1 /* MIPS-specific support for ELF 2 Copyright (C) 1993-2015 Free Software Foundation, Inc. 3 4 Most of the information added by Ian Lance Taylor, Cygnus Support, 5 <ian@cygnus.com>. 6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC. 7 <mark@codesourcery.com> 8 Traditional MIPS targets support added by Koundinya.K, Dansk Data 9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net> 10 11 This file is part of BFD, the Binary File Descriptor library. 12 13 This program is free software; you can redistribute it and/or modify 14 it under the terms of the GNU General Public License as published by 15 the Free Software Foundation; either version 3 of the License, or 16 (at your option) any later version. 17 18 This program is distributed in the hope that it will be useful, 19 but WITHOUT ANY WARRANTY; without even the implied warranty of 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 GNU General Public License for more details. 22 23 You should have received a copy of the GNU General Public License 24 along with this program; if not, write to the Free Software 25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 26 MA 02110-1301, USA. */ 27 28 29 /* This file handles functionality common to the different MIPS ABI's. */ 30 31 #include "sysdep.h" 32 #include "bfd.h" 33 #include "libbfd.h" 34 #include "libiberty.h" 35 #include "elf-bfd.h" 36 #include "elfxx-mips.h" 37 #include "elf/mips.h" 38 #include "elf-vxworks.h" 39 #include "dwarf2.h" 40 41 /* Get the ECOFF swapping routines. */ 42 #include "coff/sym.h" 43 #include "coff/symconst.h" 44 #include "coff/ecoff.h" 45 #include "coff/mips.h" 46 47 #include "hashtab.h" 48 49 /* Types of TLS GOT entry. */ 50 enum mips_got_tls_type { 51 GOT_TLS_NONE, 52 GOT_TLS_GD, 53 GOT_TLS_LDM, 54 GOT_TLS_IE 55 }; 56 57 /* This structure is used to hold information about one GOT entry. 58 There are four types of entry: 59 60 (1) an absolute address 61 requires: abfd == NULL 62 fields: d.address 63 64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd 65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM 66 fields: abfd, symndx, d.addend, tls_type 67 68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd 69 requires: abfd != NULL, symndx == -1 70 fields: d.h, tls_type 71 72 (4) a TLS LDM slot 73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM 74 fields: none; there's only one of these per GOT. */ 75 struct mips_got_entry 76 { 77 /* One input bfd that needs the GOT entry. */ 78 bfd *abfd; 79 /* The index of the symbol, as stored in the relocation r_info, if 80 we have a local symbol; -1 otherwise. */ 81 long symndx; 82 union 83 { 84 /* If abfd == NULL, an address that must be stored in the got. */ 85 bfd_vma address; 86 /* If abfd != NULL && symndx != -1, the addend of the relocation 87 that should be added to the symbol value. */ 88 bfd_vma addend; 89 /* If abfd != NULL && symndx == -1, the hash table entry 90 corresponding to a symbol in the GOT. The symbol's entry 91 is in the local area if h->global_got_area is GGA_NONE, 92 otherwise it is in the global area. */ 93 struct mips_elf_link_hash_entry *h; 94 } d; 95 96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local 97 symbol entry with r_symndx == 0. */ 98 unsigned char tls_type; 99 100 /* True if we have filled in the GOT contents for a TLS entry, 101 and created the associated relocations. */ 102 unsigned char tls_initialized; 103 104 /* The offset from the beginning of the .got section to the entry 105 corresponding to this symbol+addend. If it's a global symbol 106 whose offset is yet to be decided, it's going to be -1. */ 107 long gotidx; 108 }; 109 110 /* This structure represents a GOT page reference from an input bfd. 111 Each instance represents a symbol + ADDEND, where the representation 112 of the symbol depends on whether it is local to the input bfd. 113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD. 114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry. 115 116 Page references with SYMNDX >= 0 always become page references 117 in the output. Page references with SYMNDX < 0 only become page 118 references if the symbol binds locally; in other cases, the page 119 reference decays to a global GOT reference. */ 120 struct mips_got_page_ref 121 { 122 long symndx; 123 union 124 { 125 struct mips_elf_link_hash_entry *h; 126 bfd *abfd; 127 } u; 128 bfd_vma addend; 129 }; 130 131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND]. 132 The structures form a non-overlapping list that is sorted by increasing 133 MIN_ADDEND. */ 134 struct mips_got_page_range 135 { 136 struct mips_got_page_range *next; 137 bfd_signed_vma min_addend; 138 bfd_signed_vma max_addend; 139 }; 140 141 /* This structure describes the range of addends that are applied to page 142 relocations against a given section. */ 143 struct mips_got_page_entry 144 { 145 /* The section that these entries are based on. */ 146 asection *sec; 147 /* The ranges for this page entry. */ 148 struct mips_got_page_range *ranges; 149 /* The maximum number of page entries needed for RANGES. */ 150 bfd_vma num_pages; 151 }; 152 153 /* This structure is used to hold .got information when linking. */ 154 155 struct mips_got_info 156 { 157 /* The number of global .got entries. */ 158 unsigned int global_gotno; 159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */ 160 unsigned int reloc_only_gotno; 161 /* The number of .got slots used for TLS. */ 162 unsigned int tls_gotno; 163 /* The first unused TLS .got entry. Used only during 164 mips_elf_initialize_tls_index. */ 165 unsigned int tls_assigned_gotno; 166 /* The number of local .got entries, eventually including page entries. */ 167 unsigned int local_gotno; 168 /* The maximum number of page entries needed. */ 169 unsigned int page_gotno; 170 /* The number of relocations needed for the GOT entries. */ 171 unsigned int relocs; 172 /* The first unused local .got entry. */ 173 unsigned int assigned_low_gotno; 174 /* The last unused local .got entry. */ 175 unsigned int assigned_high_gotno; 176 /* A hash table holding members of the got. */ 177 struct htab *got_entries; 178 /* A hash table holding mips_got_page_ref structures. */ 179 struct htab *got_page_refs; 180 /* A hash table of mips_got_page_entry structures. */ 181 struct htab *got_page_entries; 182 /* In multi-got links, a pointer to the next got (err, rather, most 183 of the time, it points to the previous got). */ 184 struct mips_got_info *next; 185 }; 186 187 /* Structure passed when merging bfds' gots. */ 188 189 struct mips_elf_got_per_bfd_arg 190 { 191 /* The output bfd. */ 192 bfd *obfd; 193 /* The link information. */ 194 struct bfd_link_info *info; 195 /* A pointer to the primary got, i.e., the one that's going to get 196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and 197 DT_MIPS_GOTSYM. */ 198 struct mips_got_info *primary; 199 /* A non-primary got we're trying to merge with other input bfd's 200 gots. */ 201 struct mips_got_info *current; 202 /* The maximum number of got entries that can be addressed with a 203 16-bit offset. */ 204 unsigned int max_count; 205 /* The maximum number of page entries needed by each got. */ 206 unsigned int max_pages; 207 /* The total number of global entries which will live in the 208 primary got and be automatically relocated. This includes 209 those not referenced by the primary GOT but included in 210 the "master" GOT. */ 211 unsigned int global_count; 212 }; 213 214 /* A structure used to pass information to htab_traverse callbacks 215 when laying out the GOT. */ 216 217 struct mips_elf_traverse_got_arg 218 { 219 struct bfd_link_info *info; 220 struct mips_got_info *g; 221 int value; 222 }; 223 224 struct _mips_elf_section_data 225 { 226 struct bfd_elf_section_data elf; 227 union 228 { 229 bfd_byte *tdata; 230 } u; 231 }; 232 233 #define mips_elf_section_data(sec) \ 234 ((struct _mips_elf_section_data *) elf_section_data (sec)) 235 236 #define is_mips_elf(bfd) \ 237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ 238 && elf_tdata (bfd) != NULL \ 239 && elf_object_id (bfd) == MIPS_ELF_DATA) 240 241 /* The ABI says that every symbol used by dynamic relocations must have 242 a global GOT entry. Among other things, this provides the dynamic 243 linker with a free, directly-indexed cache. The GOT can therefore 244 contain symbols that are not referenced by GOT relocations themselves 245 (in other words, it may have symbols that are not referenced by things 246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE). 247 248 GOT relocations are less likely to overflow if we put the associated 249 GOT entries towards the beginning. We therefore divide the global 250 GOT entries into two areas: "normal" and "reloc-only". Entries in 251 the first area can be used for both dynamic relocations and GP-relative 252 accesses, while those in the "reloc-only" area are for dynamic 253 relocations only. 254 255 These GGA_* ("Global GOT Area") values are organised so that lower 256 values are more general than higher values. Also, non-GGA_NONE 257 values are ordered by the position of the area in the GOT. */ 258 #define GGA_NORMAL 0 259 #define GGA_RELOC_ONLY 1 260 #define GGA_NONE 2 261 262 /* Information about a non-PIC interface to a PIC function. There are 263 two ways of creating these interfaces. The first is to add: 264 265 lui $25,%hi(func) 266 addiu $25,$25,%lo(func) 267 268 immediately before a PIC function "func". The second is to add: 269 270 lui $25,%hi(func) 271 j func 272 addiu $25,$25,%lo(func) 273 274 to a separate trampoline section. 275 276 Stubs of the first kind go in a new section immediately before the 277 target function. Stubs of the second kind go in a single section 278 pointed to by the hash table's "strampoline" field. */ 279 struct mips_elf_la25_stub { 280 /* The generated section that contains this stub. */ 281 asection *stub_section; 282 283 /* The offset of the stub from the start of STUB_SECTION. */ 284 bfd_vma offset; 285 286 /* One symbol for the original function. Its location is available 287 in H->root.root.u.def. */ 288 struct mips_elf_link_hash_entry *h; 289 }; 290 291 /* Macros for populating a mips_elf_la25_stub. */ 292 293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */ 294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */ 295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */ 296 #define LA25_LUI_MICROMIPS(VAL) \ 297 (0x41b90000 | (VAL)) /* lui t9,VAL */ 298 #define LA25_J_MICROMIPS(VAL) \ 299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */ 300 #define LA25_ADDIU_MICROMIPS(VAL) \ 301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */ 302 303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting 304 the dynamic symbols. */ 305 306 struct mips_elf_hash_sort_data 307 { 308 /* The symbol in the global GOT with the lowest dynamic symbol table 309 index. */ 310 struct elf_link_hash_entry *low; 311 /* The least dynamic symbol table index corresponding to a non-TLS 312 symbol with a GOT entry. */ 313 long min_got_dynindx; 314 /* The greatest dynamic symbol table index corresponding to a symbol 315 with a GOT entry that is not referenced (e.g., a dynamic symbol 316 with dynamic relocations pointing to it from non-primary GOTs). */ 317 long max_unref_got_dynindx; 318 /* The greatest dynamic symbol table index not corresponding to a 319 symbol without a GOT entry. */ 320 long max_non_got_dynindx; 321 }; 322 323 /* We make up to two PLT entries if needed, one for standard MIPS code 324 and one for compressed code, either a MIPS16 or microMIPS one. We 325 keep a separate record of traditional lazy-binding stubs, for easier 326 processing. */ 327 328 struct plt_entry 329 { 330 /* Traditional SVR4 stub offset, or -1 if none. */ 331 bfd_vma stub_offset; 332 333 /* Standard PLT entry offset, or -1 if none. */ 334 bfd_vma mips_offset; 335 336 /* Compressed PLT entry offset, or -1 if none. */ 337 bfd_vma comp_offset; 338 339 /* The corresponding .got.plt index, or -1 if none. */ 340 bfd_vma gotplt_index; 341 342 /* Whether we need a standard PLT entry. */ 343 unsigned int need_mips : 1; 344 345 /* Whether we need a compressed PLT entry. */ 346 unsigned int need_comp : 1; 347 }; 348 349 /* The MIPS ELF linker needs additional information for each symbol in 350 the global hash table. */ 351 352 struct mips_elf_link_hash_entry 353 { 354 struct elf_link_hash_entry root; 355 356 /* External symbol information. */ 357 EXTR esym; 358 359 /* The la25 stub we have created for ths symbol, if any. */ 360 struct mips_elf_la25_stub *la25_stub; 361 362 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against 363 this symbol. */ 364 unsigned int possibly_dynamic_relocs; 365 366 /* If there is a stub that 32 bit functions should use to call this 367 16 bit function, this points to the section containing the stub. */ 368 asection *fn_stub; 369 370 /* If there is a stub that 16 bit functions should use to call this 371 32 bit function, this points to the section containing the stub. */ 372 asection *call_stub; 373 374 /* This is like the call_stub field, but it is used if the function 375 being called returns a floating point value. */ 376 asection *call_fp_stub; 377 378 /* The highest GGA_* value that satisfies all references to this symbol. */ 379 unsigned int global_got_area : 2; 380 381 /* True if all GOT relocations against this symbol are for calls. This is 382 a looser condition than no_fn_stub below, because there may be other 383 non-call non-GOT relocations against the symbol. */ 384 unsigned int got_only_for_calls : 1; 385 386 /* True if one of the relocations described by possibly_dynamic_relocs 387 is against a readonly section. */ 388 unsigned int readonly_reloc : 1; 389 390 /* True if there is a relocation against this symbol that must be 391 resolved by the static linker (in other words, if the relocation 392 cannot possibly be made dynamic). */ 393 unsigned int has_static_relocs : 1; 394 395 /* True if we must not create a .MIPS.stubs entry for this symbol. 396 This is set, for example, if there are relocations related to 397 taking the function's address, i.e. any but R_MIPS_CALL*16 ones. 398 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */ 399 unsigned int no_fn_stub : 1; 400 401 /* Whether we need the fn_stub; this is true if this symbol appears 402 in any relocs other than a 16 bit call. */ 403 unsigned int need_fn_stub : 1; 404 405 /* True if this symbol is referenced by branch relocations from 406 any non-PIC input file. This is used to determine whether an 407 la25 stub is required. */ 408 unsigned int has_nonpic_branches : 1; 409 410 /* Does this symbol need a traditional MIPS lazy-binding stub 411 (as opposed to a PLT entry)? */ 412 unsigned int needs_lazy_stub : 1; 413 414 /* Does this symbol resolve to a PLT entry? */ 415 unsigned int use_plt_entry : 1; 416 }; 417 418 /* MIPS ELF linker hash table. */ 419 420 struct mips_elf_link_hash_table 421 { 422 struct elf_link_hash_table root; 423 424 /* The number of .rtproc entries. */ 425 bfd_size_type procedure_count; 426 427 /* The size of the .compact_rel section (if SGI_COMPAT). */ 428 bfd_size_type compact_rel_size; 429 430 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry 431 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */ 432 bfd_boolean use_rld_obj_head; 433 434 /* The __rld_map or __rld_obj_head symbol. */ 435 struct elf_link_hash_entry *rld_symbol; 436 437 /* This is set if we see any mips16 stub sections. */ 438 bfd_boolean mips16_stubs_seen; 439 440 /* True if we can generate copy relocs and PLTs. */ 441 bfd_boolean use_plts_and_copy_relocs; 442 443 /* True if we can only use 32-bit microMIPS instructions. */ 444 bfd_boolean insn32; 445 446 /* True if we're generating code for VxWorks. */ 447 bfd_boolean is_vxworks; 448 449 /* True if we already reported the small-data section overflow. */ 450 bfd_boolean small_data_overflow_reported; 451 452 /* Shortcuts to some dynamic sections, or NULL if they are not 453 being used. */ 454 asection *srelbss; 455 asection *sdynbss; 456 asection *srelplt; 457 asection *srelplt2; 458 asection *sgotplt; 459 asection *splt; 460 asection *sstubs; 461 asection *sgot; 462 463 /* The master GOT information. */ 464 struct mips_got_info *got_info; 465 466 /* The global symbol in the GOT with the lowest index in the dynamic 467 symbol table. */ 468 struct elf_link_hash_entry *global_gotsym; 469 470 /* The size of the PLT header in bytes. */ 471 bfd_vma plt_header_size; 472 473 /* The size of a standard PLT entry in bytes. */ 474 bfd_vma plt_mips_entry_size; 475 476 /* The size of a compressed PLT entry in bytes. */ 477 bfd_vma plt_comp_entry_size; 478 479 /* The offset of the next standard PLT entry to create. */ 480 bfd_vma plt_mips_offset; 481 482 /* The offset of the next compressed PLT entry to create. */ 483 bfd_vma plt_comp_offset; 484 485 /* The index of the next .got.plt entry to create. */ 486 bfd_vma plt_got_index; 487 488 /* The number of functions that need a lazy-binding stub. */ 489 bfd_vma lazy_stub_count; 490 491 /* The size of a function stub entry in bytes. */ 492 bfd_vma function_stub_size; 493 494 /* The number of reserved entries at the beginning of the GOT. */ 495 unsigned int reserved_gotno; 496 497 /* The section used for mips_elf_la25_stub trampolines. 498 See the comment above that structure for details. */ 499 asection *strampoline; 500 501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset) 502 pairs. */ 503 htab_t la25_stubs; 504 505 /* A function FN (NAME, IS, OS) that creates a new input section 506 called NAME and links it to output section OS. If IS is nonnull, 507 the new section should go immediately before it, otherwise it 508 should go at the (current) beginning of OS. 509 510 The function returns the new section on success, otherwise it 511 returns null. */ 512 asection *(*add_stub_section) (const char *, asection *, asection *); 513 514 /* Small local sym cache. */ 515 struct sym_cache sym_cache; 516 517 /* Is the PLT header compressed? */ 518 unsigned int plt_header_is_comp : 1; 519 }; 520 521 /* Get the MIPS ELF linker hash table from a link_info structure. */ 522 523 #define mips_elf_hash_table(p) \ 524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \ 525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL) 526 527 /* A structure used to communicate with htab_traverse callbacks. */ 528 struct mips_htab_traverse_info 529 { 530 /* The usual link-wide information. */ 531 struct bfd_link_info *info; 532 bfd *output_bfd; 533 534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */ 535 bfd_boolean error; 536 }; 537 538 /* MIPS ELF private object data. */ 539 540 struct mips_elf_obj_tdata 541 { 542 /* Generic ELF private object data. */ 543 struct elf_obj_tdata root; 544 545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */ 546 bfd *abi_fp_bfd; 547 548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */ 549 bfd *abi_msa_bfd; 550 551 /* The abiflags for this object. */ 552 Elf_Internal_ABIFlags_v0 abiflags; 553 bfd_boolean abiflags_valid; 554 555 /* The GOT requirements of input bfds. */ 556 struct mips_got_info *got; 557 558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be 559 included directly in this one, but there's no point to wasting 560 the memory just for the infrequently called find_nearest_line. */ 561 struct mips_elf_find_line *find_line_info; 562 563 /* An array of stub sections indexed by symbol number. */ 564 asection **local_stubs; 565 asection **local_call_stubs; 566 567 /* The Irix 5 support uses two virtual sections, which represent 568 text/data symbols defined in dynamic objects. */ 569 asymbol *elf_data_symbol; 570 asymbol *elf_text_symbol; 571 asection *elf_data_section; 572 asection *elf_text_section; 573 }; 574 575 /* Get MIPS ELF private object data from BFD's tdata. */ 576 577 #define mips_elf_tdata(bfd) \ 578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any) 579 580 #define TLS_RELOC_P(r_type) \ 581 (r_type == R_MIPS_TLS_DTPMOD32 \ 582 || r_type == R_MIPS_TLS_DTPMOD64 \ 583 || r_type == R_MIPS_TLS_DTPREL32 \ 584 || r_type == R_MIPS_TLS_DTPREL64 \ 585 || r_type == R_MIPS_TLS_GD \ 586 || r_type == R_MIPS_TLS_LDM \ 587 || r_type == R_MIPS_TLS_DTPREL_HI16 \ 588 || r_type == R_MIPS_TLS_DTPREL_LO16 \ 589 || r_type == R_MIPS_TLS_GOTTPREL \ 590 || r_type == R_MIPS_TLS_TPREL32 \ 591 || r_type == R_MIPS_TLS_TPREL64 \ 592 || r_type == R_MIPS_TLS_TPREL_HI16 \ 593 || r_type == R_MIPS_TLS_TPREL_LO16 \ 594 || r_type == R_MIPS16_TLS_GD \ 595 || r_type == R_MIPS16_TLS_LDM \ 596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \ 597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \ 598 || r_type == R_MIPS16_TLS_GOTTPREL \ 599 || r_type == R_MIPS16_TLS_TPREL_HI16 \ 600 || r_type == R_MIPS16_TLS_TPREL_LO16 \ 601 || r_type == R_MICROMIPS_TLS_GD \ 602 || r_type == R_MICROMIPS_TLS_LDM \ 603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \ 604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \ 605 || r_type == R_MICROMIPS_TLS_GOTTPREL \ 606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \ 607 || r_type == R_MICROMIPS_TLS_TPREL_LO16) 608 609 /* Structure used to pass information to mips_elf_output_extsym. */ 610 611 struct extsym_info 612 { 613 bfd *abfd; 614 struct bfd_link_info *info; 615 struct ecoff_debug_info *debug; 616 const struct ecoff_debug_swap *swap; 617 bfd_boolean failed; 618 }; 619 620 /* The names of the runtime procedure table symbols used on IRIX5. */ 621 622 static const char * const mips_elf_dynsym_rtproc_names[] = 623 { 624 "_procedure_table", 625 "_procedure_string_table", 626 "_procedure_table_size", 627 NULL 628 }; 629 630 /* These structures are used to generate the .compact_rel section on 631 IRIX5. */ 632 633 typedef struct 634 { 635 unsigned long id1; /* Always one? */ 636 unsigned long num; /* Number of compact relocation entries. */ 637 unsigned long id2; /* Always two? */ 638 unsigned long offset; /* The file offset of the first relocation. */ 639 unsigned long reserved0; /* Zero? */ 640 unsigned long reserved1; /* Zero? */ 641 } Elf32_compact_rel; 642 643 typedef struct 644 { 645 bfd_byte id1[4]; 646 bfd_byte num[4]; 647 bfd_byte id2[4]; 648 bfd_byte offset[4]; 649 bfd_byte reserved0[4]; 650 bfd_byte reserved1[4]; 651 } Elf32_External_compact_rel; 652 653 typedef struct 654 { 655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */ 656 unsigned int rtype : 4; /* Relocation types. See below. */ 657 unsigned int dist2to : 8; 658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ 659 unsigned long konst; /* KONST field. See below. */ 660 unsigned long vaddr; /* VADDR to be relocated. */ 661 } Elf32_crinfo; 662 663 typedef struct 664 { 665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */ 666 unsigned int rtype : 4; /* Relocation types. See below. */ 667 unsigned int dist2to : 8; 668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ 669 unsigned long konst; /* KONST field. See below. */ 670 } Elf32_crinfo2; 671 672 typedef struct 673 { 674 bfd_byte info[4]; 675 bfd_byte konst[4]; 676 bfd_byte vaddr[4]; 677 } Elf32_External_crinfo; 678 679 typedef struct 680 { 681 bfd_byte info[4]; 682 bfd_byte konst[4]; 683 } Elf32_External_crinfo2; 684 685 /* These are the constants used to swap the bitfields in a crinfo. */ 686 687 #define CRINFO_CTYPE (0x1) 688 #define CRINFO_CTYPE_SH (31) 689 #define CRINFO_RTYPE (0xf) 690 #define CRINFO_RTYPE_SH (27) 691 #define CRINFO_DIST2TO (0xff) 692 #define CRINFO_DIST2TO_SH (19) 693 #define CRINFO_RELVADDR (0x7ffff) 694 #define CRINFO_RELVADDR_SH (0) 695 696 /* A compact relocation info has long (3 words) or short (2 words) 697 formats. A short format doesn't have VADDR field and relvaddr 698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */ 699 #define CRF_MIPS_LONG 1 700 #define CRF_MIPS_SHORT 0 701 702 /* There are 4 types of compact relocation at least. The value KONST 703 has different meaning for each type: 704 705 (type) (konst) 706 CT_MIPS_REL32 Address in data 707 CT_MIPS_WORD Address in word (XXX) 708 CT_MIPS_GPHI_LO GP - vaddr 709 CT_MIPS_JMPAD Address to jump 710 */ 711 712 #define CRT_MIPS_REL32 0xa 713 #define CRT_MIPS_WORD 0xb 714 #define CRT_MIPS_GPHI_LO 0xc 715 #define CRT_MIPS_JMPAD 0xd 716 717 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format)) 718 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type)) 719 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v)) 720 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2) 721 722 /* The structure of the runtime procedure descriptor created by the 723 loader for use by the static exception system. */ 724 725 typedef struct runtime_pdr { 726 bfd_vma adr; /* Memory address of start of procedure. */ 727 long regmask; /* Save register mask. */ 728 long regoffset; /* Save register offset. */ 729 long fregmask; /* Save floating point register mask. */ 730 long fregoffset; /* Save floating point register offset. */ 731 long frameoffset; /* Frame size. */ 732 short framereg; /* Frame pointer register. */ 733 short pcreg; /* Offset or reg of return pc. */ 734 long irpss; /* Index into the runtime string table. */ 735 long reserved; 736 struct exception_info *exception_info;/* Pointer to exception array. */ 737 } RPDR, *pRPDR; 738 #define cbRPDR sizeof (RPDR) 739 #define rpdNil ((pRPDR) 0) 740 741 static struct mips_got_entry *mips_elf_create_local_got_entry 742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long, 743 struct mips_elf_link_hash_entry *, int); 744 static bfd_boolean mips_elf_sort_hash_table_f 745 (struct mips_elf_link_hash_entry *, void *); 746 static bfd_vma mips_elf_high 747 (bfd_vma); 748 static bfd_boolean mips_elf_create_dynamic_relocation 749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *, 750 struct mips_elf_link_hash_entry *, asection *, bfd_vma, 751 bfd_vma *, asection *); 752 static bfd_vma mips_elf_adjust_gp 753 (bfd *, struct mips_got_info *, bfd *); 754 755 /* This will be used when we sort the dynamic relocation records. */ 756 static bfd *reldyn_sorting_bfd; 757 758 /* True if ABFD is for CPUs with load interlocking that include 759 non-MIPS1 CPUs and R3900. */ 760 #define LOAD_INTERLOCKS_P(abfd) \ 761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \ 762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900)) 763 764 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL. 765 This should be safe for all architectures. We enable this predicate 766 for RM9000 for now. */ 767 #define JAL_TO_BAL_P(abfd) \ 768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000) 769 770 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL. 771 This should be safe for all architectures. We enable this predicate for 772 all CPUs. */ 773 #define JALR_TO_BAL_P(abfd) 1 774 775 /* True if ABFD is for CPUs that are faster if JR is converted to B. 776 This should be safe for all architectures. We enable this predicate for 777 all CPUs. */ 778 #define JR_TO_B_P(abfd) 1 779 780 /* True if ABFD is a PIC object. */ 781 #define PIC_OBJECT_P(abfd) \ 782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0) 783 784 /* Nonzero if ABFD is using the O32 ABI. */ 785 #define ABI_O32_P(abfd) \ 786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32) 787 788 /* Nonzero if ABFD is using the N32 ABI. */ 789 #define ABI_N32_P(abfd) \ 790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0) 791 792 /* Nonzero if ABFD is using the N64 ABI. */ 793 #define ABI_64_P(abfd) \ 794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64) 795 796 /* Nonzero if ABFD is using NewABI conventions. */ 797 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd)) 798 799 /* Nonzero if ABFD has microMIPS code. */ 800 #define MICROMIPS_P(abfd) \ 801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0) 802 803 /* Nonzero if ABFD is MIPS R6. */ 804 #define MIPSR6_P(abfd) \ 805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \ 806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6) 807 808 /* The IRIX compatibility level we are striving for. */ 809 #define IRIX_COMPAT(abfd) \ 810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd)) 811 812 /* Whether we are trying to be compatible with IRIX at all. */ 813 #define SGI_COMPAT(abfd) \ 814 (IRIX_COMPAT (abfd) != ict_none) 815 816 /* The name of the options section. */ 817 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \ 818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options") 819 820 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section. 821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */ 822 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \ 823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0) 824 825 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */ 826 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \ 827 (strcmp (NAME, ".MIPS.abiflags") == 0) 828 829 /* Whether the section is readonly. */ 830 #define MIPS_ELF_READONLY_SECTION(sec) \ 831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \ 832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) 833 834 /* The name of the stub section. */ 835 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs" 836 837 /* The size of an external REL relocation. */ 838 #define MIPS_ELF_REL_SIZE(abfd) \ 839 (get_elf_backend_data (abfd)->s->sizeof_rel) 840 841 /* The size of an external RELA relocation. */ 842 #define MIPS_ELF_RELA_SIZE(abfd) \ 843 (get_elf_backend_data (abfd)->s->sizeof_rela) 844 845 /* The size of an external dynamic table entry. */ 846 #define MIPS_ELF_DYN_SIZE(abfd) \ 847 (get_elf_backend_data (abfd)->s->sizeof_dyn) 848 849 /* The size of a GOT entry. */ 850 #define MIPS_ELF_GOT_SIZE(abfd) \ 851 (get_elf_backend_data (abfd)->s->arch_size / 8) 852 853 /* The size of the .rld_map section. */ 854 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \ 855 (get_elf_backend_data (abfd)->s->arch_size / 8) 856 857 /* The size of a symbol-table entry. */ 858 #define MIPS_ELF_SYM_SIZE(abfd) \ 859 (get_elf_backend_data (abfd)->s->sizeof_sym) 860 861 /* The default alignment for sections, as a power of two. */ 862 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \ 863 (get_elf_backend_data (abfd)->s->log_file_align) 864 865 /* Get word-sized data. */ 866 #define MIPS_ELF_GET_WORD(abfd, ptr) \ 867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr)) 868 869 /* Put out word-sized data. */ 870 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \ 871 (ABI_64_P (abfd) \ 872 ? bfd_put_64 (abfd, val, ptr) \ 873 : bfd_put_32 (abfd, val, ptr)) 874 875 /* The opcode for word-sized loads (LW or LD). */ 876 #define MIPS_ELF_LOAD_WORD(abfd) \ 877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000) 878 879 /* Add a dynamic symbol table-entry. */ 880 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \ 881 _bfd_elf_add_dynamic_entry (info, tag, val) 882 883 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \ 884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela)) 885 886 /* The name of the dynamic relocation section. */ 887 #define MIPS_ELF_REL_DYN_NAME(INFO) \ 888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn") 889 890 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value 891 from smaller values. Start with zero, widen, *then* decrement. */ 892 #define MINUS_ONE (((bfd_vma)0) - 1) 893 #define MINUS_TWO (((bfd_vma)0) - 2) 894 895 /* The value to write into got[1] for SVR4 targets, to identify it is 896 a GNU object. The dynamic linker can then use got[1] to store the 897 module pointer. */ 898 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \ 899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31)) 900 901 /* The offset of $gp from the beginning of the .got section. */ 902 #define ELF_MIPS_GP_OFFSET(INFO) \ 903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0) 904 905 /* The maximum size of the GOT for it to be addressable using 16-bit 906 offsets from $gp. */ 907 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff) 908 909 /* Instructions which appear in a stub. */ 910 #define STUB_LW(abfd) \ 911 ((ABI_64_P (abfd) \ 912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \ 913 : 0x8f998010)) /* lw t9,0x8010(gp) */ 914 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */ 915 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */ 916 #define STUB_JALR 0x0320f809 /* jalr t9,ra */ 917 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */ 918 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */ 919 #define STUB_LI16S(abfd, VAL) \ 920 ((ABI_64_P (abfd) \ 921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \ 922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */ 923 924 /* Likewise for the microMIPS ASE. */ 925 #define STUB_LW_MICROMIPS(abfd) \ 926 (ABI_64_P (abfd) \ 927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \ 928 : 0xff3c8010) /* lw t9,0x8010(gp) */ 929 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */ 930 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */ 931 #define STUB_LUI_MICROMIPS(VAL) \ 932 (0x41b80000 + (VAL)) /* lui t8,VAL */ 933 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */ 934 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */ 935 #define STUB_ORI_MICROMIPS(VAL) \ 936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */ 937 #define STUB_LI16U_MICROMIPS(VAL) \ 938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */ 939 #define STUB_LI16S_MICROMIPS(abfd, VAL) \ 940 (ABI_64_P (abfd) \ 941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \ 942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */ 943 944 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16 945 #define MIPS_FUNCTION_STUB_BIG_SIZE 20 946 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12 947 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16 948 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16 949 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20 950 951 /* The name of the dynamic interpreter. This is put in the .interp 952 section. */ 953 954 #define ELF_DYNAMIC_INTERPRETER(abfd) \ 955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \ 956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \ 957 : "/usr/lib/libc.so.1") 958 959 #ifdef BFD64 960 #define MNAME(bfd,pre,pos) \ 961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos)) 962 #define ELF_R_SYM(bfd, i) \ 963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i)) 964 #define ELF_R_TYPE(bfd, i) \ 965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i)) 966 #define ELF_R_INFO(bfd, s, t) \ 967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t)) 968 #else 969 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos) 970 #define ELF_R_SYM(bfd, i) \ 971 (ELF32_R_SYM (i)) 972 #define ELF_R_TYPE(bfd, i) \ 973 (ELF32_R_TYPE (i)) 974 #define ELF_R_INFO(bfd, s, t) \ 975 (ELF32_R_INFO (s, t)) 976 #endif 977 978 /* The mips16 compiler uses a couple of special sections to handle 979 floating point arguments. 980 981 Section names that look like .mips16.fn.FNNAME contain stubs that 982 copy floating point arguments from the fp regs to the gp regs and 983 then jump to FNNAME. If any 32 bit function calls FNNAME, the 984 call should be redirected to the stub instead. If no 32 bit 985 function calls FNNAME, the stub should be discarded. We need to 986 consider any reference to the function, not just a call, because 987 if the address of the function is taken we will need the stub, 988 since the address might be passed to a 32 bit function. 989 990 Section names that look like .mips16.call.FNNAME contain stubs 991 that copy floating point arguments from the gp regs to the fp 992 regs and then jump to FNNAME. If FNNAME is a 32 bit function, 993 then any 16 bit function that calls FNNAME should be redirected 994 to the stub instead. If FNNAME is not a 32 bit function, the 995 stub should be discarded. 996 997 .mips16.call.fp.FNNAME sections are similar, but contain stubs 998 which call FNNAME and then copy the return value from the fp regs 999 to the gp regs. These stubs store the return value in $18 while 1000 calling FNNAME; any function which might call one of these stubs 1001 must arrange to save $18 around the call. (This case is not 1002 needed for 32 bit functions that call 16 bit functions, because 1003 16 bit functions always return floating point values in both 1004 $f0/$f1 and $2/$3.) 1005 1006 Note that in all cases FNNAME might be defined statically. 1007 Therefore, FNNAME is not used literally. Instead, the relocation 1008 information will indicate which symbol the section is for. 1009 1010 We record any stubs that we find in the symbol table. */ 1011 1012 #define FN_STUB ".mips16.fn." 1013 #define CALL_STUB ".mips16.call." 1014 #define CALL_FP_STUB ".mips16.call.fp." 1015 1016 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB) 1017 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB) 1018 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB) 1019 1020 /* The format of the first PLT entry in an O32 executable. */ 1021 static const bfd_vma mips_o32_exec_plt0_entry[] = 1022 { 1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */ 1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */ 1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */ 1026 0x031cc023, /* subu $24, $24, $28 */ 1027 0x03e07825, /* or t7, ra, zero */ 1028 0x0018c082, /* srl $24, $24, 2 */ 1029 0x0320f809, /* jalr $25 */ 1030 0x2718fffe /* subu $24, $24, 2 */ 1031 }; 1032 1033 /* The format of the first PLT entry in an N32 executable. Different 1034 because gp ($28) is not available; we use t2 ($14) instead. */ 1035 static const bfd_vma mips_n32_exec_plt0_entry[] = 1036 { 1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */ 1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */ 1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */ 1040 0x030ec023, /* subu $24, $24, $14 */ 1041 0x03e07825, /* or t7, ra, zero */ 1042 0x0018c082, /* srl $24, $24, 2 */ 1043 0x0320f809, /* jalr $25 */ 1044 0x2718fffe /* subu $24, $24, 2 */ 1045 }; 1046 1047 /* The format of the first PLT entry in an N64 executable. Different 1048 from N32 because of the increased size of GOT entries. */ 1049 static const bfd_vma mips_n64_exec_plt0_entry[] = 1050 { 1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */ 1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */ 1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */ 1054 0x030ec023, /* subu $24, $24, $14 */ 1055 0x03e07825, /* or t7, ra, zero */ 1056 0x0018c0c2, /* srl $24, $24, 3 */ 1057 0x0320f809, /* jalr $25 */ 1058 0x2718fffe /* subu $24, $24, 2 */ 1059 }; 1060 1061 /* The format of the microMIPS first PLT entry in an O32 executable. 