xref: /netbsd-src/external/gpl3/binutils/dist/bfd/elfxx-mips.c (revision 212397c69a103ae7e5eafa8731ddfae671d2dee7)
1 /* MIPS-specific support for ELF
2    Copyright (C) 1993-2015 Free Software Foundation, Inc.
3 
4    Most of the information added by Ian Lance Taylor, Cygnus Support,
5    <ian@cygnus.com>.
6    N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7    <mark@codesourcery.com>
8    Traditional MIPS targets support added by Koundinya.K, Dansk Data
9    Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10 
11    This file is part of BFD, the Binary File Descriptor library.
12 
13    This program is free software; you can redistribute it and/or modify
14    it under the terms of the GNU General Public License as published by
15    the Free Software Foundation; either version 3 of the License, or
16    (at your option) any later version.
17 
18    This program is distributed in the hope that it will be useful,
19    but WITHOUT ANY WARRANTY; without even the implied warranty of
20    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21    GNU General Public License for more details.
22 
23    You should have received a copy of the GNU General Public License
24    along with this program; if not, write to the Free Software
25    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26    MA 02110-1301, USA.  */
27 
28 
29 /* This file handles functionality common to the different MIPS ABI's.  */
30 
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40 
41 /* Get the ECOFF swapping routines.  */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46 
47 #include "hashtab.h"
48 
49 /* Types of TLS GOT entry.  */
50 enum mips_got_tls_type {
51   GOT_TLS_NONE,
52   GOT_TLS_GD,
53   GOT_TLS_LDM,
54   GOT_TLS_IE
55 };
56 
57 /* This structure is used to hold information about one GOT entry.
58    There are four types of entry:
59 
60       (1) an absolute address
61 	    requires: abfd == NULL
62 	    fields: d.address
63 
64       (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 	    requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 	    fields: abfd, symndx, d.addend, tls_type
67 
68       (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 	    requires: abfd != NULL, symndx == -1
70 	    fields: d.h, tls_type
71 
72       (4) a TLS LDM slot
73 	    requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 	    fields: none; there's only one of these per GOT.  */
75 struct mips_got_entry
76 {
77   /* One input bfd that needs the GOT entry.  */
78   bfd *abfd;
79   /* The index of the symbol, as stored in the relocation r_info, if
80      we have a local symbol; -1 otherwise.  */
81   long symndx;
82   union
83   {
84     /* If abfd == NULL, an address that must be stored in the got.  */
85     bfd_vma address;
86     /* If abfd != NULL && symndx != -1, the addend of the relocation
87        that should be added to the symbol value.  */
88     bfd_vma addend;
89     /* If abfd != NULL && symndx == -1, the hash table entry
90        corresponding to a symbol in the GOT.  The symbol's entry
91        is in the local area if h->global_got_area is GGA_NONE,
92        otherwise it is in the global area.  */
93     struct mips_elf_link_hash_entry *h;
94   } d;
95 
96   /* The TLS type of this GOT entry.  An LDM GOT entry will be a local
97      symbol entry with r_symndx == 0.  */
98   unsigned char tls_type;
99 
100   /* True if we have filled in the GOT contents for a TLS entry,
101      and created the associated relocations.  */
102   unsigned char tls_initialized;
103 
104   /* The offset from the beginning of the .got section to the entry
105      corresponding to this symbol+addend.  If it's a global symbol
106      whose offset is yet to be decided, it's going to be -1.  */
107   long gotidx;
108 };
109 
110 /* This structure represents a GOT page reference from an input bfd.
111    Each instance represents a symbol + ADDEND, where the representation
112    of the symbol depends on whether it is local to the input bfd.
113    If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114    Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115 
116    Page references with SYMNDX >= 0 always become page references
117    in the output.  Page references with SYMNDX < 0 only become page
118    references if the symbol binds locally; in other cases, the page
119    reference decays to a global GOT reference.  */
120 struct mips_got_page_ref
121 {
122   long symndx;
123   union
124   {
125     struct mips_elf_link_hash_entry *h;
126     bfd *abfd;
127   } u;
128   bfd_vma addend;
129 };
130 
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132    The structures form a non-overlapping list that is sorted by increasing
133    MIN_ADDEND.  */
134 struct mips_got_page_range
135 {
136   struct mips_got_page_range *next;
137   bfd_signed_vma min_addend;
138   bfd_signed_vma max_addend;
139 };
140 
141 /* This structure describes the range of addends that are applied to page
142    relocations against a given section.  */
143 struct mips_got_page_entry
144 {
145   /* The section that these entries are based on.  */
146   asection *sec;
147   /* The ranges for this page entry.  */
148   struct mips_got_page_range *ranges;
149   /* The maximum number of page entries needed for RANGES.  */
150   bfd_vma num_pages;
151 };
152 
153 /* This structure is used to hold .got information when linking.  */
154 
155 struct mips_got_info
156 {
157   /* The number of global .got entries.  */
158   unsigned int global_gotno;
159   /* The number of global .got entries that are in the GGA_RELOC_ONLY area.  */
160   unsigned int reloc_only_gotno;
161   /* The number of .got slots used for TLS.  */
162   unsigned int tls_gotno;
163   /* The first unused TLS .got entry.  Used only during
164      mips_elf_initialize_tls_index.  */
165   unsigned int tls_assigned_gotno;
166   /* The number of local .got entries, eventually including page entries.  */
167   unsigned int local_gotno;
168   /* The maximum number of page entries needed.  */
169   unsigned int page_gotno;
170   /* The number of relocations needed for the GOT entries.  */
171   unsigned int relocs;
172   /* The first unused local .got entry.  */
173   unsigned int assigned_low_gotno;
174   /* The last unused local .got entry.  */
175   unsigned int assigned_high_gotno;
176   /* A hash table holding members of the got.  */
177   struct htab *got_entries;
178   /* A hash table holding mips_got_page_ref structures.  */
179   struct htab *got_page_refs;
180   /* A hash table of mips_got_page_entry structures.  */
181   struct htab *got_page_entries;
182   /* In multi-got links, a pointer to the next got (err, rather, most
183      of the time, it points to the previous got).  */
184   struct mips_got_info *next;
185 };
186 
187 /* Structure passed when merging bfds' gots.  */
188 
189 struct mips_elf_got_per_bfd_arg
190 {
191   /* The output bfd.  */
192   bfd *obfd;
193   /* The link information.  */
194   struct bfd_link_info *info;
195   /* A pointer to the primary got, i.e., the one that's going to get
196      the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197      DT_MIPS_GOTSYM.  */
198   struct mips_got_info *primary;
199   /* A non-primary got we're trying to merge with other input bfd's
200      gots.  */
201   struct mips_got_info *current;
202   /* The maximum number of got entries that can be addressed with a
203      16-bit offset.  */
204   unsigned int max_count;
205   /* The maximum number of page entries needed by each got.  */
206   unsigned int max_pages;
207   /* The total number of global entries which will live in the
208      primary got and be automatically relocated.  This includes
209      those not referenced by the primary GOT but included in
210      the "master" GOT.  */
211   unsigned int global_count;
212 };
213 
214 /* A structure used to pass information to htab_traverse callbacks
215    when laying out the GOT.  */
216 
217 struct mips_elf_traverse_got_arg
218 {
219   struct bfd_link_info *info;
220   struct mips_got_info *g;
221   int value;
222 };
223 
224 struct _mips_elf_section_data
225 {
226   struct bfd_elf_section_data elf;
227   union
228   {
229     bfd_byte *tdata;
230   } u;
231 };
232 
233 #define mips_elf_section_data(sec) \
234   ((struct _mips_elf_section_data *) elf_section_data (sec))
235 
236 #define is_mips_elf(bfd)				\
237   (bfd_get_flavour (bfd) == bfd_target_elf_flavour	\
238    && elf_tdata (bfd) != NULL				\
239    && elf_object_id (bfd) == MIPS_ELF_DATA)
240 
241 /* The ABI says that every symbol used by dynamic relocations must have
242    a global GOT entry.  Among other things, this provides the dynamic
243    linker with a free, directly-indexed cache.  The GOT can therefore
244    contain symbols that are not referenced by GOT relocations themselves
245    (in other words, it may have symbols that are not referenced by things
246    like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247 
248    GOT relocations are less likely to overflow if we put the associated
249    GOT entries towards the beginning.  We therefore divide the global
250    GOT entries into two areas: "normal" and "reloc-only".  Entries in
251    the first area can be used for both dynamic relocations and GP-relative
252    accesses, while those in the "reloc-only" area are for dynamic
253    relocations only.
254 
255    These GGA_* ("Global GOT Area") values are organised so that lower
256    values are more general than higher values.  Also, non-GGA_NONE
257    values are ordered by the position of the area in the GOT.  */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261 
262 /* Information about a non-PIC interface to a PIC function.  There are
263    two ways of creating these interfaces.  The first is to add:
264 
265 	lui	$25,%hi(func)
266 	addiu	$25,$25,%lo(func)
267 
268    immediately before a PIC function "func".  The second is to add:
269 
270 	lui	$25,%hi(func)
271 	j	func
272 	addiu	$25,$25,%lo(func)
273 
274    to a separate trampoline section.
275 
276    Stubs of the first kind go in a new section immediately before the
277    target function.  Stubs of the second kind go in a single section
278    pointed to by the hash table's "strampoline" field.  */
279 struct mips_elf_la25_stub {
280   /* The generated section that contains this stub.  */
281   asection *stub_section;
282 
283   /* The offset of the stub from the start of STUB_SECTION.  */
284   bfd_vma offset;
285 
286   /* One symbol for the original function.  Its location is available
287      in H->root.root.u.def.  */
288   struct mips_elf_link_hash_entry *h;
289 };
290 
291 /* Macros for populating a mips_elf_la25_stub.  */
292 
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL))	/* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL))	/* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL)						\
297   (0x41b90000 | (VAL))				/* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL)						\
299   (0xd4000000 | (((VAL) >> 1) & 0x3ffffff))	/* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL)					\
301   (0x33390000 | (VAL))				/* addiu t9,t9,VAL */
302 
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304    the dynamic symbols.  */
305 
306 struct mips_elf_hash_sort_data
307 {
308   /* The symbol in the global GOT with the lowest dynamic symbol table
309      index.  */
310   struct elf_link_hash_entry *low;
311   /* The least dynamic symbol table index corresponding to a non-TLS
312      symbol with a GOT entry.  */
313   long min_got_dynindx;
314   /* The greatest dynamic symbol table index corresponding to a symbol
315      with a GOT entry that is not referenced (e.g., a dynamic symbol
316      with dynamic relocations pointing to it from non-primary GOTs).  */
317   long max_unref_got_dynindx;
318   /* The greatest dynamic symbol table index not corresponding to a
319      symbol without a GOT entry.  */
320   long max_non_got_dynindx;
321 };
322 
323 /* We make up to two PLT entries if needed, one for standard MIPS code
324    and one for compressed code, either a MIPS16 or microMIPS one.  We
325    keep a separate record of traditional lazy-binding stubs, for easier
326    processing.  */
327 
328 struct plt_entry
329 {
330   /* Traditional SVR4 stub offset, or -1 if none.  */
331   bfd_vma stub_offset;
332 
333   /* Standard PLT entry offset, or -1 if none.  */
334   bfd_vma mips_offset;
335 
336   /* Compressed PLT entry offset, or -1 if none.  */
337   bfd_vma comp_offset;
338 
339   /* The corresponding .got.plt index, or -1 if none.  */
340   bfd_vma gotplt_index;
341 
342   /* Whether we need a standard PLT entry.  */
343   unsigned int need_mips : 1;
344 
345   /* Whether we need a compressed PLT entry.  */
346   unsigned int need_comp : 1;
347 };
348 
349 /* The MIPS ELF linker needs additional information for each symbol in
350    the global hash table.  */
351 
352 struct mips_elf_link_hash_entry
353 {
354   struct elf_link_hash_entry root;
355 
356   /* External symbol information.  */
357   EXTR esym;
358 
359   /* The la25 stub we have created for ths symbol, if any.  */
360   struct mips_elf_la25_stub *la25_stub;
361 
362   /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
363      this symbol.  */
364   unsigned int possibly_dynamic_relocs;
365 
366   /* If there is a stub that 32 bit functions should use to call this
367      16 bit function, this points to the section containing the stub.  */
368   asection *fn_stub;
369 
370   /* If there is a stub that 16 bit functions should use to call this
371      32 bit function, this points to the section containing the stub.  */
372   asection *call_stub;
373 
374   /* This is like the call_stub field, but it is used if the function
375      being called returns a floating point value.  */
376   asection *call_fp_stub;
377 
378   /* The highest GGA_* value that satisfies all references to this symbol.  */
379   unsigned int global_got_area : 2;
380 
381   /* True if all GOT relocations against this symbol are for calls.  This is
382      a looser condition than no_fn_stub below, because there may be other
383      non-call non-GOT relocations against the symbol.  */
384   unsigned int got_only_for_calls : 1;
385 
386   /* True if one of the relocations described by possibly_dynamic_relocs
387      is against a readonly section.  */
388   unsigned int readonly_reloc : 1;
389 
390   /* True if there is a relocation against this symbol that must be
391      resolved by the static linker (in other words, if the relocation
392      cannot possibly be made dynamic).  */
393   unsigned int has_static_relocs : 1;
394 
395   /* True if we must not create a .MIPS.stubs entry for this symbol.
396      This is set, for example, if there are relocations related to
397      taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
398      See "MIPS ABI Supplement, 3rd Edition", p. 4-20.  */
399   unsigned int no_fn_stub : 1;
400 
401   /* Whether we need the fn_stub; this is true if this symbol appears
402      in any relocs other than a 16 bit call.  */
403   unsigned int need_fn_stub : 1;
404 
405   /* True if this symbol is referenced by branch relocations from
406      any non-PIC input file.  This is used to determine whether an
407      la25 stub is required.  */
408   unsigned int has_nonpic_branches : 1;
409 
410   /* Does this symbol need a traditional MIPS lazy-binding stub
411      (as opposed to a PLT entry)?  */
412   unsigned int needs_lazy_stub : 1;
413 
414   /* Does this symbol resolve to a PLT entry?  */
415   unsigned int use_plt_entry : 1;
416 };
417 
418 /* MIPS ELF linker hash table.  */
419 
420 struct mips_elf_link_hash_table
421 {
422   struct elf_link_hash_table root;
423 
424   /* The number of .rtproc entries.  */
425   bfd_size_type procedure_count;
426 
427   /* The size of the .compact_rel section (if SGI_COMPAT).  */
428   bfd_size_type compact_rel_size;
429 
430   /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
431      is set to the address of __rld_obj_head as in IRIX5 and IRIX6.  */
432   bfd_boolean use_rld_obj_head;
433 
434   /* The  __rld_map or __rld_obj_head symbol. */
435   struct elf_link_hash_entry *rld_symbol;
436 
437   /* This is set if we see any mips16 stub sections.  */
438   bfd_boolean mips16_stubs_seen;
439 
440   /* True if we can generate copy relocs and PLTs.  */
441   bfd_boolean use_plts_and_copy_relocs;
442 
443   /* True if we can only use 32-bit microMIPS instructions.  */
444   bfd_boolean insn32;
445 
446   /* True if we're generating code for VxWorks.  */
447   bfd_boolean is_vxworks;
448 
449   /* True if we already reported the small-data section overflow.  */
450   bfd_boolean small_data_overflow_reported;
451 
452   /* Shortcuts to some dynamic sections, or NULL if they are not
453      being used.  */
454   asection *srelbss;
455   asection *sdynbss;
456   asection *srelplt;
457   asection *srelplt2;
458   asection *sgotplt;
459   asection *splt;
460   asection *sstubs;
461   asection *sgot;
462 
463   /* The master GOT information.  */
464   struct mips_got_info *got_info;
465 
466   /* The global symbol in the GOT with the lowest index in the dynamic
467      symbol table.  */
468   struct elf_link_hash_entry *global_gotsym;
469 
470   /* The size of the PLT header in bytes.  */
471   bfd_vma plt_header_size;
472 
473   /* The size of a standard PLT entry in bytes.  */
474   bfd_vma plt_mips_entry_size;
475 
476   /* The size of a compressed PLT entry in bytes.  */
477   bfd_vma plt_comp_entry_size;
478 
479   /* The offset of the next standard PLT entry to create.  */
480   bfd_vma plt_mips_offset;
481 
482   /* The offset of the next compressed PLT entry to create.  */
483   bfd_vma plt_comp_offset;
484 
485   /* The index of the next .got.plt entry to create.  */
486   bfd_vma plt_got_index;
487 
488   /* The number of functions that need a lazy-binding stub.  */
489   bfd_vma lazy_stub_count;
490 
491   /* The size of a function stub entry in bytes.  */
492   bfd_vma function_stub_size;
493 
494   /* The number of reserved entries at the beginning of the GOT.  */
495   unsigned int reserved_gotno;
496 
497   /* The section used for mips_elf_la25_stub trampolines.
498      See the comment above that structure for details.  */
499   asection *strampoline;
500 
501   /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502      pairs.  */
503   htab_t la25_stubs;
504 
505   /* A function FN (NAME, IS, OS) that creates a new input section
506      called NAME and links it to output section OS.  If IS is nonnull,
507      the new section should go immediately before it, otherwise it
508      should go at the (current) beginning of OS.
509 
510      The function returns the new section on success, otherwise it
511      returns null.  */
512   asection *(*add_stub_section) (const char *, asection *, asection *);
513 
514   /* Small local sym cache.  */
515   struct sym_cache sym_cache;
516 
517   /* Is the PLT header compressed?  */
518   unsigned int plt_header_is_comp : 1;
519 };
520 
521 /* Get the MIPS ELF linker hash table from a link_info structure.  */
522 
523 #define mips_elf_hash_table(p) \
524   (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525   == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526 
527 /* A structure used to communicate with htab_traverse callbacks.  */
528 struct mips_htab_traverse_info
529 {
530   /* The usual link-wide information.  */
531   struct bfd_link_info *info;
532   bfd *output_bfd;
533 
534   /* Starts off FALSE and is set to TRUE if the link should be aborted.  */
535   bfd_boolean error;
536 };
537 
538 /* MIPS ELF private object data.  */
539 
540 struct mips_elf_obj_tdata
541 {
542   /* Generic ELF private object data.  */
543   struct elf_obj_tdata root;
544 
545   /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output.  */
546   bfd *abi_fp_bfd;
547 
548   /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output.  */
549   bfd *abi_msa_bfd;
550 
551   /* The abiflags for this object.  */
552   Elf_Internal_ABIFlags_v0 abiflags;
553   bfd_boolean abiflags_valid;
554 
555   /* The GOT requirements of input bfds.  */
556   struct mips_got_info *got;
557 
558   /* Used by _bfd_mips_elf_find_nearest_line.  The structure could be
559      included directly in this one, but there's no point to wasting
560      the memory just for the infrequently called find_nearest_line.  */
561   struct mips_elf_find_line *find_line_info;
562 
563   /* An array of stub sections indexed by symbol number.  */
564   asection **local_stubs;
565   asection **local_call_stubs;
566 
567   /* The Irix 5 support uses two virtual sections, which represent
568      text/data symbols defined in dynamic objects.  */
569   asymbol *elf_data_symbol;
570   asymbol *elf_text_symbol;
571   asection *elf_data_section;
572   asection *elf_text_section;
573 };
574 
575 /* Get MIPS ELF private object data from BFD's tdata.  */
576 
577 #define mips_elf_tdata(bfd) \
578   ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579 
580 #define TLS_RELOC_P(r_type) \
581   (r_type == R_MIPS_TLS_DTPMOD32		\
582    || r_type == R_MIPS_TLS_DTPMOD64		\
583    || r_type == R_MIPS_TLS_DTPREL32		\
584    || r_type == R_MIPS_TLS_DTPREL64		\
585    || r_type == R_MIPS_TLS_GD			\
586    || r_type == R_MIPS_TLS_LDM			\
587    || r_type == R_MIPS_TLS_DTPREL_HI16		\
588    || r_type == R_MIPS_TLS_DTPREL_LO16		\
589    || r_type == R_MIPS_TLS_GOTTPREL		\
590    || r_type == R_MIPS_TLS_TPREL32		\
591    || r_type == R_MIPS_TLS_TPREL64		\
592    || r_type == R_MIPS_TLS_TPREL_HI16		\
593    || r_type == R_MIPS_TLS_TPREL_LO16		\
594    || r_type == R_MIPS16_TLS_GD			\
595    || r_type == R_MIPS16_TLS_LDM		\
596    || r_type == R_MIPS16_TLS_DTPREL_HI16	\
597    || r_type == R_MIPS16_TLS_DTPREL_LO16	\
598    || r_type == R_MIPS16_TLS_GOTTPREL		\
599    || r_type == R_MIPS16_TLS_TPREL_HI16		\
600    || r_type == R_MIPS16_TLS_TPREL_LO16		\
601    || r_type == R_MICROMIPS_TLS_GD		\
602    || r_type == R_MICROMIPS_TLS_LDM		\
603    || r_type == R_MICROMIPS_TLS_DTPREL_HI16	\
604    || r_type == R_MICROMIPS_TLS_DTPREL_LO16	\
605    || r_type == R_MICROMIPS_TLS_GOTTPREL	\
606    || r_type == R_MICROMIPS_TLS_TPREL_HI16	\
607    || r_type == R_MICROMIPS_TLS_TPREL_LO16)
608 
609 /* Structure used to pass information to mips_elf_output_extsym.  */
610 
611 struct extsym_info
612 {
613   bfd *abfd;
614   struct bfd_link_info *info;
615   struct ecoff_debug_info *debug;
616   const struct ecoff_debug_swap *swap;
617   bfd_boolean failed;
618 };
619 
620 /* The names of the runtime procedure table symbols used on IRIX5.  */
621 
622 static const char * const mips_elf_dynsym_rtproc_names[] =
623 {
624   "_procedure_table",
625   "_procedure_string_table",
626   "_procedure_table_size",
627   NULL
628 };
629 
630 /* These structures are used to generate the .compact_rel section on
631    IRIX5.  */
632 
633 typedef struct
634 {
635   unsigned long id1;		/* Always one?  */
636   unsigned long num;		/* Number of compact relocation entries.  */
637   unsigned long id2;		/* Always two?  */
638   unsigned long offset;		/* The file offset of the first relocation.  */
639   unsigned long reserved0;	/* Zero?  */
640   unsigned long reserved1;	/* Zero?  */
641 } Elf32_compact_rel;
642 
643 typedef struct
644 {
645   bfd_byte id1[4];
646   bfd_byte num[4];
647   bfd_byte id2[4];
648   bfd_byte offset[4];
649   bfd_byte reserved0[4];
650   bfd_byte reserved1[4];
651 } Elf32_External_compact_rel;
652 
653 typedef struct
654 {
655   unsigned int ctype : 1;	/* 1: long 0: short format. See below.  */
656   unsigned int rtype : 4;	/* Relocation types. See below.  */
657   unsigned int dist2to : 8;
658   unsigned int relvaddr : 19;	/* (VADDR - vaddr of the previous entry)/ 4 */
659   unsigned long konst;		/* KONST field. See below.  */
660   unsigned long vaddr;		/* VADDR to be relocated.  */
661 } Elf32_crinfo;
662 
663 typedef struct
664 {
665   unsigned int ctype : 1;	/* 1: long 0: short format. See below.  */
666   unsigned int rtype : 4;	/* Relocation types. See below.  */
667   unsigned int dist2to : 8;
668   unsigned int relvaddr : 19;	/* (VADDR - vaddr of the previous entry)/ 4 */
669   unsigned long konst;		/* KONST field. See below.  */
670 } Elf32_crinfo2;
671 
672 typedef struct
673 {
674   bfd_byte info[4];
675   bfd_byte konst[4];
676   bfd_byte vaddr[4];
677 } Elf32_External_crinfo;
678 
679 typedef struct
680 {
681   bfd_byte info[4];
682   bfd_byte konst[4];
683 } Elf32_External_crinfo2;
684 
685 /* These are the constants used to swap the bitfields in a crinfo.  */
686 
687 #define CRINFO_CTYPE (0x1)
688 #define CRINFO_CTYPE_SH (31)
689 #define CRINFO_RTYPE (0xf)
690 #define CRINFO_RTYPE_SH (27)
691 #define CRINFO_DIST2TO (0xff)
692 #define CRINFO_DIST2TO_SH (19)
693 #define CRINFO_RELVADDR (0x7ffff)
694 #define CRINFO_RELVADDR_SH (0)
695 
696 /* A compact relocation info has long (3 words) or short (2 words)
697    formats.  A short format doesn't have VADDR field and relvaddr
698    fields contains ((VADDR - vaddr of the previous entry) >> 2).  */
699 #define CRF_MIPS_LONG			1
700 #define CRF_MIPS_SHORT			0
701 
702 /* There are 4 types of compact relocation at least. The value KONST
703    has different meaning for each type:
704 
705    (type)		(konst)
706    CT_MIPS_REL32	Address in data
707    CT_MIPS_WORD		Address in word (XXX)
708    CT_MIPS_GPHI_LO	GP - vaddr
709    CT_MIPS_JMPAD	Address to jump
710    */
711 
712 #define CRT_MIPS_REL32			0xa
713 #define CRT_MIPS_WORD			0xb
714 #define CRT_MIPS_GPHI_LO		0xc
715 #define CRT_MIPS_JMPAD			0xd
716 
717 #define mips_elf_set_cr_format(x,format)	((x).ctype = (format))
718 #define mips_elf_set_cr_type(x,type)		((x).rtype = (type))
719 #define mips_elf_set_cr_dist2to(x,v)		((x).dist2to = (v))
720 #define mips_elf_set_cr_relvaddr(x,d)		((x).relvaddr = (d)<<2)
721 
722 /* The structure of the runtime procedure descriptor created by the
723    loader for use by the static exception system.  */
724 
725 typedef struct runtime_pdr {
726 	bfd_vma	adr;		/* Memory address of start of procedure.  */
727 	long	regmask;	/* Save register mask.  */
728 	long	regoffset;	/* Save register offset.  */
729 	long	fregmask;	/* Save floating point register mask.  */
730 	long	fregoffset;	/* Save floating point register offset.  */
731 	long	frameoffset;	/* Frame size.  */
732 	short	framereg;	/* Frame pointer register.  */
733 	short	pcreg;		/* Offset or reg of return pc.  */
734 	long	irpss;		/* Index into the runtime string table.  */
735 	long	reserved;
736 	struct exception_info *exception_info;/* Pointer to exception array.  */
737 } RPDR, *pRPDR;
738 #define cbRPDR sizeof (RPDR)
739 #define rpdNil ((pRPDR) 0)
740 
741 static struct mips_got_entry *mips_elf_create_local_got_entry
742   (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743    struct mips_elf_link_hash_entry *, int);
744 static bfd_boolean mips_elf_sort_hash_table_f
745   (struct mips_elf_link_hash_entry *, void *);
746 static bfd_vma mips_elf_high
747   (bfd_vma);
748 static bfd_boolean mips_elf_create_dynamic_relocation
749   (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750    struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751    bfd_vma *, asection *);
752 static bfd_vma mips_elf_adjust_gp
753   (bfd *, struct mips_got_info *, bfd *);
754 
755 /* This will be used when we sort the dynamic relocation records.  */
756 static bfd *reldyn_sorting_bfd;
757 
758 /* True if ABFD is for CPUs with load interlocking that include
759    non-MIPS1 CPUs and R3900.  */
760 #define LOAD_INTERLOCKS_P(abfd) \
761   (   ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762    || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763 
764 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765    This should be safe for all architectures.  We enable this predicate
766    for RM9000 for now.  */
767 #define JAL_TO_BAL_P(abfd) \
768   ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769 
770 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771    This should be safe for all architectures.  We enable this predicate for
772    all CPUs.  */
773 #define JALR_TO_BAL_P(abfd) 1
774 
775 /* True if ABFD is for CPUs that are faster if JR is converted to B.
776    This should be safe for all architectures.  We enable this predicate for
777    all CPUs.  */
778 #define JR_TO_B_P(abfd) 1
779 
780 /* True if ABFD is a PIC object.  */
781 #define PIC_OBJECT_P(abfd) \
782   ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783 
784 /* Nonzero if ABFD is using the O32 ABI.  */
785 #define ABI_O32_P(abfd) \
786   ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787 
788 /* Nonzero if ABFD is using the N32 ABI.  */
789 #define ABI_N32_P(abfd) \
790   ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791 
792 /* Nonzero if ABFD is using the N64 ABI.  */
793 #define ABI_64_P(abfd) \
794   (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
795 
796 /* Nonzero if ABFD is using NewABI conventions.  */
797 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798 
799 /* Nonzero if ABFD has microMIPS code.  */
800 #define MICROMIPS_P(abfd) \
801   ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802 
803 /* Nonzero if ABFD is MIPS R6.  */
804 #define MIPSR6_P(abfd) \
805   ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806     || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807 
808 /* The IRIX compatibility level we are striving for.  */
809 #define IRIX_COMPAT(abfd) \
810   (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811 
812 /* Whether we are trying to be compatible with IRIX at all.  */
813 #define SGI_COMPAT(abfd) \
814   (IRIX_COMPAT (abfd) != ict_none)
815 
816 /* The name of the options section.  */
817 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
818   (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
819 
820 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821    Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME.  */
822 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823   (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824 
825 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section.  */
826 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827   (strcmp (NAME, ".MIPS.abiflags") == 0)
828 
829 /* Whether the section is readonly.  */
830 #define MIPS_ELF_READONLY_SECTION(sec) \
831   ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))		\
832    == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833 
834 /* The name of the stub section.  */
835 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
836 
837 /* The size of an external REL relocation.  */
838 #define MIPS_ELF_REL_SIZE(abfd) \
839   (get_elf_backend_data (abfd)->s->sizeof_rel)
840 
841 /* The size of an external RELA relocation.  */
842 #define MIPS_ELF_RELA_SIZE(abfd) \
843   (get_elf_backend_data (abfd)->s->sizeof_rela)
844 
845 /* The size of an external dynamic table entry.  */
846 #define MIPS_ELF_DYN_SIZE(abfd) \
847   (get_elf_backend_data (abfd)->s->sizeof_dyn)
848 
849 /* The size of a GOT entry.  */
850 #define MIPS_ELF_GOT_SIZE(abfd) \
851   (get_elf_backend_data (abfd)->s->arch_size / 8)
852 
853 /* The size of the .rld_map section. */
854 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855   (get_elf_backend_data (abfd)->s->arch_size / 8)
856 
857 /* The size of a symbol-table entry.  */
858 #define MIPS_ELF_SYM_SIZE(abfd) \
859   (get_elf_backend_data (abfd)->s->sizeof_sym)
860 
861 /* The default alignment for sections, as a power of two.  */
862 #define MIPS_ELF_LOG_FILE_ALIGN(abfd)				\
863   (get_elf_backend_data (abfd)->s->log_file_align)
864 
865 /* Get word-sized data.  */
866 #define MIPS_ELF_GET_WORD(abfd, ptr) \
867   (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868 
869 /* Put out word-sized data.  */
870 #define MIPS_ELF_PUT_WORD(abfd, val, ptr)	\
871   (ABI_64_P (abfd) 				\
872    ? bfd_put_64 (abfd, val, ptr) 		\
873    : bfd_put_32 (abfd, val, ptr))
874 
875 /* The opcode for word-sized loads (LW or LD).  */
876 #define MIPS_ELF_LOAD_WORD(abfd) \
877   (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878 
879 /* Add a dynamic symbol table-entry.  */
880 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val)	\
881   _bfd_elf_add_dynamic_entry (info, tag, val)
882 
883 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela)			\
884   (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
885 
886 /* The name of the dynamic relocation section.  */
887 #define MIPS_ELF_REL_DYN_NAME(INFO) \
888   (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889 
890 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891    from smaller values.  Start with zero, widen, *then* decrement.  */
892 #define MINUS_ONE	(((bfd_vma)0) - 1)
893 #define MINUS_TWO	(((bfd_vma)0) - 2)
894 
895 /* The value to write into got[1] for SVR4 targets, to identify it is
896    a GNU object.  The dynamic linker can then use got[1] to store the
897    module pointer.  */
898 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899   ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900 
901 /* The offset of $gp from the beginning of the .got section.  */
902 #define ELF_MIPS_GP_OFFSET(INFO) \
903   (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
904 
905 /* The maximum size of the GOT for it to be addressable using 16-bit
906    offsets from $gp.  */
907 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
908 
909 /* Instructions which appear in a stub.  */
910 #define STUB_LW(abfd)							\
911   ((ABI_64_P (abfd)							\
912     ? 0xdf998010				/* ld t9,0x8010(gp) */	\
913     : 0x8f998010))              		/* lw t9,0x8010(gp) */
914 #define STUB_MOVE 0x03e07825			/* or t7,ra,zero */
915 #define STUB_LUI(VAL) (0x3c180000 + (VAL))	/* lui t8,VAL */
916 #define STUB_JALR 0x0320f809			/* jalr t9,ra */
917 #define STUB_ORI(VAL) (0x37180000 + (VAL))	/* ori t8,t8,VAL */
918 #define STUB_LI16U(VAL) (0x34180000 + (VAL))	/* ori t8,zero,VAL unsigned */
919 #define STUB_LI16S(abfd, VAL)						\
920    ((ABI_64_P (abfd)							\
921     ? (0x64180000 + (VAL))	/* daddiu t8,zero,VAL sign extended */	\
922     : (0x24180000 + (VAL))))	/* addiu t8,zero,VAL sign extended */
923 
924 /* Likewise for the microMIPS ASE.  */
925 #define STUB_LW_MICROMIPS(abfd)						\
926   (ABI_64_P (abfd)							\
927    ? 0xdf3c8010					/* ld t9,0x8010(gp) */	\
928    : 0xff3c8010)				/* lw t9,0x8010(gp) */
929 #define STUB_MOVE_MICROMIPS 0x0dff		/* move t7,ra */
930 #define STUB_MOVE32_MICROMIPS 0x001f7a90	/* or t7,ra,zero */
931 #define STUB_LUI_MICROMIPS(VAL)						\
932    (0x41b80000 + (VAL))				/* lui t8,VAL */
933 #define STUB_JALR_MICROMIPS 0x45d9		/* jalr t9 */
934 #define STUB_JALR32_MICROMIPS 0x03f90f3c	/* jalr ra,t9 */
935 #define STUB_ORI_MICROMIPS(VAL)						\
936   (0x53180000 + (VAL))				/* ori t8,t8,VAL */
937 #define STUB_LI16U_MICROMIPS(VAL)					\
938   (0x53000000 + (VAL))				/* ori t8,zero,VAL unsigned */
939 #define STUB_LI16S_MICROMIPS(abfd, VAL)					\
940    (ABI_64_P (abfd)							\
941     ? 0x5f000000 + (VAL)	/* daddiu t8,zero,VAL sign extended */	\
942     : 0x33000000 + (VAL))	/* addiu t8,zero,VAL sign extended */
943 
944 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
946 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
948 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
950 
951 /* The name of the dynamic interpreter.  This is put in the .interp
952    section.  */
953 
954 #define ELF_DYNAMIC_INTERPRETER(abfd) 		\
955    (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" 	\
956     : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" 	\
957     : "/usr/lib/libc.so.1")
958 
959 #ifdef BFD64
960 #define MNAME(bfd,pre,pos) \
961   (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
962 #define ELF_R_SYM(bfd, i)					\
963   (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964 #define ELF_R_TYPE(bfd, i)					\
965   (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966 #define ELF_R_INFO(bfd, s, t)					\
967   (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968 #else
969 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
970 #define ELF_R_SYM(bfd, i)					\
971   (ELF32_R_SYM (i))
972 #define ELF_R_TYPE(bfd, i)					\
973   (ELF32_R_TYPE (i))
974 #define ELF_R_INFO(bfd, s, t)					\
975   (ELF32_R_INFO (s, t))
976 #endif
977 
978   /* The mips16 compiler uses a couple of special sections to handle
979      floating point arguments.
980 
981      Section names that look like .mips16.fn.FNNAME contain stubs that
982      copy floating point arguments from the fp regs to the gp regs and
983      then jump to FNNAME.  If any 32 bit function calls FNNAME, the
984      call should be redirected to the stub instead.  If no 32 bit
985      function calls FNNAME, the stub should be discarded.  We need to
986      consider any reference to the function, not just a call, because
987      if the address of the function is taken we will need the stub,
988      since the address might be passed to a 32 bit function.
989 
990      Section names that look like .mips16.call.FNNAME contain stubs
991      that copy floating point arguments from the gp regs to the fp
992      regs and then jump to FNNAME.  If FNNAME is a 32 bit function,
993      then any 16 bit function that calls FNNAME should be redirected
994      to the stub instead.  If FNNAME is not a 32 bit function, the
995      stub should be discarded.
996 
997      .mips16.call.fp.FNNAME sections are similar, but contain stubs
998      which call FNNAME and then copy the return value from the fp regs
999      to the gp regs.  These stubs store the return value in $18 while
1000      calling FNNAME; any function which might call one of these stubs
1001      must arrange to save $18 around the call.  (This case is not
1002      needed for 32 bit functions that call 16 bit functions, because
1003      16 bit functions always return floating point values in both
1004      $f0/$f1 and $2/$3.)
1005 
1006      Note that in all cases FNNAME might be defined statically.
1007      Therefore, FNNAME is not used literally.  Instead, the relocation
1008      information will indicate which symbol the section is for.
1009 
1010      We record any stubs that we find in the symbol table.  */
1011 
1012 #define FN_STUB ".mips16.fn."
1013 #define CALL_STUB ".mips16.call."
1014 #define CALL_FP_STUB ".mips16.call.fp."
1015 
1016 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1019 
1020 /* The format of the first PLT entry in an O32 executable.  */
1021 static const bfd_vma mips_o32_exec_plt0_entry[] =
1022 {
1023   0x3c1c0000,	/* lui $28, %hi(&GOTPLT[0])				*/
1024   0x8f990000,	/* lw $25, %lo(&GOTPLT[0])($28)				*/
1025   0x279c0000,	/* addiu $28, $28, %lo(&GOTPLT[0])			*/
1026   0x031cc023,	/* subu $24, $24, $28					*/
1027   0x03e07825,	/* or t7, ra, zero					*/
1028   0x0018c082,	/* srl $24, $24, 2					*/
1029   0x0320f809,	/* jalr $25						*/
1030   0x2718fffe	/* subu $24, $24, 2					*/
1031 };
1032 
1033 /* The format of the first PLT entry in an N32 executable.  Different
1034    because gp ($28) is not available; we use t2 ($14) instead.  */
1035 static const bfd_vma mips_n32_exec_plt0_entry[] =
1036 {
1037   0x3c0e0000,	/* lui $14, %hi(&GOTPLT[0])				*/
1038   0x8dd90000,	/* lw $25, %lo(&GOTPLT[0])($14)				*/
1039   0x25ce0000,	/* addiu $14, $14, %lo(&GOTPLT[0])			*/
1040   0x030ec023,	/* subu $24, $24, $14					*/
1041   0x03e07825,	/* or t7, ra, zero					*/
1042   0x0018c082,	/* srl $24, $24, 2					*/
1043   0x0320f809,	/* jalr $25						*/
1044   0x2718fffe	/* subu $24, $24, 2					*/
1045 };
1046 
1047 /* The format of the first PLT entry in an N64 executable.  Different
1048    from N32 because of the increased size of GOT entries.  */
1049 static const bfd_vma mips_n64_exec_plt0_entry[] =
1050 {
1051   0x3c0e0000,	/* lui $14, %hi(&GOTPLT[0])				*/
1052   0xddd90000,	/* ld $25, %lo(&GOTPLT[0])($14)				*/
1053   0x25ce0000,	/* addiu $14, $14, %lo(&GOTPLT[0])			*/
1054   0x030ec023,	/* subu $24, $24, $14					*/
1055   0x03e07825,	/* or t7, ra, zero					*/
1056   0x0018c0c2,	/* srl $24, $24, 3					*/
1057   0x0320f809,	/* jalr $25						*/
1058   0x2718fffe	/* subu $24, $24, 2					*/
1059 };
1060 
1061 /* The format of the microMIPS first PLT entry in an O32 executable.
1062    We rely on v0 ($2) rather than t8 ($24) to contain the address
1063    of the GOTPLT entry handled, so this stub may only be used when
1064    all the subsequent PLT entries are microMIPS code too.
1065 
1066    The trailing NOP is for alignment and correct disassembly only.  */
1067 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068 {
1069   0x7980, 0x0000,	/* addiupc $3, (&GOTPLT[0]) - .			*/
1070   0xff23, 0x0000,	/* lw $25, 0($3)				*/
1071   0x0535,		/* subu $2, $2, $3				*/
1072   0x2525,		/* srl $2, $2, 2				*/
1073   0x3302, 0xfffe,	/* subu $24, $2, 2				*/
1074   0x0dff,		/* move $15, $31				*/
1075   0x45f9,		/* jalrs $25					*/
1076   0x0f83,		/* move $28, $3					*/
1077   0x0c00		/* nop						*/
1078 };
1079 
1080 /* The format of the microMIPS first PLT entry in an O32 executable
1081    in the insn32 mode.  */
1082 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083 {
1084   0x41bc, 0x0000,	/* lui $28, %hi(&GOTPLT[0])			*/
1085   0xff3c, 0x0000,	/* lw $25, %lo(&GOTPLT[0])($28)			*/
1086   0x339c, 0x0000,	/* addiu $28, $28, %lo(&GOTPLT[0])		*/
1087   0x0398, 0xc1d0,	/* subu $24, $24, $28				*/
1088   0x001f, 0x7a90,	/* or $15, $31, zero				*/
1089   0x0318, 0x1040,	/* srl $24, $24, 2				*/
1090   0x03f9, 0x0f3c,	/* jalr $25					*/
1091   0x3318, 0xfffe	/* subu $24, $24, 2				*/
1092 };
1093 
1094 /* The format of subsequent standard PLT entries.  */
1095 static const bfd_vma mips_exec_plt_entry[] =
1096 {
1097   0x3c0f0000,	/* lui $15, %hi(.got.plt entry)			*/
1098   0x01f90000,	/* l[wd] $25, %lo(.got.plt entry)($15)		*/
1099   0x25f80000,	/* addiu $24, $15, %lo(.got.plt entry)		*/
1100   0x03200008	/* jr $25					*/
1101 };
1102 
1103 /* In the following PLT entry the JR and ADDIU instructions will
1104    be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105    LOAD_INTERLOCKS_P will be true for MIPS R6.  */
1106 static const bfd_vma mipsr6_exec_plt_entry[] =
1107 {
1108   0x3c0f0000,	/* lui $15, %hi(.got.plt entry)			*/
1109   0x01f90000,	/* l[wd] $25, %lo(.got.plt entry)($15)		*/
1110   0x25f80000,	/* addiu $24, $15, %lo(.got.plt entry)		*/
1111   0x03200009	/* jr $25					*/
1112 };
1113 
1114 /* The format of subsequent MIPS16 o32 PLT entries.  We use v0 ($2)
1115    and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116    directly addressable.  */
1117 static const bfd_vma mips16_o32_exec_plt_entry[] =
1118 {
1119   0xb203,		/* lw $2, 12($pc)			*/
1120   0x9a60,		/* lw $3, 0($2)				*/
1121   0x651a,		/* move $24, $2				*/
1122   0xeb00,		/* jr $3				*/
1123   0x653b,		/* move $25, $3				*/
1124   0x6500,		/* nop					*/
1125   0x0000, 0x0000	/* .word (.got.plt entry)		*/
1126 };
1127 
1128 /* The format of subsequent microMIPS o32 PLT entries.  We use v0 ($2)
1129    as a temporary because t8 ($24) is not addressable with ADDIUPC.  */
1130 static const bfd_vma micromips_o32_exec_plt_entry[] =
1131 {
1132   0x7900, 0x0000,	/* addiupc $2, (.got.plt entry) - .	*/
1133   0xff22, 0x0000,	/* lw $25, 0($2)			*/
1134   0x4599,		/* jr $25				*/
1135   0x0f02		/* move $24, $2				*/
1136 };
1137 
1138 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode.  */
1139 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140 {
1141   0x41af, 0x0000,	/* lui $15, %hi(.got.plt entry)		*/
1142   0xff2f, 0x0000,	/* lw $25, %lo(.got.plt entry)($15)	*/
1143   0x0019, 0x0f3c,	/* jr $25				*/
1144   0x330f, 0x0000	/* addiu $24, $15, %lo(.got.plt entry)	*/
1145 };
1146 
1147 /* The format of the first PLT entry in a VxWorks executable.  */
1148 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149 {
1150   0x3c190000,	/* lui t9, %hi(_GLOBAL_OFFSET_TABLE_)		*/
1151   0x27390000,	/* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_)	*/
1152   0x8f390008,	/* lw t9, 8(t9)					*/
1153   0x00000000,	/* nop						*/
1154   0x03200008,	/* jr t9					*/
1155   0x00000000	/* nop						*/
1156 };
1157 
1158 /* The format of subsequent PLT entries.  */
1159 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160 {
1161   0x10000000,	/* b .PLT_resolver			*/
1162   0x24180000,	/* li t8, <pltindex>			*/
1163   0x3c190000,	/* lui t9, %hi(<.got.plt slot>)		*/
1164   0x27390000,	/* addiu t9, t9, %lo(<.got.plt slot>)	*/
1165   0x8f390000,	/* lw t9, 0(t9)				*/
1166   0x00000000,	/* nop					*/
1167   0x03200008,	/* jr t9				*/
1168   0x00000000	/* nop					*/
1169 };
1170 
1171 /* The format of the first PLT entry in a VxWorks shared object.  */
1172 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173 {
1174   0x8f990008,	/* lw t9, 8(gp)		*/
1175   0x00000000,	/* nop			*/
1176   0x03200008,	/* jr t9		*/
1177   0x00000000,	/* nop			*/
1178   0x00000000,	/* nop			*/
1179   0x00000000	/* nop			*/
1180 };
1181 
1182 /* The format of subsequent PLT entries.  */
1183 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184 {
1185   0x10000000,	/* b .PLT_resolver	*/
1186   0x24180000	/* li t8, <pltindex>	*/
1187 };
1188 
1189 /* microMIPS 32-bit opcode helper installer.  */
1190 
1191 static void
1192 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193 {
1194   bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195   bfd_put_16 (abfd,  opcode        & 0xffff, ptr + 2);
1196 }
1197 
1198 /* microMIPS 32-bit opcode helper retriever.  */
1199 
1200 static bfd_vma
1201 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202 {
1203   return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204 }
1205 
1206 /* Look up an entry in a MIPS ELF linker hash table.  */
1207 
1208 #define mips_elf_link_hash_lookup(table, string, create, copy, follow)	\
1209   ((struct mips_elf_link_hash_entry *)					\
1210    elf_link_hash_lookup (&(table)->root, (string), (create),		\
1211 			 (copy), (follow)))
1212 
1213 /* Traverse a MIPS ELF linker hash table.  */
1214 
1215 #define mips_elf_link_hash_traverse(table, func, info)			\
1216   (elf_link_hash_traverse						\
1217    (&(table)->root,							\
1218     (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func),	\
1219     (info)))
1220 
1221 /* Find the base offsets for thread-local storage in this object,
1222    for GD/LD and IE/LE respectively.  */
1223 
1224 #define TP_OFFSET 0x7000
1225 #define DTP_OFFSET 0x8000
1226 
1227 static bfd_vma
1228 dtprel_base (struct bfd_link_info *info)
1229 {
1230   /* If tls_sec is NULL, we should have signalled an error already.  */
1231   if (elf_hash_table (info)->tls_sec == NULL)
1232     return 0;
1233   return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234 }
1235 
1236 static bfd_vma
1237 tprel_base (struct bfd_link_info *info)
1238 {
1239   /* If tls_sec is NULL, we should have signalled an error already.  */
1240   if (elf_hash_table (info)->tls_sec == NULL)
1241     return 0;
1242   return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243 }
1244 
1245 /* Create an entry in a MIPS ELF linker hash table.  */
1246 
1247 static struct bfd_hash_entry *
1248 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 			    struct bfd_hash_table *table, const char *string)
1250 {
1251   struct mips_elf_link_hash_entry *ret =
1252     (struct mips_elf_link_hash_entry *) entry;
1253 
1254   /* Allocate the structure if it has not already been allocated by a
1255      subclass.  */
1256   if (ret == NULL)
1257     ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258   if (ret == NULL)
1259     return (struct bfd_hash_entry *) ret;
1260 
1261   /* Call the allocation method of the superclass.  */
1262   ret = ((struct mips_elf_link_hash_entry *)
1263 	 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 				     table, string));
1265   if (ret != NULL)
1266     {
1267       /* Set local fields.  */
1268       memset (&ret->esym, 0, sizeof (EXTR));
1269       /* We use -2 as a marker to indicate that the information has
1270 	 not been set.  -1 means there is no associated ifd.  */
1271       ret->esym.ifd = -2;
1272       ret->la25_stub = 0;
1273       ret->possibly_dynamic_relocs = 0;
1274       ret->fn_stub = NULL;
1275       ret->call_stub = NULL;
1276       ret->call_fp_stub = NULL;
1277       ret->global_got_area = GGA_NONE;
1278       ret->got_only_for_calls = TRUE;
1279       ret->readonly_reloc = FALSE;
1280       ret->has_static_relocs = FALSE;
1281       ret->no_fn_stub = FALSE;
1282       ret->need_fn_stub = FALSE;
1283       ret->has_nonpic_branches = FALSE;
1284       ret->needs_lazy_stub = FALSE;
1285       ret->use_plt_entry = FALSE;
1286     }
1287 
1288   return (struct bfd_hash_entry *) ret;
1289 }
1290 
1291 /* Allocate MIPS ELF private object data.  */
1292 
1293 bfd_boolean
1294 _bfd_mips_elf_mkobject (bfd *abfd)
1295 {
1296   return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 				  MIPS_ELF_DATA);
1298 }
1299 
1300 bfd_boolean
1301 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1302 {
1303   if (!sec->used_by_bfd)
1304     {
1305       struct _mips_elf_section_data *sdata;
1306       bfd_size_type amt = sizeof (*sdata);
1307 
1308       sdata = bfd_zalloc (abfd, amt);
1309       if (sdata == NULL)
1310 	return FALSE;
1311       sec->used_by_bfd = sdata;
1312     }
1313 
1314   return _bfd_elf_new_section_hook (abfd, sec);
1315 }
1316 
1317 /* Read ECOFF debugging information from a .mdebug section into a
1318    ecoff_debug_info structure.  */
1319 
1320 bfd_boolean
1321 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 			       struct ecoff_debug_info *debug)
1323 {
1324   HDRR *symhdr;
1325   const struct ecoff_debug_swap *swap;
1326   char *ext_hdr;
1327 
1328   swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329   memset (debug, 0, sizeof (*debug));
1330 
1331   ext_hdr = bfd_malloc (swap->external_hdr_size);
1332   if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333     goto error_return;
1334 
1335   if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1336 				  swap->external_hdr_size))
1337     goto error_return;
1338 
1339   symhdr = &debug->symbolic_header;
1340   (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341 
1342   /* The symbolic header contains absolute file offsets and sizes to
1343      read.  */
1344 #define READ(ptr, offset, count, size, type)				\
1345   if (symhdr->count == 0)						\
1346     debug->ptr = NULL;							\
1347   else									\
1348     {									\
1349       bfd_size_type amt = (bfd_size_type) size * symhdr->count;		\
1350       debug->ptr = bfd_malloc (amt);					\
1351       if (debug->ptr == NULL)						\
1352 	goto error_return;						\
1353       if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0		\
1354 	  || bfd_bread (debug->ptr, amt, abfd) != amt)			\
1355 	goto error_return;						\
1356     }
1357 
1358   READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1359   READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360   READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361   READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362   READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1363   READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 	union aux_ext *);
1365   READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366   READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1367   READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368   READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369   READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1370 #undef READ
1371 
1372   debug->fdr = NULL;
1373 
1374   return TRUE;
1375 
1376  error_return:
1377   if (ext_hdr != NULL)
1378     free (ext_hdr);
1379   if (debug->line != NULL)
1380     free (debug->line);
1381   if (debug->external_dnr != NULL)
1382     free (debug->external_dnr);
1383   if (debug->external_pdr != NULL)
1384     free (debug->external_pdr);
1385   if (debug->external_sym != NULL)
1386     free (debug->external_sym);
1387   if (debug->external_opt != NULL)
1388     free (debug->external_opt);
1389   if (debug->external_aux != NULL)
1390     free (debug->external_aux);
1391   if (debug->ss != NULL)
1392     free (debug->ss);
1393   if (debug->ssext != NULL)
1394     free (debug->ssext);
1395   if (debug->external_fdr != NULL)
1396     free (debug->external_fdr);
1397   if (debug->external_rfd != NULL)
1398     free (debug->external_rfd);
1399   if (debug->external_ext != NULL)
1400     free (debug->external_ext);
1401   return FALSE;
1402 }
1403 
1404 /* Swap RPDR (runtime procedure table entry) for output.  */
1405 
1406 static void
1407 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1408 {
1409   H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410   H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411   H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412   H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413   H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414   H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415 
1416   H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417   H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418 
1419   H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1420 }
1421 
1422 /* Create a runtime procedure table from the .mdebug section.  */
1423 
1424 static bfd_boolean
1425 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 				 struct bfd_link_info *info, asection *s,
1427 				 struct ecoff_debug_info *debug)
1428 {
1429   const struct ecoff_debug_swap *swap;
1430   HDRR *hdr = &debug->symbolic_header;
1431   RPDR *rpdr, *rp;
1432   struct rpdr_ext *erp;
1433   void *rtproc;
1434   struct pdr_ext *epdr;
1435   struct sym_ext *esym;
1436   char *ss, **sv;
1437   char *str;
1438   bfd_size_type size;
1439   bfd_size_type count;
1440   unsigned long sindex;
1441   unsigned long i;
1442   PDR pdr;
1443   SYMR sym;
1444   const char *no_name_func = _("static procedure (no name)");
1445 
1446   epdr = NULL;
1447   rpdr = NULL;
1448   esym = NULL;
1449   ss = NULL;
1450   sv = NULL;
1451 
1452   swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453 
1454   sindex = strlen (no_name_func) + 1;
1455   count = hdr->ipdMax;
1456   if (count > 0)
1457     {
1458       size = swap->external_pdr_size;
1459 
1460       epdr = bfd_malloc (size * count);
1461       if (epdr == NULL)
1462 	goto error_return;
1463 
1464       if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1465 	goto error_return;
1466 
1467       size = sizeof (RPDR);
1468       rp = rpdr = bfd_malloc (size * count);
1469       if (rpdr == NULL)
1470 	goto error_return;
1471 
1472       size = sizeof (char *);
1473       sv = bfd_malloc (size * count);
1474       if (sv == NULL)
1475 	goto error_return;
1476 
1477       count = hdr->isymMax;
1478       size = swap->external_sym_size;
1479       esym = bfd_malloc (size * count);
1480       if (esym == NULL)
1481 	goto error_return;
1482 
1483       if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1484 	goto error_return;
1485 
1486       count = hdr->issMax;
1487       ss = bfd_malloc (count);
1488       if (ss == NULL)
1489 	goto error_return;
1490       if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1491 	goto error_return;
1492 
1493       count = hdr->ipdMax;
1494       for (i = 0; i < (unsigned long) count; i++, rp++)
1495 	{
1496 	  (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 	  (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1498 	  rp->adr = sym.value;
1499 	  rp->regmask = pdr.regmask;
1500 	  rp->regoffset = pdr.regoffset;
1501 	  rp->fregmask = pdr.fregmask;
1502 	  rp->fregoffset = pdr.fregoffset;
1503 	  rp->frameoffset = pdr.frameoffset;
1504 	  rp->framereg = pdr.framereg;
1505 	  rp->pcreg = pdr.pcreg;
1506 	  rp->irpss = sindex;
1507 	  sv[i] = ss + sym.iss;
1508 	  sindex += strlen (sv[i]) + 1;
1509 	}
1510     }
1511 
1512   size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513   size = BFD_ALIGN (size, 16);
1514   rtproc = bfd_alloc (abfd, size);
1515   if (rtproc == NULL)
1516     {
1517       mips_elf_hash_table (info)->procedure_count = 0;
1518       goto error_return;
1519     }
1520 
1521   mips_elf_hash_table (info)->procedure_count = count + 2;
1522 
1523   erp = rtproc;
1524   memset (erp, 0, sizeof (struct rpdr_ext));
1525   erp++;
1526   str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527   strcpy (str, no_name_func);
1528   str += strlen (no_name_func) + 1;
1529   for (i = 0; i < count; i++)
1530     {
1531       ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532       strcpy (str, sv[i]);
1533       str += strlen (sv[i]) + 1;
1534     }
1535   H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536 
1537   /* Set the size and contents of .rtproc section.  */
1538   s->size = size;
1539   s->contents = rtproc;
1540 
1541   /* Skip this section later on (I don't think this currently
1542      matters, but someday it might).  */
1543   s->map_head.link_order = NULL;
1544 
1545   if (epdr != NULL)
1546     free (epdr);
1547   if (rpdr != NULL)
1548     free (rpdr);
1549   if (esym != NULL)
1550     free (esym);
1551   if (ss != NULL)
1552     free (ss);
1553   if (sv != NULL)
1554     free (sv);
1555 
1556   return TRUE;
1557 
1558  error_return:
1559   if (epdr != NULL)
1560     free (epdr);
1561   if (rpdr != NULL)
1562     free (rpdr);
1563   if (esym != NULL)
1564     free (esym);
1565   if (ss != NULL)
1566     free (ss);
1567   if (sv != NULL)
1568     free (sv);
1569   return FALSE;
1570 }
1571 
1572 /* We're going to create a stub for H.  Create a symbol for the stub's
1573    value and size, to help make the disassembly easier to read.  */
1574 
1575 static bfd_boolean
1576 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 			     struct mips_elf_link_hash_entry *h,
1578 			     const char *prefix, asection *s, bfd_vma value,
1579 			     bfd_vma size)
1580 {
1581   struct bfd_link_hash_entry *bh;
1582   struct elf_link_hash_entry *elfh;
1583   const char *name;
1584 
1585   if (ELF_ST_IS_MICROMIPS (h->root.other))
1586     value |= 1;
1587 
1588   /* Create a new symbol.  */
1589   name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1590   bh = NULL;
1591   if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1592 					 BSF_LOCAL, s, value, NULL,
1593 					 TRUE, FALSE, &bh))
1594     return FALSE;
1595 
1596   /* Make it a local function.  */
1597   elfh = (struct elf_link_hash_entry *) bh;
1598   elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1599   elfh->size = size;
1600   elfh->forced_local = 1;
1601   return TRUE;
1602 }
1603 
1604 /* We're about to redefine H.  Create a symbol to represent H's
1605    current value and size, to help make the disassembly easier
1606    to read.  */
1607 
1608 static bfd_boolean
1609 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1610 			       struct mips_elf_link_hash_entry *h,
1611 			       const char *prefix)
1612 {
1613   struct bfd_link_hash_entry *bh;
1614   struct elf_link_hash_entry *elfh;
1615   const char *name;
1616   asection *s;
1617   bfd_vma value;
1618 
1619   /* Read the symbol's value.  */
1620   BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1621 	      || h->root.root.type == bfd_link_hash_defweak);
1622   s = h->root.root.u.def.section;
1623   value = h->root.root.u.def.value;
1624 
1625   /* Create a new symbol.  */
1626   name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1627   bh = NULL;
1628   if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1629 					 BSF_LOCAL, s, value, NULL,
1630 					 TRUE, FALSE, &bh))
1631     return FALSE;
1632 
1633   /* Make it local and copy the other attributes from H.  */
1634   elfh = (struct elf_link_hash_entry *) bh;
1635   elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1636   elfh->other = h->root.other;
1637   elfh->size = h->root.size;
1638   elfh->forced_local = 1;
1639   return TRUE;
1640 }
1641 
1642 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1643    function rather than to a hard-float stub.  */
1644 
1645 static bfd_boolean
1646 section_allows_mips16_refs_p (asection *section)
1647 {
1648   const char *name;
1649 
1650   name = bfd_get_section_name (section->owner, section);
1651   return (FN_STUB_P (name)
1652 	  || CALL_STUB_P (name)
1653 	  || CALL_FP_STUB_P (name)
1654 	  || strcmp (name, ".pdr") == 0);
1655 }
1656 
1657 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1658    stub section of some kind.  Return the R_SYMNDX of the target
1659    function, or 0 if we can't decide which function that is.  */
1660 
1661 static unsigned long
1662 mips16_stub_symndx (const struct elf_backend_data *bed,
1663 		    asection *sec ATTRIBUTE_UNUSED,
1664 		    const Elf_Internal_Rela *relocs,
1665 		    const Elf_Internal_Rela *relend)
1666 {
1667   int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1668   const Elf_Internal_Rela *rel;
1669 
1670   /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1671      one in a compound relocation.  */
1672   for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1673     if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1674       return ELF_R_SYM (sec->owner, rel->r_info);
1675 
1676   /* Otherwise trust the first relocation, whatever its kind.  This is
1677      the traditional behavior.  */
1678   if (relocs < relend)
1679     return ELF_R_SYM (sec->owner, relocs->r_info);
1680 
1681   return 0;
1682 }
1683 
1684 /* Check the mips16 stubs for a particular symbol, and see if we can
1685    discard them.  */
1686 
1687 static void
1688 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1689 			     struct mips_elf_link_hash_entry *h)
1690 {
1691   /* Dynamic symbols must use the standard call interface, in case other
1692      objects try to call them.  */
1693   if (h->fn_stub != NULL
1694       && h->root.dynindx != -1)
1695     {
1696       mips_elf_create_shadow_symbol (info, h, ".mips16.");
1697       h->need_fn_stub = TRUE;
1698     }
1699 
1700   if (h->fn_stub != NULL
1701       && ! h->need_fn_stub)
1702     {
1703       /* We don't need the fn_stub; the only references to this symbol
1704          are 16 bit calls.  Clobber the size to 0 to prevent it from
1705          being included in the link.  */
1706       h->fn_stub->size = 0;
1707       h->fn_stub->flags &= ~SEC_RELOC;
1708       h->fn_stub->reloc_count = 0;
1709       h->fn_stub->flags |= SEC_EXCLUDE;
1710       h->fn_stub->output_section = bfd_abs_section_ptr;
1711     }
1712 
1713   if (h->call_stub != NULL
1714       && ELF_ST_IS_MIPS16 (h->root.other))
1715     {
1716       /* We don't need the call_stub; this is a 16 bit function, so
1717          calls from other 16 bit functions are OK.  Clobber the size
1718          to 0 to prevent it from being included in the link.  */
1719       h->call_stub->size = 0;
1720       h->call_stub->flags &= ~SEC_RELOC;
1721       h->call_stub->reloc_count = 0;
1722       h->call_stub->flags |= SEC_EXCLUDE;
1723       h->call_stub->output_section = bfd_abs_section_ptr;
1724     }
1725 
1726   if (h->call_fp_stub != NULL
1727       && ELF_ST_IS_MIPS16 (h->root.other))
1728     {
1729       /* We don't need the call_stub; this is a 16 bit function, so
1730          calls from other 16 bit functions are OK.  Clobber the size
1731          to 0 to prevent it from being included in the link.  */
1732       h->call_fp_stub->size = 0;
1733       h->call_fp_stub->flags &= ~SEC_RELOC;
1734       h->call_fp_stub->reloc_count = 0;
1735       h->call_fp_stub->flags |= SEC_EXCLUDE;
1736       h->call_fp_stub->output_section = bfd_abs_section_ptr;
1737     }
1738 }
1739 
1740 /* Hashtable callbacks for mips_elf_la25_stubs.  */
1741 
1742 static hashval_t
1743 mips_elf_la25_stub_hash (const void *entry_)
1744 {
1745   const struct mips_elf_la25_stub *entry;
1746 
1747   entry = (struct mips_elf_la25_stub *) entry_;
1748   return entry->h->root.root.u.def.section->id
1749     + entry->h->root.root.u.def.value;
1750 }
1751 
1752 static int
1753 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1754 {
1755   const struct mips_elf_la25_stub *entry1, *entry2;
1756 
1757   entry1 = (struct mips_elf_la25_stub *) entry1_;
1758   entry2 = (struct mips_elf_la25_stub *) entry2_;
1759   return ((entry1->h->root.root.u.def.section
1760 	   == entry2->h->root.root.u.def.section)
1761 	  && (entry1->h->root.root.u.def.value
1762 	      == entry2->h->root.root.u.def.value));
1763 }
1764 
1765 /* Called by the linker to set up the la25 stub-creation code.  FN is
1766    the linker's implementation of add_stub_function.  Return true on
1767    success.  */
1768 
1769 bfd_boolean
1770 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1771 			  asection *(*fn) (const char *, asection *,
1772 					   asection *))
1773 {
1774   struct mips_elf_link_hash_table *htab;
1775 
1776   htab = mips_elf_hash_table (info);
1777   if (htab == NULL)
1778     return FALSE;
1779 
1780   htab->add_stub_section = fn;
1781   htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1782 				      mips_elf_la25_stub_eq, NULL);
1783   if (htab->la25_stubs == NULL)
1784     return FALSE;
1785 
1786   return TRUE;
1787 }
1788 
1789 /* Return true if H is a locally-defined PIC function, in the sense
1790    that it or its fn_stub might need $25 to be valid on entry.
1791    Note that MIPS16 functions set up $gp using PC-relative instructions,
1792    so they themselves never need $25 to be valid.  Only non-MIPS16
1793    entry points are of interest here.  */
1794 
1795 static bfd_boolean
1796 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1797 {
1798   return ((h->root.root.type == bfd_link_hash_defined
1799 	   || h->root.root.type == bfd_link_hash_defweak)
1800 	  && h->root.def_regular
1801 	  && !bfd_is_abs_section (h->root.root.u.def.section)
1802 	  && (!ELF_ST_IS_MIPS16 (h->root.other)
1803 	      || (h->fn_stub && h->need_fn_stub))
1804 	  && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1805 	      || ELF_ST_IS_MIPS_PIC (h->root.other)));
1806 }
1807 
1808 /* Set *SEC to the input section that contains the target of STUB.
1809    Return the offset of the target from the start of that section.  */
1810 
1811 static bfd_vma
1812 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1813 			  asection **sec)
1814 {
1815   if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1816     {
1817       BFD_ASSERT (stub->h->need_fn_stub);
1818       *sec = stub->h->fn_stub;
1819       return 0;
1820     }
1821   else
1822     {
1823       *sec = stub->h->root.root.u.def.section;
1824       return stub->h->root.root.u.def.value;
1825     }
1826 }
1827 
1828 /* STUB describes an la25 stub that we have decided to implement
1829    by inserting an LUI/ADDIU pair before the target function.
1830    Create the section and redirect the function symbol to it.  */
1831 
1832 static bfd_boolean
1833 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1834 			 struct bfd_link_info *info)
1835 {
1836   struct mips_elf_link_hash_table *htab;
1837   char *name;
1838   asection *s, *input_section;
1839   unsigned int align;
1840 
1841   htab = mips_elf_hash_table (info);
1842   if (htab == NULL)
1843     return FALSE;
1844 
1845   /* Create a unique name for the new section.  */
1846   name = bfd_malloc (11 + sizeof (".text.stub."));
1847   if (name == NULL)
1848     return FALSE;
1849   sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1850 
1851   /* Create the section.  */
1852   mips_elf_get_la25_target (stub, &input_section);
1853   s = htab->add_stub_section (name, input_section,
1854 			      input_section->output_section);
1855   if (s == NULL)
1856     return FALSE;
1857 
1858   /* Make sure that any padding goes before the stub.  */
1859   align = input_section->alignment_power;
1860   if (!bfd_set_section_alignment (s->owner, s, align))
1861     return FALSE;
1862   if (align > 3)
1863     s->size = (1 << align) - 8;
1864 
1865   /* Create a symbol for the stub.  */
1866   mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1867   stub->stub_section = s;
1868   stub->offset = s->size;
1869 
1870   /* Allocate room for it.  */
1871   s->size += 8;
1872   return TRUE;
1873 }
1874 
1875 /* STUB describes an la25 stub that we have decided to implement
1876    with a separate trampoline.  Allocate room for it and redirect
1877    the function symbol to it.  */
1878 
1879 static bfd_boolean
1880 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1881 			      struct bfd_link_info *info)
1882 {
1883   struct mips_elf_link_hash_table *htab;
1884   asection *s;
1885 
1886   htab = mips_elf_hash_table (info);
1887   if (htab == NULL)
1888     return FALSE;
1889 
1890   /* Create a trampoline section, if we haven't already.  */
1891   s = htab->strampoline;
1892   if (s == NULL)
1893     {
1894       asection *input_section = stub->h->root.root.u.def.section;
1895       s = htab->add_stub_section (".text", NULL,
1896 				  input_section->output_section);
1897       if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1898 	return FALSE;
1899       htab->strampoline = s;
1900     }
1901 
1902   /* Create a symbol for the stub.  */
1903   mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1904   stub->stub_section = s;
1905   stub->offset = s->size;
1906 
1907   /* Allocate room for it.  */
1908   s->size += 16;
1909   return TRUE;
1910 }
1911 
1912 /* H describes a symbol that needs an la25 stub.  Make sure that an
1913    appropriate stub exists and point H at it.  */
1914 
1915 static bfd_boolean
1916 mips_elf_add_la25_stub (struct bfd_link_info *info,
1917 			struct mips_elf_link_hash_entry *h)
1918 {
1919   struct mips_elf_link_hash_table *htab;
1920   struct mips_elf_la25_stub search, *stub;
1921   bfd_boolean use_trampoline_p;
1922   asection *s;
1923   bfd_vma value;
1924   void **slot;
1925 
1926   /* Describe the stub we want.  */
1927   search.stub_section = NULL;
1928   search.offset = 0;
1929   search.h = h;
1930 
1931   /* See if we've already created an equivalent stub.  */
1932   htab = mips_elf_hash_table (info);
1933   if (htab == NULL)
1934     return FALSE;
1935 
1936   slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1937   if (slot == NULL)
1938     return FALSE;
1939 
1940   stub = (struct mips_elf_la25_stub *) *slot;
1941   if (stub != NULL)
1942     {
1943       /* We can reuse the existing stub.  */
1944       h->la25_stub = stub;
1945       return TRUE;
1946     }
1947 
1948   /* Create a permanent copy of ENTRY and add it to the hash table.  */
1949   stub = bfd_malloc (sizeof (search));
1950   if (stub == NULL)
1951     return FALSE;
1952   *stub = search;
1953   *slot = stub;
1954 
1955   /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1956      of the section and if we would need no more than 2 nops.  */
1957   value = mips_elf_get_la25_target (stub, &s);
1958   use_trampoline_p = (value != 0 || s->alignment_power > 4);
1959 
1960   h->la25_stub = stub;
1961   return (use_trampoline_p
1962 	  ? mips_elf_add_la25_trampoline (stub, info)
1963 	  : mips_elf_add_la25_intro (stub, info));
1964 }
1965 
1966 /* A mips_elf_link_hash_traverse callback that is called before sizing
1967    sections.  DATA points to a mips_htab_traverse_info structure.  */
1968 
1969 static bfd_boolean
1970 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1971 {
1972   struct mips_htab_traverse_info *hti;
1973 
1974   hti = (struct mips_htab_traverse_info *) data;
1975   if (!bfd_link_relocatable (hti->info))
1976     mips_elf_check_mips16_stubs (hti->info, h);
1977 
1978   if (mips_elf_local_pic_function_p (h))
1979     {
1980       /* PR 12845: If H is in a section that has been garbage
1981 	 collected it will have its output section set to *ABS*.  */
1982       if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1983 	return TRUE;
1984 
1985       /* H is a function that might need $25 to be valid on entry.
