1 /* MIPS-specific support for ELF 2 Copyright (C) 1993-2016 Free Software Foundation, Inc. 3 4 Most of the information added by Ian Lance Taylor, Cygnus Support, 5 <ian@cygnus.com>. 6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC. 7 <mark@codesourcery.com> 8 Traditional MIPS targets support added by Koundinya.K, Dansk Data 9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net> 10 11 This file is part of BFD, the Binary File Descriptor library. 12 13 This program is free software; you can redistribute it and/or modify 14 it under the terms of the GNU General Public License as published by 15 the Free Software Foundation; either version 3 of the License, or 16 (at your option) any later version. 17 18 This program is distributed in the hope that it will be useful, 19 but WITHOUT ANY WARRANTY; without even the implied warranty of 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 GNU General Public License for more details. 22 23 You should have received a copy of the GNU General Public License 24 along with this program; if not, write to the Free Software 25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 26 MA 02110-1301, USA. */ 27 28 29 /* This file handles functionality common to the different MIPS ABI's. */ 30 31 #include "sysdep.h" 32 #include "bfd.h" 33 #include "libbfd.h" 34 #include "libiberty.h" 35 #include "elf-bfd.h" 36 #include "elfxx-mips.h" 37 #include "elf/mips.h" 38 #include "elf-vxworks.h" 39 #include "dwarf2.h" 40 41 /* Get the ECOFF swapping routines. */ 42 #include "coff/sym.h" 43 #include "coff/symconst.h" 44 #include "coff/ecoff.h" 45 #include "coff/mips.h" 46 47 #include "hashtab.h" 48 49 /* Types of TLS GOT entry. */ 50 enum mips_got_tls_type { 51 GOT_TLS_NONE, 52 GOT_TLS_GD, 53 GOT_TLS_LDM, 54 GOT_TLS_IE 55 }; 56 57 /* This structure is used to hold information about one GOT entry. 58 There are four types of entry: 59 60 (1) an absolute address 61 requires: abfd == NULL 62 fields: d.address 63 64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd 65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM 66 fields: abfd, symndx, d.addend, tls_type 67 68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd 69 requires: abfd != NULL, symndx == -1 70 fields: d.h, tls_type 71 72 (4) a TLS LDM slot 73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM 74 fields: none; there's only one of these per GOT. */ 75 struct mips_got_entry 76 { 77 /* One input bfd that needs the GOT entry. */ 78 bfd *abfd; 79 /* The index of the symbol, as stored in the relocation r_info, if 80 we have a local symbol; -1 otherwise. */ 81 long symndx; 82 union 83 { 84 /* If abfd == NULL, an address that must be stored in the got. */ 85 bfd_vma address; 86 /* If abfd != NULL && symndx != -1, the addend of the relocation 87 that should be added to the symbol value. */ 88 bfd_vma addend; 89 /* If abfd != NULL && symndx == -1, the hash table entry 90 corresponding to a symbol in the GOT. The symbol's entry 91 is in the local area if h->global_got_area is GGA_NONE, 92 otherwise it is in the global area. */ 93 struct mips_elf_link_hash_entry *h; 94 } d; 95 96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local 97 symbol entry with r_symndx == 0. */ 98 unsigned char tls_type; 99 100 /* True if we have filled in the GOT contents for a TLS entry, 101 and created the associated relocations. */ 102 unsigned char tls_initialized; 103 104 /* The offset from the beginning of the .got section to the entry 105 corresponding to this symbol+addend. If it's a global symbol 106 whose offset is yet to be decided, it's going to be -1. */ 107 long gotidx; 108 }; 109 110 /* This structure represents a GOT page reference from an input bfd. 111 Each instance represents a symbol + ADDEND, where the representation 112 of the symbol depends on whether it is local to the input bfd. 113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD. 114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry. 115 116 Page references with SYMNDX >= 0 always become page references 117 in the output. Page references with SYMNDX < 0 only become page 118 references if the symbol binds locally; in other cases, the page 119 reference decays to a global GOT reference. */ 120 struct mips_got_page_ref 121 { 122 long symndx; 123 union 124 { 125 struct mips_elf_link_hash_entry *h; 126 bfd *abfd; 127 } u; 128 bfd_vma addend; 129 }; 130 131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND]. 132 The structures form a non-overlapping list that is sorted by increasing 133 MIN_ADDEND. */ 134 struct mips_got_page_range 135 { 136 struct mips_got_page_range *next; 137 bfd_signed_vma min_addend; 138 bfd_signed_vma max_addend; 139 }; 140 141 /* This structure describes the range of addends that are applied to page 142 relocations against a given section. */ 143 struct mips_got_page_entry 144 { 145 /* The section that these entries are based on. */ 146 asection *sec; 147 /* The ranges for this page entry. */ 148 struct mips_got_page_range *ranges; 149 /* The maximum number of page entries needed for RANGES. */ 150 bfd_vma num_pages; 151 }; 152 153 /* This structure is used to hold .got information when linking. */ 154 155 struct mips_got_info 156 { 157 /* The number of global .got entries. */ 158 unsigned int global_gotno; 159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */ 160 unsigned int reloc_only_gotno; 161 /* The number of .got slots used for TLS. */ 162 unsigned int tls_gotno; 163 /* The first unused TLS .got entry. Used only during 164 mips_elf_initialize_tls_index. */ 165 unsigned int tls_assigned_gotno; 166 /* The number of local .got entries, eventually including page entries. */ 167 unsigned int local_gotno; 168 /* The maximum number of page entries needed. */ 169 unsigned int page_gotno; 170 /* The number of relocations needed for the GOT entries. */ 171 unsigned int relocs; 172 /* The first unused local .got entry. */ 173 unsigned int assigned_low_gotno; 174 /* The last unused local .got entry. */ 175 unsigned int assigned_high_gotno; 176 /* A hash table holding members of the got. */ 177 struct htab *got_entries; 178 /* A hash table holding mips_got_page_ref structures. */ 179 struct htab *got_page_refs; 180 /* A hash table of mips_got_page_entry structures. */ 181 struct htab *got_page_entries; 182 /* In multi-got links, a pointer to the next got (err, rather, most 183 of the time, it points to the previous got). */ 184 struct mips_got_info *next; 185 }; 186 187 /* Structure passed when merging bfds' gots. */ 188 189 struct mips_elf_got_per_bfd_arg 190 { 191 /* The output bfd. */ 192 bfd *obfd; 193 /* The link information. */ 194 struct bfd_link_info *info; 195 /* A pointer to the primary got, i.e., the one that's going to get 196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and 197 DT_MIPS_GOTSYM. */ 198 struct mips_got_info *primary; 199 /* A non-primary got we're trying to merge with other input bfd's 200 gots. */ 201 struct mips_got_info *current; 202 /* The maximum number of got entries that can be addressed with a 203 16-bit offset. */ 204 unsigned int max_count; 205 /* The maximum number of page entries needed by each got. */ 206 unsigned int max_pages; 207 /* The total number of global entries which will live in the 208 primary got and be automatically relocated. This includes 209 those not referenced by the primary GOT but included in 210 the "master" GOT. */ 211 unsigned int global_count; 212 }; 213 214 /* A structure used to pass information to htab_traverse callbacks 215 when laying out the GOT. */ 216 217 struct mips_elf_traverse_got_arg 218 { 219 struct bfd_link_info *info; 220 struct mips_got_info *g; 221 int value; 222 }; 223 224 struct _mips_elf_section_data 225 { 226 struct bfd_elf_section_data elf; 227 union 228 { 229 bfd_byte *tdata; 230 } u; 231 }; 232 233 #define mips_elf_section_data(sec) \ 234 ((struct _mips_elf_section_data *) elf_section_data (sec)) 235 236 #define is_mips_elf(bfd) \ 237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ 238 && elf_tdata (bfd) != NULL \ 239 && elf_object_id (bfd) == MIPS_ELF_DATA) 240 241 /* The ABI says that every symbol used by dynamic relocations must have 242 a global GOT entry. Among other things, this provides the dynamic 243 linker with a free, directly-indexed cache. The GOT can therefore 244 contain symbols that are not referenced by GOT relocations themselves 245 (in other words, it may have symbols that are not referenced by things 246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE). 247 248 GOT relocations are less likely to overflow if we put the associated 249 GOT entries towards the beginning. We therefore divide the global 250 GOT entries into two areas: "normal" and "reloc-only". Entries in 251 the first area can be used for both dynamic relocations and GP-relative 252 accesses, while those in the "reloc-only" area are for dynamic 253 relocations only. 254 255 These GGA_* ("Global GOT Area") values are organised so that lower 256 values are more general than higher values. Also, non-GGA_NONE 257 values are ordered by the position of the area in the GOT. */ 258 #define GGA_NORMAL 0 259 #define GGA_RELOC_ONLY 1 260 #define GGA_NONE 2 261 262 /* Information about a non-PIC interface to a PIC function. There are 263 two ways of creating these interfaces. The first is to add: 264 265 lui $25,%hi(func) 266 addiu $25,$25,%lo(func) 267 268 immediately before a PIC function "func". The second is to add: 269 270 lui $25,%hi(func) 271 j func 272 addiu $25,$25,%lo(func) 273 274 to a separate trampoline section. 275 276 Stubs of the first kind go in a new section immediately before the 277 target function. Stubs of the second kind go in a single section 278 pointed to by the hash table's "strampoline" field. */ 279 struct mips_elf_la25_stub { 280 /* The generated section that contains this stub. */ 281 asection *stub_section; 282 283 /* The offset of the stub from the start of STUB_SECTION. */ 284 bfd_vma offset; 285 286 /* One symbol for the original function. Its location is available 287 in H->root.root.u.def. */ 288 struct mips_elf_link_hash_entry *h; 289 }; 290 291 /* Macros for populating a mips_elf_la25_stub. */ 292 293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */ 294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */ 295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */ 296 #define LA25_LUI_MICROMIPS(VAL) \ 297 (0x41b90000 | (VAL)) /* lui t9,VAL */ 298 #define LA25_J_MICROMIPS(VAL) \ 299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */ 300 #define LA25_ADDIU_MICROMIPS(VAL) \ 301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */ 302 303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting 304 the dynamic symbols. */ 305 306 struct mips_elf_hash_sort_data 307 { 308 /* The symbol in the global GOT with the lowest dynamic symbol table 309 index. */ 310 struct elf_link_hash_entry *low; 311 /* The least dynamic symbol table index corresponding to a non-TLS 312 symbol with a GOT entry. */ 313 long min_got_dynindx; 314 /* The greatest dynamic symbol table index corresponding to a symbol 315 with a GOT entry that is not referenced (e.g., a dynamic symbol 316 with dynamic relocations pointing to it from non-primary GOTs). */ 317 long max_unref_got_dynindx; 318 /* The greatest dynamic symbol table index not corresponding to a 319 symbol without a GOT entry. */ 320 long max_non_got_dynindx; 321 }; 322 323 /* We make up to two PLT entries if needed, one for standard MIPS code 324 and one for compressed code, either a MIPS16 or microMIPS one. We 325 keep a separate record of traditional lazy-binding stubs, for easier 326 processing. */ 327 328 struct plt_entry 329 { 330 /* Traditional SVR4 stub offset, or -1 if none. */ 331 bfd_vma stub_offset; 332 333 /* Standard PLT entry offset, or -1 if none. */ 334 bfd_vma mips_offset; 335 336 /* Compressed PLT entry offset, or -1 if none. */ 337 bfd_vma comp_offset; 338 339 /* The corresponding .got.plt index, or -1 if none. */ 340 bfd_vma gotplt_index; 341 342 /* Whether we need a standard PLT entry. */ 343 unsigned int need_mips : 1; 344 345 /* Whether we need a compressed PLT entry. */ 346 unsigned int need_comp : 1; 347 }; 348 349 /* The MIPS ELF linker needs additional information for each symbol in 350 the global hash table. */ 351 352 struct mips_elf_link_hash_entry 353 { 354 struct elf_link_hash_entry root; 355 356 /* External symbol information. */ 357 EXTR esym; 358 359 /* The la25 stub we have created for ths symbol, if any. */ 360 struct mips_elf_la25_stub *la25_stub; 361 362 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against 363 this symbol. */ 364 unsigned int possibly_dynamic_relocs; 365 366 /* If there is a stub that 32 bit functions should use to call this 367 16 bit function, this points to the section containing the stub. */ 368 asection *fn_stub; 369 370 /* If there is a stub that 16 bit functions should use to call this 371 32 bit function, this points to the section containing the stub. */ 372 asection *call_stub; 373 374 /* This is like the call_stub field, but it is used if the function 375 being called returns a floating point value. */ 376 asection *call_fp_stub; 377 378 /* The highest GGA_* value that satisfies all references to this symbol. */ 379 unsigned int global_got_area : 2; 380 381 /* True if all GOT relocations against this symbol are for calls. This is 382 a looser condition than no_fn_stub below, because there may be other 383 non-call non-GOT relocations against the symbol. */ 384 unsigned int got_only_for_calls : 1; 385 386 /* True if one of the relocations described by possibly_dynamic_relocs 387 is against a readonly section. */ 388 unsigned int readonly_reloc : 1; 389 390 /* True if there is a relocation against this symbol that must be 391 resolved by the static linker (in other words, if the relocation 392 cannot possibly be made dynamic). */ 393 unsigned int has_static_relocs : 1; 394 395 /* True if we must not create a .MIPS.stubs entry for this symbol. 396 This is set, for example, if there are relocations related to 397 taking the function's address, i.e. any but R_MIPS_CALL*16 ones. 398 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */ 399 unsigned int no_fn_stub : 1; 400 401 /* Whether we need the fn_stub; this is true if this symbol appears 402 in any relocs other than a 16 bit call. */ 403 unsigned int need_fn_stub : 1; 404 405 /* True if this symbol is referenced by branch relocations from 406 any non-PIC input file. This is used to determine whether an 407 la25 stub is required. */ 408 unsigned int has_nonpic_branches : 1; 409 410 /* Does this symbol need a traditional MIPS lazy-binding stub 411 (as opposed to a PLT entry)? */ 412 unsigned int needs_lazy_stub : 1; 413 414 /* Does this symbol resolve to a PLT entry? */ 415 unsigned int use_plt_entry : 1; 416 }; 417 418 /* MIPS ELF linker hash table. */ 419 420 struct mips_elf_link_hash_table 421 { 422 struct elf_link_hash_table root; 423 424 /* The number of .rtproc entries. */ 425 bfd_size_type procedure_count; 426 427 /* The size of the .compact_rel section (if SGI_COMPAT). */ 428 bfd_size_type compact_rel_size; 429 430 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry 431 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */ 432 bfd_boolean use_rld_obj_head; 433 434 /* The __rld_map or __rld_obj_head symbol. */ 435 struct elf_link_hash_entry *rld_symbol; 436 437 /* This is set if we see any mips16 stub sections. */ 438 bfd_boolean mips16_stubs_seen; 439 440 /* True if we can generate copy relocs and PLTs. */ 441 bfd_boolean use_plts_and_copy_relocs; 442 443 /* True if we can only use 32-bit microMIPS instructions. */ 444 bfd_boolean insn32; 445 446 /* True if we're generating code for VxWorks. */ 447 bfd_boolean is_vxworks; 448 449 /* True if we already reported the small-data section overflow. */ 450 bfd_boolean small_data_overflow_reported; 451 452 /* Shortcuts to some dynamic sections, or NULL if they are not 453 being used. */ 454 asection *srelbss; 455 asection *sdynbss; 456 asection *srelplt; 457 asection *srelplt2; 458 asection *sgotplt; 459 asection *splt; 460 asection *sstubs; 461 asection *sgot; 462 463 /* The master GOT information. */ 464 struct mips_got_info *got_info; 465 466 /* The global symbol in the GOT with the lowest index in the dynamic 467 symbol table. */ 468 struct elf_link_hash_entry *global_gotsym; 469 470 /* The size of the PLT header in bytes. */ 471 bfd_vma plt_header_size; 472 473 /* The size of a standard PLT entry in bytes. */ 474 bfd_vma plt_mips_entry_size; 475 476 /* The size of a compressed PLT entry in bytes. */ 477 bfd_vma plt_comp_entry_size; 478 479 /* The offset of the next standard PLT entry to create. */ 480 bfd_vma plt_mips_offset; 481 482 /* The offset of the next compressed PLT entry to create. */ 483 bfd_vma plt_comp_offset; 484 485 /* The index of the next .got.plt entry to create. */ 486 bfd_vma plt_got_index; 487 488 /* The number of functions that need a lazy-binding stub. */ 489 bfd_vma lazy_stub_count; 490 491 /* The size of a function stub entry in bytes. */ 492 bfd_vma function_stub_size; 493 494 /* The number of reserved entries at the beginning of the GOT. */ 495 unsigned int reserved_gotno; 496 497 /* The section used for mips_elf_la25_stub trampolines. 498 See the comment above that structure for details. */ 499 asection *strampoline; 500 501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset) 502 pairs. */ 503 htab_t la25_stubs; 504 505 /* A function FN (NAME, IS, OS) that creates a new input section 506 called NAME and links it to output section OS. If IS is nonnull, 507 the new section should go immediately before it, otherwise it 508 should go at the (current) beginning of OS. 509 510 The function returns the new section on success, otherwise it 511 returns null. */ 512 asection *(*add_stub_section) (const char *, asection *, asection *); 513 514 /* Small local sym cache. */ 515 struct sym_cache sym_cache; 516 517 /* Is the PLT header compressed? */ 518 unsigned int plt_header_is_comp : 1; 519 }; 520 521 /* Get the MIPS ELF linker hash table from a link_info structure. */ 522 523 #define mips_elf_hash_table(p) \ 524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \ 525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL) 526 527 /* A structure used to communicate with htab_traverse callbacks. */ 528 struct mips_htab_traverse_info 529 { 530 /* The usual link-wide information. */ 531 struct bfd_link_info *info; 532 bfd *output_bfd; 533 534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */ 535 bfd_boolean error; 536 }; 537 538 /* MIPS ELF private object data. */ 539 540 struct mips_elf_obj_tdata 541 { 542 /* Generic ELF private object data. */ 543 struct elf_obj_tdata root; 544 545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */ 546 bfd *abi_fp_bfd; 547 548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */ 549 bfd *abi_msa_bfd; 550 551 /* The abiflags for this object. */ 552 Elf_Internal_ABIFlags_v0 abiflags; 553 bfd_boolean abiflags_valid; 554 555 /* The GOT requirements of input bfds. */ 556 struct mips_got_info *got; 557 558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be 559 included directly in this one, but there's no point to wasting 560 the memory just for the infrequently called find_nearest_line. */ 561 struct mips_elf_find_line *find_line_info; 562 563 /* An array of stub sections indexed by symbol number. */ 564 asection **local_stubs; 565 asection **local_call_stubs; 566 567 /* The Irix 5 support uses two virtual sections, which represent 568 text/data symbols defined in dynamic objects. */ 569 asymbol *elf_data_symbol; 570 asymbol *elf_text_symbol; 571 asection *elf_data_section; 572 asection *elf_text_section; 573 }; 574 575 /* Get MIPS ELF private object data from BFD's tdata. */ 576 577 #define mips_elf_tdata(bfd) \ 578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any) 579 580 #define TLS_RELOC_P(r_type) \ 581 (r_type == R_MIPS_TLS_DTPMOD32 \ 582 || r_type == R_MIPS_TLS_DTPMOD64 \ 583 || r_type == R_MIPS_TLS_DTPREL32 \ 584 || r_type == R_MIPS_TLS_DTPREL64 \ 585 || r_type == R_MIPS_TLS_GD \ 586 || r_type == R_MIPS_TLS_LDM \ 587 || r_type == R_MIPS_TLS_DTPREL_HI16 \ 588 || r_type == R_MIPS_TLS_DTPREL_LO16 \ 589 || r_type == R_MIPS_TLS_GOTTPREL \ 590 || r_type == R_MIPS_TLS_TPREL32 \ 591 || r_type == R_MIPS_TLS_TPREL64 \ 592 || r_type == R_MIPS_TLS_TPREL_HI16 \ 593 || r_type == R_MIPS_TLS_TPREL_LO16 \ 594 || r_type == R_MIPS16_TLS_GD \ 595 || r_type == R_MIPS16_TLS_LDM \ 596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \ 597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \ 598 || r_type == R_MIPS16_TLS_GOTTPREL \ 599 || r_type == R_MIPS16_TLS_TPREL_HI16 \ 600 || r_type == R_MIPS16_TLS_TPREL_LO16 \ 601 || r_type == R_MICROMIPS_TLS_GD \ 602 || r_type == R_MICROMIPS_TLS_LDM \ 603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \ 604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \ 605 || r_type == R_MICROMIPS_TLS_GOTTPREL \ 606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \ 607 || r_type == R_MICROMIPS_TLS_TPREL_LO16) 608 609 /* Structure used to pass information to mips_elf_output_extsym. */ 610 611 struct extsym_info 612 { 613 bfd *abfd; 614 struct bfd_link_info *info; 615 struct ecoff_debug_info *debug; 616 const struct ecoff_debug_swap *swap; 617 bfd_boolean failed; 618 }; 619 620 /* The names of the runtime procedure table symbols used on IRIX5. */ 621 622 static const char * const mips_elf_dynsym_rtproc_names[] = 623 { 624 "_procedure_table", 625 "_procedure_string_table", 626 "_procedure_table_size", 627 NULL 628 }; 629 630 /* These structures are used to generate the .compact_rel section on 631 IRIX5. */ 632 633 typedef struct 634 { 635 unsigned long id1; /* Always one? */ 636 unsigned long num; /* Number of compact relocation entries. */ 637 unsigned long id2; /* Always two? */ 638 unsigned long offset; /* The file offset of the first relocation. */ 639 unsigned long reserved0; /* Zero? */ 640 unsigned long reserved1; /* Zero? */ 641 } Elf32_compact_rel; 642 643 typedef struct 644 { 645 bfd_byte id1[4]; 646 bfd_byte num[4]; 647 bfd_byte id2[4]; 648 bfd_byte offset[4]; 649 bfd_byte reserved0[4]; 650 bfd_byte reserved1[4]; 651 } Elf32_External_compact_rel; 652 653 typedef struct 654 { 655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */ 656 unsigned int rtype : 4; /* Relocation types. See below. */ 657 unsigned int dist2to : 8; 658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ 659 unsigned long konst; /* KONST field. See below. */ 660 unsigned long vaddr; /* VADDR to be relocated. */ 661 } Elf32_crinfo; 662 663 typedef struct 664 { 665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */ 666 unsigned int rtype : 4; /* Relocation types. See below. */ 667 unsigned int dist2to : 8; 668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ 669 unsigned long konst; /* KONST field. See below. */ 670 } Elf32_crinfo2; 671 672 typedef struct 673 { 674 bfd_byte info[4]; 675 bfd_byte konst[4]; 676 bfd_byte vaddr[4]; 677 } Elf32_External_crinfo; 678 679 typedef struct 680 { 681 bfd_byte info[4]; 682 bfd_byte konst[4]; 683 } Elf32_External_crinfo2; 684 685 /* These are the constants used to swap the bitfields in a crinfo. */ 686 687 #define CRINFO_CTYPE (0x1) 688 #define CRINFO_CTYPE_SH (31) 689 #define CRINFO_RTYPE (0xf) 690 #define CRINFO_RTYPE_SH (27) 691 #define CRINFO_DIST2TO (0xff) 692 #define CRINFO_DIST2TO_SH (19) 693 #define CRINFO_RELVADDR (0x7ffff) 694 #define CRINFO_RELVADDR_SH (0) 695 696 /* A compact relocation info has long (3 words) or short (2 words) 697 formats. A short format doesn't have VADDR field and relvaddr 698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */ 699 #define CRF_MIPS_LONG 1 700 #define CRF_MIPS_SHORT 0 701 702 /* There are 4 types of compact relocation at least. The value KONST 703 has different meaning for each type: 704 705 (type) (konst) 706 CT_MIPS_REL32 Address in data 707 CT_MIPS_WORD Address in word (XXX) 708 CT_MIPS_GPHI_LO GP - vaddr 709 CT_MIPS_JMPAD Address to jump 710 */ 711 712 #define CRT_MIPS_REL32 0xa 713 #define CRT_MIPS_WORD 0xb 714 #define CRT_MIPS_GPHI_LO 0xc 715 #define CRT_MIPS_JMPAD 0xd 716 717 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format)) 718 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type)) 719 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v)) 720 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2) 721 722 /* The structure of the runtime procedure descriptor created by the 723 loader for use by the static exception system. */ 724 725 typedef struct runtime_pdr { 726 bfd_vma adr; /* Memory address of start of procedure. */ 727 long regmask; /* Save register mask. */ 728 long regoffset; /* Save register offset. */ 729 long fregmask; /* Save floating point register mask. */ 730 long fregoffset; /* Save floating point register offset. */ 731 long frameoffset; /* Frame size. */ 732 short framereg; /* Frame pointer register. */ 733 short pcreg; /* Offset or reg of return pc. */ 734 long irpss; /* Index into the runtime string table. */ 735 long reserved; 736 struct exception_info *exception_info;/* Pointer to exception array. */ 737 } RPDR, *pRPDR; 738 #define cbRPDR sizeof (RPDR) 739 #define rpdNil ((pRPDR) 0) 740 741 static struct mips_got_entry *mips_elf_create_local_got_entry 742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long, 743 struct mips_elf_link_hash_entry *, int); 744 static bfd_boolean mips_elf_sort_hash_table_f 745 (struct mips_elf_link_hash_entry *, void *); 746 static bfd_vma mips_elf_high 747 (bfd_vma); 748 static bfd_boolean mips_elf_create_dynamic_relocation 749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *, 750 struct mips_elf_link_hash_entry *, asection *, bfd_vma, 751 bfd_vma *, asection *); 752 static bfd_vma mips_elf_adjust_gp 753 (bfd *, struct mips_got_info *, bfd *); 754 755 /* This will be used when we sort the dynamic relocation records. */ 756 static bfd *reldyn_sorting_bfd; 757 758 /* True if ABFD is for CPUs with load interlocking that include 759 non-MIPS1 CPUs and R3900. */ 760 #define LOAD_INTERLOCKS_P(abfd) \ 761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \ 762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900)) 763 764 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL. 765 This should be safe for all architectures. We enable this predicate 766 for RM9000 for now. */ 767 #define JAL_TO_BAL_P(abfd) \ 768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000) 769 770 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL. 771 This should be safe for all architectures. We enable this predicate for 772 all CPUs. */ 773 #define JALR_TO_BAL_P(abfd) 1 774 775 /* True if ABFD is for CPUs that are faster if JR is converted to B. 776 This should be safe for all architectures. We enable this predicate for 777 all CPUs. */ 778 #define JR_TO_B_P(abfd) 1 779 780 /* True if ABFD is a PIC object. */ 781 #define PIC_OBJECT_P(abfd) \ 782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0) 783 784 /* Nonzero if ABFD is using the O32 ABI. */ 785 #define ABI_O32_P(abfd) \ 786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32) 787 788 /* Nonzero if ABFD is using the N32 ABI. */ 789 #define ABI_N32_P(abfd) \ 790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0) 791 792 /* Nonzero if ABFD is using the N64 ABI. */ 793 #define ABI_64_P(abfd) \ 794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64) 795 796 /* Nonzero if ABFD is using NewABI conventions. */ 797 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd)) 798 799 /* Nonzero if ABFD has microMIPS code. */ 800 #define MICROMIPS_P(abfd) \ 801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0) 802 803 /* Nonzero if ABFD is MIPS R6. */ 804 #define MIPSR6_P(abfd) \ 805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \ 806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6) 807 808 /* The IRIX compatibility level we are striving for. */ 809 #define IRIX_COMPAT(abfd) \ 810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd)) 811 812 /* Whether we are trying to be compatible with IRIX at all. */ 813 #define SGI_COMPAT(abfd) \ 814 (IRIX_COMPAT (abfd) != ict_none) 815 816 /* The name of the options section. */ 817 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \ 818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options") 819 820 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section. 821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */ 822 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \ 823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0) 824 825 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */ 826 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \ 827 (strcmp (NAME, ".MIPS.abiflags") == 0) 828 829 /* Whether the section is readonly. */ 830 #define MIPS_ELF_READONLY_SECTION(sec) \ 831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \ 832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) 833 834 /* The name of the stub section. */ 835 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs" 836 837 /* The size of an external REL relocation. */ 838 #define MIPS_ELF_REL_SIZE(abfd) \ 839 (get_elf_backend_data (abfd)->s->sizeof_rel) 840 841 /* The size of an external RELA relocation. */ 842 #define MIPS_ELF_RELA_SIZE(abfd) \ 843 (get_elf_backend_data (abfd)->s->sizeof_rela) 844 845 /* The size of an external dynamic table entry. */ 846 #define MIPS_ELF_DYN_SIZE(abfd) \ 847 (get_elf_backend_data (abfd)->s->sizeof_dyn) 848 849 /* The size of a GOT entry. */ 850 #define MIPS_ELF_GOT_SIZE(abfd) \ 851 (get_elf_backend_data (abfd)->s->arch_size / 8) 852 853 /* The size of the .rld_map section. */ 854 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \ 855 (get_elf_backend_data (abfd)->s->arch_size / 8) 856 857 /* The size of a symbol-table entry. */ 858 #define MIPS_ELF_SYM_SIZE(abfd) \ 859 (get_elf_backend_data (abfd)->s->sizeof_sym) 860 861 /* The default alignment for sections, as a power of two. */ 862 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \ 863 (get_elf_backend_data (abfd)->s->log_file_align) 864 865 /* Get word-sized data. */ 866 #define MIPS_ELF_GET_WORD(abfd, ptr) \ 867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr)) 868 869 /* Put out word-sized data. */ 870 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \ 871 (ABI_64_P (abfd) \ 872 ? bfd_put_64 (abfd, val, ptr) \ 873 : bfd_put_32 (abfd, val, ptr)) 874 875 /* The opcode for word-sized loads (LW or LD). */ 876 #define MIPS_ELF_LOAD_WORD(abfd) \ 877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000) 878 879 /* Add a dynamic symbol table-entry. */ 880 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \ 881 _bfd_elf_add_dynamic_entry (info, tag, val) 882 883 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \ 884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela)) 885 886 /* The name of the dynamic relocation section. */ 887 #define MIPS_ELF_REL_DYN_NAME(INFO) \ 888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn") 889 890 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value 891 from smaller values. Start with zero, widen, *then* decrement. */ 892 #define MINUS_ONE (((bfd_vma)0) - 1) 893 #define MINUS_TWO (((bfd_vma)0) - 2) 894 895 /* The value to write into got[1] for SVR4 targets, to identify it is 896 a GNU object. The dynamic linker can then use got[1] to store the 897 module pointer. */ 898 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \ 899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31)) 900 901 /* The offset of $gp from the beginning of the .got section. */ 902 #define ELF_MIPS_GP_OFFSET(INFO) \ 903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0) 904 905 /* The maximum size of the GOT for it to be addressable using 16-bit 906 offsets from $gp. */ 907 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff) 908 909 /* Instructions which appear in a stub. */ 910 #define STUB_LW(abfd) \ 911 ((ABI_64_P (abfd) \ 912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \ 913 : 0x8f998010)) /* lw t9,0x8010(gp) */ 914 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */ 915 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */ 916 #define STUB_JALR 0x0320f809 /* jalr t9,ra */ 917 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */ 918 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */ 919 #define STUB_LI16S(abfd, VAL) \ 920 ((ABI_64_P (abfd) \ 921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \ 922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */ 923 924 /* Likewise for the microMIPS ASE. */ 925 #define STUB_LW_MICROMIPS(abfd) \ 926 (ABI_64_P (abfd) \ 927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \ 928 : 0xff3c8010) /* lw t9,0x8010(gp) */ 929 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */ 930 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */ 931 #define STUB_LUI_MICROMIPS(VAL) \ 932 (0x41b80000 + (VAL)) /* lui t8,VAL */ 933 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */ 934 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */ 935 #define STUB_ORI_MICROMIPS(VAL) \ 936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */ 937 #define STUB_LI16U_MICROMIPS(VAL) \ 938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */ 939 #define STUB_LI16S_MICROMIPS(abfd, VAL) \ 940 (ABI_64_P (abfd) \ 941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \ 942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */ 943 944 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16 945 #define MIPS_FUNCTION_STUB_BIG_SIZE 20 946 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12 947 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16 948 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16 949 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20 950 951 /* The name of the dynamic interpreter. This is put in the .interp 952 section. */ 953 954 #define ELF_DYNAMIC_INTERPRETER(abfd) \ 955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \ 956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \ 957 : "/usr/lib/libc.so.1") 958 959 #ifdef BFD64 960 #define MNAME(bfd,pre,pos) \ 961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos)) 962 #define ELF_R_SYM(bfd, i) \ 963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i)) 964 #define ELF_R_TYPE(bfd, i) \ 965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i)) 966 #define ELF_R_INFO(bfd, s, t) \ 967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t)) 968 #else 969 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos) 970 #define ELF_R_SYM(bfd, i) \ 971 (ELF32_R_SYM (i)) 972 #define ELF_R_TYPE(bfd, i) \ 973 (ELF32_R_TYPE (i)) 974 #define ELF_R_INFO(bfd, s, t) \ 975 (ELF32_R_INFO (s, t)) 976 #endif 977 978 /* The mips16 compiler uses a couple of special sections to handle 979 floating point arguments. 980 981 Section names that look like .mips16.fn.FNNAME contain stubs that 982 copy floating point arguments from the fp regs to the gp regs and 983 then jump to FNNAME. If any 32 bit function calls FNNAME, the 984 call should be redirected to the stub instead. If no 32 bit 985 function calls FNNAME, the stub should be discarded. We need to 986 consider any reference to the function, not just a call, because 987 if the address of the function is taken we will need the stub, 988 since the address might be passed to a 32 bit function. 989 990 Section names that look like .mips16.call.FNNAME contain stubs 991 that copy floating point arguments from the gp regs to the fp 992 regs and then jump to FNNAME. If FNNAME is a 32 bit function, 993 then any 16 bit function that calls FNNAME should be redirected 994 to the stub instead. If FNNAME is not a 32 bit function, the 995 stub should be discarded. 996 997 .mips16.call.fp.FNNAME sections are similar, but contain stubs 998 which call FNNAME and then copy the return value from the fp regs 999 to the gp regs. These stubs store the return value in $18 while 1000 calling FNNAME; any function which might call one of these stubs 1001 must arrange to save $18 around the call. (This case is not 1002 needed for 32 bit functions that call 16 bit functions, because 1003 16 bit functions always return floating point values in both 1004 $f0/$f1 and $2/$3.) 1005 1006 Note that in all cases FNNAME might be defined statically. 1007 Therefore, FNNAME is not used literally. Instead, the relocation 1008 information will indicate which symbol the section is for. 1009 1010 We record any stubs that we find in the symbol table. */ 1011 1012 #define FN_STUB ".mips16.fn." 1013 #define CALL_STUB ".mips16.call." 1014 #define CALL_FP_STUB ".mips16.call.fp." 1015 1016 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB) 1017 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB) 1018 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB) 1019 1020 /* The format of the first PLT entry in an O32 executable. */ 1021 static const bfd_vma mips_o32_exec_plt0_entry[] = 1022 { 1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */ 1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */ 1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */ 1026 0x031cc023, /* subu $24, $24, $28 */ 1027 0x03e07825, /* or t7, ra, zero */ 1028 0x0018c082, /* srl $24, $24, 2 */ 1029 0x0320f809, /* jalr $25 */ 1030 0x2718fffe /* subu $24, $24, 2 */ 1031 }; 1032 1033 /* The format of the first PLT entry in an N32 executable. Different 1034 because gp ($28) is not available; we use t2 ($14) instead. */ 1035 static const bfd_vma mips_n32_exec_plt0_entry[] = 1036 { 1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */ 1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */ 1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */ 1040 0x030ec023, /* subu $24, $24, $14 */ 1041 0x03e07825, /* or t7, ra, zero */ 1042 0x0018c082, /* srl $24, $24, 2 */ 1043 0x0320f809, /* jalr $25 */ 1044 0x2718fffe /* subu $24, $24, 2 */ 1045 }; 1046 1047 /* The format of the first PLT entry in an N64 executable. Different 1048 from N32 because of the increased size of GOT entries. */ 1049 static const bfd_vma mips_n64_exec_plt0_entry[] = 1050 { 1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */ 1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */ 1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */ 1054 0x030ec023, /* subu $24, $24, $14 */ 1055 0x03e07825, /* or t7, ra, zero */ 1056 0x0018c0c2, /* srl $24, $24, 3 */ 1057 0x0320f809, /* jalr $25 */ 1058 0x2718fffe /* subu $24, $24, 2 */ 1059 }; 1060 1061 /* The format of the microMIPS first PLT entry in an O32 executable. 1062 We rely on v0 ($2) rather than t8 ($24) to contain the address 1063 of the GOTPLT entry handled, so this stub may only be used when 1064 all the subsequent PLT entries are microMIPS code too. 1065 1066 The trailing NOP is for alignment and correct disassembly only. */ 1067 static const bfd_vma micromips_o32_exec_plt0_entry[] = 1068 { 1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */ 1070 0xff23, 0x0000, /* lw $25, 0($3) */ 1071 0x0535, /* subu $2, $2, $3 */ 1072 0x2525, /* srl $2, $2, 2 */ 1073 0x3302, 0xfffe, /* subu $24, $2, 2 */ 1074 0x0dff, /* move $15, $31 */ 1075 0x45f9, /* jalrs $25 */ 1076 0x0f83, /* move $28, $3 */ 1077 0x0c00 /* nop */ 1078 }; 1079 1080 /* The format of the microMIPS first PLT entry in an O32 executable 1081 in the insn32 mode. */ 1082 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] = 1083 { 1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */ 1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */ 1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */ 1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */ 1088 0x001f, 0x7a90, /* or $15, $31, zero */ 1089 0x0318, 0x1040, /* srl $24, $24, 2 */ 1090 0x03f9, 0x0f3c, /* jalr $25 */ 1091 0x3318, 0xfffe /* subu $24, $24, 2 */ 1092 }; 1093 1094 /* The format of subsequent standard PLT entries. */ 1095 static const bfd_vma mips_exec_plt_entry[] = 1096 { 1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */ 1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */ 1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */ 1100 0x03200008 /* jr $25 */ 1101 }; 1102 1103 /* In the following PLT entry the JR and ADDIU instructions will 1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because 1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */ 1106 static const bfd_vma mipsr6_exec_plt_entry[] = 1107 { 1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */ 1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */ 1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */ 1111 0x03200009 /* jr $25 */ 1112 }; 1113 1114 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2) 1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not 1116 directly addressable. */ 1117 static const bfd_vma mips16_o32_exec_plt_entry[] = 1118 { 1119 0xb203, /* lw $2, 12($pc) */ 1120 0x9a60, /* lw $3, 0($2) */ 1121 0x651a, /* move $24, $2 */ 1122 0xeb00, /* jr $3 */ 1123 0x653b, /* move $25, $3 */ 1124 0x6500, /* nop */ 1125 0x0000, 0x0000 /* .word (.got.plt entry) */ 1126 }; 1127 1128 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2) 1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */ 1130 static const bfd_vma micromips_o32_exec_plt_entry[] = 1131 { 1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */ 1133 0xff22, 0x0000, /* lw $25, 0($2) */ 1134 0x4599, /* jr $25 */ 1135 0x0f02 /* move $24, $2 */ 1136 }; 1137 1138 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */ 1139 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] = 1140 { 1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */ 1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */ 1143 0x0019, 0x0f3c, /* jr $25 */ 1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */ 1145 }; 1146 1147 /* The format of the first PLT entry in a VxWorks executable. */ 1148 static const bfd_vma mips_vxworks_exec_plt0_entry[] = 1149 { 1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */ 1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */ 1152 0x8f390008, /* lw t9, 8(t9) */ 1153 0x00000000, /* nop */ 1154 0x03200008, /* jr t9 */ 1155 0x00000000 /* nop */ 1156 }; 1157 1158 /* The format of subsequent PLT entries. */ 1159 static const bfd_vma mips_vxworks_exec_plt_entry[] = 1160 { 1161 0x10000000, /* b .PLT_resolver */ 1162 0x24180000, /* li t8, <pltindex> */ 1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */ 1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */ 1165 0x8f390000, /* lw t9, 0(t9) */ 1166 0x00000000, /* nop */ 1167 0x03200008, /* jr t9 */ 1168 0x00000000 /* nop */ 1169 }; 1170 1171 /* The format of the first PLT entry in a VxWorks shared object. */ 1172 static const bfd_vma mips_vxworks_shared_plt0_entry[] = 1173 { 1174 0x8f990008, /* lw t9, 8(gp) */ 1175 0x00000000, /* nop */ 1176 0x03200008, /* jr t9 */ 1177 0x00000000, /* nop */ 1178 0x00000000, /* nop */ 1179 0x00000000 /* nop */ 1180 }; 1181 1182 /* The format of subsequent PLT entries. */ 1183 static const bfd_vma mips_vxworks_shared_plt_entry[] = 1184 { 1185 0x10000000, /* b .PLT_resolver */ 1186 0x24180000 /* li t8, <pltindex> */ 1187 }; 1188 1189 /* microMIPS 32-bit opcode helper installer. */ 1190 1191 static void 1192 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr) 1193 { 1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr); 1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2); 1196 } 1197 1198 /* microMIPS 32-bit opcode helper retriever. */ 1199 1200 static bfd_vma 1201 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr) 1202 { 1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2); 1204 } 1205 1206 /* Look up an entry in a MIPS ELF linker hash table. */ 1207 1208 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \ 1209 ((struct mips_elf_link_hash_entry *) \ 1210 elf_link_hash_lookup (&(table)->root, (string), (create), \ 1211 (copy), (follow))) 1212 1213 /* Traverse a MIPS ELF linker hash table. */ 1214 1215 #define mips_elf_link_hash_traverse(table, func, info) \ 1216 (elf_link_hash_traverse \ 1217 (&(table)->root, \ 1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \ 1219 (info))) 1220 1221 /* Find the base offsets for thread-local storage in this object, 1222 for GD/LD and IE/LE respectively. */ 1223 1224 #define TP_OFFSET 0x7000 1225 #define DTP_OFFSET 0x8000 1226 1227 static bfd_vma 1228 dtprel_base (struct bfd_link_info *info) 1229 { 1230 /* If tls_sec is NULL, we should have signalled an error already. */ 1231 if (elf_hash_table (info)->tls_sec == NULL) 1232 return 0; 1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET; 1234 } 1235 1236 static bfd_vma 1237 tprel_base (struct bfd_link_info *info) 1238 { 1239 /* If tls_sec is NULL, we should have signalled an error already. */ 1240 if (elf_hash_table (info)->tls_sec == NULL) 1241 return 0; 1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET; 1243 } 1244 1245 /* Create an entry in a MIPS ELF linker hash table. */ 1246 1247 static struct bfd_hash_entry * 1248 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry, 1249 struct bfd_hash_table *table, const char *string) 1250 { 1251 struct mips_elf_link_hash_entry *ret = 1252 (struct mips_elf_link_hash_entry *) entry; 1253 1254 /* Allocate the structure if it has not already been allocated by a 1255 subclass. */ 1256 if (ret == NULL) 1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry)); 1258 if (ret == NULL) 1259 return (struct bfd_hash_entry *) ret; 1260 1261 /* Call the allocation method of the superclass. */ 1262 ret = ((struct mips_elf_link_hash_entry *) 1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, 1264 table, string)); 1265 if (ret != NULL) 1266 { 1267 /* Set local fields. */ 1268 memset (&ret->esym, 0, sizeof (EXTR)); 1269 /* We use -2 as a marker to indicate that the information has 1270 not been set. -1 means there is no associated ifd. */ 1271 ret->esym.ifd = -2; 1272 ret->la25_stub = 0; 1273 ret->possibly_dynamic_relocs = 0; 1274 ret->fn_stub = NULL; 1275 ret->call_stub = NULL; 1276 ret->call_fp_stub = NULL; 1277 ret->global_got_area = GGA_NONE; 1278 ret->got_only_for_calls = TRUE; 1279 ret->readonly_reloc = FALSE; 1280 ret->has_static_relocs = FALSE; 1281 ret->no_fn_stub = FALSE; 1282 ret->need_fn_stub = FALSE; 1283 ret->has_nonpic_branches = FALSE; 1284 ret->needs_lazy_stub = FALSE; 1285 ret->use_plt_entry = FALSE; 1286 } 1287 1288 return (struct bfd_hash_entry *) ret; 1289 } 1290 1291 /* Allocate MIPS ELF private object data. */ 1292 1293 bfd_boolean 1294 _bfd_mips_elf_mkobject (bfd *abfd) 1295 { 1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata), 1297 MIPS_ELF_DATA); 1298 } 1299 1300 bfd_boolean 1301 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec) 1302 { 1303 if (!sec->used_by_bfd) 1304 { 1305 struct _mips_elf_section_data *sdata; 1306 bfd_size_type amt = sizeof (*sdata); 1307 1308 sdata = bfd_zalloc (abfd, amt); 1309 if (sdata == NULL) 1310 return FALSE; 1311 sec->used_by_bfd = sdata; 1312 } 1313 1314 return _bfd_elf_new_section_hook (abfd, sec); 1315 } 1316 1317 /* Read ECOFF debugging information from a .mdebug section into a 1318 ecoff_debug_info structure. */ 1319 1320 bfd_boolean 1321 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section, 1322 struct ecoff_debug_info *debug) 1323 { 1324 HDRR *symhdr; 1325 const struct ecoff_debug_swap *swap; 1326 char *ext_hdr; 1327 1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; 1329 memset (debug, 0, sizeof (*debug)); 1330 1331 ext_hdr = bfd_malloc (swap->external_hdr_size); 1332 if (ext_hdr == NULL && swap->external_hdr_size != 0) 1333 goto error_return; 1334 1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0, 1336 swap->external_hdr_size)) 1337 goto error_return; 1338 1339 symhdr = &debug->symbolic_header; 1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr); 1341 1342 /* The symbolic header contains absolute file offsets and sizes to 1343 read. */ 1344 #define READ(ptr, offset, count, size, type) \ 1345 if (symhdr->count == 0) \ 1346 debug->ptr = NULL; \ 1347 else \ 1348 { \ 1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \ 1350 debug->ptr = bfd_malloc (amt); \ 1351 if (debug->ptr == NULL) \ 1352 goto error_return; \ 1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \ 1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \ 1355 goto error_return; \ 1356 } 1357 1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *); 1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *); 1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *); 1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *); 1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *); 1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext), 1364 union aux_ext *); 1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *); 1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *); 1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *); 1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *); 1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *); 1370 #undef READ 1371 1372 debug->fdr = NULL; 1373 1374 return TRUE; 1375 1376 error_return: 1377 if (ext_hdr != NULL) 1378 free (ext_hdr); 1379 if (debug->line != NULL) 1380 free (debug->line); 1381 if (debug->external_dnr != NULL) 1382 free (debug->external_dnr); 1383 if (debug->external_pdr != NULL) 1384 free (debug->external_pdr); 1385 if (debug->external_sym != NULL) 1386 free (debug->external_sym); 1387 if (debug->external_opt != NULL) 1388 free (debug->external_opt); 1389 if (debug->external_aux != NULL) 1390 free (debug->external_aux); 1391 if (debug->ss != NULL) 1392 free (debug->ss); 1393 if (debug->ssext != NULL) 1394 free (debug->ssext); 1395 if (debug->external_fdr != NULL) 1396 free (debug->external_fdr); 1397 if (debug->external_rfd != NULL) 1398 free (debug->external_rfd); 1399 if (debug->external_ext != NULL) 1400 free (debug->external_ext); 1401 return FALSE; 1402 } 1403 1404 /* Swap RPDR (runtime procedure table entry) for output. */ 1405 1406 static void 1407 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex) 1408 { 1409 H_PUT_S32 (abfd, in->adr, ex->p_adr); 1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask); 1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset); 1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask); 1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset); 1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset); 1415 1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg); 1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg); 1418 1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss); 1420 } 1421 1422 /* Create a runtime procedure table from the .mdebug section. */ 1423 1424 static bfd_boolean 1425 mips_elf_create_procedure_table (void *handle, bfd *abfd, 1426 struct bfd_link_info *info, asection *s, 1427 struct ecoff_debug_info *debug) 1428 { 1429 const struct ecoff_debug_swap *swap; 1430 HDRR *hdr = &debug->symbolic_header; 1431 RPDR *rpdr, *rp; 1432 struct rpdr_ext *erp; 1433 void *rtproc; 1434 struct pdr_ext *epdr; 1435 struct sym_ext *esym; 1436 char *ss, **sv; 1437 char *str; 1438 bfd_size_type size; 1439 bfd_size_type count; 1440 unsigned long sindex; 1441 unsigned long i; 1442 PDR pdr; 1443 SYMR sym; 1444 const char *no_name_func = _("static procedure (no name)"); 1445 1446 epdr = NULL; 1447 rpdr = NULL; 1448 esym = NULL; 1449 ss = NULL; 1450 sv = NULL; 1451 1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; 1453 1454 sindex = strlen (no_name_func) + 1; 1455 count = hdr->ipdMax; 1456 if (count > 0) 1457 { 1458 size = swap->external_pdr_size; 1459 1460 epdr = bfd_malloc (size * count); 1461 if (epdr == NULL) 1462 goto error_return; 1463 1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr)) 1465 goto error_return; 1466 1467 size = sizeof (RPDR); 1468 rp = rpdr = bfd_malloc (size * count); 1469 if (rpdr == NULL) 1470 goto error_return; 1471 1472 size = sizeof (char *); 1473 sv = bfd_malloc (size * count); 1474 if (sv == NULL) 1475 goto error_return; 1476 1477 count = hdr->isymMax; 1478 size = swap->external_sym_size; 1479 esym = bfd_malloc (size * count); 1480 if (esym == NULL) 1481 goto error_return; 1482 1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym)) 1484 goto error_return; 1485 1486 count = hdr->issMax; 1487 ss = bfd_malloc (count); 1488 if (ss == NULL) 1489 goto error_return; 1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss)) 1491 goto error_return; 1492 1493 count = hdr->ipdMax; 1494 for (i = 0; i < (unsigned long) count; i++, rp++) 1495 { 1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr); 1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym); 1498 rp->adr = sym.value; 1499 rp->regmask = pdr.regmask; 1500 rp->regoffset = pdr.regoffset; 1501 rp->fregmask = pdr.fregmask; 1502 rp->fregoffset = pdr.fregoffset; 1503 rp->frameoffset = pdr.frameoffset; 1504 rp->framereg = pdr.framereg; 1505 rp->pcreg = pdr.pcreg; 1506 rp->irpss = sindex; 1507 sv[i] = ss + sym.iss; 1508 sindex += strlen (sv[i]) + 1; 1509 } 1510 } 1511 1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex; 1513 size = BFD_ALIGN (size, 16); 1514 rtproc = bfd_alloc (abfd, size); 1515 if (rtproc == NULL) 1516 { 1517 mips_elf_hash_table (info)->procedure_count = 0; 1518 goto error_return; 1519 } 1520 1521 mips_elf_hash_table (info)->procedure_count = count + 2; 1522 1523 erp = rtproc; 1524 memset (erp, 0, sizeof (struct rpdr_ext)); 1525 erp++; 1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2); 1527 strcpy (str, no_name_func); 1528 str += strlen (no_name_func) + 1; 1529 for (i = 0; i < count; i++) 1530 { 1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i); 1532 strcpy (str, sv[i]); 1533 str += strlen (sv[i]) + 1; 1534 } 1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr); 1536 1537 /* Set the size and contents of .rtproc section. */ 1538 s->size = size; 1539 s->contents = rtproc; 1540 1541 /* Skip this section later on (I don't think this currently 1542 matters, but someday it might). */ 1543 s->map_head.link_order = NULL; 1544 1545 if (epdr != NULL) 1546 free (epdr); 1547 if (rpdr != NULL) 1548 free (rpdr); 1549 if (esym != NULL) 1550 free (esym); 1551 if (ss != NULL) 1552 free (ss); 1553 if (sv != NULL) 1554 free (sv); 1555 1556 return TRUE; 1557 1558 error_return: 1559 if (epdr != NULL) 1560 free (epdr); 1561 if (rpdr != NULL) 1562 free (rpdr); 1563 if (esym != NULL) 1564 free (esym); 1565 if (ss != NULL) 1566 free (ss); 1567 if (sv != NULL) 1568 free (sv); 1569 return FALSE; 1570 } 1571 1572 /* We're going to create a stub for H. Create a symbol for the stub's 1573 value and size, to help make the disassembly easier to read. */ 1574 1575 static bfd_boolean 1576 mips_elf_create_stub_symbol (struct bfd_link_info *info, 1577 struct mips_elf_link_hash_entry *h, 1578 const char *prefix, asection *s, bfd_vma value, 1579 bfd_vma size) 1580 { 1581 struct bfd_link_hash_entry *bh; 1582 struct elf_link_hash_entry *elfh; 1583 char *name; 1584 bfd_boolean res; 1585 1586 if (ELF_ST_IS_MICROMIPS (h->root.other)) 1587 value |= 1; 1588 1589 /* Create a new symbol. */ 1590 name = concat (prefix, h->root.root.root.string, NULL); 1591 bh = NULL; 1592 res = _bfd_generic_link_add_one_symbol (info, s->owner, name, 1593 BSF_LOCAL, s, value, NULL, 1594 TRUE, FALSE, &bh); 1595 free (name); 1596 if (! res) 1597 return FALSE; 1598 1599 /* Make it a local function. */ 1600 elfh = (struct elf_link_hash_entry *) bh; 1601 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); 1602 elfh->size = size; 1603 elfh->forced_local = 1; 1604 return TRUE; 1605 } 1606 1607 /* We're about to redefine H. Create a symbol to represent H's 1608 current value and size, to help make the disassembly easier 1609 to read. */ 1610 1611 static bfd_boolean 1612 mips_elf_create_shadow_symbol (struct bfd_link_info *info, 1613 struct mips_elf_link_hash_entry *h, 1614 const char *prefix) 1615 { 1616 struct bfd_link_hash_entry *bh; 1617 struct elf_link_hash_entry *elfh; 1618 char *name; 1619 asection *s; 1620 bfd_vma value; 1621 bfd_boolean res; 1622 1623 /* Read the symbol's value. */ 1624 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined 1625 || h->root.root.type == bfd_link_hash_defweak); 1626 s = h->root.root.u.def.section; 1627 value = h->root.root.u.def.value; 1628 1629 /* Create a new symbol. */ 1630 name = concat (prefix, h->root.root.root.string, NULL); 1631 bh = NULL; 1632 res = _bfd_generic_link_add_one_symbol (info, s->owner, name, 1633 BSF_LOCAL, s, value, NULL, 1634 TRUE, FALSE, &bh); 1635 free (name); 1636 if (! res) 1637 return FALSE; 1638 1639 /* Make it local and copy the other attributes from H. */ 1640 elfh = (struct elf_link_hash_entry *) bh; 1641 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type)); 1642 elfh->other = h->root.other; 1643 elfh->size = h->root.size; 1644 elfh->forced_local = 1; 1645 return TRUE; 1646 } 1647 1648 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16 1649 function rather than to a hard-float stub. */ 1650 1651 static bfd_boolean 1652 section_allows_mips16_refs_p (asection *section) 1653 { 1654 const char *name; 1655 1656 name = bfd_get_section_name (section->owner, section); 1657 return (FN_STUB_P (name) 1658 || CALL_STUB_P (name) 1659 || CALL_FP_STUB_P (name) 1660 || strcmp (name, ".pdr") == 0); 1661 } 1662 1663 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16 1664 stub section of some kind. Return the R_SYMNDX of the target 1665 function, or 0 if we can't decide which function that is. */ 1666 1667 static unsigned long 1668 mips16_stub_symndx (const struct elf_backend_data *bed, 1669 asection *sec ATTRIBUTE_UNUSED, 1670 const Elf_Internal_Rela *relocs, 1671 const Elf_Internal_Rela *relend) 1672 { 1673 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel; 1674 const Elf_Internal_Rela *rel; 1675 1676 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent 1677 one in a compound relocation. */ 1678 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel) 1679 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE) 1680 return ELF_R_SYM (sec->owner, rel->r_info); 1681 1682 /* Otherwise trust the first relocation, whatever its kind. This is 1683 the traditional behavior. */ 1684 if (relocs < relend) 1685 return ELF_R_SYM (sec->owner, relocs->r_info); 1686 1687 return 0; 1688 } 1689 1690 /* Check the mips16 stubs for a particular symbol, and see if we can 1691 discard them. */ 1692 1693 static void 1694 mips_elf_check_mips16_stubs (struct bfd_link_info *info, 1695 struct mips_elf_link_hash_entry *h) 1696 { 1697 /* Dynamic symbols must use the standard call interface, in case other 1698 objects try to call them. */ 1699 if (h->fn_stub != NULL 1700 && h->root.dynindx != -1) 1701 { 1702 mips_elf_create_shadow_symbol (info, h, ".mips16."); 1703 h->need_fn_stub = TRUE; 1704 } 1705 1706 if (h->fn_stub != NULL 1707 && ! h->need_fn_stub) 1708 { 1709 /* We don't need the fn_stub; the only references to this symbol 1710 are 16 bit calls. Clobber the size to 0 to prevent it from 1711 being included in the link. */ 1712 h->fn_stub->size = 0; 1713 h->fn_stub->flags &= ~SEC_RELOC; 1714 h->fn_stub->reloc_count = 0; 1715 h->fn_stub->flags |= SEC_EXCLUDE; 1716 h->fn_stub->output_section = bfd_abs_section_ptr; 1717 } 1718 1719 if (h->call_stub != NULL 1720 && ELF_ST_IS_MIPS16 (h->root.other)) 1721 { 1722 /* We don't need the call_stub; this is a 16 bit function, so 1723 calls from other 16 bit functions are OK. Clobber the size 1724 to 0 to prevent it from being included in the link. */ 1725 h->call_stub->size = 0; 1726 h->call_stub->flags &= ~SEC_RELOC; 1727 h->call_stub->reloc_count = 0; 1728 h->call_stub->flags |= SEC_EXCLUDE; 1729 h->call_stub->output_section = bfd_abs_section_ptr; 1730 } 1731 1732 if (h->call_fp_stub != NULL 1733 && ELF_ST_IS_MIPS16 (h->root.other)) 1734 { 1735 /* We don't need the call_stub; this is a 16 bit function, so 1736 calls from other 16 bit functions are OK. Clobber the size 1737 to 0 to prevent it from being included in the link. */ 1738 h->call_fp_stub->size = 0; 1739 h->call_fp_stub->flags &= ~SEC_RELOC; 1740 h->call_fp_stub->reloc_count = 0; 1741 h->call_fp_stub->flags |= SEC_EXCLUDE; 1742 h->call_fp_stub->output_section = bfd_abs_section_ptr; 1743 } 1744 } 1745 1746 /* Hashtable callbacks for mips_elf_la25_stubs. */ 1747 1748 static hashval_t 1749 mips_elf_la25_stub_hash (const void *entry_) 1750 { 1751 const struct mips_elf_la25_stub *entry; 1752 1753 entry = (struct mips_elf_la25_stub *) entry_; 1754 return entry->h->root.root.u.def.section->id 1755 + entry->h->root.root.u.def.value; 1756 } 1757 1758 static int 1759 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_) 1760 { 1761 const struct mips_elf_la25_stub *entry1, *entry2; 1762 1763 entry1 = (struct mips_elf_la25_stub *) entry1_; 1764 entry2 = (struct mips_elf_la25_stub *) entry2_; 1765 return ((entry1->h->root.root.u.def.section 1766 == entry2->h->root.root.u.def.section) 1767 && (entry1->h->root.root.u.def.value 1768 == entry2->h->root.root.u.def.value)); 1769 } 1770 1771 /* Called by the linker to set up the la25 stub-creation code. FN is 1772 the linker's implementation of add_stub_function. Return true on 1773 success. */ 1774 1775 bfd_boolean 1776 _bfd_mips_elf_init_stubs (struct bfd_link_info *info, 1777 asection *(*fn) (const char *, asection *, 1778 asection *)) 1779 { 1780 struct mips_elf_link_hash_table *htab; 1781 1782 htab = mips_elf_hash_table (info); 1783 if (htab == NULL) 1784 return FALSE; 1785 1786 htab->add_stub_section = fn; 1787 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash, 1788 mips_elf_la25_stub_eq, NULL); 1789 if (htab->la25_stubs == NULL) 1790 return FALSE; 1791 1792 return TRUE; 1793 } 1794 1795 /* Return true if H is a locally-defined PIC function, in the sense 1796 that it or its fn_stub might need $25 to be valid on entry. 1797 Note that MIPS16 functions set up $gp using PC-relative instructions, 1798 so they themselves never need $25 to be valid. Only non-MIPS16 1799 entry points are of interest here. */ 1800 1801 static bfd_boolean 1802 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h) 1803 { 1804 return ((h->root.root.type == bfd_link_hash_defined 1805 || h->root.root.type == bfd_link_hash_defweak) 1806 && h->root.def_regular 1807 && !bfd_is_abs_section (h->root.root.u.def.section) 1808 && (!ELF_ST_IS_MIPS16 (h->root.other) 1809 || (h->fn_stub && h->need_fn_stub)) 1810 && (PIC_OBJECT_P (h->root.root.u.def.section->owner) 1811 || ELF_ST_IS_MIPS_PIC (h->root.other))); 1812 } 1813 1814 /* Set *SEC to the input section that contains the target of STUB. 1815 Return the offset of the target from the start of that section. */ 1816 1817 static bfd_vma 1818 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub, 1819 asection **sec) 1820 { 1821 if (ELF_ST_IS_MIPS16 (stub->h->root.other)) 1822 { 1823 BFD_ASSERT (stub->h->need_fn_stub); 1824 *sec = stub->h->fn_stub; 1825 return 0; 1826 } 1827 else 1828 { 1829 *sec = stub->h->root.root.u.def.section; 1830 return stub->h->root.root.u.def.value; 1831 } 1832 } 1833 1834 /* STUB describes an la25 stub that we have decided to implement 1835 by inserting an LUI/ADDIU pair before the target function. 1836 Create the section and redirect the function symbol to it. */ 1837 1838 static bfd_boolean 1839 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub, 1840 struct bfd_link_info *info) 1841 { 1842 struct mips_elf_link_hash_table *htab; 1843 char *name; 1844 asection *s, *input_section; 1845 unsigned int align; 1846 1847 htab = mips_elf_hash_table (info); 1848 if (htab == NULL) 1849 return FALSE; 1850 1851 /* Create a unique name for the new section. */ 1852 name = bfd_malloc (11 + sizeof (".text.stub.")); 1853 if (name == NULL) 1854 return FALSE; 1855 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs)); 1856 1857 /* Create the section. */ 1858 mips_elf_get_la25_target (stub, &input_section); 1859 s = htab->add_stub_section (name, input_section, 1860 input_section->output_section); 1861 if (s == NULL) 1862 return FALSE; 1863 1864 /* Make sure that any padding goes before the stub. */ 1865 align = input_section->alignment_power; 1866 if (!bfd_set_section_alignment (s->owner, s, align)) 1867 return FALSE; 1868 if (align > 3) 1869 s->size = (1 << align) - 8; 1870 1871 /* Create a symbol for the stub. */ 1872 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8); 1873 stub->stub_section = s; 1874 stub->offset = s->size; 1875 1876 /* Allocate room for it. */ 1877 s->size += 8; 1878 return TRUE; 1879 } 1880 1881 /* STUB describes an la25 stub that we have decided to implement 1882 with a separate trampoline. Allocate room for it and redirect 1883 the function symbol to it. */ 1884 1885 static bfd_boolean 1886 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub, 1887 struct bfd_link_info *info) 1888 { 1889 struct mips_elf_link_hash_table *htab; 1890 asection *s; 1891 1892 htab = mips_elf_hash_table (info); 1893 if (htab == NULL) 1894 return FALSE; 1895 1896 /* Create a trampoline section, if we haven't already. */ 1897 s = htab->strampoline; 1898 if (s == NULL) 1899 { 1900 asection *input_section = stub->h->root.root.u.def.section; 1901 s = htab->add_stub_section (".text", NULL, 1902 input_section->output_section); 1903 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4)) 1904 return FALSE; 1905 htab->strampoline = s; 1906 } 1907 1908 /* Create a symbol for the stub. */ 1909 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16); 1910 stub->stub_section = s; 1911 stub->offset = s->size; 1912 1913 /* Allocate room for it. */ 1914 s->size += 16; 1915 return TRUE; 1916 } 1917 1918 /* H describes a symbol that needs an la25 stub. Make sure that an 1919 appropriate stub exists and point H at it. */ 1920 1921 static bfd_boolean 1922 mips_elf_add_la25_stub (struct bfd_link_info *info, 1923 struct mips_elf_link_hash_entry *h) 1924 { 1925 struct mips_elf_link_hash_table *htab; 1926 struct mips_elf_la25_stub search, *stub; 1927 bfd_boolean use_trampoline_p; 1928 asection *s; 1929 bfd_vma value; 1930 void **slot; 1931 1932 /* Describe the stub we want. */ 1933 search.stub_section = NULL; 1934 search.offset = 0; 1935 search.h = h; 1936 1937 /* See if we've already created an equivalent stub. */ 1938 htab = mips_elf_hash_table (info); 1939 if (htab == NULL) 1940 return FALSE; 1941 1942 slot = htab_find_slot (htab->la25_stubs, &search, INSERT); 1943 if (slot == NULL) 1944 return FALSE; 1945 1946 stub = (struct mips_elf_la25_stub *) *slot; 1947 if (stub != NULL) 1948 { 1949 /* We can reuse the existing stub. */ 1950 h->la25_stub = stub; 1951 return TRUE; 1952 } 1953 1954 /* Create a permanent copy of ENTRY and add it to the hash table. */ 1955 stub = bfd_malloc (sizeof (search)); 1956 if (stub == NULL) 1957 return FALSE; 1958 *stub = search; 1959 *slot = stub; 1960 1961 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning 1962 of the section and if we would need no more than 2 nops. */ 1963 value = mips_elf_get_la25_target (stub, &s); 1964 use_trampoline_p = (value != 0 || s->alignment_power > 4); 1965 1966 h->la25_stub = stub; 1967 return (use_trampoline_p 1968 ? mips_elf_add_la25_trampoline (stub, info) 1969 : mips_elf_add_la25_intro (stub, info)); 1970 } 1971 1972 /* A mips_elf_link_hash_traverse callback that is called before sizing 1973 sections. DATA points to a mips_htab_traverse_info structure. */ 1974 1975 static bfd_boolean 1976 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data) 1977 { 1978 struct mips_htab_traverse_info *hti; 1979 1980 hti = (struct mips_htab_traverse_info *) data; 1981 if (!bfd_link_relocatable (hti->info)) 1982 mips_elf_check_mips16_stubs (hti->info, h); 1983 1984 if (mips_elf_local_pic_function_p (h)) 1985 { 1986 /* PR 12845: If H is in a section that has been garbage 1987 collected it will have its output section set to *ABS*. */ 1988 if (bfd_is_abs_section (h->root.root.u.def.section->output_section)) 1989 return TRUE; 1990 1991 /* H is a function that might need $25 to be valid on entry. 