1062 We rely on v0 ($2) rather than t8 ($24) to contain the address 1063 of the GOTPLT entry handled, so this stub may only be used when 1064 all the subsequent PLT entries are microMIPS code too. 1065 1066 The trailing NOP is for alignment and correct disassembly only. */ 1067 static const bfd_vma micromips_o32_exec_plt0_entry[] = 1068 { 1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */ 1070 0xff23, 0x0000, /* lw $25, 0($3) */ 1071 0x0535, /* subu $2, $2, $3 */ 1072 0x2525, /* srl $2, $2, 2 */ 1073 0x3302, 0xfffe, /* subu $24, $2, 2 */ 1074 0x0dff, /* move $15, $31 */ 1075 0x45f9, /* jalrs $25 */ 1076 0x0f83, /* move $28, $3 */ 1077 0x0c00 /* nop */ 1078 }; 1079 1080 /* The format of the microMIPS first PLT entry in an O32 executable 1081 in the insn32 mode. */ 1082 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] = 1083 { 1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */ 1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */ 1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */ 1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */ 1088 0x001f, 0x7a90, /* or $15, $31, zero */ 1089 0x0318, 0x1040, /* srl $24, $24, 2 */ 1090 0x03f9, 0x0f3c, /* jalr $25 */ 1091 0x3318, 0xfffe /* subu $24, $24, 2 */ 1092 }; 1093 1094 /* The format of subsequent standard PLT entries. */ 1095 static const bfd_vma mips_exec_plt_entry[] = 1096 { 1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */ 1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */ 1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */ 1100 0x03200008 /* jr $25 */ 1101 }; 1102 1103 /* In the following PLT entry the JR and ADDIU instructions will 1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because 1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */ 1106 static const bfd_vma mipsr6_exec_plt_entry[] = 1107 { 1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */ 1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */ 1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */ 1111 0x03200009 /* jr $25 */ 1112 }; 1113 1114 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2) 1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not 1116 directly addressable. */ 1117 static const bfd_vma mips16_o32_exec_plt_entry[] = 1118 { 1119 0xb203, /* lw $2, 12($pc) */ 1120 0x9a60, /* lw $3, 0($2) */ 1121 0x651a, /* move $24, $2 */ 1122 0xeb00, /* jr $3 */ 1123 0x653b, /* move $25, $3 */ 1124 0x6500, /* nop */ 1125 0x0000, 0x0000 /* .word (.got.plt entry) */ 1126 }; 1127 1128 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2) 1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */ 1130 static const bfd_vma micromips_o32_exec_plt_entry[] = 1131 { 1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */ 1133 0xff22, 0x0000, /* lw $25, 0($2) */ 1134 0x4599, /* jr $25 */ 1135 0x0f02 /* move $24, $2 */ 1136 }; 1137 1138 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */ 1139 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] = 1140 { 1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */ 1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */ 1143 0x0019, 0x0f3c, /* jr $25 */ 1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */ 1145 }; 1146 1147 /* The format of the first PLT entry in a VxWorks executable. */ 1148 static const bfd_vma mips_vxworks_exec_plt0_entry[] = 1149 { 1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */ 1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */ 1152 0x8f390008, /* lw t9, 8(t9) */ 1153 0x00000000, /* nop */ 1154 0x03200008, /* jr t9 */ 1155 0x00000000 /* nop */ 1156 }; 1157 1158 /* The format of subsequent PLT entries. */ 1159 static const bfd_vma mips_vxworks_exec_plt_entry[] = 1160 { 1161 0x10000000, /* b .PLT_resolver */ 1162 0x24180000, /* li t8, <pltindex> */ 1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */ 1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */ 1165 0x8f390000, /* lw t9, 0(t9) */ 1166 0x00000000, /* nop */ 1167 0x03200008, /* jr t9 */ 1168 0x00000000 /* nop */ 1169 }; 1170 1171 /* The format of the first PLT entry in a VxWorks shared object. */ 1172 static const bfd_vma mips_vxworks_shared_plt0_entry[] = 1173 { 1174 0x8f990008, /* lw t9, 8(gp) */ 1175 0x00000000, /* nop */ 1176 0x03200008, /* jr t9 */ 1177 0x00000000, /* nop */ 1178 0x00000000, /* nop */ 1179 0x00000000 /* nop */ 1180 }; 1181 1182 /* The format of subsequent PLT entries. */ 1183 static const bfd_vma mips_vxworks_shared_plt_entry[] = 1184 { 1185 0x10000000, /* b .PLT_resolver */ 1186 0x24180000 /* li t8, <pltindex> */ 1187 }; 1188 1189 /* microMIPS 32-bit opcode helper installer. */ 1190 1191 static void 1192 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr) 1193 { 1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr); 1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2); 1196 } 1197 1198 /* microMIPS 32-bit opcode helper retriever. */ 1199 1200 static bfd_vma 1201 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr) 1202 { 1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2); 1204 } 1205 1206 /* Look up an entry in a MIPS ELF linker hash table. */ 1207 1208 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \ 1209 ((struct mips_elf_link_hash_entry *) \ 1210 elf_link_hash_lookup (&(table)->root, (string), (create), \ 1211 (copy), (follow))) 1212 1213 /* Traverse a MIPS ELF linker hash table. */ 1214 1215 #define mips_elf_link_hash_traverse(table, func, info) \ 1216 (elf_link_hash_traverse \ 1217 (&(table)->root, \ 1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \ 1219 (info))) 1220 1221 /* Find the base offsets for thread-local storage in this object, 1222 for GD/LD and IE/LE respectively. */ 1223 1224 #define TP_OFFSET 0x7000 1225 #define DTP_OFFSET 0x8000 1226 1227 static bfd_vma 1228 dtprel_base (struct bfd_link_info *info) 1229 { 1230 /* If tls_sec is NULL, we should have signalled an error already. */ 1231 if (elf_hash_table (info)->tls_sec == NULL) 1232 return 0; 1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET; 1234 } 1235 1236 static bfd_vma 1237 tprel_base (struct bfd_link_info *info) 1238 { 1239 /* If tls_sec is NULL, we should have signalled an error already. */ 1240 if (elf_hash_table (info)->tls_sec == NULL) 1241 return 0; 1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET; 1243 } 1244 1245 /* Create an entry in a MIPS ELF linker hash table. */ 1246 1247 static struct bfd_hash_entry * 1248 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry, 1249 struct bfd_hash_table *table, const char *string) 1250 { 1251 struct mips_elf_link_hash_entry *ret = 1252 (struct mips_elf_link_hash_entry *) entry; 1253 1254 /* Allocate the structure if it has not already been allocated by a 1255 subclass. */ 1256 if (ret == NULL) 1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry)); 1258 if (ret == NULL) 1259 return (struct bfd_hash_entry *) ret; 1260 1261 /* Call the allocation method of the superclass. */ 1262 ret = ((struct mips_elf_link_hash_entry *) 1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, 1264 table, string)); 1265 if (ret != NULL) 1266 { 1267 /* Set local fields. */ 1268 memset (&ret->esym, 0, sizeof (EXTR)); 1269 /* We use -2 as a marker to indicate that the information has 1270 not been set. -1 means there is no associated ifd. */ 1271 ret->esym.ifd = -2; 1272 ret->la25_stub = 0; 1273 ret->possibly_dynamic_relocs = 0; 1274 ret->fn_stub = NULL; 1275 ret->call_stub = NULL; 1276 ret->call_fp_stub = NULL; 1277 ret->global_got_area = GGA_NONE; 1278 ret->got_only_for_calls = TRUE; 1279 ret->readonly_reloc = FALSE; 1280 ret->has_static_relocs = FALSE; 1281 ret->no_fn_stub = FALSE; 1282 ret->need_fn_stub = FALSE; 1283 ret->has_nonpic_branches = FALSE; 1284 ret->needs_lazy_stub = FALSE; 1285 ret->use_plt_entry = FALSE; 1286 } 1287 1288 return (struct bfd_hash_entry *) ret; 1289 } 1290 1291 /* Allocate MIPS ELF private object data. */ 1292 1293 bfd_boolean 1294 _bfd_mips_elf_mkobject (bfd *abfd) 1295 { 1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata), 1297 MIPS_ELF_DATA); 1298 } 1299 1300 bfd_boolean 1301 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec) 1302 { 1303 if (!sec->used_by_bfd) 1304 { 1305 struct _mips_elf_section_data *sdata; 1306 bfd_size_type amt = sizeof (*sdata); 1307 1308 sdata = bfd_zalloc (abfd, amt); 1309 if (sdata == NULL) 1310 return FALSE; 1311 sec->used_by_bfd = sdata; 1312 } 1313 1314 return _bfd_elf_new_section_hook (abfd, sec); 1315 } 1316 1317 /* Read ECOFF debugging information from a .mdebug section into a 1318 ecoff_debug_info structure. */ 1319 1320 bfd_boolean 1321 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section, 1322 struct ecoff_debug_info *debug) 1323 { 1324 HDRR *symhdr; 1325 const struct ecoff_debug_swap *swap; 1326 char *ext_hdr; 1327 1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; 1329 memset (debug, 0, sizeof (*debug)); 1330 1331 ext_hdr = bfd_malloc (swap->external_hdr_size); 1332 if (ext_hdr == NULL && swap->external_hdr_size != 0) 1333 goto error_return; 1334 1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0, 1336 swap->external_hdr_size)) 1337 goto error_return; 1338 1339 symhdr = &debug->symbolic_header; 1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr); 1341 1342 /* The symbolic header contains absolute file offsets and sizes to 1343 read. */ 1344 #define READ(ptr, offset, count, size, type) \ 1345 if (symhdr->count == 0) \ 1346 debug->ptr = NULL; \ 1347 else \ 1348 { \ 1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \ 1350 debug->ptr = bfd_malloc (amt); \ 1351 if (debug->ptr == NULL) \ 1352 goto error_return; \ 1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \ 1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \ 1355 goto error_return; \ 1356 } 1357 1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *); 1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *); 1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *); 1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *); 1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *); 1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext), 1364 union aux_ext *); 1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *); 1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *); 1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *); 1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *); 1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *); 1370 #undef READ 1371 1372 debug->fdr = NULL; 1373 1374 return TRUE; 1375 1376 error_return: 1377 if (ext_hdr != NULL) 1378 free (ext_hdr); 1379 if (debug->line != NULL) 1380 free (debug->line); 1381 if (debug->external_dnr != NULL) 1382 free (debug->external_dnr); 1383 if (debug->external_pdr != NULL) 1384 free (debug->external_pdr); 1385 if (debug->external_sym != NULL) 1386 free (debug->external_sym); 1387 if (debug->external_opt != NULL) 1388 free (debug->external_opt); 1389 if (debug->external_aux != NULL) 1390 free (debug->external_aux); 1391 if (debug->ss != NULL) 1392 free (debug->ss); 1393 if (debug->ssext != NULL) 1394 free (debug->ssext); 1395 if (debug->external_fdr != NULL) 1396 free (debug->external_fdr); 1397 if (debug->external_rfd != NULL) 1398 free (debug->external_rfd); 1399 if (debug->external_ext != NULL) 1400 free (debug->external_ext); 1401 return FALSE; 1402 } 1403 1404 /* Swap RPDR (runtime procedure table entry) for output. */ 1405 1406 static void 1407 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex) 1408 { 1409 H_PUT_S32 (abfd, in->adr, ex->p_adr); 1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask); 1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset); 1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask); 1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset); 1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset); 1415 1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg); 1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg); 1418 1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss); 1420 } 1421 1422 /* Create a runtime procedure table from the .mdebug section. */ 1423 1424 static bfd_boolean 1425 mips_elf_create_procedure_table (void *handle, bfd *abfd, 1426 struct bfd_link_info *info, asection *s, 1427 struct ecoff_debug_info *debug) 1428 { 1429 const struct ecoff_debug_swap *swap; 1430 HDRR *hdr = &debug->symbolic_header; 1431 RPDR *rpdr, *rp; 1432 struct rpdr_ext *erp; 1433 void *rtproc; 1434 struct pdr_ext *epdr; 1435 struct sym_ext *esym; 1436 char *ss, **sv; 1437 char *str; 1438 bfd_size_type size; 1439 bfd_size_type count; 1440 unsigned long sindex; 1441 unsigned long i; 1442 PDR pdr; 1443 SYMR sym; 1444 const char *no_name_func = _("static procedure (no name)"); 1445 1446 epdr = NULL; 1447 rpdr = NULL; 1448 esym = NULL; 1449 ss = NULL; 1450 sv = NULL; 1451 1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; 1453 1454 sindex = strlen (no_name_func) + 1; 1455 count = hdr->ipdMax; 1456 if (count > 0) 1457 { 1458 size = swap->external_pdr_size; 1459 1460 epdr = bfd_malloc (size * count); 1461 if (epdr == NULL) 1462 goto error_return; 1463 1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr)) 1465 goto error_return; 1466 1467 size = sizeof (RPDR); 1468 rp = rpdr = bfd_malloc (size * count); 1469 if (rpdr == NULL) 1470 goto error_return; 1471 1472 size = sizeof (char *); 1473 sv = bfd_malloc (size * count); 1474 if (sv == NULL) 1475 goto error_return; 1476 1477 count = hdr->isymMax; 1478 size = swap->external_sym_size; 1479 esym = bfd_malloc (size * count); 1480 if (esym == NULL) 1481 goto error_return; 1482 1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym)) 1484 goto error_return; 1485 1486 count = hdr->issMax; 1487 ss = bfd_malloc (count); 1488 if (ss == NULL) 1489 goto error_return; 1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss)) 1491 goto error_return; 1492 1493 count = hdr->ipdMax; 1494 for (i = 0; i < (unsigned long) count; i++, rp++) 1495 { 1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr); 1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym); 1498 rp->adr = sym.value; 1499 rp->regmask = pdr.regmask; 1500 rp->regoffset = pdr.regoffset; 1501 rp->fregmask = pdr.fregmask; 1502 rp->fregoffset = pdr.fregoffset; 1503 rp->frameoffset = pdr.frameoffset; 1504 rp->framereg = pdr.framereg; 1505 rp->pcreg = pdr.pcreg; 1506 rp->irpss = sindex; 1507 sv[i] = ss + sym.iss; 1508 sindex += strlen (sv[i]) + 1; 1509 } 1510 } 1511 1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex; 1513 size = BFD_ALIGN (size, 16); 1514 rtproc = bfd_alloc (abfd, size); 1515 if (rtproc == NULL) 1516 { 1517 mips_elf_hash_table (info)->procedure_count = 0; 1518 goto error_return; 1519 } 1520 1521 mips_elf_hash_table (info)->procedure_count = count + 2; 1522 1523 erp = rtproc; 1524 memset (erp, 0, sizeof (struct rpdr_ext)); 1525 erp++; 1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2); 1527 strcpy (str, no_name_func); 1528 str += strlen (no_name_func) + 1; 1529 for (i = 0; i < count; i++) 1530 { 1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i); 1532 strcpy (str, sv[i]); 1533 str += strlen (sv[i]) + 1; 1534 } 1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr); 1536 1537 /* Set the size and contents of .rtproc section. */ 1538 s->size = size; 1539 s->contents = rtproc; 1540 1541 /* Skip this section later on (I don't think this currently 1542 matters, but someday it might). */ 1543 s->map_head.link_order = NULL; 1544 1545 if (epdr != NULL) 1546 free (epdr); 1547 if (rpdr != NULL) 1548 free (rpdr); 1549 if (esym != NULL) 1550 free (esym); 1551 if (ss != NULL) 1552 free (ss); 1553 if (sv != NULL) 1554 free (sv); 1555 1556 return TRUE; 1557 1558 error_return: 1559 if (epdr != NULL) 1560 free (epdr); 1561 if (rpdr != NULL) 1562 free (rpdr); 1563 if (esym != NULL) 1564 free (esym); 1565 if (ss != NULL) 1566 free (ss); 1567 if (sv != NULL) 1568 free (sv); 1569 return FALSE; 1570 } 1571 1572 /* We're going to create a stub for H. Create a symbol for the stub's 1573 value and size, to help make the disassembly easier to read. */ 1574 1575 static bfd_boolean 1576 mips_elf_create_stub_symbol (struct bfd_link_info *info, 1577 struct mips_elf_link_hash_entry *h, 1578 const char *prefix, asection *s, bfd_vma value, 1579 bfd_vma size) 1580 { 1581 struct bfd_link_hash_entry *bh; 1582 struct elf_link_hash_entry *elfh; 1583 const char *name; 1584 1585 if (ELF_ST_IS_MICROMIPS (h->root.other)) 1586 value |= 1; 1587 1588 /* Create a new symbol. */ 1589 name = ACONCAT ((prefix, h->root.root.root.string, NULL)); 1590 bh = NULL; 1591 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name, 1592 BSF_LOCAL, s, value, NULL, 1593 TRUE, FALSE, &bh)) 1594 return FALSE; 1595 1596 /* Make it a local function. */ 1597 elfh = (struct elf_link_hash_entry *) bh; 1598 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); 1599 elfh->size = size; 1600 elfh->forced_local = 1; 1601 return TRUE; 1602 } 1603 1604 /* We're about to redefine H. Create a symbol to represent H's 1605 current value and size, to help make the disassembly easier 1606 to read. */ 1607 1608 static bfd_boolean 1609 mips_elf_create_shadow_symbol (struct bfd_link_info *info, 1610 struct mips_elf_link_hash_entry *h, 1611 const char *prefix) 1612 { 1613 struct bfd_link_hash_entry *bh; 1614 struct elf_link_hash_entry *elfh; 1615 const char *name; 1616 asection *s; 1617 bfd_vma value; 1618 1619 /* Read the symbol's value. */ 1620 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined 1621 || h->root.root.type == bfd_link_hash_defweak); 1622 s = h->root.root.u.def.section; 1623 value = h->root.root.u.def.value; 1624 1625 /* Create a new symbol. */ 1626 name = ACONCAT ((prefix, h->root.root.root.string, NULL)); 1627 bh = NULL; 1628 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name, 1629 BSF_LOCAL, s, value, NULL, 1630 TRUE, FALSE, &bh)) 1631 return FALSE; 1632 1633 /* Make it local and copy the other attributes from H. */ 1634 elfh = (struct elf_link_hash_entry *) bh; 1635 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type)); 1636 elfh->other = h->root.other; 1637 elfh->size = h->root.size; 1638 elfh->forced_local = 1; 1639 return TRUE; 1640 } 1641 1642 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16 1643 function rather than to a hard-float stub. */ 1644 1645 static bfd_boolean 1646 section_allows_mips16_refs_p (asection *section) 1647 { 1648 const char *name; 1649 1650 name = bfd_get_section_name (section->owner, section); 1651 return (FN_STUB_P (name) 1652 || CALL_STUB_P (name) 1653 || CALL_FP_STUB_P (name) 1654 || strcmp (name, ".pdr") == 0); 1655 } 1656 1657 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16 1658 stub section of some kind. Return the R_SYMNDX of the target 1659 function, or 0 if we can't decide which function that is. */ 1660 1661 static unsigned long 1662 mips16_stub_symndx (const struct elf_backend_data *bed, 1663 asection *sec ATTRIBUTE_UNUSED, 1664 const Elf_Internal_Rela *relocs, 1665 const Elf_Internal_Rela *relend) 1666 { 1667 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel; 1668 const Elf_Internal_Rela *rel; 1669 1670 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent 1671 one in a compound relocation. */ 1672 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel) 1673 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE) 1674 return ELF_R_SYM (sec->owner, rel->r_info); 1675 1676 /* Otherwise trust the first relocation, whatever its kind. This is 1677 the traditional behavior. */ 1678 if (relocs < relend) 1679 return ELF_R_SYM (sec->owner, relocs->r_info); 1680 1681 return 0; 1682 } 1683 1684 /* Check the mips16 stubs for a particular symbol, and see if we can 1685 discard them. */ 1686 1687 static void 1688 mips_elf_check_mips16_stubs (struct bfd_link_info *info, 1689 struct mips_elf_link_hash_entry *h) 1690 { 1691 /* Dynamic symbols must use the standard call interface, in case other 1692 objects try to call them. */ 1693 if (h->fn_stub != NULL 1694 && h->root.dynindx != -1) 1695 { 1696 mips_elf_create_shadow_symbol (info, h, ".mips16."); 1697 h->need_fn_stub = TRUE; 1698 } 1699 1700 if (h->fn_stub != NULL 1701 && ! h->need_fn_stub) 1702 { 1703 /* We don't need the fn_stub; the only references to this symbol 1704 are 16 bit calls. Clobber the size to 0 to prevent it from 1705 being included in the link. */ 1706 h->fn_stub->size = 0; 1707 h->fn_stub->flags &= ~SEC_RELOC; 1708 h->fn_stub->reloc_count = 0; 1709 h->fn_stub->flags |= SEC_EXCLUDE; 1710 h->fn_stub->output_section = bfd_abs_section_ptr; 1711 } 1712 1713 if (h->call_stub != NULL 1714 && ELF_ST_IS_MIPS16 (h->root.other)) 1715 { 1716 /* We don't need the call_stub; this is a 16 bit function, so 1717 calls from other 16 bit functions are OK. Clobber the size 1718 to 0 to prevent it from being included in the link. */ 1719 h->call_stub->size = 0; 1720 h->call_stub->flags &= ~SEC_RELOC; 1721 h->call_stub->reloc_count = 0; 1722 h->call_stub->flags |= SEC_EXCLUDE; 1723 h->call_stub->output_section = bfd_abs_section_ptr; 1724 } 1725 1726 if (h->call_fp_stub != NULL 1727 && ELF_ST_IS_MIPS16 (h->root.other)) 1728 { 1729 /* We don't need the call_stub; this is a 16 bit function, so 1730 calls from other 16 bit functions are OK. Clobber the size 1731 to 0 to prevent it from being included in the link. */ 1732 h->call_fp_stub->size = 0; 1733 h->call_fp_stub->flags &= ~SEC_RELOC; 1734 h->call_fp_stub->reloc_count = 0; 1735 h->call_fp_stub->flags |= SEC_EXCLUDE; 1736 h->call_fp_stub->output_section = bfd_abs_section_ptr; 1737 } 1738 } 1739 1740 /* Hashtable callbacks for mips_elf_la25_stubs. */ 1741 1742 static hashval_t 1743 mips_elf_la25_stub_hash (const void *entry_) 1744 { 1745 const struct mips_elf_la25_stub *entry; 1746 1747 entry = (struct mips_elf_la25_stub *) entry_; 1748 return entry->h->root.root.u.def.section->id 1749 + entry->h->root.root.u.def.value; 1750 } 1751 1752 static int 1753 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_) 1754 { 1755 const struct mips_elf_la25_stub *entry1, *entry2; 1756 1757 entry1 = (struct mips_elf_la25_stub *) entry1_; 1758 entry2 = (struct mips_elf_la25_stub *) entry2_; 1759 return ((entry1->h->root.root.u.def.section 1760 == entry2->h->root.root.u.def.section) 1761 && (entry1->h->root.root.u.def.value 1762 == entry2->h->root.root.u.def.value)); 1763 } 1764 1765 /* Called by the linker to set up the la25 stub-creation code. FN is 1766 the linker's implementation of add_stub_function. Return true on 1767 success. */ 1768 1769 bfd_boolean 1770 _bfd_mips_elf_init_stubs (struct bfd_link_info *info, 1771 asection *(*fn) (const char *, asection *, 1772 asection *)) 1773 { 1774 struct mips_elf_link_hash_table *htab; 1775 1776 htab = mips_elf_hash_table (info); 1777 if (htab == NULL) 1778 return FALSE; 1779 1780 htab->add_stub_section = fn; 1781 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash, 1782 mips_elf_la25_stub_eq, NULL); 1783 if (htab->la25_stubs == NULL) 1784 return FALSE; 1785 1786 return TRUE; 1787 } 1788 1789 /* Return true if H is a locally-defined PIC function, in the sense 1790 that it or its fn_stub might need $25 to be valid on entry. 1791 Note that MIPS16 functions set up $gp using PC-relative instructions, 1792 so they themselves never need $25 to be valid. Only non-MIPS16 1793 entry points are of interest here. */ 1794 1795 static bfd_boolean 1796 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h) 1797 { 1798 return ((h->root.root.type == bfd_link_hash_defined 1799 || h->root.root.type == bfd_link_hash_defweak) 1800 && h->root.def_regular 1801 && !bfd_is_abs_section (h->root.root.u.def.section) 1802 && (!ELF_ST_IS_MIPS16 (h->root.other) 1803 || (h->fn_stub && h->need_fn_stub)) 1804 && (PIC_OBJECT_P (h->root.root.u.def.section->owner) 1805 || ELF_ST_IS_MIPS_PIC (h->root.other))); 1806 } 1807 1808 /* Set *SEC to the input section that contains the target of STUB. 1809 Return the offset of the target from the start of that section. */ 1810 1811 static bfd_vma 1812 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub, 1813 asection **sec) 1814 { 1815 if (ELF_ST_IS_MIPS16 (stub->h->root.other)) 1816 { 1817 BFD_ASSERT (stub->h->need_fn_stub); 1818 *sec = stub->h->fn_stub; 1819 return 0; 1820 } 1821 else 1822 { 1823 *sec = stub->h->root.root.u.def.section; 1824 return stub->h->root.root.u.def.value; 1825 } 1826 } 1827 1828 /* STUB describes an la25 stub that we have decided to implement 1829 by inserting an LUI/ADDIU pair before the target function. 1830 Create the section and redirect the function symbol to it. */ 1831 1832 static bfd_boolean 1833 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub, 1834 struct bfd_link_info *info) 1835 { 1836 struct mips_elf_link_hash_table *htab; 1837 char *name; 1838 asection *s, *input_section; 1839 unsigned int align; 1840 1841 htab = mips_elf_hash_table (info); 1842 if (htab == NULL) 1843 return FALSE; 1844 1845 /* Create a unique name for the new section. */ 1846 name = bfd_malloc (11 + sizeof (".text.stub.")); 1847 if (name == NULL) 1848 return FALSE; 1849 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs)); 1850 1851 /* Create the section. */ 1852 mips_elf_get_la25_target (stub, &input_section); 1853 s = htab->add_stub_section (name, input_section, 1854 input_section->output_section); 1855 if (s == NULL) 1856 return FALSE; 1857 1858 /* Make sure that any padding goes before the stub. */ 1859 align = input_section->alignment_power; 1860 if (!bfd_set_section_alignment (s->owner, s, align)) 1861 return FALSE; 1862 if (align > 3) 1863 s->size = (1 << align) - 8; 1864 1865 /* Create a symbol for the stub. */ 1866 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8); 1867 stub->stub_section = s; 1868 stub->offset = s->size; 1869 1870 /* Allocate room for it. */ 1871 s->size += 8; 1872 return TRUE; 1873 } 1874 1875 /* STUB describes an la25 stub that we have decided to implement 1876 with a separate trampoline. Allocate room for it and redirect 1877 the function symbol to it. */ 1878 1879 static bfd_boolean 1880 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub, 1881 struct bfd_link_info *info) 1882 { 1883 struct mips_elf_link_hash_table *htab; 1884 asection *s; 1885 1886 htab = mips_elf_hash_table (info); 1887 if (htab == NULL) 1888 return FALSE; 1889 1890 /* Create a trampoline section, if we haven't already. */ 1891 s = htab->strampoline; 1892 if (s == NULL) 1893 { 1894 asection *input_section = stub->h->root.root.u.def.section; 1895 s = htab->add_stub_section (".text", NULL, 1896 input_section->output_section); 1897 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4)) 1898 return FALSE; 1899 htab->strampoline = s; 1900 } 1901 1902 /* Create a symbol for the stub. */ 1903 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16); 1904 stub->stub_section = s; 1905 stub->offset = s->size; 1906 1907 /* Allocate room for it. */ 1908 s->size += 16; 1909 return TRUE; 1910 } 1911 1912 /* H describes a symbol that needs an la25 stub. Make sure that an 1913 appropriate stub exists and point H at it. */ 1914 1915 static bfd_boolean 1916 mips_elf_add_la25_stub (struct bfd_link_info *info, 1917 struct mips_elf_link_hash_entry *h) 1918 { 1919 struct mips_elf_link_hash_table *htab; 1920 struct mips_elf_la25_stub search, *stub; 1921 bfd_boolean use_trampoline_p; 1922 asection *s; 1923 bfd_vma value; 1924 void **slot; 1925 1926 /* Describe the stub we want. */ 1927 search.stub_section = NULL; 1928 search.offset = 0; 1929 search.h = h; 1930 1931 /* See if we've already created an equivalent stub. */ 1932 htab = mips_elf_hash_table (info); 1933 if (htab == NULL) 1934 return FALSE; 1935 1936 slot = htab_find_slot (htab->la25_stubs, &search, INSERT); 1937 if (slot == NULL) 1938 return FALSE; 1939 1940 stub = (struct mips_elf_la25_stub *) *slot; 1941 if (stub != NULL) 1942 { 1943 /* We can reuse the existing stub. */ 1944 h->la25_stub = stub; 1945 return TRUE; 1946 } 1947 1948 /* Create a permanent copy of ENTRY and add it to the hash table. */ 1949 stub = bfd_malloc (sizeof (search)); 1950 if (stub == NULL) 1951 return FALSE; 1952 *stub = search; 1953 *slot = stub; 1954 1955 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning 1956 of the section and if we would need no more than 2 nops. */ 1957 value = mips_elf_get_la25_target (stub, &s); 1958 use_trampoline_p = (value != 0 || s->alignment_power > 4); 1959 1960 h->la25_stub = stub; 1961 return (use_trampoline_p 1962 ? mips_elf_add_la25_trampoline (stub, info) 1963 : mips_elf_add_la25_intro (stub, info)); 1964 } 1965 1966 /* A mips_elf_link_hash_traverse callback that is called before sizing 1967 sections. DATA points to a mips_htab_traverse_info structure. */ 1968 1969 static bfd_boolean 1970 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data) 1971 { 1972 struct mips_htab_traverse_info *hti; 1973 1974 hti = (struct mips_htab_traverse_info *) data; 1975 if (!bfd_link_relocatable (hti->info)) 1976 mips_elf_check_mips16_stubs (hti->info, h); 1977 1978 if (mips_elf_local_pic_function_p (h)) 1979 { 1980 /* PR 12845: If H is in a section that has been garbage 1981 collected it will have its output section set to *ABS*. */ 1982 if (bfd_is_abs_section (h->root.root.u.def.section->output_section)) 1983 return TRUE; 1984 1985 /* H is a function that might need $25 to be valid on entry. 1986 If we're creating a non-PIC relocatable object, mark H as 1987 being PIC. If we're creating a non-relocatable object with 1988 non-PIC branches and jumps to H, make sure that H has an la25 1989 stub. */ 1990 if (bfd_link_relocatable (hti->info)) 1991 { 1992 if (!PIC_OBJECT_P (hti->output_bfd)) 1993 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other); 1994 } 1995 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h)) 1996 { 1997 hti->error = TRUE; 1998 return FALSE; 1999 } 2000 } 2001 return TRUE; 2002 } 2003 2004 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions. 2005 Most mips16 instructions are 16 bits, but these instructions 2006 are 32 bits. 2007 2008 The format of these instructions is: 2009 2010 +--------------+--------------------------------+ 2011 | JALX | X| Imm 20:16 | Imm 25:21 | 2012 +--------------+--------------------------------+ 2013 | Immediate 15:0 | 2014 +-----------------------------------------------+ 2015 2016 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx. 2017 Note that the immediate value in the first word is swapped. 2018 2019 When producing a relocatable object file, R_MIPS16_26 is 2020 handled mostly like R_MIPS_26. In particular, the addend is 2021 stored as a straight 26-bit value in a 32-bit instruction. 2022 (gas makes life simpler for itself by never adjusting a 2023 R_MIPS16_26 reloc to be against a section, so the addend is 2024 always zero). However, the 32 bit instruction is stored as 2 2025 16-bit values, rather than a single 32-bit value. In a 2026 big-endian file, the result is the same; in a little-endian 2027 file, the two 16-bit halves of the 32 bit value are swapped. 2028 This is so that a disassembler can recognize the jal 2029 instruction. 2030 2031 When doing a final link, R_MIPS16_26 is treated as a 32 bit 2032 instruction stored as two 16-bit values. The addend A is the 2033 contents of the targ26 field. The calculation is the same as 2034 R_MIPS_26. When storing the calculated value, reorder the 2035 immediate value as shown above, and don't forget to store the 2036 value as two 16-bit values. 2037 2038 To put it in MIPS ABI terms, the relocation field is T-targ26-16, 2039 defined as 2040 2041 big-endian: 2042 +--------+----------------------+ 2043 | | | 2044 | | targ26-16 | 2045 |31 26|25 0| 2046 +--------+----------------------+ 2047 2048 little-endian: 2049 +----------+------+-------------+ 2050 | | | | 2051 | sub1 | | sub2 | 2052 |0 9|10 15|16 31| 2053 +----------+--------------------+ 2054 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is 2055 ((sub1 << 16) | sub2)). 2056 2057 When producing a relocatable object file, the calculation is 2058 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) 2059 When producing a fully linked file, the calculation is 2060 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) 2061 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) 2062 2063 The table below lists the other MIPS16 instruction relocations. 2064 Each one is calculated in the same way as the non-MIPS16 relocation 2065 given on the right, but using the extended MIPS16 layout of 16-bit 2066 immediate fields: 2067 2068 R_MIPS16_GPREL R_MIPS_GPREL16 2069 R_MIPS16_GOT16 R_MIPS_GOT16 2070 R_MIPS16_CALL16 R_MIPS_CALL16 2071 R_MIPS16_HI16 R_MIPS_HI16 2072 R_MIPS16_LO16 R_MIPS_LO16 2073 2074 A typical instruction will have a format like this: 2075 2076 +--------------+--------------------------------+ 2077 | EXTEND | Imm 10:5 | Imm 15:11 | 2078 +--------------+--------------------------------+ 2079 | Major | rx | ry | Imm 4:0 | 2080 +--------------+--------------------------------+ 2081 2082 EXTEND is the five bit value 11110. Major is the instruction 2083 opcode. 2084 2085 All we need to do here is shuffle the bits appropriately. 2086 As above, the two 16-bit halves must be swapped on a 2087 little-endian system. */ 2088 2089 static inline bfd_boolean 2090 mips16_reloc_p (int r_type) 2091 { 2092 switch (r_type) 2093 { 2094 case R_MIPS16_26: 2095 case R_MIPS16_GPREL: 2096 case R_MIPS16_GOT16: 2097 case R_MIPS16_CALL16: 2098 case R_MIPS16_HI16: 2099 case R_MIPS16_LO16: 2100 case R_MIPS16_TLS_GD: 2101 case R_MIPS16_TLS_LDM: 2102 case R_MIPS16_TLS_DTPREL_HI16: 2103 case R_MIPS16_TLS_DTPREL_LO16: 2104 case R_MIPS16_TLS_GOTTPREL: 2105 case R_MIPS16_TLS_TPREL_HI16: 2106 case R_MIPS16_TLS_TPREL_LO16: 2107 return TRUE; 2108 2109 default: 2110 return FALSE; 2111 } 2112 } 2113 2114 /* Check if a microMIPS reloc. */ 2115 2116 static inline bfd_boolean 2117 micromips_reloc_p (unsigned int r_type) 2118 { 2119 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max; 2120 } 2121 2122 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped 2123 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1 2124 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */ 2125 2126 static inline bfd_boolean 2127 micromips_reloc_shuffle_p (unsigned int r_type) 2128 { 2129 return (micromips_reloc_p (r_type) 2130 && r_type != R_MICROMIPS_PC7_S1 2131 && r_type != R_MICROMIPS_PC10_S1); 2132 } 2133 2134 static inline bfd_boolean 2135 got16_reloc_p (int r_type) 2136 { 2137 return (r_type == R_MIPS_GOT16 2138 || r_type == R_MIPS16_GOT16 2139 || r_type == R_MICROMIPS_GOT16); 2140 } 2141 2142 static inline bfd_boolean 2143 call16_reloc_p (int r_type) 2144 { 2145 return (r_type == R_MIPS_CALL16 2146 || r_type == R_MIPS16_CALL16 2147 || r_type == R_MICROMIPS_CALL16); 2148 } 2149 2150 static inline bfd_boolean 2151 got_disp_reloc_p (unsigned int r_type) 2152 { 2153 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP; 2154 } 2155 2156 static inline bfd_boolean 2157 got_page_reloc_p (unsigned int r_type) 2158 { 2159 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE; 2160 } 2161 2162 static inline bfd_boolean 2163 got_lo16_reloc_p (unsigned int r_type) 2164 { 2165 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16; 2166 } 2167 2168 static inline bfd_boolean 2169 call_hi16_reloc_p (unsigned int r_type) 2170 { 2171 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16; 2172 } 2173 2174 static inline bfd_boolean 2175 call_lo16_reloc_p (unsigned int r_type) 2176 { 2177 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16; 2178 } 2179 2180 static inline bfd_boolean 2181 hi16_reloc_p (int r_type) 2182 { 2183 return (r_type == R_MIPS_HI16 2184 || r_type == R_MIPS16_HI16 2185 || r_type == R_MICROMIPS_HI16 2186 || r_type == R_MIPS_PCHI16); 2187 } 2188 2189 static inline bfd_boolean 2190 lo16_reloc_p (int r_type) 2191 { 2192 return (r_type == R_MIPS_LO16 2193 || r_type == R_MIPS16_LO16 2194 || r_type == R_MICROMIPS_LO16 2195 || r_type == R_MIPS_PCLO16); 2196 } 2197 2198 static inline bfd_boolean 2199 mips16_call_reloc_p (int r_type) 2200 { 2201 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16; 2202 } 2203 2204 static inline bfd_boolean 2205 jal_reloc_p (int r_type) 2206 { 2207 return (r_type == R_MIPS_26 2208 || r_type == R_MIPS16_26 2209 || r_type == R_MICROMIPS_26_S1); 2210 } 2211 2212 static inline bfd_boolean 2213 aligned_pcrel_reloc_p (int r_type) 2214 { 2215 return (r_type == R_MIPS_PC18_S3 2216 || r_type == R_MIPS_PC19_S2); 2217 } 2218 2219 static inline bfd_boolean 2220 micromips_branch_reloc_p (int r_type) 2221 { 2222 return (r_type == R_MICROMIPS_26_S1 2223 || r_type == R_MICROMIPS_PC16_S1 2224 || r_type == R_MICROMIPS_PC10_S1 2225 || r_type == R_MICROMIPS_PC7_S1); 2226 } 2227 2228 static inline bfd_boolean 2229 tls_gd_reloc_p (unsigned int r_type) 2230 { 2231 return (r_type == R_MIPS_TLS_GD 2232 || r_type == R_MIPS16_TLS_GD 2233 || r_type == R_MICROMIPS_TLS_GD); 2234 } 2235 2236 static inline bfd_boolean 2237 tls_ldm_reloc_p (unsigned int r_type) 2238 { 2239 return (r_type == R_MIPS_TLS_LDM 2240 || r_type == R_MIPS16_TLS_LDM 2241 || r_type == R_MICROMIPS_TLS_LDM); 2242 } 2243 2244 static inline bfd_boolean 2245 tls_gottprel_reloc_p (unsigned int r_type) 2246 { 2247 return (r_type == R_MIPS_TLS_GOTTPREL 2248 || r_type == R_MIPS16_TLS_GOTTPREL 2249 || r_type == R_MICROMIPS_TLS_GOTTPREL); 2250 } 2251 2252 void 2253 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type, 2254 bfd_boolean jal_shuffle, bfd_byte *data) 2255 { 2256 bfd_vma first, second, val; 2257 2258 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type)) 2259 return; 2260 2261 /* Pick up the first and second halfwords of the instruction. */ 2262 first = bfd_get_16 (abfd, data); 2263 second = bfd_get_16 (abfd, data + 2); 2264 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle)) 2265 val = first << 16 | second; 2266 else if (r_type != R_MIPS16_26) 2267 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11) 2268 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f)); 2269 else 2270 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11) 2271 | ((first & 0x1f) << 21) | second); 2272 bfd_put_32 (abfd, val, data); 2273 } 2274 2275 void 2276 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type, 2277 bfd_boolean jal_shuffle, bfd_byte *data) 2278 { 2279 bfd_vma first, second, val; 2280 2281 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type)) 2282 return; 2283 2284 val = bfd_get_32 (abfd, data); 2285 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle)) 2286 { 2287 second = val & 0xffff; 2288 first = val >> 16; 2289 } 2290 else if (r_type != R_MIPS16_26) 2291 { 2292 second = ((val >> 11) & 0xffe0) | (val & 0x1f); 2293 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0); 2294 } 2295 else 2296 { 2297 second = val & 0xffff; 2298 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0) 2299 | ((val >> 21) & 0x1f); 2300 } 2301 bfd_put_16 (abfd, second, data + 2); 2302 bfd_put_16 (abfd, first, data); 2303 } 2304 2305 bfd_reloc_status_type 2306 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol, 2307 arelent *reloc_entry, asection *input_section, 2308 bfd_boolean relocatable, void *data, bfd_vma gp) 2309 { 2310 bfd_vma relocation; 2311 bfd_signed_vma val; 2312 bfd_reloc_status_type status; 2313 2314 if (bfd_is_com_section (symbol->section)) 2315 relocation = 0; 2316 else 2317 relocation = symbol->value; 2318 2319 relocation += symbol->section->output_section->vma; 2320 relocation += symbol->section->output_offset; 2321 2322 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) 2323 return bfd_reloc_outofrange; 2324 2325 /* Set val to the offset into the section or symbol. */ 2326 val = reloc_entry->addend; 2327 2328 _bfd_mips_elf_sign_extend (val, 16); 2329 2330 /* Adjust val for the final section location and GP value. If we 2331 are producing relocatable output, we don't want to do this for 2332 an external symbol. */ 2333 if (! relocatable 2334 || (symbol->flags & BSF_SECTION_SYM) != 0) 2335 val += relocation - gp; 2336 2337 if (reloc_entry->howto->partial_inplace) 2338 { 2339 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, 2340 (bfd_byte *) data 2341 + reloc_entry->address); 2342 if (status != bfd_reloc_ok) 2343 return status; 2344 } 2345 else 2346 reloc_entry->addend = val; 2347 2348 if (relocatable) 2349 reloc_entry->address += input_section->output_offset; 2350 2351 return bfd_reloc_ok; 2352 } 2353 2354 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or 2355 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section 2356 that contains the relocation field and DATA points to the start of 2357 INPUT_SECTION. */ 2358 2359 struct mips_hi16 2360 { 2361 struct mips_hi16 *next; 2362 bfd_byte *data; 2363 asection *input_section; 2364 arelent rel; 2365 }; 2366 2367 /* FIXME: This should not be a static variable. */ 2368 2369 static struct mips_hi16 *mips_hi16_list; 2370 2371 /* A howto special_function for REL *HI16 relocations. We can only 2372 calculate the correct value once we've seen the partnering 2373 *LO16 relocation, so just save the information for later. 