1986 	 If we're creating a non-PIC relocatable object, mark H as
1987 	 being PIC.  If we're creating a non-relocatable object with
1988 	 non-PIC branches and jumps to H, make sure that H has an la25
1989 	 stub.  */
1990       if (bfd_link_relocatable (hti->info))
1991 	{
1992 	  if (!PIC_OBJECT_P (hti->output_bfd))
1993 	    h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1994 	}
1995       else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1996 	{
1997 	  hti->error = TRUE;
1998 	  return FALSE;
1999 	}
2000     }
2001   return TRUE;
2002 }
2003 
2004 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2005    Most mips16 instructions are 16 bits, but these instructions
2006    are 32 bits.
2007 
2008    The format of these instructions is:
2009 
2010    +--------------+--------------------------------+
2011    |     JALX     | X|   Imm 20:16  |   Imm 25:21  |
2012    +--------------+--------------------------------+
2013    |                Immediate  15:0                |
2014    +-----------------------------------------------+
2015 
2016    JALX is the 5-bit value 00011.  X is 0 for jal, 1 for jalx.
2017    Note that the immediate value in the first word is swapped.
2018 
2019    When producing a relocatable object file, R_MIPS16_26 is
2020    handled mostly like R_MIPS_26.  In particular, the addend is
2021    stored as a straight 26-bit value in a 32-bit instruction.
2022    (gas makes life simpler for itself by never adjusting a
2023    R_MIPS16_26 reloc to be against a section, so the addend is
2024    always zero).  However, the 32 bit instruction is stored as 2
2025    16-bit values, rather than a single 32-bit value.  In a
2026    big-endian file, the result is the same; in a little-endian
2027    file, the two 16-bit halves of the 32 bit value are swapped.
2028    This is so that a disassembler can recognize the jal
2029    instruction.
2030 
2031    When doing a final link, R_MIPS16_26 is treated as a 32 bit
2032    instruction stored as two 16-bit values.  The addend A is the
2033    contents of the targ26 field.  The calculation is the same as
2034    R_MIPS_26.  When storing the calculated value, reorder the
2035    immediate value as shown above, and don't forget to store the
2036    value as two 16-bit values.
2037 
2038    To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2039    defined as
2040 
2041    big-endian:
2042    +--------+----------------------+
2043    |        |                      |
2044    |        |    targ26-16         |
2045    |31    26|25                   0|
2046    +--------+----------------------+
2047 
2048    little-endian:
2049    +----------+------+-------------+
2050    |          |      |             |
2051    |  sub1    |      |     sub2    |
2052    |0        9|10  15|16         31|
2053    +----------+--------------------+
2054    where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2055    ((sub1 << 16) | sub2)).
2056 
2057    When producing a relocatable object file, the calculation is
2058    (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2059    When producing a fully linked file, the calculation is
2060    let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2061    ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2062 
2063    The table below lists the other MIPS16 instruction relocations.
2064    Each one is calculated in the same way as the non-MIPS16 relocation
2065    given on the right, but using the extended MIPS16 layout of 16-bit
2066    immediate fields:
2067 
2068 	R_MIPS16_GPREL		R_MIPS_GPREL16
2069 	R_MIPS16_GOT16		R_MIPS_GOT16
2070 	R_MIPS16_CALL16		R_MIPS_CALL16
2071 	R_MIPS16_HI16		R_MIPS_HI16
2072 	R_MIPS16_LO16		R_MIPS_LO16
2073 
2074    A typical instruction will have a format like this:
2075 
2076    +--------------+--------------------------------+
2077    |    EXTEND    |     Imm 10:5    |   Imm 15:11  |
2078    +--------------+--------------------------------+
2079    |    Major     |   rx   |   ry   |   Imm  4:0   |
2080    +--------------+--------------------------------+
2081 
2082    EXTEND is the five bit value 11110.  Major is the instruction
2083    opcode.
2084 
2085    All we need to do here is shuffle the bits appropriately.
2086    As above, the two 16-bit halves must be swapped on a
2087    little-endian system.  */
2088 
2089 static inline bfd_boolean
2090 mips16_reloc_p (int r_type)
2091 {
2092   switch (r_type)
2093     {
2094     case R_MIPS16_26:
2095     case R_MIPS16_GPREL:
2096     case R_MIPS16_GOT16:
2097     case R_MIPS16_CALL16:
2098     case R_MIPS16_HI16:
2099     case R_MIPS16_LO16:
2100     case R_MIPS16_TLS_GD:
2101     case R_MIPS16_TLS_LDM:
2102     case R_MIPS16_TLS_DTPREL_HI16:
2103     case R_MIPS16_TLS_DTPREL_LO16:
2104     case R_MIPS16_TLS_GOTTPREL:
2105     case R_MIPS16_TLS_TPREL_HI16:
2106     case R_MIPS16_TLS_TPREL_LO16:
2107       return TRUE;
2108 
2109     default:
2110       return FALSE;
2111     }
2112 }
2113 
2114 /* Check if a microMIPS reloc.  */
2115 
2116 static inline bfd_boolean
2117 micromips_reloc_p (unsigned int r_type)
2118 {
2119   return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2120 }
2121 
2122 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2123    on a little-endian system.  This does not apply to R_MICROMIPS_PC7_S1
2124    and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions.  */
2125 
2126 static inline bfd_boolean
2127 micromips_reloc_shuffle_p (unsigned int r_type)
2128 {
2129   return (micromips_reloc_p (r_type)
2130 	  && r_type != R_MICROMIPS_PC7_S1
2131 	  && r_type != R_MICROMIPS_PC10_S1);
2132 }
2133 
2134 static inline bfd_boolean
2135 got16_reloc_p (int r_type)
2136 {
2137   return (r_type == R_MIPS_GOT16
2138 	  || r_type == R_MIPS16_GOT16
2139 	  || r_type == R_MICROMIPS_GOT16);
2140 }
2141 
2142 static inline bfd_boolean
2143 call16_reloc_p (int r_type)
2144 {
2145   return (r_type == R_MIPS_CALL16
2146 	  || r_type == R_MIPS16_CALL16
2147 	  || r_type == R_MICROMIPS_CALL16);
2148 }
2149 
2150 static inline bfd_boolean
2151 got_disp_reloc_p (unsigned int r_type)
2152 {
2153   return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2154 }
2155 
2156 static inline bfd_boolean
2157 got_page_reloc_p (unsigned int r_type)
2158 {
2159   return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2160 }
2161 
2162 static inline bfd_boolean
2163 got_lo16_reloc_p (unsigned int r_type)
2164 {
2165   return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2166 }
2167 
2168 static inline bfd_boolean
2169 call_hi16_reloc_p (unsigned int r_type)
2170 {
2171   return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2172 }
2173 
2174 static inline bfd_boolean
2175 call_lo16_reloc_p (unsigned int r_type)
2176 {
2177   return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2178 }
2179 
2180 static inline bfd_boolean
2181 hi16_reloc_p (int r_type)
2182 {
2183   return (r_type == R_MIPS_HI16
2184 	  || r_type == R_MIPS16_HI16
2185 	  || r_type == R_MICROMIPS_HI16
2186 	  || r_type == R_MIPS_PCHI16);
2187 }
2188 
2189 static inline bfd_boolean
2190 lo16_reloc_p (int r_type)
2191 {
2192   return (r_type == R_MIPS_LO16
2193 	  || r_type == R_MIPS16_LO16
2194 	  || r_type == R_MICROMIPS_LO16
2195 	  || r_type == R_MIPS_PCLO16);
2196 }
2197 
2198 static inline bfd_boolean
2199 mips16_call_reloc_p (int r_type)
2200 {
2201   return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2202 }
2203 
2204 static inline bfd_boolean
2205 jal_reloc_p (int r_type)
2206 {
2207   return (r_type == R_MIPS_26
2208 	  || r_type == R_MIPS16_26
2209 	  || r_type == R_MICROMIPS_26_S1);
2210 }
2211 
2212 static inline bfd_boolean
2213 aligned_pcrel_reloc_p (int r_type)
2214 {
2215   return (r_type == R_MIPS_PC18_S3
2216 	  || r_type == R_MIPS_PC19_S2);
2217 }
2218 
2219 static inline bfd_boolean
2220 micromips_branch_reloc_p (int r_type)
2221 {
2222   return (r_type == R_MICROMIPS_26_S1
2223 	  || r_type == R_MICROMIPS_PC16_S1
2224 	  || r_type == R_MICROMIPS_PC10_S1
2225 	  || r_type == R_MICROMIPS_PC7_S1);
2226 }
2227 
2228 static inline bfd_boolean
2229 tls_gd_reloc_p (unsigned int r_type)
2230 {
2231   return (r_type == R_MIPS_TLS_GD
2232 	  || r_type == R_MIPS16_TLS_GD
2233 	  || r_type == R_MICROMIPS_TLS_GD);
2234 }
2235 
2236 static inline bfd_boolean
2237 tls_ldm_reloc_p (unsigned int r_type)
2238 {
2239   return (r_type == R_MIPS_TLS_LDM
2240 	  || r_type == R_MIPS16_TLS_LDM
2241 	  || r_type == R_MICROMIPS_TLS_LDM);
2242 }
2243 
2244 static inline bfd_boolean
2245 tls_gottprel_reloc_p (unsigned int r_type)
2246 {
2247   return (r_type == R_MIPS_TLS_GOTTPREL
2248 	  || r_type == R_MIPS16_TLS_GOTTPREL
2249 	  || r_type == R_MICROMIPS_TLS_GOTTPREL);
2250 }
2251 
2252 void
2253 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2254 			       bfd_boolean jal_shuffle, bfd_byte *data)
2255 {
2256   bfd_vma first, second, val;
2257 
2258   if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2259     return;
2260 
2261   /* Pick up the first and second halfwords of the instruction.  */
2262   first = bfd_get_16 (abfd, data);
2263   second = bfd_get_16 (abfd, data + 2);
2264   if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2265     val = first << 16 | second;
2266   else if (r_type != R_MIPS16_26)
2267     val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2268 	   | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2269   else
2270     val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2271 	   | ((first & 0x1f) << 21) | second);
2272   bfd_put_32 (abfd, val, data);
2273 }
2274 
2275 void
2276 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2277 			     bfd_boolean jal_shuffle, bfd_byte *data)
2278 {
2279   bfd_vma first, second, val;
2280 
2281   if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2282     return;
2283 
2284   val = bfd_get_32 (abfd, data);
2285   if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2286     {
2287       second = val & 0xffff;
2288       first = val >> 16;
2289     }
2290   else if (r_type != R_MIPS16_26)
2291     {
2292       second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2293       first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2294     }
2295   else
2296     {
2297       second = val & 0xffff;
2298       first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2299 	       | ((val >> 21) & 0x1f);
2300     }
2301   bfd_put_16 (abfd, second, data + 2);
2302   bfd_put_16 (abfd, first, data);
2303 }
2304 
2305 bfd_reloc_status_type
2306 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2307 			       arelent *reloc_entry, asection *input_section,
2308 			       bfd_boolean relocatable, void *data, bfd_vma gp)
2309 {
2310   bfd_vma relocation;
2311   bfd_signed_vma val;
2312   bfd_reloc_status_type status;
2313 
2314   if (bfd_is_com_section (symbol->section))
2315     relocation = 0;
2316   else
2317     relocation = symbol->value;
2318 
2319   relocation += symbol->section->output_section->vma;
2320   relocation += symbol->section->output_offset;
2321 
2322   if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2323     return bfd_reloc_outofrange;
2324 
2325   /* Set val to the offset into the section or symbol.  */
2326   val = reloc_entry->addend;
2327 
2328   _bfd_mips_elf_sign_extend (val, 16);
2329 
2330   /* Adjust val for the final section location and GP value.  If we
2331      are producing relocatable output, we don't want to do this for
2332      an external symbol.  */
2333   if (! relocatable
2334       || (symbol->flags & BSF_SECTION_SYM) != 0)
2335     val += relocation - gp;
2336 
2337   if (reloc_entry->howto->partial_inplace)
2338     {
2339       status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2340 				       (bfd_byte *) data
2341 				       + reloc_entry->address);
2342       if (status != bfd_reloc_ok)
2343 	return status;
2344     }
2345   else
2346     reloc_entry->addend = val;
2347 
2348   if (relocatable)
2349     reloc_entry->address += input_section->output_offset;
2350 
2351   return bfd_reloc_ok;
2352 }
2353 
2354 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2355    R_MIPS_GOT16.  REL is the relocation, INPUT_SECTION is the section
2356    that contains the relocation field and DATA points to the start of
2357    INPUT_SECTION.  */
2358 
2359 struct mips_hi16
2360 {
2361   struct mips_hi16 *next;
2362   bfd_byte *data;
2363   asection *input_section;
2364   arelent rel;
2365 };
2366 
2367 /* FIXME: This should not be a static variable.  */
2368 
2369 static struct mips_hi16 *mips_hi16_list;
2370 
2371 /* A howto special_function for REL *HI16 relocations.  We can only
2372    calculate the correct value once we've seen the partnering
2373    *LO16 relocation, so just save the information for later.
2374 
2375    The ABI requires that the *LO16 immediately follow the *HI16.
2376    However, as a GNU extension, we permit an arbitrary number of
2377    *HI16s to be associated with a single *LO16.  This significantly
2378    simplies the relocation handling in gcc.  */
2379 
2380 bfd_reloc_status_type
2381 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2382 			  asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2383 			  asection *input_section, bfd *output_bfd,
2384 			  char **error_message ATTRIBUTE_UNUSED)
2385 {
2386   struct mips_hi16 *n;
2387 
2388   if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2389     return bfd_reloc_outofrange;
2390 
2391   n = bfd_malloc (sizeof *n);
2392   if (n == NULL)
2393     return bfd_reloc_outofrange;
2394 
2395   n->next = mips_hi16_list;
2396   n->data = data;
2397   n->input_section = input_section;
2398   n->rel = *reloc_entry;
2399   mips_hi16_list = n;
2400 
2401   if (output_bfd != NULL)
2402     reloc_entry->address += input_section->output_offset;
2403 
2404   return bfd_reloc_ok;
2405 }
2406 
2407 /* A howto special_function for REL R_MIPS*_GOT16 relocations.  This is just
2408    like any other 16-bit relocation when applied to global symbols, but is
2409    treated in the same as R_MIPS_HI16 when applied to local symbols.  */
2410 
2411 bfd_reloc_status_type
2412 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2413 			   void *data, asection *input_section,
2414 			   bfd *output_bfd, char **error_message)
2415 {
2416   if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2417       || bfd_is_und_section (bfd_get_section (symbol))
2418       || bfd_is_com_section (bfd_get_section (symbol)))
2419     /* The relocation is against a global symbol.  */
2420     return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2421 					input_section, output_bfd,
2422 					error_message);
2423 
2424   return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2425 				   input_section, output_bfd, error_message);
2426 }
2427 
2428 /* A howto special_function for REL *LO16 relocations.  The *LO16 itself
2429    is a straightforward 16 bit inplace relocation, but we must deal with
2430    any partnering high-part relocations as well.  */
2431 
2432 bfd_reloc_status_type
2433 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2434 			  void *data, asection *input_section,
2435 			  bfd *output_bfd, char **error_message)
2436 {
2437   bfd_vma vallo;
2438   bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2439 
2440   if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2441     return bfd_reloc_outofrange;
2442 
2443   _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2444 				 location);
2445   vallo = bfd_get_32 (abfd, location);
2446   _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2447 			       location);
2448 
2449   while (mips_hi16_list != NULL)
2450     {
2451       bfd_reloc_status_type ret;
2452       struct mips_hi16 *hi;
2453 
2454       hi = mips_hi16_list;
2455 
2456       /* R_MIPS*_GOT16 relocations are something of a special case.  We
2457 	 want to install the addend in the same way as for a R_MIPS*_HI16
2458 	 relocation (with a rightshift of 16).  However, since GOT16
2459 	 relocations can also be used with global symbols, their howto
2460 	 has a rightshift of 0.  */
2461       if (hi->rel.howto->type == R_MIPS_GOT16)
2462 	hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2463       else if (hi->rel.howto->type == R_MIPS16_GOT16)
2464 	hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2465       else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2466 	hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2467 
2468       /* VALLO is a signed 16-bit number.  Bias it by 0x8000 so that any
2469 	 carry or borrow will induce a change of +1 or -1 in the high part.  */
2470       hi->rel.addend += (vallo + 0x8000) & 0xffff;
2471 
2472       ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2473 					 hi->input_section, output_bfd,
2474 					 error_message);
2475       if (ret != bfd_reloc_ok)
2476 	return ret;
2477 
2478       mips_hi16_list = hi->next;
2479       free (hi);
2480     }
2481 
2482   return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2483 				      input_section, output_bfd,
2484 				      error_message);
2485 }
2486 
2487 /* A generic howto special_function.  This calculates and installs the
2488    relocation itself, thus avoiding the oft-discussed problems in
2489    bfd_perform_relocation and bfd_install_relocation.  */
2490 
2491 bfd_reloc_status_type
2492 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2493 			     asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2494 			     asection *input_section, bfd *output_bfd,
2495 			     char **error_message ATTRIBUTE_UNUSED)
2496 {
2497   bfd_signed_vma val;
2498   bfd_reloc_status_type status;
2499   bfd_boolean relocatable;
2500 
2501   relocatable = (output_bfd != NULL);
2502 
2503   if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2504     return bfd_reloc_outofrange;
2505 
2506   /* Build up the field adjustment in VAL.  */
2507   val = 0;
2508   if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2509     {
2510       /* Either we're calculating the final field value or we have a
2511 	 relocation against a section symbol.  Add in the section's
2512 	 offset or address.  */
2513       val += symbol->section->output_section->vma;
2514       val += symbol->section->output_offset;
2515     }
2516 
2517   if (!relocatable)
2518     {
2519       /* We're calculating the final field value.  Add in the symbol's value
2520 	 and, if pc-relative, subtract the address of the field itself.  */
2521       val += symbol->value;
2522       if (reloc_entry->howto->pc_relative)
2523 	{
2524 	  val -= input_section->output_section->vma;
2525 	  val -= input_section->output_offset;
2526 	  val -= reloc_entry->address;
2527 	}
2528     }
2529 
2530   /* VAL is now the final adjustment.  If we're keeping this relocation
2531      in the output file, and if the relocation uses a separate addend,
2532      we just need to add VAL to that addend.  Otherwise we need to add
2533      VAL to the relocation field itself.  */
2534   if (relocatable && !reloc_entry->howto->partial_inplace)
2535     reloc_entry->addend += val;
2536   else
2537     {
2538       bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2539 
2540       /* Add in the separate addend, if any.  */
2541       val += reloc_entry->addend;
2542 
2543       /* Add VAL to the relocation field.  */
2544       _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2545 				     location);
2546       status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2547 				       location);
2548       _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2549 				   location);
2550 
2551       if (status != bfd_reloc_ok)
2552 	return status;
2553     }
2554 
2555   if (relocatable)
2556     reloc_entry->address += input_section->output_offset;
2557 
2558   return bfd_reloc_ok;
2559 }
2560 
2561 /* Swap an entry in a .gptab section.  Note that these routines rely
2562    on the equivalence of the two elements of the union.  */
2563 
2564 static void
2565 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2566 			      Elf32_gptab *in)
2567 {
2568   in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2569   in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2570 }
2571 
2572 static void
2573 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2574 			       Elf32_External_gptab *ex)
2575 {
2576   H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2577   H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2578 }
2579 
2580 static void
2581 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2582 				Elf32_External_compact_rel *ex)
2583 {
2584   H_PUT_32 (abfd, in->id1, ex->id1);
2585   H_PUT_32 (abfd, in->num, ex->num);
2586   H_PUT_32 (abfd, in->id2, ex->id2);
2587   H_PUT_32 (abfd, in->offset, ex->offset);
2588   H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2589   H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2590 }
2591 
2592 static void
2593 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2594 			   Elf32_External_crinfo *ex)
2595 {
2596   unsigned long l;
2597 
2598   l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2599        | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2600        | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2601        | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2602   H_PUT_32 (abfd, l, ex->info);
2603   H_PUT_32 (abfd, in->konst, ex->konst);
2604   H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2605 }
2606 
2607 /* A .reginfo section holds a single Elf32_RegInfo structure.  These
2608    routines swap this structure in and out.  They are used outside of
2609    BFD, so they are globally visible.  */
2610 
2611 void
2612 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2613 				Elf32_RegInfo *in)
2614 {
2615   in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2616   in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2617   in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2618   in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2619   in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2620   in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2621 }
2622 
2623 void
2624 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2625 				 Elf32_External_RegInfo *ex)
2626 {
2627   H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2628   H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2629   H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2630   H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2631   H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2632   H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2633 }
2634 
2635 /* In the 64 bit ABI, the .MIPS.options section holds register
2636    information in an Elf64_Reginfo structure.  These routines swap
2637    them in and out.  They are globally visible because they are used
2638    outside of BFD.  These routines are here so that gas can call them
2639    without worrying about whether the 64 bit ABI has been included.  */
2640 
2641 void
2642 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2643 				Elf64_Internal_RegInfo *in)
2644 {
2645   in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2646   in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2647   in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2648   in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2649   in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2650   in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2651   in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2652 }
2653 
2654 void
2655 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2656 				 Elf64_External_RegInfo *ex)
2657 {
2658   H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2659   H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2660   H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2661   H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2662   H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2663   H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2664   H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2665 }
2666 
2667 /* Swap in an options header.  */
2668 
2669 void
2670 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2671 			      Elf_Internal_Options *in)
2672 {
2673   in->kind = H_GET_8 (abfd, ex->kind);
2674   in->size = H_GET_8 (abfd, ex->size);
2675   in->section = H_GET_16 (abfd, ex->section);
2676   in->info = H_GET_32 (abfd, ex->info);
2677 }
2678 
2679 /* Swap out an options header.  */
2680 
2681 void
2682 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2683 			       Elf_External_Options *ex)
2684 {
2685   H_PUT_8 (abfd, in->kind, ex->kind);
2686   H_PUT_8 (abfd, in->size, ex->size);
2687   H_PUT_16 (abfd, in->section, ex->section);
2688   H_PUT_32 (abfd, in->info, ex->info);
2689 }
2690 
2691 /* Swap in an abiflags structure.  */
2692 
2693 void
2694 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2695 				  const Elf_External_ABIFlags_v0 *ex,
2696 				  Elf_Internal_ABIFlags_v0 *in)
2697 {
2698   in->version = H_GET_16 (abfd, ex->version);
2699   in->isa_level = H_GET_8 (abfd, ex->isa_level);
2700   in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2701   in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2702   in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2703   in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2704   in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2705   in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2706   in->ases = H_GET_32 (abfd, ex->ases);
2707   in->flags1 = H_GET_32 (abfd, ex->flags1);
2708   in->flags2 = H_GET_32 (abfd, ex->flags2);
2709 }
2710 
2711 /* Swap out an abiflags structure.  */
2712 
2713 void
2714 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2715 				   const Elf_Internal_ABIFlags_v0 *in,
2716 				   Elf_External_ABIFlags_v0 *ex)
2717 {
2718   H_PUT_16 (abfd, in->version, ex->version);
2719   H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2720   H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2721   H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2722   H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2723   H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2724   H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2725   H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2726   H_PUT_32 (abfd, in->ases, ex->ases);
2727   H_PUT_32 (abfd, in->flags1, ex->flags1);
2728   H_PUT_32 (abfd, in->flags2, ex->flags2);
2729 }
2730 
2731 /* This function is called via qsort() to sort the dynamic relocation
2732    entries by increasing r_symndx value.  */
2733 
2734 static int
2735 sort_dynamic_relocs (const void *arg1, const void *arg2)
2736 {
2737   Elf_Internal_Rela int_reloc1;
2738   Elf_Internal_Rela int_reloc2;
2739   int diff;
2740 
2741   bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2742   bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2743 
2744   diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2745   if (diff != 0)
2746     return diff;
2747 
2748   if (int_reloc1.r_offset < int_reloc2.r_offset)
2749     return -1;
2750   if (int_reloc1.r_offset > int_reloc2.r_offset)
2751     return 1;
2752   return 0;
2753 }
2754 
2755 /* Like sort_dynamic_relocs, but used for elf64 relocations.  */
2756 
2757 static int
2758 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2759 			const void *arg2 ATTRIBUTE_UNUSED)
2760 {
2761 #ifdef BFD64
2762   Elf_Internal_Rela int_reloc1[3];
2763   Elf_Internal_Rela int_reloc2[3];
2764 
2765   (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2766     (reldyn_sorting_bfd, arg1, int_reloc1);
2767   (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2768     (reldyn_sorting_bfd, arg2, int_reloc2);
2769 
2770   if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2771     return -1;
2772   if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2773     return 1;
2774 
2775   if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2776     return -1;
2777   if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2778     return 1;
2779   return 0;
2780 #else
2781   abort ();
2782 #endif
2783 }
2784 
2785 
2786 /* This routine is used to write out ECOFF debugging external symbol
2787    information.  It is called via mips_elf_link_hash_traverse.  The
2788    ECOFF external symbol information must match the ELF external
2789    symbol information.  Unfortunately, at this point we don't know
2790    whether a symbol is required by reloc information, so the two
2791    tables may wind up being different.  We must sort out the external
2792    symbol information before we can set the final size of the .mdebug
2793    section, and we must set the size of the .mdebug section before we
2794    can relocate any sections, and we can't know which symbols are
2795    required by relocation until we relocate the sections.
2796    Fortunately, it is relatively unlikely that any symbol will be
2797    stripped but required by a reloc.  In particular, it can not happen
2798    when generating a final executable.  */
2799 
2800 static bfd_boolean
2801 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2802 {
2803   struct extsym_info *einfo = data;
2804   bfd_boolean strip;
2805   asection *sec, *output_section;
2806 
2807   if (h->root.indx == -2)
2808     strip = FALSE;
2809   else if ((h->root.def_dynamic
2810 	    || h->root.ref_dynamic
2811 	    || h->root.type == bfd_link_hash_new)
2812 	   && !h->root.def_regular
2813 	   && !h->root.ref_regular)
2814     strip = TRUE;
2815   else if (einfo->info->strip == strip_all
2816 	   || (einfo->info->strip == strip_some
2817 	       && bfd_hash_lookup (einfo->info->keep_hash,
2818 				   h->root.root.root.string,
2819 				   FALSE, FALSE) == NULL))
2820     strip = TRUE;
2821   else
2822     strip = FALSE;
2823 
2824   if (strip)
2825     return TRUE;
2826 
2827   if (h->esym.ifd == -2)
2828     {
2829       h->esym.jmptbl = 0;
2830       h->esym.cobol_main = 0;
2831       h->esym.weakext = 0;
2832       h->esym.reserved = 0;
2833       h->esym.ifd = ifdNil;
2834       h->esym.asym.value = 0;
2835       h->esym.asym.st = stGlobal;
2836 
2837       if (h->root.root.type == bfd_link_hash_undefined
2838 	  || h->root.root.type == bfd_link_hash_undefweak)
2839 	{
2840 	  const char *name;
2841 
2842 	  /* Use undefined class.  Also, set class and type for some
2843              special symbols.  */
2844 	  name = h->root.root.root.string;
2845 	  if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2846 	      || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2847 	    {
2848 	      h->esym.asym.sc = scData;
2849 	      h->esym.asym.st = stLabel;
2850 	      h->esym.asym.value = 0;
2851 	    }
2852 	  else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2853 	    {
2854 	      h->esym.asym.sc = scAbs;
2855 	      h->esym.asym.st = stLabel;
2856 	      h->esym.asym.value =
2857 		mips_elf_hash_table (einfo->info)->procedure_count;
2858 	    }
2859 	  else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2860 	    {
2861 	      h->esym.asym.sc = scAbs;
2862 	      h->esym.asym.st = stLabel;
2863 	      h->esym.asym.value = elf_gp (einfo->abfd);
2864 	    }
2865 	  else
2866 	    h->esym.asym.sc = scUndefined;
2867 	}
2868       else if (h->root.root.type != bfd_link_hash_defined
2869 	  && h->root.root.type != bfd_link_hash_defweak)
2870 	h->esym.asym.sc = scAbs;
2871       else
2872 	{
2873 	  const char *name;
2874 
2875 	  sec = h->root.root.u.def.section;
2876 	  output_section = sec->output_section;
2877 
2878 	  /* When making a shared library and symbol h is the one from
2879 	     the another shared library, OUTPUT_SECTION may be null.  */
2880 	  if (output_section == NULL)
2881 	    h->esym.asym.sc = scUndefined;
2882 	  else
2883 	    {
2884 	      name = bfd_section_name (output_section->owner, output_section);
2885 
2886 	      if (strcmp (name, ".text") == 0)
2887 		h->esym.asym.sc = scText;
2888 	      else if (strcmp (name, ".data") == 0)
2889 		h->esym.asym.sc = scData;
2890 	      else if (strcmp (name, ".sdata") == 0)
2891 		h->esym.asym.sc = scSData;
2892 	      else if (strcmp (name, ".rodata") == 0
2893 		       || strcmp (name, ".rdata") == 0)
2894 		h->esym.asym.sc = scRData;
2895 	      else if (strcmp (name, ".bss") == 0)
2896 		h->esym.asym.sc = scBss;
2897 	      else if (strcmp (name, ".sbss") == 0)
2898 		h->esym.asym.sc = scSBss;
2899 	      else if (strcmp (name, ".init") == 0)
2900 		h->esym.asym.sc = scInit;
2901 	      else if (strcmp (name, ".fini") == 0)
2902 		h->esym.asym.sc = scFini;
2903 	      else
2904 		h->esym.asym.sc = scAbs;
2905 	    }
2906 	}
2907 
2908       h->esym.asym.reserved = 0;
2909       h->esym.asym.index = indexNil;
2910     }
2911 
2912   if (h->root.root.type == bfd_link_hash_common)
2913     h->esym.asym.value = h->root.root.u.c.size;
2914   else if (h->root.root.type == bfd_link_hash_defined
2915 	   || h->root.root.type == bfd_link_hash_defweak)
2916     {
2917       if (h->esym.asym.sc == scCommon)
2918 	h->esym.asym.sc = scBss;
2919       else if (h->esym.asym.sc == scSCommon)
2920 	h->esym.asym.sc = scSBss;
2921 
2922       sec = h->root.root.u.def.section;
2923       output_section = sec->output_section;
2924       if (output_section != NULL)
2925 	h->esym.asym.value = (h->root.root.u.def.value
2926 			      + sec->output_offset
2927 			      + output_section->vma);
2928       else
2929 	h->esym.asym.value = 0;
2930     }
2931   else
2932     {
2933       struct mips_elf_link_hash_entry *hd = h;
2934 
2935       while (hd->root.root.type == bfd_link_hash_indirect)
2936 	hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2937 
2938       if (hd->needs_lazy_stub)
2939 	{
2940 	  BFD_ASSERT (hd->root.plt.plist != NULL);
2941 	  BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2942 	  /* Set type and value for a symbol with a function stub.  */
2943 	  h->esym.asym.st = stProc;
2944 	  sec = hd->root.root.u.def.section;
2945 	  if (sec == NULL)
2946 	    h->esym.asym.value = 0;
2947 	  else
2948 	    {
2949 	      output_section = sec->output_section;
2950 	      if (output_section != NULL)
2951 		h->esym.asym.value = (hd->root.plt.plist->stub_offset
2952 				      + sec->output_offset
2953 				      + output_section->vma);
2954 	      else
2955 		h->esym.asym.value = 0;
2956 	    }
2957 	}
2958     }
2959 
2960   if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2961 				      h->root.root.root.string,
2962 				      &h->esym))
2963     {
2964       einfo->failed = TRUE;
2965       return FALSE;
2966     }
2967 
2968   return TRUE;
2969 }
2970 
2971 /* A comparison routine used to sort .gptab entries.  */
2972 
2973 static int
2974 gptab_compare (const void *p1, const void *p2)
2975 {
2976   const Elf32_gptab *a1 = p1;
2977   const Elf32_gptab *a2 = p2;
2978 
2979   return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2980 }
2981 
2982 /* Functions to manage the got entry hash table.  */
2983 
2984 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2985    hash number.  */
2986 
2987 static INLINE hashval_t
2988 mips_elf_hash_bfd_vma (bfd_vma addr)
2989 {
2990 #ifdef BFD64
2991   return addr + (addr >> 32);
2992 #else
2993   return addr;
2994 #endif
2995 }
2996 
2997 static hashval_t
2998 mips_elf_got_entry_hash (const void *entry_)
2999 {
3000   const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3001 
3002   return (entry->symndx
3003 	  + ((entry->tls_type == GOT_TLS_LDM) << 18)
3004 	  + (entry->tls_type == GOT_TLS_LDM ? 0
3005 	     : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3006 	     : entry->symndx >= 0 ? (entry->abfd->id
3007 				     + mips_elf_hash_bfd_vma (entry->d.addend))
3008 	     : entry->d.h->root.root.root.hash));
3009 }
3010 
3011 static int
3012 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3013 {
3014   const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3015   const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3016 
3017   return (e1->symndx == e2->symndx
3018 	  && e1->tls_type == e2->tls_type
3019 	  && (e1->tls_type == GOT_TLS_LDM ? TRUE
3020 	      : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3021 	      : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3022 				   && e1->d.addend == e2->d.addend)
3023 	      : e2->abfd && e1->d.h == e2->d.h));
3024 }
3025 
3026 static hashval_t
3027 mips_got_page_ref_hash (const void *ref_)
3028 {
3029   const struct mips_got_page_ref *ref;
3030 
3031   ref = (const struct mips_got_page_ref *) ref_;
3032   return ((ref->symndx >= 0
3033 	   ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3034 	   : ref->u.h->root.root.root.hash)
3035 	  + mips_elf_hash_bfd_vma (ref->addend));
3036 }
3037 
3038 static int
3039 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3040 {
3041   const struct mips_got_page_ref *ref1, *ref2;
3042 
3043   ref1 = (const struct mips_got_page_ref *) ref1_;
3044   ref2 = (const struct mips_got_page_ref *) ref2_;
3045   return (ref1->symndx == ref2->symndx
3046 	  && (ref1->symndx < 0
3047 	      ? ref1->u.h == ref2->u.h
3048 	      : ref1->u.abfd == ref2->u.abfd)
3049 	  && ref1->addend == ref2->addend);
3050 }
3051 
3052 static hashval_t
3053 mips_got_page_entry_hash (const void *entry_)
3054 {
3055   const struct mips_got_page_entry *entry;
3056 
3057   entry = (const struct mips_got_page_entry *) entry_;
3058   return entry->sec->id;
3059 }
3060 
3061 static int
3062 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3063 {
3064   const struct mips_got_page_entry *entry1, *entry2;
3065 
3066   entry1 = (const struct mips_got_page_entry *) entry1_;
3067   entry2 = (const struct mips_got_page_entry *) entry2_;
3068   return entry1->sec == entry2->sec;
3069 }
3070 
3071 /* Create and return a new mips_got_info structure.  */
3072 
3073 static struct mips_got_info *
3074 mips_elf_create_got_info (bfd *abfd)
3075 {
3076   struct mips_got_info *g;
3077 
3078   g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3079   if (g == NULL)
3080     return NULL;
3081 
3082   g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3083 				    mips_elf_got_entry_eq, NULL);
3084   if (g->got_entries == NULL)
3085     return NULL;
3086 
3087   g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3088 				      mips_got_page_ref_eq, NULL);
3089   if (g->got_page_refs == NULL)
3090     return NULL;
3091 
3092   return g;
3093 }
3094 
3095 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3096    CREATE_P and if ABFD doesn't already have a GOT.  */
3097 
3098 static struct mips_got_info *
3099 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3100 {
3101   struct mips_elf_obj_tdata *tdata;
3102 
3103   if (!is_mips_elf (abfd))
3104     return NULL;
3105 
3106   tdata = mips_elf_tdata (abfd);
3107   if (!tdata->got && create_p)
3108     tdata->got = mips_elf_create_got_info (abfd);
3109   return tdata->got;
3110 }
3111 
3112 /* Record that ABFD should use output GOT G.  */
3113 
3114 static void
3115 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3116 {
3117   struct mips_elf_obj_tdata *tdata;
3118 
3119   BFD_ASSERT (is_mips_elf (abfd));
3120   tdata = mips_elf_tdata (abfd);
3121   if (tdata->got)
3122     {
3123       /* The GOT structure itself and the hash table entries are
3124 	 allocated to a bfd, but the hash tables aren't.  */
3125       htab_delete (tdata->got->got_entries);
3126       htab_delete (tdata->got->got_page_refs);
3127       if (tdata->got->got_page_entries)
3128 	htab_delete (tdata->got->got_page_entries);
3129     }
3130   tdata->got = g;
3131 }
3132 
3133 /* Return the dynamic relocation section.  If it doesn't exist, try to
3134    create a new it if CREATE_P, otherwise return NULL.  Also return NULL
3135    if creation fails.  */
3136 
3137 static asection *
3138 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3139 {
3140   const char *dname;
3141   asection *sreloc;
3142   bfd *dynobj;
3143 
3144   dname = MIPS_ELF_REL_DYN_NAME (info);
3145   dynobj = elf_hash_table (info)->dynobj;
3146   sreloc = bfd_get_linker_section (dynobj, dname);
3147   if (sreloc == NULL && create_p)
3148     {
3149       sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3150 						   (SEC_ALLOC
3151 						    | SEC_LOAD
3152 						    | SEC_HAS_CONTENTS
3153 						    | SEC_IN_MEMORY
3154 						    | SEC_LINKER_CREATED
3155 						    | SEC_READONLY));
3156       if (sreloc == NULL
3157 	  || ! bfd_set_section_alignment (dynobj, sreloc,
3158 					  MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3159 	return NULL;
3160     }
3161   return sreloc;
3162 }
3163 
3164 /* Return the GOT_TLS_* type required by relocation type R_TYPE.  */
3165 
3166 static int
3167 mips_elf_reloc_tls_type (unsigned int r_type)
3168 {
3169   if (tls_gd_reloc_p (r_type))
3170     return GOT_TLS_GD;
3171 
3172   if (tls_ldm_reloc_p (r_type))
3173     return GOT_TLS_LDM;
3174 
3175   if (tls_gottprel_reloc_p (r_type))
3176     return GOT_TLS_IE;
3177 
3178   return GOT_TLS_NONE;
3179 }
3180 
3181 /* Return the number of GOT slots needed for GOT TLS type TYPE.  */
3182 
3183 static int
3184 mips_tls_got_entries (unsigned int type)
3185 {
3186   switch (type)
3187     {
3188     case GOT_TLS_GD:
3189     case GOT_TLS_LDM:
3190       return 2;
3191 
3192     case GOT_TLS_IE:
3193       return 1;
3194 
3195     case GOT_TLS_NONE:
3196       return 0;
3197     }
3198   abort ();
3199 }
3200 
3201 /* Count the number of relocations needed for a TLS GOT entry, with
3202    access types from TLS_TYPE, and symbol H (or a local symbol if H
3203    is NULL).  */
3204 
3205 static int
3206 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3207 		     struct elf_link_hash_entry *h)
3208 {
3209   int indx = 0;
3210   bfd_boolean need_relocs = FALSE;
3211   bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3212 
3213   if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3214       && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3215     indx = h->dynindx;
3216 
3217   if ((bfd_link_pic (info) || indx != 0)
3218       && (h == NULL
3219 	  || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3220 	  || h->root.type != bfd_link_hash_undefweak))
3221     need_relocs = TRUE;
3222 
3223   if (!need_relocs)
3224     return 0;
3225 
3226   switch (tls_type)
3227     {
3228     case GOT_TLS_GD:
3229       return indx != 0 ? 2 : 1;
3230 
3231     case GOT_TLS_IE:
3232       return 1;
3233 
3234     case GOT_TLS_LDM:
3235       return bfd_link_pic (info) ? 1 : 0;
3236 
3237     default:
3238       return 0;
3239     }
3240 }
3241 
3242 /* Add the number of GOT entries and TLS relocations required by ENTRY
3243    to G.  */
3244 
3245 static void
3246 mips_elf_count_got_entry (struct bfd_link_info *info,
3247 			  struct mips_got_info *g,
3248 			  struct mips_got_entry *entry)
3249 {
3250   if (entry->tls_type)
3251     {
3252       g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3253       g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3254 					entry->symndx < 0
3255 					? &entry->d.h->root : NULL);
3256     }
3257   else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3258     g->local_gotno += 1;
3259   else
3260     g->global_gotno += 1;
3261 }
3262 
3263 /* Output a simple dynamic relocation into SRELOC.  */
3264 
3265 static void
3266 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3267 				    asection *sreloc,
3268 				    unsigned long reloc_index,
3269 				    unsigned long indx,
3270 				    int r_type,
3271 				    bfd_vma offset)
3272 {
3273   Elf_Internal_Rela rel[3];
3274 
3275   memset (rel, 0, sizeof (rel));
3276 
3277   rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3278   rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3279 
3280   if (ABI_64_P (output_bfd))
3281     {
3282       (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3283 	(output_bfd, &rel[0],
3284 	 (sreloc->contents
3285 	  + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3286     }
3287   else
3288     bfd_elf32_swap_reloc_out
3289       (output_bfd, &rel[0],
3290        (sreloc->contents
3291 	+ reloc_index * sizeof (Elf32_External_Rel)));
3292 }
3293 
3294 /* Initialize a set of TLS GOT entries for one symbol.  */
3295 
3296 static void
3297 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3298 			       struct mips_got_entry *entry,
3299 			       struct mips_elf_link_hash_entry *h,
3300 			       bfd_vma value)
3301 {
3302   struct mips_elf_link_hash_table *htab;
3303   int indx;
3304   asection *sreloc, *sgot;
3305   bfd_vma got_offset, got_offset2;
3306   bfd_boolean need_relocs = FALSE;
3307 
3308   htab = mips_elf_hash_table (info);
3309   if (htab == NULL)
3310     return;
3311 
3312   sgot = htab->sgot;
3313 
3314   indx = 0;
3315   if (h != NULL)
3316     {
3317       bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3318 
3319       if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3320 					   &h->root)
3321 	  && (!bfd_link_pic (info)
3322 	      || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3323 	indx = h->root.dynindx;
3324     }
3325 
3326   if (entry->tls_initialized)
3327     return;
3328 
3329   if ((bfd_link_pic (info) || indx != 0)
3330       && (h == NULL
3331 	  || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3332 	  || h->root.type != bfd_link_hash_undefweak))
3333     need_relocs = TRUE;
3334 
3335   /* MINUS_ONE means the symbol is not defined in this object.  It may not
3336      be defined at all; assume that the value doesn't matter in that
3337      case.  Otherwise complain if we would use the value.  */
3338   BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3339 	      || h->root.root.type == bfd_link_hash_undefweak);
3340 
3341   /* Emit necessary relocations.  */
3342   sreloc = mips_elf_rel_dyn_section (info, FALSE);
3343   got_offset = entry->gotidx;
3344 
3345   switch (entry->tls_type)
3346     {
3347     case GOT_TLS_GD:
3348       /* General Dynamic.  */
3349       got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3350 
3351       if (need_relocs)
3352 	{
3353 	  mips_elf_output_dynamic_relocation
3354 	    (abfd, sreloc, sreloc->reloc_count++, indx,
3355 	     ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3356 	     sgot->output_offset + sgot->output_section->vma + got_offset);
3357 
3358 	  if (indx)
3359 	    mips_elf_output_dynamic_relocation
3360 	      (abfd, sreloc, sreloc->reloc_count++, indx,
3361 	       ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3362 	       sgot->output_offset + sgot->output_section->vma + got_offset2);
3363 	  else
3364 	    MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3365 			       sgot->contents + got_offset2);
3366 	}
3367       else
3368 	{
3369 	  MIPS_ELF_PUT_WORD (abfd, 1,
3370 			     sgot->contents + got_offset);
3371 	  MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3372 			     sgot->contents + got_offset2);
3373 	}
3374       break;
3375 
3376     case GOT_TLS_IE:
3377       /* Initial Exec model.  */
3378       if (need_relocs)
3379 	{
3380 	  if (indx == 0)
3381 	    MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3382 			       sgot->contents + got_offset);
3383 	  else
3384 	    MIPS_ELF_PUT_WORD (abfd, 0,
3385 			       sgot->contents + got_offset);
3386 
3387 	  mips_elf_output_dynamic_relocation
3388 	    (abfd, sreloc, sreloc->reloc_count++, indx,
3389 	     ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3390 	     sgot->output_offset + sgot->output_section->vma + got_offset);
3391 	}
3392       else
3393 	MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3394 			   sgot->contents + got_offset);
3395       break;
3396 
3397     case GOT_TLS_LDM:
3398       /* The initial offset is zero, and the LD offsets will include the
3399 	 bias by DTP_OFFSET.  */
3400       MIPS_ELF_PUT_WORD (abfd, 0,
3401 			 sgot->contents + got_offset
3402 			 + MIPS_ELF_GOT_SIZE (abfd));
3403 
3404       if (!bfd_link_pic (info))
3405 	MIPS_ELF_PUT_WORD (abfd, 1,
3406 			   sgot->contents + got_offset);
3407       else
3408 	mips_elf_output_dynamic_relocation
3409 	  (abfd, sreloc, sreloc->reloc_count++, indx,
3410 	   ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3411 	   sgot->output_offset + sgot->output_section->vma + got_offset);
3412       break;
3413 
3414     default:
3415       abort ();
3416     }
3417 
3418   entry->tls_initialized = TRUE;
3419 }
3420 
3421 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3422    for global symbol H.  .got.plt comes before the GOT, so the offset
3423    will be negative.  */
3424 
3425 static bfd_vma
3426 mips_elf_gotplt_index (struct bfd_link_info *info,
3427 		       struct elf_link_hash_entry *h)
3428 {
3429   bfd_vma got_address, got_value;
3430   struct mips_elf_link_hash_table *htab;
3431 
3432   htab = mips_elf_hash_table (info);
3433   BFD_ASSERT (htab != NULL);
3434 
3435   BFD_ASSERT (h->plt.plist != NULL);
3436   BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3437 
3438   /* Calculate the address of the associated .got.plt entry.  */
3439   got_address = (htab->sgotplt->output_section->vma
3440 		 + htab->sgotplt->output_offset
3441 		 + (h->plt.plist->gotplt_index
3442 		    * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3443 
3444   /* Calculate the value of _GLOBAL_OFFSET_TABLE_.  */
3445   got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3446 	       + htab->root.hgot->root.u.def.section->output_offset
3447 	       + htab->root.hgot->root.u.def.value);
3448 
3449   return got_address - got_value;
3450 }
3451 
3452 /* Return the GOT offset for address VALUE.   If there is not yet a GOT
3453    entry for this value, create one.  If R_SYMNDX refers to a TLS symbol,
3454    create a TLS GOT entry instead.  Return -1 if no satisfactory GOT
3455    offset can be found.  */
3456 
3457 static bfd_vma
3458 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3459 			  bfd_vma value, unsigned long r_symndx,
3460 			  struct mips_elf_link_hash_entry *h, int r_type)
3461 {
3462   struct mips_elf_link_hash_table *htab;
3463   struct mips_got_entry *entry;
3464 
3465   htab = mips_elf_hash_table (info);
3466   BFD_ASSERT (htab != NULL);
3467 
3468   entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3469 					   r_symndx, h, r_type);
3470   if (!entry)
3471     return MINUS_ONE;
3472 
3473   if (entry->tls_type)
3474     mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3475   return entry->gotidx;
3476 }
3477 
3478 /* Return the GOT index of global symbol H in the primary GOT.  */
3479 
3480 static bfd_vma
3481 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3482 				   struct elf_link_hash_entry *h)
3483 {
3484   struct mips_elf_link_hash_table *htab;
3485   long global_got_dynindx;
3486   struct mips_got_info *g;
3487   bfd_vma got_index;
3488 
3489   htab = mips_elf_hash_table (info);
3490   BFD_ASSERT (htab != NULL);
3491 
3492   global_got_dynindx = 0;
3493   if (htab->global_gotsym != NULL)
3494     global_got_dynindx = htab->global_gotsym->dynindx;
3495 
3496   /* Once we determine the global GOT entry with the lowest dynamic
3497      symbol table index, we must put all dynamic symbols with greater
3498      indices into the primary GOT.  That makes it easy to calculate the
3499      GOT offset.  */
3500   BFD_ASSERT (h->dynindx >= global_got_dynindx);
3501   g = mips_elf_bfd_got (obfd, FALSE);
3502   got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3503 	       * MIPS_ELF_GOT_SIZE (obfd));
3504   BFD_ASSERT (got_index < htab->sgot->size);
3505 
3506   return got_index;
3507 }
3508 
3509 /* Return the GOT index for the global symbol indicated by H, which is
3510    referenced by a relocation of type R_TYPE in IBFD.  */
3511 
3512 static bfd_vma
3513 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3514 			   struct elf_link_hash_entry *h, int r_type)
3515 {
3516   struct mips_elf_link_hash_table *htab;
3517   struct mips_got_info *g;
3518   struct mips_got_entry lookup, *entry;
3519   bfd_vma gotidx;
3520 
3521   htab = mips_elf_hash_table (info);
3522   BFD_ASSERT (htab != NULL);
3523 
3524   g = mips_elf_bfd_got (ibfd, FALSE);
3525   BFD_ASSERT (g);
3526 
3527   lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3528   if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3529     return mips_elf_primary_global_got_index (obfd, info, h);
3530 
3531   lookup.abfd = ibfd;
3532   lookup.symndx = -1;
3533   lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3534   entry = htab_find (g->got_entries, &lookup);
3535   BFD_ASSERT (entry);
3536 
3537   gotidx = entry->gotidx;
3538   BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3539 
3540   if (lookup.tls_type)
3541     {
3542       bfd_vma value = MINUS_ONE;
3543 
3544       if ((h->root.type == bfd_link_hash_defined
3545 	   || h->root.type == bfd_link_hash_defweak)
3546 	  && h->root.u.def.section->output_section)
3547 	value = (h->root.u.def.value
3548 		 + h->root.u.def.section->output_offset
3549 		 + h->root.u.def.section->output_section->vma);
3550 
3551       mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3552     }
3553   return gotidx;
3554 }
3555 
3556 /* Find a GOT page entry that points to within 32KB of VALUE.  These
3557    entries are supposed to be placed at small offsets in the GOT, i.e.,
3558    within 32KB of GP.  Return the index of the GOT entry, or -1 if no
3559    entry could be created.  If OFFSETP is nonnull, use it to return the
3560    offset of the GOT entry from VALUE.  */
3561 
3562 static bfd_vma
3563 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3564 		   bfd_vma value, bfd_vma *offsetp)
3565 {
3566   bfd_vma page, got_index;
3567   struct mips_got_entry *entry;
3568 
3569   page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3570   entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3571 					   NULL, R_MIPS_GOT_PAGE);
3572 
3573   if (!entry)
3574     return MINUS_ONE;
3575 
3576   got_index = entry->gotidx;
3577 
3578   if (offsetp)
3579     *offsetp = value - entry->d.address;
3580 
3581   return got_index;
3582 }
3583 
3584 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3585    EXTERNAL is true if the relocation was originally against a global
3586    symbol that binds locally.  */
3587 
3588 static bfd_vma
3589 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3590 		      bfd_vma value, bfd_boolean external)
3591 {
3592   struct mips_got_entry *entry;
3593 
3594   /* GOT16 relocations against local symbols are followed by a LO16
3595      relocation; those against global symbols are not.  Thus if the
3596      symbol was originally local, the GOT16 relocation should load the
3597      equivalent of %hi(VALUE), otherwise it should load VALUE itself.  */
3598   if (! external)
3599     value = mips_elf_high (value) << 16;
3600 
3601   /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3602      R_MIPS16_GOT16, R_MIPS_CALL16, etc.  The format of the entry is the
3603      same in all cases.  */
3604   entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3605 					   NULL, R_MIPS_GOT16);
3606   if (entry)
3607     return entry->gotidx;
3608   else
3609     return MINUS_ONE;
3610 }
3611 
3612 /* Returns the offset for the entry at the INDEXth position
3613    in the GOT.  */
3614 
3615 static bfd_vma
3616 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3617 				bfd *input_bfd, bfd_vma got_index)
3618 {
3619   struct mips_elf_link_hash_table *htab;
3620   asection *sgot;
3621   bfd_vma gp;
3622 
3623   htab = mips_elf_hash_table (info);
3624   BFD_ASSERT (htab != NULL);
3625 
3626   sgot = htab->sgot;
3627   gp = _bfd_get_gp_value (output_bfd)
3628     + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3629 
3630   return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3631 }
3632 
3633 /* Create and return a local GOT entry for VALUE, which was calculated
3634    from a symbol belonging to INPUT_SECTON.  Return NULL if it could not
3635    be created.  If R_SYMNDX refers to a TLS symbol, create a TLS entry
3636    instead.  */
3637 
3638 static struct mips_got_entry *
3639 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3640 				 bfd *ibfd, bfd_vma value,
3641 				 unsigned long r_symndx,
3642 				 struct mips_elf_link_hash_entry *h,
3643 				 int r_type)
3644 {
3645   struct mips_got_entry lookup, *entry;
3646   void **loc;
3647   struct mips_got_info *g;
3648   struct mips_elf_link_hash_table *htab;
3649   bfd_vma gotidx;
3650 
3651   htab = mips_elf_hash_table (info);
3652   BFD_ASSERT (htab != NULL);
3653 
3654   g = mips_elf_bfd_got (ibfd, FALSE);
3655   if (g == NULL)
3656     {
3657       g = mips_elf_bfd_got (abfd, FALSE);
3658       BFD_ASSERT (g != NULL);
3659     }
3660 
3661   /* This function shouldn't be called for symbols that live in the global
3662      area of the GOT.  */
3663   BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3664 
3665   lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3666   if (lookup.tls_type)
3667     {
3668       lookup.abfd = ibfd;
3669       if (tls_ldm_reloc_p (r_type))
3670 	{
3671 	  lookup.symndx = 0;
3672 	  lookup.d.addend = 0;
3673 	}
3674       else if (h == NULL)
3675 	{
3676 	  lookup.symndx = r_symndx;
3677 	  lookup.d.addend = 0;
3678 	}
3679       else
3680 	{
3681 	  lookup.symndx = -1;
3682 	  lookup.d.h = h;
3683 	}
3684 
3685       entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3686       BFD_ASSERT (entry);
3687 
3688       gotidx = entry->gotidx;
3689       BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3690 
3691       return entry;
3692     }
3693 
3694   lookup.abfd = NULL;
3695   lookup.symndx = -1;
3696   lookup.d.address = value;
3697   loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3698   if (!loc)
3699     return NULL;
3700 
3701   entry = (struct mips_got_entry *) *loc;
3702   if (entry)
3703     return entry;
3704 
3705   if (g->assigned_low_gotno > g->assigned_high_gotno)
3706     {
3707       /* We didn't allocate enough space in the GOT.  */
3708       (*_bfd_error_handler)
3709 	(_("not enough GOT space for local GOT entries"));
3710       bfd_set_error (bfd_error_bad_value);
3711       return NULL;
3712     }
3713 
3714   entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3715   if (!entry)
3716     return NULL;
3717 
3718   if (got16_reloc_p (r_type)
3719       || call16_reloc_p (r_type)
3720       || got_page_reloc_p (r_type)
3721       || got_disp_reloc_p (r_type))
3722     lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3723   else
3724     lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3725 
3726   *entry = lookup;
3727   *loc = entry;
3728 
3729   MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx);
3730 
3731   /* These GOT entries need a dynamic relocation on VxWorks.  */
3732   if (htab->is_vxworks)
3733     {
3734       Elf_Internal_Rela outrel;
3735       asection *s;
3736       bfd_byte *rloc;
3737       bfd_vma got_address;
3738 
3739       s = mips_elf_rel_dyn_section (info, FALSE);
3740       got_address = (htab->sgot->output_section->vma
3741 		     + htab->sgot->output_offset
3742 		     + entry->gotidx);
3743 
3744       rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3745       outrel.r_offset = got_address;
3746       outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3747       outrel.r_addend = value;
3748       bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3749     }
3750 
3751   return entry;
3752 }
3753 
3754 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3755    The number might be exact or a worst-case estimate, depending on how
3756    much information is available to elf_backend_omit_section_dynsym at
3757    the current linking stage.  */
3758 
3759 static bfd_size_type
3760 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3761 {
3762   bfd_size_type count;
3763 
3764   count = 0;
3765   if (bfd_link_pic (info)
3766       || elf_hash_table (info)->is_relocatable_executable)
3767     {
3768       asection *p;
3769       const struct elf_backend_data *bed;
3770 
3771       bed = get_elf_backend_data (output_bfd);
3772       for (p = output_bfd->sections; p ; p = p->next)
3773 	if ((p->flags & SEC_EXCLUDE) == 0
3774 	    && (p->flags & SEC_ALLOC) != 0
3775 	    && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3776 	  ++count;
3777     }
3778   return count;
3779 }
3780 
3781 /* Sort the dynamic symbol table so that symbols that need GOT entries
3782    appear towards the end.  */
3783 
3784 static bfd_boolean
3785 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3786 {
3787   struct mips_elf_link_hash_table *htab;
3788   struct mips_elf_hash_sort_data hsd;
3789   struct mips_got_info *g;
3790 
3791   if (elf_hash_table (info)->dynsymcount == 0)
3792     return TRUE;
3793 
3794   htab = mips_elf_hash_table (info);
3795   BFD_ASSERT (htab != NULL);
3796 
3797   g = htab->got_info;
3798   if (g == NULL)
3799     return TRUE;
3800 
3801   hsd.low = NULL;
3802   hsd.max_unref_got_dynindx
3803     = hsd.min_got_dynindx
3804     = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3805   hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3806   mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3807 				elf_hash_table (info)),
3808 			       mips_elf_sort_hash_table_f,
3809 			       &hsd);
3810 
3811   /* There should have been enough room in the symbol table to
3812      accommodate both the GOT and non-GOT symbols.  */
3813   BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3814   BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3815 	      == elf_hash_table (info)->dynsymcount);
3816   BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3817 	      == g->global_gotno);
3818 
3819   /* Now we know which dynamic symbol has the lowest dynamic symbol
3820      table index in the GOT.  */
3821   htab->global_gotsym = hsd.low;
3822 
3823   return TRUE;
3824 }
3825 
3826 /* If H needs a GOT entry, assign it the highest available dynamic
3827    index.  Otherwise, assign it the lowest available dynamic
3828    index.  */
3829 
3830 static bfd_boolean
3831 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3832 {
3833   struct mips_elf_hash_sort_data *hsd = data;
3834 
3835   /* Symbols without dynamic symbol table entries aren't interesting
3836      at all.  */
3837   if (h->root.dynindx == -1)
3838     return TRUE;
3839 
3840   switch (h->global_got_area)
3841     {
3842     case GGA_NONE:
3843       h->root.dynindx = hsd->max_non_got_dynindx++;
3844       break;
3845 
3846     case GGA_NORMAL:
3847       h->root.dynindx = --hsd->min_got_dynindx;
3848       hsd->low = (struct elf_link_hash_entry *) h;
3849       break;
3850 
3851     case GGA_RELOC_ONLY:
3852       if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3853 	hsd->low = (struct elf_link_hash_entry *) h;
3854       h->root.dynindx = hsd->max_unref_got_dynindx++;
3855       break;
3856     }
3857 
3858   return TRUE;
3859 }
3860 
3861 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3862    (which is owned by the caller and shouldn't be added to the
3863    hash table directly).  */
3864 
3865 static bfd_boolean
3866 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3867 			   struct mips_got_entry *lookup)
3868 {
3869   struct mips_elf_link_hash_table *htab;
3870   struct mips_got_entry *entry;
3871   struct mips_got_info *g;
3872   void **loc, **bfd_loc;
3873 
3874   /* Make sure there's a slot for this entry in the master GOT.  */
3875   htab = mips_elf_hash_table (info);
3876   g = htab->got_info;
3877   loc = htab_find_slot (g->got_entries, lookup, INSERT);
3878   if (!loc)
3879     return FALSE;
3880 
3881   /* Populate the entry if it isn't already.  */
3882   entry = (struct mips_got_entry *) *loc;
3883   if (!entry)
3884     {
3885       entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3886       if (!entry)
3887 	return FALSE;
3888 
3889       lookup->tls_initialized = FALSE;
3890       lookup->gotidx = -1;
3891       *entry = *lookup;
3892       *loc = entry;
3893     }
3894 
3895   /* Reuse the same GOT entry for the BFD's GOT.  */
3896   g = mips_elf_bfd_got (abfd, TRUE);
3897   if (!g)
3898     return FALSE;
3899 
3900   bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3901   if (!bfd_loc)
3902     return FALSE;
3903 
3904   if (!*bfd_loc)
3905     *bfd_loc = entry;
3906   return TRUE;
3907 }
3908 
3909 /* ABFD has a GOT relocation of type R_TYPE against H.  Reserve a GOT
3910    entry for it.  FOR_CALL is true if the caller is only interested in
3911    using the GOT entry for calls.  */
3912 
3913 static bfd_boolean
3914 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3915 				   bfd *abfd, struct bfd_link_info *info,
3916 				   bfd_boolean for_call, int r_type)
3917 {
3918   struct mips_elf_link_hash_table *htab;
3919   struct mips_elf_link_hash_entry *hmips;
3920   struct mips_got_entry entry;
3921   unsigned char tls_type;
3922 
3923   htab = mips_elf_hash_table (info);
3924   BFD_ASSERT (htab != NULL);
3925 
3926   hmips = (struct mips_elf_link_hash_entry *) h;
3927   if (!for_call)
3928     hmips->got_only_for_calls = FALSE;
3929 
3930   /* A global symbol in the GOT must also be in the dynamic symbol
3931      table.  */
3932   if (h->dynindx == -1)
3933     {
3934       switch (ELF_ST_VISIBILITY (h->other))
3935 	{
3936 	case STV_INTERNAL:
3937 	case STV_HIDDEN:
3938 	  _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3939 	  break;
3940 	}
3941       if (!bfd_elf_link_record_dynamic_symbol (info, h))
3942 	return FALSE;
3943     }
3944 
3945   tls_type = mips_elf_reloc_tls_type (r_type);
3946   if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3947     hmips->global_got_area = GGA_NORMAL;
3948 
3949   entry.abfd = abfd;
3950   entry.symndx = -1;
3951   entry.d.h = (struct mips_elf_link_hash_entry *) h;
3952   entry.tls_type = tls_type;
3953   return mips_elf_record_got_entry (info, abfd, &entry);
3954 }
3955 
3956 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3957    where SYMNDX is a local symbol.  Reserve a GOT entry for it.  */
3958 
3959 static bfd_boolean
3960 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3961 				  struct bfd_link_info *info, int r_type)
3962 {
3963   struct mips_elf_link_hash_table *htab;
3964   struct mips_got_info *g;
3965   struct mips_got_entry entry;
3966 
3967   htab = mips_elf_hash_table (info);
3968   BFD_ASSERT (htab != NULL);
3969 
3970   g = htab->got_info;
3971   BFD_ASSERT (g != NULL);
3972 
3973   entry.abfd = abfd;
3974   entry.symndx = symndx;
3975   entry.d.addend = addend;
3976   entry.tls_type = mips_elf_reloc_tls_type (r_type);
3977   return mips_elf_record_got_entry (info, abfd, &entry);
3978 }
3979 
3980 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
3981    H is the symbol's hash table entry, or null if SYMNDX is local
3982    to ABFD.  */
3983 
3984 static bfd_boolean
3985 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
3986 			      long symndx, struct elf_link_hash_entry *h,
3987 			      bfd_signed_vma addend)
3988 {
3989   struct mips_elf_link_hash_table *htab;
3990   struct mips_got_info *g1, *g2;
3991   struct mips_got_page_ref lookup, *entry;
3992   void **loc, **bfd_loc;
3993 
3994   htab = mips_elf_hash_table (info);
3995   BFD_ASSERT (htab != NULL);
3996 
3997   g1 = htab->got_info;
3998   BFD_ASSERT (g1 != NULL);
3999 
4000   if (h)
4001     {
4002       lookup.symndx = -1;
4003       lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4004     }
4005   else
4006     {
4007       lookup.symndx = symndx;
4008       lookup.u.abfd = abfd;
4009     }
4010   lookup.addend = addend;
4011   loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4012   if (loc == NULL)
4013     return FALSE;
4014 
4015   entry = (struct mips_got_page_ref *) *loc;
4016   if (!entry)
4017     {
4018       entry = bfd_alloc (abfd, sizeof (*entry));
4019       if (!entry)
4020 	return FALSE;
4021 
4022       *entry = lookup;
4023       *loc = entry;
4024     }
4025 
4026   /* Add the same entry to the BFD's GOT.  */
4027   g2 = mips_elf_bfd_got (abfd, TRUE);
4028   if (!g2)
4029     return FALSE;
4030 
4031   bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4032   if (!bfd_loc)
4033     return FALSE;
4034 
4035   if (!*bfd_loc)
4036     *bfd_loc = entry;
4037 
4038   return TRUE;
4039 }
4040 
4041 /* Add room for N relocations to the .rel(a).dyn section in ABFD.  */
4042 
4043 static void
4044 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4045 				       unsigned int n)
4046 {
4047   asection *s;
4048   struct mips_elf_link_hash_table *htab;
4049 
4050   htab = mips_elf_hash_table (info);
4051   BFD_ASSERT (htab != NULL);
4052 
4053   s = mips_elf_rel_dyn_section (info, FALSE);
4054   BFD_ASSERT (s != NULL);
4055 
4056   if (htab->is_vxworks)
4057     s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4058   else
4059     {
4060       if (s->size == 0)
4061 	{
4062 	  /* Make room for a null element.  */
4063 	  s->size += MIPS_ELF_REL_SIZE (abfd);
4064 	  ++s->reloc_count;
4065 	}
4066       s->size += n * MIPS_ELF_REL_SIZE (abfd);
4067     }
4068 }
4069 
4070 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4071    mips_elf_traverse_got_arg structure.  Count the number of GOT
4072    entries and TLS relocs.  Set DATA->value to true if we need
4073    to resolve indirect or warning symbols and then recreate the GOT.  */
4074 
4075 static int
4076 mips_elf_check_recreate_got (void **entryp, void *data)
4077 {
4078   struct mips_got_entry *entry;
4079   struct mips_elf_traverse_got_arg *arg;
4080 
4081   entry = (struct mips_got_entry *) *entryp;
4082   arg = (struct mips_elf_traverse_got_arg *) data;
4083   if (entry->abfd != NULL && entry->symndx == -1)
4084     {
4085       struct mips_elf_link_hash_entry *h;
4086 
4087       h = entry->d.h;
4088       if (h->root.root.type == bfd_link_hash_indirect
4089 	  || h->root.root.type == bfd_link_hash_warning)
4090 	{
4091 	  arg->value = TRUE;
4092 	  return 0;
4093 	}
4094     }
4095   mips_elf_count_got_entry (arg->info, arg->g, entry);
4096   return 1;
4097 }
4098 
4099 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4100    mips_elf_traverse_got_arg structure.  Add all entries to DATA->g,
4101    converting entries for indirect and warning symbols into entries
4102    for the target symbol.  Set DATA->g to null on error.  */
4103 
4104 static int
4105 mips_elf_recreate_got (void **entryp, void *data)
4106 {
4107   struct mips_got_entry new_entry, *entry;
4108   struct mips_elf_traverse_got_arg *arg;
4109   void **slot;
4110 
4111   entry = (struct mips_got_entry *) *entryp;
4112   arg = (struct mips_elf_traverse_got_arg *) data;
4113   if (entry->abfd != NULL
4114       && entry->symndx == -1
4115       && (entry->d.h->root.root.type == bfd_link_hash_indirect
4116 	  || entry->d.h->root.root.type == bfd_link_hash_warning))
4117     {
4118       struct mips_elf_link_hash_entry *h;
4119 
4120       new_entry = *entry;
4121       entry = &new_entry;
4122       h = entry->d.h;
4123       do
4124 	{
4125 	  BFD_ASSERT (h->global_got_area == GGA_NONE);
4126 	  h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4127 	}
4128       while (h->root.root.type == bfd_link_hash_indirect
4129 	     || h->root.root.type == bfd_link_hash_warning);
4130       entry->d.h = h;
4131     }
4132   slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4133   if (slot == NULL)
4134     {
4135       arg->g = NULL;
4136       return 0;
4137     }
4138   if (*slot == NULL)
4139     {
4140       if (entry == &new_entry)
4141 	{
4142 	  entry = bfd_alloc (entry->abfd, sizeof (*entry));
4143 	  if (!entry)
4144 	    {
4145 	      arg->g = NULL;
4146 	      return 0;
4147 	    }
4148 	  *entry = new_entry;
4149 	}
4150       *slot = entry;
4151       mips_elf_count_got_entry (arg->info, arg->g, entry);
4152     }
4153   return 1;
4154 }
4155 
4156 /* Return the maximum number of GOT page entries required for RANGE.  */
4157 
4158 static bfd_vma
4159 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4160 {
4161   return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4162 }
4163 
4164 /* Record that G requires a page entry that can reach SEC + ADDEND.  */
4165 
4166 static bfd_boolean
4167 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4168 				asection *sec, bfd_signed_vma addend)
4169 {
4170   struct mips_got_info *g = arg->g;
4171   struct mips_got_page_entry lookup, *entry;
4172   struct mips_got_page_range **range_ptr, *range;
4173   bfd_vma old_pages, new_pages;
4174   void **loc;
4175 
4176   /* Find the mips_got_page_entry hash table entry for this section.  */
4177   lookup.sec = sec;
4178   loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4179   if (loc == NULL)
4180     return FALSE;
4181 
4182   /* Create a mips_got_page_entry if this is the first time we've
4183      seen the section.  */
4184   entry = (struct mips_got_page_entry *) *loc;
4185   if (!entry)
4186     {
4187       entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4188       if (!entry)
4189 	return FALSE;
4190 
4191       entry->sec = sec;
4192       *loc = entry;
4193     }
4194 
4195   /* Skip over ranges whose maximum extent cannot share a page entry
4196      with ADDEND.  */
4197   range_ptr = &entry->ranges;
4198   while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4199     range_ptr = &(*range_ptr)->next;
4200 
4201   /* If we scanned to the end of the list, or found a range whose
4202      minimum extent cannot share a page entry with ADDEND, create
4203      a new singleton range.  */
4204   range = *range_ptr;
4205   if (!range || addend < range->min_addend - 0xffff)
4206     {
4207       range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4208       if (!range)
4209 	return FALSE;
4210 
4211       range->next = *range_ptr;
4212       range->min_addend = addend;
4213       range->max_addend = addend;
4214 
4215       *range_ptr = range;
4216       entry->num_pages++;
4217       g->page_gotno++;
4218       return TRUE;
4219     }
4220 
4221   /* Remember how many pages the old range contributed.  */
4222   old_pages = mips_elf_pages_for_range (range);
4223 
4224   /* Update the ranges.  */
4225   if (addend < range->min_addend)
4226     range->min_addend = addend;
4227   else if (addend > range->max_addend)
4228     {
4229       if (range->next && addend >= range->next->min_addend - 0xffff)
4230 	{
4231 	  old_pages += mips_elf_pages_for_range (range->next);
4232 	  range->max_addend = range->next->max_addend;
4233 	  range->next = range->next->next;
4234 	}
4235       else
4236 	range->max_addend = addend;
4237     }
4238 
4239   /* Record any change in the total estimate.  */
4240   new_pages = mips_elf_pages_for_range (range);
4241   if (old_pages != new_pages)
4242     {
4243       entry->num_pages += new_pages - old_pages;
4244       g->page_gotno += new_pages - old_pages;
4245     }
4246 
4247   return TRUE;
4248 }
4249 
4250 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4251    and for which DATA points to a mips_elf_traverse_got_arg.  Work out
4252    whether the page reference described by *REFP needs a GOT page entry,
4253    and record that entry in DATA->g if so.  Set DATA->g to null on failure.  */
4254 
4255 static bfd_boolean
4256 mips_elf_resolve_got_page_ref (void **refp, void *data)
4257 {
4258   struct mips_got_page_ref *ref;
4259   struct mips_elf_traverse_got_arg *arg;
4260   struct mips_elf_link_hash_table *htab;
4261   asection *sec;
4262   bfd_vma addend;
4263 
4264   ref = (struct mips_got_page_ref *) *refp;
4265   arg = (struct mips_elf_traverse_got_arg *) data;
4266   htab = mips_elf_hash_table (arg->info);
4267 
4268   if (ref->symndx < 0)
4269     {
4270       struct mips_elf_link_hash_entry *h;
4271 
4272       /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries.  */
4273       h = ref->u.h;
4274       if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4275 	return 1;
4276 
4277       /* Ignore undefined symbols; we'll issue an error later if
4278 	 appropriate.  */
4279       if (!((h->root.root.type == bfd_link_hash_defined
4280 	     || h->root.root.type == bfd_link_hash_defweak)
4281 	    && h->root.root.u.def.section))
4282 	return 1;
4283 
4284       sec = h->root.root.u.def.section;
4285       addend = h->root.root.u.def.value + ref->addend;
4286     }
4287   else
4288     {
4289       Elf_Internal_Sym *isym;
4290 
4291       /* Read in the symbol.  */
4292       isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4293 				    ref->symndx);
4294       if (isym == NULL)
4295 	{
4296 	  arg->g = NULL;
4297 	  return 0;
4298 	}
4299 
4300       /* Get the associated input section.  */
4301       sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4302       if (sec == NULL)
4303 	{
4304 	  arg->g = NULL;
4305 	  return 0;
4306 	}
4307 
4308       /* If this is a mergable section, work out the section and offset
4309 	 of the merged data.  For section symbols, the addend specifies
4310 	 of the offset _of_ the first byte in the data, otherwise it
4311 	 specifies the offset _from_ the first byte.  */
4312       if (sec->flags & SEC_MERGE)
4313 	{
4314 	  void *secinfo;
4315 
4316 	  secinfo = elf_section_data (sec)->sec_info;
4317 	  if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4318 	    addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4319 						 isym->st_value + ref->addend);
4320 	  else
4321 	    addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4322 						 isym->st_value) + ref->addend;
4323 	}
4324       else
4325 	addend = isym->st_value + ref->addend;
4326     }
4327   if (!mips_elf_record_got_page_entry (arg, sec, addend))
4328     {
4329       arg->g = NULL;
4330       return 0;
4331     }
4332   return 1;
4333 }
4334 
4335 /* If any entries in G->got_entries are for indirect or warning symbols,
4336    replace them with entries for the target symbol.  Convert g->got_page_refs
4337    into got_page_entry structures and estimate the number of page entries
4338    that they require.  */
4339 
4340 static bfd_boolean
4341 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4342 				    struct mips_got_info *g)
4343 {
4344   struct mips_elf_traverse_got_arg tga;
4345   struct mips_got_info oldg;
4346 
4347   oldg = *g;
4348 
4349   tga.info = info;
4350   tga.g = g;
4351   tga.value = FALSE;
4352   htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4353   if (tga.value)
4354     {
4355       *g = oldg;
4356       g->got_entries = htab_create (htab_size (oldg.got_entries),
4357 				    mips_elf_got_entry_hash,
4358 				    mips_elf_got_entry_eq, NULL);
4359       if (!g->got_entries)
4360 	return FALSE;
4361 
4362       htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4363       if (!tga.g)
4364 	return FALSE;
4365 
4366       htab_delete (oldg.got_entries);
4367     }
4368 
4369   g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4370 					 mips_got_page_entry_eq, NULL);
4371   if (g->got_page_entries == NULL)
4372     return FALSE;
4373 
4374   tga.info = info;
4375   tga.g = g;
4376   htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4377 
4378   return TRUE;
4379 }
4380 
4381 /* Return true if a GOT entry for H should live in the local rather than
4382    global GOT area.  */
4383 
4384 static bfd_boolean
4385 mips_use_local_got_p (struct bfd_link_info *info,
4386 		      struct mips_elf_link_hash_entry *h)
4387 {
4388   /* Symbols that aren't in the dynamic symbol table must live in the
4389      local GOT.  This includes symbols that are completely undefined
4390      and which therefore don't bind locally.  We'll report undefined
4391      symbols later if appropriate.  */
4392   if (h->root.dynindx == -1)
4393     return TRUE;
4394 
4395   /* Symbols that bind locally can (and in the case of forced-local
4396      symbols, must) live in the local GOT.  */
4397   if (h->got_only_for_calls
4398       ? SYMBOL_CALLS_LOCAL (info, &h->root)
4399       : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4400     return TRUE;
4401 
4402   /* If this is an executable that must provide a definition of the symbol,
4403      either though PLTs or copy relocations, then that address should go in
4404      the local rather than global GOT.  */
4405   if (bfd_link_executable (info) && h->has_static_relocs)
4406     return TRUE;
4407 
4408   return FALSE;
4409 }
4410 
4411 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4412    link_info structure.  Decide whether the hash entry needs an entry in
4413    the global part of the primary GOT, setting global_got_area accordingly.