1992 If we're creating a non-PIC relocatable object, mark H as 1993 being PIC. If we're creating a non-relocatable object with 1994 non-PIC branches and jumps to H, make sure that H has an la25 1995 stub. */ 1996 if (bfd_link_relocatable (hti->info)) 1997 { 1998 if (!PIC_OBJECT_P (hti->output_bfd)) 1999 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other); 2000 } 2001 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h)) 2002 { 2003 hti->error = TRUE; 2004 return FALSE; 2005 } 2006 } 2007 return TRUE; 2008 } 2009 2010 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions. 2011 Most mips16 instructions are 16 bits, but these instructions 2012 are 32 bits. 2013 2014 The format of these instructions is: 2015 2016 +--------------+--------------------------------+ 2017 | JALX | X| Imm 20:16 | Imm 25:21 | 2018 +--------------+--------------------------------+ 2019 | Immediate 15:0 | 2020 +-----------------------------------------------+ 2021 2022 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx. 2023 Note that the immediate value in the first word is swapped. 2024 2025 When producing a relocatable object file, R_MIPS16_26 is 2026 handled mostly like R_MIPS_26. In particular, the addend is 2027 stored as a straight 26-bit value in a 32-bit instruction. 2028 (gas makes life simpler for itself by never adjusting a 2029 R_MIPS16_26 reloc to be against a section, so the addend is 2030 always zero). However, the 32 bit instruction is stored as 2 2031 16-bit values, rather than a single 32-bit value. In a 2032 big-endian file, the result is the same; in a little-endian 2033 file, the two 16-bit halves of the 32 bit value are swapped. 2034 This is so that a disassembler can recognize the jal 2035 instruction. 2036 2037 When doing a final link, R_MIPS16_26 is treated as a 32 bit 2038 instruction stored as two 16-bit values. The addend A is the 2039 contents of the targ26 field. The calculation is the same as 2040 R_MIPS_26. When storing the calculated value, reorder the 2041 immediate value as shown above, and don't forget to store the 2042 value as two 16-bit values. 2043 2044 To put it in MIPS ABI terms, the relocation field is T-targ26-16, 2045 defined as 2046 2047 big-endian: 2048 +--------+----------------------+ 2049 | | | 2050 | | targ26-16 | 2051 |31 26|25 0| 2052 +--------+----------------------+ 2053 2054 little-endian: 2055 +----------+------+-------------+ 2056 | | | | 2057 | sub1 | | sub2 | 2058 |0 9|10 15|16 31| 2059 +----------+--------------------+ 2060 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is 2061 ((sub1 << 16) | sub2)). 2062 2063 When producing a relocatable object file, the calculation is 2064 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) 2065 When producing a fully linked file, the calculation is 2066 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) 2067 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) 2068 2069 The table below lists the other MIPS16 instruction relocations. 2070 Each one is calculated in the same way as the non-MIPS16 relocation 2071 given on the right, but using the extended MIPS16 layout of 16-bit 2072 immediate fields: 2073 2074 R_MIPS16_GPREL R_MIPS_GPREL16 2075 R_MIPS16_GOT16 R_MIPS_GOT16 2076 R_MIPS16_CALL16 R_MIPS_CALL16 2077 R_MIPS16_HI16 R_MIPS_HI16 2078 R_MIPS16_LO16 R_MIPS_LO16 2079 2080 A typical instruction will have a format like this: 2081 2082 +--------------+--------------------------------+ 2083 | EXTEND | Imm 10:5 | Imm 15:11 | 2084 +--------------+--------------------------------+ 2085 | Major | rx | ry | Imm 4:0 | 2086 +--------------+--------------------------------+ 2087 2088 EXTEND is the five bit value 11110. Major is the instruction 2089 opcode. 2090 2091 All we need to do here is shuffle the bits appropriately. 2092 As above, the two 16-bit halves must be swapped on a 2093 little-endian system. 2094 2095 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the 2096 relocatable field is shifted by 1 rather than 2 and the same bit 2097 shuffling is done as with the relocations above. */ 2098 2099 static inline bfd_boolean 2100 mips16_reloc_p (int r_type) 2101 { 2102 switch (r_type) 2103 { 2104 case R_MIPS16_26: 2105 case R_MIPS16_GPREL: 2106 case R_MIPS16_GOT16: 2107 case R_MIPS16_CALL16: 2108 case R_MIPS16_HI16: 2109 case R_MIPS16_LO16: 2110 case R_MIPS16_TLS_GD: 2111 case R_MIPS16_TLS_LDM: 2112 case R_MIPS16_TLS_DTPREL_HI16: 2113 case R_MIPS16_TLS_DTPREL_LO16: 2114 case R_MIPS16_TLS_GOTTPREL: 2115 case R_MIPS16_TLS_TPREL_HI16: 2116 case R_MIPS16_TLS_TPREL_LO16: 2117 case R_MIPS16_PC16_S1: 2118 return TRUE; 2119 2120 default: 2121 return FALSE; 2122 } 2123 } 2124 2125 /* Check if a microMIPS reloc. */ 2126 2127 static inline bfd_boolean 2128 micromips_reloc_p (unsigned int r_type) 2129 { 2130 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max; 2131 } 2132 2133 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped 2134 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1 2135 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */ 2136 2137 static inline bfd_boolean 2138 micromips_reloc_shuffle_p (unsigned int r_type) 2139 { 2140 return (micromips_reloc_p (r_type) 2141 && r_type != R_MICROMIPS_PC7_S1 2142 && r_type != R_MICROMIPS_PC10_S1); 2143 } 2144 2145 static inline bfd_boolean 2146 got16_reloc_p (int r_type) 2147 { 2148 return (r_type == R_MIPS_GOT16 2149 || r_type == R_MIPS16_GOT16 2150 || r_type == R_MICROMIPS_GOT16); 2151 } 2152 2153 static inline bfd_boolean 2154 call16_reloc_p (int r_type) 2155 { 2156 return (r_type == R_MIPS_CALL16 2157 || r_type == R_MIPS16_CALL16 2158 || r_type == R_MICROMIPS_CALL16); 2159 } 2160 2161 static inline bfd_boolean 2162 got_disp_reloc_p (unsigned int r_type) 2163 { 2164 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP; 2165 } 2166 2167 static inline bfd_boolean 2168 got_page_reloc_p (unsigned int r_type) 2169 { 2170 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE; 2171 } 2172 2173 static inline bfd_boolean 2174 got_lo16_reloc_p (unsigned int r_type) 2175 { 2176 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16; 2177 } 2178 2179 static inline bfd_boolean 2180 call_hi16_reloc_p (unsigned int r_type) 2181 { 2182 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16; 2183 } 2184 2185 static inline bfd_boolean 2186 call_lo16_reloc_p (unsigned int r_type) 2187 { 2188 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16; 2189 } 2190 2191 static inline bfd_boolean 2192 hi16_reloc_p (int r_type) 2193 { 2194 return (r_type == R_MIPS_HI16 2195 || r_type == R_MIPS16_HI16 2196 || r_type == R_MICROMIPS_HI16 2197 || r_type == R_MIPS_PCHI16); 2198 } 2199 2200 static inline bfd_boolean 2201 lo16_reloc_p (int r_type) 2202 { 2203 return (r_type == R_MIPS_LO16 2204 || r_type == R_MIPS16_LO16 2205 || r_type == R_MICROMIPS_LO16 2206 || r_type == R_MIPS_PCLO16); 2207 } 2208 2209 static inline bfd_boolean 2210 mips16_call_reloc_p (int r_type) 2211 { 2212 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16; 2213 } 2214 2215 static inline bfd_boolean 2216 jal_reloc_p (int r_type) 2217 { 2218 return (r_type == R_MIPS_26 2219 || r_type == R_MIPS16_26 2220 || r_type == R_MICROMIPS_26_S1); 2221 } 2222 2223 static inline bfd_boolean 2224 b_reloc_p (int r_type) 2225 { 2226 return (r_type == R_MIPS_PC26_S2 2227 || r_type == R_MIPS_PC21_S2 2228 || r_type == R_MIPS_PC16 2229 || r_type == R_MIPS_GNU_REL16_S2 2230 || r_type == R_MIPS16_PC16_S1); 2231 } 2232 2233 static inline bfd_boolean 2234 aligned_pcrel_reloc_p (int r_type) 2235 { 2236 return (r_type == R_MIPS_PC18_S3 2237 || r_type == R_MIPS_PC19_S2); 2238 } 2239 2240 static inline bfd_boolean 2241 mips16_branch_reloc_p (int r_type) 2242 { 2243 return (r_type == R_MIPS16_26 2244 || r_type == R_MIPS16_PC16_S1); 2245 } 2246 2247 static inline bfd_boolean 2248 micromips_branch_reloc_p (int r_type) 2249 { 2250 return (r_type == R_MICROMIPS_26_S1 2251 || r_type == R_MICROMIPS_PC16_S1 2252 || r_type == R_MICROMIPS_PC10_S1 2253 || r_type == R_MICROMIPS_PC7_S1); 2254 } 2255 2256 static inline bfd_boolean 2257 tls_gd_reloc_p (unsigned int r_type) 2258 { 2259 return (r_type == R_MIPS_TLS_GD 2260 || r_type == R_MIPS16_TLS_GD 2261 || r_type == R_MICROMIPS_TLS_GD); 2262 } 2263 2264 static inline bfd_boolean 2265 tls_ldm_reloc_p (unsigned int r_type) 2266 { 2267 return (r_type == R_MIPS_TLS_LDM 2268 || r_type == R_MIPS16_TLS_LDM 2269 || r_type == R_MICROMIPS_TLS_LDM); 2270 } 2271 2272 static inline bfd_boolean 2273 tls_gottprel_reloc_p (unsigned int r_type) 2274 { 2275 return (r_type == R_MIPS_TLS_GOTTPREL 2276 || r_type == R_MIPS16_TLS_GOTTPREL 2277 || r_type == R_MICROMIPS_TLS_GOTTPREL); 2278 } 2279 2280 void 2281 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type, 2282 bfd_boolean jal_shuffle, bfd_byte *data) 2283 { 2284 bfd_vma first, second, val; 2285 2286 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type)) 2287 return; 2288 2289 /* Pick up the first and second halfwords of the instruction. */ 2290 first = bfd_get_16 (abfd, data); 2291 second = bfd_get_16 (abfd, data + 2); 2292 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle)) 2293 val = first << 16 | second; 2294 else if (r_type != R_MIPS16_26) 2295 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11) 2296 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f)); 2297 else 2298 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11) 2299 | ((first & 0x1f) << 21) | second); 2300 bfd_put_32 (abfd, val, data); 2301 } 2302 2303 void 2304 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type, 2305 bfd_boolean jal_shuffle, bfd_byte *data) 2306 { 2307 bfd_vma first, second, val; 2308 2309 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type)) 2310 return; 2311 2312 val = bfd_get_32 (abfd, data); 2313 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle)) 2314 { 2315 second = val & 0xffff; 2316 first = val >> 16; 2317 } 2318 else if (r_type != R_MIPS16_26) 2319 { 2320 second = ((val >> 11) & 0xffe0) | (val & 0x1f); 2321 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0); 2322 } 2323 else 2324 { 2325 second = val & 0xffff; 2326 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0) 2327 | ((val >> 21) & 0x1f); 2328 } 2329 bfd_put_16 (abfd, second, data + 2); 2330 bfd_put_16 (abfd, first, data); 2331 } 2332 2333 bfd_reloc_status_type 2334 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol, 2335 arelent *reloc_entry, asection *input_section, 2336 bfd_boolean relocatable, void *data, bfd_vma gp) 2337 { 2338 bfd_vma relocation; 2339 bfd_signed_vma val; 2340 bfd_reloc_status_type status; 2341 2342 if (bfd_is_com_section (symbol->section)) 2343 relocation = 0; 2344 else 2345 relocation = symbol->value; 2346 2347 relocation += symbol->section->output_section->vma; 2348 relocation += symbol->section->output_offset; 2349 2350 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) 2351 return bfd_reloc_outofrange; 2352 2353 /* Set val to the offset into the section or symbol. */ 2354 val = reloc_entry->addend; 2355 2356 _bfd_mips_elf_sign_extend (val, 16); 2357 2358 /* Adjust val for the final section location and GP value. If we 2359 are producing relocatable output, we don't want to do this for 2360 an external symbol. */ 2361 if (! relocatable 2362 || (symbol->flags & BSF_SECTION_SYM) != 0) 2363 val += relocation - gp; 2364 2365 if (reloc_entry->howto->partial_inplace) 2366 { 2367 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, 2368 (bfd_byte *) data 2369 + reloc_entry->address); 2370 if (status != bfd_reloc_ok) 2371 return status; 2372 } 2373 else 2374 reloc_entry->addend = val; 2375 2376 if (relocatable) 2377 reloc_entry->address += input_section->output_offset; 2378 2379 return bfd_reloc_ok; 2380 } 2381 2382 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or 2383 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section 2384 that contains the relocation field and DATA points to the start of 2385 INPUT_SECTION. */ 2386 2387 struct mips_hi16 2388 { 2389 struct mips_hi16 *next; 2390 bfd_byte *data; 2391 asection *input_section; 2392 arelent rel; 2393 }; 2394 2395 /* FIXME: This should not be a static variable. */ 2396 2397 static struct mips_hi16 *mips_hi16_list; 2398 2399 /* A howto special_function for REL *HI16 relocations. We can only 2400 calculate the correct value once we've seen the partnering 2401 *LO16 relocation, so just save the information for later. 2402 2403 The ABI requires that the *LO16 immediately follow the *HI16. 2404 However, as a GNU extension, we permit an arbitrary number of 2405 *HI16s to be associated with a single *LO16. This significantly 2406 simplies the relocation handling in gcc. */ 2407 2408 bfd_reloc_status_type 2409 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, 2410 asymbol *symbol ATTRIBUTE_UNUSED, void *data, 2411 asection *input_section, bfd *output_bfd, 2412 char **error_message ATTRIBUTE_UNUSED) 2413 { 2414 struct mips_hi16 *n; 2415 2416 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) 2417 return bfd_reloc_outofrange; 2418 2419 n = bfd_malloc (sizeof *n); 2420 if (n == NULL) 2421 return bfd_reloc_outofrange; 2422 2423 n->next = mips_hi16_list; 2424 n->data = data; 2425 n->input_section = input_section; 2426 n->rel = *reloc_entry; 2427 mips_hi16_list = n; 2428 2429 if (output_bfd != NULL) 2430 reloc_entry->address += input_section->output_offset; 2431 2432 return bfd_reloc_ok; 2433 } 2434 2435 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just 2436 like any other 16-bit relocation when applied to global symbols, but is 2437 treated in the same as R_MIPS_HI16 when applied to local symbols. */ 2438 2439 bfd_reloc_status_type 2440 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, 2441 void *data, asection *input_section, 2442 bfd *output_bfd, char **error_message) 2443 { 2444 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0 2445 || bfd_is_und_section (bfd_get_section (symbol)) 2446 || bfd_is_com_section (bfd_get_section (symbol))) 2447 /* The relocation is against a global symbol. */ 2448 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, 2449 input_section, output_bfd, 2450 error_message); 2451 2452 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data, 2453 input_section, output_bfd, error_message); 2454 } 2455 2456 /* A howto special_function for REL *LO16 relocations. The *LO16 itself 2457 is a straightforward 16 bit inplace relocation, but we must deal with 2458 any partnering high-part relocations as well. */ 2459 2460 bfd_reloc_status_type 2461 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, 2462 void *data, asection *input_section, 2463 bfd *output_bfd, char **error_message) 2464 { 2465 bfd_vma vallo; 2466 bfd_byte *location = (bfd_byte *) data + reloc_entry->address; 2467 2468 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) 2469 return bfd_reloc_outofrange; 2470 2471 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE, 2472 location); 2473 vallo = bfd_get_32 (abfd, location); 2474 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE, 2475 location); 2476 2477 while (mips_hi16_list != NULL) 2478 { 2479 bfd_reloc_status_type ret; 2480 struct mips_hi16 *hi; 2481 2482 hi = mips_hi16_list; 2483 2484 /* R_MIPS*_GOT16 relocations are something of a special case. We 2485 want to install the addend in the same way as for a R_MIPS*_HI16 2486 relocation (with a rightshift of 16). However, since GOT16 2487 relocations can also be used with global symbols, their howto 2488 has a rightshift of 0. */ 2489 if (hi->rel.howto->type == R_MIPS_GOT16) 2490 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE); 2491 else if (hi->rel.howto->type == R_MIPS16_GOT16) 2492 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE); 2493 else if (hi->rel.howto->type == R_MICROMIPS_GOT16) 2494 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE); 2495 2496 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any 2497 carry or borrow will induce a change of +1 or -1 in the high part. */ 2498 hi->rel.addend += (vallo + 0x8000) & 0xffff; 2499 2500 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data, 2501 hi->input_section, output_bfd, 2502 error_message); 2503 if (ret != bfd_reloc_ok) 2504 return ret; 2505 2506 mips_hi16_list = hi->next; 2507 free (hi); 2508 } 2509 2510 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, 2511 input_section, output_bfd, 2512 error_message); 2513 } 2514 2515 /* A generic howto special_function. This calculates and installs the 2516 relocation itself, thus avoiding the oft-discussed problems in 2517 bfd_perform_relocation and bfd_install_relocation. */ 2518 2519 bfd_reloc_status_type 2520 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, 2521 asymbol *symbol, void *data ATTRIBUTE_UNUSED, 2522 asection *input_section, bfd *output_bfd, 2523 char **error_message ATTRIBUTE_UNUSED) 2524 { 2525 bfd_signed_vma val; 2526 bfd_reloc_status_type status; 2527 bfd_boolean relocatable; 2528 2529 relocatable = (output_bfd != NULL); 2530 2531 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) 2532 return bfd_reloc_outofrange; 2533 2534 /* Build up the field adjustment in VAL. */ 2535 val = 0; 2536 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0) 2537 { 2538 /* Either we're calculating the final field value or we have a 2539 relocation against a section symbol. Add in the section's 2540 offset or address. */ 2541 val += symbol->section->output_section->vma; 2542 val += symbol->section->output_offset; 2543 } 2544 2545 if (!relocatable) 2546 { 2547 /* We're calculating the final field value. Add in the symbol's value 2548 and, if pc-relative, subtract the address of the field itself. */ 2549 val += symbol->value; 2550 if (reloc_entry->howto->pc_relative) 2551 { 2552 val -= input_section->output_section->vma; 2553 val -= input_section->output_offset; 2554 val -= reloc_entry->address; 2555 } 2556 } 2557 2558 /* VAL is now the final adjustment. If we're keeping this relocation 2559 in the output file, and if the relocation uses a separate addend, 2560 we just need to add VAL to that addend. Otherwise we need to add 2561 VAL to the relocation field itself. */ 2562 if (relocatable && !reloc_entry->howto->partial_inplace) 2563 reloc_entry->addend += val; 2564 else 2565 { 2566 bfd_byte *location = (bfd_byte *) data + reloc_entry->address; 2567 2568 /* Add in the separate addend, if any. */ 2569 val += reloc_entry->addend; 2570 2571 /* Add VAL to the relocation field. */ 2572 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE, 2573 location); 2574 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, 2575 location); 2576 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE, 2577 location); 2578 2579 if (status != bfd_reloc_ok) 2580 return status; 2581 } 2582 2583 if (relocatable) 2584 reloc_entry->address += input_section->output_offset; 2585 2586 return bfd_reloc_ok; 2587 } 2588 2589 /* Swap an entry in a .gptab section. Note that these routines rely 2590 on the equivalence of the two elements of the union. */ 2591 2592 static void 2593 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex, 2594 Elf32_gptab *in) 2595 { 2596 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value); 2597 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes); 2598 } 2599 2600 static void 2601 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in, 2602 Elf32_External_gptab *ex) 2603 { 2604 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value); 2605 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes); 2606 } 2607 2608 static void 2609 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in, 2610 Elf32_External_compact_rel *ex) 2611 { 2612 H_PUT_32 (abfd, in->id1, ex->id1); 2613 H_PUT_32 (abfd, in->num, ex->num); 2614 H_PUT_32 (abfd, in->id2, ex->id2); 2615 H_PUT_32 (abfd, in->offset, ex->offset); 2616 H_PUT_32 (abfd, in->reserved0, ex->reserved0); 2617 H_PUT_32 (abfd, in->reserved1, ex->reserved1); 2618 } 2619 2620 static void 2621 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in, 2622 Elf32_External_crinfo *ex) 2623 { 2624 unsigned long l; 2625 2626 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH) 2627 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH) 2628 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH) 2629 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH)); 2630 H_PUT_32 (abfd, l, ex->info); 2631 H_PUT_32 (abfd, in->konst, ex->konst); 2632 H_PUT_32 (abfd, in->vaddr, ex->vaddr); 2633 } 2634 2635 /* A .reginfo section holds a single Elf32_RegInfo structure. These 2636 routines swap this structure in and out. They are used outside of 2637 BFD, so they are globally visible. */ 2638 2639 void 2640 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex, 2641 Elf32_RegInfo *in) 2642 { 2643 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); 2644 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); 2645 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); 2646 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); 2647 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); 2648 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value); 2649 } 2650 2651 void 2652 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in, 2653 Elf32_External_RegInfo *ex) 2654 { 2655 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); 2656 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); 2657 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); 2658 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); 2659 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); 2660 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value); 2661 } 2662 2663 /* In the 64 bit ABI, the .MIPS.options section holds register 2664 information in an Elf64_Reginfo structure. These routines swap 2665 them in and out. They are globally visible because they are used 2666 outside of BFD. These routines are here so that gas can call them 2667 without worrying about whether the 64 bit ABI has been included. */ 2668 2669 void 2670 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex, 2671 Elf64_Internal_RegInfo *in) 2672 { 2673 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); 2674 in->ri_pad = H_GET_32 (abfd, ex->ri_pad); 2675 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); 2676 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); 2677 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); 2678 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); 2679 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value); 2680 } 2681 2682 void 2683 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in, 2684 Elf64_External_RegInfo *ex) 2685 { 2686 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); 2687 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad); 2688 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); 2689 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); 2690 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); 2691 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); 2692 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value); 2693 } 2694 2695 /* Swap in an options header. */ 2696 2697 void 2698 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex, 2699 Elf_Internal_Options *in) 2700 { 2701 in->kind = H_GET_8 (abfd, ex->kind); 2702 in->size = H_GET_8 (abfd, ex->size); 2703 in->section = H_GET_16 (abfd, ex->section); 2704 in->info = H_GET_32 (abfd, ex->info); 2705 } 2706 2707 /* Swap out an options header. */ 2708 2709 void 2710 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in, 2711 Elf_External_Options *ex) 2712 { 2713 H_PUT_8 (abfd, in->kind, ex->kind); 2714 H_PUT_8 (abfd, in->size, ex->size); 2715 H_PUT_16 (abfd, in->section, ex->section); 2716 H_PUT_32 (abfd, in->info, ex->info); 2717 } 2718 2719 /* Swap in an abiflags structure. */ 2720 2721 void 2722 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd, 2723 const Elf_External_ABIFlags_v0 *ex, 2724 Elf_Internal_ABIFlags_v0 *in) 2725 { 2726 in->version = H_GET_16 (abfd, ex->version); 2727 in->isa_level = H_GET_8 (abfd, ex->isa_level); 2728 in->isa_rev = H_GET_8 (abfd, ex->isa_rev); 2729 in->gpr_size = H_GET_8 (abfd, ex->gpr_size); 2730 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size); 2731 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size); 2732 in->fp_abi = H_GET_8 (abfd, ex->fp_abi); 2733 in->isa_ext = H_GET_32 (abfd, ex->isa_ext); 2734 in->ases = H_GET_32 (abfd, ex->ases); 2735 in->flags1 = H_GET_32 (abfd, ex->flags1); 2736 in->flags2 = H_GET_32 (abfd, ex->flags2); 2737 } 2738 2739 /* Swap out an abiflags structure. */ 2740 2741 void 2742 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd, 2743 const Elf_Internal_ABIFlags_v0 *in, 2744 Elf_External_ABIFlags_v0 *ex) 2745 { 2746 H_PUT_16 (abfd, in->version, ex->version); 2747 H_PUT_8 (abfd, in->isa_level, ex->isa_level); 2748 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev); 2749 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size); 2750 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size); 2751 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size); 2752 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi); 2753 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext); 2754 H_PUT_32 (abfd, in->ases, ex->ases); 2755 H_PUT_32 (abfd, in->flags1, ex->flags1); 2756 H_PUT_32 (abfd, in->flags2, ex->flags2); 2757 } 2758 2759 /* This function is called via qsort() to sort the dynamic relocation 2760 entries by increasing r_symndx value. */ 2761 2762 static int 2763 sort_dynamic_relocs (const void *arg1, const void *arg2) 2764 { 2765 Elf_Internal_Rela int_reloc1; 2766 Elf_Internal_Rela int_reloc2; 2767 int diff; 2768 2769 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1); 2770 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2); 2771 2772 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info); 2773 if (diff != 0) 2774 return diff; 2775 2776 if (int_reloc1.r_offset < int_reloc2.r_offset) 2777 return -1; 2778 if (int_reloc1.r_offset > int_reloc2.r_offset) 2779 return 1; 2780 return 0; 2781 } 2782 2783 /* Like sort_dynamic_relocs, but used for elf64 relocations. */ 2784 2785 static int 2786 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED, 2787 const void *arg2 ATTRIBUTE_UNUSED) 2788 { 2789 #ifdef BFD64 2790 Elf_Internal_Rela int_reloc1[3]; 2791 Elf_Internal_Rela int_reloc2[3]; 2792 2793 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) 2794 (reldyn_sorting_bfd, arg1, int_reloc1); 2795 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) 2796 (reldyn_sorting_bfd, arg2, int_reloc2); 2797 2798 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info)) 2799 return -1; 2800 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info)) 2801 return 1; 2802 2803 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset) 2804 return -1; 2805 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset) 2806 return 1; 2807 return 0; 2808 #else 2809 abort (); 2810 #endif 2811 } 2812 2813 2814 /* This routine is used to write out ECOFF debugging external symbol 2815 information. It is called via mips_elf_link_hash_traverse. The 2816 ECOFF external symbol information must match the ELF external 2817 symbol information. Unfortunately, at this point we don't know 2818 whether a symbol is required by reloc information, so the two 2819 tables may wind up being different. We must sort out the external 2820 symbol information before we can set the final size of the .mdebug 2821 section, and we must set the size of the .mdebug section before we 2822 can relocate any sections, and we can't know which symbols are 2823 required by relocation until we relocate the sections. 2824 Fortunately, it is relatively unlikely that any symbol will be 2825 stripped but required by a reloc. In particular, it can not happen 2826 when generating a final executable. */ 2827 2828 static bfd_boolean 2829 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data) 2830 { 2831 struct extsym_info *einfo = data; 2832 bfd_boolean strip; 2833 asection *sec, *output_section; 2834 2835 if (h->root.indx == -2) 2836 strip = FALSE; 2837 else if ((h->root.def_dynamic 2838 || h->root.ref_dynamic 2839 || h->root.type == bfd_link_hash_new) 2840 && !h->root.def_regular 2841 && !h->root.ref_regular) 2842 strip = TRUE; 2843 else if (einfo->info->strip == strip_all 2844 || (einfo->info->strip == strip_some 2845 && bfd_hash_lookup (einfo->info->keep_hash, 2846 h->root.root.root.string, 2847 FALSE, FALSE) == NULL)) 2848 strip = TRUE; 2849 else 2850 strip = FALSE; 2851 2852 if (strip) 2853 return TRUE; 2854 2855 if (h->esym.ifd == -2) 2856 { 2857 h->esym.jmptbl = 0; 2858 h->esym.cobol_main = 0; 2859 h->esym.weakext = 0; 2860 h->esym.reserved = 0; 2861 h->esym.ifd = ifdNil; 2862 h->esym.asym.value = 0; 2863 h->esym.asym.st = stGlobal; 2864 2865 if (h->root.root.type == bfd_link_hash_undefined 2866 || h->root.root.type == bfd_link_hash_undefweak) 2867 { 2868 const char *name; 2869 2870 /* Use undefined class. Also, set class and type for some 2871 special symbols. */ 2872 name = h->root.root.root.string; 2873 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 2874 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) 2875 { 2876 h->esym.asym.sc = scData; 2877 h->esym.asym.st = stLabel; 2878 h->esym.asym.value = 0; 2879 } 2880 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) 2881 { 2882 h->esym.asym.sc = scAbs; 2883 h->esym.asym.st = stLabel; 2884 h->esym.asym.value = 2885 mips_elf_hash_table (einfo->info)->procedure_count; 2886 } 2887 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd)) 2888 { 2889 h->esym.asym.sc = scAbs; 2890 h->esym.asym.st = stLabel; 2891 h->esym.asym.value = elf_gp (einfo->abfd); 2892 } 2893 else 2894 h->esym.asym.sc = scUndefined; 2895 } 2896 else if (h->root.root.type != bfd_link_hash_defined 2897 && h->root.root.type != bfd_link_hash_defweak) 2898 h->esym.asym.sc = scAbs; 2899 else 2900 { 2901 const char *name; 2902 2903 sec = h->root.root.u.def.section; 2904 output_section = sec->output_section; 2905 2906 /* When making a shared library and symbol h is the one from 2907 the another shared library, OUTPUT_SECTION may be null. */ 2908 if (output_section == NULL) 2909 h->esym.asym.sc = scUndefined; 2910 else 2911 { 2912 name = bfd_section_name (output_section->owner, output_section); 2913 2914 if (strcmp (name, ".text") == 0) 2915 h->esym.asym.sc = scText; 2916 else if (strcmp (name, ".data") == 0) 2917 h->esym.asym.sc = scData; 2918 else if (strcmp (name, ".sdata") == 0) 2919 h->esym.asym.sc = scSData; 2920 else if (strcmp (name, ".rodata") == 0 2921 || strcmp (name, ".rdata") == 0) 2922 h->esym.asym.sc = scRData; 2923 else if (strcmp (name, ".bss") == 0) 2924 h->esym.asym.sc = scBss; 2925 else if (strcmp (name, ".sbss") == 0) 2926 h->esym.asym.sc = scSBss; 2927 else if (strcmp (name, ".init") == 0) 2928 h->esym.asym.sc = scInit; 2929 else if (strcmp (name, ".fini") == 0) 2930 h->esym.asym.sc = scFini; 2931 else 2932 h->esym.asym.sc = scAbs; 2933 } 2934 } 2935 2936 h->esym.asym.reserved = 0; 2937 h->esym.asym.index = indexNil; 2938 } 2939 2940 if (h->root.root.type == bfd_link_hash_common) 2941 h->esym.asym.value = h->root.root.u.c.size; 2942 else if (h->root.root.type == bfd_link_hash_defined 2943 || h->root.root.type == bfd_link_hash_defweak) 2944 { 2945 if (h->esym.asym.sc == scCommon) 2946 h->esym.asym.sc = scBss; 2947 else if (h->esym.asym.sc == scSCommon) 2948 h->esym.asym.sc = scSBss; 2949 2950 sec = h->root.root.u.def.section; 2951 output_section = sec->output_section; 2952 if (output_section != NULL) 2953 h->esym.asym.value = (h->root.root.u.def.value 2954 + sec->output_offset 2955 + output_section->vma); 2956 else 2957 h->esym.asym.value = 0; 2958 } 2959 else 2960 { 2961 struct mips_elf_link_hash_entry *hd = h; 2962 2963 while (hd->root.root.type == bfd_link_hash_indirect) 2964 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link; 2965 2966 if (hd->needs_lazy_stub) 2967 { 2968 BFD_ASSERT (hd->root.plt.plist != NULL); 2969 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE); 2970 /* Set type and value for a symbol with a function stub. */ 2971 h->esym.asym.st = stProc; 2972 sec = hd->root.root.u.def.section; 2973 if (sec == NULL) 2974 h->esym.asym.value = 0; 2975 else 2976 { 2977 output_section = sec->output_section; 2978 if (output_section != NULL) 2979 h->esym.asym.value = (hd->root.plt.plist->stub_offset 2980 + sec->output_offset 2981 + output_section->vma); 2982 else 2983 h->esym.asym.value = 0; 2984 } 2985 } 2986 } 2987 2988 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap, 2989 h->root.root.root.string, 2990 &h->esym)) 2991 { 2992 einfo->failed = TRUE; 2993 return FALSE; 2994 } 2995 2996 return TRUE; 2997 } 2998 2999 /* A comparison routine used to sort .gptab entries. */ 3000 3001 static int 3002 gptab_compare (const void *p1, const void *p2) 3003 { 3004 const Elf32_gptab *a1 = p1; 3005 const Elf32_gptab *a2 = p2; 3006 3007 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value; 3008 } 3009 3010 /* Functions to manage the got entry hash table. */ 3011 3012 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit 3013 hash number. */ 3014 3015 static INLINE hashval_t 3016 mips_elf_hash_bfd_vma (bfd_vma addr) 3017 { 3018 #ifdef BFD64 3019 return addr + (addr >> 32); 3020 #else 3021 return addr; 3022 #endif 3023 } 3024 3025 static hashval_t 3026 mips_elf_got_entry_hash (const void *entry_) 3027 { 3028 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_; 3029 3030 return (entry->symndx 3031 + ((entry->tls_type == GOT_TLS_LDM) << 18) 3032 + (entry->tls_type == GOT_TLS_LDM ? 0 3033 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address) 3034 : entry->symndx >= 0 ? (entry->abfd->id 3035 + mips_elf_hash_bfd_vma (entry->d.addend)) 3036 : entry->d.h->root.root.root.hash)); 3037 } 3038 3039 static int 3040 mips_elf_got_entry_eq (const void *entry1, const void *entry2) 3041 { 3042 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1; 3043 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2; 3044 3045 return (e1->symndx == e2->symndx 3046 && e1->tls_type == e2->tls_type 3047 && (e1->tls_type == GOT_TLS_LDM ? TRUE 3048 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address 3049 : e1->symndx >= 0 ? (e1->abfd == e2->abfd 3050 && e1->d.addend == e2->d.addend) 3051 : e2->abfd && e1->d.h == e2->d.h)); 3052 } 3053 3054 static hashval_t 3055 mips_got_page_ref_hash (const void *ref_) 3056 { 3057 const struct mips_got_page_ref *ref; 3058 3059 ref = (const struct mips_got_page_ref *) ref_; 3060 return ((ref->symndx >= 0 3061 ? (hashval_t) (ref->u.abfd->id + ref->symndx) 3062 : ref->u.h->root.root.root.hash) 3063 + mips_elf_hash_bfd_vma (ref->addend)); 3064 } 3065 3066 static int 3067 mips_got_page_ref_eq (const void *ref1_, const void *ref2_) 3068 { 3069 const struct mips_got_page_ref *ref1, *ref2; 3070 3071 ref1 = (const struct mips_got_page_ref *) ref1_; 3072 ref2 = (const struct mips_got_page_ref *) ref2_; 3073 return (ref1->symndx == ref2->symndx 3074 && (ref1->symndx < 0 3075 ? ref1->u.h == ref2->u.h 3076 : ref1->u.abfd == ref2->u.abfd) 3077 && ref1->addend == ref2->addend); 3078 } 3079 3080 static hashval_t 3081 mips_got_page_entry_hash (const void *entry_) 3082 { 3083 const struct mips_got_page_entry *entry; 3084 3085 entry = (const struct mips_got_page_entry *) entry_; 3086 return entry->sec->id; 3087 } 3088 3089 static int 3090 mips_got_page_entry_eq (const void *entry1_, const void *entry2_) 3091 { 3092 const struct mips_got_page_entry *entry1, *entry2; 3093 3094 entry1 = (const struct mips_got_page_entry *) entry1_; 3095 entry2 = (const struct mips_got_page_entry *) entry2_; 3096 return entry1->sec == entry2->sec; 3097 } 3098 3099 /* Create and return a new mips_got_info structure. */ 3100 3101 static struct mips_got_info * 3102 mips_elf_create_got_info (bfd *abfd) 3103 { 3104 struct mips_got_info *g; 3105 3106 g = bfd_zalloc (abfd, sizeof (struct mips_got_info)); 3107 if (g == NULL) 3108 return NULL; 3109 3110 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash, 3111 mips_elf_got_entry_eq, NULL); 3112 if (g->got_entries == NULL) 3113 return NULL; 3114 3115 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash, 3116 mips_got_page_ref_eq, NULL); 3117 if (g->got_page_refs == NULL) 3118 return NULL; 3119 3120 return g; 3121 } 3122 3123 /* Return the GOT info for input bfd ABFD, trying to create a new one if 3124 CREATE_P and if ABFD doesn't already have a GOT. */ 3125 3126 static struct mips_got_info * 3127 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p) 3128 { 3129 struct mips_elf_obj_tdata *tdata; 3130 3131 if (!is_mips_elf (abfd)) 3132 return NULL; 3133 3134 tdata = mips_elf_tdata (abfd); 3135 if (!tdata->got && create_p) 3136 tdata->got = mips_elf_create_got_info (abfd); 3137 return tdata->got; 3138 } 3139 3140 /* Record that ABFD should use output GOT G. */ 3141 3142 static void 3143 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g) 3144 { 3145 struct mips_elf_obj_tdata *tdata; 3146 3147 BFD_ASSERT (is_mips_elf (abfd)); 3148 tdata = mips_elf_tdata (abfd); 3149 if (tdata->got) 3150 { 3151 /* The GOT structure itself and the hash table entries are 3152 allocated to a bfd, but the hash tables aren't. */ 3153 htab_delete (tdata->got->got_entries); 3154 htab_delete (tdata->got->got_page_refs); 3155 if (tdata->got->got_page_entries) 3156 htab_delete (tdata->got->got_page_entries); 3157 } 3158 tdata->got = g; 3159 } 3160 3161 /* Return the dynamic relocation section. If it doesn't exist, try to 3162 create a new it if CREATE_P, otherwise return NULL. Also return NULL 3163 if creation fails. */ 3164 3165 static asection * 3166 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p) 3167 { 3168 const char *dname; 3169 asection *sreloc; 3170 bfd *dynobj; 3171 3172 dname = MIPS_ELF_REL_DYN_NAME (info); 3173 dynobj = elf_hash_table (info)->dynobj; 3174 sreloc = bfd_get_linker_section (dynobj, dname); 3175 if (sreloc == NULL && create_p) 3176 { 3177 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname, 3178 (SEC_ALLOC 3179 | SEC_LOAD 3180 | SEC_HAS_CONTENTS 3181 | SEC_IN_MEMORY 3182 | SEC_LINKER_CREATED 3183 | SEC_READONLY)); 3184 if (sreloc == NULL 3185 || ! bfd_set_section_alignment (dynobj, sreloc, 3186 MIPS_ELF_LOG_FILE_ALIGN (dynobj))) 3187 return NULL; 3188 } 3189 return sreloc; 3190 } 3191 3192 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */ 3193 3194 static int 3195 mips_elf_reloc_tls_type (unsigned int r_type) 3196 { 3197 if (tls_gd_reloc_p (r_type)) 3198 return GOT_TLS_GD; 3199 3200 if (tls_ldm_reloc_p (r_type)) 3201 return GOT_TLS_LDM; 3202 3203 if (tls_gottprel_reloc_p (r_type)) 3204 return GOT_TLS_IE; 3205 3206 return GOT_TLS_NONE; 3207 } 3208 3209 /* Return the number of GOT slots needed for GOT TLS type TYPE. */ 3210 3211 static int 3212 mips_tls_got_entries (unsigned int type) 3213 { 3214 switch (type) 3215 { 3216 case GOT_TLS_GD: 3217 case GOT_TLS_LDM: 3218 return 2; 3219 3220 case GOT_TLS_IE: 3221 return 1; 3222 3223 case GOT_TLS_NONE: 3224 return 0; 3225 } 3226 abort (); 3227 } 3228 3229 /* Count the number of relocations needed for a TLS GOT entry, with 3230 access types from TLS_TYPE, and symbol H (or a local symbol if H 3231 is NULL). */ 3232 3233 static int 3234 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type, 3235 struct elf_link_hash_entry *h) 3236 { 3237 int indx = 0; 3238 bfd_boolean need_relocs = FALSE; 3239 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created; 3240 3241 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h) 3242 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h))) 3243 indx = h->dynindx; 3244 3245 if ((bfd_link_pic (info) || indx != 0) 3246 && (h == NULL 3247 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 3248 || h->root.type != bfd_link_hash_undefweak)) 3249 need_relocs = TRUE; 3250 3251 if (!need_relocs) 3252 return 0; 3253 3254 switch (tls_type) 3255 { 3256 case GOT_TLS_GD: 3257 return indx != 0 ? 2 : 1; 3258 3259 case GOT_TLS_IE: 3260 return 1; 3261 3262 case GOT_TLS_LDM: 3263 return bfd_link_pic (info) ? 1 : 0; 3264 3265 default: 3266 return 0; 3267 } 3268 } 3269 3270 /* Add the number of GOT entries and TLS relocations required by ENTRY 3271 to G. */ 3272 3273 static void 3274 mips_elf_count_got_entry (struct bfd_link_info *info, 3275 struct mips_got_info *g, 3276 struct mips_got_entry *entry) 3277 { 3278 if (entry->tls_type) 3279 { 3280 g->tls_gotno += mips_tls_got_entries (entry->tls_type); 3281 g->relocs += mips_tls_got_relocs (info, entry->tls_type, 3282 entry->symndx < 0 3283 ? &entry->d.h->root : NULL); 3284 } 3285 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE) 3286 g->local_gotno += 1; 3287 else 3288 g->global_gotno += 1; 3289 } 3290 3291 /* Output a simple dynamic relocation into SRELOC. */ 3292 3293 static void 3294 mips_elf_output_dynamic_relocation (bfd *output_bfd, 3295 asection *sreloc, 3296 unsigned long reloc_index, 3297 unsigned long indx, 3298 int r_type, 3299 bfd_vma offset) 3300 { 3301 Elf_Internal_Rela rel[3]; 3302 3303 memset (rel, 0, sizeof (rel)); 3304 3305 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type); 3306 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; 3307 3308 if (ABI_64_P (output_bfd)) 3309 { 3310 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) 3311 (output_bfd, &rel[0], 3312 (sreloc->contents 3313 + reloc_index * sizeof (Elf64_Mips_External_Rel))); 3314 } 3315 else 3316 bfd_elf32_swap_reloc_out 3317 (output_bfd, &rel[0], 3318 (sreloc->contents 3319 + reloc_index * sizeof (Elf32_External_Rel))); 3320 } 3321 3322 /* Initialize a set of TLS GOT entries for one symbol. */ 3323 3324 static void 3325 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info, 3326 struct mips_got_entry *entry, 3327 struct mips_elf_link_hash_entry *h, 3328 bfd_vma value) 3329 { 3330 struct mips_elf_link_hash_table *htab; 3331 int indx; 3332 asection *sreloc, *sgot; 3333 bfd_vma got_offset, got_offset2; 3334 bfd_boolean need_relocs = FALSE; 3335 3336 htab = mips_elf_hash_table (info); 3337 if (htab == NULL) 3338 return; 3339 3340 sgot = htab->sgot; 3341 3342 indx = 0; 3343 if (h != NULL) 3344 { 3345 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created; 3346 3347 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), 3348 &h->root) 3349 && (!bfd_link_pic (info) 3350 || !SYMBOL_REFERENCES_LOCAL (info, &h->root))) 3351 indx = h->root.dynindx; 3352 } 3353 3354 if (entry->tls_initialized) 3355 return; 3356 3357 if ((bfd_link_pic (info) || indx != 0) 3358 && (h == NULL 3359 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT 3360 || h->root.type != bfd_link_hash_undefweak)) 3361 need_relocs = TRUE; 3362 3363 /* MINUS_ONE means the symbol is not defined in this object. It may not 3364 be defined at all; assume that the value doesn't matter in that 3365 case. Otherwise complain if we would use the value. */ 3366 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs) 3367 || h->root.root.type == bfd_link_hash_undefweak); 3368 3369 /* Emit necessary relocations. */ 3370 sreloc = mips_elf_rel_dyn_section (info, FALSE); 3371 got_offset = entry->gotidx; 3372 3373 switch (entry->tls_type) 3374 { 3375 case GOT_TLS_GD: 3376 /* General Dynamic. */ 3377 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd); 3378 3379 if (need_relocs) 3380 { 3381 mips_elf_output_dynamic_relocation 3382 (abfd, sreloc, sreloc->reloc_count++, indx, 3383 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32, 3384 sgot->output_offset + sgot->output_section->vma + got_offset); 3385 3386 if (indx) 3387 mips_elf_output_dynamic_relocation 3388 (abfd, sreloc, sreloc->reloc_count++, indx, 3389 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32, 3390 sgot->output_offset + sgot->output_section->vma + got_offset2); 3391 else 3392 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info), 3393 sgot->contents + got_offset2); 3394 } 3395 else 3396 { 3397 MIPS_ELF_PUT_WORD (abfd, 1, 3398 sgot->contents + got_offset); 3399 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info), 3400 sgot->contents + got_offset2); 3401 } 3402 break; 3403 3404 case GOT_TLS_IE: 3405 /* Initial Exec model. */ 3406 if (need_relocs) 3407 { 3408 if (indx == 0) 3409 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma, 3410 sgot->contents + got_offset); 3411 else 3412 MIPS_ELF_PUT_WORD (abfd, 0, 3413 sgot->contents + got_offset); 3414 3415 mips_elf_output_dynamic_relocation 3416 (abfd, sreloc, sreloc->reloc_count++, indx, 3417 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32, 3418 sgot->output_offset + sgot->output_section->vma + got_offset); 3419 } 3420 else 3421 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info), 3422 sgot->contents + got_offset); 3423 break; 3424 3425 case GOT_TLS_LDM: 3426 /* The initial offset is zero, and the LD offsets will include the 3427 bias by DTP_OFFSET. */ 3428 MIPS_ELF_PUT_WORD (abfd, 0, 3429 sgot->contents + got_offset 3430 + MIPS_ELF_GOT_SIZE (abfd)); 3431 3432 if (!bfd_link_pic (info)) 3433 MIPS_ELF_PUT_WORD (abfd, 1, 3434 sgot->contents + got_offset); 3435 else 3436 mips_elf_output_dynamic_relocation 3437 (abfd, sreloc, sreloc->reloc_count++, indx, 3438 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32, 3439 sgot->output_offset + sgot->output_section->vma + got_offset); 3440 break; 3441 3442 default: 3443 abort (); 3444 } 3445 3446 entry->tls_initialized = TRUE; 3447 } 3448 3449 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry 3450 for global symbol H. .got.plt comes before the GOT, so the offset 3451 will be negative. */ 3452 3453 static bfd_vma 3454 mips_elf_gotplt_index (struct bfd_link_info *info, 3455 struct elf_link_hash_entry *h) 3456 { 3457 bfd_vma got_address, got_value; 3458 struct mips_elf_link_hash_table *htab; 3459 3460 htab = mips_elf_hash_table (info); 3461 BFD_ASSERT (htab != NULL); 3462 3463 BFD_ASSERT (h->plt.plist != NULL); 3464 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE); 3465 3466 /* Calculate the address of the associated .got.plt entry. */ 3467 got_address = (htab->sgotplt->output_section->vma 3468 + htab->sgotplt->output_offset 3469 + (h->plt.plist->gotplt_index 3470 * MIPS_ELF_GOT_SIZE (info->output_bfd))); 3471 3472 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */ 3473 got_value = (htab->root.hgot->root.u.def.section->output_section->vma 3474 + htab->root.hgot->root.u.def.section->output_offset 3475 + htab->root.hgot->root.u.def.value); 3476 3477 return got_address - got_value; 3478 } 3479 3480 /* Return the GOT offset for address VALUE. If there is not yet a GOT 3481 entry for this value, create one. If R_SYMNDX refers to a TLS symbol, 3482 create a TLS GOT entry instead. Return -1 if no satisfactory GOT 3483 offset can be found. */ 3484 3485 static bfd_vma 3486 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, 3487 bfd_vma value, unsigned long r_symndx, 3488 struct mips_elf_link_hash_entry *h, int r_type) 3489 { 3490 struct mips_elf_link_hash_table *htab; 3491 struct mips_got_entry *entry; 3492 3493 htab = mips_elf_hash_table (info); 3494 BFD_ASSERT (htab != NULL); 3495 3496 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 3497 r_symndx, h, r_type); 3498 if (!entry) 3499 return MINUS_ONE; 3500 3501 if (entry->tls_type) 3502 mips_elf_initialize_tls_slots (abfd, info, entry, h, value); 3503 return entry->gotidx; 3504 } 3505 3506 /* Return the GOT index of global symbol H in the primary GOT. */ 3507 3508 static bfd_vma 3509 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info, 3510 struct elf_link_hash_entry *h) 3511 { 3512 struct mips_elf_link_hash_table *htab; 3513 long global_got_dynindx; 3514 struct mips_got_info *g; 3515 bfd_vma got_index; 3516 3517 htab = mips_elf_hash_table (info); 3518 BFD_ASSERT (htab != NULL); 3519 3520 global_got_dynindx = 0; 3521 if (htab->global_gotsym != NULL) 3522 global_got_dynindx = htab->global_gotsym->dynindx; 3523 3524 /* Once we determine the global GOT entry with the lowest dynamic 3525 symbol table index, we must put all dynamic symbols with greater 3526 indices into the primary GOT. That makes it easy to calculate the 3527 GOT offset. */ 3528 BFD_ASSERT (h->dynindx >= global_got_dynindx); 3529 g = mips_elf_bfd_got (obfd, FALSE); 3530 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno) 3531 * MIPS_ELF_GOT_SIZE (obfd)); 3532 BFD_ASSERT (got_index < htab->sgot->size); 3533 3534 return got_index; 3535 } 3536 3537 /* Return the GOT index for the global symbol indicated by H, which is 3538 referenced by a relocation of type R_TYPE in IBFD. */ 3539 3540 static bfd_vma 3541 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd, 3542 struct elf_link_hash_entry *h, int r_type) 3543 { 3544 struct mips_elf_link_hash_table *htab; 3545 struct mips_got_info *g; 3546 struct mips_got_entry lookup, *entry; 3547 bfd_vma gotidx; 3548 3549 htab = mips_elf_hash_table (info); 3550 BFD_ASSERT (htab != NULL); 3551 3552 g = mips_elf_bfd_got (ibfd, FALSE); 3553 BFD_ASSERT (g); 3554 3555 lookup.tls_type = mips_elf_reloc_tls_type (r_type); 3556 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE)) 3557 return mips_elf_primary_global_got_index (obfd, info, h); 3558 3559 lookup.abfd = ibfd; 3560 lookup.symndx = -1; 3561 lookup.d.h = (struct mips_elf_link_hash_entry *) h; 3562 entry = htab_find (g->got_entries, &lookup); 3563 BFD_ASSERT (entry); 3564 3565 gotidx = entry->gotidx; 3566 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size); 3567 3568 if (lookup.tls_type) 3569 { 3570 bfd_vma value = MINUS_ONE; 3571 3572 if ((h->root.type == bfd_link_hash_defined 3573 || h->root.type == bfd_link_hash_defweak) 3574 && h->root.u.def.section->output_section) 3575 value = (h->root.u.def.value 3576 + h->root.u.def.section->output_offset 3577 + h->root.u.def.section->output_section->vma); 3578 3579 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value); 3580 } 3581 return gotidx; 3582 } 3583 3584 /* Find a GOT page entry that points to within 32KB of VALUE. These 3585 entries are supposed to be placed at small offsets in the GOT, i.e., 3586 within 32KB of GP. Return the index of the GOT entry, or -1 if no 3587 entry could be created. If OFFSETP is nonnull, use it to return the 3588 offset of the GOT entry from VALUE. */ 3589 3590 static bfd_vma 3591 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, 3592 bfd_vma value, bfd_vma *offsetp) 3593 { 3594 bfd_vma page, got_index; 3595 struct mips_got_entry *entry; 3596 3597 page = (value + 0x8000) & ~(bfd_vma) 0xffff; 3598 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0, 3599 NULL, R_MIPS_GOT_PAGE); 3600 3601 if (!entry) 3602 return MINUS_ONE; 3603 3604 got_index = entry->gotidx; 3605 3606 if (offsetp) 3607 *offsetp = value - entry->d.address; 3608 3609 return got_index; 3610 } 3611 3612 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE. 3613 EXTERNAL is true if the relocation was originally against a global 3614 symbol that binds locally. */ 3615 3616 static bfd_vma 3617 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, 3618 bfd_vma value, bfd_boolean external) 3619 { 3620 struct mips_got_entry *entry; 3621 3622 /* GOT16 relocations against local symbols are followed by a LO16 3623 relocation; those against global symbols are not. Thus if the 3624 symbol was originally local, the GOT16 relocation should load the 3625 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */ 3626 if (! external) 3627 value = mips_elf_high (value) << 16; 3628 3629 /* It doesn't matter whether the original relocation was R_MIPS_GOT16, 3630 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the 3631 same in all cases. */ 3632 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0, 3633 NULL, R_MIPS_GOT16); 3634 if (entry) 3635 return entry->gotidx; 3636 else 3637 return MINUS_ONE; 3638 } 3639 3640 /* Returns the offset for the entry at the INDEXth position 3641 in the GOT. */ 3642 3643 static bfd_vma 3644 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd, 3645 bfd *input_bfd, bfd_vma got_index) 3646 { 3647 struct mips_elf_link_hash_table *htab; 3648 asection *sgot; 3649 bfd_vma gp; 3650 3651 htab = mips_elf_hash_table (info); 3652 BFD_ASSERT (htab != NULL); 3653 3654 sgot = htab->sgot; 3655 gp = _bfd_get_gp_value (output_bfd) 3656 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd); 3657 3658 return sgot->output_section->vma + sgot->output_offset + got_index - gp; 3659 } 3660 3661 /* Create and return a local GOT entry for VALUE, which was calculated 3662 from a symbol belonging to INPUT_SECTON. Return NULL if it could not 3663 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry 3664 instead. */ 3665 3666 static struct mips_got_entry * 3667 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info, 3668 bfd *ibfd, bfd_vma value, 3669 unsigned long r_symndx, 3670 struct mips_elf_link_hash_entry *h, 3671 int r_type) 3672 { 3673 struct mips_got_entry lookup, *entry; 3674 void **loc; 3675 struct mips_got_info *g; 3676 struct mips_elf_link_hash_table *htab; 3677 bfd_vma gotidx; 3678 3679 htab = mips_elf_hash_table (info); 3680 BFD_ASSERT (htab != NULL); 3681 3682 g = mips_elf_bfd_got (ibfd, FALSE); 3683 if (g == NULL) 3684 { 3685 g = mips_elf_bfd_got (abfd, FALSE); 3686 BFD_ASSERT (g != NULL); 3687 } 3688 3689 /* This function shouldn't be called for symbols that live in the global 3690 area of the GOT. */ 3691 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE); 3692 3693 lookup.tls_type = mips_elf_reloc_tls_type (r_type); 3694 if (lookup.tls_type) 3695 { 3696 lookup.abfd = ibfd; 3697 if (tls_ldm_reloc_p (r_type)) 3698 { 3699 lookup.symndx = 0; 3700 lookup.d.addend = 0; 3701 } 3702 else if (h == NULL) 3703 { 3704 lookup.symndx = r_symndx; 3705 lookup.d.addend = 0; 3706 } 3707 else 3708 { 3709 lookup.symndx = -1; 3710 lookup.d.h = h; 3711 } 3712 3713 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup); 3714 BFD_ASSERT (entry); 3715 3716 gotidx = entry->gotidx; 3717 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size); 3718 3719 return entry; 3720 } 3721 3722 lookup.abfd = NULL; 3723 lookup.symndx = -1; 3724 lookup.d.address = value; 3725 loc = htab_find_slot (g->got_entries, &lookup, INSERT); 3726 if (!loc) 3727 return NULL; 3728 3729 entry = (struct mips_got_entry *) *loc; 3730 if (entry) 3731 return entry; 3732 3733 if (g->assigned_low_gotno > g->assigned_high_gotno) 3734 { 3735 /* We didn't allocate enough space in the GOT. */ 3736 (*_bfd_error_handler) 3737 (_("not enough GOT space for local GOT entries")); 3738 bfd_set_error (bfd_error_bad_value); 3739 return NULL; 3740 } 3741 3742 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry)); 3743 if (!entry) 3744 return NULL; 3745 3746 if (got16_reloc_p (r_type) 3747 || call16_reloc_p (r_type) 3748 || got_page_reloc_p (r_type) 3749 || got_disp_reloc_p (r_type)) 3750 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++; 3751 else 3752 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--; 3753 3754 *entry = lookup; 3755 *loc = entry; 3756 3757 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx); 3758 3759 /* These GOT entries need a dynamic relocation on VxWorks. */ 3760 if (htab->is_vxworks) 3761 { 3762 Elf_Internal_Rela outrel; 3763 asection *s; 3764 bfd_byte *rloc; 3765 bfd_vma got_address; 3766 3767 s = mips_elf_rel_dyn_section (info, FALSE); 3768 got_address = (htab->sgot->output_section->vma 3769 + htab->sgot->output_offset 3770 + entry->gotidx); 3771 3772 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela)); 3773 outrel.r_offset = got_address; 3774 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32); 3775 outrel.r_addend = value; 3776 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc); 3777 } 3778 3779 return entry; 3780 } 3781 3782 /* Return the number of dynamic section symbols required by OUTPUT_BFD. 3783 The number might be exact or a worst-case estimate, depending on how 3784 much information is available to elf_backend_omit_section_dynsym at 3785 the current linking stage. */ 3786 3787 static bfd_size_type 3788 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info) 3789 { 3790 bfd_size_type count; 3791 3792 count = 0; 3793 if (bfd_link_pic (info) 3794 || elf_hash_table (info)->is_relocatable_executable) 3795 { 3796 asection *p; 3797 const struct elf_backend_data *bed; 3798 3799 bed = get_elf_backend_data (output_bfd); 3800 for (p = output_bfd->sections; p ; p = p->next) 3801 if ((p->flags & SEC_EXCLUDE) == 0 3802 && (p->flags & SEC_ALLOC) != 0 3803 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p)) 3804 ++count; 3805 } 3806 return count; 3807 } 3808 3809 /* Sort the dynamic symbol table so that symbols that need GOT entries 3810 appear towards the end. */ 3811 3812 static bfd_boolean 3813 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info) 3814 { 3815 struct mips_elf_link_hash_table *htab; 3816 struct mips_elf_hash_sort_data hsd; 3817 struct mips_got_info *g; 3818 3819 if (elf_hash_table (info)->dynsymcount == 0) 3820 return TRUE; 3821 3822 htab = mips_elf_hash_table (info); 3823 BFD_ASSERT (htab != NULL); 3824 3825 g = htab->got_info; 3826 if (g == NULL) 3827 return TRUE; 3828 3829 hsd.low = NULL; 3830 hsd.max_unref_got_dynindx 3831 = hsd.min_got_dynindx 3832 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno); 3833 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1; 3834 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *) 3835 elf_hash_table (info)), 3836 mips_elf_sort_hash_table_f, 3837 &hsd); 3838 3839 /* There should have been enough room in the symbol table to 3840 accommodate both the GOT and non-GOT symbols. */ 3841 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx); 3842 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx 3843 == elf_hash_table (info)->dynsymcount); 3844 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx 3845 == g->global_gotno); 3846 3847 /* Now we know which dynamic symbol has the lowest dynamic symbol 3848 table index in the GOT. */ 3849 htab->global_gotsym = hsd.low; 3850 3851 return TRUE; 3852 } 3853 3854 /* If H needs a GOT entry, assign it the highest available dynamic 3855 index. Otherwise, assign it the lowest available dynamic 3856 index. */ 3857 3858 static bfd_boolean 3859 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data) 3860 { 3861 struct mips_elf_hash_sort_data *hsd = data; 3862 3863 /* Symbols without dynamic symbol table entries aren't interesting 3864 at all. */ 3865 if (h->root.dynindx == -1) 3866 return TRUE; 3867 3868 switch (h->global_got_area) 3869 { 3870 case GGA_NONE: 3871 h->root.dynindx = hsd->max_non_got_dynindx++; 3872 break; 3873 3874 case GGA_NORMAL: 3875 h->root.dynindx = --hsd->min_got_dynindx; 3876 hsd->low = (struct elf_link_hash_entry *) h; 3877 break; 3878 3879 case GGA_RELOC_ONLY: 3880 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx) 3881 hsd->low = (struct elf_link_hash_entry *) h; 3882 h->root.dynindx = hsd->max_unref_got_dynindx++; 3883 break; 3884 } 3885 3886 return TRUE; 3887 } 3888 3889 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP 3890 (which is owned by the caller and shouldn't be added to the 3891 hash table directly). */ 3892 3893 static bfd_boolean 3894 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd, 3895 struct mips_got_entry *lookup) 3896 { 3897 struct mips_elf_link_hash_table *htab; 3898 struct mips_got_entry *entry; 3899 struct mips_got_info *g; 3900 void **loc, **bfd_loc; 3901 3902 /* Make sure there's a slot for this entry in the master GOT. */ 3903 htab = mips_elf_hash_table (info); 3904 g = htab->got_info; 3905 loc = htab_find_slot (g->got_entries, lookup, INSERT); 3906 if (!loc) 3907 return FALSE; 3908 3909 /* Populate the entry if it isn't already. */ 3910 entry = (struct mips_got_entry *) *loc; 3911 if (!entry) 3912 { 3913 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry)); 3914 if (!entry) 3915 return FALSE; 3916 3917 lookup->tls_initialized = FALSE; 3918 lookup->gotidx = -1; 3919 *entry = *lookup; 3920 *loc = entry; 3921 } 3922 3923 /* Reuse the same GOT entry for the BFD's GOT. */ 3924 g = mips_elf_bfd_got (abfd, TRUE); 3925 if (!g) 3926 return FALSE; 3927 3928 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT); 3929 if (!bfd_loc) 3930 return FALSE; 3931 3932 if (!*bfd_loc) 3933 *bfd_loc = entry; 3934 return TRUE; 3935 } 3936 3937 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT 3938 entry for it. FOR_CALL is true if the caller is only interested in 3939 using the GOT entry for calls. */ 3940 3941 static bfd_boolean 3942 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h, 3943 bfd *abfd, struct bfd_link_info *info, 3944 bfd_boolean for_call, int r_type) 3945 { 3946 struct mips_elf_link_hash_table *htab; 3947 struct mips_elf_link_hash_entry *hmips; 3948 struct mips_got_entry entry; 3949 unsigned char tls_type; 3950 3951 htab = mips_elf_hash_table (info); 3952 BFD_ASSERT (htab != NULL); 3953 3954 hmips = (struct mips_elf_link_hash_entry *) h; 3955 if (!for_call) 3956 hmips->got_only_for_calls = FALSE; 3957 3958 /* A global symbol in the GOT must also be in the dynamic symbol 3959 table. */ 3960 if (h->dynindx == -1) 3961 { 3962 switch (ELF_ST_VISIBILITY (h->other)) 3963 { 3964 case STV_INTERNAL: 3965 case STV_HIDDEN: 3966 _bfd_elf_link_hash_hide_symbol (info, h, TRUE); 3967 break; 3968 } 3969 if (!bfd_elf_link_record_dynamic_symbol (info, h)) 3970 return FALSE; 3971 } 3972 3973 tls_type = mips_elf_reloc_tls_type (r_type); 3974 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL) 3975 hmips->global_got_area = GGA_NORMAL; 3976 3977 entry.abfd = abfd; 3978 entry.symndx = -1; 3979 entry.d.h = (struct mips_elf_link_hash_entry *) h; 3980 entry.tls_type = tls_type; 3981 return mips_elf_record_got_entry (info, abfd, &entry); 3982 } 3983 3984 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND, 3985 where SYMNDX is a local symbol. Reserve a GOT entry for it. */ 3986 3987 static bfd_boolean 3988 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend, 3989 struct bfd_link_info *info, int r_type) 3990 { 3991 struct mips_elf_link_hash_table *htab; 3992 struct mips_got_info *g; 3993 struct mips_got_entry entry; 3994 3995 htab = mips_elf_hash_table (info); 3996 BFD_ASSERT (htab != NULL); 3997 3998 g = htab->got_info; 3999 BFD_ASSERT (g != NULL); 4000 4001 entry.abfd = abfd; 4002 entry.symndx = symndx; 4003 entry.d.addend = addend; 4004 entry.tls_type = mips_elf_reloc_tls_type (r_type); 4005 return mips_elf_record_got_entry (info, abfd, &entry); 4006 } 4007 4008 /* Record that ABFD has a page relocation against SYMNDX + ADDEND. 4009 H is the symbol's hash table entry, or null if SYMNDX is local 4010 to ABFD. */ 4011 4012 static bfd_boolean 4013 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd, 4014 long symndx, struct elf_link_hash_entry *h, 4015 bfd_signed_vma addend) 4016 { 4017 struct mips_elf_link_hash_table *htab; 4018 struct mips_got_info *g1, *g2; 4019 struct mips_got_page_ref lookup, *entry; 4020 void **loc, **bfd_loc; 4021 4022 htab = mips_elf_hash_table (info); 4023 BFD_ASSERT (htab != NULL); 4024 4025 g1 = htab->got_info; 4026 BFD_ASSERT (g1 != NULL); 4027 4028 if (h) 4029 { 4030 lookup.symndx = -1; 4031 lookup.u.h = (struct mips_elf_link_hash_entry *) h; 4032 } 4033 else 4034 { 4035 lookup.symndx = symndx; 4036 lookup.u.abfd = abfd; 4037 } 4038 lookup.addend = addend; 4039 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT); 4040 if (loc == NULL) 4041 return FALSE; 4042 4043 entry = (struct mips_got_page_ref *) *loc; 4044 if (!entry) 4045 { 4046 entry = bfd_alloc (abfd, sizeof (*entry)); 4047 if (!entry) 4048 return FALSE; 4049 4050 *entry = lookup; 4051 *loc = entry; 4052 } 4053 4054 /* Add the same entry to the BFD's GOT. */ 4055 g2 = mips_elf_bfd_got (abfd, TRUE); 4056 if (!g2) 4057 return FALSE; 4058 4059 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT); 4060 if (!bfd_loc) 4061 return FALSE; 4062 4063 if (!