2374 2375 The ABI requires that the *LO16 immediately follow the *HI16. 2376 However, as a GNU extension, we permit an arbitrary number of 2377 *HI16s to be associated with a single *LO16. This significantly 2378 simplies the relocation handling in gcc. */ 2379 2380 bfd_reloc_status_type 2381 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, 2382 asymbol *symbol ATTRIBUTE_UNUSED, void *data, 2383 asection *input_section, bfd *output_bfd, 2384 char **error_message ATTRIBUTE_UNUSED) 2385 { 2386 struct mips_hi16 *n; 2387 2388 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) 2389 return bfd_reloc_outofrange; 2390 2391 n = bfd_malloc (sizeof *n); 2392 if (n == NULL) 2393 return bfd_reloc_outofrange; 2394 2395 n->next = mips_hi16_list; 2396 n->data = data; 2397 n->input_section = input_section; 2398 n->rel = *reloc_entry; 2399 mips_hi16_list = n; 2400 2401 if (output_bfd != NULL) 2402 reloc_entry->address += input_section->output_offset; 2403 2404 return bfd_reloc_ok; 2405 } 2406 2407 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just 2408 like any other 16-bit relocation when applied to global symbols, but is 2409 treated in the same as R_MIPS_HI16 when applied to local symbols. */ 2410 2411 bfd_reloc_status_type 2412 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, 2413 void *data, asection *input_section, 2414 bfd *output_bfd, char **error_message) 2415 { 2416 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0 2417 || bfd_is_und_section (bfd_get_section (symbol)) 2418 || bfd_is_com_section (bfd_get_section (symbol))) 2419 /* The relocation is against a global symbol. */ 2420 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, 2421 input_section, output_bfd, 2422 error_message); 2423 2424 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data, 2425 input_section, output_bfd, error_message); 2426 } 2427 2428 /* A howto special_function for REL *LO16 relocations. The *LO16 itself 2429 is a straightforward 16 bit inplace relocation, but we must deal with 2430 any partnering high-part relocations as well. */ 2431 2432 bfd_reloc_status_type 2433 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, 2434 void *data, asection *input_section, 2435 bfd *output_bfd, char **error_message) 2436 { 2437 bfd_vma vallo; 2438 bfd_byte *location = (bfd_byte *) data + reloc_entry->address; 2439 2440 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) 2441 return bfd_reloc_outofrange; 2442 2443 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE, 2444 location); 2445 vallo = bfd_get_32 (abfd, location); 2446 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE, 2447 location); 2448 2449 while (mips_hi16_list != NULL) 2450 { 2451 bfd_reloc_status_type ret; 2452 struct mips_hi16 *hi; 2453 2454 hi = mips_hi16_list; 2455 2456 /* R_MIPS*_GOT16 relocations are something of a special case. We 2457 want to install the addend in the same way as for a R_MIPS*_HI16 2458 relocation (with a rightshift of 16). However, since GOT16 2459 relocations can also be used with global symbols, their howto 2460 has a rightshift of 0. */ 2461 if (hi->rel.howto->type == R_MIPS_GOT16) 2462 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE); 2463 else if (hi->rel.howto->type == R_MIPS16_GOT16) 2464 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE); 2465 else if (hi->rel.howto->type == R_MICROMIPS_GOT16) 2466 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE); 2467 2468 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any 2469 carry or borrow will induce a change of +1 or -1 in the high part. */ 2470 hi->rel.addend += (vallo + 0x8000) & 0xffff; 2471 2472 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data, 2473 hi->input_section, output_bfd, 2474 error_message); 2475 if (ret != bfd_reloc_ok) 2476 return ret; 2477 2478 mips_hi16_list = hi->next; 2479 free (hi); 2480 } 2481 2482 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, 2483 input_section, output_bfd, 2484 error_message); 2485 } 2486 2487 /* A generic howto special_function. This calculates and installs the 2488 relocation itself, thus avoiding the oft-discussed problems in 2489 bfd_perform_relocation and bfd_install_relocation. */ 2490 2491 bfd_reloc_status_type 2492 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, 2493 asymbol *symbol, void *data ATTRIBUTE_UNUSED, 2494 asection *input_section, bfd *output_bfd, 2495 char **error_message ATTRIBUTE_UNUSED) 2496 { 2497 bfd_signed_vma val; 2498 bfd_reloc_status_type status; 2499 bfd_boolean relocatable; 2500 2501 relocatable = (output_bfd != NULL); 2502 2503 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) 2504 return bfd_reloc_outofrange; 2505 2506 /* Build up the field adjustment in VAL. */ 2507 val = 0; 2508 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0) 2509 { 2510 /* Either we're calculating the final field value or we have a 2511 relocation against a section symbol. Add in the section's 2512 offset or address. */ 2513 val += symbol->section->output_section->vma; 2514 val += symbol->section->output_offset; 2515 } 2516 2517 if (!relocatable) 2518 { 2519 /* We're calculating the final field value. Add in the symbol's value 2520 and, if pc-relative, subtract the address of the field itself. */ 2521 val += symbol->value; 2522 if (reloc_entry->howto->pc_relative) 2523 { 2524 val -= input_section->output_section->vma; 2525 val -= input_section->output_offset; 2526 val -= reloc_entry->address; 2527 } 2528 } 2529 2530 /* VAL is now the final adjustment. If we're keeping this relocation 2531 in the output file, and if the relocation uses a separate addend, 2532 we just need to add VAL to that addend. Otherwise we need to add 2533 VAL to the relocation field itself. */ 2534 if (relocatable && !reloc_entry->howto->partial_inplace) 2535 reloc_entry->addend += val; 2536 else 2537 { 2538 bfd_byte *location = (bfd_byte *) data + reloc_entry->address; 2539 2540 /* Add in the separate addend, if any. */ 2541 val += reloc_entry->addend; 2542 2543 /* Add VAL to the relocation field. */ 2544 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE, 2545 location); 2546 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, 2547 location); 2548 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE, 2549 location); 2550 2551 if (status != bfd_reloc_ok) 2552 return status; 2553 } 2554 2555 if (relocatable) 2556 reloc_entry->address += input_section->output_offset; 2557 2558 return bfd_reloc_ok; 2559 } 2560 2561 /* Swap an entry in a .gptab section. Note that these routines rely 2562 on the equivalence of the two elements of the union. */ 2563 2564 static void 2565 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex, 2566 Elf32_gptab *in) 2567 { 2568 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value); 2569 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes); 2570 } 2571 2572 static void 2573 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in, 2574 Elf32_External_gptab *ex) 2575 { 2576 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value); 2577 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes); 2578 } 2579 2580 static void 2581 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in, 2582 Elf32_External_compact_rel *ex) 2583 { 2584 H_PUT_32 (abfd, in->id1, ex->id1); 2585 H_PUT_32 (abfd, in->num, ex->num); 2586 H_PUT_32 (abfd, in->id2, ex->id2); 2587 H_PUT_32 (abfd, in->offset, ex->offset); 2588 H_PUT_32 (abfd, in->reserved0, ex->reserved0); 2589 H_PUT_32 (abfd, in->reserved1, ex->reserved1); 2590 } 2591 2592 static void 2593 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in, 2594 Elf32_External_crinfo *ex) 2595 { 2596 unsigned long l; 2597 2598 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH) 2599 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH) 2600 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH) 2601 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH)); 2602 H_PUT_32 (abfd, l, ex->info); 2603 H_PUT_32 (abfd, in->konst, ex->konst); 2604 H_PUT_32 (abfd, in->vaddr, ex->vaddr); 2605 } 2606 2607 /* A .reginfo section holds a single Elf32_RegInfo structure. These 2608 routines swap this structure in and out. They are used outside of 2609 BFD, so they are globally visible. */ 2610 2611 void 2612 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex, 2613 Elf32_RegInfo *in) 2614 { 2615 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); 2616 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); 2617 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); 2618 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); 2619 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); 2620 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value); 2621 } 2622 2623 void 2624 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in, 2625 Elf32_External_RegInfo *ex) 2626 { 2627 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); 2628 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); 2629 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); 2630 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); 2631 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); 2632 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value); 2633 } 2634 2635 /* In the 64 bit ABI, the .MIPS.options section holds register 2636 information in an Elf64_Reginfo structure. These routines swap 2637 them in and out. They are globally visible because they are used 2638 outside of BFD. These routines are here so that gas can call them 2639 without worrying about whether the 64 bit ABI has been included. */ 2640 2641 void 2642 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex, 2643 Elf64_Internal_RegInfo *in) 2644 { 2645 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); 2646 in->ri_pad = H_GET_32 (abfd, ex->ri_pad); 2647 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); 2648 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); 2649 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); 2650 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); 2651 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value); 2652 } 2653 2654 void 2655 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in, 2656 Elf64_External_RegInfo *ex) 2657 { 2658 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); 2659 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad); 2660 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); 2661 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); 2662 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); 2663 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); 2664 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value); 2665 } 2666 2667 /* Swap in an options header. */ 2668 2669 void 2670 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex, 2671 Elf_Internal_Options *in) 2672 { 2673 in->kind = H_GET_8 (abfd, ex->kind); 2674 in->size = H_GET_8 (abfd, ex->size); 2675 in->section = H_GET_16 (abfd, ex->section); 2676 in->info = H_GET_32 (abfd, ex->info); 2677 } 2678 2679 /* Swap out an options header. */ 2680 2681 void 2682 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in, 2683 Elf_External_Options *ex) 2684 { 2685 H_PUT_8 (abfd, in->kind, ex->kind); 2686 H_PUT_8 (abfd, in->size, ex->size); 2687 H_PUT_16 (abfd, in->section, ex->section); 2688 H_PUT_32 (abfd, in->info, ex->info); 2689 } 2690 2691 /* Swap in an abiflags structure. */ 2692 2693 void 2694 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd, 2695 const Elf_External_ABIFlags_v0 *ex, 2696 Elf_Internal_ABIFlags_v0 *in) 2697 { 2698 in->version = H_GET_16 (abfd, ex->version); 2699 in->isa_level = H_GET_8 (abfd, ex->isa_level); 2700 in->isa_rev = H_GET_8 (abfd, ex->isa_rev); 2701 in->gpr_size = H_GET_8 (abfd, ex->gpr_size); 2702 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size); 2703 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size); 2704 in->fp_abi = H_GET_8 (abfd, ex->fp_abi); 2705 in->isa_ext = H_GET_32 (abfd, ex->isa_ext); 2706 in->ases = H_GET_32 (abfd, ex->ases); 2707 in->flags1 = H_GET_32 (abfd, ex->flags1); 2708 in->flags2 = H_GET_32 (abfd, ex->flags2); 2709 } 2710 2711 /* Swap out an abiflags structure. */ 2712 2713 void 2714 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd, 2715 const Elf_Internal_ABIFlags_v0 *in, 2716 Elf_External_ABIFlags_v0 *ex) 2717 { 2718 H_PUT_16 (abfd, in->version, ex->version); 2719 H_PUT_8 (abfd, in->isa_level, ex->isa_level); 2720 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev); 2721 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size); 2722 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size); 2723 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size); 2724 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi); 2725 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext); 2726 H_PUT_32 (abfd, in->ases, ex->ases); 2727 H_PUT_32 (abfd, in->flags1, ex->flags1); 2728 H_PUT_32 (abfd, in->flags2, ex->flags2); 2729 } 2730 2731 /* This function is called via qsort() to sort the dynamic relocation 2732 entries by increasing r_symndx value. */ 2733 2734 static int 2735 sort_dynamic_relocs (const void *arg1, const void *arg2) 2736 { 2737 Elf_Internal_Rela int_reloc1; 2738 Elf_Internal_Rela int_reloc2; 2739 int diff; 2740 2741 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1); 2742 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2); 2743 2744 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info); 2745 if (diff != 0) 2746 return diff; 2747 2748 if (int_reloc1.r_offset < int_reloc2.r_offset) 2749 return -1; 2750 if (int_reloc1.r_offset > int_reloc2.r_offset) 2751 return 1; 2752 return 0; 2753 } 2754 2755 /* Like sort_dynamic_relocs, but used for elf64 relocations. */ 2756 2757 static int 2758 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED, 2759 const void *arg2 ATTRIBUTE_UNUSED) 2760 { 2761 #ifdef BFD64 2762 Elf_Internal_Rela int_reloc1[3]; 2763 Elf_Internal_Rela int_reloc2[3]; 2764 2765 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) 2766 (reldyn_sorting_bfd, arg1, int_reloc1); 2767 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) 2768 (reldyn_sorting_bfd, arg2, int_reloc2); 2769 2770 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info)) 2771 return -1; 2772 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info)) 2773 return 1; 2774 2775 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset) 2776 return -1; 2777 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset) 2778 return 1; 2779 return 0; 2780 #else 2781 abort (); 2782 #endif 2783 } 2784 2785 2786 /* This routine is used to write out ECOFF debugging external symbol 2787 information. It is called via mips_elf_link_hash_traverse. The 2788 ECOFF external symbol information must match the ELF external 2789 symbol information. Unfortunately, at this point we don't know 2790 whether a symbol is required by reloc information, so the two 2791 tables may wind up being different. We must sort out the external 2792 symbol information before we can set the final size of the .mdebug 2793 section, and we must set the size of the .mdebug section before we 2794 can relocate any sections, and we can't know which symbols are 2795 required by relocation until we relocate the sections. 2796 Fortunately, it is relatively unlikely that any symbol will be 2797 stripped but required by a reloc. In particular, it can not happen 2798 when generating a final executable. */ 2799 2800 static bfd_boolean 2801 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data) 2802 { 2803 struct extsym_info *einfo = data; 2804 bfd_boolean strip; 2805 asection *sec, *output_section; 2806 2807 if (h->root.indx == -2) 2808 strip = FALSE; 2809 else if ((h->root.def_dynamic 2810 || h->root.ref_dynamic 2811 || h->root.type == bfd_link_hash_new) 2812 && !h->root.def_regular 2813 && !h->root.ref_regular) 2814 strip = TRUE; 2815 else if (einfo->info->strip == strip_all 2816 || (einfo->info->strip == strip_some 2817 && bfd_hash_lookup (einfo->info->keep_hash, 2818 h->root.root.root.string, 2819 FALSE, FALSE) == NULL)) 2820 strip = TRUE; 2821 else 2822 strip = FALSE; 2823 2824 if (strip) 2825 return TRUE; 2826 2827 if (h->esym.ifd == -2) 2828 { 2829 h->esym.jmptbl = 0; 2830 h->esym.cobol_main = 0; 2831 h->esym.weakext = 0; 2832 h->esym.reserved = 0; 2833 h->esym.ifd = ifdNil; 2834 h->esym.asym.value = 0; 2835 h->esym.asym.st = stGlobal; 2836 2837 if (h->root.root.type == bfd_link_hash_undefined 2838 || h->root.root.type == bfd_link_hash_undefweak) 2839 { 2840 const char *name; 2841 2842 /* Use undefined class. Also, set class and type for some 2843 special symbols. */ 2844 name = h->root.root.root.string; 2845 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 2846 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) 2847 { 2848 h->esym.asym.sc = scData; 2849 h->esym.asym.st = stLabel; 2850 h->esym.asym.value = 0; 2851 } 2852 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) 2853 { 2854 h->esym.asym.sc = scAbs; 2855 h->esym.asym.st = stLabel; 2856 h->esym.asym.value = 2857 mips_elf_hash_table (einfo->info)->procedure_count; 2858 } 2859 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd)) 2860 { 2861 h->esym.asym.sc = scAbs; 2862 h->esym.asym.st = stLabel; 2863 h->esym.asym.value = elf_gp (einfo->abfd); 2864 } 2865 else 2866 h->esym.asym.sc = scUndefined; 2867 } 2868 else if (h->root.root.type != bfd_link_hash_defined 2869 && h->root.root.type != bfd_link_hash_defweak) 2870 h->esym.asym.sc = scAbs; 2871 else 2872 { 2873 const char *name; 2874 2875 sec = h->root.root.u.def.section; 2876 output_section = sec->output_section; 2877 2878 /* When making a shared library and symbol h is the one from 2879 the another shared library, OUTPUT_SECTION may be null. */ 2880 if (output_section == NULL) 2881 h->esym.asym.sc = scUndefined; 2882 else 2883 { 2884 name = bfd_section_name (output_section->owner, output_section); 2885 2886 if (strcmp (name, ".text") == 0) 2887 h->esym.asym.sc = scText; 2888 else if (strcmp (name, ".data") == 0) 2889 h->esym.asym.sc = scData; 2890 else if (strcmp (name, ".sdata") == 0) 2891 h->esym.asym.sc = scSData; 2892 else if (strcmp (name, ".rodata") == 0 2893 || strcmp (name, ".rdata") == 0) 2894 h->esym.asym.sc = scRData; 2895 else if (strcmp (name, ".bss") == 0) 2896 h->esym.asym.sc = scBss; 2897 else if (strcmp (name, ".sbss") == 0) 2898 h->esym.asym.sc = scSBss; 2899 else if (strcmp (name, ".init") == 0) 2900 h->esym.asym.sc = scInit; 2901 else if (strcmp (name, ".fini") == 0) 2902 h->esym.asym.sc = scFini; 2903 else 2904 h->esym.asym.sc = scAbs; 2905 } 2906 } 2907 2908 h->esym.asym.reserved = 0; 2909 h->esym.asym.index = indexNil; 2910 } 2911 2912 if (h->root.root.type == bfd_link_hash_common) 2913 h->esym.asym.value = h->root.root.u.c.size; 2914 else if (h->root.root.type == bfd_link_hash_defined 2915 || h->root.root.type == bfd_link_hash_defweak) 2916 { 2917 if (h->esym.asym.sc == scCommon) 2918 h->esym.asym.sc = scBss; 2919 else if (h->esym.asym.sc == scSCommon) 2920 h->esym.asym.sc = scSBss; 2921 2922 sec = h->root.root.u.def.section; 2923 output_section = sec->output_section; 2924 if (output_section != NULL) 2925 h->esym.asym.value = (h->root.root.u.def.value 2926 + sec->output_offset 2927 + output_section->vma); 2928 else 2929 h->esym.asym.value = 0; 2930 } 2931 else 2932 { 2933 struct mips_elf_link_hash_entry *hd = h; 2934 2935 while (hd->root.root.type == bfd_link_hash_indirect) 2936 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link; 2937 2938 if (hd->needs_lazy_stub) 2939 { 2940 BFD_ASSERT (hd->root.plt.plist != NULL); 2941 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE); 2942 /* Set type and value for a symbol with a function stub. */ 2943 h->esym.asym.st = stProc; 2944 sec = hd->root.root.u.def.section; 2945 if (sec == NULL) 2946 h->esym.asym.value = 0; 2947 else 2948 { 2949 output_section = sec->output_section; 2950 if (output_section != NULL) 2951 h->esym.asym.value = (hd->root.plt.plist->stub_offset 2952 + sec->output_offset 2953 + output_section->vma); 2954 else 2955 h->esym.asym.value = 0; 2956 } 2957 } 2958 } 2959 2960 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap, 2961 h->root.root.root.string, 2962 &h->esym)) 2963 { 2964 einfo->failed = TRUE; 2965 return FALSE; 2966 } 2967 2968 return TRUE; 2969 } 2970 2971 /* A comparison routine used to sort .gptab entries. */ 2972 2973 static int 2974 gptab_compare (const void *p1, const void *p2) 2975 { 2976 const Elf32_gptab *a1 = p1; 2977 const Elf32_gptab *a2 = p2; 2978 2979 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value; 2980 } 2981 2982 /* Functions to manage the got entry hash table. */ 2983 2984 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit 2985 hash number. */ 2986 2987 static INLINE hashval_t 2988 mips_elf_hash_bfd_vma (bfd_vma addr) 2989 { 2990 #ifdef BFD64 2991 return addr + (addr >> 32); 2992 #else 2993 return addr; 2994 #endif 2995 } 2996 2997 static hashval_t 2998 mips_elf_got_entry_hash (const void *entry_) 2999 { 3000 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_; 3001 3002 return (entry->symndx 3003 + ((entry->tls_type == GOT_TLS_LDM) << 18) 3004 + (entry->tls_type == GOT_TLS_LDM ? 0 3005 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address) 3006 : entry->symndx >= 0 ? (entry->abfd->id 3007 + mips_elf_hash_bfd_vma (entry->d.addend)) 3008 : entry->d.h->root.root.root.hash)); 3009 } 3010 3011 static int 3012 mips_elf_got_entry_eq (const void *entry1, const void *entry2) 3013 { 3014 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1; 3015 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2; 3016 3017 return (e1->symndx == e2->symndx 3018 && e1->tls_type == e2->tls_type 3019 && (e1->tls_type == GOT_TLS_LDM ? TRUE 3020 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address 3021 : e1->symndx >= 0 ? (e1->abfd == e2->abfd 3022 && e1->d.addend == e2->d.addend) 3023 : e2->abfd && e1->d.h == e2->d.h)); 3024 } 3025 3026 static hashval_t 3027 mips_got_page_ref_hash (const void *ref_) 3028 { 3029 const struct mips_got_page_ref *ref; 3030 3031 ref = (const struct mips_got_page_ref *) ref_; 3032 return ((ref->symndx >= 0 3033 ? (hashval_t) (ref->u.abfd->id + ref->symndx) 3034 : ref->u.h->root.root.root.hash) 3035 + mips_elf_hash_bfd_vma (ref->addend)); 3036 } 3037 3038 static int 3039 mips_got_page_ref_eq (const void *ref1_, const void *ref2_) 3040 { 3041 const struct mips_got_page_ref *ref1, *ref2; 3042 3043 ref1 = (const struct mips_got_page_ref *) ref1_; 3044 ref2 = (const struct mips_got_page_ref *) ref2_; 3045 return (ref1->symndx == ref2->symndx 3046 && (ref1->symndx < 0 3047 ? ref1->u.h == ref2->u.h 3048 : ref1->u.abfd == ref2->u.abfd) 3049 && ref1->addend == ref2->addend); 3050 } 3051 3052 static hashval_t 3053 mips_got_page_entry_hash (const void *entry_) 3054 { 3055 const struct mips_got_page_entry *entry; 3056 3057 entry = (const struct mips_got_page_entry *) entry_; 3058 return entry->sec->id; 3059 } 3060 3061 static int 3062 mips_got_page_entry_eq (const void *entry1_, const void *entry2_) 3063 { 3064 const struct mips_got_page_entry *entry1, *entry2; 3065 3066 entry1 = (const struct mips_got_page_entry *) entry1_; 3067 entry2 = (const struct mips_got_page_entry *) entry2_; 3068 return entry1->sec == entry2->sec; 3069 } 3070 3071 /* Create and return a new mips_got_info structure. */ 3072 3073 static struct mips_got_info * 3074 mips_elf_create_got_info (bfd *abfd) 3075 { 3076 struct mips_got_info *g; 3077 3078 g = bfd_zalloc (abfd, sizeof (struct mips_got_info)); 3079 if (g == NULL) 3080 return NULL; 3081 3082 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash, 3083 mips_elf_got_entry_eq, NULL); 3084 if (g->got_entries == NULL) 3085 return NULL; 3086 3087 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash, 3088 mips_got_page_ref_eq, NULL); 3089 if (g->got_page_refs == NULL) 3090 return NULL; 3091 3092 return g; 3093 } 3094 3095 /* Return the GOT info for input bfd ABFD, trying to create a new one if 3096 CREATE_P and if ABFD doesn't already have a GOT. */ 3097 3098 static struct mips_got_info * 3099 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p) 3100 { 3101 struct mips_elf_obj_tdata *tdata; 3102 3103 if (!is_mips_elf (abfd)) 3104 return NULL; 3105 3106 tdata = mips_elf_tdata (abfd); 3107 if (!tdata->got && create_p) 3108 tdata->got = mips_elf_create_got_info (abfd); 3109 return tdata->got; 3110 } 3111 3112 /* Record that ABFD should use output GOT G. */ 3113 3114 static void 3115 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g) 3116 { 3117 struct mips_elf_obj_tdata *tdata; 3118 3119 BFD_ASSERT (is_mips_elf (abfd)); 3120 tdata = mips_elf_tdata (abfd); 3121 if (tdata->got) 3122 { 3123 /* The GOT structure itself and the hash table entries are 3124 allocated to a bfd, but the hash tables aren't. */ 3125 htab_delete (tdata->got->got_entries); 3126 htab_delete (tdata->got->got_page_refs); 3127 if (tdata->got->got_page_entries) 3128 htab_delete (tdata->got->got_page_entries); 3129 } 3130 tdata->got = g; 3131 } 3132 3133 /* Return the dynamic relocation section. If it doesn't exist, try to 3134 create a new it if CREATE_P, otherwise return NULL. Also return NULL 3135 if creation fails. */ 3136 3137 static asection * 3138 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p) 3139 { 3140 const char *dname; 3141 asection *sreloc; 3142 bfd *dynobj; 3143 3144 dname = MIPS_ELF_REL_DYN_NAME (info); 3145 dynobj = elf_hash_table (info)->dynobj; 3146 sreloc = bfd_get_linker_section (dynobj, dname); 3147 if (sreloc == NULL && create_p) 3148 { 3149 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname, 3150 (SEC_ALLOC 3151 | SEC_LOAD 3152 | SEC_HAS_CONTENTS 3153 | SEC_IN_MEMORY 3154 | SEC_LINKER_CREATED 3155 | SEC_READONLY)); 3156 if (sreloc == NULL 3157 || ! bfd_set_section_alignment (dynobj, sreloc, 3158 MIPS_ELF_LOG_FILE_ALIGN (dynobj))) 3159 return NULL; 3160 } 3161 return sreloc; 3162 } 3163 3164 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */ 3165 3166 static int 3167 mips_elf_reloc_tls_type (unsigned int r_type) 3168 { 3169 if (tls_gd_reloc_p (r_type)) 3170 return GOT_TLS_GD; 3171 3172 if (tls_ldm_reloc_p (r_type)) 3173 return GOT_TLS_LDM; 3174 3175 if (tls_gottprel_reloc_p (r_type)) 3176 return GOT_TLS_IE; 3177 3178 return GOT_TLS_NONE; 3179 } 3180 3181 /* Return the number of GOT slots needed for GOT TLS type TYPE. */ 3182 3183 static int 3184 mips_tls_got_entries (unsigned int type) 3185 { 3186 switch (type) 3187 { 3188 case GOT_TLS_GD: 3189 case GOT_TLS_LDM: 3190 return 2; 3191 3192 case GOT_TLS_IE: 3193 return 1; 3194 3195 case GOT_TLS_NONE: 3196 return 0; 3197 } 3198 abort (); 3199 } 3200 3201 /* Count the number of relocations needed for a TLS GOT entry, with 3202 access types from TLS_TYPE, and symbol H (or a local symbol if H 3203 is NULL). */ 3204 3205 static int 3206 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type, 3207 struct elf_link_hash_entry *h) 3208 { 3209 int indx = 0; 3210 bfd_boolean need_relocs = FALSE; 3211 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created; 3212 3213 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h) 3214 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h))) 3215 indx = h->dynindx; 3216 3217 if ((bfd_link_pic (info) || indx != 0) 3218 && (h == NULL 3219 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 3220 || h->root.type != bfd_link_hash_undefweak)) 3221 need_relocs = TRUE; 3222 3223 if (!need_relocs) 3224 return 0; 3225 3226 switch (tls_type) 3227 { 3228 case GOT_TLS_GD: 3229 return indx != 0 ? 2 : 1; 3230 3231 case GOT_TLS_IE: 3232 return 1; 3233 3234 case GOT_TLS_LDM: 3235 return bfd_link_pic (info) ? 1 : 0; 3236 3237 default: 3238 return 0; 3239 } 3240 } 3241 3242 /* Add the number of GOT entries and TLS relocations required by ENTRY 3243 to G. */ 3244 3245 static void 3246 mips_elf_count_got_entry (struct bfd_link_info *info, 3247 struct mips_got_info *g, 3248 struct mips_got_entry *entry) 3249 { 3250 if (entry->tls_type) 3251 { 3252 g->tls_gotno += mips_tls_got_entries (entry->tls_type); 3253 g->relocs += mips_tls_got_relocs (info, entry->tls_type, 3254 entry->symndx < 0 3255 ? &entry->d.h->root : NULL); 3256 } 3257 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE) 3258 g->local_gotno += 1; 3259 else 3260 g->global_gotno += 1; 3261 } 3262 3263 /* Output a simple dynamic relocation into SRELOC. */ 3264 3265 static void 3266 mips_elf_output_dynamic_relocation (bfd *output_bfd, 3267 asection *sreloc, 3268 unsigned long reloc_index, 3269 unsigned long indx, 3270 int r_type, 3271 bfd_vma offset) 3272 { 3273 Elf_Internal_Rela rel[3]; 3274 3275 memset (rel, 0, sizeof (rel)); 3276 3277 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type); 3278 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; 3279 3280 if (ABI_64_P (output_bfd)) 3281 { 3282 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) 3283 (output_bfd, &rel[0], 3284 (sreloc->contents 3285 + reloc_index * sizeof (Elf64_Mips_External_Rel))); 3286 } 3287 else 3288 bfd_elf32_swap_reloc_out 3289 (output_bfd, &rel[0], 3290 (sreloc->contents 3291 + reloc_index * sizeof (Elf32_External_Rel))); 3292 } 3293 3294 /* Initialize a set of TLS GOT entries for one symbol. */ 3295 3296 static void 3297 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info, 3298 struct mips_got_entry *entry, 3299 struct mips_elf_link_hash_entry *h, 3300 bfd_vma value) 3301 { 3302 struct mips_elf_link_hash_table *htab; 3303 int indx; 3304 asection *sreloc, *sgot; 3305 bfd_vma got_offset, got_offset2; 3306 bfd_boolean need_relocs = FALSE; 3307 3308 htab = mips_elf_hash_table (info); 3309 if (htab == NULL) 3310 return; 3311 3312 sgot = htab->sgot; 3313 3314 indx = 0; 3315 if (h != NULL) 3316 { 3317 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created; 3318 3319 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), 3320 &h->root) 3321 && (!bfd_link_pic (info) 3322 || !SYMBOL_REFERENCES_LOCAL (info, &h->root))) 3323 indx = h->root.dynindx; 3324 } 3325 3326 if (entry->tls_initialized) 3327 return; 3328 3329 if ((bfd_link_pic (info) || indx != 0) 3330 && (h == NULL 3331 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT 3332 || h->root.type != bfd_link_hash_undefweak)) 3333 need_relocs = TRUE; 3334 3335 /* MINUS_ONE means the symbol is not defined in this object. It may not 3336 be defined at all; assume that the value doesn't matter in that 3337 case. Otherwise complain if we would use the value. */ 3338 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs) 3339 || h->root.root.type == bfd_link_hash_undefweak); 3340 3341 /* Emit necessary relocations. */ 3342 sreloc = mips_elf_rel_dyn_section (info, FALSE); 3343 got_offset = entry->gotidx; 3344 3345 switch (entry->tls_type) 3346 { 3347 case GOT_TLS_GD: 3348 /* General Dynamic. */ 3349 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd); 3350 3351 if (need_relocs) 3352 { 3353 mips_elf_output_dynamic_relocation 3354 (abfd, sreloc, sreloc->reloc_count++, indx, 3355 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32, 3356 sgot->output_offset + sgot->output_section->vma + got_offset); 3357 3358 if (indx) 3359 mips_elf_output_dynamic_relocation 3360 (abfd, sreloc, sreloc->reloc_count++, indx, 3361 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32, 3362 sgot->output_offset + sgot->output_section->vma + got_offset2); 3363 else 3364 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info), 3365 sgot->contents + got_offset2); 3366 } 3367 else 3368 { 3369 MIPS_ELF_PUT_WORD (abfd, 1, 3370 sgot->contents + got_offset); 3371 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info), 3372 sgot->contents + got_offset2); 3373 } 3374 break; 3375 3376 case GOT_TLS_IE: 3377 /* Initial Exec model. */ 3378 if (need_relocs) 3379 { 3380 if (indx == 0) 3381 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma, 3382 sgot->contents + got_offset); 3383 else 3384 MIPS_ELF_PUT_WORD (abfd, 0, 3385 sgot->contents + got_offset); 3386 3387 mips_elf_output_dynamic_relocation 3388 (abfd, sreloc, sreloc->reloc_count++, indx, 3389 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32, 3390 sgot->output_offset + sgot->output_section->vma + got_offset); 3391 } 3392 else 3393 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info), 3394 sgot->contents + got_offset); 3395 break; 3396 3397 case GOT_TLS_LDM: 3398 /* The initial offset is zero, and the LD offsets will include the 3399 bias by DTP_OFFSET. */ 3400 MIPS_ELF_PUT_WORD (abfd, 0, 3401 sgot->contents + got_offset 3402 + MIPS_ELF_GOT_SIZE (abfd)); 3403 3404 if (!bfd_link_pic (info)) 3405 MIPS_ELF_PUT_WORD (abfd, 1, 3406 sgot->contents + got_offset); 3407 else 3408 mips_elf_output_dynamic_relocation 3409 (abfd, sreloc, sreloc->reloc_count++, indx, 3410 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32, 3411 sgot->output_offset + sgot->output_section->vma + got_offset); 3412 break; 3413 3414 default: 3415 abort (); 3416 } 3417 3418 entry->tls_initialized = TRUE; 3419 } 3420 3421 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry 3422 for global symbol H. .got.plt comes before the GOT, so the offset 3423 will be negative. */ 3424 3425 static bfd_vma 3426 mips_elf_gotplt_index (struct bfd_link_info *info, 3427 struct elf_link_hash_entry *h) 3428 { 3429 bfd_vma got_address, got_value; 3430 struct mips_elf_link_hash_table *htab; 3431 3432 htab = mips_elf_hash_table (info); 3433 BFD_ASSERT (htab != NULL); 3434 3435 BFD_ASSERT (h->plt.plist != NULL); 3436 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE); 3437 3438 /* Calculate the address of the associated .got.plt entry. */ 3439 got_address = (htab->sgotplt->output_section->vma 3440 + htab->sgotplt->output_offset 3441 + (h->plt.plist->gotplt_index 3442 * MIPS_ELF_GOT_SIZE (info->output_bfd))); 3443 3444 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */ 3445 got_value = (htab->root.hgot->root.u.def.section->output_section->vma 3446 + htab->root.hgot->root.u.def.section->output_offset 3447 + htab->root.hgot->root.u.def.value); 3448 3449 return got_address - got_value; 3450 } 3451 3452 /* Return the GOT offset for address VALUE. If there is not yet a GOT 3453 entry for this value, create one. If R_SYMNDX refers to a TLS symbol, 3454 create a TLS GOT entry instead. Return -1 if no satisfactory GOT 3455 offset can be found. */ 3456 3457 static bfd_vma 3458 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, 3459 bfd_vma value, unsigned long r_symndx, 3460 struct mips_elf_link_hash_entry *h, int r_type) 3461 { 3462 struct mips_elf_link_hash_table *htab; 3463 struct mips_got_entry *entry; 3464 3465 htab = mips_elf_hash_table (info); 3466 BFD_ASSERT (htab != NULL); 3467 3468 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 3469 r_symndx, h, r_type); 3470 if (!entry) 3471 return MINUS_ONE; 3472 3473 if (entry->tls_type) 3474 mips_elf_initialize_tls_slots (abfd, info, entry, h, value); 3475 return entry->gotidx; 3476 } 3477 3478 /* Return the GOT index of global symbol H in the primary GOT. */ 3479 3480 static bfd_vma 3481 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info, 3482 struct elf_link_hash_entry *h) 3483 { 3484 struct mips_elf_link_hash_table *htab; 3485 long global_got_dynindx; 3486 struct mips_got_info *g; 3487 bfd_vma got_index; 3488 3489 htab = mips_elf_hash_table (info); 3490 BFD_ASSERT (htab != NULL); 3491 3492 global_got_dynindx = 0; 3493 if (htab->global_gotsym != NULL) 3494 global_got_dynindx = htab->global_gotsym->dynindx; 3495 3496 /* Once we determine the global GOT entry with the lowest dynamic 3497 symbol table index, we must put all dynamic symbols with greater 3498 indices into the primary GOT. That makes it easy to calculate the 3499 GOT offset. */ 3500 BFD_ASSERT (h->dynindx >= global_got_dynindx); 3501 g = mips_elf_bfd_got (obfd, FALSE); 3502 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno) 3503 * MIPS_ELF_GOT_SIZE (obfd)); 3504 BFD_ASSERT (got_index < htab->sgot->size); 3505 3506 return got_index; 3507 } 3508 3509 /* Return the GOT index for the global symbol indicated by H, which is 3510 referenced by a relocation of type R_TYPE in IBFD. */ 3511 3512 static bfd_vma 