4414    Count the number of global symbols that are in the primary GOT only
4415    because they have relocations against them (reloc_only_gotno).  */
4416 
4417 static int
4418 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4419 {
4420   struct bfd_link_info *info;
4421   struct mips_elf_link_hash_table *htab;
4422   struct mips_got_info *g;
4423 
4424   info = (struct bfd_link_info *) data;
4425   htab = mips_elf_hash_table (info);
4426   g = htab->got_info;
4427   if (h->global_got_area != GGA_NONE)
4428     {
4429       /* Make a final decision about whether the symbol belongs in the
4430 	 local or global GOT.  */
4431       if (mips_use_local_got_p (info, h))
4432 	/* The symbol belongs in the local GOT.  We no longer need this
4433 	   entry if it was only used for relocations; those relocations
4434 	   will be against the null or section symbol instead of H.  */
4435 	h->global_got_area = GGA_NONE;
4436       else if (htab->is_vxworks
4437 	       && h->got_only_for_calls
4438 	       && h->root.plt.plist->mips_offset != MINUS_ONE)
4439 	/* On VxWorks, calls can refer directly to the .got.plt entry;
4440 	   they don't need entries in the regular GOT.  .got.plt entries
4441 	   will be allocated by _bfd_mips_elf_adjust_dynamic_symbol.  */
4442 	h->global_got_area = GGA_NONE;
4443       else if (h->global_got_area == GGA_RELOC_ONLY)
4444 	{
4445 	  g->reloc_only_gotno++;
4446 	  g->global_gotno++;
4447 	}
4448     }
4449   return 1;
4450 }
4451 
4452 /* A htab_traverse callback for GOT entries.  Add each one to the GOT
4453    given in mips_elf_traverse_got_arg DATA.  Clear DATA->G on error.  */
4454 
4455 static int
4456 mips_elf_add_got_entry (void **entryp, void *data)
4457 {
4458   struct mips_got_entry *entry;
4459   struct mips_elf_traverse_got_arg *arg;
4460   void **slot;
4461 
4462   entry = (struct mips_got_entry *) *entryp;
4463   arg = (struct mips_elf_traverse_got_arg *) data;
4464   slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4465   if (!slot)
4466     {
4467       arg->g = NULL;
4468       return 0;
4469     }
4470   if (!*slot)
4471     {
4472       *slot = entry;
4473       mips_elf_count_got_entry (arg->info, arg->g, entry);
4474     }
4475   return 1;
4476 }
4477 
4478 /* A htab_traverse callback for GOT page entries.  Add each one to the GOT
4479    given in mips_elf_traverse_got_arg DATA.  Clear DATA->G on error.  */
4480 
4481 static int
4482 mips_elf_add_got_page_entry (void **entryp, void *data)
4483 {
4484   struct mips_got_page_entry *entry;
4485   struct mips_elf_traverse_got_arg *arg;
4486   void **slot;
4487 
4488   entry = (struct mips_got_page_entry *) *entryp;
4489   arg = (struct mips_elf_traverse_got_arg *) data;
4490   slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4491   if (!slot)
4492     {
4493       arg->g = NULL;
4494       return 0;
4495     }
4496   if (!*slot)
4497     {
4498       *slot = entry;
4499       arg->g->page_gotno += entry->num_pages;
4500     }
4501   return 1;
4502 }
4503 
4504 /* Consider merging FROM, which is ABFD's GOT, into TO.  Return -1 if
4505    this would lead to overflow, 1 if they were merged successfully,
4506    and 0 if a merge failed due to lack of memory.  (These values are chosen
4507    so that nonnegative return values can be returned by a htab_traverse
4508    callback.)  */
4509 
4510 static int
4511 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4512 			 struct mips_got_info *to,
4513 			 struct mips_elf_got_per_bfd_arg *arg)
4514 {
4515   struct mips_elf_traverse_got_arg tga;
4516   unsigned int estimate;
4517 
4518   /* Work out how many page entries we would need for the combined GOT.  */
4519   estimate = arg->max_pages;
4520   if (estimate >= from->page_gotno + to->page_gotno)
4521     estimate = from->page_gotno + to->page_gotno;
4522 
4523   /* And conservatively estimate how many local and TLS entries
4524      would be needed.  */
4525   estimate += from->local_gotno + to->local_gotno;
4526   estimate += from->tls_gotno + to->tls_gotno;
4527 
4528   /* If we're merging with the primary got, any TLS relocations will
4529      come after the full set of global entries.  Otherwise estimate those
4530      conservatively as well.  */
4531   if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4532     estimate += arg->global_count;
4533   else
4534     estimate += from->global_gotno + to->global_gotno;
4535 
4536   /* Bail out if the combined GOT might be too big.  */
4537   if (estimate > arg->max_count)
4538     return -1;
4539 
4540   /* Transfer the bfd's got information from FROM to TO.  */
4541   tga.info = arg->info;
4542   tga.g = to;
4543   htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4544   if (!tga.g)
4545     return 0;
4546 
4547   htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4548   if (!tga.g)
4549     return 0;
4550 
4551   mips_elf_replace_bfd_got (abfd, to);
4552   return 1;
4553 }
4554 
4555 /* Attempt to merge GOT G, which belongs to ABFD.  Try to use as much
4556    as possible of the primary got, since it doesn't require explicit
4557    dynamic relocations, but don't use bfds that would reference global
4558    symbols out of the addressable range.  Failing the primary got,
4559    attempt to merge with the current got, or finish the current got
4560    and then make make the new got current.  */
4561 
4562 static bfd_boolean
4563 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4564 		    struct mips_elf_got_per_bfd_arg *arg)
4565 {
4566   unsigned int estimate;
4567   int result;
4568 
4569   if (!mips_elf_resolve_final_got_entries (arg->info, g))
4570     return FALSE;
4571 
4572   /* Work out the number of page, local and TLS entries.  */
4573   estimate = arg->max_pages;
4574   if (estimate > g->page_gotno)
4575     estimate = g->page_gotno;
4576   estimate += g->local_gotno + g->tls_gotno;
4577 
4578   /* We place TLS GOT entries after both locals and globals.  The globals
4579      for the primary GOT may overflow the normal GOT size limit, so be
4580      sure not to merge a GOT which requires TLS with the primary GOT in that
4581      case.  This doesn't affect non-primary GOTs.  */
4582   estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4583 
4584   if (estimate <= arg->max_count)
4585     {
4586       /* If we don't have a primary GOT, use it as
4587 	 a starting point for the primary GOT.  */
4588       if (!arg->primary)
4589 	{
4590 	  arg->primary = g;
4591 	  return TRUE;
4592 	}
4593 
4594       /* Try merging with the primary GOT.  */
4595       result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4596       if (result >= 0)
4597 	return result;
4598     }
4599 
4600   /* If we can merge with the last-created got, do it.  */
4601   if (arg->current)
4602     {
4603       result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4604       if (result >= 0)
4605 	return result;
4606     }
4607 
4608   /* Well, we couldn't merge, so create a new GOT.  Don't check if it
4609      fits; if it turns out that it doesn't, we'll get relocation
4610      overflows anyway.  */
4611   g->next = arg->current;
4612   arg->current = g;
4613 
4614   return TRUE;
4615 }
4616 
4617 /* ENTRYP is a hash table entry for a mips_got_entry.  Set its gotidx
4618    to GOTIDX, duplicating the entry if it has already been assigned
4619    an index in a different GOT.  */
4620 
4621 static bfd_boolean
4622 mips_elf_set_gotidx (void **entryp, long gotidx)
4623 {
4624   struct mips_got_entry *entry;
4625 
4626   entry = (struct mips_got_entry *) *entryp;
4627   if (entry->gotidx > 0)
4628     {
4629       struct mips_got_entry *new_entry;
4630 
4631       new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4632       if (!new_entry)
4633 	return FALSE;
4634 
4635       *new_entry = *entry;
4636       *entryp = new_entry;
4637       entry = new_entry;
4638     }
4639   entry->gotidx = gotidx;
4640   return TRUE;
4641 }
4642 
4643 /* Set the TLS GOT index for the GOT entry in ENTRYP.  DATA points to a
4644    mips_elf_traverse_got_arg in which DATA->value is the size of one
4645    GOT entry.  Set DATA->g to null on failure.  */
4646 
4647 static int
4648 mips_elf_initialize_tls_index (void **entryp, void *data)
4649 {
4650   struct mips_got_entry *entry;
4651   struct mips_elf_traverse_got_arg *arg;
4652 
4653   /* We're only interested in TLS symbols.  */
4654   entry = (struct mips_got_entry *) *entryp;
4655   if (entry->tls_type == GOT_TLS_NONE)
4656     return 1;
4657 
4658   arg = (struct mips_elf_traverse_got_arg *) data;
4659   if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4660     {
4661       arg->g = NULL;
4662       return 0;
4663     }
4664 
4665   /* Account for the entries we've just allocated.  */
4666   arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4667   return 1;
4668 }
4669 
4670 /* A htab_traverse callback for GOT entries, where DATA points to a
4671    mips_elf_traverse_got_arg.  Set the global_got_area of each global
4672    symbol to DATA->value.  */
4673 
4674 static int
4675 mips_elf_set_global_got_area (void **entryp, void *data)
4676 {
4677   struct mips_got_entry *entry;
4678   struct mips_elf_traverse_got_arg *arg;
4679 
4680   entry = (struct mips_got_entry *) *entryp;
4681   arg = (struct mips_elf_traverse_got_arg *) data;
4682   if (entry->abfd != NULL
4683       && entry->symndx == -1
4684       && entry->d.h->global_got_area != GGA_NONE)
4685     entry->d.h->global_got_area = arg->value;
4686   return 1;
4687 }
4688 
4689 /* A htab_traverse callback for secondary GOT entries, where DATA points
4690    to a mips_elf_traverse_got_arg.  Assign GOT indices to global entries
4691    and record the number of relocations they require.  DATA->value is
4692    the size of one GOT entry.  Set DATA->g to null on failure.  */
4693 
4694 static int
4695 mips_elf_set_global_gotidx (void **entryp, void *data)
4696 {
4697   struct mips_got_entry *entry;
4698   struct mips_elf_traverse_got_arg *arg;
4699 
4700   entry = (struct mips_got_entry *) *entryp;
4701   arg = (struct mips_elf_traverse_got_arg *) data;
4702   if (entry->abfd != NULL
4703       && entry->symndx == -1
4704       && entry->d.h->global_got_area != GGA_NONE)
4705     {
4706       if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4707 	{
4708 	  arg->g = NULL;
4709 	  return 0;
4710 	}
4711       arg->g->assigned_low_gotno += 1;
4712 
4713       if (bfd_link_pic (arg->info)
4714 	  || (elf_hash_table (arg->info)->dynamic_sections_created
4715 	      && entry->d.h->root.def_dynamic
4716 	      && !entry->d.h->root.def_regular))
4717 	arg->g->relocs += 1;
4718     }
4719 
4720   return 1;
4721 }
4722 
4723 /* A htab_traverse callback for GOT entries for which DATA is the
4724    bfd_link_info.  Forbid any global symbols from having traditional
4725    lazy-binding stubs.  */
4726 
4727 static int
4728 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4729 {
4730   struct bfd_link_info *info;
4731   struct mips_elf_link_hash_table *htab;
4732   struct mips_got_entry *entry;
4733 
4734   entry = (struct mips_got_entry *) *entryp;
4735   info = (struct bfd_link_info *) data;
4736   htab = mips_elf_hash_table (info);
4737   BFD_ASSERT (htab != NULL);
4738 
4739   if (entry->abfd != NULL
4740       && entry->symndx == -1
4741       && entry->d.h->needs_lazy_stub)
4742     {
4743       entry->d.h->needs_lazy_stub = FALSE;
4744       htab->lazy_stub_count--;
4745     }
4746 
4747   return 1;
4748 }
4749 
4750 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4751    the primary GOT.  */
4752 static bfd_vma
4753 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4754 {
4755   if (!g->next)
4756     return 0;
4757 
4758   g = mips_elf_bfd_got (ibfd, FALSE);
4759   if (! g)
4760     return 0;
4761 
4762   BFD_ASSERT (g->next);
4763 
4764   g = g->next;
4765 
4766   return (g->local_gotno + g->global_gotno + g->tls_gotno)
4767     * MIPS_ELF_GOT_SIZE (abfd);
4768 }
4769 
4770 /* Turn a single GOT that is too big for 16-bit addressing into
4771    a sequence of GOTs, each one 16-bit addressable.  */
4772 
4773 static bfd_boolean
4774 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4775 		    asection *got, bfd_size_type pages)
4776 {
4777   struct mips_elf_link_hash_table *htab;
4778   struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4779   struct mips_elf_traverse_got_arg tga;
4780   struct mips_got_info *g, *gg;
4781   unsigned int assign, needed_relocs;
4782   bfd *dynobj, *ibfd;
4783 
4784   dynobj = elf_hash_table (info)->dynobj;
4785   htab = mips_elf_hash_table (info);
4786   BFD_ASSERT (htab != NULL);
4787 
4788   g = htab->got_info;
4789 
4790   got_per_bfd_arg.obfd = abfd;
4791   got_per_bfd_arg.info = info;
4792   got_per_bfd_arg.current = NULL;
4793   got_per_bfd_arg.primary = NULL;
4794   got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4795 				/ MIPS_ELF_GOT_SIZE (abfd))
4796 			       - htab->reserved_gotno);
4797   got_per_bfd_arg.max_pages = pages;
4798   /* The number of globals that will be included in the primary GOT.
4799      See the calls to mips_elf_set_global_got_area below for more
4800      information.  */
4801   got_per_bfd_arg.global_count = g->global_gotno;
4802 
4803   /* Try to merge the GOTs of input bfds together, as long as they
4804      don't seem to exceed the maximum GOT size, choosing one of them
4805      to be the primary GOT.  */
4806   for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4807     {
4808       gg = mips_elf_bfd_got (ibfd, FALSE);
4809       if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4810 	return FALSE;
4811     }
4812 
4813   /* If we do not find any suitable primary GOT, create an empty one.  */
4814   if (got_per_bfd_arg.primary == NULL)
4815     g->next = mips_elf_create_got_info (abfd);
4816   else
4817     g->next = got_per_bfd_arg.primary;
4818   g->next->next = got_per_bfd_arg.current;
4819 
4820   /* GG is now the master GOT, and G is the primary GOT.  */
4821   gg = g;
4822   g = g->next;
4823 
4824   /* Map the output bfd to the primary got.  That's what we're going
4825      to use for bfds that use GOT16 or GOT_PAGE relocations that we
4826      didn't mark in check_relocs, and we want a quick way to find it.
4827      We can't just use gg->next because we're going to reverse the
4828      list.  */
4829   mips_elf_replace_bfd_got (abfd, g);
4830 
4831   /* Every symbol that is referenced in a dynamic relocation must be
4832      present in the primary GOT, so arrange for them to appear after
4833      those that are actually referenced.  */
4834   gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4835   g->global_gotno = gg->global_gotno;
4836 
4837   tga.info = info;
4838   tga.value = GGA_RELOC_ONLY;
4839   htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4840   tga.value = GGA_NORMAL;
4841   htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4842 
4843   /* Now go through the GOTs assigning them offset ranges.
4844      [assigned_low_gotno, local_gotno[ will be set to the range of local
4845      entries in each GOT.  We can then compute the end of a GOT by
4846      adding local_gotno to global_gotno.  We reverse the list and make
4847      it circular since then we'll be able to quickly compute the
4848      beginning of a GOT, by computing the end of its predecessor.  To
4849      avoid special cases for the primary GOT, while still preserving
4850      assertions that are valid for both single- and multi-got links,
4851      we arrange for the main got struct to have the right number of
4852      global entries, but set its local_gotno such that the initial
4853      offset of the primary GOT is zero.  Remember that the primary GOT
4854      will become the last item in the circular linked list, so it
4855      points back to the master GOT.  */
4856   gg->local_gotno = -g->global_gotno;
4857   gg->global_gotno = g->global_gotno;
4858   gg->tls_gotno = 0;
4859   assign = 0;
4860   gg->next = gg;
4861 
4862   do
4863     {
4864       struct mips_got_info *gn;
4865 
4866       assign += htab->reserved_gotno;
4867       g->assigned_low_gotno = assign;
4868       g->local_gotno += assign;
4869       g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4870       g->assigned_high_gotno = g->local_gotno - 1;
4871       assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4872 
4873       /* Take g out of the direct list, and push it onto the reversed
4874 	 list that gg points to.  g->next is guaranteed to be nonnull after
4875 	 this operation, as required by mips_elf_initialize_tls_index. */
4876       gn = g->next;
4877       g->next = gg->next;
4878       gg->next = g;
4879 
4880       /* Set up any TLS entries.  We always place the TLS entries after
4881 	 all non-TLS entries.  */
4882       g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4883       tga.g = g;
4884       tga.value = MIPS_ELF_GOT_SIZE (abfd);
4885       htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4886       if (!tga.g)
4887 	return FALSE;
4888       BFD_ASSERT (g->tls_assigned_gotno == assign);
4889 
4890       /* Move onto the next GOT.  It will be a secondary GOT if nonull.  */
4891       g = gn;
4892 
4893       /* Forbid global symbols in every non-primary GOT from having
4894 	 lazy-binding stubs.  */
4895       if (g)
4896 	htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4897     }
4898   while (g);
4899 
4900   got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4901 
4902   needed_relocs = 0;
4903   for (g = gg->next; g && g->next != gg; g = g->next)
4904     {
4905       unsigned int save_assign;
4906 
4907       /* Assign offsets to global GOT entries and count how many
4908 	 relocations they need.  */
4909       save_assign = g->assigned_low_gotno;
4910       g->assigned_low_gotno = g->local_gotno;
4911       tga.info = info;
4912       tga.value = MIPS_ELF_GOT_SIZE (abfd);
4913       tga.g = g;
4914       htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4915       if (!tga.g)
4916 	return FALSE;
4917       BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4918       g->assigned_low_gotno = save_assign;
4919 
4920       if (bfd_link_pic (info))
4921 	{
4922 	  g->relocs += g->local_gotno - g->assigned_low_gotno;
4923 	  BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4924 		      + g->next->global_gotno
4925 		      + g->next->tls_gotno
4926 		      + htab->reserved_gotno);
4927 	}
4928       needed_relocs += g->relocs;
4929     }
4930   needed_relocs += g->relocs;
4931 
4932   if (needed_relocs)
4933     mips_elf_allocate_dynamic_relocations (dynobj, info,
4934 					   needed_relocs);
4935 
4936   return TRUE;
4937 }
4938 
4939 
4940 /* Returns the first relocation of type r_type found, beginning with
4941    RELOCATION.  RELEND is one-past-the-end of the relocation table.  */
4942 
4943 static const Elf_Internal_Rela *
4944 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4945 			  const Elf_Internal_Rela *relocation,
4946 			  const Elf_Internal_Rela *relend)
4947 {
4948   unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4949 
4950   while (relocation < relend)
4951     {
4952       if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4953 	  && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4954 	return relocation;
4955 
4956       ++relocation;
4957     }
4958 
4959   /* We didn't find it.  */
4960   return NULL;
4961 }
4962 
4963 /* Return whether an input relocation is against a local symbol.  */
4964 
4965 static bfd_boolean
4966 mips_elf_local_relocation_p (bfd *input_bfd,
4967 			     const Elf_Internal_Rela *relocation,
4968 			     asection **local_sections)
4969 {
4970   unsigned long r_symndx;
4971   Elf_Internal_Shdr *symtab_hdr;
4972   size_t extsymoff;
4973 
4974   r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4975   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4976   extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4977 
4978   if (r_symndx < extsymoff)
4979     return TRUE;
4980   if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4981     return TRUE;
4982 
4983   return FALSE;
4984 }
4985 
4986 /* Sign-extend VALUE, which has the indicated number of BITS.  */
4987 
4988 bfd_vma
4989 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4990 {
4991   if (value & ((bfd_vma) 1 << (bits - 1)))
4992     /* VALUE is negative.  */
4993     value |= ((bfd_vma) - 1) << bits;
4994 
4995   return value;
4996 }
4997 
4998 /* Return non-zero if the indicated VALUE has overflowed the maximum
4999    range expressible by a signed number with the indicated number of
5000    BITS.  */
5001 
5002 static bfd_boolean
5003 mips_elf_overflow_p (bfd_vma value, int bits)
5004 {
5005   bfd_signed_vma svalue = (bfd_signed_vma) value;
5006 
5007   if (svalue > (1 << (bits - 1)) - 1)
5008     /* The value is too big.  */
5009     return TRUE;
5010   else if (svalue < -(1 << (bits - 1)))
5011     /* The value is too small.  */
5012     return TRUE;
5013 
5014   /* All is well.  */
5015   return FALSE;
5016 }
5017 
5018 /* Calculate the %high function.  */
5019 
5020 static bfd_vma
5021 mips_elf_high (bfd_vma value)
5022 {
5023   return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5024 }
5025 
5026 /* Calculate the %higher function.  */
5027 
5028 static bfd_vma
5029 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5030 {
5031 #ifdef BFD64
5032   return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5033 #else
5034   abort ();
5035   return MINUS_ONE;
5036 #endif
5037 }
5038 
5039 /* Calculate the %highest function.  */
5040 
5041 static bfd_vma
5042 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5043 {
5044 #ifdef BFD64
5045   return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5046 #else
5047   abort ();
5048   return MINUS_ONE;
5049 #endif
5050 }
5051 
5052 /* Create the .compact_rel section.  */
5053 
5054 static bfd_boolean
5055 mips_elf_create_compact_rel_section
5056   (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5057 {
5058   flagword flags;
5059   register asection *s;
5060 
5061   if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5062     {
5063       flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5064 	       | SEC_READONLY);
5065 
5066       s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5067       if (s == NULL
5068 	  || ! bfd_set_section_alignment (abfd, s,
5069 					  MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5070 	return FALSE;
5071 
5072       s->size = sizeof (Elf32_External_compact_rel);
5073     }
5074 
5075   return TRUE;
5076 }
5077 
5078 /* Create the .got section to hold the global offset table.  */
5079 
5080 static bfd_boolean
5081 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5082 {
5083   flagword flags;
5084   register asection *s;
5085   struct elf_link_hash_entry *h;
5086   struct bfd_link_hash_entry *bh;
5087   struct mips_elf_link_hash_table *htab;
5088 
5089   htab = mips_elf_hash_table (info);
5090   BFD_ASSERT (htab != NULL);
5091 
5092   /* This function may be called more than once.  */
5093   if (htab->sgot)
5094     return TRUE;
5095 
5096   flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5097 	   | SEC_LINKER_CREATED);
5098 
5099   /* We have to use an alignment of 2**4 here because this is hardcoded
5100      in the function stub generation and in the linker script.  */
5101   s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5102   if (s == NULL
5103       || ! bfd_set_section_alignment (abfd, s, 4))
5104     return FALSE;
5105   htab->sgot = s;
5106 
5107   /* Define the symbol _GLOBAL_OFFSET_TABLE_.  We don't do this in the
5108      linker script because we don't want to define the symbol if we
5109      are not creating a global offset table.  */
5110   bh = NULL;
5111   if (! (_bfd_generic_link_add_one_symbol
5112 	 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5113 	  0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5114     return FALSE;
5115 
5116   h = (struct elf_link_hash_entry *) bh;
5117   h->non_elf = 0;
5118   h->def_regular = 1;
5119   h->type = STT_OBJECT;
5120   h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5121   elf_hash_table (info)->hgot = h;
5122 
5123   if (bfd_link_pic (info)
5124       && ! bfd_elf_link_record_dynamic_symbol (info, h))
5125     return FALSE;
5126 
5127   htab->got_info = mips_elf_create_got_info (abfd);
5128   mips_elf_section_data (s)->elf.this_hdr.sh_flags
5129     |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5130 
5131   /* We also need a .got.plt section when generating PLTs.  */
5132   s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5133 					  SEC_ALLOC | SEC_LOAD
5134 					  | SEC_HAS_CONTENTS
5135 					  | SEC_IN_MEMORY
5136 					  | SEC_LINKER_CREATED);
5137   if (s == NULL)
5138     return FALSE;
5139   htab->sgotplt = s;
5140 
5141   return TRUE;
5142 }
5143 
5144 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5145    __GOTT_INDEX__ symbols.  These symbols are only special for
5146    shared objects; they are not used in executables.  */
5147 
5148 static bfd_boolean
5149 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5150 {
5151   return (mips_elf_hash_table (info)->is_vxworks
5152 	  && bfd_link_pic (info)
5153 	  && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5154 	      || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5155 }
5156 
5157 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5158    require an la25 stub.  See also mips_elf_local_pic_function_p,
5159    which determines whether the destination function ever requires a
5160    stub.  */
5161 
5162 static bfd_boolean
5163 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5164 				     bfd_boolean target_is_16_bit_code_p)
5165 {
5166   /* We specifically ignore branches and jumps from EF_PIC objects,
5167      where the onus is on the compiler or programmer to perform any
5168      necessary initialization of $25.  Sometimes such initialization
5169      is unnecessary; for example, -mno-shared functions do not use
5170      the incoming value of $25, and may therefore be called directly.  */
5171   if (PIC_OBJECT_P (input_bfd))
5172     return FALSE;
5173 
5174   switch (r_type)
5175     {
5176     case R_MIPS_26:
5177     case R_MIPS_PC16:
5178     case R_MIPS_PC21_S2:
5179     case R_MIPS_PC26_S2:
5180     case R_MICROMIPS_26_S1:
5181     case R_MICROMIPS_PC7_S1:
5182     case R_MICROMIPS_PC10_S1:
5183     case R_MICROMIPS_PC16_S1:
5184     case R_MICROMIPS_PC23_S2:
5185       return TRUE;
5186 
5187     case R_MIPS16_26:
5188       return !target_is_16_bit_code_p;
5189 
5190     default:
5191       return FALSE;
5192     }
5193 }
5194 
5195 /* Calculate the value produced by the RELOCATION (which comes from
5196    the INPUT_BFD).  The ADDEND is the addend to use for this
5197    RELOCATION; RELOCATION->R_ADDEND is ignored.
5198 
5199    The result of the relocation calculation is stored in VALUEP.
5200    On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5201    is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5202 
5203    This function returns bfd_reloc_continue if the caller need take no
5204    further action regarding this relocation, bfd_reloc_notsupported if
5205    something goes dramatically wrong, bfd_reloc_overflow if an
5206    overflow occurs, and bfd_reloc_ok to indicate success.  */
5207 
5208 static bfd_reloc_status_type
5209 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5210 			       asection *input_section,
5211 			       struct bfd_link_info *info,
5212 			       const Elf_Internal_Rela *relocation,
5213 			       bfd_vma addend, reloc_howto_type *howto,
5214 			       Elf_Internal_Sym *local_syms,
5215 			       asection **local_sections, bfd_vma *valuep,
5216 			       const char **namep,
5217 			       bfd_boolean *cross_mode_jump_p,
5218 			       bfd_boolean save_addend)
5219 {
5220   /* The eventual value we will return.  */
5221   bfd_vma value;
5222   /* The address of the symbol against which the relocation is
5223      occurring.  */
5224   bfd_vma symbol = 0;
5225   /* The final GP value to be used for the relocatable, executable, or
5226      shared object file being produced.  */
5227   bfd_vma gp;
5228   /* The place (section offset or address) of the storage unit being
5229      relocated.  */
5230   bfd_vma p;
5231   /* The value of GP used to create the relocatable object.  */
5232   bfd_vma gp0;
5233   /* The offset into the global offset table at which the address of
5234      the relocation entry symbol, adjusted by the addend, resides
5235      during execution.  */
5236   bfd_vma g = MINUS_ONE;
5237   /* The section in which the symbol referenced by the relocation is
5238      located.  */
5239   asection *sec = NULL;
5240   struct mips_elf_link_hash_entry *h = NULL;
5241   /* TRUE if the symbol referred to by this relocation is a local
5242      symbol.  */
5243   bfd_boolean local_p, was_local_p;
5244   /* TRUE if the symbol referred to by this relocation is "_gp_disp".  */
5245   bfd_boolean gp_disp_p = FALSE;
5246   /* TRUE if the symbol referred to by this relocation is
5247      "__gnu_local_gp".  */
5248   bfd_boolean gnu_local_gp_p = FALSE;
5249   Elf_Internal_Shdr *symtab_hdr;
5250   size_t extsymoff;
5251   unsigned long r_symndx;
5252   int r_type;
5253   /* TRUE if overflow occurred during the calculation of the
5254      relocation value.  */
5255   bfd_boolean overflowed_p;
5256   /* TRUE if this relocation refers to a MIPS16 function.  */
5257   bfd_boolean target_is_16_bit_code_p = FALSE;
5258   bfd_boolean target_is_micromips_code_p = FALSE;
5259   struct mips_elf_link_hash_table *htab;
5260   bfd *dynobj;
5261 
5262   dynobj = elf_hash_table (info)->dynobj;
5263   htab = mips_elf_hash_table (info);
5264   BFD_ASSERT (htab != NULL);
5265 
5266   /* Parse the relocation.  */
5267   r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5268   r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5269   p = (input_section->output_section->vma
5270        + input_section->output_offset
5271        + relocation->r_offset);
5272 
5273   /* Assume that there will be no overflow.  */
5274   overflowed_p = FALSE;
5275 
5276   /* Figure out whether or not the symbol is local, and get the offset
5277      used in the array of hash table entries.  */
5278   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5279   local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5280 					 local_sections);
5281   was_local_p = local_p;
5282   if (! elf_bad_symtab (input_bfd))
5283     extsymoff = symtab_hdr->sh_info;
5284   else
5285     {
5286       /* The symbol table does not follow the rule that local symbols
5287 	 must come before globals.  */
5288       extsymoff = 0;
5289     }
5290 
5291   /* Figure out the value of the symbol.  */
5292   if (local_p)
5293     {
5294       Elf_Internal_Sym *sym;
5295 
5296       sym = local_syms + r_symndx;
5297       sec = local_sections[r_symndx];
5298 
5299       symbol = sec->output_section->vma + sec->output_offset;
5300       if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5301 	  || (sec->flags & SEC_MERGE))
5302 	symbol += sym->st_value;
5303       if ((sec->flags & SEC_MERGE)
5304 	  && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5305 	{
5306 	  addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5307 	  addend -= symbol;
5308 	  addend += sec->output_section->vma + sec->output_offset;
5309 	}
5310 
5311       /* MIPS16/microMIPS text labels should be treated as odd.  */
5312       if (ELF_ST_IS_COMPRESSED (sym->st_other))
5313 	++symbol;
5314 
5315       /* Record the name of this symbol, for our caller.  */
5316       *namep = bfd_elf_string_from_elf_section (input_bfd,
5317 						symtab_hdr->sh_link,
5318 						sym->st_name);
5319       if (*namep == '\0')
5320 	*namep = bfd_section_name (input_bfd, sec);
5321 
5322       target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5323       target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5324     }
5325   else
5326     {
5327       /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ?  */
5328 
5329       /* For global symbols we look up the symbol in the hash-table.  */
5330       h = ((struct mips_elf_link_hash_entry *)
5331 	   elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5332       /* Find the real hash-table entry for this symbol.  */
5333       while (h->root.root.type == bfd_link_hash_indirect
5334 	     || h->root.root.type == bfd_link_hash_warning)
5335 	h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5336 
5337       /* Record the name of this symbol, for our caller.  */
5338       *namep = h->root.root.root.string;
5339 
5340       /* See if this is the special _gp_disp symbol.  Note that such a
5341 	 symbol must always be a global symbol.  */
5342       if (strcmp (*namep, "_gp_disp") == 0
5343 	  && ! NEWABI_P (input_bfd))
5344 	{
5345 	  /* Relocations against _gp_disp are permitted only with
5346 	     R_MIPS_HI16 and R_MIPS_LO16 relocations.  */
5347 	  if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5348 	    return bfd_reloc_notsupported;
5349 
5350 	  gp_disp_p = TRUE;
5351 	}
5352       /* See if this is the special _gp symbol.  Note that such a
5353 	 symbol must always be a global symbol.  */
5354       else if (strcmp (*namep, "__gnu_local_gp") == 0)
5355 	gnu_local_gp_p = TRUE;
5356 
5357 
5358       /* If this symbol is defined, calculate its address.  Note that
5359 	 _gp_disp is a magic symbol, always implicitly defined by the
5360 	 linker, so it's inappropriate to check to see whether or not
5361 	 its defined.  */
5362       else if ((h->root.root.type == bfd_link_hash_defined
5363 		|| h->root.root.type == bfd_link_hash_defweak)
5364 	       && h->root.root.u.def.section)
5365 	{
5366 	  sec = h->root.root.u.def.section;
5367 	  if (sec->output_section)
5368 	    symbol = (h->root.root.u.def.value
5369 		      + sec->output_section->vma
5370 		      + sec->output_offset);
5371 	  else
5372 	    symbol = h->root.root.u.def.value;
5373 	}
5374       else if (h->root.root.type == bfd_link_hash_undefweak)
5375 	/* We allow relocations against undefined weak symbols, giving
5376 	   it the value zero, so that you can undefined weak functions
5377 	   and check to see if they exist by looking at their
5378 	   addresses.  */
5379 	symbol = 0;
5380       else if (info->unresolved_syms_in_objects == RM_IGNORE
5381 	       && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5382 	symbol = 0;
5383       else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5384 		       ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5385 	{
5386 	  /* If this is a dynamic link, we should have created a
5387 	     _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5388 	     in in _bfd_mips_elf_create_dynamic_sections.
5389 	     Otherwise, we should define the symbol with a value of 0.
5390 	     FIXME: It should probably get into the symbol table
5391 	     somehow as well.  */
5392 	  BFD_ASSERT (! bfd_link_pic (info));
5393 	  BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5394 	  symbol = 0;
5395 	}
5396       else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5397 	{
5398 	  /* This is an optional symbol - an Irix specific extension to the
5399 	     ELF spec.  Ignore it for now.
5400 	     XXX - FIXME - there is more to the spec for OPTIONAL symbols
5401 	     than simply ignoring them, but we do not handle this for now.
5402 	     For information see the "64-bit ELF Object File Specification"
5403 	     which is available from here:
5404 	     http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf  */
5405 	  symbol = 0;
5406 	}
5407       else if ((*info->callbacks->undefined_symbol)
5408 	       (info, h->root.root.root.string, input_bfd,
5409 		input_section, relocation->r_offset,
5410 		(info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5411 		 || ELF_ST_VISIBILITY (h->root.other)))
5412 	{
5413 	  return bfd_reloc_undefined;
5414 	}
5415       else
5416 	{
5417 	  return bfd_reloc_notsupported;
5418 	}
5419 
5420       target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5421       target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5422     }
5423 
5424   /* If this is a reference to a 16-bit function with a stub, we need
5425      to redirect the relocation to the stub unless:
5426 
5427      (a) the relocation is for a MIPS16 JAL;
5428 
5429      (b) the relocation is for a MIPS16 PIC call, and there are no
5430 	 non-MIPS16 uses of the GOT slot; or
5431 
5432      (c) the section allows direct references to MIPS16 functions.  */
5433   if (r_type != R_MIPS16_26
5434       && !bfd_link_relocatable (info)
5435       && ((h != NULL
5436 	   && h->fn_stub != NULL
5437 	   && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5438 	  || (local_p
5439 	      && mips_elf_tdata (input_bfd)->local_stubs != NULL
5440 	      && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5441       && !section_allows_mips16_refs_p (input_section))
5442     {
5443       /* This is a 32- or 64-bit call to a 16-bit function.  We should
5444 	 have already noticed that we were going to need the
5445 	 stub.  */
5446       if (local_p)
5447 	{
5448 	  sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5449 	  value = 0;
5450 	}
5451       else
5452 	{
5453 	  BFD_ASSERT (h->need_fn_stub);
5454 	  if (h->la25_stub)
5455 	    {
5456 	      /* If a LA25 header for the stub itself exists, point to the
5457 		 prepended LUI/ADDIU sequence.  */
5458 	      sec = h->la25_stub->stub_section;
5459 	      value = h->la25_stub->offset;
5460 	    }
5461 	  else
5462 	    {
5463 	      sec = h->fn_stub;
5464 	      value = 0;
5465 	    }
5466 	}
5467 
5468       symbol = sec->output_section->vma + sec->output_offset + value;
5469       /* The target is 16-bit, but the stub isn't.  */
5470       target_is_16_bit_code_p = FALSE;
5471     }
5472   /* If this is a MIPS16 call with a stub, that is made through the PLT or
5473      to a standard MIPS function, we need to redirect the call to the stub.
5474      Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5475      indirect calls should use an indirect stub instead.  */
5476   else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5477 	   && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5478 	       || (local_p
5479 		   && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5480 		   && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5481 	   && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5482     {
5483       if (local_p)
5484 	sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5485       else
5486 	{
5487 	  /* If both call_stub and call_fp_stub are defined, we can figure
5488 	     out which one to use by checking which one appears in the input
5489 	     file.  */
5490 	  if (h->call_stub != NULL && h->call_fp_stub != NULL)
5491 	    {
5492 	      asection *o;
5493 
5494 	      sec = NULL;
5495 	      for (o = input_bfd->sections; o != NULL; o = o->next)
5496 		{
5497 		  if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5498 		    {
5499 		      sec = h->call_fp_stub;
5500 		      break;
5501 		    }
5502 		}
5503 	      if (sec == NULL)
5504 		sec = h->call_stub;
5505 	    }
5506 	  else if (h->call_stub != NULL)
5507 	    sec = h->call_stub;
5508 	  else
5509 	    sec = h->call_fp_stub;
5510   	}
5511 
5512       BFD_ASSERT (sec->size > 0);
5513       symbol = sec->output_section->vma + sec->output_offset;
5514     }
5515   /* If this is a direct call to a PIC function, redirect to the
5516      non-PIC stub.  */
5517   else if (h != NULL && h->la25_stub
5518 	   && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5519 						   target_is_16_bit_code_p))
5520     symbol = (h->la25_stub->stub_section->output_section->vma
5521 	      + h->la25_stub->stub_section->output_offset
5522 	      + h->la25_stub->offset);
5523   /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5524      entry is used if a standard PLT entry has also been made.  In this
5525      case the symbol will have been set by mips_elf_set_plt_sym_value
5526      to point to the standard PLT entry, so redirect to the compressed
5527      one.  */
5528   else if ((r_type == R_MIPS16_26 || r_type == R_MICROMIPS_26_S1)
5529 	   && !bfd_link_relocatable (info)
5530 	   && h != NULL
5531 	   && h->use_plt_entry
5532 	   && h->root.plt.plist->comp_offset != MINUS_ONE
5533 	   && h->root.plt.plist->mips_offset != MINUS_ONE)
5534     {
5535       bfd_boolean micromips_p = MICROMIPS_P (abfd);
5536 
5537       sec = htab->splt;
5538       symbol = (sec->output_section->vma
5539 		+ sec->output_offset
5540 		+ htab->plt_header_size
5541 		+ htab->plt_mips_offset
5542 		+ h->root.plt.plist->comp_offset
5543 		+ 1);
5544 
5545       target_is_16_bit_code_p = !micromips_p;
5546       target_is_micromips_code_p = micromips_p;
5547     }
5548 
5549   /* Make sure MIPS16 and microMIPS are not used together.  */
5550   if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5551       || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5552    {
5553       (*_bfd_error_handler)
5554 	(_("MIPS16 and microMIPS functions cannot call each other"));
5555       return bfd_reloc_notsupported;
5556    }
5557 
5558   /* Calls from 16-bit code to 32-bit code and vice versa require the
5559      mode change.  However, we can ignore calls to undefined weak symbols,
5560      which should never be executed at runtime.  This exception is important
5561      because the assembly writer may have "known" that any definition of the
5562      symbol would be 16-bit code, and that direct jumps were therefore
5563      acceptable.  */
5564   *cross_mode_jump_p = (!bfd_link_relocatable (info)
5565 			&& !(h && h->root.root.type == bfd_link_hash_undefweak)
5566 			&& ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5567 			    || (r_type == R_MICROMIPS_26_S1
5568 				&& !target_is_micromips_code_p)
5569 			    || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5570 				&& (target_is_16_bit_code_p
5571 				    || target_is_micromips_code_p))));
5572 
5573   local_p = (h == NULL || mips_use_local_got_p (info, h));
5574 
5575   gp0 = _bfd_get_gp_value (input_bfd);
5576   gp = _bfd_get_gp_value (abfd);
5577   if (htab->got_info)
5578     gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5579 
5580   if (gnu_local_gp_p)
5581     symbol = gp;
5582 
5583   /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5584      to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP.  The addend is applied by the
5585      corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST.  */
5586   if (got_page_reloc_p (r_type) && !local_p)
5587     {
5588       r_type = (micromips_reloc_p (r_type)
5589 		? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5590       addend = 0;
5591     }
5592 
5593   /* If we haven't already determined the GOT offset, and we're going
5594      to need it, get it now.  */
5595   switch (r_type)
5596     {
5597     case R_MIPS16_CALL16:
5598     case R_MIPS16_GOT16:
5599     case R_MIPS_CALL16:
5600     case R_MIPS_GOT16:
5601     case R_MIPS_GOT_DISP:
5602     case R_MIPS_GOT_HI16:
5603     case R_MIPS_CALL_HI16:
5604     case R_MIPS_GOT_LO16:
5605     case R_MIPS_CALL_LO16:
5606     case R_MICROMIPS_CALL16:
5607     case R_MICROMIPS_GOT16:
5608     case R_MICROMIPS_GOT_DISP:
5609     case R_MICROMIPS_GOT_HI16:
5610     case R_MICROMIPS_CALL_HI16:
5611     case R_MICROMIPS_GOT_LO16:
5612     case R_MICROMIPS_CALL_LO16:
5613     case R_MIPS_TLS_GD:
5614     case R_MIPS_TLS_GOTTPREL:
5615     case R_MIPS_TLS_LDM:
5616     case R_MIPS16_TLS_GD:
5617     case R_MIPS16_TLS_GOTTPREL:
5618     case R_MIPS16_TLS_LDM:
5619     case R_MICROMIPS_TLS_GD:
5620     case R_MICROMIPS_TLS_GOTTPREL:
5621     case R_MICROMIPS_TLS_LDM:
5622       /* Find the index into the GOT where this value is located.  */
5623       if (tls_ldm_reloc_p (r_type))
5624 	{
5625 	  g = mips_elf_local_got_index (abfd, input_bfd, info,
5626 					0, 0, NULL, r_type);
5627 	  if (g == MINUS_ONE)
5628 	    return bfd_reloc_outofrange;
5629 	}
5630       else if (!local_p)
5631 	{
5632 	  /* On VxWorks, CALL relocations should refer to the .got.plt
5633 	     entry, which is initialized to point at the PLT stub.  */
5634 	  if (htab->is_vxworks
5635 	      && (call_hi16_reloc_p (r_type)
5636 		  || call_lo16_reloc_p (r_type)
5637 		  || call16_reloc_p (r_type)))
5638 	    {
5639 	      BFD_ASSERT (addend == 0);
5640 	      BFD_ASSERT (h->root.needs_plt);
5641 	      g = mips_elf_gotplt_index (info, &h->root);
5642 	    }
5643 	  else
5644 	    {
5645 	      BFD_ASSERT (addend == 0);
5646 	      g = mips_elf_global_got_index (abfd, info, input_bfd,
5647 					     &h->root, r_type);
5648 	      if (!TLS_RELOC_P (r_type)
5649 		  && !elf_hash_table (info)->dynamic_sections_created)
5650 		/* This is a static link.  We must initialize the GOT entry.  */
5651 		MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5652 	    }
5653 	}
5654       else if (!htab->is_vxworks
5655 	       && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5656 	/* The calculation below does not involve "g".  */
5657 	break;
5658       else
5659 	{
5660 	  g = mips_elf_local_got_index (abfd, input_bfd, info,
5661 					symbol + addend, r_symndx, h, r_type);
5662 	  if (g == MINUS_ONE)
5663 	    return bfd_reloc_outofrange;
5664 	}
5665 
5666       /* Convert GOT indices to actual offsets.  */
5667       g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5668       break;
5669     }
5670 
5671   /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5672      symbols are resolved by the loader.  Add them to .rela.dyn.  */
5673   if (h != NULL && is_gott_symbol (info, &h->root))
5674     {
5675       Elf_Internal_Rela outrel;
5676       bfd_byte *loc;
5677       asection *s;
5678 
5679       s = mips_elf_rel_dyn_section (info, FALSE);
5680       loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5681 
5682       outrel.r_offset = (input_section->output_section->vma
5683 			 + input_section->output_offset
5684 			 + relocation->r_offset);
5685       outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5686       outrel.r_addend = addend;
5687       bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5688 
5689       /* If we've written this relocation for a readonly section,
5690 	 we need to set DF_TEXTREL again, so that we do not delete the
5691 	 DT_TEXTREL tag.  */
5692       if (MIPS_ELF_READONLY_SECTION (input_section))
5693 	info->flags |= DF_TEXTREL;
5694 
5695       *valuep = 0;
5696       return bfd_reloc_ok;
5697     }
5698 
5699   /* Figure out what kind of relocation is being performed.  */
5700   switch (r_type)
5701     {
5702     case R_MIPS_NONE:
5703       return bfd_reloc_continue;
5704 
5705     case R_MIPS_16:
5706       if (howto->partial_inplace)
5707 	addend = _bfd_mips_elf_sign_extend (addend, 16);
5708       value = symbol + addend;
5709       overflowed_p = mips_elf_overflow_p (value, 16);
5710       break;
5711 
5712     case R_MIPS_32:
5713     case R_MIPS_REL32:
5714     case R_MIPS_64:
5715       if ((bfd_link_pic (info)
5716 	   || (htab->root.dynamic_sections_created
5717 	       && h != NULL
5718 	       && h->root.def_dynamic
5719 	       && !h->root.def_regular
5720 	       && !h->has_static_relocs))
5721 	  && r_symndx != STN_UNDEF
5722 	  && (h == NULL
5723 	      || h->root.root.type != bfd_link_hash_undefweak
5724 	      || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5725 	  && (input_section->flags & SEC_ALLOC) != 0)
5726 	{
5727 	  /* If we're creating a shared library, then we can't know
5728 	     where the symbol will end up.  So, we create a relocation
5729 	     record in the output, and leave the job up to the dynamic
5730 	     linker.  We must do the same for executable references to
5731 	     shared library symbols, unless we've decided to use copy
5732 	     relocs or PLTs instead.  */
5733 	  value = addend;
5734 	  if (!mips_elf_create_dynamic_relocation (abfd,
5735 						   info,
5736 						   relocation,
5737 						   h,
5738 						   sec,
5739 						   symbol,
5740 						   &value,
5741 						   input_section))
5742 	    return bfd_reloc_undefined;
5743 	}
5744       else
5745 	{
5746 	  if (r_type != R_MIPS_REL32)
5747 	    value = symbol + addend;
5748 	  else
5749 	    value = addend;
5750 	}
5751       value &= howto->dst_mask;
5752       break;
5753 
5754     case R_MIPS_PC32:
5755       value = symbol + addend - p;
5756       value &= howto->dst_mask;
5757       break;
5758 
5759     case R_MIPS16_26:
5760       /* The calculation for R_MIPS16_26 is just the same as for an
5761 	 R_MIPS_26.  It's only the storage of the relocated field into
5762 	 the output file that's different.  That's handled in
5763 	 mips_elf_perform_relocation.  So, we just fall through to the
5764 	 R_MIPS_26 case here.  */
5765     case R_MIPS_26:
5766     case R_MICROMIPS_26_S1:
5767       {
5768 	unsigned int shift;
5769 
5770 	/* Make sure the target of JALX is word-aligned.  Bit 0 must be
5771 	   the correct ISA mode selector and bit 1 must be 0.  */
5772 	if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5773 	  return bfd_reloc_outofrange;
5774 
5775 	/* Shift is 2, unusually, for microMIPS JALX.  */
5776 	shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5777 
5778 	if (was_local_p)
5779 	  value = addend | ((p + 4) & (0xfc000000 << shift));
5780 	else if (howto->partial_inplace)
5781 	  value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5782 	else
5783 	  value = addend;
5784 	value = (value + symbol) >> shift;
5785 	if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5786 	  overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5787 	value &= howto->dst_mask;
5788       }
5789       break;
5790 
5791     case R_MIPS_TLS_DTPREL_HI16:
5792     case R_MIPS16_TLS_DTPREL_HI16:
5793     case R_MICROMIPS_TLS_DTPREL_HI16:
5794       value = (mips_elf_high (addend + symbol - dtprel_base (info))
5795 	       & howto->dst_mask);
5796       break;
5797 
5798     case R_MIPS_TLS_DTPREL_LO16:
5799     case R_MIPS_TLS_DTPREL32:
5800     case R_MIPS_TLS_DTPREL64:
5801     case R_MIPS16_TLS_DTPREL_LO16:
5802     case R_MICROMIPS_TLS_DTPREL_LO16:
5803       value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5804       break;
5805 
5806     case R_MIPS_TLS_TPREL_HI16:
5807     case R_MIPS16_TLS_TPREL_HI16:
5808     case R_MICROMIPS_TLS_TPREL_HI16:
5809       value = (mips_elf_high (addend + symbol - tprel_base (info))
5810 	       & howto->dst_mask);
5811       break;
5812 
5813     case R_MIPS_TLS_TPREL_LO16:
5814     case R_MIPS_TLS_TPREL32:
5815     case R_MIPS_TLS_TPREL64:
5816     case R_MIPS16_TLS_TPREL_LO16:
5817     case R_MICROMIPS_TLS_TPREL_LO16:
5818       value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5819       break;
5820 
5821     case R_MIPS_HI16:
5822     case R_MIPS16_HI16:
5823     case R_MICROMIPS_HI16:
5824       if (!gp_disp_p)
5825 	{
5826 	  value = mips_elf_high (addend + symbol);
5827 	  value &= howto->dst_mask;
5828 	}
5829       else
5830 	{
5831 	  /* For MIPS16 ABI code we generate this sequence
5832 	        0: li      $v0,%hi(_gp_disp)
5833 	        4: addiupc $v1,%lo(_gp_disp)
5834 	        8: sll     $v0,16
5835 	       12: addu    $v0,$v1
5836 	       14: move    $gp,$v0
5837 	     So the offsets of hi and lo relocs are the same, but the
5838 	     base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5839 	     ADDIUPC clears the low two bits of the instruction address,
5840 	     so the base is ($t9 + 4) & ~3.  */
5841 	  if (r_type == R_MIPS16_HI16)
5842 	    value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5843 	  /* The microMIPS .cpload sequence uses the same assembly
5844 	     instructions as the traditional psABI version, but the
5845 	     incoming $t9 has the low bit set.  */
5846 	  else if (r_type == R_MICROMIPS_HI16)
5847 	    value = mips_elf_high (addend + gp - p - 1);
5848 	  else
5849 	    value = mips_elf_high (addend + gp - p);
5850 	  overflowed_p = mips_elf_overflow_p (value, 16);
5851 	}
5852       break;
5853 
5854     case R_MIPS_LO16:
5855     case R_MIPS16_LO16:
5856     case R_MICROMIPS_LO16:
5857     case R_MICROMIPS_HI0_LO16:
5858       if (!gp_disp_p)
5859 	value = (symbol + addend) & howto->dst_mask;
5860       else
5861 	{
5862 	  /* See the comment for R_MIPS16_HI16 above for the reason
5863 	     for this conditional.  */
5864 	  if (r_type == R_MIPS16_LO16)
5865 	    value = addend + gp - (p & ~(bfd_vma) 0x3);
5866 	  else if (r_type == R_MICROMIPS_LO16
5867 		   || r_type == R_MICROMIPS_HI0_LO16)
5868 	    value = addend + gp - p + 3;
5869 	  else
5870 	    value = addend + gp - p + 4;
5871 	  /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5872 	     for overflow.  But, on, say, IRIX5, relocations against
5873 	     _gp_disp are normally generated from the .cpload
5874 	     pseudo-op.  It generates code that normally looks like
5875 	     this:
5876 
5877 	       lui    $gp,%hi(_gp_disp)
5878 	       addiu  $gp,$gp,%lo(_gp_disp)
5879 	       addu   $gp,$gp,$t9
5880 
5881 	     Here $t9 holds the address of the function being called,
5882 	     as required by the MIPS ELF ABI.  The R_MIPS_LO16
5883 	     relocation can easily overflow in this situation, but the
5884 	     R_MIPS_HI16 relocation will handle the overflow.
5885 	     Therefore, we consider this a bug in the MIPS ABI, and do
5886 	     not check for overflow here.  */
5887 	}
5888       break;
5889 
5890     case R_MIPS_LITERAL:
5891     case R_MICROMIPS_LITERAL:
5892       /* Because we don't merge literal sections, we can handle this
5893 	 just like R_MIPS_GPREL16.  In the long run, we should merge
5894 	 shared literals, and then we will need to additional work
5895 	 here.  */
5896 
5897       /* Fall through.  */
5898 
5899     case R_MIPS16_GPREL:
5900       /* The R_MIPS16_GPREL performs the same calculation as
5901 	 R_MIPS_GPREL16, but stores the relocated bits in a different
5902 	 order.  We don't need to do anything special here; the
5903 	 differences are handled in mips_elf_perform_relocation.  */
5904     case R_MIPS_GPREL16:
5905     case R_MICROMIPS_GPREL7_S2:
5906     case R_MICROMIPS_GPREL16:
5907       /* Only sign-extend the addend if it was extracted from the
5908 	 instruction.  If the addend was separate, leave it alone,
5909 	 otherwise we may lose significant bits.  */
5910       if (howto->partial_inplace)
5911 	addend = _bfd_mips_elf_sign_extend (addend, 16);
5912       value = symbol + addend - gp;
5913       /* If the symbol was local, any earlier relocatable links will
5914 	 have adjusted its addend with the gp offset, so compensate
5915 	 for that now.  Don't do it for symbols forced local in this
5916 	 link, though, since they won't have had the gp offset applied
5917 	 to them before.  */
5918       if (was_local_p)
5919 	value += gp0;
5920       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5921 	overflowed_p = mips_elf_overflow_p (value, 16);
5922       break;
5923 
5924     case R_MIPS16_GOT16:
5925     case R_MIPS16_CALL16:
5926     case R_MIPS_GOT16:
5927     case R_MIPS_CALL16:
5928     case R_MICROMIPS_GOT16:
5929     case R_MICROMIPS_CALL16:
5930       /* VxWorks does not have separate local and global semantics for
5931 	 R_MIPS*_GOT16; every relocation evaluates to "G".  */
5932       if (!htab->is_vxworks && local_p)
5933 	{
5934 	  value = mips_elf_got16_entry (abfd, input_bfd, info,
5935 					symbol + addend, !was_local_p);
5936 	  if (value == MINUS_ONE)
5937 	    return bfd_reloc_outofrange;
5938 	  value
5939 	    = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5940 	  overflowed_p = mips_elf_overflow_p (value, 16);
5941 	  break;
5942 	}
5943 
5944       /* Fall through.  */
5945 
5946     case R_MIPS_TLS_GD:
5947     case R_MIPS_TLS_GOTTPREL:
5948     case R_MIPS_TLS_LDM:
5949     case R_MIPS_GOT_DISP:
5950     case R_MIPS16_TLS_GD:
5951     case R_MIPS16_TLS_GOTTPREL:
5952     case R_MIPS16_TLS_LDM:
5953     case R_MICROMIPS_TLS_GD:
5954     case R_MICROMIPS_TLS_GOTTPREL:
5955     case R_MICROMIPS_TLS_LDM:
5956     case R_MICROMIPS_GOT_DISP:
5957       value = g;
5958       overflowed_p = mips_elf_overflow_p (value, 16);
5959       break;
5960 
5961     case R_MIPS_GPREL32:
5962       value = (addend + symbol + gp0 - gp);
5963       if (!save_addend)
5964 	value &= howto->dst_mask;
5965       break;
5966 
5967     case R_MIPS_PC16:
5968     case R_MIPS_GNU_REL16_S2:
5969       if (howto->partial_inplace)
5970 	addend = _bfd_mips_elf_sign_extend (addend, 18);
5971 
5972       if ((symbol + addend) & 3)
5973 	return bfd_reloc_outofrange;
5974 
5975       value = symbol + addend - p;
5976       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5977 	overflowed_p = mips_elf_overflow_p (value, 18);
5978       value >>= howto->rightshift;
5979       value &= howto->dst_mask;
5980       break;
5981 
5982     case R_MIPS_PC21_S2:
5983       if (howto->partial_inplace)
5984 	addend = _bfd_mips_elf_sign_extend (addend, 23);
5985 
5986       if ((symbol + addend) & 3)
5987 	return bfd_reloc_outofrange;
5988 
5989       value = symbol + addend - p;
5990       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5991 	overflowed_p = mips_elf_overflow_p (value, 23);
5992       value >>= howto->rightshift;
5993       value &= howto->dst_mask;
5994       break;
5995 
5996     case R_MIPS_PC26_S2:
5997       if (howto->partial_inplace)
5998 	addend = _bfd_mips_elf_sign_extend (addend, 28);
5999 
6000       if ((symbol + addend) & 3)
6001 	return bfd_reloc_outofrange;
6002 
6003       value = symbol + addend - p;
6004       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6005 	overflowed_p = mips_elf_overflow_p (value, 28);
6006       value >>= howto->rightshift;
6007       value &= howto->dst_mask;
6008       break;
6009 
6010     case R_MIPS_PC18_S3:
6011       if (howto->partial_inplace)
6012 	addend = _bfd_mips_elf_sign_extend (addend, 21);
6013 
6014       if ((symbol + addend) & 7)
6015 	return bfd_reloc_outofrange;
6016 
6017       value = symbol + addend - ((p | 7) ^ 7);
6018       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6019 	overflowed_p = mips_elf_overflow_p (value, 21);
6020       value >>= howto->rightshift;
6021       value &= howto->dst_mask;
6022       break;
6023 
6024     case R_MIPS_PC19_S2:
6025       if (howto->partial_inplace)
6026 	addend = _bfd_mips_elf_sign_extend (addend, 21);
6027 
6028       if ((symbol + addend) & 3)
6029 	return bfd_reloc_outofrange;
6030 
6031       value = symbol + addend - p;
6032       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6033 	overflowed_p = mips_elf_overflow_p (value, 21);
6034       value >>= howto->rightshift;
6035       value &= howto->dst_mask;
6036       break;
6037 
6038     case R_MIPS_PCHI16:
6039       value = mips_elf_high (symbol + addend - p);
6040       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6041 	overflowed_p = mips_elf_overflow_p (value, 16);
6042       value &= howto->dst_mask;
6043       break;
6044 
6045     case R_MIPS_PCLO16:
6046       if (howto->partial_inplace)
6047 	addend = _bfd_mips_elf_sign_extend (addend, 16);
6048       value = symbol + addend - p;
6049       value &= howto->dst_mask;
6050       break;
6051 
6052     case R_MICROMIPS_PC7_S1:
6053       if (howto->partial_inplace)
6054 	addend = _bfd_mips_elf_sign_extend (addend, 8);
6055       value = symbol + addend - p;
6056       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6057 	overflowed_p = mips_elf_overflow_p (value, 8);
6058       value >>= howto->rightshift;
6059       value &= howto->dst_mask;
6060       break;
6061 
6062     case R_MICROMIPS_PC10_S1:
6063       if (howto->partial_inplace)
6064 	addend = _bfd_mips_elf_sign_extend (addend, 11);
6065       value = symbol + addend - p;
6066       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6067 	overflowed_p = mips_elf_overflow_p (value, 11);
6068       value >>= howto->rightshift;
6069       value &= howto->dst_mask;
6070       break;
6071 
6072     case R_MICROMIPS_PC16_S1:
6073       if (howto->partial_inplace)
6074 	addend = _bfd_mips_elf_sign_extend (addend, 17);
6075       value = symbol + addend - p;
6076       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6077 	overflowed_p = mips_elf_overflow_p (value, 17);
6078       value >>= howto->rightshift;
6079       value &= howto->dst_mask;
6080       break;
6081 
6082     case R_MICROMIPS_PC23_S2:
6083       if (howto->partial_inplace)
6084 	addend = _bfd_mips_elf_sign_extend (addend, 25);
6085       value = symbol + addend - ((p | 3) ^ 3);
6086       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6087 	overflowed_p = mips_elf_overflow_p (value, 25);
6088       value >>= howto->rightshift;
6089       value &= howto->dst_mask;
6090       break;
6091 
6092     case R_MIPS_GOT_HI16:
6093     case R_MIPS_CALL_HI16:
6094     case R_MICROMIPS_GOT_HI16:
6095     case R_MICROMIPS_CALL_HI16:
6096       /* We're allowed to handle these two relocations identically.