*bfd_loc) 4064 *bfd_loc = entry; 4065 4066 return TRUE; 4067 } 4068 4069 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */ 4070 4071 static void 4072 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info, 4073 unsigned int n) 4074 { 4075 asection *s; 4076 struct mips_elf_link_hash_table *htab; 4077 4078 htab = mips_elf_hash_table (info); 4079 BFD_ASSERT (htab != NULL); 4080 4081 s = mips_elf_rel_dyn_section (info, FALSE); 4082 BFD_ASSERT (s != NULL); 4083 4084 if (htab->is_vxworks) 4085 s->size += n * MIPS_ELF_RELA_SIZE (abfd); 4086 else 4087 { 4088 if (s->size == 0) 4089 { 4090 /* Make room for a null element. */ 4091 s->size += MIPS_ELF_REL_SIZE (abfd); 4092 ++s->reloc_count; 4093 } 4094 s->size += n * MIPS_ELF_REL_SIZE (abfd); 4095 } 4096 } 4097 4098 /* A htab_traverse callback for GOT entries, with DATA pointing to a 4099 mips_elf_traverse_got_arg structure. Count the number of GOT 4100 entries and TLS relocs. Set DATA->value to true if we need 4101 to resolve indirect or warning symbols and then recreate the GOT. */ 4102 4103 static int 4104 mips_elf_check_recreate_got (void **entryp, void *data) 4105 { 4106 struct mips_got_entry *entry; 4107 struct mips_elf_traverse_got_arg *arg; 4108 4109 entry = (struct mips_got_entry *) *entryp; 4110 arg = (struct mips_elf_traverse_got_arg *) data; 4111 if (entry->abfd != NULL && entry->symndx == -1) 4112 { 4113 struct mips_elf_link_hash_entry *h; 4114 4115 h = entry->d.h; 4116 if (h->root.root.type == bfd_link_hash_indirect 4117 || h->root.root.type == bfd_link_hash_warning) 4118 { 4119 arg->value = TRUE; 4120 return 0; 4121 } 4122 } 4123 mips_elf_count_got_entry (arg->info, arg->g, entry); 4124 return 1; 4125 } 4126 4127 /* A htab_traverse callback for GOT entries, with DATA pointing to a 4128 mips_elf_traverse_got_arg structure. Add all entries to DATA->g, 4129 converting entries for indirect and warning symbols into entries 4130 for the target symbol. Set DATA->g to null on error. */ 4131 4132 static int 4133 mips_elf_recreate_got (void **entryp, void *data) 4134 { 4135 struct mips_got_entry new_entry, *entry; 4136 struct mips_elf_traverse_got_arg *arg; 4137 void **slot; 4138 4139 entry = (struct mips_got_entry *) *entryp; 4140 arg = (struct mips_elf_traverse_got_arg *) data; 4141 if (entry->abfd != NULL 4142 && entry->symndx == -1 4143 && (entry->d.h->root.root.type == bfd_link_hash_indirect 4144 || entry->d.h->root.root.type == bfd_link_hash_warning)) 4145 { 4146 struct mips_elf_link_hash_entry *h; 4147 4148 new_entry = *entry; 4149 entry = &new_entry; 4150 h = entry->d.h; 4151 do 4152 { 4153 BFD_ASSERT (h->global_got_area == GGA_NONE); 4154 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; 4155 } 4156 while (h->root.root.type == bfd_link_hash_indirect 4157 || h->root.root.type == bfd_link_hash_warning); 4158 entry->d.h = h; 4159 } 4160 slot = htab_find_slot (arg->g->got_entries, entry, INSERT); 4161 if (slot == NULL) 4162 { 4163 arg->g = NULL; 4164 return 0; 4165 } 4166 if (*slot == NULL) 4167 { 4168 if (entry == &new_entry) 4169 { 4170 entry = bfd_alloc (entry->abfd, sizeof (*entry)); 4171 if (!entry) 4172 { 4173 arg->g = NULL; 4174 return 0; 4175 } 4176 *entry = new_entry; 4177 } 4178 *slot = entry; 4179 mips_elf_count_got_entry (arg->info, arg->g, entry); 4180 } 4181 return 1; 4182 } 4183 4184 /* Return the maximum number of GOT page entries required for RANGE. */ 4185 4186 static bfd_vma 4187 mips_elf_pages_for_range (const struct mips_got_page_range *range) 4188 { 4189 return (range->max_addend - range->min_addend + 0x1ffff) >> 16; 4190 } 4191 4192 /* Record that G requires a page entry that can reach SEC + ADDEND. */ 4193 4194 static bfd_boolean 4195 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg, 4196 asection *sec, bfd_signed_vma addend) 4197 { 4198 struct mips_got_info *g = arg->g; 4199 struct mips_got_page_entry lookup, *entry; 4200 struct mips_got_page_range **range_ptr, *range; 4201 bfd_vma old_pages, new_pages; 4202 void **loc; 4203 4204 /* Find the mips_got_page_entry hash table entry for this section. */ 4205 lookup.sec = sec; 4206 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT); 4207 if (loc == NULL) 4208 return FALSE; 4209 4210 /* Create a mips_got_page_entry if this is the first time we've 4211 seen the section. */ 4212 entry = (struct mips_got_page_entry *) *loc; 4213 if (!entry) 4214 { 4215 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry)); 4216 if (!entry) 4217 return FALSE; 4218 4219 entry->sec = sec; 4220 *loc = entry; 4221 } 4222 4223 /* Skip over ranges whose maximum extent cannot share a page entry 4224 with ADDEND. */ 4225 range_ptr = &entry->ranges; 4226 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff) 4227 range_ptr = &(*range_ptr)->next; 4228 4229 /* If we scanned to the end of the list, or found a range whose 4230 minimum extent cannot share a page entry with ADDEND, create 4231 a new singleton range. */ 4232 range = *range_ptr; 4233 if (!range || addend < range->min_addend - 0xffff) 4234 { 4235 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range)); 4236 if (!range) 4237 return FALSE; 4238 4239 range->next = *range_ptr; 4240 range->min_addend = addend; 4241 range->max_addend = addend; 4242 4243 *range_ptr = range; 4244 entry->num_pages++; 4245 g->page_gotno++; 4246 return TRUE; 4247 } 4248 4249 /* Remember how many pages the old range contributed. */ 4250 old_pages = mips_elf_pages_for_range (range); 4251 4252 /* Update the ranges. */ 4253 if (addend < range->min_addend) 4254 range->min_addend = addend; 4255 else if (addend > range->max_addend) 4256 { 4257 if (range->next && addend >= range->next->min_addend - 0xffff) 4258 { 4259 old_pages += mips_elf_pages_for_range (range->next); 4260 range->max_addend = range->next->max_addend; 4261 range->next = range->next->next; 4262 } 4263 else 4264 range->max_addend = addend; 4265 } 4266 4267 /* Record any change in the total estimate. */ 4268 new_pages = mips_elf_pages_for_range (range); 4269 if (old_pages != new_pages) 4270 { 4271 entry->num_pages += new_pages - old_pages; 4272 g->page_gotno += new_pages - old_pages; 4273 } 4274 4275 return TRUE; 4276 } 4277 4278 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref 4279 and for which DATA points to a mips_elf_traverse_got_arg. Work out 4280 whether the page reference described by *REFP needs a GOT page entry, 4281 and record that entry in DATA->g if so. Set DATA->g to null on failure. */ 4282 4283 static bfd_boolean 4284 mips_elf_resolve_got_page_ref (void **refp, void *data) 4285 { 4286 struct mips_got_page_ref *ref; 4287 struct mips_elf_traverse_got_arg *arg; 4288 struct mips_elf_link_hash_table *htab; 4289 asection *sec; 4290 bfd_vma addend; 4291 4292 ref = (struct mips_got_page_ref *) *refp; 4293 arg = (struct mips_elf_traverse_got_arg *) data; 4294 htab = mips_elf_hash_table (arg->info); 4295 4296 if (ref->symndx < 0) 4297 { 4298 struct mips_elf_link_hash_entry *h; 4299 4300 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */ 4301 h = ref->u.h; 4302 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root)) 4303 return 1; 4304 4305 /* Ignore undefined symbols; we'll issue an error later if 4306 appropriate. */ 4307 if (!((h->root.root.type == bfd_link_hash_defined 4308 || h->root.root.type == bfd_link_hash_defweak) 4309 && h->root.root.u.def.section)) 4310 return 1; 4311 4312 sec = h->root.root.u.def.section; 4313 addend = h->root.root.u.def.value + ref->addend; 4314 } 4315 else 4316 { 4317 Elf_Internal_Sym *isym; 4318 4319 /* Read in the symbol. */ 4320 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd, 4321 ref->symndx); 4322 if (isym == NULL) 4323 { 4324 arg->g = NULL; 4325 return 0; 4326 } 4327 4328 /* Get the associated input section. */ 4329 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx); 4330 if (sec == NULL) 4331 { 4332 arg->g = NULL; 4333 return 0; 4334 } 4335 4336 /* If this is a mergable section, work out the section and offset 4337 of the merged data. For section symbols, the addend specifies 4338 of the offset _of_ the first byte in the data, otherwise it 4339 specifies the offset _from_ the first byte. */ 4340 if (sec->flags & SEC_MERGE) 4341 { 4342 void *secinfo; 4343 4344 secinfo = elf_section_data (sec)->sec_info; 4345 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) 4346 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo, 4347 isym->st_value + ref->addend); 4348 else 4349 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo, 4350 isym->st_value) + ref->addend; 4351 } 4352 else 4353 addend = isym->st_value + ref->addend; 4354 } 4355 if (!mips_elf_record_got_page_entry (arg, sec, addend)) 4356 { 4357 arg->g = NULL; 4358 return 0; 4359 } 4360 return 1; 4361 } 4362 4363 /* If any entries in G->got_entries are for indirect or warning symbols, 4364 replace them with entries for the target symbol. Convert g->got_page_refs 4365 into got_page_entry structures and estimate the number of page entries 4366 that they require. */ 4367 4368 static bfd_boolean 4369 mips_elf_resolve_final_got_entries (struct bfd_link_info *info, 4370 struct mips_got_info *g) 4371 { 4372 struct mips_elf_traverse_got_arg tga; 4373 struct mips_got_info oldg; 4374 4375 oldg = *g; 4376 4377 tga.info = info; 4378 tga.g = g; 4379 tga.value = FALSE; 4380 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga); 4381 if (tga.value) 4382 { 4383 *g = oldg; 4384 g->got_entries = htab_create (htab_size (oldg.got_entries), 4385 mips_elf_got_entry_hash, 4386 mips_elf_got_entry_eq, NULL); 4387 if (!g->got_entries) 4388 return FALSE; 4389 4390 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga); 4391 if (!tga.g) 4392 return FALSE; 4393 4394 htab_delete (oldg.got_entries); 4395 } 4396 4397 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash, 4398 mips_got_page_entry_eq, NULL); 4399 if (g->got_page_entries == NULL) 4400 return FALSE; 4401 4402 tga.info = info; 4403 tga.g = g; 4404 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga); 4405 4406 return TRUE; 4407 } 4408 4409 /* Return true if a GOT entry for H should live in the local rather than 4410 global GOT area. */ 4411 4412 static bfd_boolean 4413 mips_use_local_got_p (struct bfd_link_info *info, 4414 struct mips_elf_link_hash_entry *h) 4415 { 4416 /* Symbols that aren't in the dynamic symbol table must live in the 4417 local GOT. This includes symbols that are completely undefined 4418 and which therefore don't bind locally. We'll report undefined 4419 symbols later if appropriate. */ 4420 if (h->root.dynindx == -1) 4421 return TRUE; 4422 4423 /* Symbols that bind locally can (and in the case of forced-local 4424 symbols, must) live in the local GOT. */ 4425 if (h->got_only_for_calls 4426 ? SYMBOL_CALLS_LOCAL (info, &h->root) 4427 : SYMBOL_REFERENCES_LOCAL (info, &h->root)) 4428 return TRUE; 4429 4430 /* If this is an executable that must provide a definition of the symbol, 4431 either though PLTs or copy relocations, then that address should go in 4432 the local rather than global GOT. */ 4433 if (bfd_link_executable (info) && h->has_static_relocs) 4434 return TRUE; 4435 4436 return FALSE; 4437 } 4438 4439 /* A mips_elf_link_hash_traverse callback for which DATA points to the 4440 link_info structure. Decide whether the hash entry needs an entry in 4441 the global part of the primary GOT, setting global_got_area accordingly. 4442 Count the number of global symbols that are in the primary GOT only 4443 because they have relocations against them (reloc_only_gotno). */ 4444 4445 static int 4446 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data) 4447 { 4448 struct bfd_link_info *info; 4449 struct mips_elf_link_hash_table *htab; 4450 struct mips_got_info *g; 4451 4452 info = (struct bfd_link_info *) data; 4453 htab = mips_elf_hash_table (info); 4454 g = htab->got_info; 4455 if (h->global_got_area != GGA_NONE) 4456 { 4457 /* Make a final decision about whether the symbol belongs in the 4458 local or global GOT. */ 4459 if (mips_use_local_got_p (info, h)) 4460 /* The symbol belongs in the local GOT. We no longer need this 4461 entry if it was only used for relocations; those relocations 4462 will be against the null or section symbol instead of H. */ 4463 h->global_got_area = GGA_NONE; 4464 else if (htab->is_vxworks 4465 && h->got_only_for_calls 4466 && h->root.plt.plist->mips_offset != MINUS_ONE) 4467 /* On VxWorks, calls can refer directly to the .got.plt entry; 4468 they don't need entries in the regular GOT. .got.plt entries 4469 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */ 4470 h->global_got_area = GGA_NONE; 4471 else if (h->global_got_area == GGA_RELOC_ONLY) 4472 { 4473 g->reloc_only_gotno++; 4474 g->global_gotno++; 4475 } 4476 } 4477 return 1; 4478 } 4479 4480 /* A htab_traverse callback for GOT entries. Add each one to the GOT 4481 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */ 4482 4483 static int 4484 mips_elf_add_got_entry (void **entryp, void *data) 4485 { 4486 struct mips_got_entry *entry; 4487 struct mips_elf_traverse_got_arg *arg; 4488 void **slot; 4489 4490 entry = (struct mips_got_entry *) *entryp; 4491 arg = (struct mips_elf_traverse_got_arg *) data; 4492 slot = htab_find_slot (arg->g->got_entries, entry, INSERT); 4493 if (!slot) 4494 { 4495 arg->g = NULL; 4496 return 0; 4497 } 4498 if (!*slot) 4499 { 4500 *slot = entry; 4501 mips_elf_count_got_entry (arg->info, arg->g, entry); 4502 } 4503 return 1; 4504 } 4505 4506 /* A htab_traverse callback for GOT page entries. Add each one to the GOT 4507 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */ 4508 4509 static int 4510 mips_elf_add_got_page_entry (void **entryp, void *data) 4511 { 4512 struct mips_got_page_entry *entry; 4513 struct mips_elf_traverse_got_arg *arg; 4514 void **slot; 4515 4516 entry = (struct mips_got_page_entry *) *entryp; 4517 arg = (struct mips_elf_traverse_got_arg *) data; 4518 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT); 4519 if (!slot) 4520 { 4521 arg->g = NULL; 4522 return 0; 4523 } 4524 if (!*slot) 4525 { 4526 *slot = entry; 4527 arg->g->page_gotno += entry->num_pages; 4528 } 4529 return 1; 4530 } 4531 4532 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if 4533 this would lead to overflow, 1 if they were merged successfully, 4534 and 0 if a merge failed due to lack of memory. (These values are chosen 4535 so that nonnegative return values can be returned by a htab_traverse 4536 callback.) */ 4537 4538 static int 4539 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from, 4540 struct mips_got_info *to, 4541 struct mips_elf_got_per_bfd_arg *arg) 4542 { 4543 struct mips_elf_traverse_got_arg tga; 4544 unsigned int estimate; 4545 4546 /* Work out how many page entries we would need for the combined GOT. */ 4547 estimate = arg->max_pages; 4548 if (estimate >= from->page_gotno + to->page_gotno) 4549 estimate = from->page_gotno + to->page_gotno; 4550 4551 /* And conservatively estimate how many local and TLS entries 4552 would be needed. */ 4553 estimate += from->local_gotno + to->local_gotno; 4554 estimate += from->tls_gotno + to->tls_gotno; 4555 4556 /* If we're merging with the primary got, any TLS relocations will 4557 come after the full set of global entries. Otherwise estimate those 4558 conservatively as well. */ 4559 if (to == arg->primary && from->tls_gotno + to->tls_gotno) 4560 estimate += arg->global_count; 4561 else 4562 estimate += from->global_gotno + to->global_gotno; 4563 4564 /* Bail out if the combined GOT might be too big. */ 4565 if (estimate > arg->max_count) 4566 return -1; 4567 4568 /* Transfer the bfd's got information from FROM to TO. */ 4569 tga.info = arg->info; 4570 tga.g = to; 4571 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga); 4572 if (!tga.g) 4573 return 0; 4574 4575 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga); 4576 if (!tga.g) 4577 return 0; 4578 4579 mips_elf_replace_bfd_got (abfd, to); 4580 return 1; 4581 } 4582 4583 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much 4584 as possible of the primary got, since it doesn't require explicit 4585 dynamic relocations, but don't use bfds that would reference global 4586 symbols out of the addressable range. Failing the primary got, 4587 attempt to merge with the current got, or finish the current got 4588 and then make make the new got current. */ 4589 4590 static bfd_boolean 4591 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g, 4592 struct mips_elf_got_per_bfd_arg *arg) 4593 { 4594 unsigned int estimate; 4595 int result; 4596 4597 if (!mips_elf_resolve_final_got_entries (arg->info, g)) 4598 return FALSE; 4599 4600 /* Work out the number of page, local and TLS entries. */ 4601 estimate = arg->max_pages; 4602 if (estimate > g->page_gotno) 4603 estimate = g->page_gotno; 4604 estimate += g->local_gotno + g->tls_gotno; 4605 4606 /* We place TLS GOT entries after both locals and globals. The globals 4607 for the primary GOT may overflow the normal GOT size limit, so be 4608 sure not to merge a GOT which requires TLS with the primary GOT in that 4609 case. This doesn't affect non-primary GOTs. */ 4610 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno); 4611 4612 if (estimate <= arg->max_count) 4613 { 4614 /* If we don't have a primary GOT, use it as 4615 a starting point for the primary GOT. */ 4616 if (!arg->primary) 4617 { 4618 arg->primary = g; 4619 return TRUE; 4620 } 4621 4622 /* Try merging with the primary GOT. */ 4623 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg); 4624 if (result >= 0) 4625 return result; 4626 } 4627 4628 /* If we can merge with the last-created got, do it. */ 4629 if (arg->current) 4630 { 4631 result = mips_elf_merge_got_with (abfd, g, arg->current, arg); 4632 if (result >= 0) 4633 return result; 4634 } 4635 4636 /* Well, we couldn't merge, so create a new GOT. Don't check if it 4637 fits; if it turns out that it doesn't, we'll get relocation 4638 overflows anyway. */ 4639 g->next = arg->current; 4640 arg->current = g; 4641 4642 return TRUE; 4643 } 4644 4645 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx 4646 to GOTIDX, duplicating the entry if it has already been assigned 4647 an index in a different GOT. */ 4648 4649 static bfd_boolean 4650 mips_elf_set_gotidx (void **entryp, long gotidx) 4651 { 4652 struct mips_got_entry *entry; 4653 4654 entry = (struct mips_got_entry *) *entryp; 4655 if (entry->gotidx > 0) 4656 { 4657 struct mips_got_entry *new_entry; 4658 4659 new_entry = bfd_alloc (entry->abfd, sizeof (*entry)); 4660 if (!new_entry) 4661 return FALSE; 4662 4663 *new_entry = *entry; 4664 *entryp = new_entry; 4665 entry = new_entry; 4666 } 4667 entry->gotidx = gotidx; 4668 return TRUE; 4669 } 4670 4671 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a 4672 mips_elf_traverse_got_arg in which DATA->value is the size of one 4673 GOT entry. Set DATA->g to null on failure. */ 4674 4675 static int 4676 mips_elf_initialize_tls_index (void **entryp, void *data) 4677 { 4678 struct mips_got_entry *entry; 4679 struct mips_elf_traverse_got_arg *arg; 4680 4681 /* We're only interested in TLS symbols. */ 4682 entry = (struct mips_got_entry *) *entryp; 4683 if (entry->tls_type == GOT_TLS_NONE) 4684 return 1; 4685 4686 arg = (struct mips_elf_traverse_got_arg *) data; 4687 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno)) 4688 { 4689 arg->g = NULL; 4690 return 0; 4691 } 4692 4693 /* Account for the entries we've just allocated. */ 4694 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type); 4695 return 1; 4696 } 4697 4698 /* A htab_traverse callback for GOT entries, where DATA points to a 4699 mips_elf_traverse_got_arg. Set the global_got_area of each global 4700 symbol to DATA->value. */ 4701 4702 static int 4703 mips_elf_set_global_got_area (void **entryp, void *data) 4704 { 4705 struct mips_got_entry *entry; 4706 struct mips_elf_traverse_got_arg *arg; 4707 4708 entry = (struct mips_got_entry *) *entryp; 4709 arg = (struct mips_elf_traverse_got_arg *) data; 4710 if (entry->abfd != NULL 4711 && entry->symndx == -1 4712 && entry->d.h->global_got_area != GGA_NONE) 4713 entry->d.h->global_got_area = arg->value; 4714 return 1; 4715 } 4716 4717 /* A htab_traverse callback for secondary GOT entries, where DATA points 4718 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries 4719 and record the number of relocations they require. DATA->value is 4720 the size of one GOT entry. Set DATA->g to null on failure. */ 4721 4722 static int 4723 mips_elf_set_global_gotidx (void **entryp, void *data) 4724 { 4725 struct mips_got_entry *entry; 4726 struct mips_elf_traverse_got_arg *arg; 4727 4728 entry = (struct mips_got_entry *) *entryp; 4729 arg = (struct mips_elf_traverse_got_arg *) data; 4730 if (entry->abfd != NULL 4731 && entry->symndx == -1 4732 && entry->d.h->global_got_area != GGA_NONE) 4733 { 4734 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno)) 4735 { 4736 arg->g = NULL; 4737 return 0; 4738 } 4739 arg->g->assigned_low_gotno += 1; 4740 4741 if (bfd_link_pic (arg->info) 4742 || (elf_hash_table (arg->info)->dynamic_sections_created 4743 && entry->d.h->root.def_dynamic 4744 && !entry->d.h->root.def_regular)) 4745 arg->g->relocs += 1; 4746 } 4747 4748 return 1; 4749 } 4750 4751 /* A htab_traverse callback for GOT entries for which DATA is the 4752 bfd_link_info. Forbid any global symbols from having traditional 4753 lazy-binding stubs. */ 4754 4755 static int 4756 mips_elf_forbid_lazy_stubs (void **entryp, void *data) 4757 { 4758 struct bfd_link_info *info; 4759 struct mips_elf_link_hash_table *htab; 4760 struct mips_got_entry *entry; 4761 4762 entry = (struct mips_got_entry *) *entryp; 4763 info = (struct bfd_link_info *) data; 4764 htab = mips_elf_hash_table (info); 4765 BFD_ASSERT (htab != NULL); 4766 4767 if (entry->abfd != NULL 4768 && entry->symndx == -1 4769 && entry->d.h->needs_lazy_stub) 4770 { 4771 entry->d.h->needs_lazy_stub = FALSE; 4772 htab->lazy_stub_count--; 4773 } 4774 4775 return 1; 4776 } 4777 4778 /* Return the offset of an input bfd IBFD's GOT from the beginning of 4779 the primary GOT. */ 4780 static bfd_vma 4781 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd) 4782 { 4783 if (!g->next) 4784 return 0; 4785 4786 g = mips_elf_bfd_got (ibfd, FALSE); 4787 if (! g) 4788 return 0; 4789 4790 BFD_ASSERT (g->next); 4791 4792 g = g->next; 4793 4794 return (g->local_gotno + g->global_gotno + g->tls_gotno) 4795 * MIPS_ELF_GOT_SIZE (abfd); 4796 } 4797 4798 /* Turn a single GOT that is too big for 16-bit addressing into 4799 a sequence of GOTs, each one 16-bit addressable. */ 4800 4801 static bfd_boolean 4802 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info, 4803 asection *got, bfd_size_type pages) 4804 { 4805 struct mips_elf_link_hash_table *htab; 4806 struct mips_elf_got_per_bfd_arg got_per_bfd_arg; 4807 struct mips_elf_traverse_got_arg tga; 4808 struct mips_got_info *g, *gg; 4809 unsigned int assign, needed_relocs; 4810 bfd *dynobj, *ibfd; 4811 4812 dynobj = elf_hash_table (info)->dynobj; 4813 htab = mips_elf_hash_table (info); 4814 BFD_ASSERT (htab != NULL); 4815 4816 g = htab->got_info; 4817 4818 got_per_bfd_arg.obfd = abfd; 4819 got_per_bfd_arg.info = info; 4820 got_per_bfd_arg.current = NULL; 4821 got_per_bfd_arg.primary = NULL; 4822 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info) 4823 / MIPS_ELF_GOT_SIZE (abfd)) 4824 - htab->reserved_gotno); 4825 got_per_bfd_arg.max_pages = pages; 4826 /* The number of globals that will be included in the primary GOT. 4827 See the calls to mips_elf_set_global_got_area below for more 4828 information. */ 4829 got_per_bfd_arg.global_count = g->global_gotno; 4830 4831 /* Try to merge the GOTs of input bfds together, as long as they 4832 don't seem to exceed the maximum GOT size, choosing one of them 4833 to be the primary GOT. */ 4834 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next) 4835 { 4836 gg = mips_elf_bfd_got (ibfd, FALSE); 4837 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg)) 4838 return FALSE; 4839 } 4840 4841 /* If we do not find any suitable primary GOT, create an empty one. */ 4842 if (got_per_bfd_arg.primary == NULL) 4843 g->next = mips_elf_create_got_info (abfd); 4844 else 4845 g->next = got_per_bfd_arg.primary; 4846 g->next->next = got_per_bfd_arg.current; 4847 4848 /* GG is now the master GOT, and G is the primary GOT. */ 4849 gg = g; 4850 g = g->next; 4851 4852 /* Map the output bfd to the primary got. That's what we're going 4853 to use for bfds that use GOT16 or GOT_PAGE relocations that we 4854 didn't mark in check_relocs, and we want a quick way to find it. 4855 We can't just use gg->next because we're going to reverse the 4856 list. */ 4857 mips_elf_replace_bfd_got (abfd, g); 4858 4859 /* Every symbol that is referenced in a dynamic relocation must be 4860 present in the primary GOT, so arrange for them to appear after 4861 those that are actually referenced. */ 4862 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno; 4863 g->global_gotno = gg->global_gotno; 4864 4865 tga.info = info; 4866 tga.value = GGA_RELOC_ONLY; 4867 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga); 4868 tga.value = GGA_NORMAL; 4869 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga); 4870 4871 /* Now go through the GOTs assigning them offset ranges. 4872 [assigned_low_gotno, local_gotno[ will be set to the range of local 4873 entries in each GOT. We can then compute the end of a GOT by 4874 adding local_gotno to global_gotno. We reverse the list and make 4875 it circular since then we'll be able to quickly compute the 4876 beginning of a GOT, by computing the end of its predecessor. To 4877 avoid special cases for the primary GOT, while still preserving 4878 assertions that are valid for both single- and multi-got links, 4879 we arrange for the main got struct to have the right number of 4880 global entries, but set its local_gotno such that the initial 4881 offset of the primary GOT is zero. Remember that the primary GOT 4882 will become the last item in the circular linked list, so it 4883 points back to the master GOT. */ 4884 gg->local_gotno = -g->global_gotno; 4885 gg->global_gotno = g->global_gotno; 4886 gg->tls_gotno = 0; 4887 assign = 0; 4888 gg->next = gg; 4889 4890 do 4891 { 4892 struct mips_got_info *gn; 4893 4894 assign += htab->reserved_gotno; 4895 g->assigned_low_gotno = assign; 4896 g->local_gotno += assign; 4897 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno); 4898 g->assigned_high_gotno = g->local_gotno - 1; 4899 assign = g->local_gotno + g->global_gotno + g->tls_gotno; 4900 4901 /* Take g out of the direct list, and push it onto the reversed 4902 list that gg points to. g->next is guaranteed to be nonnull after 4903 this operation, as required by mips_elf_initialize_tls_index. */ 4904 gn = g->next; 4905 g->next = gg->next; 4906 gg->next = g; 4907 4908 /* Set up any TLS entries. We always place the TLS entries after 4909 all non-TLS entries. */ 4910 g->tls_assigned_gotno = g->local_gotno + g->global_gotno; 4911 tga.g = g; 4912 tga.value = MIPS_ELF_GOT_SIZE (abfd); 4913 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga); 4914 if (!tga.g) 4915 return FALSE; 4916 BFD_ASSERT (g->tls_assigned_gotno == assign); 4917 4918 /* Move onto the next GOT. It will be a secondary GOT if nonull. */ 4919 g = gn; 4920 4921 /* Forbid global symbols in every non-primary GOT from having 4922 lazy-binding stubs. */ 4923 if (g) 4924 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info); 4925 } 4926 while (g); 4927 4928 got->size = assign * MIPS_ELF_GOT_SIZE (abfd); 4929 4930 needed_relocs = 0; 4931 for (g = gg->next; g && g->next != gg; g = g->next) 4932 { 4933 unsigned int save_assign; 4934 4935 /* Assign offsets to global GOT entries and count how many 4936 relocations they need. */ 4937 save_assign = g->assigned_low_gotno; 4938 g->assigned_low_gotno = g->local_gotno; 4939 tga.info = info; 4940 tga.value = MIPS_ELF_GOT_SIZE (abfd); 4941 tga.g = g; 4942 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga); 4943 if (!tga.g) 4944 return FALSE; 4945 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno); 4946 g->assigned_low_gotno = save_assign; 4947 4948 if (bfd_link_pic (info)) 4949 { 4950 g->relocs += g->local_gotno - g->assigned_low_gotno; 4951 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno 4952 + g->next->global_gotno 4953 + g->next->tls_gotno 4954 + htab->reserved_gotno); 4955 } 4956 needed_relocs += g->relocs; 4957 } 4958 needed_relocs += g->relocs; 4959 4960 if (needed_relocs) 4961 mips_elf_allocate_dynamic_relocations (dynobj, info, 4962 needed_relocs); 4963 4964 return TRUE; 4965 } 4966 4967 4968 /* Returns the first relocation of type r_type found, beginning with 4969 RELOCATION. RELEND is one-past-the-end of the relocation table. */ 4970 4971 static const Elf_Internal_Rela * 4972 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type, 4973 const Elf_Internal_Rela *relocation, 4974 const Elf_Internal_Rela *relend) 4975 { 4976 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info); 4977 4978 while (relocation < relend) 4979 { 4980 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type 4981 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx) 4982 return relocation; 4983 4984 ++relocation; 4985 } 4986 4987 /* We didn't find it. */ 4988 return NULL; 4989 } 4990 4991 /* Return whether an input relocation is against a local symbol. */ 4992 4993 static bfd_boolean 4994 mips_elf_local_relocation_p (bfd *input_bfd, 4995 const Elf_Internal_Rela *relocation, 4996 asection **local_sections) 4997 { 4998 unsigned long r_symndx; 4999 Elf_Internal_Shdr *symtab_hdr; 5000 size_t extsymoff; 5001 5002 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); 5003 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 5004 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info; 5005 5006 if (r_symndx < extsymoff) 5007 return TRUE; 5008 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL) 5009 return TRUE; 5010 5011 return FALSE; 5012 } 5013 5014 /* Sign-extend VALUE, which has the indicated number of BITS. */ 5015 5016 bfd_vma 5017 _bfd_mips_elf_sign_extend (bfd_vma value, int bits) 5018 { 5019 if (value & ((bfd_vma) 1 << (bits - 1))) 5020 /* VALUE is negative. */ 5021 value |= ((bfd_vma) - 1) << bits; 5022 5023 return value; 5024 } 5025 5026 /* Return non-zero if the indicated VALUE has overflowed the maximum 5027 range expressible by a signed number with the indicated number of 5028 BITS. */ 5029 5030 static bfd_boolean 5031 mips_elf_overflow_p (bfd_vma value, int bits) 5032 { 5033 bfd_signed_vma svalue = (bfd_signed_vma) value; 5034 5035 if (svalue > (1 << (bits - 1)) - 1) 5036 /* The value is too big. */ 5037 return TRUE; 5038 else if (svalue < -(1 << (bits - 1))) 5039 /* The value is too small. */ 5040 return TRUE; 5041 5042 /* All is well. */ 5043 return FALSE; 5044 } 5045 5046 /* Calculate the %high function. */ 5047 5048 static bfd_vma 5049 mips_elf_high (bfd_vma value) 5050 { 5051 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff; 5052 } 5053 5054 /* Calculate the %higher function. */ 5055 5056 static bfd_vma 5057 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED) 5058 { 5059 #ifdef BFD64 5060 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff; 5061 #else 5062 abort (); 5063 return MINUS_ONE; 5064 #endif 5065 } 5066 5067 /* Calculate the %highest function. */ 5068 5069 static bfd_vma 5070 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED) 5071 { 5072 #ifdef BFD64 5073 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff; 5074 #else 5075 abort (); 5076 return MINUS_ONE; 5077 #endif 5078 } 5079 5080 /* Create the .compact_rel section. */ 5081 5082 static bfd_boolean 5083 mips_elf_create_compact_rel_section 5084 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED) 5085 { 5086 flagword flags; 5087 register asection *s; 5088 5089 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL) 5090 { 5091 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED 5092 | SEC_READONLY); 5093 5094 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags); 5095 if (s == NULL 5096 || ! bfd_set_section_alignment (abfd, s, 5097 MIPS_ELF_LOG_FILE_ALIGN (abfd))) 5098 return FALSE; 5099 5100 s->size = sizeof (Elf32_External_compact_rel); 5101 } 5102 5103 return TRUE; 5104 } 5105 5106 /* Create the .got section to hold the global offset table. */ 5107 5108 static bfd_boolean 5109 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info) 5110 { 5111 flagword flags; 5112 register asection *s; 5113 struct elf_link_hash_entry *h; 5114 struct bfd_link_hash_entry *bh; 5115 struct mips_elf_link_hash_table *htab; 5116 5117 htab = mips_elf_hash_table (info); 5118 BFD_ASSERT (htab != NULL); 5119 5120 /* This function may be called more than once. */ 5121 if (htab->sgot) 5122 return TRUE; 5123 5124 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY 5125 | SEC_LINKER_CREATED); 5126 5127 /* We have to use an alignment of 2**4 here because this is hardcoded 5128 in the function stub generation and in the linker script. */ 5129 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags); 5130 if (s == NULL 5131 || ! bfd_set_section_alignment (abfd, s, 4)) 5132 return FALSE; 5133 htab->sgot = s; 5134 5135 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the 5136 linker script because we don't want to define the symbol if we 5137 are not creating a global offset table. */ 5138 bh = NULL; 5139 if (! (_bfd_generic_link_add_one_symbol 5140 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s, 5141 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) 5142 return FALSE; 5143 5144 h = (struct elf_link_hash_entry *) bh; 5145 h->non_elf = 0; 5146 h->def_regular = 1; 5147 h->type = STT_OBJECT; 5148 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN; 5149 elf_hash_table (info)->hgot = h; 5150 5151 if (bfd_link_pic (info) 5152 && ! bfd_elf_link_record_dynamic_symbol (info, h)) 5153 return FALSE; 5154 5155 htab->got_info = mips_elf_create_got_info (abfd); 5156 mips_elf_section_data (s)->elf.this_hdr.sh_flags 5157 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; 5158 5159 /* We also need a .got.plt section when generating PLTs. */ 5160 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", 5161 SEC_ALLOC | SEC_LOAD 5162 | SEC_HAS_CONTENTS 5163 | SEC_IN_MEMORY 5164 | SEC_LINKER_CREATED); 5165 if (s == NULL) 5166 return FALSE; 5167 htab->sgotplt = s; 5168 5169 return TRUE; 5170 } 5171 5172 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or 5173 __GOTT_INDEX__ symbols. These symbols are only special for 5174 shared objects; they are not used in executables. */ 5175 5176 static bfd_boolean 5177 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h) 5178 { 5179 return (mips_elf_hash_table (info)->is_vxworks 5180 && bfd_link_pic (info) 5181 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0 5182 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0)); 5183 } 5184 5185 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might 5186 require an la25 stub. See also mips_elf_local_pic_function_p, 5187 which determines whether the destination function ever requires a 5188 stub. */ 5189 5190 static bfd_boolean 5191 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type, 5192 bfd_boolean target_is_16_bit_code_p) 5193 { 5194 /* We specifically ignore branches and jumps from EF_PIC objects, 5195 where the onus is on the compiler or programmer to perform any 5196 necessary initialization of $25. Sometimes such initialization 5197 is unnecessary; for example, -mno-shared functions do not use 5198 the incoming value of $25, and may therefore be called directly. */ 5199 if (PIC_OBJECT_P (input_bfd)) 5200 return FALSE; 5201 5202 switch (r_type) 5203 { 5204 case R_MIPS_26: 5205 case R_MIPS_PC16: 5206 case R_MIPS_PC21_S2: 5207 case R_MIPS_PC26_S2: 5208 case R_MICROMIPS_26_S1: 5209 case R_MICROMIPS_PC7_S1: 5210 case R_MICROMIPS_PC10_S1: 5211 case R_MICROMIPS_PC16_S1: 5212 case R_MICROMIPS_PC23_S2: 5213 return TRUE; 5214 5215 case R_MIPS16_26: 5216 return !target_is_16_bit_code_p; 5217 5218 default: 5219 return FALSE; 5220 } 5221 } 5222 5223 /* Calculate the value produced by the RELOCATION (which comes from 5224 the INPUT_BFD). The ADDEND is the addend to use for this 5225 RELOCATION; RELOCATION->R_ADDEND is ignored. 5226 5227 The result of the relocation calculation is stored in VALUEP. 5228 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field 5229 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa. 5230 5231 This function returns bfd_reloc_continue if the caller need take no 5232 further action regarding this relocation, bfd_reloc_notsupported if 5233 something goes dramatically wrong, bfd_reloc_overflow if an 5234 overflow occurs, and bfd_reloc_ok to indicate success. */ 5235 5236 static bfd_reloc_status_type 5237 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd, 5238 asection *input_section, 5239 struct bfd_link_info *info, 5240 const Elf_Internal_Rela *relocation, 5241 bfd_vma addend, reloc_howto_type *howto, 5242 Elf_Internal_Sym *local_syms, 5243 asection **local_sections, bfd_vma *valuep, 5244 const char **namep, 5245 bfd_boolean *cross_mode_jump_p, 5246 bfd_boolean save_addend) 5247 { 5248 /* The eventual value we will return. */ 5249 bfd_vma value; 5250 /* The address of the symbol against which the relocation is 5251 occurring. */ 5252 bfd_vma symbol = 0; 5253 /* The final GP value to be used for the relocatable, executable, or 5254 shared object file being produced. */ 5255 bfd_vma gp; 5256 /* The place (section offset or address) of the storage unit being 5257 relocated. */ 5258 bfd_vma p; 5259 /* The value of GP used to create the relocatable object. */ 5260 bfd_vma gp0; 5261 /* The offset into the global offset table at which the address of 5262 the relocation entry symbol, adjusted by the addend, resides 5263 during execution. */ 5264 bfd_vma g = MINUS_ONE; 5265 /* The section in which the symbol referenced by the relocation is 5266 located. */ 5267 asection *sec = NULL; 5268 struct mips_elf_link_hash_entry *h = NULL; 5269 /* TRUE if the symbol referred to by this relocation is a local 5270 symbol. */ 5271 bfd_boolean local_p, was_local_p; 5272 /* TRUE if the symbol referred to by this relocation is a section 5273 symbol. */ 5274 bfd_boolean section_p = FALSE; 5275 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */ 5276 bfd_boolean gp_disp_p = FALSE; 5277 /* TRUE if the symbol referred to by this relocation is 5278 "__gnu_local_gp". */ 5279 bfd_boolean gnu_local_gp_p = FALSE; 5280 Elf_Internal_Shdr *symtab_hdr; 5281 size_t extsymoff; 5282 unsigned long r_symndx; 5283 int r_type; 5284 /* TRUE if overflow occurred during the calculation of the 5285 relocation value. */ 5286 bfd_boolean overflowed_p; 5287 /* TRUE if this relocation refers to a MIPS16 function. */ 5288 bfd_boolean target_is_16_bit_code_p = FALSE; 5289 bfd_boolean target_is_micromips_code_p = FALSE; 5290 struct mips_elf_link_hash_table *htab; 5291 bfd *dynobj; 5292 5293 dynobj = elf_hash_table (info)->dynobj; 5294 htab = mips_elf_hash_table (info); 5295 BFD_ASSERT (htab != NULL); 5296 5297 /* Parse the relocation. */ 5298 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); 5299 r_type = ELF_R_TYPE (input_bfd, relocation->r_info); 5300 p = (input_section->output_section->vma 5301 + input_section->output_offset 5302 + relocation->r_offset); 5303 5304 /* Assume that there will be no overflow. */ 5305 overflowed_p = FALSE; 5306 5307 /* Figure out whether or not the symbol is local, and get the offset 5308 used in the array of hash table entries. */ 5309 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 5310 local_p = mips_elf_local_relocation_p (input_bfd, relocation, 5311 local_sections); 5312 was_local_p = local_p; 5313 if (! elf_bad_symtab (input_bfd)) 5314 extsymoff = symtab_hdr->sh_info; 5315 else 5316 { 5317 /* The symbol table does not follow the rule that local symbols 5318 must come before globals. */ 5319 extsymoff = 0; 5320 } 5321 5322 /* Figure out the value of the symbol. */ 5323 if (local_p) 5324 { 5325 Elf_Internal_Sym *sym; 5326 5327 sym = local_syms + r_symndx; 5328 sec = local_sections[r_symndx]; 5329 5330 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION; 5331 5332 symbol = sec->output_section->vma + sec->output_offset; 5333 if (!section_p || (sec->flags & SEC_MERGE)) 5334 symbol += sym->st_value; 5335 if ((sec->flags & SEC_MERGE) && section_p) 5336 { 5337 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend); 5338 addend -= symbol; 5339 addend += sec->output_section->vma + sec->output_offset; 5340 } 5341 5342 /* MIPS16/microMIPS text labels should be treated as odd. */ 5343 if (ELF_ST_IS_COMPRESSED (sym->st_other)) 5344 ++symbol; 5345 5346 /* Record the name of this symbol, for our caller. */ 5347 *namep = bfd_elf_string_from_elf_section (input_bfd, 5348 symtab_hdr->sh_link, 5349 sym->st_name); 5350 if (*namep == NULL || **namep == '\0') 5351 *namep = bfd_section_name (input_bfd, sec); 5352 5353 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other); 5354 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other); 5355 } 5356 else 5357 { 5358 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */ 5359 5360 /* For global symbols we look up the symbol in the hash-table. */ 5361 h = ((struct mips_elf_link_hash_entry *) 5362 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]); 5363 /* Find the real hash-table entry for this symbol. */ 5364 while (h->root.root.type == bfd_link_hash_indirect 5365 || h->root.root.type == bfd_link_hash_warning) 5366 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; 5367 5368 /* Record the name of this symbol, for our caller. */ 5369 *namep = h->root.root.root.string; 5370 5371 /* See if this is the special _gp_disp symbol. Note that such a 5372 symbol must always be a global symbol. */ 5373 if (strcmp (*namep, "_gp_disp") == 0 5374 && ! NEWABI_P (input_bfd)) 5375 { 5376 /* Relocations against _gp_disp are permitted only with 5377 R_MIPS_HI16 and R_MIPS_LO16 relocations. */ 5378 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type)) 5379 return bfd_reloc_notsupported; 5380 5381 gp_disp_p = TRUE; 5382 } 5383 /* See if this is the special _gp symbol. Note that such a 5384 symbol must always be a global symbol. */ 5385 else if (strcmp (*namep, "__gnu_local_gp") == 0) 5386 gnu_local_gp_p = TRUE; 5387 5388 5389 /* If this symbol is defined, calculate its address. Note that 5390 _gp_disp is a magic symbol, always implicitly defined by the 5391 linker, so it's inappropriate to check to see whether or not 5392 its defined. */ 5393 else if ((h->root.root.type == bfd_link_hash_defined 5394 || h->root.root.type == bfd_link_hash_defweak) 5395 && h->root.root.u.def.section) 5396 { 5397 sec = h->root.root.u.def.section; 5398 if (sec->output_section) 5399 symbol = (h->root.root.u.def.value 5400 + sec->output_section->vma 5401 + sec->output_offset); 5402 else 5403 symbol = h->root.root.u.def.value; 5404 } 5405 else if (h->root.root.type == bfd_link_hash_undefweak) 5406 /* We allow relocations against undefined weak symbols, giving 5407 it the value zero, so that you can undefined weak functions 5408 and check to see if they exist by looking at their 5409 addresses. */ 5410 symbol = 0; 5411 else if (info->unresolved_syms_in_objects == RM_IGNORE 5412 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT) 5413 symbol = 0; 5414 else if (strcmp (*namep, SGI_COMPAT (input_bfd) 5415 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0) 5416 { 5417 /* If this is a dynamic link, we should have created a 5418 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol 5419 in in _bfd_mips_elf_create_dynamic_sections. 5420 Otherwise, we should define the symbol with a value of 0. 5421 FIXME: It should probably get into the symbol table 5422 somehow as well. */ 5423 BFD_ASSERT (! bfd_link_pic (info)); 5424 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL); 5425 symbol = 0; 5426 } 5427 else if (ELF_MIPS_IS_OPTIONAL (h->root.other)) 5428 { 5429 /* This is an optional symbol - an Irix specific extension to the 5430 ELF spec. Ignore it for now. 5431 XXX - FIXME - there is more to the spec for OPTIONAL symbols 5432 than simply ignoring them, but we do not handle this for now. 5433 For information see the "64-bit ELF Object File Specification" 5434 which is available from here: 5435 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */ 5436 symbol = 0; 5437 } 5438 else 5439 { 5440 (*info->callbacks->undefined_symbol) 5441 (info, h->root.root.root.string, input_bfd, 5442 input_section, relocation->r_offset, 5443 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR) 5444 || ELF_ST_VISIBILITY (h->root.other)); 5445 return bfd_reloc_undefined; 5446 } 5447 5448 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other); 5449 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other); 5450 } 5451 5452 /* If this is a reference to a 16-bit function with a stub, we need 5453 to redirect the relocation to the stub unless: 5454 5455 (a) the relocation is for a MIPS16 JAL; 5456 5457 (b) the relocation is for a MIPS16 PIC call, and there are no 5458 non-MIPS16 uses of the GOT slot; or 5459 5460 (c) the section allows direct references to MIPS16 functions. */ 5461 if (r_type != R_MIPS16_26 5462 && !bfd_link_relocatable (info) 5463 && ((h != NULL 5464 && h->fn_stub != NULL 5465 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub)) 5466 || (local_p 5467 && mips_elf_tdata (input_bfd)->local_stubs != NULL 5468 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL)) 5469 && !section_allows_mips16_refs_p (input_section)) 5470 { 5471 /* This is a 32- or 64-bit call to a 16-bit function. We should 5472 have already noticed that we were going to need the 5473 stub. */ 5474 if (local_p) 5475 { 5476 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx]; 5477 value = 0; 5478 } 5479 else 5480 { 5481 BFD_ASSERT (h->need_fn_stub); 5482 if (h->la25_stub) 5483 { 5484 /* If a LA25 header for the stub itself exists, point to the 5485 prepended LUI/ADDIU sequence. */ 5486 sec = h->la25_stub->stub_section; 5487 value = h->la25_stub->offset; 5488 } 5489 else 5490 { 5491 sec = h->fn_stub; 5492 value = 0; 5493 } 5494 } 5495 5496 symbol = sec->output_section->vma + sec->output_offset + value; 5497 /* The target is 16-bit, but the stub isn't. */ 5498 target_is_16_bit_code_p = FALSE; 5499 } 5500 /* If this is a MIPS16 call with a stub, that is made through the PLT or 5501 to a standard MIPS function, we need to redirect the call to the stub. 5502 Note that we specifically exclude R_MIPS16_CALL16 from this behavior; 5503 indirect calls should use an indirect stub instead. */ 5504 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info) 5505 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL)) 5506 || (local_p 5507 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL 5508 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL)) 5509 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p)) 5510 { 5511 if (local_p) 5512 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx]; 5513 else 5514 { 5515 /* If both call_stub and call_fp_stub are defined, we can figure 5516 out which one to use by checking which one appears in the input 5517 file. */ 5518 if (h->call_stub != NULL && h->call_fp_stub != NULL) 5519 { 5520 asection *o; 5521 5522 sec = NULL; 5523 for (o = input_bfd->sections; o != NULL; o = o->next) 5524 { 5525 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o))) 5526 { 5527 sec = h->call_fp_stub; 5528 break; 5529 } 5530 } 5531 if (sec == NULL) 5532 sec = h->call_stub; 5533 } 5534 else if (h->call_stub != NULL) 5535 sec = h->call_stub; 5536 else 5537 sec = h->call_fp_stub; 5538 } 5539 5540 BFD_ASSERT (sec->size > 0); 5541 symbol = sec->output_section->vma + sec->output_offset; 5542 } 5543 /* If this is a direct call to a PIC function, redirect to the 5544 non-PIC stub. */ 5545 else if (h != NULL && h->la25_stub 5546 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type, 5547 target_is_16_bit_code_p)) 5548 symbol = (h->la25_stub->stub_section->output_section->vma 5549 + h->la25_stub->stub_section->output_offset 5550 + h->la25_stub->offset); 5551 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT 5552 entry is used if a standard PLT entry has also been made. In this 5553 case the symbol will have been set by mips_elf_set_plt_sym_value 5554 to point to the standard PLT entry, so redirect to the compressed 5555 one. */ 5556 else if ((r_type == R_MIPS16_26 || r_type == R_MICROMIPS_26_S1) 5557 && !bfd_link_relocatable (info) 5558 && h != NULL 5559 && h->use_plt_entry 5560 && h->root.plt.plist->comp_offset != MINUS_ONE 5561 && h->root.plt.plist->mips_offset != MINUS_ONE) 5562 { 5563 bfd_boolean micromips_p = MICROMIPS_P (abfd); 5564 5565 sec = htab->splt; 5566 symbol = (sec->output_section->vma 5567 + sec->output_offset 5568 + htab->plt_header_size 5569 + htab->plt_mips_offset 5570 + h->root.plt.plist->comp_offset 5571 + 1); 5572 5573 target_is_16_bit_code_p = !micromips_p; 5574 target_is_micromips_code_p = micromips_p; 5575 } 5576 5577 /* Make sure MIPS16 and microMIPS are not used together. */ 5578 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p) 5579 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p)) 5580 { 5581 (*_bfd_error_handler) 5582 (_("MIPS16 and microMIPS functions cannot call each other")); 5583 return bfd_reloc_notsupported; 5584 } 5585 5586 /* Calls from 16-bit code to 32-bit code and vice versa require the 5587 mode change. However, we can ignore calls to undefined weak symbols, 5588 which should never be executed at runtime. This exception is important 5589 because the assembly writer may have "known" that any definition of the 5590 symbol would be 16-bit code, and that direct jumps were therefore 5591 acceptable. */ 5592 *cross_mode_jump_p = (!bfd_link_relocatable (info) 5593 && !(h && h->root.root.type == bfd_link_hash_undefweak) 5594 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p) 5595 || (r_type == R_MICROMIPS_26_S1 5596 && !target_is_micromips_code_p) 5597 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR) 5598 && (target_is_16_bit_code_p 5599 || target_is_micromips_code_p)))); 5600 5601 local_p = (h == NULL || mips_use_local_got_p (info, h)); 5602 5603 gp0 = _bfd_get_gp_value (input_bfd); 5604 gp = _bfd_get_gp_value (abfd); 5605 if (htab->got_info) 5606 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd); 5607 5608 if (gnu_local_gp_p) 5609 symbol = gp; 5610 5611 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent 5612 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the 5613 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */ 5614 if (got_page_reloc_p (r_type) && !local_p) 5615 { 5616 r_type = (micromips_reloc_p (r_type) 5617 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP); 5618 addend = 0; 5619 } 5620 5621 /* If we haven't already determined the GOT offset, and we're going 5622 to need it, get it now. */ 5623 switch (r_type) 5624 { 5625 case R_MIPS16_CALL16: 5626 case R_MIPS16_GOT16: 5627 case R_MIPS_CALL16: 5628 case R_MIPS_GOT16: 5629 case R_MIPS_GOT_DISP: 5630 case R_MIPS_GOT_HI16: 5631 case R_MIPS_CALL_HI16: 5632 case R_MIPS_GOT_LO16: 5633 case R_MIPS_CALL_LO16: 5634 case R_MICROMIPS_CALL16: 5635 case R_MICROMIPS_GOT16: 5636 case R_MICROMIPS_GOT_DISP: 5637 case R_MICROMIPS_GOT_HI16: 5638 case R_MICROMIPS_CALL_HI16: 5639 case R_MICROMIPS_GOT_LO16: 5640 case R_MICROMIPS_CALL_LO16: 5641 case R_MIPS_TLS_GD: 5642 case R_MIPS_TLS_GOTTPREL: 5643 case R_MIPS_TLS_LDM: 5644 case R_MIPS16_TLS_GD: 5645 case R_MIPS16_TLS_GOTTPREL: 5646 case R_MIPS16_TLS_LDM: 5647 case R_MICROMIPS_TLS_GD: 5648 case R_MICROMIPS_TLS_GOTTPREL: 5649 case R_MICROMIPS_TLS_LDM: 5650 /* Find the index into the GOT where this value is located. */ 5651 if (tls_ldm_reloc_p (r_type)) 5652 { 5653 g = mips_elf_local_got_index (abfd, input_bfd, info, 5654 0, 0, NULL, r_type); 5655 if (g == MINUS_ONE) 5656 return bfd_reloc_outofrange; 5657 } 5658 else if (!local_p) 5659 { 5660 /* On VxWorks, CALL relocations should refer to the .got.plt 5661 entry, which is initialized to point at the PLT stub. */ 5662 if (htab->is_vxworks 5663 && (call_hi16_reloc_p (r_type) 5664 || call_lo16_reloc_p (r_type) 5665 || call16_reloc_p (r_type))) 5666 { 5667 BFD_ASSERT (addend == 0); 5668 BFD_ASSERT (h->root.needs_plt); 5669 g = mips_elf_gotplt_index (info, &h->root); 5670 } 5671 else 5672 { 5673 BFD_ASSERT (addend == 0); 5674 g = mips_elf_global_got_index (abfd, info, input_bfd, 5675 &h->root, r_type); 5676 if (!TLS_RELOC_P (r_type) 5677 && !elf_hash_table (info)->dynamic_sections_created) 5678 /* This is a static link. We must initialize the GOT entry. */ 5679 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g); 5680 } 5681 } 5682 else if (!htab->is_vxworks 5683 && (call16_reloc_p (r_type) || got16_reloc_p (r_type))) 5684 /* The calculation below does not involve "g". */ 5685 break; 5686 else 5687 { 5688 g = mips_elf_local_got_index (abfd, input_bfd, info, 5689 symbol + addend, r_symndx, h, r_type); 5690 if (g == MINUS_ONE) 5691 return bfd_reloc_outofrange; 5692 } 5693 5694 /* Convert GOT indices to actual offsets. */ 5695 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g); 5696 break; 5697 } 5698 5699 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__ 5700 symbols are resolved by the loader. Add them to .rela.dyn. */ 5701 if (h != NULL && is_gott_symbol (info, &h->root)) 5702 { 5703 Elf_Internal_Rela outrel; 5704 bfd_byte *loc; 5705 asection *s; 5706 5707 s = mips_elf_rel_dyn_section (info, FALSE); 5708 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela); 5709 5710 outrel.r_offset = (input_section->output_section->vma 5711 + input_section->output_offset 5712 + relocation->r_offset); 5713 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type); 5714 outrel.r_addend = addend; 5715 bfd_elf32_swap_reloca_out (abfd, &outrel, loc); 5716 5717 /* If we've written this relocation for a readonly section, 5718 we need to set DF_TEXTREL again, so that we do not delete the 5719 DT_TEXTREL tag. */ 5720 if (MIPS_ELF_READONLY_SECTION (input_section)) 5721 info->flags |= DF_TEXTREL; 5722 5723 *valuep = 0; 5724 return bfd_reloc_ok; 5725 } 5726 5727 /* Figure out what kind of relocation is being performed. */ 5728 switch (r_type) 5729 { 5730 case R_MIPS_NONE: 5731 return bfd_reloc_continue; 5732 5733 case R_MIPS_16: 5734 if (howto->partial_inplace) 5735 addend = _bfd_mips_elf_sign_extend (addend, 16); 5736 value = symbol + addend; 5737 overflowed_p = mips_elf_overflow_p (value, 16); 5738 break; 5739 5740 case R_MIPS_32: 5741 case R_MIPS_REL32: 5742 case R_MIPS_64: 5743 if ((bfd_link_pic (info) 5744 || (htab->root.dynamic_sections_created 5745 && h != NULL 5746 && h->root.def_dynamic 5747 && !h->root.def_regular 5748 && !h->has_static_relocs)) 5749 && r_symndx != STN_UNDEF 5750 && (h == NULL 5751 || h->root.root.type != bfd_link_hash_undefweak 5752 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT) 5753 && (input_section->flags & SEC_ALLOC) != 0) 5754 { 5755 /* If we're creating a shared library, then we can't know 5756 where the symbol will end up. So, we create a relocation 5757 record in the output, and leave the job up to the dynamic 5758 linker. We must do the same for executable references to 5759 shared library symbols, unless we've decided to use copy 5760 relocs or PLTs instead. */ 5761 value = addend; 5762 if (!mips_elf_create_dynamic_relocation (abfd, 5763 info, 5764 relocation, 5765 h, 5766 sec, 5767 symbol, 5768 &value, 5769 input_section)) 5770 return bfd_reloc_undefined; 5771 } 5772 else 5773 { 5774 if (r_type != R_MIPS_REL32) 5775 value = symbol + addend; 5776 else 5777 value = addend; 5778 } 5779 value &= howto->dst_mask; 5780 break; 5781 5782 case R_MIPS_PC32: 5783 value = symbol + addend - p; 5784 value &= howto->dst_mask; 5785 break; 5786 5787 case R_MIPS16_26: 5788 /* The calculation for R_MIPS16_26 is just the same as for an 5789 R_MIPS_26. It's only the storage of the relocated field into 5790 the output file that's different. That's handled in 5791 mips_elf_perform_relocation. So, we just fall through to the 5792 R_MIPS_26 case here. */ 5793 case R_MIPS_26: 5794 case R_MICROMIPS_26_S1: 5795 { 5796 unsigned int shift; 5797 5798 /* Shift is 2, unusually, for microMIPS JALX. */ 5799 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2; 5800 5801 if (howto->partial_inplace && !section_p) 5802 value = _bfd_mips_elf_sign_extend (addend, 26 + shift); 5803 else 5804 value = addend; 5805 value += symbol; 5806 5807 /* Make sure the target of JALX is word-aligned. Bit 0 must be 5808 the correct ISA mode selector and bit 1 must be 0. */ 5809 if (*cross_mode_jump_p && (value & 3) != (r_type == R_MIPS_26)) 5810 return bfd_reloc_outofrange; 5811 5812 value >>= shift; 5813 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 5814 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift)); 5815 value &= howto->dst_mask; 5816 } 5817 break; 5818 5819 case R_MIPS_TLS_DTPREL_HI16: 5820 case R_MIPS16_TLS_DTPREL_HI16: 5821 case R_MICROMIPS_TLS_DTPREL_HI16: 5822 value = (mips_elf_high (addend + symbol - dtprel_base (info)) 5823 & howto->dst_mask); 5824 break; 5825 5826 case R_MIPS_TLS_DTPREL_LO16: 5827 case R_MIPS_TLS_DTPREL32: 5828 case R_MIPS_TLS_DTPREL64: 5829 case R_MIPS16_TLS_DTPREL_LO16: 5830 case R_MICROMIPS_TLS_DTPREL_LO16: 5831 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask; 5832 break; 5833 5834 case R_MIPS_TLS_TPREL_HI16: 5835 case R_MIPS16_TLS_TPREL_HI16: 5836 case R_MICROMIPS_TLS_TPREL_HI16: 5837 value = (mips_elf_high (addend + symbol - tprel_base (info)) 5838 & howto->dst_mask); 5839 break; 5840 5841 case R_MIPS_TLS_TPREL_LO16: 5842 case R_MIPS_TLS_TPREL32: 5843 case R_MIPS_TLS_TPREL64: 5844 case R_MIPS16_TLS_TPREL_LO16: 5845 case R_MICROMIPS_TLS_TPREL_LO16: 5846 value = (symbol + addend - tprel_base (info)) & howto->dst_mask; 5847 break; 5848 5849 case R_MIPS_HI16: 5850 case R_MIPS16_HI16: 5851 case R_MICROMIPS_HI16: 5852 if (!gp_disp_p) 5853 { 5854 value = mips_elf_high (addend + symbol); 5855 value &= howto->dst_mask; 5856 } 5857 else 5858 { 5859 /* For MIPS16 ABI code we generate this sequence 5860 0: li $v0,%hi(_gp_disp) 5861 4: addiupc $v1,%lo(_gp_disp) 5862 8: sll $v0,16 5863 12: addu $v0,$v1 5864 14: move $gp,$v0 5865 So the offsets of hi and lo relocs are the same, but the 5866 base $pc is that used by the ADDIUPC instruction at $t9 + 4. 5867 ADDIUPC clears the low two bits of the instruction address, 5868 so the base is ($t9 + 4) & ~3. */ 5869 if (r_type == R_MIPS16_HI16) 5870 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3)); 5871 /* The microMIPS .cpload sequence uses the same assembly 5872 instructions as the traditional psABI version, but the 5873 incoming $t9 has the low bit set. */ 5874 else if (r_type == R_MICROMIPS_HI16) 5875 value = mips_elf_high (addend + gp - p - 1); 5876 else 5877 value = mips_elf_high (addend + gp - p); 5878 overflowed_p = mips_elf_overflow_p (value, 16); 5879 } 5880 break; 5881 5882 case R_MIPS_LO16: 5883 case R_MIPS16_LO16: 5884 case R_MICROMIPS_LO16: 5885 case R_MICROMIPS_HI0_LO16: 5886 if (!gp_disp_p) 5887 value = (symbol + addend) & howto->dst_mask; 5888 else 5889 { 5890 /* See the comment for R_MIPS16_HI16 above for the reason 5891 for this conditional. */ 5892 if (r_type == R_MIPS16_LO16) 5893 value = addend + gp - (p & ~(bfd_vma) 0x3); 5894 else if (r_type == R_MICROMIPS_LO16 5895 || r_type == R_MICROMIPS_HI0_LO16) 5896 value = addend + gp - p + 3; 5897 else 5898 value = addend + gp - p + 4; 5899 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation 5900 for overflow. But, on, say, IRIX5, relocations against 5901 _gp_disp are normally generated from the .cpload 5902 pseudo-op. It generates code that normally looks like 5903 this: 5904 5905 lui $gp,%hi(_gp_disp) 5906 addiu $gp,$gp,%lo(_gp_disp) 5907 addu $gp,$gp,$t9 5908 5909 Here $t9 holds the address of the function being called, 5910 as required by the MIPS ELF ABI. The R_MIPS_LO16 5911 relocation can easily overflow in this situation, but the 5912 R_MIPS_HI16 relocation will handle the overflow. 5913 Therefore, we consider this a bug in the MIPS ABI, and do 5914 not check for overflow here. */ 5915 } 5916 break; 5917 5918 case R_MIPS_LITERAL: 5919 case R_MICROMIPS_LITERAL: 5920 /* Because we don't merge literal sections, we can handle this 5921 just like R_MIPS_GPREL16. In the long run, we should merge 5922 shared literals, and then we will need to additional work 5923 here. */ 5924 5925 /* Fall through. */ 5926 5927 case R_MIPS16_GPREL: 5928 /* The R_MIPS16_GPREL performs the same calculation as 5929 R_MIPS_GPREL16, but stores the relocated bits in a different 5930 order. We don't need to do anything special here; the 5931 differences are handled in mips_elf_perform_relocation. */ 5932 case R_MIPS_GPREL16: 5933 case R_MICROMIPS_GPREL7_S2: 5934 case R_MICROMIPS_GPREL16: 5935 /* Only sign-extend the addend if it was extracted from the 5936 instruction. If the addend was separate, leave it alone, 5937 otherwise we may lose significant bits. */ 5938 if (howto->partial_inplace) 5939 addend = _bfd_mips_elf_sign_extend (addend, 16); 5940 value = symbol + addend - gp; 5941 /* If the symbol was local, any earlier relocatable links will 5942 have adjusted its addend with the gp offset, so compensate 5943 for that now. Don't do it for symbols forced local in this 5944 link, though, since they won't have had the gp offset applied 5945 to them before. */ 5946 if (was_local_p) 5947 value += gp0; 5948 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 5949 overflowed_p = mips_elf_overflow_p (value, 16); 5950 break; 5951 5952 case R_MIPS16_GOT16: 5953 case R_MIPS16_CALL16: 5954 case R_MIPS_GOT16: 5955 case R_MIPS_CALL16: 5956 case R_MICROMIPS_GOT16: 5957 case R_MICROMIPS_CALL16: 5958 /* VxWorks does not have separate local and global semantics for 5959 R_MIPS*_GOT16; every relocation evaluates to "G". */ 5960 if (!htab->is_vxworks && local_p) 5961 { 5962 value = mips_elf_got16_entry (abfd, input_bfd, info, 5963 symbol + addend, !was_local_p); 5964 if (value == MINUS_ONE) 5965 return bfd_reloc_outofrange; 5966 value 5967 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value); 5968 overflowed_p = mips_elf_overflow_p (value, 16); 5969 break; 5970 } 5971 5972 /* Fall through. */ 5973 5974 case R_MIPS_TLS_GD: 5975 case R_MIPS_TLS_GOTTPREL: 5976 case R_MIPS_TLS_LDM: 5977 case R_MIPS_GOT_DISP: 5978 case R_MIPS16_TLS_GD: 5979 case R_MIPS16_TLS_GOTTPREL: 5980 case R_MIPS16_TLS_LDM: 5981 case R_MICROMIPS_TLS_GD: 5982 case R_MICROMIPS_TLS_GOTTPREL: 5983 case R_MICROMIPS_TLS_LDM: 5984 case R_MICROMIPS_GOT_DISP: 5985 value = g; 5986 overflowed_p = mips_elf_overflow_p (value, 16); 5987 break; 5988 5989 case R_MIPS_GPREL32: 5990 value = (addend + symbol + gp0 - gp); 5991 if (!save_addend) 5992 value &= howto->dst_mask; 5993 break; 5994 5995 case R_MIPS_PC16: 5996 case R_MIPS_GNU_REL16_S2: 5997 if (howto->partial_inplace) 5998 addend = _bfd_mips_elf_sign_extend (addend, 18); 5999 6000 if ((symbol + addend) & 3) 6001 return bfd_reloc_outofrange; 6002 6003 value = symbol + addend - p; 6004 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6005 overflowed_p = mips_elf_overflow_p (value, 18); 6006 value >>= howto->rightshift; 6007 value &= howto->dst_mask; 6008 break; 6009 6010 case R_MIPS16_PC16_S1: 6011 if (howto->partial_inplace) 6012 addend = _bfd_mips_elf_sign_extend (addend, 17); 6013 6014 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6015 && ((symbol + addend) & 1) == 0) 6016 return bfd_reloc_outofrange; 6017 6018 value = symbol + addend - p; 6019 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6020 overflowed_p = mips_elf_overflow_p (value, 17); 6021 value >>= howto->rightshift; 6022 value &= howto->dst_mask; 6023 break; 6024 6025 case R_MIPS_PC21_S2: 6026 if (howto->partial_inplace) 6027 addend = _bfd_mips_elf_sign_extend (addend, 23); 6028 6029 if ((symbol + addend) & 3) 6030 return bfd_reloc_outofrange; 6031 6032 value = symbol + addend - p; 6033 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6034 overflowed_p = mips_elf_overflow_p (value, 23); 6035 value >>= howto->rightshift; 6036 value &= howto->dst_mask; 6037 break; 6038 6039 case R_MIPS_PC26_S2: 6040 if (howto->partial_inplace) 6041 addend = _bfd_mips_elf_sign_extend (addend, 28); 6042 6043 if ((symbol + addend) & 3) 6044 return bfd_reloc_outofrange; 6045 6046 value = symbol + addend - p; 6047 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6048 overflowed_p = mips_elf_overflow_p (value, 28); 6049 value >>= howto->rightshift; 6050 value &= howto->dst_mask; 6051 break; 6052 6053 case R_MIPS_PC18_S3: 6054 if (howto->partial_inplace) 6055 addend = _bfd_mips_elf_sign_extend (addend, 21); 6056 6057 if ((symbol + addend) & 7) 6058 return bfd_reloc_outofrange; 6059 6060 value = symbol + addend - ((p | 7) ^ 7); 6061 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6062 overflowed_p = mips_elf_overflow_p (value, 21); 6063 value >>= howto->rightshift; 6064 value &= howto->dst_mask; 6065 break; 6066 6067 case R_MIPS_PC19_S2: 6068 if (howto->partial_inplace) 6069 addend = _bfd_mips_elf_sign_extend (addend, 21); 6070 6071 if ((symbol + addend) & 3) 6072 return bfd_reloc_outofrange; 6073 6074 value = symbol + addend - p; 6075 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6076 overflowed_p = mips_elf_overflow_p (value, 21); 6077 value >>= howto->rightshift; 6078 value &= howto->dst_mask; 6079 break; 6080 6081 case R_MIPS_PCHI16: 6082 value = mips_elf_high (symbol + addend - p); 6083 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6084 overflowed_p = mips_elf_overflow_p (value, 16); 6085 value &= howto->dst_mask; 6086 break; 6087 6088 case R_MIPS_PCLO16: 6089 if (howto->partial_inplace) 6090 addend = _bfd_mips_elf_sign_extend (addend, 16); 6091 value = symbol + addend - p; 6092 value &= howto->dst_mask; 6093 break; 6094 6095 case R_MICROMIPS_PC7_S1: 6096 if (howto->partial_inplace) 6097 addend = _bfd_mips_elf_sign_extend (addend, 8); 6098 value = symbol + addend - p; 6099 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6100 overflowed_p = mips_elf_overflow_p (value, 8); 6101 value >>= howto->rightshift; 6102 value &= howto->dst_mask; 6103 break; 6104 6105 case R_MICROMIPS_PC10_S1: 6106 if (howto->partial_inplace) 6107 addend = _bfd_mips_elf_sign_extend (addend, 11); 6108 value = symbol + addend - p; 6109 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6110 overflowed_p = mips_elf_overflow_p (value, 11); 6111 value >>= howto->rightshift; 6112 value &= howto->dst_mask; 6113 break; 6114 6115 case R_MICROMIPS_PC16_S1: 6116 if (howto->partial_inplace) 6117 addend = _bfd_mips_elf_sign_extend (addend, 17); 6118 value = symbol + addend - p; 6119 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6120 overflowed_p = mips_elf_overflow_p (value, 17); 6121 value >>= howto->rightshift; 6122 value &= howto->dst_mask; 6123 break; 6124 6125 case R_MICROMIPS_PC23_S2: 6126 if (howto->partial_inplace) 6127 addend = _bfd_mips_elf_sign_extend (addend, 25); 6128 value = symbol + addend - ((p | 3) ^ 3); 6129 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6130 overflowed_p = mips_elf_overflow_p (value, 25); 6131 value >>= howto->rightshift; 6132 value &= howto->dst_mask; 6133 break; 6134 6135 case R_MIPS_GOT_HI16: 6136 case R_MIPS_CALL_HI16: 6137 case R_MICROMIPS_GOT_HI16: 6138 case R_MICROMIPS_CALL_HI16: 6139 /* We're allowed to handle these two relocations identically. 