3513 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd, 3514 struct elf_link_hash_entry *h, int r_type) 3515 { 3516 struct mips_elf_link_hash_table *htab; 3517 struct mips_got_info *g; 3518 struct mips_got_entry lookup, *entry; 3519 bfd_vma gotidx; 3520 3521 htab = mips_elf_hash_table (info); 3522 BFD_ASSERT (htab != NULL); 3523 3524 g = mips_elf_bfd_got (ibfd, FALSE); 3525 BFD_ASSERT (g); 3526 3527 lookup.tls_type = mips_elf_reloc_tls_type (r_type); 3528 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE)) 3529 return mips_elf_primary_global_got_index (obfd, info, h); 3530 3531 lookup.abfd = ibfd; 3532 lookup.symndx = -1; 3533 lookup.d.h = (struct mips_elf_link_hash_entry *) h; 3534 entry = htab_find (g->got_entries, &lookup); 3535 BFD_ASSERT (entry); 3536 3537 gotidx = entry->gotidx; 3538 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size); 3539 3540 if (lookup.tls_type) 3541 { 3542 bfd_vma value = MINUS_ONE; 3543 3544 if ((h->root.type == bfd_link_hash_defined 3545 || h->root.type == bfd_link_hash_defweak) 3546 && h->root.u.def.section->output_section) 3547 value = (h->root.u.def.value 3548 + h->root.u.def.section->output_offset 3549 + h->root.u.def.section->output_section->vma); 3550 3551 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value); 3552 } 3553 return gotidx; 3554 } 3555 3556 /* Find a GOT page entry that points to within 32KB of VALUE. These 3557 entries are supposed to be placed at small offsets in the GOT, i.e., 3558 within 32KB of GP. Return the index of the GOT entry, or -1 if no 3559 entry could be created. If OFFSETP is nonnull, use it to return the 3560 offset of the GOT entry from VALUE. */ 3561 3562 static bfd_vma 3563 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, 3564 bfd_vma value, bfd_vma *offsetp) 3565 { 3566 bfd_vma page, got_index; 3567 struct mips_got_entry *entry; 3568 3569 page = (value + 0x8000) & ~(bfd_vma) 0xffff; 3570 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0, 3571 NULL, R_MIPS_GOT_PAGE); 3572 3573 if (!entry) 3574 return MINUS_ONE; 3575 3576 got_index = entry->gotidx; 3577 3578 if (offsetp) 3579 *offsetp = value - entry->d.address; 3580 3581 return got_index; 3582 } 3583 3584 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE. 3585 EXTERNAL is true if the relocation was originally against a global 3586 symbol that binds locally. */ 3587 3588 static bfd_vma 3589 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, 3590 bfd_vma value, bfd_boolean external) 3591 { 3592 struct mips_got_entry *entry; 3593 3594 /* GOT16 relocations against local symbols are followed by a LO16 3595 relocation; those against global symbols are not. Thus if the 3596 symbol was originally local, the GOT16 relocation should load the 3597 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */ 3598 if (! external) 3599 value = mips_elf_high (value) << 16; 3600 3601 /* It doesn't matter whether the original relocation was R_MIPS_GOT16, 3602 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the 3603 same in all cases. */ 3604 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0, 3605 NULL, R_MIPS_GOT16); 3606 if (entry) 3607 return entry->gotidx; 3608 else 3609 return MINUS_ONE; 3610 } 3611 3612 /* Returns the offset for the entry at the INDEXth position 3613 in the GOT. */ 3614 3615 static bfd_vma 3616 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd, 3617 bfd *input_bfd, bfd_vma got_index) 3618 { 3619 struct mips_elf_link_hash_table *htab; 3620 asection *sgot; 3621 bfd_vma gp; 3622 3623 htab = mips_elf_hash_table (info); 3624 BFD_ASSERT (htab != NULL); 3625 3626 sgot = htab->sgot; 3627 gp = _bfd_get_gp_value (output_bfd) 3628 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd); 3629 3630 return sgot->output_section->vma + sgot->output_offset + got_index - gp; 3631 } 3632 3633 /* Create and return a local GOT entry for VALUE, which was calculated 3634 from a symbol belonging to INPUT_SECTON. Return NULL if it could not 3635 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry 3636 instead. */ 3637 3638 static struct mips_got_entry * 3639 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info, 3640 bfd *ibfd, bfd_vma value, 3641 unsigned long r_symndx, 3642 struct mips_elf_link_hash_entry *h, 3643 int r_type) 3644 { 3645 struct mips_got_entry lookup, *entry; 3646 void **loc; 3647 struct mips_got_info *g; 3648 struct mips_elf_link_hash_table *htab; 3649 bfd_vma gotidx; 3650 3651 htab = mips_elf_hash_table (info); 3652 BFD_ASSERT (htab != NULL); 3653 3654 g = mips_elf_bfd_got (ibfd, FALSE); 3655 if (g == NULL) 3656 { 3657 g = mips_elf_bfd_got (abfd, FALSE); 3658 BFD_ASSERT (g != NULL); 3659 } 3660 3661 /* This function shouldn't be called for symbols that live in the global 3662 area of the GOT. */ 3663 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE); 3664 3665 lookup.tls_type = mips_elf_reloc_tls_type (r_type); 3666 if (lookup.tls_type) 3667 { 3668 lookup.abfd = ibfd; 3669 if (tls_ldm_reloc_p (r_type)) 3670 { 3671 lookup.symndx = 0; 3672 lookup.d.addend = 0; 3673 } 3674 else if (h == NULL) 3675 { 3676 lookup.symndx = r_symndx; 3677 lookup.d.addend = 0; 3678 } 3679 else 3680 { 3681 lookup.symndx = -1; 3682 lookup.d.h = h; 3683 } 3684 3685 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup); 3686 BFD_ASSERT (entry); 3687 3688 gotidx = entry->gotidx; 3689 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size); 3690 3691 return entry; 3692 } 3693 3694 lookup.abfd = NULL; 3695 lookup.symndx = -1; 3696 lookup.d.address = value; 3697 loc = htab_find_slot (g->got_entries, &lookup, INSERT); 3698 if (!loc) 3699 return NULL; 3700 3701 entry = (struct mips_got_entry *) *loc; 3702 if (entry) 3703 return entry; 3704 3705 if (g->assigned_low_gotno > g->assigned_high_gotno) 3706 { 3707 /* We didn't allocate enough space in the GOT. */ 3708 (*_bfd_error_handler) 3709 (_("not enough GOT space for local GOT entries")); 3710 bfd_set_error (bfd_error_bad_value); 3711 return NULL; 3712 } 3713 3714 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry)); 3715 if (!entry) 3716 return NULL; 3717 3718 if (got16_reloc_p (r_type) 3719 || call16_reloc_p (r_type) 3720 || got_page_reloc_p (r_type) 3721 || got_disp_reloc_p (r_type)) 3722 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++; 3723 else 3724 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--; 3725 3726 *entry = lookup; 3727 *loc = entry; 3728 3729 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx); 3730 3731 /* These GOT entries need a dynamic relocation on VxWorks. */ 3732 if (htab->is_vxworks) 3733 { 3734 Elf_Internal_Rela outrel; 3735 asection *s; 3736 bfd_byte *rloc; 3737 bfd_vma got_address; 3738 3739 s = mips_elf_rel_dyn_section (info, FALSE); 3740 got_address = (htab->sgot->output_section->vma 3741 + htab->sgot->output_offset 3742 + entry->gotidx); 3743 3744 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela)); 3745 outrel.r_offset = got_address; 3746 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32); 3747 outrel.r_addend = value; 3748 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc); 3749 } 3750 3751 return entry; 3752 } 3753 3754 /* Return the number of dynamic section symbols required by OUTPUT_BFD. 3755 The number might be exact or a worst-case estimate, depending on how 3756 much information is available to elf_backend_omit_section_dynsym at 3757 the current linking stage. */ 3758 3759 static bfd_size_type 3760 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info) 3761 { 3762 bfd_size_type count; 3763 3764 count = 0; 3765 if (bfd_link_pic (info) 3766 || elf_hash_table (info)->is_relocatable_executable) 3767 { 3768 asection *p; 3769 const struct elf_backend_data *bed; 3770 3771 bed = get_elf_backend_data (output_bfd); 3772 for (p = output_bfd->sections; p ; p = p->next) 3773 if ((p->flags & SEC_EXCLUDE) == 0 3774 && (p->flags & SEC_ALLOC) != 0 3775 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p)) 3776 ++count; 3777 } 3778 return count; 3779 } 3780 3781 /* Sort the dynamic symbol table so that symbols that need GOT entries 3782 appear towards the end. */ 3783 3784 static bfd_boolean 3785 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info) 3786 { 3787 struct mips_elf_link_hash_table *htab; 3788 struct mips_elf_hash_sort_data hsd; 3789 struct mips_got_info *g; 3790 3791 if (elf_hash_table (info)->dynsymcount == 0) 3792 return TRUE; 3793 3794 htab = mips_elf_hash_table (info); 3795 BFD_ASSERT (htab != NULL); 3796 3797 g = htab->got_info; 3798 if (g == NULL) 3799 return TRUE; 3800 3801 hsd.low = NULL; 3802 hsd.max_unref_got_dynindx 3803 = hsd.min_got_dynindx 3804 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno); 3805 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1; 3806 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *) 3807 elf_hash_table (info)), 3808 mips_elf_sort_hash_table_f, 3809 &hsd); 3810 3811 /* There should have been enough room in the symbol table to 3812 accommodate both the GOT and non-GOT symbols. */ 3813 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx); 3814 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx 3815 == elf_hash_table (info)->dynsymcount); 3816 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx 3817 == g->global_gotno); 3818 3819 /* Now we know which dynamic symbol has the lowest dynamic symbol 3820 table index in the GOT. */ 3821 htab->global_gotsym = hsd.low; 3822 3823 return TRUE; 3824 } 3825 3826 /* If H needs a GOT entry, assign it the highest available dynamic 3827 index. Otherwise, assign it the lowest available dynamic 3828 index. */ 3829 3830 static bfd_boolean 3831 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data) 3832 { 3833 struct mips_elf_hash_sort_data *hsd = data; 3834 3835 /* Symbols without dynamic symbol table entries aren't interesting 3836 at all. */ 3837 if (h->root.dynindx == -1) 3838 return TRUE; 3839 3840 switch (h->global_got_area) 3841 { 3842 case GGA_NONE: 3843 h->root.dynindx = hsd->max_non_got_dynindx++; 3844 break; 3845 3846 case GGA_NORMAL: 3847 h->root.dynindx = --hsd->min_got_dynindx; 3848 hsd->low = (struct elf_link_hash_entry *) h; 3849 break; 3850 3851 case GGA_RELOC_ONLY: 3852 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx) 3853 hsd->low = (struct elf_link_hash_entry *) h; 3854 h->root.dynindx = hsd->max_unref_got_dynindx++; 3855 break; 3856 } 3857 3858 return TRUE; 3859 } 3860 3861 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP 3862 (which is owned by the caller and shouldn't be added to the 3863 hash table directly). */ 3864 3865 static bfd_boolean 3866 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd, 3867 struct mips_got_entry *lookup) 3868 { 3869 struct mips_elf_link_hash_table *htab; 3870 struct mips_got_entry *entry; 3871 struct mips_got_info *g; 3872 void **loc, **bfd_loc; 3873 3874 /* Make sure there's a slot for this entry in the master GOT. */ 3875 htab = mips_elf_hash_table (info); 3876 g = htab->got_info; 3877 loc = htab_find_slot (g->got_entries, lookup, INSERT); 3878 if (!loc) 3879 return FALSE; 3880 3881 /* Populate the entry if it isn't already. */ 3882 entry = (struct mips_got_entry *) *loc; 3883 if (!entry) 3884 { 3885 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry)); 3886 if (!entry) 3887 return FALSE; 3888 3889 lookup->tls_initialized = FALSE; 3890 lookup->gotidx = -1; 3891 *entry = *lookup; 3892 *loc = entry; 3893 } 3894 3895 /* Reuse the same GOT entry for the BFD's GOT. */ 3896 g = mips_elf_bfd_got (abfd, TRUE); 3897 if (!g) 3898 return FALSE; 3899 3900 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT); 3901 if (!bfd_loc) 3902 return FALSE; 3903 3904 if (!*bfd_loc) 3905 *bfd_loc = entry; 3906 return TRUE; 3907 } 3908 3909 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT 3910 entry for it. FOR_CALL is true if the caller is only interested in 3911 using the GOT entry for calls. */ 3912 3913 static bfd_boolean 3914 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h, 3915 bfd *abfd, struct bfd_link_info *info, 3916 bfd_boolean for_call, int r_type) 3917 { 3918 struct mips_elf_link_hash_table *htab; 3919 struct mips_elf_link_hash_entry *hmips; 3920 struct mips_got_entry entry; 3921 unsigned char tls_type; 3922 3923 htab = mips_elf_hash_table (info); 3924 BFD_ASSERT (htab != NULL); 3925 3926 hmips = (struct mips_elf_link_hash_entry *) h; 3927 if (!for_call) 3928 hmips->got_only_for_calls = FALSE; 3929 3930 /* A global symbol in the GOT must also be in the dynamic symbol 3931 table. */ 3932 if (h->dynindx == -1) 3933 { 3934 switch (ELF_ST_VISIBILITY (h->other)) 3935 { 3936 case STV_INTERNAL: 3937 case STV_HIDDEN: 3938 _bfd_elf_link_hash_hide_symbol (info, h, TRUE); 3939 break; 3940 } 3941 if (!bfd_elf_link_record_dynamic_symbol (info, h)) 3942 return FALSE; 3943 } 3944 3945 tls_type = mips_elf_reloc_tls_type (r_type); 3946 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL) 3947 hmips->global_got_area = GGA_NORMAL; 3948 3949 entry.abfd = abfd; 3950 entry.symndx = -1; 3951 entry.d.h = (struct mips_elf_link_hash_entry *) h; 3952 entry.tls_type = tls_type; 3953 return mips_elf_record_got_entry (info, abfd, &entry); 3954 } 3955 3956 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND, 3957 where SYMNDX is a local symbol. Reserve a GOT entry for it. */ 3958 3959 static bfd_boolean 3960 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend, 3961 struct bfd_link_info *info, int r_type) 3962 { 3963 struct mips_elf_link_hash_table *htab; 3964 struct mips_got_info *g; 3965 struct mips_got_entry entry; 3966 3967 htab = mips_elf_hash_table (info); 3968 BFD_ASSERT (htab != NULL); 3969 3970 g = htab->got_info; 3971 BFD_ASSERT (g != NULL); 3972 3973 entry.abfd = abfd; 3974 entry.symndx = symndx; 3975 entry.d.addend = addend; 3976 entry.tls_type = mips_elf_reloc_tls_type (r_type); 3977 return mips_elf_record_got_entry (info, abfd, &entry); 3978 } 3979 3980 /* Record that ABFD has a page relocation against SYMNDX + ADDEND. 3981 H is the symbol's hash table entry, or null if SYMNDX is local 3982 to ABFD. */ 3983 3984 static bfd_boolean 3985 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd, 3986 long symndx, struct elf_link_hash_entry *h, 3987 bfd_signed_vma addend) 3988 { 3989 struct mips_elf_link_hash_table *htab; 3990 struct mips_got_info *g1, *g2; 3991 struct mips_got_page_ref lookup, *entry; 3992 void **loc, **bfd_loc; 3993 3994 htab = mips_elf_hash_table (info); 3995 BFD_ASSERT (htab != NULL); 3996 3997 g1 = htab->got_info; 3998 BFD_ASSERT (g1 != NULL); 3999 4000 if (h) 4001 { 4002 lookup.symndx = -1; 4003 lookup.u.h = (struct mips_elf_link_hash_entry *) h; 4004 } 4005 else 4006 { 4007 lookup.symndx = symndx; 4008 lookup.u.abfd = abfd; 4009 } 4010 lookup.addend = addend; 4011 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT); 4012 if (loc == NULL) 4013 return FALSE; 4014 4015 entry = (struct mips_got_page_ref *) *loc; 4016 if (!entry) 4017 { 4018 entry = bfd_alloc (abfd, sizeof (*entry)); 4019 if (!entry) 4020 return FALSE; 4021 4022 *entry = lookup; 4023 *loc = entry; 4024 } 4025 4026 /* Add the same entry to the BFD's GOT. */ 4027 g2 = mips_elf_bfd_got (abfd, TRUE); 4028 if (!g2) 4029 return FALSE; 4030 4031 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT); 4032 if (!bfd_loc) 4033 return FALSE; 4034 4035 if (!*bfd_loc) 4036 *bfd_loc = entry; 4037 4038 return TRUE; 4039 } 4040 4041 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */ 4042 4043 static void 4044 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info, 4045 unsigned int n) 4046 { 4047 asection *s; 4048 struct mips_elf_link_hash_table *htab; 4049 4050 htab = mips_elf_hash_table (info); 4051 BFD_ASSERT (htab != NULL); 4052 4053 s = mips_elf_rel_dyn_section (info, FALSE); 4054 BFD_ASSERT (s != NULL); 4055 4056 if (htab->is_vxworks) 4057 s->size += n * MIPS_ELF_RELA_SIZE (abfd); 4058 else 4059 { 4060 if (s->size == 0) 4061 { 4062 /* Make room for a null element. */ 4063 s->size += MIPS_ELF_REL_SIZE (abfd); 4064 ++s->reloc_count; 4065 } 4066 s->size += n * MIPS_ELF_REL_SIZE (abfd); 4067 } 4068 } 4069 4070 /* A htab_traverse callback for GOT entries, with DATA pointing to a 4071 mips_elf_traverse_got_arg structure. Count the number of GOT 4072 entries and TLS relocs. Set DATA->value to true if we need 4073 to resolve indirect or warning symbols and then recreate the GOT. */ 4074 4075 static int 4076 mips_elf_check_recreate_got (void **entryp, void *data) 4077 { 4078 struct mips_got_entry *entry; 4079 struct mips_elf_traverse_got_arg *arg; 4080 4081 entry = (struct mips_got_entry *) *entryp; 4082 arg = (struct mips_elf_traverse_got_arg *) data; 4083 if (entry->abfd != NULL && entry->symndx == -1) 4084 { 4085 struct mips_elf_link_hash_entry *h; 4086 4087 h = entry->d.h; 4088 if (h->root.root.type == bfd_link_hash_indirect 4089 || h->root.root.type == bfd_link_hash_warning) 4090 { 4091 arg->value = TRUE; 4092 return 0; 4093 } 4094 } 4095 mips_elf_count_got_entry (arg->info, arg->g, entry); 4096 return 1; 4097 } 4098 4099 /* A htab_traverse callback for GOT entries, with DATA pointing to a 4100 mips_elf_traverse_got_arg structure. Add all entries to DATA->g, 4101 converting entries for indirect and warning symbols into entries 4102 for the target symbol. Set DATA->g to null on error. */ 4103 4104 static int 4105 mips_elf_recreate_got (void **entryp, void *data) 4106 { 4107 struct mips_got_entry new_entry, *entry; 4108 struct mips_elf_traverse_got_arg *arg; 4109 void **slot; 4110 4111 entry = (struct mips_got_entry *) *entryp; 4112 arg = (struct mips_elf_traverse_got_arg *) data; 4113 if (entry->abfd != NULL 4114 && entry->symndx == -1 4115 && (entry->d.h->root.root.type == bfd_link_hash_indirect 4116 || entry->d.h->root.root.type == bfd_link_hash_warning)) 4117 { 4118 struct mips_elf_link_hash_entry *h; 4119 4120 new_entry = *entry; 4121 entry = &new_entry; 4122 h = entry->d.h; 4123 do 4124 { 4125 BFD_ASSERT (h->global_got_area == GGA_NONE); 4126 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; 4127 } 4128 while (h->root.root.type == bfd_link_hash_indirect 4129 || h->root.root.type == bfd_link_hash_warning); 4130 entry->d.h = h; 4131 } 4132 slot = htab_find_slot (arg->g->got_entries, entry, INSERT); 4133 if (slot == NULL) 4134 { 4135 arg->g = NULL; 4136 return 0; 4137 } 4138 if (*slot == NULL) 4139 { 4140 if (entry == &new_entry) 4141 { 4142 entry = bfd_alloc (entry->abfd, sizeof (*entry)); 4143 if (!entry) 4144 { 4145 arg->g = NULL; 4146 return 0; 4147 } 4148 *entry = new_entry; 4149 } 4150 *slot = entry; 4151 mips_elf_count_got_entry (arg->info, arg->g, entry); 4152 } 4153 return 1; 4154 } 4155 4156 /* Return the maximum number of GOT page entries required for RANGE. */ 4157 4158 static bfd_vma 4159 mips_elf_pages_for_range (const struct mips_got_page_range *range) 4160 { 4161 return (range->max_addend - range->min_addend + 0x1ffff) >> 16; 4162 } 4163 4164 /* Record that G requires a page entry that can reach SEC + ADDEND. */ 4165 4166 static bfd_boolean 4167 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg, 4168 asection *sec, bfd_signed_vma addend) 4169 { 4170 struct mips_got_info *g = arg->g; 4171 struct mips_got_page_entry lookup, *entry; 4172 struct mips_got_page_range **range_ptr, *range; 4173 bfd_vma old_pages, new_pages; 4174 void **loc; 4175 4176 /* Find the mips_got_page_entry hash table entry for this section. */ 4177 lookup.sec = sec; 4178 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT); 4179 if (loc == NULL) 4180 return FALSE; 4181 4182 /* Create a mips_got_page_entry if this is the first time we've 4183 seen the section. */ 4184 entry = (struct mips_got_page_entry *) *loc; 4185 if (!entry) 4186 { 4187 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry)); 4188 if (!entry) 4189 return FALSE; 4190 4191 entry->sec = sec; 4192 *loc = entry; 4193 } 4194 4195 /* Skip over ranges whose maximum extent cannot share a page entry 4196 with ADDEND. */ 4197 range_ptr = &entry->ranges; 4198 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff) 4199 range_ptr = &(*range_ptr)->next; 4200 4201 /* If we scanned to the end of the list, or found a range whose 4202 minimum extent cannot share a page entry with ADDEND, create 4203 a new singleton range. */ 4204 range = *range_ptr; 4205 if (!range || addend < range->min_addend - 0xffff) 4206 { 4207 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range)); 4208 if (!range) 4209 return FALSE; 4210 4211 range->next = *range_ptr; 4212 range->min_addend = addend; 4213 range->max_addend = addend; 4214 4215 *range_ptr = range; 4216 entry->num_pages++; 4217 g->page_gotno++; 4218 return TRUE; 4219 } 4220 4221 /* Remember how many pages the old range contributed. */ 4222 old_pages = mips_elf_pages_for_range (range); 4223 4224 /* Update the ranges. */ 4225 if (addend < range->min_addend) 4226 range->min_addend = addend; 4227 else if (addend > range->max_addend) 4228 { 4229 if (range->next && addend >= range->next->min_addend - 0xffff) 4230 { 4231 old_pages += mips_elf_pages_for_range (range->next); 4232 range->max_addend = range->next->max_addend; 4233 range->next = range->next->next; 4234 } 4235 else 4236 range->max_addend = addend; 4237 } 4238 4239 /* Record any change in the total estimate. */ 4240 new_pages = mips_elf_pages_for_range (range); 4241 if (old_pages != new_pages) 4242 { 4243 entry->num_pages += new_pages - old_pages; 4244 g->page_gotno += new_pages - old_pages; 4245 } 4246 4247 return TRUE; 4248 } 4249 4250 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref 4251 and for which DATA points to a mips_elf_traverse_got_arg. Work out 4252 whether the page reference described by *REFP needs a GOT page entry, 4253 and record that entry in DATA->g if so. Set DATA->g to null on failure. */ 4254 4255 static bfd_boolean 4256 mips_elf_resolve_got_page_ref (void **refp, void *data) 4257 { 4258 struct mips_got_page_ref *ref; 4259 struct mips_elf_traverse_got_arg *arg; 4260 struct mips_elf_link_hash_table *htab; 4261 asection *sec; 4262 bfd_vma addend; 4263 4264 ref = (struct mips_got_page_ref *) *refp; 4265 arg = (struct mips_elf_traverse_got_arg *) data; 4266 htab = mips_elf_hash_table (arg->info); 4267 4268 if (ref->symndx < 0) 4269 { 4270 struct mips_elf_link_hash_entry *h; 4271 4272 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */ 4273 h = ref->u.h; 4274 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root)) 4275 return 1; 4276 4277 /* Ignore undefined symbols; we'll issue an error later if 4278 appropriate. */ 4279 if (!((h->root.root.type == bfd_link_hash_defined 4280 || h->root.root.type == bfd_link_hash_defweak) 4281 && h->root.root.u.def.section)) 4282 return 1; 4283 4284 sec = h->root.root.u.def.section; 4285 addend = h->root.root.u.def.value + ref->addend; 4286 } 4287 else 4288 { 4289 Elf_Internal_Sym *isym; 4290 4291 /* Read in the symbol. */ 4292 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd, 4293 ref->symndx); 4294 if (isym == NULL) 4295 { 4296 arg->g = NULL; 4297 return 0; 4298 } 4299 4300 /* Get the associated input section. */ 4301 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx); 4302 if (sec == NULL) 4303 { 4304 arg->g = NULL; 4305 return 0; 4306 } 4307 4308 /* If this is a mergable section, work out the section and offset 4309 of the merged data. For section symbols, the addend specifies 4310 of the offset _of_ the first byte in the data, otherwise it 4311 specifies the offset _from_ the first byte. */ 4312 if (sec->flags & SEC_MERGE) 4313 { 4314 void *secinfo; 4315 4316 secinfo = elf_section_data (sec)->sec_info; 4317 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) 4318 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo, 4319 isym->st_value + ref->addend); 4320 else 4321 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo, 4322 isym->st_value) + ref->addend; 4323 } 4324 else 4325 addend = isym->st_value + ref->addend; 4326 } 4327 if (!mips_elf_record_got_page_entry (arg, sec, addend)) 4328 { 4329 arg->g = NULL; 4330 return 0; 4331 } 4332 return 1; 4333 } 4334 4335 /* If any entries in G->got_entries are for indirect or warning symbols, 4336 replace them with entries for the target symbol. Convert g->got_page_refs 4337 into got_page_entry structures and estimate the number of page entries 4338 that they require. */ 4339 4340 static bfd_boolean 4341 mips_elf_resolve_final_got_entries (struct bfd_link_info *info, 4342 struct mips_got_info *g) 4343 { 4344 struct mips_elf_traverse_got_arg tga; 4345 struct mips_got_info oldg; 4346 4347 oldg = *g; 4348 4349 tga.info = info; 4350 tga.g = g; 4351 tga.value = FALSE; 4352 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga); 4353 if (tga.value) 4354 { 4355 *g = oldg; 4356 g->got_entries = htab_create (htab_size (oldg.got_entries), 4357 mips_elf_got_entry_hash, 4358 mips_elf_got_entry_eq, NULL); 4359 if (!g->got_entries) 4360 return FALSE; 4361 4362 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga); 4363 if (!tga.g) 4364 return FALSE; 4365 4366 htab_delete (oldg.got_entries); 4367 } 4368 4369 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash, 4370 mips_got_page_entry_eq, NULL); 4371 if (g->got_page_entries == NULL) 4372 return FALSE; 4373 4374 tga.info = info; 4375 tga.g = g; 4376 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga); 4377 4378 return TRUE; 4379 } 4380 4381 /* Return true if a GOT entry for H should live in the local rather than 4382 global GOT area. */ 4383 4384 static bfd_boolean 4385 mips_use_local_got_p (struct bfd_link_info *info, 4386 struct mips_elf_link_hash_entry *h) 4387 { 4388 /* Symbols that aren't in the dynamic symbol table must live in the 4389 local GOT. This includes symbols that are completely undefined 4390 and which therefore don't bind locally. We'll report undefined 4391 symbols later if appropriate. */ 4392 if (h->root.dynindx == -1) 4393 return TRUE; 4394 4395 /* Symbols that bind locally can (and in the case of forced-local 4396 symbols, must) live in the local GOT. */ 4397 if (h->got_only_for_calls 4398 ? SYMBOL_CALLS_LOCAL (info, &h->root) 4399 : SYMBOL_REFERENCES_LOCAL (info, &h->root)) 4400 return TRUE; 4401 4402 /* If this is an executable that must provide a definition of the symbol, 4403 either though PLTs or copy relocations, then that address should go in 4404 the local rather than global GOT. */ 4405 if (bfd_link_executable (info) && h->has_static_relocs) 4406 return TRUE; 4407 4408 return FALSE; 4409 } 4410 4411 /* A mips_elf_link_hash_traverse callback for which DATA points to the 4412 link_info structure. Decide whether the hash entry needs an entry in 4413 the global part of the primary GOT, setting global_got_area accordingly. 4414 Count the number of global symbols that are in the primary GOT only 4415 because they have relocations against them (reloc_only_gotno). */ 4416 4417 static int 4418 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data) 4419 { 4420 struct bfd_link_info *info; 4421 struct mips_elf_link_hash_table *htab; 4422 struct mips_got_info *g; 4423 4424 info = (struct bfd_link_info *) data; 4425 htab = mips_elf_hash_table (info); 4426 g = htab->got_info; 4427 if (h->global_got_area != GGA_NONE) 4428 { 4429 /* Make a final decision about whether the symbol belongs in the 4430 local or global GOT. */ 4431 if (mips_use_local_got_p (info, h)) 4432 /* The symbol belongs in the local GOT. We no longer need this 4433 entry if it was only used for relocations; those relocations 4434 will be against the null or section symbol instead of H. */ 4435 h->global_got_area = GGA_NONE; 4436 else if (htab->is_vxworks 4437 && h->got_only_for_calls 4438 && h->root.plt.plist->mips_offset != MINUS_ONE) 4439 /* On VxWorks, calls can refer directly to the .got.plt entry; 4440 they don't need entries in the regular GOT. .got.plt entries 4441 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */ 4442 h->global_got_area = GGA_NONE; 4443 else if (h->global_got_area == GGA_RELOC_ONLY) 4444 { 4445 g->reloc_only_gotno++; 4446 g->global_gotno++; 4447 } 4448 } 4449 return 1; 4450 } 4451 4452 /* A htab_traverse callback for GOT entries. Add each one to the GOT 4453 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */ 4454 4455 static int 4456 mips_elf_add_got_entry (void **entryp, void *data) 4457 { 4458 struct mips_got_entry *entry; 4459 struct mips_elf_traverse_got_arg *arg; 4460 void **slot; 4461 4462 entry = (struct mips_got_entry *) *entryp; 4463 arg = (struct mips_elf_traverse_got_arg *) data; 4464 slot = htab_find_slot (arg->g->got_entries, entry, INSERT); 4465 if (!slot) 4466 { 4467 arg->g = NULL; 4468 return 0; 4469 } 4470 if (!*slot) 4471 { 4472 *slot = entry; 4473 mips_elf_count_got_entry (arg->info, arg->g, entry); 4474 } 4475 return 1; 4476 } 4477 4478 /* A htab_traverse callback for GOT page entries. Add each one to the GOT 4479 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */ 4480 4481 static int 4482 mips_elf_add_got_page_entry (void **entryp, void *data) 4483 { 4484 struct mips_got_page_entry *entry; 4485 struct mips_elf_traverse_got_arg *arg; 4486 void **slot; 4487 4488 entry = (struct mips_got_page_entry *) *entryp; 4489 arg = (struct mips_elf_traverse_got_arg *) data; 4490 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT); 4491 if (!slot) 4492 { 4493 arg->g = NULL; 4494 return 0; 4495 } 4496 if (!*slot) 4497 { 4498 *slot = entry; 4499 arg->g->page_gotno += entry->num_pages; 4500 } 4501 return 1; 4502 } 4503 4504 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if 4505 this would lead to overflow, 1 if they were merged successfully, 4506 and 0 if a merge failed due to lack of memory. (These values are chosen 4507 so that nonnegative return values can be returned by a htab_traverse 4508 callback.) */ 4509 4510 static int 4511 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from, 4512 struct mips_got_info *to, 4513 struct mips_elf_got_per_bfd_arg *arg) 4514 { 4515 struct mips_elf_traverse_got_arg tga; 4516 unsigned int estimate; 4517 4518 /* Work out how many page entries we would need for the combined GOT. */ 4519 estimate = arg->max_pages; 4520 if (estimate >= from->page_gotno + to->page_gotno) 4521 estimate = from->page_gotno + to->page_gotno; 4522 4523 /* And conservatively estimate how many local and TLS entries 4524 would be needed. */ 4525 estimate += from->local_gotno + to->local_gotno; 4526 estimate += from->tls_gotno + to->tls_gotno; 4527 4528 /* If we're merging with the primary got, any TLS relocations will 4529 come after the full set of global entries. Otherwise estimate those 4530 conservatively as well. */ 4531 if (to == arg->primary && from->tls_gotno + to->tls_gotno) 4532 estimate += arg->global_count; 4533 else 4534 estimate += from->global_gotno + to->global_gotno; 4535 4536 /* Bail out if the combined GOT might be too big. */ 4537 if (estimate > arg->max_count) 4538 return -1; 4539 4540 /* Transfer the bfd's got information from FROM to TO. */ 4541 tga.info = arg->info; 4542 tga.g = to; 4543 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga); 4544 if (!tga.g) 4545 return 0; 4546 4547 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga); 4548 if (!tga.g) 4549 return 0; 4550 4551 mips_elf_replace_bfd_got (abfd, to); 4552 return 1; 4553 } 4554 4555 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much 4556 as possible of the primary got, since it doesn't require explicit 4557 dynamic relocations, but don't use bfds that would reference global 4558 symbols out of the addressable range. Failing the primary got, 4559 attempt to merge with the current got, or finish the current got 4560 and then make make the new got current. */ 4561 4562 static bfd_boolean 4563 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g, 4564 struct mips_elf_got_per_bfd_arg *arg) 4565 { 4566 unsigned int estimate; 4567 int result; 4568 4569 if (!mips_elf_resolve_final_got_entries (arg->info, g)) 4570 return FALSE; 4571 4572 /* Work out the number of page, local and TLS entries. */ 4573 estimate = arg->max_pages; 4574 if (estimate > g->page_gotno) 4575 estimate = g->page_gotno; 4576 estimate += g->local_gotno + g->tls_gotno; 4577 4578 /* We place TLS GOT entries after both locals and globals. The globals 4579 for the primary GOT may overflow the normal GOT size limit, so be 4580 sure not to merge a GOT which requires TLS with the primary GOT in that 4581 case. This doesn't affect non-primary GOTs. */ 4582 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno); 4583 4584 if (estimate <= arg->max_count) 4585 { 4586 /* If we don't have a primary GOT, use it as 4587 a starting point for the primary GOT. */ 4588 if (!arg->primary) 4589 { 4590 arg->primary = g; 4591 return TRUE; 4592 } 4593 4594 /* Try merging with the primary GOT. */ 4595 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg); 4596 if (result >= 0) 4597 return result; 4598 } 4599 4600 /* If we can merge with the last-created got, do it. */ 4601 if (arg->current) 4602 { 4603 result = mips_elf_merge_got_with (abfd, g, arg->current, arg); 4604 if (result >= 0) 4605 return result; 4606 } 4607 4608 /* Well, we couldn't merge, so create a new GOT. Don't check if it 4609 fits; if it turns out that it doesn't, we'll get relocation 4610 overflows anyway. */ 4611 g->next = arg->current; 4612 arg->current = g; 4613 4614 return TRUE; 4615 } 4616 4617 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx 4618 to GOTIDX, duplicating the entry if it has already been assigned 4619 an index in a different GOT. */ 4620 4621 static bfd_boolean 4622 mips_elf_set_gotidx (void **entryp, long gotidx) 4623 { 4624 struct mips_got_entry *entry; 4625 4626 entry = (struct mips_got_entry *) *entryp; 4627 if (entry->gotidx > 0) 4628 { 4629 struct mips_got_entry *new_entry; 4630 4631 new_entry = bfd_alloc (entry->abfd, sizeof (*entry)); 4632 if (!new_entry) 4633 return FALSE; 4634 4635 *new_entry = *entry; 4636 *entryp = new_entry; 4637 entry = new_entry; 4638 } 4639 entry->gotidx = gotidx; 4640 return TRUE; 4641 } 4642 4643 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a 4644 mips_elf_traverse_got_arg in which DATA->value is the size of one 4645 GOT entry. Set DATA->g to null on failure. */ 4646 4647 static int 4648 mips_elf_initialize_tls_index (void **entryp, void *data) 4649 { 4650 struct mips_got_entry *entry; 4651 struct mips_elf_traverse_got_arg *arg; 4652 4653 /* We're only interested in TLS symbols. */ 4654 entry = (struct mips_got_entry *) *entryp; 4655 if (entry->tls_type == GOT_TLS_NONE) 4656 return 1; 4657 4658 arg = (struct mips_elf_traverse_got_arg *) data; 4659 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno)) 4660 { 4661 arg->g = NULL; 4662 return 0; 4663 } 4664 4665 /* Account for the entries we've just allocated. */ 4666 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type); 4667 return 1; 4668 } 4669 4670 /* A htab_traverse callback for GOT entries, where DATA points to a 4671 mips_elf_traverse_got_arg. Set the global_got_area of each global 4672 symbol to DATA->value. */ 4673 4674 static int 4675 mips_elf_set_global_got_area (void **entryp, void *data) 4676 { 4677 struct mips_got_entry *entry; 4678 struct mips_elf_traverse_got_arg *arg; 4679 4680 entry = (struct mips_got_entry *) *entryp; 4681 arg = (struct mips_elf_traverse_got_arg *) data; 4682 if (entry->abfd != NULL 4683 && entry->symndx == -1 4684 && entry->d.h->global_got_area != GGA_NONE) 4685 entry->d.h->global_got_area = arg->value; 4686 return 1; 4687 } 4688 4689 /* A htab_traverse callback for secondary GOT entries, where DATA points 4690 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries 4691 and record the number of relocations they require. DATA->value is 4692 the size of one GOT entry. Set DATA->g to null on failure. */ 4693 4694 static int 4695 mips_elf_set_global_gotidx (void **entryp, void *data) 4696 { 4697 struct mips_got_entry *entry; 4698 struct mips_elf_traverse_got_arg *arg; 4699 4700 entry = (struct mips_got_entry *) *entryp; 4701 arg = (struct mips_elf_traverse_got_arg *) data; 4702 if (entry->abfd != NULL 4703 && entry->symndx == -1 4704 && entry->d.h->global_got_area != GGA_NONE) 4705 { 4706 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno)) 4707 { 4708 arg->g = NULL; 4709 return 0; 4710 } 4711 arg->g->assigned_low_gotno += 1; 4712 4713 if (bfd_link_pic (arg->info) 4714 || (elf_hash_table (arg->info)->dynamic_sections_created 4715 && entry->d.h->root.def_dynamic 4716 && !entry->d.h->root.def_regular)) 4717 arg->g->relocs += 1; 4718 } 4719 4720 return 1; 4721 } 4722 4723 /* A htab_traverse callback for GOT entries for which DATA is the 4724 bfd_link_info. Forbid any global symbols from having traditional 4725 lazy-binding stubs. */ 4726 4727 static int 4728 mips_elf_forbid_lazy_stubs (void **entryp, void *data) 4729 { 4730 struct bfd_link_info *info; 4731 struct mips_elf_link_hash_table *htab; 4732 struct mips_got_entry *entry; 4733 4734 entry = (struct mips_got_entry *) *entryp; 4735 info = (struct bfd_link_info *) data; 4736 htab = mips_elf_hash_table (info); 4737 BFD_ASSERT (htab != NULL); 4738 4739 if (entry->abfd != NULL 4740 && entry->symndx == -1 4741 && entry->d.h->needs_lazy_stub) 4742 { 4743 entry->d.h->needs_lazy_stub = FALSE; 4744 htab->lazy_stub_count--; 4745 } 4746 4747 return 1; 4748 } 4749 4750 /* Return the offset of an input bfd IBFD's GOT from the beginning of 4751 the primary GOT. */ 4752 static bfd_vma 4753 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd) 4754 { 4755 if (!g->next) 4756 return 0; 4757 4758 g = mips_elf_bfd_got (ibfd, FALSE); 4759 if (! g) 4760 return 0; 4761 4762 BFD_ASSERT (g->next); 4763 4764 g = g->next; 4765 4766 return (g->local_gotno + g->global_gotno + g->tls_gotno) 4767 * MIPS_ELF_GOT_SIZE (abfd); 4768 } 4769 4770 /* Turn a single GOT that is too big for 16-bit addressing into 4771 a sequence of GOTs, each one 16-bit addressable. */ 4772 4773 static bfd_boolean 4774 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info, 4775 asection *got, bfd_size_type pages) 4776 { 4777 struct mips_elf_link_hash_table *htab; 4778 struct mips_elf_got_per_bfd_arg got_per_bfd_arg; 4779 struct mips_elf_traverse_got_arg tga; 4780 struct mips_got_info *g, *gg; 4781 unsigned int assign, needed_relocs; 4782 bfd *dynobj, *ibfd; 4783 4784 dynobj = elf_hash_table (info)->dynobj; 4785 htab = mips_elf_hash_table (info); 4786 BFD_ASSERT (htab != NULL); 4787 4788 g = htab->got_info; 4789 4790 got_per_bfd_arg.obfd = abfd; 4791 got_per_bfd_arg.info = info; 4792 got_per_bfd_arg.current = NULL; 4793 got_per_bfd_arg.primary = NULL; 4794 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info) 4795 / MIPS_ELF_GOT_SIZE (abfd)) 4796 - htab->reserved_gotno); 4797 got_per_bfd_arg.max_pages = pages; 4798 /* The number of globals that will be included in the primary GOT. 4799 See the calls to mips_elf_set_global_got_area below for more 4800 information. */ 4801 got_per_bfd_arg.global_count = g->global_gotno; 4802 4803 /* Try to merge the GOTs of input bfds together, as long as they 4804 don't seem to exceed the maximum GOT size, choosing one of them 4805 to be the primary GOT. */ 4806 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next) 4807 { 4808 gg = mips_elf_bfd_got (ibfd, FALSE); 4809 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg)) 4810 return FALSE; 4811 } 4812 4813 /* If we do not find any suitable primary GOT, create an empty one. */ 4814 if (got_per_bfd_arg.primary == NULL) 4815 g->next = mips_elf_create_got_info (abfd); 4816 else 4817 g->next = got_per_bfd_arg.primary; 4818 g->next->next = got_per_bfd_arg.current; 4819 4820 /* GG is now the master GOT, and G is the primary GOT. */ 4821 gg = g; 4822 g = g->next; 4823 4824 /* Map the output bfd to the primary got. That's what we're going 4825 to use for bfds that use GOT16 or GOT_PAGE relocations that we 4826 didn't mark in check_relocs, and we want a quick way to find it. 4827 We can't just use gg->next because we're going to reverse the 4828 list. */ 4829 mips_elf_replace_bfd_got (abfd, g); 4830 4831 /* Every symbol that is referenced in a dynamic relocation must be 4832 present in the primary GOT, so arrange for them to appear after 4833 those that are actually referenced. */ 4834 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno; 4835 g->global_gotno = gg->global_gotno; 4836 4837 tga.info = info; 4838 tga.value = GGA_RELOC_ONLY; 4839 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga); 4840 tga.value = GGA_NORMAL; 4841 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga); 4842 4843 /* Now go through the GOTs assigning them offset ranges. 