6097 	 The dynamic linker is allowed to handle the CALL relocations
6098 	 differently by creating a lazy evaluation stub.  */
6099       value = g;
6100       value = mips_elf_high (value);
6101       value &= howto->dst_mask;
6102       break;
6103 
6104     case R_MIPS_GOT_LO16:
6105     case R_MIPS_CALL_LO16:
6106     case R_MICROMIPS_GOT_LO16:
6107     case R_MICROMIPS_CALL_LO16:
6108       value = g & howto->dst_mask;
6109       break;
6110 
6111     case R_MIPS_GOT_PAGE:
6112     case R_MICROMIPS_GOT_PAGE:
6113       value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6114       if (value == MINUS_ONE)
6115 	return bfd_reloc_outofrange;
6116       value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6117       overflowed_p = mips_elf_overflow_p (value, 16);
6118       break;
6119 
6120     case R_MIPS_GOT_OFST:
6121     case R_MICROMIPS_GOT_OFST:
6122       if (local_p)
6123 	mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6124       else
6125 	value = addend;
6126       overflowed_p = mips_elf_overflow_p (value, 16);
6127       break;
6128 
6129     case R_MIPS_SUB:
6130     case R_MICROMIPS_SUB:
6131       value = symbol - addend;
6132       value &= howto->dst_mask;
6133       break;
6134 
6135     case R_MIPS_HIGHER:
6136     case R_MICROMIPS_HIGHER:
6137       value = mips_elf_higher (addend + symbol);
6138       value &= howto->dst_mask;
6139       break;
6140 
6141     case R_MIPS_HIGHEST:
6142     case R_MICROMIPS_HIGHEST:
6143       value = mips_elf_highest (addend + symbol);
6144       value &= howto->dst_mask;
6145       break;
6146 
6147     case R_MIPS_SCN_DISP:
6148     case R_MICROMIPS_SCN_DISP:
6149       value = symbol + addend - sec->output_offset;
6150       value &= howto->dst_mask;
6151       break;
6152 
6153     case R_MIPS_JALR:
6154     case R_MICROMIPS_JALR:
6155       /* This relocation is only a hint.  In some cases, we optimize
6156 	 it into a bal instruction.  But we don't try to optimize
6157 	 when the symbol does not resolve locally.  */
6158       if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6159 	return bfd_reloc_continue;
6160       value = symbol + addend;
6161       break;
6162 
6163     case R_MIPS_PJUMP:
6164     case R_MIPS_GNU_VTINHERIT:
6165     case R_MIPS_GNU_VTENTRY:
6166       /* We don't do anything with these at present.  */
6167       return bfd_reloc_continue;
6168 
6169     default:
6170       /* An unrecognized relocation type.  */
6171       return bfd_reloc_notsupported;
6172     }
6173 
6174   /* Store the VALUE for our caller.  */
6175   *valuep = value;
6176   return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6177 }
6178 
6179 /* Obtain the field relocated by RELOCATION.  */
6180 
6181 static bfd_vma
6182 mips_elf_obtain_contents (reloc_howto_type *howto,
6183 			  const Elf_Internal_Rela *relocation,
6184 			  bfd *input_bfd, bfd_byte *contents)
6185 {
6186   bfd_vma x = 0;
6187   bfd_byte *location = contents + relocation->r_offset;
6188   unsigned int size = bfd_get_reloc_size (howto);
6189 
6190   /* Obtain the bytes.  */
6191   if (size != 0)
6192     x = bfd_get (8 * size, input_bfd, location);
6193 
6194   return x;
6195 }
6196 
6197 /* It has been determined that the result of the RELOCATION is the
6198    VALUE.  Use HOWTO to place VALUE into the output file at the
6199    appropriate position.  The SECTION is the section to which the
6200    relocation applies.
6201    CROSS_MODE_JUMP_P is true if the relocation field
6202    is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6203 
6204    Returns FALSE if anything goes wrong.  */
6205 
6206 static bfd_boolean
6207 mips_elf_perform_relocation (struct bfd_link_info *info,
6208 			     reloc_howto_type *howto,
6209 			     const Elf_Internal_Rela *relocation,
6210 			     bfd_vma value, bfd *input_bfd,
6211 			     asection *input_section, bfd_byte *contents,
6212 			     bfd_boolean cross_mode_jump_p)
6213 {
6214   bfd_vma x;
6215   bfd_byte *location;
6216   int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6217   unsigned int size;
6218 
6219   /* Figure out where the relocation is occurring.  */
6220   location = contents + relocation->r_offset;
6221 
6222   _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6223 
6224   /* Obtain the current value.  */
6225   x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6226 
6227   /* Clear the field we are setting.  */
6228   x &= ~howto->dst_mask;
6229 
6230   /* Set the field.  */
6231   x |= (value & howto->dst_mask);
6232 
6233   /* If required, turn JAL into JALX.  */
6234   if (cross_mode_jump_p && jal_reloc_p (r_type))
6235     {
6236       bfd_boolean ok;
6237       bfd_vma opcode = x >> 26;
6238       bfd_vma jalx_opcode;
6239 
6240       /* Check to see if the opcode is already JAL or JALX.  */
6241       if (r_type == R_MIPS16_26)
6242 	{
6243 	  ok = ((opcode == 0x6) || (opcode == 0x7));
6244 	  jalx_opcode = 0x7;
6245 	}
6246       else if (r_type == R_MICROMIPS_26_S1)
6247 	{
6248 	  ok = ((opcode == 0x3d) || (opcode == 0x3c));
6249 	  jalx_opcode = 0x3c;
6250 	}
6251       else
6252 	{
6253 	  ok = ((opcode == 0x3) || (opcode == 0x1d));
6254 	  jalx_opcode = 0x1d;
6255 	}
6256 
6257       /* If the opcode is not JAL or JALX, there's a problem.  We cannot
6258          convert J or JALS to JALX.  */
6259       if (!ok)
6260 	{
6261 	  (*_bfd_error_handler)
6262 	    (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
6263 	     input_bfd,
6264 	     input_section,
6265 	     (unsigned long) relocation->r_offset);
6266 	  bfd_set_error (bfd_error_bad_value);
6267 	  return FALSE;
6268 	}
6269 
6270       /* Make this the JALX opcode.  */
6271       x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6272     }
6273 
6274   /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6275      range.  */
6276   if (!bfd_link_relocatable (info)
6277       && !cross_mode_jump_p
6278       && ((JAL_TO_BAL_P (input_bfd)
6279 	   && r_type == R_MIPS_26
6280 	   && (x >> 26) == 0x3)		/* jal addr */
6281 	  || (JALR_TO_BAL_P (input_bfd)
6282 	      && r_type == R_MIPS_JALR
6283 	      && x == 0x0320f809)	/* jalr t9 */
6284 	  || (JR_TO_B_P (input_bfd)
6285 	      && r_type == R_MIPS_JALR
6286 	      && x == 0x03200008)))	/* jr t9 */
6287     {
6288       bfd_vma addr;
6289       bfd_vma dest;
6290       bfd_signed_vma off;
6291 
6292       addr = (input_section->output_section->vma
6293 	      + input_section->output_offset
6294 	      + relocation->r_offset
6295 	      + 4);
6296       if (r_type == R_MIPS_26)
6297 	dest = (value << 2) | ((addr >> 28) << 28);
6298       else
6299 	dest = value;
6300       off = dest - addr;
6301       if (off <= 0x1ffff && off >= -0x20000)
6302 	{
6303 	  if (x == 0x03200008)	/* jr t9 */
6304 	    x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff);   /* b addr */
6305 	  else
6306 	    x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff);   /* bal addr */
6307 	}
6308     }
6309 
6310   /* Put the value into the output.  */
6311   size = bfd_get_reloc_size (howto);
6312   if (size != 0)
6313     bfd_put (8 * size, input_bfd, x, location);
6314 
6315   _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6316 			       location);
6317 
6318   return TRUE;
6319 }
6320 
6321 /* Create a rel.dyn relocation for the dynamic linker to resolve.  REL
6322    is the original relocation, which is now being transformed into a
6323    dynamic relocation.  The ADDENDP is adjusted if necessary; the
6324    caller should store the result in place of the original addend.  */
6325 
6326 static bfd_boolean
6327 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6328 				    struct bfd_link_info *info,
6329 				    const Elf_Internal_Rela *rel,
6330 				    struct mips_elf_link_hash_entry *h,
6331 				    asection *sec, bfd_vma symbol,
6332 				    bfd_vma *addendp, asection *input_section)
6333 {
6334   Elf_Internal_Rela outrel[3];
6335   asection *sreloc;
6336   bfd *dynobj;
6337   int r_type;
6338   long indx;
6339   bfd_boolean defined_p;
6340   struct mips_elf_link_hash_table *htab;
6341 
6342   htab = mips_elf_hash_table (info);
6343   BFD_ASSERT (htab != NULL);
6344 
6345   r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6346   dynobj = elf_hash_table (info)->dynobj;
6347   sreloc = mips_elf_rel_dyn_section (info, FALSE);
6348   BFD_ASSERT (sreloc != NULL);
6349   BFD_ASSERT (sreloc->contents != NULL);
6350   BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6351 	      < sreloc->size);
6352 
6353   outrel[0].r_offset =
6354     _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6355   if (ABI_64_P (output_bfd))
6356     {
6357       outrel[1].r_offset =
6358 	_bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6359       outrel[2].r_offset =
6360 	_bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6361     }
6362 
6363   if (outrel[0].r_offset == MINUS_ONE)
6364     /* The relocation field has been deleted.  */
6365     return TRUE;
6366 
6367   if (outrel[0].r_offset == MINUS_TWO)
6368     {
6369       /* The relocation field has been converted into a relative value of
6370 	 some sort.  Functions like _bfd_elf_write_section_eh_frame expect
6371 	 the field to be fully relocated, so add in the symbol's value.  */
6372       *addendp += symbol;
6373       return TRUE;
6374     }
6375 
6376   /* We must now calculate the dynamic symbol table index to use
6377      in the relocation.  */
6378   if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6379     {
6380       BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6381       indx = h->root.dynindx;
6382       if (SGI_COMPAT (output_bfd))
6383 	defined_p = h->root.def_regular;
6384       else
6385 	/* ??? glibc's ld.so just adds the final GOT entry to the
6386 	   relocation field.  It therefore treats relocs against
6387 	   defined symbols in the same way as relocs against
6388 	   undefined symbols.  */
6389 	defined_p = FALSE;
6390     }
6391   else
6392     {
6393       if (sec != NULL && bfd_is_abs_section (sec))
6394 	indx = 0;
6395       else if (sec == NULL || sec->owner == NULL)
6396 	{
6397 	  bfd_set_error (bfd_error_bad_value);
6398 	  return FALSE;
6399 	}
6400       else
6401 	{
6402 	  indx = elf_section_data (sec->output_section)->dynindx;
6403 	  if (indx == 0)
6404 	    {
6405 	      asection *osec = htab->root.text_index_section;
6406 	      indx = elf_section_data (osec)->dynindx;
6407 	    }
6408 	  if (indx == 0)
6409 	    abort ();
6410 	}
6411 
6412       /* Instead of generating a relocation using the section
6413 	 symbol, we may as well make it a fully relative
6414 	 relocation.  We want to avoid generating relocations to
6415 	 local symbols because we used to generate them
6416 	 incorrectly, without adding the original symbol value,
6417 	 which is mandated by the ABI for section symbols.  In
6418 	 order to give dynamic loaders and applications time to
6419 	 phase out the incorrect use, we refrain from emitting
6420 	 section-relative relocations.  It's not like they're
6421 	 useful, after all.  This should be a bit more efficient
6422 	 as well.  */
6423       /* ??? Although this behavior is compatible with glibc's ld.so,
6424 	 the ABI says that relocations against STN_UNDEF should have
6425 	 a symbol value of 0.  Irix rld honors this, so relocations
6426 	 against STN_UNDEF have no effect.  */
6427       if (!SGI_COMPAT (output_bfd))
6428 	indx = 0;
6429       defined_p = TRUE;
6430     }
6431 
6432   /* If the relocation was previously an absolute relocation and
6433      this symbol will not be referred to by the relocation, we must
6434      adjust it by the value we give it in the dynamic symbol table.
6435      Otherwise leave the job up to the dynamic linker.  */
6436   if (defined_p && r_type != R_MIPS_REL32)
6437     *addendp += symbol;
6438 
6439   if (htab->is_vxworks)
6440     /* VxWorks uses non-relative relocations for this.  */
6441     outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6442   else
6443     /* The relocation is always an REL32 relocation because we don't
6444        know where the shared library will wind up at load-time.  */
6445     outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6446 				   R_MIPS_REL32);
6447 
6448   /* For strict adherence to the ABI specification, we should
6449      generate a R_MIPS_64 relocation record by itself before the
6450      _REL32/_64 record as well, such that the addend is read in as
6451      a 64-bit value (REL32 is a 32-bit relocation, after all).
6452      However, since none of the existing ELF64 MIPS dynamic
6453      loaders seems to care, we don't waste space with these
6454      artificial relocations.  If this turns out to not be true,
6455      mips_elf_allocate_dynamic_relocation() should be tweaked so
6456      as to make room for a pair of dynamic relocations per
6457      invocation if ABI_64_P, and here we should generate an
6458      additional relocation record with R_MIPS_64 by itself for a
6459      NULL symbol before this relocation record.  */
6460   outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6461 				 ABI_64_P (output_bfd)
6462 				 ? R_MIPS_64
6463 				 : R_MIPS_NONE);
6464   outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6465 
6466   /* Adjust the output offset of the relocation to reference the
6467      correct location in the output file.  */
6468   outrel[0].r_offset += (input_section->output_section->vma
6469 			 + input_section->output_offset);
6470   outrel[1].r_offset += (input_section->output_section->vma
6471 			 + input_section->output_offset);
6472   outrel[2].r_offset += (input_section->output_section->vma
6473 			 + input_section->output_offset);
6474 
6475   /* Put the relocation back out.  We have to use the special
6476      relocation outputter in the 64-bit case since the 64-bit
6477      relocation format is non-standard.  */
6478   if (ABI_64_P (output_bfd))
6479     {
6480       (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6481 	(output_bfd, &outrel[0],
6482 	 (sreloc->contents
6483 	  + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6484     }
6485   else if (htab->is_vxworks)
6486     {
6487       /* VxWorks uses RELA rather than REL dynamic relocations.  */
6488       outrel[0].r_addend = *addendp;
6489       bfd_elf32_swap_reloca_out
6490 	(output_bfd, &outrel[0],
6491 	 (sreloc->contents
6492 	  + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6493     }
6494   else
6495     bfd_elf32_swap_reloc_out
6496       (output_bfd, &outrel[0],
6497        (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6498 
6499   /* We've now added another relocation.  */
6500   ++sreloc->reloc_count;
6501 
6502   /* Make sure the output section is writable.  The dynamic linker
6503      will be writing to it.  */
6504   elf_section_data (input_section->output_section)->this_hdr.sh_flags
6505     |= SHF_WRITE;
6506 
6507   /* On IRIX5, make an entry of compact relocation info.  */
6508   if (IRIX_COMPAT (output_bfd) == ict_irix5)
6509     {
6510       asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6511       bfd_byte *cr;
6512 
6513       if (scpt)
6514 	{
6515 	  Elf32_crinfo cptrel;
6516 
6517 	  mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6518 	  cptrel.vaddr = (rel->r_offset
6519 			  + input_section->output_section->vma
6520 			  + input_section->output_offset);
6521 	  if (r_type == R_MIPS_REL32)
6522 	    mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6523 	  else
6524 	    mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6525 	  mips_elf_set_cr_dist2to (cptrel, 0);
6526 	  cptrel.konst = *addendp;
6527 
6528 	  cr = (scpt->contents
6529 		+ sizeof (Elf32_External_compact_rel));
6530 	  mips_elf_set_cr_relvaddr (cptrel, 0);
6531 	  bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6532 				     ((Elf32_External_crinfo *) cr
6533 				      + scpt->reloc_count));
6534 	  ++scpt->reloc_count;
6535 	}
6536     }
6537 
6538   /* If we've written this relocation for a readonly section,
6539      we need to set DF_TEXTREL again, so that we do not delete the
6540      DT_TEXTREL tag.  */
6541   if (MIPS_ELF_READONLY_SECTION (input_section))
6542     info->flags |= DF_TEXTREL;
6543 
6544   return TRUE;
6545 }
6546 
6547 /* Return the MACH for a MIPS e_flags value.  */
6548 
6549 unsigned long
6550 _bfd_elf_mips_mach (flagword flags)
6551 {
6552   switch (flags & EF_MIPS_MACH)
6553     {
6554     case E_MIPS_MACH_3900:
6555       return bfd_mach_mips3900;
6556 
6557     case E_MIPS_MACH_4010:
6558       return bfd_mach_mips4010;
6559 
6560     case E_MIPS_MACH_4100:
6561       return bfd_mach_mips4100;
6562 
6563     case E_MIPS_MACH_4111:
6564       return bfd_mach_mips4111;
6565 
6566     case E_MIPS_MACH_4120:
6567       return bfd_mach_mips4120;
6568 
6569     case E_MIPS_MACH_4650:
6570       return bfd_mach_mips4650;
6571 
6572     case E_MIPS_MACH_5400:
6573       return bfd_mach_mips5400;
6574 
6575     case E_MIPS_MACH_5500:
6576       return bfd_mach_mips5500;
6577 
6578     case E_MIPS_MACH_5900:
6579       return bfd_mach_mips5900;
6580 
6581     case E_MIPS_MACH_9000:
6582       return bfd_mach_mips9000;
6583 
6584     case E_MIPS_MACH_SB1:
6585       return bfd_mach_mips_sb1;
6586 
6587     case E_MIPS_MACH_LS2E:
6588       return bfd_mach_mips_loongson_2e;
6589 
6590     case E_MIPS_MACH_LS2F:
6591       return bfd_mach_mips_loongson_2f;
6592 
6593     case E_MIPS_MACH_LS3A:
6594       return bfd_mach_mips_loongson_3a;
6595 
6596     case E_MIPS_MACH_OCTEON3:
6597       return bfd_mach_mips_octeon3;
6598 
6599     case E_MIPS_MACH_OCTEON2:
6600       return bfd_mach_mips_octeon2;
6601 
6602     case E_MIPS_MACH_OCTEON:
6603       return bfd_mach_mips_octeon;
6604 
6605     case E_MIPS_MACH_XLR:
6606       return bfd_mach_mips_xlr;
6607 
6608     default:
6609       switch (flags & EF_MIPS_ARCH)
6610 	{
6611 	default:
6612 	case E_MIPS_ARCH_1:
6613 	  return bfd_mach_mips3000;
6614 
6615 	case E_MIPS_ARCH_2:
6616 	  return bfd_mach_mips6000;
6617 
6618 	case E_MIPS_ARCH_3:
6619 	  return bfd_mach_mips4000;
6620 
6621 	case E_MIPS_ARCH_4:
6622 	  return bfd_mach_mips8000;
6623 
6624 	case E_MIPS_ARCH_5:
6625 	  return bfd_mach_mips5;
6626 
6627 	case E_MIPS_ARCH_32:
6628 	  return bfd_mach_mipsisa32;
6629 
6630 	case E_MIPS_ARCH_64:
6631 	  return bfd_mach_mipsisa64;
6632 
6633 	case E_MIPS_ARCH_32R2:
6634 	  return bfd_mach_mipsisa32r2;
6635 
6636 	case E_MIPS_ARCH_64R2:
6637 	  return bfd_mach_mipsisa64r2;
6638 
6639 	case E_MIPS_ARCH_32R6:
6640 	  return bfd_mach_mipsisa32r6;
6641 
6642 	case E_MIPS_ARCH_64R6:
6643 	  return bfd_mach_mipsisa64r6;
6644 	}
6645     }
6646 
6647   return 0;
6648 }
6649 
6650 /* Return printable name for ABI.  */
6651 
6652 static INLINE char *
6653 elf_mips_abi_name (bfd *abfd)
6654 {
6655   flagword flags;
6656 
6657   flags = elf_elfheader (abfd)->e_flags;
6658   switch (flags & EF_MIPS_ABI)
6659     {
6660     case 0:
6661       if (ABI_N32_P (abfd))
6662 	return "N32";
6663       else if (ABI_64_P (abfd))
6664 	return "64";
6665       else
6666 	return "none";
6667     case E_MIPS_ABI_O32:
6668       return "O32";
6669     case E_MIPS_ABI_O64:
6670       return "O64";
6671     case E_MIPS_ABI_EABI32:
6672       return "EABI32";
6673     case E_MIPS_ABI_EABI64:
6674       return "EABI64";
6675     default:
6676       return "unknown abi";
6677     }
6678 }
6679 
6680 /* MIPS ELF uses two common sections.  One is the usual one, and the
6681    other is for small objects.  All the small objects are kept
6682    together, and then referenced via the gp pointer, which yields
6683    faster assembler code.  This is what we use for the small common
6684    section.  This approach is copied from ecoff.c.  */
6685 static asection mips_elf_scom_section;
6686 static asymbol mips_elf_scom_symbol;
6687 static asymbol *mips_elf_scom_symbol_ptr;
6688 
6689 /* MIPS ELF also uses an acommon section, which represents an
6690    allocated common symbol which may be overridden by a
6691    definition in a shared library.  */
6692 static asection mips_elf_acom_section;
6693 static asymbol mips_elf_acom_symbol;
6694 static asymbol *mips_elf_acom_symbol_ptr;
6695 
6696 /* This is used for both the 32-bit and the 64-bit ABI.  */
6697 
6698 void
6699 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6700 {
6701   elf_symbol_type *elfsym;
6702 
6703   /* Handle the special MIPS section numbers that a symbol may use.  */
6704   elfsym = (elf_symbol_type *) asym;
6705   switch (elfsym->internal_elf_sym.st_shndx)
6706     {
6707     case SHN_MIPS_ACOMMON:
6708       /* This section is used in a dynamically linked executable file.
6709 	 It is an allocated common section.  The dynamic linker can
6710 	 either resolve these symbols to something in a shared
6711 	 library, or it can just leave them here.  For our purposes,
6712 	 we can consider these symbols to be in a new section.  */
6713       if (mips_elf_acom_section.name == NULL)
6714 	{
6715 	  /* Initialize the acommon section.  */
6716 	  mips_elf_acom_section.name = ".acommon";
6717 	  mips_elf_acom_section.flags = SEC_ALLOC;
6718 	  mips_elf_acom_section.output_section = &mips_elf_acom_section;
6719 	  mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6720 	  mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6721 	  mips_elf_acom_symbol.name = ".acommon";
6722 	  mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6723 	  mips_elf_acom_symbol.section = &mips_elf_acom_section;
6724 	  mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6725 	}
6726       asym->section = &mips_elf_acom_section;
6727       break;
6728 
6729     case SHN_COMMON:
6730       /* Common symbols less than the GP size are automatically
6731 	 treated as SHN_MIPS_SCOMMON symbols on IRIX5.  */
6732       if (asym->value > elf_gp_size (abfd)
6733 	  || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6734 	  || IRIX_COMPAT (abfd) == ict_irix6)
6735 	break;
6736       /* Fall through.  */
6737     case SHN_MIPS_SCOMMON:
6738       if (mips_elf_scom_section.name == NULL)
6739 	{
6740 	  /* Initialize the small common section.  */
6741 	  mips_elf_scom_section.name = ".scommon";
6742 	  mips_elf_scom_section.flags = SEC_IS_COMMON;
6743 	  mips_elf_scom_section.output_section = &mips_elf_scom_section;
6744 	  mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6745 	  mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6746 	  mips_elf_scom_symbol.name = ".scommon";
6747 	  mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6748 	  mips_elf_scom_symbol.section = &mips_elf_scom_section;
6749 	  mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6750 	}
6751       asym->section = &mips_elf_scom_section;
6752       asym->value = elfsym->internal_elf_sym.st_size;
6753       break;
6754 
6755     case SHN_MIPS_SUNDEFINED:
6756       asym->section = bfd_und_section_ptr;
6757       break;
6758 
6759     case SHN_MIPS_TEXT:
6760       {
6761 	asection *section = bfd_get_section_by_name (abfd, ".text");
6762 
6763 	if (section != NULL)
6764 	  {
6765 	    asym->section = section;
6766 	    /* MIPS_TEXT is a bit special, the address is not an offset
6767 	       to the base of the .text section.  So substract the section
6768 	       base address to make it an offset.  */
6769 	    asym->value -= section->vma;
6770 	  }
6771       }
6772       break;
6773 
6774     case SHN_MIPS_DATA:
6775       {
6776 	asection *section = bfd_get_section_by_name (abfd, ".data");
6777 
6778 	if (section != NULL)
6779 	  {
6780 	    asym->section = section;
6781 	    /* MIPS_DATA is a bit special, the address is not an offset
6782 	       to the base of the .data section.  So substract the section
6783 	       base address to make it an offset.  */
6784 	    asym->value -= section->vma;
6785 	  }
6786       }
6787       break;
6788     }
6789 
6790   /* If this is an odd-valued function symbol, assume it's a MIPS16
6791      or microMIPS one.  */
6792   if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6793       && (asym->value & 1) != 0)
6794     {
6795       asym->value--;
6796       if (MICROMIPS_P (abfd))
6797 	elfsym->internal_elf_sym.st_other
6798 	  = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6799       else
6800 	elfsym->internal_elf_sym.st_other
6801 	  = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6802     }
6803 }
6804 
6805 /* Implement elf_backend_eh_frame_address_size.  This differs from
6806    the default in the way it handles EABI64.
6807 
6808    EABI64 was originally specified as an LP64 ABI, and that is what
6809    -mabi=eabi normally gives on a 64-bit target.  However, gcc has
6810    historically accepted the combination of -mabi=eabi and -mlong32,
6811    and this ILP32 variation has become semi-official over time.
6812    Both forms use elf32 and have pointer-sized FDE addresses.
6813 
6814    If an EABI object was generated by GCC 4.0 or above, it will have
6815    an empty .gcc_compiled_longXX section, where XX is the size of longs
6816    in bits.  Unfortunately, ILP32 objects generated by earlier compilers
6817    have no special marking to distinguish them from LP64 objects.
6818 
6819    We don't want users of the official LP64 ABI to be punished for the
6820    existence of the ILP32 variant, but at the same time, we don't want
6821    to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6822    We therefore take the following approach:
6823 
6824       - If ABFD contains a .gcc_compiled_longXX section, use it to
6825         determine the pointer size.
6826 
6827       - Otherwise check the type of the first relocation.  Assume that
6828         the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6829 
6830       - Otherwise punt.
6831 
6832    The second check is enough to detect LP64 objects generated by pre-4.0
6833    compilers because, in the kind of output generated by those compilers,
6834    the first relocation will be associated with either a CIE personality
6835    routine or an FDE start address.  Furthermore, the compilers never
6836    used a special (non-pointer) encoding for this ABI.
6837 
6838    Checking the relocation type should also be safe because there is no
6839    reason to use R_MIPS_64 in an ILP32 object.  Pre-4.0 compilers never
6840    did so.  */
6841 
6842 unsigned int
6843 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6844 {
6845   if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6846     return 8;
6847   if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6848     {
6849       bfd_boolean long32_p, long64_p;
6850 
6851       long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6852       long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6853       if (long32_p && long64_p)
6854 	return 0;
6855       if (long32_p)
6856 	return 4;
6857       if (long64_p)
6858 	return 8;
6859 
6860       if (sec->reloc_count > 0
6861 	  && elf_section_data (sec)->relocs != NULL
6862 	  && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6863 	      == R_MIPS_64))
6864 	return 8;
6865 
6866       return 0;
6867     }
6868   return 4;
6869 }
6870 
6871 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6872    relocations against two unnamed section symbols to resolve to the
6873    same address.  For example, if we have code like:
6874 
6875 	lw	$4,%got_disp(.data)($gp)
6876 	lw	$25,%got_disp(.text)($gp)
6877 	jalr	$25
6878 
6879    then the linker will resolve both relocations to .data and the program
6880    will jump there rather than to .text.
6881 
6882    We can work around this problem by giving names to local section symbols.
6883    This is also what the MIPSpro tools do.  */
6884 
6885 bfd_boolean
6886 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6887 {
6888   return SGI_COMPAT (abfd);
6889 }
6890 
6891 /* Work over a section just before writing it out.  This routine is
6892    used by both the 32-bit and the 64-bit ABI.  FIXME: We recognize
6893    sections that need the SHF_MIPS_GPREL flag by name; there has to be
6894    a better way.  */
6895 
6896 bfd_boolean
6897 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6898 {
6899   if (hdr->sh_type == SHT_MIPS_REGINFO
6900       && hdr->sh_size > 0)
6901     {
6902       bfd_byte buf[4];
6903 
6904       BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6905       BFD_ASSERT (hdr->contents == NULL);
6906 
6907       if (bfd_seek (abfd,
6908 		    hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6909 		    SEEK_SET) != 0)
6910 	return FALSE;
6911       H_PUT_32 (abfd, elf_gp (abfd), buf);
6912       if (bfd_bwrite (buf, 4, abfd) != 4)
6913 	return FALSE;
6914     }
6915 
6916   if (hdr->sh_type == SHT_MIPS_OPTIONS
6917       && hdr->bfd_section != NULL
6918       && mips_elf_section_data (hdr->bfd_section) != NULL
6919       && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6920     {
6921       bfd_byte *contents, *l, *lend;
6922 
6923       /* We stored the section contents in the tdata field in the
6924 	 set_section_contents routine.  We save the section contents
6925 	 so that we don't have to read them again.
6926 	 At this point we know that elf_gp is set, so we can look
6927 	 through the section contents to see if there is an
6928 	 ODK_REGINFO structure.  */
6929 
6930       contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6931       l = contents;
6932       lend = contents + hdr->sh_size;
6933       while (l + sizeof (Elf_External_Options) <= lend)
6934 	{
6935 	  Elf_Internal_Options intopt;
6936 
6937 	  bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6938 					&intopt);
6939 	  if (intopt.size < sizeof (Elf_External_Options))
6940 	    {
6941 	      (*_bfd_error_handler)
6942 		(_("%B: Warning: bad `%s' option size %u smaller than its header"),
6943 		abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6944 	      break;
6945 	    }
6946 	  if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6947 	    {
6948 	      bfd_byte buf[8];
6949 
6950 	      if (bfd_seek (abfd,
6951 			    (hdr->sh_offset
6952 			     + (l - contents)
6953 			     + sizeof (Elf_External_Options)
6954 			     + (sizeof (Elf64_External_RegInfo) - 8)),
6955 			     SEEK_SET) != 0)
6956 		return FALSE;
6957 	      H_PUT_64 (abfd, elf_gp (abfd), buf);
6958 	      if (bfd_bwrite (buf, 8, abfd) != 8)
6959 		return FALSE;
6960 	    }
6961 	  else if (intopt.kind == ODK_REGINFO)
6962 	    {
6963 	      bfd_byte buf[4];
6964 
6965 	      if (bfd_seek (abfd,
6966 			    (hdr->sh_offset
6967 			     + (l - contents)
6968 			     + sizeof (Elf_External_Options)
6969 			     + (sizeof (Elf32_External_RegInfo) - 4)),
6970 			    SEEK_SET) != 0)
6971 		return FALSE;
6972 	      H_PUT_32 (abfd, elf_gp (abfd), buf);
6973 	      if (bfd_bwrite (buf, 4, abfd) != 4)
6974 		return FALSE;
6975 	    }
6976 	  l += intopt.size;
6977 	}
6978     }
6979 
6980   if (hdr->bfd_section != NULL)
6981     {
6982       const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6983 
6984       /* .sbss is not handled specially here because the GNU/Linux
6985 	 prelinker can convert .sbss from NOBITS to PROGBITS and
6986 	 changing it back to NOBITS breaks the binary.  The entry in
6987 	 _bfd_mips_elf_special_sections will ensure the correct flags
6988 	 are set on .sbss if BFD creates it without reading it from an
6989 	 input file, and without special handling here the flags set
6990 	 on it in an input file will be followed.  */
6991       if (strcmp (name, ".sdata") == 0
6992 	  || strcmp (name, ".lit8") == 0
6993 	  || strcmp (name, ".lit4") == 0)
6994 	hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6995       else if (strcmp (name, ".srdata") == 0)
6996 	hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6997       else if (strcmp (name, ".compact_rel") == 0)
6998 	hdr->sh_flags = 0;
6999       else if (strcmp (name, ".rtproc") == 0)
7000 	{
7001 	  if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7002 	    {
7003 	      unsigned int adjust;
7004 
7005 	      adjust = hdr->sh_size % hdr->sh_addralign;
7006 	      if (adjust != 0)
7007 		hdr->sh_size += hdr->sh_addralign - adjust;
7008 	    }
7009 	}
7010     }
7011 
7012   return TRUE;
7013 }
7014 
7015 /* Handle a MIPS specific section when reading an object file.  This
7016    is called when elfcode.h finds a section with an unknown type.
7017    This routine supports both the 32-bit and 64-bit ELF ABI.
7018 
7019    FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7020    how to.  */
7021 
7022 bfd_boolean
7023 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7024 				 Elf_Internal_Shdr *hdr,
7025 				 const char *name,
7026 				 int shindex)
7027 {
7028   flagword flags = 0;
7029 
7030   /* There ought to be a place to keep ELF backend specific flags, but
7031      at the moment there isn't one.  We just keep track of the
7032      sections by their name, instead.  Fortunately, the ABI gives
7033      suggested names for all the MIPS specific sections, so we will
7034      probably get away with this.  */
7035   switch (hdr->sh_type)
7036     {
7037     case SHT_MIPS_LIBLIST:
7038       if (strcmp (name, ".liblist") != 0)
7039 	return FALSE;
7040       break;
7041     case SHT_MIPS_MSYM:
7042       if (strcmp (name, ".msym") != 0)
7043 	return FALSE;
7044       break;
7045     case SHT_MIPS_CONFLICT:
7046       if (strcmp (name, ".conflict") != 0)
7047 	return FALSE;
7048       break;
7049     case SHT_MIPS_GPTAB:
7050       if (! CONST_STRNEQ (name, ".gptab."))
7051 	return FALSE;
7052       break;
7053     case SHT_MIPS_UCODE:
7054       if (strcmp (name, ".ucode") != 0)
7055 	return FALSE;
7056       break;
7057     case SHT_MIPS_DEBUG:
7058       if (strcmp (name, ".mdebug") != 0)
7059 	return FALSE;
7060       flags = SEC_DEBUGGING;
7061       break;
7062     case SHT_MIPS_REGINFO:
7063       if (strcmp (name, ".reginfo") != 0
7064 	  || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7065 	return FALSE;
7066       flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7067       break;
7068     case SHT_MIPS_IFACE:
7069       if (strcmp (name, ".MIPS.interfaces") != 0)
7070 	return FALSE;
7071       break;
7072     case SHT_MIPS_CONTENT:
7073       if (! CONST_STRNEQ (name, ".MIPS.content"))
7074 	return FALSE;
7075       break;
7076     case SHT_MIPS_OPTIONS:
7077       if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7078 	return FALSE;
7079       break;
7080     case SHT_MIPS_ABIFLAGS:
7081       if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7082 	return FALSE;
7083       flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7084       break;
7085     case SHT_MIPS_DWARF:
7086       if (! CONST_STRNEQ (name, ".debug_")
7087           && ! CONST_STRNEQ (name, ".zdebug_"))
7088 	return FALSE;
7089       break;
7090     case SHT_MIPS_SYMBOL_LIB:
7091       if (strcmp (name, ".MIPS.symlib") != 0)
7092 	return FALSE;
7093       break;
7094     case SHT_MIPS_EVENTS:
7095       if (! CONST_STRNEQ (name, ".MIPS.events")
7096 	  && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7097 	return FALSE;
7098       break;
7099     default:
7100       break;
7101     }
7102 
7103   if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7104     return FALSE;
7105 
7106   if (flags)
7107     {
7108       if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7109 				   (bfd_get_section_flags (abfd,
7110 							   hdr->bfd_section)
7111 				    | flags)))
7112 	return FALSE;
7113     }
7114 
7115   if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7116     {
7117       Elf_External_ABIFlags_v0 ext;
7118 
7119       if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7120 				      &ext, 0, sizeof ext))
7121 	return FALSE;
7122       bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7123 					&mips_elf_tdata (abfd)->abiflags);
7124       if (mips_elf_tdata (abfd)->abiflags.version != 0)
7125 	return FALSE;
7126       mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7127     }
7128 
7129   /* FIXME: We should record sh_info for a .gptab section.  */
7130 
7131   /* For a .reginfo section, set the gp value in the tdata information
7132      from the contents of this section.  We need the gp value while
7133      processing relocs, so we just get it now.  The .reginfo section
7134      is not used in the 64-bit MIPS ELF ABI.  */
7135   if (hdr->sh_type == SHT_MIPS_REGINFO)
7136     {
7137       Elf32_External_RegInfo ext;
7138       Elf32_RegInfo s;
7139 
7140       if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7141 				      &ext, 0, sizeof ext))
7142 	return FALSE;
7143       bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7144       elf_gp (abfd) = s.ri_gp_value;
7145     }
7146 
7147   /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7148      set the gp value based on what we find.  We may see both
7149      SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7150      they should agree.  */
7151   if (hdr->sh_type == SHT_MIPS_OPTIONS)
7152     {
7153       bfd_byte *contents, *l, *lend;
7154 
7155       contents = bfd_malloc (hdr->sh_size);
7156       if (contents == NULL)
7157 	return FALSE;
7158       if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7159 				      0, hdr->sh_size))
7160 	{
7161 	  free (contents);
7162 	  return FALSE;
7163 	}
7164       l = contents;
7165       lend = contents + hdr->sh_size;
7166       while (l + sizeof (Elf_External_Options) <= lend)
7167 	{
7168 	  Elf_Internal_Options intopt;
7169 
7170 	  bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7171 					&intopt);
7172 	  if (intopt.size < sizeof (Elf_External_Options))
7173 	    {
7174 	      (*_bfd_error_handler)
7175 		(_("%B: Warning: bad `%s' option size %u smaller than its header"),
7176 		abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7177 	      break;
7178 	    }
7179 	  if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7180 	    {
7181 	      Elf64_Internal_RegInfo intreg;
7182 
7183 	      bfd_mips_elf64_swap_reginfo_in
7184 		(abfd,
7185 		 ((Elf64_External_RegInfo *)
7186 		  (l + sizeof (Elf_External_Options))),
7187 		 &intreg);
7188 	      elf_gp (abfd) = intreg.ri_gp_value;
7189 	    }
7190 	  else if (intopt.kind == ODK_REGINFO)
7191 	    {
7192 	      Elf32_RegInfo intreg;
7193 
7194 	      bfd_mips_elf32_swap_reginfo_in
7195 		(abfd,
7196 		 ((Elf32_External_RegInfo *)
7197 		  (l + sizeof (Elf_External_Options))),
7198 		 &intreg);
7199 	      elf_gp (abfd) = intreg.ri_gp_value;
7200 	    }
7201 	  l += intopt.size;
7202 	}
7203       free (contents);
7204     }
7205 
7206   return TRUE;
7207 }
7208 
7209 /* Set the correct type for a MIPS ELF section.  We do this by the
7210    section name, which is a hack, but ought to work.  This routine is
7211    used by both the 32-bit and the 64-bit ABI.  */
7212 
7213 bfd_boolean
7214 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7215 {
7216   const char *name = bfd_get_section_name (abfd, sec);
7217 
7218   if (strcmp (name, ".liblist") == 0)
7219     {
7220       hdr->sh_type = SHT_MIPS_LIBLIST;
7221       hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7222       /* The sh_link field is set in final_write_processing.  */
7223     }
7224   else if (strcmp (name, ".conflict") == 0)
7225     hdr->sh_type = SHT_MIPS_CONFLICT;
7226   else if (CONST_STRNEQ (name, ".gptab."))
7227     {
7228       hdr->sh_type = SHT_MIPS_GPTAB;
7229       hdr->sh_entsize = sizeof (Elf32_External_gptab);
7230       /* The sh_info field is set in final_write_processing.  */
7231     }
7232   else if (strcmp (name, ".ucode") == 0)
7233     hdr->sh_type = SHT_MIPS_UCODE;
7234   else if (strcmp (name, ".mdebug") == 0)
7235     {
7236       hdr->sh_type = SHT_MIPS_DEBUG;
7237       /* In a shared object on IRIX 5.3, the .mdebug section has an
7238          entsize of 0.  FIXME: Does this matter?  */
7239       if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7240 	hdr->sh_entsize = 0;
7241       else
7242 	hdr->sh_entsize = 1;
7243     }
7244   else if (strcmp (name, ".reginfo") == 0)
7245     {
7246       hdr->sh_type = SHT_MIPS_REGINFO;
7247       /* In a shared object on IRIX 5.3, the .reginfo section has an
7248          entsize of 0x18.  FIXME: Does this matter?  */
7249       if (SGI_COMPAT (abfd))
7250 	{
7251 	  if ((abfd->flags & DYNAMIC) != 0)
7252 	    hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7253 	  else
7254 	    hdr->sh_entsize = 1;
7255 	}
7256       else
7257 	hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7258     }
7259   else if (SGI_COMPAT (abfd)
7260 	   && (strcmp (name, ".hash") == 0
7261 	       || strcmp (name, ".dynamic") == 0
7262 	       || strcmp (name, ".dynstr") == 0))
7263     {
7264       if (SGI_COMPAT (abfd))
7265 	hdr->sh_entsize = 0;
7266 #if 0
7267       /* This isn't how the IRIX6 linker behaves.  */
7268       hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7269 #endif
7270     }
7271   else if (strcmp (name, ".got") == 0
7272 	   || strcmp (name, ".srdata") == 0
7273 	   || strcmp (name, ".sdata") == 0
7274 	   || strcmp (name, ".sbss") == 0
7275 	   || strcmp (name, ".lit4") == 0
7276 	   || strcmp (name, ".lit8") == 0)
7277     hdr->sh_flags |= SHF_MIPS_GPREL;
7278   else if (strcmp (name, ".MIPS.interfaces") == 0)
7279     {
7280       hdr->sh_type = SHT_MIPS_IFACE;
7281       hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7282     }
7283   else if (CONST_STRNEQ (name, ".MIPS.content"))
7284     {
7285       hdr->sh_type = SHT_MIPS_CONTENT;
7286       hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7287       /* The sh_info field is set in final_write_processing.  */
7288     }
7289   else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7290     {
7291       hdr->sh_type = SHT_MIPS_OPTIONS;
7292       hdr->sh_entsize = 1;
7293       hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7294     }
7295   else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7296     {
7297       hdr->sh_type = SHT_MIPS_ABIFLAGS;
7298       hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7299     }
7300   else if (CONST_STRNEQ (name, ".debug_")
7301            || CONST_STRNEQ (name, ".zdebug_"))
7302     {
7303       hdr->sh_type = SHT_MIPS_DWARF;
7304 
7305       /* Irix facilities such as libexc expect a single .debug_frame
7306 	 per executable, the system ones have NOSTRIP set and the linker
7307 	 doesn't merge sections with different flags so ...  */
7308       if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7309 	hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7310     }
7311   else if (strcmp (name, ".MIPS.symlib") == 0)
7312     {
7313       hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7314       /* The sh_link and sh_info fields are set in
7315          final_write_processing.  */
7316     }
7317   else if (CONST_STRNEQ (name, ".MIPS.events")
7318 	   || CONST_STRNEQ (name, ".MIPS.post_rel"))
7319     {
7320       hdr->sh_type = SHT_MIPS_EVENTS;
7321       hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7322       /* The sh_link field is set in final_write_processing.  */
7323     }
7324   else if (strcmp (name, ".msym") == 0)
7325     {
7326       hdr->sh_type = SHT_MIPS_MSYM;
7327       hdr->sh_flags |= SHF_ALLOC;
7328       hdr->sh_entsize = 8;
7329     }
7330 
7331   /* The generic elf_fake_sections will set up REL_HDR using the default
7332    kind of relocations.  We used to set up a second header for the
7333    non-default kind of relocations here, but only NewABI would use
7334    these, and the IRIX ld doesn't like resulting empty RELA sections.
7335    Thus we create those header only on demand now.  */
7336 
7337   return TRUE;
7338 }
7339 
7340 /* Given a BFD section, try to locate the corresponding ELF section
7341    index.  This is used by both the 32-bit and the 64-bit ABI.
7342    Actually, it's not clear to me that the 64-bit ABI supports these,
7343    but for non-PIC objects we will certainly want support for at least
7344    the .scommon section.  */
7345 
7346 bfd_boolean
7347 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7348 					asection *sec, int *retval)
7349 {
7350   if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7351     {
7352       *retval = SHN_MIPS_SCOMMON;
7353       return TRUE;
7354     }
7355   if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7356     {
7357       *retval = SHN_MIPS_ACOMMON;
7358       return TRUE;
7359     }
7360   return FALSE;
7361 }
7362 
7363 /* Hook called by the linker routine which adds symbols from an object
7364    file.  We must handle the special MIPS section numbers here.  */
7365 
7366 bfd_boolean
7367 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7368 			       Elf_Internal_Sym *sym, const char **namep,
7369 			       flagword *flagsp ATTRIBUTE_UNUSED,
7370 			       asection **secp, bfd_vma *valp)
7371 {
7372   if (SGI_COMPAT (abfd)
7373       && (abfd->flags & DYNAMIC) != 0
7374       && strcmp (*namep, "_rld_new_interface") == 0)
7375     {
7376       /* Skip IRIX5 rld entry name.  */
7377       *namep = NULL;
7378       return TRUE;
7379     }
7380 
7381   /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7382      a SECTION *ABS*.  This causes ld to think it can resolve _gp_disp
7383      by setting a DT_NEEDED for the shared object.  Since _gp_disp is
7384      a magic symbol resolved by the linker, we ignore this bogus definition
7385      of _gp_disp.  New ABI objects do not suffer from this problem so this
7386      is not done for them. */
7387   if (!NEWABI_P(abfd)
7388       && (sym->st_shndx == SHN_ABS)
7389       && (strcmp (*namep, "_gp_disp") == 0))
7390     {
7391       *namep = NULL;
7392       return TRUE;
7393     }
7394 
7395   switch (sym->st_shndx)
7396     {
7397     case SHN_COMMON:
7398       /* Common symbols less than the GP size are automatically
7399 	 treated as SHN_MIPS_SCOMMON symbols.  */
7400       if (sym->st_size > elf_gp_size (abfd)
7401 	  || ELF_ST_TYPE (sym->st_info) == STT_TLS
7402 	  || IRIX_COMPAT (abfd) == ict_irix6)
7403 	break;
7404       /* Fall through.  */
7405     case SHN_MIPS_SCOMMON:
7406       *secp = bfd_make_section_old_way (abfd, ".scommon");
7407       (*secp)->flags |= SEC_IS_COMMON;
7408       *valp = sym->st_size;
7409       break;
7410 
7411     case SHN_MIPS_TEXT:
7412       /* This section is used in a shared object.  */
7413       if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7414 	{
7415 	  asymbol *elf_text_symbol;
7416 	  asection *elf_text_section;
7417 	  bfd_size_type amt = sizeof (asection);
7418 
7419 	  elf_text_section = bfd_zalloc (abfd, amt);
7420 	  if (elf_text_section == NULL)
7421 	    return FALSE;
7422 
7423 	  amt = sizeof (asymbol);
7424 	  elf_text_symbol = bfd_zalloc (abfd, amt);
7425 	  if (elf_text_symbol == NULL)
7426 	    return FALSE;
7427 
7428 	  /* Initialize the section.  */
7429 
7430 	  mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7431 	  mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7432 
7433 	  elf_text_section->symbol = elf_text_symbol;
7434 	  elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7435 
7436 	  elf_text_section->name = ".text";
7437 	  elf_text_section->flags = SEC_NO_FLAGS;
7438 	  elf_text_section->output_section = NULL;
7439 	  elf_text_section->owner = abfd;
7440 	  elf_text_symbol->name = ".text";
7441 	  elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7442 	  elf_text_symbol->section = elf_text_section;
7443 	}
7444       /* This code used to do *secp = bfd_und_section_ptr if
7445          bfd_link_pic (info).  I don't know why, and that doesn't make sense,
7446          so I took it out.  */
7447       *secp = mips_elf_tdata (abfd)->elf_text_section;
7448       break;
7449 
7450     case SHN_MIPS_ACOMMON:
7451       /* Fall through. XXX Can we treat this as allocated data?  */
7452     case SHN_MIPS_DATA:
7453       /* This section is used in a shared object.  */
7454       if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7455 	{
7456 	  asymbol *elf_data_symbol;
7457 	  asection *elf_data_section;
7458 	  bfd_size_type amt = sizeof (asection);
7459 
7460 	  elf_data_section = bfd_zalloc (abfd, amt);
7461 	  if (elf_data_section == NULL)
7462 	    return FALSE;
7463 
7464 	  amt = sizeof (asymbol);
7465 	  elf_data_symbol = bfd_zalloc (abfd, amt);
7466 	  if (elf_data_symbol == NULL)
7467 	    return FALSE;
7468 
7469 	  /* Initialize the section.  */
7470 
7471 	  mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7472 	  mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7473 
7474 	  elf_data_section->symbol = elf_data_symbol;
7475 	  elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7476 
7477 	  elf_data_section->name = ".data";
7478 	  elf_data_section->flags = SEC_NO_FLAGS;
7479 	  elf_data_section->output_section = NULL;
7480 	  elf_data_section->owner = abfd;
7481 	  elf_data_symbol->name = ".data";
7482 	  elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7483 	  elf_data_symbol->section = elf_data_section;
7484 	}
7485       /* This code used to do *secp = bfd_und_section_ptr if
7486          bfd_link_pic (info).  I don't know why, and that doesn't make sense,
7487          so I took it out.  */
7488       *secp = mips_elf_tdata (abfd)->elf_data_section;
7489       break;
7490 
7491     case SHN_MIPS_SUNDEFINED:
7492       *secp = bfd_und_section_ptr;
7493       break;
7494     }
7495 
7496   if (SGI_COMPAT (abfd)
7497       && ! bfd_link_pic (info)
7498       && info->output_bfd->xvec == abfd->xvec
7499       && strcmp (*namep, "__rld_obj_head") == 0)
7500     {
7501       struct elf_link_hash_entry *h;
7502       struct bfd_link_hash_entry *bh;
7503 
7504       /* Mark __rld_obj_head as dynamic.  */
7505       bh = NULL;
7506       if (! (_bfd_generic_link_add_one_symbol
7507 	     (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7508 	      get_elf_backend_data (abfd)->collect, &bh)))
7509 	return FALSE;
7510 
7511       h = (struct elf_link_hash_entry *) bh;
7512       h->non_elf = 0;
7513       h->def_regular = 1;
7514       h->type = STT_OBJECT;
7515 
7516       if (! bfd_elf_link_record_dynamic_symbol (info, h))
7517 	return FALSE;
7518 
7519       mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7520       mips_elf_hash_table (info)->rld_symbol = h;
7521     }
7522 
7523   /* If this is a mips16 text symbol, add 1 to the value to make it
7524      odd.  This will cause something like .word SYM to come up with
7525      the right value when it is loaded into the PC.  */
7526   if (ELF_ST_IS_COMPRESSED (sym->st_other))
7527     ++*valp;
7528 
7529   return TRUE;
7530 }
7531 
7532 /* This hook function is called before the linker writes out a global
7533    symbol.  We mark symbols as small common if appropriate.  This is
7534    also where we undo the increment of the value for a mips16 symbol.  */
7535 
7536 int
7537 _bfd_mips_elf_link_output_symbol_hook
7538   (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7539    const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7540    asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7541 {
7542   /* If we see a common symbol, which implies a relocatable link, then
7543      if a symbol was small common in an input file, mark it as small
7544      common in the output file.  */
7545   if (sym->st_shndx == SHN_COMMON
7546       && strcmp (input_sec->name, ".scommon") == 0)
7547     sym->st_shndx = SHN_MIPS_SCOMMON;
7548 
7549   if (ELF_ST_IS_COMPRESSED (sym->st_other))
7550     sym->st_value &= ~1;
7551 
7552   return 1;
7553 }
7554 
7555 /* Functions for the dynamic linker.  */
7556 
7557 /* Create dynamic sections when linking against a dynamic object.  */
7558 
7559 bfd_boolean
7560 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7561 {
7562   struct elf_link_hash_entry *h;
7563   struct bfd_link_hash_entry *bh;
7564   flagword flags;
7565   register asection *s;
7566   const char * const *namep;
7567   struct mips_elf_link_hash_table *htab;
7568 
7569   htab = mips_elf_hash_table (info);
7570   BFD_ASSERT (htab != NULL);
7571 
7572   flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7573 	   | SEC_LINKER_CREATED | SEC_READONLY);
7574 
7575   /* The psABI requires a read-only .dynamic section, but the VxWorks
7576      EABI doesn't.  */
7577   if (!htab->is_vxworks)
7578     {
7579       s = bfd_get_linker_section (abfd, ".dynamic");
7580       if (s != NULL)
7581 	{
7582 	  if (! bfd_set_section_flags (abfd, s, flags))
7583 	    return FALSE;
7584 	}
7585     }
7586 
7587   /* We need to create .got section.  */
7588   if (!mips_elf_create_got_section (abfd, info))
7589     return FALSE;
7590 
7591   if (! mips_elf_rel_dyn_section (info, TRUE))
7592     return FALSE;
7593 
7594   /* Create .stub section.  */
7595   s = bfd_make_section_anyway_with_flags (abfd,
7596 					  MIPS_ELF_STUB_SECTION_NAME (abfd),
7597 					  flags | SEC_CODE);
7598   if (s == NULL
7599       || ! bfd_set_section_alignment (abfd, s,
7600 				      MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7601     return FALSE;
7602   htab->sstubs = s;
7603 
7604   if (!mips_elf_hash_table (info)->use_rld_obj_head
7605       && bfd_link_executable (info)
7606       && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7607     {
7608       s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7609 					      flags &~ (flagword) SEC_READONLY);
7610       if (s == NULL
7611 	  || ! bfd_set_section_alignment (abfd, s,
7612 					  MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7613 	return FALSE;
7614     }
7615 
7616   /* On IRIX5, we adjust add some additional symbols and change the
7617      alignments of several sections.  There is no ABI documentation
7618      indicating that this is necessary on IRIX6, nor any evidence that
7619      the linker takes such action.  */
7620   if (IRIX_COMPAT (abfd) == ict_irix5)
7621     {
7622       for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7623 	{
7624 	  bh = NULL;
7625 	  if (! (_bfd_generic_link_add_one_symbol
7626 		 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7627 		  NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7628 	    return FALSE;
7629 
7630 	  h = (struct elf_link_hash_entry *) bh;
7631 	  h->non_elf = 0;
7632 	  h->def_regular = 1;
7633 	  h->type = STT_SECTION;
7634 
7635 	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
7636 	    return FALSE;
7637 	}
7638 
7639       /* We need to create a .compact_rel section.  */
7640       if (SGI_COMPAT (abfd))
7641 	{
7642 	  if (!mips_elf_create_compact_rel_section (abfd, info))
7643 	    return FALSE;
7644 	}
7645 
7646       /* Change alignments of some sections.  */
7647       s = bfd_get_linker_section (abfd, ".hash");
7648       if (s != NULL)
7649 	(void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7650 
7651       s = bfd_get_linker_section (abfd, ".dynsym");
7652       if (s != NULL)
7653 	(void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7654 
7655       s = bfd_get_linker_section (abfd, ".dynstr");
7656       if (s != NULL)
7657 	(void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7658 
7659       /* ??? */
7660       s = bfd_get_section_by_name (abfd, ".reginfo");
7661       if (s != NULL)
7662 	(void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7663 
7664       s = bfd_get_linker_section (abfd, ".dynamic");
7665       if (s != NULL)
7666 	(void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7667     }
7668 
7669   if (bfd_link_executable (info))
7670     {
7671       const char *name;
7672 
7673       name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7674       bh = NULL;
7675       if (!(_bfd_generic_link_add_one_symbol
7676 	    (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7677 	     NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7678 	return FALSE;
7679 
7680       h = (struct elf_link_hash_entry *) bh;
7681       h->non_elf = 0;
7682       h->def_regular = 1;
7683       h->type = STT_SECTION;
7684 
7685       if (! bfd_elf_link_record_dynamic_symbol (info, h))
7686 	return FALSE;
7687 
7688       if (! mips_elf_hash_table (info)->use_rld_obj_head)
7689 	{
7690 	  /* __rld_map is a four byte word located in the .data section
7691 	     and is filled in by the rtld to contain a pointer to
7692 	     the _r_debug structure. Its symbol value will be set in
7693 	     _bfd_mips_elf_finish_dynamic_symbol.  */
7694 	  s = bfd_get_linker_section (abfd, ".rld_map");
7695 	  BFD_ASSERT (s != NULL);
7696 
7697 	  name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7698 	  bh = NULL;
7699 	  if (!(_bfd_generic_link_add_one_symbol
7700 		(info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7701 		 get_elf_backend_data (abfd)->collect, &bh)))
7702 	    return FALSE;
7703 
7704 	  h = (struct elf_link_hash_entry *) bh;
7705 	  h->non_elf = 0;
7706 	  h->def_regular = 1;
7707 	  h->type = STT_OBJECT;
7708 
7709 	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
7710 	    return FALSE;
7711 	  mips_elf_hash_table (info)->rld_symbol = h;
7712 	}
7713     }
7714 
7715   /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7716      Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol.  */
7717   if (!_bfd_elf_create_dynamic_sections (abfd, info))
7718     return FALSE;
7719 
7720   /* Cache the sections created above.  */
7721   htab->splt = bfd_get_linker_section (abfd, ".plt");
7722   htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7723   if (htab->is_vxworks)
7724     {
7725       htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7726       htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7727     }
7728   else
7729     htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7730   if (!htab->sdynbss
7731       || (htab->is_vxworks && !htab->srelbss && !bfd_link_pic (info))
7732       || !htab->srelplt
7733       || !htab->splt)
7734     abort ();
7735 
7736   /* Do the usual VxWorks handling.  */
7737   if (htab->is_vxworks
7738       && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7739     return FALSE;
7740 
7741   return TRUE;
7742 }
7743 
7744 /* Return true if relocation REL against section SEC is a REL rather than
7745    RELA relocation.  RELOCS is the first relocation in the section and
7746    ABFD is the bfd that contains SEC.  */
7747 
7748 static bfd_boolean
7749 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7750 			   const Elf_Internal_Rela *relocs,
7751 			   const Elf_Internal_Rela *rel)
7752 {
7753   Elf_Internal_Shdr *rel_hdr;
7754   const struct elf_backend_data *bed;
7755 
7756   /* To determine which flavor of relocation this is, we depend on the
7757      fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR.  */
7758   rel_hdr = elf_section_data (sec)->rel.hdr;
7759   if (rel_hdr == NULL)
7760     return FALSE;
7761   bed = get_elf_backend_data (abfd);
7762   return ((size_t) (rel - relocs)
7763 	  < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7764 }
7765 
7766 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7767    HOWTO is the relocation's howto and CONTENTS points to the contents
7768    of the section that REL is against.  */
7769 
7770 static bfd_vma
7771 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7772 			  reloc_howto_type *howto, bfd_byte *contents)
7773 {
7774   bfd_byte *location;
7775   unsigned int r_type;
7776   bfd_vma addend;
7777 
7778   r_type = ELF_R_TYPE (abfd, rel->r_info);
7779   location = contents + rel->r_offset;
7780 
7781   /* Get the addend, which is stored in the input file.  */
7782   _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7783   addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7784   _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7785 
7786   return addend & howto->src_mask;
7787 }
7788 
7789 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7790    and *ADDEND is the addend for REL itself.  Look for the LO16 relocation
7791    and update *ADDEND with the final addend.  Return true on success
7792    or false if the LO16 could not be found.  RELEND is the exclusive
7793    upper bound on the relocations for REL's section.  */
7794 
7795 static bfd_boolean
7796 mips_elf_add_lo16_rel_addend (bfd *abfd,
7797 			      const Elf_Internal_Rela *rel,
7798 			      const Elf_Internal_Rela *relend,
7799 			      bfd_byte *contents, bfd_vma *addend)
7800 {
7801   unsigned int r_type, lo16_type;
7802   const Elf_Internal_Rela *lo16_relocation;
7803   reloc_howto_type *lo16_howto;
7804   bfd_vma l;
7805 
7806   r_type = ELF_R_TYPE (abfd, rel->r_info);
7807   if (mips16_reloc_p (r_type))
7808     lo16_type = R_MIPS16_LO16;
7809   else if (micromips_reloc_p (r_type))
7810     lo16_type = R_MICROMIPS_LO16;
7811   else if (r_type == R_MIPS_PCHI16)
7812     lo16_type = R_MIPS_PCLO16;
7813   else
7814     lo16_type = R_MIPS_LO16;
7815 
7816   /* The combined value is the sum of the HI16 addend, left-shifted by
7817      sixteen bits, and the LO16 addend, sign extended.  (Usually, the
7818      code does a `lui' of the HI16 value, and then an `addiu' of the
7819      LO16 value.)
7820 
7821      Scan ahead to find a matching LO16 relocation.
7822 
7823      According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7824      be immediately following.  However, for the IRIX6 ABI, the next
7825      relocation may be a composed relocation consisting of several
7826      relocations for the same address.  In that case, the R_MIPS_LO16
7827      relocation may occur as one of these.  We permit a similar
7828      extension in general, as that is useful for GCC.
7829 
7830      In some cases GCC dead code elimination removes the LO16 but keeps
7831      the corresponding HI16.  This is strictly speaking a violation of
7832      the ABI but not immediately harmful.  */
7833   lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7834   if (lo16_relocation == NULL)
7835     return FALSE;
7836 
7837   /* Obtain the addend kept there.  */
7838   lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7839   l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7840 
7841   l <<= lo16_howto->rightshift;
7842   l = _bfd_mips_elf_sign_extend (l, 16);
7843 
7844   *addend <<= 16;
7845   *addend += l;
7846   return TRUE;
7847 }
7848 
7849 /* Try to read the contents of section SEC in bfd ABFD.  Return true and
7850    store the contents in *CONTENTS on success.  Assume that *CONTENTS
7851    already holds the contents if it is nonull on entry.  */
7852 
7853 static bfd_boolean
7854 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7855 {
7856   if (*contents)
7857     return TRUE;
7858 
7859   /* Get cached copy if it exists.  */
7860   if (elf_section_data (sec)->this_hdr.contents != NULL)
7861     {
7862       *contents = elf_section_data (sec)->this_hdr.contents;
7863       return TRUE;
7864     }
7865 
7866   return bfd_malloc_and_get_section (abfd, sec, contents);
7867 }
7868 
7869 /* Make a new PLT record to keep internal data.  */
7870 
7871 static struct plt_entry *
7872 mips_elf_make_plt_record (bfd *abfd)
7873 {
7874   struct plt_entry *entry;
7875 
7876   entry = bfd_zalloc (abfd, sizeof (*entry));
7877   if (entry == NULL)
7878     return NULL;
7879 
7880   entry->stub_offset = MINUS_ONE;
7881   entry->mips_offset = MINUS_ONE;
7882   entry->comp_offset = MINUS_ONE;
7883   entry->gotplt_index = MINUS_ONE;
7884   return entry;
7885 }
7886 
7887 /* Look through the relocs for a section during the first phase, and
7888    allocate space in the global offset table and record the need for
7889    standard MIPS and compressed procedure linkage table entries.  */
7890 
7891 bfd_boolean
7892 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7893 			    asection *sec, const Elf_Internal_Rela *relocs)
7894 {
7895   const char *name;
7896   bfd *dynobj;
7897   Elf_Internal_Shdr *symtab_hdr;
7898   struct elf_link_hash_entry **sym_hashes;
7899   size_t extsymoff;
7900   const Elf_Internal_Rela *rel;
7901   const Elf_Internal_Rela *rel_end;
7902   asection *sreloc;
7903   const struct elf_backend_data *bed;
7904   struct mips_elf_link_hash_table *htab;
7905   bfd_byte *contents;
7906   bfd_vma addend;
7907   reloc_howto_type *howto;
7908 
7909   if (bfd_link_relocatable (info))
7910     return TRUE;
7911 
7912   htab = mips_elf_hash_table (info);
7913   BFD_ASSERT (htab != NULL);
7914 
7915   dynobj = elf_hash_table (info)->dynobj;
7916   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7917   sym_hashes = elf_sym_hashes (abfd);
7918   extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7919 
7920   bed = get_elf_backend_data (abfd);
7921   rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7922 
7923   /* Check for the mips16 stub sections.  */
7924 
7925   name = bfd_get_section_name (abfd, sec);
7926   if (FN_STUB_P (name))
7927     {
7928       unsigned long r_symndx;
7929 
7930       /* Look at the relocation information to figure out which symbol
7931          this is for.  */
7932 
7933       r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7934       if (r_symndx == 0)
7935 	{
7936 	  (*_bfd_error_handler)
7937 	    (_("%B: Warning: cannot determine the target function for"
7938 	       " stub section `%s'"),
7939 	     abfd, name);
7940 	  bfd_set_error (bfd_error_bad_value);
7941 	  return FALSE;
7942 	}
7943 
7944       if (r_symndx < extsymoff
7945 	  || sym_hashes[r_symndx - extsymoff] == NULL)
7946 	{
7947 	  asection *o;
7948 
7949 	  /* This stub is for a local symbol.  This stub will only be
7950              needed if there is some relocation in this BFD, other
7951              than a 16 bit function call, which refers to this symbol.  */
7952 	  for (o = abfd->sections; o != NULL; o = o->next)
7953 	    {
7954 	      Elf_Internal_Rela *sec_relocs;
7955 	      const Elf_Internal_Rela *r, *rend;
7956 
7957 	      /* We can ignore stub sections when looking for relocs.  */
7958 	      if ((o->flags & SEC_RELOC) == 0
7959 		  || o->reloc_count == 0
7960 		  || section_allows_mips16_refs_p (o))
7961 		continue;
7962 
7963 	      sec_relocs
7964 		= _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7965 					     info->keep_memory);
7966 	      if (sec_relocs == NULL)
7967 		return FALSE;
7968 
7969 	      rend = sec_relocs + o->reloc_count;
7970 	      for (r = sec_relocs; r < rend; r++)
7971 		if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7972 		    && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7973 		  break;
7974 
7975 	      if (elf_section_data (o)->relocs != sec_relocs)
7976 		free (sec_relocs);
7977 
7978 	      if (r < rend)
7979 		break;
7980 	    }
7981 
7982 	  if (o == NULL)
7983 	    {
7984 	      /* There is no non-call reloc for this stub, so we do
7985                  not need it.  Since this function is called before
7986                  the linker maps input sections to output sections, we
7987                  can easily discard it by setting the SEC_EXCLUDE
7988                  flag.  */
7989 	      sec->flags |= SEC_EXCLUDE;
7990 	      return TRUE;
7991 	    }
7992 
7993 	  /* Record this stub in an array of local symbol stubs for
7994              this BFD.  */
7995 	  if (mips_elf_tdata (abfd)->local_stubs == NULL)
7996 	    {
7997 	      unsigned long symcount;
7998 	      asection **n;
7999 	      bfd_size_type amt;
8000 
8001 	      if (elf_bad_symtab (abfd))
8002 		symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8003 	      else
8004 		symcount = symtab_hdr->sh_info;
8005 	      amt = symcount * sizeof (asection *);
8006 	      n = bfd_zalloc (abfd, amt);
8007 	      if (n == NULL)
8008 		return FALSE;
8009 	      mips_elf_tdata (abfd)->local_stubs = n;
8010 	    }
8011 
8012 	  sec->flags |= SEC_KEEP;
8013 	  mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8014 
8015 	  /* We don't need to set mips16_stubs_seen in this case.
8016              That flag is used to see whether we need to look through
8017              the global symbol table for stubs.  We don't need to set
8018              it here, because we just have a local stub.  */
8019 	}
8020       else
8021 	{
8022 	  struct mips_elf_link_hash_entry *h;
8023 
8024 	  h = ((struct mips_elf_link_hash_entry *)
8025 	       sym_hashes[r_symndx - extsymoff]);
8026 
8027 	  while (h->root.root.type == bfd_link_hash_indirect
8028 		 || h->root.root.type == bfd_link_hash_warning)
8029 	    h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8030 
8031 	  /* H is the symbol this stub is for.  */
8032 
8033 	  /* If we already have an appropriate stub for this function, we
8034 	     don't need another one, so we can discard this one.  Since
8035 	     this function is called before the linker maps input sections
8036 	     to output sections, we can easily discard it by setting the
8037 	     SEC_EXCLUDE flag.  */
8038 	  if (h->fn_stub != NULL)
8039 	    {
8040 	      sec->flags |= SEC_EXCLUDE;
8041 	      return TRUE;
8042 	    }
8043 
8044 	  sec->flags |= SEC_KEEP;
8045 	  h->fn_stub = sec;
8046 	  mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8047 	}
8048     }
8049   else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8050     {
8051       unsigned long r_symndx;
8052       struct mips_elf_link_hash_entry *h;
8053       asection **loc;
8054 
8055       /* Look at the relocation information to figure out which symbol
8056          this is for.  */
8057 
8058       r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8059       if (r_symndx == 0)
8060 	{
8061 	  (*_bfd_error_handler)
8062 	    (_("%B: Warning: cannot determine the target function for"
8063 	       " stub section `%s'"),
8064 	     abfd, name);
8065 	  bfd_set_error (bfd_error_bad_value);
8066 	  return FALSE;
8067 	}
8068 
8069       if (r_symndx < extsymoff
8070 	  || sym_hashes[r_symndx - extsymoff] == NULL)
8071 	{
8072 	  asection *o;
8073 
8074 	  /* This stub is for a local symbol.  This stub will only be
8075              needed if there is some relocation (R_MIPS16_26) in this BFD
8076              that refers to this symbol.  */
8077 	  for (o = abfd->sections; o != NULL; o = o->next)
8078 	    {
8079 	      Elf_Internal_Rela *sec_relocs;
8080 	      const Elf_Internal_Rela *r, *rend;
8081 
8082 	      /* We can ignore stub sections when looking for relocs.  */
8083 	      if ((o->flags & SEC_RELOC) == 0
8084 		  || o->reloc_count == 0
8085 		  || section_allows_mips16_refs_p (o))
8086 		continue;
8087 
8088 	      sec_relocs
8089 		= _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8090 					     info->keep_memory);
8091 	      if (sec_relocs == NULL)
8092 		return FALSE;
8093 
8094 	      rend = sec_relocs + o->reloc_count;
8095 	      for (r = sec_relocs; r < rend; r++)
8096 		if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8097 		    && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8098 		    break;
8099 
8100 	      if (elf_section_data (o)->relocs != sec_relocs)
8101 		free (sec_relocs);
8102 
8103 	      if (r < rend)
8104 		break;
8105 	    }
8106 
8107 	  if (o == NULL)
8108 	    {
8109 	      /* There is no non-call reloc for this stub, so we do
8110                  not need it.  Since this function is called before
8111                  the linker maps input sections to output sections, we
8112                  can easily discard it by setting the SEC_EXCLUDE
8113                  flag.  */
8114 	      sec->flags |= SEC_EXCLUDE;
8115 	      return TRUE;
8116 	    }
8117 
8118 	  /* Record this stub in an array of local symbol call_stubs for
8119              this BFD.  */
8120 	  if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8121 	    {
8122 	      unsigned long symcount;
8123 	      asection **n;
8124 	      bfd_size_type amt;
8125 
8126 	      if (elf_bad_symtab (abfd))
8127 		symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8128 	      else
8129 		symcount = symtab_hdr->sh_info;
8130 	      amt = symcount * sizeof (asection *);
8131 	      n = bfd_zalloc (abfd, amt);
8132 	      if (n == NULL)
8133 		return FALSE;
8134 	      mips_elf_tdata (abfd)->local_call_stubs = n;
8135 	    }
8136 
8137 	  sec->flags |= SEC_KEEP;
8138 	  mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8139 
8140 	  /* We don't need to set mips16_stubs_seen in this case.