6140 The dynamic linker is allowed to handle the CALL relocations 6141 differently by creating a lazy evaluation stub. */ 6142 value = g; 6143 value = mips_elf_high (value); 6144 value &= howto->dst_mask; 6145 break; 6146 6147 case R_MIPS_GOT_LO16: 6148 case R_MIPS_CALL_LO16: 6149 case R_MICROMIPS_GOT_LO16: 6150 case R_MICROMIPS_CALL_LO16: 6151 value = g & howto->dst_mask; 6152 break; 6153 6154 case R_MIPS_GOT_PAGE: 6155 case R_MICROMIPS_GOT_PAGE: 6156 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL); 6157 if (value == MINUS_ONE) 6158 return bfd_reloc_outofrange; 6159 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value); 6160 overflowed_p = mips_elf_overflow_p (value, 16); 6161 break; 6162 6163 case R_MIPS_GOT_OFST: 6164 case R_MICROMIPS_GOT_OFST: 6165 if (local_p) 6166 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value); 6167 else 6168 value = addend; 6169 overflowed_p = mips_elf_overflow_p (value, 16); 6170 break; 6171 6172 case R_MIPS_SUB: 6173 case R_MICROMIPS_SUB: 6174 value = symbol - addend; 6175 value &= howto->dst_mask; 6176 break; 6177 6178 case R_MIPS_HIGHER: 6179 case R_MICROMIPS_HIGHER: 6180 value = mips_elf_higher (addend + symbol); 6181 value &= howto->dst_mask; 6182 break; 6183 6184 case R_MIPS_HIGHEST: 6185 case R_MICROMIPS_HIGHEST: 6186 value = mips_elf_highest (addend + symbol); 6187 value &= howto->dst_mask; 6188 break; 6189 6190 case R_MIPS_SCN_DISP: 6191 case R_MICROMIPS_SCN_DISP: 6192 value = symbol + addend - sec->output_offset; 6193 value &= howto->dst_mask; 6194 break; 6195 6196 case R_MIPS_JALR: 6197 case R_MICROMIPS_JALR: 6198 /* This relocation is only a hint. In some cases, we optimize 6199 it into a bal instruction. But we don't try to optimize 6200 when the symbol does not resolve locally. */ 6201 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root)) 6202 return bfd_reloc_continue; 6203 value = symbol + addend; 6204 break; 6205 6206 case R_MIPS_PJUMP: 6207 case R_MIPS_GNU_VTINHERIT: 6208 case R_MIPS_GNU_VTENTRY: 6209 /* We don't do anything with these at present. */ 6210 return bfd_reloc_continue; 6211 6212 default: 6213 /* An unrecognized relocation type. */ 6214 return bfd_reloc_notsupported; 6215 } 6216 6217 /* Store the VALUE for our caller. */ 6218 *valuep = value; 6219 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok; 6220 } 6221 6222 /* Obtain the field relocated by RELOCATION. */ 6223 6224 static bfd_vma 6225 mips_elf_obtain_contents (reloc_howto_type *howto, 6226 const Elf_Internal_Rela *relocation, 6227 bfd *input_bfd, bfd_byte *contents) 6228 { 6229 bfd_vma x = 0; 6230 bfd_byte *location = contents + relocation->r_offset; 6231 unsigned int size = bfd_get_reloc_size (howto); 6232 6233 /* Obtain the bytes. */ 6234 if (size != 0) 6235 x = bfd_get (8 * size, input_bfd, location); 6236 6237 return x; 6238 } 6239 6240 /* It has been determined that the result of the RELOCATION is the 6241 VALUE. Use HOWTO to place VALUE into the output file at the 6242 appropriate position. The SECTION is the section to which the 6243 relocation applies. 6244 CROSS_MODE_JUMP_P is true if the relocation field 6245 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa. 6246 6247 Returns FALSE if anything goes wrong. */ 6248 6249 static bfd_boolean 6250 mips_elf_perform_relocation (struct bfd_link_info *info, 6251 reloc_howto_type *howto, 6252 const Elf_Internal_Rela *relocation, 6253 bfd_vma value, bfd *input_bfd, 6254 asection *input_section, bfd_byte *contents, 6255 bfd_boolean cross_mode_jump_p) 6256 { 6257 bfd_vma x; 6258 bfd_byte *location; 6259 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info); 6260 unsigned int size; 6261 6262 /* Figure out where the relocation is occurring. */ 6263 location = contents + relocation->r_offset; 6264 6265 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location); 6266 6267 /* Obtain the current value. */ 6268 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents); 6269 6270 /* Clear the field we are setting. */ 6271 x &= ~howto->dst_mask; 6272 6273 /* Set the field. */ 6274 x |= (value & howto->dst_mask); 6275 6276 /* If required, turn JAL into JALX. */ 6277 if (cross_mode_jump_p && jal_reloc_p (r_type)) 6278 { 6279 bfd_boolean ok; 6280 bfd_vma opcode = x >> 26; 6281 bfd_vma jalx_opcode; 6282 6283 /* Check to see if the opcode is already JAL or JALX. */ 6284 if (r_type == R_MIPS16_26) 6285 { 6286 ok = ((opcode == 0x6) || (opcode == 0x7)); 6287 jalx_opcode = 0x7; 6288 } 6289 else if (r_type == R_MICROMIPS_26_S1) 6290 { 6291 ok = ((opcode == 0x3d) || (opcode == 0x3c)); 6292 jalx_opcode = 0x3c; 6293 } 6294 else 6295 { 6296 ok = ((opcode == 0x3) || (opcode == 0x1d)); 6297 jalx_opcode = 0x1d; 6298 } 6299 6300 /* If the opcode is not JAL or JALX, there's a problem. We cannot 6301 convert J or JALS to JALX. */ 6302 if (!ok) 6303 { 6304 info->callbacks->einfo 6305 (_("%X%H: Unsupported jump between ISA modes; " 6306 "consider recompiling with interlinking enabled\n"), 6307 input_bfd, input_section, relocation->r_offset); 6308 return TRUE; 6309 } 6310 6311 /* Make this the JALX opcode. */ 6312 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26); 6313 } 6314 6315 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in 6316 range. */ 6317 if (!bfd_link_relocatable (info) 6318 && !cross_mode_jump_p 6319 && ((JAL_TO_BAL_P (input_bfd) 6320 && r_type == R_MIPS_26 6321 && (x >> 26) == 0x3) /* jal addr */ 6322 || (JALR_TO_BAL_P (input_bfd) 6323 && r_type == R_MIPS_JALR 6324 && x == 0x0320f809) /* jalr t9 */ 6325 || (JR_TO_B_P (input_bfd) 6326 && r_type == R_MIPS_JALR 6327 && x == 0x03200008))) /* jr t9 */ 6328 { 6329 bfd_vma addr; 6330 bfd_vma dest; 6331 bfd_signed_vma off; 6332 6333 addr = (input_section->output_section->vma 6334 + input_section->output_offset 6335 + relocation->r_offset 6336 + 4); 6337 if (r_type == R_MIPS_26) 6338 dest = (value << 2) | ((addr >> 28) << 28); 6339 else 6340 dest = value; 6341 off = dest - addr; 6342 if (off <= 0x1ffff && off >= -0x20000) 6343 { 6344 if (x == 0x03200008) /* jr t9 */ 6345 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */ 6346 else 6347 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */ 6348 } 6349 } 6350 6351 /* Put the value into the output. */ 6352 size = bfd_get_reloc_size (howto); 6353 if (size != 0) 6354 bfd_put (8 * size, input_bfd, x, location); 6355 6356 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info), 6357 location); 6358 6359 return TRUE; 6360 } 6361 6362 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL 6363 is the original relocation, which is now being transformed into a 6364 dynamic relocation. The ADDENDP is adjusted if necessary; the 6365 caller should store the result in place of the original addend. */ 6366 6367 static bfd_boolean 6368 mips_elf_create_dynamic_relocation (bfd *output_bfd, 6369 struct bfd_link_info *info, 6370 const Elf_Internal_Rela *rel, 6371 struct mips_elf_link_hash_entry *h, 6372 asection *sec, bfd_vma symbol, 6373 bfd_vma *addendp, asection *input_section) 6374 { 6375 Elf_Internal_Rela outrel[3]; 6376 asection *sreloc; 6377 bfd *dynobj; 6378 int r_type; 6379 long indx; 6380 bfd_boolean defined_p; 6381 struct mips_elf_link_hash_table *htab; 6382 6383 htab = mips_elf_hash_table (info); 6384 BFD_ASSERT (htab != NULL); 6385 6386 r_type = ELF_R_TYPE (output_bfd, rel->r_info); 6387 dynobj = elf_hash_table (info)->dynobj; 6388 sreloc = mips_elf_rel_dyn_section (info, FALSE); 6389 BFD_ASSERT (sreloc != NULL); 6390 BFD_ASSERT (sreloc->contents != NULL); 6391 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd) 6392 < sreloc->size); 6393 6394 outrel[0].r_offset = 6395 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset); 6396 if (ABI_64_P (output_bfd)) 6397 { 6398 outrel[1].r_offset = 6399 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset); 6400 outrel[2].r_offset = 6401 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset); 6402 } 6403 6404 if (outrel[0].r_offset == MINUS_ONE) 6405 /* The relocation field has been deleted. */ 6406 return TRUE; 6407 6408 if (outrel[0].r_offset == MINUS_TWO) 6409 { 6410 /* The relocation field has been converted into a relative value of 6411 some sort. Functions like _bfd_elf_write_section_eh_frame expect 6412 the field to be fully relocated, so add in the symbol's value. */ 6413 *addendp += symbol; 6414 return TRUE; 6415 } 6416 6417 /* We must now calculate the dynamic symbol table index to use 6418 in the relocation. */ 6419 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root)) 6420 { 6421 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE); 6422 indx = h->root.dynindx; 6423 if (SGI_COMPAT (output_bfd)) 6424 defined_p = h->root.def_regular; 6425 else 6426 /* ??? glibc's ld.so just adds the final GOT entry to the 6427 relocation field. It therefore treats relocs against 6428 defined symbols in the same way as relocs against 6429 undefined symbols. */ 6430 defined_p = FALSE; 6431 } 6432 else 6433 { 6434 if (sec != NULL && bfd_is_abs_section (sec)) 6435 indx = 0; 6436 else if (sec == NULL || sec->owner == NULL) 6437 { 6438 bfd_set_error (bfd_error_bad_value); 6439 return FALSE; 6440 } 6441 else 6442 { 6443 indx = elf_section_data (sec->output_section)->dynindx; 6444 if (indx == 0) 6445 { 6446 asection *osec = htab->root.text_index_section; 6447 indx = elf_section_data (osec)->dynindx; 6448 } 6449 if (indx == 0) 6450 abort (); 6451 } 6452 6453 /* Instead of generating a relocation using the section 6454 symbol, we may as well make it a fully relative 6455 relocation. We want to avoid generating relocations to 6456 local symbols because we used to generate them 6457 incorrectly, without adding the original symbol value, 6458 which is mandated by the ABI for section symbols. In 6459 order to give dynamic loaders and applications time to 6460 phase out the incorrect use, we refrain from emitting 6461 section-relative relocations. It's not like they're 6462 useful, after all. This should be a bit more efficient 6463 as well. */ 6464 /* ??? Although this behavior is compatible with glibc's ld.so, 6465 the ABI says that relocations against STN_UNDEF should have 6466 a symbol value of 0. Irix rld honors this, so relocations 6467 against STN_UNDEF have no effect. */ 6468 if (!SGI_COMPAT (output_bfd)) 6469 indx = 0; 6470 defined_p = TRUE; 6471 } 6472 6473 /* If the relocation was previously an absolute relocation and 6474 this symbol will not be referred to by the relocation, we must 6475 adjust it by the value we give it in the dynamic symbol table. 6476 Otherwise leave the job up to the dynamic linker. */ 6477 if (defined_p && r_type != R_MIPS_REL32) 6478 *addendp += symbol; 6479 6480 if (htab->is_vxworks) 6481 /* VxWorks uses non-relative relocations for this. */ 6482 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32); 6483 else 6484 /* The relocation is always an REL32 relocation because we don't 6485 know where the shared library will wind up at load-time. */ 6486 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx, 6487 R_MIPS_REL32); 6488 6489 /* For strict adherence to the ABI specification, we should 6490 generate a R_MIPS_64 relocation record by itself before the 6491 _REL32/_64 record as well, such that the addend is read in as 6492 a 64-bit value (REL32 is a 32-bit relocation, after all). 6493 However, since none of the existing ELF64 MIPS dynamic 6494 loaders seems to care, we don't waste space with these 6495 artificial relocations. If this turns out to not be true, 6496 mips_elf_allocate_dynamic_relocation() should be tweaked so 6497 as to make room for a pair of dynamic relocations per 6498 invocation if ABI_64_P, and here we should generate an 6499 additional relocation record with R_MIPS_64 by itself for a 6500 NULL symbol before this relocation record. */ 6501 outrel[1].r_info = ELF_R_INFO (output_bfd, 0, 6502 ABI_64_P (output_bfd) 6503 ? R_MIPS_64 6504 : R_MIPS_NONE); 6505 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE); 6506 6507 /* Adjust the output offset of the relocation to reference the 6508 correct location in the output file. */ 6509 outrel[0].r_offset += (input_section->output_section->vma 6510 + input_section->output_offset); 6511 outrel[1].r_offset += (input_section->output_section->vma 6512 + input_section->output_offset); 6513 outrel[2].r_offset += (input_section->output_section->vma 6514 + input_section->output_offset); 6515 6516 /* Put the relocation back out. We have to use the special 6517 relocation outputter in the 64-bit case since the 64-bit 6518 relocation format is non-standard. */ 6519 if (ABI_64_P (output_bfd)) 6520 { 6521 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) 6522 (output_bfd, &outrel[0], 6523 (sreloc->contents 6524 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel))); 6525 } 6526 else if (htab->is_vxworks) 6527 { 6528 /* VxWorks uses RELA rather than REL dynamic relocations. */ 6529 outrel[0].r_addend = *addendp; 6530 bfd_elf32_swap_reloca_out 6531 (output_bfd, &outrel[0], 6532 (sreloc->contents 6533 + sreloc->reloc_count * sizeof (Elf32_External_Rela))); 6534 } 6535 else 6536 bfd_elf32_swap_reloc_out 6537 (output_bfd, &outrel[0], 6538 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel))); 6539 6540 /* We've now added another relocation. */ 6541 ++sreloc->reloc_count; 6542 6543 /* Make sure the output section is writable. The dynamic linker 6544 will be writing to it. */ 6545 elf_section_data (input_section->output_section)->this_hdr.sh_flags 6546 |= SHF_WRITE; 6547 6548 /* On IRIX5, make an entry of compact relocation info. */ 6549 if (IRIX_COMPAT (output_bfd) == ict_irix5) 6550 { 6551 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel"); 6552 bfd_byte *cr; 6553 6554 if (scpt) 6555 { 6556 Elf32_crinfo cptrel; 6557 6558 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG); 6559 cptrel.vaddr = (rel->r_offset 6560 + input_section->output_section->vma 6561 + input_section->output_offset); 6562 if (r_type == R_MIPS_REL32) 6563 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32); 6564 else 6565 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD); 6566 mips_elf_set_cr_dist2to (cptrel, 0); 6567 cptrel.konst = *addendp; 6568 6569 cr = (scpt->contents 6570 + sizeof (Elf32_External_compact_rel)); 6571 mips_elf_set_cr_relvaddr (cptrel, 0); 6572 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel, 6573 ((Elf32_External_crinfo *) cr 6574 + scpt->reloc_count)); 6575 ++scpt->reloc_count; 6576 } 6577 } 6578 6579 /* If we've written this relocation for a readonly section, 6580 we need to set DF_TEXTREL again, so that we do not delete the 6581 DT_TEXTREL tag. */ 6582 if (MIPS_ELF_READONLY_SECTION (input_section)) 6583 info->flags |= DF_TEXTREL; 6584 6585 return TRUE; 6586 } 6587 6588 /* Return the MACH for a MIPS e_flags value. */ 6589 6590 unsigned long 6591 _bfd_elf_mips_mach (flagword flags) 6592 { 6593 switch (flags & EF_MIPS_MACH) 6594 { 6595 case E_MIPS_MACH_3900: 6596 return bfd_mach_mips3900; 6597 6598 case E_MIPS_MACH_4010: 6599 return bfd_mach_mips4010; 6600 6601 case E_MIPS_MACH_4100: 6602 return bfd_mach_mips4100; 6603 6604 case E_MIPS_MACH_4111: 6605 return bfd_mach_mips4111; 6606 6607 case E_MIPS_MACH_4120: 6608 return bfd_mach_mips4120; 6609 6610 case E_MIPS_MACH_4650: 6611 return bfd_mach_mips4650; 6612 6613 case E_MIPS_MACH_5400: 6614 return bfd_mach_mips5400; 6615 6616 case E_MIPS_MACH_5500: 6617 return bfd_mach_mips5500; 6618 6619 case E_MIPS_MACH_5900: 6620 return bfd_mach_mips5900; 6621 6622 case E_MIPS_MACH_9000: 6623 return bfd_mach_mips9000; 6624 6625 case E_MIPS_MACH_SB1: 6626 return bfd_mach_mips_sb1; 6627 6628 case E_MIPS_MACH_LS2E: 6629 return bfd_mach_mips_loongson_2e; 6630 6631 case E_MIPS_MACH_LS2F: 6632 return bfd_mach_mips_loongson_2f; 6633 6634 case E_MIPS_MACH_LS3A: 6635 return bfd_mach_mips_loongson_3a; 6636 6637 case E_MIPS_MACH_OCTEON3: 6638 return bfd_mach_mips_octeon3; 6639 6640 case E_MIPS_MACH_OCTEON2: 6641 return bfd_mach_mips_octeon2; 6642 6643 case E_MIPS_MACH_OCTEON: 6644 return bfd_mach_mips_octeon; 6645 6646 case E_MIPS_MACH_XLR: 6647 return bfd_mach_mips_xlr; 6648 6649 default: 6650 switch (flags & EF_MIPS_ARCH) 6651 { 6652 default: 6653 case E_MIPS_ARCH_1: 6654 return bfd_mach_mips3000; 6655 6656 case E_MIPS_ARCH_2: 6657 return bfd_mach_mips6000; 6658 6659 case E_MIPS_ARCH_3: 6660 return bfd_mach_mips4000; 6661 6662 case E_MIPS_ARCH_4: 6663 return bfd_mach_mips8000; 6664 6665 case E_MIPS_ARCH_5: 6666 return bfd_mach_mips5; 6667 6668 case E_MIPS_ARCH_32: 6669 return bfd_mach_mipsisa32; 6670 6671 case E_MIPS_ARCH_64: 6672 return bfd_mach_mipsisa64; 6673 6674 case E_MIPS_ARCH_32R2: 6675 return bfd_mach_mipsisa32r2; 6676 6677 case E_MIPS_ARCH_64R2: 6678 return bfd_mach_mipsisa64r2; 6679 6680 case E_MIPS_ARCH_32R6: 6681 return bfd_mach_mipsisa32r6; 6682 6683 case E_MIPS_ARCH_64R6: 6684 return bfd_mach_mipsisa64r6; 6685 } 6686 } 6687 6688 return 0; 6689 } 6690 6691 /* Return printable name for ABI. */ 6692 6693 static INLINE char * 6694 elf_mips_abi_name (bfd *abfd) 6695 { 6696 flagword flags; 6697 6698 flags = elf_elfheader (abfd)->e_flags; 6699 switch (flags & EF_MIPS_ABI) 6700 { 6701 case 0: 6702 if (ABI_N32_P (abfd)) 6703 return "N32"; 6704 else if (ABI_64_P (abfd)) 6705 return "64"; 6706 else 6707 return "none"; 6708 case E_MIPS_ABI_O32: 6709 return "O32"; 6710 case E_MIPS_ABI_O64: 6711 return "O64"; 6712 case E_MIPS_ABI_EABI32: 6713 return "EABI32"; 6714 case E_MIPS_ABI_EABI64: 6715 return "EABI64"; 6716 default: 6717 return "unknown abi"; 6718 } 6719 } 6720 6721 /* MIPS ELF uses two common sections. One is the usual one, and the 6722 other is for small objects. All the small objects are kept 6723 together, and then referenced via the gp pointer, which yields 6724 faster assembler code. This is what we use for the small common 6725 section. This approach is copied from ecoff.c. */ 6726 static asection mips_elf_scom_section; 6727 static asymbol mips_elf_scom_symbol; 6728 static asymbol *mips_elf_scom_symbol_ptr; 6729 6730 /* MIPS ELF also uses an acommon section, which represents an 6731 allocated common symbol which may be overridden by a 6732 definition in a shared library. */ 6733 static asection mips_elf_acom_section; 6734 static asymbol mips_elf_acom_symbol; 6735 static asymbol *mips_elf_acom_symbol_ptr; 6736 6737 /* This is used for both the 32-bit and the 64-bit ABI. */ 6738 6739 void 6740 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym) 6741 { 6742 elf_symbol_type *elfsym; 6743 6744 /* Handle the special MIPS section numbers that a symbol may use. */ 6745 elfsym = (elf_symbol_type *) asym; 6746 switch (elfsym->internal_elf_sym.st_shndx) 6747 { 6748 case SHN_MIPS_ACOMMON: 6749 /* This section is used in a dynamically linked executable file. 6750 It is an allocated common section. The dynamic linker can 6751 either resolve these symbols to something in a shared 6752 library, or it can just leave them here. For our purposes, 6753 we can consider these symbols to be in a new section. */ 6754 if (mips_elf_acom_section.name == NULL) 6755 { 6756 /* Initialize the acommon section. */ 6757 mips_elf_acom_section.name = ".acommon"; 6758 mips_elf_acom_section.flags = SEC_ALLOC; 6759 mips_elf_acom_section.output_section = &mips_elf_acom_section; 6760 mips_elf_acom_section.symbol = &mips_elf_acom_symbol; 6761 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr; 6762 mips_elf_acom_symbol.name = ".acommon"; 6763 mips_elf_acom_symbol.flags = BSF_SECTION_SYM; 6764 mips_elf_acom_symbol.section = &mips_elf_acom_section; 6765 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol; 6766 } 6767 asym->section = &mips_elf_acom_section; 6768 break; 6769 6770 case SHN_COMMON: 6771 /* Common symbols less than the GP size are automatically 6772 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */ 6773 if (asym->value > elf_gp_size (abfd) 6774 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS 6775 || IRIX_COMPAT (abfd) == ict_irix6) 6776 break; 6777 /* Fall through. */ 6778 case SHN_MIPS_SCOMMON: 6779 if (mips_elf_scom_section.name == NULL) 6780 { 6781 /* Initialize the small common section. */ 6782 mips_elf_scom_section.name = ".scommon"; 6783 mips_elf_scom_section.flags = SEC_IS_COMMON; 6784 mips_elf_scom_section.output_section = &mips_elf_scom_section; 6785 mips_elf_scom_section.symbol = &mips_elf_scom_symbol; 6786 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr; 6787 mips_elf_scom_symbol.name = ".scommon"; 6788 mips_elf_scom_symbol.flags = BSF_SECTION_SYM; 6789 mips_elf_scom_symbol.section = &mips_elf_scom_section; 6790 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol; 6791 } 6792 asym->section = &mips_elf_scom_section; 6793 asym->value = elfsym->internal_elf_sym.st_size; 6794 break; 6795 6796 case SHN_MIPS_SUNDEFINED: 6797 asym->section = bfd_und_section_ptr; 6798 break; 6799 6800 case SHN_MIPS_TEXT: 6801 { 6802 asection *section = bfd_get_section_by_name (abfd, ".text"); 6803 6804 if (section != NULL) 6805 { 6806 asym->section = section; 6807 /* MIPS_TEXT is a bit special, the address is not an offset 6808 to the base of the .text section. So substract the section 6809 base address to make it an offset. */ 6810 asym->value -= section->vma; 6811 } 6812 } 6813 break; 6814 6815 case SHN_MIPS_DATA: 6816 { 6817 asection *section = bfd_get_section_by_name (abfd, ".data"); 6818 6819 if (section != NULL) 6820 { 6821 asym->section = section; 6822 /* MIPS_DATA is a bit special, the address is not an offset 6823 to the base of the .data section. So substract the section 6824 base address to make it an offset. */ 6825 asym->value -= section->vma; 6826 } 6827 } 6828 break; 6829 } 6830 6831 /* If this is an odd-valued function symbol, assume it's a MIPS16 6832 or microMIPS one. */ 6833 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC 6834 && (asym->value & 1) != 0) 6835 { 6836 asym->value--; 6837 if (MICROMIPS_P (abfd)) 6838 elfsym->internal_elf_sym.st_other 6839 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other); 6840 else 6841 elfsym->internal_elf_sym.st_other 6842 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other); 6843 } 6844 } 6845 6846 /* Implement elf_backend_eh_frame_address_size. This differs from 6847 the default in the way it handles EABI64. 6848 6849 EABI64 was originally specified as an LP64 ABI, and that is what 6850 -mabi=eabi normally gives on a 64-bit target. However, gcc has 6851 historically accepted the combination of -mabi=eabi and -mlong32, 6852 and this ILP32 variation has become semi-official over time. 6853 Both forms use elf32 and have pointer-sized FDE addresses. 6854 6855 If an EABI object was generated by GCC 4.0 or above, it will have 6856 an empty .gcc_compiled_longXX section, where XX is the size of longs 6857 in bits. Unfortunately, ILP32 objects generated by earlier compilers 6858 have no special marking to distinguish them from LP64 objects. 6859 6860 We don't want users of the official LP64 ABI to be punished for the 6861 existence of the ILP32 variant, but at the same time, we don't want 6862 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects. 6863 We therefore take the following approach: 6864 6865 - If ABFD contains a .gcc_compiled_longXX section, use it to 6866 determine the pointer size. 6867 6868 - Otherwise check the type of the first relocation. Assume that 6869 the LP64 ABI is being used if the relocation is of type R_MIPS_64. 6870 6871 - Otherwise punt. 6872 6873 The second check is enough to detect LP64 objects generated by pre-4.0 6874 compilers because, in the kind of output generated by those compilers, 6875 the first relocation will be associated with either a CIE personality 6876 routine or an FDE start address. Furthermore, the compilers never 6877 used a special (non-pointer) encoding for this ABI. 6878 6879 Checking the relocation type should also be safe because there is no 6880 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never 6881 did so. */ 6882 6883 unsigned int 6884 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec) 6885 { 6886 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) 6887 return 8; 6888 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) 6889 { 6890 bfd_boolean long32_p, long64_p; 6891 6892 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0; 6893 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0; 6894 if (long32_p && long64_p) 6895 return 0; 6896 if (long32_p) 6897 return 4; 6898 if (long64_p) 6899 return 8; 6900 6901 if (sec->reloc_count > 0 6902 && elf_section_data (sec)->relocs != NULL 6903 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info) 6904 == R_MIPS_64)) 6905 return 8; 6906 6907 return 0; 6908 } 6909 return 4; 6910 } 6911 6912 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP 6913 relocations against two unnamed section symbols to resolve to the 6914 same address. For example, if we have code like: 6915 6916 lw $4,%got_disp(.data)($gp) 6917 lw $25,%got_disp(.text)($gp) 6918 jalr $25 6919 6920 then the linker will resolve both relocations to .data and the program 6921 will jump there rather than to .text. 6922 6923 We can work around this problem by giving names to local section symbols. 6924 This is also what the MIPSpro tools do. */ 6925 6926 bfd_boolean 6927 _bfd_mips_elf_name_local_section_symbols (bfd *abfd) 6928 { 6929 return SGI_COMPAT (abfd); 6930 } 6931 6932 /* Work over a section just before writing it out. This routine is 6933 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize 6934 sections that need the SHF_MIPS_GPREL flag by name; there has to be 6935 a better way. */ 6936 6937 bfd_boolean 6938 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr) 6939 { 6940 if (hdr->sh_type == SHT_MIPS_REGINFO 6941 && hdr->sh_size > 0) 6942 { 6943 bfd_byte buf[4]; 6944 6945 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo)); 6946 BFD_ASSERT (hdr->contents == NULL); 6947 6948 if (bfd_seek (abfd, 6949 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4, 6950 SEEK_SET) != 0) 6951 return FALSE; 6952 H_PUT_32 (abfd, elf_gp (abfd), buf); 6953 if (bfd_bwrite (buf, 4, abfd) != 4) 6954 return FALSE; 6955 } 6956 6957 if (hdr->sh_type == SHT_MIPS_OPTIONS 6958 && hdr->bfd_section != NULL 6959 && mips_elf_section_data (hdr->bfd_section) != NULL 6960 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL) 6961 { 6962 bfd_byte *contents, *l, *lend; 6963 6964 /* We stored the section contents in the tdata field in the 6965 set_section_contents routine. We save the section contents 6966 so that we don't have to read them again. 6967 At this point we know that elf_gp is set, so we can look 6968 through the section contents to see if there is an 6969 ODK_REGINFO structure. */ 6970 6971 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata; 6972 l = contents; 6973 lend = contents + hdr->sh_size; 6974 while (l + sizeof (Elf_External_Options) <= lend) 6975 { 6976 Elf_Internal_Options intopt; 6977 6978 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, 6979 &intopt); 6980 if (intopt.size < sizeof (Elf_External_Options)) 6981 { 6982 (*_bfd_error_handler) 6983 (_("%B: Warning: bad `%s' option size %u smaller than its header"), 6984 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size); 6985 break; 6986 } 6987 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) 6988 { 6989 bfd_byte buf[8]; 6990 6991 if (bfd_seek (abfd, 6992 (hdr->sh_offset 6993 + (l - contents) 6994 + sizeof (Elf_External_Options) 6995 + (sizeof (Elf64_External_RegInfo) - 8)), 6996 SEEK_SET) != 0) 6997 return FALSE; 6998 H_PUT_64 (abfd, elf_gp (abfd), buf); 6999 if (bfd_bwrite (buf, 8, abfd) != 8) 7000 return FALSE; 7001 } 7002 else if (intopt.kind == ODK_REGINFO) 7003 { 7004 bfd_byte buf[4]; 7005 7006 if (bfd_seek (abfd, 7007 (hdr->sh_offset 7008 + (l - contents) 7009 + sizeof (Elf_External_Options) 7010 + (sizeof (Elf32_External_RegInfo) - 4)), 7011 SEEK_SET) != 0) 7012 return FALSE; 7013 H_PUT_32 (abfd, elf_gp (abfd), buf); 7014 if (bfd_bwrite (buf, 4, abfd) != 4) 7015 return FALSE; 7016 } 7017 l += intopt.size; 7018 } 7019 } 7020 7021 if (hdr->bfd_section != NULL) 7022 { 7023 const char *name = bfd_get_section_name (abfd, hdr->bfd_section); 7024 7025 /* .sbss is not handled specially here because the GNU/Linux 7026 prelinker can convert .sbss from NOBITS to PROGBITS and 7027 changing it back to NOBITS breaks the binary. The entry in 7028 _bfd_mips_elf_special_sections will ensure the correct flags 7029 are set on .sbss if BFD creates it without reading it from an 7030 input file, and without special handling here the flags set 7031 on it in an input file will be followed. */ 7032 if (strcmp (name, ".sdata") == 0 7033 || strcmp (name, ".lit8") == 0 7034 || strcmp (name, ".lit4") == 0) 7035 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; 7036 else if (strcmp (name, ".srdata") == 0) 7037 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL; 7038 else if (strcmp (name, ".compact_rel") == 0) 7039 hdr->sh_flags = 0; 7040 else if (strcmp (name, ".rtproc") == 0) 7041 { 7042 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0) 7043 { 7044 unsigned int adjust; 7045 7046 adjust = hdr->sh_size % hdr->sh_addralign; 7047 if (adjust != 0) 7048 hdr->sh_size += hdr->sh_addralign - adjust; 7049 } 7050 } 7051 } 7052 7053 return TRUE; 7054 } 7055 7056 /* Handle a MIPS specific section when reading an object file. This 7057 is called when elfcode.h finds a section with an unknown type. 7058 This routine supports both the 32-bit and 64-bit ELF ABI. 7059 7060 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure 7061 how to. */ 7062 7063 bfd_boolean 7064 _bfd_mips_elf_section_from_shdr (bfd *abfd, 7065 Elf_Internal_Shdr *hdr, 7066 const char *name, 7067 int shindex) 7068 { 7069 flagword flags = 0; 7070 7071 /* There ought to be a place to keep ELF backend specific flags, but 7072 at the moment there isn't one. We just keep track of the 7073 sections by their name, instead. Fortunately, the ABI gives 7074 suggested names for all the MIPS specific sections, so we will 7075 probably get away with this. */ 7076 switch (hdr->sh_type) 7077 { 7078 case SHT_MIPS_LIBLIST: 7079 if (strcmp (name, ".liblist") != 0) 7080 return FALSE; 7081 break; 7082 case SHT_MIPS_MSYM: 7083 if (strcmp (name, ".msym") != 0) 7084 return FALSE; 7085 break; 7086 case SHT_MIPS_CONFLICT: 7087 if (strcmp (name, ".conflict") != 0) 7088 return FALSE; 7089 break; 7090 case SHT_MIPS_GPTAB: 7091 if (! CONST_STRNEQ (name, ".gptab.")) 7092 return FALSE; 7093 break; 7094 case SHT_MIPS_UCODE: 7095 if (strcmp (name, ".ucode") != 0) 7096 return FALSE; 7097 break; 7098 case SHT_MIPS_DEBUG: 7099 if (strcmp (name, ".mdebug") != 0) 7100 return FALSE; 7101 flags = SEC_DEBUGGING; 7102 break; 7103 case SHT_MIPS_REGINFO: 7104 if (strcmp (name, ".reginfo") != 0 7105 || hdr->sh_size != sizeof (Elf32_External_RegInfo)) 7106 return FALSE; 7107 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE); 7108 break; 7109 case SHT_MIPS_IFACE: 7110 if (strcmp (name, ".MIPS.interfaces") != 0) 7111 return FALSE; 7112 break; 7113 case SHT_MIPS_CONTENT: 7114 if (! CONST_STRNEQ (name, ".MIPS.content")) 7115 return FALSE; 7116 break; 7117 case SHT_MIPS_OPTIONS: 7118 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name)) 7119 return FALSE; 7120 break; 7121 case SHT_MIPS_ABIFLAGS: 7122 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name)) 7123 return FALSE; 7124 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE); 7125 break; 7126 case SHT_MIPS_DWARF: 7127 if (! CONST_STRNEQ (name, ".debug_") 7128 && ! CONST_STRNEQ (name, ".zdebug_")) 7129 return FALSE; 7130 break; 7131 case SHT_MIPS_SYMBOL_LIB: 7132 if (strcmp (name, ".MIPS.symlib") != 0) 7133 return FALSE; 7134 break; 7135 case SHT_MIPS_EVENTS: 7136 if (! CONST_STRNEQ (name, ".MIPS.events") 7137 && ! CONST_STRNEQ (name, ".MIPS.post_rel")) 7138 return FALSE; 7139 break; 7140 default: 7141 break; 7142 } 7143 7144 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) 7145 return FALSE; 7146 7147 if (flags) 7148 { 7149 if (! bfd_set_section_flags (abfd, hdr->bfd_section, 7150 (bfd_get_section_flags (abfd, 7151 hdr->bfd_section) 7152 | flags))) 7153 return FALSE; 7154 } 7155 7156 if (hdr->sh_type == SHT_MIPS_ABIFLAGS) 7157 { 7158 Elf_External_ABIFlags_v0 ext; 7159 7160 if (! bfd_get_section_contents (abfd, hdr->bfd_section, 7161 &ext, 0, sizeof ext)) 7162 return FALSE; 7163 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext, 7164 &mips_elf_tdata (abfd)->abiflags); 7165 if (mips_elf_tdata (abfd)->abiflags.version != 0) 7166 return FALSE; 7167 mips_elf_tdata (abfd)->abiflags_valid = TRUE; 7168 } 7169 7170 /* FIXME: We should record sh_info for a .gptab section. */ 7171 7172 /* For a .reginfo section, set the gp value in the tdata information 7173 from the contents of this section. We need the gp value while 7174 processing relocs, so we just get it now. The .reginfo section 7175 is not used in the 64-bit MIPS ELF ABI. */ 7176 if (hdr->sh_type == SHT_MIPS_REGINFO) 7177 { 7178 Elf32_External_RegInfo ext; 7179 Elf32_RegInfo s; 7180 7181 if (! bfd_get_section_contents (abfd, hdr->bfd_section, 7182 &ext, 0, sizeof ext)) 7183 return FALSE; 7184 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s); 7185 elf_gp (abfd) = s.ri_gp_value; 7186 } 7187 7188 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and 7189 set the gp value based on what we find. We may see both 7190 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, 7191 they should agree. */ 7192 if (hdr->sh_type == SHT_MIPS_OPTIONS) 7193 { 7194 bfd_byte *contents, *l, *lend; 7195 7196 contents = bfd_malloc (hdr->sh_size); 7197 if (contents == NULL) 7198 return FALSE; 7199 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents, 7200 0, hdr->sh_size)) 7201 { 7202 free (contents); 7203 return FALSE; 7204 } 7205 l = contents; 7206 lend = contents + hdr->sh_size; 7207 while (l + sizeof (Elf_External_Options) <= lend) 7208 { 7209 Elf_Internal_Options intopt; 7210 7211 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, 7212 &intopt); 7213 if (intopt.size < sizeof (Elf_External_Options)) 7214 { 7215 (*_bfd_error_handler) 7216 (_("%B: Warning: bad `%s' option size %u smaller than its header"), 7217 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size); 7218 break; 7219 } 7220 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) 7221 { 7222 Elf64_Internal_RegInfo intreg; 7223 7224 bfd_mips_elf64_swap_reginfo_in 7225 (abfd, 7226 ((Elf64_External_RegInfo *) 7227 (l + sizeof (Elf_External_Options))), 7228 &intreg); 7229 elf_gp (abfd) = intreg.ri_gp_value; 7230 } 7231 else if (intopt.kind == ODK_REGINFO) 7232 { 7233 Elf32_RegInfo intreg; 7234 7235 bfd_mips_elf32_swap_reginfo_in 7236 (abfd, 7237 ((Elf32_External_RegInfo *) 7238 (l + sizeof (Elf_External_Options))), 7239 &intreg); 7240 elf_gp (abfd) = intreg.ri_gp_value; 7241 } 7242 l += intopt.size; 7243 } 7244 free (contents); 7245 } 7246 7247 return TRUE; 7248 } 7249 7250 /* Set the correct type for a MIPS ELF section. We do this by the 7251 section name, which is a hack, but ought to work. This routine is 7252 used by both the 32-bit and the 64-bit ABI. */ 7253 7254 bfd_boolean 7255 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec) 7256 { 7257 const char *name = bfd_get_section_name (abfd, sec); 7258 7259 if (strcmp (name, ".liblist") == 0) 7260 { 7261 hdr->sh_type = SHT_MIPS_LIBLIST; 7262 hdr->sh_info = sec->size / sizeof (Elf32_Lib); 7263 /* The sh_link field is set in final_write_processing. */ 7264 } 7265 else if (strcmp (name, ".conflict") == 0) 7266 hdr->sh_type = SHT_MIPS_CONFLICT; 7267 else if (CONST_STRNEQ (name, ".gptab.")) 7268 { 7269 hdr->sh_type = SHT_MIPS_GPTAB; 7270 hdr->sh_entsize = sizeof (Elf32_External_gptab); 7271 /* The sh_info field is set in final_write_processing. */ 7272 } 7273 else if (strcmp (name, ".ucode") == 0) 7274 hdr->sh_type = SHT_MIPS_UCODE; 7275 else if (strcmp (name, ".mdebug") == 0) 7276 { 7277 hdr->sh_type = SHT_MIPS_DEBUG; 7278 /* In a shared object on IRIX 5.3, the .mdebug section has an 7279 entsize of 0. FIXME: Does this matter? */ 7280 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0) 7281 hdr->sh_entsize = 0; 7282 else 7283 hdr->sh_entsize = 1; 7284 } 7285 else if (strcmp (name, ".reginfo") == 0) 7286 { 7287 hdr->sh_type = SHT_MIPS_REGINFO; 7288 /* In a shared object on IRIX 5.3, the .reginfo section has an 7289 entsize of 0x18. FIXME: Does this matter? */ 7290 if (SGI_COMPAT (abfd)) 7291 { 7292 if ((abfd->flags & DYNAMIC) != 0) 7293 hdr->sh_entsize = sizeof (Elf32_External_RegInfo); 7294 else 7295 hdr->sh_entsize = 1; 7296 } 7297 else 7298 hdr->sh_entsize = sizeof (Elf32_External_RegInfo); 7299 } 7300 else if (SGI_COMPAT (abfd) 7301 && (strcmp (name, ".hash") == 0 7302 || strcmp (name, ".dynamic") == 0 7303 || strcmp (name, ".dynstr") == 0)) 7304 { 7305 if (SGI_COMPAT (abfd)) 7306 hdr->sh_entsize = 0; 7307 #if 0 7308 /* This isn't how the IRIX6 linker behaves. */ 7309 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES; 7310 #endif 7311 } 7312 else if (strcmp (name, ".got") == 0 7313 || strcmp (name, ".srdata") == 0 7314 || strcmp (name, ".sdata") == 0 7315 || strcmp (name, ".sbss") == 0 7316 || strcmp (name, ".lit4") == 0 7317 || strcmp (name, ".lit8") == 0) 7318 hdr->sh_flags |= SHF_MIPS_GPREL; 7319 else if (strcmp (name, ".MIPS.interfaces") == 0) 7320 { 7321 hdr->sh_type = SHT_MIPS_IFACE; 7322 hdr->sh_flags |= SHF_MIPS_NOSTRIP; 7323 } 7324 else if (CONST_STRNEQ (name, ".MIPS.content")) 7325 { 7326 hdr->sh_type = SHT_MIPS_CONTENT; 7327 hdr->sh_flags |= SHF_MIPS_NOSTRIP; 7328 /* The sh_info field is set in final_write_processing. */ 7329 } 7330 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name)) 7331 { 7332 hdr->sh_type = SHT_MIPS_OPTIONS; 7333 hdr->sh_entsize = 1; 7334 hdr->sh_flags |= SHF_MIPS_NOSTRIP; 7335 } 7336 else if (CONST_STRNEQ (name, ".MIPS.abiflags")) 7337 { 7338 hdr->sh_type = SHT_MIPS_ABIFLAGS; 7339 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0); 7340 } 7341 else if (CONST_STRNEQ (name, ".debug_") 7342 || CONST_STRNEQ (name, ".zdebug_")) 7343 { 7344 hdr->sh_type = SHT_MIPS_DWARF; 7345 7346 /* Irix facilities such as libexc expect a single .debug_frame 7347 per executable, the system ones have NOSTRIP set and the linker 7348 doesn't merge sections with different flags so ... */ 7349 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame")) 7350 hdr->sh_flags |= SHF_MIPS_NOSTRIP; 7351 } 7352 else if (strcmp (name, ".MIPS.symlib") == 0) 7353 { 7354 hdr->sh_type = SHT_MIPS_SYMBOL_LIB; 7355 /* The sh_link and sh_info fields are set in 7356 final_write_processing. */ 7357 } 7358 else if (CONST_STRNEQ (name, ".MIPS.events") 7359 || CONST_STRNEQ (name, ".MIPS.post_rel")) 7360 { 7361 hdr->sh_type = SHT_MIPS_EVENTS; 7362 hdr->sh_flags |= SHF_MIPS_NOSTRIP; 7363 /* The sh_link field is set in final_write_processing. */ 7364 } 7365 else if (strcmp (name, ".msym") == 0) 7366 { 7367 hdr->sh_type = SHT_MIPS_MSYM; 7368 hdr->sh_flags |= SHF_ALLOC; 7369 hdr->sh_entsize = 8; 7370 } 7371 7372 /* The generic elf_fake_sections will set up REL_HDR using the default 7373 kind of relocations. We used to set up a second header for the 7374 non-default kind of relocations here, but only NewABI would use 7375 these, and the IRIX ld doesn't like resulting empty RELA sections. 7376 Thus we create those header only on demand now. */ 7377 7378 return TRUE; 7379 } 7380 7381 /* Given a BFD section, try to locate the corresponding ELF section 7382 index. This is used by both the 32-bit and the 64-bit ABI. 7383 Actually, it's not clear to me that the 64-bit ABI supports these, 7384 but for non-PIC objects we will certainly want support for at least 7385 the .scommon section. */ 7386 7387 bfd_boolean 7388 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED, 7389 asection *sec, int *retval) 7390 { 7391 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0) 7392 { 7393 *retval = SHN_MIPS_SCOMMON; 7394 return TRUE; 7395 } 7396 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0) 7397 { 7398 *retval = SHN_MIPS_ACOMMON; 7399 return TRUE; 7400 } 7401 return FALSE; 7402 } 7403 7404 /* Hook called by the linker routine which adds symbols from an object 7405 file. We must handle the special MIPS section numbers here. */ 7406 7407 bfd_boolean 7408 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, 7409 Elf_Internal_Sym *sym, const char **namep, 7410 flagword *flagsp ATTRIBUTE_UNUSED, 7411 asection **secp, bfd_vma *valp) 7412 { 7413 if (SGI_COMPAT (abfd) 7414 && (abfd->flags & DYNAMIC) != 0 7415 && strcmp (*namep, "_rld_new_interface") == 0) 7416 { 7417 /* Skip IRIX5 rld entry name. */ 7418 *namep = NULL; 7419 return TRUE; 7420 } 7421 7422 /* Shared objects may have a dynamic symbol '_gp_disp' defined as 7423 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp 7424 by setting a DT_NEEDED for the shared object. Since _gp_disp is 7425 a magic symbol resolved by the linker, we ignore this bogus definition 7426 of _gp_disp. New ABI objects do not suffer from this problem so this 7427 is not done for them. */ 7428 if (!NEWABI_P(abfd) 7429 && (sym->st_shndx == SHN_ABS) 7430 && (strcmp (*namep, "_gp_disp") == 0)) 7431 { 7432 *namep = NULL; 7433 return TRUE; 7434 } 7435 7436 switch (sym->st_shndx) 7437 { 7438 case SHN_COMMON: 7439 /* Common symbols less than the GP size are automatically 7440 treated as SHN_MIPS_SCOMMON symbols. */ 7441 if (sym->st_size > elf_gp_size (abfd) 7442 || ELF_ST_TYPE (sym->st_info) == STT_TLS 7443 || IRIX_COMPAT (abfd) == ict_irix6) 7444 break; 7445 /* Fall through. */ 7446 case SHN_MIPS_SCOMMON: 7447 *secp = bfd_make_section_old_way (abfd, ".scommon"); 7448 (*secp)->flags |= SEC_IS_COMMON; 7449 *valp = sym->st_size; 7450 break; 7451 7452 case SHN_MIPS_TEXT: 7453 /* This section is used in a shared object. */ 7454 if (mips_elf_tdata (abfd)->elf_text_section == NULL) 7455 { 7456 asymbol *elf_text_symbol; 7457 asection *elf_text_section; 7458 bfd_size_type amt = sizeof (asection); 7459 7460 elf_text_section = bfd_zalloc (abfd, amt); 7461 if (elf_text_section == NULL) 7462 return FALSE; 7463 7464 amt = sizeof (asymbol); 7465 elf_text_symbol = bfd_zalloc (abfd, amt); 7466 if (elf_text_symbol == NULL) 7467 return FALSE; 7468 7469 /* Initialize the section. */ 7470 7471 mips_elf_tdata (abfd)->elf_text_section = elf_text_section; 7472 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol; 7473 7474 elf_text_section->symbol = elf_text_symbol; 7475 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol; 7476 7477 elf_text_section->name = ".text"; 7478 elf_text_section->flags = SEC_NO_FLAGS; 7479 elf_text_section->output_section = NULL; 7480 elf_text_section->owner = abfd; 7481 elf_text_symbol->name = ".text"; 7482 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; 7483 elf_text_symbol->section = elf_text_section; 7484 } 7485 /* This code used to do *secp = bfd_und_section_ptr if 7486 bfd_link_pic (info). I don't know why, and that doesn't make sense, 7487 so I took it out. */ 7488 *secp = mips_elf_tdata (abfd)->elf_text_section; 7489 break; 7490 7491 case SHN_MIPS_ACOMMON: 7492 /* Fall through. XXX Can we treat this as allocated data? */ 7493 case SHN_MIPS_DATA: 7494 /* This section is used in a shared object. */ 7495 if (mips_elf_tdata (abfd)->elf_data_section == NULL) 7496 { 7497 asymbol *elf_data_symbol; 7498 asection *elf_data_section; 7499 bfd_size_type amt = sizeof (asection); 7500 7501 elf_data_section = bfd_zalloc (abfd, amt); 7502 if (elf_data_section == NULL) 7503 return FALSE; 7504 7505 amt = sizeof (asymbol); 7506 elf_data_symbol = bfd_zalloc (abfd, amt); 7507 if (elf_data_symbol == NULL) 7508 return FALSE; 7509 7510 /* Initialize the section. */ 7511 7512 mips_elf_tdata (abfd)->elf_data_section = elf_data_section; 7513 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol; 7514 7515 elf_data_section->symbol = elf_data_symbol; 7516 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol; 7517 7518 elf_data_section->name = ".data"; 7519 elf_data_section->flags = SEC_NO_FLAGS; 7520 elf_data_section->output_section = NULL; 7521 elf_data_section->owner = abfd; 7522 elf_data_symbol->name = ".data"; 7523 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; 7524 elf_data_symbol->section = elf_data_section; 7525 } 7526 /* This code used to do *secp = bfd_und_section_ptr if 7527 bfd_link_pic (info). I don't know why, and that doesn't make sense, 7528 so I took it out. */ 7529 *secp = mips_elf_tdata (abfd)->elf_data_section; 7530 break; 7531 7532 case SHN_MIPS_SUNDEFINED: 7533 *secp = bfd_und_section_ptr; 7534 break; 7535 } 7536 7537 if (SGI_COMPAT (abfd) 7538 && ! bfd_link_pic (info) 7539 && info->output_bfd->xvec == abfd->xvec 7540 && strcmp (*namep, "__rld_obj_head") == 0) 7541 { 7542 struct elf_link_hash_entry *h; 7543 struct bfd_link_hash_entry *bh; 7544 7545 /* Mark __rld_obj_head as dynamic. */ 7546 bh = NULL; 7547 if (! (_bfd_generic_link_add_one_symbol 7548 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE, 7549 get_elf_backend_data (abfd)->collect, &bh))) 7550 return FALSE; 7551 7552 h = (struct elf_link_hash_entry *) bh; 7553 h->non_elf = 0; 7554 h->def_regular = 1; 7555 h->type = STT_OBJECT; 7556 7557 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 7558 return FALSE; 7559 7560 mips_elf_hash_table (info)->use_rld_obj_head = TRUE; 7561 mips_elf_hash_table (info)->rld_symbol = h; 7562 } 7563 7564 /* If this is a mips16 text symbol, add 1 to the value to make it 7565 odd. This will cause something like .word SYM to come up with 7566 the right value when it is loaded into the PC. */ 7567 if (ELF_ST_IS_COMPRESSED (sym->st_other)) 7568 ++*valp; 7569 7570 return TRUE; 7571 } 7572 7573 /* This hook function is called before the linker writes out a global 7574 symbol. We mark symbols as small common if appropriate. This is 7575 also where we undo the increment of the value for a mips16 symbol. */ 7576 7577 int 7578 _bfd_mips_elf_link_output_symbol_hook 7579 (struct bfd_link_info *info ATTRIBUTE_UNUSED, 7580 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym, 7581 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED) 7582 { 7583 /* If we see a common symbol, which implies a relocatable link, then 7584 if a symbol was small common in an input file, mark it as small 7585 common in the output file. */ 7586 if (sym->st_shndx == SHN_COMMON 7587 && strcmp (input_sec->name, ".scommon") == 0) 7588 sym->st_shndx = SHN_MIPS_SCOMMON; 7589 7590 if (ELF_ST_IS_COMPRESSED (sym->st_other)) 7591 sym->st_value &= ~1; 7592 7593 return 1; 7594 } 7595 7596 /* Functions for the dynamic linker. */ 7597 7598 /* Create dynamic sections when linking against a dynamic object. */ 7599 7600 bfd_boolean 7601 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) 7602 { 7603 struct elf_link_hash_entry *h; 7604 struct bfd_link_hash_entry *bh; 7605 flagword flags; 7606 register asection *s; 7607 const char * const *namep; 7608 struct mips_elf_link_hash_table *htab; 7609 7610 htab = mips_elf_hash_table (info); 7611 BFD_ASSERT (htab != NULL); 7612 7613 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY 7614 | SEC_LINKER_CREATED | SEC_READONLY); 7615 7616 /* The psABI requires a read-only .dynamic section, but the VxWorks 7617 EABI doesn't. */ 7618 if (!htab->is_vxworks) 7619 { 7620 s = bfd_get_linker_section (abfd, ".dynamic"); 7621 if (s != NULL) 7622 { 7623 if (! bfd_set_section_flags (abfd, s, flags)) 7624 return FALSE; 7625 } 7626 } 7627 7628 /* We need to create .got section. */ 7629 if (!mips_elf_create_got_section (abfd, info)) 7630 return FALSE; 7631 7632 if (! mips_elf_rel_dyn_section (info, TRUE)) 7633 return FALSE; 7634 7635 /* Create .stub section. */ 7636 s = bfd_make_section_anyway_with_flags (abfd, 7637 MIPS_ELF_STUB_SECTION_NAME (abfd), 7638 flags | SEC_CODE); 7639 if (s == NULL 7640 || ! bfd_set_section_alignment (abfd, s, 7641 MIPS_ELF_LOG_FILE_ALIGN (abfd))) 7642 return FALSE; 7643 htab->sstubs = s; 7644 7645 if (!mips_elf_hash_table (info)->use_rld_obj_head 7646 && bfd_link_executable (info) 7647 && bfd_get_linker_section (abfd, ".rld_map") == NULL) 7648 { 7649 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map", 7650 flags &~ (flagword) SEC_READONLY); 7651 if (s == NULL 7652 || ! bfd_set_section_alignment (abfd, s, 7653 MIPS_ELF_LOG_FILE_ALIGN (abfd))) 7654 return FALSE; 7655 } 7656 7657 /* On IRIX5, we adjust add some additional symbols and change the 7658 alignments of several sections. There is no ABI documentation 7659 indicating that this is necessary on IRIX6, nor any evidence that 7660 the linker takes such action. */ 7661 if (IRIX_COMPAT (abfd) == ict_irix5) 7662 { 7663 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++) 7664 { 7665 bh = NULL; 7666 if (! (_bfd_generic_link_add_one_symbol 7667 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0, 7668 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) 7669 return FALSE; 7670 7671 h = (struct elf_link_hash_entry *) bh; 7672 h->non_elf = 0; 7673 h->def_regular = 1; 7674 h->type = STT_SECTION; 7675 7676 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 7677 return FALSE; 7678 } 7679 7680 /* We need to create a .compact_rel section. */ 7681 if (SGI_COMPAT (abfd)) 7682 { 7683 if (!mips_elf_create_compact_rel_section (abfd, info)) 7684 return FALSE; 7685 } 7686 7687 /* Change alignments of some sections. */ 7688 s = bfd_get_linker_section (abfd, ".hash"); 7689 if (s != NULL) 7690 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); 7691 7692 s = bfd_get_linker_section (abfd, ".dynsym"); 7693 if (s != NULL) 7694 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); 7695 7696 s = bfd_get_linker_section (abfd, ".dynstr"); 7697 if (s != NULL) 7698 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); 7699 7700 /* ??? */ 7701 s = bfd_get_section_by_name (abfd, ".reginfo"); 7702 if (s != NULL) 7703 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); 7704 7705 s = bfd_get_linker_section (abfd, ".dynamic"); 7706 if (s != NULL) 7707 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); 7708 } 7709 7710 if (bfd_link_executable (info)) 7711 { 7712 const char *name; 7713 7714 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING"; 7715 bh = NULL; 7716 if (!(_bfd_generic_link_add_one_symbol 7717 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0, 7718 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) 7719 return FALSE; 7720 7721 h = (struct elf_link_hash_entry *) bh; 7722 h->non_elf = 0; 7723 h->def_regular = 1; 7724 h->type = STT_SECTION; 7725 7726 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 7727 return FALSE; 7728 7729 if (! mips_elf_hash_table (info)->use_rld_obj_head) 7730 { 7731 /* __rld_map is a four byte word located in the .data section 7732 and is filled in by the rtld to contain a pointer to 7733 the _r_debug structure. Its symbol value will be set in 7734 _bfd_mips_elf_finish_dynamic_symbol. */ 7735 s = bfd_get_linker_section (abfd, ".rld_map"); 7736 BFD_ASSERT (s != NULL); 7737 7738 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP"; 7739 bh = NULL; 7740 if (!(_bfd_generic_link_add_one_symbol 7741 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE, 7742 get_elf_backend_data (abfd)->collect, &bh))) 7743 return FALSE; 7744 7745 h = (struct elf_link_hash_entry *) bh; 7746 h->non_elf = 0; 7747 h->def_regular = 1; 7748 h->type = STT_OBJECT; 7749 7750 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 7751 return FALSE; 7752 mips_elf_hash_table (info)->rld_symbol = h; 7753 } 7754 } 7755 7756 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections. 7757 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */ 7758 if (!_bfd_elf_create_dynamic_sections (abfd, info)) 7759 return FALSE; 7760 7761 /* Cache the sections created above. */ 7762 htab->splt = bfd_get_linker_section (abfd, ".plt"); 7763 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss"); 7764 if (htab->is_vxworks) 7765 { 7766 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss"); 7767 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt"); 7768 } 7769 else 7770 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt"); 7771 if (!htab->sdynbss 7772 || (htab->is_vxworks && !htab->srelbss && !bfd_link_pic (info)) 7773 || !htab->srelplt 7774 || !htab->splt) 7775 abort (); 7776 7777 /* Do the usual VxWorks handling. */ 7778 if (htab->is_vxworks 7779 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2)) 7780 return FALSE; 7781 7782 return TRUE; 7783 } 7784 7785 /* Return true if relocation REL against section SEC is a REL rather than 7786 RELA relocation. RELOCS is the first relocation in the section and 7787 ABFD is the bfd that contains SEC. */ 7788 7789 static bfd_boolean 7790 mips_elf_rel_relocation_p (bfd *abfd, asection *sec, 7791 const Elf_Internal_Rela *relocs, 7792 const Elf_Internal_Rela *rel) 7793 { 7794 Elf_Internal_Shdr *rel_hdr; 7795 const struct elf_backend_data *bed; 7796 7797 /* To determine which flavor of relocation this is, we depend on the 7798 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */ 7799 rel_hdr = elf_section_data (sec)->rel.hdr; 7800 if (rel_hdr == NULL) 7801 return FALSE; 7802 bed = get_elf_backend_data (abfd); 7803 return ((size_t) (rel - relocs) 7804 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel); 7805 } 7806 7807 /* Read the addend for REL relocation REL, which belongs to bfd ABFD. 7808 HOWTO is the relocation's howto and CONTENTS points to the contents 7809 of the section that REL is against. */ 7810 7811 static bfd_vma 7812 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel, 7813 reloc_howto_type *howto, bfd_byte *contents) 7814 { 7815 bfd_byte *location; 7816 unsigned int r_type; 7817 bfd_vma addend; 7818 bfd_vma bytes; 7819 7820 r_type = ELF_R_TYPE (abfd, rel->r_info); 7821 location = contents + rel->r_offset; 7822 7823 /* Get the addend, which is stored in the input file. */ 7824 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location); 7825 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents); 7826 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location); 7827 7828 addend = bytes & howto->src_mask; 7829 7830 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend 7831 accordingly. */ 7832 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c) 7833 addend <<= 1; 7834 7835 return addend; 7836 } 7837 7838 /* REL is a relocation in ABFD that needs a partnering LO16 relocation 7839 and *ADDEND is the addend for REL itself. Look for the LO16 relocation 7840 and update *ADDEND with the final addend. Return true on success 7841 or false if the LO16 could not be found. RELEND is the exclusive 7842 upper bound on the relocations for REL's section. */ 7843 7844 static bfd_boolean 7845 mips_elf_add_lo16_rel_addend (bfd *abfd, 7846 const Elf_Internal_Rela *rel, 7847 const Elf_Internal_Rela *relend, 7848 bfd_byte *contents, bfd_vma *addend) 7849 { 7850 unsigned int r_type, lo16_type; 7851 const Elf_Internal_Rela *lo16_relocation; 7852 reloc_howto_type *lo16_howto; 7853 bfd_vma l; 7854 7855 r_type = ELF_R_TYPE (abfd, rel->r_info); 7856 if (mips16_reloc_p (r_type)) 7857 lo16_type = R_MIPS16_LO16; 7858 else if (micromips_reloc_p (r_type)) 7859 lo16_type = R_MICROMIPS_LO16; 7860 else if (r_type == R_MIPS_PCHI16) 7861 lo16_type = R_MIPS_PCLO16; 7862 else 7863 lo16_type = R_MIPS_LO16; 7864 7865 /* The combined value is the sum of the HI16 addend, left-shifted by 7866 sixteen bits, and the LO16 addend, sign extended. (Usually, the 7867 code does a `lui' of the HI16 value, and then an `addiu' of the 7868 LO16 value.) 7869 7870 Scan ahead to find a matching LO16 relocation. 7871 7872 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must 7873 be immediately following. However, for the IRIX6 ABI, the next 7874 relocation may be a composed relocation consisting of several 7875 relocations for the same address. In that case, the R_MIPS_LO16 7876 relocation may occur as one of these. We permit a similar 7877 extension in general, as that is useful for GCC. 7878 7879 In some cases GCC dead code elimination removes the LO16 but keeps 7880 the corresponding HI16. This is strictly speaking a violation of 7881 the ABI but not immediately harmful. */ 7882 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend); 7883 if (lo16_relocation == NULL) 7884 return FALSE; 7885 7886 /* Obtain the addend kept there. */ 7887 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE); 7888 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents); 7889 7890 l <<= lo16_howto->rightshift; 7891 l = _bfd_mips_elf_sign_extend (l, 16); 7892 7893 *addend <<= 16; 7894 *addend += l; 7895 return TRUE; 7896 } 7897 7898 /* Try to read the contents of section SEC in bfd ABFD. Return true and 7899 store the contents in *CONTENTS on success. Assume that *CONTENTS 7900 already holds the contents if it is nonull on entry. */ 7901 7902 static bfd_boolean 7903 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents) 7904 { 7905 if (*contents) 7906 return TRUE; 7907 7908 /* Get cached copy if it exists. */ 7909 if (elf_section_data (sec)->this_hdr.contents != NULL) 7910 { 7911 *contents = elf_section_data (sec)->this_hdr.contents; 7912 return TRUE; 7913 } 7914 7915 return bfd_malloc_and_get_section (abfd, sec, contents); 7916 } 7917 7918 /* Make a new PLT record to keep internal data. */ 7919 7920 static struct plt_entry * 7921 mips_elf_make_plt_record (bfd *abfd) 7922 { 7923 struct plt_entry *entry; 7924 7925 entry = bfd_zalloc (abfd, sizeof (*entry)); 7926 if (entry == NULL) 7927 return NULL; 7928 7929 entry->stub_offset = MINUS_ONE; 7930 entry->mips_offset = MINUS_ONE; 7931 entry->comp_offset = MINUS_ONE; 7932 entry->gotplt_index = MINUS_ONE; 7933 return entry; 7934 } 7935 7936 /* Look through the relocs for a section during the first phase, and 7937 allocate space in the global offset table and record the need for 7938 standard MIPS and compressed procedure linkage table entries. */ 7939 7940 bfd_boolean 7941 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info, 7942 asection *sec, const Elf_Internal_Rela *relocs) 7943 { 7944 const char *name; 7945 bfd *dynobj; 7946 Elf_Internal_Shdr *symtab_hdr; 7947 struct elf_link_hash_entry **sym_hashes; 7948 size_t extsymoff; 7949 const Elf_Internal_Rela *rel; 7950 const Elf_Internal_Rela *rel_end; 7951 asection *sreloc; 7952 const struct elf_backend_data *bed; 7953 struct mips_elf_link_hash_table *htab; 7954 bfd_byte *contents; 7955 bfd_vma addend; 7956 reloc_howto_type *howto; 7957 7958 if (bfd_link_relocatable (info)) 7959 return TRUE; 7960 7961 htab = mips_elf_hash_table (info); 7962 BFD_ASSERT (htab != NULL); 7963 7964 dynobj = elf_hash_table (info)->dynobj; 7965 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 7966 sym_hashes = elf_sym_hashes (abfd); 7967 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; 7968 7969 bed = get_elf_backend_data (abfd); 7970 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel; 7971 7972 /* Check for the mips16 stub sections. */ 7973 7974 name = bfd_get_section_name (abfd, sec); 7975 if (FN_STUB_P (name)) 7976 { 7977 unsigned long r_symndx; 7978 7979 /* Look at the relocation information to figure out which symbol 7980 this is for. */ 7981 7982 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end); 7983 if (r_symndx == 0) 7984 { 7985 (*_bfd_error_handler) 7986 (_("%B: Warning: cannot determine the target function for" 7987 " stub section `%s'"), 7988 abfd, name); 7989 bfd_set_error (bfd_error_bad_value); 7990 return FALSE; 7991 } 7992 7993 if (r_symndx < extsymoff 7994 || sym_hashes[r_symndx - extsymoff] == NULL) 7995 { 7996 asection *o; 7997 7998 /* This stub is for a local symbol. This stub will only be 7999 needed if there is some relocation in this BFD, other 8000 than a 16 bit function call, which refers to this symbol. */ 8001 for (o = abfd->sections; o != NULL; o = o->next) 8002 { 8003 Elf_Internal_Rela *sec_relocs; 8004 const Elf_Internal_Rela *r, *rend; 8005 8006 /* We can ignore stub sections when looking for relocs. */ 8007 if ((o->flags & SEC_RELOC) == 0 8008 || o->reloc_count == 0 8009 || section_allows_mips16_refs_p (o)) 8010 continue; 8011 8012 sec_relocs 8013 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, 8014 info->keep_memory); 8015 if (sec_relocs == NULL) 8016 return FALSE; 8017 8018 rend = sec_relocs + o->reloc_count; 8019 for (r = sec_relocs; r < rend; r++) 8020 if (ELF_R_SYM (abfd, r->r_info) == r_symndx 8021 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info))) 8022 break; 8023 8024 if (elf_section_data (o)->relocs != sec_relocs) 8025 free (sec_relocs); 8026 8027 if (r < rend) 8028 break; 8029 } 8030 8031 if (o == NULL) 8032 { 8033 /* There is no non-call reloc for this stub, so we do 8034 not need it. Since this function is called before 8035 the linker maps input sections to output sections, we 8036 can easily discard it by setting the SEC_EXCLUDE 8037 flag. */ 8038 sec->flags |= SEC_EXCLUDE; 8039 return TRUE; 8040 } 8041 8042 /* Record this stub in an array of local symbol stubs for 8043 this BFD. */ 8044 if (mips_elf_tdata (abfd)->local_stubs == NULL) 8045 { 8046 unsigned long symcount; 8047 asection **n; 8048 bfd_size_type amt; 8049 8050 if (elf_bad_symtab (abfd)) 8051 symcount = NUM_SHDR_ENTRIES (symtab_hdr); 8052 else 8053 symcount = symtab_hdr->sh_info; 8054 amt = symcount * sizeof (asection *); 8055 n = bfd_zalloc (abfd, amt); 8056 if (n == NULL) 8057 return FALSE; 8058 mips_elf_tdata (abfd)->local_stubs = n; 8059 } 8060 8061 sec->flags |= SEC_KEEP; 8062 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec; 8063 8064 /* We don't need to set mips16_stubs_seen in this case. 8065 That flag is used to see whether we need to look through 8066 the global symbol table for stubs. We don't need to set 8067 it here, because we just have a local stub. */ 8068 } 8069 else 8070 { 8071 struct mips_elf_link_hash_entry *h; 8072 8073 h = ((struct mips_elf_link_hash_entry *) 8074 sym_hashes[r_symndx - extsymoff]); 8075 8076 while (h->root.root.type == bfd_link_hash_indirect 8077 || h->root.root.type == bfd_link_hash_warning) 8078 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; 8079 8080 /* H is the symbol this stub is for. */ 8081 8082 /* If we already have an appropriate stub for this function, we 8083 don't need another one, so we can discard this one. Since 8084 this function is called before the linker maps input sections 8085 to output sections, we can easily discard it by setting the 8086 SEC_EXCLUDE flag. */ 8087 if (h->fn_stub != NULL) 8088 { 8089 sec->flags |= SEC_EXCLUDE; 8090 return TRUE; 8091 } 8092 8093 sec->flags |= SEC_KEEP; 8094 h->fn_stub = sec; 8095 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE; 8096 } 8097 } 8098 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name)) 8099 { 8100 unsigned long r_symndx; 8101 struct mips_elf_link_hash_entry *h; 8102 asection **loc; 8103 8104 /* Look at the relocation information to figure out which symbol 8105 this is for. */ 8106 8107 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end); 8108 if (r_symndx == 0) 8109 { 8110 (*_bfd_error_handler) 8111 (_("%B: Warning: cannot determine the target function for" 8112 " stub section `%s'"), 8113 abfd, name); 8114 bfd_set_error (bfd_error_bad_value); 8115 return FALSE; 8116 } 8117 8118 if (r_symndx < extsymoff 8119 || sym_hashes[r_symndx - extsymoff] == NULL) 8120 { 8121 asection *o; 8122 8123 /* This stub is for a local symbol. This stub will only be 8124 needed if there is some relocation (R_MIPS16_26) in this BFD 8125 that refers to this symbol. */ 8126 for (o = abfd->sections; o != NULL; o = o->next) 8127 { 8128 Elf_Internal_Rela *sec_relocs; 8129 const Elf_Internal_Rela *r, *rend; 8130 8131 /* We can ignore stub sections when looking for relocs. */ 8132 if ((o->flags & SEC_RELOC) == 0 8133 || o->reloc_count == 0 8134 || section_allows_mips16_refs_p (o)) 8135 continue; 8136 8137 sec_relocs 8138 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, 8139 info->keep_memory); 8140 if (sec_relocs == NULL) 8141 return FALSE; 8142 8143 rend = sec_relocs + o->reloc_count; 8144 for (r = sec_relocs; r < rend; r++) 8145 if (ELF_R_SYM (abfd, r->r_info) == r_symndx 8146 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26) 8147 break; 8148 8149 if (elf_section_data (o)->relocs != sec_relocs) 8150 free (sec_relocs); 8151 8152 if (r < rend) 8153 break; 8154 } 8155 8156 if (o == NULL) 8157 { 8158 /* There is no non-call reloc for this stub, so we do 8159 not need it. Since this function is called before 8160 the linker maps input sections to output sections, we 8161 can easily discard it by setting the SEC_EXCLUDE 8162 flag. */ 8163 sec->flags |= SEC_EXCLUDE; 8164 return TRUE; 8165 } 8166 8167 /* Record this stub in an array of local symbol call_stubs for 8168 this BFD. */ 8169 if (mips_elf_tdata (abfd)->local_call_stubs == NULL) 8170 { 8171 unsigned long symcount; 8172 asection **n; 8173 bfd_size_type amt; 8174 8175 if (elf_bad_symtab (abfd)) 8176 symcount = NUM_SHDR_ENTRIES (symtab_hdr); 8177 else 8178 symcount = symtab_hdr->sh_info; 8179 amt = symcount * sizeof (asection *); 8180 n = bfd_zalloc (abfd, amt); 8181 if (n == NULL) 8182 return FALSE; 8183 mips_elf_tdata (abfd)->local_call_stubs = n; 8184 } 8185 8186 sec->flags |= SEC_KEEP; 8187 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec; 8188 8189 /* We don't need to set mips16_stubs_seen in this case. 8190 That flag is used to see whether we need to look through 8191 the global symbol table for stubs. We don't need to set 8192 it here, because we just have a local stub. */ 8193 } 8194 else 8195 { 8196 h = ((struct mips_elf_link_hash_entry *) 8197 sym_hashes[r_symndx - extsymoff]); 8198 8199 /* H is the symbol this stub is for. */ 8200 8201 if (CALL_FP_STUB_P (name)) 8202 loc = &h->call_fp_stub; 8203 else 8204 loc = &h->call_stub; 8205 8206 /* If we already have an appropriate stub for this function, we 8207 don't need another one, so we can discard this one. Since 8208 this function is called before the linker maps input sections 8209 to output sections, we can easily discard it by setting the 8210 SEC_EXCLUDE flag. */ 8211 if (*loc != NULL) 8212 { 8213 sec->flags |= SEC_EXCLUDE; 8214 return TRUE; 8215 } 8216 8217 sec->flags |= SEC_KEEP; 8218 *loc = sec; 8219 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE; 8220 } 8221 } 8222 8223 sreloc = NULL; 8224 contents = NULL; 8225 for (rel = relocs; rel < rel_end; ++rel) 8226 { 8227 unsigned long r_symndx; 8228 unsigned int r_type; 8229 struct elf_link_hash_entry *h; 8230 bfd_boolean can_make_dynamic_p; 8231 bfd_boolean call_reloc_p; 8232 bfd_boolean constrain_symbol_p; 8233 8234 r_symndx = ELF_R_SYM (abfd, rel->r_info); 8235 r_type = ELF_R_TYPE (abfd, rel->r_info); 8236 8237 if (r_symndx < extsymoff) 8238 h = NULL; 8239 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr)) 8240 { 8241 (*_bfd_error_handler) 8242 (_("%B: Malformed reloc detected for section %s"), 8243 abfd, name); 8244 bfd_set_error (bfd_error_bad_value); 8245 return FALSE; 8246 } 8247 else 8248 { 8249 h = sym_hashes[r_symndx - extsymoff]; 8250 if (h != NULL) 8251 { 8252 while (h->root.type == bfd_link_hash_indirect 8253 || h->root.type == bfd_link_hash_warning) 8254 h = (struct elf_link_hash_entry *) h->root.u.i.link; 8255 8256 /* PR15323, ref flags aren't set for references in the 8257 same object. */ 8258 h->root.non_ir_ref = 1; 8259 } 8260 } 8261 8262 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this 8263 relocation into a dynamic one. */ 8264 can_make_dynamic_p = FALSE; 8265 8266 /* Set CALL_RELOC_P to true if the relocation is for a call, 8267 and if pointer equality therefore doesn't matter. */ 8268 call_reloc_p = FALSE; 8269 8270 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation 8271 into account when deciding how to define the symbol. 