4844 [assigned_low_gotno, local_gotno[ will be set to the range of local 4845 entries in each GOT. We can then compute the end of a GOT by 4846 adding local_gotno to global_gotno. We reverse the list and make 4847 it circular since then we'll be able to quickly compute the 4848 beginning of a GOT, by computing the end of its predecessor. To 4849 avoid special cases for the primary GOT, while still preserving 4850 assertions that are valid for both single- and multi-got links, 4851 we arrange for the main got struct to have the right number of 4852 global entries, but set its local_gotno such that the initial 4853 offset of the primary GOT is zero. Remember that the primary GOT 4854 will become the last item in the circular linked list, so it 4855 points back to the master GOT. */ 4856 gg->local_gotno = -g->global_gotno; 4857 gg->global_gotno = g->global_gotno; 4858 gg->tls_gotno = 0; 4859 assign = 0; 4860 gg->next = gg; 4861 4862 do 4863 { 4864 struct mips_got_info *gn; 4865 4866 assign += htab->reserved_gotno; 4867 g->assigned_low_gotno = assign; 4868 g->local_gotno += assign; 4869 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno); 4870 g->assigned_high_gotno = g->local_gotno - 1; 4871 assign = g->local_gotno + g->global_gotno + g->tls_gotno; 4872 4873 /* Take g out of the direct list, and push it onto the reversed 4874 list that gg points to. g->next is guaranteed to be nonnull after 4875 this operation, as required by mips_elf_initialize_tls_index. */ 4876 gn = g->next; 4877 g->next = gg->next; 4878 gg->next = g; 4879 4880 /* Set up any TLS entries. We always place the TLS entries after 4881 all non-TLS entries. */ 4882 g->tls_assigned_gotno = g->local_gotno + g->global_gotno; 4883 tga.g = g; 4884 tga.value = MIPS_ELF_GOT_SIZE (abfd); 4885 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga); 4886 if (!tga.g) 4887 return FALSE; 4888 BFD_ASSERT (g->tls_assigned_gotno == assign); 4889 4890 /* Move onto the next GOT. It will be a secondary GOT if nonull. */ 4891 g = gn; 4892 4893 /* Forbid global symbols in every non-primary GOT from having 4894 lazy-binding stubs. */ 4895 if (g) 4896 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info); 4897 } 4898 while (g); 4899 4900 got->size = assign * MIPS_ELF_GOT_SIZE (abfd); 4901 4902 needed_relocs = 0; 4903 for (g = gg->next; g && g->next != gg; g = g->next) 4904 { 4905 unsigned int save_assign; 4906 4907 /* Assign offsets to global GOT entries and count how many 4908 relocations they need. */ 4909 save_assign = g->assigned_low_gotno; 4910 g->assigned_low_gotno = g->local_gotno; 4911 tga.info = info; 4912 tga.value = MIPS_ELF_GOT_SIZE (abfd); 4913 tga.g = g; 4914 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga); 4915 if (!tga.g) 4916 return FALSE; 4917 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno); 4918 g->assigned_low_gotno = save_assign; 4919 4920 if (bfd_link_pic (info)) 4921 { 4922 g->relocs += g->local_gotno - g->assigned_low_gotno; 4923 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno 4924 + g->next->global_gotno 4925 + g->next->tls_gotno 4926 + htab->reserved_gotno); 4927 } 4928 needed_relocs += g->relocs; 4929 } 4930 needed_relocs += g->relocs; 4931 4932 if (needed_relocs) 4933 mips_elf_allocate_dynamic_relocations (dynobj, info, 4934 needed_relocs); 4935 4936 return TRUE; 4937 } 4938 4939 4940 /* Returns the first relocation of type r_type found, beginning with 4941 RELOCATION. RELEND is one-past-the-end of the relocation table. */ 4942 4943 static const Elf_Internal_Rela * 4944 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type, 4945 const Elf_Internal_Rela *relocation, 4946 const Elf_Internal_Rela *relend) 4947 { 4948 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info); 4949 4950 while (relocation < relend) 4951 { 4952 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type 4953 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx) 4954 return relocation; 4955 4956 ++relocation; 4957 } 4958 4959 /* We didn't find it. */ 4960 return NULL; 4961 } 4962 4963 /* Return whether an input relocation is against a local symbol. */ 4964 4965 static bfd_boolean 4966 mips_elf_local_relocation_p (bfd *input_bfd, 4967 const Elf_Internal_Rela *relocation, 4968 asection **local_sections) 4969 { 4970 unsigned long r_symndx; 4971 Elf_Internal_Shdr *symtab_hdr; 4972 size_t extsymoff; 4973 4974 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); 4975 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 4976 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info; 4977 4978 if (r_symndx < extsymoff) 4979 return TRUE; 4980 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL) 4981 return TRUE; 4982 4983 return FALSE; 4984 } 4985 4986 /* Sign-extend VALUE, which has the indicated number of BITS. */ 4987 4988 bfd_vma 4989 _bfd_mips_elf_sign_extend (bfd_vma value, int bits) 4990 { 4991 if (value & ((bfd_vma) 1 << (bits - 1))) 4992 /* VALUE is negative. */ 4993 value |= ((bfd_vma) - 1) << bits; 4994 4995 return value; 4996 } 4997 4998 /* Return non-zero if the indicated VALUE has overflowed the maximum 4999 range expressible by a signed number with the indicated number of 5000 BITS. */ 5001 5002 static bfd_boolean 5003 mips_elf_overflow_p (bfd_vma value, int bits) 5004 { 5005 bfd_signed_vma svalue = (bfd_signed_vma) value; 5006 5007 if (svalue > (1 << (bits - 1)) - 1) 5008 /* The value is too big. */ 5009 return TRUE; 5010 else if (svalue < -(1 << (bits - 1))) 5011 /* The value is too small. */ 5012 return TRUE; 5013 5014 /* All is well. */ 5015 return FALSE; 5016 } 5017 5018 /* Calculate the %high function. */ 5019 5020 static bfd_vma 5021 mips_elf_high (bfd_vma value) 5022 { 5023 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff; 5024 } 5025 5026 /* Calculate the %higher function. */ 5027 5028 static bfd_vma 5029 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED) 5030 { 5031 #ifdef BFD64 5032 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff; 5033 #else 5034 abort (); 5035 return MINUS_ONE; 5036 #endif 5037 } 5038 5039 /* Calculate the %highest function. */ 5040 5041 static bfd_vma 5042 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED) 5043 { 5044 #ifdef BFD64 5045 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff; 5046 #else 5047 abort (); 5048 return MINUS_ONE; 5049 #endif 5050 } 5051 5052 /* Create the .compact_rel section. */ 5053 5054 static bfd_boolean 5055 mips_elf_create_compact_rel_section 5056 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED) 5057 { 5058 flagword flags; 5059 register asection *s; 5060 5061 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL) 5062 { 5063 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED 5064 | SEC_READONLY); 5065 5066 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags); 5067 if (s == NULL 5068 || ! bfd_set_section_alignment (abfd, s, 5069 MIPS_ELF_LOG_FILE_ALIGN (abfd))) 5070 return FALSE; 5071 5072 s->size = sizeof (Elf32_External_compact_rel); 5073 } 5074 5075 return TRUE; 5076 } 5077 5078 /* Create the .got section to hold the global offset table. */ 5079 5080 static bfd_boolean 5081 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info) 5082 { 5083 flagword flags; 5084 register asection *s; 5085 struct elf_link_hash_entry *h; 5086 struct bfd_link_hash_entry *bh; 5087 struct mips_elf_link_hash_table *htab; 5088 5089 htab = mips_elf_hash_table (info); 5090 BFD_ASSERT (htab != NULL); 5091 5092 /* This function may be called more than once. */ 5093 if (htab->sgot) 5094 return TRUE; 5095 5096 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY 5097 | SEC_LINKER_CREATED); 5098 5099 /* We have to use an alignment of 2**4 here because this is hardcoded 5100 in the function stub generation and in the linker script. */ 5101 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags); 5102 if (s == NULL 5103 || ! bfd_set_section_alignment (abfd, s, 4)) 5104 return FALSE; 5105 htab->sgot = s; 5106 5107 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the 5108 linker script because we don't want to define the symbol if we 5109 are not creating a global offset table. */ 5110 bh = NULL; 5111 if (! (_bfd_generic_link_add_one_symbol 5112 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s, 5113 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) 5114 return FALSE; 5115 5116 h = (struct elf_link_hash_entry *) bh; 5117 h->non_elf = 0; 5118 h->def_regular = 1; 5119 h->type = STT_OBJECT; 5120 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN; 5121 elf_hash_table (info)->hgot = h; 5122 5123 if (bfd_link_pic (info) 5124 && ! bfd_elf_link_record_dynamic_symbol (info, h)) 5125 return FALSE; 5126 5127 htab->got_info = mips_elf_create_got_info (abfd); 5128 mips_elf_section_data (s)->elf.this_hdr.sh_flags 5129 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; 5130 5131 /* We also need a .got.plt section when generating PLTs. */ 5132 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", 5133 SEC_ALLOC | SEC_LOAD 5134 | SEC_HAS_CONTENTS 5135 | SEC_IN_MEMORY 5136 | SEC_LINKER_CREATED); 5137 if (s == NULL) 5138 return FALSE; 5139 htab->sgotplt = s; 5140 5141 return TRUE; 5142 } 5143 5144 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or 5145 __GOTT_INDEX__ symbols. These symbols are only special for 5146 shared objects; they are not used in executables. */ 5147 5148 static bfd_boolean 5149 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h) 5150 { 5151 return (mips_elf_hash_table (info)->is_vxworks 5152 && bfd_link_pic (info) 5153 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0 5154 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0)); 5155 } 5156 5157 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might 5158 require an la25 stub. See also mips_elf_local_pic_function_p, 5159 which determines whether the destination function ever requires a 5160 stub. */ 5161 5162 static bfd_boolean 5163 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type, 5164 bfd_boolean target_is_16_bit_code_p) 5165 { 5166 /* We specifically ignore branches and jumps from EF_PIC objects, 5167 where the onus is on the compiler or programmer to perform any 5168 necessary initialization of $25. Sometimes such initialization 5169 is unnecessary; for example, -mno-shared functions do not use 5170 the incoming value of $25, and may therefore be called directly. */ 5171 if (PIC_OBJECT_P (input_bfd)) 5172 return FALSE; 5173 5174 switch (r_type) 5175 { 5176 case R_MIPS_26: 5177 case R_MIPS_PC16: 5178 case R_MIPS_PC21_S2: 5179 case R_MIPS_PC26_S2: 5180 case R_MICROMIPS_26_S1: 5181 case R_MICROMIPS_PC7_S1: 5182 case R_MICROMIPS_PC10_S1: 5183 case R_MICROMIPS_PC16_S1: 5184 case R_MICROMIPS_PC23_S2: 5185 return TRUE; 5186 5187 case R_MIPS16_26: 5188 return !target_is_16_bit_code_p; 5189 5190 default: 5191 return FALSE; 5192 } 5193 } 5194 5195 /* Calculate the value produced by the RELOCATION (which comes from 5196 the INPUT_BFD). The ADDEND is the addend to use for this 5197 RELOCATION; RELOCATION->R_ADDEND is ignored. 5198 5199 The result of the relocation calculation is stored in VALUEP. 5200 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field 5201 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa. 5202 5203 This function returns bfd_reloc_continue if the caller need take no 5204 further action regarding this relocation, bfd_reloc_notsupported if 5205 something goes dramatically wrong, bfd_reloc_overflow if an 5206 overflow occurs, and bfd_reloc_ok to indicate success. */ 5207 5208 static bfd_reloc_status_type 5209 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd, 5210 asection *input_section, 5211 struct bfd_link_info *info, 5212 const Elf_Internal_Rela *relocation, 5213 bfd_vma addend, reloc_howto_type *howto, 5214 Elf_Internal_Sym *local_syms, 5215 asection **local_sections, bfd_vma *valuep, 5216 const char **namep, 5217 bfd_boolean *cross_mode_jump_p, 5218 bfd_boolean save_addend) 5219 { 5220 /* The eventual value we will return. */ 5221 bfd_vma value; 5222 /* The address of the symbol against which the relocation is 5223 occurring. */ 5224 bfd_vma symbol = 0; 5225 /* The final GP value to be used for the relocatable, executable, or 5226 shared object file being produced. */ 5227 bfd_vma gp; 5228 /* The place (section offset or address) of the storage unit being 5229 relocated. */ 5230 bfd_vma p; 5231 /* The value of GP used to create the relocatable object. */ 5232 bfd_vma gp0; 5233 /* The offset into the global offset table at which the address of 5234 the relocation entry symbol, adjusted by the addend, resides 5235 during execution. */ 5236 bfd_vma g = MINUS_ONE; 5237 /* The section in which the symbol referenced by the relocation is 5238 located. */ 5239 asection *sec = NULL; 5240 struct mips_elf_link_hash_entry *h = NULL; 5241 /* TRUE if the symbol referred to by this relocation is a local 5242 symbol. */ 5243 bfd_boolean local_p, was_local_p; 5244 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */ 5245 bfd_boolean gp_disp_p = FALSE; 5246 /* TRUE if the symbol referred to by this relocation is 5247 "__gnu_local_gp". */ 5248 bfd_boolean gnu_local_gp_p = FALSE; 5249 Elf_Internal_Shdr *symtab_hdr; 5250 size_t extsymoff; 5251 unsigned long r_symndx; 5252 int r_type; 5253 /* TRUE if overflow occurred during the calculation of the 5254 relocation value. */ 5255 bfd_boolean overflowed_p; 5256 /* TRUE if this relocation refers to a MIPS16 function. */ 5257 bfd_boolean target_is_16_bit_code_p = FALSE; 5258 bfd_boolean target_is_micromips_code_p = FALSE; 5259 struct mips_elf_link_hash_table *htab; 5260 bfd *dynobj; 5261 5262 dynobj = elf_hash_table (info)->dynobj; 5263 htab = mips_elf_hash_table (info); 5264 BFD_ASSERT (htab != NULL); 5265 5266 /* Parse the relocation. */ 5267 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); 5268 r_type = ELF_R_TYPE (input_bfd, relocation->r_info); 5269 p = (input_section->output_section->vma 5270 + input_section->output_offset 5271 + relocation->r_offset); 5272 5273 /* Assume that there will be no overflow. */ 5274 overflowed_p = FALSE; 5275 5276 /* Figure out whether or not the symbol is local, and get the offset 5277 used in the array of hash table entries. */ 5278 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 5279 local_p = mips_elf_local_relocation_p (input_bfd, relocation, 5280 local_sections); 5281 was_local_p = local_p; 5282 if (! elf_bad_symtab (input_bfd)) 5283 extsymoff = symtab_hdr->sh_info; 5284 else 5285 { 5286 /* The symbol table does not follow the rule that local symbols 5287 must come before globals. */ 5288 extsymoff = 0; 5289 } 5290 5291 /* Figure out the value of the symbol. */ 5292 if (local_p) 5293 { 5294 Elf_Internal_Sym *sym; 5295 5296 sym = local_syms + r_symndx; 5297 sec = local_sections[r_symndx]; 5298 5299 symbol = sec->output_section->vma + sec->output_offset; 5300 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION 5301 || (sec->flags & SEC_MERGE)) 5302 symbol += sym->st_value; 5303 if ((sec->flags & SEC_MERGE) 5304 && ELF_ST_TYPE (sym->st_info) == STT_SECTION) 5305 { 5306 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend); 5307 addend -= symbol; 5308 addend += sec->output_section->vma + sec->output_offset; 5309 } 5310 5311 /* MIPS16/microMIPS text labels should be treated as odd. */ 5312 if (ELF_ST_IS_COMPRESSED (sym->st_other)) 5313 ++symbol; 5314 5315 /* Record the name of this symbol, for our caller. */ 5316 *namep = bfd_elf_string_from_elf_section (input_bfd, 5317 symtab_hdr->sh_link, 5318 sym->st_name); 5319 if (*namep == '\0') 5320 *namep = bfd_section_name (input_bfd, sec); 5321 5322 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other); 5323 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other); 5324 } 5325 else 5326 { 5327 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */ 5328 5329 /* For global symbols we look up the symbol in the hash-table. */ 5330 h = ((struct mips_elf_link_hash_entry *) 5331 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]); 5332 /* Find the real hash-table entry for this symbol. */ 5333 while (h->root.root.type == bfd_link_hash_indirect 5334 || h->root.root.type == bfd_link_hash_warning) 5335 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; 5336 5337 /* Record the name of this symbol, for our caller. */ 5338 *namep = h->root.root.root.string; 5339 5340 /* See if this is the special _gp_disp symbol. Note that such a 5341 symbol must always be a global symbol. */ 5342 if (strcmp (*namep, "_gp_disp") == 0 5343 && ! NEWABI_P (input_bfd)) 5344 { 5345 /* Relocations against _gp_disp are permitted only with 5346 R_MIPS_HI16 and R_MIPS_LO16 relocations. */ 5347 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type)) 5348 return bfd_reloc_notsupported; 5349 5350 gp_disp_p = TRUE; 5351 } 5352 /* See if this is the special _gp symbol. Note that such a 5353 symbol must always be a global symbol. */ 5354 else if (strcmp (*namep, "__gnu_local_gp") == 0) 5355 gnu_local_gp_p = TRUE; 5356 5357 5358 /* If this symbol is defined, calculate its address. Note that 5359 _gp_disp is a magic symbol, always implicitly defined by the 5360 linker, so it's inappropriate to check to see whether or not 5361 its defined. */ 5362 else if ((h->root.root.type == bfd_link_hash_defined 5363 || h->root.root.type == bfd_link_hash_defweak) 5364 && h->root.root.u.def.section) 5365 { 5366 sec = h->root.root.u.def.section; 5367 if (sec->output_section) 5368 symbol = (h->root.root.u.def.value 5369 + sec->output_section->vma 5370 + sec->output_offset); 5371 else 5372 symbol = h->root.root.u.def.value; 5373 } 5374 else if (h->root.root.type == bfd_link_hash_undefweak) 5375 /* We allow relocations against undefined weak symbols, giving 5376 it the value zero, so that you can undefined weak functions 5377 and check to see if they exist by looking at their 5378 addresses. */ 5379 symbol = 0; 5380 else if (info->unresolved_syms_in_objects == RM_IGNORE 5381 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT) 5382 symbol = 0; 5383 else if (strcmp (*namep, SGI_COMPAT (input_bfd) 5384 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0) 5385 { 5386 /* If this is a dynamic link, we should have created a 5387 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol 5388 in in _bfd_mips_elf_create_dynamic_sections. 5389 Otherwise, we should define the symbol with a value of 0. 5390 FIXME: It should probably get into the symbol table 5391 somehow as well. */ 5392 BFD_ASSERT (! bfd_link_pic (info)); 5393 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL); 5394 symbol = 0; 5395 } 5396 else if (ELF_MIPS_IS_OPTIONAL (h->root.other)) 5397 { 5398 /* This is an optional symbol - an Irix specific extension to the 5399 ELF spec. Ignore it for now. 5400 XXX - FIXME - there is more to the spec for OPTIONAL symbols 5401 than simply ignoring them, but we do not handle this for now. 5402 For information see the "64-bit ELF Object File Specification" 5403 which is available from here: 5404 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */ 5405 symbol = 0; 5406 } 5407 else if ((*info->callbacks->undefined_symbol) 5408 (info, h->root.root.root.string, input_bfd, 5409 input_section, relocation->r_offset, 5410 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR) 5411 || ELF_ST_VISIBILITY (h->root.other))) 5412 { 5413 return bfd_reloc_undefined; 5414 } 5415 else 5416 { 5417 return bfd_reloc_notsupported; 5418 } 5419 5420 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other); 5421 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other); 5422 } 5423 5424 /* If this is a reference to a 16-bit function with a stub, we need 5425 to redirect the relocation to the stub unless: 5426 5427 (a) the relocation is for a MIPS16 JAL; 5428 5429 (b) the relocation is for a MIPS16 PIC call, and there are no 5430 non-MIPS16 uses of the GOT slot; or 5431 5432 (c) the section allows direct references to MIPS16 functions. */ 5433 if (r_type != R_MIPS16_26 5434 && !bfd_link_relocatable (info) 5435 && ((h != NULL 5436 && h->fn_stub != NULL 5437 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub)) 5438 || (local_p 5439 && mips_elf_tdata (input_bfd)->local_stubs != NULL 5440 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL)) 5441 && !section_allows_mips16_refs_p (input_section)) 5442 { 5443 /* This is a 32- or 64-bit call to a 16-bit function. We should 5444 have already noticed that we were going to need the 5445 stub. */ 5446 if (local_p) 5447 { 5448 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx]; 5449 value = 0; 5450 } 5451 else 5452 { 5453 BFD_ASSERT (h->need_fn_stub); 5454 if (h->la25_stub) 5455 { 5456 /* If a LA25 header for the stub itself exists, point to the 5457 prepended LUI/ADDIU sequence. */ 5458 sec = h->la25_stub->stub_section; 5459 value = h->la25_stub->offset; 5460 } 5461 else 5462 { 5463 sec = h->fn_stub; 5464 value = 0; 5465 } 5466 } 5467 5468 symbol = sec->output_section->vma + sec->output_offset + value; 5469 /* The target is 16-bit, but the stub isn't. */ 5470 target_is_16_bit_code_p = FALSE; 5471 } 5472 /* If this is a MIPS16 call with a stub, that is made through the PLT or 5473 to a standard MIPS function, we need to redirect the call to the stub. 5474 Note that we specifically exclude R_MIPS16_CALL16 from this behavior; 5475 indirect calls should use an indirect stub instead. */ 5476 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info) 5477 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL)) 5478 || (local_p 5479 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL 5480 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL)) 5481 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p)) 5482 { 5483 if (local_p) 5484 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx]; 5485 else 5486 { 5487 /* If both call_stub and call_fp_stub are defined, we can figure 5488 out which one to use by checking which one appears in the input 5489 file. */ 5490 if (h->call_stub != NULL && h->call_fp_stub != NULL) 5491 { 5492 asection *o; 5493 5494 sec = NULL; 5495 for (o = input_bfd->sections; o != NULL; o = o->next) 5496 { 5497 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o))) 5498 { 5499 sec = h->call_fp_stub; 5500 break; 5501 } 5502 } 5503 if (sec == NULL) 5504 sec = h->call_stub; 5505 } 5506 else if (h->call_stub != NULL) 5507 sec = h->call_stub; 5508 else 5509 sec = h->call_fp_stub; 5510 } 5511 5512 BFD_ASSERT (sec->size > 0); 5513 symbol = sec->output_section->vma + sec->output_offset; 5514 } 5515 /* If this is a direct call to a PIC function, redirect to the 5516 non-PIC stub. */ 5517 else if (h != NULL && h->la25_stub 5518 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type, 5519 target_is_16_bit_code_p)) 5520 symbol = (h->la25_stub->stub_section->output_section->vma 5521 + h->la25_stub->stub_section->output_offset 5522 + h->la25_stub->offset); 5523 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT 5524 entry is used if a standard PLT entry has also been made. In this 5525 case the symbol will have been set by mips_elf_set_plt_sym_value 5526 to point to the standard PLT entry, so redirect to the compressed 5527 one. */ 5528 else if ((r_type == R_MIPS16_26 || r_type == R_MICROMIPS_26_S1) 5529 && !bfd_link_relocatable (info) 5530 && h != NULL 5531 && h->use_plt_entry 5532 && h->root.plt.plist->comp_offset != MINUS_ONE 5533 && h->root.plt.plist->mips_offset != MINUS_ONE) 5534 { 5535 bfd_boolean micromips_p = MICROMIPS_P (abfd); 5536 5537 sec = htab->splt; 5538 symbol = (sec->output_section->vma 5539 + sec->output_offset 5540 + htab->plt_header_size 5541 + htab->plt_mips_offset 5542 + h->root.plt.plist->comp_offset 5543 + 1); 5544 5545 target_is_16_bit_code_p = !micromips_p; 5546 target_is_micromips_code_p = micromips_p; 5547 } 5548 5549 /* Make sure MIPS16 and microMIPS are not used together. */ 5550 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p) 5551 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p)) 5552 { 5553 (*_bfd_error_handler) 5554 (_("MIPS16 and microMIPS functions cannot call each other")); 5555 return bfd_reloc_notsupported; 5556 } 5557 5558 /* Calls from 16-bit code to 32-bit code and vice versa require the 5559 mode change. However, we can ignore calls to undefined weak symbols, 5560 which should never be executed at runtime. This exception is important 5561 because the assembly writer may have "known" that any definition of the 5562 symbol would be 16-bit code, and that direct jumps were therefore 5563 acceptable. */ 5564 *cross_mode_jump_p = (!bfd_link_relocatable (info) 5565 && !(h && h->root.root.type == bfd_link_hash_undefweak) 5566 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p) 5567 || (r_type == R_MICROMIPS_26_S1 5568 && !target_is_micromips_code_p) 5569 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR) 5570 && (target_is_16_bit_code_p 5571 || target_is_micromips_code_p)))); 5572 5573 local_p = (h == NULL || mips_use_local_got_p (info, h)); 5574 5575 gp0 = _bfd_get_gp_value (input_bfd); 5576 gp = _bfd_get_gp_value (abfd); 5577 if (htab->got_info) 5578 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd); 5579 5580 if (gnu_local_gp_p) 5581 symbol = gp; 5582 5583 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent 5584 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the 5585 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */ 5586 if (got_page_reloc_p (r_type) && !local_p) 5587 { 5588 r_type = (micromips_reloc_p (r_type) 5589 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP); 5590 addend = 0; 5591 } 5592 5593 /* If we haven't already determined the GOT offset, and we're going 5594 to need it, get it now. */ 5595 switch (r_type) 5596 { 5597 case R_MIPS16_CALL16: 5598 case R_MIPS16_GOT16: 5599 case R_MIPS_CALL16: 5600 case R_MIPS_GOT16: 5601 case R_MIPS_GOT_DISP: 5602 case R_MIPS_GOT_HI16: 5603 case R_MIPS_CALL_HI16: 5604 case R_MIPS_GOT_LO16: 5605 case R_MIPS_CALL_LO16: 5606 case R_MICROMIPS_CALL16: 5607 case R_MICROMIPS_GOT16: 5608 case R_MICROMIPS_GOT_DISP: 5609 case R_MICROMIPS_GOT_HI16: 5610 case R_MICROMIPS_CALL_HI16: 5611 case R_MICROMIPS_GOT_LO16: 5612 case R_MICROMIPS_CALL_LO16: 5613 case R_MIPS_TLS_GD: 5614 case R_MIPS_TLS_GOTTPREL: 5615 case R_MIPS_TLS_LDM: 5616 case R_MIPS16_TLS_GD: 5617 case R_MIPS16_TLS_GOTTPREL: 5618 case R_MIPS16_TLS_LDM: 5619 case R_MICROMIPS_TLS_GD: 5620 case R_MICROMIPS_TLS_GOTTPREL: 5621 case R_MICROMIPS_TLS_LDM: 5622 /* Find the index into the GOT where this value is located. */ 5623 if (tls_ldm_reloc_p (r_type)) 5624 { 5625 g = mips_elf_local_got_index (abfd, input_bfd, info, 5626 0, 0, NULL, r_type); 5627 if (g == MINUS_ONE) 5628 return bfd_reloc_outofrange; 5629 } 5630 else if (!local_p) 5631 { 5632 /* On VxWorks, CALL relocations should refer to the .got.plt 5633 entry, which is initialized to point at the PLT stub. */ 5634 if (htab->is_vxworks 5635 && (call_hi16_reloc_p (r_type) 5636 || call_lo16_reloc_p (r_type) 5637 || call16_reloc_p (r_type))) 5638 { 5639 BFD_ASSERT (addend == 0); 5640 BFD_ASSERT (h->root.needs_plt); 5641 g = mips_elf_gotplt_index (info, &h->root); 5642 } 5643 else 5644 { 5645 BFD_ASSERT (addend == 0); 5646 g = mips_elf_global_got_index (abfd, info, input_bfd, 5647 &h->root, r_type); 5648 if (!TLS_RELOC_P (r_type) 5649 && !elf_hash_table (info)->dynamic_sections_created) 5650 /* This is a static link. We must initialize the GOT entry. */ 5651 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g); 5652 } 5653 } 5654 else if (!htab->is_vxworks 5655 && (call16_reloc_p (r_type) || got16_reloc_p (r_type))) 5656 /* The calculation below does not involve "g". */ 5657 break; 5658 else 5659 { 5660 g = mips_elf_local_got_index (abfd, input_bfd, info, 5661 symbol + addend, r_symndx, h, r_type); 5662 if (g == MINUS_ONE) 5663 return bfd_reloc_outofrange; 5664 } 5665 5666 /* Convert GOT indices to actual offsets. */ 5667 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g); 5668 break; 5669 } 5670 5671 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__ 5672 symbols are resolved by the loader. Add them to .rela.dyn. */ 5673 if (h != NULL && is_gott_symbol (info, &h->root)) 5674 { 5675 Elf_Internal_Rela outrel; 5676 bfd_byte *loc; 5677 asection *s; 5678 5679 s = mips_elf_rel_dyn_section (info, FALSE); 5680 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela); 5681 5682 outrel.r_offset = (input_section->output_section->vma 5683 + input_section->output_offset 5684 + relocation->r_offset); 5685 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type); 5686 outrel.r_addend = addend; 5687 bfd_elf32_swap_reloca_out (abfd, &outrel, loc); 5688 5689 /* If we've written this relocation for a readonly section, 5690 we need to set DF_TEXTREL again, so that we do not delete the 5691 DT_TEXTREL tag. */ 5692 if (MIPS_ELF_READONLY_SECTION (input_section)) 5693 info->flags |= DF_TEXTREL; 5694 5695 *valuep = 0; 5696 return bfd_reloc_ok; 5697 } 5698 5699 /* Figure out what kind of relocation is being performed. */ 5700 switch (r_type) 5701 { 5702 case R_MIPS_NONE: 5703 return bfd_reloc_continue; 5704 5705 case R_MIPS_16: 5706 if (howto->partial_inplace) 5707 addend = _bfd_mips_elf_sign_extend (addend, 16); 5708 value = symbol + addend; 5709 overflowed_p = mips_elf_overflow_p (value, 16); 5710 break; 5711 5712 case R_MIPS_32: 5713 case R_MIPS_REL32: 5714 case R_MIPS_64: 5715 if ((bfd_link_pic (info) 5716 || (htab->root.dynamic_sections_created 5717 && h != NULL 5718 && h->root.def_dynamic 5719 && !h->root.def_regular 5720 && !h->has_static_relocs)) 5721 && r_symndx != STN_UNDEF 5722 && (h == NULL 5723 || h->root.root.type != bfd_link_hash_undefweak 5724 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT) 5725 && (input_section->flags & SEC_ALLOC) != 0) 5726 { 5727 /* If we're creating a shared library, then we can't know 5728 where the symbol will end up. So, we create a relocation 5729 record in the output, and leave the job up to the dynamic 5730 linker. We must do the same for executable references to 5731 shared library symbols, unless we've decided to use copy 5732 relocs or PLTs instead. */ 5733 value = addend; 5734 if (!mips_elf_create_dynamic_relocation (abfd, 5735 info, 5736 relocation, 5737 h, 5738 sec, 5739 symbol, 5740 &value, 5741 input_section)) 5742 return bfd_reloc_undefined; 5743 } 5744 else 5745 { 5746 if (r_type != R_MIPS_REL32) 5747 value = symbol + addend; 5748 else 5749 value = addend; 5750 } 5751 value &= howto->dst_mask; 5752 break; 5753 5754 case R_MIPS_PC32: 5755 value = symbol + addend - p; 5756 value &= howto->dst_mask; 5757 break; 5758 5759 case R_MIPS16_26: 5760 /* The calculation for R_MIPS16_26 is just the same as for an 5761 R_MIPS_26. It's only the storage of the relocated field into 5762 the output file that's different. That's handled in 5763 mips_elf_perform_relocation. So, we just fall through to the 5764 R_MIPS_26 case here. */ 5765 case R_MIPS_26: 5766 case R_MICROMIPS_26_S1: 5767 { 5768 unsigned int shift; 5769 5770 /* Make sure the target of JALX is word-aligned. Bit 0 must be 5771 the correct ISA mode selector and bit 1 must be 0. */ 5772 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26)) 5773 return bfd_reloc_outofrange; 5774 5775 /* Shift is 2, unusually, for microMIPS JALX. */ 5776 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2; 5777 5778 if (was_local_p) 5779 value = addend | ((p + 4) & (0xfc000000 << shift)); 5780 else if (howto->partial_inplace) 5781 value = _bfd_mips_elf_sign_extend (addend, 26 + shift); 5782 else 5783 value = addend; 5784 value = (value + symbol) >> shift; 5785 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak) 5786 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift)); 5787 value &= howto->dst_mask; 5788 } 5789 break; 5790 5791 case R_MIPS_TLS_DTPREL_HI16: 5792 case R_MIPS16_TLS_DTPREL_HI16: 5793 case R_MICROMIPS_TLS_DTPREL_HI16: 5794 value = (mips_elf_high (addend + symbol - dtprel_base (info)) 5795 & howto->dst_mask); 5796 break; 5797 5798 case R_MIPS_TLS_DTPREL_LO16: 5799 case R_MIPS_TLS_DTPREL32: 5800 case R_MIPS_TLS_DTPREL64: 5801 case R_MIPS16_TLS_DTPREL_LO16: 5802 case R_MICROMIPS_TLS_DTPREL_LO16: 5803 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask; 5804 break; 5805 5806 case R_MIPS_TLS_TPREL_HI16: 5807 case R_MIPS16_TLS_TPREL_HI16: 5808 case R_MICROMIPS_TLS_TPREL_HI16: 5809 value = (mips_elf_high (addend + symbol - tprel_base (info)) 5810 & howto->dst_mask); 5811 break; 5812 5813 case R_MIPS_TLS_TPREL_LO16: 5814 case R_MIPS_TLS_TPREL32: 5815 case R_MIPS_TLS_TPREL64: 5816 case R_MIPS16_TLS_TPREL_LO16: 5817 case R_MICROMIPS_TLS_TPREL_LO16: 5818 value = (symbol + addend - tprel_base (info)) & howto->dst_mask; 5819 break; 5820 5821 case R_MIPS_HI16: 5822 case R_MIPS16_HI16: 5823 case R_MICROMIPS_HI16: 5824 if (!gp_disp_p) 5825 { 5826 value = mips_elf_high (addend + symbol); 5827 value &= howto->dst_mask; 5828 } 5829 else 5830 { 5831 /* For MIPS16 ABI code we generate this sequence 5832 0: li $v0,%hi(_gp_disp) 5833 4: addiupc $v1,%lo(_gp_disp) 5834 8: sll $v0,16 5835 12: addu $v0,$v1 5836 14: move $gp,$v0 5837 So the offsets of hi and lo relocs are the same, but the 5838 base $pc is that used by the ADDIUPC instruction at $t9 + 4. 5839 ADDIUPC clears the low two bits of the instruction address, 5840 so the base is ($t9 + 4) & ~3. */ 5841 if (r_type == R_MIPS16_HI16) 5842 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3)); 5843 /* The microMIPS .cpload sequence uses the same assembly 5844 instructions as the traditional psABI version, but the 5845 incoming $t9 has the low bit set. */ 5846 else if (r_type == R_MICROMIPS_HI16) 5847 value = mips_elf_high (addend + gp - p - 1); 5848 else 5849 value = mips_elf_high (addend + gp - p); 5850 overflowed_p = mips_elf_overflow_p (value, 16); 5851 } 5852 break; 5853 5854 case R_MIPS_LO16: 5855 case R_MIPS16_LO16: 5856 case R_MICROMIPS_LO16: 5857 case R_MICROMIPS_HI0_LO16: 5858 if (!gp_disp_p) 5859 value = (symbol + addend) & howto->dst_mask; 5860 else 5861 { 5862 /* See the comment for R_MIPS16_HI16 above for the reason 5863 for this conditional. */ 5864 if (r_type == R_MIPS16_LO16) 5865 value = addend + gp - (p & ~(bfd_vma) 0x3); 5866 else if (r_type == R_MICROMIPS_LO16 5867 || r_type == R_MICROMIPS_HI0_LO16) 5868 value = addend + gp - p + 3; 5869 else 5870 value = addend + gp - p + 4; 5871 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation 5872 for overflow. But, on, say, IRIX5, relocations against 5873 _gp_disp are normally generated from the .cpload 5874 pseudo-op. It generates code that normally looks like 5875 this: 5876 5877 lui $gp,%hi(_gp_disp) 5878 addiu $gp,$gp,%lo(_gp_disp) 5879 addu $gp,$gp,$t9 5880 5881 Here $t9 holds the address of the function being called, 5882 as required by the MIPS ELF ABI. The R_MIPS_LO16 5883 relocation can easily overflow in this situation, but the 5884 R_MIPS_HI16 relocation will handle the overflow. 