8141              That flag is used to see whether we need to look through
8142              the global symbol table for stubs.  We don't need to set
8143              it here, because we just have a local stub.  */
8144 	}
8145       else
8146 	{
8147 	  h = ((struct mips_elf_link_hash_entry *)
8148 	       sym_hashes[r_symndx - extsymoff]);
8149 
8150 	  /* H is the symbol this stub is for.  */
8151 
8152 	  if (CALL_FP_STUB_P (name))
8153 	    loc = &h->call_fp_stub;
8154 	  else
8155 	    loc = &h->call_stub;
8156 
8157 	  /* If we already have an appropriate stub for this function, we
8158 	     don't need another one, so we can discard this one.  Since
8159 	     this function is called before the linker maps input sections
8160 	     to output sections, we can easily discard it by setting the
8161 	     SEC_EXCLUDE flag.  */
8162 	  if (*loc != NULL)
8163 	    {
8164 	      sec->flags |= SEC_EXCLUDE;
8165 	      return TRUE;
8166 	    }
8167 
8168 	  sec->flags |= SEC_KEEP;
8169 	  *loc = sec;
8170 	  mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8171 	}
8172     }
8173 
8174   sreloc = NULL;
8175   contents = NULL;
8176   for (rel = relocs; rel < rel_end; ++rel)
8177     {
8178       unsigned long r_symndx;
8179       unsigned int r_type;
8180       struct elf_link_hash_entry *h;
8181       bfd_boolean can_make_dynamic_p;
8182       bfd_boolean call_reloc_p;
8183       bfd_boolean constrain_symbol_p;
8184 
8185       r_symndx = ELF_R_SYM (abfd, rel->r_info);
8186       r_type = ELF_R_TYPE (abfd, rel->r_info);
8187 
8188       if (r_symndx < extsymoff)
8189 	h = NULL;
8190       else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8191 	{
8192 	  (*_bfd_error_handler)
8193 	    (_("%B: Malformed reloc detected for section %s"),
8194 	     abfd, name);
8195 	  bfd_set_error (bfd_error_bad_value);
8196 	  return FALSE;
8197 	}
8198       else
8199 	{
8200 	  h = sym_hashes[r_symndx - extsymoff];
8201 	  if (h != NULL)
8202 	    {
8203 	      while (h->root.type == bfd_link_hash_indirect
8204 		     || h->root.type == bfd_link_hash_warning)
8205 		h = (struct elf_link_hash_entry *) h->root.u.i.link;
8206 
8207 	      /* PR15323, ref flags aren't set for references in the
8208 		 same object.  */
8209 	      h->root.non_ir_ref = 1;
8210 	    }
8211 	}
8212 
8213       /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8214 	 relocation into a dynamic one.  */
8215       can_make_dynamic_p = FALSE;
8216 
8217       /* Set CALL_RELOC_P to true if the relocation is for a call,
8218 	 and if pointer equality therefore doesn't matter.  */
8219       call_reloc_p = FALSE;
8220 
8221       /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8222 	 into account when deciding how to define the symbol.
8223 	 Relocations in nonallocatable sections such as .pdr and
8224 	 .debug* should have no effect.  */
8225       constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8226 
8227       switch (r_type)
8228 	{
8229 	case R_MIPS_CALL16:
8230 	case R_MIPS_CALL_HI16:
8231 	case R_MIPS_CALL_LO16:
8232 	case R_MIPS16_CALL16:
8233 	case R_MICROMIPS_CALL16:
8234 	case R_MICROMIPS_CALL_HI16:
8235 	case R_MICROMIPS_CALL_LO16:
8236 	  call_reloc_p = TRUE;
8237 	  /* Fall through.  */
8238 
8239 	case R_MIPS_GOT16:
8240 	case R_MIPS_GOT_HI16:
8241 	case R_MIPS_GOT_LO16:
8242 	case R_MIPS_GOT_PAGE:
8243 	case R_MIPS_GOT_OFST:
8244 	case R_MIPS_GOT_DISP:
8245 	case R_MIPS_TLS_GOTTPREL:
8246 	case R_MIPS_TLS_GD:
8247 	case R_MIPS_TLS_LDM:
8248 	case R_MIPS16_GOT16:
8249 	case R_MIPS16_TLS_GOTTPREL:
8250 	case R_MIPS16_TLS_GD:
8251 	case R_MIPS16_TLS_LDM:
8252 	case R_MICROMIPS_GOT16:
8253 	case R_MICROMIPS_GOT_HI16:
8254 	case R_MICROMIPS_GOT_LO16:
8255 	case R_MICROMIPS_GOT_PAGE:
8256 	case R_MICROMIPS_GOT_OFST:
8257 	case R_MICROMIPS_GOT_DISP:
8258 	case R_MICROMIPS_TLS_GOTTPREL:
8259 	case R_MICROMIPS_TLS_GD:
8260 	case R_MICROMIPS_TLS_LDM:
8261 	  if (dynobj == NULL)
8262 	    elf_hash_table (info)->dynobj = dynobj = abfd;
8263 	  if (!mips_elf_create_got_section (dynobj, info))
8264 	    return FALSE;
8265 	  if (htab->is_vxworks && !bfd_link_pic (info))
8266 	    {
8267 	      (*_bfd_error_handler)
8268 		(_("%B: GOT reloc at 0x%lx not expected in executables"),
8269 		 abfd, (unsigned long) rel->r_offset);
8270 	      bfd_set_error (bfd_error_bad_value);
8271 	      return FALSE;
8272 	    }
8273 	  can_make_dynamic_p = TRUE;
8274 	  break;
8275 
8276 	case R_MIPS_NONE:
8277 	case R_MIPS_JALR:
8278 	case R_MICROMIPS_JALR:
8279 	  /* These relocations have empty fields and are purely there to
8280 	     provide link information.  The symbol value doesn't matter.  */
8281 	  constrain_symbol_p = FALSE;
8282 	  break;
8283 
8284 	case R_MIPS_GPREL16:
8285 	case R_MIPS_GPREL32:
8286 	case R_MIPS16_GPREL:
8287 	case R_MICROMIPS_GPREL16:
8288 	  /* GP-relative relocations always resolve to a definition in a
8289 	     regular input file, ignoring the one-definition rule.  This is
8290 	     important for the GP setup sequence in NewABI code, which
8291 	     always resolves to a local function even if other relocations
8292 	     against the symbol wouldn't.  */
8293 	  constrain_symbol_p = FALSE;
8294 	  break;
8295 
8296 	case R_MIPS_32:
8297 	case R_MIPS_REL32:
8298 	case R_MIPS_64:
8299 	  /* In VxWorks executables, references to external symbols
8300 	     must be handled using copy relocs or PLT entries; it is not
8301 	     possible to convert this relocation into a dynamic one.
8302 
8303 	     For executables that use PLTs and copy-relocs, we have a
8304 	     choice between converting the relocation into a dynamic
8305 	     one or using copy relocations or PLT entries.  It is
8306 	     usually better to do the former, unless the relocation is
8307 	     against a read-only section.  */
8308 	  if ((bfd_link_pic (info)
8309 	       || (h != NULL
8310 		   && !htab->is_vxworks
8311 		   && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8312 		   && !(!info->nocopyreloc
8313 			&& !PIC_OBJECT_P (abfd)
8314 			&& MIPS_ELF_READONLY_SECTION (sec))))
8315 	      && (sec->flags & SEC_ALLOC) != 0)
8316 	    {
8317 	      can_make_dynamic_p = TRUE;
8318 	      if (dynobj == NULL)
8319 		elf_hash_table (info)->dynobj = dynobj = abfd;
8320 	    }
8321 	  break;
8322 
8323 	case R_MIPS_26:
8324 	case R_MIPS_PC16:
8325 	case R_MIPS_PC21_S2:
8326 	case R_MIPS_PC26_S2:
8327 	case R_MIPS16_26:
8328 	case R_MICROMIPS_26_S1:
8329 	case R_MICROMIPS_PC7_S1:
8330 	case R_MICROMIPS_PC10_S1:
8331 	case R_MICROMIPS_PC16_S1:
8332 	case R_MICROMIPS_PC23_S2:
8333 	  call_reloc_p = TRUE;
8334 	  break;
8335 	}
8336 
8337       if (h)
8338 	{
8339 	  if (constrain_symbol_p)
8340 	    {
8341 	      if (!can_make_dynamic_p)
8342 		((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8343 
8344 	      if (!call_reloc_p)
8345 		h->pointer_equality_needed = 1;
8346 
8347 	      /* We must not create a stub for a symbol that has
8348 		 relocations related to taking the function's address.
8349 		 This doesn't apply to VxWorks, where CALL relocs refer
8350 		 to a .got.plt entry instead of a normal .got entry.  */
8351 	      if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8352 		((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8353 	    }
8354 
8355 	  /* Relocations against the special VxWorks __GOTT_BASE__ and
8356 	     __GOTT_INDEX__ symbols must be left to the loader.  Allocate
8357 	     room for them in .rela.dyn.  */
8358 	  if (is_gott_symbol (info, h))
8359 	    {
8360 	      if (sreloc == NULL)
8361 		{
8362 		  sreloc = mips_elf_rel_dyn_section (info, TRUE);
8363 		  if (sreloc == NULL)
8364 		    return FALSE;
8365 		}
8366 	      mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8367 	      if (MIPS_ELF_READONLY_SECTION (sec))
8368 		/* We tell the dynamic linker that there are
8369 		   relocations against the text segment.  */
8370 		info->flags |= DF_TEXTREL;
8371 	    }
8372 	}
8373       else if (call_lo16_reloc_p (r_type)
8374 	       || got_lo16_reloc_p (r_type)
8375 	       || got_disp_reloc_p (r_type)
8376 	       || (got16_reloc_p (r_type) && htab->is_vxworks))
8377 	{
8378 	  /* We may need a local GOT entry for this relocation.  We
8379 	     don't count R_MIPS_GOT_PAGE because we can estimate the
8380 	     maximum number of pages needed by looking at the size of
8381 	     the segment.  Similar comments apply to R_MIPS*_GOT16 and
8382 	     R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8383 	     always evaluate to "G".  We don't count R_MIPS_GOT_HI16, or
8384 	     R_MIPS_CALL_HI16 because these are always followed by an
8385 	     R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.  */
8386 	  if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8387 						 rel->r_addend, info, r_type))
8388 	    return FALSE;
8389 	}
8390 
8391       if (h != NULL
8392 	  && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8393 						  ELF_ST_IS_MIPS16 (h->other)))
8394 	((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8395 
8396       switch (r_type)
8397 	{
8398 	case R_MIPS_CALL16:
8399 	case R_MIPS16_CALL16:
8400 	case R_MICROMIPS_CALL16:
8401 	  if (h == NULL)
8402 	    {
8403 	      (*_bfd_error_handler)
8404 		(_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8405 		 abfd, (unsigned long) rel->r_offset);
8406 	      bfd_set_error (bfd_error_bad_value);
8407 	      return FALSE;
8408 	    }
8409 	  /* Fall through.  */
8410 
8411 	case R_MIPS_CALL_HI16:
8412 	case R_MIPS_CALL_LO16:
8413 	case R_MICROMIPS_CALL_HI16:
8414 	case R_MICROMIPS_CALL_LO16:
8415 	  if (h != NULL)
8416 	    {
8417 	      /* Make sure there is room in the regular GOT to hold the
8418 		 function's address.  We may eliminate it in favour of
8419 		 a .got.plt entry later; see mips_elf_count_got_symbols.  */
8420 	      if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8421 						      r_type))
8422 		return FALSE;
8423 
8424 	      /* We need a stub, not a plt entry for the undefined
8425 		 function.  But we record it as if it needs plt.  See
8426 		 _bfd_elf_adjust_dynamic_symbol.  */
8427 	      h->needs_plt = 1;
8428 	      h->type = STT_FUNC;
8429 	    }
8430 	  break;
8431 
8432 	case R_MIPS_GOT_PAGE:
8433 	case R_MICROMIPS_GOT_PAGE:
8434 	case R_MIPS16_GOT16:
8435 	case R_MIPS_GOT16:
8436 	case R_MIPS_GOT_HI16:
8437 	case R_MIPS_GOT_LO16:
8438 	case R_MICROMIPS_GOT16:
8439 	case R_MICROMIPS_GOT_HI16:
8440 	case R_MICROMIPS_GOT_LO16:
8441 	  if (!h || got_page_reloc_p (r_type))
8442 	    {
8443 	      /* This relocation needs (or may need, if h != NULL) a
8444 		 page entry in the GOT.  For R_MIPS_GOT_PAGE we do not
8445 		 know for sure until we know whether the symbol is
8446 		 preemptible.  */
8447 	      if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8448 		{
8449 		  if (!mips_elf_get_section_contents (abfd, sec, &contents))
8450 		    return FALSE;
8451 		  howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8452 		  addend = mips_elf_read_rel_addend (abfd, rel,
8453 						     howto, contents);
8454 		  if (got16_reloc_p (r_type))
8455 		    mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8456 						  contents, &addend);
8457 		  else
8458 		    addend <<= howto->rightshift;
8459 		}
8460 	      else
8461 		addend = rel->r_addend;
8462 	      if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8463 						 h, addend))
8464 		return FALSE;
8465 
8466 	      if (h)
8467 		{
8468 		  struct mips_elf_link_hash_entry *hmips =
8469 		    (struct mips_elf_link_hash_entry *) h;
8470 
8471 		  /* This symbol is definitely not overridable.  */
8472 		  if (hmips->root.def_regular
8473 		      && ! (bfd_link_pic (info) && ! info->symbolic
8474 			    && ! hmips->root.forced_local))
8475 		    h = NULL;
8476 		}
8477 	    }
8478 	  /* If this is a global, overridable symbol, GOT_PAGE will
8479 	     decay to GOT_DISP, so we'll need a GOT entry for it.  */
8480 	  /* Fall through.  */
8481 
8482 	case R_MIPS_GOT_DISP:
8483 	case R_MICROMIPS_GOT_DISP:
8484 	  if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8485 						       FALSE, r_type))
8486 	    return FALSE;
8487 	  break;
8488 
8489 	case R_MIPS_TLS_GOTTPREL:
8490 	case R_MIPS16_TLS_GOTTPREL:
8491 	case R_MICROMIPS_TLS_GOTTPREL:
8492 	  if (bfd_link_pic (info))
8493 	    info->flags |= DF_STATIC_TLS;
8494 	  /* Fall through */
8495 
8496 	case R_MIPS_TLS_LDM:
8497 	case R_MIPS16_TLS_LDM:
8498 	case R_MICROMIPS_TLS_LDM:
8499 	  if (tls_ldm_reloc_p (r_type))
8500 	    {
8501 	      r_symndx = STN_UNDEF;
8502 	      h = NULL;
8503 	    }
8504 	  /* Fall through */
8505 
8506 	case R_MIPS_TLS_GD:
8507 	case R_MIPS16_TLS_GD:
8508 	case R_MICROMIPS_TLS_GD:
8509 	  /* This symbol requires a global offset table entry, or two
8510 	     for TLS GD relocations.  */
8511 	  if (h != NULL)
8512 	    {
8513 	      if (!mips_elf_record_global_got_symbol (h, abfd, info,
8514 						      FALSE, r_type))
8515 		return FALSE;
8516 	    }
8517 	  else
8518 	    {
8519 	      if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8520 						     rel->r_addend,
8521 						     info, r_type))
8522 		return FALSE;
8523 	    }
8524 	  break;
8525 
8526 	case R_MIPS_32:
8527 	case R_MIPS_REL32:
8528 	case R_MIPS_64:
8529 	  /* In VxWorks executables, references to external symbols
8530 	     are handled using copy relocs or PLT stubs, so there's
8531 	     no need to add a .rela.dyn entry for this relocation.  */
8532 	  if (can_make_dynamic_p)
8533 	    {
8534 	      if (sreloc == NULL)
8535 		{
8536 		  sreloc = mips_elf_rel_dyn_section (info, TRUE);
8537 		  if (sreloc == NULL)
8538 		    return FALSE;
8539 		}
8540 	      if (bfd_link_pic (info) && h == NULL)
8541 		{
8542 		  /* When creating a shared object, we must copy these
8543 		     reloc types into the output file as R_MIPS_REL32
8544 		     relocs.  Make room for this reloc in .rel(a).dyn.  */
8545 		  mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8546 		  /* In the N32 and 64-bit ABIs there may be multiple
8547 		     consecutive relocations for the same offset.  If we have
8548 		     a R_MIPS_GPREL32 followed by a R_MIPS_64 then that
8549 		     relocation is complete and needs no futher adjustment.  */
8550 		  if ((rel == relocs
8551 		      || rel[-1].r_offset != rel->r_offset
8552 		      || r_type != R_MIPS_64
8553 		      || ELF_R_TYPE(abfd, rel[-1].r_info) != R_MIPS_GPREL32)
8554 		      && MIPS_ELF_READONLY_SECTION (sec))
8555 		    {
8556 		      /* We tell the dynamic linker that there are
8557 		         relocations against the text segment.  */
8558 		      info->flags |= DF_TEXTREL;
8559 		      info->callbacks->warning
8560 			(info,
8561 			 _("relocation emitted against readonly section"),
8562 			 NULL, abfd, sec, rel->r_offset);
8563 		    }
8564 		}
8565 	      else
8566 		{
8567 		  struct mips_elf_link_hash_entry *hmips;
8568 
8569 		  /* For a shared object, we must copy this relocation
8570 		     unless the symbol turns out to be undefined and
8571 		     weak with non-default visibility, in which case
8572 		     it will be left as zero.
8573 
8574 		     We could elide R_MIPS_REL32 for locally binding symbols
8575 		     in shared libraries, but do not yet do so.
8576 
8577 		     For an executable, we only need to copy this
8578 		     reloc if the symbol is defined in a dynamic
8579 		     object.  */
8580 		  hmips = (struct mips_elf_link_hash_entry *) h;
8581 		  ++hmips->possibly_dynamic_relocs;
8582 		  if (MIPS_ELF_READONLY_SECTION (sec))
8583 		    /* We need it to tell the dynamic linker if there
8584 		       are relocations against the text segment.  */
8585 		    hmips->readonly_reloc = TRUE;
8586 		}
8587 	    }
8588 
8589 	  if (SGI_COMPAT (abfd))
8590 	    mips_elf_hash_table (info)->compact_rel_size +=
8591 	      sizeof (Elf32_External_crinfo);
8592 	  break;
8593 
8594 	case R_MIPS_26:
8595 	case R_MIPS_GPREL16:
8596 	case R_MIPS_LITERAL:
8597 	case R_MIPS_GPREL32:
8598 	case R_MICROMIPS_26_S1:
8599 	case R_MICROMIPS_GPREL16:
8600 	case R_MICROMIPS_LITERAL:
8601 	case R_MICROMIPS_GPREL7_S2:
8602 	  if (SGI_COMPAT (abfd))
8603 	    mips_elf_hash_table (info)->compact_rel_size +=
8604 	      sizeof (Elf32_External_crinfo);
8605 	  break;
8606 
8607 	  /* This relocation describes the C++ object vtable hierarchy.
8608 	     Reconstruct it for later use during GC.  */
8609 	case R_MIPS_GNU_VTINHERIT:
8610 	  if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8611 	    return FALSE;
8612 	  break;
8613 
8614 	  /* This relocation describes which C++ vtable entries are actually
8615 	     used.  Record for later use during GC.  */
8616 	case R_MIPS_GNU_VTENTRY:
8617 	  BFD_ASSERT (h != NULL);
8618 	  if (h != NULL
8619 	      && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8620 	    return FALSE;
8621 	  break;
8622 
8623 	default:
8624 	  break;
8625 	}
8626 
8627       /* Record the need for a PLT entry.  At this point we don't know
8628          yet if we are going to create a PLT in the first place, but
8629          we only record whether the relocation requires a standard MIPS
8630          or a compressed code entry anyway.  If we don't make a PLT after
8631          all, then we'll just ignore these arrangements.  Likewise if
8632          a PLT entry is not created because the symbol is satisfied
8633          locally.  */
8634       if (h != NULL
8635 	  && jal_reloc_p (r_type)
8636 	  && !SYMBOL_CALLS_LOCAL (info, h))
8637 	{
8638 	  if (h->plt.plist == NULL)
8639 	    h->plt.plist = mips_elf_make_plt_record (abfd);
8640 	  if (h->plt.plist == NULL)
8641 	    return FALSE;
8642 
8643 	  if (r_type == R_MIPS_26)
8644 	    h->plt.plist->need_mips = TRUE;
8645 	  else
8646 	    h->plt.plist->need_comp = TRUE;
8647 	}
8648 
8649       /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8650 	 if there is one.  We only need to handle global symbols here;
8651 	 we decide whether to keep or delete stubs for local symbols
8652 	 when processing the stub's relocations.  */
8653       if (h != NULL
8654 	  && !mips16_call_reloc_p (r_type)
8655 	  && !section_allows_mips16_refs_p (sec))
8656 	{
8657 	  struct mips_elf_link_hash_entry *mh;
8658 
8659 	  mh = (struct mips_elf_link_hash_entry *) h;
8660 	  mh->need_fn_stub = TRUE;
8661 	}
8662 
8663       /* Refuse some position-dependent relocations when creating a
8664 	 shared library.  Do not refuse R_MIPS_32 / R_MIPS_64; they're
8665 	 not PIC, but we can create dynamic relocations and the result
8666 	 will be fine.  Also do not refuse R_MIPS_LO16, which can be
8667 	 combined with R_MIPS_GOT16.  */
8668       if (bfd_link_pic (info))
8669 	{
8670 	  switch (r_type)
8671 	    {
8672 	    case R_MIPS16_HI16:
8673 	    case R_MIPS_HI16:
8674 	    case R_MIPS_HIGHER:
8675 	    case R_MIPS_HIGHEST:
8676 	    case R_MICROMIPS_HI16:
8677 	    case R_MICROMIPS_HIGHER:
8678 	    case R_MICROMIPS_HIGHEST:
8679 	      /* Don't refuse a high part relocation if it's against
8680 		 no symbol (e.g. part of a compound relocation).  */
8681 	      if (r_symndx == STN_UNDEF)
8682 		break;
8683 
8684 	      /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8685 		 and has a special meaning.  */
8686 	      if (!NEWABI_P (abfd) && h != NULL
8687 		  && strcmp (h->root.root.string, "_gp_disp") == 0)
8688 		break;
8689 
8690 	      /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks.  */
8691 	      if (is_gott_symbol (info, h))
8692 		break;
8693 
8694 	      /* FALLTHROUGH */
8695 
8696 	    case R_MIPS16_26:
8697 	    case R_MIPS_26:
8698 	    case R_MICROMIPS_26_S1:
8699 	      howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8700 	      (*_bfd_error_handler)
8701 		(_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8702 		 abfd, howto->name,
8703 		 (h) ? h->root.root.string : "a local symbol");
8704 	      bfd_set_error (bfd_error_bad_value);
8705 	      return FALSE;
8706 	    default:
8707 	      break;
8708 	    }
8709 	}
8710     }
8711 
8712   return TRUE;
8713 }
8714 
8715 bfd_boolean
8716 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8717 			 struct bfd_link_info *link_info,
8718 			 bfd_boolean *again)
8719 {
8720   Elf_Internal_Rela *internal_relocs;
8721   Elf_Internal_Rela *irel, *irelend;
8722   Elf_Internal_Shdr *symtab_hdr;
8723   bfd_byte *contents = NULL;
8724   size_t extsymoff;
8725   bfd_boolean changed_contents = FALSE;
8726   bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8727   Elf_Internal_Sym *isymbuf = NULL;
8728 
8729   /* We are not currently changing any sizes, so only one pass.  */
8730   *again = FALSE;
8731 
8732   if (bfd_link_relocatable (link_info))
8733     return TRUE;
8734 
8735   internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8736 					       link_info->keep_memory);
8737   if (internal_relocs == NULL)
8738     return TRUE;
8739 
8740   irelend = internal_relocs + sec->reloc_count
8741     * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8742   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8743   extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8744 
8745   for (irel = internal_relocs; irel < irelend; irel++)
8746     {
8747       bfd_vma symval;
8748       bfd_signed_vma sym_offset;
8749       unsigned int r_type;
8750       unsigned long r_symndx;
8751       asection *sym_sec;
8752       unsigned long instruction;
8753 
8754       /* Turn jalr into bgezal, and jr into beq, if they're marked
8755 	 with a JALR relocation, that indicate where they jump to.
8756 	 This saves some pipeline bubbles.  */
8757       r_type = ELF_R_TYPE (abfd, irel->r_info);
8758       if (r_type != R_MIPS_JALR)
8759 	continue;
8760 
8761       r_symndx = ELF_R_SYM (abfd, irel->r_info);
8762       /* Compute the address of the jump target.  */
8763       if (r_symndx >= extsymoff)
8764 	{
8765 	  struct mips_elf_link_hash_entry *h
8766 	    = ((struct mips_elf_link_hash_entry *)
8767 	       elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8768 
8769 	  while (h->root.root.type == bfd_link_hash_indirect
8770 		 || h->root.root.type == bfd_link_hash_warning)
8771 	    h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8772 
8773 	  /* If a symbol is undefined, or if it may be overridden,
8774 	     skip it.  */
8775 	  if (! ((h->root.root.type == bfd_link_hash_defined
8776 		  || h->root.root.type == bfd_link_hash_defweak)
8777 		 && h->root.root.u.def.section)
8778 	      || (bfd_link_pic (link_info) && ! link_info->symbolic
8779 		  && !h->root.forced_local))
8780 	    continue;
8781 
8782 	  sym_sec = h->root.root.u.def.section;
8783 	  if (sym_sec->output_section)
8784 	    symval = (h->root.root.u.def.value
8785 		      + sym_sec->output_section->vma
8786 		      + sym_sec->output_offset);
8787 	  else
8788 	    symval = h->root.root.u.def.value;
8789 	}
8790       else
8791 	{
8792 	  Elf_Internal_Sym *isym;
8793 
8794 	  /* Read this BFD's symbols if we haven't done so already.  */
8795 	  if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8796 	    {
8797 	      isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8798 	      if (isymbuf == NULL)
8799 		isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8800 						symtab_hdr->sh_info, 0,
8801 						NULL, NULL, NULL);
8802 	      if (isymbuf == NULL)
8803 		goto relax_return;
8804 	    }
8805 
8806 	  isym = isymbuf + r_symndx;
8807 	  if (isym->st_shndx == SHN_UNDEF)
8808 	    continue;
8809 	  else if (isym->st_shndx == SHN_ABS)
8810 	    sym_sec = bfd_abs_section_ptr;
8811 	  else if (isym->st_shndx == SHN_COMMON)
8812 	    sym_sec = bfd_com_section_ptr;
8813 	  else
8814 	    sym_sec
8815 	      = bfd_section_from_elf_index (abfd, isym->st_shndx);
8816 	  symval = isym->st_value
8817 	    + sym_sec->output_section->vma
8818 	    + sym_sec->output_offset;
8819 	}
8820 
8821       /* Compute branch offset, from delay slot of the jump to the
8822 	 branch target.  */
8823       sym_offset = (symval + irel->r_addend)
8824 	- (sec_start + irel->r_offset + 4);
8825 
8826       /* Branch offset must be properly aligned.  */
8827       if ((sym_offset & 3) != 0)
8828 	continue;
8829 
8830       sym_offset >>= 2;
8831 
8832       /* Check that it's in range.  */
8833       if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8834 	continue;
8835 
8836       /* Get the section contents if we haven't done so already.  */
8837       if (!mips_elf_get_section_contents (abfd, sec, &contents))
8838 	goto relax_return;
8839 
8840       instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8841 
8842       /* If it was jalr <reg>, turn it into bgezal $zero, <target>.  */
8843       if ((instruction & 0xfc1fffff) == 0x0000f809)
8844 	instruction = 0x04110000;
8845       /* If it was jr <reg>, turn it into b <target>.  */
8846       else if ((instruction & 0xfc1fffff) == 0x00000008)
8847 	instruction = 0x10000000;
8848       else
8849 	continue;
8850 
8851       instruction |= (sym_offset & 0xffff);
8852       bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8853       changed_contents = TRUE;
8854     }
8855 
8856   if (contents != NULL
8857       && elf_section_data (sec)->this_hdr.contents != contents)
8858     {
8859       if (!changed_contents && !link_info->keep_memory)
8860         free (contents);
8861       else
8862         {
8863           /* Cache the section contents for elf_link_input_bfd.  */
8864           elf_section_data (sec)->this_hdr.contents = contents;
8865         }
8866     }
8867   return TRUE;
8868 
8869  relax_return:
8870   if (contents != NULL
8871       && elf_section_data (sec)->this_hdr.contents != contents)
8872     free (contents);
8873   return FALSE;
8874 }
8875 
8876 /* Allocate space for global sym dynamic relocs.  */
8877 
8878 static bfd_boolean
8879 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8880 {
8881   struct bfd_link_info *info = inf;
8882   bfd *dynobj;
8883   struct mips_elf_link_hash_entry *hmips;
8884   struct mips_elf_link_hash_table *htab;
8885 
8886   htab = mips_elf_hash_table (info);
8887   BFD_ASSERT (htab != NULL);
8888 
8889   dynobj = elf_hash_table (info)->dynobj;
8890   hmips = (struct mips_elf_link_hash_entry *) h;
8891 
8892   /* VxWorks executables are handled elsewhere; we only need to
8893      allocate relocations in shared objects.  */
8894   if (htab->is_vxworks && !bfd_link_pic (info))
8895     return TRUE;
8896 
8897   /* Ignore indirect symbols.  All relocations against such symbols
8898      will be redirected to the target symbol.  */
8899   if (h->root.type == bfd_link_hash_indirect)
8900     return TRUE;
8901 
8902   /* If this symbol is defined in a dynamic object, or we are creating
8903      a shared library, we will need to copy any R_MIPS_32 or
8904      R_MIPS_REL32 relocs against it into the output file.  */
8905   if (! bfd_link_relocatable (info)
8906       && hmips->possibly_dynamic_relocs != 0
8907       && (h->root.type == bfd_link_hash_defweak
8908 	  || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8909 	  || bfd_link_pic (info)))
8910     {
8911       bfd_boolean do_copy = TRUE;
8912 
8913       if (h->root.type == bfd_link_hash_undefweak)
8914 	{
8915 	  /* Do not copy relocations for undefined weak symbols with
8916 	     non-default visibility.  */
8917 	  if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8918 	    do_copy = FALSE;
8919 
8920 	  /* Make sure undefined weak symbols are output as a dynamic
8921 	     symbol in PIEs.  */
8922 	  else if (h->dynindx == -1 && !h->forced_local)
8923 	    {
8924 	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
8925 		return FALSE;
8926 	    }
8927 	}
8928 
8929       if (do_copy)
8930 	{
8931 	  /* Even though we don't directly need a GOT entry for this symbol,
8932 	     the SVR4 psABI requires it to have a dynamic symbol table
8933 	     index greater that DT_MIPS_GOTSYM if there are dynamic
8934 	     relocations against it.
8935 
8936 	     VxWorks does not enforce the same mapping between the GOT
8937 	     and the symbol table, so the same requirement does not
8938 	     apply there.  */
8939 	  if (!htab->is_vxworks)
8940 	    {
8941 	      if (hmips->global_got_area > GGA_RELOC_ONLY)
8942 		hmips->global_got_area = GGA_RELOC_ONLY;
8943 	      hmips->got_only_for_calls = FALSE;
8944 	    }
8945 
8946 	  mips_elf_allocate_dynamic_relocations
8947 	    (dynobj, info, hmips->possibly_dynamic_relocs);
8948 	  if (hmips->readonly_reloc)
8949 	    /* We tell the dynamic linker that there are relocations
8950 	       against the text segment.  */
8951 	    info->flags |= DF_TEXTREL;
8952 	}
8953     }
8954 
8955   return TRUE;
8956 }
8957 
8958 /* Adjust a symbol defined by a dynamic object and referenced by a
8959    regular object.  The current definition is in some section of the
8960    dynamic object, but we're not including those sections.  We have to
8961    change the definition to something the rest of the link can
8962    understand.  */
8963 
8964 bfd_boolean
8965 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8966 				     struct elf_link_hash_entry *h)
8967 {
8968   bfd *dynobj;
8969   struct mips_elf_link_hash_entry *hmips;
8970   struct mips_elf_link_hash_table *htab;
8971 
8972   htab = mips_elf_hash_table (info);
8973   BFD_ASSERT (htab != NULL);
8974 
8975   dynobj = elf_hash_table (info)->dynobj;
8976   hmips = (struct mips_elf_link_hash_entry *) h;
8977 
8978   /* Make sure we know what is going on here.  */
8979   BFD_ASSERT (dynobj != NULL
8980 	      && (h->needs_plt
8981 		  || h->type == STT_GNU_IFUNC
8982 		  || h->u.weakdef != NULL
8983 		  || (h->def_dynamic
8984 		      && h->ref_regular
8985 		      && !h->def_regular)));
8986 
8987   hmips = (struct mips_elf_link_hash_entry *) h;
8988 
8989   /* If there are call relocations against an externally-defined symbol,
8990      see whether we can create a MIPS lazy-binding stub for it.  We can
8991      only do this if all references to the function are through call
8992      relocations, and in that case, the traditional lazy-binding stubs
8993      are much more efficient than PLT entries.
8994 
8995      Traditional stubs are only available on SVR4 psABI-based systems;
8996      VxWorks always uses PLTs instead.  */
8997   if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8998     {
8999       if (! elf_hash_table (info)->dynamic_sections_created)
9000 	return TRUE;
9001 
9002       /* If this symbol is not defined in a regular file, then set
9003 	 the symbol to the stub location.  This is required to make
9004 	 function pointers compare as equal between the normal
9005 	 executable and the shared library.  */
9006       if (!h->def_regular)
9007 	{
9008 	  hmips->needs_lazy_stub = TRUE;
9009 	  htab->lazy_stub_count++;
9010 	  return TRUE;
9011 	}
9012     }
9013   /* As above, VxWorks requires PLT entries for externally-defined
9014      functions that are only accessed through call relocations.
9015 
9016      Both VxWorks and non-VxWorks targets also need PLT entries if there
9017      are static-only relocations against an externally-defined function.
9018      This can technically occur for shared libraries if there are
9019      branches to the symbol, although it is unlikely that this will be
9020      used in practice due to the short ranges involved.  It can occur
9021      for any relative or absolute relocation in executables; in that
9022      case, the PLT entry becomes the function's canonical address.  */
9023   else if (((h->needs_plt && !hmips->no_fn_stub)
9024 	    || (h->type == STT_FUNC && hmips->has_static_relocs))
9025 	   && htab->use_plts_and_copy_relocs
9026 	   && !SYMBOL_CALLS_LOCAL (info, h)
9027 	   && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9028 		&& h->root.type == bfd_link_hash_undefweak))
9029     {
9030       bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9031       bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9032 
9033       /* If this is the first symbol to need a PLT entry, then make some
9034          basic setup.  Also work out PLT entry sizes.  We'll need them
9035          for PLT offset calculations.  */
9036       if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9037 	{
9038 	  BFD_ASSERT (htab->sgotplt->size == 0);
9039 	  BFD_ASSERT (htab->plt_got_index == 0);
9040 
9041 	  /* If we're using the PLT additions to the psABI, each PLT
9042 	     entry is 16 bytes and the PLT0 entry is 32 bytes.
9043 	     Encourage better cache usage by aligning.  We do this
9044 	     lazily to avoid pessimizing traditional objects.  */
9045 	  if (!htab->is_vxworks
9046 	      && !bfd_set_section_alignment (dynobj, htab->splt, 5))
9047 	    return FALSE;
9048 
9049 	  /* Make sure that .got.plt is word-aligned.  We do this lazily
9050 	     for the same reason as above.  */
9051 	  if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
9052 					  MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9053 	    return FALSE;
9054 
9055 	  /* On non-VxWorks targets, the first two entries in .got.plt
9056 	     are reserved.  */
9057 	  if (!htab->is_vxworks)
9058 	    htab->plt_got_index
9059 	      += (get_elf_backend_data (dynobj)->got_header_size
9060 		  / MIPS_ELF_GOT_SIZE (dynobj));
9061 
9062 	  /* On VxWorks, also allocate room for the header's
9063 	     .rela.plt.unloaded entries.  */
9064 	  if (htab->is_vxworks && !bfd_link_pic (info))
9065 	    htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9066 
9067 	  /* Now work out the sizes of individual PLT entries.  */
9068 	  if (htab->is_vxworks && bfd_link_pic (info))
9069 	    htab->plt_mips_entry_size
9070 	      = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9071 	  else if (htab->is_vxworks)
9072 	    htab->plt_mips_entry_size
9073 	      = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9074 	  else if (newabi_p)
9075 	    htab->plt_mips_entry_size
9076 	      = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9077 	  else if (!micromips_p)
9078 	    {
9079 	      htab->plt_mips_entry_size
9080 		= 4 * ARRAY_SIZE (mips_exec_plt_entry);
9081 	      htab->plt_comp_entry_size
9082 		= 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9083 	    }
9084 	  else if (htab->insn32)
9085 	    {
9086 	      htab->plt_mips_entry_size
9087 		= 4 * ARRAY_SIZE (mips_exec_plt_entry);
9088 	      htab->plt_comp_entry_size
9089 		= 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9090 	    }
9091 	  else
9092 	    {
9093 	      htab->plt_mips_entry_size
9094 		= 4 * ARRAY_SIZE (mips_exec_plt_entry);
9095 	      htab->plt_comp_entry_size
9096 		= 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9097 	    }
9098 	}
9099 
9100       if (h->plt.plist == NULL)
9101 	h->plt.plist = mips_elf_make_plt_record (dynobj);
9102       if (h->plt.plist == NULL)
9103 	return FALSE;
9104 
9105       /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9106          n32 or n64, so always use a standard entry there.
9107 
9108          If the symbol has a MIPS16 call stub and gets a PLT entry, then
9109          all MIPS16 calls will go via that stub, and there is no benefit
9110          to having a MIPS16 entry.  And in the case of call_stub a
9111          standard entry actually has to be used as the stub ends with a J
9112          instruction.  */
9113       if (newabi_p
9114 	  || htab->is_vxworks
9115 	  || hmips->call_stub
9116 	  || hmips->call_fp_stub)
9117 	{
9118 	  h->plt.plist->need_mips = TRUE;
9119 	  h->plt.plist->need_comp = FALSE;
9120 	}
9121 
9122       /* Otherwise, if there are no direct calls to the function, we
9123          have a free choice of whether to use standard or compressed
9124          entries.  Prefer microMIPS entries if the object is known to
9125          contain microMIPS code, so that it becomes possible to create
9126          pure microMIPS binaries.  Prefer standard entries otherwise,
9127          because MIPS16 ones are no smaller and are usually slower.  */
9128       if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9129 	{
9130 	  if (micromips_p)
9131 	    h->plt.plist->need_comp = TRUE;
9132 	  else
9133 	    h->plt.plist->need_mips = TRUE;
9134 	}
9135 
9136       if (h->plt.plist->need_mips)
9137 	{
9138 	  h->plt.plist->mips_offset = htab->plt_mips_offset;
9139 	  htab->plt_mips_offset += htab->plt_mips_entry_size;
9140 	}
9141       if (h->plt.plist->need_comp)
9142 	{
9143 	  h->plt.plist->comp_offset = htab->plt_comp_offset;
9144 	  htab->plt_comp_offset += htab->plt_comp_entry_size;
9145 	}
9146 
9147       /* Reserve the corresponding .got.plt entry now too.  */
9148       h->plt.plist->gotplt_index = htab->plt_got_index++;
9149 
9150       /* If the output file has no definition of the symbol, set the
9151 	 symbol's value to the address of the stub.  */
9152       if (!bfd_link_pic (info) && !h->def_regular)
9153 	hmips->use_plt_entry = TRUE;
9154 
9155       /* Make room for the R_MIPS_JUMP_SLOT relocation.  */
9156       htab->srelplt->size += (htab->is_vxworks
9157 			      ? MIPS_ELF_RELA_SIZE (dynobj)
9158 			      : MIPS_ELF_REL_SIZE (dynobj));
9159 
9160       /* Make room for the .rela.plt.unloaded relocations.  */
9161       if (htab->is_vxworks && !bfd_link_pic (info))
9162 	htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9163 
9164       /* All relocations against this symbol that could have been made
9165 	 dynamic will now refer to the PLT entry instead.  */
9166       hmips->possibly_dynamic_relocs = 0;
9167 
9168       return TRUE;
9169     }
9170 
9171   /* If this is a weak symbol, and there is a real definition, the
9172      processor independent code will have arranged for us to see the
9173      real definition first, and we can just use the same value.  */
9174   if (h->u.weakdef != NULL)
9175     {
9176       BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9177 		  || h->u.weakdef->root.type == bfd_link_hash_defweak);
9178       h->root.u.def.section = h->u.weakdef->root.u.def.section;
9179       h->root.u.def.value = h->u.weakdef->root.u.def.value;
9180       return TRUE;
9181     }
9182 
9183   /* Otherwise, there is nothing further to do for symbols defined
9184      in regular objects.  */
9185   if (h->def_regular)
9186     return TRUE;
9187 
9188   /* There's also nothing more to do if we'll convert all relocations
9189      against this symbol into dynamic relocations.  */
9190   if (!hmips->has_static_relocs)
9191     return TRUE;
9192 
9193   /* We're now relying on copy relocations.  Complain if we have
9194      some that we can't convert.  */
9195   if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9196     {
9197       (*_bfd_error_handler) (_("non-dynamic relocations refer to "
9198 			       "dynamic symbol %s"),
9199 			     h->root.root.string);
9200       bfd_set_error (bfd_error_bad_value);
9201       return FALSE;
9202     }
9203 
9204   /* We must allocate the symbol in our .dynbss section, which will
9205      become part of the .bss section of the executable.  There will be
9206      an entry for this symbol in the .dynsym section.  The dynamic
9207      object will contain position independent code, so all references
9208      from the dynamic object to this symbol will go through the global
9209      offset table.  The dynamic linker will use the .dynsym entry to
9210      determine the address it must put in the global offset table, so
9211      both the dynamic object and the regular object will refer to the
9212      same memory location for the variable.  */
9213 
9214   if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9215     {
9216       if (htab->is_vxworks)
9217 	htab->srelbss->size += sizeof (Elf32_External_Rela);
9218       else
9219 	mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9220       h->needs_copy = 1;
9221     }
9222 
9223   /* All relocations against this symbol that could have been made
9224      dynamic will now refer to the local copy instead.  */
9225   hmips->possibly_dynamic_relocs = 0;
9226 
9227   return _bfd_elf_adjust_dynamic_copy (info, h, htab->sdynbss);
9228 }
9229 
9230 /* This function is called after all the input files have been read,
9231    and the input sections have been assigned to output sections.  We
9232    check for any mips16 stub sections that we can discard.  */
9233 
9234 bfd_boolean
9235 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9236 				    struct bfd_link_info *info)
9237 {
9238   asection *sect;
9239   struct mips_elf_link_hash_table *htab;
9240   struct mips_htab_traverse_info hti;
9241 
9242   htab = mips_elf_hash_table (info);
9243   BFD_ASSERT (htab != NULL);
9244 
9245   /* The .reginfo section has a fixed size.  */
9246   sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9247   if (sect != NULL)
9248     bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9249 
9250   /* The .MIPS.abiflags section has a fixed size.  */
9251   sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9252   if (sect != NULL)
9253     bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
9254 
9255   hti.info = info;
9256   hti.output_bfd = output_bfd;
9257   hti.error = FALSE;
9258   mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9259 			       mips_elf_check_symbols, &hti);
9260   if (hti.error)
9261     return FALSE;
9262 
9263   return TRUE;
9264 }
9265 
9266 /* If the link uses a GOT, lay it out and work out its size.  */
9267 
9268 static bfd_boolean
9269 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9270 {
9271   bfd *dynobj;
9272   asection *s;
9273   struct mips_got_info *g;
9274   bfd_size_type loadable_size = 0;
9275   bfd_size_type page_gotno;
9276   bfd *ibfd;
9277   struct mips_elf_traverse_got_arg tga;
9278   struct mips_elf_link_hash_table *htab;
9279 
9280   htab = mips_elf_hash_table (info);
9281   BFD_ASSERT (htab != NULL);
9282 
9283   s = htab->sgot;
9284   if (s == NULL)
9285     return TRUE;
9286 
9287   dynobj = elf_hash_table (info)->dynobj;
9288   g = htab->got_info;
9289 
9290   /* Allocate room for the reserved entries.  VxWorks always reserves
9291      3 entries; other objects only reserve 2 entries.  */
9292   BFD_ASSERT (g->assigned_low_gotno == 0);
9293   if (htab->is_vxworks)
9294     htab->reserved_gotno = 3;
9295   else
9296     htab->reserved_gotno = 2;
9297   g->local_gotno += htab->reserved_gotno;
9298   g->assigned_low_gotno = htab->reserved_gotno;
9299 
9300   /* Decide which symbols need to go in the global part of the GOT and
9301      count the number of reloc-only GOT symbols.  */
9302   mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9303 
9304   if (!mips_elf_resolve_final_got_entries (info, g))
9305     return FALSE;
9306 
9307   /* Calculate the total loadable size of the output.  That
9308      will give us the maximum number of GOT_PAGE entries
9309      required.  */
9310   for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9311     {
9312       asection *subsection;
9313 
9314       for (subsection = ibfd->sections;
9315 	   subsection;
9316 	   subsection = subsection->next)
9317 	{
9318 	  if ((subsection->flags & SEC_ALLOC) == 0)
9319 	    continue;
9320 	  loadable_size += ((subsection->size + 0xf)
9321 			    &~ (bfd_size_type) 0xf);
9322 	}
9323     }
9324 
9325   if (htab->is_vxworks)
9326     /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9327        relocations against local symbols evaluate to "G", and the EABI does
9328        not include R_MIPS_GOT_PAGE.  */
9329     page_gotno = 0;
9330   else
9331     /* Assume there are two loadable segments consisting of contiguous
9332        sections.  Is 5 enough?  */
9333     page_gotno = (loadable_size >> 16) + 5;
9334 
9335   /* Choose the smaller of the two page estimates; both are intended to be
9336      conservative.  */
9337   if (page_gotno > g->page_gotno)
9338     page_gotno = g->page_gotno;
9339 
9340   g->local_gotno += page_gotno;
9341   g->assigned_high_gotno = g->local_gotno - 1;
9342 
9343   s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9344   s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9345   s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9346 
9347   /* VxWorks does not support multiple GOTs.  It initializes $gp to
9348      __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9349      dynamic loader.  */
9350   if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9351     {
9352       if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9353 	return FALSE;
9354     }
9355   else
9356     {
9357       /* Record that all bfds use G.  This also has the effect of freeing
9358 	 the per-bfd GOTs, which we no longer need.  */
9359       for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9360 	if (mips_elf_bfd_got (ibfd, FALSE))
9361 	  mips_elf_replace_bfd_got (ibfd, g);
9362       mips_elf_replace_bfd_got (output_bfd, g);
9363 
9364       /* Set up TLS entries.  */
9365       g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9366       tga.info = info;
9367       tga.g = g;
9368       tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9369       htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9370       if (!tga.g)
9371 	return FALSE;
9372       BFD_ASSERT (g->tls_assigned_gotno
9373 		  == g->global_gotno + g->local_gotno + g->tls_gotno);
9374 
9375       /* Each VxWorks GOT entry needs an explicit relocation.  */
9376       if (htab->is_vxworks && bfd_link_pic (info))
9377 	g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9378 
9379       /* Allocate room for the TLS relocations.  */
9380       if (g->relocs)
9381 	mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9382     }
9383 
9384   return TRUE;
9385 }
9386 
9387 /* Estimate the size of the .MIPS.stubs section.  */
9388 
9389 static void
9390 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9391 {
9392   struct mips_elf_link_hash_table *htab;
9393   bfd_size_type dynsymcount;
9394 
9395   htab = mips_elf_hash_table (info);
9396   BFD_ASSERT (htab != NULL);
9397 
9398   if (htab->lazy_stub_count == 0)
9399     return;
9400 
9401   /* IRIX rld assumes that a function stub isn't at the end of the .text
9402      section, so add a dummy entry to the end.  */
9403   htab->lazy_stub_count++;
9404 
9405   /* Get a worst-case estimate of the number of dynamic symbols needed.
9406      At this point, dynsymcount does not account for section symbols
9407      and count_section_dynsyms may overestimate the number that will
9408      be needed.  */
9409   dynsymcount = (elf_hash_table (info)->dynsymcount
9410 		 + count_section_dynsyms (output_bfd, info));
9411 
9412   /* Determine the size of one stub entry.  There's no disadvantage
9413      from using microMIPS code here, so for the sake of pure-microMIPS
9414      binaries we prefer it whenever there's any microMIPS code in
9415      output produced at all.  This has a benefit of stubs being
9416      shorter by 4 bytes each too, unless in the insn32 mode.  */
9417   if (!MICROMIPS_P (output_bfd))
9418     htab->function_stub_size = (dynsymcount > 0x10000
9419 				? MIPS_FUNCTION_STUB_BIG_SIZE
9420 				: MIPS_FUNCTION_STUB_NORMAL_SIZE);
9421   else if (htab->insn32)
9422     htab->function_stub_size = (dynsymcount > 0x10000
9423 				? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9424 				: MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9425   else
9426     htab->function_stub_size = (dynsymcount > 0x10000
9427 				? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9428 				: MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9429 
9430   htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9431 }
9432 
9433 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9434    mips_htab_traverse_info.  If H needs a traditional MIPS lazy-binding
9435    stub, allocate an entry in the stubs section.  */
9436 
9437 static bfd_boolean
9438 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9439 {
9440   struct mips_htab_traverse_info *hti = data;
9441   struct mips_elf_link_hash_table *htab;
9442   struct bfd_link_info *info;
9443   bfd *output_bfd;
9444 
9445   info = hti->info;
9446   output_bfd = hti->output_bfd;
9447   htab = mips_elf_hash_table (info);
9448   BFD_ASSERT (htab != NULL);
9449 
9450   if (h->needs_lazy_stub)
9451     {
9452       bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9453       unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9454       bfd_vma isa_bit = micromips_p;
9455 
9456       BFD_ASSERT (htab->root.dynobj != NULL);
9457       if (h->root.plt.plist == NULL)
9458 	h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9459       if (h->root.plt.plist == NULL)
9460 	{
9461 	  hti->error = TRUE;
9462 	  return FALSE;
9463 	}
9464       h->root.root.u.def.section = htab->sstubs;
9465       h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9466       h->root.plt.plist->stub_offset = htab->sstubs->size;
9467       h->root.other = other;
9468       htab->sstubs->size += htab->function_stub_size;
9469     }
9470   return TRUE;
9471 }
9472 
9473 /* Allocate offsets in the stubs section to each symbol that needs one.
9474    Set the final size of the .MIPS.stub section.  */
9475 
9476 static bfd_boolean
9477 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9478 {
9479   bfd *output_bfd = info->output_bfd;
9480   bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9481   unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9482   bfd_vma isa_bit = micromips_p;
9483   struct mips_elf_link_hash_table *htab;
9484   struct mips_htab_traverse_info hti;
9485   struct elf_link_hash_entry *h;
9486   bfd *dynobj;
9487 
9488   htab = mips_elf_hash_table (info);
9489   BFD_ASSERT (htab != NULL);
9490 
9491   if (htab->lazy_stub_count == 0)
9492     return TRUE;
9493 
9494   htab->sstubs->size = 0;
9495   hti.info = info;
9496   hti.output_bfd = output_bfd;
9497   hti.error = FALSE;
9498   mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9499   if (hti.error)
9500     return FALSE;
9501   htab->sstubs->size += htab->function_stub_size;
9502   BFD_ASSERT (htab->sstubs->size
9503 	      == htab->lazy_stub_count * htab->function_stub_size);
9504 
9505   dynobj = elf_hash_table (info)->dynobj;
9506   BFD_ASSERT (dynobj != NULL);
9507   h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9508   if (h == NULL)
9509     return FALSE;
9510   h->root.u.def.value = isa_bit;
9511   h->other = other;
9512   h->type = STT_FUNC;
9513 
9514   return TRUE;
9515 }
9516 
9517 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9518    bfd_link_info.  If H uses the address of a PLT entry as the value
9519    of the symbol, then set the entry in the symbol table now.  Prefer
9520    a standard MIPS PLT entry.  */
9521 
9522 static bfd_boolean
9523 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9524 {
9525   struct bfd_link_info *info = data;
9526   bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9527   struct mips_elf_link_hash_table *htab;
9528   unsigned int other;
9529   bfd_vma isa_bit;
9530   bfd_vma val;
9531 
9532   htab = mips_elf_hash_table (info);
9533   BFD_ASSERT (htab != NULL);
9534 
9535   if (h->use_plt_entry)
9536     {
9537       BFD_ASSERT (h->root.plt.plist != NULL);
9538       BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9539 		  || h->root.plt.plist->comp_offset != MINUS_ONE);
9540 
9541       val = htab->plt_header_size;
9542       if (h->root.plt.plist->mips_offset != MINUS_ONE)
9543 	{
9544 	  isa_bit = 0;
9545 	  val += h->root.plt.plist->mips_offset;
9546 	  other = 0;
9547 	}
9548       else
9549 	{
9550 	  isa_bit = 1;
9551 	  val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9552 	  other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9553 	}
9554       val += isa_bit;
9555       /* For VxWorks, point at the PLT load stub rather than the lazy
9556          resolution stub; this stub will become the canonical function
9557          address.  */
9558       if (htab->is_vxworks)
9559 	val += 8;
9560 
9561       h->root.root.u.def.section = htab->splt;
9562       h->root.root.u.def.value = val;
9563       h->root.other = other;
9564     }
9565 
9566   return TRUE;
9567 }
9568 
9569 /* Set the sizes of the dynamic sections.  */
9570 
9571 bfd_boolean
9572 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9573 				     struct bfd_link_info *info)
9574 {
9575   bfd *dynobj;
9576   asection *s, *sreldyn;
9577   bfd_boolean reltext;
9578   struct mips_elf_link_hash_table *htab;
9579 
9580   htab = mips_elf_hash_table (info);
9581   BFD_ASSERT (htab != NULL);
9582   dynobj = elf_hash_table (info)->dynobj;
9583   BFD_ASSERT (dynobj != NULL);
9584 
9585   if (elf_hash_table (info)->dynamic_sections_created)
9586     {
9587       /* Set the contents of the .interp section to the interpreter.  */
9588       if (bfd_link_executable (info) && !info->nointerp)
9589 	{
9590 	  s = bfd_get_linker_section (dynobj, ".interp");
9591 	  BFD_ASSERT (s != NULL);
9592 	  s->size
9593 	    = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9594 	  s->contents
9595 	    = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9596 	}
9597 
9598       /* Figure out the size of the PLT header if we know that we
9599          are using it.  For the sake of cache alignment always use
9600          a standard header whenever any standard entries are present
9601          even if microMIPS entries are present as well.  This also
9602          lets the microMIPS header rely on the value of $v0 only set
9603          by microMIPS entries, for a small size reduction.
9604 
9605          Set symbol table entry values for symbols that use the
9606          address of their PLT entry now that we can calculate it.
9607 
9608          Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9609          haven't already in _bfd_elf_create_dynamic_sections.  */
9610       if (htab->splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9611 	{
9612 	  bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9613 				     && !htab->plt_mips_offset);
9614 	  unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9615 	  bfd_vma isa_bit = micromips_p;
9616 	  struct elf_link_hash_entry *h;
9617 	  bfd_vma size;
9618 
9619 	  BFD_ASSERT (htab->use_plts_and_copy_relocs);
9620 	  BFD_ASSERT (htab->sgotplt->size == 0);
9621 	  BFD_ASSERT (htab->splt->size == 0);
9622 
9623 	  if (htab->is_vxworks && bfd_link_pic (info))
9624 	    size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9625 	  else if (htab->is_vxworks)
9626 	    size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9627 	  else if (ABI_64_P (output_bfd))
9628 	    size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9629 	  else if (ABI_N32_P (output_bfd))
9630 	    size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9631 	  else if (!micromips_p)
9632 	    size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9633 	  else if (htab->insn32)
9634 	    size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9635 	  else
9636 	    size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9637 
9638 	  htab->plt_header_is_comp = micromips_p;
9639 	  htab->plt_header_size = size;
9640 	  htab->splt->size = (size
9641 			      + htab->plt_mips_offset
9642 			      + htab->plt_comp_offset);
9643 	  htab->sgotplt->size = (htab->plt_got_index
9644 				 * MIPS_ELF_GOT_SIZE (dynobj));
9645 
9646 	  mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9647 
9648 	  if (htab->root.hplt == NULL)
9649 	    {
9650 	      h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9651 					       "_PROCEDURE_LINKAGE_TABLE_");
9652 	      htab->root.hplt = h;
9653 	      if (h == NULL)
9654 		return FALSE;
9655 	    }
9656 
9657 	  h = htab->root.hplt;
9658 	  h->root.u.def.value = isa_bit;
9659 	  h->other = other;
9660 	  h->type = STT_FUNC;
9661 	}
9662     }
9663 
9664   /* Allocate space for global sym dynamic relocs.  */
9665   elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9666 
9667   mips_elf_estimate_stub_size (output_bfd, info);
9668 
9669   if (!mips_elf_lay_out_got (output_bfd, info))
9670     return FALSE;
9671 
9672   mips_elf_lay_out_lazy_stubs (info);
9673 
9674   /* The check_relocs and adjust_dynamic_symbol entry points have
9675      determined the sizes of the various dynamic sections.  Allocate
9676      memory for them.  */
9677   reltext = FALSE;
9678   for (s = dynobj->sections; s != NULL; s = s->next)
9679     {
9680       const char *name;
9681 
9682       /* It's OK to base decisions on the section name, because none
9683 	 of the dynobj section names depend upon the input files.  */
9684       name = bfd_get_section_name (dynobj, s);
9685 
9686       if ((s->flags & SEC_LINKER_CREATED) == 0)
9687 	continue;
9688 
9689       if (CONST_STRNEQ (name, ".rel"))
9690 	{
9691 	  if (s->size != 0)
9692 	    {
9693 	      const char *outname;
9694 	      asection *target;
9695 
9696 	      /* If this relocation section applies to a read only
9697                  section, then we probably need a DT_TEXTREL entry.
9698                  If the relocation section is .rel(a).dyn, we always
9699                  assert a DT_TEXTREL entry rather than testing whether
9700                  there exists a relocation to a read only section or
9701                  not.  */
9702 	      outname = bfd_get_section_name (output_bfd,
9703 					      s->output_section);
9704 	      target = bfd_get_section_by_name (output_bfd, outname + 4);
9705 	      if ((target != NULL
9706 		   && (target->flags & SEC_READONLY) != 0
9707 		   && (target->flags & SEC_ALLOC) != 0)
9708 		  || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9709 		reltext = TRUE;
9710 
9711 	      /* We use the reloc_count field as a counter if we need
9712 		 to copy relocs into the output file.  */
9713 	      if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9714 		s->reloc_count = 0;
9715 
9716 	      /* If combreloc is enabled, elf_link_sort_relocs() will
9717 		 sort relocations, but in a different way than we do,
9718 		 and before we're done creating relocations.  Also, it
9719 		 will move them around between input sections'
9720 		 relocation's contents, so our sorting would be
9721 		 broken, so don't let it run.  */
9722 	      info->combreloc = 0;
9723 	    }
9724 	}
9725       else if (bfd_link_executable (info)
9726 	       && ! mips_elf_hash_table (info)->use_rld_obj_head
9727 	       && CONST_STRNEQ (name, ".rld_map"))
9728 	{
9729 	  /* We add a room for __rld_map.  It will be filled in by the
9730 	     rtld to contain a pointer to the _r_debug structure.  */
9731 	  s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9732 	}
9733       else if (SGI_COMPAT (output_bfd)
9734 	       && CONST_STRNEQ (name, ".compact_rel"))
9735 	s->size += mips_elf_hash_table (info)->compact_rel_size;
9736       else if (s == htab->splt)
9737 	{
9738 	  /* If the last PLT entry has a branch delay slot, allocate
9739 	     room for an extra nop to fill the delay slot.  This is
9740 	     for CPUs without load interlocking.  */
9741 	  if (! LOAD_INTERLOCKS_P (output_bfd)
9742 	      && ! htab->is_vxworks && s->size > 0)
9743 	    s->size += 4;
9744 	}
9745       else if (! CONST_STRNEQ (name, ".init")
9746 	       && s != htab->sgot
9747 	       && s != htab->sgotplt
9748 	       && s != htab->sstubs
9749 	       && s != htab->sdynbss)
9750 	{
9751 	  /* It's not one of our sections, so don't allocate space.  */
9752 	  continue;
9753 	}
9754 
9755       if (s->size == 0)
9756 	{
9757 	  s->flags |= SEC_EXCLUDE;
9758 	  continue;
9759 	}
9760 
9761       if ((s->flags & SEC_HAS_CONTENTS) == 0)
9762 	continue;
9763 
9764       /* Allocate memory for the section contents.  */
9765       s->contents = bfd_zalloc (dynobj, s->size);
9766       if (s->contents == NULL)
9767 	{
9768 	  bfd_set_error (bfd_error_no_memory);
9769 	  return FALSE;
9770 	}
9771     }
9772 
9773   if (elf_hash_table (info)->dynamic_sections_created)
9774     {
9775       /* Add some entries to the .dynamic section.  We fill in the
9776 	 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9777 	 must add the entries now so that we get the correct size for
9778 	 the .dynamic section.  */
9779 
9780       /* SGI object has the equivalence of DT_DEBUG in the
9781 	 DT_MIPS_RLD_MAP entry.  This must come first because glibc
9782 	 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9783 	 may only look at the first one they see.  */
9784       if (!bfd_link_pic (info)
9785 	  && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9786 	return FALSE;
9787 
9788       if (bfd_link_executable (info)
9789 	  && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9790 	return FALSE;
9791 
9792       /* The DT_DEBUG entry may be filled in by the dynamic linker and
9793 	 used by the debugger.  */
9794       if (bfd_link_executable (info)
9795 	  && !SGI_COMPAT (output_bfd)
9796 	  && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9797 	return FALSE;
9798 
9799       if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9800 	info->flags |= DF_TEXTREL;
9801 
9802       if ((info->flags & DF_TEXTREL) != 0)
9803 	{
9804 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9805 	    return FALSE;
9806 
9807 	  /* Clear the DF_TEXTREL flag.  It will be set again if we
9808 	     write out an actual text relocation; we may not, because
9809 	     at this point we do not know whether e.g. any .eh_frame
9810 	     absolute relocations have been converted to PC-relative.  */
9811 	  info->flags &= ~DF_TEXTREL;
9812 	}
9813 
9814       if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9815 	return FALSE;
9816 
9817       sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9818       if (htab->is_vxworks)
9819 	{
9820 	  /* VxWorks uses .rela.dyn instead of .rel.dyn.  It does not
9821 	     use any of the DT_MIPS_* tags.  */
9822 	  if (sreldyn && sreldyn->size > 0)
9823 	    {
9824 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9825 		return FALSE;
9826 
9827 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9828 		return FALSE;
9829 
9830 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9831 		return FALSE;
9832 	    }
9833 	}
9834       else
9835 	{
9836 	  if (sreldyn && sreldyn->size > 0)
9837 	    {
9838 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9839 		return FALSE;
9840 
9841 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9842 		return FALSE;
9843 
9844 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9845 		return FALSE;
9846 	    }
9847 
9848 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9849 	    return FALSE;
9850 
9851 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9852 	    return FALSE;
9853 
9854 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9855 	    return FALSE;
9856 
9857 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9858 	    return FALSE;
9859 
9860 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9861 	    return FALSE;
9862 
9863 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9864 	    return FALSE;
9865 
9866 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9867 	    return FALSE;
9868 
9869 	  if (IRIX_COMPAT (dynobj) == ict_irix5
9870 	      && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9871 	    return FALSE;
9872 
9873 	  if (IRIX_COMPAT (dynobj) == ict_irix6
9874 	      && (bfd_get_section_by_name
9875 		  (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9876 	      && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9877 	    return FALSE;
9878 	}
9879       if (htab->splt->size > 0)
9880 	{
9881 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9882 	    return FALSE;
9883 
9884 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9885 	    return FALSE;
9886 
9887 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9888 	    return FALSE;
9889 
9890 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9891 	    return FALSE;
9892 	}
9893       if (htab->is_vxworks
9894 	  && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9895 	return FALSE;
9896     }
9897 
9898   return TRUE;
9899 }
9900 
9901 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9902    Adjust its R_ADDEND field so that it is correct for the output file.
