 683 ret = (struct strtab_hash_entry *) 684 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string); 685 686 if (ret) 687 { 688 /* Initialize the local fields. */ 689 ret->index = (bfd_size_type) -1; 690 ret->next = NULL; 691 } 692 693 return (struct bfd_hash_entry *) ret; 694 } 695 696 /* Look up an entry in an strtab. */ 697 698 #define strtab_hash_lookup(t, string, create, copy) \ 699 ((struct strtab_hash_entry *) \ 700 bfd_hash_lookup (&(t)->table, (string), (create), (copy))) 701 702 /* Create a new strtab. */ 703 704 struct bfd_strtab_hash * 705 _bfd_stringtab_init (void) 706 { 707 struct bfd_strtab_hash *table; 708 bfd_size_type amt = sizeof (* table); 709 710 table = bfd_malloc (amt); 711 if (table == NULL) 712 return NULL; 713 714 if (!bfd_hash_table_init (&table->table, strtab_hash_newfunc, 715 sizeof (struct strtab_hash_entry))) 716 { 717 free (table); 718 return NULL; 719 } 720 721 table->size = 0; 722 table->first = NULL; 723 table->last = NULL; 724 table->xcoff = FALSE; 725 726 return table; 727 } 728 729 /* Create a new strtab in which the strings are output in the format 730 used in the XCOFF .debug section: a two byte length precedes each 731 string. */ 732 733 struct bfd_strtab_hash * 734 _bfd_xcoff_stringtab_init (void) 735 { 736 struct bfd_strtab_hash *ret; 737 738 ret = _bfd_stringtab_init (); 739 if (ret != NULL) 740 ret->xcoff = TRUE; 741 return ret; 742 } 743 744 /* Free a strtab. */ 745 746 void 747 _bfd_stringtab_free (struct bfd_strtab_hash *table) 748 { 749 bfd_hash_table_free (&table->table); 750 free (table); 751 } 752 753 /* Get the index of a string in a strtab, adding it if it is not 754 already present. If HASH is FALSE, we don't really use the hash 755 table, and we don't eliminate duplicate strings. */ 756 757 bfd_size_type 758 _bfd_stringtab_add (struct bfd_strtab_hash *tab, 759 const char *str, 760 bfd_boolean hash, 761 bfd_boolean copy) 762 { 763 struct strtab_hash_entry *entry; 764 765 if (hash) 766 { 767 entry = strtab_hash_lookup (tab, str, TRUE, copy); 768 if (entry == NULL) 769 return (bfd_size_type) -1; 770 } 771 else 772 { 773 entry = bfd_hash_allocate (&tab->table, sizeof (* entry)); 774 if (entry == NULL) 775 return (bfd_size_type) -1; 776 if (! copy) 777 entry->root.string = str; 778 else 779 { 780 char *n; 781 782 n = bfd_hash_allocate (&tab->table, strlen (str) + 1); 783 if (n == NULL) 784 return (bfd_size_type) -1; 785 entry->root.string = n; 786 } 787 entry->index = (bfd_size_type) -1; 788 entry->next = NULL; 789 } 790 791 if (entry->index == (bfd_size_type) -1) 792 { 793 entry->index = tab->size; 794 tab->size += strlen (str) + 1; 795 if (tab->xcoff) 796 { 797 entry->index += 2; 798 tab->size += 2; 799 } 800 if (tab->first == NULL) 801 tab->first = entry; 802 else 803 tab->last->next = entry; 804 tab->last = entry; 805 } 806 807 return entry->index; 808 } 809 810 /* Get the number of bytes in a strtab. */ 811 812 bfd_size_type 813 _bfd_stringtab_size (struct bfd_strtab_hash *tab) 814 { 815 return tab->size; 816 } 817 818 /* Write out a strtab. ABFD must already be at the right location in 819 the file. */ 820 821 bfd_boolean 822 _bfd_stringtab_emit (bfd *abfd, struct bfd_strtab_hash *tab) 823 { 824 bfd_boolean xcoff; 825 struct strtab_hash_entry *entry; 826 827 xcoff = tab->xcoff; 828 829 for (entry = tab->first; entry != NULL; entry = entry->next) 830 { 831 const char *str; 832 size_t len; 833 834 str = entry->root.string; 835 len = strlen (str) + 1; 836 837 if (xcoff) 838 { 839 bfd_byte buf[2]; 840 841 /* The output length includes the null byte. */ 842 bfd_put_16 (abfd, (bfd_vma) len, buf); 843 if (bfd_bwrite ((void *) buf, (bfd_size_type) 2, abfd) != 2) 844 return FALSE; 845 } 846 847 if (bfd_bwrite ((void *) str, (bfd_size_type) len, abfd) != len) 848 return FALSE; 849 } 850 851 return TRUE; 852 } 853