5885 Therefore, we consider this a bug in the MIPS ABI, and do 5886 not check for overflow here. */ 5887 } 5888 break; 5889 5890 case R_MIPS_LITERAL: 5891 case R_MICROMIPS_LITERAL: 5892 /* Because we don't merge literal sections, we can handle this 5893 just like R_MIPS_GPREL16. In the long run, we should merge 5894 shared literals, and then we will need to additional work 5895 here. */ 5896 5897 /* Fall through. */ 5898 5899 case R_MIPS16_GPREL: 5900 /* The R_MIPS16_GPREL performs the same calculation as 5901 R_MIPS_GPREL16, but stores the relocated bits in a different 5902 order. We don't need to do anything special here; the 5903 differences are handled in mips_elf_perform_relocation. */ 5904 case R_MIPS_GPREL16: 5905 case R_MICROMIPS_GPREL7_S2: 5906 case R_MICROMIPS_GPREL16: 5907 /* Only sign-extend the addend if it was extracted from the 5908 instruction. If the addend was separate, leave it alone, 5909 otherwise we may lose significant bits. */ 5910 if (howto->partial_inplace) 5911 addend = _bfd_mips_elf_sign_extend (addend, 16); 5912 value = symbol + addend - gp; 5913 /* If the symbol was local, any earlier relocatable links will 5914 have adjusted its addend with the gp offset, so compensate 5915 for that now. Don't do it for symbols forced local in this 5916 link, though, since they won't have had the gp offset applied 5917 to them before. */ 5918 if (was_local_p) 5919 value += gp0; 5920 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 5921 overflowed_p = mips_elf_overflow_p (value, 16); 5922 break; 5923 5924 case R_MIPS16_GOT16: 5925 case R_MIPS16_CALL16: 5926 case R_MIPS_GOT16: 5927 case R_MIPS_CALL16: 5928 case R_MICROMIPS_GOT16: 5929 case R_MICROMIPS_CALL16: 5930 /* VxWorks does not have separate local and global semantics for 5931 R_MIPS*_GOT16; every relocation evaluates to "G". */ 5932 if (!htab->is_vxworks && local_p) 5933 { 5934 value = mips_elf_got16_entry (abfd, input_bfd, info, 5935 symbol + addend, !was_local_p); 5936 if (value == MINUS_ONE) 5937 return bfd_reloc_outofrange; 5938 value 5939 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value); 5940 overflowed_p = mips_elf_overflow_p (value, 16); 5941 break; 5942 } 5943 5944 /* Fall through. */ 5945 5946 case R_MIPS_TLS_GD: 5947 case R_MIPS_TLS_GOTTPREL: 5948 case R_MIPS_TLS_LDM: 5949 case R_MIPS_GOT_DISP: 5950 case R_MIPS16_TLS_GD: 5951 case R_MIPS16_TLS_GOTTPREL: 5952 case R_MIPS16_TLS_LDM: 5953 case R_MICROMIPS_TLS_GD: 5954 case R_MICROMIPS_TLS_GOTTPREL: 5955 case R_MICROMIPS_TLS_LDM: 5956 case R_MICROMIPS_GOT_DISP: 5957 value = g; 5958 overflowed_p = mips_elf_overflow_p (value, 16); 5959 break; 5960 5961 case R_MIPS_GPREL32: 5962 value = (addend + symbol + gp0 - gp); 5963 if (!save_addend) 5964 value &= howto->dst_mask; 5965 break; 5966 5967 case R_MIPS_PC16: 5968 case R_MIPS_GNU_REL16_S2: 5969 if (howto->partial_inplace) 5970 addend = _bfd_mips_elf_sign_extend (addend, 18); 5971 5972 if ((symbol + addend) & 3) 5973 return bfd_reloc_outofrange; 5974 5975 value = symbol + addend - p; 5976 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 5977 overflowed_p = mips_elf_overflow_p (value, 18); 5978 value >>= howto->rightshift; 5979 value &= howto->dst_mask; 5980 break; 5981 5982 case R_MIPS_PC21_S2: 5983 if (howto->partial_inplace) 5984 addend = _bfd_mips_elf_sign_extend (addend, 23); 5985 5986 if ((symbol + addend) & 3) 5987 return bfd_reloc_outofrange; 5988 5989 value = symbol + addend - p; 5990 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 5991 overflowed_p = mips_elf_overflow_p (value, 23); 5992 value >>= howto->rightshift; 5993 value &= howto->dst_mask; 5994 break; 5995 5996 case R_MIPS_PC26_S2: 5997 if (howto->partial_inplace) 5998 addend = _bfd_mips_elf_sign_extend (addend, 28); 5999 6000 if ((symbol + addend) & 3) 6001 return bfd_reloc_outofrange; 6002 6003 value = symbol + addend - p; 6004 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6005 overflowed_p = mips_elf_overflow_p (value, 28); 6006 value >>= howto->rightshift; 6007 value &= howto->dst_mask; 6008 break; 6009 6010 case R_MIPS_PC18_S3: 6011 if (howto->partial_inplace) 6012 addend = _bfd_mips_elf_sign_extend (addend, 21); 6013 6014 if ((symbol + addend) & 7) 6015 return bfd_reloc_outofrange; 6016 6017 value = symbol + addend - ((p | 7) ^ 7); 6018 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6019 overflowed_p = mips_elf_overflow_p (value, 21); 6020 value >>= howto->rightshift; 6021 value &= howto->dst_mask; 6022 break; 6023 6024 case R_MIPS_PC19_S2: 6025 if (howto->partial_inplace) 6026 addend = _bfd_mips_elf_sign_extend (addend, 21); 6027 6028 if ((symbol + addend) & 3) 6029 return bfd_reloc_outofrange; 6030 6031 value = symbol + addend - p; 6032 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6033 overflowed_p = mips_elf_overflow_p (value, 21); 6034 value >>= howto->rightshift; 6035 value &= howto->dst_mask; 6036 break; 6037 6038 case R_MIPS_PCHI16: 6039 value = mips_elf_high (symbol + addend - p); 6040 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6041 overflowed_p = mips_elf_overflow_p (value, 16); 6042 value &= howto->dst_mask; 6043 break; 6044 6045 case R_MIPS_PCLO16: 6046 if (howto->partial_inplace) 6047 addend = _bfd_mips_elf_sign_extend (addend, 16); 6048 value = symbol + addend - p; 6049 value &= howto->dst_mask; 6050 break; 6051 6052 case R_MICROMIPS_PC7_S1: 6053 if (howto->partial_inplace) 6054 addend = _bfd_mips_elf_sign_extend (addend, 8); 6055 value = symbol + addend - p; 6056 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6057 overflowed_p = mips_elf_overflow_p (value, 8); 6058 value >>= howto->rightshift; 6059 value &= howto->dst_mask; 6060 break; 6061 6062 case R_MICROMIPS_PC10_S1: 6063 if (howto->partial_inplace) 6064 addend = _bfd_mips_elf_sign_extend (addend, 11); 6065 value = symbol + addend - p; 6066 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6067 overflowed_p = mips_elf_overflow_p (value, 11); 6068 value >>= howto->rightshift; 6069 value &= howto->dst_mask; 6070 break; 6071 6072 case R_MICROMIPS_PC16_S1: 6073 if (howto->partial_inplace) 6074 addend = _bfd_mips_elf_sign_extend (addend, 17); 6075 value = symbol + addend - p; 6076 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6077 overflowed_p = mips_elf_overflow_p (value, 17); 6078 value >>= howto->rightshift; 6079 value &= howto->dst_mask; 6080 break; 6081 6082 case R_MICROMIPS_PC23_S2: 6083 if (howto->partial_inplace) 6084 addend = _bfd_mips_elf_sign_extend (addend, 25); 6085 value = symbol + addend - ((p | 3) ^ 3); 6086 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6087 overflowed_p = mips_elf_overflow_p (value, 25); 6088 value >>= howto->rightshift; 6089 value &= howto->dst_mask; 6090 break; 6091 6092 case R_MIPS_GOT_HI16: 6093 case R_MIPS_CALL_HI16: 6094 case R_MICROMIPS_GOT_HI16: 6095 case R_MICROMIPS_CALL_HI16: 6096 /* We're allowed to handle these two relocations identically. 6097 The dynamic linker is allowed to handle the CALL relocations 6098 differently by creating a lazy evaluation stub. */ 6099 value = g; 6100 value = mips_elf_high (value); 6101 value &= howto->dst_mask; 6102 break; 6103 6104 case R_MIPS_GOT_LO16: 6105 case R_MIPS_CALL_LO16: 6106 case R_MICROMIPS_GOT_LO16: 6107 case R_MICROMIPS_CALL_LO16: 6108 value = g & howto->dst_mask; 6109 break; 6110 6111 case R_MIPS_GOT_PAGE: 6112 case R_MICROMIPS_GOT_PAGE: 6113 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL); 6114 if (value == MINUS_ONE) 6115 return bfd_reloc_outofrange; 6116 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value); 6117 overflowed_p = mips_elf_overflow_p (value, 16); 6118 break; 6119 6120 case R_MIPS_GOT_OFST: 6121 case R_MICROMIPS_GOT_OFST: 6122 if (local_p) 6123 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value); 6124 else 6125 value = addend; 6126 overflowed_p = mips_elf_overflow_p (value, 16); 6127 break; 6128 6129 case R_MIPS_SUB: 6130 case R_MICROMIPS_SUB: 6131 value = symbol - addend; 6132 value &= howto->dst_mask; 6133 break; 6134 6135 case R_MIPS_HIGHER: 6136 case R_MICROMIPS_HIGHER: 6137 value = mips_elf_higher (addend + symbol); 6138 value &= howto->dst_mask; 6139 break; 6140 6141 case R_MIPS_HIGHEST: 6142 case R_MICROMIPS_HIGHEST: 6143 value = mips_elf_highest (addend + symbol); 6144 value &= howto->dst_mask; 6145 break; 6146 6147 case R_MIPS_SCN_DISP: 6148 case R_MICROMIPS_SCN_DISP: 6149 value = symbol + addend - sec->output_offset; 6150 value &= howto->dst_mask; 6151 break; 6152 6153 case R_MIPS_JALR: 6154 case R_MICROMIPS_JALR: 6155 /* This relocation is only a hint. In some cases, we optimize 6156 it into a bal instruction. But we don't try to optimize 6157 when the symbol does not resolve locally. */ 6158 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root)) 6159 return bfd_reloc_continue; 6160 value = symbol + addend; 6161 break; 6162 6163 case R_MIPS_PJUMP: 6164 case R_MIPS_GNU_VTINHERIT: 6165 case R_MIPS_GNU_VTENTRY: 6166 /* We don't do anything with these at present. */ 6167 return bfd_reloc_continue; 6168 6169 default: 6170 /* An unrecognized relocation type. */ 6171 return bfd_reloc_notsupported; 6172 } 6173 6174 /* Store the VALUE for our caller. */ 6175 *valuep = value; 6176 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok; 6177 } 6178 6179 /* Obtain the field relocated by RELOCATION. */ 6180 6181 static bfd_vma 6182 mips_elf_obtain_contents (reloc_howto_type *howto, 6183 const Elf_Internal_Rela *relocation, 6184 bfd *input_bfd, bfd_byte *contents) 6185 { 6186 bfd_vma x = 0; 6187 bfd_byte *location = contents + relocation->r_offset; 6188 unsigned int size = bfd_get_reloc_size (howto); 6189 6190 /* Obtain the bytes. */ 6191 if (size != 0) 6192 x = bfd_get (8 * size, input_bfd, location); 6193 6194 return x; 6195 } 6196 6197 /* It has been determined that the result of the RELOCATION is the 6198 VALUE. Use HOWTO to place VALUE into the output file at the 6199 appropriate position. The SECTION is the section to which the 6200 relocation applies. 6201 CROSS_MODE_JUMP_P is true if the relocation field 6202 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa. 6203 6204 Returns FALSE if anything goes wrong. */ 6205 6206 static bfd_boolean 6207 mips_elf_perform_relocation (struct bfd_link_info *info, 6208 reloc_howto_type *howto, 6209 const Elf_Internal_Rela *relocation, 6210 bfd_vma value, bfd *input_bfd, 6211 asection *input_section, bfd_byte *contents, 6212 bfd_boolean cross_mode_jump_p) 6213 { 6214 bfd_vma x; 6215 bfd_byte *location; 6216 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info); 6217 unsigned int size; 6218 6219 /* Figure out where the relocation is occurring. */ 6220 location = contents + relocation->r_offset; 6221 6222 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location); 6223 6224 /* Obtain the current value. */ 6225 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents); 6226 6227 /* Clear the field we are setting. */ 6228 x &= ~howto->dst_mask; 6229 6230 /* Set the field. */ 6231 x |= (value & howto->dst_mask); 6232 6233 /* If required, turn JAL into JALX. */ 6234 if (cross_mode_jump_p && jal_reloc_p (r_type)) 6235 { 6236 bfd_boolean ok; 6237 bfd_vma opcode = x >> 26; 6238 bfd_vma jalx_opcode; 6239 6240 /* Check to see if the opcode is already JAL or JALX. */ 6241 if (r_type == R_MIPS16_26) 6242 { 6243 ok = ((opcode == 0x6) || (opcode == 0x7)); 6244 jalx_opcode = 0x7; 6245 } 6246 else if (r_type == R_MICROMIPS_26_S1) 6247 { 6248 ok = ((opcode == 0x3d) || (opcode == 0x3c)); 6249 jalx_opcode = 0x3c; 6250 } 6251 else 6252 { 6253 ok = ((opcode == 0x3) || (opcode == 0x1d)); 6254 jalx_opcode = 0x1d; 6255 } 6256 6257 /* If the opcode is not JAL or JALX, there's a problem. We cannot 6258 convert J or JALS to JALX. */ 6259 if (!ok) 6260 { 6261 (*_bfd_error_handler) 6262 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."), 6263 input_bfd, 6264 input_section, 6265 (unsigned long) relocation->r_offset); 6266 bfd_set_error (bfd_error_bad_value); 6267 return FALSE; 6268 } 6269 6270 /* Make this the JALX opcode. */ 6271 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26); 6272 } 6273 6274 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in 6275 range. */ 6276 if (!bfd_link_relocatable (info) 6277 && !cross_mode_jump_p 6278 && ((JAL_TO_BAL_P (input_bfd) 6279 && r_type == R_MIPS_26 6280 && (x >> 26) == 0x3) /* jal addr */ 6281 || (JALR_TO_BAL_P (input_bfd) 6282 && r_type == R_MIPS_JALR 6283 && x == 0x0320f809) /* jalr t9 */ 6284 || (JR_TO_B_P (input_bfd) 6285 && r_type == R_MIPS_JALR 6286 && x == 0x03200008))) /* jr t9 */ 6287 { 6288 bfd_vma addr; 6289 bfd_vma dest; 6290 bfd_signed_vma off; 6291 6292 addr = (input_section->output_section->vma 6293 + input_section->output_offset 6294 + relocation->r_offset 6295 + 4); 6296 if (r_type == R_MIPS_26) 6297 dest = (value << 2) | ((addr >> 28) << 28); 6298 else 6299 dest = value; 6300 off = dest - addr; 6301 if (off <= 0x1ffff && off >= -0x20000) 6302 { 6303 if (x == 0x03200008) /* jr t9 */ 6304 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */ 6305 else 6306 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */ 6307 } 6308 } 6309 6310 /* Put the value into the output. */ 6311 size = bfd_get_reloc_size (howto); 6312 if (size != 0) 6313 bfd_put (8 * size, input_bfd, x, location); 6314 6315 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info), 6316 location); 6317 6318 return TRUE; 6319 } 6320 6321 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL 6322 is the original relocation, which is now being transformed into a 6323 dynamic relocation. The ADDENDP is adjusted if necessary; the 6324 caller should store the result in place of the original addend. */ 6325 6326 static bfd_boolean 6327 mips_elf_create_dynamic_relocation (bfd *output_bfd, 6328 struct bfd_link_info *info, 6329 const Elf_Internal_Rela *rel, 6330 struct mips_elf_link_hash_entry *h, 6331 asection *sec, bfd_vma symbol, 6332 bfd_vma *addendp, asection *input_section) 6333 { 6334 Elf_Internal_Rela outrel[3]; 6335 asection *sreloc; 6336 bfd *dynobj; 6337 int r_type; 6338 long indx; 6339 bfd_boolean defined_p; 6340 struct mips_elf_link_hash_table *htab; 6341 6342 htab = mips_elf_hash_table (info); 6343 BFD_ASSERT (htab != NULL); 6344 6345 r_type = ELF_R_TYPE (output_bfd, rel->r_info); 6346 dynobj = elf_hash_table (info)->dynobj; 6347 sreloc = mips_elf_rel_dyn_section (info, FALSE); 6348 BFD_ASSERT (sreloc != NULL); 6349 BFD_ASSERT (sreloc->contents != NULL); 6350 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd) 6351 < sreloc->size); 6352 6353 outrel[0].r_offset = 6354 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset); 6355 if (ABI_64_P (output_bfd)) 6356 { 6357 outrel[1].r_offset = 6358 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset); 6359 outrel[2].r_offset = 6360 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset); 6361 } 6362 6363 if (outrel[0].r_offset == MINUS_ONE) 6364 /* The relocation field has been deleted. */ 6365 return TRUE; 6366 6367 if (outrel[0].r_offset == MINUS_TWO) 6368 { 6369 /* The relocation field has been converted into a relative value of 6370 some sort. Functions like _bfd_elf_write_section_eh_frame expect 6371 the field to be fully relocated, so add in the symbol's value. */ 6372 *addendp += symbol; 6373 return TRUE; 6374 } 6375 6376 /* We must now calculate the dynamic symbol table index to use 6377 in the relocation. */ 6378 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root)) 6379 { 6380 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE); 6381 indx = h->root.dynindx; 6382 if (SGI_COMPAT (output_bfd)) 6383 defined_p = h->root.def_regular; 6384 else 6385 /* ??? glibc's ld.so just adds the final GOT entry to the 6386 relocation field. It therefore treats relocs against 6387 defined symbols in the same way as relocs against 6388 undefined symbols. */ 6389 defined_p = FALSE; 6390 } 6391 else 6392 { 6393 if (sec != NULL && bfd_is_abs_section (sec)) 6394 indx = 0; 6395 else if (sec == NULL || sec->owner == NULL) 6396 { 6397 bfd_set_error (bfd_error_bad_value); 6398 return FALSE; 6399 } 6400 else 6401 { 6402 indx = elf_section_data (sec->output_section)->dynindx; 6403 if (indx == 0) 6404 { 6405 asection *osec = htab->root.text_index_section; 6406 indx = elf_section_data (osec)->dynindx; 6407 } 6408 if (indx == 0) 6409 abort (); 6410 } 6411 6412 /* Instead of generating a relocation using the section 6413 symbol, we may as well make it a fully relative 6414 relocation. We want to avoid generating relocations to 6415 local symbols because we used to generate them 6416 incorrectly, without adding the original symbol value, 6417 which is mandated by the ABI for section symbols. In 6418 order to give dynamic loaders and applications time to 6419 phase out the incorrect use, we refrain from emitting 6420 section-relative relocations. It's not like they're 6421 useful, after all. This should be a bit more efficient 6422 as well. */ 6423 /* ??? Although this behavior is compatible with glibc's ld.so, 6424 the ABI says that relocations against STN_UNDEF should have 6425 a symbol value of 0. Irix rld honors this, so relocations 6426 against STN_UNDEF have no effect. */ 6427 if (!SGI_COMPAT (output_bfd)) 6428 indx = 0; 6429 defined_p = TRUE; 6430 } 6431 6432 /* If the relocation was previously an absolute relocation and 6433 this symbol will not be referred to by the relocation, we must 6434 adjust it by the value we give it in the dynamic symbol table. 6435 Otherwise leave the job up to the dynamic linker. */ 6436 if (defined_p && r_type != R_MIPS_REL32) 6437 *addendp += symbol; 6438 6439 if (htab->is_vxworks) 6440 /* VxWorks uses non-relative relocations for this. */ 6441 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32); 6442 else 6443 /* The relocation is always an REL32 relocation because we don't 6444 know where the shared library will wind up at load-time. */ 6445 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx, 6446 R_MIPS_REL32); 6447 6448 /* For strict adherence to the ABI specification, we should 6449 generate a R_MIPS_64 relocation record by itself before the 6450 _REL32/_64 record as well, such that the addend is read in as 6451 a 64-bit value (REL32 is a 32-bit relocation, after all). 6452 However, since none of the existing ELF64 MIPS dynamic 6453 loaders seems to care, we don't waste space with these 6454 artificial relocations. If this turns out to not be true, 6455 mips_elf_allocate_dynamic_relocation() should be tweaked so 6456 as to make room for a pair of dynamic relocations per 6457 invocation if ABI_64_P, and here we should generate an 6458 additional relocation record with R_MIPS_64 by itself for a 6459 NULL symbol before this relocation record. */ 6460 outrel[1].r_info = ELF_R_INFO (output_bfd, 0, 6461 ABI_64_P (output_bfd) 6462 ? R_MIPS_64 6463 : R_MIPS_NONE); 6464 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE); 6465 6466 /* Adjust the output offset of the relocation to reference the 6467 correct location in the output file. */ 6468 outrel[0].r_offset += (input_section->output_section->vma 6469 + input_section->output_offset); 6470 outrel[1].r_offset += (input_section->output_section->vma 6471 + input_section->output_offset); 6472 outrel[2].r_offset += (input_section->output_section->vma 6473 + input_section->output_offset); 6474 6475 /* Put the relocation back out. We have to use the special 6476 relocation outputter in the 64-bit case since the 64-bit 6477 relocation format is non-standard. */ 6478 if (ABI_64_P (output_bfd)) 6479 { 6480 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) 6481 (output_bfd, &outrel[0], 6482 (sreloc->contents 6483 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel))); 6484 } 6485 else if (htab->is_vxworks) 6486 { 6487 /* VxWorks uses RELA rather than REL dynamic relocations. */ 6488 outrel[0].r_addend = *addendp; 6489 bfd_elf32_swap_reloca_out 6490 (output_bfd, &outrel[0], 6491 (sreloc->contents 6492 + sreloc->reloc_count * sizeof (Elf32_External_Rela))); 6493 } 6494 else 6495 bfd_elf32_swap_reloc_out 6496 (output_bfd, &outrel[0], 6497 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel))); 6498 6499 /* We've now added another relocation. */ 6500 ++sreloc->reloc_count; 6501 6502 /* Make sure the output section is writable. The dynamic linker 6503 will be writing to it. */ 6504 elf_section_data (input_section->output_section)->this_hdr.sh_flags 6505 |= SHF_WRITE; 6506 6507 /* On IRIX5, make an entry of compact relocation info. */ 6508 if (IRIX_COMPAT (output_bfd) == ict_irix5) 6509 { 6510 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel"); 6511 bfd_byte *cr; 6512 6513 if (scpt) 6514 { 6515 Elf32_crinfo cptrel; 6516 6517 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG); 6518 cptrel.vaddr = (rel->r_offset 6519 + input_section->output_section->vma 6520 + input_section->output_offset); 6521 if (r_type == R_MIPS_REL32) 6522 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32); 6523 else 6524 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD); 6525 mips_elf_set_cr_dist2to (cptrel, 0); 6526 cptrel.konst = *addendp; 6527 6528 cr = (scpt->contents 6529 + sizeof (Elf32_External_compact_rel)); 6530 mips_elf_set_cr_relvaddr (cptrel, 0); 6531 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel, 6532 ((Elf32_External_crinfo *) cr 6533 + scpt->reloc_count)); 6534 ++scpt->reloc_count; 6535 } 6536 } 6537 6538 /* If we've written this relocation for a readonly section, 6539 we need to set DF_TEXTREL again, so that we do not delete the 6540 DT_TEXTREL tag. */ 6541 if (MIPS_ELF_READONLY_SECTION (input_section)) 6542 info->flags |= DF_TEXTREL; 6543 6544 return TRUE; 6545 } 6546 6547 /* Return the MACH for a MIPS e_flags value. */ 6548 6549 unsigned long 6550 _bfd_elf_mips_mach (flagword flags) 6551 { 6552 switch (flags & EF_MIPS_MACH) 6553 { 6554 case E_MIPS_MACH_3900: 6555 return bfd_mach_mips3900; 6556 6557 case E_MIPS_MACH_4010: 6558 return bfd_mach_mips4010; 6559 6560 case E_MIPS_MACH_4100: 6561 return bfd_mach_mips4100; 6562 6563 case E_MIPS_MACH_4111: 6564 return bfd_mach_mips4111; 6565 6566 case E_MIPS_MACH_4120: 6567 return bfd_mach_mips4120; 6568 6569 case E_MIPS_MACH_4650: 6570 return bfd_mach_mips4650; 6571 6572 case E_MIPS_MACH_5400: 6573 return bfd_mach_mips5400; 6574 6575 case E_MIPS_MACH_5500: 6576 return bfd_mach_mips5500; 6577 6578 case E_MIPS_MACH_5900: 6579 return bfd_mach_mips5900; 6580 6581 case E_MIPS_MACH_9000: 6582 return bfd_mach_mips9000; 6583 6584 case E_MIPS_MACH_SB1: 6585 return bfd_mach_mips_sb1; 6586 6587 case E_MIPS_MACH_LS2E: 6588 return bfd_mach_mips_loongson_2e; 6589 6590 case E_MIPS_MACH_LS2F: 6591 return bfd_mach_mips_loongson_2f; 6592 6593 case E_MIPS_MACH_LS3A: 6594 return bfd_mach_mips_loongson_3a; 6595 6596 case E_MIPS_MACH_OCTEON3: 6597 return bfd_mach_mips_octeon3; 6598 6599 case E_MIPS_MACH_OCTEON2: 6600 return bfd_mach_mips_octeon2; 6601 6602 case E_MIPS_MACH_OCTEON: 6603 return bfd_mach_mips_octeon; 6604 6605 case E_MIPS_MACH_XLR: 6606 return bfd_mach_mips_xlr; 6607 6608 default: 6609 switch (flags & EF_MIPS_ARCH) 6610 { 6611 default: 6612 case E_MIPS_ARCH_1: 6613 return bfd_mach_mips3000; 6614 6615 case E_MIPS_ARCH_2: 6616 return bfd_mach_mips6000; 6617 6618 case E_MIPS_ARCH_3: 6619 return bfd_mach_mips4000; 6620 6621 case E_MIPS_ARCH_4: 6622 return bfd_mach_mips8000; 6623 6624 case E_MIPS_ARCH_5: 6625 return bfd_mach_mips5; 6626 6627 case E_MIPS_ARCH_32: 6628 return bfd_mach_mipsisa32; 6629 6630 case E_MIPS_ARCH_64: 6631 return bfd_mach_mipsisa64; 6632 6633 case E_MIPS_ARCH_32R2: 6634 return bfd_mach_mipsisa32r2; 6635 6636 case E_MIPS_ARCH_64R2: 6637 return bfd_mach_mipsisa64r2; 6638 6639 case E_MIPS_ARCH_32R6: 6640 return bfd_mach_mipsisa32r6; 6641 6642 case E_MIPS_ARCH_64R6: 6643 return bfd_mach_mipsisa64r6; 6644 } 6645 } 6646 6647 return 0; 6648 } 6649 6650 /* Return printable name for ABI. */ 6651 6652 static INLINE char * 6653 elf_mips_abi_name (bfd *abfd) 6654 { 6655 flagword flags; 6656 6657 flags = elf_elfheader (abfd)->e_flags; 6658 switch (flags & EF_MIPS_ABI) 6659 { 6660 case 0: 6661 if (ABI_N32_P (abfd)) 6662 return "N32"; 6663 else if (ABI_64_P (abfd)) 6664 return "64"; 6665 else 6666 return "none"; 6667 case E_MIPS_ABI_O32: 6668 return "O32"; 6669 case E_MIPS_ABI_O64: 6670 return "O64"; 6671 case E_MIPS_ABI_EABI32: 6672 return "EABI32"; 6673 case E_MIPS_ABI_EABI64: 6674 return "EABI64"; 6675 default: 6676 return "unknown abi"; 6677 } 6678 } 6679 6680 /* MIPS ELF uses two common sections. One is the usual one, and the 6681 other is for small objects. All the small objects are kept 6682 together, and then referenced via the gp pointer, which yields 6683 faster assembler code. This is what we use for the small common 6684 section. This approach is copied from ecoff.c. */ 6685 static asection mips_elf_scom_section; 6686 static asymbol mips_elf_scom_symbol; 6687 static asymbol *mips_elf_scom_symbol_ptr; 6688 6689 /* MIPS ELF also uses an acommon section, which represents an 6690 allocated common symbol which may be overridden by a 6691 definition in a shared library. */ 6692 static asection mips_elf_acom_section; 6693 static asymbol mips_elf_acom_symbol; 6694 static asymbol *mips_elf_acom_symbol_ptr; 6695 6696 /* This is used for both the 32-bit and the 64-bit ABI. */ 6697 6698 void 6699 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym) 6700 { 6701 elf_symbol_type *elfsym; 6702 6703 /* Handle the special MIPS section numbers that a symbol may use. */ 6704 elfsym = (elf_symbol_type *) asym; 6705 switch (elfsym->internal_elf_sym.st_shndx) 6706 { 6707 case SHN_MIPS_ACOMMON: 6708 /* This section is used in a dynamically linked executable file. 6709 It is an allocated common section. The dynamic linker can 6710 either resolve these symbols to something in a shared 6711 library, or it can just leave them here. For our purposes, 6712 we can consider these symbols to be in a new section. */ 6713 if (mips_elf_acom_section.name == NULL) 6714 { 6715 /* Initialize the acommon section. */ 6716 mips_elf_acom_section.name = ".acommon"; 6717 mips_elf_acom_section.flags = SEC_ALLOC; 6718 mips_elf_acom_section.output_section = &mips_elf_acom_section; 6719 mips_elf_acom_section.symbol = &mips_elf_acom_symbol; 6720 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr; 6721 mips_elf_acom_symbol.name = ".acommon"; 6722 mips_elf_acom_symbol.flags = BSF_SECTION_SYM; 6723 mips_elf_acom_symbol.section = &mips_elf_acom_section; 6724 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol; 6725 } 6726 asym->section = &mips_elf_acom_section; 6727 break; 6728 6729 case SHN_COMMON: 6730 /* Common symbols less than the GP size are automatically 6731 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */ 6732 if (asym->value > elf_gp_size (abfd) 6733 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS 6734 || IRIX_COMPAT (abfd) == ict_irix6) 6735 break; 6736 /* Fall through. */ 6737 case SHN_MIPS_SCOMMON: 6738 if (mips_elf_scom_section.name == NULL) 6739 { 6740 /* Initialize the small common section. */ 6741 mips_elf_scom_section.name = ".scommon"; 6742 mips_elf_scom_section.flags = SEC_IS_COMMON; 6743 mips_elf_scom_section.output_section = &mips_elf_scom_section; 6744 mips_elf_scom_section.symbol = &mips_elf_scom_symbol; 6745 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr; 6746 mips_elf_scom_symbol.name = ".scommon"; 6747 mips_elf_scom_symbol.flags = BSF_SECTION_SYM; 6748 mips_elf_scom_symbol.section = &mips_elf_scom_section; 6749 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol; 6750 } 6751 asym->section = &mips_elf_scom_section; 6752 asym->value = elfsym->internal_elf_sym.st_size; 6753 break; 6754 6755 case SHN_MIPS_SUNDEFINED: 6756 asym->section = bfd_und_section_ptr; 6757 break; 6758 6759 case SHN_MIPS_TEXT: 6760 { 6761 asection *section = bfd_get_section_by_name (abfd, ".text"); 6762 6763 if (section != NULL) 6764 { 6765 asym->section = section; 6766 /* MIPS_TEXT is a bit special, the address is not an offset 6767 to the base of the .text section. So substract the section 6768 base address to make it an offset. */ 6769 asym->value -= section->vma; 6770 } 6771 } 6772 break; 6773 6774 case SHN_MIPS_DATA: 6775 { 6776 asection *section = bfd_get_section_by_name (abfd, ".data"); 6777 6778 if (section != NULL) 6779 { 6780 asym->section = section; 6781 /* MIPS_DATA is a bit special, the address is not an offset 6782 to the base of the .data section. So substract the section 6783 base address to make it an offset. */ 6784 asym->value -= section->vma; 6785 } 6786 } 6787 break; 6788 } 6789 6790 /* If this is an odd-valued function symbol, assume it's a MIPS16 6791 or microMIPS one. */ 6792 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC 6793 && (asym->value & 1) != 0) 6794 { 6795 asym->value--; 6796 if (MICROMIPS_P (abfd)) 6797 elfsym->internal_elf_sym.st_other 6798 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other); 6799 else 6800 elfsym->internal_elf_sym.st_other 6801 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other); 6802 } 6803 } 6804 6805 /* Implement elf_backend_eh_frame_address_size. This differs from 6806 the default in the way it handles EABI64. 6807 6808 EABI64 was originally specified as an LP64 ABI, and that is what 6809 -mabi=eabi normally gives on a 64-bit target. However, gcc has 6810 historically accepted the combination of -mabi=eabi and -mlong32, 6811 and this ILP32 variation has become semi-official over time. 6812 Both forms use elf32 and have pointer-sized FDE addresses. 6813 6814 If an EABI object was generated by GCC 4.0 or above, it will have 6815 an empty .gcc_compiled_longXX section, where XX is the size of longs 6816 in bits. Unfortunately, ILP32 objects generated by earlier compilers 6817 have no special marking to distinguish them from LP64 objects. 6818 6819 We don't want users of the official LP64 ABI to be punished for the 6820 existence of the ILP32 variant, but at the same time, we don't want 6821 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects. 6822 We therefore take the following approach: 6823 6824 - If ABFD contains a .gcc_compiled_longXX section, use it to 6825 determine the pointer size. 6826 6827 - Otherwise check the type of the first relocation. Assume that 6828 the LP64 ABI is being used if the relocation is of type R_MIPS_64. 6829 6830 - Otherwise punt. 6831 6832 The second check is enough to detect LP64 objects generated by pre-4.0 6833 compilers because, in the kind of output generated by those compilers, 6834 the first relocation will be associated with either a CIE personality 6835 routine or an FDE start address. Furthermore, the compilers never 6836 used a special (non-pointer) encoding for this ABI. 6837 6838 Checking the relocation type should also be safe because there is no 6839 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never 6840 did so. */ 6841 6842 unsigned int 6843 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec) 6844 { 6845 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) 6846 return 8; 6847 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) 6848 { 6849 bfd_boolean long32_p, long64_p; 6850 6851 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0; 6852 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0; 6853 if (long32_p && long64_p) 6854 return 0; 6855 if (long32_p) 6856 return 4; 6857 if (long64_p) 6858 return 8; 6859 6860 if (sec->reloc_count > 0 6861 && elf_section_data (sec)->relocs != NULL 6862 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info) 6863 == R_MIPS_64)) 6864 return 8; 6865 6866 return 0; 6867 } 6868 return 4; 6869 } 6870 6871 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP 6872 relocations against two unnamed section symbols to resolve to the 6873 same address. For example, if we have code like: 6874 6875 lw $4,%got_disp(.data)($gp) 6876 lw $25,%got_disp(.text)($gp) 6877 jalr $25 6878 6879 then the linker will resolve both relocations to .data and the program 6880 will jump there rather than to .text. 6881 6882 We can work around this problem by giving names to local section symbols. 6883 This is also what the MIPSpro tools do. */ 6884 6885 bfd_boolean 6886 _bfd_mips_elf_name_local_section_symbols (bfd *abfd) 6887 { 6888 return SGI_COMPAT (abfd); 6889 } 6890 6891 /* Work over a section just before writing it out. This routine is 6892 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize 6893 sections that need the SHF_MIPS_GPREL flag by name; there has to be 6894 a better way. */ 6895 6896 bfd_boolean 6897 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr) 6898 { 6899 if (hdr->sh_type == SHT_MIPS_REGINFO 6900 && hdr->sh_size > 0) 6901 { 6902 bfd_byte buf[4]; 6903 6904 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo)); 6905 BFD_ASSERT (hdr->contents == NULL); 6906 6907 if (bfd_seek (abfd, 6908 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4, 6909 SEEK_SET) != 0) 6910 return FALSE; 6911 H_PUT_32 (abfd, elf_gp (abfd), buf); 6912 if (bfd_bwrite (buf, 4, abfd) != 4) 6913 return FALSE; 6914 } 6915 6916 if (hdr->sh_type == SHT_MIPS_OPTIONS 6917 && hdr->bfd_section != NULL 6918 && mips_elf_section_data (hdr->bfd_section) != NULL 6919 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL) 6920 { 6921 bfd_byte *contents, *l, *lend; 6922 6923 /* We stored the section contents in the tdata field in the 6924 set_section_contents routine. We save the section contents 6925 so that we don't have to read them again. 6926 At this point we know that elf_gp is set, so we can look 6927 through the section contents to see if there is an 6928 ODK_REGINFO structure. */ 6929 6930 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata; 6931 l = contents; 6932 lend = contents + hdr->sh_size; 6933 while (l + sizeof (Elf_External_Options) <= lend) 6934 { 6935 Elf_Internal_Options intopt; 6936 6937 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, 6938 &intopt); 6939 if (intopt.size < sizeof (Elf_External_Options)) 6940 { 6941 (*_bfd_error_handler) 6942 (_("%B: Warning: bad `%s' option size %u smaller than its header"), 6943 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size); 6944 break; 6945 } 6946 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) 6947 { 6948 bfd_byte buf[8]; 6949 6950 if (bfd_seek (abfd, 6951 (hdr->sh_offset 6952 + (l - contents) 6953 + sizeof (Elf_External_Options) 6954 + (sizeof (Elf64_External_RegInfo) - 8)), 6955 SEEK_SET) != 0) 6956 return FALSE; 6957 H_PUT_64 (abfd, elf_gp (abfd), buf); 6958 if (bfd_bwrite (buf, 8, abfd) != 8) 6959 return FALSE; 6960 } 6961 else if (intopt.kind == ODK_REGINFO) 6962 { 6963 bfd_byte buf[4]; 6964 6965 if (bfd_seek (abfd, 6966 (hdr->sh_offset 6967 + (l - contents) 6968 + sizeof (Elf_External_Options) 6969 + (sizeof (Elf32_External_RegInfo) - 4)), 6970 SEEK_SET) != 0) 6971 return FALSE; 6972 H_PUT_32 (abfd, elf_gp (abfd), buf); 6973 if (bfd_bwrite (buf, 4, abfd) != 4) 6974 return FALSE; 6975 } 6976 l += intopt.size; 6977 } 6978 } 6979 6980 if (hdr->bfd_section != NULL) 6981 { 6982 const char *name = bfd_get_section_name (abfd, hdr->bfd_section); 6983 6984 /* .sbss is not handled specially here because the GNU/Linux 6985 prelinker can convert .sbss from NOBITS to PROGBITS and 6986 changing it back to NOBITS breaks the binary. The entry in 6987 _bfd_mips_elf_special_sections will ensure the correct flags 6988 are set on .sbss if BFD creates it without reading it from an 6989 input file, and without special handling here the flags set 6990 on it in an input file will be followed. */ 6991 if (strcmp (name, ".sdata") == 0 6992 || strcmp (name, ".lit8") == 0 6993 || strcmp (name, ".lit4") == 0) 6994 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; 6995 else if (strcmp (name, ".srdata") == 0) 6996 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL; 6997 else if (strcmp (name, ".compact_rel") == 0) 6998 hdr->sh_flags = 0; 6999 else if (strcmp (name, ".rtproc") == 0) 7000 { 7001 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0) 7002 { 7003 unsigned int adjust; 7004 7005 adjust = hdr->sh_size % hdr->sh_addralign; 7006 if (adjust != 0) 7007 hdr->sh_size += hdr->sh_addralign - adjust; 7008 } 7009 } 7010 } 7011 7012 return TRUE; 7013 } 7014 7015 /* Handle a MIPS specific section when reading an object file. This 7016 is called when elfcode.h finds a section with an unknown type. 7017 This routine supports both the 32-bit and 64-bit ELF ABI. 7018 7019 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure 7020 how to. */ 7021 7022 bfd_boolean 7023 _bfd_mips_elf_section_from_shdr (bfd *abfd, 7024 Elf_Internal_Shdr *hdr, 7025 const char *name, 7026 int shindex) 7027 { 7028 flagword flags = 0; 7029 7030 /* There ought to be a place to keep ELF backend specific flags, but 7031 at the moment there isn't one. We just keep track of the 7032 sections by their name, instead. Fortunately, the ABI gives 7033 suggested names for all the MIPS specific sections, so we will 7034 probably get away with this. */ 7035 switch (hdr->sh_type) 7036 { 7037 case SHT_MIPS_LIBLIST: 7038 if (strcmp (name, ".liblist") != 0) 7039 return FALSE; 7040 break; 7041 case SHT_MIPS_MSYM: 7042 if (strcmp (name, ".msym") != 0) 7043 return FALSE; 7044 break; 7045 case SHT_MIPS_CONFLICT: 7046 if (strcmp (name, ".conflict") != 0) 7047 return FALSE; 7048 break; 7049 case SHT_MIPS_GPTAB: 7050 if (! CONST_STRNEQ (name, ".gptab.")) 7051 return FALSE; 7052 break; 7053 case SHT_MIPS_UCODE: 7054 if (strcmp (name, ".ucode") != 0) 7055 return FALSE; 7056 break; 7057 case SHT_MIPS_DEBUG: 7058 if (strcmp (name, ".mdebug") != 0) 7059 return FALSE; 7060 flags = SEC_DEBUGGING; 7061 break; 7062 case SHT_MIPS_REGINFO: 7063 if (strcmp (name, ".reginfo") != 0 7064 || hdr->sh_size != sizeof (Elf32_External_RegInfo)) 7065 return FALSE; 7066 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE); 7067 break; 7068 case SHT_MIPS_IFACE: 7069 if (strcmp (name, ".MIPS.interfaces") != 0) 7070 return FALSE; 7071 break; 7072 case SHT_MIPS_CONTENT: 7073 if (! CONST_STRNEQ (name, ".MIPS.content")) 7074 return FALSE; 7075 break; 7076 case SHT_MIPS_OPTIONS: 7077 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name)) 7078 return FALSE; 7079 break; 7080 case SHT_MIPS_ABIFLAGS: 7081 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name)) 7082 return FALSE; 7083 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE); 7084 break; 7085 case SHT_MIPS_DWARF: 7086 if (! CONST_STRNEQ (name, ".debug_") 7087 && ! CONST_STRNEQ (name, ".zdebug_")) 7088 return FALSE; 7089 break; 7090 case SHT_MIPS_SYMBOL_LIB: 7091 if (strcmp (name, ".MIPS.symlib") != 0) 7092 return FALSE; 7093 break; 7094 case SHT_MIPS_EVENTS: 7095 if (! CONST_STRNEQ (name, ".MIPS.events") 7096 && ! CONST_STRNEQ (name, ".MIPS.post_rel")) 7097 return FALSE; 7098 break; 7099 default: 7100 break; 7101 } 7102 7103 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) 7104 return FALSE; 7105 7106 if (flags) 7107 { 7108 if (! bfd_set_section_flags (abfd, hdr->bfd_section, 7109 (bfd_get_section_flags (abfd, 7110 hdr->bfd_section) 7111 | flags))) 7112 return FALSE; 7113 } 7114 7115 if (hdr->sh_type == SHT_MIPS_ABIFLAGS) 7116 { 7117 Elf_External_ABIFlags_v0 ext; 7118 7119 if (! bfd_get_section_contents (abfd, hdr->bfd_section, 7120 &ext, 0, sizeof ext)) 7121 return FALSE; 7122 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext, 7123 &mips_elf_tdata (abfd)->abiflags); 7124 if (mips_elf_tdata (abfd)->abiflags.version != 0) 7125 return FALSE; 7126 mips_elf_tdata (abfd)->abiflags_valid = TRUE; 7127 } 7128 7129 /* FIXME: We should record sh_info for a .gptab section. */ 7130 7131 /* For a .reginfo section, set the gp value in the tdata information 7132 from the contents of this section. We need the gp value while 7133 processing relocs, so we just get it now. The .reginfo section 7134 is not used in the 64-bit MIPS ELF ABI. */ 7135 if (hdr->sh_type == SHT_MIPS_REGINFO) 7136 { 7137 Elf32_External_RegInfo ext; 7138 Elf32_RegInfo s; 7139 7140 if (! bfd_get_section_contents (abfd, hdr->bfd_section, 7141 &ext, 0, sizeof ext)) 7142 return FALSE; 7143 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s); 7144 elf_gp (abfd) = s.ri_gp_value; 7145 } 7146 7147 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and 7148 set the gp value based on what we find. We may see both 7149 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, 7150 they should agree. */ 7151 if (hdr->sh_type == SHT_MIPS_OPTIONS) 7152 { 7153 bfd_byte *contents, *l, *lend; 7154 7155 contents = bfd_malloc (hdr->sh_size); 7156 if (contents == NULL) 7157 return FALSE; 7158 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents, 7159 0, hdr->sh_size)) 7160 { 7161 free (contents); 7162 return FALSE; 7163 } 7164 l = contents; 7165 lend = contents + hdr->sh_size; 7166 while (l + sizeof (Elf_External_Options) <= lend) 7167 { 7168 Elf_Internal_Options intopt; 7169 7170 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, 7171 &intopt); 7172 if (intopt.size < sizeof (Elf_External_Options)) 7173 { 7174 (*_bfd_error_handler) 7175 (_("%B: Warning: bad `%s' option size %u smaller than its header"), 7176 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size); 7177 break; 7178 } 7179 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) 7180 { 7181 Elf64_Internal_RegInfo intreg; 7182 7183 bfd_mips_elf64_swap_reginfo_in 7184 (abfd, 7185 ((Elf64_External_RegInfo *) 7186 (l + sizeof (Elf_External_Options))), 7187 &intreg); 7188 elf_gp (abfd) = intreg.ri_gp_value; 7189 } 7190 else if (intopt.kind == ODK_REGINFO) 7191 { 7192 Elf32_RegInfo intreg; 7193 7194 bfd_mips_elf32_swap_reginfo_in 7195 (abfd, 7196 ((Elf32_External_RegInfo *) 7197 (l + sizeof (Elf_External_Options))), 7198 &intreg); 7199 elf_gp (abfd) = intreg.ri_gp_value; 7200 } 7201 l += intopt.size; 7202 } 7203 free (contents); 7204 } 7205 7206 return TRUE; 7207 } 7208 7209 /* Set the correct type for a MIPS ELF section. We do this by the 7210 section name, which is a hack, but ought to work. This routine is 7211 used by both the 32-bit and the 64-bit ABI. */ 7212 7213 bfd_boolean 7214 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec) 7215 { 7216 const char *name = bfd_get_section_name (abfd, sec); 7217 7218 if (strcmp (name, ".liblist") == 0) 7219 { 7220 hdr->sh_type = SHT_MIPS_LIBLIST; 7221 hdr->sh_info = sec->size / sizeof (Elf32_Lib); 7222 /* The sh_link field is set in final_write_processing. */ 7223 } 7224 else if (strcmp (name, ".conflict") == 0) 7225 hdr->sh_type = SHT_MIPS_CONFLICT; 7226 else if (CONST_STRNEQ (name, ".gptab.")) 