9903    LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9904    and sections respectively; both use symbol indexes.  */
9905 
9906 static void
9907 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9908 			bfd *input_bfd, Elf_Internal_Sym *local_syms,
9909 			asection **local_sections, Elf_Internal_Rela *rel)
9910 {
9911   unsigned int r_type, r_symndx;
9912   Elf_Internal_Sym *sym;
9913   asection *sec;
9914 
9915   if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9916     {
9917       r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9918       if (gprel16_reloc_p (r_type)
9919 	  || r_type == R_MIPS_GPREL32
9920 	  || literal_reloc_p (r_type))
9921 	{
9922 	  rel->r_addend += _bfd_get_gp_value (input_bfd);
9923 	  rel->r_addend -= _bfd_get_gp_value (output_bfd);
9924 	}
9925 
9926       r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9927       sym = local_syms + r_symndx;
9928 
9929       /* Adjust REL's addend to account for section merging.  */
9930       if (!bfd_link_relocatable (info))
9931 	{
9932 	  sec = local_sections[r_symndx];
9933 	  _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9934 	}
9935 
9936       /* This would normally be done by the rela_normal code in elflink.c.  */
9937       if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9938 	rel->r_addend += local_sections[r_symndx]->output_offset;
9939     }
9940 }
9941 
9942 /* Handle relocations against symbols from removed linkonce sections,
9943    or sections discarded by a linker script.  We use this wrapper around
9944    RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9945    on 64-bit ELF targets.  In this case for any relocation handled, which
9946    always be the first in a triplet, the remaining two have to be processed
9947    together with the first, even if they are R_MIPS_NONE.  It is the symbol
9948    index referred by the first reloc that applies to all the three and the
9949    remaining two never refer to an object symbol.  And it is the final
9950    relocation (the last non-null one) that determines the output field of
9951    the whole relocation so retrieve the corresponding howto structure for
9952    the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9953 
9954    Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9955    and therefore requires to be pasted in a loop.  It also defines a block
9956    and does not protect any of its arguments, hence the extra brackets.  */
9957 
9958 static void
9959 mips_reloc_against_discarded_section (bfd *output_bfd,
9960 				      struct bfd_link_info *info,
9961 				      bfd *input_bfd, asection *input_section,
9962 				      Elf_Internal_Rela **rel,
9963 				      const Elf_Internal_Rela **relend,
9964 				      bfd_boolean rel_reloc,
9965 				      reloc_howto_type *howto,
9966 				      bfd_byte *contents)
9967 {
9968   const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9969   int count = bed->s->int_rels_per_ext_rel;
9970   unsigned int r_type;
9971   int i;
9972 
9973   for (i = count - 1; i > 0; i--)
9974     {
9975       r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9976       if (r_type != R_MIPS_NONE)
9977 	{
9978 	  howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9979 	  break;
9980 	}
9981     }
9982   do
9983     {
9984        RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9985 					(*rel), count, (*relend),
9986 					howto, i, contents);
9987     }
9988   while (0);
9989 }
9990 
9991 /* Relocate a MIPS ELF section.  */
9992 
9993 bfd_boolean
9994 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9995 				bfd *input_bfd, asection *input_section,
9996 				bfd_byte *contents, Elf_Internal_Rela *relocs,
9997 				Elf_Internal_Sym *local_syms,
9998 				asection **local_sections)
9999 {
10000   Elf_Internal_Rela *rel;
10001   const Elf_Internal_Rela *relend;
10002   bfd_vma addend = 0;
10003   bfd_boolean use_saved_addend_p = FALSE;
10004   const struct elf_backend_data *bed;
10005 
10006   bed = get_elf_backend_data (output_bfd);
10007   relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
10008   for (rel = relocs; rel < relend; ++rel)
10009     {
10010       const char *name;
10011       bfd_vma value = 0;
10012       reloc_howto_type *howto;
10013       bfd_boolean cross_mode_jump_p = FALSE;
10014       /* TRUE if the relocation is a RELA relocation, rather than a
10015          REL relocation.  */
10016       bfd_boolean rela_relocation_p = TRUE;
10017       unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10018       const char *msg;
10019       unsigned long r_symndx;
10020       asection *sec;
10021       Elf_Internal_Shdr *symtab_hdr;
10022       struct elf_link_hash_entry *h;
10023       bfd_boolean rel_reloc;
10024 
10025       rel_reloc = (NEWABI_P (input_bfd)
10026 		   && mips_elf_rel_relocation_p (input_bfd, input_section,
10027 						 relocs, rel));
10028       /* Find the relocation howto for this relocation.  */
10029       howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10030 
10031       r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10032       symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10033       if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10034 	{
10035 	  sec = local_sections[r_symndx];
10036 	  h = NULL;
10037 	}
10038       else
10039 	{
10040 	  unsigned long extsymoff;
10041 
10042 	  extsymoff = 0;
10043 	  if (!elf_bad_symtab (input_bfd))
10044 	    extsymoff = symtab_hdr->sh_info;
10045 	  h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10046 	  while (h->root.type == bfd_link_hash_indirect
10047 		 || h->root.type == bfd_link_hash_warning)
10048 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
10049 
10050 	  sec = NULL;
10051 	  if (h->root.type == bfd_link_hash_defined
10052 	      || h->root.type == bfd_link_hash_defweak)
10053 	    sec = h->root.u.def.section;
10054 	}
10055 
10056       if (sec != NULL && discarded_section (sec))
10057 	{
10058 	  mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10059 						input_section, &rel, &relend,
10060 						rel_reloc, howto, contents);
10061 	  continue;
10062 	}
10063 
10064       if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10065 	{
10066 	  /* Some 32-bit code uses R_MIPS_64.  In particular, people use
10067 	     64-bit code, but make sure all their addresses are in the
10068 	     lowermost or uppermost 32-bit section of the 64-bit address
10069 	     space.  Thus, when they use an R_MIPS_64 they mean what is
10070 	     usually meant by R_MIPS_32, with the exception that the
10071 	     stored value is sign-extended to 64 bits.  */
10072 	  howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10073 
10074 	  /* On big-endian systems, we need to lie about the position
10075 	     of the reloc.  */
10076 	  if (bfd_big_endian (input_bfd))
10077 	    rel->r_offset += 4;
10078 	}
10079 
10080       if (!use_saved_addend_p)
10081 	{
10082 	  /* If these relocations were originally of the REL variety,
10083 	     we must pull the addend out of the field that will be
10084 	     relocated.  Otherwise, we simply use the contents of the
10085 	     RELA relocation.  */
10086 	  if (mips_elf_rel_relocation_p (input_bfd, input_section,
10087 					 relocs, rel))
10088 	    {
10089 	      rela_relocation_p = FALSE;
10090 	      addend = mips_elf_read_rel_addend (input_bfd, rel,
10091 						 howto, contents);
10092 	      if (hi16_reloc_p (r_type)
10093 		  || (got16_reloc_p (r_type)
10094 		      && mips_elf_local_relocation_p (input_bfd, rel,
10095 						      local_sections)))
10096 		{
10097 		  if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10098 						     contents, &addend))
10099 		    {
10100 		      if (h)
10101 			name = h->root.root.string;
10102 		      else
10103 			name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10104 						 local_syms + r_symndx,
10105 						 sec);
10106 		      (*_bfd_error_handler)
10107 			(_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
10108 			 input_bfd, input_section, name, howto->name,
10109 			 rel->r_offset);
10110 		    }
10111 		}
10112 	      else
10113 		addend <<= howto->rightshift;
10114 	    }
10115 	  else
10116 	    addend = rel->r_addend;
10117 	  mips_elf_adjust_addend (output_bfd, info, input_bfd,
10118 				  local_syms, local_sections, rel);
10119 	}
10120 
10121       if (bfd_link_relocatable (info))
10122 	{
10123 	  if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10124 	      && bfd_big_endian (input_bfd))
10125 	    rel->r_offset -= 4;
10126 
10127 	  if (!rela_relocation_p && rel->r_addend)
10128 	    {
10129 	      addend += rel->r_addend;
10130 	      if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10131 		addend = mips_elf_high (addend);
10132 	      else if (r_type == R_MIPS_HIGHER)
10133 		addend = mips_elf_higher (addend);
10134 	      else if (r_type == R_MIPS_HIGHEST)
10135 		addend = mips_elf_highest (addend);
10136 	      else
10137 		addend >>= howto->rightshift;
10138 
10139 	      /* We use the source mask, rather than the destination
10140 		 mask because the place to which we are writing will be
10141 		 source of the addend in the final link.  */
10142 	      addend &= howto->src_mask;
10143 
10144 	      if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10145 		/* See the comment above about using R_MIPS_64 in the 32-bit
10146 		   ABI.  Here, we need to update the addend.  It would be
10147 		   possible to get away with just using the R_MIPS_32 reloc
10148 		   but for endianness.  */
10149 		{
10150 		  bfd_vma sign_bits;
10151 		  bfd_vma low_bits;
10152 		  bfd_vma high_bits;
10153 
10154 		  if (addend & ((bfd_vma) 1 << 31))
10155 #ifdef BFD64
10156 		    sign_bits = ((bfd_vma) 1 << 32) - 1;
10157 #else
10158 		    sign_bits = -1;
10159 #endif
10160 		  else
10161 		    sign_bits = 0;
10162 
10163 		  /* If we don't know that we have a 64-bit type,
10164 		     do two separate stores.  */
10165 		  if (bfd_big_endian (input_bfd))
10166 		    {
10167 		      /* Store the sign-bits (which are most significant)
10168 			 first.  */
10169 		      low_bits = sign_bits;
10170 		      high_bits = addend;
10171 		    }
10172 		  else
10173 		    {
10174 		      low_bits = addend;
10175 		      high_bits = sign_bits;
10176 		    }
10177 		  bfd_put_32 (input_bfd, low_bits,
10178 			      contents + rel->r_offset);
10179 		  bfd_put_32 (input_bfd, high_bits,
10180 			      contents + rel->r_offset + 4);
10181 		  continue;
10182 		}
10183 
10184 	      if (! mips_elf_perform_relocation (info, howto, rel, addend,
10185 						 input_bfd, input_section,
10186 						 contents, FALSE))
10187 		return FALSE;
10188 	    }
10189 
10190 	  /* Go on to the next relocation.  */
10191 	  continue;
10192 	}
10193 
10194       /* In the N32 and 64-bit ABIs there may be multiple consecutive
10195 	 relocations for the same offset.  In that case we are
10196 	 supposed to treat the output of each relocation as the addend
10197 	 for the next.  */
10198       if (rel + 1 < relend
10199 	  && rel->r_offset == rel[1].r_offset
10200 	  && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10201 	use_saved_addend_p = TRUE;
10202       else
10203 	use_saved_addend_p = FALSE;
10204 
10205       /* Figure out what value we are supposed to relocate.  */
10206       switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10207 					     input_section, info, rel,
10208 					     addend, howto, local_syms,
10209 					     local_sections, &value,
10210 					     &name, &cross_mode_jump_p,
10211 					     use_saved_addend_p))
10212 	{
10213 	case bfd_reloc_continue:
10214 	  /* There's nothing to do.  */
10215 	  continue;
10216 
10217 	case bfd_reloc_undefined:
10218 	  /* mips_elf_calculate_relocation already called the
10219 	     undefined_symbol callback.  There's no real point in
10220 	     trying to perform the relocation at this point, so we
10221 	     just skip ahead to the next relocation.  */
10222 	  continue;
10223 
10224 	case bfd_reloc_notsupported:
10225 	  msg = _("internal error: unsupported relocation error");
10226 	  info->callbacks->warning
10227 	    (info, msg, name, input_bfd, input_section, rel->r_offset);
10228 	  return FALSE;
10229 
10230 	case bfd_reloc_overflow:
10231 	  if (use_saved_addend_p)
10232 	    /* Ignore overflow until we reach the last relocation for
10233 	       a given location.  */
10234 	    ;
10235 	  else
10236 	    {
10237 	      struct mips_elf_link_hash_table *htab;
10238 
10239 	      htab = mips_elf_hash_table (info);
10240 	      BFD_ASSERT (htab != NULL);
10241 	      BFD_ASSERT (name != NULL);
10242 	      if (!htab->small_data_overflow_reported
10243 		  && (gprel16_reloc_p (howto->type)
10244 		      || literal_reloc_p (howto->type)))
10245 		{
10246 		  msg = _("small-data section exceeds 64KB;"
10247 			  " lower small-data size limit (see option -G)");
10248 
10249 		  htab->small_data_overflow_reported = TRUE;
10250 		  (*info->callbacks->einfo) ("%P: %s\n", msg);
10251 		}
10252 	      if (! ((*info->callbacks->reloc_overflow)
10253 		     (info, NULL, name, howto->name, (bfd_vma) 0,
10254 		      input_bfd, input_section, rel->r_offset)))
10255 		return FALSE;
10256 	    }
10257 	  break;
10258 
10259 	case bfd_reloc_ok:
10260 	  break;
10261 
10262 	case bfd_reloc_outofrange:
10263 	  if (jal_reloc_p (howto->type))
10264 	    {
10265 	      msg = _("JALX to a non-word-aligned address");
10266 	      info->callbacks->warning
10267 		(info, msg, name, input_bfd, input_section, rel->r_offset);
10268 	      return FALSE;
10269 	    }
10270 	  if (aligned_pcrel_reloc_p (howto->type))
10271 	    {
10272 	      msg = _("PC-relative load from unaligned address");
10273 	      info->callbacks->warning
10274 		(info, msg, name, input_bfd, input_section, rel->r_offset);
10275 	      return FALSE;
10276 	    }
10277 	  /* Fall through.  */
10278 
10279 	default:
10280 	  abort ();
10281 	  break;
10282 	}
10283 
10284       /* If we've got another relocation for the address, keep going
10285 	 until we reach the last one.  */
10286       if (use_saved_addend_p)
10287 	{
10288 	  addend = value;
10289 	  continue;
10290 	}
10291 
10292       if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10293 	/* See the comment above about using R_MIPS_64 in the 32-bit
10294 	   ABI.  Until now, we've been using the HOWTO for R_MIPS_32;
10295 	   that calculated the right value.  Now, however, we
10296 	   sign-extend the 32-bit result to 64-bits, and store it as a
10297 	   64-bit value.  We are especially generous here in that we
10298 	   go to extreme lengths to support this usage on systems with
10299 	   only a 32-bit VMA.  */
10300 	{
10301 	  bfd_vma sign_bits;
10302 	  bfd_vma low_bits;
10303 	  bfd_vma high_bits;
10304 
10305 	  if (value & ((bfd_vma) 1 << 31))
10306 #ifdef BFD64
10307 	    sign_bits = ((bfd_vma) 1 << 32) - 1;
10308 #else
10309 	    sign_bits = -1;
10310 #endif
10311 	  else
10312 	    sign_bits = 0;
10313 
10314 	  /* If we don't know that we have a 64-bit type,
10315 	     do two separate stores.  */
10316 	  if (bfd_big_endian (input_bfd))
10317 	    {
10318 	      /* Undo what we did above.  */
10319 	      rel->r_offset -= 4;
10320 	      /* Store the sign-bits (which are most significant)
10321 		 first.  */
10322 	      low_bits = sign_bits;
10323 	      high_bits = value;
10324 	    }
10325 	  else
10326 	    {
10327 	      low_bits = value;
10328 	      high_bits = sign_bits;
10329 	    }
10330 	  bfd_put_32 (input_bfd, low_bits,
10331 		      contents + rel->r_offset);
10332 	  bfd_put_32 (input_bfd, high_bits,
10333 		      contents + rel->r_offset + 4);
10334 	  continue;
10335 	}
10336 
10337       /* Actually perform the relocation.  */
10338       if (! mips_elf_perform_relocation (info, howto, rel, value,
10339 					 input_bfd, input_section,
10340 					 contents, cross_mode_jump_p))
10341 	return FALSE;
10342     }
10343 
10344   return TRUE;
10345 }
10346 
10347 /* A function that iterates over each entry in la25_stubs and fills
10348    in the code for each one.  DATA points to a mips_htab_traverse_info.  */
10349 
10350 static int
10351 mips_elf_create_la25_stub (void **slot, void *data)
10352 {
10353   struct mips_htab_traverse_info *hti;
10354   struct mips_elf_link_hash_table *htab;
10355   struct mips_elf_la25_stub *stub;
10356   asection *s;
10357   bfd_byte *loc;
10358   bfd_vma offset, target, target_high, target_low;
10359 
10360   stub = (struct mips_elf_la25_stub *) *slot;
10361   hti = (struct mips_htab_traverse_info *) data;
10362   htab = mips_elf_hash_table (hti->info);
10363   BFD_ASSERT (htab != NULL);
10364 
10365   /* Create the section contents, if we haven't already.  */
10366   s = stub->stub_section;
10367   loc = s->contents;
10368   if (loc == NULL)
10369     {
10370       loc = bfd_malloc (s->size);
10371       if (loc == NULL)
10372 	{
10373 	  hti->error = TRUE;
10374 	  return FALSE;
10375 	}
10376       s->contents = loc;
10377     }
10378 
10379   /* Work out where in the section this stub should go.  */
10380   offset = stub->offset;
10381 
10382   /* Work out the target address.  */
10383   target = mips_elf_get_la25_target (stub, &s);
10384   target += s->output_section->vma + s->output_offset;
10385 
10386   target_high = ((target + 0x8000) >> 16) & 0xffff;
10387   target_low = (target & 0xffff);
10388 
10389   if (stub->stub_section != htab->strampoline)
10390     {
10391       /* This is a simple LUI/ADDIU stub.  Zero out the beginning
10392 	 of the section and write the two instructions at the end.  */
10393       memset (loc, 0, offset);
10394       loc += offset;
10395       if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10396 	{
10397 	  bfd_put_micromips_32 (hti->output_bfd,
10398 				LA25_LUI_MICROMIPS (target_high),
10399 				loc);
10400 	  bfd_put_micromips_32 (hti->output_bfd,
10401 				LA25_ADDIU_MICROMIPS (target_low),
10402 				loc + 4);
10403 	}
10404       else
10405 	{
10406 	  bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10407 	  bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10408 	}
10409     }
10410   else
10411     {
10412       /* This is trampoline.  */
10413       loc += offset;
10414       if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10415 	{
10416 	  bfd_put_micromips_32 (hti->output_bfd,
10417 				LA25_LUI_MICROMIPS (target_high), loc);
10418 	  bfd_put_micromips_32 (hti->output_bfd,
10419 				LA25_J_MICROMIPS (target), loc + 4);
10420 	  bfd_put_micromips_32 (hti->output_bfd,
10421 				LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10422 	  bfd_put_32 (hti->output_bfd, 0, loc + 12);
10423 	}
10424       else
10425 	{
10426 	  bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10427 	  bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10428 	  bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10429 	  bfd_put_32 (hti->output_bfd, 0, loc + 12);
10430 	}
10431     }
10432   return TRUE;
10433 }
10434 
10435 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10436    adjust it appropriately now.  */
10437 
10438 static void
10439 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10440 				      const char *name, Elf_Internal_Sym *sym)
10441 {
10442   /* The linker script takes care of providing names and values for
10443      these, but we must place them into the right sections.  */
10444   static const char* const text_section_symbols[] = {
10445     "_ftext",
10446     "_etext",
10447     "__dso_displacement",
10448     "__elf_header",
10449     "__program_header_table",
10450     NULL
10451   };
10452 
10453   static const char* const data_section_symbols[] = {
10454     "_fdata",
10455     "_edata",
10456     "_end",
10457     "_fbss",
10458     NULL
10459   };
10460 
10461   const char* const *p;
10462   int i;
10463 
10464   for (i = 0; i < 2; ++i)
10465     for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10466 	 *p;
10467 	 ++p)
10468       if (strcmp (*p, name) == 0)
10469 	{
10470 	  /* All of these symbols are given type STT_SECTION by the
10471 	     IRIX6 linker.  */
10472 	  sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10473 	  sym->st_other = STO_PROTECTED;
10474 
10475 	  /* The IRIX linker puts these symbols in special sections.  */
10476 	  if (i == 0)
10477 	    sym->st_shndx = SHN_MIPS_TEXT;
10478 	  else
10479 	    sym->st_shndx = SHN_MIPS_DATA;
10480 
10481 	  break;
10482 	}
10483 }
10484 
10485 /* Finish up dynamic symbol handling.  We set the contents of various
10486    dynamic sections here.  */
10487 
10488 bfd_boolean
10489 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10490 				     struct bfd_link_info *info,
10491 				     struct elf_link_hash_entry *h,
10492 				     Elf_Internal_Sym *sym)
10493 {
10494   bfd *dynobj;
10495   asection *sgot;
10496   struct mips_got_info *g, *gg;
10497   const char *name;
10498   int idx;
10499   struct mips_elf_link_hash_table *htab;
10500   struct mips_elf_link_hash_entry *hmips;
10501 
10502   htab = mips_elf_hash_table (info);
10503   BFD_ASSERT (htab != NULL);
10504   dynobj = elf_hash_table (info)->dynobj;
10505   hmips = (struct mips_elf_link_hash_entry *) h;
10506 
10507   BFD_ASSERT (!htab->is_vxworks);
10508 
10509   if (h->plt.plist != NULL
10510       && (h->plt.plist->mips_offset != MINUS_ONE
10511 	  || h->plt.plist->comp_offset != MINUS_ONE))
10512     {
10513       /* We've decided to create a PLT entry for this symbol.  */
10514       bfd_byte *loc;
10515       bfd_vma header_address, got_address;
10516       bfd_vma got_address_high, got_address_low, load;
10517       bfd_vma got_index;
10518       bfd_vma isa_bit;
10519 
10520       got_index = h->plt.plist->gotplt_index;
10521 
10522       BFD_ASSERT (htab->use_plts_and_copy_relocs);
10523       BFD_ASSERT (h->dynindx != -1);
10524       BFD_ASSERT (htab->splt != NULL);
10525       BFD_ASSERT (got_index != MINUS_ONE);
10526       BFD_ASSERT (!h->def_regular);
10527 
10528       /* Calculate the address of the PLT header.  */
10529       isa_bit = htab->plt_header_is_comp;
10530       header_address = (htab->splt->output_section->vma
10531 			+ htab->splt->output_offset + isa_bit);
10532 
10533       /* Calculate the address of the .got.plt entry.  */
10534       got_address = (htab->sgotplt->output_section->vma
10535 		     + htab->sgotplt->output_offset
10536 		     + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10537 
10538       got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10539       got_address_low = got_address & 0xffff;
10540 
10541       /* Initially point the .got.plt entry at the PLT header.  */
10542       loc = (htab->sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10543       if (ABI_64_P (output_bfd))
10544 	bfd_put_64 (output_bfd, header_address, loc);
10545       else
10546 	bfd_put_32 (output_bfd, header_address, loc);
10547 
10548       /* Now handle the PLT itself.  First the standard entry (the order
10549          does not matter, we just have to pick one).  */
10550       if (h->plt.plist->mips_offset != MINUS_ONE)
10551 	{
10552 	  const bfd_vma *plt_entry;
10553 	  bfd_vma plt_offset;
10554 
10555 	  plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10556 
10557 	  BFD_ASSERT (plt_offset <= htab->splt->size);
10558 
10559 	  /* Find out where the .plt entry should go.  */
10560 	  loc = htab->splt->contents + plt_offset;
10561 
10562 	  /* Pick the load opcode.  */
10563 	  load = MIPS_ELF_LOAD_WORD (output_bfd);
10564 
10565 	  /* Fill in the PLT entry itself.  */
10566 
10567 	  if (MIPSR6_P (output_bfd))
10568 	    plt_entry = mipsr6_exec_plt_entry;
10569 	  else
10570 	    plt_entry = mips_exec_plt_entry;
10571 	  bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10572 	  bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10573 		      loc + 4);
10574 
10575 	  if (! LOAD_INTERLOCKS_P (output_bfd))
10576 	    {
10577 	      bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10578 	      bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10579 	    }
10580 	  else
10581 	    {
10582 	      bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10583 	      bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10584 			  loc + 12);
10585 	    }
10586 	}
10587 
10588       /* Now the compressed entry.  They come after any standard ones.  */
10589       if (h->plt.plist->comp_offset != MINUS_ONE)
10590 	{
10591 	  bfd_vma plt_offset;
10592 
10593 	  plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10594 			+ h->plt.plist->comp_offset);
10595 
10596 	  BFD_ASSERT (plt_offset <= htab->splt->size);
10597 
10598 	  /* Find out where the .plt entry should go.  */
10599 	  loc = htab->splt->contents + plt_offset;
10600 
10601 	  /* Fill in the PLT entry itself.  */
10602 	  if (!MICROMIPS_P (output_bfd))
10603 	    {
10604 	      const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10605 
10606 	      bfd_put_16 (output_bfd, plt_entry[0], loc);
10607 	      bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10608 	      bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10609 	      bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10610 	      bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10611 	      bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10612 	      bfd_put_32 (output_bfd, got_address, loc + 12);
10613 	    }
10614 	  else if (htab->insn32)
10615 	    {
10616 	      const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10617 
10618 	      bfd_put_16 (output_bfd, plt_entry[0], loc);
10619 	      bfd_put_16 (output_bfd, got_address_high, loc + 2);
10620 	      bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10621 	      bfd_put_16 (output_bfd, got_address_low, loc + 6);
10622 	      bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10623 	      bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10624 	      bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10625 	      bfd_put_16 (output_bfd, got_address_low, loc + 14);
10626 	    }
10627 	  else
10628 	    {
10629 	      const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10630 	      bfd_signed_vma gotpc_offset;
10631 	      bfd_vma loc_address;
10632 
10633 	      BFD_ASSERT (got_address % 4 == 0);
10634 
10635 	      loc_address = (htab->splt->output_section->vma
10636 			     + htab->splt->output_offset + plt_offset);
10637 	      gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10638 
10639 	      /* ADDIUPC has a span of +/-16MB, check we're in range.  */
10640 	      if (gotpc_offset + 0x1000000 >= 0x2000000)
10641 		{
10642 		  (*_bfd_error_handler)
10643 		    (_("%B: `%A' offset of %ld from `%A' "
10644 		       "beyond the range of ADDIUPC"),
10645 		     output_bfd,
10646 		     htab->sgotplt->output_section,
10647 		     htab->splt->output_section,
10648 		     (long) gotpc_offset);
10649 		  bfd_set_error (bfd_error_no_error);
10650 		  return FALSE;
10651 		}
10652 	      bfd_put_16 (output_bfd,
10653 			  plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10654 	      bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10655 	      bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10656 	      bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10657 	      bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10658 	      bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10659 	    }
10660 	}
10661 
10662       /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry.  */
10663       mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
10664 					  got_index - 2, h->dynindx,
10665 					  R_MIPS_JUMP_SLOT, got_address);
10666 
10667       /* We distinguish between PLT entries and lazy-binding stubs by
10668 	 giving the former an st_other value of STO_MIPS_PLT.  Set the
10669 	 flag and leave the value if there are any relocations in the
10670 	 binary where pointer equality matters.  */
10671       sym->st_shndx = SHN_UNDEF;
10672       if (h->pointer_equality_needed)
10673 	sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10674       else
10675 	{
10676 	  sym->st_value = 0;
10677 	  sym->st_other = 0;
10678 	}
10679     }
10680 
10681   if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10682     {
10683       /* We've decided to create a lazy-binding stub.  */
10684       bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10685       unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10686       bfd_vma stub_size = htab->function_stub_size;
10687       bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10688       bfd_vma isa_bit = micromips_p;
10689       bfd_vma stub_big_size;
10690 
10691       if (!micromips_p)
10692 	stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10693       else if (htab->insn32)
10694 	stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10695       else
10696 	stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10697 
10698       /* This symbol has a stub.  Set it up.  */
10699 
10700       BFD_ASSERT (h->dynindx != -1);
10701 
10702       BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10703 
10704       /* Values up to 2^31 - 1 are allowed.  Larger values would cause
10705 	 sign extension at runtime in the stub, resulting in a negative
10706 	 index value.  */
10707       if (h->dynindx & ~0x7fffffff)
10708 	return FALSE;
10709 
10710       /* Fill the stub.  */
10711       if (micromips_p)
10712 	{
10713 	  idx = 0;
10714 	  bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10715 				stub + idx);
10716 	  idx += 4;
10717 	  if (htab->insn32)
10718 	    {
10719 	      bfd_put_micromips_32 (output_bfd,
10720 				    STUB_MOVE32_MICROMIPS, stub + idx);
10721 	      idx += 4;
10722 	    }
10723 	  else
10724 	    {
10725 	      bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10726 	      idx += 2;
10727 	    }
10728 	  if (stub_size == stub_big_size)
10729 	    {
10730 	      long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10731 
10732 	      bfd_put_micromips_32 (output_bfd,
10733 				    STUB_LUI_MICROMIPS (dynindx_hi),
10734 				    stub + idx);
10735 	      idx += 4;
10736 	    }
10737 	  if (htab->insn32)
10738 	    {
10739 	      bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10740 				    stub + idx);
10741 	      idx += 4;
10742 	    }
10743 	  else
10744 	    {
10745 	      bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10746 	      idx += 2;
10747 	    }
10748 
10749 	  /* If a large stub is not required and sign extension is not a
10750 	     problem, then use legacy code in the stub.  */
10751 	  if (stub_size == stub_big_size)
10752 	    bfd_put_micromips_32 (output_bfd,
10753 				  STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10754 				  stub + idx);
10755 	  else if (h->dynindx & ~0x7fff)
10756 	    bfd_put_micromips_32 (output_bfd,
10757 				  STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10758 				  stub + idx);
10759 	  else
10760 	    bfd_put_micromips_32 (output_bfd,
10761 				  STUB_LI16S_MICROMIPS (output_bfd,
10762 							h->dynindx),
10763 				  stub + idx);
10764 	}
10765       else
10766 	{
10767 	  idx = 0;
10768 	  bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10769 	  idx += 4;
10770 	  bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10771 	  idx += 4;
10772 	  if (stub_size == stub_big_size)
10773 	    {
10774 	      bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10775 			  stub + idx);
10776 	      idx += 4;
10777 	    }
10778 	  bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10779 	  idx += 4;
10780 
10781 	  /* If a large stub is not required and sign extension is not a
10782 	     problem, then use legacy code in the stub.  */
10783 	  if (stub_size == stub_big_size)
10784 	    bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10785 			stub + idx);
10786 	  else if (h->dynindx & ~0x7fff)
10787 	    bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10788 			stub + idx);
10789 	  else
10790 	    bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10791 			stub + idx);
10792 	}
10793 
10794       BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10795       memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10796 	      stub, stub_size);
10797 
10798       /* Mark the symbol as undefined.  stub_offset != -1 occurs
10799 	 only for the referenced symbol.  */
10800       sym->st_shndx = SHN_UNDEF;
10801 
10802       /* The run-time linker uses the st_value field of the symbol
10803 	 to reset the global offset table entry for this external
10804 	 to its stub address when unlinking a shared object.  */
10805       sym->st_value = (htab->sstubs->output_section->vma
10806 		       + htab->sstubs->output_offset
10807 		       + h->plt.plist->stub_offset
10808 		       + isa_bit);
10809       sym->st_other = other;
10810     }
10811 
10812   /* If we have a MIPS16 function with a stub, the dynamic symbol must
10813      refer to the stub, since only the stub uses the standard calling
10814      conventions.  */
10815   if (h->dynindx != -1 && hmips->fn_stub != NULL)
10816     {
10817       BFD_ASSERT (hmips->need_fn_stub);
10818       sym->st_value = (hmips->fn_stub->output_section->vma
10819 		       + hmips->fn_stub->output_offset);
10820       sym->st_size = hmips->fn_stub->size;
10821       sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10822     }
10823 
10824   BFD_ASSERT (h->dynindx != -1
10825 	      || h->forced_local);
10826 
10827   sgot = htab->sgot;
10828   g = htab->got_info;
10829   BFD_ASSERT (g != NULL);
10830 
10831   /* Run through the global symbol table, creating GOT entries for all
10832      the symbols that need them.  */
10833   if (hmips->global_got_area != GGA_NONE)
10834     {
10835       bfd_vma offset;
10836       bfd_vma value;
10837 
10838       value = sym->st_value;
10839       offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10840       MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10841     }
10842 
10843   if (hmips->global_got_area != GGA_NONE && g->next)
10844     {
10845       struct mips_got_entry e, *p;
10846       bfd_vma entry;
10847       bfd_vma offset;
10848 
10849       gg = g;
10850 
10851       e.abfd = output_bfd;
10852       e.symndx = -1;
10853       e.d.h = hmips;
10854       e.tls_type = GOT_TLS_NONE;
10855 
10856       for (g = g->next; g->next != gg; g = g->next)
10857 	{
10858 	  if (g->got_entries
10859 	      && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10860 							   &e)))
10861 	    {
10862 	      offset = p->gotidx;
10863 	      BFD_ASSERT (offset > 0 && offset < htab->sgot->size);
10864 	      if (bfd_link_pic (info)
10865 		  || (elf_hash_table (info)->dynamic_sections_created
10866 		      && p->d.h != NULL
10867 		      && p->d.h->root.def_dynamic
10868 		      && !p->d.h->root.def_regular))
10869 		{
10870 		  /* Create an R_MIPS_REL32 relocation for this entry.  Due to
10871 		     the various compatibility problems, it's easier to mock
10872 		     up an R_MIPS_32 or R_MIPS_64 relocation and leave
10873 		     mips_elf_create_dynamic_relocation to calculate the
10874 		     appropriate addend.  */
10875 		  Elf_Internal_Rela rel[3];
10876 
10877 		  memset (rel, 0, sizeof (rel));
10878 		  if (ABI_64_P (output_bfd))
10879 		    rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10880 		  else
10881 		    rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10882 		  rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10883 
10884 		  entry = 0;
10885 		  if (! (mips_elf_create_dynamic_relocation
10886 			 (output_bfd, info, rel,
10887 			  e.d.h, NULL, sym->st_value, &entry, sgot)))
10888 		    return FALSE;
10889 		}
10890 	      else
10891 		entry = sym->st_value;
10892 	      MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10893 	    }
10894 	}
10895     }
10896 
10897   /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  */
10898   name = h->root.root.string;
10899   if (h == elf_hash_table (info)->hdynamic
10900       || h == elf_hash_table (info)->hgot)
10901     sym->st_shndx = SHN_ABS;
10902   else if (strcmp (name, "_DYNAMIC_LINK") == 0
10903 	   || strcmp (name, "_DYNAMIC_LINKING") == 0)
10904     {
10905       sym->st_shndx = SHN_ABS;
10906       sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10907       sym->st_value = 1;
10908     }
10909   else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10910     {
10911       sym->st_shndx = SHN_ABS;
10912       sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10913       sym->st_value = elf_gp (output_bfd);
10914     }
10915   else if (SGI_COMPAT (output_bfd))
10916     {
10917       if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10918 	  || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10919 	{
10920 	  sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10921 	  sym->st_other = STO_PROTECTED;
10922 	  sym->st_value = 0;
10923 	  sym->st_shndx = SHN_MIPS_DATA;
10924 	}
10925       else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10926 	{
10927 	  sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10928 	  sym->st_other = STO_PROTECTED;
10929 	  sym->st_value = mips_elf_hash_table (info)->procedure_count;
10930 	  sym->st_shndx = SHN_ABS;
10931 	}
10932       else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10933 	{
10934 	  if (h->type == STT_FUNC)
10935 	    sym->st_shndx = SHN_MIPS_TEXT;
10936 	  else if (h->type == STT_OBJECT)
10937 	    sym->st_shndx = SHN_MIPS_DATA;
10938 	}
10939     }
10940 
10941   /* Emit a copy reloc, if needed.  */
10942   if (h->needs_copy)
10943     {
10944       asection *s;
10945       bfd_vma symval;
10946 
10947       BFD_ASSERT (h->dynindx != -1);
10948       BFD_ASSERT (htab->use_plts_and_copy_relocs);
10949 
10950       s = mips_elf_rel_dyn_section (info, FALSE);
10951       symval = (h->root.u.def.section->output_section->vma
10952 		+ h->root.u.def.section->output_offset
10953 		+ h->root.u.def.value);
10954       mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10955 					  h->dynindx, R_MIPS_COPY, symval);
10956     }
10957 
10958   /* Handle the IRIX6-specific symbols.  */
10959   if (IRIX_COMPAT (output_bfd) == ict_irix6)
10960     mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10961 
10962   /* Keep dynamic compressed symbols odd.  This allows the dynamic linker
10963      to treat compressed symbols like any other.  */
10964   if (ELF_ST_IS_MIPS16 (sym->st_other))
10965     {
10966       BFD_ASSERT (sym->st_value & 1);
10967       sym->st_other -= STO_MIPS16;
10968     }
10969   else if (ELF_ST_IS_MICROMIPS (sym->st_other))
10970     {
10971       BFD_ASSERT (sym->st_value & 1);
10972       sym->st_other -= STO_MICROMIPS;
10973     }
10974 
10975   return TRUE;
10976 }
10977 
10978 /* Likewise, for VxWorks.  */
10979 
10980 bfd_boolean
10981 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10982 					 struct bfd_link_info *info,
10983 					 struct elf_link_hash_entry *h,
10984 					 Elf_Internal_Sym *sym)
10985 {
10986   bfd *dynobj;
10987   asection *sgot;
10988   struct mips_got_info *g;
10989   struct mips_elf_link_hash_table *htab;
10990   struct mips_elf_link_hash_entry *hmips;
10991 
10992   htab = mips_elf_hash_table (info);
10993   BFD_ASSERT (htab != NULL);
10994   dynobj = elf_hash_table (info)->dynobj;
10995   hmips = (struct mips_elf_link_hash_entry *) h;
10996 
10997   if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
10998     {
10999       bfd_byte *loc;
11000       bfd_vma plt_address, got_address, got_offset, branch_offset;
11001       Elf_Internal_Rela rel;
11002       static const bfd_vma *plt_entry;
11003       bfd_vma gotplt_index;
11004       bfd_vma plt_offset;
11005 
11006       plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11007       gotplt_index = h->plt.plist->gotplt_index;
11008 
11009       BFD_ASSERT (h->dynindx != -1);
11010       BFD_ASSERT (htab->splt != NULL);
11011       BFD_ASSERT (gotplt_index != MINUS_ONE);
11012       BFD_ASSERT (plt_offset <= htab->splt->size);
11013 
11014       /* Calculate the address of the .plt entry.  */
11015       plt_address = (htab->splt->output_section->vma
11016 		     + htab->splt->output_offset
11017 		     + plt_offset);
11018 
11019       /* Calculate the address of the .got.plt entry.  */
11020       got_address = (htab->sgotplt->output_section->vma
11021 		     + htab->sgotplt->output_offset
11022 		     + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11023 
11024       /* Calculate the offset of the .got.plt entry from
11025 	 _GLOBAL_OFFSET_TABLE_.  */
11026       got_offset = mips_elf_gotplt_index (info, h);
11027 
11028       /* Calculate the offset for the branch at the start of the PLT
11029 	 entry.  The branch jumps to the beginning of .plt.  */
11030       branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11031 
11032       /* Fill in the initial value of the .got.plt entry.  */
11033       bfd_put_32 (output_bfd, plt_address,
11034 		  (htab->sgotplt->contents
11035 		   + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11036 
11037       /* Find out where the .plt entry should go.  */
11038       loc = htab->splt->contents + plt_offset;
11039 
11040       if (bfd_link_pic (info))
11041 	{
11042 	  plt_entry = mips_vxworks_shared_plt_entry;
11043 	  bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11044 	  bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11045 	}
11046       else
11047 	{
11048 	  bfd_vma got_address_high, got_address_low;
11049 
11050 	  plt_entry = mips_vxworks_exec_plt_entry;
11051 	  got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11052 	  got_address_low = got_address & 0xffff;
11053 
11054 	  bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11055 	  bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11056 	  bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11057 	  bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11058 	  bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11059 	  bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11060 	  bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11061 	  bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11062 
11063 	  loc = (htab->srelplt2->contents
11064 		 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11065 
11066 	  /* Emit a relocation for the .got.plt entry.  */
11067 	  rel.r_offset = got_address;
11068 	  rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11069 	  rel.r_addend = plt_offset;
11070 	  bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11071 
11072 	  /* Emit a relocation for the lui of %hi(<.got.plt slot>).  */
11073 	  loc += sizeof (Elf32_External_Rela);
11074 	  rel.r_offset = plt_address + 8;
11075 	  rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11076 	  rel.r_addend = got_offset;
11077 	  bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11078 
11079 	  /* Emit a relocation for the addiu of %lo(<.got.plt slot>).  */
11080 	  loc += sizeof (Elf32_External_Rela);
11081 	  rel.r_offset += 4;
11082 	  rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11083 	  bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11084 	}
11085 
11086       /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry.  */
11087       loc = (htab->srelplt->contents
11088 	     + gotplt_index * sizeof (Elf32_External_Rela));
11089       rel.r_offset = got_address;
11090       rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11091       rel.r_addend = 0;
11092       bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11093 
11094       if (!h->def_regular)
11095 	sym->st_shndx = SHN_UNDEF;
11096     }
11097 
11098   BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11099 
11100   sgot = htab->sgot;
11101   g = htab->got_info;
11102   BFD_ASSERT (g != NULL);
11103 
11104   /* See if this symbol has an entry in the GOT.  */
11105   if (hmips->global_got_area != GGA_NONE)
11106     {
11107       bfd_vma offset;
11108       Elf_Internal_Rela outrel;
11109       bfd_byte *loc;
11110       asection *s;
11111 
11112       /* Install the symbol value in the GOT.   */
11113       offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11114       MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11115 
11116       /* Add a dynamic relocation for it.  */
11117       s = mips_elf_rel_dyn_section (info, FALSE);
11118       loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11119       outrel.r_offset = (sgot->output_section->vma
11120 			 + sgot->output_offset
11121 			 + offset);
11122       outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11123       outrel.r_addend = 0;
11124       bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11125     }
11126 
11127   /* Emit a copy reloc, if needed.  */
11128   if (h->needs_copy)
11129     {
11130       Elf_Internal_Rela rel;
11131 
11132       BFD_ASSERT (h->dynindx != -1);
11133 
11134       rel.r_offset = (h->root.u.def.section->output_section->vma
11135 		      + h->root.u.def.section->output_offset
11136 		      + h->root.u.def.value);
11137       rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11138       rel.r_addend = 0;
11139       bfd_elf32_swap_reloca_out (output_bfd, &rel,
11140 				 htab->srelbss->contents
11141 				 + (htab->srelbss->reloc_count
11142 				    * sizeof (Elf32_External_Rela)));
11143       ++htab->srelbss->reloc_count;
11144     }
11145 
11146   /* If this is a mips16/microMIPS symbol, force the value to be even.  */
11147   if (ELF_ST_IS_COMPRESSED (sym->st_other))
11148     sym->st_value &= ~1;
11149 
11150   return TRUE;
11151 }
11152 
11153 /* Write out a plt0 entry to the beginning of .plt.  */
11154 
11155 static bfd_boolean
11156 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11157 {
11158   bfd_byte *loc;
11159   bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11160   static const bfd_vma *plt_entry;
11161   struct mips_elf_link_hash_table *htab;
11162 
11163   htab = mips_elf_hash_table (info);
11164   BFD_ASSERT (htab != NULL);
11165 
11166   if (ABI_64_P (output_bfd))
11167     plt_entry = mips_n64_exec_plt0_entry;
11168   else if (ABI_N32_P (output_bfd))
11169     plt_entry = mips_n32_exec_plt0_entry;
11170   else if (!htab->plt_header_is_comp)
11171     plt_entry = mips_o32_exec_plt0_entry;
11172   else if (htab->insn32)
11173     plt_entry = micromips_insn32_o32_exec_plt0_entry;
11174   else
11175     plt_entry = micromips_o32_exec_plt0_entry;
11176 
11177   /* Calculate the value of .got.plt.  */
11178   gotplt_value = (htab->sgotplt->output_section->vma
11179 		  + htab->sgotplt->output_offset);
11180   gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11181   gotplt_value_low = gotplt_value & 0xffff;
11182 
11183   /* The PLT sequence is not safe for N64 if .got.plt's address can
11184      not be loaded in two instructions.  */
11185   BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11186 	      || ~(gotplt_value | 0x7fffffff) == 0);
11187 
11188   /* Install the PLT header.  */
11189   loc = htab->splt->contents;
11190   if (plt_entry == micromips_o32_exec_plt0_entry)
11191     {
11192       bfd_vma gotpc_offset;
11193       bfd_vma loc_address;
11194       size_t i;
11195 
11196       BFD_ASSERT (gotplt_value % 4 == 0);
11197 
11198       loc_address = (htab->splt->output_section->vma
11199 		     + htab->splt->output_offset);
11200       gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11201 
11202       /* ADDIUPC has a span of +/-16MB, check we're in range.  */
11203       if (gotpc_offset + 0x1000000 >= 0x2000000)
11204 	{
11205 	  (*_bfd_error_handler)
11206 	    (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
11207 	     output_bfd,
11208 	     htab->sgotplt->output_section,
11209 	     htab->splt->output_section,
11210 	     (long) gotpc_offset);
11211 	  bfd_set_error (bfd_error_no_error);
11212 	  return FALSE;
11213 	}
11214       bfd_put_16 (output_bfd,
11215 		  plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11216       bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11217       for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11218 	bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11219     }
11220   else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11221     {
11222       size_t i;
11223 
11224       bfd_put_16 (output_bfd, plt_entry[0], loc);
11225       bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11226       bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11227       bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11228       bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11229       bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11230       for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11231 	bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11232     }
11233   else
11234     {
11235       bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11236       bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11237       bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11238       bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11239       bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11240       bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11241       bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11242       bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11243     }
11244 
11245   return TRUE;
11246 }
11247 
11248 /* Install the PLT header for a VxWorks executable and finalize the
11249    contents of .rela.plt.unloaded.  */
11250 
11251 static void
11252 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11253 {
11254   Elf_Internal_Rela rela;
11255   bfd_byte *loc;
11256   bfd_vma got_value, got_value_high, got_value_low, plt_address;
11257   static const bfd_vma *plt_entry;
11258   struct mips_elf_link_hash_table *htab;
11259 
11260   htab = mips_elf_hash_table (info);
11261   BFD_ASSERT (htab != NULL);
11262 
11263   plt_entry = mips_vxworks_exec_plt0_entry;
11264 
11265   /* Calculate the value of _GLOBAL_OFFSET_TABLE_.  */
11266   got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11267 	       + htab->root.hgot->root.u.def.section->output_offset
11268 	       + htab->root.hgot->root.u.def.value);
11269 
11270   got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11271   got_value_low = got_value & 0xffff;
11272 
11273   /* Calculate the address of the PLT header.  */
11274   plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
11275 
11276   /* Install the PLT header.  */
11277   loc = htab->splt->contents;
11278   bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11279   bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11280   bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11281   bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11282   bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11283   bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11284 
11285   /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_).  */
11286   loc = htab->srelplt2->contents;
11287   rela.r_offset = plt_address;
11288   rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11289   rela.r_addend = 0;
11290   bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11291   loc += sizeof (Elf32_External_Rela);
11292 
11293   /* Output the relocation for the following addiu of
11294      %lo(_GLOBAL_OFFSET_TABLE_).  */
11295   rela.r_offset += 4;
11296   rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11297   bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11298   loc += sizeof (Elf32_External_Rela);
11299 
11300   /* Fix up the remaining relocations.  They may have the wrong
11301      symbol index for _G_O_T_ or _P_L_T_ depending on the order
11302      in which symbols were output.  */
11303   while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11304     {
11305       Elf_Internal_Rela rel;
11306 
11307       bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11308       rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11309       bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11310       loc += sizeof (Elf32_External_Rela);
11311 
11312       bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11313       rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11314       bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11315       loc += sizeof (Elf32_External_Rela);
11316 
11317       bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11318       rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11319       bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11320       loc += sizeof (Elf32_External_Rela);
11321     }
11322 }
11323 
11324 /* Install the PLT header for a VxWorks shared library.  */
11325 
11326 static void
11327 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11328 {
11329   unsigned int i;
11330   struct mips_elf_link_hash_table *htab;
11331 
11332   htab = mips_elf_hash_table (info);
11333   BFD_ASSERT (htab != NULL);
11334 
11335   /* We just need to copy the entry byte-by-byte.  */
11336   for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11337     bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11338 		htab->splt->contents + i * 4);
11339 }
11340 
11341 /* Finish up the dynamic sections.  */
11342 
11343 bfd_boolean
11344 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11345 				       struct bfd_link_info *info)
11346 {
11347   bfd *dynobj;
11348   asection *sdyn;
11349   asection *sgot;
11350   struct mips_got_info *gg, *g;
11351   struct mips_elf_link_hash_table *htab;
11352 
11353   htab = mips_elf_hash_table (info);
11354   BFD_ASSERT (htab != NULL);
11355 
11356   dynobj = elf_hash_table (info)->dynobj;
11357 
11358   sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11359 
11360   sgot = htab->sgot;
11361   gg = htab->got_info;
11362 
11363   if (elf_hash_table (info)->dynamic_sections_created)
11364     {
11365       bfd_byte *b;
11366       int dyn_to_skip = 0, dyn_skipped = 0;
11367 
11368       BFD_ASSERT (sdyn != NULL);
11369       BFD_ASSERT (gg != NULL);
11370 
11371       g = mips_elf_bfd_got (output_bfd, FALSE);
11372       BFD_ASSERT (g != NULL);
11373 
11374       for (b = sdyn->contents;
11375 	   b < sdyn->contents + sdyn->size;
11376 	   b += MIPS_ELF_DYN_SIZE (dynobj))
11377 	{
11378 	  Elf_Internal_Dyn dyn;
11379 	  const char *name;
11380 	  size_t elemsize;
11381 	  asection *s;
11382 	  bfd_boolean swap_out_p;
11383 
11384 	  /* Read in the current dynamic entry.  */
11385 	  (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11386 
11387 	  /* Assume that we're going to modify it and write it out.  */
11388 	  swap_out_p = TRUE;
11389 
11390 	  switch (dyn.d_tag)
11391 	    {
11392 	    case DT_RELENT:
11393 	      dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11394 	      break;
11395 
11396 	    case DT_RELAENT:
11397 	      BFD_ASSERT (htab->is_vxworks);
11398 	      dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11399 	      break;
11400 
11401 	    case DT_STRSZ:
11402 	      /* Rewrite DT_STRSZ.  */
11403 	      dyn.d_un.d_val =
11404 		_bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11405 	      break;
11406 
11407 	    case DT_PLTGOT:
11408 	      s = htab->sgot;
11409 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11410 	      break;
11411 
11412 	    case DT_MIPS_PLTGOT:
11413 	      s = htab->sgotplt;
11414 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11415 	      break;
11416 
11417 	    case DT_MIPS_RLD_VERSION:
11418 	      dyn.d_un.d_val = 1; /* XXX */
11419 	      break;
11420 
11421 	    case DT_MIPS_FLAGS:
11422 	      dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11423 	      break;
11424 
11425 	    case DT_MIPS_TIME_STAMP:
11426 	      {
11427 		time_t t;
11428 		time (&t);
11429 		dyn.d_un.d_val = t;
11430 	      }
11431 	      break;
11432 
11433 	    case DT_MIPS_ICHECKSUM:
11434 	      /* XXX FIXME: */
11435 	      swap_out_p = FALSE;
11436 	      break;
11437 
11438 	    case DT_MIPS_IVERSION:
11439 	      /* XXX FIXME: */
11440 	      swap_out_p = FALSE;
11441 	      break;
11442 
11443 	    case DT_MIPS_BASE_ADDRESS:
11444 	      s = output_bfd->sections;
11445 	      BFD_ASSERT (s != NULL);
11446 	      dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11447 	      break;
11448 
11449 	    case DT_MIPS_LOCAL_GOTNO:
11450 	      dyn.d_un.d_val = g->local_gotno;
11451 	      break;
11452 
11453 	    case DT_MIPS_UNREFEXTNO:
11454 	      /* The index into the dynamic symbol table which is the
11455 		 entry of the first external symbol that is not
11456 		 referenced within the same object.  */
11457 	      dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11458 	      break;
11459 
11460 	    case DT_MIPS_GOTSYM:
11461 	      if (htab->global_gotsym)
11462 		{
11463 		  dyn.d_un.d_val = htab->global_gotsym->dynindx;
11464 		  break;
11465 		}
11466 	      /* In case if we don't have global got symbols we default
11467 		 to setting DT_MIPS_GOTSYM to the same value as
11468 		 DT_MIPS_SYMTABNO, so we just fall through.  */
11469 
11470 	    case DT_MIPS_SYMTABNO:
11471 	      name = ".dynsym";
11472 	      elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11473 	      s = bfd_get_section_by_name (output_bfd, name);
11474 
11475 	      if (s != NULL)
11476 		dyn.d_un.d_val = s->size / elemsize;
11477 	      else
11478 		dyn.d_un.d_val = 0;
11479 	      break;
11480 
11481 	    case DT_MIPS_HIPAGENO:
11482 	      dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11483 	      break;
11484 
11485 	    case DT_MIPS_RLD_MAP:
11486 	      {
11487 		struct elf_link_hash_entry *h;
11488 		h = mips_elf_hash_table (info)->rld_symbol;
11489 		if (!h)
11490 		  {
11491 		    dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11492 		    swap_out_p = FALSE;
11493 		    break;
11494 		  }
11495 		s = h->root.u.def.section;
11496 
11497 		/* The MIPS_RLD_MAP tag stores the absolute address of the
11498 		   debug pointer.  */
11499 		dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11500 				  + h->root.u.def.value);
11501 	      }
11502 	      break;
11503 
11504 	    case DT_MIPS_RLD_MAP_REL:
11505 	      {
11506 		struct elf_link_hash_entry *h;
11507 		bfd_vma dt_addr, rld_addr;
11508 		h = mips_elf_hash_table (info)->rld_symbol;
11509 		if (!h)
11510 		  {
11511 		    dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11512 		    swap_out_p = FALSE;
11513 		    break;
11514 		  }
11515 		s = h->root.u.def.section;
11516 
11517 		/* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11518 		   pointer, relative to the address of the tag.  */
11519 		dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11520 			   + (b - sdyn->contents));
11521 		rld_addr = (s->output_section->vma + s->output_offset
11522 			    + h->root.u.def.value);
11523 		dyn.d_un.d_ptr = rld_addr - dt_addr;
11524 	      }
11525 	      break;
11526 
11527 	    case DT_MIPS_OPTIONS:
11528 	      s = (bfd_get_section_by_name
11529 		   (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11530 	      dyn.d_un.d_ptr = s->vma;
11531 	      break;
11532 
11533 	    case DT_RELASZ:
11534 	      BFD_ASSERT (htab->is_vxworks);
11535 	      /* The count does not include the JUMP_SLOT relocations.  */
11536 	      if (htab->srelplt)
11537 		dyn.d_un.d_val -= htab->srelplt->size;
11538 	      break;
11539 
11540 	    case DT_PLTREL:
11541 	      BFD_ASSERT (htab->use_plts_and_copy_relocs);
11542 	      if (htab->is_vxworks)
11543 		dyn.d_un.d_val = DT_RELA;
11544 	      else
11545 		dyn.d_un.d_val = DT_REL;
11546 	      break;
11547 
11548 	    case DT_PLTRELSZ:
11549 	      BFD_ASSERT (htab->use_plts_and_copy_relocs);
11550 	      dyn.d_un.d_val = htab->srelplt->size;
11551 	      break;
11552 
11553 	    case DT_JMPREL:
11554 	      BFD_ASSERT (htab->use_plts_and_copy_relocs);
11555 	      dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
11556 				+ htab->srelplt->output_offset);
11557 	      break;
11558 
11559 	    case DT_TEXTREL:
11560 	      /* If we didn't need any text relocations after all, delete
11561 		 the dynamic tag.  */
11562 	      if (!(info->flags & DF_TEXTREL))
11563 		{
11564 		  dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11565 		  swap_out_p = FALSE;
11566 		}
11567 	      break;
11568 
11569 	    case DT_FLAGS:
11570 	      /* If we didn't need any text relocations after all, clear
11571 		 DF_TEXTREL from DT_FLAGS.  */
11572 	      if (!(info->flags & DF_TEXTREL))
11573 		dyn.d_un.d_val &= ~DF_TEXTREL;
11574 	      else
11575 		swap_out_p = FALSE;
11576 	      break;
11577 
11578 	    default:
11579 	      swap_out_p = FALSE;
11580 	      if (htab->is_vxworks
11581 		  && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11582 		swap_out_p = TRUE;
11583 	      break;
11584 	    }
11585 
11586 	  if (swap_out_p || dyn_skipped)
11587 	    (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11588 	      (dynobj, &dyn, b - dyn_skipped);
11589 
11590 	  if (dyn_to_skip)
11591 	    {
11592 	      dyn_skipped += dyn_to_skip;
11593 	      dyn_to_skip = 0;
11594 	    }
11595 	}
11596 
11597       /* Wipe out any trailing entries if we shifted down a dynamic tag.  */
11598       if (dyn_skipped > 0)
11599 	memset (b - dyn_skipped, 0, dyn_skipped);
11600     }
11601 
11602   if (sgot != NULL && sgot->size > 0
11603       && !bfd_is_abs_section (sgot->output_section))
11604     {
11605       if (htab->is_vxworks)
11606 	{
11607 	  /* The first entry of the global offset table points to the
11608 	     ".dynamic" section.  The second is initialized by the
11609 	     loader and contains the shared library identifier.
11610 	     The third is also initialized by the loader and points
11611 	     to the lazy resolution stub.  */
11612 	  MIPS_ELF_PUT_WORD (output_bfd,
11613 			     sdyn->output_offset + sdyn->output_section->vma,
11614 			     sgot->contents);
11615 	  MIPS_ELF_PUT_WORD (output_bfd, 0,
11616 			     sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11617 	  MIPS_ELF_PUT_WORD (output_bfd, 0,
11618 			     sgot->contents
11619 			     + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11620 	}
11621       else
11622 	{
11623 	  /* The first entry of the global offset table will be filled at
11624 	     runtime. The second entry will be used by some runtime loaders.
11625 	     This isn't the case of IRIX rld.  */
11626 	  MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11627 	  MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11628 			     sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11629 	}
11630 
11631       elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11632 	 = MIPS_ELF_GOT_SIZE (output_bfd);
11633     }
11634 
11635   /* Generate dynamic relocations for the non-primary gots.  */
11636   if (gg != NULL && gg->next)
11637     {
11638       Elf_Internal_Rela rel[3];
11639       bfd_vma addend = 0;
11640 
11641       memset (rel, 0, sizeof (rel));
11642       rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11643 
11644       for (g = gg->next; g->next != gg; g = g->next)
11645 	{
11646 	  bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11647 	    + g->next->tls_gotno;
11648 
11649 	  MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11650 			     + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11651 	  MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11652 			     sgot->contents
11653 			     + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11654 
11655 	  if (! bfd_link_pic (info))
11656 	    continue;
11657 
11658 	  for (; got_index < g->local_gotno; got_index++)
11659 	    {
11660 	      if (got_index >= g->assigned_low_gotno
11661 		  && got_index <= g->assigned_high_gotno)
11662 		continue;
11663 
11664 	      rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11665 		= got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11666 	      if (!(mips_elf_create_dynamic_relocation
11667 		    (output_bfd, info, rel, NULL,
11668 		     bfd_abs_section_ptr,
11669 		     0, &addend, sgot)))
11670 		return FALSE;
11671 	      BFD_ASSERT (addend == 0);
11672 	    }
11673 	}
11674     }
11675 
11676   /* The generation of dynamic relocations for the non-primary gots
11677      adds more dynamic relocations.  We cannot count them until
11678      here.  */
11679 
11680   if (elf_hash_table (info)->dynamic_sections_created)
11681     {
11682       bfd_byte *b;
11683       bfd_boolean swap_out_p;
11684 
11685       BFD_ASSERT (sdyn != NULL);
11686 
11687       for (b = sdyn->contents;
11688 	   b < sdyn->contents + sdyn->size;
11689 	   b += MIPS_ELF_DYN_SIZE (dynobj))
11690 	{
11691 	  Elf_Internal_Dyn dyn;
11692 	  asection *s;
11693 
11694 	  /* Read in the current dynamic entry.  */
11695 	  (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11696 
11697 	  /* Assume that we're going to modify it and write it out.  */
11698 	  swap_out_p = TRUE;
11699 
11700 	  switch (dyn.d_tag)
11701 	    {
11702 	    case DT_RELSZ:
11703 	      /* Reduce DT_RELSZ to account for any relocations we
11704 		 decided not to make.  This is for the n64 irix rld,
11705 		 which doesn't seem to apply any relocations if there
11706 		 are trailing null entries.  */
11707 	      s = mips_elf_rel_dyn_section (info, FALSE);
11708 	      dyn.d_un.d_val = (s->reloc_count
11709 				* (ABI_64_P (output_bfd)
11710 				   ? sizeof (Elf64_Mips_External_Rel)
11711 				   : sizeof (Elf32_External_Rel)));
11712 	      /* Adjust the section size too.  Tools like the prelinker
11713 		 can reasonably expect the values to the same.  */
11714 	      elf_section_data (s->output_section)->this_hdr.sh_size
11715 		= dyn.d_un.d_val;
11716 	      break;
11717 
11718 	    default:
11719 	      swap_out_p = FALSE;
11720 	      break;
11721 	    }
11722 
11723 	  if (swap_out_p)
11724 	    (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11725 	      (dynobj, &dyn, b);
11726 	}
11727     }
11728 
11729   {
11730     asection *s;
11731     Elf32_compact_rel cpt;
11732 
11733     if (SGI_COMPAT (output_bfd))
11734       {
11735 	/* Write .compact_rel section out.  */
11736 	s = bfd_get_linker_section (dynobj, ".compact_rel");
11737 	if (s != NULL)
11738 	  {
11739 	    cpt.id1 = 1;
11740 	    cpt.num = s->reloc_count;
11741 	    cpt.id2 = 2;
11742 	    cpt.offset = (s->output_section->filepos
11743 			  + sizeof (Elf32_External_compact_rel));
11744 	    cpt.reserved0 = 0;
11745 	    cpt.reserved1 = 0;
11746 	    bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11747 					    ((Elf32_External_compact_rel *)
11748 					     s->contents));
11749 
11750 	    /* Clean up a dummy stub function entry in .text.  */
11751 	    if (htab->sstubs != NULL)
11752 	      {
11753 		file_ptr dummy_offset;
11754 
11755 		BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11756 		dummy_offset = htab->sstubs->size - htab->function_stub_size;
11757 		memset (htab->sstubs->contents + dummy_offset, 0,
11758 			htab->function_stub_size);
11759 	      }
11760 	  }
11761       }
11762 
11763     /* The psABI says that the dynamic relocations must be sorted in
11764        increasing order of r_symndx.  The VxWorks EABI doesn't require
11765        this, and because the code below handles REL rather than RELA
11766        relocations, using it for VxWorks would be outright harmful.  */
11767     if (!htab->is_vxworks)
11768       {
11769 	s = mips_elf_rel_dyn_section (info, FALSE);
11770 	if (s != NULL
11771 	    && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11772 	  {
11773 	    reldyn_sorting_bfd = output_bfd;
11774 
11775 	    if (ABI_64_P (output_bfd))
11776 	      qsort ((Elf64_External_Rel *) s->contents + 1,
11777 		     s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11778 		     sort_dynamic_relocs_64);
11779 	    else
11780 	      qsort ((Elf32_External_Rel *) s->contents + 1,
11781 		     s->reloc_count - 1, sizeof (Elf32_External_Rel),
11782 		     sort_dynamic_relocs);
11783 	  }
11784       }
11785   }
11786 
11787   if (htab->splt && htab->splt->size > 0)
11788     {
11789       if (htab->is_vxworks)
11790 	{
11791 	  if (bfd_link_pic (info))
11792 	    mips_vxworks_finish_shared_plt (output_bfd, info);
11793 	  else
11794 	    mips_vxworks_finish_exec_plt (output_bfd, info);
11795 	}
11796       else
11797 	{
11798 	  BFD_ASSERT (!bfd_link_pic (info));
11799 	  if (!mips_finish_exec_plt (output_bfd, info))
11800 	    return FALSE;
11801 	}
11802     }
11803   return TRUE;
11804 }
11805 
11806 
11807 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags.  */
11808 
11809 static void
11810 mips_set_isa_flags (bfd *abfd)
11811 {
11812   flagword val;
11813 
11814   switch (bfd_get_mach (abfd))
11815     {
11816     default:
11817     case bfd_mach_mips3000:
11818       val = E_MIPS_ARCH_1;
11819       break;
11820 
11821     case bfd_mach_mips3900:
11822       val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11823       break;
11824 
11825     case bfd_mach_mips6000:
11826       val = E_MIPS_ARCH_2;
11827       break;
11828 
11829     case bfd_mach_mips4000:
11830     case bfd_mach_mips4300:
11831     case bfd_mach_mips4400:
11832     case bfd_mach_mips4600:
11833       val = E_MIPS_ARCH_3;
11834       break;
11835 
11836     case bfd_mach_mips4010:
11837       val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
11838       break;
11839 
11840     case bfd_mach_mips4100:
11841       val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11842       break;
11843 
11844     case bfd_mach_mips4111:
11845       val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11846       break;
11847 
11848     case bfd_mach_mips4120:
11849       val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11850       break;
11851 
11852     case bfd_mach_mips4650:
11853       val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11854       break;
11855 
11856     case bfd_mach_mips5400:
11857       val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11858       break;
11859 
11860     case bfd_mach_mips5500:
11861       val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11862       break;
11863 
11864     case bfd_mach_mips5900:
11865       val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11866       break;
11867 
11868     case bfd_mach_mips9000:
11869       val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11870       break;
11871 
11872     case bfd_mach_mips5000:
11873     case bfd_mach_mips7000:
11874     case bfd_mach_mips8000:
11875     case bfd_mach_mips10000:
11876     case bfd_mach_mips12000:
11877     case bfd_mach_mips14000:
11878     case bfd_mach_mips16000:
11879       val = E_MIPS_ARCH_4;
11880       break;
11881 
11882     case bfd_mach_mips5:
11883       val = E_MIPS_ARCH_5;
11884       break;
11885 
11886     case bfd_mach_mips_loongson_2e:
11887       val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11888       break;
11889 
11890     case bfd_mach_mips_loongson_2f:
11891       val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11892       break;
11893 
11894     case bfd_mach_mips_sb1:
11895       val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11896       break;
11897 
11898     case bfd_mach_mips_loongson_3a:
11899       val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
11900       break;
11901 
11902     case bfd_mach_mips_octeon:
11903     case bfd_mach_mips_octeonp:
11904       val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11905       break;
11906 
11907     case bfd_mach_mips_octeon3:
11908       val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
11909       break;
11910 
11911     case bfd_mach_mips_xlr:
11912       val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11913       break;
11914 
11915     case bfd_mach_mips_octeon2:
11916       val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11917       break;
11918 
11919     case bfd_mach_mipsisa32:
11920       val = E_MIPS_ARCH_32;
11921       break;
11922 
11923     case bfd_mach_mipsisa64:
11924       val = E_MIPS_ARCH_64;
11925       break;
11926 
11927     case bfd_mach_mipsisa32r2:
11928     case bfd_mach_mipsisa32r3:
11929     case bfd_mach_mipsisa32r5:
11930       val = E_MIPS_ARCH_32R2;
11931       break;
11932 
11933     case bfd_mach_mipsisa64r2:
11934     case bfd_mach_mipsisa64r3:
11935     case bfd_mach_mipsisa64r5:
11936       val = E_MIPS_ARCH_64R2;
11937       break;
11938 
11939     case bfd_mach_mipsisa32r6:
11940       val = E_MIPS_ARCH_32R6;
11941       break;
11942 
11943     case bfd_mach_mipsisa64r6:
11944       val = E_MIPS_ARCH_64R6;
11945       break;
11946     }
11947   elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11948   elf_elfheader (abfd)->e_flags |= val;
11949 
11950 }
11951 
11952 
11953 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
11954    Don't do so for code sections.  We want to keep ordering of HI16/LO16
11955    as is.  On the other hand, elf-eh-frame.c processing requires .eh_frame
11956    relocs to be sorted.  */
11957 
11958 bfd_boolean
11959 _bfd_mips_elf_sort_relocs_p (asection *sec)
11960 {
11961   return (sec->flags & SEC_CODE) == 0;
11962 }
11963 
11964 
11965 /* The final processing done just before writing out a MIPS ELF object
11966    file.  This gets the MIPS architecture right based on the machine
11967    number.  This is used by both the 32-bit and the 64-bit ABI.  */
11968 
11969 void
11970 _bfd_mips_elf_final_write_processing (bfd *abfd,
11971 				      bfd_boolean linker ATTRIBUTE_UNUSED)
11972 {
11973   unsigned int i;
11974   Elf_Internal_Shdr **hdrpp;
11975   const char *name;
11976   asection *sec;
11977 
11978   /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11979      is nonzero.  This is for compatibility with old objects, which used
11980      a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH.  */
11981   if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11982     mips_set_isa_flags (abfd);
11983 
11984   /* Set the sh_info field for .gptab sections and other appropriate
11985      info for each special section.  */
11986   for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11987        i < elf_numsections (abfd);
11988        i++, hdrpp++)
11989     {
11990       switch ((*hdrpp)->sh_type)
11991 	{
11992 	case SHT_MIPS_MSYM:
11993 	case SHT_MIPS_LIBLIST:
11994 	  sec = bfd_get_section_by_name (abfd, ".dynstr");
11995 	  if (sec != NULL)
11996 	    (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11997 	  break;
11998 
11999 	case SHT_MIPS_GPTAB:
12000 	  BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12001 	  name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12002 	  BFD_ASSERT (name != NULL
12003 		      && CONST_STRNEQ (name, ".gptab."));
12004 	  sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12005 	  BFD_ASSERT (sec != NULL);
12006 	  (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12007 	  break;
12008 
12009 	case SHT_MIPS_CONTENT:
12010 	  BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12011 	  name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12012 	  BFD_ASSERT (name != NULL
12013 		      && CONST_STRNEQ (name, ".MIPS.content"));
12014 	  sec = bfd_get_section_by_name (abfd,
12015 					 name + sizeof ".MIPS.content" - 1);
12016 	  BFD_ASSERT (sec != NULL);
12017 	  (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12018 	  break;
12019 
12020 	case SHT_MIPS_SYMBOL_LIB:
12021 	  sec = bfd_get_section_by_name (abfd, ".dynsym");
12022 	  if (sec != NULL)
12023 	    (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12024 	  sec = bfd_get_section_by_name (abfd, ".liblist");
12025 	  if (sec != NULL)
12026 	    (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12027 	  break;
12028 
12029 	case SHT_MIPS_EVENTS:
12030 	  BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12031 	  name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12032 	  BFD_ASSERT (name != NULL);
12033 	  if (CONST_STRNEQ (name, ".MIPS.events"))
12034 	    sec = bfd_get_section_by_name (abfd,
12035 					   name + sizeof ".MIPS.events" - 1);
12036 	  else
12037 	    {
12038 	      BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12039 	      sec = bfd_get_section_by_name (abfd,
12040 					     (name
12041 					      + sizeof ".MIPS.post_rel" - 1));
12042 	    }
12043 	  BFD_ASSERT (sec != NULL);
12044 	  (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12045 	  break;
12046 
12047 	}
12048     }
12049 }
12050 
12051 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12052    segments.  */
12053 
12054 int
12055 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12056 					  struct bfd_link_info *info ATTRIBUTE_UNUSED)
12057 {
12058   asection *s;
12059   int ret = 0;
12060 
12061   /* See if we need a PT_MIPS_REGINFO segment.  */
12062   s = bfd_get_section_by_name (abfd, ".reginfo");
12063   if (s && (s->flags & SEC_LOAD))
12064     ++ret;
12065 
12066   /* See if we need a PT_MIPS_ABIFLAGS segment.  */
12067   if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12068     ++ret;
12069 
12070   /* See if we need a PT_MIPS_OPTIONS segment.  */
12071   if (IRIX_COMPAT (abfd) == ict_irix6
12072       && bfd_get_section_by_name (abfd,
12073 				  MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12074     ++ret;
12075 
12076   /* See if we need a PT_MIPS_RTPROC segment.  */
12077   if (IRIX_COMPAT (abfd) == ict_irix5
12078       && bfd_get_section_by_name (abfd, ".dynamic")
12079       && bfd_get_section_by_name (abfd, ".mdebug"))
12080     ++ret;
12081 
12082   /* Allocate a PT_NULL header in dynamic objects.  See
12083      _bfd_mips_elf_modify_segment_map for details.  */
12084   if (!SGI_COMPAT (abfd)
12085       && bfd_get_section_by_name (abfd, ".dynamic"))
12086     ++ret;
12087 
12088   return ret;
12089 }
12090 
12091 /* Modify the segment map for an IRIX5 executable.  */
12092 
12093 bfd_boolean
12094 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12095 				  struct bfd_link_info *info)
12096 {
12097   asection *s;
12098   struct elf_segment_map *m, **pm;
12099   bfd_size_type amt;
12100 
12101   /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12102      segment.  */
12103   s = bfd_get_section_by_name (abfd, ".reginfo");
12104   if (s != NULL && (s->flags & SEC_LOAD) != 0)
12105     {
12106       for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12107 	if (m->p_type == PT_MIPS_REGINFO)
12108 	  break;
12109       if (m == NULL)
12110 	{
12111 	  amt = sizeof *m;
12112 	  m = bfd_zalloc (abfd, amt);
12113 	  if (m == NULL)
12114 	    return FALSE;
12115 
12116 	  m->p_type = PT_MIPS_REGINFO;
12117 	  m->count = 1;
12118 	  m->sections[0] = s;
12119 
12120 	  /* We want to put it after the PHDR and INTERP segments.  */
12121 	  pm = &elf_seg_map (abfd);
12122 	  while (*pm != NULL
12123 		 && ((*pm)->p_type == PT_PHDR
12124 		     || (*pm)->p_type == PT_INTERP))
12125 	    pm = &(*pm)->next;
12126 
12127 	  m->next = *pm;
12128 	  *pm = m;
12129 	}
12130     }
12131 
12132   /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12133      segment.  */
12134   s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12135   if (s != NULL && (s->flags & SEC_LOAD) != 0)
12136     {
12137       for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12138 	if (m->p_type == PT_MIPS_ABIFLAGS)
12139 	  break;
12140       if (m == NULL)
12141 	{
12142 	  amt = sizeof *m;
12143 	  m = bfd_zalloc (abfd, amt);
12144 	  if (m == NULL)
12145 	    return FALSE;
12146 
12147 	  m->p_type = PT_MIPS_ABIFLAGS;
12148 	  m->count = 1;
12149 	  m->sections[0] = s;
12150 
12151 	  /* We want to put it after the PHDR and INTERP segments.  */
12152 	  pm = &elf_seg_map (abfd);
12153 	  while (*pm != NULL
12154 		 && ((*pm)->p_type == PT_PHDR
12155 		     || (*pm)->p_type == PT_INTERP))
12156 	    pm = &(*pm)->next;
12157 
12158 	  m->next = *pm;
12159 	  *pm = m;
12160 	}
12161     }
12162 
12163   /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12164      .dynamic end up in PT_DYNAMIC.  However, we do have to insert a
12165      PT_MIPS_OPTIONS segment immediately following the program header
12166      table.  */
12167   if (NEWABI_P (abfd)
12168       /* On non-IRIX6 new abi, we'll have already created a segment
12169 	 for this section, so don't create another.  I'm not sure this
12170 	 is not also the case for IRIX 6, but I can't test it right
12171 	 now.  */
12172       && IRIX_COMPAT (abfd) == ict_irix6)
12173     {
12174       for (s = abfd->sections; s; s = s->next)
12175 	if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12176 	  break;
12177 
12178       if (s)
12179 	{
12180 	  struct elf_segment_map *options_segment;
12181 
12182 	  pm = &elf_seg_map (abfd);
12183 	  while (*pm != NULL
12184 		 && ((*pm)->p_type == PT_PHDR
12185 		     || (*pm)->p_type == PT_INTERP))
12186 	    pm = &(*pm)->next;
12187 
12188 	  if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12189 	    {
12190 	      amt = sizeof (struct elf_segment_map);
12191 	      options_segment = bfd_zalloc (abfd, amt);
12192 	      options_segment->next = *pm;
12193 	      options_segment->p_type = PT_MIPS_OPTIONS;
12194 	      options_segment->p_flags = PF_R;
12195 	      options_segment->p_flags_valid = TRUE;
12196 	      options_segment->count = 1;
12197 	      options_segment->sections[0] = s;
12198 	      *pm = options_segment;
12199 	    }
12200 	}
12201     }
12202   else
12203     {
12204       if (IRIX_COMPAT (abfd) == ict_irix5)
12205 	{
12206 	  /* If there are .dynamic and .mdebug sections, we make a room
12207 	     for the RTPROC header.  FIXME: Rewrite without section names.  */
12208 	  if (bfd_get_section_by_name (abfd, ".interp") == NULL
12209 	      && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12210 	      && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12211 	    {
12212 	      for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12213 		if (m->p_type == PT_MIPS_RTPROC)
12214 		  break;
12215 	      if (m == NULL)
12216 		{
12217 		  amt = sizeof *m;
12218 		  m = bfd_zalloc (abfd, amt);
12219 		  if (m == NULL)
12220 		    return FALSE;
12221 
12222 		  m->p_type = PT_MIPS_RTPROC;
12223 
12224 		  s = bfd_get_section_by_name (abfd, ".rtproc");
12225 		  if (s == NULL)
12226 		    {
12227 		      m->count = 0;
12228 		      m->p_flags = 0;
12229 		      m->p_flags_valid = 1;
12230 		    }
12231 		  else
12232 		    {
12233 		      m->count = 1;
12234 		      m->sections[0] = s;
12235 		    }
12236 
12237 		  /* We want to put it after the DYNAMIC segment.  */
12238 		  pm = &elf_seg_map (abfd);
12239 		  while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12240 		    pm = &(*pm)->next;
12241 		  if (*pm != NULL)
12242 		    pm = &(*pm)->next;
12243 
12244 		  m->next = *pm;
12245 		  *pm = m;
12246 		}
12247 	    }
12248 	}
12249       /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12250 	 .dynstr, .dynsym, and .hash sections, and everything in
12251 	 between.  */
12252       for (pm = &elf_seg_map (abfd); *pm != NULL;
12253 	   pm = &(*pm)->next)
12254 	if ((*pm)->p_type == PT_DYNAMIC)
12255 	  break;
12256       m = *pm;
12257       /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12258 	 glibc's dynamic linker has traditionally derived the number of
12259 	 tags from the p_filesz field, and sometimes allocates stack
12260 	 arrays of that size.  An overly-big PT_DYNAMIC segment can
12261 	 be actively harmful in such cases.  Making PT_DYNAMIC contain
12262 	 other sections can also make life hard for the prelinker,
12263 	 which might move one of the other sections to a different
12264 	 PT_LOAD segment.  */
12265       if (SGI_COMPAT (abfd)
12266 	  && m != NULL
12267 	  && m->count == 1
12268 	  && strcmp (m->sections[0]->name, ".dynamic") == 0)
12269 	{
12270 	  static const char *sec_names[] =
12271 	  {
12272 	    ".dynamic", ".dynstr", ".dynsym", ".hash"
12273 	  };
12274 	  bfd_vma low, high;
12275 	  unsigned int i, c;
12276 	  struct elf_segment_map *n;
12277 
12278 	  low = ~(bfd_vma) 0;
12279 	  high = 0;
12280 	  for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12281 	    {
12282 	      s = bfd_get_section_by_name (abfd, sec_names[i]);
12283 	      if (s != NULL && (s->flags & SEC_LOAD) != 0)
12284 		{
12285 		  bfd_size_type sz;
12286 
12287 		  if (low > s->vma)
12288 		    low = s->vma;
12289 		  sz = s->size;
12290 		  if (high < s->vma + sz)
12291 		    high = s->vma + sz;
12292 		}
12293 	    }
12294 
12295 	  c = 0;
12296 	  for (s = abfd->sections; s != NULL; s = s->next)
12297 	    if ((s->flags & SEC_LOAD) != 0
12298 		&& s->vma >= low
12299 		&& s->vma + s->size <= high)
12300 	      ++c;
12301 
12302 	  amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12303 	  n = bfd_zalloc (abfd, amt);
12304 	  if (n == NULL)
12305 	    return FALSE;
12306 	  *n = *m;
12307 	  n->count = c;
12308 
12309 	  i = 0;
12310 	  for (s = abfd->sections; s != NULL; s = s->next)
12311 	    {
12312 	      if ((s->flags & SEC_LOAD) != 0
12313 		  && s->vma >= low
12314 		  && s->vma + s->size <= high)
12315 		{
12316 		  n->sections[i] = s;
12317 		  ++i;
12318 		}
12319 	    }
12320 
12321 	  *pm = n;
12322 	}
12323     }
12324 
12325   /* Allocate a spare program header in dynamic objects so that tools
12326      like the prelinker can add an extra PT_LOAD entry.