8272 Relocations in nonallocatable sections such as .pdr and 8273 .debug* should have no effect. */ 8274 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0); 8275 8276 switch (r_type) 8277 { 8278 case R_MIPS_CALL16: 8279 case R_MIPS_CALL_HI16: 8280 case R_MIPS_CALL_LO16: 8281 case R_MIPS16_CALL16: 8282 case R_MICROMIPS_CALL16: 8283 case R_MICROMIPS_CALL_HI16: 8284 case R_MICROMIPS_CALL_LO16: 8285 call_reloc_p = TRUE; 8286 /* Fall through. */ 8287 8288 case R_MIPS_GOT16: 8289 case R_MIPS_GOT_HI16: 8290 case R_MIPS_GOT_LO16: 8291 case R_MIPS_GOT_PAGE: 8292 case R_MIPS_GOT_OFST: 8293 case R_MIPS_GOT_DISP: 8294 case R_MIPS_TLS_GOTTPREL: 8295 case R_MIPS_TLS_GD: 8296 case R_MIPS_TLS_LDM: 8297 case R_MIPS16_GOT16: 8298 case R_MIPS16_TLS_GOTTPREL: 8299 case R_MIPS16_TLS_GD: 8300 case R_MIPS16_TLS_LDM: 8301 case R_MICROMIPS_GOT16: 8302 case R_MICROMIPS_GOT_HI16: 8303 case R_MICROMIPS_GOT_LO16: 8304 case R_MICROMIPS_GOT_PAGE: 8305 case R_MICROMIPS_GOT_OFST: 8306 case R_MICROMIPS_GOT_DISP: 8307 case R_MICROMIPS_TLS_GOTTPREL: 8308 case R_MICROMIPS_TLS_GD: 8309 case R_MICROMIPS_TLS_LDM: 8310 if (dynobj == NULL) 8311 elf_hash_table (info)->dynobj = dynobj = abfd; 8312 if (!mips_elf_create_got_section (dynobj, info)) 8313 return FALSE; 8314 if (htab->is_vxworks && !bfd_link_pic (info)) 8315 { 8316 (*_bfd_error_handler) 8317 (_("%B: GOT reloc at 0x%lx not expected in executables"), 8318 abfd, (unsigned long) rel->r_offset); 8319 bfd_set_error (bfd_error_bad_value); 8320 return FALSE; 8321 } 8322 can_make_dynamic_p = TRUE; 8323 break; 8324 8325 case R_MIPS_NONE: 8326 case R_MIPS_JALR: 8327 case R_MICROMIPS_JALR: 8328 /* These relocations have empty fields and are purely there to 8329 provide link information. The symbol value doesn't matter. */ 8330 constrain_symbol_p = FALSE; 8331 break; 8332 8333 case R_MIPS_GPREL16: 8334 case R_MIPS_GPREL32: 8335 case R_MIPS16_GPREL: 8336 case R_MICROMIPS_GPREL16: 8337 /* GP-relative relocations always resolve to a definition in a 8338 regular input file, ignoring the one-definition rule. This is 8339 important for the GP setup sequence in NewABI code, which 8340 always resolves to a local function even if other relocations 8341 against the symbol wouldn't. */ 8342 constrain_symbol_p = FALSE; 8343 break; 8344 8345 case R_MIPS_32: 8346 case R_MIPS_REL32: 8347 case R_MIPS_64: 8348 /* In VxWorks executables, references to external symbols 8349 must be handled using copy relocs or PLT entries; it is not 8350 possible to convert this relocation into a dynamic one. 8351 8352 For executables that use PLTs and copy-relocs, we have a 8353 choice between converting the relocation into a dynamic 8354 one or using copy relocations or PLT entries. It is 8355 usually better to do the former, unless the relocation is 8356 against a read-only section. */ 8357 if ((bfd_link_pic (info) 8358 || (h != NULL 8359 && !htab->is_vxworks 8360 && strcmp (h->root.root.string, "__gnu_local_gp") != 0 8361 && !(!info->nocopyreloc 8362 && !PIC_OBJECT_P (abfd) 8363 && MIPS_ELF_READONLY_SECTION (sec)))) 8364 && (sec->flags & SEC_ALLOC) != 0) 8365 { 8366 can_make_dynamic_p = TRUE; 8367 if (dynobj == NULL) 8368 elf_hash_table (info)->dynobj = dynobj = abfd; 8369 } 8370 break; 8371 8372 case R_MIPS_26: 8373 case R_MIPS_PC16: 8374 case R_MIPS_PC21_S2: 8375 case R_MIPS_PC26_S2: 8376 case R_MIPS16_26: 8377 case R_MIPS16_PC16_S1: 8378 case R_MICROMIPS_26_S1: 8379 case R_MICROMIPS_PC7_S1: 8380 case R_MICROMIPS_PC10_S1: 8381 case R_MICROMIPS_PC16_S1: 8382 case R_MICROMIPS_PC23_S2: 8383 call_reloc_p = TRUE; 8384 break; 8385 } 8386 8387 if (h) 8388 { 8389 if (constrain_symbol_p) 8390 { 8391 if (!can_make_dynamic_p) 8392 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1; 8393 8394 if (!call_reloc_p) 8395 h->pointer_equality_needed = 1; 8396 8397 /* We must not create a stub for a symbol that has 8398 relocations related to taking the function's address. 8399 This doesn't apply to VxWorks, where CALL relocs refer 8400 to a .got.plt entry instead of a normal .got entry. */ 8401 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p)) 8402 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE; 8403 } 8404 8405 /* Relocations against the special VxWorks __GOTT_BASE__ and 8406 __GOTT_INDEX__ symbols must be left to the loader. Allocate 8407 room for them in .rela.dyn. */ 8408 if (is_gott_symbol (info, h)) 8409 { 8410 if (sreloc == NULL) 8411 { 8412 sreloc = mips_elf_rel_dyn_section (info, TRUE); 8413 if (sreloc == NULL) 8414 return FALSE; 8415 } 8416 mips_elf_allocate_dynamic_relocations (dynobj, info, 1); 8417 if (MIPS_ELF_READONLY_SECTION (sec)) 8418 /* We tell the dynamic linker that there are 8419 relocations against the text segment. */ 8420 info->flags |= DF_TEXTREL; 8421 } 8422 } 8423 else if (call_lo16_reloc_p (r_type) 8424 || got_lo16_reloc_p (r_type) 8425 || got_disp_reloc_p (r_type) 8426 || (got16_reloc_p (r_type) && htab->is_vxworks)) 8427 { 8428 /* We may need a local GOT entry for this relocation. We 8429 don't count R_MIPS_GOT_PAGE because we can estimate the 8430 maximum number of pages needed by looking at the size of 8431 the segment. Similar comments apply to R_MIPS*_GOT16 and 8432 R_MIPS*_CALL16, except on VxWorks, where GOT relocations 8433 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or 8434 R_MIPS_CALL_HI16 because these are always followed by an 8435 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */ 8436 if (!mips_elf_record_local_got_symbol (abfd, r_symndx, 8437 rel->r_addend, info, r_type)) 8438 return FALSE; 8439 } 8440 8441 if (h != NULL 8442 && mips_elf_relocation_needs_la25_stub (abfd, r_type, 8443 ELF_ST_IS_MIPS16 (h->other))) 8444 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE; 8445 8446 switch (r_type) 8447 { 8448 case R_MIPS_CALL16: 8449 case R_MIPS16_CALL16: 8450 case R_MICROMIPS_CALL16: 8451 if (h == NULL) 8452 { 8453 (*_bfd_error_handler) 8454 (_("%B: CALL16 reloc at 0x%lx not against global symbol"), 8455 abfd, (unsigned long) rel->r_offset); 8456 bfd_set_error (bfd_error_bad_value); 8457 return FALSE; 8458 } 8459 /* Fall through. */ 8460 8461 case R_MIPS_CALL_HI16: 8462 case R_MIPS_CALL_LO16: 8463 case R_MICROMIPS_CALL_HI16: 8464 case R_MICROMIPS_CALL_LO16: 8465 if (h != NULL) 8466 { 8467 /* Make sure there is room in the regular GOT to hold the 8468 function's address. We may eliminate it in favour of 8469 a .got.plt entry later; see mips_elf_count_got_symbols. */ 8470 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, 8471 r_type)) 8472 return FALSE; 8473 8474 /* We need a stub, not a plt entry for the undefined 8475 function. But we record it as if it needs plt. See 8476 _bfd_elf_adjust_dynamic_symbol. */ 8477 h->needs_plt = 1; 8478 h->type = STT_FUNC; 8479 } 8480 break; 8481 8482 case R_MIPS_GOT_PAGE: 8483 case R_MICROMIPS_GOT_PAGE: 8484 case R_MIPS16_GOT16: 8485 case R_MIPS_GOT16: 8486 case R_MIPS_GOT_HI16: 8487 case R_MIPS_GOT_LO16: 8488 case R_MICROMIPS_GOT16: 8489 case R_MICROMIPS_GOT_HI16: 8490 case R_MICROMIPS_GOT_LO16: 8491 if (!h || got_page_reloc_p (r_type)) 8492 { 8493 /* This relocation needs (or may need, if h != NULL) a 8494 page entry in the GOT. For R_MIPS_GOT_PAGE we do not 8495 know for sure until we know whether the symbol is 8496 preemptible. */ 8497 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel)) 8498 { 8499 if (!mips_elf_get_section_contents (abfd, sec, &contents)) 8500 return FALSE; 8501 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE); 8502 addend = mips_elf_read_rel_addend (abfd, rel, 8503 howto, contents); 8504 if (got16_reloc_p (r_type)) 8505 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end, 8506 contents, &addend); 8507 else 8508 addend <<= howto->rightshift; 8509 } 8510 else 8511 addend = rel->r_addend; 8512 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx, 8513 h, addend)) 8514 return FALSE; 8515 8516 if (h) 8517 { 8518 struct mips_elf_link_hash_entry *hmips = 8519 (struct mips_elf_link_hash_entry *) h; 8520 8521 /* This symbol is definitely not overridable. */ 8522 if (hmips->root.def_regular 8523 && ! (bfd_link_pic (info) && ! info->symbolic 8524 && ! hmips->root.forced_local)) 8525 h = NULL; 8526 } 8527 } 8528 /* If this is a global, overridable symbol, GOT_PAGE will 8529 decay to GOT_DISP, so we'll need a GOT entry for it. */ 8530 /* Fall through. */ 8531 8532 case R_MIPS_GOT_DISP: 8533 case R_MICROMIPS_GOT_DISP: 8534 if (h && !mips_elf_record_global_got_symbol (h, abfd, info, 8535 FALSE, r_type)) 8536 return FALSE; 8537 break; 8538 8539 case R_MIPS_TLS_GOTTPREL: 8540 case R_MIPS16_TLS_GOTTPREL: 8541 case R_MICROMIPS_TLS_GOTTPREL: 8542 if (bfd_link_pic (info)) 8543 info->flags |= DF_STATIC_TLS; 8544 /* Fall through */ 8545 8546 case R_MIPS_TLS_LDM: 8547 case R_MIPS16_TLS_LDM: 8548 case R_MICROMIPS_TLS_LDM: 8549 if (tls_ldm_reloc_p (r_type)) 8550 { 8551 r_symndx = STN_UNDEF; 8552 h = NULL; 8553 } 8554 /* Fall through */ 8555 8556 case R_MIPS_TLS_GD: 8557 case R_MIPS16_TLS_GD: 8558 case R_MICROMIPS_TLS_GD: 8559 /* This symbol requires a global offset table entry, or two 8560 for TLS GD relocations. */ 8561 if (h != NULL) 8562 { 8563 if (!mips_elf_record_global_got_symbol (h, abfd, info, 8564 FALSE, r_type)) 8565 return FALSE; 8566 } 8567 else 8568 { 8569 if (!mips_elf_record_local_got_symbol (abfd, r_symndx, 8570 rel->r_addend, 8571 info, r_type)) 8572 return FALSE; 8573 } 8574 break; 8575 8576 case R_MIPS_32: 8577 case R_MIPS_REL32: 8578 case R_MIPS_64: 8579 /* In VxWorks executables, references to external symbols 8580 are handled using copy relocs or PLT stubs, so there's 8581 no need to add a .rela.dyn entry for this relocation. */ 8582 if (can_make_dynamic_p) 8583 { 8584 if (sreloc == NULL) 8585 { 8586 sreloc = mips_elf_rel_dyn_section (info, TRUE); 8587 if (sreloc == NULL) 8588 return FALSE; 8589 } 8590 if (bfd_link_pic (info) && h == NULL) 8591 { 8592 /* When creating a shared object, we must copy these 8593 reloc types into the output file as R_MIPS_REL32 8594 relocs. Make room for this reloc in .rel(a).dyn. */ 8595 mips_elf_allocate_dynamic_relocations (dynobj, info, 1); 8596 /* In the N32 and 64-bit ABIs there may be multiple 8597 consecutive relocations for the same offset. If we have 8598 a R_MIPS_GPREL32 followed by a R_MIPS_64 then that 8599 relocation is complete and needs no futher adjustment. */ 8600 if ((rel == relocs 8601 || rel[-1].r_offset != rel->r_offset 8602 || r_type != R_MIPS_64 8603 || ELF_R_TYPE(abfd, rel[-1].r_info) != R_MIPS_GPREL32) 8604 && MIPS_ELF_READONLY_SECTION (sec)) 8605 { 8606 /* We tell the dynamic linker that there are 8607 relocations against the text segment. */ 8608 info->flags |= DF_TEXTREL; 8609 info->callbacks->warning 8610 (info, 8611 _("relocation emitted against readonly section"), 8612 NULL, abfd, sec, rel->r_offset); 8613 } 8614 } 8615 else 8616 { 8617 struct mips_elf_link_hash_entry *hmips; 8618 8619 /* For a shared object, we must copy this relocation 8620 unless the symbol turns out to be undefined and 8621 weak with non-default visibility, in which case 8622 it will be left as zero. 8623 8624 We could elide R_MIPS_REL32 for locally binding symbols 8625 in shared libraries, but do not yet do so. 8626 8627 For an executable, we only need to copy this 8628 reloc if the symbol is defined in a dynamic 8629 object. */ 8630 hmips = (struct mips_elf_link_hash_entry *) h; 8631 ++hmips->possibly_dynamic_relocs; 8632 if (MIPS_ELF_READONLY_SECTION (sec)) 8633 /* We need it to tell the dynamic linker if there 8634 are relocations against the text segment. */ 8635 hmips->readonly_reloc = TRUE; 8636 } 8637 } 8638 8639 if (SGI_COMPAT (abfd)) 8640 mips_elf_hash_table (info)->compact_rel_size += 8641 sizeof (Elf32_External_crinfo); 8642 break; 8643 8644 case R_MIPS_26: 8645 case R_MIPS_GPREL16: 8646 case R_MIPS_LITERAL: 8647 case R_MIPS_GPREL32: 8648 case R_MICROMIPS_26_S1: 8649 case R_MICROMIPS_GPREL16: 8650 case R_MICROMIPS_LITERAL: 8651 case R_MICROMIPS_GPREL7_S2: 8652 if (SGI_COMPAT (abfd)) 8653 mips_elf_hash_table (info)->compact_rel_size += 8654 sizeof (Elf32_External_crinfo); 8655 break; 8656 8657 /* This relocation describes the C++ object vtable hierarchy. 8658 Reconstruct it for later use during GC. */ 8659 case R_MIPS_GNU_VTINHERIT: 8660 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) 8661 return FALSE; 8662 break; 8663 8664 /* This relocation describes which C++ vtable entries are actually 8665 used. Record for later use during GC. */ 8666 case R_MIPS_GNU_VTENTRY: 8667 BFD_ASSERT (h != NULL); 8668 if (h != NULL 8669 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset)) 8670 return FALSE; 8671 break; 8672 8673 default: 8674 break; 8675 } 8676 8677 /* Record the need for a PLT entry. At this point we don't know 8678 yet if we are going to create a PLT in the first place, but 8679 we only record whether the relocation requires a standard MIPS 8680 or a compressed code entry anyway. If we don't make a PLT after 8681 all, then we'll just ignore these arrangements. Likewise if 8682 a PLT entry is not created because the symbol is satisfied 8683 locally. */ 8684 if (h != NULL 8685 && jal_reloc_p (r_type) 8686 && !SYMBOL_CALLS_LOCAL (info, h)) 8687 { 8688 if (h->plt.plist == NULL) 8689 h->plt.plist = mips_elf_make_plt_record (abfd); 8690 if (h->plt.plist == NULL) 8691 return FALSE; 8692 8693 if (r_type == R_MIPS_26) 8694 h->plt.plist->need_mips = TRUE; 8695 else 8696 h->plt.plist->need_comp = TRUE; 8697 } 8698 8699 /* See if this reloc would need to refer to a MIPS16 hard-float stub, 8700 if there is one. We only need to handle global symbols here; 8701 we decide whether to keep or delete stubs for local symbols 8702 when processing the stub's relocations. */ 8703 if (h != NULL 8704 && !mips16_call_reloc_p (r_type) 8705 && !section_allows_mips16_refs_p (sec)) 8706 { 8707 struct mips_elf_link_hash_entry *mh; 8708 8709 mh = (struct mips_elf_link_hash_entry *) h; 8710 mh->need_fn_stub = TRUE; 8711 } 8712 8713 /* Refuse some position-dependent relocations when creating a 8714 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're 8715 not PIC, but we can create dynamic relocations and the result 8716 will be fine. Also do not refuse R_MIPS_LO16, which can be 8717 combined with R_MIPS_GOT16. */ 8718 if (bfd_link_pic (info)) 8719 { 8720 switch (r_type) 8721 { 8722 case R_MIPS16_HI16: 8723 case R_MIPS_HI16: 8724 case R_MIPS_HIGHER: 8725 case R_MIPS_HIGHEST: 8726 case R_MICROMIPS_HI16: 8727 case R_MICROMIPS_HIGHER: 8728 case R_MICROMIPS_HIGHEST: 8729 /* Don't refuse a high part relocation if it's against 8730 no symbol (e.g. part of a compound relocation). */ 8731 if (r_symndx == STN_UNDEF) 8732 break; 8733 8734 /* R_MIPS_HI16 against _gp_disp is used for $gp setup, 8735 and has a special meaning. */ 8736 if (!NEWABI_P (abfd) && h != NULL 8737 && strcmp (h->root.root.string, "_gp_disp") == 0) 8738 break; 8739 8740 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */ 8741 if (is_gott_symbol (info, h)) 8742 break; 8743 8744 /* FALLTHROUGH */ 8745 8746 case R_MIPS16_26: 8747 case R_MIPS_26: 8748 case R_MICROMIPS_26_S1: 8749 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE); 8750 (*_bfd_error_handler) 8751 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"), 8752 abfd, howto->name, 8753 (h) ? h->root.root.string : "a local symbol"); 8754 bfd_set_error (bfd_error_bad_value); 8755 return FALSE; 8756 default: 8757 break; 8758 } 8759 } 8760 } 8761 8762 return TRUE; 8763 } 8764 8765 bfd_boolean 8766 _bfd_mips_relax_section (bfd *abfd, asection *sec, 8767 struct bfd_link_info *link_info, 8768 bfd_boolean *again) 8769 { 8770 Elf_Internal_Rela *internal_relocs; 8771 Elf_Internal_Rela *irel, *irelend; 8772 Elf_Internal_Shdr *symtab_hdr; 8773 bfd_byte *contents = NULL; 8774 size_t extsymoff; 8775 bfd_boolean changed_contents = FALSE; 8776 bfd_vma sec_start = sec->output_section->vma + sec->output_offset; 8777 Elf_Internal_Sym *isymbuf = NULL; 8778 8779 /* We are not currently changing any sizes, so only one pass. */ 8780 *again = FALSE; 8781 8782 if (bfd_link_relocatable (link_info)) 8783 return TRUE; 8784 8785 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, 8786 link_info->keep_memory); 8787 if (internal_relocs == NULL) 8788 return TRUE; 8789 8790 irelend = internal_relocs + sec->reloc_count 8791 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel; 8792 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 8793 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; 8794 8795 for (irel = internal_relocs; irel < irelend; irel++) 8796 { 8797 bfd_vma symval; 8798 bfd_signed_vma sym_offset; 8799 unsigned int r_type; 8800 unsigned long r_symndx; 8801 asection *sym_sec; 8802 unsigned long instruction; 8803 8804 /* Turn jalr into bgezal, and jr into beq, if they're marked 8805 with a JALR relocation, that indicate where they jump to. 8806 This saves some pipeline bubbles. */ 8807 r_type = ELF_R_TYPE (abfd, irel->r_info); 8808 if (r_type != R_MIPS_JALR) 8809 continue; 8810 8811 r_symndx = ELF_R_SYM (abfd, irel->r_info); 8812 /* Compute the address of the jump target. */ 8813 if (r_symndx >= extsymoff) 8814 { 8815 struct mips_elf_link_hash_entry *h 8816 = ((struct mips_elf_link_hash_entry *) 8817 elf_sym_hashes (abfd) [r_symndx - extsymoff]); 8818 8819 while (h->root.root.type == bfd_link_hash_indirect 8820 || h->root.root.type == bfd_link_hash_warning) 8821 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; 8822 8823 /* If a symbol is undefined, or if it may be overridden, 8824 skip it. */ 8825 if (! ((h->root.root.type == bfd_link_hash_defined 8826 || h->root.root.type == bfd_link_hash_defweak) 8827 && h->root.root.u.def.section) 8828 || (bfd_link_pic (link_info) && ! link_info->symbolic 8829 && !h->root.forced_local)) 8830 continue; 8831 8832 sym_sec = h->root.root.u.def.section; 8833 if (sym_sec->output_section) 8834 symval = (h->root.root.u.def.value 8835 + sym_sec->output_section->vma 8836 + sym_sec->output_offset); 8837 else 8838 symval = h->root.root.u.def.value; 8839 } 8840 else 8841 { 8842 Elf_Internal_Sym *isym; 8843 8844 /* Read this BFD's symbols if we haven't done so already. */ 8845 if (isymbuf == NULL && symtab_hdr->sh_info != 0) 8846 { 8847 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; 8848 if (isymbuf == NULL) 8849 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, 8850 symtab_hdr->sh_info, 0, 8851 NULL, NULL, NULL); 8852 if (isymbuf == NULL) 8853 goto relax_return; 8854 } 8855 8856 isym = isymbuf + r_symndx; 8857 if (isym->st_shndx == SHN_UNDEF) 8858 continue; 8859 else if (isym->st_shndx == SHN_ABS) 8860 sym_sec = bfd_abs_section_ptr; 8861 else if (isym->st_shndx == SHN_COMMON) 8862 sym_sec = bfd_com_section_ptr; 8863 else 8864 sym_sec 8865 = bfd_section_from_elf_index (abfd, isym->st_shndx); 8866 symval = isym->st_value 8867 + sym_sec->output_section->vma 8868 + sym_sec->output_offset; 8869 } 8870 8871 /* Compute branch offset, from delay slot of the jump to the 8872 branch target. */ 8873 sym_offset = (symval + irel->r_addend) 8874 - (sec_start + irel->r_offset + 4); 8875 8876 /* Branch offset must be properly aligned. */ 8877 if ((sym_offset & 3) != 0) 8878 continue; 8879 8880 sym_offset >>= 2; 8881 8882 /* Check that it's in range. */ 8883 if (sym_offset < -0x8000 || sym_offset >= 0x8000) 8884 continue; 8885 8886 /* Get the section contents if we haven't done so already. */ 8887 if (!mips_elf_get_section_contents (abfd, sec, &contents)) 8888 goto relax_return; 8889 8890 instruction = bfd_get_32 (abfd, contents + irel->r_offset); 8891 8892 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */ 8893 if ((instruction & 0xfc1fffff) == 0x0000f809) 8894 instruction = 0x04110000; 8895 /* If it was jr <reg>, turn it into b <target>. */ 8896 else if ((instruction & 0xfc1fffff) == 0x00000008) 8897 instruction = 0x10000000; 8898 else 8899 continue; 8900 8901 instruction |= (sym_offset & 0xffff); 8902 bfd_put_32 (abfd, instruction, contents + irel->r_offset); 8903 changed_contents = TRUE; 8904 } 8905 8906 if (contents != NULL 8907 && elf_section_data (sec)->this_hdr.contents != contents) 8908 { 8909 if (!changed_contents && !link_info->keep_memory) 8910 free (contents); 8911 else 8912 { 8913 /* Cache the section contents for elf_link_input_bfd. */ 8914 elf_section_data (sec)->this_hdr.contents = contents; 8915 } 8916 } 8917 return TRUE; 8918 8919 relax_return: 8920 if (contents != NULL 8921 && elf_section_data (sec)->this_hdr.contents != contents) 8922 free (contents); 8923 return FALSE; 8924 } 8925 8926 /* Allocate space for global sym dynamic relocs. */ 8927 8928 static bfd_boolean 8929 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf) 8930 { 8931 struct bfd_link_info *info = inf; 8932 bfd *dynobj; 8933 struct mips_elf_link_hash_entry *hmips; 8934 struct mips_elf_link_hash_table *htab; 8935 8936 htab = mips_elf_hash_table (info); 8937 BFD_ASSERT (htab != NULL); 8938 8939 dynobj = elf_hash_table (info)->dynobj; 8940 hmips = (struct mips_elf_link_hash_entry *) h; 8941 8942 /* VxWorks executables are handled elsewhere; we only need to 8943 allocate relocations in shared objects. */ 8944 if (htab->is_vxworks && !bfd_link_pic (info)) 8945 return TRUE; 8946 8947 /* Ignore indirect symbols. All relocations against such symbols 8948 will be redirected to the target symbol. */ 8949 if (h->root.type == bfd_link_hash_indirect) 8950 return TRUE; 8951 8952 /* If this symbol is defined in a dynamic object, or we are creating 8953 a shared library, we will need to copy any R_MIPS_32 or 8954 R_MIPS_REL32 relocs against it into the output file. */ 8955 if (! bfd_link_relocatable (info) 8956 && hmips->possibly_dynamic_relocs != 0 8957 && (h->root.type == bfd_link_hash_defweak 8958 || (!h->def_regular && !ELF_COMMON_DEF_P (h)) 8959 || bfd_link_pic (info))) 8960 { 8961 bfd_boolean do_copy = TRUE; 8962 8963 if (h->root.type == bfd_link_hash_undefweak) 8964 { 8965 /* Do not copy relocations for undefined weak symbols with 8966 non-default visibility. */ 8967 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) 8968 do_copy = FALSE; 8969 8970 /* Make sure undefined weak symbols are output as a dynamic 8971 symbol in PIEs. */ 8972 else if (h->dynindx == -1 && !h->forced_local) 8973 { 8974 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 8975 return FALSE; 8976 } 8977 } 8978 8979 if (do_copy) 8980 { 8981 /* Even though we don't directly need a GOT entry for this symbol, 8982 the SVR4 psABI requires it to have a dynamic symbol table 8983 index greater that DT_MIPS_GOTSYM if there are dynamic 8984 relocations against it. 8985 8986 VxWorks does not enforce the same mapping between the GOT 8987 and the symbol table, so the same requirement does not 8988 apply there. */ 8989 if (!htab->is_vxworks) 8990 { 8991 if (hmips->global_got_area > GGA_RELOC_ONLY) 8992 hmips->global_got_area = GGA_RELOC_ONLY; 8993 hmips->got_only_for_calls = FALSE; 8994 } 8995 8996 mips_elf_allocate_dynamic_relocations 8997 (dynobj, info, hmips->possibly_dynamic_relocs); 8998 if (hmips->readonly_reloc) 8999 /* We tell the dynamic linker that there are relocations 9000 against the text segment. */ 9001 info->flags |= DF_TEXTREL; 9002 } 9003 } 9004 9005 return TRUE; 9006 } 9007 9008 /* Adjust a symbol defined by a dynamic object and referenced by a 9009 regular object. The current definition is in some section of the 9010 dynamic object, but we're not including those sections. We have to 9011 change the definition to something the rest of the link can 9012 understand. */ 9013 9014 bfd_boolean 9015 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info, 9016 struct elf_link_hash_entry *h) 9017 { 9018 bfd *dynobj; 9019 struct mips_elf_link_hash_entry *hmips; 9020 struct mips_elf_link_hash_table *htab; 9021 9022 htab = mips_elf_hash_table (info); 9023 BFD_ASSERT (htab != NULL); 9024 9025 dynobj = elf_hash_table (info)->dynobj; 9026 hmips = (struct mips_elf_link_hash_entry *) h; 9027 9028 /* Make sure we know what is going on here. */ 9029 BFD_ASSERT (dynobj != NULL 9030 && (h->needs_plt 9031 || h->type == STT_GNU_IFUNC 9032 || h->u.weakdef != NULL 9033 || (h->def_dynamic 9034 && h->ref_regular 9035 && !h->def_regular))); 9036 9037 hmips = (struct mips_elf_link_hash_entry *) h; 9038 9039 /* If there are call relocations against an externally-defined symbol, 9040 see whether we can create a MIPS lazy-binding stub for it. We can 9041 only do this if all references to the function are through call 9042 relocations, and in that case, the traditional lazy-binding stubs 9043 are much more efficient than PLT entries. 9044 9045 Traditional stubs are only available on SVR4 psABI-based systems; 9046 VxWorks always uses PLTs instead. */ 9047 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub) 9048 { 9049 if (! elf_hash_table (info)->dynamic_sections_created) 9050 return TRUE; 9051 9052 /* If this symbol is not defined in a regular file, then set 9053 the symbol to the stub location. This is required to make 9054 function pointers compare as equal between the normal 9055 executable and the shared library. */ 9056 if (!h->def_regular) 9057 { 9058 hmips->needs_lazy_stub = TRUE; 9059 htab->lazy_stub_count++; 9060 return TRUE; 9061 } 9062 } 9063 /* As above, VxWorks requires PLT entries for externally-defined 9064 functions that are only accessed through call relocations. 9065 9066 Both VxWorks and non-VxWorks targets also need PLT entries if there 9067 are static-only relocations against an externally-defined function. 9068 This can technically occur for shared libraries if there are 9069 branches to the symbol, although it is unlikely that this will be 9070 used in practice due to the short ranges involved. It can occur 9071 for any relative or absolute relocation in executables; in that 9072 case, the PLT entry becomes the function's canonical address. */ 9073 else if (((h->needs_plt && !hmips->no_fn_stub) 9074 || (h->type == STT_FUNC && hmips->has_static_relocs)) 9075 && htab->use_plts_and_copy_relocs 9076 && !SYMBOL_CALLS_LOCAL (info, h) 9077 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT 9078 && h->root.type == bfd_link_hash_undefweak)) 9079 { 9080 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd); 9081 bfd_boolean newabi_p = NEWABI_P (info->output_bfd); 9082 9083 /* If this is the first symbol to need a PLT entry, then make some 9084 basic setup. Also work out PLT entry sizes. We'll need them 9085 for PLT offset calculations. */ 9086 if (htab->plt_mips_offset + htab->plt_comp_offset == 0) 9087 { 9088 BFD_ASSERT (htab->sgotplt->size == 0); 9089 BFD_ASSERT (htab->plt_got_index == 0); 9090 9091 /* If we're using the PLT additions to the psABI, each PLT 9092 entry is 16 bytes and the PLT0 entry is 32 bytes. 9093 Encourage better cache usage by aligning. We do this 9094 lazily to avoid pessimizing traditional objects. */ 9095 if (!htab->is_vxworks 9096 && !bfd_set_section_alignment (dynobj, htab->splt, 5)) 9097 return FALSE; 9098 9099 /* Make sure that .got.plt is word-aligned. We do this lazily 9100 for the same reason as above. */ 9101 if (!bfd_set_section_alignment (dynobj, htab->sgotplt, 9102 MIPS_ELF_LOG_FILE_ALIGN (dynobj))) 9103 return FALSE; 9104 9105 /* On non-VxWorks targets, the first two entries in .got.plt 9106 are reserved. */ 9107 if (!htab->is_vxworks) 9108 htab->plt_got_index 9109 += (get_elf_backend_data (dynobj)->got_header_size 9110 / MIPS_ELF_GOT_SIZE (dynobj)); 9111 9112 /* On VxWorks, also allocate room for the header's 9113 .rela.plt.unloaded entries. */ 9114 if (htab->is_vxworks && !bfd_link_pic (info)) 9115 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela); 9116 9117 /* Now work out the sizes of individual PLT entries. */ 9118 if (htab->is_vxworks && bfd_link_pic (info)) 9119 htab->plt_mips_entry_size 9120 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry); 9121 else if (htab->is_vxworks) 9122 htab->plt_mips_entry_size 9123 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry); 9124 else if (newabi_p) 9125 htab->plt_mips_entry_size 9126 = 4 * ARRAY_SIZE (mips_exec_plt_entry); 9127 else if (!micromips_p) 9128 { 9129 htab->plt_mips_entry_size 9130 = 4 * ARRAY_SIZE (mips_exec_plt_entry); 9131 htab->plt_comp_entry_size 9132 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry); 9133 } 9134 else if (htab->insn32) 9135 { 9136 htab->plt_mips_entry_size 9137 = 4 * ARRAY_SIZE (mips_exec_plt_entry); 9138 htab->plt_comp_entry_size 9139 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry); 9140 } 9141 else 9142 { 9143 htab->plt_mips_entry_size 9144 = 4 * ARRAY_SIZE (mips_exec_plt_entry); 9145 htab->plt_comp_entry_size 9146 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry); 9147 } 9148 } 9149 9150 if (h->plt.plist == NULL) 9151 h->plt.plist = mips_elf_make_plt_record (dynobj); 9152 if (h->plt.plist == NULL) 9153 return FALSE; 9154 9155 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks, 9156 n32 or n64, so always use a standard entry there. 9157 9158 If the symbol has a MIPS16 call stub and gets a PLT entry, then 9159 all MIPS16 calls will go via that stub, and there is no benefit 9160 to having a MIPS16 entry. And in the case of call_stub a 9161 standard entry actually has to be used as the stub ends with a J 9162 instruction. */ 9163 if (newabi_p 9164 || htab->is_vxworks 9165 || hmips->call_stub 9166 || hmips->call_fp_stub) 9167 { 9168 h->plt.plist->need_mips = TRUE; 9169 h->plt.plist->need_comp = FALSE; 9170 } 9171 9172 /* Otherwise, if there are no direct calls to the function, we 9173 have a free choice of whether to use standard or compressed 9174 entries. Prefer microMIPS entries if the object is known to 9175 contain microMIPS code, so that it becomes possible to create 9176 pure microMIPS binaries. Prefer standard entries otherwise, 9177 because MIPS16 ones are no smaller and are usually slower. */ 9178 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp) 9179 { 9180 if (micromips_p) 9181 h->plt.plist->need_comp = TRUE; 9182 else 9183 h->plt.plist->need_mips = TRUE; 9184 } 9185 9186 if (h->plt.plist->need_mips) 9187 { 9188 h->plt.plist->mips_offset = htab->plt_mips_offset; 9189 htab->plt_mips_offset += htab->plt_mips_entry_size; 9190 } 9191 if (h->plt.plist->need_comp) 9192 { 9193 h->plt.plist->comp_offset = htab->plt_comp_offset; 9194 htab->plt_comp_offset += htab->plt_comp_entry_size; 9195 } 9196 9197 /* Reserve the corresponding .got.plt entry now too. */ 9198 h->plt.plist->gotplt_index = htab->plt_got_index++; 9199 9200 /* If the output file has no definition of the symbol, set the 9201 symbol's value to the address of the stub. */ 9202 if (!bfd_link_pic (info) && !h->def_regular) 9203 hmips->use_plt_entry = TRUE; 9204 9205 /* Make room for the R_MIPS_JUMP_SLOT relocation. */ 9206 htab->srelplt->size += (htab->is_vxworks 9207 ? MIPS_ELF_RELA_SIZE (dynobj) 9208 : MIPS_ELF_REL_SIZE (dynobj)); 9209 9210 /* Make room for the .rela.plt.unloaded relocations. */ 9211 if (htab->is_vxworks && !bfd_link_pic (info)) 9212 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela); 9213 9214 /* All relocations against this symbol that could have been made 9215 dynamic will now refer to the PLT entry instead. */ 9216 hmips->possibly_dynamic_relocs = 0; 9217 9218 return TRUE; 9219 } 9220 9221 /* If this is a weak symbol, and there is a real definition, the 9222 processor independent code will have arranged for us to see the 9223 real definition first, and we can just use the same value. */ 9224 if (h->u.weakdef != NULL) 9225 { 9226 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined 9227 || h->u.weakdef->root.type == bfd_link_hash_defweak); 9228 h->root.u.def.section = h->u.weakdef->root.u.def.section; 9229 h->root.u.def.value = h->u.weakdef->root.u.def.value; 9230 return TRUE; 9231 } 9232 9233 /* Otherwise, there is nothing further to do for symbols defined 9234 in regular objects. */ 9235 if (h->def_regular) 9236 return TRUE; 9237 9238 /* There's also nothing more to do if we'll convert all relocations 9239 against this symbol into dynamic relocations. */ 9240 if (!hmips->has_static_relocs) 9241 return TRUE; 9242 9243 /* We're now relying on copy relocations. Complain if we have 9244 some that we can't convert. */ 9245 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info)) 9246 { 9247 (*_bfd_error_handler) (_("non-dynamic relocations refer to " 9248 "dynamic symbol %s"), 9249 h->root.root.string); 9250 bfd_set_error (bfd_error_bad_value); 9251 return FALSE; 9252 } 9253 9254 /* We must allocate the symbol in our .dynbss section, which will 9255 become part of the .bss section of the executable. There will be 9256 an entry for this symbol in the .dynsym section. The dynamic 9257 object will contain position independent code, so all references 9258 from the dynamic object to this symbol will go through the global 9259 offset table. The dynamic linker will use the .dynsym entry to 9260 determine the address it must put in the global offset table, so 9261 both the dynamic object and the regular object will refer to the 9262 same memory location for the variable. */ 9263 9264 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0) 9265 { 9266 if (htab->is_vxworks) 9267 htab->srelbss->size += sizeof (Elf32_External_Rela); 9268 else 9269 mips_elf_allocate_dynamic_relocations (dynobj, info, 1); 9270 h->needs_copy = 1; 9271 } 9272 9273 /* All relocations against this symbol that could have been made 9274 dynamic will now refer to the local copy instead. */ 9275 hmips->possibly_dynamic_relocs = 0; 9276 9277 return _bfd_elf_adjust_dynamic_copy (info, h, htab->sdynbss); 9278 } 9279 9280 /* This function is called after all the input files have been read, 9281 and the input sections have been assigned to output sections. We 9282 check for any mips16 stub sections that we can discard. */ 9283 9284 bfd_boolean 9285 _bfd_mips_elf_always_size_sections (bfd *output_bfd, 9286 struct bfd_link_info *info) 9287 { 9288 asection *sect; 9289 struct mips_elf_link_hash_table *htab; 9290 struct mips_htab_traverse_info hti; 9291 9292 htab = mips_elf_hash_table (info); 9293 BFD_ASSERT (htab != NULL); 9294 9295 /* The .reginfo section has a fixed size. */ 9296 sect = bfd_get_section_by_name (output_bfd, ".reginfo"); 9297 if (sect != NULL) 9298 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo)); 9299 9300 /* The .MIPS.abiflags section has a fixed size. */ 9301 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags"); 9302 if (sect != NULL) 9303 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0)); 9304 9305 hti.info = info; 9306 hti.output_bfd = output_bfd; 9307 hti.error = FALSE; 9308 mips_elf_link_hash_traverse (mips_elf_hash_table (info), 9309 mips_elf_check_symbols, &hti); 9310 if (hti.error) 9311 return FALSE; 9312 9313 return TRUE; 9314 } 9315 9316 /* If the link uses a GOT, lay it out and work out its size. */ 9317 9318 static bfd_boolean 9319 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info) 9320 { 9321 bfd *dynobj; 9322 asection *s; 9323 struct mips_got_info *g; 9324 bfd_size_type loadable_size = 0; 9325 bfd_size_type page_gotno; 9326 bfd *ibfd; 9327 struct mips_elf_traverse_got_arg tga; 9328 struct mips_elf_link_hash_table *htab; 9329 9330 htab = mips_elf_hash_table (info); 9331 BFD_ASSERT (htab != NULL); 9332 9333 s = htab->sgot; 9334 if (s == NULL) 9335 return TRUE; 9336 9337 dynobj = elf_hash_table (info)->dynobj; 9338 g = htab->got_info; 9339 9340 /* Allocate room for the reserved entries. VxWorks always reserves 9341 3 entries; other objects only reserve 2 entries. */ 9342 BFD_ASSERT (g->assigned_low_gotno == 0); 9343 if (htab->is_vxworks) 9344 htab->reserved_gotno = 3; 9345 else 9346 htab->reserved_gotno = 2; 9347 g->local_gotno += htab->reserved_gotno; 9348 g->assigned_low_gotno = htab->reserved_gotno; 9349 9350 /* Decide which symbols need to go in the global part of the GOT and 9351 count the number of reloc-only GOT symbols. */ 9352 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info); 9353 9354 if (!mips_elf_resolve_final_got_entries (info, g)) 9355 return FALSE; 9356 9357 /* Calculate the total loadable size of the output. That 9358 will give us the maximum number of GOT_PAGE entries 9359 required. */ 9360 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next) 9361 { 9362 asection *subsection; 9363 9364 for (subsection = ibfd->sections; 9365 subsection; 9366 subsection = subsection->next) 9367 { 9368 if ((subsection->flags & SEC_ALLOC) == 0) 9369 continue; 9370 loadable_size += ((subsection->size + 0xf) 9371 &~ (bfd_size_type) 0xf); 9372 } 9373 } 9374 9375 if (htab->is_vxworks) 9376 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16 9377 relocations against local symbols evaluate to "G", and the EABI does 9378 not include R_MIPS_GOT_PAGE. */ 9379 page_gotno = 0; 9380 else 9381 /* Assume there are two loadable segments consisting of contiguous 9382 sections. Is 5 enough? */ 9383 page_gotno = (loadable_size >> 16) + 5; 9384 9385 /* Choose the smaller of the two page estimates; both are intended to be 9386 conservative. */ 9387 if (page_gotno > g->page_gotno) 9388 page_gotno = g->page_gotno; 9389 9390 g->local_gotno += page_gotno; 9391 g->assigned_high_gotno = g->local_gotno - 1; 9392 9393 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd); 9394 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd); 9395 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd); 9396 9397 /* VxWorks does not support multiple GOTs. It initializes $gp to 9398 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the 9399 dynamic loader. */ 9400 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info)) 9401 { 9402 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno)) 9403 return FALSE; 9404 } 9405 else 9406 { 9407 /* Record that all bfds use G. This also has the effect of freeing 9408 the per-bfd GOTs, which we no longer need. */ 9409 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next) 9410 if (mips_elf_bfd_got (ibfd, FALSE)) 9411 mips_elf_replace_bfd_got (ibfd, g); 9412 mips_elf_replace_bfd_got (output_bfd, g); 9413 9414 /* Set up TLS entries. */ 9415 g->tls_assigned_gotno = g->global_gotno + g->local_gotno; 9416 tga.info = info; 9417 tga.g = g; 9418 tga.value = MIPS_ELF_GOT_SIZE (output_bfd); 9419 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga); 9420 if (!tga.g) 9421 return FALSE; 9422 BFD_ASSERT (g->tls_assigned_gotno 9423 == g->global_gotno + g->local_gotno + g->tls_gotno); 9424 9425 /* Each VxWorks GOT entry needs an explicit relocation. */ 9426 if (htab->is_vxworks && bfd_link_pic (info)) 9427 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno; 9428 9429 /* Allocate room for the TLS relocations. */ 9430 if (g->relocs) 9431 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs); 9432 } 9433 9434 return TRUE; 9435 } 9436 9437 /* Estimate the size of the .MIPS.stubs section. */ 9438 9439 static void 9440 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info) 9441 { 9442 struct mips_elf_link_hash_table *htab; 9443 bfd_size_type dynsymcount; 9444 9445 htab = mips_elf_hash_table (info); 9446 BFD_ASSERT (htab != NULL); 9447 9448 if (htab->lazy_stub_count == 0) 9449 return; 9450 9451 /* IRIX rld assumes that a function stub isn't at the end of the .text 9452 section, so add a dummy entry to the end. */ 9453 htab->lazy_stub_count++; 9454 9455 /* Get a worst-case estimate of the number of dynamic symbols needed. 9456 At this point, dynsymcount does not account for section symbols 9457 and count_section_dynsyms may overestimate the number that will 9458 be needed. */ 9459 dynsymcount = (elf_hash_table (info)->dynsymcount 9460 + count_section_dynsyms (output_bfd, info)); 9461 9462 /* Determine the size of one stub entry. There's no disadvantage 9463 from using microMIPS code here, so for the sake of pure-microMIPS 9464 binaries we prefer it whenever there's any microMIPS code in 9465 output produced at all. This has a benefit of stubs being 9466 shorter by 4 bytes each too, unless in the insn32 mode. */ 9467 if (!MICROMIPS_P (output_bfd)) 9468 htab->function_stub_size = (dynsymcount > 0x10000 9469 ? MIPS_FUNCTION_STUB_BIG_SIZE 9470 : MIPS_FUNCTION_STUB_NORMAL_SIZE); 9471 else if (htab->insn32) 9472 htab->function_stub_size = (dynsymcount > 0x10000 9473 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 9474 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE); 9475 else 9476 htab->function_stub_size = (dynsymcount > 0x10000 9477 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE 9478 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE); 9479 9480 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size; 9481 } 9482 9483 /* A mips_elf_link_hash_traverse callback for which DATA points to a 9484 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding 9485 stub, allocate an entry in the stubs section. */ 9486 9487 static bfd_boolean 9488 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data) 9489 { 9490 struct mips_htab_traverse_info *hti = data; 9491 struct mips_elf_link_hash_table *htab; 9492 struct bfd_link_info *info; 9493 bfd *output_bfd; 9494 9495 info = hti->info; 9496 output_bfd = hti->output_bfd; 9497 htab = mips_elf_hash_table (info); 9498 BFD_ASSERT (htab != NULL); 9499 9500 if (h->needs_lazy_stub) 9501 { 9502 bfd_boolean micromips_p = MICROMIPS_P (output_bfd); 9503 unsigned int other = micromips_p ? STO_MICROMIPS : 0; 9504 bfd_vma isa_bit = micromips_p; 9505 9506 BFD_ASSERT (htab->root.dynobj != NULL); 9507 if (h->root.plt.plist == NULL) 9508 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner); 9509 if (h->root.plt.plist == NULL) 9510 { 9511 hti->error = TRUE; 9512 return FALSE; 9513 } 9514 h->root.root.u.def.section = htab->sstubs; 9515 h->root.root.u.def.value = htab->sstubs->size + isa_bit; 9516 h->root.plt.plist->stub_offset = htab->sstubs->size; 9517 h->root.other = other; 9518 htab->sstubs->size += htab->function_stub_size; 9519 } 9520 return TRUE; 9521 } 9522 9523 /* Allocate offsets in the stubs section to each symbol that needs one. 9524 Set the final size of the .MIPS.stub section. */ 9525 9526 static bfd_boolean 9527 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info) 9528 { 9529 bfd *output_bfd = info->output_bfd; 9530 bfd_boolean micromips_p = MICROMIPS_P (output_bfd); 9531 unsigned int other = micromips_p ? STO_MICROMIPS : 0; 9532 bfd_vma isa_bit = micromips_p; 9533 struct mips_elf_link_hash_table *htab; 9534 struct mips_htab_traverse_info hti; 9535 struct elf_link_hash_entry *h; 9536 bfd *dynobj; 9537 9538 htab = mips_elf_hash_table (info); 9539 BFD_ASSERT (htab != NULL); 9540 9541 if (htab->lazy_stub_count == 0) 9542 return TRUE; 9543 9544 htab->sstubs->size = 0; 9545 hti.info = info; 9546 hti.output_bfd = output_bfd; 9547 hti.error = FALSE; 9548 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti); 9549 if (hti.error) 9550 return FALSE; 9551 htab->sstubs->size += htab->function_stub_size; 9552 BFD_ASSERT (htab->sstubs->size 9553 == htab->lazy_stub_count * htab->function_stub_size); 9554 9555 dynobj = elf_hash_table (info)->dynobj; 9556 BFD_ASSERT (dynobj != NULL); 9557 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_"); 9558 if (h == NULL) 9559 return FALSE; 9560 h->root.u.def.value = isa_bit; 9561 h->other = other; 9562 h->type = STT_FUNC; 9563 9564 return TRUE; 9565 } 9566 9567 /* A mips_elf_link_hash_traverse callback for which DATA points to a 9568 bfd_link_info. If H uses the address of a PLT entry as the value 9569 of the symbol, then set the entry in the symbol table now. Prefer 9570 a standard MIPS PLT entry. */ 9571 9572 static bfd_boolean 9573 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data) 9574 { 9575 struct bfd_link_info *info = data; 9576 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd); 9577 struct mips_elf_link_hash_table *htab; 9578 unsigned int other; 9579 bfd_vma isa_bit; 9580 bfd_vma val; 9581 9582 htab = mips_elf_hash_table (info); 9583 BFD_ASSERT (htab != NULL); 9584 9585 if (h->use_plt_entry) 9586 { 9587 BFD_ASSERT (h->root.plt.plist != NULL); 9588 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE 9589 || h->root.plt.plist->comp_offset != MINUS_ONE); 9590 9591 val = htab->plt_header_size; 9592 if (h->root.plt.plist->mips_offset != MINUS_ONE) 9593 { 9594 isa_bit = 0; 9595 val += h->root.plt.plist->mips_offset; 9596 other = 0; 9597 } 9598 else 9599 { 9600 isa_bit = 1; 9601 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset; 9602 other = micromips_p ? STO_MICROMIPS : STO_MIPS16; 9603 } 9604 val += isa_bit; 9605 /* For VxWorks, point at the PLT load stub rather than the lazy 9606 resolution stub; this stub will become the canonical function 9607 address. */ 9608 if (htab->is_vxworks) 9609 val += 8; 9610 9611 h->root.root.u.def.section = htab->splt; 9612 h->root.root.u.def.value = val; 9613 h->root.other = other; 9614 } 9615 9616 return TRUE; 9617 } 9618 9619 /* Set the sizes of the dynamic sections. */ 9620 9621 bfd_boolean 9622 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd, 9623 struct bfd_link_info *info) 9624 { 9625 bfd *dynobj; 9626 asection *s, *sreldyn; 9627 bfd_boolean reltext; 9628 struct mips_elf_link_hash_table *htab; 9629 9630 htab = mips_elf_hash_table (info); 9631 BFD_ASSERT (htab != NULL); 9632 dynobj = elf_hash_table (info)->dynobj; 9633 BFD_ASSERT (dynobj != NULL); 9634 9635 if (elf_hash_table (info)->dynamic_sections_created) 9636 { 9637 /* Set the contents of the .interp section to the interpreter. */ 9638 if (bfd_link_executable (info) && !info->nointerp) 9639 { 9640 s = bfd_get_linker_section (dynobj, ".interp"); 9641 BFD_ASSERT (s != NULL); 9642 s->size 9643 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1; 9644 s->contents 9645 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd); 9646 } 9647 9648 /* Figure out the size of the PLT header if we know that we 9649 are using it. For the sake of cache alignment always use 9650 a standard header whenever any standard entries are present 9651 even if microMIPS entries are present as well. This also 9652 lets the microMIPS header rely on the value of $v0 only set 9653 by microMIPS entries, for a small size reduction. 9654 9655 Set symbol table entry values for symbols that use the 9656 address of their PLT entry now that we can calculate it. 9657 9658 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we 9659 haven't already in _bfd_elf_create_dynamic_sections. */ 9660 if (htab->splt && htab->plt_mips_offset + htab->plt_comp_offset != 0) 9661 { 9662 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd) 9663 && !htab->plt_mips_offset); 9664 unsigned int other = micromips_p ? STO_MICROMIPS : 0; 9665 bfd_vma isa_bit = micromips_p; 9666 struct elf_link_hash_entry *h; 9667 bfd_vma size; 9668 9669 BFD_ASSERT (htab->use_plts_and_copy_relocs); 9670 BFD_ASSERT (htab->sgotplt->size == 0); 9671 BFD_ASSERT (htab->splt->size == 0); 9672 9673 if (htab->is_vxworks && bfd_link_pic (info)) 9674 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry); 9675 else if (htab->is_vxworks) 9676 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry); 9677 else if (ABI_64_P (output_bfd)) 9678 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry); 9679 else if (ABI_N32_P (output_bfd)) 9680 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry); 9681 else if (!micromips_p) 9682 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry); 9683 else if (htab->insn32) 9684 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); 9685 else 9686 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry); 9687 9688 htab->plt_header_is_comp = micromips_p; 9689 htab->plt_header_size = size; 9690 htab->splt->size = (size 9691 + htab->plt_mips_offset 9692 + htab->plt_comp_offset); 9693 htab->sgotplt->size = (htab->plt_got_index 9694 * MIPS_ELF_GOT_SIZE (dynobj)); 9695 9696 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info); 9697 9698 if (htab->root.hplt == NULL) 9699 { 9700 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt, 9701 "_PROCEDURE_LINKAGE_TABLE_"); 9702 htab->root.hplt = h; 9703 if (h == NULL) 9704 return FALSE; 9705 } 9706 9707 h = htab->root.hplt; 9708 h->root.u.def.value = isa_bit; 9709 h->other = other; 9710 h->type = STT_FUNC; 9711 } 9712 } 9713 9714 /* Allocate space for global sym dynamic relocs. */ 9715 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info); 9716 9717 mips_elf_estimate_stub_size (output_bfd, info); 9718 9719 if (!mips_elf_lay_out_got (output_bfd, info)) 9720 return FALSE; 9721 9722 mips_elf_lay_out_lazy_stubs (info); 9723 9724 /* The check_relocs and adjust_dynamic_symbol entry points have 9725 determined the sizes of the various dynamic sections. Allocate 9726 memory for them. */ 9727 reltext = FALSE; 9728 for (s = dynobj->sections; s != NULL; s = s->next) 9729 { 9730 const char *name; 9731 9732 /* It's OK to base decisions on the section name, because none 9733 of the dynobj section names depend upon the input files. */ 9734 name = bfd_get_section_name (dynobj, s); 9735 9736 if ((s->flags & SEC_LINKER_CREATED) == 0) 9737 continue; 9738 9739 if (CONST_STRNEQ (name, ".rel")) 9740 { 9741 if (s->size != 0) 9742 { 9743 const char *outname; 9744 asection *target; 9745 9746 /* If this relocation section applies to a read only 9747 section, then we probably need a DT_TEXTREL entry. 9748 If the relocation section is .rel(a).dyn, we always 9749 assert a DT_TEXTREL entry rather than testing whether 9750 there exists a relocation to a read only section or 9751 not. */ 9752 outname = bfd_get_section_name (output_bfd, 9753 s->output_section); 9754 target = bfd_get_section_by_name (output_bfd, outname + 4); 9755 if ((target != NULL 9756 && (target->flags & SEC_READONLY) != 0 9757 && (target->flags & SEC_ALLOC) != 0) 9758 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0) 9759 reltext = TRUE; 9760 9761 /* We use the reloc_count field as a counter if we need 9762 to copy relocs into the output file. */ 9763 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0) 9764 s->reloc_count = 0; 9765 9766 /* If combreloc is enabled, elf_link_sort_relocs() will 9767 sort relocations, but in a different way than we do, 9768 and before we're done creating relocations. Also, it 9769 will move them around between input sections' 9770 relocation's contents, so our sorting would be 9771 broken, so don't let it run. */ 9772 info->combreloc = 0; 9773 } 9774 } 9775 else if (bfd_link_executable (info) 9776 && ! mips_elf_hash_table (info)->use_rld_obj_head 9777 && CONST_STRNEQ (name, ".rld_map")) 9778 { 9779 /* We add a room for __rld_map. It will be filled in by the 9780 rtld to contain a pointer to the _r_debug structure. */ 9781 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd); 9782 } 9783 else if (SGI_COMPAT (output_bfd) 9784 && CONST_STRNEQ (name, ".compact_rel")) 9785 s->size += mips_elf_hash_table (info)->compact_rel_size; 9786 else if (s == htab->splt) 9787 { 9788 /* If the last PLT entry has a branch delay slot, allocate 9789 room for an extra nop to fill the delay slot. This is 9790 for CPUs without load interlocking. */ 9791 if (! LOAD_INTERLOCKS_P (output_bfd) 9792 && ! htab->is_vxworks && s->size > 0) 9793 s->size += 4; 9794 } 9795 else if (! CONST_STRNEQ (name, ".init") 9796 && s != htab->sgot 9797 && s != htab->sgotplt 9798 && s != htab->sstubs 9799 && s != htab->sdynbss) 9800 { 9801 /* It's not one of our sections, so don't allocate space. */ 9802 continue; 9803 } 9804 9805 if (s->size == 0) 9806 { 9807 s->flags |= SEC_EXCLUDE; 9808 continue; 9809 } 9810 9811 if ((s->flags & SEC_HAS_CONTENTS) == 0) 9812 continue; 9813 9814 /* Allocate memory for the section contents. */ 9815 s->contents = bfd_zalloc (dynobj, s->size); 9816 if (s->contents == NULL) 9817 { 9818 bfd_set_error (bfd_error_no_memory); 9819 return FALSE; 9820 } 9821 } 9822 9823 if (elf_hash_table (info)->dynamic_sections_created) 9824 { 9825 /* Add some entries to the .dynamic section. We fill in the 9826 values later, in _bfd_mips_elf_finish_dynamic_sections, but we 9827 must add the entries now so that we get the correct size for 9828 the .dynamic section. */ 9829 9830 /* SGI object has the equivalence of DT_DEBUG in the 9831 DT_MIPS_RLD_MAP entry. This must come first because glibc 9832 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools 9833 may only look at the first one they see. */ 9834 if (!bfd_link_pic (info) 9835 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0)) 9836 return FALSE; 9837 9838 if (bfd_link_executable (info) 9839 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0)) 9840 return FALSE; 9841 9842 /* The DT_DEBUG entry may be filled in by the dynamic linker and 9843 used by the debugger. */ 9844 if (bfd_link_executable (info) 9845 && !SGI_COMPAT (output_bfd) 9846 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0)) 9847 return FALSE; 9848 9849 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks)) 9850 info->flags |= DF_TEXTREL; 9851 9852 if ((info->flags & DF_TEXTREL) != 0) 9853 { 9854 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0)) 9855 return FALSE; 9856 9857 /* Clear the DF_TEXTREL flag. It will be set again if we 9858 write out an actual text relocation; we may not, because 9859 at this point we do not know whether e.g. any .eh_frame 9860 absolute relocations have been converted to PC-relative. */ 9861 info->flags &= ~DF_TEXTREL; 9862 } 9863 9864 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0)) 9865 return FALSE; 9866 9867 sreldyn = mips_elf_rel_dyn_section (info, FALSE); 9868 if (htab->is_vxworks) 9869 { 9870 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not 9871 use any of the DT_MIPS_* tags. */ 9872 if (sreldyn && sreldyn->size > 0) 9873 { 9874 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0)) 9875 return FALSE; 9876 9877 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0)) 9878 return FALSE; 9879 9880 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0)) 9881 return FALSE; 9882 } 9883 } 9884 else 9885 { 9886 if (sreldyn && sreldyn->size > 0) 9887 { 9888 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0)) 9889 return FALSE; 9890 9891 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0)) 9892 return FALSE; 9893 9894 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0)) 9895 return FALSE; 9896 } 9897 9898 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0)) 9899 return FALSE; 9900 9901 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0)) 9902 return FALSE; 9903 9904 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0)) 9905 return FALSE; 9906 9907 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0)) 9908 return FALSE; 9909 9910 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0)) 9911 return FALSE; 9912 9913 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0)) 9914 return FALSE; 9915 9916 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0)) 9917 return FALSE; 9918 9919 if (IRIX_COMPAT (dynobj) == ict_irix5 9920 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0)) 9921 return FALSE; 9922 9923 if (IRIX_COMPAT (dynobj) == ict_irix6 9924 && (bfd_get_section_by_name 9925 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj))) 9926 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0)) 9927 return FALSE; 9928 } 9929 if (htab->splt->size > 0) 9930 { 9931 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0)) 9932 return FALSE; 9933 9934 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0)) 9935 return FALSE; 9936 9937 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0)) 9938 return FALSE; 9939 9940 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0)) 9941 return FALSE; 9942 } 9943 if (htab->is_vxworks 9944 && !elf_vxworks_add_dynamic_entries (output_bfd, info)) 9945 return FALSE; 9946 } 9947 9948 return TRUE; 9949 } 9950 9951 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD. 9952 Adjust its R_ADDEND field so that it is correct for the output file. 9953 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols 9954 and sections respectively; both use symbol indexes. */ 9955 9956 static void 9957 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info, 9958 bfd *input_bfd, Elf_Internal_Sym *local_syms, 9959 asection **local_sections, Elf_Internal_Rela *rel) 9960 { 9961 unsigned int r_type, r_symndx; 9962 Elf_Internal_Sym *sym; 9963 asection *sec; 9964 9965 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections)) 9966 { 9967 r_type = ELF_R_TYPE (output_bfd, rel->r_info); 9968 if (gprel16_reloc_p (r_type) 9969 || r_type == R_MIPS_GPREL32 9970 || literal_reloc_p (r_type)) 9971 { 9972 rel->r_addend += _bfd_get_gp_value (input_bfd); 9973 rel->r_addend -= _bfd_get_gp_value (output_bfd); 9974 } 9975 9976 r_symndx = ELF_R_SYM (output_bfd, rel->r_info); 9977 sym = local_syms + r_symndx; 9978 9979 /* Adjust REL's addend to account for section merging. */ 9980 if (!bfd_link_relocatable (info)) 9981 { 9982 sec = local_sections[r_symndx]; 9983 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); 9984 } 9985 9986 /* This would normally be done by the rela_normal code in elflink.c. */ 9987 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) 9988 rel->r_addend += local_sections[r_symndx]->output_offset; 9989 } 9990 } 9991 9992 /* Handle relocations against symbols from removed linkonce sections, 9993 or sections discarded by a linker script. We use this wrapper around 9994 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs 9995 on 64-bit ELF targets. In this case for any relocation handled, which 9996 always be the first in a triplet, the remaining two have to be processed 9997 together with the first, even if they are R_MIPS_NONE. It is the symbol 9998 index referred by the first reloc that applies to all the three and the 9999 remaining two never refer to an object symbol. And it is the final 10000 relocation (the last non-null one) that determines the output field of 10001 the whole relocation so retrieve the corresponding howto structure for 10002 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION. 10003 10004 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue" 10005 and therefore requires to be pasted in a loop. It also defines a block 10006 and does not protect any of its arguments, hence the extra brackets. */ 10007 10008 static void 10009 mips_reloc_against_discarded_section (bfd *output_bfd, 10010 struct bfd_link_info *info, 10011 bfd *input_bfd, asection *input_section, 10012 Elf_Internal_Rela **rel, 10013 const Elf_Internal_Rela **relend, 10014 bfd_boolean rel_reloc, 10015 reloc_howto_type *howto, 10016 bfd_byte *contents) 10017 { 10018 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); 10019 int count = bed->s->int_rels_per_ext_rel; 10020 unsigned int r_type; 10021 int i; 10022 10023 for (i = count - 1; i > 0; i--) 10024 { 10025 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info); 10026 if (r_type != R_MIPS_NONE) 10027 { 10028 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc); 10029 break; 10030 } 10031 } 10032 do 10033 { 10034 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, 10035 (*rel), count, (*relend), 10036 howto, i, contents); 10037 } 10038 while (0); 10039 } 10040 10041 /* Relocate a MIPS ELF section. */ 10042 10043 bfd_boolean 10044 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info, 10045 bfd *input_bfd, asection *input_section, 10046 bfd_byte *contents, Elf_Internal_Rela *relocs, 10047 Elf_Internal_Sym *local_syms, 10048 asection **local_sections) 10049 { 10050 Elf_Internal_Rela *rel; 10051 const Elf_Internal_Rela *relend; 10052 bfd_vma addend = 0; 10053 bfd_boolean use_saved_addend_p = FALSE; 10054 const struct elf_backend_data *bed; 10055 10056 bed = get_elf_backend_data (output_bfd); 10057 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel; 10058 for (rel = relocs; rel < relend; ++rel) 10059 { 10060 const char *name; 10061 bfd_vma value = 0; 10062 reloc_howto_type *howto; 10063 bfd_boolean cross_mode_jump_p = FALSE; 10064 /* TRUE if the relocation is a RELA relocation, rather than a 10065 REL relocation. */ 10066 bfd_boolean rela_relocation_p = TRUE; 10067 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info); 10068 const char *msg; 10069 unsigned long r_symndx; 10070 asection *sec; 10071 Elf_Internal_Shdr *symtab_hdr; 10072 struct elf_link_hash_entry *h; 10073 bfd_boolean rel_reloc; 10074 10075 rel_reloc = (NEWABI_P (input_bfd) 10076 && mips_elf_rel_relocation_p (input_bfd, input_section, 10077 relocs, rel)); 10078 /* Find the relocation howto for this relocation. */ 10079 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc); 10080 10081 r_symndx = ELF_R_SYM (input_bfd, rel->r_info); 10082 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 10083 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections)) 10084 { 10085 sec = local_sections[r_symndx]; 10086 h = NULL; 10087 } 10088 else 10089 { 10090 unsigned long extsymoff; 10091 10092 extsymoff = 0; 10093 if (!elf_bad_symtab (input_bfd)) 10094 extsymoff = symtab_hdr->sh_info; 10095 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff]; 10096 while (h->root.type == bfd_link_hash_indirect 10097 || h->root.type == bfd_link_hash_warning) 10098 h = (struct elf_link_hash_entry *) h->root.u.i.link; 10099 10100 sec = NULL; 10101 if (h->root.type == bfd_link_hash_defined 10102 || h->root.type == bfd_link_hash_defweak) 10103 sec = h->root.u.def.section; 10104 } 10105 10106 if (sec != NULL && discarded_section (sec)) 10107 { 10108 mips_reloc_against_discarded_section (output_bfd, info, input_bfd, 10109 input_section, &rel, &relend, 10110 rel_reloc, howto, contents); 10111 continue; 10112 } 10113 10114 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd)) 10115 { 10116 /* Some 32-bit code uses R_MIPS_64. In particular, people use 10117 64-bit code, but make sure all their addresses are in the 10118 lowermost or uppermost 32-bit section of the 64-bit address 10119 space. Thus, when they use an R_MIPS_64 they mean what is 10120 usually meant by R_MIPS_32, with the exception that the 10121 stored value is sign-extended to 64 bits. */ 10122 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE); 10123 10124 /* On big-endian systems, we need to lie about the position 10125 of the reloc. */ 10126 if (bfd_big_endian (input_bfd)) 10127 rel->r_offset += 4; 10128 } 10129 10130 if (!use_saved_addend_p) 10131 { 10132 /* If these relocations were originally of the REL variety, 10133 we must pull the addend out of the field that will be 10134 relocated. Otherwise, we simply use the contents of the 10135 RELA relocation. */ 10136 if (mips_elf_rel_relocation_p (input_bfd, input_section, 10137 relocs, rel)) 10138 { 10139 rela_relocation_p = FALSE; 10140 addend = mips_elf_read_rel_addend (input_bfd, rel, 10141 howto, contents); 10142 if (hi16_reloc_p (r_type) 10143 || (got16_reloc_p (r_type) 10144 && mips_elf_local_relocation_p (input_bfd, rel, 10145 local_sections))) 10146 { 10147 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend, 10148 contents, &addend)) 10149 { 10150 if (h) 10151 name = h->root.root.string; 10152 else 10153 name = bfd_elf_sym_name (input_bfd, symtab_hdr, 10154 local_syms + r_symndx, 10155 sec); 10156 (*_bfd_error_handler) 10157 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"), 10158 input_bfd, input_section, name, howto->name, 10159 rel->r_offset); 10160 } 10161 } 10162 else 10163 addend <<= howto->rightshift; 10164 } 10165 else 10166 addend = rel->r_addend; 10167 mips_elf_adjust_addend (output_bfd, info, input_bfd, 10168 local_syms, local_sections, rel); 10169 } 10170 10171 if (bfd_link_relocatable (info)) 10172 { 10173 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd) 10174 && bfd_big_endian (input_bfd)) 10175 rel->r_offset -= 4; 10176 10177 if (!rela_relocation_p && rel->r_addend) 10178 { 10179 addend += rel->r_addend; 10180 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type)) 10181 addend = mips_elf_high (addend); 10182 else if (r_type == R_MIPS_HIGHER) 10183 addend = mips_elf_higher (addend); 10184 else if (r_type == R_MIPS_HIGHEST) 10185 addend = mips_elf_highest (addend); 10186 else 10187 addend >>= howto->rightshift; 10188 10189 /* We use the source mask, rather than the destination 10190 mask because the place to which we are writing will be 10191 source of the addend in the final link. */ 10192 addend &= howto->src_mask; 10193 10194 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) 10195 /* See the comment above about using R_MIPS_64 in the 32-bit 10196 ABI. Here, we need to update the addend. It would be 10197 possible to get away with just using the R_MIPS_32 reloc 10198 but for endianness. */ 10199 { 10200 bfd_vma sign_bits; 10201 bfd_vma low_bits; 10202 bfd_vma high_bits; 10203 10204 if (addend & ((bfd_vma) 1 << 31)) 10205 #ifdef BFD64 10206 sign_bits = ((bfd_vma) 1 << 32) - 1; 10207 #else 10208 sign_bits = -1; 10209 #endif 10210 else 10211 sign_bits = 0; 10212 10213 /* If we don't know that we have a 64-bit type, 10214 do two separate stores. */ 10215 if (bfd_big_endian (input_bfd)) 10216 { 10217 /* Store the sign-bits (which are most significant) 10218 first. */ 10219 low_bits = sign_bits; 10220 high_bits = addend; 10221 } 10222 else 10223 { 10224 low_bits = addend; 10225 high_bits = sign_bits; 10226 } 10227 bfd_put_32 (input_bfd, low_bits, 10228 contents + rel->r_offset); 10229 bfd_put_32 (input_bfd, high_bits, 10230 contents + rel->r_offset + 4); 10231 continue; 10232 } 10233 10234 if (! mips_elf_perform_relocation (info, howto, rel, addend, 10235 input_bfd, input_section, 10236 contents, FALSE)) 10237 return FALSE; 10238 } 10239 10240 /* Go on to the next relocation. */ 10241 continue; 10242 } 10243 10244 /* In the N32 and 64-bit ABIs there may be multiple consecutive 10245 relocations for the same offset. In that case we are 10246 supposed to treat the output of each relocation as the addend 10247 for the next. */ 10248 if (rel + 1 < relend 10249 && rel->r_offset == rel[1].r_offset 10250 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE) 10251 use_saved_addend_p = TRUE; 10252 else 10253 use_saved_addend_p = FALSE; 10254 10255 /* Figure out what value we are supposed to relocate. */ 10256 switch (mips_elf_calculate_relocation (output_bfd, input_bfd, 10257 input_section, info, rel, 10258 addend, howto, local_syms, 10259 local_sections, &value, 10260 &name, &cross_mode_jump_p, 10261 use_saved_addend_p)) 10262 { 10263 case bfd_reloc_continue: 10264 /* There's nothing to do. */ 10265 continue; 10266 10267 case bfd_reloc_undefined: 10268 /* mips_elf_calculate_relocation already called the 10269 undefined_symbol callback. There's no real point in 10270 trying to perform the relocation at this point, so we 10271 just skip ahead to the next relocation. */ 10272 continue; 10273 10274 case bfd_reloc_notsupported: 10275 msg = _("internal error: unsupported relocation error"); 10276 info->callbacks->warning 10277 (info, msg, name, input_bfd, input_section, rel->r_offset); 10278 return FALSE; 10279 10280 case bfd_reloc_overflow: 10281 if (use_saved_addend_p) 10282 /* Ignore overflow until we reach the last relocation for 10283 a given location. */ 10284 ; 10285 else 10286 { 10287 struct mips_elf_link_hash_table *htab; 10288 10289 htab = mips_elf_hash_table (info); 10290 BFD_ASSERT (htab != NULL); 10291 BFD_ASSERT (name != NULL); 10292 if (!htab->small_data_overflow_reported 10293 && (gprel16_reloc_p (howto->type) 10294 || literal_reloc_p (howto->type))) 10295 { 10296 msg = _("small-data section exceeds 64KB;" 10297 " lower small-data size limit (see option -G)"); 10298 10299 htab->small_data_overflow_reported = TRUE; 10300 (*info->callbacks->einfo) ("%P: %s\n", msg); 10301 } 10302 (*info->callbacks->reloc_overflow) 10303 (info, NULL, name, howto->name, (bfd_vma) 0, 10304 input_bfd, input_section, rel->r_offset); 10305 } 10306 break; 10307 10308 case bfd_reloc_ok: 10309 break; 10310 10311 case bfd_reloc_outofrange: 10312 msg = NULL; 10313 if (jal_reloc_p (howto->type)) 10314 msg = _("JALX to a non-word-aligned address"); 10315 else if (b_reloc_p (howto->type)) 10316 msg = _("Branch to a non-instruction-aligned address"); 10317 else if (aligned_pcrel_reloc_p (howto->type)) 10318 msg = _("PC-relative load from unaligned address"); 10319 if (msg) 10320 { 10321 info->callbacks->einfo 10322 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg); 10323 break; 10324 } 10325 /* Fall through. */ 10326 10327 default: 10328 abort (); 10329 break; 10330 } 10331 10332 /* If we've got another relocation for the address, keep going 10333 until we reach the last one. */ 10334 if (use_saved_addend_p) 10335 { 10336 addend = value; 10337 continue; 10338 } 10339 10340 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) 10341 /* See the comment above about using R_MIPS_64 in the 32-bit 10342 ABI. Until now, we've been using the HOWTO for R_MIPS_32; 10343 that calculated the right value. Now, however, we 10344 sign-extend the 32-bit result to 64-bits, and store it as a 10345 64-bit value. We are especially generous here in that we 10346 go to extreme lengths to support this usage on systems with 10347 only a 32-bit VMA. */ 10348 { 10349 bfd_vma sign_bits; 10350 bfd_vma low_bits; 10351 bfd_vma high_bits; 10352 10353 if (value & ((bfd_vma) 1 << 31)) 10354 #ifdef BFD64 10355 sign_bits = ((bfd_vma) 1 << 32) - 1; 10356 #else 10357 sign_bits = -1; 10358 #endif 10359 else 10360 sign_bits = 0; 10361 10362 /* If we don't know that we have a 64-bit type, 10363 do two separate stores. */ 10364 if (bfd_big_endian (input_bfd)) 10365 { 10366 /* Undo what we did above. */ 10367 rel->r_offset -= 4; 10368 /* Store the sign-bits (which are most significant) 10369 first. */ 10370 low_bits = sign_bits; 10371 high_bits = value; 10372 } 10373 else 10374 { 10375 low_bits = value; 10376 high_bits = sign_bits; 10377 } 10378 bfd_put_32 (input_bfd, low_bits, 10379 contents + rel->r_offset); 10380 bfd_put_32 (input_bfd, high_bits, 10381 contents + rel->r_offset + 4); 10382 continue; 10383 } 10384 10385 /* Actually perform the relocation. */ 10386 if (! mips_elf_perform_relocation (info, howto, rel, value, 10387 input_bfd, input_section, 10388 contents, cross_mode_jump_p)) 10389 return FALSE; 10390 } 10391 10392 return TRUE; 10393 } 10394 10395 /* A function that iterates over each entry in la25_stubs and fills 10396 in the code for each one. DATA points to a mips_htab_traverse_info. */ 10397 10398 static int 10399 mips_elf_create_la25_stub (void **slot, void *data) 10400 { 10401 struct mips_htab_traverse_info *hti; 10402 struct mips_elf_link_hash_table *htab; 10403 struct mips_elf_la25_stub *stub; 10404 asection *s; 10405 bfd_byte *loc; 10406 bfd_vma offset, target, target_high, target_low; 10407 10408 stub = (struct mips_elf_la25_stub *) *slot; 10409 hti = (struct mips_htab_traverse_info *) data; 10410 htab = mips_elf_hash_table (hti->info); 10411 BFD_ASSERT (htab != NULL); 10412 10413 /* Create the section contents, if we haven't already. */ 10414 s = stub->stub_section; 10415 loc = s->contents; 10416 if (loc == NULL) 10417 { 10418 loc = bfd_malloc (s->size); 10419 if (loc == NULL) 10420 { 10421 hti->error = TRUE; 10422 return FALSE; 10423 } 10424 s->contents = loc; 10425 } 10426 10427 /* Work out where in the section this stub should go. */ 10428 offset = stub->offset; 10429 10430 /* Work out the target address. */ 10431 target = mips_elf_get_la25_target (stub, &s); 10432 target += s->output_section->vma + s->output_offset; 10433 10434 target_high = ((target + 0x8000) >> 16) & 0xffff; 10435 target_low = (target & 0xffff); 10436 10437 if (stub->stub_section != htab->strampoline) 10438 { 10439 /* This is a simple LUI/ADDIU stub. Zero out the beginning 10440 of the section and write the two instructions at the end. */ 10441 memset (loc, 0, offset); 10442 loc += offset; 10443 if (ELF_ST_IS_MICROMIPS (stub->h->root.other)) 10444 { 10445 bfd_put_micromips_32 (hti->output_bfd, 10446 LA25_LUI_MICROMIPS (target_high), 10447 loc); 10448 bfd_put_micromips_32 (hti->output_bfd, 10449 LA25_ADDIU_MICROMIPS (target_low), 10450 loc + 4); 10451 } 10452 else 10453 { 10454 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc); 10455 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4); 10456 } 10457 } 10458 else 10459 { 10460 /* This is trampoline. */ 10461 loc += offset; 10462 if (ELF_ST_IS_MICROMIPS (stub->h->root.other)) 10463 { 10464 bfd_put_micromips_32 (hti->output_bfd, 10465 LA25_LUI_MICROMIPS (target_high), loc); 10466 bfd_put_micromips_32 (hti->output_bfd, 10467 LA25_J_MICROMIPS (target), loc + 4); 10468 bfd_put_micromips_32 (hti->output_bfd, 10469 LA25_ADDIU_MICROMIPS (target_low), loc + 8); 10470 bfd_put_32 (hti->output_bfd, 0, loc + 12); 10471 } 10472 else 10473 { 10474 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc); 10475 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4); 10476 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8); 10477 bfd_put_32 (hti->output_bfd, 0, loc + 12); 10478 } 10479 } 10480 return TRUE; 10481 } 10482 10483 /* If NAME is one of the special IRIX6 symbols defined by the linker, 10484 adjust it appropriately now. */ 10485 10486 static void 10487 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED, 10488 const char *name, Elf_Internal_Sym *sym) 10489 { 10490 /* The linker script takes care of providing names and values for 10491 these, but we must place them into the right sections. */ 10492 static const char* const text_section_symbols[] = { 10493 "_ftext", 10494 "_etext", 10495 "__dso_displacement", 10496 "__elf_header", 10497 "__program_header_table", 10498 NULL 10499 }; 10500 10501 static const char* const data_section_symbols[] = { 10502 "_fdata", 10503 "_edata", 10504 "_end", 10505 "_fbss", 10506 NULL 10507 }; 10508 10509 const char* const *p; 10510 int i; 10511 10512 for (i = 0; i < 2; ++i) 10513 for (p = (i == 0) ? text_section_symbols : data_section_symbols; 10514 *p; 10515 ++p) 10516 if (strcmp (*p, name) == 0) 10517 { 10518 /* All of these symbols are given type STT_SECTION by the 10519 IRIX6 linker. */ 10520 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); 10521 sym->st_other = STO_PROTECTED; 10522 10523 /* The IRIX linker puts these symbols in special sections. */ 10524 if (i == 0) 10525 sym->st_shndx = SHN_MIPS_TEXT; 10526 else 10527 sym->st_shndx = SHN_MIPS_DATA; 10528 10529 break; 10530 } 10531 } 10532 10533 /* Finish up dynamic symbol handling. We set the contents of various 10534 dynamic sections here. */ 10535 10536 bfd_boolean 10537 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd, 10538 struct bfd_link_info *info, 10539 struct elf_link_hash_entry *h, 10540 Elf_Internal_Sym *sym) 10541 { 10542 bfd *dynobj; 10543 asection *sgot; 10544 struct mips_got_info *g, *gg; 10545 const char *name; 10546 int idx; 10547 struct mips_elf_link_hash_table *htab; 10548 struct mips_elf_link_hash_entry *hmips; 10549 10550 htab = mips_elf_hash_table (info); 10551 BFD_ASSERT (htab != NULL); 10552 dynobj = elf_hash_table (info)->dynobj; 10553 hmips = (struct mips_elf_link_hash_entry *) h; 10554 10555 BFD_ASSERT (!htab->is_vxworks); 10556 10557 if (h->plt.plist != NULL 10558 && (h->plt.plist->mips_offset != MINUS_ONE 10559 || h->plt.plist->comp_offset != MINUS_ONE)) 10560 { 10561 /* We've decided to create a PLT entry for this symbol. */ 10562 bfd_byte *loc; 10563 bfd_vma header_address, got_address; 10564 bfd_vma got_address_high, got_address_low, load; 10565 bfd_vma got_index; 10566 bfd_vma isa_bit; 10567 10568 got_index = h->plt.plist->gotplt_index; 10569 10570 BFD_ASSERT (htab->use_plts_and_copy_relocs); 10571 BFD_ASSERT (h->dynindx != -1); 10572 BFD_ASSERT (htab->splt != NULL); 10573 BFD_ASSERT (got_index != MINUS_ONE); 10574 BFD_ASSERT (!h->def_regular); 10575 10576 /* Calculate the address of the PLT header. */ 10577 isa_bit = htab->plt_header_is_comp; 10578 header_address = (htab->splt->output_section->vma 10579 + htab->splt->output_offset + isa_bit); 10580 10581 /* Calculate the address of the .got.plt entry. */ 10582 got_address = (htab->sgotplt->output_section->vma 10583 + htab->sgotplt->output_offset 10584 + got_index * MIPS_ELF_GOT_SIZE (dynobj)); 10585 10586 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff; 10587 got_address_low = got_address & 0xffff; 10588 10589 /* Initially point the .got.plt entry at the PLT header. */ 10590 loc = (htab->sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj)); 10591 if (ABI_64_P (output_bfd)) 10592 bfd_put_64 (output_bfd, header_address, loc); 10593 else 10594 bfd_put_32 (output_bfd, header_address, loc); 10595 10596 /* Now handle the PLT itself. First the standard entry (the order 10597 does not matter, we just have to pick one). */ 10598 if (h->plt.plist->mips_offset != MINUS_ONE) 10599 { 10600 const bfd_vma *plt_entry; 10601 bfd_vma plt_offset; 10602 10603 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset; 10604 10605 BFD_ASSERT (plt_offset <= htab->splt->size); 10606 10607 /* Find out where the .plt entry should go. */ 10608 loc = htab->splt->contents + plt_offset; 10609 10610 /* Pick the load opcode. */ 10611 load = MIPS_ELF_LOAD_WORD (output_bfd); 10612 10613 /* Fill in the PLT entry itself. */ 10614 10615 if (MIPSR6_P (output_bfd)) 10616 plt_entry = mipsr6_exec_plt_entry; 10617 else 10618 plt_entry = mips_exec_plt_entry; 10619 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc); 10620 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, 10621 loc + 4); 10622 10623 if (! LOAD_INTERLOCKS_P (output_bfd)) 10624 { 10625 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8); 10626 bfd_put_32 (output_bfd, plt_entry[3], loc + 12); 10627 } 10628 else 10629 { 10630 bfd_put_32 (output_bfd, plt_entry[3], loc + 8); 10631 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, 10632 loc + 12); 10633 } 10634 } 10635 10636 /* Now the compressed entry. They come after any standard ones. */ 10637 if (h->plt.plist->comp_offset != MINUS_ONE) 10638 { 10639 bfd_vma plt_offset; 10640 10641 plt_offset = (htab->plt_header_size + htab->plt_mips_offset 10642 + h->plt.plist->comp_offset); 10643 10644 BFD_ASSERT (plt_offset <= htab->splt->size); 10645 10646 /* Find out where the .plt entry should go. */ 10647 loc = htab->splt->contents + plt_offset; 10648 10649 /* Fill in the PLT entry itself. */ 10650 if (!MICROMIPS_P (output_bfd)) 10651 { 10652 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry; 10653 10654 bfd_put_16 (output_bfd, plt_entry[0], loc); 10655 bfd_put_16 (output_bfd, plt_entry[1], loc + 2); 10656 bfd_put_16 (output_bfd, plt_entry[2], loc + 4); 10657 bfd_put_16 (output_bfd, plt_entry[3], loc + 6); 10658 bfd_put_16 (output_bfd, plt_entry[4], loc + 8); 10659 bfd_put_16 (output_bfd, plt_entry[5], loc + 10); 10660 bfd_put_32 (output_bfd, got_address, loc + 12); 10661 } 10662 else if (htab->insn32) 10663 { 10664 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry; 10665 10666 bfd_put_16 (output_bfd, plt_entry[0], loc); 10667 bfd_put_16 (output_bfd, got_address_high, loc + 2); 10668 bfd_put_16 (output_bfd, plt_entry[2], loc + 4); 10669 bfd_put_16 (output_bfd, got_address_low, loc + 6); 10670 bfd_put_16 (output_bfd, plt_entry[4], loc + 8); 10671 bfd_put_16 (output_bfd, plt_entry[5], loc + 10); 10672 bfd_put_16 (output_bfd, plt_entry[6], loc + 12); 10673 bfd_put_16 (output_bfd, got_address_low, loc + 14); 10674 } 10675 else 10676 { 10677 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry; 10678 bfd_signed_vma gotpc_offset; 10679 bfd_vma loc_address; 10680 10681 BFD_ASSERT (got_address % 4 == 0); 10682 10683 loc_address = (htab->splt->output_section->vma 10684 + htab->splt->output_offset + plt_offset); 10685 gotpc_offset = got_address - ((loc_address | 3) ^ 3); 10686 10687 /* ADDIUPC has a span of +/-16MB, check we're in range. */ 10688 if (gotpc_offset + 0x1000000 >= 0x2000000) 10689 { 10690 (*_bfd_error_handler) 10691 (_("%B: `%A' offset of %ld from `%A' " 10692 "beyond the range of ADDIUPC"), 10693 output_bfd, 10694 htab->sgotplt->output_section, 10695 htab->splt->output_section, 10696 (long) gotpc_offset); 10697 bfd_set_error (bfd_error_no_error); 10698 return FALSE; 10699 } 10700 bfd_put_16 (output_bfd, 10701 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc); 10702 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2); 10703 bfd_put_16 (output_bfd, plt_entry[2], loc + 4); 10704 bfd_put_16 (output_bfd, plt_entry[3], loc + 6); 10705 bfd_put_16 (output_bfd, plt_entry[4], loc + 8); 10706 bfd_put_16 (output_bfd, plt_entry[5], loc + 10); 10707 } 10708 } 10709 10710 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */ 10711 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt, 10712 got_index - 2, h->dynindx, 10713 R_MIPS_JUMP_SLOT, got_address); 10714 10715 /* We distinguish between PLT entries and lazy-binding stubs by 10716 giving the former an st_other value of STO_MIPS_PLT. Set the 10717 flag and leave the value if there are any relocations in the 10718 binary where pointer equality matters. */ 10719 sym->st_shndx = SHN_UNDEF; 10720 if (h->pointer_equality_needed) 10721 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other); 10722 else 10723 { 10724 sym->st_value = 0; 10725 sym->st_other = 0; 10726 } 10727 } 10728 10729 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE) 10730 { 10731 /* We've decided to create a lazy-binding stub. */ 10732 bfd_boolean micromips_p = MICROMIPS_P (output_bfd); 10733 unsigned int other = micromips_p ? STO_MICROMIPS : 0; 10734 bfd_vma stub_size = htab->function_stub_size; 10735 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE]; 10736 bfd_vma isa_bit = micromips_p; 10737 bfd_vma stub_big_size; 10738 10739 if (!micromips_p) 10740 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE; 10741 else if (htab->insn32) 10742 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE; 10743 else 10744 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE; 10745 10746 /* This symbol has a stub. Set it up. */ 10747 10748 BFD_ASSERT (h->dynindx != -1); 10749 10750 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff); 10751 10752 /* Values up to 2^31 - 1 are allowed. Larger values would cause 10753 sign extension at runtime in the stub, resulting in a negative 10754 index value. */ 10755 if (h->dynindx & ~0x7fffffff) 10756 return FALSE; 10757 10758 /* Fill the stub. */ 10759 if (micromips_p) 10760 { 10761 idx = 0; 10762 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd), 10763 stub + idx); 10764 idx += 4; 10765 if (htab->insn32) 10766 { 10767 bfd_put_micromips_32 (output_bfd, 10768 STUB_MOVE32_MICROMIPS, stub + idx); 10769 idx += 4; 10770 } 10771 else 10772 { 10773 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx); 10774 idx += 2; 10775 } 10776 if (stub_size == stub_big_size) 10777 { 10778 long dynindx_hi = (h->dynindx >> 16) & 0x7fff; 10779 10780 bfd_put_micromips_32 (output_bfd, 10781 STUB_LUI_MICROMIPS (dynindx_hi), 10782 stub + idx); 10783 idx += 4; 10784 } 10785 if (htab->insn32) 10786 { 10787 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS, 10788 stub + idx); 10789 idx += 4; 10790 } 10791 else 10792 { 10793 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx); 10794 idx += 2; 10795 } 10796 10797 /* If a large stub is not required and sign extension is not a 10798 problem, then use legacy code in the stub. */ 10799 if (stub_size == stub_big_size) 10800 bfd_put_micromips_32 (output_bfd, 10801 STUB_ORI_MICROMIPS (h->dynindx & 0xffff), 10802 stub + idx); 10803 else if (h->dynindx & ~0x7fff) 10804 bfd_put_micromips_32 (output_bfd, 10805 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff), 10806 stub + idx); 10807 else 10808 bfd_put_micromips_32 (output_bfd, 10809 STUB_LI16S_MICROMIPS (output_bfd, 10810 h->dynindx), 10811 stub + idx); 10812 } 10813 else 10814 { 10815 idx = 0; 10816 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx); 10817 idx += 4; 10818 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx); 10819 idx += 4; 10820 if (stub_size == stub_big_size) 10821 { 10822 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff), 10823 stub + idx); 10824 idx += 4; 10825 } 10826 bfd_put_32 (output_bfd, STUB_JALR, stub + idx); 10827 idx += 4; 10828 10829 /* If a large stub is not required and sign extension is not a 10830 problem, then use legacy code in the stub. */ 10831 if (stub_size == stub_big_size) 10832 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), 10833 stub + idx); 10834 else if (h->dynindx & ~0x7fff) 10835 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), 10836 stub + idx); 10837 else 10838 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx), 10839 stub + idx); 10840 } 10841 10842 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size); 10843 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset, 10844 stub, stub_size); 10845 10846 /* Mark the symbol as undefined. stub_offset != -1 occurs 10847 only for the referenced symbol. */ 10848 sym->st_shndx = SHN_UNDEF; 10849 10850 /* The run-time linker uses the st_value field of the symbol 10851 to reset the global offset table entry for this external 10852 to its stub address when unlinking a shared object. */ 10853 sym->st_value = (htab->sstubs->output_section->vma 10854 + htab->sstubs->output_offset 10855 + h->plt.plist->stub_offset 10856 + isa_bit); 10857 sym->st_other = other; 10858 } 10859 10860 /* If we have a MIPS16 function with a stub, the dynamic symbol must 10861 refer to the stub, since only the stub uses the standard calling 10862 conventions. */ 10863 if (h->dynindx != -1 && hmips->fn_stub != NULL) 10864 { 10865 BFD_ASSERT (hmips->need_fn_stub); 10866 sym->st_value = (hmips->fn_stub->output_section->vma 10867 + hmips->fn_stub->output_offset); 10868 sym->st_size = hmips->fn_stub->size; 10869 sym->st_other = ELF_ST_VISIBILITY (sym->st_other); 10870 } 10871 10872 BFD_ASSERT (h->dynindx != -1 10873 || h->forced_local); 10874 10875 sgot = htab->sgot; 10876 g = htab->got_info; 10877 BFD_ASSERT (g != NULL); 10878 10879 /* Run through the global symbol table, creating GOT entries for all 10880 the symbols that need them. */ 10881 if (hmips->global_got_area != GGA_NONE) 10882 { 10883 bfd_vma offset; 10884 bfd_vma value; 10885 10886 value = sym->st_value; 10887 offset = mips_elf_primary_global_got_index (output_bfd, info, h); 10888 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset); 10889 } 10890 10891 if (hmips->global_got_area != GGA_NONE && g->next) 10892 { 10893 struct mips_got_entry e, *p; 10894 bfd_vma entry; 10895 bfd_vma offset; 10896 10897 gg = g; 10898 10899 e.abfd = output_bfd; 10900 e.symndx = -1; 10901 e.d.h = hmips; 10902 e.tls_type = GOT_TLS_NONE; 10903 10904 for (g = g->next; g->next != gg; g = g->next) 10905 { 10906 if (g->got_entries 10907 && (p = (struct mips_got_entry *) htab_find (g->got_entries, 10908 &e))) 10909 { 10910 offset = p->gotidx; 10911 BFD_ASSERT (offset > 0 && offset < htab->sgot->size); 10912 if (bfd_link_pic (info) 10913 || (elf_hash_table (info)->dynamic_sections_created 10914 && p->d.h != NULL 10915 && p->d.h->root.def_dynamic 10916 && !p->d.h->root.def_regular)) 10917 { 10918 /* Create an R_MIPS_REL32 relocation for this entry. Due to 10919 the various compatibility problems, it's easier to mock 10920 up an R_MIPS_32 or R_MIPS_64 relocation and leave 10921 mips_elf_create_dynamic_relocation to calculate the 10922 appropriate addend. */ 10923 Elf_Internal_Rela rel[3]; 10924 10925 memset (rel, 0, sizeof (rel)); 10926 if (ABI_64_P (output_bfd)) 10927 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64); 10928 else 10929 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32); 10930 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; 10931 10932 entry = 0; 10933 if (! (mips_elf_create_dynamic_relocation 10934 (output_bfd, info, rel, 10935 e.d.h, NULL, sym->st_value, &entry, sgot))) 10936 return FALSE; 10937 } 10938 else 10939 entry = sym->st_value; 10940 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset); 10941 } 10942 } 10943 } 10944 10945 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ 10946 name = h->root.root.string; 10947 if (h == elf_hash_table (info)->hdynamic 10948 || h == elf_hash_table (info)->hgot) 10949 sym->st_shndx = SHN_ABS; 10950 else if (strcmp (name, "_DYNAMIC_LINK") == 0 10951 || strcmp (name, "_DYNAMIC_LINKING") == 0) 10952 { 10953 sym->st_shndx = SHN_ABS; 10954 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); 10955 sym->st_value = 1; 10956 } 10957 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd)) 10958 { 10959 sym->st_shndx = SHN_ABS; 10960 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); 10961 sym->st_value = elf_gp (output_bfd); 10962 } 10963 else if (SGI_COMPAT (output_bfd)) 10964 { 10965 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 10966 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) 10967 { 10968 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); 10969 sym->st_other = STO_PROTECTED; 10970 sym->st_value = 0; 10971 sym->st_shndx = SHN_MIPS_DATA; 10972 } 10973 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) 10974 { 10975 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); 10976 sym->st_other = STO_PROTECTED; 10977 sym->st_value = mips_elf_hash_table (info)->procedure_count; 10978 sym->st_shndx = SHN_ABS; 10979 } 10980 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS) 10981 { 10982 if (h->type == STT_FUNC) 10983 sym->st_shndx = SHN_MIPS_TEXT; 10984 else if (h->type == STT_OBJECT) 10985 sym->st_shndx = SHN_MIPS_DATA; 10986 } 10987 } 10988 10989 /* Emit a copy reloc, if needed. */ 10990 if (h->needs_copy) 10991 { 10992 asection *s; 10993 bfd_vma symval; 10994 10995 BFD_ASSERT (h->dynindx != -1); 10996 BFD_ASSERT (htab->use_plts_and_copy_relocs); 10997 10998 s = mips_elf_rel_dyn_section (info, FALSE); 10999 symval = (h->root.u.def.section->output_section->vma 11000 + h->root.u.def.section->output_offset 11001 + h->root.u.def.value); 11002 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++, 11003 h->dynindx, R_MIPS_COPY, symval); 11004 } 11005 11006 /* Handle the IRIX6-specific symbols. */ 11007 if (IRIX_COMPAT (output_bfd) == ict_irix6) 11008 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym); 11009 11010 /* Keep dynamic compressed symbols odd. This allows the dynamic linker 11011 to treat compressed symbols like any other. */ 11012 if (ELF_ST_IS_MIPS16 (sym->st_other)) 11013 { 11014 BFD_ASSERT (sym->st_value & 1); 11015 sym->st_other -= STO_MIPS16; 11016 } 11017 else if (ELF_ST_IS_MICROMIPS (sym->st_other)) 11018 { 11019 BFD_ASSERT (sym->st_value & 1); 11020 sym->st_other -= STO_MICROMIPS; 11021 } 11022 11023 return TRUE; 11024 } 11025 11026 /* Likewise, for VxWorks. */ 11027 11028 bfd_boolean 11029 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd, 11030 struct bfd_link_info *info, 11031 struct elf_link_hash_entry *h, 11032 Elf_Internal_Sym *sym) 11033 { 11034 bfd *dynobj; 11035 asection *sgot; 11036 struct mips_got_info *g; 11037 struct mips_elf_link_hash_table *htab; 11038 struct mips_elf_link_hash_entry *hmips; 11039 11040 htab = mips_elf_hash_table (info); 11041 BFD_ASSERT (htab != NULL); 11042 dynobj = elf_hash_table (info)->dynobj; 11043 hmips = (struct mips_elf_link_hash_entry *) h; 11044 11045 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE) 11046 { 11047 bfd_byte *loc; 11048 bfd_vma plt_address, got_address, got_offset, branch_offset; 11049 Elf_Internal_Rela rel; 11050 static const bfd_vma *plt_entry; 11051 bfd_vma gotplt_index; 11052 bfd_vma plt_offset; 11053 11054 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset; 11055 gotplt_index = h->plt.plist->gotplt_index; 11056 11057 BFD_ASSERT (h->dynindx != -1); 11058 BFD_ASSERT (htab->splt != NULL); 11059 BFD_ASSERT (gotplt_index != MINUS_ONE); 11060 BFD_ASSERT (plt_offset <= htab->splt->size); 11061 11062 /* Calculate the address of the .plt entry. */ 11063 plt_address = (htab->splt->output_section->vma 11064 + htab->splt->output_offset 11065 + plt_offset); 11066 11067 /* Calculate the address of the .got.plt entry. */ 11068 got_address = (htab->sgotplt->output_section->vma 11069 + htab->sgotplt->output_offset 11070 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)); 11071 11072 /* Calculate the offset of the .got.plt entry from 11073 _GLOBAL_OFFSET_TABLE_. */ 11074 got_offset = mips_elf_gotplt_index (info, h); 11075 11076 /* Calculate the offset for the branch at the start of the PLT 11077 entry. The branch jumps to the beginning of .plt. */ 11078 branch_offset = -(plt_offset / 4 + 1) & 0xffff; 11079 11080 /* Fill in the initial value of the .got.plt entry. */ 11081 bfd_put_32 (output_bfd, plt_address, 11082 (htab->sgotplt->contents 11083 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd))); 11084 11085 /* Find out where the .plt entry should go. */ 11086 loc = htab->splt->contents + plt_offset; 11087 11088 if (bfd_link_pic (info)) 11089 { 11090 plt_entry = mips_vxworks_shared_plt_entry; 11091 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc); 11092 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4); 11093 } 11094 else 11095 { 11096 bfd_vma got_address_high, got_address_low; 11097 11098 plt_entry = mips_vxworks_exec_plt_entry; 11099 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff; 11100 got_address_low = got_address & 0xffff; 11101 11102 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc); 11103 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4); 11104 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8); 11105 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12); 11106 bfd_put_32 (output_bfd, plt_entry[4], loc + 16); 11107 bfd_put_32 (output_bfd, plt_entry[5], loc + 20); 11108 bfd_put_32 (output_bfd, plt_entry[6], loc + 24); 11109 bfd_put_32 (output_bfd, plt_entry[7], loc + 28); 11110 11111 loc = (htab->srelplt2->contents 11112 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela)); 11113 11114 /* Emit a relocation for the .got.plt entry. */ 11115 rel.r_offset = got_address; 11116 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32); 11117 rel.r_addend = plt_offset; 11118 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11119 11120 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */ 11121 loc += sizeof (Elf32_External_Rela); 11122 rel.r_offset = plt_address + 8; 11123 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); 11124 rel.r_addend = got_offset; 11125 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11126 11127 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */ 11128 loc += sizeof (Elf32_External_Rela); 11129 rel.r_offset += 4; 11130 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); 11131 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11132 } 11133 11134 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */ 11135 loc = (htab->srelplt->contents 11136 + gotplt_index * sizeof (Elf32_External_Rela)); 11137 rel.r_offset = got_address; 11138 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT); 11139 rel.r_addend = 0; 11140 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11141 11142 if (!h->def_regular) 11143 sym->st_shndx = SHN_UNDEF; 11144 } 11145 11146 BFD_ASSERT (h->dynindx != -1 || h->forced_local); 11147 11148 sgot = htab->sgot; 11149 g = htab->got_info; 11150 BFD_ASSERT (g != NULL); 11151 11152 /* See if this symbol has an entry in the GOT. */ 11153 if (hmips->global_got_area != GGA_NONE) 11154 { 11155 bfd_vma offset; 11156 Elf_Internal_Rela outrel; 11157 bfd_byte *loc; 11158 asection *s; 11159 11160 /* Install the symbol value in the GOT. */ 11161 offset = mips_elf_primary_global_got_index (output_bfd, info, h); 11162 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset); 11163 11164 /* Add a dynamic relocation for it. */ 11165 s = mips_elf_rel_dyn_section (info, FALSE); 11166 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela)); 11167 outrel.r_offset = (sgot->output_section->vma 11168 + sgot->output_offset 11169 + offset); 11170 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32); 11171 outrel.r_addend = 0; 11172 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc); 11173 } 11174 11175 /* Emit a copy reloc, if needed. */ 11176 if (h->needs_copy) 11177 { 11178 Elf_Internal_Rela rel; 11179 11180 BFD_ASSERT (h->dynindx != -1); 11181 11182 rel.r_offset = (h->root.u.def.section->output_section->vma 11183 + h->root.u.def.section->output_offset 11184 + h->root.u.def.value); 11185 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY); 11186 rel.r_addend = 0; 11187 bfd_elf32_swap_reloca_out (output_bfd, &rel, 11188 htab->srelbss->contents 11189 + (htab->srelbss->reloc_count 11190 * sizeof (Elf32_External_Rela))); 11191 ++htab->srelbss->reloc_count; 11192 } 11193 11194 /* If this is a mips16/microMIPS symbol, force the value to be even. */ 11195 if (ELF_ST_IS_COMPRESSED (sym->st_other)) 11196 sym->st_value &= ~1; 11197 11198 return TRUE; 11199 } 11200 11201 /* Write out a plt0 entry to the beginning of .plt. */ 11202 11203 static bfd_boolean 11204 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info) 11205 { 11206 bfd_byte *loc; 11207 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low; 11208 static const bfd_vma *plt_entry; 11209 struct mips_elf_link_hash_table *htab; 11210 11211 htab = mips_elf_hash_table (info); 11212 BFD_ASSERT (htab != NULL); 11213 11214 if (ABI_64_P (output_bfd)) 11215 plt_entry = mips_n64_exec_plt0_entry; 11216 else if (ABI_N32_P (output_bfd)) 11217 plt_entry = mips_n32_exec_plt0_entry; 11218 else if (!htab->plt_header_is_comp) 11219 plt_entry = mips_o32_exec_plt0_entry; 11220 else if (htab->insn32) 11221 plt_entry = micromips_insn32_o32_exec_plt0_entry; 11222 else 11223 plt_entry = micromips_o32_exec_plt0_entry; 11224 11225 /* Calculate the value of .got.plt. */ 11226 gotplt_value = (htab->sgotplt->output_section->vma 11227 + htab->sgotplt->output_offset); 11228 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff; 11229 gotplt_value_low = gotplt_value & 0xffff; 11230 11231 /* The PLT sequence is not safe for N64 if .got.plt's address can 11232 not be loaded in two instructions. */ 11233 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0 11234 || ~(gotplt_value | 0x7fffffff) == 0); 11235 11236 /* Install the PLT header. */ 11237 loc = htab->splt->contents; 11238 if (plt_entry == micromips_o32_exec_plt0_entry) 11239 { 11240 bfd_vma gotpc_offset; 11241 bfd_vma loc_address; 11242 size_t i; 11243 11244 BFD_ASSERT (gotplt_value % 4 == 0); 11245 11246 loc_address = (htab->splt->output_section->vma 11247 + htab->splt->output_offset); 11248 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3); 11249 11250 /* ADDIUPC has a span of +/-16MB, check we're in range. */ 11251 if (gotpc_offset + 0x1000000 >= 0x2000000) 11252 { 11253 (*_bfd_error_handler) 11254 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"), 11255 output_bfd, 11256 htab->sgotplt->output_section, 11257 htab->splt->output_section, 11258 (long) gotpc_offset); 11259 bfd_set_error (bfd_error_no_error); 11260 return FALSE; 11261 } 11262 bfd_put_16 (output_bfd, 11263 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc); 11264 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2); 11265 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++) 11266 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2)); 11267 } 11268 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry) 11269 { 11270 size_t i; 11271 11272 bfd_put_16 (output_bfd, plt_entry[0], loc); 11273 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2); 11274 bfd_put_16 (output_bfd, plt_entry[2], loc + 4); 11275 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6); 11276 bfd_put_16 (output_bfd, plt_entry[4], loc + 8); 11277 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10); 11278 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++) 11279 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2)); 11280 } 11281 else 11282 { 11283 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc); 11284 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4); 11285 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8); 11286 bfd_put_32 (output_bfd, plt_entry[3], loc + 12); 11287 bfd_put_32 (output_bfd, plt_entry[4], loc + 16); 11288 bfd_put_32 (output_bfd, plt_entry[5], loc + 20); 11289 bfd_put_32 (output_bfd, plt_entry[6], loc + 24); 11290 bfd_put_32 (output_bfd, plt_entry[7], loc + 28); 11291 } 11292 11293 return TRUE; 11294 } 11295 11296 /* Install the PLT header for a VxWorks executable and finalize the 11297 contents of .rela.plt.unloaded. */ 11298 11299 static void 11300 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info) 11301 { 11302 Elf_Internal_Rela rela; 11303 bfd_byte *loc; 11304 bfd_vma got_value, got_value_high, got_value_low, plt_address; 11305 static const bfd_vma *plt_entry; 11306 struct mips_elf_link_hash_table *htab; 11307 11308 htab = mips_elf_hash_table (info); 11309 BFD_ASSERT (htab != NULL); 11310 11311 plt_entry = mips_vxworks_exec_plt0_entry; 11312 11313 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */ 11314 got_value = (htab->root.hgot->root.u.def.section->output_section->vma 11315 + htab->root.hgot->root.u.def.section->output_offset 11316 + htab->root.hgot->root.u.def.value); 11317 11318 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff; 11319 got_value_low = got_value & 0xffff; 11320 11321 /* Calculate the address of the PLT header. */ 11322 plt_address = htab->splt->output_section->vma + htab->splt->output_offset; 11323 11324 /* Install the PLT header. */ 11325 loc = htab->splt->contents; 11326 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc); 11327 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4); 11328 bfd_put_32 (output_bfd, plt_entry[2], loc + 8); 11329 bfd_put_32 (output_bfd, plt_entry[3], loc + 12); 11330 bfd_put_32 (output_bfd, plt_entry[4], loc + 16); 11331 bfd_put_32 (output_bfd, plt_entry[5], loc + 20); 11332 11333 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */ 11334 loc = htab->srelplt2->contents; 11335 rela.r_offset = plt_address; 11336 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); 11337 rela.r_addend = 0; 11338 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); 11339 loc += sizeof (Elf32_External_Rela); 11340 11341 /* Output the relocation for the following addiu of 11342 %lo(_GLOBAL_OFFSET_TABLE_). */ 11343 rela.r_offset += 4; 11344 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); 11345 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); 11346 loc += sizeof (Elf32_External_Rela); 11347 11348 /* Fix up the remaining relocations. They may have the wrong 11349 symbol index for _G_O_T_ or _P_L_T_ depending on the order 11350 in which symbols were output. */ 11351 while (loc < htab->srelplt2->contents + htab->srelplt2->size) 11352 { 11353 Elf_Internal_Rela rel; 11354 11355 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); 11356 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32); 11357 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11358 loc += sizeof (Elf32_External_Rela); 11359 11360 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); 11361 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); 11362 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11363 loc += sizeof (Elf32_External_Rela); 11364 11365 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); 11366 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); 11367 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11368 loc += sizeof (Elf32_External_Rela); 11369 } 11370 } 11371 11372 /* Install the PLT header for a VxWorks shared library. */ 11373 11374 static void 11375 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info) 11376 { 11377 unsigned int i; 11378 struct mips_elf_link_hash_table *htab; 11379 11380 htab = mips_elf_hash_table (info); 11381 BFD_ASSERT (htab != NULL); 11382 11383 /* We just need to copy the entry byte-by-byte. */ 11384 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++) 11385 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i], 11386 htab->splt->contents + i * 4); 11387 } 11388 11389 /* Finish up the dynamic sections. */ 11390 11391 bfd_boolean 11392 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd, 11393 struct bfd_link_info *info) 11394 { 11395 bfd *dynobj; 11396 asection *sdyn; 11397 asection *sgot; 11398 struct mips_got_info *gg, *g; 11399 struct mips_elf_link_hash_table *htab; 11400 11401 htab = mips_elf_hash_table (info); 11402 BFD_ASSERT (htab != NULL); 11403 11404 dynobj = elf_hash_table (info)->dynobj; 11405 11406 sdyn = bfd_get_linker_section (dynobj, ".dynamic"); 11407 11408 sgot = htab->sgot; 11409 gg = htab->got_info; 11410 11411 if (elf_hash_table (info)->dynamic_sections_created) 11412 { 11413 bfd_byte *b; 11414 int dyn_to_skip = 0, dyn_skipped = 0; 11415 11416 BFD_ASSERT (sdyn != NULL); 11417 BFD_ASSERT (gg != NULL); 11418 11419 g = mips_elf_bfd_got (output_bfd, FALSE); 11420 BFD_ASSERT (g != NULL); 11421 11422 for (b = sdyn->contents; 11423 b < sdyn->contents + sdyn->size; 11424 b += MIPS_ELF_DYN_SIZE (dynobj)) 11425 { 11426 Elf_Internal_Dyn dyn; 11427 const char *name; 11428 size_t elemsize; 11429 asection *s; 11430 bfd_boolean swap_out_p; 11431 11432 /* Read in the current dynamic entry. */ 11433 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); 11434 11435 /* Assume that we're going to modify it and write it out. */ 11436 swap_out_p = TRUE; 11437 11438 switch (dyn.d_tag) 11439 { 11440 case DT_RELENT: 11441 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj); 11442 break; 11443 11444 case DT_RELAENT: 11445 BFD_ASSERT (htab->is_vxworks); 11446 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj); 11447 break; 11448 11449 case DT_STRSZ: 11450 /* Rewrite DT_STRSZ. */ 11451 dyn.d_un.d_val = 11452 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); 11453 break; 11454 11455 case DT_PLTGOT: 11456 s = htab->sgot; 11457 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; 11458 break; 11459 11460 case DT_MIPS_PLTGOT: 11461 s = htab->sgotplt; 11462 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; 11463 break; 11464 11465 case DT_MIPS_RLD_VERSION: 11466 dyn.d_un.d_val = 1; /* XXX */ 11467 break; 11468 11469 case DT_MIPS_FLAGS: 11470 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */ 11471 break; 11472 11473 case DT_MIPS_TIME_STAMP: 11474 { 11475 time_t t; 11476 time (&t); 11477 dyn.d_un.d_val = t; 11478 } 11479 break; 11480 11481 case DT_MIPS_ICHECKSUM: 11482 /* XXX FIXME: */ 11483 swap_out_p = FALSE; 11484 break; 11485 11486 case DT_MIPS_IVERSION: 11487 /* XXX FIXME: */ 11488 swap_out_p = FALSE; 11489 break; 11490 11491 case DT_MIPS_BASE_ADDRESS: 11492 s = output_bfd->sections; 11493 BFD_ASSERT (s != NULL); 11494 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff; 11495 break; 11496 11497 case DT_MIPS_LOCAL_GOTNO: 11498 dyn.d_un.d_val = g->local_gotno; 11499 break; 11500 11501 case DT_MIPS_UNREFEXTNO: 11502 /* The index into the dynamic symbol table which is the 11503 entry of the first external symbol that is not 11504 referenced within the same object. */ 11505 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1; 11506 break; 11507 11508 case DT_MIPS_GOTSYM: 11509 if (htab->global_gotsym) 11510 { 11511 dyn.d_un.d_val = htab->global_gotsym->dynindx; 11512 break; 11513 } 11514 /* In case if we don't have global got symbols we default 11515 to setting DT_MIPS_GOTSYM to the same value as 11516 DT_MIPS_SYMTABNO, so we just fall through. */ 11517 11518 case DT_MIPS_SYMTABNO: 11519 name = ".dynsym"; 11520 elemsize = MIPS_ELF_SYM_SIZE (output_bfd); 11521 s = bfd_get_linker_section (dynobj, name); 11522 11523 if (s != NULL) 11524 dyn.d_un.d_val = s->size / elemsize; 11525 else 11526 dyn.d_un.d_val = 0; 11527 break; 11528 11529 case DT_MIPS_HIPAGENO: 11530 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno; 11531 break; 11532 11533 case DT_MIPS_RLD_MAP: 11534 { 11535 struct elf_link_hash_entry *h; 11536 h = mips_elf_hash_table (info)->rld_symbol; 11537 if (!h) 11538 { 11539 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj); 11540 swap_out_p = FALSE; 11541 break; 11542 } 11543 s = h->root.u.def.section; 11544 11545 /* The MIPS_RLD_MAP tag stores the absolute address of the 11546 debug pointer. */ 11547 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset 11548 + h->root.u.def.value); 11549 } 11550 break; 11551 11552 case DT_MIPS_RLD_MAP_REL: 11553 { 11554 struct elf_link_hash_entry *h; 11555 bfd_vma dt_addr, rld_addr; 11556 h = mips_elf_hash_table (info)->rld_symbol; 11557 if (!h) 11558 { 11559 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj); 11560 swap_out_p = FALSE; 11561 break; 11562 } 11563 s = h->root.u.def.section; 11564 11565 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug 11566 pointer, relative to the address of the tag. */ 11567 dt_addr = (sdyn->output_section->vma + sdyn->output_offset 11568 + (b - sdyn->contents)); 11569 rld_addr = (s->output_section->vma + s->output_offset 11570 + h->root.u.def.value); 11571 dyn.d_un.d_ptr = rld_addr - dt_addr; 11572 } 11573 break; 11574 11575 case DT_MIPS_OPTIONS: 11576 s = (bfd_get_section_by_name 11577 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd))); 11578 dyn.d_un.d_ptr = s->vma; 11579 break; 11580 11581 case DT_RELASZ: 11582 BFD_ASSERT (htab->is_vxworks); 11583 /* The count does not include the JUMP_SLOT relocations. */ 11584 if (htab->srelplt) 11585 dyn.d_un.d_val -= htab->srelplt->size; 11586 break; 11587 11588 case DT_PLTREL: 11589 BFD_ASSERT (htab->use_plts_and_copy_relocs); 11590 if (htab->is_vxworks) 11591 dyn.d_un.d_val = DT_RELA; 11592 else 11593 dyn.d_un.d_val = DT_REL; 11594 break; 11595 11596 case DT_PLTRELSZ: 11597 BFD_ASSERT (htab->use_plts_and_copy_relocs); 11598 dyn.d_un.d_val = htab->srelplt->size; 11599 break; 11600 11601 case DT_JMPREL: 11602 BFD_ASSERT (htab->use_plts_and_copy_relocs); 11603 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma 11604 + htab->srelplt->output_offset); 11605 break; 11606 11607 case DT_TEXTREL: 11608 /* If we didn't need any text relocations after all, delete 11609 the dynamic tag. */ 11610 if (!(info->flags & DF_TEXTREL)) 11611 { 11612 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj); 11613 swap_out_p = FALSE; 11614 } 11615 break; 11616 11617 case DT_FLAGS: 11618 /* If we didn't need any text relocations after all, clear 11619 DF_TEXTREL from DT_FLAGS. */ 11620 if (!(info->flags & DF_TEXTREL)) 11621 dyn.d_un.d_val &= ~DF_TEXTREL; 11622 else 11623 swap_out_p = FALSE; 11624 break; 11625 11626 default: 11627 swap_out_p = FALSE; 11628 if (htab->is_vxworks 11629 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn)) 11630 swap_out_p = TRUE; 11631 break; 11632 } 11633 11634 if (swap_out_p || dyn_skipped) 11635 (*get_elf_backend_data (dynobj)->s->swap_dyn_out) 11636 (dynobj, &dyn, b - dyn_skipped); 11637 11638 if (dyn_to_skip) 11639 { 11640 dyn_skipped += dyn_to_skip; 11641 dyn_to_skip = 0; 11642 } 11643 } 11644 11645 /* Wipe out any trailing entries if we shifted down a dynamic tag. */ 11646 if (dyn_skipped > 0) 11647 memset (b - dyn_skipped, 0, dyn_skipped); 11648 } 11649 11650 if (sgot != NULL && sgot->size > 0 11651 && !bfd_is_abs_section (sgot->output_section)) 11652 { 11653 if (htab->is_vxworks) 11654 { 11655 /* The first entry of the global offset table points to the 11656 ".dynamic" section. The second is initialized by the 11657 loader and contains the shared library identifier. 11658 The third is also initialized by the loader and points 11659 to the lazy resolution stub. */ 11660 MIPS_ELF_PUT_WORD (output_bfd, 11661 sdyn->output_offset + sdyn->output_section->vma, 11662 sgot->contents); 11663 MIPS_ELF_PUT_WORD (output_bfd, 0, 11664 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); 11665 MIPS_ELF_PUT_WORD (output_bfd, 0, 11666 sgot->contents 11667 + 2 * MIPS_ELF_GOT_SIZE (output_bfd)); 11668 } 11669 else 11670 { 11671 /* The first entry of the global offset table will be filled at 11672 runtime. The second entry will be used by some runtime loaders. 11673 This isn't the case of IRIX rld. */ 11674 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents); 11675 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd), 11676 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); 11677 } 11678 11679 elf_section_data (sgot->output_section)->this_hdr.sh_entsize 11680 = MIPS_ELF_GOT_SIZE (output_bfd); 11681 } 11682 11683 /* Generate dynamic relocations for the non-primary gots. */ 11684 if (gg != NULL && gg->next) 11685 { 11686 Elf_Internal_Rela rel[3]; 11687 bfd_vma addend = 0; 11688 11689 memset (rel, 0, sizeof (rel)); 11690 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32); 11691 11692 for (g = gg->next; g->next != gg; g = g->next) 11693 { 11694 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno 11695 + g->next->tls_gotno; 11696 11697 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents 11698 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd)); 11699 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd), 11700 sgot->contents 11701 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd)); 11702 11703 if (! bfd_link_pic (info)) 11704 continue; 11705 11706 for (; got_index < g->local_gotno; got_index++) 11707 { 11708 if (got_index >= g->assigned_low_gotno 11709 && got_index <= g->assigned_high_gotno) 11710 continue; 11711 11712 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset 11713 = got_index * MIPS_ELF_GOT_SIZE (output_bfd); 11714 if (!(mips_elf_create_dynamic_relocation 11715 (output_bfd, info, rel, NULL, 11716 bfd_abs_section_ptr, 11717 0, &addend, sgot))) 11718 return FALSE; 11719 BFD_ASSERT (addend == 0); 11720 } 11721 } 11722 } 11723 11724 /* The generation of dynamic relocations for the non-primary gots 11725 adds more dynamic relocations. We cannot count them until 11726 here. */ 11727 11728 if (elf_hash_table (info)->dynamic_sections_created) 11729 { 11730 bfd_byte *b; 11731 bfd_boolean swap_out_p; 11732 11733 BFD_ASSERT (sdyn != NULL); 11734 11735 for (b = sdyn->contents; 11736 b < sdyn->contents + sdyn->size; 11737 b += MIPS_ELF_DYN_SIZE (dynobj)) 11738 { 11739 Elf_Internal_Dyn dyn; 11740 asection *s; 11741 11742 /* Read in the current dynamic entry. */ 11743 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); 11744 11745 /* Assume that we're going to modify it and write it out. */ 11746 swap_out_p = TRUE; 11747 11748 switch (dyn.d_tag) 11749 { 11750 case DT_RELSZ: 11751 /* Reduce DT_RELSZ to account for any relocations we 11752 decided not to make. This is for the n64 irix rld, 11753 which doesn't seem to apply any relocations if there 11754 are trailing null entries. */ 11755 s = mips_elf_rel_dyn_section (info, FALSE); 11756 dyn.d_un.d_val = (s->reloc_count 11757 * (ABI_64_P (output_bfd) 11758 ? sizeof (Elf64_Mips_External_Rel) 11759 : sizeof (Elf32_External_Rel))); 11760 /* Adjust the section size too. Tools like the prelinker 11761 can reasonably expect the values to the same. */ 11762 elf_section_data (s->output_section)->this_hdr.sh_size 11763 = dyn.d_un.d_val; 11764 break; 11765 11766 default: 11767 swap_out_p = FALSE; 11768 break; 11769 } 11770 11771 if (swap_out_p) 11772 (*get_elf_backend_data (dynobj)->s->swap_dyn_out) 11773 (dynobj, &dyn, b); 11774 } 11775 } 11776 11777 { 11778 asection *s; 11779 Elf32_compact_rel cpt; 11780 11781 if (SGI_COMPAT (output_bfd)) 11782 { 11783 /* Write .compact_rel section out. */ 11784 s = bfd_get_linker_section (dynobj, ".compact_rel"); 11785 if (s != NULL) 11786 { 11787 cpt.id1 = 1; 11788 cpt.num = s->reloc_count; 11789 cpt.id2 = 2; 11790 cpt.offset = (s->output_section->filepos 11791 + sizeof (Elf32_External_compact_rel)); 11792 cpt.reserved0 = 0; 11793 cpt.reserved1 = 0; 11794 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt, 11795 ((Elf32_External_compact_rel *) 11796 s->contents)); 11797 11798 /* Clean up a dummy stub function entry in .text. */ 11799 if (htab->sstubs != NULL) 11800 { 11801 file_ptr dummy_offset; 11802 11803 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size); 11804 dummy_offset = htab->sstubs->size - htab->function_stub_size; 11805 memset (htab->sstubs->contents + dummy_offset, 0, 11806 htab->function_stub_size); 11807 } 11808 } 11809 } 11810 11811 /* The psABI says that the dynamic relocations must be sorted in 11812 increasing order of r_symndx. The VxWorks EABI doesn't require 11813 this, and because the code below handles REL rather than RELA 11814 relocations, using it for VxWorks would be outright harmful. */ 11815 if (!htab->is_vxworks) 11816 { 11817 s = mips_elf_rel_dyn_section (info, FALSE); 11818 if (s != NULL 11819 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd)) 11820 { 11821 reldyn_sorting_bfd = output_bfd; 11822 11823 if (ABI_64_P (output_bfd)) 11824 qsort ((Elf64_External_Rel *) s->contents + 1, 11825 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel), 11826 sort_dynamic_relocs_64); 11827 else 11828 qsort ((Elf32_External_Rel *) s->contents + 1, 11829 s->reloc_count - 1, sizeof (Elf32_External_Rel), 11830 sort_dynamic_relocs); 11831 } 11832 } 11833 } 11834 11835 if (htab->splt && htab->splt->size > 0) 11836 { 11837 if (htab->is_vxworks) 11838 { 11839 if (bfd_link_pic (info)) 11840 mips_vxworks_finish_shared_plt (output_bfd, info); 11841 else 11842 mips_vxworks_finish_exec_plt (output_bfd, info); 11843 } 11844 else 11845 { 11846 BFD_ASSERT (!bfd_link_pic (info)); 11847 if (!mips_finish_exec_plt (output_bfd, info)) 11848 return FALSE; 11849 } 11850 } 11851 return TRUE; 11852 } 11853 11854 11855 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */ 11856 11857 static void 11858 mips_set_isa_flags (bfd *abfd) 11859 { 11860 flagword val; 11861 11862 switch (bfd_get_mach (abfd)) 11863 { 11864 default: 11865 case bfd_mach_mips3000: 11866 val = E_MIPS_ARCH_1; 11867 break; 11868 11869 case bfd_mach_mips3900: 11870 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900; 11871 break; 11872 11873 case bfd_mach_mips6000: 11874 val = E_MIPS_ARCH_2; 11875 break; 11876 11877 case bfd_mach_mips4000: 11878 case bfd_mach_mips4300: 11879 case bfd_mach_mips4400: 11880 case bfd_mach_mips4600: 11881 val = E_MIPS_ARCH_3; 11882 break; 11883 11884 case bfd_mach_mips4010: 11885 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010; 11886 break; 11887 11888 case bfd_mach_mips4100: 11889 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100; 11890 break; 11891 11892 case bfd_mach_mips4111: 11893 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111; 11894 break; 11895 11896 case bfd_mach_mips4120: 11897 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120; 11898 break; 11899 11900 case bfd_mach_mips4650: 11901 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650; 11902 break; 11903 11904 case bfd_mach_mips5400: 11905 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400; 11906 break; 11907 11908 case bfd_mach_mips5500: 11909 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500; 11910 break; 11911 11912 case bfd_mach_mips5900: 11913 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900; 11914 break; 11915 11916 case bfd_mach_mips9000: 11917 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000; 11918 break; 11919 11920 case bfd_mach_mips5000: 11921 case bfd_mach_mips7000: 11922 case bfd_mach_mips8000: 11923 case bfd_mach_mips10000: 11924 case bfd_mach_mips12000: 11925 case bfd_mach_mips14000: 11926 case bfd_mach_mips16000: 11927 val = E_MIPS_ARCH_4; 11928 break; 11929 11930 case bfd_mach_mips5: 11931 val = E_MIPS_ARCH_5; 11932 break; 11933 11934 case bfd_mach_mips_loongson_2e: 11935 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E; 11936 break; 11937 11938 case bfd_mach_mips_loongson_2f: 11939 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F; 11940 break; 11941 11942 case bfd_mach_mips_sb1: 11943 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1; 11944 break; 11945 11946 case bfd_mach_mips_loongson_3a: 11947 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A; 11948 break; 11949 11950 case bfd_mach_mips_octeon: 11951 case bfd_mach_mips_octeonp: 11952 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON; 11953 break; 11954 11955 case bfd_mach_mips_octeon3: 11956 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3; 11957 break; 11958 11959 case bfd_mach_mips_xlr: 11960 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR; 11961 break; 11962 11963 case bfd_mach_mips_octeon2: 11964 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2; 11965 break; 11966 11967 case bfd_mach_mipsisa32: 11968 val = E_MIPS_ARCH_32; 11969 break; 11970 11971 case bfd_mach_mipsisa64: 11972 val = E_MIPS_ARCH_64; 11973 break; 11974 11975 case bfd_mach_mipsisa32r2: 11976 case bfd_mach_mipsisa32r3: 11977 case bfd_mach_mipsisa32r5: 11978 val = E_MIPS_ARCH_32R2; 11979 break; 11980 11981 case bfd_mach_mipsisa64r2: 11982 case bfd_mach_mipsisa64r3: 11983 case bfd_mach_mipsisa64r5: 11984 val = E_MIPS_ARCH_64R2; 11985 break; 11986 11987 case bfd_mach_mipsisa32r6: 11988 val = E_MIPS_ARCH_32R6; 11989 break; 11990 11991 case bfd_mach_mipsisa64r6: 11992 val = E_MIPS_ARCH_64R6; 11993 break; 11994 } 11995 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); 11996 elf_elfheader (abfd)->e_flags |= val; 11997 11998 } 11999 12000 12001 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset. 12002 Don't do so for code sections. We want to keep ordering of HI16/LO16 12003 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame 12004 relocs to be sorted. */ 12005 12006 bfd_boolean 12007 _bfd_mips_elf_sort_relocs_p (asection *sec) 12008 { 12009 return (sec->flags & SEC_CODE) == 0; 12010 } 12011 12012 12013 /* The final processing done just before writing out a MIPS ELF object 12014 file. This gets the MIPS architecture right based on the machine 12015 number. This is used by both the 32-bit and the 64-bit ABI. */ 12016 12017 void 12018 _bfd_mips_elf_final_write_processing (bfd *abfd, 12019 bfd_boolean linker ATTRIBUTE_UNUSED) 12020 { 12021 unsigned int i; 12022 Elf_Internal_Shdr **hdrpp; 12023 const char *name; 12024 asection *sec; 12025 12026 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former 12027 is nonzero. This is for compatibility with old objects, which used 12028 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */ 12029 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0) 12030 mips_set_isa_flags (abfd); 12031 12032 /* Set the sh_info field for .gptab sections and other appropriate 12033 info for each special section. */ 12034 for (i = 1, hdrpp = elf_elfsections (abfd) + 1; 12035 i < elf_numsections (abfd); 12036 i++, hdrpp++) 12037 { 12038 switch ((*hdrpp)->sh_type) 12039 { 12040 case SHT_MIPS_MSYM: 12041 case SHT_MIPS_LIBLIST: 12042 sec = bfd_get_section_by_name (abfd, ".dynstr"); 12043 if (sec != NULL) 12044 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; 12045 break; 12046 12047 case SHT_MIPS_GPTAB: 12048 BFD_ASSERT ((*hdrpp)->bfd_section != NULL); 12049 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); 12050 BFD_ASSERT (name != NULL 12051 && CONST_STRNEQ (name, ".gptab.")); 12052 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1); 12053 BFD_ASSERT (sec != NULL); 12054 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; 12055 break; 12056 12057 case SHT_MIPS_CONTENT: 12058 BFD_ASSERT ((*hdrpp)->bfd_section != NULL); 12059 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); 12060 BFD_ASSERT (name != NULL 12061 && CONST_STRNEQ (name, ".MIPS.content")); 12062 sec = bfd_get_section_by_name (abfd, 12063 name + sizeof ".MIPS.content" - 1); 12064 BFD_ASSERT (sec != NULL); 12065 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; 12066 break; 12067 12068 case SHT_MIPS_SYMBOL_LIB: 12069 sec = bfd_get_section_by_name (abfd, ".dynsym"); 12070 if (sec != NULL) 12071 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; 12072 sec = bfd_get_section_by_name (abfd, ".liblist"); 12073 if (sec != NULL) 12074 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; 12075 break; 12076 12077 case SHT_MIPS_EVENTS: 12078 BFD_ASSERT ((*hdrpp)->bfd_section != NULL); 12079 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); 12080 BFD_ASSERT (name != NULL); 12081 if (CONST_STRNEQ (name, ".MIPS.events")) 12082 sec = bfd_get_section_by_name (abfd, 12083 name + sizeof ".MIPS.events" - 1); 12084 else 12085 { 12086 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel")); 12087 sec = bfd_get_section_by_name (abfd, 12088 (name 12089 + sizeof ".MIPS.post_rel" - 1)); 12090 } 12091 BFD_ASSERT (sec != NULL); 12092 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; 12093 break; 12094 12095 } 12096 } 12097 } 12098 12099 /* When creating an IRIX5 executable, we need REGINFO and RTPROC 12100 segments. */ 12101 12102 int 12103 _bfd_mips_elf_additional_program_headers (bfd *abfd, 12104 struct bfd_link_info *info ATTRIBUTE_UNUSED) 12105 { 12106 asection *s; 12107 int ret = 0; 12108 12109 /* See if we need a PT_MIPS_REGINFO segment. */ 12110 s = bfd_get_section_by_name (abfd, ".reginfo"); 12111 if (s && (s->flags & SEC_LOAD)) 12112 ++ret; 12113 12114 /* See if we need a PT_MIPS_ABIFLAGS segment. */ 12115 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags")) 12116 ++ret; 12117 12118 /* See if we need a PT_MIPS_OPTIONS segment. */ 12119 if (IRIX_COMPAT (abfd) == ict_irix6 12120 && bfd_get_section_by_name (abfd, 12121 MIPS_ELF_OPTIONS_SECTION_NAME (abfd))) 12122 ++ret; 12123 12124 /* See if we need a PT_MIPS_RTPROC segment. */ 12125 if (IRIX_COMPAT (abfd) == ict_irix5 12126 && bfd_get_section_by_name (abfd, ".dynamic") 12127 && bfd_get_section_by_name (abfd, ".mdebug")) 12128 ++ret; 12129 12130 /* Allocate a PT_NULL header in dynamic objects. See 12131 _bfd_mips_elf_modify_segment_map for details. */ 12132 if (!SGI_COMPAT (abfd) 12133 && bfd_get_section_by_name (abfd, ".dynamic")) 12134 ++ret; 12135 12136 return ret; 12137 } 12138 12139 /* Modify the segment map for an IRIX5 executable. */ 12140 12141 bfd_boolean 12142 _bfd_mips_elf_modify_segment_map (bfd *abfd, 12143 struct bfd_link_info *info) 12144 { 12145 asection *s; 12146 struct elf_segment_map *m, **pm; 12147 bfd_size_type amt; 12148 12149 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO 12150 segment. */ 12151 s = bfd_get_section_by_name (abfd, ".reginfo"); 12152 if (s != NULL && (s->flags & SEC_LOAD) != 0) 12153 { 12154 for (m = elf_seg_map (abfd); m != NULL; m = m->next) 12155 if (m->p_type == PT_MIPS_REGINFO) 12156 break; 12157 if (m == NULL) 12158 { 12159 amt = sizeof *m; 12160 m = bfd_zalloc (abfd, amt); 12161 if (m == NULL) 12162 return FALSE; 12163 12164 m->p_type = PT_MIPS_REGINFO; 12165 m->count = 1; 12166 m->sections[0] = s; 12167 12168 /* We want to put it after the PHDR and INTERP segments. */ 12169 pm = &elf_seg_map (abfd); 12170 while (*pm != NULL 12171 && ((*pm)->p_type == PT_PHDR 12172 || (*pm)->p_type == PT_INTERP)) 12173 pm = &(*pm)->next; 12174 12175 m->next = *pm; 12176 *pm = m; 12177 } 12178 } 12179 12180 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS 12181 segment. */ 12182 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags"); 12183 if (s != NULL && (s->flags & SEC_LOAD) != 0) 12184 { 12185 for (m = elf_seg_map (abfd); m != NULL; m = m->next) 12186 if (m->p_type == PT_MIPS_ABIFLAGS) 12187 break; 12188 if (m == NULL) 12189 { 12190 amt = sizeof *m; 12191 m = bfd_zalloc (abfd, amt); 12192 if (m == NULL) 12193 return FALSE; 12194 12195 m->p_type = PT_MIPS_ABIFLAGS; 12196 m->count = 1; 12197 m->sections[0] = s; 12198 12199 /* We want to put it after the PHDR and INTERP segments. */ 12200 pm = &elf_seg_map (abfd); 12201 while (*pm != NULL 12202 && ((*pm)->p_type == PT_PHDR 12203 || (*pm)->p_type == PT_INTERP)) 12204 pm = &(*pm)->next; 12205 12206 m->next = *pm; 12207 *pm = m; 12208 } 12209 } 12210 12211 /* For IRIX 6, we don't have .mdebug sections, nor does anything but 12212 .dynamic end up in PT_DYNAMIC. However, we do have to insert a 12213 PT_MIPS_OPTIONS segment immediately following the program header 12214 table. */ 12215 if (NEWABI_P (abfd) 12216 /* On non-IRIX6 new abi, we'll have already created a segment 12217 for this section, so don't create another. I'm not sure this 12218 is not also the case for IRIX 6, but I can't test it right 12219 now. */ 12220 && IRIX_COMPAT (abfd) == ict_irix6) 12221 { 12222 for (s = abfd->sections; s; s = s->next) 12223 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS) 12224 break; 12225 12226 if (s) 12227 { 12228 struct elf_segment_map *options_segment; 12229 12230 pm = &elf_seg_map (abfd); 12231 while (*pm != NULL 12232 && ((*pm)->p_type == PT_PHDR 12233 || (*pm)->p_type == PT_INTERP)) 12234 pm = &(*pm)->next; 12235 12236 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS) 12237 { 12238 amt = sizeof (struct elf_segment_map); 12239 options_segment = bfd_zalloc (abfd, amt); 12240 options_segment->next = *pm; 12241 options_segment->p_type = PT_MIPS_OPTIONS; 12242 options_segment->p_flags = PF_R; 12243 options_segment->p_flags_valid = TRUE; 12244 options_segment->count = 1; 12245 options_segment->sections[0] = s; 12246 *pm = options_segment; 12247 } 12248 } 12249 } 12250 else 12251 { 12252 if (IRIX_COMPAT (abfd) == ict_irix5) 12253 { 12254 /* If there are .dynamic and .mdebug sections, we make a room 12255 for the RTPROC header. FIXME: Rewrite without section names. */ 12256 if (bfd_get_section_by_name (abfd, ".interp") == NULL 12257 && bfd_get_section_by_name (abfd, ".dynamic") != NULL 12258 && bfd_get_section_by_name (abfd, ".mdebug") != NULL) 12259 { 12260 for (m = elf_seg_map (abfd); m != NULL; m = m->next) 12261 if (m->p_type == PT_MIPS_RTPROC) 12262 break; 12263 if (m == NULL) 12264 { 12265 amt = sizeof *m; 12266 m = bfd_zalloc (abfd, amt); 12267 if (m == NULL) 12268 return FALSE; 12269 12270 m->p_type = PT_MIPS_RTPROC; 12271 12272 s = bfd_get_section_by_name (abfd, ".rtproc"); 12273 if (s == NULL) 12274 { 12275 m->count = 0; 12276 m->p_flags = 0; 12277 m->p_flags_valid = 1; 12278 } 12279 else 12280 { 12281 m->count = 1; 12282 m->sections[0] = s; 12283 } 12284 12285 /* We want to put it after the DYNAMIC segment. */ 12286 pm = &elf_seg_map (abfd); 12287 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC) 12288 pm = &(*pm)->next; 12289 if (*pm != NULL) 12290 pm = &(*pm)->next; 12291 12292 m->next = *pm; 12293 *pm = m; 12294 } 12295 } 12296 } 12297 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic, 12298 .dynstr, .dynsym, and .hash sections, and everything in 12299 between. */ 12300 for (pm = &elf_seg_map (abfd); *pm != NULL; 12301 pm = &(*pm)->next) 12302 if ((*pm)->p_type == PT_DYNAMIC) 12303 break; 12304 m = *pm; 12305 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section. 