7227 { 7228 hdr->sh_type = SHT_MIPS_GPTAB; 7229 hdr->sh_entsize = sizeof (Elf32_External_gptab); 7230 /* The sh_info field is set in final_write_processing. */ 7231 } 7232 else if (strcmp (name, ".ucode") == 0) 7233 hdr->sh_type = SHT_MIPS_UCODE; 7234 else if (strcmp (name, ".mdebug") == 0) 7235 { 7236 hdr->sh_type = SHT_MIPS_DEBUG; 7237 /* In a shared object on IRIX 5.3, the .mdebug section has an 7238 entsize of 0. FIXME: Does this matter? */ 7239 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0) 7240 hdr->sh_entsize = 0; 7241 else 7242 hdr->sh_entsize = 1; 7243 } 7244 else if (strcmp (name, ".reginfo") == 0) 7245 { 7246 hdr->sh_type = SHT_MIPS_REGINFO; 7247 /* In a shared object on IRIX 5.3, the .reginfo section has an 7248 entsize of 0x18. FIXME: Does this matter? */ 7249 if (SGI_COMPAT (abfd)) 7250 { 7251 if ((abfd->flags & DYNAMIC) != 0) 7252 hdr->sh_entsize = sizeof (Elf32_External_RegInfo); 7253 else 7254 hdr->sh_entsize = 1; 7255 } 7256 else 7257 hdr->sh_entsize = sizeof (Elf32_External_RegInfo); 7258 } 7259 else if (SGI_COMPAT (abfd) 7260 && (strcmp (name, ".hash") == 0 7261 || strcmp (name, ".dynamic") == 0 7262 || strcmp (name, ".dynstr") == 0)) 7263 { 7264 if (SGI_COMPAT (abfd)) 7265 hdr->sh_entsize = 0; 7266 #if 0 7267 /* This isn't how the IRIX6 linker behaves. */ 7268 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES; 7269 #endif 7270 } 7271 else if (strcmp (name, ".got") == 0 7272 || strcmp (name, ".srdata") == 0 7273 || strcmp (name, ".sdata") == 0 7274 || strcmp (name, ".sbss") == 0 7275 || strcmp (name, ".lit4") == 0 7276 || strcmp (name, ".lit8") == 0) 7277 hdr->sh_flags |= SHF_MIPS_GPREL; 7278 else if (strcmp (name, ".MIPS.interfaces") == 0) 7279 { 7280 hdr->sh_type = SHT_MIPS_IFACE; 7281 hdr->sh_flags |= SHF_MIPS_NOSTRIP; 7282 } 7283 else if (CONST_STRNEQ (name, ".MIPS.content")) 7284 { 7285 hdr->sh_type = SHT_MIPS_CONTENT; 7286 hdr->sh_flags |= SHF_MIPS_NOSTRIP; 7287 /* The sh_info field is set in final_write_processing. */ 7288 } 7289 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name)) 7290 { 7291 hdr->sh_type = SHT_MIPS_OPTIONS; 7292 hdr->sh_entsize = 1; 7293 hdr->sh_flags |= SHF_MIPS_NOSTRIP; 7294 } 7295 else if (CONST_STRNEQ (name, ".MIPS.abiflags")) 7296 { 7297 hdr->sh_type = SHT_MIPS_ABIFLAGS; 7298 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0); 7299 } 7300 else if (CONST_STRNEQ (name, ".debug_") 7301 || CONST_STRNEQ (name, ".zdebug_")) 7302 { 7303 hdr->sh_type = SHT_MIPS_DWARF; 7304 7305 /* Irix facilities such as libexc expect a single .debug_frame 7306 per executable, the system ones have NOSTRIP set and the linker 7307 doesn't merge sections with different flags so ... */ 7308 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame")) 7309 hdr->sh_flags |= SHF_MIPS_NOSTRIP; 7310 } 7311 else if (strcmp (name, ".MIPS.symlib") == 0) 7312 { 7313 hdr->sh_type = SHT_MIPS_SYMBOL_LIB; 7314 /* The sh_link and sh_info fields are set in 7315 final_write_processing. */ 7316 } 7317 else if (CONST_STRNEQ (name, ".MIPS.events") 7318 || CONST_STRNEQ (name, ".MIPS.post_rel")) 7319 { 7320 hdr->sh_type = SHT_MIPS_EVENTS; 7321 hdr->sh_flags |= SHF_MIPS_NOSTRIP; 7322 /* The sh_link field is set in final_write_processing. */ 7323 } 7324 else if (strcmp (name, ".msym") == 0) 7325 { 7326 hdr->sh_type = SHT_MIPS_MSYM; 7327 hdr->sh_flags |= SHF_ALLOC; 7328 hdr->sh_entsize = 8; 7329 } 7330 7331 /* The generic elf_fake_sections will set up REL_HDR using the default 7332 kind of relocations. We used to set up a second header for the 7333 non-default kind of relocations here, but only NewABI would use 7334 these, and the IRIX ld doesn't like resulting empty RELA sections. 7335 Thus we create those header only on demand now. */ 7336 7337 return TRUE; 7338 } 7339 7340 /* Given a BFD section, try to locate the corresponding ELF section 7341 index. This is used by both the 32-bit and the 64-bit ABI. 7342 Actually, it's not clear to me that the 64-bit ABI supports these, 7343 but for non-PIC objects we will certainly want support for at least 7344 the .scommon section. */ 7345 7346 bfd_boolean 7347 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED, 7348 asection *sec, int *retval) 7349 { 7350 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0) 7351 { 7352 *retval = SHN_MIPS_SCOMMON; 7353 return TRUE; 7354 } 7355 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0) 7356 { 7357 *retval = SHN_MIPS_ACOMMON; 7358 return TRUE; 7359 } 7360 return FALSE; 7361 } 7362 7363 /* Hook called by the linker routine which adds symbols from an object 7364 file. We must handle the special MIPS section numbers here. */ 7365 7366 bfd_boolean 7367 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, 7368 Elf_Internal_Sym *sym, const char **namep, 7369 flagword *flagsp ATTRIBUTE_UNUSED, 7370 asection **secp, bfd_vma *valp) 7371 { 7372 if (SGI_COMPAT (abfd) 7373 && (abfd->flags & DYNAMIC) != 0 7374 && strcmp (*namep, "_rld_new_interface") == 0) 7375 { 7376 /* Skip IRIX5 rld entry name. */ 7377 *namep = NULL; 7378 return TRUE; 7379 } 7380 7381 /* Shared objects may have a dynamic symbol '_gp_disp' defined as 7382 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp 7383 by setting a DT_NEEDED for the shared object. Since _gp_disp is 7384 a magic symbol resolved by the linker, we ignore this bogus definition 7385 of _gp_disp. New ABI objects do not suffer from this problem so this 7386 is not done for them. */ 7387 if (!NEWABI_P(abfd) 7388 && (sym->st_shndx == SHN_ABS) 7389 && (strcmp (*namep, "_gp_disp") == 0)) 7390 { 7391 *namep = NULL; 7392 return TRUE; 7393 } 7394 7395 switch (sym->st_shndx) 7396 { 7397 case SHN_COMMON: 7398 /* Common symbols less than the GP size are automatically 7399 treated as SHN_MIPS_SCOMMON symbols. */ 7400 if (sym->st_size > elf_gp_size (abfd) 7401 || ELF_ST_TYPE (sym->st_info) == STT_TLS 7402 || IRIX_COMPAT (abfd) == ict_irix6) 7403 break; 7404 /* Fall through. */ 7405 case SHN_MIPS_SCOMMON: 7406 *secp = bfd_make_section_old_way (abfd, ".scommon"); 7407 (*secp)->flags |= SEC_IS_COMMON; 7408 *valp = sym->st_size; 7409 break; 7410 7411 case SHN_MIPS_TEXT: 7412 /* This section is used in a shared object. */ 7413 if (mips_elf_tdata (abfd)->elf_text_section == NULL) 7414 { 7415 asymbol *elf_text_symbol; 7416 asection *elf_text_section; 7417 bfd_size_type amt = sizeof (asection); 7418 7419 elf_text_section = bfd_zalloc (abfd, amt); 7420 if (elf_text_section == NULL) 7421 return FALSE; 7422 7423 amt = sizeof (asymbol); 7424 elf_text_symbol = bfd_zalloc (abfd, amt); 7425 if (elf_text_symbol == NULL) 7426 return FALSE; 7427 7428 /* Initialize the section. */ 7429 7430 mips_elf_tdata (abfd)->elf_text_section = elf_text_section; 7431 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol; 7432 7433 elf_text_section->symbol = elf_text_symbol; 7434 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol; 7435 7436 elf_text_section->name = ".text"; 7437 elf_text_section->flags = SEC_NO_FLAGS; 7438 elf_text_section->output_section = NULL; 7439 elf_text_section->owner = abfd; 7440 elf_text_symbol->name = ".text"; 7441 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; 7442 elf_text_symbol->section = elf_text_section; 7443 } 7444 /* This code used to do *secp = bfd_und_section_ptr if 7445 bfd_link_pic (info). I don't know why, and that doesn't make sense, 7446 so I took it out. */ 7447 *secp = mips_elf_tdata (abfd)->elf_text_section; 7448 break; 7449 7450 case SHN_MIPS_ACOMMON: 7451 /* Fall through. XXX Can we treat this as allocated data? */ 7452 case SHN_MIPS_DATA: 7453 /* This section is used in a shared object. */ 7454 if (mips_elf_tdata (abfd)->elf_data_section == NULL) 7455 { 7456 asymbol *elf_data_symbol; 7457 asection *elf_data_section; 7458 bfd_size_type amt = sizeof (asection); 7459 7460 elf_data_section = bfd_zalloc (abfd, amt); 7461 if (elf_data_section == NULL) 7462 return FALSE; 7463 7464 amt = sizeof (asymbol); 7465 elf_data_symbol = bfd_zalloc (abfd, amt); 7466 if (elf_data_symbol == NULL) 7467 return FALSE; 7468 7469 /* Initialize the section. */ 7470 7471 mips_elf_tdata (abfd)->elf_data_section = elf_data_section; 7472 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol; 7473 7474 elf_data_section->symbol = elf_data_symbol; 7475 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol; 7476 7477 elf_data_section->name = ".data"; 7478 elf_data_section->flags = SEC_NO_FLAGS; 7479 elf_data_section->output_section = NULL; 7480 elf_data_section->owner = abfd; 7481 elf_data_symbol->name = ".data"; 7482 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; 7483 elf_data_symbol->section = elf_data_section; 7484 } 7485 /* This code used to do *secp = bfd_und_section_ptr if 7486 bfd_link_pic (info). I don't know why, and that doesn't make sense, 7487 so I took it out. */ 7488 *secp = mips_elf_tdata (abfd)->elf_data_section; 7489 break; 7490 7491 case SHN_MIPS_SUNDEFINED: 7492 *secp = bfd_und_section_ptr; 7493 break; 7494 } 7495 7496 if (SGI_COMPAT (abfd) 7497 && ! bfd_link_pic (info) 7498 && info->output_bfd->xvec == abfd->xvec 7499 && strcmp (*namep, "__rld_obj_head") == 0) 7500 { 7501 struct elf_link_hash_entry *h; 7502 struct bfd_link_hash_entry *bh; 7503 7504 /* Mark __rld_obj_head as dynamic. */ 7505 bh = NULL; 7506 if (! (_bfd_generic_link_add_one_symbol 7507 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE, 7508 get_elf_backend_data (abfd)->collect, &bh))) 7509 return FALSE; 7510 7511 h = (struct elf_link_hash_entry *) bh; 7512 h->non_elf = 0; 7513 h->def_regular = 1; 7514 h->type = STT_OBJECT; 7515 7516 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 7517 return FALSE; 7518 7519 mips_elf_hash_table (info)->use_rld_obj_head = TRUE; 7520 mips_elf_hash_table (info)->rld_symbol = h; 7521 } 7522 7523 /* If this is a mips16 text symbol, add 1 to the value to make it 7524 odd. This will cause something like .word SYM to come up with 7525 the right value when it is loaded into the PC. */ 7526 if (ELF_ST_IS_COMPRESSED (sym->st_other)) 7527 ++*valp; 7528 7529 return TRUE; 7530 } 7531 7532 /* This hook function is called before the linker writes out a global 7533 symbol. We mark symbols as small common if appropriate. This is 7534 also where we undo the increment of the value for a mips16 symbol. */ 7535 7536 int 7537 _bfd_mips_elf_link_output_symbol_hook 7538 (struct bfd_link_info *info ATTRIBUTE_UNUSED, 7539 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym, 7540 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED) 7541 { 7542 /* If we see a common symbol, which implies a relocatable link, then 7543 if a symbol was small common in an input file, mark it as small 7544 common in the output file. */ 7545 if (sym->st_shndx == SHN_COMMON 7546 && strcmp (input_sec->name, ".scommon") == 0) 7547 sym->st_shndx = SHN_MIPS_SCOMMON; 7548 7549 if (ELF_ST_IS_COMPRESSED (sym->st_other)) 7550 sym->st_value &= ~1; 7551 7552 return 1; 7553 } 7554 7555 /* Functions for the dynamic linker. */ 7556 7557 /* Create dynamic sections when linking against a dynamic object. */ 7558 7559 bfd_boolean 7560 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) 7561 { 7562 struct elf_link_hash_entry *h; 7563 struct bfd_link_hash_entry *bh; 7564 flagword flags; 7565 register asection *s; 7566 const char * const *namep; 7567 struct mips_elf_link_hash_table *htab; 7568 7569 htab = mips_elf_hash_table (info); 7570 BFD_ASSERT (htab != NULL); 7571 7572 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY 7573 | SEC_LINKER_CREATED | SEC_READONLY); 7574 7575 /* The psABI requires a read-only .dynamic section, but the VxWorks 7576 EABI doesn't. */ 7577 if (!htab->is_vxworks) 7578 { 7579 s = bfd_get_linker_section (abfd, ".dynamic"); 7580 if (s != NULL) 7581 { 7582 if (! bfd_set_section_flags (abfd, s, flags)) 7583 return FALSE; 7584 } 7585 } 7586 7587 /* We need to create .got section. */ 7588 if (!mips_elf_create_got_section (abfd, info)) 7589 return FALSE; 7590 7591 if (! mips_elf_rel_dyn_section (info, TRUE)) 7592 return FALSE; 7593 7594 /* Create .stub section. */ 7595 s = bfd_make_section_anyway_with_flags (abfd, 7596 MIPS_ELF_STUB_SECTION_NAME (abfd), 7597 flags | SEC_CODE); 7598 if (s == NULL 7599 || ! bfd_set_section_alignment (abfd, s, 7600 MIPS_ELF_LOG_FILE_ALIGN (abfd))) 7601 return FALSE; 7602 htab->sstubs = s; 7603 7604 if (!mips_elf_hash_table (info)->use_rld_obj_head 7605 && bfd_link_executable (info) 7606 && bfd_get_linker_section (abfd, ".rld_map") == NULL) 7607 { 7608 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map", 7609 flags &~ (flagword) SEC_READONLY); 7610 if (s == NULL 7611 || ! bfd_set_section_alignment (abfd, s, 7612 MIPS_ELF_LOG_FILE_ALIGN (abfd))) 7613 return FALSE; 7614 } 7615 7616 /* On IRIX5, we adjust add some additional symbols and change the 7617 alignments of several sections. There is no ABI documentation 7618 indicating that this is necessary on IRIX6, nor any evidence that 7619 the linker takes such action. */ 7620 if (IRIX_COMPAT (abfd) == ict_irix5) 7621 { 7622 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++) 7623 { 7624 bh = NULL; 7625 if (! (_bfd_generic_link_add_one_symbol 7626 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0, 7627 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) 7628 return FALSE; 7629 7630 h = (struct elf_link_hash_entry *) bh; 7631 h->non_elf = 0; 7632 h->def_regular = 1; 7633 h->type = STT_SECTION; 7634 7635 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 7636 return FALSE; 7637 } 7638 7639 /* We need to create a .compact_rel section. */ 7640 if (SGI_COMPAT (abfd)) 7641 { 7642 if (!mips_elf_create_compact_rel_section (abfd, info)) 7643 return FALSE; 7644 } 7645 7646 /* Change alignments of some sections. */ 7647 s = bfd_get_linker_section (abfd, ".hash"); 7648 if (s != NULL) 7649 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); 7650 7651 s = bfd_get_linker_section (abfd, ".dynsym"); 7652 if (s != NULL) 7653 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); 7654 7655 s = bfd_get_linker_section (abfd, ".dynstr"); 7656 if (s != NULL) 7657 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); 7658 7659 /* ??? */ 7660 s = bfd_get_section_by_name (abfd, ".reginfo"); 7661 if (s != NULL) 7662 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); 7663 7664 s = bfd_get_linker_section (abfd, ".dynamic"); 7665 if (s != NULL) 7666 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); 7667 } 7668 7669 if (bfd_link_executable (info)) 7670 { 7671 const char *name; 7672 7673 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING"; 7674 bh = NULL; 7675 if (!(_bfd_generic_link_add_one_symbol 7676 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0, 7677 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) 7678 return FALSE; 7679 7680 h = (struct elf_link_hash_entry *) bh; 7681 h->non_elf = 0; 7682 h->def_regular = 1; 7683 h->type = STT_SECTION; 7684 7685 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 7686 return FALSE; 7687 7688 if (! mips_elf_hash_table (info)->use_rld_obj_head) 7689 { 7690 /* __rld_map is a four byte word located in the .data section 7691 and is filled in by the rtld to contain a pointer to 7692 the _r_debug structure. Its symbol value will be set in 7693 _bfd_mips_elf_finish_dynamic_symbol. */ 7694 s = bfd_get_linker_section (abfd, ".rld_map"); 7695 BFD_ASSERT (s != NULL); 7696 7697 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP"; 7698 bh = NULL; 7699 if (!(_bfd_generic_link_add_one_symbol 7700 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE, 7701 get_elf_backend_data (abfd)->collect, &bh))) 7702 return FALSE; 7703 7704 h = (struct elf_link_hash_entry *) bh; 7705 h->non_elf = 0; 7706 h->def_regular = 1; 7707 h->type = STT_OBJECT; 7708 7709 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 7710 return FALSE; 7711 mips_elf_hash_table (info)->rld_symbol = h; 7712 } 7713 } 7714 7715 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections. 7716 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */ 7717 if (!_bfd_elf_create_dynamic_sections (abfd, info)) 7718 return FALSE; 7719 7720 /* Cache the sections created above. */ 7721 htab->splt = bfd_get_linker_section (abfd, ".plt"); 7722 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss"); 7723 if (htab->is_vxworks) 7724 { 7725 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss"); 7726 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt"); 7727 } 7728 else 7729 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt"); 7730 if (!htab->sdynbss 7731 || (htab->is_vxworks && !htab->srelbss && !bfd_link_pic (info)) 7732 || !htab->srelplt 7733 || !htab->splt) 7734 abort (); 7735 7736 /* Do the usual VxWorks handling. */ 7737 if (htab->is_vxworks 7738 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2)) 7739 return FALSE; 7740 7741 return TRUE; 7742 } 7743 7744 /* Return true if relocation REL against section SEC is a REL rather than 7745 RELA relocation. RELOCS is the first relocation in the section and 7746 ABFD is the bfd that contains SEC. */ 7747 7748 static bfd_boolean 7749 mips_elf_rel_relocation_p (bfd *abfd, asection *sec, 7750 const Elf_Internal_Rela *relocs, 7751 const Elf_Internal_Rela *rel) 7752 { 7753 Elf_Internal_Shdr *rel_hdr; 7754 const struct elf_backend_data *bed; 7755 7756 /* To determine which flavor of relocation this is, we depend on the 7757 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */ 7758 rel_hdr = elf_section_data (sec)->rel.hdr; 7759 if (rel_hdr == NULL) 7760 return FALSE; 7761 bed = get_elf_backend_data (abfd); 7762 return ((size_t) (rel - relocs) 7763 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel); 7764 } 7765 7766 /* Read the addend for REL relocation REL, which belongs to bfd ABFD. 7767 HOWTO is the relocation's howto and CONTENTS points to the contents 7768 of the section that REL is against. */ 7769 7770 static bfd_vma 7771 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel, 7772 reloc_howto_type *howto, bfd_byte *contents) 7773 { 7774 bfd_byte *location; 7775 unsigned int r_type; 7776 bfd_vma addend; 7777 7778 r_type = ELF_R_TYPE (abfd, rel->r_info); 7779 location = contents + rel->r_offset; 7780 7781 /* Get the addend, which is stored in the input file. */ 7782 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location); 7783 addend = mips_elf_obtain_contents (howto, rel, abfd, contents); 7784 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location); 7785 7786 return addend & howto->src_mask; 7787 } 7788 7789 /* REL is a relocation in ABFD that needs a partnering LO16 relocation 7790 and *ADDEND is the addend for REL itself. Look for the LO16 relocation 7791 and update *ADDEND with the final addend. Return true on success 7792 or false if the LO16 could not be found. RELEND is the exclusive 7793 upper bound on the relocations for REL's section. */ 7794 7795 static bfd_boolean 7796 mips_elf_add_lo16_rel_addend (bfd *abfd, 7797 const Elf_Internal_Rela *rel, 7798 const Elf_Internal_Rela *relend, 7799 bfd_byte *contents, bfd_vma *addend) 7800 { 7801 unsigned int r_type, lo16_type; 7802 const Elf_Internal_Rela *lo16_relocation; 7803 reloc_howto_type *lo16_howto; 7804 bfd_vma l; 7805 7806 r_type = ELF_R_TYPE (abfd, rel->r_info); 7807 if (mips16_reloc_p (r_type)) 7808 lo16_type = R_MIPS16_LO16; 7809 else if (micromips_reloc_p (r_type)) 7810 lo16_type = R_MICROMIPS_LO16; 7811 else if (r_type == R_MIPS_PCHI16) 7812 lo16_type = R_MIPS_PCLO16; 7813 else 7814 lo16_type = R_MIPS_LO16; 7815 7816 /* The combined value is the sum of the HI16 addend, left-shifted by 7817 sixteen bits, and the LO16 addend, sign extended. (Usually, the 7818 code does a `lui' of the HI16 value, and then an `addiu' of the 7819 LO16 value.) 7820 7821 Scan ahead to find a matching LO16 relocation. 7822 7823 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must 7824 be immediately following. However, for the IRIX6 ABI, the next 7825 relocation may be a composed relocation consisting of several 7826 relocations for the same address. In that case, the R_MIPS_LO16 7827 relocation may occur as one of these. We permit a similar 7828 extension in general, as that is useful for GCC. 7829 7830 In some cases GCC dead code elimination removes the LO16 but keeps 7831 the corresponding HI16. This is strictly speaking a violation of 7832 the ABI but not immediately harmful. */ 7833 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend); 7834 if (lo16_relocation == NULL) 7835 return FALSE; 7836 7837 /* Obtain the addend kept there. */ 7838 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE); 7839 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents); 7840 7841 l <<= lo16_howto->rightshift; 7842 l = _bfd_mips_elf_sign_extend (l, 16); 7843 7844 *addend <<= 16; 7845 *addend += l; 7846 return TRUE; 7847 } 7848 7849 /* Try to read the contents of section SEC in bfd ABFD. Return true and 7850 store the contents in *CONTENTS on success. Assume that *CONTENTS 7851 already holds the contents if it is nonull on entry. */ 7852 7853 static bfd_boolean 7854 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents) 7855 { 7856 if (*contents) 7857 return TRUE; 7858 7859 /* Get cached copy if it exists. */ 7860 if (elf_section_data (sec)->this_hdr.contents != NULL) 7861 { 7862 *contents = elf_section_data (sec)->this_hdr.contents; 7863 return TRUE; 7864 } 7865 7866 return bfd_malloc_and_get_section (abfd, sec, contents); 7867 } 7868 7869 /* Make a new PLT record to keep internal data. */ 7870 7871 static struct plt_entry * 7872 mips_elf_make_plt_record (bfd *abfd) 7873 { 7874 struct plt_entry *entry; 7875 7876 entry = bfd_zalloc (abfd, sizeof (*entry)); 7877 if (entry == NULL) 7878 return NULL; 7879 7880 entry->stub_offset = MINUS_ONE; 7881 entry->mips_offset = MINUS_ONE; 7882 entry->comp_offset = MINUS_ONE; 7883 entry->gotplt_index = MINUS_ONE; 7884 return entry; 7885 } 7886 7887 /* Look through the relocs for a section during the first phase, and 7888 allocate space in the global offset table and record the need for 7889 standard MIPS and compressed procedure linkage table entries. */ 7890 7891 bfd_boolean 7892 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info, 7893 asection *sec, const Elf_Internal_Rela *relocs) 7894 { 7895 const char *name; 7896 bfd *dynobj; 7897 Elf_Internal_Shdr *symtab_hdr; 7898 struct elf_link_hash_entry **sym_hashes; 7899 size_t extsymoff; 7900 const Elf_Internal_Rela *rel; 7901 const Elf_Internal_Rela *rel_end; 7902 asection *sreloc; 7903 const struct elf_backend_data *bed; 7904 struct mips_elf_link_hash_table *htab; 7905 bfd_byte *contents; 7906 bfd_vma addend; 7907 reloc_howto_type *howto; 7908 7909 if (bfd_link_relocatable (info)) 7910 return TRUE; 7911 7912 htab = mips_elf_hash_table (info); 7913 BFD_ASSERT (htab != NULL); 7914 7915 dynobj = elf_hash_table (info)->dynobj; 7916 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 7917 sym_hashes = elf_sym_hashes (abfd); 7918 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; 7919 7920 bed = get_elf_backend_data (abfd); 7921 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel; 7922 7923 /* Check for the mips16 stub sections. */ 7924 7925 name = bfd_get_section_name (abfd, sec); 7926 if (FN_STUB_P (name)) 7927 { 7928 unsigned long r_symndx; 7929 7930 /* Look at the relocation information to figure out which symbol 7931 this is for. */ 7932 7933 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end); 7934 if (r_symndx == 0) 7935 { 7936 (*_bfd_error_handler) 7937 (_("%B: Warning: cannot determine the target function for" 7938 " stub section `%s'"), 7939 abfd, name); 7940 bfd_set_error (bfd_error_bad_value); 7941 return FALSE; 7942 } 7943 7944 if (r_symndx < extsymoff 7945 || sym_hashes[r_symndx - extsymoff] == NULL) 7946 { 7947 asection *o; 7948 7949 /* This stub is for a local symbol. This stub will only be 7950 needed if there is some relocation in this BFD, other 7951 than a 16 bit function call, which refers to this symbol. */ 7952 for (o = abfd->sections; o != NULL; o = o->next) 7953 { 7954 Elf_Internal_Rela *sec_relocs; 7955 const Elf_Internal_Rela *r, *rend; 7956 7957 /* We can ignore stub sections when looking for relocs. */ 7958 if ((o->flags & SEC_RELOC) == 0 7959 || o->reloc_count == 0 7960 || section_allows_mips16_refs_p (o)) 7961 continue; 7962 7963 sec_relocs 7964 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, 7965 info->keep_memory); 7966 if (sec_relocs == NULL) 7967 return FALSE; 7968 7969 rend = sec_relocs + o->reloc_count; 7970 for (r = sec_relocs; r < rend; r++) 7971 if (ELF_R_SYM (abfd, r->r_info) == r_symndx 7972 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info))) 7973 break; 7974 7975 if (elf_section_data (o)->relocs != sec_relocs) 7976 free (sec_relocs); 7977 7978 if (r < rend) 7979 break; 7980 } 7981 7982 if (o == NULL) 7983 { 7984 /* There is no non-call reloc for this stub, so we do 7985 not need it. Since this function is called before 7986 the linker maps input sections to output sections, we 7987 can easily discard it by setting the SEC_EXCLUDE 7988 flag. */ 7989 sec->flags |= SEC_EXCLUDE; 7990 return TRUE; 7991 } 7992 7993 /* Record this stub in an array of local symbol stubs for 7994 this BFD. */ 7995 if (mips_elf_tdata (abfd)->local_stubs == NULL) 7996 { 7997 unsigned long symcount; 7998 asection **n; 7999 bfd_size_type amt; 8000 8001 if (elf_bad_symtab (abfd)) 8002 symcount = NUM_SHDR_ENTRIES (symtab_hdr); 8003 else 8004 symcount = symtab_hdr->sh_info; 8005 amt = symcount * sizeof (asection *); 8006 n = bfd_zalloc (abfd, amt); 8007 if (n == NULL) 8008 return FALSE; 8009 mips_elf_tdata (abfd)->local_stubs = n; 8010 } 8011 8012 sec->flags |= SEC_KEEP; 8013 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec; 8014 8015 /* We don't need to set mips16_stubs_seen in this case. 8016 That flag is used to see whether we need to look through 8017 the global symbol table for stubs. We don't need to set 8018 it here, because we just have a local stub. */ 8019 } 8020 else 8021 { 8022 struct mips_elf_link_hash_entry *h; 8023 8024 h = ((struct mips_elf_link_hash_entry *) 8025 sym_hashes[r_symndx - extsymoff]); 8026 8027 while (h->root.root.type == bfd_link_hash_indirect 8028 || h->root.root.type == bfd_link_hash_warning) 8029 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; 8030 8031 /* H is the symbol this stub is for. */ 8032 8033 /* If we already have an appropriate stub for this function, we 8034 don't need another one, so we can discard this one. Since 8035 this function is called before the linker maps input sections 8036 to output sections, we can easily discard it by setting the 8037 SEC_EXCLUDE flag. */ 8038 if (h->fn_stub != NULL) 8039 { 8040 sec->flags |= SEC_EXCLUDE; 8041 return TRUE; 8042 } 8043 8044 sec->flags |= SEC_KEEP; 8045 h->fn_stub = sec; 8046 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE; 8047 } 8048 } 8049 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name)) 8050 { 8051 unsigned long r_symndx; 8052 struct mips_elf_link_hash_entry *h; 8053 asection **loc; 8054 8055 /* Look at the relocation information to figure out which symbol 8056 this is for. */ 8057 8058 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end); 8059 if (r_symndx == 0) 8060 { 8061 (*_bfd_error_handler) 8062 (_("%B: Warning: cannot determine the target function for" 8063 " stub section `%s'"), 8064 abfd, name); 8065 bfd_set_error (bfd_error_bad_value); 8066 return FALSE; 8067 } 8068 8069 if (r_symndx < extsymoff 8070 || sym_hashes[r_symndx - extsymoff] == NULL) 8071 { 8072 asection *o; 8073 8074 /* This stub is for a local symbol. This stub will only be 8075 needed if there is some relocation (R_MIPS16_26) in this BFD 8076 that refers to this symbol. */ 8077 for (o = abfd->sections; o != NULL; o = o->next) 8078 { 8079 Elf_Internal_Rela *sec_relocs; 8080 const Elf_Internal_Rela *r, *rend; 8081 8082 /* We can ignore stub sections when looking for relocs. */ 8083 if ((o->flags & SEC_RELOC) == 0 8084 || o->reloc_count == 0 8085 || section_allows_mips16_refs_p (o)) 8086 continue; 8087 8088 sec_relocs 8089 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, 8090 info->keep_memory); 8091 if (sec_relocs == NULL) 8092 return FALSE; 8093 8094 rend = sec_relocs + o->reloc_count; 8095 for (r = sec_relocs; r < rend; r++) 8096 if (ELF_R_SYM (abfd, r->r_info) == r_symndx 8097 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26) 8098 break; 8099 8100 if (elf_section_data (o)->relocs != sec_relocs) 8101 free (sec_relocs); 8102 8103 if (r < rend) 8104 break; 8105 } 8106 8107 if (o == NULL) 8108 { 8109 /* There is no non-call reloc for this stub, so we do 8110 not need it. Since this function is called before 8111 the linker maps input sections to output sections, we 8112 can easily discard it by setting the SEC_EXCLUDE 8113 flag. */ 8114 sec->flags |= SEC_EXCLUDE; 8115 return TRUE; 8116 } 8117 8118 /* Record this stub in an array of local symbol call_stubs for 8119 this BFD. */ 8120 if (mips_elf_tdata (abfd)->local_call_stubs == NULL) 8121 { 8122 unsigned long symcount; 8123 asection **n; 8124 bfd_size_type amt; 8125 8126 if (elf_bad_symtab (abfd)) 8127 symcount = NUM_SHDR_ENTRIES (symtab_hdr); 8128 else 8129 symcount = symtab_hdr->sh_info; 8130 amt = symcount * sizeof (asection *); 8131 n = bfd_zalloc (abfd, amt); 8132 if (n == NULL) 8133 return FALSE; 8134 mips_elf_tdata (abfd)->local_call_stubs = n; 8135 } 8136 8137 sec->flags |= SEC_KEEP; 8138 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec; 8139 8140 /* We don't need to set mips16_stubs_seen in this case. 8141 That flag is used to see whether we need to look through 8142 the global symbol table for stubs. We don't need to set 8143 it here, because we just have a local stub. */ 8144 } 8145 else 8146 { 8147 h = ((struct mips_elf_link_hash_entry *) 8148 sym_hashes[r_symndx - extsymoff]); 8149 8150 /* H is the symbol this stub is for. */ 8151 8152 if (CALL_FP_STUB_P (name)) 8153 loc = &h->call_fp_stub; 8154 else 8155 loc = &h->call_stub; 8156 8157 /* If we already have an appropriate stub for this function, we 8158 don't need another one, so we can discard this one. Since 8159 this function is called before the linker maps input sections 8160 to output sections, we can easily discard it by setting the 8161 SEC_EXCLUDE flag. */ 8162 if (*loc != NULL) 8163 { 8164 sec->flags |= SEC_EXCLUDE; 8165 return TRUE; 8166 } 8167 8168 sec->flags |= SEC_KEEP; 8169 *loc = sec; 8170 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE; 8171 } 8172 } 8173 8174 sreloc = NULL; 8175 contents = NULL; 8176 for (rel = relocs; rel < rel_end; ++rel) 8177 { 8178 unsigned long r_symndx; 8179 unsigned int r_type; 8180 struct elf_link_hash_entry *h; 8181 bfd_boolean can_make_dynamic_p; 8182 bfd_boolean call_reloc_p; 8183 bfd_boolean constrain_symbol_p; 8184 8185 r_symndx = ELF_R_SYM (abfd, rel->r_info); 8186 r_type = ELF_R_TYPE (abfd, rel->r_info); 8187 8188 if (r_symndx < extsymoff) 8189 h = NULL; 8190 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr)) 8191 { 8192 (*_bfd_error_handler) 8193 (_("%B: Malformed reloc detected for section %s"), 8194 abfd, name); 8195 bfd_set_error (bfd_error_bad_value); 8196 return FALSE; 8197 } 8198 else 8199 { 8200 h = sym_hashes[r_symndx - extsymoff]; 8201 if (h != NULL) 8202 { 8203 while (h->root.type == bfd_link_hash_indirect 8204 || h->root.type == bfd_link_hash_warning) 8205 h = (struct elf_link_hash_entry *) h->root.u.i.link; 8206 8207 /* PR15323, ref flags aren't set for references in the 8208 same object. */ 8209 h->root.non_ir_ref = 1; 8210 } 8211 } 8212 8213 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this 8214 relocation into a dynamic one. */ 8215 can_make_dynamic_p = FALSE; 8216 8217 /* Set CALL_RELOC_P to true if the relocation is for a call, 8218 and if pointer equality therefore doesn't matter. */ 8219 call_reloc_p = FALSE; 8220 8221 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation 8222 into account when deciding how to define the symbol. 8223 Relocations in nonallocatable sections such as .pdr and 8224 .debug* should have no effect. */ 8225 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0); 8226 8227 switch (r_type) 8228 { 8229 case R_MIPS_CALL16: 8230 case R_MIPS_CALL_HI16: 8231 case R_MIPS_CALL_LO16: 8232 case R_MIPS16_CALL16: 8233 case R_MICROMIPS_CALL16: 8234 case R_MICROMIPS_CALL_HI16: 8235 case R_MICROMIPS_CALL_LO16: 8236 call_reloc_p = TRUE; 8237 /* Fall through. */ 8238 8239 case R_MIPS_GOT16: 8240 case R_MIPS_GOT_HI16: 8241 case R_MIPS_GOT_LO16: 8242 case R_MIPS_GOT_PAGE: 8243 case R_MIPS_GOT_OFST: 8244 case R_MIPS_GOT_DISP: 8245 case R_MIPS_TLS_GOTTPREL: 8246 case R_MIPS_TLS_GD: 8247 case R_MIPS_TLS_LDM: 8248 case R_MIPS16_GOT16: 8249 case R_MIPS16_TLS_GOTTPREL: 8250 case R_MIPS16_TLS_GD: 8251 case R_MIPS16_TLS_LDM: 8252 case R_MICROMIPS_GOT16: 8253 case R_MICROMIPS_GOT_HI16: 8254 case R_MICROMIPS_GOT_LO16: 8255 case R_MICROMIPS_GOT_PAGE: 8256 case R_MICROMIPS_GOT_OFST: 8257 case R_MICROMIPS_GOT_DISP: 8258 case R_MICROMIPS_TLS_GOTTPREL: 8259 case R_MICROMIPS_TLS_GD: 8260 case R_MICROMIPS_TLS_LDM: 8261 if (dynobj == NULL) 8262 elf_hash_table (info)->dynobj = dynobj = abfd; 8263 if (!mips_elf_create_got_section (dynobj, info)) 8264 return FALSE; 8265 if (htab->is_vxworks && !bfd_link_pic (info)) 8266 { 8267 (*_bfd_error_handler) 8268 (_("%B: GOT reloc at 0x%lx not expected in executables"), 8269 abfd, (unsigned long) rel->r_offset); 8270 bfd_set_error (bfd_error_bad_value); 8271 return FALSE; 8272 } 8273 can_make_dynamic_p = TRUE; 8274 break; 8275 8276 case R_MIPS_NONE: 8277 case R_MIPS_JALR: 8278 case R_MICROMIPS_JALR: 8279 /* These relocations have empty fields and are purely there to 8280 provide link information. The symbol value doesn't matter. */ 8281 constrain_symbol_p = FALSE; 8282 break; 8283 8284 case R_MIPS_GPREL16: 8285 case R_MIPS_GPREL32: 8286 case R_MIPS16_GPREL: 8287 case R_MICROMIPS_GPREL16: 8288 /* GP-relative relocations always resolve to a definition in a 8289 regular input file, ignoring the one-definition rule. This is 8290 important for the GP setup sequence in NewABI code, which 8291 always resolves to a local function even if other relocations 8292 against the symbol wouldn't. */ 8293 constrain_symbol_p = FALSE; 8294 break; 8295 8296 case R_MIPS_32: 8297 case R_MIPS_REL32: 8298 case R_MIPS_64: 8299 /* In VxWorks executables, references to external symbols 8300 must be handled using copy relocs or PLT entries; it is not 8301 possible to convert this relocation into a dynamic one. 8302 8303 For executables that use PLTs and copy-relocs, we have a 8304 choice between converting the relocation into a dynamic 8305 one or using copy relocations or PLT entries. It is 8306 usually better to do the former, unless the relocation is 8307 against a read-only section. */ 8308 if ((bfd_link_pic (info) 8309 || (h != NULL 8310 && !htab->is_vxworks 8311 && strcmp (h->root.root.string, "__gnu_local_gp") != 0 8312 && !(!info->nocopyreloc 8313 && !PIC_OBJECT_P (abfd) 8314 && MIPS_ELF_READONLY_SECTION (sec)))) 8315 && (sec->flags & SEC_ALLOC) != 0) 8316 { 8317 can_make_dynamic_p = TRUE; 8318 if (dynobj == NULL) 8319 elf_hash_table (info)->dynobj = dynobj = abfd; 8320 } 8321 break; 8322 8323 case R_MIPS_26: 8324 case R_MIPS_PC16: 8325 case R_MIPS_PC21_S2: 8326 case R_MIPS_PC26_S2: 8327 case R_MIPS16_26: 8328 case R_MICROMIPS_26_S1: 8329 case R_MICROMIPS_PC7_S1: 8330 case R_MICROMIPS_PC10_S1: 8331 case R_MICROMIPS_PC16_S1: 8332 case R_MICROMIPS_PC23_S2: 8333 call_reloc_p = TRUE; 8334 break; 8335 } 8336 8337 if (h) 8338 { 8339 if (constrain_symbol_p) 8340 { 8341 if (!can_make_dynamic_p) 8342 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1; 8343 8344 if (!call_reloc_p) 8345 h->pointer_equality_needed = 1; 8346 8347 /* We must not create a stub for a symbol that has 8348 relocations related to taking the function's address. 