12327 
12328      If the prelinker needs to make room for a new PT_LOAD entry, its
12329      standard procedure is to move the first (read-only) sections into
12330      the new (writable) segment.  However, the MIPS ABI requires
12331      .dynamic to be in a read-only segment, and the section will often
12332      start within sizeof (ElfNN_Phdr) bytes of the last program header.
12333 
12334      Although the prelinker could in principle move .dynamic to a
12335      writable segment, it seems better to allocate a spare program
12336      header instead, and avoid the need to move any sections.
12337      There is a long tradition of allocating spare dynamic tags,
12338      so allocating a spare program header seems like a natural
12339      extension.
12340 
12341      If INFO is NULL, we may be copying an already prelinked binary
12342      with objcopy or strip, so do not add this header.  */
12343   if (info != NULL
12344       && !SGI_COMPAT (abfd)
12345       && bfd_get_section_by_name (abfd, ".dynamic"))
12346     {
12347       for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12348 	if ((*pm)->p_type == PT_NULL)
12349 	  break;
12350       if (*pm == NULL)
12351 	{
12352 	  m = bfd_zalloc (abfd, sizeof (*m));
12353 	  if (m == NULL)
12354 	    return FALSE;
12355 
12356 	  m->p_type = PT_NULL;
12357 	  *pm = m;
12358 	}
12359     }
12360 
12361   return TRUE;
12362 }
12363 
12364 /* Return the section that should be marked against GC for a given
12365    relocation.  */
12366 
12367 asection *
12368 _bfd_mips_elf_gc_mark_hook (asection *sec,
12369 			    struct bfd_link_info *info,
12370 			    Elf_Internal_Rela *rel,
12371 			    struct elf_link_hash_entry *h,
12372 			    Elf_Internal_Sym *sym)
12373 {
12374   /* ??? Do mips16 stub sections need to be handled special?  */
12375 
12376   if (h != NULL)
12377     switch (ELF_R_TYPE (sec->owner, rel->r_info))
12378       {
12379       case R_MIPS_GNU_VTINHERIT:
12380       case R_MIPS_GNU_VTENTRY:
12381 	return NULL;
12382       }
12383 
12384   return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12385 }
12386 
12387 /* Update the got entry reference counts for the section being removed.  */
12388 
12389 bfd_boolean
12390 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12391 			     struct bfd_link_info *info ATTRIBUTE_UNUSED,
12392 			     asection *sec ATTRIBUTE_UNUSED,
12393 			     const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
12394 {
12395 #if 0
12396   Elf_Internal_Shdr *symtab_hdr;
12397   struct elf_link_hash_entry **sym_hashes;
12398   bfd_signed_vma *local_got_refcounts;
12399   const Elf_Internal_Rela *rel, *relend;
12400   unsigned long r_symndx;
12401   struct elf_link_hash_entry *h;
12402 
12403   if (bfd_link_relocatable (info))
12404     return TRUE;
12405 
12406   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12407   sym_hashes = elf_sym_hashes (abfd);
12408   local_got_refcounts = elf_local_got_refcounts (abfd);
12409 
12410   relend = relocs + sec->reloc_count;
12411   for (rel = relocs; rel < relend; rel++)
12412     switch (ELF_R_TYPE (abfd, rel->r_info))
12413       {
12414       case R_MIPS16_GOT16:
12415       case R_MIPS16_CALL16:
12416       case R_MIPS_GOT16:
12417       case R_MIPS_CALL16:
12418       case R_MIPS_CALL_HI16:
12419       case R_MIPS_CALL_LO16:
12420       case R_MIPS_GOT_HI16:
12421       case R_MIPS_GOT_LO16:
12422       case R_MIPS_GOT_DISP:
12423       case R_MIPS_GOT_PAGE:
12424       case R_MIPS_GOT_OFST:
12425       case R_MICROMIPS_GOT16:
12426       case R_MICROMIPS_CALL16:
12427       case R_MICROMIPS_CALL_HI16:
12428       case R_MICROMIPS_CALL_LO16:
12429       case R_MICROMIPS_GOT_HI16:
12430       case R_MICROMIPS_GOT_LO16:
12431       case R_MICROMIPS_GOT_DISP:
12432       case R_MICROMIPS_GOT_PAGE:
12433       case R_MICROMIPS_GOT_OFST:
12434 	/* ??? It would seem that the existing MIPS code does no sort
12435 	   of reference counting or whatnot on its GOT and PLT entries,
12436 	   so it is not possible to garbage collect them at this time.  */
12437 	break;
12438 
12439       default:
12440 	break;
12441       }
12442 #endif
12443 
12444   return TRUE;
12445 }
12446 
12447 /* Prevent .MIPS.abiflags from being discarded with --gc-sections.  */
12448 
12449 bfd_boolean
12450 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12451 				      elf_gc_mark_hook_fn gc_mark_hook)
12452 {
12453   bfd *sub;
12454 
12455   _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12456 
12457   for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12458     {
12459       asection *o;
12460 
12461       if (! is_mips_elf (sub))
12462 	continue;
12463 
12464       for (o = sub->sections; o != NULL; o = o->next)
12465 	if (!o->gc_mark
12466 	    && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12467 		 (bfd_get_section_name (sub, o)))
12468 	  {
12469 	    if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12470 	      return FALSE;
12471 	  }
12472     }
12473 
12474   return TRUE;
12475 }
12476 
12477 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12478    hiding the old indirect symbol.  Process additional relocation
12479    information.  Also called for weakdefs, in which case we just let
12480    _bfd_elf_link_hash_copy_indirect copy the flags for us.  */
12481 
12482 void
12483 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12484 				    struct elf_link_hash_entry *dir,
12485 				    struct elf_link_hash_entry *ind)
12486 {
12487   struct mips_elf_link_hash_entry *dirmips, *indmips;
12488 
12489   _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12490 
12491   dirmips = (struct mips_elf_link_hash_entry *) dir;
12492   indmips = (struct mips_elf_link_hash_entry *) ind;
12493   /* Any absolute non-dynamic relocations against an indirect or weak
12494      definition will be against the target symbol.  */
12495   if (indmips->has_static_relocs)
12496     dirmips->has_static_relocs = TRUE;
12497 
12498   if (ind->root.type != bfd_link_hash_indirect)
12499     return;
12500 
12501   dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12502   if (indmips->readonly_reloc)
12503     dirmips->readonly_reloc = TRUE;
12504   if (indmips->no_fn_stub)
12505     dirmips->no_fn_stub = TRUE;
12506   if (indmips->fn_stub)
12507     {
12508       dirmips->fn_stub = indmips->fn_stub;
12509       indmips->fn_stub = NULL;
12510     }
12511   if (indmips->need_fn_stub)
12512     {
12513       dirmips->need_fn_stub = TRUE;
12514       indmips->need_fn_stub = FALSE;
12515     }
12516   if (indmips->call_stub)
12517     {
12518       dirmips->call_stub = indmips->call_stub;
12519       indmips->call_stub = NULL;
12520     }
12521   if (indmips->call_fp_stub)
12522     {
12523       dirmips->call_fp_stub = indmips->call_fp_stub;
12524       indmips->call_fp_stub = NULL;
12525     }
12526   if (indmips->global_got_area < dirmips->global_got_area)
12527     dirmips->global_got_area = indmips->global_got_area;
12528   if (indmips->global_got_area < GGA_NONE)
12529     indmips->global_got_area = GGA_NONE;
12530   if (indmips->has_nonpic_branches)
12531     dirmips->has_nonpic_branches = TRUE;
12532 }
12533 
12534 #define PDR_SIZE 32
12535 
12536 bfd_boolean
12537 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12538 			    struct bfd_link_info *info)
12539 {
12540   asection *o;
12541   bfd_boolean ret = FALSE;
12542   unsigned char *tdata;
12543   size_t i, skip;
12544 
12545   o = bfd_get_section_by_name (abfd, ".pdr");
12546   if (! o)
12547     return FALSE;
12548   if (o->size == 0)
12549     return FALSE;
12550   if (o->size % PDR_SIZE != 0)
12551     return FALSE;
12552   if (o->output_section != NULL
12553       && bfd_is_abs_section (o->output_section))
12554     return FALSE;
12555 
12556   tdata = bfd_zmalloc (o->size / PDR_SIZE);
12557   if (! tdata)
12558     return FALSE;
12559 
12560   cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12561 					    info->keep_memory);
12562   if (!cookie->rels)
12563     {
12564       free (tdata);
12565       return FALSE;
12566     }
12567 
12568   cookie->rel = cookie->rels;
12569   cookie->relend = cookie->rels + o->reloc_count;
12570 
12571   for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12572     {
12573       if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12574 	{
12575 	  tdata[i] = 1;
12576 	  skip ++;
12577 	}
12578     }
12579 
12580   if (skip != 0)
12581     {
12582       mips_elf_section_data (o)->u.tdata = tdata;
12583       if (o->rawsize == 0)
12584 	o->rawsize = o->size;
12585       o->size -= skip * PDR_SIZE;
12586       ret = TRUE;
12587     }
12588   else
12589     free (tdata);
12590 
12591   if (! info->keep_memory)
12592     free (cookie->rels);
12593 
12594   return ret;
12595 }
12596 
12597 bfd_boolean
12598 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12599 {
12600   if (strcmp (sec->name, ".pdr") == 0)
12601     return TRUE;
12602   return FALSE;
12603 }
12604 
12605 bfd_boolean
12606 _bfd_mips_elf_write_section (bfd *output_bfd,
12607 			     struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12608                              asection *sec, bfd_byte *contents)
12609 {
12610   bfd_byte *to, *from, *end;
12611   int i;
12612 
12613   if (strcmp (sec->name, ".pdr") != 0)
12614     return FALSE;
12615 
12616   if (mips_elf_section_data (sec)->u.tdata == NULL)
12617     return FALSE;
12618 
12619   to = contents;
12620   end = contents + sec->size;
12621   for (from = contents, i = 0;
12622        from < end;
12623        from += PDR_SIZE, i++)
12624     {
12625       if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12626 	continue;
12627       if (to != from)
12628 	memcpy (to, from, PDR_SIZE);
12629       to += PDR_SIZE;
12630     }
12631   bfd_set_section_contents (output_bfd, sec->output_section, contents,
12632 			    sec->output_offset, sec->size);
12633   return TRUE;
12634 }
12635 
12636 /* microMIPS code retains local labels for linker relaxation.  Omit them
12637    from output by default for clarity.  */
12638 
12639 bfd_boolean
12640 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12641 {
12642   return _bfd_elf_is_local_label_name (abfd, sym->name);
12643 }
12644 
12645 /* MIPS ELF uses a special find_nearest_line routine in order the
12646    handle the ECOFF debugging information.  */
12647 
12648 struct mips_elf_find_line
12649 {
12650   struct ecoff_debug_info d;
12651   struct ecoff_find_line i;
12652 };
12653 
12654 bfd_boolean
12655 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12656 				 asection *section, bfd_vma offset,
12657 				 const char **filename_ptr,
12658 				 const char **functionname_ptr,
12659 				 unsigned int *line_ptr,
12660 				 unsigned int *discriminator_ptr)
12661 {
12662   asection *msec;
12663 
12664   if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12665 				     filename_ptr, functionname_ptr,
12666 				     line_ptr, discriminator_ptr,
12667 				     dwarf_debug_sections,
12668 				     ABI_64_P (abfd) ? 8 : 0,
12669 				     &elf_tdata (abfd)->dwarf2_find_line_info))
12670     return TRUE;
12671 
12672   if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12673 				     filename_ptr, functionname_ptr,
12674 				     line_ptr))
12675     return TRUE;
12676 
12677   msec = bfd_get_section_by_name (abfd, ".mdebug");
12678   if (msec != NULL)
12679     {
12680       flagword origflags;
12681       struct mips_elf_find_line *fi;
12682       const struct ecoff_debug_swap * const swap =
12683 	get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12684 
12685       /* If we are called during a link, mips_elf_final_link may have
12686 	 cleared the SEC_HAS_CONTENTS field.  We force it back on here
12687 	 if appropriate (which it normally will be).  */
12688       origflags = msec->flags;
12689       if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12690 	msec->flags |= SEC_HAS_CONTENTS;
12691 
12692       fi = mips_elf_tdata (abfd)->find_line_info;
12693       if (fi == NULL)
12694 	{
12695 	  bfd_size_type external_fdr_size;
12696 	  char *fraw_src;
12697 	  char *fraw_end;
12698 	  struct fdr *fdr_ptr;
12699 	  bfd_size_type amt = sizeof (struct mips_elf_find_line);
12700 
12701 	  fi = bfd_zalloc (abfd, amt);
12702 	  if (fi == NULL)
12703 	    {
12704 	      msec->flags = origflags;
12705 	      return FALSE;
12706 	    }
12707 
12708 	  if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12709 	    {
12710 	      msec->flags = origflags;
12711 	      return FALSE;
12712 	    }
12713 
12714 	  /* Swap in the FDR information.  */
12715 	  amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12716 	  fi->d.fdr = bfd_alloc (abfd, amt);
12717 	  if (fi->d.fdr == NULL)
12718 	    {
12719 	      msec->flags = origflags;
12720 	      return FALSE;
12721 	    }
12722 	  external_fdr_size = swap->external_fdr_size;
12723 	  fdr_ptr = fi->d.fdr;
12724 	  fraw_src = (char *) fi->d.external_fdr;
12725 	  fraw_end = (fraw_src
12726 		      + fi->d.symbolic_header.ifdMax * external_fdr_size);
12727 	  for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12728 	    (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12729 
12730 	  mips_elf_tdata (abfd)->find_line_info = fi;
12731 
12732 	  /* Note that we don't bother to ever free this information.
12733              find_nearest_line is either called all the time, as in
12734              objdump -l, so the information should be saved, or it is
12735              rarely called, as in ld error messages, so the memory
12736              wasted is unimportant.  Still, it would probably be a
12737              good idea for free_cached_info to throw it away.  */
12738 	}
12739 
12740       if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12741 				  &fi->i, filename_ptr, functionname_ptr,
12742 				  line_ptr))
12743 	{
12744 	  msec->flags = origflags;
12745 	  return TRUE;
12746 	}
12747 
12748       msec->flags = origflags;
12749     }
12750 
12751   /* Fall back on the generic ELF find_nearest_line routine.  */
12752 
12753   return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12754 				     filename_ptr, functionname_ptr,
12755 				     line_ptr, discriminator_ptr);
12756 }
12757 
12758 bfd_boolean
12759 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12760 				 const char **filename_ptr,
12761 				 const char **functionname_ptr,
12762 				 unsigned int *line_ptr)
12763 {
12764   bfd_boolean found;
12765   found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12766 					 functionname_ptr, line_ptr,
12767 					 & elf_tdata (abfd)->dwarf2_find_line_info);
12768   return found;
12769 }
12770 
12771 
12772 /* When are writing out the .options or .MIPS.options section,
12773    remember the bytes we are writing out, so that we can install the
12774    GP value in the section_processing routine.  */
12775 
12776 bfd_boolean
12777 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12778 				    const void *location,
12779 				    file_ptr offset, bfd_size_type count)
12780 {
12781   if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12782     {
12783       bfd_byte *c;
12784 
12785       if (elf_section_data (section) == NULL)
12786 	{
12787 	  bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12788 	  section->used_by_bfd = bfd_zalloc (abfd, amt);
12789 	  if (elf_section_data (section) == NULL)
12790 	    return FALSE;
12791 	}
12792       c = mips_elf_section_data (section)->u.tdata;
12793       if (c == NULL)
12794 	{
12795 	  c = bfd_zalloc (abfd, section->size);
12796 	  if (c == NULL)
12797 	    return FALSE;
12798 	  mips_elf_section_data (section)->u.tdata = c;
12799 	}
12800 
12801       memcpy (c + offset, location, count);
12802     }
12803 
12804   return _bfd_elf_set_section_contents (abfd, section, location, offset,
12805 					count);
12806 }
12807 
12808 /* This is almost identical to bfd_generic_get_... except that some
12809    MIPS relocations need to be handled specially.  Sigh.  */
12810 
12811 bfd_byte *
12812 _bfd_elf_mips_get_relocated_section_contents
12813   (bfd *abfd,
12814    struct bfd_link_info *link_info,
12815    struct bfd_link_order *link_order,
12816    bfd_byte *data,
12817    bfd_boolean relocatable,
12818    asymbol **symbols)
12819 {
12820   /* Get enough memory to hold the stuff */
12821   bfd *input_bfd = link_order->u.indirect.section->owner;
12822   asection *input_section = link_order->u.indirect.section;
12823   bfd_size_type sz;
12824 
12825   long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12826   arelent **reloc_vector = NULL;
12827   long reloc_count;
12828 
12829   if (reloc_size < 0)
12830     goto error_return;
12831 
12832   reloc_vector = bfd_malloc (reloc_size);
12833   if (reloc_vector == NULL && reloc_size != 0)
12834     goto error_return;
12835 
12836   /* read in the section */
12837   sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12838   if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
12839     goto error_return;
12840 
12841   reloc_count = bfd_canonicalize_reloc (input_bfd,
12842 					input_section,
12843 					reloc_vector,
12844 					symbols);
12845   if (reloc_count < 0)
12846     goto error_return;
12847 
12848   if (reloc_count > 0)
12849     {
12850       arelent **parent;
12851       /* for mips */
12852       int gp_found;
12853       bfd_vma gp = 0x12345678;	/* initialize just to shut gcc up */
12854 
12855       {
12856 	struct bfd_hash_entry *h;
12857 	struct bfd_link_hash_entry *lh;
12858 	/* Skip all this stuff if we aren't mixing formats.  */
12859 	if (abfd && input_bfd
12860 	    && abfd->xvec == input_bfd->xvec)
12861 	  lh = 0;
12862 	else
12863 	  {
12864 	    h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
12865 	    lh = (struct bfd_link_hash_entry *) h;
12866 	  }
12867       lookup:
12868 	if (lh)
12869 	  {
12870 	    switch (lh->type)
12871 	      {
12872 	      case bfd_link_hash_undefined:
12873 	      case bfd_link_hash_undefweak:
12874 	      case bfd_link_hash_common:
12875 		gp_found = 0;
12876 		break;
12877 	      case bfd_link_hash_defined:
12878 	      case bfd_link_hash_defweak:
12879 		gp_found = 1;
12880 		gp = lh->u.def.value;
12881 		break;
12882 	      case bfd_link_hash_indirect:
12883 	      case bfd_link_hash_warning:
12884 		lh = lh->u.i.link;
12885 		/* @@FIXME  ignoring warning for now */
12886 		goto lookup;
12887 	      case bfd_link_hash_new:
12888 	      default:
12889 		abort ();
12890 	      }
12891 	  }
12892 	else
12893 	  gp_found = 0;
12894       }
12895       /* end mips */
12896       for (parent = reloc_vector; *parent != NULL; parent++)
12897 	{
12898 	  char *error_message = NULL;
12899 	  bfd_reloc_status_type r;
12900 
12901 	  /* Specific to MIPS: Deal with relocation types that require
12902 	     knowing the gp of the output bfd.  */
12903 	  asymbol *sym = *(*parent)->sym_ptr_ptr;
12904 
12905 	  /* If we've managed to find the gp and have a special
12906 	     function for the relocation then go ahead, else default
12907 	     to the generic handling.  */
12908 	  if (gp_found
12909 	      && (*parent)->howto->special_function
12910 	      == _bfd_mips_elf32_gprel16_reloc)
12911 	    r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12912 					       input_section, relocatable,
12913 					       data, gp);
12914 	  else
12915 	    r = bfd_perform_relocation (input_bfd, *parent, data,
12916 					input_section,
12917 					relocatable ? abfd : NULL,
12918 					&error_message);
12919 
12920 	  if (relocatable)
12921 	    {
12922 	      asection *os = input_section->output_section;
12923 
12924 	      /* A partial link, so keep the relocs */
12925 	      os->orelocation[os->reloc_count] = *parent;
12926 	      os->reloc_count++;
12927 	    }
12928 
12929 	  if (r != bfd_reloc_ok)
12930 	    {
12931 	      switch (r)
12932 		{
12933 		case bfd_reloc_undefined:
12934 		  if (!((*link_info->callbacks->undefined_symbol)
12935 			(link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12936 			 input_bfd, input_section, (*parent)->address, TRUE)))
12937 		    goto error_return;
12938 		  break;
12939 		case bfd_reloc_dangerous:
12940 		  BFD_ASSERT (error_message != NULL);
12941 		  if (!((*link_info->callbacks->reloc_dangerous)
12942 			(link_info, error_message, input_bfd, input_section,
12943 			 (*parent)->address)))
12944 		    goto error_return;
12945 		  break;
12946 		case bfd_reloc_overflow:
12947 		  if (!((*link_info->callbacks->reloc_overflow)
12948 			(link_info, NULL,
12949 			 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12950 			 (*parent)->howto->name, (*parent)->addend,
12951 			 input_bfd, input_section, (*parent)->address)))
12952 		    goto error_return;
12953 		  break;
12954 		case bfd_reloc_outofrange:
12955 		default:
12956 		  abort ();
12957 		  break;
12958 		}
12959 
12960 	    }
12961 	}
12962     }
12963   if (reloc_vector != NULL)
12964     free (reloc_vector);
12965   return data;
12966 
12967 error_return:
12968   if (reloc_vector != NULL)
12969     free (reloc_vector);
12970   return NULL;
12971 }
12972 
12973 static bfd_boolean
12974 mips_elf_relax_delete_bytes (bfd *abfd,
12975 			     asection *sec, bfd_vma addr, int count)
12976 {
12977   Elf_Internal_Shdr *symtab_hdr;
12978   unsigned int sec_shndx;
12979   bfd_byte *contents;
12980   Elf_Internal_Rela *irel, *irelend;
12981   Elf_Internal_Sym *isym;
12982   Elf_Internal_Sym *isymend;
12983   struct elf_link_hash_entry **sym_hashes;
12984   struct elf_link_hash_entry **end_hashes;
12985   struct elf_link_hash_entry **start_hashes;
12986   unsigned int symcount;
12987 
12988   sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
12989   contents = elf_section_data (sec)->this_hdr.contents;
12990 
12991   irel = elf_section_data (sec)->relocs;
12992   irelend = irel + sec->reloc_count;
12993 
12994   /* Actually delete the bytes.  */
12995   memmove (contents + addr, contents + addr + count,
12996 	   (size_t) (sec->size - addr - count));
12997   sec->size -= count;
12998 
12999   /* Adjust all the relocs.  */
13000   for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13001     {
13002       /* Get the new reloc address.  */
13003       if (irel->r_offset > addr)
13004 	irel->r_offset -= count;
13005     }
13006 
13007   BFD_ASSERT (addr % 2 == 0);
13008   BFD_ASSERT (count % 2 == 0);
13009 
13010   /* Adjust the local symbols defined in this section.  */
13011   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13012   isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13013   for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13014     if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13015       isym->st_value -= count;
13016 
13017   /* Now adjust the global symbols defined in this section.  */
13018   symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13019 	      - symtab_hdr->sh_info);
13020   sym_hashes = start_hashes = elf_sym_hashes (abfd);
13021   end_hashes = sym_hashes + symcount;
13022 
13023   for (; sym_hashes < end_hashes; sym_hashes++)
13024     {
13025       struct elf_link_hash_entry *sym_hash = *sym_hashes;
13026 
13027       if ((sym_hash->root.type == bfd_link_hash_defined
13028 	   || sym_hash->root.type == bfd_link_hash_defweak)
13029 	  && sym_hash->root.u.def.section == sec)
13030 	{
13031 	  bfd_vma value = sym_hash->root.u.def.value;
13032 
13033 	  if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13034 	    value &= MINUS_TWO;
13035 	  if (value > addr)
13036 	    sym_hash->root.u.def.value -= count;
13037 	}
13038     }
13039 
13040   return TRUE;
13041 }
13042 
13043 
13044 /* Opcodes needed for microMIPS relaxation as found in
13045    opcodes/micromips-opc.c.  */
13046 
13047 struct opcode_descriptor {
13048   unsigned long match;
13049   unsigned long mask;
13050 };
13051 
13052 /* The $ra register aka $31.  */
13053 
13054 #define RA 31
13055 
13056 /* 32-bit instruction format register fields.  */
13057 
13058 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13059 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13060 
13061 /* Check if a 5-bit register index can be abbreviated to 3 bits.  */
13062 
13063 #define OP16_VALID_REG(r) \
13064   ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13065 
13066 
13067 /* 32-bit and 16-bit branches.  */
13068 
13069 static const struct opcode_descriptor b_insns_32[] = {
13070   { /* "b",	"p",		*/ 0x40400000, 0xffff0000 }, /* bgez 0 */
13071   { /* "b",	"p",		*/ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13072   { 0, 0 }  /* End marker for find_match().  */
13073 };
13074 
13075 static const struct opcode_descriptor bc_insn_32 =
13076   { /* "bc(1|2)(ft)", "N,p",	*/ 0x42800000, 0xfec30000 };
13077 
13078 static const struct opcode_descriptor bz_insn_32 =
13079   { /* "b(g|l)(e|t)z", "s,p",	*/ 0x40000000, 0xff200000 };
13080 
13081 static const struct opcode_descriptor bzal_insn_32 =
13082   { /* "b(ge|lt)zal", "s,p",	*/ 0x40200000, 0xffa00000 };
13083 
13084 static const struct opcode_descriptor beq_insn_32 =
13085   { /* "b(eq|ne)", "s,t,p",	*/ 0x94000000, 0xdc000000 };
13086 
13087 static const struct opcode_descriptor b_insn_16 =
13088   { /* "b",	"mD",		*/ 0xcc00,     0xfc00 };
13089 
13090 static const struct opcode_descriptor bz_insn_16 =
13091   { /* "b(eq|ne)z", "md,mE",	*/ 0x8c00,     0xdc00 };
13092 
13093 
13094 /* 32-bit and 16-bit branch EQ and NE zero.  */
13095 
13096 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13097    eq and second the ne.  This convention is used when replacing a
13098    32-bit BEQ/BNE with the 16-bit version.  */
13099 
13100 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13101 
13102 static const struct opcode_descriptor bz_rs_insns_32[] = {
13103   { /* "beqz",	"s,p",		*/ 0x94000000, 0xffe00000 },
13104   { /* "bnez",	"s,p",		*/ 0xb4000000, 0xffe00000 },
13105   { 0, 0 }  /* End marker for find_match().  */
13106 };
13107 
13108 static const struct opcode_descriptor bz_rt_insns_32[] = {
13109   { /* "beqz",	"t,p",		*/ 0x94000000, 0xfc01f000 },
13110   { /* "bnez",	"t,p",		*/ 0xb4000000, 0xfc01f000 },
13111   { 0, 0 }  /* End marker for find_match().  */
13112 };
13113 
13114 static const struct opcode_descriptor bzc_insns_32[] = {
13115   { /* "beqzc",	"s,p",		*/ 0x40e00000, 0xffe00000 },
13116   { /* "bnezc",	"s,p",		*/ 0x40a00000, 0xffe00000 },
13117   { 0, 0 }  /* End marker for find_match().  */
13118 };
13119 
13120 static const struct opcode_descriptor bz_insns_16[] = {
13121   { /* "beqz",	"md,mE",	*/ 0x8c00,     0xfc00 },
13122   { /* "bnez",	"md,mE",	*/ 0xac00,     0xfc00 },
13123   { 0, 0 }  /* End marker for find_match().  */
13124 };
13125 
13126 /* Switch between a 5-bit register index and its 3-bit shorthand.  */
13127 
13128 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
13129 #define BZ16_REG_FIELD(r) \
13130   (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
13131 
13132 
13133 /* 32-bit instructions with a delay slot.  */
13134 
13135 static const struct opcode_descriptor jal_insn_32_bd16 =
13136   { /* "jals",	"a",		*/ 0x74000000, 0xfc000000 };
13137 
13138 static const struct opcode_descriptor jal_insn_32_bd32 =
13139   { /* "jal",	"a",		*/ 0xf4000000, 0xfc000000 };
13140 
13141 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13142   { /* "jal[x]", "a",		*/ 0xf0000000, 0xf8000000 };
13143 
13144 static const struct opcode_descriptor j_insn_32 =
13145   { /* "j",	"a",		*/ 0xd4000000, 0xfc000000 };
13146 
13147 static const struct opcode_descriptor jalr_insn_32 =
13148   { /* "jalr[.hb]", "t,s",	*/ 0x00000f3c, 0xfc00efff };
13149 
13150 /* This table can be compacted, because no opcode replacement is made.  */
13151 
13152 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13153   { /* "jals",	"a",		*/ 0x74000000, 0xfc000000 },
13154 
13155   { /* "jalrs[.hb]", "t,s",	*/ 0x00004f3c, 0xfc00efff },
13156   { /* "b(ge|lt)zals", "s,p",	*/ 0x42200000, 0xffa00000 },
13157 
13158   { /* "b(g|l)(e|t)z", "s,p",	*/ 0x40000000, 0xff200000 },
13159   { /* "b(eq|ne)", "s,t,p",	*/ 0x94000000, 0xdc000000 },
13160   { /* "j",	"a",		*/ 0xd4000000, 0xfc000000 },
13161   { 0, 0 }  /* End marker for find_match().  */
13162 };
13163 
13164 /* This table can be compacted, because no opcode replacement is made.  */
13165 
13166 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13167   { /* "jal[x]", "a",		*/ 0xf0000000, 0xf8000000 },
13168 
13169   { /* "jalr[.hb]", "t,s",	*/ 0x00000f3c, 0xfc00efff },
13170   { /* "b(ge|lt)zal", "s,p",	*/ 0x40200000, 0xffa00000 },
13171   { 0, 0 }  /* End marker for find_match().  */
13172 };
13173 
13174 
13175 /* 16-bit instructions with a delay slot.  */
13176 
13177 static const struct opcode_descriptor jalr_insn_16_bd16 =
13178   { /* "jalrs",	"my,mj",	*/ 0x45e0,     0xffe0 };
13179 
13180 static const struct opcode_descriptor jalr_insn_16_bd32 =
13181   { /* "jalr",	"my,mj",	*/ 0x45c0,     0xffe0 };
13182 
13183 static const struct opcode_descriptor jr_insn_16 =
13184   { /* "jr",	"mj",		*/ 0x4580,     0xffe0 };
13185 
13186 #define JR16_REG(opcode) ((opcode) & 0x1f)
13187 
13188 /* This table can be compacted, because no opcode replacement is made.  */
13189 
13190 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13191   { /* "jalrs",	"my,mj",	*/ 0x45e0,     0xffe0 },
13192 
13193   { /* "b",	"mD",		*/ 0xcc00,     0xfc00 },
13194   { /* "b(eq|ne)z", "md,mE",	*/ 0x8c00,     0xdc00 },
13195   { /* "jr",	"mj",		*/ 0x4580,     0xffe0 },
13196   { 0, 0 }  /* End marker for find_match().  */
13197 };
13198 
13199 
13200 /* LUI instruction.  */
13201 
13202 static const struct opcode_descriptor lui_insn =
13203  { /* "lui",	"s,u",		*/ 0x41a00000, 0xffe00000 };
13204 
13205 
13206 /* ADDIU instruction.  */
13207 
13208 static const struct opcode_descriptor addiu_insn =
13209   { /* "addiu",	"t,r,j",	*/ 0x30000000, 0xfc000000 };
13210 
13211 static const struct opcode_descriptor addiupc_insn =
13212   { /* "addiu",	"mb,$pc,mQ",	*/ 0x78000000, 0xfc000000 };
13213 
13214 #define ADDIUPC_REG_FIELD(r) \
13215   (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13216 
13217 
13218 /* Relaxable instructions in a JAL delay slot: MOVE.  */
13219 
13220 /* The 16-bit move has rd in 9:5 and rs in 4:0.  The 32-bit moves
13221    (ADDU, OR) have rd in 15:11 and rs in 10:16.  */
13222 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13223 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13224 
13225 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13226 #define MOVE16_RS_FIELD(r) (((r) & 0x1f)     )
13227 
13228 static const struct opcode_descriptor move_insns_32[] = {
13229   { /* "move",	"d,s",		*/ 0x00000290, 0xffe007ff }, /* or   d,s,$0 */
13230   { /* "move",	"d,s",		*/ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13231   { 0, 0 }  /* End marker for find_match().  */
13232 };
13233 
13234 static const struct opcode_descriptor move_insn_16 =
13235   { /* "move",	"mp,mj",	*/ 0x0c00,     0xfc00 };
13236 
13237 
13238 /* NOP instructions.  */
13239 
13240 static const struct opcode_descriptor nop_insn_32 =
13241   { /* "nop",	"",		*/ 0x00000000, 0xffffffff };
13242 
13243 static const struct opcode_descriptor nop_insn_16 =
13244   { /* "nop",	"",		*/ 0x0c00,     0xffff };
13245 
13246 
13247 /* Instruction match support.  */
13248 
13249 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13250 
13251 static int
13252 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13253 {
13254   unsigned long indx;
13255 
13256   for (indx = 0; insn[indx].mask != 0; indx++)
13257     if (MATCH (opcode, insn[indx]))
13258       return indx;
13259 
13260   return -1;
13261 }
13262 
13263 
13264 /* Branch and delay slot decoding support.  */
13265 
13266 /* If PTR points to what *might* be a 16-bit branch or jump, then
13267    return the minimum length of its delay slot, otherwise return 0.
13268    Non-zero results are not definitive as we might be checking against
13269    the second half of another instruction.  */
13270 
13271 static int
13272 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13273 {
13274   unsigned long opcode;
13275   int bdsize;
13276 
13277   opcode = bfd_get_16 (abfd, ptr);
13278   if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13279     /* 16-bit branch/jump with a 32-bit delay slot.  */
13280     bdsize = 4;
13281   else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13282 	   || find_match (opcode, ds_insns_16_bd16) >= 0)
13283     /* 16-bit branch/jump with a 16-bit delay slot.  */
13284     bdsize = 2;
13285   else
13286     /* No delay slot.  */
13287     bdsize = 0;
13288 
13289   return bdsize;
13290 }
13291 
13292 /* If PTR points to what *might* be a 32-bit branch or jump, then
13293    return the minimum length of its delay slot, otherwise return 0.
13294    Non-zero results are not definitive as we might be checking against
13295    the second half of another instruction.  */
13296 
13297 static int
13298 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13299 {
13300   unsigned long opcode;
13301   int bdsize;
13302 
13303   opcode = bfd_get_micromips_32 (abfd, ptr);
13304   if (find_match (opcode, ds_insns_32_bd32) >= 0)
13305     /* 32-bit branch/jump with a 32-bit delay slot.  */
13306     bdsize = 4;
13307   else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13308     /* 32-bit branch/jump with a 16-bit delay slot.  */
13309     bdsize = 2;
13310   else
13311     /* No delay slot.  */
13312     bdsize = 0;
13313 
13314   return bdsize;
13315 }
13316 
13317 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13318    that doesn't fiddle with REG, then return TRUE, otherwise FALSE.  */
13319 
13320 static bfd_boolean
13321 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13322 {
13323   unsigned long opcode;
13324 
13325   opcode = bfd_get_16 (abfd, ptr);
13326   if (MATCH (opcode, b_insn_16)
13327 						/* B16  */
13328       || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13329 						/* JR16  */
13330       || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13331 						/* BEQZ16, BNEZ16  */
13332       || (MATCH (opcode, jalr_insn_16_bd32)
13333 						/* JALR16  */
13334 	  && reg != JR16_REG (opcode) && reg != RA))
13335     return TRUE;
13336 
13337   return FALSE;
13338 }
13339 
13340 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13341    then return TRUE, otherwise FALSE.  */
13342 
13343 static bfd_boolean
13344 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13345 {
13346   unsigned long opcode;
13347 
13348   opcode = bfd_get_micromips_32 (abfd, ptr);
13349   if (MATCH (opcode, j_insn_32)
13350 						/* J  */
13351       || MATCH (opcode, bc_insn_32)
13352 						/* BC1F, BC1T, BC2F, BC2T  */
13353       || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13354 						/* JAL, JALX  */
13355       || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13356 						/* BGEZ, BGTZ, BLEZ, BLTZ  */
13357       || (MATCH (opcode, bzal_insn_32)
13358 						/* BGEZAL, BLTZAL  */
13359 	  && reg != OP32_SREG (opcode) && reg != RA)
13360       || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13361 						/* JALR, JALR.HB, BEQ, BNE  */
13362 	  && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13363     return TRUE;
13364 
13365   return FALSE;
13366 }
13367 
13368 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13369    IRELEND) at OFFSET indicate that there must be a compact branch there,
13370    then return TRUE, otherwise FALSE.  */
13371 
13372 static bfd_boolean
13373 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13374 		     const Elf_Internal_Rela *internal_relocs,
13375 		     const Elf_Internal_Rela *irelend)
13376 {
13377   const Elf_Internal_Rela *irel;
13378   unsigned long opcode;
13379 
13380   opcode = bfd_get_micromips_32 (abfd, ptr);
13381   if (find_match (opcode, bzc_insns_32) < 0)
13382     return FALSE;
13383 
13384   for (irel = internal_relocs; irel < irelend; irel++)
13385     if (irel->r_offset == offset
13386 	&& ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13387       return TRUE;
13388 
13389   return FALSE;
13390 }
13391 
13392 /* Bitsize checking.  */
13393 #define IS_BITSIZE(val, N)						\
13394   (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1)))		\
13395     - (1ULL << ((N) - 1))) == (val))
13396 
13397 
13398 bfd_boolean
13399 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13400 			     struct bfd_link_info *link_info,
13401 			     bfd_boolean *again)
13402 {
13403   bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13404   Elf_Internal_Shdr *symtab_hdr;
13405   Elf_Internal_Rela *internal_relocs;
13406   Elf_Internal_Rela *irel, *irelend;
13407   bfd_byte *contents = NULL;
13408   Elf_Internal_Sym *isymbuf = NULL;
13409 
13410   /* Assume nothing changes.  */
13411   *again = FALSE;
13412 
13413   /* We don't have to do anything for a relocatable link, if
13414      this section does not have relocs, or if this is not a
13415      code section.  */
13416 
13417   if (bfd_link_relocatable (link_info)
13418       || (sec->flags & SEC_RELOC) == 0
13419       || sec->reloc_count == 0
13420       || (sec->flags & SEC_CODE) == 0)
13421     return TRUE;
13422 
13423   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13424 
13425   /* Get a copy of the native relocations.  */
13426   internal_relocs = (_bfd_elf_link_read_relocs
13427 		     (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13428 		      link_info->keep_memory));
13429   if (internal_relocs == NULL)
13430     goto error_return;
13431 
13432   /* Walk through them looking for relaxing opportunities.  */
13433   irelend = internal_relocs + sec->reloc_count;
13434   for (irel = internal_relocs; irel < irelend; irel++)
13435     {
13436       unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13437       unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13438       bfd_boolean target_is_micromips_code_p;
13439       unsigned long opcode;
13440       bfd_vma symval;
13441       bfd_vma pcrval;
13442       bfd_byte *ptr;
13443       int fndopc;
13444 
13445       /* The number of bytes to delete for relaxation and from where
13446          to delete these bytes starting at irel->r_offset.  */
13447       int delcnt = 0;
13448       int deloff = 0;
13449 
13450       /* If this isn't something that can be relaxed, then ignore
13451          this reloc.  */
13452       if (r_type != R_MICROMIPS_HI16
13453 	  && r_type != R_MICROMIPS_PC16_S1
13454 	  && r_type != R_MICROMIPS_26_S1)
13455 	continue;
13456 
13457       /* Get the section contents if we haven't done so already.  */
13458       if (contents == NULL)
13459 	{
13460 	  /* Get cached copy if it exists.  */
13461 	  if (elf_section_data (sec)->this_hdr.contents != NULL)
13462 	    contents = elf_section_data (sec)->this_hdr.contents;
13463 	  /* Go get them off disk.  */
13464 	  else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13465 	    goto error_return;
13466 	}
13467       ptr = contents + irel->r_offset;
13468 
13469       /* Read this BFD's local symbols if we haven't done so already.  */
13470       if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13471 	{
13472 	  isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13473 	  if (isymbuf == NULL)
13474 	    isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13475 					    symtab_hdr->sh_info, 0,
13476 					    NULL, NULL, NULL);
13477 	  if (isymbuf == NULL)
13478 	    goto error_return;
13479 	}
13480 
13481       /* Get the value of the symbol referred to by the reloc.  */
13482       if (r_symndx < symtab_hdr->sh_info)
13483 	{
13484 	  /* A local symbol.  */
13485 	  Elf_Internal_Sym *isym;
13486 	  asection *sym_sec;
13487 
13488 	  isym = isymbuf + r_symndx;
13489 	  if (isym->st_shndx == SHN_UNDEF)
13490 	    sym_sec = bfd_und_section_ptr;
13491 	  else if (isym->st_shndx == SHN_ABS)
13492 	    sym_sec = bfd_abs_section_ptr;
13493 	  else if (isym->st_shndx == SHN_COMMON)
13494 	    sym_sec = bfd_com_section_ptr;
13495 	  else
13496 	    sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13497 	  symval = (isym->st_value
13498 		    + sym_sec->output_section->vma
13499 		    + sym_sec->output_offset);
13500 	  target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13501 	}
13502       else
13503 	{
13504 	  unsigned long indx;
13505 	  struct elf_link_hash_entry *h;
13506 
13507 	  /* An external symbol.  */
13508 	  indx = r_symndx - symtab_hdr->sh_info;
13509 	  h = elf_sym_hashes (abfd)[indx];
13510 	  BFD_ASSERT (h != NULL);
13511 
13512 	  if (h->root.type != bfd_link_hash_defined
13513 	      && h->root.type != bfd_link_hash_defweak)
13514 	    /* This appears to be a reference to an undefined
13515 	       symbol.  Just ignore it -- it will be caught by the
13516 	       regular reloc processing.  */
13517 	    continue;
13518 
13519 	  symval = (h->root.u.def.value
13520 		    + h->root.u.def.section->output_section->vma
13521 		    + h->root.u.def.section->output_offset);
13522 	  target_is_micromips_code_p = (!h->needs_plt
13523 					&& ELF_ST_IS_MICROMIPS (h->other));
13524 	}
13525 
13526 
13527       /* For simplicity of coding, we are going to modify the
13528          section contents, the section relocs, and the BFD symbol
13529          table.  We must tell the rest of the code not to free up this
13530          information.  It would be possible to instead create a table
13531          of changes which have to be made, as is done in coff-mips.c;
13532          that would be more work, but would require less memory when
13533          the linker is run.  */
13534 
13535       /* Only 32-bit instructions relaxed.  */
13536       if (irel->r_offset + 4 > sec->size)
13537 	continue;
13538 
13539       opcode = bfd_get_micromips_32 (abfd, ptr);
13540 
13541       /* This is the pc-relative distance from the instruction the
13542          relocation is applied to, to the symbol referred.  */
13543       pcrval = (symval
13544 		- (sec->output_section->vma + sec->output_offset)
13545 		- irel->r_offset);
13546 
13547       /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13548          of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13549          R_MICROMIPS_PC23_S2.  The R_MICROMIPS_PC23_S2 condition is
13550 
13551            (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13552 
13553          where pcrval has first to be adjusted to apply against the LO16
13554          location (we make the adjustment later on, when we have figured
13555          out the offset).  */
13556       if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13557 	{
13558 	  bfd_boolean bzc = FALSE;
13559 	  unsigned long nextopc;
13560 	  unsigned long reg;
13561 	  bfd_vma offset;
13562 
13563 	  /* Give up if the previous reloc was a HI16 against this symbol
13564 	     too.  */
13565 	  if (irel > internal_relocs
13566 	      && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13567 	      && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13568 	    continue;
13569 
13570 	  /* Or if the next reloc is not a LO16 against this symbol.  */
13571 	  if (irel + 1 >= irelend
13572 	      || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13573 	      || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13574 	    continue;
13575 
13576 	  /* Or if the second next reloc is a LO16 against this symbol too.  */
13577 	  if (irel + 2 >= irelend
13578 	      && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13579 	      && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13580 	    continue;
13581 
13582 	  /* See if the LUI instruction *might* be in a branch delay slot.
13583 	     We check whether what looks like a 16-bit branch or jump is
13584 	     actually an immediate argument to a compact branch, and let
13585 	     it through if so.  */
13586 	  if (irel->r_offset >= 2
13587 	      && check_br16_dslot (abfd, ptr - 2)
13588 	      && !(irel->r_offset >= 4
13589 		   && (bzc = check_relocated_bzc (abfd,
13590 						  ptr - 4, irel->r_offset - 4,
13591 						  internal_relocs, irelend))))
13592 	    continue;
13593 	  if (irel->r_offset >= 4
13594 	      && !bzc
13595 	      && check_br32_dslot (abfd, ptr - 4))
13596 	    continue;
13597 
13598 	  reg = OP32_SREG (opcode);
13599 
13600 	  /* We only relax adjacent instructions or ones separated with
13601 	     a branch or jump that has a delay slot.  The branch or jump
13602 	     must not fiddle with the register used to hold the address.
13603 	     Subtract 4 for the LUI itself.  */
13604 	  offset = irel[1].r_offset - irel[0].r_offset;
13605 	  switch (offset - 4)
13606 	    {
13607 	    case 0:
13608 	      break;
13609 	    case 2:
13610 	      if (check_br16 (abfd, ptr + 4, reg))
13611 		break;
13612 	      continue;
13613 	    case 4:
13614 	      if (check_br32 (abfd, ptr + 4, reg))
13615 		break;
13616 	      continue;
13617 	    default:
13618 	      continue;
13619 	    }
13620 
13621 	  nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13622 
13623 	  /* Give up unless the same register is used with both
13624 	     relocations.  */
13625 	  if (OP32_SREG (nextopc) != reg)
13626 	    continue;
13627 
13628 	  /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13629 	     and rounding up to take masking of the two LSBs into account.  */
13630 	  pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13631 
13632 	  /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16.  */
13633 	  if (IS_BITSIZE (symval, 16))
13634 	    {
13635 	      /* Fix the relocation's type.  */
13636 	      irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13637 
13638 	      /* Instructions using R_MICROMIPS_LO16 have the base or
13639 	         source register in bits 20:16.  This register becomes $0
13640 	         (zero) as the result of the R_MICROMIPS_HI16 being 0.  */
13641 	      nextopc &= ~0x001f0000;
13642 	      bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13643 			  contents + irel[1].r_offset);
13644 	    }
13645 
13646 	  /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13647 	     We add 4 to take LUI deletion into account while checking
13648 	     the PC-relative distance.  */
13649 	  else if (symval % 4 == 0
13650 		   && IS_BITSIZE (pcrval + 4, 25)
13651 		   && MATCH (nextopc, addiu_insn)
13652 		   && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13653 		   && OP16_VALID_REG (OP32_TREG (nextopc)))
13654 	    {
13655 	      /* Fix the relocation's type.  */
13656 	      irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13657 
13658 	      /* Replace ADDIU with the ADDIUPC version.  */
13659 	      nextopc = (addiupc_insn.match
13660 			 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13661 
13662 	      bfd_put_micromips_32 (abfd, nextopc,
13663 				    contents + irel[1].r_offset);
13664 	    }
13665 
13666 	  /* Can't do anything, give up, sigh...  */
13667 	  else
13668 	    continue;
13669 
13670 	  /* Fix the relocation's type.  */
13671 	  irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13672 
13673 	  /* Delete the LUI instruction: 4 bytes at irel->r_offset.  */
13674 	  delcnt = 4;
13675 	  deloff = 0;
13676 	}
13677 
13678       /* Compact branch relaxation -- due to the multitude of macros
13679          employed by the compiler/assembler, compact branches are not
13680          always generated.  Obviously, this can/will be fixed elsewhere,
13681          but there is no drawback in double checking it here.  */
13682       else if (r_type == R_MICROMIPS_PC16_S1
13683 	       && irel->r_offset + 5 < sec->size
13684 	       && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13685 		   || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13686 	       && ((!insn32
13687 		    && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13688 					nop_insn_16) ? 2 : 0))
13689 		   || (irel->r_offset + 7 < sec->size
13690 		       && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13691 								 ptr + 4),
13692 					   nop_insn_32) ? 4 : 0))))
13693 	{
13694 	  unsigned long reg;
13695 
13696 	  reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13697 
13698 	  /* Replace BEQZ/BNEZ with the compact version.  */
13699 	  opcode = (bzc_insns_32[fndopc].match
13700 		    | BZC32_REG_FIELD (reg)
13701 		    | (opcode & 0xffff));		/* Addend value.  */
13702 
13703 	  bfd_put_micromips_32 (abfd, opcode, ptr);
13704 
13705 	  /* Delete the delay slot NOP: two or four bytes from
13706 	     irel->offset + 4; delcnt has already been set above.  */
13707 	  deloff = 4;
13708 	}
13709 
13710       /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1.  We need
13711          to check the distance from the next instruction, so subtract 2.  */
13712       else if (!insn32
13713 	       && r_type == R_MICROMIPS_PC16_S1
13714 	       && IS_BITSIZE (pcrval - 2, 11)
13715 	       && find_match (opcode, b_insns_32) >= 0)
13716 	{
13717 	  /* Fix the relocation's type.  */
13718 	  irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13719 
13720 	  /* Replace the 32-bit opcode with a 16-bit opcode.  */
13721 	  bfd_put_16 (abfd,
13722 		      (b_insn_16.match
13723 		       | (opcode & 0x3ff)),		/* Addend value.  */
13724 		      ptr);
13725 
13726 	  /* Delete 2 bytes from irel->r_offset + 2.  */
13727 	  delcnt = 2;
13728 	  deloff = 2;
13729 	}
13730 
13731       /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1.  We need
13732          to check the distance from the next instruction, so subtract 2.  */
13733       else if (!insn32
13734 	       && r_type == R_MICROMIPS_PC16_S1
13735 	       && IS_BITSIZE (pcrval - 2, 8)
13736 	       && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13737 		    && OP16_VALID_REG (OP32_SREG (opcode)))
13738 		   || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13739 		       && OP16_VALID_REG (OP32_TREG (opcode)))))
13740 	{
13741 	  unsigned long reg;
13742 
13743 	  reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13744 
13745 	  /* Fix the relocation's type.  */
13746 	  irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13747 
13748 	  /* Replace the 32-bit opcode with a 16-bit opcode.  */
13749 	  bfd_put_16 (abfd,
13750 		      (bz_insns_16[fndopc].match
13751 		       | BZ16_REG_FIELD (reg)
13752 		       | (opcode & 0x7f)),		/* Addend value.  */
13753 		      ptr);
13754 
13755 	  /* Delete 2 bytes from irel->r_offset + 2.  */
13756 	  delcnt = 2;
13757 	  deloff = 2;
13758 	}
13759 
13760       /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets.  */
13761       else if (!insn32
13762 	       && r_type == R_MICROMIPS_26_S1
13763 	       && target_is_micromips_code_p
13764 	       && irel->r_offset + 7 < sec->size
13765 	       && MATCH (opcode, jal_insn_32_bd32))
13766 	{
13767 	  unsigned long n32opc;
13768 	  bfd_boolean relaxed = FALSE;
13769 
13770 	  n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13771 
13772 	  if (MATCH (n32opc, nop_insn_32))
13773 	    {
13774 	      /* Replace delay slot 32-bit NOP with a 16-bit NOP.  */
13775 	      bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13776 
13777 	      relaxed = TRUE;
13778 	    }
13779 	  else if (find_match (n32opc, move_insns_32) >= 0)
13780 	    {
13781 	      /* Replace delay slot 32-bit MOVE with 16-bit MOVE.  */
13782 	      bfd_put_16 (abfd,
13783 			  (move_insn_16.match
13784 			   | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13785 			   | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13786 			  ptr + 4);
13787 
13788 	      relaxed = TRUE;
13789 	    }
13790 	  /* Other 32-bit instructions relaxable to 16-bit
13791 	     instructions will be handled here later.  */
13792 
13793 	  if (relaxed)
13794 	    {
13795 	      /* JAL with 32-bit delay slot that is changed to a JALS
13796 	         with 16-bit delay slot.  */
13797 	      bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13798 
13799 	      /* Delete 2 bytes from irel->r_offset + 6.  */
13800 	      delcnt = 2;
13801 	      deloff = 6;
13802 	    }
13803 	}
13804 
13805       if (delcnt != 0)
13806 	{
13807 	  /* Note that we've changed the relocs, section contents, etc.  */
13808 	  elf_section_data (sec)->relocs = internal_relocs;
13809 	  elf_section_data (sec)->this_hdr.contents = contents;
13810 	  symtab_hdr->contents = (unsigned char *) isymbuf;
13811 
13812 	  /* Delete bytes depending on the delcnt and deloff.  */
13813 	  if (!mips_elf_relax_delete_bytes (abfd, sec,
13814 					    irel->r_offset + deloff, delcnt))
13815 	    goto error_return;
13816 
13817 	  /* That will change things, so we should relax again.
13818 	     Note that this is not required, and it may be slow.  */
13819 	  *again = TRUE;
13820 	}
13821     }
13822 
13823   if (isymbuf != NULL
13824       && symtab_hdr->contents != (unsigned char *) isymbuf)
13825     {
13826       if (! link_info->keep_memory)
13827 	free (isymbuf);
13828       else
13829 	{
13830 	  /* Cache the symbols for elf_link_input_bfd.  */
13831 	  symtab_hdr->contents = (unsigned char *) isymbuf;
13832 	}
13833     }
13834 
13835   if (contents != NULL
13836       && elf_section_data (sec)->this_hdr.contents != contents)
13837     {
13838       if (! link_info->keep_memory)
13839 	free (contents);
13840       else
13841 	{
13842 	  /* Cache the section contents for elf_link_input_bfd.  */
13843 	  elf_section_data (sec)->this_hdr.contents = contents;
13844 	}
13845     }
13846 
13847   if (internal_relocs != NULL
13848       && elf_section_data (sec)->relocs != internal_relocs)
13849     free (internal_relocs);
13850 
13851   return TRUE;
13852 
13853  error_return:
13854   if (isymbuf != NULL
13855       && symtab_hdr->contents != (unsigned char *) isymbuf)
13856     free (isymbuf);
13857   if (contents != NULL
13858       && elf_section_data (sec)->this_hdr.contents != contents)
13859     free (contents);
13860   if (internal_relocs != NULL
13861       && elf_section_data (sec)->relocs != internal_relocs)
13862     free (internal_relocs);
13863 
13864   return FALSE;
13865 }
13866 
13867 /* Create a MIPS ELF linker hash table.  */
13868 
13869 struct bfd_link_hash_table *
13870 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
13871 {
13872   struct mips_elf_link_hash_table *ret;
13873   bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13874 
13875   ret = bfd_zmalloc (amt);
13876   if (ret == NULL)
13877     return NULL;
13878 
13879   if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13880 				      mips_elf_link_hash_newfunc,
13881 				      sizeof (struct mips_elf_link_hash_entry),
13882 				      MIPS_ELF_DATA))
13883     {
13884       free (ret);
13885       return NULL;
13886     }
13887   ret->root.init_plt_refcount.plist = NULL;
13888   ret->root.init_plt_offset.plist = NULL;
13889 
13890   return &ret->root.root;
13891 }
13892 
13893 /* Likewise, but indicate that the target is VxWorks.  */
13894 
13895 struct bfd_link_hash_table *
13896 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13897 {
13898   struct bfd_link_hash_table *ret;
13899 
13900   ret = _bfd_mips_elf_link_hash_table_create (abfd);
13901   if (ret)
13902     {
13903       struct mips_elf_link_hash_table *htab;
13904 
13905       htab = (struct mips_elf_link_hash_table *) ret;
13906       htab->use_plts_and_copy_relocs = TRUE;
13907       htab->is_vxworks = TRUE;
13908     }
13909   return ret;
13910 }
13911 
13912 /* A function that the linker calls if we are allowed to use PLTs
13913    and copy relocs.  */
13914 
13915 void
13916 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13917 {
13918   mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13919 }
13920 
13921 /* A function that the linker calls to select between all or only
13922    32-bit microMIPS instructions.  */
13923 
13924 void
13925 _bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on)
13926 {
13927   mips_elf_hash_table (info)->insn32 = on;
13928 }
13929 
13930 /* Structure for saying that BFD machine EXTENSION extends BASE.  */
13931 
13932 struct mips_mach_extension
13933 {
13934   unsigned long extension, base;
13935 };
13936 
13937 
13938 /* An array describing how BFD machines relate to one another.  The entries
13939    are ordered topologically with MIPS I extensions listed last.  */
13940 
13941 static const struct mips_mach_extension mips_mach_extensions[] =
13942 {
13943   /* MIPS64r2 extensions.  */
13944   { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
13945   { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13946   { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13947   { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13948   { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
13949 
13950   /* MIPS64 extensions.  */
13951   { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13952   { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13953   { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13954 
13955   /* MIPS V extensions.  */
13956   { bfd_mach_mipsisa64, bfd_mach_mips5 },
13957 
13958   /* R10000 extensions.  */
13959   { bfd_mach_mips12000, bfd_mach_mips10000 },
13960   { bfd_mach_mips14000, bfd_mach_mips10000 },
13961   { bfd_mach_mips16000, bfd_mach_mips10000 },
13962 
13963   /* R5000 extensions.  Note: the vr5500 ISA is an extension of the core
13964      vr5400 ISA, but doesn't include the multimedia stuff.  It seems
13965      better to allow vr5400 and vr5500 code to be merged anyway, since
13966      many libraries will just use the core ISA.  Perhaps we could add
13967      some sort of ASE flag if this ever proves a problem.  */
13968   { bfd_mach_mips5500, bfd_mach_mips5400 },
13969   { bfd_mach_mips5400, bfd_mach_mips5000 },
13970 
13971   /* MIPS IV extensions.  */
13972   { bfd_mach_mips5, bfd_mach_mips8000 },
13973   { bfd_mach_mips10000, bfd_mach_mips8000 },
13974   { bfd_mach_mips5000, bfd_mach_mips8000 },
13975   { bfd_mach_mips7000, bfd_mach_mips8000 },
13976   { bfd_mach_mips9000, bfd_mach_mips8000 },
13977 
13978   /* VR4100 extensions.  */
13979   { bfd_mach_mips4120, bfd_mach_mips4100 },
13980   { bfd_mach_mips4111, bfd_mach_mips4100 },
13981 
13982   /* MIPS III extensions.  */
13983   { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13984   { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13985   { bfd_mach_mips8000, bfd_mach_mips4000 },
13986   { bfd_mach_mips4650, bfd_mach_mips4000 },
13987   { bfd_mach_mips4600, bfd_mach_mips4000 },
13988   { bfd_mach_mips4400, bfd_mach_mips4000 },
13989   { bfd_mach_mips4300, bfd_mach_mips4000 },
13990   { bfd_mach_mips4100, bfd_mach_mips4000 },
13991   { bfd_mach_mips4010, bfd_mach_mips4000 },
13992   { bfd_mach_mips5900, bfd_mach_mips4000 },
13993 
13994   /* MIPS32 extensions.  */
13995   { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13996 
13997   /* MIPS II extensions.  */
13998   { bfd_mach_mips4000, bfd_mach_mips6000 },
13999   { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14000 
14001   /* MIPS I extensions.  */
14002   { bfd_mach_mips6000, bfd_mach_mips3000 },
14003   { bfd_mach_mips3900, bfd_mach_mips3000 }
14004 };
14005 
14006 /* Return true if bfd machine EXTENSION is an extension of machine BASE.  */
14007 
14008 static bfd_boolean
14009 mips_mach_extends_p (unsigned long base, unsigned long extension)
14010 {
14011   size_t i;
14012 
14013   if (extension == base)
14014     return TRUE;
14015 
14016   if (base == bfd_mach_mipsisa32
14017       && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14018     return TRUE;
14019 
14020   if (base == bfd_mach_mipsisa32r2
14021       && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14022     return TRUE;
14023 
14024   for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14025     if (extension == mips_mach_extensions[i].extension)
14026       {
14027 	extension = mips_mach_extensions[i].base;
14028 	if (extension == base)
14029 	  return TRUE;
14030       }
14031 
14032   return FALSE;
14033 }
14034 
14035 /* Return the BFD mach for each .MIPS.abiflags ISA Extension.  */
14036 
14037 static unsigned long
14038 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14039 {
14040   switch (isa_ext)
14041     {
14042     case AFL_EXT_3900:        return bfd_mach_mips3900;
14043     case AFL_EXT_4010:        return bfd_mach_mips4010;
14044     case AFL_EXT_4100:        return bfd_mach_mips4100;
14045     case AFL_EXT_4111:        return bfd_mach_mips4111;
14046     case AFL_EXT_4120:        return bfd_mach_mips4120;
14047     case AFL_EXT_4650:        return bfd_mach_mips4650;
14048     case AFL_EXT_5400:        return bfd_mach_mips5400;
14049     case AFL_EXT_5500:        return bfd_mach_mips5500;
14050     case AFL_EXT_5900:        return bfd_mach_mips5900;
14051     case AFL_EXT_10000:       return bfd_mach_mips10000;
14052     case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14053     case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14054     case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14055     case AFL_EXT_SB1:         return bfd_mach_mips_sb1;
14056     case AFL_EXT_OCTEON:      return bfd_mach_mips_octeon;
14057     case AFL_EXT_OCTEONP:     return bfd_mach_mips_octeonp;
14058     case AFL_EXT_OCTEON2:     return bfd_mach_mips_octeon2;
14059     case AFL_EXT_XLR:         return bfd_mach_mips_xlr;
14060     default:                  return bfd_mach_mips3000;
14061     }
14062 }
14063 
14064 /* Return the .MIPS.abiflags value representing each ISA Extension.  */
14065 
14066 unsigned int
14067 bfd_mips_isa_ext (bfd *abfd)
14068 {
14069   switch (bfd_get_mach (abfd))
14070     {
14071     case bfd_mach_mips3900:         return AFL_EXT_3900;
14072     case bfd_mach_mips4010:         return AFL_EXT_4010;
14073     case bfd_mach_mips4100:         return AFL_EXT_4100;
14074     case bfd_mach_mips4111:         return AFL_EXT_4111;
14075     case bfd_mach_mips4120:         return AFL_EXT_4120;
14076     case bfd_mach_mips4650:         return AFL_EXT_4650;
14077     case bfd_mach_mips5400:         return AFL_EXT_5400;
14078     case bfd_mach_mips5500:         return AFL_EXT_5500;
14079     case bfd_mach_mips5900:         return AFL_EXT_5900;
14080     case bfd_mach_mips10000:        return AFL_EXT_10000;
14081     case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14082     case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14083     case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14084     case bfd_mach_mips_sb1:         return AFL_EXT_SB1;
14085     case bfd_mach_mips_octeon:      return AFL_EXT_OCTEON;
14086     case bfd_mach_mips_octeonp:     return AFL_EXT_OCTEONP;
14087     case bfd_mach_mips_octeon3:     return AFL_EXT_OCTEON3;
14088     case bfd_mach_mips_octeon2:     return AFL_EXT_OCTEON2;
14089     case bfd_mach_mips_xlr:         return AFL_EXT_XLR;
14090     default:                        return 0;
14091     }
14092 }
14093 
14094 /* Encode ISA level and revision as a single value.  */
14095 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14096 
14097 /* Decode a single value into level and revision.  */
14098 #define ISA_LEVEL(LEVREV)  ((LEVREV) >> 3)
14099 #define ISA_REV(LEVREV)    ((LEVREV) & 0x7)
14100 
14101 /* Update the isa_level, isa_rev, isa_ext fields of abiflags.  */
14102 
14103 static void
14104 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14105 {
14106   int new_isa = 0;
14107   switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14108     {
14109     case E_MIPS_ARCH_1:    new_isa = LEVEL_REV (1, 0); break;
14110     case E_MIPS_ARCH_2:    new_isa = LEVEL_REV (2, 0); break;
14111     case E_MIPS_ARCH_3:    new_isa = LEVEL_REV (3, 0); break;
14112     case E_MIPS_ARCH_4:    new_isa = LEVEL_REV (4, 0); break;
14113     case E_MIPS_ARCH_5:    new_isa = LEVEL_REV (5, 0); break;
14114     case E_MIPS_ARCH_32:   new_isa = LEVEL_REV (32, 1); break;
14115     case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14116     case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14117     case E_MIPS_ARCH_64:   new_isa = LEVEL_REV (64, 1); break;
14118     case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14119     case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14120     default:
14121       (*_bfd_error_handler)
14122 	(_("%B: Unknown architecture %s"),
14123 	 abfd, bfd_printable_name (abfd));
14124     }
14125 
14126   if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14127     {
14128       abiflags->isa_level = ISA_LEVEL (new_isa);
14129       abiflags->isa_rev = ISA_REV (new_isa);
14130     }
14131 
14132   /* Update the isa_ext if ABFD describes a further extension.  */
14133   if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14134 			   bfd_get_mach (abfd)))
14135     abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14136 }
14137 
14138 /* Return true if the given ELF header flags describe a 32-bit binary.  */
14139 
14140 static bfd_boolean
14141 mips_32bit_flags_p (flagword flags)
14142 {
14143   return ((flags & EF_MIPS_32BITMODE) != 0
14144 	  || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14145 	  || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14146 	  || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14147 	  || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14148 	  || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14149 	  || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14150 	  || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14151 }
14152 
14153 /* Infer the content of the ABI flags based on the elf header.  */
14154 
14155 static void
14156 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14157 {
14158   obj_attribute *in_attr;
14159 
14160   memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14161   update_mips_abiflags_isa (abfd, abiflags);
14162 
14163   if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14164     abiflags->gpr_size = AFL_REG_32;
14165   else
14166     abiflags->gpr_size = AFL_REG_64;
14167 
14168   abiflags->cpr1_size = AFL_REG_NONE;
14169 
14170   in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14171   abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14172 
14173   if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14174       || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14175       || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14176 	  && abiflags->gpr_size == AFL_REG_32))
14177     abiflags->cpr1_size = AFL_REG_32;
14178   else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14179 	   || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14180 	   || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14181     abiflags->cpr1_size = AFL_REG_64;
14182 
14183   abiflags->cpr2_size = AFL_REG_NONE;
14184 
14185   if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14186     abiflags->ases |= AFL_ASE_MDMX;
14187   if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14188     abiflags->ases |= AFL_ASE_MIPS16;
14189   if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14190     abiflags->ases |= AFL_ASE_MICROMIPS;
14191 
14192   if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14193       && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14194       && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14195       && abiflags->isa_level >= 32
14196       && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14197     abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14198 }
14199 
14200 /* We need to use a special link routine to handle the .reginfo and
14201    the .mdebug sections.  We need to merge all instances of these
14202    sections together, not write them all out sequentially.  */
14203 
14204 bfd_boolean
14205 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14206 {
14207   asection *o;
14208   struct bfd_link_order *p;
14209   asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14210   asection *rtproc_sec, *abiflags_sec;
14211   Elf32_RegInfo reginfo;
14212   struct ecoff_debug_info debug;
14213   struct mips_htab_traverse_info hti;
14214   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14215   const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14216   HDRR *symhdr = &debug.symbolic_header;
14217   void *mdebug_handle = NULL;
14218   asection *s;
14219   EXTR esym;
14220   unsigned int i;
14221   bfd_size_type amt;
14222   struct mips_elf_link_hash_table *htab;
14223 
14224   static const char * const secname[] =
14225   {
14226     ".text", ".init", ".fini", ".data",
14227     ".rodata", ".sdata", ".sbss", ".bss"
14228   };
14229   static const int sc[] =
14230   {
14231     scText, scInit, scFini, scData,
14232     scRData, scSData, scSBss, scBss
14233   };
14234 
14235   /* Sort the dynamic symbols so that those with GOT entries come after
14236      those without.  */
14237   htab = mips_elf_hash_table (info);
14238   BFD_ASSERT (htab != NULL);
14239 
14240   if (!mips_elf_sort_hash_table (abfd, info))
14241     return FALSE;
14242 
14243   /* Create any scheduled LA25 stubs.  */
14244   hti.info = info;
14245   hti.output_bfd = abfd;
14246   hti.error = FALSE;
14247   htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14248   if (hti.error)
14249     return FALSE;
14250 
14251   /* Get a value for the GP register.  */
14252   if (elf_gp (abfd) == 0)
14253     {
14254       struct bfd_link_hash_entry *h;
14255 
14256       h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14257       if (h != NULL && h->type == bfd_link_hash_defined)
14258 	elf_gp (abfd) = (h->u.def.value
14259 			 + h->u.def.section->output_section->vma
14260 			 + h->u.def.section->output_offset);
14261       else if (htab->is_vxworks
14262 	       && (h = bfd_link_hash_lookup (info->hash,
14263 					     "_GLOBAL_OFFSET_TABLE_",
14264 					     FALSE, FALSE, TRUE))
14265 	       && h->type == bfd_link_hash_defined)
14266 	elf_gp (abfd) = (h->u.def.section->output_section->vma
14267 			 + h->u.def.section->output_offset
14268 			 + h->u.def.value);
14269       else if (bfd_link_relocatable (info))
14270 	{
14271 	  bfd_vma lo = MINUS_ONE;
14272 
14273 	  /* Find the GP-relative section with the lowest offset.  */
14274 	  for (o = abfd->sections; o != NULL; o = o->next)
14275 	    if (o->vma < lo
14276 		&& (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14277 	      lo = o->vma;
14278 
14279 	  /* And calculate GP relative to that.  */
14280 	  elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14281 	}
14282       else
14283 	{
14284 	  /* If the relocate_section function needs to do a reloc
14285 	     involving the GP value, it should make a reloc_dangerous
14286 	     callback to warn that GP is not defined.  */
14287 	}
14288     }
14289 
14290   /* Go through the sections and collect the .reginfo and .mdebug
14291      information.  */
14292   abiflags_sec = NULL;
14293   reginfo_sec = NULL;
14294   mdebug_sec = NULL;
14295   gptab_data_sec = NULL;
14296   gptab_bss_sec = NULL;
14297   for (o = abfd->sections; o != NULL; o = o->next)
14298     {
14299       if (strcmp (o->name, ".MIPS.abiflags") == 0)
14300 	{
14301 	  /* We have found the .MIPS.abiflags section in the output file.