12306 glibc's dynamic linker has traditionally derived the number of 12307 tags from the p_filesz field, and sometimes allocates stack 12308 arrays of that size. An overly-big PT_DYNAMIC segment can 12309 be actively harmful in such cases. Making PT_DYNAMIC contain 12310 other sections can also make life hard for the prelinker, 12311 which might move one of the other sections to a different 12312 PT_LOAD segment. */ 12313 if (SGI_COMPAT (abfd) 12314 && m != NULL 12315 && m->count == 1 12316 && strcmp (m->sections[0]->name, ".dynamic") == 0) 12317 { 12318 static const char *sec_names[] = 12319 { 12320 ".dynamic", ".dynstr", ".dynsym", ".hash" 12321 }; 12322 bfd_vma low, high; 12323 unsigned int i, c; 12324 struct elf_segment_map *n; 12325 12326 low = ~(bfd_vma) 0; 12327 high = 0; 12328 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++) 12329 { 12330 s = bfd_get_section_by_name (abfd, sec_names[i]); 12331 if (s != NULL && (s->flags & SEC_LOAD) != 0) 12332 { 12333 bfd_size_type sz; 12334 12335 if (low > s->vma) 12336 low = s->vma; 12337 sz = s->size; 12338 if (high < s->vma + sz) 12339 high = s->vma + sz; 12340 } 12341 } 12342 12343 c = 0; 12344 for (s = abfd->sections; s != NULL; s = s->next) 12345 if ((s->flags & SEC_LOAD) != 0 12346 && s->vma >= low 12347 && s->vma + s->size <= high) 12348 ++c; 12349 12350 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *); 12351 n = bfd_zalloc (abfd, amt); 12352 if (n == NULL) 12353 return FALSE; 12354 *n = *m; 12355 n->count = c; 12356 12357 i = 0; 12358 for (s = abfd->sections; s != NULL; s = s->next) 12359 { 12360 if ((s->flags & SEC_LOAD) != 0 12361 && s->vma >= low 12362 && s->vma + s->size <= high) 12363 { 12364 n->sections[i] = s; 12365 ++i; 12366 } 12367 } 12368 12369 *pm = n; 12370 } 12371 } 12372 12373 /* Allocate a spare program header in dynamic objects so that tools 12374 like the prelinker can add an extra PT_LOAD entry. 12375 12376 If the prelinker needs to make room for a new PT_LOAD entry, its 12377 standard procedure is to move the first (read-only) sections into 12378 the new (writable) segment. However, the MIPS ABI requires 12379 .dynamic to be in a read-only segment, and the section will often 12380 start within sizeof (ElfNN_Phdr) bytes of the last program header. 12381 12382 Although the prelinker could in principle move .dynamic to a 12383 writable segment, it seems better to allocate a spare program 12384 header instead, and avoid the need to move any sections. 12385 There is a long tradition of allocating spare dynamic tags, 12386 so allocating a spare program header seems like a natural 12387 extension. 12388 12389 If INFO is NULL, we may be copying an already prelinked binary 12390 with objcopy or strip, so do not add this header. */ 12391 if (info != NULL 12392 && !SGI_COMPAT (abfd) 12393 && bfd_get_section_by_name (abfd, ".dynamic")) 12394 { 12395 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next) 12396 if ((*pm)->p_type == PT_NULL) 12397 break; 12398 if (*pm == NULL) 12399 { 12400 m = bfd_zalloc (abfd, sizeof (*m)); 12401 if (m == NULL) 12402 return FALSE; 12403 12404 m->p_type = PT_NULL; 12405 *pm = m; 12406 } 12407 } 12408 12409 return TRUE; 12410 } 12411 12412 /* Return the section that should be marked against GC for a given 12413 relocation. */ 12414 12415 asection * 12416 _bfd_mips_elf_gc_mark_hook (asection *sec, 12417 struct bfd_link_info *info, 12418 Elf_Internal_Rela *rel, 12419 struct elf_link_hash_entry *h, 12420 Elf_Internal_Sym *sym) 12421 { 12422 /* ??? Do mips16 stub sections need to be handled special? */ 12423 12424 if (h != NULL) 12425 switch (ELF_R_TYPE (sec->owner, rel->r_info)) 12426 { 12427 case R_MIPS_GNU_VTINHERIT: 12428 case R_MIPS_GNU_VTENTRY: 12429 return NULL; 12430 } 12431 12432 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); 12433 } 12434 12435 /* Update the got entry reference counts for the section being removed. */ 12436 12437 bfd_boolean 12438 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED, 12439 struct bfd_link_info *info ATTRIBUTE_UNUSED, 12440 asection *sec ATTRIBUTE_UNUSED, 12441 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED) 12442 { 12443 #if 0 12444 Elf_Internal_Shdr *symtab_hdr; 12445 struct elf_link_hash_entry **sym_hashes; 12446 bfd_signed_vma *local_got_refcounts; 12447 const Elf_Internal_Rela *rel, *relend; 12448 unsigned long r_symndx; 12449 struct elf_link_hash_entry *h; 12450 12451 if (bfd_link_relocatable (info)) 12452 return TRUE; 12453 12454 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 12455 sym_hashes = elf_sym_hashes (abfd); 12456 local_got_refcounts = elf_local_got_refcounts (abfd); 12457 12458 relend = relocs + sec->reloc_count; 12459 for (rel = relocs; rel < relend; rel++) 12460 switch (ELF_R_TYPE (abfd, rel->r_info)) 12461 { 12462 case R_MIPS16_GOT16: 12463 case R_MIPS16_CALL16: 12464 case R_MIPS_GOT16: 12465 case R_MIPS_CALL16: 12466 case R_MIPS_CALL_HI16: 12467 case R_MIPS_CALL_LO16: 12468 case R_MIPS_GOT_HI16: 12469 case R_MIPS_GOT_LO16: 12470 case R_MIPS_GOT_DISP: 12471 case R_MIPS_GOT_PAGE: 12472 case R_MIPS_GOT_OFST: 12473 case R_MICROMIPS_GOT16: 12474 case R_MICROMIPS_CALL16: 12475 case R_MICROMIPS_CALL_HI16: 12476 case R_MICROMIPS_CALL_LO16: 12477 case R_MICROMIPS_GOT_HI16: 12478 case R_MICROMIPS_GOT_LO16: 12479 case R_MICROMIPS_GOT_DISP: 12480 case R_MICROMIPS_GOT_PAGE: 12481 case R_MICROMIPS_GOT_OFST: 12482 /* ??? It would seem that the existing MIPS code does no sort 12483 of reference counting or whatnot on its GOT and PLT entries, 12484 so it is not possible to garbage collect them at this time. */ 12485 break; 12486 12487 default: 12488 break; 12489 } 12490 #endif 12491 12492 return TRUE; 12493 } 12494 12495 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */ 12496 12497 bfd_boolean 12498 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info, 12499 elf_gc_mark_hook_fn gc_mark_hook) 12500 { 12501 bfd *sub; 12502 12503 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook); 12504 12505 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) 12506 { 12507 asection *o; 12508 12509 if (! is_mips_elf (sub)) 12510 continue; 12511 12512 for (o = sub->sections; o != NULL; o = o->next) 12513 if (!o->gc_mark 12514 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P 12515 (bfd_get_section_name (sub, o))) 12516 { 12517 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook)) 12518 return FALSE; 12519 } 12520 } 12521 12522 return TRUE; 12523 } 12524 12525 /* Copy data from a MIPS ELF indirect symbol to its direct symbol, 12526 hiding the old indirect symbol. Process additional relocation 12527 information. Also called for weakdefs, in which case we just let 12528 _bfd_elf_link_hash_copy_indirect copy the flags for us. */ 12529 12530 void 12531 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info, 12532 struct elf_link_hash_entry *dir, 12533 struct elf_link_hash_entry *ind) 12534 { 12535 struct mips_elf_link_hash_entry *dirmips, *indmips; 12536 12537 _bfd_elf_link_hash_copy_indirect (info, dir, ind); 12538 12539 dirmips = (struct mips_elf_link_hash_entry *) dir; 12540 indmips = (struct mips_elf_link_hash_entry *) ind; 12541 /* Any absolute non-dynamic relocations against an indirect or weak 12542 definition will be against the target symbol. */ 12543 if (indmips->has_static_relocs) 12544 dirmips->has_static_relocs = TRUE; 12545 12546 if (ind->root.type != bfd_link_hash_indirect) 12547 return; 12548 12549 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs; 12550 if (indmips->readonly_reloc) 12551 dirmips->readonly_reloc = TRUE; 12552 if (indmips->no_fn_stub) 12553 dirmips->no_fn_stub = TRUE; 12554 if (indmips->fn_stub) 12555 { 12556 dirmips->fn_stub = indmips->fn_stub; 12557 indmips->fn_stub = NULL; 12558 } 12559 if (indmips->need_fn_stub) 12560 { 12561 dirmips->need_fn_stub = TRUE; 12562 indmips->need_fn_stub = FALSE; 12563 } 12564 if (indmips->call_stub) 12565 { 12566 dirmips->call_stub = indmips->call_stub; 12567 indmips->call_stub = NULL; 12568 } 12569 if (indmips->call_fp_stub) 12570 { 12571 dirmips->call_fp_stub = indmips->call_fp_stub; 12572 indmips->call_fp_stub = NULL; 12573 } 12574 if (indmips->global_got_area < dirmips->global_got_area) 12575 dirmips->global_got_area = indmips->global_got_area; 12576 if (indmips->global_got_area < GGA_NONE) 12577 indmips->global_got_area = GGA_NONE; 12578 if (indmips->has_nonpic_branches) 12579 dirmips->has_nonpic_branches = TRUE; 12580 } 12581 12582 #define PDR_SIZE 32 12583 12584 bfd_boolean 12585 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie, 12586 struct bfd_link_info *info) 12587 { 12588 asection *o; 12589 bfd_boolean ret = FALSE; 12590 unsigned char *tdata; 12591 size_t i, skip; 12592 12593 o = bfd_get_section_by_name (abfd, ".pdr"); 12594 if (! o) 12595 return FALSE; 12596 if (o->size == 0) 12597 return FALSE; 12598 if (o->size % PDR_SIZE != 0) 12599 return FALSE; 12600 if (o->output_section != NULL 12601 && bfd_is_abs_section (o->output_section)) 12602 return FALSE; 12603 12604 tdata = bfd_zmalloc (o->size / PDR_SIZE); 12605 if (! tdata) 12606 return FALSE; 12607 12608 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, 12609 info->keep_memory); 12610 if (!cookie->rels) 12611 { 12612 free (tdata); 12613 return FALSE; 12614 } 12615 12616 cookie->rel = cookie->rels; 12617 cookie->relend = cookie->rels + o->reloc_count; 12618 12619 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++) 12620 { 12621 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie)) 12622 { 12623 tdata[i] = 1; 12624 skip ++; 12625 } 12626 } 12627 12628 if (skip != 0) 12629 { 12630 mips_elf_section_data (o)->u.tdata = tdata; 12631 if (o->rawsize == 0) 12632 o->rawsize = o->size; 12633 o->size -= skip * PDR_SIZE; 12634 ret = TRUE; 12635 } 12636 else 12637 free (tdata); 12638 12639 if (! info->keep_memory) 12640 free (cookie->rels); 12641 12642 return ret; 12643 } 12644 12645 bfd_boolean 12646 _bfd_mips_elf_ignore_discarded_relocs (asection *sec) 12647 { 12648 if (strcmp (sec->name, ".pdr") == 0) 12649 return TRUE; 12650 return FALSE; 12651 } 12652 12653 bfd_boolean 12654 _bfd_mips_elf_write_section (bfd *output_bfd, 12655 struct bfd_link_info *link_info ATTRIBUTE_UNUSED, 12656 asection *sec, bfd_byte *contents) 12657 { 12658 bfd_byte *to, *from, *end; 12659 int i; 12660 12661 if (strcmp (sec->name, ".pdr") != 0) 12662 return FALSE; 12663 12664 if (mips_elf_section_data (sec)->u.tdata == NULL) 12665 return FALSE; 12666 12667 to = contents; 12668 end = contents + sec->size; 12669 for (from = contents, i = 0; 12670 from < end; 12671 from += PDR_SIZE, i++) 12672 { 12673 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1) 12674 continue; 12675 if (to != from) 12676 memcpy (to, from, PDR_SIZE); 12677 to += PDR_SIZE; 12678 } 12679 bfd_set_section_contents (output_bfd, sec->output_section, contents, 12680 sec->output_offset, sec->size); 12681 return TRUE; 12682 } 12683 12684 /* microMIPS code retains local labels for linker relaxation. Omit them 12685 from output by default for clarity. */ 12686 12687 bfd_boolean 12688 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym) 12689 { 12690 return _bfd_elf_is_local_label_name (abfd, sym->name); 12691 } 12692 12693 /* MIPS ELF uses a special find_nearest_line routine in order the 12694 handle the ECOFF debugging information. */ 12695 12696 struct mips_elf_find_line 12697 { 12698 struct ecoff_debug_info d; 12699 struct ecoff_find_line i; 12700 }; 12701 12702 bfd_boolean 12703 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols, 12704 asection *section, bfd_vma offset, 12705 const char **filename_ptr, 12706 const char **functionname_ptr, 12707 unsigned int *line_ptr, 12708 unsigned int *discriminator_ptr) 12709 { 12710 asection *msec; 12711 12712 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset, 12713 filename_ptr, functionname_ptr, 12714 line_ptr, discriminator_ptr, 12715 dwarf_debug_sections, 12716 ABI_64_P (abfd) ? 8 : 0, 12717 &elf_tdata (abfd)->dwarf2_find_line_info)) 12718 return TRUE; 12719 12720 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset, 12721 filename_ptr, functionname_ptr, 12722 line_ptr)) 12723 return TRUE; 12724 12725 msec = bfd_get_section_by_name (abfd, ".mdebug"); 12726 if (msec != NULL) 12727 { 12728 flagword origflags; 12729 struct mips_elf_find_line *fi; 12730 const struct ecoff_debug_swap * const swap = 12731 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; 12732 12733 /* If we are called during a link, mips_elf_final_link may have 12734 cleared the SEC_HAS_CONTENTS field. We force it back on here 12735 if appropriate (which it normally will be). */ 12736 origflags = msec->flags; 12737 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS) 12738 msec->flags |= SEC_HAS_CONTENTS; 12739 12740 fi = mips_elf_tdata (abfd)->find_line_info; 12741 if (fi == NULL) 12742 { 12743 bfd_size_type external_fdr_size; 12744 char *fraw_src; 12745 char *fraw_end; 12746 struct fdr *fdr_ptr; 12747 bfd_size_type amt = sizeof (struct mips_elf_find_line); 12748 12749 fi = bfd_zalloc (abfd, amt); 12750 if (fi == NULL) 12751 { 12752 msec->flags = origflags; 12753 return FALSE; 12754 } 12755 12756 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d)) 12757 { 12758 msec->flags = origflags; 12759 return FALSE; 12760 } 12761 12762 /* Swap in the FDR information. */ 12763 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr); 12764 fi->d.fdr = bfd_alloc (abfd, amt); 12765 if (fi->d.fdr == NULL) 12766 { 12767 msec->flags = origflags; 12768 return FALSE; 12769 } 12770 external_fdr_size = swap->external_fdr_size; 12771 fdr_ptr = fi->d.fdr; 12772 fraw_src = (char *) fi->d.external_fdr; 12773 fraw_end = (fraw_src 12774 + fi->d.symbolic_header.ifdMax * external_fdr_size); 12775 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++) 12776 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr); 12777 12778 mips_elf_tdata (abfd)->find_line_info = fi; 12779 12780 /* Note that we don't bother to ever free this information. 12781 find_nearest_line is either called all the time, as in 12782 objdump -l, so the information should be saved, or it is 12783 rarely called, as in ld error messages, so the memory 12784 wasted is unimportant. Still, it would probably be a 12785 good idea for free_cached_info to throw it away. */ 12786 } 12787 12788 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap, 12789 &fi->i, filename_ptr, functionname_ptr, 12790 line_ptr)) 12791 { 12792 msec->flags = origflags; 12793 return TRUE; 12794 } 12795 12796 msec->flags = origflags; 12797 } 12798 12799 /* Fall back on the generic ELF find_nearest_line routine. */ 12800 12801 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset, 12802 filename_ptr, functionname_ptr, 12803 line_ptr, discriminator_ptr); 12804 } 12805 12806 bfd_boolean 12807 _bfd_mips_elf_find_inliner_info (bfd *abfd, 12808 const char **filename_ptr, 12809 const char **functionname_ptr, 12810 unsigned int *line_ptr) 12811 { 12812 bfd_boolean found; 12813 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr, 12814 functionname_ptr, line_ptr, 12815 & elf_tdata (abfd)->dwarf2_find_line_info); 12816 return found; 12817 } 12818 12819 12820 /* When are writing out the .options or .MIPS.options section, 12821 remember the bytes we are writing out, so that we can install the 12822 GP value in the section_processing routine. */ 12823 12824 bfd_boolean 12825 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section, 12826 const void *location, 12827 file_ptr offset, bfd_size_type count) 12828 { 12829 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name)) 12830 { 12831 bfd_byte *c; 12832 12833 if (elf_section_data (section) == NULL) 12834 { 12835 bfd_size_type amt = sizeof (struct bfd_elf_section_data); 12836 section->used_by_bfd = bfd_zalloc (abfd, amt); 12837 if (elf_section_data (section) == NULL) 12838 return FALSE; 12839 } 12840 c = mips_elf_section_data (section)->u.tdata; 12841 if (c == NULL) 12842 { 12843 c = bfd_zalloc (abfd, section->size); 12844 if (c == NULL) 12845 return FALSE; 12846 mips_elf_section_data (section)->u.tdata = c; 12847 } 12848 12849 memcpy (c + offset, location, count); 12850 } 12851 12852 return _bfd_elf_set_section_contents (abfd, section, location, offset, 12853 count); 12854 } 12855 12856 /* This is almost identical to bfd_generic_get_... except that some 12857 MIPS relocations need to be handled specially. Sigh. */ 12858 12859 bfd_byte * 12860 _bfd_elf_mips_get_relocated_section_contents 12861 (bfd *abfd, 12862 struct bfd_link_info *link_info, 12863 struct bfd_link_order *link_order, 12864 bfd_byte *data, 12865 bfd_boolean relocatable, 12866 asymbol **symbols) 12867 { 12868 /* Get enough memory to hold the stuff */ 12869 bfd *input_bfd = link_order->u.indirect.section->owner; 12870 asection *input_section = link_order->u.indirect.section; 12871 bfd_size_type sz; 12872 12873 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section); 12874 arelent **reloc_vector = NULL; 12875 long reloc_count; 12876 12877 if (reloc_size < 0) 12878 goto error_return; 12879 12880 reloc_vector = bfd_malloc (reloc_size); 12881 if (reloc_vector == NULL && reloc_size != 0) 12882 goto error_return; 12883 12884 /* read in the section */ 12885 sz = input_section->rawsize ? input_section->rawsize : input_section->size; 12886 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz)) 12887 goto error_return; 12888 12889 reloc_count = bfd_canonicalize_reloc (input_bfd, 12890 input_section, 12891 reloc_vector, 12892 symbols); 12893 if (reloc_count < 0) 12894 goto error_return; 12895 12896 if (reloc_count > 0) 12897 { 12898 arelent **parent; 12899 /* for mips */ 12900 int gp_found; 12901 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */ 12902 12903 { 12904 struct bfd_hash_entry *h; 12905 struct bfd_link_hash_entry *lh; 12906 /* Skip all this stuff if we aren't mixing formats. */ 12907 if (abfd && input_bfd 12908 && abfd->xvec == input_bfd->xvec) 12909 lh = 0; 12910 else 12911 { 12912 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE); 12913 lh = (struct bfd_link_hash_entry *) h; 12914 } 12915 lookup: 12916 if (lh) 12917 { 12918 switch (lh->type) 12919 { 12920 case bfd_link_hash_undefined: 12921 case bfd_link_hash_undefweak: 12922 case bfd_link_hash_common: 12923 gp_found = 0; 12924 break; 12925 case bfd_link_hash_defined: 12926 case bfd_link_hash_defweak: 12927 gp_found = 1; 12928 gp = lh->u.def.value; 12929 break; 12930 case bfd_link_hash_indirect: 12931 case bfd_link_hash_warning: 12932 lh = lh->u.i.link; 12933 /* @@FIXME ignoring warning for now */ 12934 goto lookup; 12935 case bfd_link_hash_new: 12936 default: 12937 abort (); 12938 } 12939 } 12940 else 12941 gp_found = 0; 12942 } 12943 /* end mips */ 12944 for (parent = reloc_vector; *parent != NULL; parent++) 12945 { 12946 char *error_message = NULL; 12947 bfd_reloc_status_type r; 12948 12949 /* Specific to MIPS: Deal with relocation types that require 12950 knowing the gp of the output bfd. */ 12951 asymbol *sym = *(*parent)->sym_ptr_ptr; 12952 12953 /* If we've managed to find the gp and have a special 12954 function for the relocation then go ahead, else default 12955 to the generic handling. */ 12956 if (gp_found 12957 && (*parent)->howto->special_function 12958 == _bfd_mips_elf32_gprel16_reloc) 12959 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent, 12960 input_section, relocatable, 12961 data, gp); 12962 else 12963 r = bfd_perform_relocation (input_bfd, *parent, data, 12964 input_section, 12965 relocatable ? abfd : NULL, 12966 &error_message); 12967 12968 if (relocatable) 12969 { 12970 asection *os = input_section->output_section; 12971 12972 /* A partial link, so keep the relocs */ 12973 os->orelocation[os->reloc_count] = *parent; 12974 os->reloc_count++; 12975 } 12976 12977 if (r != bfd_reloc_ok) 12978 { 12979 switch (r) 12980 { 12981 case bfd_reloc_undefined: 12982 (*link_info->callbacks->undefined_symbol) 12983 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr), 12984 input_bfd, input_section, (*parent)->address, TRUE); 12985 break; 12986 case bfd_reloc_dangerous: 12987 BFD_ASSERT (error_message != NULL); 12988 (*link_info->callbacks->reloc_dangerous) 12989 (link_info, error_message, 12990 input_bfd, input_section, (*parent)->address); 12991 break; 12992 case bfd_reloc_overflow: 12993 (*link_info->callbacks->reloc_overflow) 12994 (link_info, NULL, 12995 bfd_asymbol_name (*(*parent)->sym_ptr_ptr), 12996 (*parent)->howto->name, (*parent)->addend, 12997 input_bfd, input_section, (*parent)->address); 12998 break; 12999 case bfd_reloc_outofrange: 13000 default: 13001 abort (); 13002 break; 13003 } 13004 13005 } 13006 } 13007 } 13008 if (reloc_vector != NULL) 13009 free (reloc_vector); 13010 return data; 13011 13012 error_return: 13013 if (reloc_vector != NULL) 13014 free (reloc_vector); 13015 return NULL; 13016 } 13017 13018 static bfd_boolean 13019 mips_elf_relax_delete_bytes (bfd *abfd, 13020 asection *sec, bfd_vma addr, int count) 13021 { 13022 Elf_Internal_Shdr *symtab_hdr; 13023 unsigned int sec_shndx; 13024 bfd_byte *contents; 13025 Elf_Internal_Rela *irel, *irelend; 13026 Elf_Internal_Sym *isym; 13027 Elf_Internal_Sym *isymend; 13028 struct elf_link_hash_entry **sym_hashes; 13029 struct elf_link_hash_entry **end_hashes; 13030 struct elf_link_hash_entry **start_hashes; 13031 unsigned int symcount; 13032 13033 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); 13034 contents = elf_section_data (sec)->this_hdr.contents; 13035 13036 irel = elf_section_data (sec)->relocs; 13037 irelend = irel + sec->reloc_count; 13038 13039 /* Actually delete the bytes. */ 13040 memmove (contents + addr, contents + addr + count, 13041 (size_t) (sec->size - addr - count)); 13042 sec->size -= count; 13043 13044 /* Adjust all the relocs. */ 13045 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++) 13046 { 13047 /* Get the new reloc address. */ 13048 if (irel->r_offset > addr) 13049 irel->r_offset -= count; 13050 } 13051 13052 BFD_ASSERT (addr % 2 == 0); 13053 BFD_ASSERT (count % 2 == 0); 13054 13055 /* Adjust the local symbols defined in this section. */ 13056 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 13057 isym = (Elf_Internal_Sym *) symtab_hdr->contents; 13058 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++) 13059 if (isym->st_shndx == sec_shndx && isym->st_value > addr) 13060 isym->st_value -= count; 13061 13062 /* Now adjust the global symbols defined in this section. */ 13063 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) 13064 - symtab_hdr->sh_info); 13065 sym_hashes = start_hashes = elf_sym_hashes (abfd); 13066 end_hashes = sym_hashes + symcount; 13067 13068 for (; sym_hashes < end_hashes; sym_hashes++) 13069 { 13070 struct elf_link_hash_entry *sym_hash = *sym_hashes; 13071 13072 if ((sym_hash->root.type == bfd_link_hash_defined 13073 || sym_hash->root.type == bfd_link_hash_defweak) 13074 && sym_hash->root.u.def.section == sec) 13075 { 13076 bfd_vma value = sym_hash->root.u.def.value; 13077 13078 if (ELF_ST_IS_MICROMIPS (sym_hash->other)) 13079 value &= MINUS_TWO; 13080 if (value > addr) 13081 sym_hash->root.u.def.value -= count; 13082 } 13083 } 13084 13085 return TRUE; 13086 } 13087 13088 13089 /* Opcodes needed for microMIPS relaxation as found in 13090 opcodes/micromips-opc.c. */ 13091 13092 struct opcode_descriptor { 13093 unsigned long match; 13094 unsigned long mask; 13095 }; 13096 13097 /* The $ra register aka $31. */ 13098 13099 #define RA 31 13100 13101 /* 32-bit instruction format register fields. */ 13102 13103 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f) 13104 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f) 13105 13106 /* Check if a 5-bit register index can be abbreviated to 3 bits. */ 13107 13108 #define OP16_VALID_REG(r) \ 13109 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17)) 13110 13111 13112 /* 32-bit and 16-bit branches. */ 13113 13114 static const struct opcode_descriptor b_insns_32[] = { 13115 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */ 13116 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */ 13117 { 0, 0 } /* End marker for find_match(). */ 13118 }; 13119 13120 static const struct opcode_descriptor bc_insn_32 = 13121 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 }; 13122 13123 static const struct opcode_descriptor bz_insn_32 = 13124 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 }; 13125 13126 static const struct opcode_descriptor bzal_insn_32 = 13127 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 }; 13128 13129 static const struct opcode_descriptor beq_insn_32 = 13130 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 }; 13131 13132 static const struct opcode_descriptor b_insn_16 = 13133 { /* "b", "mD", */ 0xcc00, 0xfc00 }; 13134 13135 static const struct opcode_descriptor bz_insn_16 = 13136 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 }; 13137 13138 13139 /* 32-bit and 16-bit branch EQ and NE zero. */ 13140 13141 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the 13142 eq and second the ne. This convention is used when replacing a 13143 32-bit BEQ/BNE with the 16-bit version. */ 13144 13145 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16) 13146 13147 static const struct opcode_descriptor bz_rs_insns_32[] = { 13148 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 }, 13149 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 }, 13150 { 0, 0 } /* End marker for find_match(). */ 13151 }; 13152 13153 static const struct opcode_descriptor bz_rt_insns_32[] = { 13154 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 }, 13155 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 }, 13156 { 0, 0 } /* End marker for find_match(). */ 13157 }; 13158 13159 static const struct opcode_descriptor bzc_insns_32[] = { 13160 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 }, 13161 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 }, 13162 { 0, 0 } /* End marker for find_match(). */ 13163 }; 13164 13165 static const struct opcode_descriptor bz_insns_16[] = { 13166 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 }, 13167 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 }, 13168 { 0, 0 } /* End marker for find_match(). */ 13169 }; 13170 13171 /* Switch between a 5-bit register index and its 3-bit shorthand. */ 13172 13173 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2) 13174 #define BZ16_REG_FIELD(r) (((r) & 7) << 7) 13175 13176 13177 /* 32-bit instructions with a delay slot. */ 13178 13179 static const struct opcode_descriptor jal_insn_32_bd16 = 13180 { /* "jals", "a", */ 0x74000000, 0xfc000000 }; 13181 13182 static const struct opcode_descriptor jal_insn_32_bd32 = 13183 { /* "jal", "a", */ 0xf4000000, 0xfc000000 }; 13184 13185 static const struct opcode_descriptor jal_x_insn_32_bd32 = 13186 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 }; 13187 13188 static const struct opcode_descriptor j_insn_32 = 13189 { /* "j", "a", */ 0xd4000000, 0xfc000000 }; 13190 13191 static const struct opcode_descriptor jalr_insn_32 = 13192 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff }; 13193 13194 /* This table can be compacted, because no opcode replacement is made. */ 13195 13196 static const struct opcode_descriptor ds_insns_32_bd16[] = { 13197 { /* "jals", "a", */ 0x74000000, 0xfc000000 }, 13198 13199 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff }, 13200 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 }, 13201 13202 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 }, 13203 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 }, 13204 { /* "j", "a", */ 0xd4000000, 0xfc000000 }, 13205 { 0, 0 } /* End marker for find_match(). */ 13206 }; 13207 13208 /* This table can be compacted, because no opcode replacement is made. */ 13209 13210 static const struct opcode_descriptor ds_insns_32_bd32[] = { 13211 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 }, 13212 13213 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff }, 13214 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 }, 13215 { 0, 0 } /* End marker for find_match(). */ 13216 }; 13217 13218 13219 /* 16-bit instructions with a delay slot. */ 13220 13221 static const struct opcode_descriptor jalr_insn_16_bd16 = 13222 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 }; 13223 13224 static const struct opcode_descriptor jalr_insn_16_bd32 = 13225 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 }; 13226 13227 static const struct opcode_descriptor jr_insn_16 = 13228 { /* "jr", "mj", */ 0x4580, 0xffe0 }; 13229 13230 #define JR16_REG(opcode) ((opcode) & 0x1f) 13231 13232 /* This table can be compacted, because no opcode replacement is made. */ 13233 13234 static const struct opcode_descriptor ds_insns_16_bd16[] = { 13235 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 }, 13236 13237 { /* "b", "mD", */ 0xcc00, 0xfc00 }, 13238 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 }, 13239 { /* "jr", "mj", */ 0x4580, 0xffe0 }, 13240 { 0, 0 } /* End marker for find_match(). */ 13241 }; 13242 13243 13244 /* LUI instruction. */ 13245 13246 static const struct opcode_descriptor lui_insn = 13247 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 }; 13248 13249 13250 /* ADDIU instruction. */ 13251 13252 static const struct opcode_descriptor addiu_insn = 13253 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 }; 13254 13255 static const struct opcode_descriptor addiupc_insn = 13256 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 }; 13257 13258 #define ADDIUPC_REG_FIELD(r) \ 13259 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23) 13260 13261 13262 /* Relaxable instructions in a JAL delay slot: MOVE. */ 13263 13264 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves 13265 (ADDU, OR) have rd in 15:11 and rs in 10:16. */ 13266 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f) 13267 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f) 13268 13269 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5) 13270 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) ) 13271 13272 static const struct opcode_descriptor move_insns_32[] = { 13273 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */ 13274 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */ 13275 { 0, 0 } /* End marker for find_match(). */ 13276 }; 13277 13278 static const struct opcode_descriptor move_insn_16 = 13279 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 }; 13280 13281 13282 /* NOP instructions. */ 13283 13284 static const struct opcode_descriptor nop_insn_32 = 13285 { /* "nop", "", */ 0x00000000, 0xffffffff }; 13286 13287 static const struct opcode_descriptor nop_insn_16 = 13288 { /* "nop", "", */ 0x0c00, 0xffff }; 13289 13290 13291 /* Instruction match support. */ 13292 13293 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match) 13294 13295 static int 13296 find_match (unsigned long opcode, const struct opcode_descriptor insn[]) 13297 { 13298 unsigned long indx; 13299 13300 for (indx = 0; insn[indx].mask != 0; indx++) 13301 if (MATCH (opcode, insn[indx])) 13302 return indx; 13303 13304 return -1; 13305 } 13306 13307 13308 /* Branch and delay slot decoding support. */ 13309 13310 /* If PTR points to what *might* be a 16-bit branch or jump, then 13311 return the minimum length of its delay slot, otherwise return 0. 13312 Non-zero results are not definitive as we might be checking against 13313 the second half of another instruction. */ 13314 13315 static int 13316 check_br16_dslot (bfd *abfd, bfd_byte *ptr) 13317 { 13318 unsigned long opcode; 13319 int bdsize; 13320 13321 opcode = bfd_get_16 (abfd, ptr); 13322 if (MATCH (opcode, jalr_insn_16_bd32) != 0) 13323 /* 16-bit branch/jump with a 32-bit delay slot. */ 13324 bdsize = 4; 13325 else if (MATCH (opcode, jalr_insn_16_bd16) != 0 13326 || find_match (opcode, ds_insns_16_bd16) >= 0) 13327 /* 16-bit branch/jump with a 16-bit delay slot. */ 13328 bdsize = 2; 13329 else 13330 /* No delay slot. */ 13331 bdsize = 0; 13332 13333 return bdsize; 13334 } 13335 13336 /* If PTR points to what *might* be a 32-bit branch or jump, then 13337 return the minimum length of its delay slot, otherwise return 0. 13338 Non-zero results are not definitive as we might be checking against 13339 the second half of another instruction. */ 13340 13341 static int 13342 check_br32_dslot (bfd *abfd, bfd_byte *ptr) 13343 { 13344 unsigned long opcode; 13345 int bdsize; 13346 13347 opcode = bfd_get_micromips_32 (abfd, ptr); 13348 if (find_match (opcode, ds_insns_32_bd32) >= 0) 13349 /* 32-bit branch/jump with a 32-bit delay slot. */ 13350 bdsize = 4; 13351 else if (find_match (opcode, ds_insns_32_bd16) >= 0) 13352 /* 32-bit branch/jump with a 16-bit delay slot. */ 13353 bdsize = 2; 13354 else 13355 /* No delay slot. */ 13356 bdsize = 0; 13357 13358 return bdsize; 13359 } 13360 13361 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot 13362 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */ 13363 13364 static bfd_boolean 13365 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg) 13366 { 13367 unsigned long opcode; 13368 13369 opcode = bfd_get_16 (abfd, ptr); 13370 if (MATCH (opcode, b_insn_16) 13371 /* B16 */ 13372 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode)) 13373 /* JR16 */ 13374 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode)) 13375 /* BEQZ16, BNEZ16 */ 13376 || (MATCH (opcode, jalr_insn_16_bd32) 13377 /* JALR16 */ 13378 && reg != JR16_REG (opcode) && reg != RA)) 13379 return TRUE; 13380 13381 return FALSE; 13382 } 13383 13384 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG, 13385 then return TRUE, otherwise FALSE. */ 13386 13387 static bfd_boolean 13388 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg) 13389 { 13390 unsigned long opcode; 13391 13392 opcode = bfd_get_micromips_32 (abfd, ptr); 13393 if (MATCH (opcode, j_insn_32) 13394 /* J */ 13395 || MATCH (opcode, bc_insn_32) 13396 /* BC1F, BC1T, BC2F, BC2T */ 13397 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA) 13398 /* JAL, JALX */ 13399 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode)) 13400 /* BGEZ, BGTZ, BLEZ, BLTZ */ 13401 || (MATCH (opcode, bzal_insn_32) 13402 /* BGEZAL, BLTZAL */ 13403 && reg != OP32_SREG (opcode) && reg != RA) 13404 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32)) 13405 /* JALR, JALR.HB, BEQ, BNE */ 13406 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode))) 13407 return TRUE; 13408 13409 return FALSE; 13410 } 13411 13412 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS, 13413 IRELEND) at OFFSET indicate that there must be a compact branch there, 13414 then return TRUE, otherwise FALSE. */ 13415 13416 static bfd_boolean 13417 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset, 13418 const Elf_Internal_Rela *internal_relocs, 13419 const Elf_Internal_Rela *irelend) 13420 { 13421 const Elf_Internal_Rela *irel; 13422 unsigned long opcode; 13423 13424 opcode = bfd_get_micromips_32 (abfd, ptr); 13425 if (find_match (opcode, bzc_insns_32) < 0) 13426 return FALSE; 13427 13428 for (irel = internal_relocs; irel < irelend; irel++) 13429 if (irel->r_offset == offset 13430 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1) 13431 return TRUE; 13432 13433 return FALSE; 13434 } 13435 13436 /* Bitsize checking. */ 13437 #define IS_BITSIZE(val, N) \ 13438 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \ 13439 - (1ULL << ((N) - 1))) == (val)) 13440 13441 13442 bfd_boolean 13443 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec, 13444 struct bfd_link_info *link_info, 13445 bfd_boolean *again) 13446 { 13447 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32; 13448 Elf_Internal_Shdr *symtab_hdr; 13449 Elf_Internal_Rela *internal_relocs; 13450 Elf_Internal_Rela *irel, *irelend; 13451 bfd_byte *contents = NULL; 13452 Elf_Internal_Sym *isymbuf = NULL; 13453 13454 /* Assume nothing changes. */ 13455 *again = FALSE; 13456 13457 /* We don't have to do anything for a relocatable link, if 13458 this section does not have relocs, or if this is not a 13459 code section. */ 13460 13461 if (bfd_link_relocatable (link_info) 13462 || (sec->flags & SEC_RELOC) == 0 13463 || sec->reloc_count == 0 13464 || (sec->flags & SEC_CODE) == 0) 13465 return TRUE; 13466 13467 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 13468 13469 /* Get a copy of the native relocations. */ 13470 internal_relocs = (_bfd_elf_link_read_relocs 13471 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL, 13472 link_info->keep_memory)); 13473 if (internal_relocs == NULL) 13474 goto error_return; 13475 13476 /* Walk through them looking for relaxing opportunities. */ 13477 irelend = internal_relocs + sec->reloc_count; 13478 for (irel = internal_relocs; irel < irelend; irel++) 13479 { 13480 unsigned long r_symndx = ELF32_R_SYM (irel->r_info); 13481 unsigned int r_type = ELF32_R_TYPE (irel->r_info); 13482 bfd_boolean target_is_micromips_code_p; 13483 unsigned long opcode; 13484 bfd_vma symval; 13485 bfd_vma pcrval; 13486 bfd_byte *ptr; 13487 int fndopc; 13488 13489 /* The number of bytes to delete for relaxation and from where 13490 to delete these bytes starting at irel->r_offset. */ 13491 int delcnt = 0; 13492 int deloff = 0; 13493 13494 /* If this isn't something that can be relaxed, then ignore 13495 this reloc. */ 13496 if (r_type != R_MICROMIPS_HI16 13497 && r_type != R_MICROMIPS_PC16_S1 13498 && r_type != R_MICROMIPS_26_S1) 13499 continue; 13500 13501 /* Get the section contents if we haven't done so already. */ 13502 if (contents == NULL) 13503 { 13504 /* Get cached copy if it exists. */ 13505 if (elf_section_data (sec)->this_hdr.contents != NULL) 13506 contents = elf_section_data (sec)->this_hdr.contents; 13507 /* Go get them off disk. */ 13508 else if (!bfd_malloc_and_get_section (abfd, sec, &contents)) 13509 goto error_return; 13510 } 13511 ptr = contents + irel->r_offset; 13512 13513 /* Read this BFD's local symbols if we haven't done so already. */ 13514 if (isymbuf == NULL && symtab_hdr->sh_info != 0) 13515 { 13516 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; 13517 if (isymbuf == NULL) 13518 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, 13519 symtab_hdr->sh_info, 0, 13520 NULL, NULL, NULL); 13521 if (isymbuf == NULL) 13522 goto error_return; 13523 } 13524 13525 /* Get the value of the symbol referred to by the reloc. */ 13526 if (r_symndx < symtab_hdr->sh_info) 13527 { 13528 /* A local symbol. */ 13529 Elf_Internal_Sym *isym; 13530 asection *sym_sec; 13531 13532 isym = isymbuf + r_symndx; 13533 if (isym->st_shndx == SHN_UNDEF) 13534 sym_sec = bfd_und_section_ptr; 13535 else if (isym->st_shndx == SHN_ABS) 13536 sym_sec = bfd_abs_section_ptr; 13537 else if (isym->st_shndx == SHN_COMMON) 13538 sym_sec = bfd_com_section_ptr; 13539 else 13540 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx); 13541 symval = (isym->st_value 13542 + sym_sec->output_section->vma 13543 + sym_sec->output_offset); 13544 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other); 13545 } 13546 else 13547 { 13548 unsigned long indx; 13549 struct elf_link_hash_entry *h; 13550 13551 /* An external symbol. */ 13552 indx = r_symndx - symtab_hdr->sh_info; 13553 h = elf_sym_hashes (abfd)[indx]; 13554 BFD_ASSERT (h != NULL); 13555 13556 if (h->root.type != bfd_link_hash_defined 13557 && h->root.type != bfd_link_hash_defweak) 13558 /* This appears to be a reference to an undefined 13559 symbol. Just ignore it -- it will be caught by the 13560 regular reloc processing. */ 13561 continue; 13562 13563 symval = (h->root.u.def.value 13564 + h->root.u.def.section->output_section->vma 13565 + h->root.u.def.section->output_offset); 13566 target_is_micromips_code_p = (!h->needs_plt 13567 && ELF_ST_IS_MICROMIPS (h->other)); 13568 } 13569 13570 13571 /* For simplicity of coding, we are going to modify the 13572 section contents, the section relocs, and the BFD symbol 13573 table. We must tell the rest of the code not to free up this 13574 information. It would be possible to instead create a table 13575 of changes which have to be made, as is done in coff-mips.c; 13576 that would be more work, but would require less memory when 13577 the linker is run. */ 13578 13579 /* Only 32-bit instructions relaxed. */ 13580 if (irel->r_offset + 4 > sec->size) 13581 continue; 13582 13583 opcode = bfd_get_micromips_32 (abfd, ptr); 13584 13585 /* This is the pc-relative distance from the instruction the 13586 relocation is applied to, to the symbol referred. */ 13587 pcrval = (symval 13588 - (sec->output_section->vma + sec->output_offset) 13589 - irel->r_offset); 13590 13591 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation 13592 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or 13593 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is 13594 13595 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25)) 13596 13597 where pcrval has first to be adjusted to apply against the LO16 13598 location (we make the adjustment later on, when we have figured 13599 out the offset). */ 13600 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn)) 13601 { 13602 bfd_boolean bzc = FALSE; 13603 unsigned long nextopc; 13604 unsigned long reg; 13605 bfd_vma offset; 13606 13607 /* Give up if the previous reloc was a HI16 against this symbol 13608 too. */ 13609 if (irel > internal_relocs 13610 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16 13611 && ELF32_R_SYM (irel[-1].r_info) == r_symndx) 13612 continue; 13613 13614 /* Or if the next reloc is not a LO16 against this symbol. */ 13615 if (irel + 1 >= irelend 13616 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16 13617 || ELF32_R_SYM (irel[1].r_info) != r_symndx) 13618 continue; 13619 13620 /* Or if the second next reloc is a LO16 against this symbol too. */ 13621 if (irel + 2 >= irelend 13622 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16 13623 && ELF32_R_SYM (irel[2].r_info) == r_symndx) 13624 continue; 13625 13626 /* See if the LUI instruction *might* be in a branch delay slot. 13627 We check whether what looks like a 16-bit branch or jump is 13628 actually an immediate argument to a compact branch, and let 13629 it through if so. */ 13630 if (irel->r_offset >= 2 13631 && check_br16_dslot (abfd, ptr - 2) 13632 && !(irel->r_offset >= 4 13633 && (bzc = check_relocated_bzc (abfd, 13634 ptr - 4, irel->r_offset - 4, 13635 internal_relocs, irelend)))) 13636 continue; 13637 if (irel->r_offset >= 4 13638 && !bzc 13639 && check_br32_dslot (abfd, ptr - 4)) 13640 continue; 13641 13642 reg = OP32_SREG (opcode); 13643 13644 /* We only relax adjacent instructions or ones separated with 13645 a branch or jump that has a delay slot. The branch or jump 13646 must not fiddle with the register used to hold the address. 13647 Subtract 4 for the LUI itself. */ 13648 offset = irel[1].r_offset - irel[0].r_offset; 13649 switch (offset - 4) 13650 { 13651 case 0: 13652 break; 13653 case 2: 13654 if (check_br16 (abfd, ptr + 4, reg)) 13655 break; 13656 continue; 13657 case 4: 13658 if (check_br32 (abfd, ptr + 4, reg)) 13659 break; 13660 continue; 13661 default: 13662 continue; 13663 } 13664 13665 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset); 13666 13667 /* Give up unless the same register is used with both 13668 relocations. */ 13669 if (OP32_SREG (nextopc) != reg) 13670 continue; 13671 13672 /* Now adjust pcrval, subtracting the offset to the LO16 reloc 13673 and rounding up to take masking of the two LSBs into account. */ 13674 pcrval = ((pcrval - offset + 3) | 3) ^ 3; 13675 13676 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */ 13677 if (IS_BITSIZE (symval, 16)) 13678 { 13679 /* Fix the relocation's type. */ 13680 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16); 13681 13682 /* Instructions using R_MICROMIPS_LO16 have the base or 13683 source register in bits 20:16. This register becomes $0 13684 (zero) as the result of the R_MICROMIPS_HI16 being 0. */ 13685 nextopc &= ~0x001f0000; 13686 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff, 13687 contents + irel[1].r_offset); 13688 } 13689 13690 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2. 13691 We add 4 to take LUI deletion into account while checking 13692 the PC-relative distance. */ 13693 else if (symval % 4 == 0 13694 && IS_BITSIZE (pcrval + 4, 25) 13695 && MATCH (nextopc, addiu_insn) 13696 && OP32_TREG (nextopc) == OP32_SREG (nextopc) 13697 && OP16_VALID_REG (OP32_TREG (nextopc))) 13698 { 13699 /* Fix the relocation's type. */ 13700 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2); 13701 13702 /* Replace ADDIU with the ADDIUPC version. */ 13703 nextopc = (addiupc_insn.match 13704 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc))); 13705 13706 bfd_put_micromips_32 (abfd, nextopc, 13707 contents + irel[1].r_offset); 13708 } 13709 13710 /* Can't do anything, give up, sigh... */ 13711 else 13712 continue; 13713 13714 /* Fix the relocation's type. */ 13715 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE); 13716 13717 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */ 13718 delcnt = 4; 13719 deloff = 0; 13720 } 13721 13722 /* Compact branch relaxation -- due to the multitude of macros 13723 employed by the compiler/assembler, compact branches are not 13724 always generated. Obviously, this can/will be fixed elsewhere, 13725 but there is no drawback in double checking it here. */ 13726 else if (r_type == R_MICROMIPS_PC16_S1 13727 && irel->r_offset + 5 < sec->size 13728 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0 13729 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0) 13730 && ((!insn32 13731 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4), 13732 nop_insn_16) ? 2 : 0)) 13733 || (irel->r_offset + 7 < sec->size 13734 && (delcnt = MATCH (bfd_get_micromips_32 (abfd, 13735 ptr + 4), 13736 nop_insn_32) ? 4 : 0)))) 13737 { 13738 unsigned long reg; 13739 13740 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode); 13741 13742 /* Replace BEQZ/BNEZ with the compact version. */ 13743 opcode = (bzc_insns_32[fndopc].match 13744 | BZC32_REG_FIELD (reg) 13745 | (opcode & 0xffff)); /* Addend value. */ 13746 13747 bfd_put_micromips_32 (abfd, opcode, ptr); 13748 13749 /* Delete the delay slot NOP: two or four bytes from 13750 irel->offset + 4; delcnt has already been set above. */ 13751 deloff = 4; 13752 } 13753 13754 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need 13755 to check the distance from the next instruction, so subtract 2. */ 13756 else if (!insn32 13757 && r_type == R_MICROMIPS_PC16_S1 13758 && IS_BITSIZE (pcrval - 2, 11) 13759 && find_match (opcode, b_insns_32) >= 0) 13760 { 13761 /* Fix the relocation's type. */ 13762 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1); 13763 13764 /* Replace the 32-bit opcode with a 16-bit opcode. */ 13765 bfd_put_16 (abfd, 13766 (b_insn_16.match 13767 | (opcode & 0x3ff)), /* Addend value. */ 13768 ptr); 13769 13770 /* Delete 2 bytes from irel->r_offset + 2. */ 13771 delcnt = 2; 13772 deloff = 2; 13773 } 13774 13775 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need 13776 to check the distance from the next instruction, so subtract 2. */ 13777 else if (!insn32 13778 && r_type == R_MICROMIPS_PC16_S1 13779 && IS_BITSIZE (pcrval - 2, 8) 13780 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0 13781 && OP16_VALID_REG (OP32_SREG (opcode))) 13782 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0 13783 && OP16_VALID_REG (OP32_TREG (opcode))))) 13784 { 13785 unsigned long reg; 13786 13787 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode); 13788 13789 /* Fix the relocation's type. */ 13790 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1); 13791 13792 /* Replace the 32-bit opcode with a 16-bit opcode. */ 13793 bfd_put_16 (abfd, 13794 (bz_insns_16[fndopc].match 13795 | BZ16_REG_FIELD (reg) 13796 | (opcode & 0x7f)), /* Addend value. */ 13797 ptr); 13798 13799 /* Delete 2 bytes from irel->r_offset + 2. */ 13800 delcnt = 2; 13801 deloff = 2; 13802 } 13803 13804 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */ 13805 else if (!insn32 13806 && r_type == R_MICROMIPS_26_S1 13807 && target_is_micromips_code_p 13808 && irel->r_offset + 7 < sec->size 13809 && MATCH (opcode, jal_insn_32_bd32)) 13810 { 13811 unsigned long n32opc; 13812 bfd_boolean relaxed = FALSE; 13813 13814 n32opc = bfd_get_micromips_32 (abfd, ptr + 4); 13815 13816 if (MATCH (n32opc, nop_insn_32)) 13817 { 13818 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */ 13819 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4); 13820 13821 relaxed = TRUE; 13822 } 13823 else if (find_match (n32opc, move_insns_32) >= 0) 13824 { 13825 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */ 13826 bfd_put_16 (abfd, 13827 (move_insn_16.match 13828 | MOVE16_RD_FIELD (MOVE32_RD (n32opc)) 13829 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))), 13830 ptr + 4); 13831 13832 relaxed = TRUE; 13833 } 13834 /* Other 32-bit instructions relaxable to 16-bit 13835 instructions will be handled here later. */ 13836 13837 if (relaxed) 13838 { 13839 /* JAL with 32-bit delay slot that is changed to a JALS 13840 with 16-bit delay slot. */ 13841 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr); 13842 13843 /* Delete 2 bytes from irel->r_offset + 6. */ 13844 delcnt = 2; 13845 deloff = 6; 13846 } 13847 } 13848 13849 if (delcnt != 0) 13850 { 13851 /* Note that we've changed the relocs, section contents, etc. */ 13852 elf_section_data (sec)->relocs = internal_relocs; 13853 elf_section_data (sec)->this_hdr.contents = contents; 13854 symtab_hdr->contents = (unsigned char *) isymbuf; 13855 13856 /* Delete bytes depending on the delcnt and deloff. */ 13857 if (!mips_elf_relax_delete_bytes (abfd, sec, 13858 irel->r_offset + deloff, delcnt)) 13859 goto error_return; 13860 13861 /* That will change things, so we should relax again. 13862 Note that this is not required, and it may be slow. */ 13863 *again = TRUE; 13864 } 13865 } 13866 13867 if (isymbuf != NULL 13868 && symtab_hdr->contents != (unsigned char *) isymbuf) 13869 { 13870 if (! link_info->keep_memory) 13871 free (isymbuf); 13872 else 13873 { 13874 /* Cache the symbols for elf_link_input_bfd. */ 13875 symtab_hdr->contents = (unsigned char *) isymbuf; 13876 } 13877 } 13878 13879 if (contents != NULL 13880 && elf_section_data (sec)->this_hdr.contents != contents) 13881 { 13882 if (! link_info->keep_memory) 13883 free (contents); 13884 else 13885 { 13886 /* Cache the section contents for elf_link_input_bfd. */ 13887 elf_section_data (sec)->this_hdr.contents = contents; 13888 } 13889 } 13890 13891 if (internal_relocs != NULL 13892 && elf_section_data (sec)->relocs != internal_relocs) 13893 free (internal_relocs); 13894 13895 return TRUE; 13896 13897 error_return: 13898 if (isymbuf != NULL 13899 && symtab_hdr->contents != (unsigned char *) isymbuf) 13900 free (isymbuf); 13901 if (contents != NULL 13902 && elf_section_data (sec)->this_hdr.contents != contents) 13903 free (contents); 13904 if (internal_relocs != NULL 13905 && elf_section_data (sec)->relocs != internal_relocs) 13906 free (internal_relocs); 13907 13908 return FALSE; 13909 } 13910 13911 /* Create a MIPS ELF linker hash table. */ 13912 13913 struct bfd_link_hash_table * 13914 _bfd_mips_elf_link_hash_table_create (bfd *abfd) 13915 { 13916 struct mips_elf_link_hash_table *ret; 13917 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table); 13918 13919 ret = bfd_zmalloc (amt); 13920 if (ret == NULL) 13921 return NULL; 13922 13923 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, 13924 mips_elf_link_hash_newfunc, 13925 sizeof (struct mips_elf_link_hash_entry), 13926 MIPS_ELF_DATA)) 13927 { 13928 free (ret); 13929 return NULL; 13930 } 13931 ret->root.init_plt_refcount.plist = NULL; 13932 ret->root.init_plt_offset.plist = NULL; 13933 13934 return &ret->root.root; 13935 } 13936 13937 /* Likewise, but indicate that the target is VxWorks. */ 13938 13939 struct bfd_link_hash_table * 13940 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd) 13941 { 13942 struct bfd_link_hash_table *ret; 13943 13944 ret = _bfd_mips_elf_link_hash_table_create (abfd); 13945 if (ret) 13946 { 13947 struct mips_elf_link_hash_table *htab; 13948 13949 htab = (struct mips_elf_link_hash_table *) ret; 13950 htab->use_plts_and_copy_relocs = TRUE; 13951 htab->is_vxworks = TRUE; 13952 } 13953 return ret; 13954 } 13955 13956 /* A function that the linker calls if we are allowed to use PLTs 13957 and copy relocs. */ 13958 13959 void 13960 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info) 13961 { 13962 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE; 13963 } 13964 13965 /* A function that the linker calls to select between all or only 13966 32-bit microMIPS instructions. */ 13967 13968 void 13969 _bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on) 13970 { 13971 mips_elf_hash_table (info)->insn32 = on; 13972 } 13973 13974 /* Structure for saying that BFD machine EXTENSION extends BASE. */ 13975 13976 struct mips_mach_extension 13977 { 13978 unsigned long extension, base; 13979 }; 13980 13981 13982 /* An array describing how BFD machines relate to one another. The entries 13983 are ordered topologically with MIPS I extensions listed last. */ 13984 13985 static const struct mips_mach_extension mips_mach_extensions[] = 13986 { 13987 /* MIPS64r2 extensions. */ 13988 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 }, 13989 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp }, 13990 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon }, 13991 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 }, 13992 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 }, 13993 13994 /* MIPS64 extensions. */ 13995 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 }, 13996 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 }, 13997 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 }, 13998 13999 /* MIPS V extensions. */ 14000 { bfd_mach_mipsisa64, bfd_mach_mips5 }, 14001 14002 /* R10000 extensions. */ 14003 { bfd_mach_mips12000, bfd_mach_mips10000 }, 14004 { bfd_mach_mips14000, bfd_mach_mips10000 }, 14005 { bfd_mach_mips16000, bfd_mach_mips10000 }, 14006 14007 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core 14008 vr5400 ISA, but doesn't include the multimedia stuff. It seems 14009 better to allow vr5400 and vr5500 code to be merged anyway, since 14010 many libraries will just use the core ISA. Perhaps we could add 14011 some sort of ASE flag if this ever proves a problem. */ 14012 { bfd_mach_mips5500, bfd_mach_mips5400 }, 14013 { bfd_mach_mips5400, bfd_mach_mips5000 }, 14014 14015 /* MIPS IV extensions. */ 14016 { bfd_mach_mips5, bfd_mach_mips8000 }, 14017 { bfd_mach_mips10000, bfd_mach_mips8000 }, 14018 { bfd_mach_mips5000, bfd_mach_mips8000 }, 14019 { bfd_mach_mips7000, bfd_mach_mips8000 }, 14020 { bfd_mach_mips9000, bfd_mach_mips8000 }, 14021 14022 /* VR4100 extensions. */ 14023 { bfd_mach_mips4120, bfd_mach_mips4100 }, 14024 { bfd_mach_mips4111, bfd_mach_mips4100 }, 14025 14026 /* MIPS III extensions. */ 14027 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 }, 14028 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 }, 14029 { bfd_mach_mips8000, bfd_mach_mips4000 }, 14030 { bfd_mach_mips4650, bfd_mach_mips4000 }, 14031 { bfd_mach_mips4600, bfd_mach_mips4000 }, 14032 { bfd_mach_mips4400, bfd_mach_mips4000 }, 14033 { bfd_mach_mips4300, bfd_mach_mips4000 }, 14034 { bfd_mach_mips4100, bfd_mach_mips4000 }, 14035 { bfd_mach_mips4010, bfd_mach_mips4000 }, 14036 { bfd_mach_mips5900, bfd_mach_mips4000 }, 14037 14038 /* MIPS32 extensions. */ 14039 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 }, 14040 14041 /* MIPS II extensions. */ 14042 { bfd_mach_mips4000, bfd_mach_mips6000 }, 14043 { bfd_mach_mipsisa32, bfd_mach_mips6000 }, 14044 14045 /* MIPS I extensions. */ 14046 { bfd_mach_mips6000, bfd_mach_mips3000 }, 14047 { bfd_mach_mips3900, bfd_mach_mips3000 } 14048 }; 14049 14050 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */ 14051 14052 static bfd_boolean 14053 mips_mach_extends_p (unsigned long base, unsigned long extension) 14054 { 14055 size_t i; 14056 14057 if (extension == base) 14058 return TRUE; 14059 14060 if (base == bfd_mach_mipsisa32 14061 && mips_mach_extends_p (bfd_mach_mipsisa64, extension)) 14062 return TRUE; 14063 14064 if (base == bfd_mach_mipsisa32r2 14065 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension)) 14066 return TRUE; 14067 14068 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++) 14069 if (extension == mips_mach_extensions[i].extension) 14070 { 14071 extension = mips_mach_extensions[i].base; 14072 if (extension == base) 14073 return TRUE; 14074 } 14075 14076 return FALSE; 14077 } 14078 14079 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */ 14080 14081 static unsigned long 14082 bfd_mips_isa_ext_mach (unsigned int isa_ext) 14083 { 14084 switch (isa_ext) 14085 { 14086 case AFL_EXT_3900: return bfd_mach_mips3900; 14087 case AFL_EXT_4010: return bfd_mach_mips4010; 14088 case AFL_EXT_4100: return bfd_mach_mips4100; 14089 case AFL_EXT_4111: return bfd_mach_mips4111; 14090 case AFL_EXT_4120: return bfd_mach_mips4120; 14091 case AFL_EXT_4650: return bfd_mach_mips4650; 14092 case AFL_EXT_5400: return bfd_mach_mips5400; 14093 case AFL_EXT_5500: return bfd_mach_mips5500; 14094 case AFL_EXT_5900: return bfd_mach_mips5900; 14095 case AFL_EXT_10000: return bfd_mach_mips10000; 14096 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e; 14097 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f; 14098 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a; 14099 case AFL_EXT_SB1: return bfd_mach_mips_sb1; 14100 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon; 14101 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp; 14102 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2; 14103 case AFL_EXT_XLR: return bfd_mach_mips_xlr; 14104 default: return bfd_mach_mips3000; 14105 } 14106 } 14107 14108 /* Return the .MIPS.abiflags value representing each ISA Extension. */ 14109 14110 unsigned int 14111 bfd_mips_isa_ext (bfd *abfd) 14112 { 14113 switch (bfd_get_mach (abfd)) 14114 { 14115 case bfd_mach_mips3900: return AFL_EXT_3900; 14116 case bfd_mach_mips4010: return AFL_EXT_4010; 14117 case bfd_mach_mips4100: return AFL_EXT_4100; 14118 case bfd_mach_mips4111: return AFL_EXT_4111; 14119 case bfd_mach_mips4120: return AFL_EXT_4120; 14120 case bfd_mach_mips4650: return AFL_EXT_4650; 14121 case bfd_mach_mips5400: return AFL_EXT_5400; 14122 case bfd_mach_mips5500: return AFL_EXT_5500; 14123 case bfd_mach_mips5900: return AFL_EXT_5900; 14124 case bfd_mach_mips10000: return AFL_EXT_10000; 14125 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E; 14126 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F; 14127 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A; 14128 case bfd_mach_mips_sb1: return AFL_EXT_SB1; 14129 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON; 14130 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP; 14131 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3; 14132 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2; 14133 case bfd_mach_mips_xlr: return AFL_EXT_XLR; 14134 default: return 0; 14135 } 14136 } 14137 14138 /* Encode ISA level and revision as a single value. */ 14139 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV)) 14140 14141 /* Decode a single value into level and revision. */ 14142 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3) 14143 #define ISA_REV(LEVREV) ((LEVREV) & 0x7) 14144 14145 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */ 14146 14147 static void 14148 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags) 14149 { 14150 int new_isa = 0; 14151 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) 14152 { 14153 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break; 14154 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break; 14155 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break; 14156 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break; 14157 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break; 14158 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break; 14159 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break; 14160 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break; 14161 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break; 14162 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break; 14163 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break; 14164 default: 14165 (*_bfd_error_handler) 14166 (_("%B: Unknown architecture %s"), 14167 abfd, bfd_printable_name (abfd)); 14168 } 14169 14170 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev)) 14171 { 14172 abiflags->isa_level = ISA_LEVEL (new_isa); 14173 abiflags->isa_rev = ISA_REV (new_isa); 14174 } 14175 14176 /* Update the isa_ext if ABFD describes a further extension. */ 14177 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext), 14178 bfd_get_mach (abfd))) 14179 abiflags->isa_ext = bfd_mips_isa_ext (abfd); 14180 } 14181 14182 /* Return true if the given ELF header flags describe a 32-bit binary. */ 14183 14184 static bfd_boolean 14185 mips_32bit_flags_p (flagword flags) 14186 { 14187 return ((flags & EF_MIPS_32BITMODE) != 0 14188 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32 14189 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32 14190 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1 14191 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2 14192 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32 14193 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2 14194 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6); 14195 } 14196 14197 /* Infer the content of the ABI flags based on the elf header. */ 14198 14199 static void 14200 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags) 14201 { 14202 obj_attribute *in_attr; 14203 14204 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0)); 14205 update_mips_abiflags_isa (abfd, abiflags); 14206 14207 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags)) 14208 abiflags->gpr_size = AFL_REG_32; 14209 else 14210 abiflags->gpr_size = AFL_REG_64; 14211 14212 abiflags->cpr1_size = AFL_REG_NONE; 14213 14214 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU]; 14215 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i; 14216 14217 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE 14218 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX 14219 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE 14220 && abiflags->gpr_size == AFL_REG_32)) 14221 abiflags->cpr1_size = AFL_REG_32; 14222 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE 14223 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64 14224 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A) 14225 abiflags->cpr1_size = AFL_REG_64; 14226 14227 abiflags->cpr2_size = AFL_REG_NONE; 14228 14229 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX) 14230 abiflags->ases |= AFL_ASE_MDMX; 14231 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16) 14232 abiflags->ases |= AFL_ASE_MIPS16; 14233 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) 14234 abiflags->ases |= AFL_ASE_MICROMIPS; 14235 14236 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY 14237 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT 14238 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A 14239 && abiflags->isa_level >= 32 14240 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A) 14241 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG; 14242 } 14243 14244 /* We need to use a special link routine to handle the .reginfo and 14245 the .mdebug sections. We need to merge all instances of these 14246 sections together, not write them all out sequentially. */ 14247 14248 bfd_boolean 14249 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info) 14250 { 14251 asection *o; 14252 struct bfd_link_order *p; 14253 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec; 14254 asection *rtproc_sec, *abiflags_sec; 14255 Elf32_RegInfo reginfo; 14256 struct ecoff_debug_info debug; 14257 struct mips_htab_traverse_info hti; 14258 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 14259 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap; 14260 HDRR *symhdr = &debug.symbolic_header; 14261 void *mdebug_handle = NULL; 14262 asection *s; 14263 EXTR esym; 14264 unsigned int i; 14265 bfd_size_type amt; 14266 struct mips_elf_link_hash_table *htab; 14267 14268 static const char * const secname[] = 14269 { 14270 ".text", ".init", ".fini", ".data", 14271 ".rodata", ".sdata", ".sbss", ".bss" 14272 }; 14273 static const int sc[] = 14274 { 14275 scText, scInit, scFini, scData, 14276 scRData, scSData, scSBss, scBss 14277 }; 14278 14279 /* Sort the dynamic symbols so that those with GOT entries come after 14280 those without. */ 14281 htab = mips_elf_hash_table (info); 14282 BFD_ASSERT (htab != NULL); 14283 14284 if (!mips_elf_sort_hash_table (abfd, info)) 14285 return FALSE; 14286 14287 /* Create any scheduled LA25 stubs. */ 14288 hti.info = info; 14289 hti.output_bfd = abfd; 14290 hti.error = FALSE; 14291 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti); 14292 if (hti.error) 14293 return FALSE; 14294 14295 /* Get a value for the GP register. */ 14296 if (elf_gp (abfd) == 0) 14297 { 14298 struct bfd_link_hash_entry *h; 14299 14300 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE); 14301 if (h != NULL && h->type == bfd_link_hash_defined) 14302 elf_gp (abfd) = (h->u.def.value 14303 + h->u.def.section->output_section->vma 14304 + h->u.def.section->output_offset); 14305 else if (htab->is_vxworks 14306 && (h = bfd_link_hash_lookup (info->hash, 14307 "_GLOBAL_OFFSET_TABLE_", 14308 FALSE, FALSE, TRUE)) 14309 && h->type == bfd_link_hash_defined) 14310 elf_gp (abfd) = (h->u.def.section->output_section->vma 14311 + h->u.def.section->output_offset 14312 + h->u.def.value); 14313 else if (bfd_link_relocatable (info)) 14314 { 14315 bfd_vma lo = MINUS_ONE; 14316 14317 /* Find the GP-relative section with the lowest offset. */ 14318 for (o = abfd->sections; o != NULL; o = o->next) 14319 if (o->vma < lo 14320 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL)) 14321 lo = o->vma; 14322 14323 /* And calculate GP relative to that. */ 14324 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info); 14325 } 14326 else 14327 { 14328 /* If the relocate_section function needs to do a reloc 14329 involving the GP value, it should make a reloc_dangerous 14330 callback to warn that GP is not defined. */ 14331 } 14332 } 14333 14334 /* Go through the sections and collect the .reginfo and .mdebug 14335 information. */ 14336 abiflags_sec = NULL; 14337 reginfo_sec = NULL; 14338 mdebug_sec = NULL; 14339 gptab_data_sec = NULL; 14340 gptab_bss_sec = NULL; 14341 for (o = abfd->sections; o != NULL; o = o->next) 14342 { 14343 if (strcmp (o->name, ".MIPS.abiflags") == 0) 14344 { 14345 /* We have found the .MIPS.abiflags section in the output file. 14346 Look through all the link_orders comprising it and remove them. 14347 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */ 14348 for (p = o->map_head.link_order; p != NULL; p = p->next) 14349 { 14350 asection *input_section; 14351 14352 if (p->type != bfd_indirect_link_order) 14353 { 14354 if (p->type == bfd_data_link_order) 14355 continue; 14356 abort (); 14357 } 14358 14359 input_section = p->u.indirect.section; 14360 14361 /* Hack: reset the SEC_HAS_CONTENTS flag so that 14362 elf_link_input_bfd ignores this section. */ 14363 input_section->flags &= ~SEC_HAS_CONTENTS; 14364 } 14365 14366 /* Size has been set in _bfd_mips_elf_always_size_sections. */ 14367 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0)); 14368 14369 /* Skip this section later on (I don't think this currently 14370 matters, but someday it might). */ 14371 o->map_head.link_order = NULL; 14372 14373 abiflags_sec = o; 14374 } 14375 14376 if (strcmp (o->name, ".reginfo") == 0) 14377 { 14378 memset (®info, 0, sizeof reginfo); 14379 14380 /* We have found the .reginfo section in the output file. 14381 Look through all the link_orders comprising it and merge 14382 the information together. */ 14383 for (p = o->map_head.link_order; p != NULL; p = p->next) 14384 { 14385 asection *input_section; 14386 bfd *input_bfd; 14387 Elf32_External_RegInfo ext; 14388 Elf32_RegInfo sub; 14389 14390 if (p->type != bfd_indirect_link_order) 14391 { 14392 if (p->type == bfd_data_link_order) 14393 continue; 14394 abort (); 14395 } 14396 14397 input_section = p->u.indirect.section; 14398 input_bfd = input_section->owner; 14399 14400 if (! bfd_get_section_contents (input_bfd, input_section, 14401 &ext, 0, sizeof ext)) 14402 return FALSE; 14403 14404 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub); 14405 14406 reginfo.ri_gprmask |= sub.ri_gprmask; 14407 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0]; 14408 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1]; 14409 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2]; 14410 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3]; 14411 14412 /* ri_gp_value is set by the function 14413 mips_elf32_section_processing when the section is 14414 finally written out. */ 14415 14416 /* Hack: reset the SEC_HAS_CONTENTS flag so that 14417 elf_link_input_bfd ignores this section. */ 14418 input_section->flags &= ~SEC_HAS_CONTENTS; 14419 } 14420 14421 /* Size has been set in _bfd_mips_elf_always_size_sections. */ 14422 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo)); 14423 14424 /* Skip this section later on (I don't think this currently 14425 matters, but someday it might). */ 14426 o->map_head.link_order = NULL; 14427 14428 reginfo_sec = o; 14429 } 14430 14431 if (strcmp (o->name, ".mdebug") == 0) 14432 { 14433 struct extsym_info einfo; 14434 bfd_vma last; 14435 14436 /* We have found the .mdebug section in the output file. 14437 Look through all the link_orders comprising it and merge 14438 the information together. */ 14439 symhdr->magic = swap->sym_magic; 14440 /* FIXME: What should the version stamp be? */ 14441 symhdr->vstamp = 0; 14442 symhdr->ilineMax = 0; 14443 symhdr->cbLine = 0; 14444 symhdr->idnMax = 0; 14445 symhdr->ipdMax = 0; 14446 symhdr->isymMax = 0; 14447 symhdr->ioptMax = 0; 14448 symhdr->iauxMax = 0; 14449 symhdr->issMax = 0; 14450 symhdr->issExtMax = 0; 14451 symhdr->ifdMax = 0; 14452 symhdr->crfd = 0; 14453 symhdr->iextMax = 0; 14454 14455 /* We accumulate the debugging information itself in the 14456 debug_info structure. */ 14457 debug.line = NULL; 14458 debug.external_dnr = NULL; 14459 debug.external_pdr = NULL; 14460 debug.external_sym = NULL; 14461 debug.external_opt = NULL; 14462 debug.external_aux = NULL; 14463 debug.ss = NULL; 14464 debug.ssext = debug.ssext_end = NULL; 14465 debug.external_fdr = NULL; 14466 debug.external_rfd = NULL; 14467 debug.external_ext = debug.external_ext_end = NULL; 14468 14469 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info); 14470 if (mdebug_handle == NULL) 14471 return FALSE; 14472 14473 esym.jmptbl = 0; 14474 esym.cobol_main = 0; 14475 esym.weakext = 0; 14476 esym.reserved = 0; 14477 esym.ifd = ifdNil; 14478 esym.asym.iss = issNil; 14479 esym.asym.st = stLocal; 14480 esym.asym.reserved = 0; 14481 esym.asym.index = indexNil; 14482 last = 0; 14483 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++) 14484 { 14485 esym.asym.sc = sc[i]; 14486 s = bfd_get_section_by_name (abfd, secname[i]); 14487 if (s != NULL) 14488 { 14489 esym.asym.value = s->vma; 14490 last = s->vma + s->size; 14491 } 14492 else 14493 esym.asym.value = last; 14494 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap, 14495 secname[i], &esym)) 14496 return FALSE; 14497 } 14498 14499 for (p = o->map_head.link_order; p != NULL; p = p->next) 14500 { 14501 asection *input_section; 14502 bfd *input_bfd; 14503 const struct ecoff_debug_swap *input_swap; 14504 struct ecoff_debug_info input_debug; 14505 char *eraw_src; 14506 char *eraw_end; 14507 14508 if (p->type != bfd_indirect_link_order) 14509 { 14510 if (p->type == bfd_data_link_order) 14511 continue; 14512 abort (); 14513 } 14514 14515 input_section = p->u.indirect.section; 14516 input_bfd = input_section->owner; 14517 14518 if (!is_mips_elf (input_bfd)) 14519 { 14520 /* I don't know what a non MIPS ELF bfd would be 14521 doing with a .mdebug section, but I don't really 14522 want to deal with it. */ 14523 continue; 14524 } 14525 14526 input_swap = (get_elf_backend_data (input_bfd) 14527 ->elf_backend_ecoff_debug_swap); 14528 14529 BFD_ASSERT (p->size == input_section->size); 14530 14531 /* The ECOFF linking code expects that we have already 14532 read in the debugging information and set up an 14533 ecoff_debug_info structure, so we do that now. */ 14534 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section, 14535 &input_debug)) 14536 return FALSE; 14537 14538 if (! (bfd_ecoff_debug_accumulate 14539 (mdebug_handle, abfd, &debug, swap, input_bfd, 14540 &input_debug, input_swap, info))) 14541 return FALSE; 14542 14543 /* Loop through the external symbols. For each one with 14544 interesting information, try to find the symbol in 14545 the linker global hash table and save the information 14546 for the output external symbols. */ 14547 eraw_src = input_debug.external_ext; 14548 eraw_end = (eraw_src 14549 + (input_debug.symbolic_header.iextMax 14550 * input_swap->external_ext_size)); 14551 for (; 14552 eraw_src < eraw_end; 14553 eraw_src += input_swap->external_ext_size) 14554 { 14555 EXTR ext; 14556 const char *name; 14557 struct mips_elf_link_hash_entry *h; 14558 14559 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext); 14560 if (ext.asym.sc == scNil 14561 || ext.asym.sc == scUndefined 14562 || ext.asym.sc == scSUndefined) 14563 continue; 14564 14565 name = input_debug.ssext + ext.asym.iss; 14566 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info), 14567 name, FALSE, FALSE, TRUE); 14568 if (h == NULL || h->esym.ifd != -2) 14569 continue; 14570 14571 if (ext.ifd != -1) 14572 { 14573 BFD_ASSERT (ext.ifd 14574 < input_debug.symbolic_header.ifdMax); 14575 ext.ifd = input_debug.ifdmap[ext.ifd]; 14576 } 14577 14578 h->esym = ext; 14579 } 14580 14581 /* Free up the information we just read. */ 14582 free (input_debug.line); 14583 free (input_debug.external_dnr); 14584 free (input_debug.external_pdr); 14585 free (input_debug.external_sym); 14586 free (input_debug.external_opt); 14587 free (input_debug.external_aux); 14588 free (input_debug.ss); 14589 free (input_debug.ssext); 14590 free (input_debug.external_fdr); 14591 free (input_debug.external_rfd); 14592 free (input_debug.external_ext); 14593 14594 /* Hack: reset the SEC_HAS_CONTENTS flag so that 14595 elf_link_input_bfd ignores this section. */ 14596 input_section->flags &= ~SEC_HAS_CONTENTS; 14597 } 14598 14599 if (SGI_COMPAT (abfd) && bfd_link_pic (info)) 14600 { 14601 /* Create .rtproc section. */ 14602 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc"); 14603 if (rtproc_sec == NULL) 14604 { 14605 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY 14606 | SEC_LINKER_CREATED | SEC_READONLY); 14607 14608 rtproc_sec = bfd_make_section_anyway_with_flags (abfd, 14609 ".rtproc", 14610 flags); 14611 if (rtproc_sec == NULL 14612 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4)) 14613 return FALSE; 14614 } 14615 14616 if (! mips_elf_create_procedure_table (mdebug_handle, abfd, 14617 info, rtproc_sec, 14618 &debug)) 14619 return FALSE; 14620 } 14621 14622 /* Build the external symbol information. */ 14623 einfo.abfd = abfd; 14624 einfo.info = info; 14625 einfo.debug = &debug; 14626 einfo.swap = swap; 14627 einfo.failed = FALSE; 14628 mips_elf_link_hash_traverse (mips_elf_hash_table (info), 14629 mips_elf_output_extsym, &einfo); 14630 if (einfo.failed) 14631 return FALSE; 14632 14633 /* Set the size of the .mdebug section. */ 14634 o->size = bfd_ecoff_debug_size (abfd, &debug, swap); 14635 14636 /* Skip this section later on (I don't think this currently 14637 matters, but someday it might). */ 14638 o->map_head.link_order = NULL; 14639 14640 mdebug_sec = o; 14641 } 14642 14643 if (CONST_STRNEQ (o->name, ".gptab.")) 14644 { 14645 const char *subname; 14646 unsigned int c; 14647 Elf32_gptab *tab; 14648 Elf32_External_gptab *ext_tab; 14649 unsigned int j; 14650 14651 /* The .gptab.sdata and .gptab.sbss sections hold 14652 information describing how the small data area would 14653 change depending upon the -G switch. These sections 14654 not used in executables files. */ 14655 if (! bfd_link_relocatable (info)) 14656 { 14657 for (p = o->map_head.link_order; p != NULL; p = p->next) 14658 { 14659 asection *input_section; 14660 14661 if (p->type != bfd_indirect_link_order) 14662 { 14663 if (p->type == bfd_data_link_order) 14664 continue; 14665 abort (); 14666 } 14667 14668 input_section = p->u.indirect.section; 14669 14670 /* Hack: reset the SEC_HAS_CONTENTS flag so that 14671 elf_link_input_bfd ignores this section. */ 14672 input_section->flags &= ~SEC_HAS_CONTENTS; 14673 } 14674 14675 /* Skip this section later on (I don't think this 14676 currently matters, but someday it might). */ 14677 o->map_head.link_order = NULL; 14678 14679 /* Really remove the section. */ 14680 bfd_section_list_remove (abfd, o); 14681 --abfd->section_count; 14682 14683 continue; 14684 } 14685 14686 /* There is one gptab for initialized data, and one for 14687 uninitialized data. */ 14688 if (strcmp (o->name, ".gptab.sdata") == 0) 14689 gptab_data_sec = o; 14690 else if (strcmp (o->name, ".gptab.sbss") == 0) 14691 gptab_bss_sec = o; 14692 else 14693 { 14694 (*_bfd_error_handler) 14695 (_("%s: illegal section name `%s'"), 14696 bfd_get_filename (abfd), o->name); 14697 bfd_set_error (bfd_error_nonrepresentable_section); 14698 return FALSE; 14699 } 14700 14701 /* The linker script always combines .gptab.data and 14702 .gptab.sdata into .gptab.sdata, and likewise for 14703 .gptab.bss and .gptab.sbss. It is possible that there is 14704 no .sdata or .sbss section in the output file, in which 14705 case we must change the name of the output section. */ 14706 subname = o->name + sizeof ".gptab" - 1; 14707 if (bfd_get_section_by_name (abfd, subname) == NULL) 14708 { 14709 if (o == gptab_data_sec) 14710 o->name = ".gptab.data"; 14711 else 14712 o->name = ".gptab.bss"; 14713 subname = o->name + sizeof ".gptab" - 1; 14714 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL); 14715 } 14716 14717 /* Set up the first entry. */ 14718 c = 1; 14719 amt = c * sizeof (Elf32_gptab); 14720 tab = bfd_malloc (amt); 14721 if (tab == NULL) 14722 return FALSE; 14723 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd); 14724 tab[0].gt_header.gt_unused = 0; 14725 14726 /* Combine the input sections. */ 14727 for (p = o->map_head.link_order; p != NULL; p = p->next) 14728 { 14729 asection *input_section; 14730 bfd *input_bfd; 14731 bfd_size_type size; 14732 unsigned long last; 14733 bfd_size_type gpentry; 14734 14735 if (p->type != bfd_indirect_link_order) 14736 { 14737 if (p->type == bfd_data_link_order) 14738 continue; 14739 abort (); 14740 } 14741 14742 input_section = p->u.indirect.section; 14743 input_bfd = input_section->owner; 14744 14745 /* Combine the gptab entries for this input section one 14746 by one. We know that the input gptab entries are 14747 sorted by ascending -G value. */ 14748 size = input_section->size; 14749 last = 0; 14750 for (gpentry = sizeof (Elf32_External_gptab); 14751 gpentry < size; 14752 gpentry += sizeof (Elf32_External_gptab)) 14753 { 14754 Elf32_External_gptab ext_gptab; 14755 Elf32_gptab int_gptab; 14756 unsigned long val; 14757 unsigned long add; 14758 bfd_boolean exact; 14759 unsigned int look; 14760 14761 if (! (bfd_get_section_contents 14762 (input_bfd, input_section, &ext_gptab, gpentry, 14763 sizeof (Elf32_External_gptab)))) 14764 { 14765 free (tab); 14766 return FALSE; 14767 } 14768 14769 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab, 14770 &int_gptab); 14771 val = int_gptab.gt_entry.gt_g_value; 14772 add = int_gptab.gt_entry.gt_bytes - last; 14773 14774 exact = FALSE; 14775 for (look = 1; look < c; look++) 14776 { 14777 if (tab[look].gt_entry.gt_g_value >= val) 14778 tab[look].gt_entry.gt_bytes += add; 14779 14780 if (tab[look].gt_entry.gt_g_value == val) 14781 exact = TRUE; 14782 } 14783 14784 if (! exact) 14785 { 14786 Elf32_gptab *new_tab; 14787 unsigned int max; 14788 14789 /* We need a new table entry. */ 14790 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab); 14791 new_tab = bfd_realloc (tab, amt); 14792 if (new_tab == NULL) 14793 { 14794 free (tab); 14795 return FALSE; 14796 } 14797 tab = new_tab; 14798 tab[c].gt_entry.gt_g_value = val; 14799 tab[c].gt_entry.gt_bytes = add; 14800 14801 /* Merge in the size for the next smallest -G 14802 value, since that will be implied by this new 14803 value. */ 14804 max = 0; 14805 for (look = 1; look < c; look++) 14806 { 14807 if (tab[look].gt_entry.gt_g_value < val 14808 && (max == 0 14809 || (tab[look].gt_entry.gt_g_value 14810 > tab[max].gt_entry.gt_g_value))) 14811 max = look; 14812 } 14813 if (max != 0) 14814 tab[c].gt_entry.gt_bytes += 14815 tab[max].gt_entry.gt_bytes; 14816 14817 ++c; 14818 } 14819 14820 last = int_gptab.gt_entry.gt_bytes; 14821 } 14822 14823 /* Hack: reset the SEC_HAS_CONTENTS flag so that 14824 elf_link_input_bfd ignores this section. */ 14825 input_section->flags &= ~SEC_HAS_CONTENTS; 14826 } 14827 14828 /* The table must be sorted by -G value. */ 14829 if (c > 2) 14830 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare); 14831 14832 /* Swap out the table. */ 14833 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab); 14834 ext_tab = bfd_alloc (abfd, amt); 14835 if (ext_tab == NULL) 14836 { 14837 free (tab); 14838 return FALSE; 14839 } 14840 14841 for (j = 0; j < c; j++) 14842 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j); 14843 free (tab); 14844 14845 o->size = c * sizeof (Elf32_External_gptab); 14846 o->contents = (bfd_byte *) ext_tab; 14847 14848 /* Skip this section later on (I don't think this currently 14849 matters, but someday it might). */ 14850 o->map_head.link_order = NULL; 14851 } 14852 } 14853 14854 /* Invoke the regular ELF backend linker to do all the work. */ 14855 if (!bfd_elf_final_link (abfd, info)) 14856 return FALSE; 14857 14858 /* Now write out the computed sections. */ 14859 14860 if (abiflags_sec != NULL) 14861 { 14862 Elf_External_ABIFlags_v0 ext; 14863 Elf_Internal_ABIFlags_v0 *abiflags; 14864 14865 abiflags = &mips_elf_tdata (abfd)->abiflags; 14866 14867 /* Set up the abiflags if no valid input sections were found. */ 14868 if (!mips_elf_tdata (abfd)->abiflags_valid) 14869 { 14870 infer_mips_abiflags (abfd, abiflags); 14871 mips_elf_tdata (abfd)->abiflags_valid = TRUE; 14872 } 14873 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext); 14874 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext)) 14875 return FALSE; 14876 } 14877 14878 if (reginfo_sec != NULL) 14879 { 14880 Elf32_External_RegInfo ext; 14881 14882 bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext); 14883 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext)) 14884 return FALSE; 14885 } 14886 14887 if (mdebug_sec != NULL) 14888 { 14889 BFD_ASSERT (abfd->output_has_begun); 14890 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug, 14891 swap, info, 14892 mdebug_sec->filepos)) 14893 return FALSE; 14894 14895 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info); 14896 } 14897 14898 if (gptab_data_sec != NULL) 14899 { 14900 if (! bfd_set_section_contents (abfd, gptab_data_sec, 14901 gptab_data_sec->contents, 14902 0, gptab_data_sec->size)) 14903 return FALSE; 14904 } 14905 14906 if (gptab_bss_sec != NULL) 14907 { 14908 if (! bfd_set_section_contents (abfd, gptab_bss_sec, 14909 gptab_bss_sec->contents, 14910 0, gptab_bss_sec->size)) 14911 return FALSE; 14912 } 14913 14914 if (SGI_COMPAT (abfd)) 14915 { 14916 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); 14917 if (rtproc_sec != NULL) 14918 { 14919 if (! bfd_set_section_contents (abfd, rtproc_sec, 14920 rtproc_sec->contents, 14921 0, rtproc_sec->size)) 14922 return FALSE; 14923 } 14924 } 14925 14926 return TRUE; 14927 } 14928 14929 /* Merge object file header flags from IBFD into OBFD. Raise an error 14930 if there are conflicting settings. */ 14931 14932 static bfd_boolean 14933 mips_elf_merge_obj_e_flags (bfd *ibfd, bfd *obfd) 14934 { 14935 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd); 14936 flagword old_flags; 14937 flagword new_flags; 14938 bfd_boolean ok; 14939 14940 new_flags = elf_elfheader (ibfd)->e_flags; 14941 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER; 14942 old_flags = elf_elfheader (obfd)->e_flags; 14943 14944 /* Check flag compatibility. */ 14945 14946 new_flags &= ~EF_MIPS_NOREORDER; 14947 old_flags &= ~EF_MIPS_NOREORDER; 14948 14949 /* Some IRIX 6 BSD-compatibility objects have this bit set. It 14950 doesn't seem to matter. */ 14951 new_flags &= ~EF_MIPS_XGOT; 14952 old_flags &= ~EF_MIPS_XGOT; 14953 14954 /* MIPSpro generates ucode info in n64 objects. Again, we should 14955 just be able to ignore this. */ 14956 new_flags &= ~EF_MIPS_UCODE; 14957 old_flags &= ~EF_MIPS_UCODE; 14958 14959 /* DSOs should only be linked with CPIC code. */ 14960 if ((ibfd->flags & DYNAMIC) != 0) 14961 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC; 14962 14963 if (new_flags == old_flags) 14964 return TRUE; 14965 14966 ok = TRUE; 14967 14968 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0) 14969 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)) 14970 { 14971 (*_bfd_error_handler) 14972 (_("%B: warning: linking abicalls files with non-abicalls files"), 14973 ibfd); 14974 ok = TRUE; 14975 } 14976 14977 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) 14978 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC; 14979 if (! (new_flags & EF_MIPS_PIC)) 14980 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC; 14981 14982 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); 14983 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); 14984 14985 /* Compare the ISAs. */ 14986 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags)) 14987 { 14988 (*_bfd_error_handler) 14989 (_("%B: linking 32-bit code with 64-bit code"), 14990 ibfd); 14991 ok = FALSE; 14992 } 14993 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd))) 14994 { 14995 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */ 14996 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd))) 14997 { 14998 /* Copy the architecture info from IBFD to OBFD. Also copy 14999 the 32-bit flag (if set) so that we continue to recognise 15000 OBFD as a 32-bit binary. */ 15001 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd)); 15002 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); 15003 elf_elfheader (obfd)->e_flags 15004 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); 15005 15006 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */ 15007 update_mips_abiflags_isa (obfd, &out_tdata->abiflags); 15008 15009 /* Copy across the ABI flags if OBFD doesn't use them 15010 and if that was what caused us to treat IBFD as 32-bit. */ 15011 if ((old_flags & EF_MIPS_ABI) == 0 15012 && mips_32bit_flags_p (new_flags) 15013 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI)) 15014 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI; 15015 } 15016 else 15017 { 15018 /* The ISAs aren't compatible. */ 15019 (*_bfd_error_handler) 15020 (_("%B: linking %s module with previous %s modules"), 15021 ibfd, 15022 bfd_printable_name (ibfd), 15023 bfd_printable_name (obfd)); 15024 ok = FALSE; 15025 } 15026 } 15027 15028 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); 15029 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); 15030 15031 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it 15032 does set EI_CLASS differently from any 32-bit ABI. */ 15033 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI) 15034 || (elf_elfheader (ibfd)->e_ident[EI_CLASS] 15035 != elf_elfheader (obfd)->e_ident[EI_CLASS])) 15036 { 15037 /* Only error if both are set (to different values). */ 15038 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI)) 15039 || (elf_elfheader (ibfd)->e_ident[EI_CLASS] 15040 != elf_elfheader (obfd)->e_ident[EI_CLASS])) 15041 { 15042 (*_bfd_error_handler) 15043 (_("%B: ABI mismatch: linking %s module with previous %s modules"), 15044 ibfd, 15045 elf_mips_abi_name (ibfd), 15046 elf_mips_abi_name (obfd)); 15047 ok = FALSE; 15048 } 15049 new_flags &= ~EF_MIPS_ABI; 15050 old_flags &= ~EF_MIPS_ABI; 15051 } 15052 15053 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together 15054 and allow arbitrary mixing of the remaining ASEs (retain the union). */ 15055 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE)) 15056 { 15057 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS; 15058 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS; 15059 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16; 15060 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16; 15061 int micro_mis = old_m16 && new_micro; 15062 int m16_mis = old_micro && new_m16; 15063 15064 if (m16_mis || micro_mis) 15065 { 15066 (*_bfd_error_handler) 15067 (_("%B: ASE mismatch: linking %s module with previous %s modules"), 15068 ibfd, 15069 m16_mis ? "MIPS16" : "microMIPS", 15070 m16_mis ? "microMIPS" : "MIPS16"); 15071 ok = FALSE; 15072 } 15073 15074 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE; 15075 15076 new_flags &= ~ EF_MIPS_ARCH_ASE; 15077 old_flags &= ~ EF_MIPS_ARCH_ASE; 15078 } 15079 15080 /* Compare NaN encodings. */ 15081 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008)) 15082 { 15083 _bfd_error_handler (_("%B: linking %s module with previous %s modules"), 15084 ibfd, 15085 (new_flags & EF_MIPS_NAN2008 15086 ? "-mnan=2008" : "-mnan=legacy"), 15087 (old_flags & EF_MIPS_NAN2008 15088 ? "-mnan=2008" : "-mnan=legacy")); 15089 ok = FALSE; 15090 new_flags &= ~EF_MIPS_NAN2008; 15091 old_flags &= ~EF_MIPS_NAN2008; 15092 } 15093 15094 /* Compare FP64 state. */ 15095 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64)) 15096 { 15097 _bfd_error_handler (_("%B: linking %s module with previous %s modules"), 15098 ibfd, 15099 (new_flags & EF_MIPS_FP64 15100 ? "-mfp64" : "-mfp32"), 15101 (old_flags & EF_MIPS_FP64 15102 ? "-mfp64" : "-mfp32")); 15103 ok = FALSE; 15104 new_flags &= ~EF_MIPS_FP64; 15105 old_flags &= ~EF_MIPS_FP64; 15106 } 15107 15108 /* Warn about any other mismatches */ 15109 if (new_flags != old_flags) 15110 { 15111 (*_bfd_error_handler) 15112 (_("%B: uses different e_flags (0x%lx) fields than previous modules " 15113 "(0x%lx)"), 15114 ibfd, (unsigned long) new_flags, 15115 (unsigned long) old_flags); 15116 ok = FALSE; 15117 } 15118 15119 return ok; 15120 } 15121 15122 /* Merge object attributes from IBFD into OBFD. Raise an error if 15123 there are conflicting attributes. */ 15124 static bfd_boolean 15125 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd) 15126 { 15127 obj_attribute *in_attr; 15128 obj_attribute *out_attr; 15129 bfd *abi_fp_bfd; 15130 bfd *abi_msa_bfd; 15131 15132 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd; 15133 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU]; 15134 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY) 15135 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd; 15136 15137 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd; 15138 if (!abi_msa_bfd 15139 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY) 15140 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd; 15141 15142 if (!elf_known_obj_attributes_proc (obfd)[0].i) 15143 { 15144 /* This is the first object. Copy the attributes. */ 15145 _bfd_elf_copy_obj_attributes (ibfd, obfd); 15146 15147 /* Use the Tag_null value to indicate the attributes have been 15148 initialized. */ 15149 elf_known_obj_attributes_proc (obfd)[0].i = 1; 15150 15151 return TRUE; 15152 } 15153 15154 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge 15155 non-conflicting ones. */ 15156 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU]; 15157 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i) 15158 { 15159 int out_fp, in_fp; 15160 15161 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i; 15162 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i; 15163 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1; 15164 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY) 15165 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp; 15166 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX 15167 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE 15168 || in_fp == Val_GNU_MIPS_ABI_FP_64 15169 || in_fp == Val_GNU_MIPS_ABI_FP_64A)) 15170 { 15171 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd; 15172 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i; 15173 } 15174 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX 15175 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE 15176 || out_fp == Val_GNU_MIPS_ABI_FP_64 15177 || out_fp == Val_GNU_MIPS_ABI_FP_64A)) 15178 /* Keep the current setting. */; 15179 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A 15180 && in_fp == Val_GNU_MIPS_ABI_FP_64) 15181 { 15182 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd; 15183 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i; 15184 } 15185 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A 15186 && out_fp == Val_GNU_MIPS_ABI_FP_64) 15187 /* Keep the current setting. */; 15188 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY) 15189 { 15190 const char *out_string, *in_string; 15191 15192 out_string = _bfd_mips_fp_abi_string (out_fp); 15193 in_string = _bfd_mips_fp_abi_string (in_fp); 15194 /* First warn about cases involving unrecognised ABIs. */ 15195 if (!out_string && !in_string) 15196 _bfd_error_handler 15197 (_("Warning: %B uses unknown floating point ABI %d " 15198 "(set by %B), %B uses unknown floating point ABI %d"), 15199 obfd, abi_fp_bfd, ibfd, out_fp, in_fp); 15200 else if (!out_string) 15201 _bfd_error_handler 15202 (_("Warning: %B uses unknown floating point ABI %d " 15203 "(set by %B), %B uses %s"), 15204 obfd, abi_fp_bfd, ibfd, out_fp, in_string); 15205 else if (!in_string) 15206 _bfd_error_handler 15207 (_("Warning: %B uses %s (set by %B), " 15208 "%B uses unknown floating point ABI %d"), 15209 obfd, abi_fp_bfd, ibfd, out_string, in_fp); 15210 else 15211 { 15212 /* If one of the bfds is soft-float, the other must be 15213 hard-float. The exact choice of hard-float ABI isn't 15214 really relevant to the error message. */ 15215 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT) 15216 out_string = "-mhard-float"; 15217 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT) 15218 in_string = "-mhard-float"; 15219 _bfd_error_handler 15220 (_("Warning: %B uses %s (set by %B), %B uses %s"), 15221 obfd, abi_fp_bfd, ibfd, out_string, in_string); 15222 } 15223 } 15224 } 15225 15226 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge 15227 non-conflicting ones. */ 15228 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i) 15229 { 15230 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1; 15231 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY) 15232 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i; 15233 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY) 15234 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i) 15235 { 15236 case Val_GNU_MIPS_ABI_MSA_128: 15237 _bfd_error_handler 15238 (_("Warning: %B uses %s (set by %B), " 15239 "%B uses unknown MSA ABI %d"), 15240 obfd, abi_msa_bfd, ibfd, 15241 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i); 15242 break; 15243 15244 default: 15245 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i) 15246 { 15247 case Val_GNU_MIPS_ABI_MSA_128: 15248 _bfd_error_handler 15249 (_("Warning: %B uses unknown MSA ABI %d " 15250 "(set by %B), %B uses %s"), 15251 obfd, abi_msa_bfd, ibfd, 15252 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa"); 15253 break; 15254 15255 default: 15256 _bfd_error_handler 15257 (_("Warning: %B uses unknown MSA ABI %d " 15258 "(set by %B), %B uses unknown MSA ABI %d"), 15259 obfd, abi_msa_bfd, ibfd, 15260 out_attr[Tag_GNU_MIPS_ABI_MSA].i, 15261 in_attr[Tag_GNU_MIPS_ABI_MSA].i); 15262 break; 15263 } 15264 } 15265 } 15266 15267 /* Merge Tag_compatibility attributes and any common GNU ones. */ 15268 return _bfd_elf_merge_object_attributes (ibfd, obfd); 15269 } 15270 15271 /* Merge object ABI flags from IBFD into OBFD. Raise an error if 15272 there are conflicting settings. */ 15273 15274 static bfd_boolean 15275 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd) 15276 { 15277 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU]; 15278 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd); 15279 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd); 15280 15281 /* Update the output abiflags fp_abi using the computed fp_abi. */ 15282 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i; 15283 15284 #define max(a, b) ((a) > (b) ? (a) : (b)) 15285 /* Merge abiflags. */ 15286 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level, 15287 in_tdata->abiflags.isa_level); 15288 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev, 15289 in_tdata->abiflags.isa_rev); 15290 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size, 15291 in_tdata->abiflags.gpr_size); 15292 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size, 15293 in_tdata->abiflags.cpr1_size); 15294 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size, 15295 in_tdata->abiflags.cpr2_size); 15296 #undef max 15297 out_tdata->abiflags.ases |= in_tdata->abiflags.ases; 15298 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1; 15299 15300 return TRUE; 15301 } 15302 15303 /* Merge backend specific data from an object file to the output 15304 object file when linking. */ 15305 15306 bfd_boolean 15307 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd) 15308 { 15309 struct mips_elf_obj_tdata *out_tdata; 15310 struct mips_elf_obj_tdata *in_tdata; 15311 bfd_boolean null_input_bfd = TRUE; 15312 asection *sec; 15313 bfd_boolean ok; 15314 15315 /* Check if we have the same endianness. */ 15316 if (! _bfd_generic_verify_endian_match (ibfd, obfd)) 15317 { 15318 (*_bfd_error_handler) 15319 (_("%B: endianness incompatible with that of the selected emulation"), 15320 ibfd); 15321 return FALSE; 15322 } 15323 15324 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd)) 15325 return TRUE; 15326 15327 in_tdata = mips_elf_tdata (ibfd); 15328 out_tdata = mips_elf_tdata (obfd); 15329 15330 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0) 15331 { 15332 (*_bfd_error_handler) 15333 (_("%B: ABI is incompatible with that of the selected emulation"), 15334 ibfd); 15335 return FALSE; 15336 } 15337 15338 /* Check to see if the input BFD actually contains any sections. If not, 15339 then it has no attributes, and its flags may not have been initialized 15340 either, but it cannot actually cause any incompatibility. */ 15341 for (sec = ibfd->sections; sec != NULL; sec = sec->next) 15342 { 15343 /* Ignore synthetic sections and empty .text, .data and .bss sections 15344 which are automatically generated by gas. Also ignore fake 15345 (s)common sections, since merely defining a common symbol does 15346 not affect compatibility. */ 15347 if ((sec->flags & SEC_IS_COMMON) == 0 15348 && strcmp (sec->name, ".reginfo") 15349 && strcmp (sec->name, ".mdebug") 15350 && (sec->size != 0 15351 || (strcmp (sec->name, ".text") 15352 && strcmp (sec->name, ".data") 15353 && strcmp (sec->name, ".bss")))) 15354 { 15355 null_input_bfd = FALSE; 15356 break; 15357 } 15358 } 15359 if (null_input_bfd) 15360 return TRUE; 15361 15362 /* Populate abiflags using existing information. */ 15363 if (in_tdata->abiflags_valid) 15364 { 15365 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU]; 15366 Elf_Internal_ABIFlags_v0 in_abiflags; 15367 Elf_Internal_ABIFlags_v0 abiflags; 15368 15369 /* Set up the FP ABI attribute from the abiflags if it is not already 15370 set. */ 15371 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY) 15372 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi; 15373 15374 infer_mips_abiflags (ibfd, &abiflags); 15375 in_abiflags = in_tdata->abiflags; 15376 15377 /* It is not possible to infer the correct ISA revision 15378 for R3 or R5 so drop down to R2 for the checks. */ 15379 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5) 15380 in_abiflags.isa_rev = 2; 15381 15382 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev) 15383 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev)) 15384 (*_bfd_error_handler) 15385 (_("%B: warning: Inconsistent ISA between e_flags and " 15386 ".MIPS.abiflags"), ibfd); 15387 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY 15388 && in_abiflags.fp_abi != abiflags.fp_abi) 15389 (*_bfd_error_handler) 15390 (_("%B: warning: Inconsistent FP ABI between .gnu.attributes and " 15391 ".MIPS.abiflags"), ibfd); 15392 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases) 15393 (*_bfd_error_handler) 15394 (_("%B: warning: Inconsistent ASEs between e_flags and " 15395 ".MIPS.abiflags"), ibfd); 15396 /* The isa_ext is allowed to be an extension of what can be inferred 15397 from e_flags. */ 15398 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext), 15399 bfd_mips_isa_ext_mach (in_abiflags.isa_ext))) 15400 (*_bfd_error_handler) 15401 (_("%B: warning: Inconsistent ISA extensions between e_flags and " 15402 ".MIPS.abiflags"), ibfd); 15403 if (in_abiflags.flags2 != 0) 15404 (*_bfd_error_handler) 15405 (_("%B: warning: Unexpected flag in the flags2 field of " 15406 ".MIPS.abiflags (0x%lx)"), ibfd, 15407 (unsigned long) in_abiflags.flags2); 15408 } 15409 else 15410 { 15411 infer_mips_abiflags (ibfd, &in_tdata->abiflags); 15412 in_tdata->abiflags_valid = TRUE; 15413 } 15414 15415 if (!out_tdata->abiflags_valid) 15416 { 15417 /* Copy input abiflags if output abiflags are not already valid. */ 15418 out_tdata->abiflags = in_tdata->abiflags; 15419 out_tdata->abiflags_valid = TRUE; 15420 } 15421 15422 if (! elf_flags_init (obfd)) 15423 { 15424 elf_flags_init (obfd) = TRUE; 15425 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags; 15426 elf_elfheader (obfd)->e_ident[EI_CLASS] 15427 = elf_elfheader (ibfd)->e_ident[EI_CLASS]; 15428 15429 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) 15430 && (bfd_get_arch_info (obfd)->the_default 15431 || mips_mach_extends_p (bfd_get_mach (obfd), 15432 bfd_get_mach (ibfd)))) 15433 { 15434 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), 15435 bfd_get_mach (ibfd))) 15436 return FALSE; 15437 15438 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */ 15439 update_mips_abiflags_isa (obfd, &out_tdata->abiflags); 15440 } 15441 15442 ok = TRUE; 15443 } 15444 else 15445 ok = mips_elf_merge_obj_e_flags (ibfd, obfd); 15446 15447 ok = mips_elf_merge_obj_attributes (ibfd, obfd) && ok; 15448 15449 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok; 15450 15451 if (!ok) 15452 { 15453 bfd_set_error (bfd_error_bad_value); 15454 return FALSE; 15455 } 15456 15457 return TRUE; 15458 } 15459 15460 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */ 15461 15462 bfd_boolean 15463 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags) 15464 { 15465 BFD_ASSERT (!elf_flags_init (abfd) 15466 || elf_elfheader (abfd)->e_flags == flags); 15467 15468 elf_elfheader (abfd)->e_flags = flags; 15469 elf_flags_init (abfd) = TRUE; 15470 return TRUE; 15471 } 15472 15473 char * 15474 _bfd_mips_elf_get_target_dtag (bfd_vma dtag) 15475 { 15476 switch (dtag) 15477 { 15478 default: return ""; 15479 case DT_MIPS_RLD_VERSION: 15480 return "MIPS_RLD_VERSION"; 15481 case DT_MIPS_TIME_STAMP: 15482 return "MIPS_TIME_STAMP"; 15483 case DT_MIPS_ICHECKSUM: 15484 return "MIPS_ICHECKSUM"; 15485 case DT_MIPS_IVERSION: 15486 return "MIPS_IVERSION"; 15487 case DT_MIPS_FLAGS: 15488 return "MIPS_FLAGS"; 15489 case DT_MIPS_BASE_ADDRESS: 15490 return "MIPS_BASE_ADDRESS"; 15491 case DT_MIPS_MSYM: 15492 return "MIPS_MSYM"; 15493 case DT_MIPS_CONFLICT: 15494 return "MIPS_CONFLICT"; 15495 case DT_MIPS_LIBLIST: 15496 return "MIPS_LIBLIST"; 15497 case DT_MIPS_LOCAL_GOTNO: 15498 return "MIPS_LOCAL_GOTNO"; 15499 case DT_MIPS_CONFLICTNO: 15500 return "MIPS_CONFLICTNO"; 15501 case DT_MIPS_LIBLISTNO: 15502 return "MIPS_LIBLISTNO"; 15503 case DT_MIPS_SYMTABNO: 15504 return "MIPS_SYMTABNO"; 15505 case DT_MIPS_UNREFEXTNO: 15506 return "MIPS_UNREFEXTNO"; 15507 case DT_MIPS_GOTSYM: 15508 return "MIPS_GOTSYM"; 15509 case DT_MIPS_HIPAGENO: 15510 return "MIPS_HIPAGENO"; 15511 case DT_MIPS_RLD_MAP: 15512 return "MIPS_RLD_MAP"; 15513 case DT_MIPS_RLD_MAP_REL: 15514 return "MIPS_RLD_MAP_REL"; 15515 case DT_MIPS_DELTA_CLASS: 15516 return "MIPS_DELTA_CLASS"; 15517 case DT_MIPS_DELTA_CLASS_NO: 15518 return "MIPS_DELTA_CLASS_NO"; 15519 case DT_MIPS_DELTA_INSTANCE: 15520 return "MIPS_DELTA_INSTANCE"; 15521 case DT_MIPS_DELTA_INSTANCE_NO: 15522 return "MIPS_DELTA_INSTANCE_NO"; 15523 case DT_MIPS_DELTA_RELOC: 15524 return "MIPS_DELTA_RELOC"; 15525 case DT_MIPS_DELTA_RELOC_NO: 15526 return "MIPS_DELTA_RELOC_NO"; 15527 case DT_MIPS_DELTA_SYM: 15528 return "MIPS_DELTA_SYM"; 15529 case DT_MIPS_DELTA_SYM_NO: 15530 return "MIPS_DELTA_SYM_NO"; 15531 case DT_MIPS_DELTA_CLASSSYM: 15532 return "MIPS_DELTA_CLASSSYM"; 15533 case DT_MIPS_DELTA_CLASSSYM_NO: 15534 return "MIPS_DELTA_CLASSSYM_NO"; 15535 case DT_MIPS_CXX_FLAGS: 15536 return "MIPS_CXX_FLAGS"; 15537 case DT_MIPS_PIXIE_INIT: 15538 return "MIPS_PIXIE_INIT"; 15539 case DT_MIPS_SYMBOL_LIB: 15540 return "MIPS_SYMBOL_LIB"; 15541 case DT_MIPS_LOCALPAGE_GOTIDX: 15542 return "MIPS_LOCALPAGE_GOTIDX"; 15543 case DT_MIPS_LOCAL_GOTIDX: 15544 return "MIPS_LOCAL_GOTIDX"; 15545 case DT_MIPS_HIDDEN_GOTIDX: 15546 return "MIPS_HIDDEN_GOTIDX"; 15547 case DT_MIPS_PROTECTED_GOTIDX: 15548 return "MIPS_PROTECTED_GOT_IDX"; 15549 case DT_MIPS_OPTIONS: 15550 return "MIPS_OPTIONS"; 15551 case DT_MIPS_INTERFACE: 15552 return "MIPS_INTERFACE"; 15553 case DT_MIPS_DYNSTR_ALIGN: 15554 return "DT_MIPS_DYNSTR_ALIGN"; 15555 case DT_MIPS_INTERFACE_SIZE: 15556 return "DT_MIPS_INTERFACE_SIZE"; 15557 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: 15558 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR"; 15559 case DT_MIPS_PERF_SUFFIX: 15560 return "DT_MIPS_PERF_SUFFIX"; 15561 case DT_MIPS_COMPACT_SIZE: 15562 return "DT_MIPS_COMPACT_SIZE"; 15563 case DT_MIPS_GP_VALUE: 15564 return "DT_MIPS_GP_VALUE"; 15565 case DT_MIPS_AUX_DYNAMIC: 15566 return "DT_MIPS_AUX_DYNAMIC"; 15567 case DT_MIPS_PLTGOT: 15568 return "DT_MIPS_PLTGOT"; 15569 case DT_MIPS_RWPLT: 15570 return "DT_MIPS_RWPLT"; 15571 } 15572 } 15573 15574 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if 15575 not known. */ 15576 15577 const char * 15578 _bfd_mips_fp_abi_string (int fp) 15579 { 15580 switch (fp) 15581 { 15582 /* These strings aren't translated because they're simply 15583 option lists. */ 15584 case Val_GNU_MIPS_ABI_FP_DOUBLE: 15585 return "-mdouble-float"; 15586 15587 case Val_GNU_MIPS_ABI_FP_SINGLE: 15588 return "-msingle-float"; 15589 15590 case Val_GNU_MIPS_ABI_FP_SOFT: 15591 return "-msoft-float"; 15592 15593 case Val_GNU_MIPS_ABI_FP_OLD_64: 15594 return _("-mips32r2 -mfp64 (12 callee-saved)"); 15595 15596 case Val_GNU_MIPS_ABI_FP_XX: 15597 return "-mfpxx"; 15598 15599 case Val_GNU_MIPS_ABI_FP_64: 15600 return "-mgp32 -mfp64"; 15601 15602 case Val_GNU_MIPS_ABI_FP_64A: 15603 return "-mgp32 -mfp64 -mno-odd-spreg"; 15604 15605 default: 15606 return 0; 15607 } 15608 } 15609 15610 static void 15611 print_mips_ases (FILE *file, unsigned int mask) 15612 { 15613 if (mask & AFL_ASE_DSP) 15614 fputs ("\n\tDSP ASE", file); 15615 if (mask & AFL_ASE_DSPR2) 15616 fputs ("\n\tDSP R2 ASE", file); 15617 if (mask & AFL_ASE_DSPR3) 15618 fputs ("\n\tDSP R3 ASE", file); 15619 if (mask & AFL_ASE_EVA) 15620 fputs ("\n\tEnhanced VA Scheme", file); 15621 if (mask & AFL_ASE_MCU) 15622 fputs ("\n\tMCU (MicroController) ASE", file); 15623 if (mask & AFL_ASE_MDMX) 15624 fputs ("\n\tMDMX ASE", file); 15625 if (mask & AFL_ASE_MIPS3D) 15626 fputs ("\n\tMIPS-3D ASE", file); 15627 if (mask & AFL_ASE_MT) 15628 fputs ("\n\tMT ASE", file); 15629 if (mask & AFL_ASE_SMARTMIPS) 15630 fputs ("\n\tSmartMIPS ASE", file); 15631 if (mask & AFL_ASE_VIRT) 15632 fputs ("\n\tVZ ASE", file); 15633 if (mask & AFL_ASE_MSA) 15634 fputs ("\n\tMSA ASE", file); 15635 if (mask & AFL_ASE_MIPS16) 15636 fputs ("\n\tMIPS16 ASE", file); 15637 if (mask & AFL_ASE_MICROMIPS) 15638 fputs ("\n\tMICROMIPS ASE", file); 15639 if (mask & AFL_ASE_XPA) 15640 fputs ("\n\tXPA ASE", file); 15641 if (mask == 0) 15642 fprintf (file, "\n\t%s", _("None")); 15643 else if ((mask & ~AFL_ASE_MASK) != 0) 15644 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK); 15645 } 15646 15647 static void 15648 print_mips_isa_ext (FILE *file, unsigned int isa_ext) 15649 { 15650 switch (isa_ext) 15651 { 15652 case 0: 15653 fputs (_("None"), file); 15654 break; 15655 case AFL_EXT_XLR: 15656 fputs ("RMI XLR", file); 15657 break; 15658 case AFL_EXT_OCTEON3: 15659 fputs ("Cavium Networks Octeon3", file); 15660 break; 15661 case AFL_EXT_OCTEON2: 15662 fputs ("Cavium Networks Octeon2", file); 15663 break; 15664 case AFL_EXT_OCTEONP: 15665 fputs ("Cavium Networks OcteonP", file); 15666 break; 15667 case AFL_EXT_LOONGSON_3A: 15668 fputs ("Loongson 3A", file); 15669 break; 15670 case AFL_EXT_OCTEON: 15671 fputs ("Cavium Networks Octeon", file); 15672 break; 15673 case AFL_EXT_5900: 15674 fputs ("Toshiba R5900", file); 15675 break; 15676 case AFL_EXT_4650: 15677 fputs ("MIPS R4650", file); 15678 break; 15679 case AFL_EXT_4010: 15680 fputs ("LSI R4010", file); 15681 break; 15682 case AFL_EXT_4100: 15683 fputs ("NEC VR4100", file); 15684 break; 15685 case AFL_EXT_3900: 15686 fputs ("Toshiba R3900", file); 15687 break; 15688 case AFL_EXT_10000: 15689 fputs ("MIPS R10000", file); 15690 break; 15691 case AFL_EXT_SB1: 15692 fputs ("Broadcom SB-1", file); 15693 break; 15694 case AFL_EXT_4111: 15695 fputs ("NEC VR4111/VR4181", file); 15696 break; 15697 case AFL_EXT_4120: 15698 fputs ("NEC VR4120", file); 15699 break; 15700 case AFL_EXT_5400: 15701 fputs ("NEC VR5400", file); 15702 break; 15703 case AFL_EXT_5500: 15704 fputs ("NEC VR5500", file); 15705 break; 15706 case AFL_EXT_LOONGSON_2E: 15707 fputs ("ST Microelectronics Loongson 2E", file); 15708 break; 15709 case AFL_EXT_LOONGSON_2F: 15710 fputs ("ST Microelectronics Loongson 2F", file); 15711 break; 15712 default: 15713 fprintf (file, "%s (%d)", _("Unknown"), isa_ext); 15714 break; 15715 } 15716 } 15717 15718 static void 15719 print_mips_fp_abi_value (FILE *file, int val) 15720 { 15721 switch (val) 15722 { 15723 case Val_GNU_MIPS_ABI_FP_ANY: 15724 fprintf (file, _("Hard or soft float\n")); 15725 break; 15726 case Val_GNU_MIPS_ABI_FP_DOUBLE: 15727 fprintf (file, _("Hard float (double precision)\n")); 15728 break; 15729 case Val_GNU_MIPS_ABI_FP_SINGLE: 15730 fprintf (file, _("Hard float (single precision)\n")); 15731 break; 15732 case Val_GNU_MIPS_ABI_FP_SOFT: 15733 fprintf (file, _("Soft float\n")); 15734 break; 15735 case Val_GNU_MIPS_ABI_FP_OLD_64: 15736 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n")); 15737 break; 15738 case Val_GNU_MIPS_ABI_FP_XX: 15739 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n")); 15740 break; 15741 case Val_GNU_MIPS_ABI_FP_64: 15742 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n")); 15743 break; 15744 case Val_GNU_MIPS_ABI_FP_64A: 15745 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n")); 15746 break; 15747 default: 15748 fprintf (file, "??? (%d)\n", val); 15749 break; 15750 } 15751 } 15752 15753 static int 15754 get_mips_reg_size (int reg_size) 15755 { 15756 return (reg_size == AFL_REG_NONE) ? 0 15757 : (reg_size == AFL_REG_32) ? 32 15758 : (reg_size == AFL_REG_64) ? 64 15759 : (reg_size == AFL_REG_128) ? 128 15760 : -1; 15761 } 15762 15763 bfd_boolean 15764 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr) 15765 { 15766 FILE *file = ptr; 15767 15768 BFD_ASSERT (abfd != NULL && ptr != NULL); 15769 15770 /* Print normal ELF private data. */ 15771 _bfd_elf_print_private_bfd_data (abfd, ptr); 15772 15773 /* xgettext:c-format */ 15774 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); 15775 15776 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32) 15777 fprintf (file, _(" [abi=O32]")); 15778 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64) 15779 fprintf (file, _(" [abi=O64]")); 15780 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32) 15781 fprintf (file, _(" [abi=EABI32]")); 15782 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) 15783 fprintf (file, _(" [abi=EABI64]")); 15784 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI)) 15785 fprintf (file, _(" [abi unknown]")); 15786 else if (ABI_N32_P (abfd)) 15787 fprintf (file, _(" [abi=N32]")); 15788 else if (ABI_64_P (abfd)) 15789 fprintf (file, _(" [abi=64]")); 15790 else 15791 fprintf (file, _(" [no abi set]")); 15792 15793 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1) 15794 fprintf (file, " [mips1]"); 15795 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2) 15796 fprintf (file, " [mips2]"); 15797 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3) 15798 fprintf (file, " [mips3]"); 15799 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4) 15800 fprintf (file, " [mips4]"); 15801 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5) 15802 fprintf (file, " [mips5]"); 15803 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32) 15804 fprintf (file, " [mips32]"); 15805 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64) 15806 fprintf (file, " [mips64]"); 15807 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2) 15808 fprintf (file, " [mips32r2]"); 15809 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2) 15810 fprintf (file, " [mips64r2]"); 15811 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6) 15812 fprintf (file, " [mips32r6]"); 15813 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6) 15814 fprintf (file, " [mips64r6]"); 15815 else 15816 fprintf (file, _(" [unknown ISA]")); 15817 15818 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX) 15819 fprintf (file, " [mdmx]"); 15820 15821 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16) 15822 fprintf (file, " [mips16]"); 15823 15824 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) 15825 fprintf (file, " [micromips]"); 15826 15827 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008) 15828 fprintf (file, " [nan2008]"); 15829 15830 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64) 15831 fprintf (file, " [old fp64]"); 15832 15833 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE) 15834 fprintf (file, " [32bitmode]"); 15835 else 15836 fprintf (file, _(" [not 32bitmode]")); 15837 15838 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER) 15839 fprintf (file, " [noreorder]"); 15840 15841 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) 15842 fprintf (file, " [PIC]"); 15843 15844 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC) 15845 fprintf (file, " [CPIC]"); 15846 15847 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT) 15848 fprintf (file, " [XGOT]"); 15849 15850 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE) 15851 fprintf (file, " [UCODE]"); 15852 15853 fputc ('\n', file); 15854 15855 if (mips_elf_tdata (abfd)->abiflags_valid) 15856 { 15857 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags; 15858 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version); 15859 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level); 15860 if (abiflags->isa_rev > 1) 15861 fprintf (file, "r%d", abiflags->isa_rev); 15862 fprintf (file, "\nGPR size: %d", 15863 get_mips_reg_size (abiflags->gpr_size)); 15864 fprintf (file, "\nCPR1 size: %d", 15865 get_mips_reg_size (abiflags->cpr1_size)); 15866 fprintf (file, "\nCPR2 size: %d", 15867 get_mips_reg_size (abiflags->cpr2_size)); 15868 fputs ("\nFP ABI: ", file); 15869 print_mips_fp_abi_value (file, abiflags->fp_abi); 15870 fputs ("ISA Extension: ", file); 15871 print_mips_isa_ext (file, abiflags->isa_ext); 15872 fputs ("\nASEs:", file); 15873 print_mips_ases (file, abiflags->ases); 15874 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1); 15875 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2); 15876 fputc ('\n', file); 15877 } 15878 15879 return TRUE; 15880 } 15881 15882 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] = 15883 { 15884 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, 15885 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, 15886 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 }, 15887 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, 15888 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, 15889 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 }, 15890 { NULL, 0, 0, 0, 0 } 15891 }; 15892 15893 /* Merge non visibility st_other attributes. Ensure that the 15894 STO_OPTIONAL flag is copied into h->other, even if this is not a 15895 definiton of the symbol. */ 15896 void 15897 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h, 15898 const Elf_Internal_Sym *isym, 15899 bfd_boolean definition, 15900 bfd_boolean dynamic ATTRIBUTE_UNUSED) 15901 { 15902 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0) 15903 { 15904 unsigned char other; 15905 15906 other = (definition ? isym->st_other : h->other); 15907 other &= ~ELF_ST_VISIBILITY (-1); 15908 h->other = other | ELF_ST_VISIBILITY (h->other); 15909 } 15910 15911 if (!definition 15912 && ELF_MIPS_IS_OPTIONAL (isym->st_other)) 15913 h->other |= STO_OPTIONAL; 15914 } 15915 15916 /* Decide whether an undefined symbol is special and can be ignored. 15917 This is the case for OPTIONAL symbols on IRIX. */ 15918 bfd_boolean 15919 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h) 15920 { 15921 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE; 15922 } 15923 15924 bfd_boolean 15925 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym) 15926 { 15927 return (sym->st_shndx == SHN_COMMON 15928 || sym->st_shndx == SHN_MIPS_ACOMMON 15929 || sym->st_shndx == SHN_MIPS_SCOMMON); 15930 } 15931 15932 /* Return address for Ith PLT stub in section PLT, for relocation REL 15933 or (bfd_vma) -1 if it should not be included. */ 15934 15935 bfd_vma 15936 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt, 15937 const arelent *rel ATTRIBUTE_UNUSED) 15938 { 15939 return (plt->vma 15940 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry) 15941 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry)); 15942 } 15943 15944 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16 15945 and microMIPS PLT slots we may have a many-to-one mapping between .plt 15946 and .got.plt and also the slots may be of a different size each we walk 15947 the PLT manually fetching instructions and matching them against known 15948 patterns. To make things easier standard MIPS slots, if any, always come 15949 first. As we don't create proper ELF symbols we use the UDATA.I member 15950 of ASYMBOL to carry ISA annotation. The encoding used is the same as 15951 with the ST_OTHER member of the ELF symbol. */ 15952 15953 long 15954 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd, 15955 long symcount ATTRIBUTE_UNUSED, 15956 asymbol **syms ATTRIBUTE_UNUSED, 15957 long dynsymcount, asymbol **dynsyms, 15958 asymbol **ret) 15959 { 15960 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_"; 15961 static const char microsuffix[] = "@micromipsplt"; 15962 static const char m16suffix[] = "@mips16plt"; 15963 static const char mipssuffix[] = "@plt"; 15964 15965 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean); 15966 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 15967 bfd_boolean micromips_p = MICROMIPS_P (abfd); 15968 Elf_Internal_Shdr *hdr; 15969 bfd_byte *plt_data; 15970 bfd_vma plt_offset; 15971 unsigned int other; 15972 bfd_vma entry_size; 15973 bfd_vma plt0_size; 15974 asection *relplt; 15975 bfd_vma opcode; 15976 asection *plt; 15977 asymbol *send; 15978 size_t size; 15979 char *names; 15980 long counti; 15981 arelent *p; 15982 asymbol *s; 15983 char *nend; 15984 long count; 15985 long pi; 15986 long i; 15987 long n; 15988 15989 *ret = NULL; 15990 15991 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0) 15992 return 0; 15993 15994 relplt = bfd_get_section_by_name (abfd, ".rel.plt"); 15995 if (relplt == NULL) 15996 return 0; 15997 15998 hdr = &elf_section_data (relplt)->this_hdr; 15999 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL) 16000 return 0; 16001 16002 plt = bfd_get_section_by_name (abfd, ".plt"); 16003 if (plt == NULL) 16004 return 0; 16005 16006 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table; 16007 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE)) 16008 return -1; 16009 p = relplt->relocation; 16010 16011 /* Calculating the exact amount of space required for symbols would 16012 require two passes over the PLT, so just pessimise assuming two 16013 PLT slots per relocation. */ 16014 count = relplt->size / hdr->sh_entsize; 16015 counti = count * bed->s->int_rels_per_ext_rel; 16016 size = 2 * count * sizeof (asymbol); 16017 size += count * (sizeof (mipssuffix) + 16018 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix))); 16019 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel) 16020 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name); 16021 16022 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */ 16023 size += sizeof (asymbol) + sizeof (pltname); 16024 16025 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data)) 16026 return -1; 16027 16028 if (plt->size < 16) 16029 return -1; 16030 16031 s = *ret = bfd_malloc (size); 16032 if (s == NULL) 16033 return -1; 16034 send = s + 2 * count + 1; 16035 16036 names = (char *) send; 16037 nend = (char *) s + size; 16038 n = 0; 16039 16040 opcode = bfd_get_micromips_32 (abfd, plt_data + 12); 16041 if (opcode == 0x3302fffe) 16042 { 16043 if (!micromips_p) 16044 return -1; 16045 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry); 16046 other = STO_MICROMIPS; 16047 } 16048 else if (opcode == 0x0398c1d0) 16049 { 16050 if (!micromips_p) 16051 return -1; 16052 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); 16053 other = STO_MICROMIPS; 16054 } 16055 else 16056 { 16057 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry); 16058 other = 0; 16059 } 16060 16061 s->the_bfd = abfd; 16062 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL; 16063 s->section = plt; 16064 s->value = 0; 16065 s->name = names; 16066 s->udata.i = other; 16067 memcpy (names, pltname, sizeof (pltname)); 16068 names += sizeof (pltname); 16069 ++s, ++n; 16070 16071 pi = 0; 16072 for (plt_offset = plt0_size; 16073 plt_offset + 8 <= plt->size && s < send; 16074 plt_offset += entry_size) 16075 { 16076 bfd_vma gotplt_addr; 16077 const char *suffix; 16078 bfd_vma gotplt_hi; 16079 bfd_vma gotplt_lo; 16080 size_t suffixlen; 16081 16082 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4); 16083 16084 /* Check if the second word matches the expected MIPS16 instruction. */ 16085 if (opcode == 0x651aeb00) 16086 { 16087 if (micromips_p) 16088 return -1; 16089 /* Truncated table??? */ 16090 if (plt_offset + 16 > plt->size) 16091 break; 16092 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12); 16093 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry); 16094 suffixlen = sizeof (m16suffix); 16095 suffix = m16suffix; 16096 other = STO_MIPS16; 16097 } 16098 /* Likewise the expected microMIPS instruction (no insn32 mode). */ 16099 else if (opcode == 0xff220000) 16100 { 16101 if (!micromips_p) 16102 return -1; 16103 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f; 16104 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff; 16105 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18; 16106 gotplt_lo <<= 2; 16107 gotplt_addr = gotplt_hi + gotplt_lo; 16108 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3; 16109 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry); 16110 suffixlen = sizeof (microsuffix); 16111 suffix = microsuffix; 16112 other = STO_MICROMIPS; 16113 } 16114 /* Likewise the expected microMIPS instruction (insn32 mode). */ 16115 else if ((opcode & 0xffff0000) == 0xff2f0000) 16116 { 16117 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff; 16118 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff; 16119 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16; 16120 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000; 16121 gotplt_addr = gotplt_hi + gotplt_lo; 16122 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry); 16123 suffixlen = sizeof (microsuffix); 16124 suffix = microsuffix; 16125 other = STO_MICROMIPS; 16126 } 16127 /* Otherwise assume standard MIPS code. */ 16128 else 16129 { 16130 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff; 16131 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff; 16132 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16; 16133 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000; 16134 gotplt_addr = gotplt_hi + gotplt_lo; 16135 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry); 16136 suffixlen = sizeof (mipssuffix); 16137 suffix = mipssuffix; 16138 other = 0; 16139 } 16140 /* Truncated table??? */ 16141 if (plt_offset + entry_size > plt->size) 16142 break; 16143 16144 for (i = 0; 16145 i < count && p[pi].address != gotplt_addr; 16146 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti); 16147 16148 if (i < count) 16149 { 16150 size_t namelen; 16151 size_t len; 16152 16153 *s = **p[pi].sym_ptr_ptr; 16154 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since 16155 we are defining a symbol, ensure one of them is set. */ 16156 if ((s->flags & BSF_LOCAL) == 0) 16157 s->flags |= BSF_GLOBAL; 16158 s->flags |= BSF_SYNTHETIC; 16159 s->section = plt; 16160 s->value = plt_offset; 16161 s->name = names; 16162 s->udata.i = other; 16163 16164 len = strlen ((*p[pi].sym_ptr_ptr)->name); 16165 namelen = len + suffixlen; 16166 if (names + namelen > nend) 16167 break; 16168 16169 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len); 16170 names += len; 16171 memcpy (names, suffix, suffixlen); 16172 names += suffixlen; 16173 16174 ++s, ++n; 16175 pi = (pi + bed->s->int_rels_per_ext_rel) % counti; 16176 } 16177 } 16178 16179 free (plt_data); 16180 16181 return n; 16182 } 16183 16184 void 16185 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info) 16186 { 16187 struct mips_elf_link_hash_table *htab; 16188 Elf_Internal_Ehdr *i_ehdrp; 16189 16190 i_ehdrp = elf_elfheader (abfd); 16191 if (link_info) 16192 { 16193 htab = mips_elf_hash_table (link_info); 16194 BFD_ASSERT (htab != NULL); 16195 16196 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks) 16197 i_ehdrp->e_ident[EI_ABIVERSION] = 1; 16198 } 16199 16200 _bfd_elf_post_process_headers (abfd, link_info); 16201 16202 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64 16203 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A) 16204 i_ehdrp->e_ident[EI_ABIVERSION] = 3; 16205 16206 if (elf_stack_flags (abfd) && !(elf_stack_flags (abfd) & PF_X)) 16207 i_ehdrp->e_ident[EI_ABIVERSION] = 5; 16208 } 16209 16210 int 16211 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED) 16212 { 16213 return DW_EH_PE_pcrel | DW_EH_PE_sdata4; 16214 } 16215 16216 /* Return the opcode for can't unwind. */ 16217 16218 int 16219 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED) 16220 { 16221 return COMPACT_EH_CANT_UNWIND_OPCODE; 16222 } 16223