14302 	     Look through all the link_orders comprising it and remove them.
14303 	     The data is merged in _bfd_mips_elf_merge_private_bfd_data.  */
14304 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
14305 	    {
14306 	      asection *input_section;
14307 
14308 	      if (p->type != bfd_indirect_link_order)
14309 		{
14310 		  if (p->type == bfd_data_link_order)
14311 		    continue;
14312 		  abort ();
14313 		}
14314 
14315 	      input_section = p->u.indirect.section;
14316 
14317 	      /* Hack: reset the SEC_HAS_CONTENTS flag so that
14318 		 elf_link_input_bfd ignores this section.  */
14319 	      input_section->flags &= ~SEC_HAS_CONTENTS;
14320 	    }
14321 
14322 	  /* Size has been set in _bfd_mips_elf_always_size_sections.  */
14323 	  BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14324 
14325 	  /* Skip this section later on (I don't think this currently
14326 	     matters, but someday it might).  */
14327 	  o->map_head.link_order = NULL;
14328 
14329 	  abiflags_sec = o;
14330 	}
14331 
14332       if (strcmp (o->name, ".reginfo") == 0)
14333 	{
14334 	  memset (&reginfo, 0, sizeof reginfo);
14335 
14336 	  /* We have found the .reginfo section in the output file.
14337 	     Look through all the link_orders comprising it and merge
14338 	     the information together.  */
14339 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
14340 	    {
14341 	      asection *input_section;
14342 	      bfd *input_bfd;
14343 	      Elf32_External_RegInfo ext;
14344 	      Elf32_RegInfo sub;
14345 
14346 	      if (p->type != bfd_indirect_link_order)
14347 		{
14348 		  if (p->type == bfd_data_link_order)
14349 		    continue;
14350 		  abort ();
14351 		}
14352 
14353 	      input_section = p->u.indirect.section;
14354 	      input_bfd = input_section->owner;
14355 
14356 	      if (! bfd_get_section_contents (input_bfd, input_section,
14357 					      &ext, 0, sizeof ext))
14358 		return FALSE;
14359 
14360 	      bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14361 
14362 	      reginfo.ri_gprmask |= sub.ri_gprmask;
14363 	      reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14364 	      reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14365 	      reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14366 	      reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14367 
14368 	      /* ri_gp_value is set by the function
14369 		 mips_elf32_section_processing when the section is
14370 		 finally written out.  */
14371 
14372 	      /* Hack: reset the SEC_HAS_CONTENTS flag so that
14373 		 elf_link_input_bfd ignores this section.  */
14374 	      input_section->flags &= ~SEC_HAS_CONTENTS;
14375 	    }
14376 
14377 	  /* Size has been set in _bfd_mips_elf_always_size_sections.  */
14378 	  BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14379 
14380 	  /* Skip this section later on (I don't think this currently
14381 	     matters, but someday it might).  */
14382 	  o->map_head.link_order = NULL;
14383 
14384 	  reginfo_sec = o;
14385 	}
14386 
14387       if (strcmp (o->name, ".mdebug") == 0)
14388 	{
14389 	  struct extsym_info einfo;
14390 	  bfd_vma last;
14391 
14392 	  /* We have found the .mdebug section in the output file.
14393 	     Look through all the link_orders comprising it and merge
14394 	     the information together.  */
14395 	  symhdr->magic = swap->sym_magic;
14396 	  /* FIXME: What should the version stamp be?  */
14397 	  symhdr->vstamp = 0;
14398 	  symhdr->ilineMax = 0;
14399 	  symhdr->cbLine = 0;
14400 	  symhdr->idnMax = 0;
14401 	  symhdr->ipdMax = 0;
14402 	  symhdr->isymMax = 0;
14403 	  symhdr->ioptMax = 0;
14404 	  symhdr->iauxMax = 0;
14405 	  symhdr->issMax = 0;
14406 	  symhdr->issExtMax = 0;
14407 	  symhdr->ifdMax = 0;
14408 	  symhdr->crfd = 0;
14409 	  symhdr->iextMax = 0;
14410 
14411 	  /* We accumulate the debugging information itself in the
14412 	     debug_info structure.  */
14413 	  debug.line = NULL;
14414 	  debug.external_dnr = NULL;
14415 	  debug.external_pdr = NULL;
14416 	  debug.external_sym = NULL;
14417 	  debug.external_opt = NULL;
14418 	  debug.external_aux = NULL;
14419 	  debug.ss = NULL;
14420 	  debug.ssext = debug.ssext_end = NULL;
14421 	  debug.external_fdr = NULL;
14422 	  debug.external_rfd = NULL;
14423 	  debug.external_ext = debug.external_ext_end = NULL;
14424 
14425 	  mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14426 	  if (mdebug_handle == NULL)
14427 	    return FALSE;
14428 
14429 	  esym.jmptbl = 0;
14430 	  esym.cobol_main = 0;
14431 	  esym.weakext = 0;
14432 	  esym.reserved = 0;
14433 	  esym.ifd = ifdNil;
14434 	  esym.asym.iss = issNil;
14435 	  esym.asym.st = stLocal;
14436 	  esym.asym.reserved = 0;
14437 	  esym.asym.index = indexNil;
14438 	  last = 0;
14439 	  for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14440 	    {
14441 	      esym.asym.sc = sc[i];
14442 	      s = bfd_get_section_by_name (abfd, secname[i]);
14443 	      if (s != NULL)
14444 		{
14445 		  esym.asym.value = s->vma;
14446 		  last = s->vma + s->size;
14447 		}
14448 	      else
14449 		esym.asym.value = last;
14450 	      if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14451 						 secname[i], &esym))
14452 		return FALSE;
14453 	    }
14454 
14455 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
14456 	    {
14457 	      asection *input_section;
14458 	      bfd *input_bfd;
14459 	      const struct ecoff_debug_swap *input_swap;
14460 	      struct ecoff_debug_info input_debug;
14461 	      char *eraw_src;
14462 	      char *eraw_end;
14463 
14464 	      if (p->type != bfd_indirect_link_order)
14465 		{
14466 		  if (p->type == bfd_data_link_order)
14467 		    continue;
14468 		  abort ();
14469 		}
14470 
14471 	      input_section = p->u.indirect.section;
14472 	      input_bfd = input_section->owner;
14473 
14474 	      if (!is_mips_elf (input_bfd))
14475 		{
14476 		  /* I don't know what a non MIPS ELF bfd would be
14477 		     doing with a .mdebug section, but I don't really
14478 		     want to deal with it.  */
14479 		  continue;
14480 		}
14481 
14482 	      input_swap = (get_elf_backend_data (input_bfd)
14483 			    ->elf_backend_ecoff_debug_swap);
14484 
14485 	      BFD_ASSERT (p->size == input_section->size);
14486 
14487 	      /* The ECOFF linking code expects that we have already
14488 		 read in the debugging information and set up an
14489 		 ecoff_debug_info structure, so we do that now.  */
14490 	      if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14491 						   &input_debug))
14492 		return FALSE;
14493 
14494 	      if (! (bfd_ecoff_debug_accumulate
14495 		     (mdebug_handle, abfd, &debug, swap, input_bfd,
14496 		      &input_debug, input_swap, info)))
14497 		return FALSE;
14498 
14499 	      /* Loop through the external symbols.  For each one with
14500 		 interesting information, try to find the symbol in
14501 		 the linker global hash table and save the information
14502 		 for the output external symbols.  */
14503 	      eraw_src = input_debug.external_ext;
14504 	      eraw_end = (eraw_src
14505 			  + (input_debug.symbolic_header.iextMax
14506 			     * input_swap->external_ext_size));
14507 	      for (;
14508 		   eraw_src < eraw_end;
14509 		   eraw_src += input_swap->external_ext_size)
14510 		{
14511 		  EXTR ext;
14512 		  const char *name;
14513 		  struct mips_elf_link_hash_entry *h;
14514 
14515 		  (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14516 		  if (ext.asym.sc == scNil
14517 		      || ext.asym.sc == scUndefined
14518 		      || ext.asym.sc == scSUndefined)
14519 		    continue;
14520 
14521 		  name = input_debug.ssext + ext.asym.iss;
14522 		  h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14523 						 name, FALSE, FALSE, TRUE);
14524 		  if (h == NULL || h->esym.ifd != -2)
14525 		    continue;
14526 
14527 		  if (ext.ifd != -1)
14528 		    {
14529 		      BFD_ASSERT (ext.ifd
14530 				  < input_debug.symbolic_header.ifdMax);
14531 		      ext.ifd = input_debug.ifdmap[ext.ifd];
14532 		    }
14533 
14534 		  h->esym = ext;
14535 		}
14536 
14537 	      /* Free up the information we just read.  */
14538 	      free (input_debug.line);
14539 	      free (input_debug.external_dnr);
14540 	      free (input_debug.external_pdr);
14541 	      free (input_debug.external_sym);
14542 	      free (input_debug.external_opt);
14543 	      free (input_debug.external_aux);
14544 	      free (input_debug.ss);
14545 	      free (input_debug.ssext);
14546 	      free (input_debug.external_fdr);
14547 	      free (input_debug.external_rfd);
14548 	      free (input_debug.external_ext);
14549 
14550 	      /* Hack: reset the SEC_HAS_CONTENTS flag so that
14551 		 elf_link_input_bfd ignores this section.  */
14552 	      input_section->flags &= ~SEC_HAS_CONTENTS;
14553 	    }
14554 
14555 	  if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14556 	    {
14557 	      /* Create .rtproc section.  */
14558 	      rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14559 	      if (rtproc_sec == NULL)
14560 		{
14561 		  flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14562 				    | SEC_LINKER_CREATED | SEC_READONLY);
14563 
14564 		  rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14565 								   ".rtproc",
14566 								   flags);
14567 		  if (rtproc_sec == NULL
14568 		      || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14569 		    return FALSE;
14570 		}
14571 
14572 	      if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14573 						     info, rtproc_sec,
14574 						     &debug))
14575 		return FALSE;
14576 	    }
14577 
14578 	  /* Build the external symbol information.  */
14579 	  einfo.abfd = abfd;
14580 	  einfo.info = info;
14581 	  einfo.debug = &debug;
14582 	  einfo.swap = swap;
14583 	  einfo.failed = FALSE;
14584 	  mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14585 				       mips_elf_output_extsym, &einfo);
14586 	  if (einfo.failed)
14587 	    return FALSE;
14588 
14589 	  /* Set the size of the .mdebug section.  */
14590 	  o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14591 
14592 	  /* Skip this section later on (I don't think this currently
14593 	     matters, but someday it might).  */
14594 	  o->map_head.link_order = NULL;
14595 
14596 	  mdebug_sec = o;
14597 	}
14598 
14599       if (CONST_STRNEQ (o->name, ".gptab."))
14600 	{
14601 	  const char *subname;
14602 	  unsigned int c;
14603 	  Elf32_gptab *tab;
14604 	  Elf32_External_gptab *ext_tab;
14605 	  unsigned int j;
14606 
14607 	  /* The .gptab.sdata and .gptab.sbss sections hold
14608 	     information describing how the small data area would
14609 	     change depending upon the -G switch.  These sections
14610 	     not used in executables files.  */
14611 	  if (! bfd_link_relocatable (info))
14612 	    {
14613 	      for (p = o->map_head.link_order; p != NULL; p = p->next)
14614 		{
14615 		  asection *input_section;
14616 
14617 		  if (p->type != bfd_indirect_link_order)
14618 		    {
14619 		      if (p->type == bfd_data_link_order)
14620 			continue;
14621 		      abort ();
14622 		    }
14623 
14624 		  input_section = p->u.indirect.section;
14625 
14626 		  /* Hack: reset the SEC_HAS_CONTENTS flag so that
14627 		     elf_link_input_bfd ignores this section.  */
14628 		  input_section->flags &= ~SEC_HAS_CONTENTS;
14629 		}
14630 
14631 	      /* Skip this section later on (I don't think this
14632 		 currently matters, but someday it might).  */
14633 	      o->map_head.link_order = NULL;
14634 
14635 	      /* Really remove the section.  */
14636 	      bfd_section_list_remove (abfd, o);
14637 	      --abfd->section_count;
14638 
14639 	      continue;
14640 	    }
14641 
14642 	  /* There is one gptab for initialized data, and one for
14643 	     uninitialized data.  */
14644 	  if (strcmp (o->name, ".gptab.sdata") == 0)
14645 	    gptab_data_sec = o;
14646 	  else if (strcmp (o->name, ".gptab.sbss") == 0)
14647 	    gptab_bss_sec = o;
14648 	  else
14649 	    {
14650 	      (*_bfd_error_handler)
14651 		(_("%s: illegal section name `%s'"),
14652 		 bfd_get_filename (abfd), o->name);
14653 	      bfd_set_error (bfd_error_nonrepresentable_section);
14654 	      return FALSE;
14655 	    }
14656 
14657 	  /* The linker script always combines .gptab.data and
14658 	     .gptab.sdata into .gptab.sdata, and likewise for
14659 	     .gptab.bss and .gptab.sbss.  It is possible that there is
14660 	     no .sdata or .sbss section in the output file, in which
14661 	     case we must change the name of the output section.  */
14662 	  subname = o->name + sizeof ".gptab" - 1;
14663 	  if (bfd_get_section_by_name (abfd, subname) == NULL)
14664 	    {
14665 	      if (o == gptab_data_sec)
14666 		o->name = ".gptab.data";
14667 	      else
14668 		o->name = ".gptab.bss";
14669 	      subname = o->name + sizeof ".gptab" - 1;
14670 	      BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14671 	    }
14672 
14673 	  /* Set up the first entry.  */
14674 	  c = 1;
14675 	  amt = c * sizeof (Elf32_gptab);
14676 	  tab = bfd_malloc (amt);
14677 	  if (tab == NULL)
14678 	    return FALSE;
14679 	  tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14680 	  tab[0].gt_header.gt_unused = 0;
14681 
14682 	  /* Combine the input sections.  */
14683 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
14684 	    {
14685 	      asection *input_section;
14686 	      bfd *input_bfd;
14687 	      bfd_size_type size;
14688 	      unsigned long last;
14689 	      bfd_size_type gpentry;
14690 
14691 	      if (p->type != bfd_indirect_link_order)
14692 		{
14693 		  if (p->type == bfd_data_link_order)
14694 		    continue;
14695 		  abort ();
14696 		}
14697 
14698 	      input_section = p->u.indirect.section;
14699 	      input_bfd = input_section->owner;
14700 
14701 	      /* Combine the gptab entries for this input section one
14702 		 by one.  We know that the input gptab entries are
14703 		 sorted by ascending -G value.  */
14704 	      size = input_section->size;
14705 	      last = 0;
14706 	      for (gpentry = sizeof (Elf32_External_gptab);
14707 		   gpentry < size;
14708 		   gpentry += sizeof (Elf32_External_gptab))
14709 		{
14710 		  Elf32_External_gptab ext_gptab;
14711 		  Elf32_gptab int_gptab;
14712 		  unsigned long val;
14713 		  unsigned long add;
14714 		  bfd_boolean exact;
14715 		  unsigned int look;
14716 
14717 		  if (! (bfd_get_section_contents
14718 			 (input_bfd, input_section, &ext_gptab, gpentry,
14719 			  sizeof (Elf32_External_gptab))))
14720 		    {
14721 		      free (tab);
14722 		      return FALSE;
14723 		    }
14724 
14725 		  bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14726 						&int_gptab);
14727 		  val = int_gptab.gt_entry.gt_g_value;
14728 		  add = int_gptab.gt_entry.gt_bytes - last;
14729 
14730 		  exact = FALSE;
14731 		  for (look = 1; look < c; look++)
14732 		    {
14733 		      if (tab[look].gt_entry.gt_g_value >= val)
14734 			tab[look].gt_entry.gt_bytes += add;
14735 
14736 		      if (tab[look].gt_entry.gt_g_value == val)
14737 			exact = TRUE;
14738 		    }
14739 
14740 		  if (! exact)
14741 		    {
14742 		      Elf32_gptab *new_tab;
14743 		      unsigned int max;
14744 
14745 		      /* We need a new table entry.  */
14746 		      amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14747 		      new_tab = bfd_realloc (tab, amt);
14748 		      if (new_tab == NULL)
14749 			{
14750 			  free (tab);
14751 			  return FALSE;
14752 			}
14753 		      tab = new_tab;
14754 		      tab[c].gt_entry.gt_g_value = val;
14755 		      tab[c].gt_entry.gt_bytes = add;
14756 
14757 		      /* Merge in the size for the next smallest -G
14758 			 value, since that will be implied by this new
14759 			 value.  */
14760 		      max = 0;
14761 		      for (look = 1; look < c; look++)
14762 			{
14763 			  if (tab[look].gt_entry.gt_g_value < val
14764 			      && (max == 0
14765 				  || (tab[look].gt_entry.gt_g_value
14766 				      > tab[max].gt_entry.gt_g_value)))
14767 			    max = look;
14768 			}
14769 		      if (max != 0)
14770 			tab[c].gt_entry.gt_bytes +=
14771 			  tab[max].gt_entry.gt_bytes;
14772 
14773 		      ++c;
14774 		    }
14775 
14776 		  last = int_gptab.gt_entry.gt_bytes;
14777 		}
14778 
14779 	      /* Hack: reset the SEC_HAS_CONTENTS flag so that
14780 		 elf_link_input_bfd ignores this section.  */
14781 	      input_section->flags &= ~SEC_HAS_CONTENTS;
14782 	    }
14783 
14784 	  /* The table must be sorted by -G value.  */
14785 	  if (c > 2)
14786 	    qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14787 
14788 	  /* Swap out the table.  */
14789 	  amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14790 	  ext_tab = bfd_alloc (abfd, amt);
14791 	  if (ext_tab == NULL)
14792 	    {
14793 	      free (tab);
14794 	      return FALSE;
14795 	    }
14796 
14797 	  for (j = 0; j < c; j++)
14798 	    bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14799 	  free (tab);
14800 
14801 	  o->size = c * sizeof (Elf32_External_gptab);
14802 	  o->contents = (bfd_byte *) ext_tab;
14803 
14804 	  /* Skip this section later on (I don't think this currently
14805 	     matters, but someday it might).  */
14806 	  o->map_head.link_order = NULL;
14807 	}
14808     }
14809 
14810   /* Invoke the regular ELF backend linker to do all the work.  */
14811   if (!bfd_elf_final_link (abfd, info))
14812     return FALSE;
14813 
14814   /* Now write out the computed sections.  */
14815 
14816   if (abiflags_sec != NULL)
14817     {
14818       Elf_External_ABIFlags_v0 ext;
14819       Elf_Internal_ABIFlags_v0 *abiflags;
14820 
14821       abiflags = &mips_elf_tdata (abfd)->abiflags;
14822 
14823       /* Set up the abiflags if no valid input sections were found.  */
14824       if (!mips_elf_tdata (abfd)->abiflags_valid)
14825 	{
14826 	  infer_mips_abiflags (abfd, abiflags);
14827 	  mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14828 	}
14829       bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14830       if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14831 	return FALSE;
14832     }
14833 
14834   if (reginfo_sec != NULL)
14835     {
14836       Elf32_External_RegInfo ext;
14837 
14838       bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
14839       if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
14840 	return FALSE;
14841     }
14842 
14843   if (mdebug_sec != NULL)
14844     {
14845       BFD_ASSERT (abfd->output_has_begun);
14846       if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14847 					       swap, info,
14848 					       mdebug_sec->filepos))
14849 	return FALSE;
14850 
14851       bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14852     }
14853 
14854   if (gptab_data_sec != NULL)
14855     {
14856       if (! bfd_set_section_contents (abfd, gptab_data_sec,
14857 				      gptab_data_sec->contents,
14858 				      0, gptab_data_sec->size))
14859 	return FALSE;
14860     }
14861 
14862   if (gptab_bss_sec != NULL)
14863     {
14864       if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14865 				      gptab_bss_sec->contents,
14866 				      0, gptab_bss_sec->size))
14867 	return FALSE;
14868     }
14869 
14870   if (SGI_COMPAT (abfd))
14871     {
14872       rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14873       if (rtproc_sec != NULL)
14874 	{
14875 	  if (! bfd_set_section_contents (abfd, rtproc_sec,
14876 					  rtproc_sec->contents,
14877 					  0, rtproc_sec->size))
14878 	    return FALSE;
14879 	}
14880     }
14881 
14882   return TRUE;
14883 }
14884 
14885 /* Merge object attributes from IBFD into OBFD.  Raise an error if
14886    there are conflicting attributes.  */
14887 static bfd_boolean
14888 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
14889 {
14890   obj_attribute *in_attr;
14891   obj_attribute *out_attr;
14892   bfd *abi_fp_bfd;
14893   bfd *abi_msa_bfd;
14894 
14895   abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
14896   in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
14897   if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
14898     mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
14899 
14900   abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
14901   if (!abi_msa_bfd
14902       && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
14903     mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
14904 
14905   if (!elf_known_obj_attributes_proc (obfd)[0].i)
14906     {
14907       /* This is the first object.  Copy the attributes.  */
14908       _bfd_elf_copy_obj_attributes (ibfd, obfd);
14909 
14910       /* Use the Tag_null value to indicate the attributes have been
14911 	 initialized.  */
14912       elf_known_obj_attributes_proc (obfd)[0].i = 1;
14913 
14914       return TRUE;
14915     }
14916 
14917   /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
14918      non-conflicting ones.  */
14919   out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
14920   if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
14921     {
14922       int out_fp, in_fp;
14923 
14924       out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
14925       in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14926       out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
14927       if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
14928 	out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
14929       else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
14930 	       && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
14931 		   || in_fp == Val_GNU_MIPS_ABI_FP_64
14932 		   || in_fp == Val_GNU_MIPS_ABI_FP_64A))
14933 	{
14934 	  mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
14935 	  out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14936 	}
14937       else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
14938 	       && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
14939 		   || out_fp == Val_GNU_MIPS_ABI_FP_64
14940 		   || out_fp == Val_GNU_MIPS_ABI_FP_64A))
14941 	/* Keep the current setting.  */;
14942       else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
14943 	       && in_fp == Val_GNU_MIPS_ABI_FP_64)
14944 	{
14945 	  mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
14946 	  out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14947 	}
14948       else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
14949 	       && out_fp == Val_GNU_MIPS_ABI_FP_64)
14950 	/* Keep the current setting.  */;
14951       else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
14952 	{
14953 	  const char *out_string, *in_string;
14954 
14955 	  out_string = _bfd_mips_fp_abi_string (out_fp);
14956 	  in_string = _bfd_mips_fp_abi_string (in_fp);
14957 	  /* First warn about cases involving unrecognised ABIs.  */
14958 	  if (!out_string && !in_string)
14959 	    _bfd_error_handler
14960 	      (_("Warning: %B uses unknown floating point ABI %d "
14961 		 "(set by %B), %B uses unknown floating point ABI %d"),
14962 	       obfd, abi_fp_bfd, ibfd, out_fp, in_fp);
14963 	  else if (!out_string)
14964 	    _bfd_error_handler
14965 	      (_("Warning: %B uses unknown floating point ABI %d "
14966 		 "(set by %B), %B uses %s"),
14967 	       obfd, abi_fp_bfd, ibfd, out_fp, in_string);
14968 	  else if (!in_string)
14969 	    _bfd_error_handler
14970 	      (_("Warning: %B uses %s (set by %B), "
14971 		 "%B uses unknown floating point ABI %d"),
14972 	       obfd, abi_fp_bfd, ibfd, out_string, in_fp);
14973 	  else
14974 	    {
14975 	      /* If one of the bfds is soft-float, the other must be
14976 		 hard-float.  The exact choice of hard-float ABI isn't
14977 		 really relevant to the error message.  */
14978 	      if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
14979 		out_string = "-mhard-float";
14980 	      else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
14981 		in_string = "-mhard-float";
14982 	      _bfd_error_handler
14983 		(_("Warning: %B uses %s (set by %B), %B uses %s"),
14984 		 obfd, abi_fp_bfd, ibfd, out_string, in_string);
14985 	    }
14986 	}
14987     }
14988 
14989   /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
14990      non-conflicting ones.  */
14991   if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
14992     {
14993       out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
14994       if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
14995 	out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
14996       else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
14997 	switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
14998 	  {
14999 	  case Val_GNU_MIPS_ABI_MSA_128:
15000 	    _bfd_error_handler
15001 	      (_("Warning: %B uses %s (set by %B), "
15002 		 "%B uses unknown MSA ABI %d"),
15003 	       obfd, abi_msa_bfd, ibfd,
15004 	       "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15005 	    break;
15006 
15007 	  default:
15008 	    switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15009 	      {
15010 	      case Val_GNU_MIPS_ABI_MSA_128:
15011 		_bfd_error_handler
15012 		  (_("Warning: %B uses unknown MSA ABI %d "
15013 		     "(set by %B), %B uses %s"),
15014 		     obfd, abi_msa_bfd, ibfd,
15015 		     out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa");
15016 		  break;
15017 
15018 	      default:
15019 		_bfd_error_handler
15020 		  (_("Warning: %B uses unknown MSA ABI %d "
15021 		     "(set by %B), %B uses unknown MSA ABI %d"),
15022 		   obfd, abi_msa_bfd, ibfd,
15023 		   out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15024 		   in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15025 		break;
15026 	      }
15027 	  }
15028     }
15029 
15030   /* Merge Tag_compatibility attributes and any common GNU ones.  */
15031   return _bfd_elf_merge_object_attributes (ibfd, obfd);
15032 }
15033 
15034 /* Merge backend specific data from an object file to the output
15035    object file when linking.  */
15036 
15037 bfd_boolean
15038 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
15039 {
15040   flagword old_flags;
15041   flagword new_flags;
15042   bfd_boolean ok;
15043   bfd_boolean null_input_bfd = TRUE;
15044   asection *sec;
15045   obj_attribute *out_attr;
15046 
15047   /* Check if we have the same endianness.  */
15048   if (! _bfd_generic_verify_endian_match (ibfd, obfd))
15049     {
15050       (*_bfd_error_handler)
15051 	(_("%B: endianness incompatible with that of the selected emulation"),
15052 	 ibfd);
15053       return FALSE;
15054     }
15055 
15056   if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15057     return TRUE;
15058 
15059   if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15060     {
15061       (*_bfd_error_handler)
15062 	(_("%B: ABI is incompatible with that of the selected emulation"),
15063 	 ibfd);
15064       return FALSE;
15065     }
15066 
15067   /* Set up the FP ABI attribute from the abiflags if it is not already
15068      set.  */
15069   if (mips_elf_tdata (ibfd)->abiflags_valid)
15070     {
15071       obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15072       if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15073         in_attr[Tag_GNU_MIPS_ABI_FP].i =
15074 	  mips_elf_tdata (ibfd)->abiflags.fp_abi;
15075     }
15076 
15077   if (!mips_elf_merge_obj_attributes (ibfd, obfd))
15078     return FALSE;
15079 
15080   /* Check to see if the input BFD actually contains any sections.
15081      If not, its flags may not have been initialised either, but it cannot
15082      actually cause any incompatibility.  */
15083   for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15084     {
15085       /* Ignore synthetic sections and empty .text, .data and .bss sections
15086 	 which are automatically generated by gas.  Also ignore fake
15087 	 (s)common sections, since merely defining a common symbol does
15088 	 not affect compatibility.  */
15089       if ((sec->flags & SEC_IS_COMMON) == 0
15090 	  && strcmp (sec->name, ".reginfo")
15091 	  && strcmp (sec->name, ".mdebug")
15092 	  && (sec->size != 0
15093 	      || (strcmp (sec->name, ".text")
15094 		  && strcmp (sec->name, ".data")
15095 		  && strcmp (sec->name, ".bss"))))
15096 	{
15097 	  null_input_bfd = FALSE;
15098 	  break;
15099 	}
15100     }
15101   if (null_input_bfd)
15102     return TRUE;
15103 
15104   /* Populate abiflags using existing information.  */
15105   if (!mips_elf_tdata (ibfd)->abiflags_valid)
15106     {
15107       infer_mips_abiflags (ibfd, &mips_elf_tdata (ibfd)->abiflags);
15108       mips_elf_tdata (ibfd)->abiflags_valid = TRUE;
15109     }
15110   else
15111     {
15112       Elf_Internal_ABIFlags_v0 abiflags;
15113       Elf_Internal_ABIFlags_v0 in_abiflags;
15114       infer_mips_abiflags (ibfd, &abiflags);
15115       in_abiflags = mips_elf_tdata (ibfd)->abiflags;
15116 
15117       /* It is not possible to infer the correct ISA revision
15118          for R3 or R5 so drop down to R2 for the checks.  */
15119       if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15120 	in_abiflags.isa_rev = 2;
15121 
15122       if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15123 	  < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15124 	(*_bfd_error_handler)
15125 	  (_("%B: warning: Inconsistent ISA between e_flags and "
15126 	     ".MIPS.abiflags"), ibfd);
15127       if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15128 	  && in_abiflags.fp_abi != abiflags.fp_abi)
15129 	(*_bfd_error_handler)
15130 	  (_("%B: warning: Inconsistent FP ABI between e_flags and "
15131 	     ".MIPS.abiflags"), ibfd);
15132       if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15133 	(*_bfd_error_handler)
15134 	  (_("%B: warning: Inconsistent ASEs between e_flags and "
15135 	     ".MIPS.abiflags"), ibfd);
15136       /* The isa_ext is allowed to be an extension of what can be inferred
15137 	 from e_flags.  */
15138       if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15139 				bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15140 	(*_bfd_error_handler)
15141 	  (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15142 	     ".MIPS.abiflags"), ibfd);
15143       if (in_abiflags.flags2 != 0)
15144 	(*_bfd_error_handler)
15145 	  (_("%B: warning: Unexpected flag in the flags2 field of "
15146 	     ".MIPS.abiflags (0x%lx)"), ibfd,
15147 	   (unsigned long) in_abiflags.flags2);
15148     }
15149 
15150   if (!mips_elf_tdata (obfd)->abiflags_valid)
15151     {
15152       /* Copy input abiflags if output abiflags are not already valid.  */
15153       mips_elf_tdata (obfd)->abiflags = mips_elf_tdata (ibfd)->abiflags;
15154       mips_elf_tdata (obfd)->abiflags_valid = TRUE;
15155     }
15156 
15157   if (! elf_flags_init (obfd))
15158     {
15159       elf_flags_init (obfd) = TRUE;
15160       elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15161       elf_elfheader (obfd)->e_ident[EI_CLASS]
15162 	= elf_elfheader (ibfd)->e_ident[EI_CLASS];
15163 
15164       if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15165 	  && (bfd_get_arch_info (obfd)->the_default
15166 	      || mips_mach_extends_p (bfd_get_mach (obfd),
15167 				      bfd_get_mach (ibfd))))
15168 	{
15169 	  if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15170 				   bfd_get_mach (ibfd)))
15171 	    return FALSE;
15172 
15173 	  /* Update the ABI flags isa_level, isa_rev and isa_ext fields.  */
15174 	  update_mips_abiflags_isa (obfd, &mips_elf_tdata (obfd)->abiflags);
15175 	}
15176 
15177       return TRUE;
15178     }
15179 
15180   /* Update the output abiflags fp_abi using the computed fp_abi.  */
15181   out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15182   mips_elf_tdata (obfd)->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15183 
15184 #define max(a,b) ((a) > (b) ? (a) : (b))
15185   /* Merge abiflags.  */
15186   mips_elf_tdata (obfd)->abiflags.isa_level
15187     = max (mips_elf_tdata (obfd)->abiflags.isa_level,
15188 	   mips_elf_tdata (ibfd)->abiflags.isa_level);
15189   mips_elf_tdata (obfd)->abiflags.isa_rev
15190     = max (mips_elf_tdata (obfd)->abiflags.isa_rev,
15191 	   mips_elf_tdata (ibfd)->abiflags.isa_rev);
15192   mips_elf_tdata (obfd)->abiflags.gpr_size
15193     = max (mips_elf_tdata (obfd)->abiflags.gpr_size,
15194 	   mips_elf_tdata (ibfd)->abiflags.gpr_size);
15195   mips_elf_tdata (obfd)->abiflags.cpr1_size
15196     = max (mips_elf_tdata (obfd)->abiflags.cpr1_size,
15197 	   mips_elf_tdata (ibfd)->abiflags.cpr1_size);
15198   mips_elf_tdata (obfd)->abiflags.cpr2_size
15199     = max (mips_elf_tdata (obfd)->abiflags.cpr2_size,
15200 	   mips_elf_tdata (ibfd)->abiflags.cpr2_size);
15201 #undef max
15202   mips_elf_tdata (obfd)->abiflags.ases
15203     |= mips_elf_tdata (ibfd)->abiflags.ases;
15204   mips_elf_tdata (obfd)->abiflags.flags1
15205     |= mips_elf_tdata (ibfd)->abiflags.flags1;
15206 
15207   new_flags = elf_elfheader (ibfd)->e_flags;
15208   elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15209   old_flags = elf_elfheader (obfd)->e_flags;
15210 
15211   /* Check flag compatibility.  */
15212 
15213   new_flags &= ~EF_MIPS_NOREORDER;
15214   old_flags &= ~EF_MIPS_NOREORDER;
15215 
15216   /* Some IRIX 6 BSD-compatibility objects have this bit set.  It
15217      doesn't seem to matter.  */
15218   new_flags &= ~EF_MIPS_XGOT;
15219   old_flags &= ~EF_MIPS_XGOT;
15220 
15221   /* MIPSpro generates ucode info in n64 objects.  Again, we should
15222      just be able to ignore this.  */
15223   new_flags &= ~EF_MIPS_UCODE;
15224   old_flags &= ~EF_MIPS_UCODE;
15225 
15226   /* DSOs should only be linked with CPIC code.  */
15227   if ((ibfd->flags & DYNAMIC) != 0)
15228     new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15229 
15230   if (new_flags == old_flags)
15231     return TRUE;
15232 
15233   ok = TRUE;
15234 
15235   if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15236       != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15237     {
15238       (*_bfd_error_handler)
15239 	(_("%B: warning: linking abicalls files with non-abicalls files"),
15240 	 ibfd);
15241       ok = TRUE;
15242     }
15243 
15244   if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15245     elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15246   if (! (new_flags & EF_MIPS_PIC))
15247     elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15248 
15249   new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15250   old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15251 
15252   /* Compare the ISAs.  */
15253   if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15254     {
15255       (*_bfd_error_handler)
15256 	(_("%B: linking 32-bit code with 64-bit code"),
15257 	 ibfd);
15258       ok = FALSE;
15259     }
15260   else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15261     {
15262       /* OBFD's ISA isn't the same as, or an extension of, IBFD's.  */
15263       if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15264 	{
15265 	  /* Copy the architecture info from IBFD to OBFD.  Also copy
15266 	     the 32-bit flag (if set) so that we continue to recognise
15267 	     OBFD as a 32-bit binary.  */
15268 	  bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15269 	  elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15270 	  elf_elfheader (obfd)->e_flags
15271 	    |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15272 
15273 	  /* Update the ABI flags isa_level, isa_rev, isa_ext fields.  */
15274 	  update_mips_abiflags_isa (obfd, &mips_elf_tdata (obfd)->abiflags);
15275 
15276 	  /* Copy across the ABI flags if OBFD doesn't use them
15277 	     and if that was what caused us to treat IBFD as 32-bit.  */
15278 	  if ((old_flags & EF_MIPS_ABI) == 0
15279 	      && mips_32bit_flags_p (new_flags)
15280 	      && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15281 	    elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15282 	}
15283       else
15284 	{
15285 	  /* The ISAs aren't compatible.  */
15286 	  (*_bfd_error_handler)
15287 	    (_("%B: linking %s module with previous %s modules"),
15288 	     ibfd,
15289 	     bfd_printable_name (ibfd),
15290 	     bfd_printable_name (obfd));
15291 	  ok = FALSE;
15292 	}
15293     }
15294 
15295   new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15296   old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15297 
15298   /* Compare ABIs.  The 64-bit ABI does not use EF_MIPS_ABI.  But, it
15299      does set EI_CLASS differently from any 32-bit ABI.  */
15300   if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15301       || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15302 	  != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15303     {
15304       /* Only error if both are set (to different values).  */
15305       if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15306 	  || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15307 	      != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15308 	{
15309 	  (*_bfd_error_handler)
15310 	    (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15311 	     ibfd,
15312 	     elf_mips_abi_name (ibfd),
15313 	     elf_mips_abi_name (obfd));
15314 	  ok = FALSE;
15315 	}
15316       new_flags &= ~EF_MIPS_ABI;
15317       old_flags &= ~EF_MIPS_ABI;
15318     }
15319 
15320   /* Compare ASEs.  Forbid linking MIPS16 and microMIPS ASE modules together
15321      and allow arbitrary mixing of the remaining ASEs (retain the union).  */
15322   if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15323     {
15324       int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15325       int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15326       int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15327       int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15328       int micro_mis = old_m16 && new_micro;
15329       int m16_mis = old_micro && new_m16;
15330 
15331       if (m16_mis || micro_mis)
15332 	{
15333 	  (*_bfd_error_handler)
15334 	    (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15335 	     ibfd,
15336 	     m16_mis ? "MIPS16" : "microMIPS",
15337 	     m16_mis ? "microMIPS" : "MIPS16");
15338 	  ok = FALSE;
15339 	}
15340 
15341       elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15342 
15343       new_flags &= ~ EF_MIPS_ARCH_ASE;
15344       old_flags &= ~ EF_MIPS_ARCH_ASE;
15345     }
15346 
15347   /* Compare NaN encodings.  */
15348   if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15349     {
15350       _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15351 			  ibfd,
15352 			  (new_flags & EF_MIPS_NAN2008
15353 			   ? "-mnan=2008" : "-mnan=legacy"),
15354 			  (old_flags & EF_MIPS_NAN2008
15355 			   ? "-mnan=2008" : "-mnan=legacy"));
15356       ok = FALSE;
15357       new_flags &= ~EF_MIPS_NAN2008;
15358       old_flags &= ~EF_MIPS_NAN2008;
15359     }
15360 
15361   /* Compare FP64 state.  */
15362   if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15363     {
15364       _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15365 			  ibfd,
15366 			  (new_flags & EF_MIPS_FP64
15367 			   ? "-mfp64" : "-mfp32"),
15368 			  (old_flags & EF_MIPS_FP64
15369 			   ? "-mfp64" : "-mfp32"));
15370       ok = FALSE;
15371       new_flags &= ~EF_MIPS_FP64;
15372       old_flags &= ~EF_MIPS_FP64;
15373     }
15374 
15375   /* Warn about any other mismatches */
15376   if (new_flags != old_flags)
15377     {
15378       (*_bfd_error_handler)
15379 	(_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
15380 	 ibfd, (unsigned long) new_flags,
15381 	 (unsigned long) old_flags);
15382       ok = FALSE;
15383     }
15384 
15385   if (! ok)
15386     {
15387       bfd_set_error (bfd_error_bad_value);
15388       return FALSE;
15389     }
15390 
15391   return TRUE;
15392 }
15393 
15394 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC.  */
15395 
15396 bfd_boolean
15397 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15398 {
15399   BFD_ASSERT (!elf_flags_init (abfd)
15400 	      || elf_elfheader (abfd)->e_flags == flags);
15401 
15402   elf_elfheader (abfd)->e_flags = flags;
15403   elf_flags_init (abfd) = TRUE;
15404   return TRUE;
15405 }
15406 
15407 char *
15408 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15409 {
15410   switch (dtag)
15411     {
15412     default: return "";
15413     case DT_MIPS_RLD_VERSION:
15414       return "MIPS_RLD_VERSION";
15415     case DT_MIPS_TIME_STAMP:
15416       return "MIPS_TIME_STAMP";
15417     case DT_MIPS_ICHECKSUM:
15418       return "MIPS_ICHECKSUM";
15419     case DT_MIPS_IVERSION:
15420       return "MIPS_IVERSION";
15421     case DT_MIPS_FLAGS:
15422       return "MIPS_FLAGS";
15423     case DT_MIPS_BASE_ADDRESS:
15424       return "MIPS_BASE_ADDRESS";
15425     case DT_MIPS_MSYM:
15426       return "MIPS_MSYM";
15427     case DT_MIPS_CONFLICT:
15428       return "MIPS_CONFLICT";
15429     case DT_MIPS_LIBLIST:
15430       return "MIPS_LIBLIST";
15431     case DT_MIPS_LOCAL_GOTNO:
15432       return "MIPS_LOCAL_GOTNO";
15433     case DT_MIPS_CONFLICTNO:
15434       return "MIPS_CONFLICTNO";
15435     case DT_MIPS_LIBLISTNO:
15436       return "MIPS_LIBLISTNO";
15437     case DT_MIPS_SYMTABNO:
15438       return "MIPS_SYMTABNO";
15439     case DT_MIPS_UNREFEXTNO:
15440       return "MIPS_UNREFEXTNO";
15441     case DT_MIPS_GOTSYM:
15442       return "MIPS_GOTSYM";
15443     case DT_MIPS_HIPAGENO:
15444       return "MIPS_HIPAGENO";
15445     case DT_MIPS_RLD_MAP:
15446       return "MIPS_RLD_MAP";
15447     case DT_MIPS_RLD_MAP_REL:
15448       return "MIPS_RLD_MAP_REL";
15449     case DT_MIPS_DELTA_CLASS:
15450       return "MIPS_DELTA_CLASS";
15451     case DT_MIPS_DELTA_CLASS_NO:
15452       return "MIPS_DELTA_CLASS_NO";
15453     case DT_MIPS_DELTA_INSTANCE:
15454       return "MIPS_DELTA_INSTANCE";
15455     case DT_MIPS_DELTA_INSTANCE_NO:
15456       return "MIPS_DELTA_INSTANCE_NO";
15457     case DT_MIPS_DELTA_RELOC:
15458       return "MIPS_DELTA_RELOC";
15459     case DT_MIPS_DELTA_RELOC_NO:
15460       return "MIPS_DELTA_RELOC_NO";
15461     case DT_MIPS_DELTA_SYM:
15462       return "MIPS_DELTA_SYM";
15463     case DT_MIPS_DELTA_SYM_NO:
15464       return "MIPS_DELTA_SYM_NO";
15465     case DT_MIPS_DELTA_CLASSSYM:
15466       return "MIPS_DELTA_CLASSSYM";
15467     case DT_MIPS_DELTA_CLASSSYM_NO:
15468       return "MIPS_DELTA_CLASSSYM_NO";
15469     case DT_MIPS_CXX_FLAGS:
15470       return "MIPS_CXX_FLAGS";
15471     case DT_MIPS_PIXIE_INIT:
15472       return "MIPS_PIXIE_INIT";
15473     case DT_MIPS_SYMBOL_LIB:
15474       return "MIPS_SYMBOL_LIB";
15475     case DT_MIPS_LOCALPAGE_GOTIDX:
15476       return "MIPS_LOCALPAGE_GOTIDX";
15477     case DT_MIPS_LOCAL_GOTIDX:
15478       return "MIPS_LOCAL_GOTIDX";
15479     case DT_MIPS_HIDDEN_GOTIDX:
15480       return "MIPS_HIDDEN_GOTIDX";
15481     case DT_MIPS_PROTECTED_GOTIDX:
15482       return "MIPS_PROTECTED_GOT_IDX";
15483     case DT_MIPS_OPTIONS:
15484       return "MIPS_OPTIONS";
15485     case DT_MIPS_INTERFACE:
15486       return "MIPS_INTERFACE";
15487     case DT_MIPS_DYNSTR_ALIGN:
15488       return "DT_MIPS_DYNSTR_ALIGN";
15489     case DT_MIPS_INTERFACE_SIZE:
15490       return "DT_MIPS_INTERFACE_SIZE";
15491     case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15492       return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15493     case DT_MIPS_PERF_SUFFIX:
15494       return "DT_MIPS_PERF_SUFFIX";
15495     case DT_MIPS_COMPACT_SIZE:
15496       return "DT_MIPS_COMPACT_SIZE";
15497     case DT_MIPS_GP_VALUE:
15498       return "DT_MIPS_GP_VALUE";
15499     case DT_MIPS_AUX_DYNAMIC:
15500       return "DT_MIPS_AUX_DYNAMIC";
15501     case DT_MIPS_PLTGOT:
15502       return "DT_MIPS_PLTGOT";
15503     case DT_MIPS_RWPLT:
15504       return "DT_MIPS_RWPLT";
15505     }
15506 }
15507 
15508 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15509    not known.  */
15510 
15511 const char *
15512 _bfd_mips_fp_abi_string (int fp)
15513 {
15514   switch (fp)
15515     {
15516       /* These strings aren't translated because they're simply
15517 	 option lists.  */
15518     case Val_GNU_MIPS_ABI_FP_DOUBLE:
15519       return "-mdouble-float";
15520 
15521     case Val_GNU_MIPS_ABI_FP_SINGLE:
15522       return "-msingle-float";
15523 
15524     case Val_GNU_MIPS_ABI_FP_SOFT:
15525       return "-msoft-float";
15526 
15527     case Val_GNU_MIPS_ABI_FP_OLD_64:
15528       return _("-mips32r2 -mfp64 (12 callee-saved)");
15529 
15530     case Val_GNU_MIPS_ABI_FP_XX:
15531       return "-mfpxx";
15532 
15533     case Val_GNU_MIPS_ABI_FP_64:
15534       return "-mgp32 -mfp64";
15535 
15536     case Val_GNU_MIPS_ABI_FP_64A:
15537       return "-mgp32 -mfp64 -mno-odd-spreg";
15538 
15539     default:
15540       return 0;
15541     }
15542 }
15543 
15544 static void
15545 print_mips_ases (FILE *file, unsigned int mask)
15546 {
15547   if (mask & AFL_ASE_DSP)
15548     fputs ("\n\tDSP ASE", file);
15549   if (mask & AFL_ASE_DSPR2)
15550     fputs ("\n\tDSP R2 ASE", file);
15551   if (mask & AFL_ASE_EVA)
15552     fputs ("\n\tEnhanced VA Scheme", file);
15553   if (mask & AFL_ASE_MCU)
15554     fputs ("\n\tMCU (MicroController) ASE", file);
15555   if (mask & AFL_ASE_MDMX)
15556     fputs ("\n\tMDMX ASE", file);
15557   if (mask & AFL_ASE_MIPS3D)
15558     fputs ("\n\tMIPS-3D ASE", file);
15559   if (mask & AFL_ASE_MT)
15560     fputs ("\n\tMT ASE", file);
15561   if (mask & AFL_ASE_SMARTMIPS)
15562     fputs ("\n\tSmartMIPS ASE", file);
15563   if (mask & AFL_ASE_VIRT)
15564     fputs ("\n\tVZ ASE", file);
15565   if (mask & AFL_ASE_MSA)
15566     fputs ("\n\tMSA ASE", file);
15567   if (mask & AFL_ASE_MIPS16)
15568     fputs ("\n\tMIPS16 ASE", file);
15569   if (mask & AFL_ASE_MICROMIPS)
15570     fputs ("\n\tMICROMIPS ASE", file);
15571   if (mask & AFL_ASE_XPA)
15572     fputs ("\n\tXPA ASE", file);
15573   if (mask == 0)
15574     fprintf (file, "\n\t%s", _("None"));
15575   else if ((mask & ~AFL_ASE_MASK) != 0)
15576     fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15577 }
15578 
15579 static void
15580 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15581 {
15582   switch (isa_ext)
15583     {
15584     case 0:
15585       fputs (_("None"), file);
15586       break;
15587     case AFL_EXT_XLR:
15588       fputs ("RMI XLR", file);
15589       break;
15590     case AFL_EXT_OCTEON3:
15591       fputs ("Cavium Networks Octeon3", file);
15592       break;
15593     case AFL_EXT_OCTEON2:
15594       fputs ("Cavium Networks Octeon2", file);
15595       break;
15596     case AFL_EXT_OCTEONP:
15597       fputs ("Cavium Networks OcteonP", file);
15598       break;
15599     case AFL_EXT_LOONGSON_3A:
15600       fputs ("Loongson 3A", file);
15601       break;
15602     case AFL_EXT_OCTEON:
15603       fputs ("Cavium Networks Octeon", file);
15604       break;
15605     case AFL_EXT_5900:
15606       fputs ("Toshiba R5900", file);
15607       break;
15608     case AFL_EXT_4650:
15609       fputs ("MIPS R4650", file);
15610       break;
15611     case AFL_EXT_4010:
15612       fputs ("LSI R4010", file);
15613       break;
15614     case AFL_EXT_4100:
15615       fputs ("NEC VR4100", file);
15616       break;
15617     case AFL_EXT_3900:
15618       fputs ("Toshiba R3900", file);
15619       break;
15620     case AFL_EXT_10000:
15621       fputs ("MIPS R10000", file);
15622       break;
15623     case AFL_EXT_SB1:
15624       fputs ("Broadcom SB-1", file);
15625       break;
15626     case AFL_EXT_4111:
15627       fputs ("NEC VR4111/VR4181", file);
15628       break;
15629     case AFL_EXT_4120:
15630       fputs ("NEC VR4120", file);
15631       break;
15632     case AFL_EXT_5400:
15633       fputs ("NEC VR5400", file);
15634       break;
15635     case AFL_EXT_5500:
15636       fputs ("NEC VR5500", file);
15637       break;
15638     case AFL_EXT_LOONGSON_2E:
15639       fputs ("ST Microelectronics Loongson 2E", file);
15640       break;
15641     case AFL_EXT_LOONGSON_2F:
15642       fputs ("ST Microelectronics Loongson 2F", file);
15643       break;
15644     default:
15645       fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15646       break;
15647     }
15648 }
15649 
15650 static void
15651 print_mips_fp_abi_value (FILE *file, int val)
15652 {
15653   switch (val)
15654     {
15655     case Val_GNU_MIPS_ABI_FP_ANY:
15656       fprintf (file, _("Hard or soft float\n"));
15657       break;
15658     case Val_GNU_MIPS_ABI_FP_DOUBLE:
15659       fprintf (file, _("Hard float (double precision)\n"));
15660       break;
15661     case Val_GNU_MIPS_ABI_FP_SINGLE:
15662       fprintf (file, _("Hard float (single precision)\n"));
15663       break;
15664     case Val_GNU_MIPS_ABI_FP_SOFT:
15665       fprintf (file, _("Soft float\n"));
15666       break;
15667     case Val_GNU_MIPS_ABI_FP_OLD_64:
15668       fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15669       break;
15670     case Val_GNU_MIPS_ABI_FP_XX:
15671       fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15672       break;
15673     case Val_GNU_MIPS_ABI_FP_64:
15674       fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15675       break;
15676     case Val_GNU_MIPS_ABI_FP_64A:
15677       fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15678       break;
15679     default:
15680       fprintf (file, "??? (%d)\n", val);
15681       break;
15682     }
15683 }
15684 
15685 static int
15686 get_mips_reg_size (int reg_size)
15687 {
15688   return (reg_size == AFL_REG_NONE) ? 0
15689 	 : (reg_size == AFL_REG_32) ? 32
15690 	 : (reg_size == AFL_REG_64) ? 64
15691 	 : (reg_size == AFL_REG_128) ? 128
15692 	 : -1;
15693 }
15694 
15695 bfd_boolean
15696 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15697 {
15698   FILE *file = ptr;
15699 
15700   BFD_ASSERT (abfd != NULL && ptr != NULL);
15701 
15702   /* Print normal ELF private data.  */
15703   _bfd_elf_print_private_bfd_data (abfd, ptr);
15704 
15705   /* xgettext:c-format */
15706   fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15707 
15708   if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15709     fprintf (file, _(" [abi=O32]"));
15710   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15711     fprintf (file, _(" [abi=O64]"));
15712   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15713     fprintf (file, _(" [abi=EABI32]"));
15714   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15715     fprintf (file, _(" [abi=EABI64]"));
15716   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15717     fprintf (file, _(" [abi unknown]"));
15718   else if (ABI_N32_P (abfd))
15719     fprintf (file, _(" [abi=N32]"));
15720   else if (ABI_64_P (abfd))
15721     fprintf (file, _(" [abi=64]"));
15722   else
15723     fprintf (file, _(" [no abi set]"));
15724 
15725   if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15726     fprintf (file, " [mips1]");
15727   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15728     fprintf (file, " [mips2]");
15729   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15730     fprintf (file, " [mips3]");
15731   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15732     fprintf (file, " [mips4]");
15733   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15734     fprintf (file, " [mips5]");
15735   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15736     fprintf (file, " [mips32]");
15737   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15738     fprintf (file, " [mips64]");
15739   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15740     fprintf (file, " [mips32r2]");
15741   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15742     fprintf (file, " [mips64r2]");
15743   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15744     fprintf (file, " [mips32r6]");
15745   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15746     fprintf (file, " [mips64r6]");
15747   else
15748     fprintf (file, _(" [unknown ISA]"));
15749 
15750   if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15751     fprintf (file, " [mdmx]");
15752 
15753   if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15754     fprintf (file, " [mips16]");
15755 
15756   if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15757     fprintf (file, " [micromips]");
15758 
15759   if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15760     fprintf (file, " [nan2008]");
15761 
15762   if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15763     fprintf (file, " [old fp64]");
15764 
15765   if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15766     fprintf (file, " [32bitmode]");
15767   else
15768     fprintf (file, _(" [not 32bitmode]"));
15769 
15770   if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15771     fprintf (file, " [noreorder]");
15772 
15773   if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15774     fprintf (file, " [PIC]");
15775 
15776   if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15777     fprintf (file, " [CPIC]");
15778 
15779   if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15780     fprintf (file, " [XGOT]");
15781 
15782   if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15783     fprintf (file, " [UCODE]");
15784 
15785   fputc ('\n', file);
15786 
15787   if (mips_elf_tdata (abfd)->abiflags_valid)
15788     {
15789       Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15790       fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15791       fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15792       if (abiflags->isa_rev > 1)
15793 	fprintf (file, "r%d", abiflags->isa_rev);
15794       fprintf (file, "\nGPR size: %d",
15795 	       get_mips_reg_size (abiflags->gpr_size));
15796       fprintf (file, "\nCPR1 size: %d",
15797 	       get_mips_reg_size (abiflags->cpr1_size));
15798       fprintf (file, "\nCPR2 size: %d",
15799 	       get_mips_reg_size (abiflags->cpr2_size));
15800       fputs ("\nFP ABI: ", file);
15801       print_mips_fp_abi_value (file, abiflags->fp_abi);
15802       fputs ("ISA Extension: ", file);
15803       print_mips_isa_ext (file, abiflags->isa_ext);
15804       fputs ("\nASEs:", file);
15805       print_mips_ases (file, abiflags->ases);
15806       fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15807       fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15808       fputc ('\n', file);
15809     }
15810 
15811   return TRUE;
15812 }
15813 
15814 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
15815 {
15816   { STRING_COMMA_LEN (".lit4"),   0, SHT_PROGBITS,   SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15817   { STRING_COMMA_LEN (".lit8"),   0, SHT_PROGBITS,   SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15818   { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15819   { STRING_COMMA_LEN (".sbss"),  -2, SHT_NOBITS,     SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15820   { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS,   SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15821   { STRING_COMMA_LEN (".ucode"),  0, SHT_MIPS_UCODE, 0 },
15822   { NULL,                     0,  0, 0,              0 }
15823 };
15824 
15825 /* Merge non visibility st_other attributes.  Ensure that the
15826    STO_OPTIONAL flag is copied into h->other, even if this is not a
15827    definiton of the symbol.  */
15828 void
15829 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15830 				      const Elf_Internal_Sym *isym,
15831 				      bfd_boolean definition,
15832 				      bfd_boolean dynamic ATTRIBUTE_UNUSED)
15833 {
15834   if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15835     {
15836       unsigned char other;
15837 
15838       other = (definition ? isym->st_other : h->other);
15839       other &= ~ELF_ST_VISIBILITY (-1);
15840       h->other = other | ELF_ST_VISIBILITY (h->other);
15841     }
15842 
15843   if (!definition
15844       && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15845     h->other |= STO_OPTIONAL;
15846 }
15847 
15848 /* Decide whether an undefined symbol is special and can be ignored.
15849    This is the case for OPTIONAL symbols on IRIX.  */
15850 bfd_boolean
15851 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15852 {
15853   return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15854 }
15855 
15856 bfd_boolean
15857 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15858 {
15859   return (sym->st_shndx == SHN_COMMON
15860 	  || sym->st_shndx == SHN_MIPS_ACOMMON
15861 	  || sym->st_shndx == SHN_MIPS_SCOMMON);
15862 }
15863 
15864 /* Return address for Ith PLT stub in section PLT, for relocation REL
15865    or (bfd_vma) -1 if it should not be included.  */
15866 
15867 bfd_vma
15868 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15869 			   const arelent *rel ATTRIBUTE_UNUSED)
15870 {
15871   return (plt->vma
15872 	  + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15873 	  + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15874 }
15875 
15876 /* Build a table of synthetic symbols to represent the PLT.  As with MIPS16
15877    and microMIPS PLT slots we may have a many-to-one mapping between .plt
15878    and .got.plt and also the slots may be of a different size each we walk
15879    the PLT manually fetching instructions and matching them against known
15880    patterns.  To make things easier standard MIPS slots, if any, always come
15881    first.  As we don't create proper ELF symbols we use the UDATA.I member
15882    of ASYMBOL to carry ISA annotation.  The encoding used is the same as
15883    with the ST_OTHER member of the ELF symbol.  */
15884 
15885 long
15886 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15887 				    long symcount ATTRIBUTE_UNUSED,
15888 				    asymbol **syms ATTRIBUTE_UNUSED,
15889 				    long dynsymcount, asymbol **dynsyms,
15890 				    asymbol **ret)
15891 {
15892   static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15893   static const char microsuffix[] = "@micromipsplt";
15894   static const char m16suffix[] = "@mips16plt";
15895   static const char mipssuffix[] = "@plt";
15896 
15897   bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
15898   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15899   bfd_boolean micromips_p = MICROMIPS_P (abfd);
15900   Elf_Internal_Shdr *hdr;
15901   bfd_byte *plt_data;
15902   bfd_vma plt_offset;
15903   unsigned int other;
15904   bfd_vma entry_size;
15905   bfd_vma plt0_size;
15906   asection *relplt;
15907   bfd_vma opcode;
15908   asection *plt;
15909   asymbol *send;
15910   size_t size;
15911   char *names;
15912   long counti;
15913   arelent *p;
15914   asymbol *s;
15915   char *nend;
15916   long count;
15917   long pi;
15918   long i;
15919   long n;
15920 
15921   *ret = NULL;
15922 
15923   if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
15924     return 0;
15925 
15926   relplt = bfd_get_section_by_name (abfd, ".rel.plt");
15927   if (relplt == NULL)
15928     return 0;
15929 
15930   hdr = &elf_section_data (relplt)->this_hdr;
15931   if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
15932     return 0;
15933 
15934   plt = bfd_get_section_by_name (abfd, ".plt");
15935   if (plt == NULL)
15936     return 0;
15937 
15938   slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
15939   if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
15940     return -1;
15941   p = relplt->relocation;
15942 
15943   /* Calculating the exact amount of space required for symbols would
15944      require two passes over the PLT, so just pessimise assuming two
15945      PLT slots per relocation.  */
15946   count = relplt->size / hdr->sh_entsize;
15947   counti = count * bed->s->int_rels_per_ext_rel;
15948   size = 2 * count * sizeof (asymbol);
15949   size += count * (sizeof (mipssuffix) +
15950 		   (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
15951   for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
15952     size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
15953 
15954   /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too.  */
15955   size += sizeof (asymbol) + sizeof (pltname);
15956 
15957   if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
15958     return -1;
15959 
15960   if (plt->size < 16)
15961     return -1;
15962 
15963   s = *ret = bfd_malloc (size);
15964   if (s == NULL)
15965     return -1;
15966   send = s + 2 * count + 1;
15967 
15968   names = (char *) send;
15969   nend = (char *) s + size;
15970   n = 0;
15971 
15972   opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
15973   if (opcode == 0x3302fffe)
15974     {
15975       if (!micromips_p)
15976 	return -1;
15977       plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
15978       other = STO_MICROMIPS;
15979     }
15980   else if (opcode == 0x0398c1d0)
15981     {
15982       if (!micromips_p)
15983 	return -1;
15984       plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
15985       other = STO_MICROMIPS;
15986     }
15987   else
15988     {
15989       plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
15990       other = 0;
15991     }
15992 
15993   s->the_bfd = abfd;
15994   s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
15995   s->section = plt;
15996   s->value = 0;
15997   s->name = names;
15998   s->udata.i = other;
15999   memcpy (names, pltname, sizeof (pltname));
16000   names += sizeof (pltname);
16001   ++s, ++n;
16002 
16003   pi = 0;
16004   for (plt_offset = plt0_size;
16005        plt_offset + 8 <= plt->size && s < send;
16006        plt_offset += entry_size)
16007     {
16008       bfd_vma gotplt_addr;
16009       const char *suffix;
16010       bfd_vma gotplt_hi;
16011       bfd_vma gotplt_lo;
16012       size_t suffixlen;
16013 
16014       opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16015 
16016       /* Check if the second word matches the expected MIPS16 instruction.  */
16017       if (opcode == 0x651aeb00)
16018 	{
16019 	  if (micromips_p)
16020 	    return -1;
16021 	  /* Truncated table???  */
16022 	  if (plt_offset + 16 > plt->size)
16023 	    break;
16024 	  gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16025 	  entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16026 	  suffixlen = sizeof (m16suffix);
16027 	  suffix = m16suffix;
16028 	  other = STO_MIPS16;
16029 	}
16030       /* Likewise the expected microMIPS instruction (no insn32 mode).  */
16031       else if (opcode == 0xff220000)
16032 	{
16033 	  if (!micromips_p)
16034 	    return -1;
16035 	  gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16036 	  gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16037 	  gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16038 	  gotplt_lo <<= 2;
16039 	  gotplt_addr = gotplt_hi + gotplt_lo;
16040 	  gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16041 	  entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16042 	  suffixlen = sizeof (microsuffix);
16043 	  suffix = microsuffix;
16044 	  other = STO_MICROMIPS;
16045 	}
16046       /* Likewise the expected microMIPS instruction (insn32 mode).  */
16047       else if ((opcode & 0xffff0000) == 0xff2f0000)
16048 	{
16049 	  gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16050 	  gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16051 	  gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16052 	  gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16053 	  gotplt_addr = gotplt_hi + gotplt_lo;
16054 	  entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16055 	  suffixlen = sizeof (microsuffix);
16056 	  suffix = microsuffix;
16057 	  other = STO_MICROMIPS;
16058 	}
16059       /* Otherwise assume standard MIPS code.  */
16060       else
16061 	{
16062 	  gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16063 	  gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16064 	  gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16065 	  gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16066 	  gotplt_addr = gotplt_hi + gotplt_lo;
16067 	  entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16068 	  suffixlen = sizeof (mipssuffix);
16069 	  suffix = mipssuffix;
16070 	  other = 0;
16071 	}
16072       /* Truncated table???  */
16073       if (plt_offset + entry_size > plt->size)
16074 	break;
16075 
16076       for (i = 0;
16077 	   i < count && p[pi].address != gotplt_addr;
16078 	   i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16079 
16080       if (i < count)
16081 	{
16082 	  size_t namelen;
16083 	  size_t len;
16084 
16085 	  *s = **p[pi].sym_ptr_ptr;
16086 	  /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set.  Since
16087 	     we are defining a symbol, ensure one of them is set.  */
16088 	  if ((s->flags & BSF_LOCAL) == 0)
16089 	    s->flags |= BSF_GLOBAL;
16090 	  s->flags |= BSF_SYNTHETIC;
16091 	  s->section = plt;
16092 	  s->value = plt_offset;
16093 	  s->name = names;
16094 	  s->udata.i = other;
16095 
16096 	  len = strlen ((*p[pi].sym_ptr_ptr)->name);
16097 	  namelen = len + suffixlen;
16098 	  if (names + namelen > nend)
16099 	    break;
16100 
16101 	  memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16102 	  names += len;
16103 	  memcpy (names, suffix, suffixlen);
16104 	  names += suffixlen;
16105 
16106 	  ++s, ++n;
16107 	  pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16108 	}
16109     }
16110 
16111   free (plt_data);
16112 
16113   return n;
16114 }
16115 
16116 void
16117 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16118 {
16119   struct mips_elf_link_hash_table *htab;
16120   Elf_Internal_Ehdr *i_ehdrp;
16121 
16122   i_ehdrp = elf_elfheader (abfd);
16123   if (link_info)
16124     {
16125       htab = mips_elf_hash_table (link_info);
16126       BFD_ASSERT (htab != NULL);
16127 
16128       if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16129 	i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16130     }
16131 
16132   _bfd_elf_post_process_headers (abfd, link_info);
16133 
16134   if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16135       || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16136     i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16137 }
16138 
16139 int
16140 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16141 {
16142   return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16143 }
16144 
16145 /* Return the opcode for can't unwind.  */
16146 
16147 int
16148 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16149 {
16150   return COMPACT_EH_CANT_UNWIND_OPCODE;
16151 }
16152