8349 This doesn't apply to VxWorks, where CALL relocs refer 8350 to a .got.plt entry instead of a normal .got entry. */ 8351 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p)) 8352 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE; 8353 } 8354 8355 /* Relocations against the special VxWorks __GOTT_BASE__ and 8356 __GOTT_INDEX__ symbols must be left to the loader. Allocate 8357 room for them in .rela.dyn. */ 8358 if (is_gott_symbol (info, h)) 8359 { 8360 if (sreloc == NULL) 8361 { 8362 sreloc = mips_elf_rel_dyn_section (info, TRUE); 8363 if (sreloc == NULL) 8364 return FALSE; 8365 } 8366 mips_elf_allocate_dynamic_relocations (dynobj, info, 1); 8367 if (MIPS_ELF_READONLY_SECTION (sec)) 8368 /* We tell the dynamic linker that there are 8369 relocations against the text segment. */ 8370 info->flags |= DF_TEXTREL; 8371 } 8372 } 8373 else if (call_lo16_reloc_p (r_type) 8374 || got_lo16_reloc_p (r_type) 8375 || got_disp_reloc_p (r_type) 8376 || (got16_reloc_p (r_type) && htab->is_vxworks)) 8377 { 8378 /* We may need a local GOT entry for this relocation. We 8379 don't count R_MIPS_GOT_PAGE because we can estimate the 8380 maximum number of pages needed by looking at the size of 8381 the segment. Similar comments apply to R_MIPS*_GOT16 and 8382 R_MIPS*_CALL16, except on VxWorks, where GOT relocations 8383 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or 8384 R_MIPS_CALL_HI16 because these are always followed by an 8385 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */ 8386 if (!mips_elf_record_local_got_symbol (abfd, r_symndx, 8387 rel->r_addend, info, r_type)) 8388 return FALSE; 8389 } 8390 8391 if (h != NULL 8392 && mips_elf_relocation_needs_la25_stub (abfd, r_type, 8393 ELF_ST_IS_MIPS16 (h->other))) 8394 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE; 8395 8396 switch (r_type) 8397 { 8398 case R_MIPS_CALL16: 8399 case R_MIPS16_CALL16: 8400 case R_MICROMIPS_CALL16: 8401 if (h == NULL) 8402 { 8403 (*_bfd_error_handler) 8404 (_("%B: CALL16 reloc at 0x%lx not against global symbol"), 8405 abfd, (unsigned long) rel->r_offset); 8406 bfd_set_error (bfd_error_bad_value); 8407 return FALSE; 8408 } 8409 /* Fall through. */ 8410 8411 case R_MIPS_CALL_HI16: 8412 case R_MIPS_CALL_LO16: 8413 case R_MICROMIPS_CALL_HI16: 8414 case R_MICROMIPS_CALL_LO16: 8415 if (h != NULL) 8416 { 8417 /* Make sure there is room in the regular GOT to hold the 8418 function's address. We may eliminate it in favour of 8419 a .got.plt entry later; see mips_elf_count_got_symbols. */ 8420 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, 8421 r_type)) 8422 return FALSE; 8423 8424 /* We need a stub, not a plt entry for the undefined 8425 function. But we record it as if it needs plt. See 8426 _bfd_elf_adjust_dynamic_symbol. */ 8427 h->needs_plt = 1; 8428 h->type = STT_FUNC; 8429 } 8430 break; 8431 8432 case R_MIPS_GOT_PAGE: 8433 case R_MICROMIPS_GOT_PAGE: 8434 case R_MIPS16_GOT16: 8435 case R_MIPS_GOT16: 8436 case R_MIPS_GOT_HI16: 8437 case R_MIPS_GOT_LO16: 8438 case R_MICROMIPS_GOT16: 8439 case R_MICROMIPS_GOT_HI16: 8440 case R_MICROMIPS_GOT_LO16: 8441 if (!h || got_page_reloc_p (r_type)) 8442 { 8443 /* This relocation needs (or may need, if h != NULL) a 8444 page entry in the GOT. For R_MIPS_GOT_PAGE we do not 8445 know for sure until we know whether the symbol is 8446 preemptible. */ 8447 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel)) 8448 { 8449 if (!mips_elf_get_section_contents (abfd, sec, &contents)) 8450 return FALSE; 8451 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE); 8452 addend = mips_elf_read_rel_addend (abfd, rel, 8453 howto, contents); 8454 if (got16_reloc_p (r_type)) 8455 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end, 8456 contents, &addend); 8457 else 8458 addend <<= howto->rightshift; 8459 } 8460 else 8461 addend = rel->r_addend; 8462 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx, 8463 h, addend)) 8464 return FALSE; 8465 8466 if (h) 8467 { 8468 struct mips_elf_link_hash_entry *hmips = 8469 (struct mips_elf_link_hash_entry *) h; 8470 8471 /* This symbol is definitely not overridable. */ 8472 if (hmips->root.def_regular 8473 && ! (bfd_link_pic (info) && ! info->symbolic 8474 && ! hmips->root.forced_local)) 8475 h = NULL; 8476 } 8477 } 8478 /* If this is a global, overridable symbol, GOT_PAGE will 8479 decay to GOT_DISP, so we'll need a GOT entry for it. */ 8480 /* Fall through. */ 8481 8482 case R_MIPS_GOT_DISP: 8483 case R_MICROMIPS_GOT_DISP: 8484 if (h && !mips_elf_record_global_got_symbol (h, abfd, info, 8485 FALSE, r_type)) 8486 return FALSE; 8487 break; 8488 8489 case R_MIPS_TLS_GOTTPREL: 8490 case R_MIPS16_TLS_GOTTPREL: 8491 case R_MICROMIPS_TLS_GOTTPREL: 8492 if (bfd_link_pic (info)) 8493 info->flags |= DF_STATIC_TLS; 8494 /* Fall through */ 8495 8496 case R_MIPS_TLS_LDM: 8497 case R_MIPS16_TLS_LDM: 8498 case R_MICROMIPS_TLS_LDM: 8499 if (tls_ldm_reloc_p (r_type)) 8500 { 8501 r_symndx = STN_UNDEF; 8502 h = NULL; 8503 } 8504 /* Fall through */ 8505 8506 case R_MIPS_TLS_GD: 8507 case R_MIPS16_TLS_GD: 8508 case R_MICROMIPS_TLS_GD: 8509 /* This symbol requires a global offset table entry, or two 8510 for TLS GD relocations. */ 8511 if (h != NULL) 8512 { 8513 if (!mips_elf_record_global_got_symbol (h, abfd, info, 8514 FALSE, r_type)) 8515 return FALSE; 8516 } 8517 else 8518 { 8519 if (!mips_elf_record_local_got_symbol (abfd, r_symndx, 8520 rel->r_addend, 8521 info, r_type)) 8522 return FALSE; 8523 } 8524 break; 8525 8526 case R_MIPS_32: 8527 case R_MIPS_REL32: 8528 case R_MIPS_64: 8529 /* In VxWorks executables, references to external symbols 8530 are handled using copy relocs or PLT stubs, so there's 8531 no need to add a .rela.dyn entry for this relocation. */ 8532 if (can_make_dynamic_p) 8533 { 8534 if (sreloc == NULL) 8535 { 8536 sreloc = mips_elf_rel_dyn_section (info, TRUE); 8537 if (sreloc == NULL) 8538 return FALSE; 8539 } 8540 if (bfd_link_pic (info) && h == NULL) 8541 { 8542 /* When creating a shared object, we must copy these 8543 reloc types into the output file as R_MIPS_REL32 8544 relocs. Make room for this reloc in .rel(a).dyn. */ 8545 mips_elf_allocate_dynamic_relocations (dynobj, info, 1); 8546 /* In the N32 and 64-bit ABIs there may be multiple 8547 consecutive relocations for the same offset. If we have 8548 a R_MIPS_GPREL32 followed by a R_MIPS_64 then that 8549 relocation is complete and needs no futher adjustment. */ 8550 if ((rel == relocs 8551 || rel[-1].r_offset != rel->r_offset 8552 || r_type != R_MIPS_64 8553 || ELF_R_TYPE(abfd, rel[-1].r_info) != R_MIPS_GPREL32) 8554 && MIPS_ELF_READONLY_SECTION (sec)) 8555 { 8556 /* We tell the dynamic linker that there are 8557 relocations against the text segment. */ 8558 info->flags |= DF_TEXTREL; 8559 info->callbacks->warning 8560 (info, 8561 _("relocation emitted against readonly section"), 8562 NULL, abfd, sec, rel->r_offset); 8563 } 8564 } 8565 else 8566 { 8567 struct mips_elf_link_hash_entry *hmips; 8568 8569 /* For a shared object, we must copy this relocation 8570 unless the symbol turns out to be undefined and 8571 weak with non-default visibility, in which case 8572 it will be left as zero. 8573 8574 We could elide R_MIPS_REL32 for locally binding symbols 8575 in shared libraries, but do not yet do so. 8576 8577 For an executable, we only need to copy this 8578 reloc if the symbol is defined in a dynamic 8579 object. */ 8580 hmips = (struct mips_elf_link_hash_entry *) h; 8581 ++hmips->possibly_dynamic_relocs; 8582 if (MIPS_ELF_READONLY_SECTION (sec)) 8583 /* We need it to tell the dynamic linker if there 8584 are relocations against the text segment. */ 8585 hmips->readonly_reloc = TRUE; 8586 } 8587 } 8588 8589 if (SGI_COMPAT (abfd)) 8590 mips_elf_hash_table (info)->compact_rel_size += 8591 sizeof (Elf32_External_crinfo); 8592 break; 8593 8594 case R_MIPS_26: 8595 case R_MIPS_GPREL16: 8596 case R_MIPS_LITERAL: 8597 case R_MIPS_GPREL32: 8598 case R_MICROMIPS_26_S1: 8599 case R_MICROMIPS_GPREL16: 8600 case R_MICROMIPS_LITERAL: 8601 case R_MICROMIPS_GPREL7_S2: 8602 if (SGI_COMPAT (abfd)) 8603 mips_elf_hash_table (info)->compact_rel_size += 8604 sizeof (Elf32_External_crinfo); 8605 break; 8606 8607 /* This relocation describes the C++ object vtable hierarchy. 8608 Reconstruct it for later use during GC. */ 8609 case R_MIPS_GNU_VTINHERIT: 8610 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) 8611 return FALSE; 8612 break; 8613 8614 /* This relocation describes which C++ vtable entries are actually 8615 used. Record for later use during GC. */ 8616 case R_MIPS_GNU_VTENTRY: 8617 BFD_ASSERT (h != NULL); 8618 if (h != NULL 8619 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset)) 8620 return FALSE; 8621 break; 8622 8623 default: 8624 break; 8625 } 8626 8627 /* Record the need for a PLT entry. At this point we don't know 8628 yet if we are going to create a PLT in the first place, but 8629 we only record whether the relocation requires a standard MIPS 8630 or a compressed code entry anyway. If we don't make a PLT after 8631 all, then we'll just ignore these arrangements. Likewise if 8632 a PLT entry is not created because the symbol is satisfied 8633 locally. */ 8634 if (h != NULL 8635 && jal_reloc_p (r_type) 8636 && !SYMBOL_CALLS_LOCAL (info, h)) 8637 { 8638 if (h->plt.plist == NULL) 8639 h->plt.plist = mips_elf_make_plt_record (abfd); 8640 if (h->plt.plist == NULL) 8641 return FALSE; 8642 8643 if (r_type == R_MIPS_26) 8644 h->plt.plist->need_mips = TRUE; 8645 else 8646 h->plt.plist->need_comp = TRUE; 8647 } 8648 8649 /* See if this reloc would need to refer to a MIPS16 hard-float stub, 8650 if there is one. We only need to handle global symbols here; 8651 we decide whether to keep or delete stubs for local symbols 8652 when processing the stub's relocations. */ 8653 if (h != NULL 8654 && !mips16_call_reloc_p (r_type) 8655 && !section_allows_mips16_refs_p (sec)) 8656 { 8657 struct mips_elf_link_hash_entry *mh; 8658 8659 mh = (struct mips_elf_link_hash_entry *) h; 8660 mh->need_fn_stub = TRUE; 8661 } 8662 8663 /* Refuse some position-dependent relocations when creating a 8664 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're 8665 not PIC, but we can create dynamic relocations and the result 8666 will be fine. Also do not refuse R_MIPS_LO16, which can be 8667 combined with R_MIPS_GOT16. */ 8668 if (bfd_link_pic (info)) 8669 { 8670 switch (r_type) 8671 { 8672 case R_MIPS16_HI16: 8673 case R_MIPS_HI16: 8674 case R_MIPS_HIGHER: 8675 case R_MIPS_HIGHEST: 8676 case R_MICROMIPS_HI16: 8677 case R_MICROMIPS_HIGHER: 8678 case R_MICROMIPS_HIGHEST: 8679 /* Don't refuse a high part relocation if it's against 8680 no symbol (e.g. part of a compound relocation). */ 8681 if (r_symndx == STN_UNDEF) 8682 break; 8683 8684 /* R_MIPS_HI16 against _gp_disp is used for $gp setup, 8685 and has a special meaning. */ 8686 if (!NEWABI_P (abfd) && h != NULL 8687 && strcmp (h->root.root.string, "_gp_disp") == 0) 8688 break; 8689 8690 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */ 8691 if (is_gott_symbol (info, h)) 8692 break; 8693 8694 /* FALLTHROUGH */ 8695 8696 case R_MIPS16_26: 8697 case R_MIPS_26: 8698 case R_MICROMIPS_26_S1: 8699 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE); 8700 (*_bfd_error_handler) 8701 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"), 8702 abfd, howto->name, 8703 (h) ? h->root.root.string : "a local symbol"); 8704 bfd_set_error (bfd_error_bad_value); 8705 return FALSE; 8706 default: 8707 break; 8708 } 8709 } 8710 } 8711 8712 return TRUE; 8713 } 8714 8715 bfd_boolean 8716 _bfd_mips_relax_section (bfd *abfd, asection *sec, 8717 struct bfd_link_info *link_info, 8718 bfd_boolean *again) 8719 { 8720 Elf_Internal_Rela *internal_relocs; 8721 Elf_Internal_Rela *irel, *irelend; 8722 Elf_Internal_Shdr *symtab_hdr; 8723 bfd_byte *contents = NULL; 8724 size_t extsymoff; 8725 bfd_boolean changed_contents = FALSE; 8726 bfd_vma sec_start = sec->output_section->vma + sec->output_offset; 8727 Elf_Internal_Sym *isymbuf = NULL; 8728 8729 /* We are not currently changing any sizes, so only one pass. */ 8730 *again = FALSE; 8731 8732 if (bfd_link_relocatable (link_info)) 8733 return TRUE; 8734 8735 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, 8736 link_info->keep_memory); 8737 if (internal_relocs == NULL) 8738 return TRUE; 8739 8740 irelend = internal_relocs + sec->reloc_count 8741 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel; 8742 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 8743 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; 8744 8745 for (irel = internal_relocs; irel < irelend; irel++) 8746 { 8747 bfd_vma symval; 8748 bfd_signed_vma sym_offset; 8749 unsigned int r_type; 8750 unsigned long r_symndx; 8751 asection *sym_sec; 8752 unsigned long instruction; 8753 8754 /* Turn jalr into bgezal, and jr into beq, if they're marked 8755 with a JALR relocation, that indicate where they jump to. 8756 This saves some pipeline bubbles. */ 8757 r_type = ELF_R_TYPE (abfd, irel->r_info); 8758 if (r_type != R_MIPS_JALR) 8759 continue; 8760 8761 r_symndx = ELF_R_SYM (abfd, irel->r_info); 8762 /* Compute the address of the jump target. */ 8763 if (r_symndx >= extsymoff) 8764 { 8765 struct mips_elf_link_hash_entry *h 8766 = ((struct mips_elf_link_hash_entry *) 8767 elf_sym_hashes (abfd) [r_symndx - extsymoff]); 8768 8769 while (h->root.root.type == bfd_link_hash_indirect 8770 || h->root.root.type == bfd_link_hash_warning) 8771 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; 8772 8773 /* If a symbol is undefined, or if it may be overridden, 8774 skip it. */ 8775 if (! ((h->root.root.type == bfd_link_hash_defined 8776 || h->root.root.type == bfd_link_hash_defweak) 8777 && h->root.root.u.def.section) 8778 || (bfd_link_pic (link_info) && ! link_info->symbolic 8779 && !h->root.forced_local)) 8780 continue; 8781 8782 sym_sec = h->root.root.u.def.section; 8783 if (sym_sec->output_section) 8784 symval = (h->root.root.u.def.value 8785 + sym_sec->output_section->vma 8786 + sym_sec->output_offset); 8787 else 8788 symval = h->root.root.u.def.value; 8789 } 8790 else 8791 { 8792 Elf_Internal_Sym *isym; 8793 8794 /* Read this BFD's symbols if we haven't done so already. */ 8795 if (isymbuf == NULL && symtab_hdr->sh_info != 0) 8796 { 8797 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; 8798 if (isymbuf == NULL) 8799 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, 8800 symtab_hdr->sh_info, 0, 8801 NULL, NULL, NULL); 8802 if (isymbuf == NULL) 8803 goto relax_return; 8804 } 8805 8806 isym = isymbuf + r_symndx; 8807 if (isym->st_shndx == SHN_UNDEF) 8808 continue; 8809 else if (isym->st_shndx == SHN_ABS) 8810 sym_sec = bfd_abs_section_ptr; 8811 else if (isym->st_shndx == SHN_COMMON) 8812 sym_sec = bfd_com_section_ptr; 8813 else 8814 sym_sec 8815 = bfd_section_from_elf_index (abfd, isym->st_shndx); 8816 symval = isym->st_value 8817 + sym_sec->output_section->vma 8818 + sym_sec->output_offset; 8819 } 8820 8821 /* Compute branch offset, from delay slot of the jump to the 8822 branch target. */ 8823 sym_offset = (symval + irel->r_addend) 8824 - (sec_start + irel->r_offset + 4); 8825 8826 /* Branch offset must be properly aligned. */ 8827 if ((sym_offset & 3) != 0) 8828 continue; 8829 8830 sym_offset >>= 2; 8831 8832 /* Check that it's in range. */ 8833 if (sym_offset < -0x8000 || sym_offset >= 0x8000) 8834 continue; 8835 8836 /* Get the section contents if we haven't done so already. */ 8837 if (!mips_elf_get_section_contents (abfd, sec, &contents)) 8838 goto relax_return; 8839 8840 instruction = bfd_get_32 (abfd, contents + irel->r_offset); 8841 8842 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */ 8843 if ((instruction & 0xfc1fffff) == 0x0000f809) 8844 instruction = 0x04110000; 8845 /* If it was jr <reg>, turn it into b <target>. */ 8846 else if ((instruction & 0xfc1fffff) == 0x00000008) 8847 instruction = 0x10000000; 8848 else 8849 continue; 8850 8851 instruction |= (sym_offset & 0xffff); 8852 bfd_put_32 (abfd, instruction, contents + irel->r_offset); 8853 changed_contents = TRUE; 8854 } 8855 8856 if (contents != NULL 8857 && elf_section_data (sec)->this_hdr.contents != contents) 8858 { 8859 if (!changed_contents && !link_info->keep_memory) 8860 free (contents); 8861 else 8862 { 8863 /* Cache the section contents for elf_link_input_bfd. */ 8864 elf_section_data (sec)->this_hdr.contents = contents; 8865 } 8866 } 8867 return TRUE; 8868 8869 relax_return: 8870 if (contents != NULL 8871 && elf_section_data (sec)->this_hdr.contents != contents) 8872 free (contents); 8873 return FALSE; 8874 } 8875 8876 /* Allocate space for global sym dynamic relocs. */ 8877 8878 static bfd_boolean 8879 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf) 8880 { 8881 struct bfd_link_info *info = inf; 8882 bfd *dynobj; 8883 struct mips_elf_link_hash_entry *hmips; 8884 struct mips_elf_link_hash_table *htab; 8885 8886 htab = mips_elf_hash_table (info); 8887 BFD_ASSERT (htab != NULL); 8888 8889 dynobj = elf_hash_table (info)->dynobj; 8890 hmips = (struct mips_elf_link_hash_entry *) h; 8891 8892 /* VxWorks executables are handled elsewhere; we only need to 8893 allocate relocations in shared objects. */ 8894 if (htab->is_vxworks && !bfd_link_pic (info)) 8895 return TRUE; 8896 8897 /* Ignore indirect symbols. All relocations against such symbols 8898 will be redirected to the target symbol. */ 8899 if (h->root.type == bfd_link_hash_indirect) 8900 return TRUE; 8901 8902 /* If this symbol is defined in a dynamic object, or we are creating 8903 a shared library, we will need to copy any R_MIPS_32 or 8904 R_MIPS_REL32 relocs against it into the output file. */ 8905 if (! bfd_link_relocatable (info) 8906 && hmips->possibly_dynamic_relocs != 0 8907 && (h->root.type == bfd_link_hash_defweak 8908 || (!h->def_regular && !ELF_COMMON_DEF_P (h)) 8909 || bfd_link_pic (info))) 8910 { 8911 bfd_boolean do_copy = TRUE; 8912 8913 if (h->root.type == bfd_link_hash_undefweak) 8914 { 8915 /* Do not copy relocations for undefined weak symbols with 8916 non-default visibility. */ 8917 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) 8918 do_copy = FALSE; 8919 8920 /* Make sure undefined weak symbols are output as a dynamic 8921 symbol in PIEs. */ 8922 else if (h->dynindx == -1 && !h->forced_local) 8923 { 8924 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 8925 return FALSE; 8926 } 8927 } 8928 8929 if (do_copy) 8930 { 8931 /* Even though we don't directly need a GOT entry for this symbol, 8932 the SVR4 psABI requires it to have a dynamic symbol table 8933 index greater that DT_MIPS_GOTSYM if there are dynamic 8934 relocations against it. 8935 8936 VxWorks does not enforce the same mapping between the GOT 8937 and the symbol table, so the same requirement does not 8938 apply there. */ 8939 if (!htab->is_vxworks) 8940 { 8941 if (hmips->global_got_area > GGA_RELOC_ONLY) 8942 hmips->global_got_area = GGA_RELOC_ONLY; 8943 hmips->got_only_for_calls = FALSE; 8944 } 8945 8946 mips_elf_allocate_dynamic_relocations 8947 (dynobj, info, hmips->possibly_dynamic_relocs); 8948 if (hmips->readonly_reloc) 8949 /* We tell the dynamic linker that there are relocations 8950 against the text segment. */ 8951 info->flags |= DF_TEXTREL; 8952 } 8953 } 8954 8955 return TRUE; 8956 } 8957 8958 /* Adjust a symbol defined by a dynamic object and referenced by a 8959 regular object. The current definition is in some section of the 8960 dynamic object, but we're not including those sections. We have to 8961 change the definition to something the rest of the link can 8962 understand. */ 8963 8964 bfd_boolean 8965 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info, 8966 struct elf_link_hash_entry *h) 8967 { 8968 bfd *dynobj; 8969 struct mips_elf_link_hash_entry *hmips; 8970 struct mips_elf_link_hash_table *htab; 8971 8972 htab = mips_elf_hash_table (info); 8973 BFD_ASSERT (htab != NULL); 8974 8975 dynobj = elf_hash_table (info)->dynobj; 8976 hmips = (struct mips_elf_link_hash_entry *) h; 8977 8978 /* Make sure we know what is going on here. */ 8979 BFD_ASSERT (dynobj != NULL 8980 && (h->needs_plt 8981 || h->type == STT_GNU_IFUNC 8982 || h->u.weakdef != NULL 8983 || (h->def_dynamic 8984 && h->ref_regular 8985 && !h->def_regular))); 8986 8987 hmips = (struct mips_elf_link_hash_entry *) h; 8988 8989 /* If there are call relocations against an externally-defined symbol, 8990 see whether we can create a MIPS lazy-binding stub for it. We can 8991 only do this if all references to the function are through call 8992 relocations, and in that case, the traditional lazy-binding stubs 8993 are much more efficient than PLT entries. 8994 8995 Traditional stubs are only available on SVR4 psABI-based systems; 8996 VxWorks always uses PLTs instead. */ 8997 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub) 8998 { 8999 if (! elf_hash_table (info)->dynamic_sections_created) 9000 return TRUE; 9001 9002 /* If this symbol is not defined in a regular file, then set 9003 the symbol to the stub location. This is required to make 9004 function pointers compare as equal between the normal 9005 executable and the shared library. */ 9006 if (!h->def_regular) 9007 { 9008 hmips->needs_lazy_stub = TRUE; 9009 htab->lazy_stub_count++; 9010 return TRUE; 9011 } 9012 } 9013 /* As above, VxWorks requires PLT entries for externally-defined 9014 functions that are only accessed through call relocations. 9015 9016 Both VxWorks and non-VxWorks targets also need PLT entries if there 9017 are static-only relocations against an externally-defined function. 9018 This can technically occur for shared libraries if there are 9019 branches to the symbol, although it is unlikely that this will be 9020 used in practice due to the short ranges involved. It can occur 9021 for any relative or absolute relocation in executables; in that 9022 case, the PLT entry becomes the function's canonical address. */ 9023 else if (((h->needs_plt && !hmips->no_fn_stub) 9024 || (h->type == STT_FUNC && hmips->has_static_relocs)) 9025 && htab->use_plts_and_copy_relocs 9026 && !SYMBOL_CALLS_LOCAL (info, h) 9027 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT 9028 && h->root.type == bfd_link_hash_undefweak)) 9029 { 9030 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd); 9031 bfd_boolean newabi_p = NEWABI_P (info->output_bfd); 9032 9033 /* If this is the first symbol to need a PLT entry, then make some 9034 basic setup. Also work out PLT entry sizes. We'll need them 9035 for PLT offset calculations. */ 9036 if (htab->plt_mips_offset + htab->plt_comp_offset == 0) 9037 { 9038 BFD_ASSERT (htab->sgotplt->size == 0); 9039 BFD_ASSERT (htab->plt_got_index == 0); 9040 9041 /* If we're using the PLT additions to the psABI, each PLT 9042 entry is 16 bytes and the PLT0 entry is 32 bytes. 9043 Encourage better cache usage by aligning. We do this 9044 lazily to avoid pessimizing traditional objects. */ 9045 if (!htab->is_vxworks 9046 && !bfd_set_section_alignment (dynobj, htab->splt, 5)) 9047 return FALSE; 9048 9049 /* Make sure that .got.plt is word-aligned. We do this lazily 9050 for the same reason as above. */ 9051 if (!bfd_set_section_alignment (dynobj, htab->sgotplt, 9052 MIPS_ELF_LOG_FILE_ALIGN (dynobj))) 9053 return FALSE; 9054 9055 /* On non-VxWorks targets, the first two entries in .got.plt 9056 are reserved. */ 9057 if (!htab->is_vxworks) 9058 htab->plt_got_index 9059 += (get_elf_backend_data (dynobj)->got_header_size 9060 / MIPS_ELF_GOT_SIZE (dynobj)); 9061 9062 /* On VxWorks, also allocate room for the header's 9063 .rela.plt.unloaded entries. */ 9064 if (htab->is_vxworks && !bfd_link_pic (info)) 9065 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela); 9066 9067 /* Now work out the sizes of individual PLT entries. */ 9068 if (htab->is_vxworks && bfd_link_pic (info)) 9069 htab->plt_mips_entry_size 9070 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry); 9071 else if (htab->is_vxworks) 9072 htab->plt_mips_entry_size 9073 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry); 9074 else if (newabi_p) 9075 htab->plt_mips_entry_size 9076 = 4 * ARRAY_SIZE (mips_exec_plt_entry); 9077 else if (!micromips_p) 9078 { 9079 htab->plt_mips_entry_size 9080 = 4 * ARRAY_SIZE (mips_exec_plt_entry); 9081 htab->plt_comp_entry_size 9082 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry); 9083 } 9084 else if (htab->insn32) 9085 { 9086 htab->plt_mips_entry_size 9087 = 4 * ARRAY_SIZE (mips_exec_plt_entry); 9088 htab->plt_comp_entry_size 9089 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry); 9090 } 9091 else 9092 { 9093 htab->plt_mips_entry_size 9094 = 4 * ARRAY_SIZE (mips_exec_plt_entry); 9095 htab->plt_comp_entry_size 9096 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry); 9097 } 9098 } 9099 9100 if (h->plt.plist == NULL) 9101 h->plt.plist = mips_elf_make_plt_record (dynobj); 9102 if (h->plt.plist == NULL) 9103 return FALSE; 9104 9105 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks, 9106 n32 or n64, so always use a standard entry there. 9107 9108 If the symbol has a MIPS16 call stub and gets a PLT entry, then 9109 all MIPS16 calls will go via that stub, and there is no benefit 9110 to having a MIPS16 entry. And in the case of call_stub a 9111 standard entry actually has to be used as the stub ends with a J 9112 instruction. */ 9113 if (newabi_p 9114 || htab->is_vxworks 9115 || hmips->call_stub 9116 || hmips->call_fp_stub) 9117 { 9118 h->plt.plist->need_mips = TRUE; 9119 h->plt.plist->need_comp = FALSE; 9120 } 9121 9122 /* Otherwise, if there are no direct calls to the function, we 9123 have a free choice of whether to use standard or compressed 9124 entries. Prefer microMIPS entries if the object is known to 9125 contain microMIPS code, so that it becomes possible to create 9126 pure microMIPS binaries. Prefer standard entries otherwise, 9127 because MIPS16 ones are no smaller and are usually slower. */ 9128 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp) 9129 { 9130 if (micromips_p) 9131 h->plt.plist->need_comp = TRUE; 9132 else 9133 h->plt.plist->need_mips = TRUE; 9134 } 9135 9136 if (h->plt.plist->need_mips) 9137 { 9138 h->plt.plist->mips_offset = htab->plt_mips_offset; 9139 htab->plt_mips_offset += htab->plt_mips_entry_size; 9140 } 9141 if (h->plt.plist->need_comp) 9142 { 9143 h->plt.plist->comp_offset = htab->plt_comp_offset; 9144 htab->plt_comp_offset += htab->plt_comp_entry_size; 9145 } 9146 9147 /* Reserve the corresponding .got.plt entry now too. */ 9148 h->plt.plist->gotplt_index = htab->plt_got_index++; 9149 9150 /* If the output file has no definition of the symbol, set the 9151 symbol's value to the address of the stub. */ 9152 if (!bfd_link_pic (info) && !h->def_regular) 9153 hmips->use_plt_entry = TRUE; 9154 9155 /* Make room for the R_MIPS_JUMP_SLOT relocation. */ 9156 htab->srelplt->size += (htab->is_vxworks 9157 ? MIPS_ELF_RELA_SIZE (dynobj) 9158 : MIPS_ELF_REL_SIZE (dynobj)); 9159 9160 /* Make room for the .rela.plt.unloaded relocations. */ 9161 if (htab->is_vxworks && !bfd_link_pic (info)) 9162 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela); 9163 9164 /* All relocations against this symbol that could have been made 9165 dynamic will now refer to the PLT entry instead. */ 9166 hmips->possibly_dynamic_relocs = 0; 9167 9168 return TRUE; 9169 } 9170 9171 /* If this is a weak symbol, and there is a real definition, the 9172 processor independent code will have arranged for us to see the 9173 real definition first, and we can just use the same value. */ 9174 if (h->u.weakdef != NULL) 9175 { 9176 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined 9177 || h->u.weakdef->root.type == bfd_link_hash_defweak); 9178 h->root.u.def.section = h->u.weakdef->root.u.def.section; 9179 h->root.u.def.value = h->u.weakdef->root.u.def.value; 9180 return TRUE; 9181 } 9182 9183 /* Otherwise, there is nothing further to do for symbols defined 9184 in regular objects. */ 9185 if (h->def_regular) 9186 return TRUE; 9187 9188 /* There's also nothing more to do if we'll convert all relocations 9189 against this symbol into dynamic relocations. */ 9190 if (!hmips->has_static_relocs) 9191 return TRUE; 9192 9193 /* We're now relying on copy relocations. Complain if we have 9194 some that we can't convert. */ 9195 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info)) 9196 { 9197 (*_bfd_error_handler) (_("non-dynamic relocations refer to " 9198 "dynamic symbol %s"), 9199 h->root.root.string); 9200 bfd_set_error (bfd_error_bad_value); 9201 return FALSE; 9202 } 9203 9204 /* We must allocate the symbol in our .dynbss section, which will 9205 become part of the .bss section of the executable. There will be 9206 an entry for this symbol in the .dynsym section. The dynamic 9207 object will contain position independent code, so all references 9208 from the dynamic object to this symbol will go through the global 9209 offset table. The dynamic linker will use the .dynsym entry to 9210 determine the address it must put in the global offset table, so 9211 both the dynamic object and the regular object will refer to the 9212 same memory location for the variable. */ 9213 9214 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0) 9215 { 9216 if (htab->is_vxworks) 9217 htab->srelbss->size += sizeof (Elf32_External_Rela); 9218 else 9219 mips_elf_allocate_dynamic_relocations (dynobj, info, 1); 9220 h->needs_copy = 1; 9221 } 9222 9223 /* All relocations against this symbol that could have been made 9224 dynamic will now refer to the local copy instead. */ 9225 hmips->possibly_dynamic_relocs = 0; 9226 9227 return _bfd_elf_adjust_dynamic_copy (info, h, htab->sdynbss); 9228 } 9229 9230 /* This function is called after all the input files have been read, 9231 and the input sections have been assigned to output sections. We 9232 check for any mips16 stub sections that we can discard. */ 9233 9234 bfd_boolean 9235 _bfd_mips_elf_always_size_sections (bfd *output_bfd, 9236 struct bfd_link_info *info) 9237 { 9238 asection *sect; 9239 struct mips_elf_link_hash_table *htab; 9240 struct mips_htab_traverse_info hti; 9241 9242 htab = mips_elf_hash_table (info); 9243 BFD_ASSERT (htab != NULL); 9244 9245 /* The .reginfo section has a fixed size. */ 9246 sect = bfd_get_section_by_name (output_bfd, ".reginfo"); 9247 if (sect != NULL) 9248 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo)); 9249 9250 /* The .MIPS.abiflags section has a fixed size. */ 9251 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags"); 9252 if (sect != NULL) 9253 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0)); 9254 9255 hti.info = info; 9256 hti.output_bfd = output_bfd; 9257 hti.error = FALSE; 9258 mips_elf_link_hash_traverse (mips_elf_hash_table (info), 9259 mips_elf_check_symbols, &hti); 9260 if (hti.error) 9261 return FALSE; 9262 9263 return TRUE; 9264 } 9265 9266 /* If the link uses a GOT, lay it out and work out its size. */ 9267 9268 static bfd_boolean 9269 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info) 9270 { 9271 bfd *dynobj; 9272 asection *s; 9273 struct mips_got_info *g; 9274 bfd_size_type loadable_size = 0; 9275 bfd_size_type page_gotno; 9276 bfd *ibfd; 9277 struct mips_elf_traverse_got_arg tga; 9278 struct mips_elf_link_hash_table *htab; 9279 9280 htab = mips_elf_hash_table (info); 9281 BFD_ASSERT (htab != NULL); 9282 9283 s = htab->sgot; 9284 if (s == NULL) 9285 return TRUE; 9286 9287 dynobj = elf_hash_table (info)->dynobj; 9288 g = htab->got_info; 9289 9290 /* Allocate room for the reserved entries. VxWorks always reserves 9291 3 entries; other objects only reserve 2 entries. */ 9292 BFD_ASSERT (g->assigned_low_gotno == 0); 9293 if (htab->is_vxworks) 9294 htab->reserved_gotno = 3; 9295 else 9296 htab->reserved_gotno = 2; 9297 g->local_gotno += htab->reserved_gotno; 9298 g->assigned_low_gotno = htab->reserved_gotno; 9299 9300 /* Decide which symbols need to go in the global part of the GOT and 9301 count the number of reloc-only GOT symbols. */ 9302 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info); 9303 9304 if (!mips_elf_resolve_final_got_entries (info, g)) 9305 return FALSE; 9306 9307 /* Calculate the total loadable size of the output. That 9308 will give us the maximum number of GOT_PAGE entries 9309 required. */ 9310 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next) 9311 { 9312 asection *subsection; 9313 9314 for (subsection = ibfd->sections; 9315 subsection; 9316 subsection = subsection->next) 9317 { 9318 if ((subsection->flags & SEC_ALLOC) == 0) 9319 continue; 9320 loadable_size += ((subsection->size + 0xf) 9321 &~ (bfd_size_type) 0xf); 9322 } 9323 } 9324 9325 if (htab->is_vxworks) 9326 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16 9327 relocations against local symbols evaluate to "G", and the EABI does 9328 not include R_MIPS_GOT_PAGE. */ 9329 page_gotno = 0; 9330 else 9331 /* Assume there are two loadable segments consisting of contiguous 9332 sections. Is 5 enough? */ 9333 page_gotno = (loadable_size >> 16) + 5; 9334 9335 /* Choose the smaller of the two page estimates; both are intended to be 9336 conservative. */ 9337 if (page_gotno > g->page_gotno) 9338 page_gotno = g->page_gotno; 9339 9340 g->local_gotno += page_gotno; 9341 g->assigned_high_gotno = g->local_gotno - 1; 9342 9343 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd); 9344 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd); 9345 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd); 9346 9347 /* VxWorks does not support multiple GOTs. It initializes $gp to 9348 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the 9349 dynamic loader. */ 9350 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info)) 9351 { 9352 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno)) 9353 return FALSE; 9354 } 9355 else 9356 { 9357 /* Record that all bfds use G. This also has the effect of freeing 9358 the per-bfd GOTs, which we no longer need. */ 9359 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next) 9360 if (mips_elf_bfd_got (ibfd, FALSE)) 9361 mips_elf_replace_bfd_got (ibfd, g); 9362 mips_elf_replace_bfd_got (output_bfd, g); 9363 9364 /* Set up TLS entries. */ 9365 g->tls_assigned_gotno = g->global_gotno + g->local_gotno; 9366 tga.info = info; 9367 tga.g = g; 9368 tga.value = MIPS_ELF_GOT_SIZE (output_bfd); 9369 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga); 9370 if (!tga.g) 9371 return FALSE; 9372 BFD_ASSERT (g->tls_assigned_gotno 9373 == g->global_gotno + g->local_gotno + g->tls_gotno); 9374 9375 /* Each VxWorks GOT entry needs an explicit relocation. */ 9376 if (htab->is_vxworks && bfd_link_pic (info)) 9377 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno; 9378 9379 /* Allocate room for the TLS relocations. */ 9380 if (g->relocs) 9381 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs); 9382 } 9383 9384 return TRUE; 9385 } 9386 9387 /* Estimate the size of the .MIPS.stubs section. */ 9388 9389 static void 9390 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info) 9391 { 9392 struct mips_elf_link_hash_table *htab; 9393 bfd_size_type dynsymcount; 9394 9395 htab = mips_elf_hash_table (info); 9396 BFD_ASSERT (htab != NULL); 9397 9398 if (htab->lazy_stub_count == 0) 9399 return; 9400 9401 /* IRIX rld assumes that a function stub isn't at the end of the .text 9402 section, so add a dummy entry to the end. */ 9403 htab->lazy_stub_count++; 9404 9405 /* Get a worst-case estimate of the number of dynamic symbols needed. 9406 At this point, dynsymcount does not account for section symbols 9407 and count_section_dynsyms may overestimate the number that will 9408 be needed. */ 9409 dynsymcount = (elf_hash_table (info)->dynsymcount 9410 + count_section_dynsyms (output_bfd, info)); 9411 9412 /* Determine the size of one stub entry. There's no disadvantage 9413 from using microMIPS code here, so for the sake of pure-microMIPS 9414 binaries we prefer it whenever there's any microMIPS code in 9415 output produced at all. This has a benefit of stubs being 9416 shorter by 4 bytes each too, unless in the insn32 mode. */ 9417 if (!MICROMIPS_P (output_bfd)) 9418 htab->function_stub_size = (dynsymcount > 0x10000 9419 ? MIPS_FUNCTION_STUB_BIG_SIZE 9420 : MIPS_FUNCTION_STUB_NORMAL_SIZE); 9421 else if (htab->insn32) 9422 htab->function_stub_size = (dynsymcount > 0x10000 9423 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 9424 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE); 9425 else 9426 htab->function_stub_size = (dynsymcount > 0x10000 9427 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE 9428 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE); 9429 9430 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size; 9431 } 9432 9433 /* A mips_elf_link_hash_traverse callback for which DATA points to a 9434 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding 9435 stub, allocate an entry in the stubs section. */ 9436 9437 static bfd_boolean 9438 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data) 9439 { 9440 struct mips_htab_traverse_info *hti = data; 9441 struct mips_elf_link_hash_table *htab; 9442 struct bfd_link_info *info; 9443 bfd *output_bfd; 9444 9445 info = hti->info; 9446 output_bfd = hti->output_bfd; 9447 htab = mips_elf_hash_table (info); 9448 BFD_ASSERT (htab != NULL); 9449 9450 if (h->needs_lazy_stub) 9451 { 9452 bfd_boolean micromips_p = MICROMIPS_P (output_bfd); 9453 unsigned int other = micromips_p ? STO_MICROMIPS : 0; 9454 bfd_vma isa_bit = micromips_p; 9455 9456 BFD_ASSERT (htab->root.dynobj != NULL); 9457 if (h->root.plt.plist == NULL) 9458 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner); 9459 if (h->root.plt.plist == NULL) 9460 { 9461 hti->error = TRUE; 9462 return FALSE; 9463 } 9464 h->root.root.u.def.section = htab->sstubs; 9465 h->root.root.u.def.value = htab->sstubs->size + isa_bit; 9466 h->root.plt.plist->stub_offset = htab->sstubs->size; 9467 h->root.other = other; 9468 htab->sstubs->size += htab->function_stub_size; 9469 } 9470 return TRUE; 9471 } 9472 9473 /* Allocate offsets in the stubs section to each symbol that needs one. 9474 Set the final size of the .MIPS.stub section. */ 9475 9476 static bfd_boolean 9477 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info) 9478 { 9479 bfd *output_bfd = info->output_bfd; 9480 bfd_boolean micromips_p = MICROMIPS_P (output_bfd); 9481 unsigned int other = micromips_p ? STO_MICROMIPS : 0; 9482 bfd_vma isa_bit = micromips_p; 9483 struct mips_elf_link_hash_table *htab; 9484 struct mips_htab_traverse_info hti; 9485 struct elf_link_hash_entry *h; 9486 bfd *dynobj; 9487 9488 htab = mips_elf_hash_table (info); 9489 BFD_ASSERT (htab != NULL); 9490 9491 if (htab->lazy_stub_count == 0) 9492 return TRUE; 9493 9494 htab->sstubs->size = 0; 9495 hti.info = info; 9496 hti.output_bfd = output_bfd; 9497 hti.error = FALSE; 9498 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti); 9499 if (hti.error) 9500 return FALSE; 9501 htab->sstubs->size += htab->function_stub_size; 9502 BFD_ASSERT (htab->sstubs->size 9503 == htab->lazy_stub_count * htab->function_stub_size); 9504 9505 dynobj = elf_hash_table (info)->dynobj; 9506 BFD_ASSERT (dynobj != NULL); 9507 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_"); 9508 if (h == NULL) 9509 return FALSE; 9510 h->root.u.def.value = isa_bit; 9511 h->other = other; 9512 h->type = STT_FUNC; 9513 9514 return TRUE; 9515 } 9516 9517 /* A mips_elf_link_hash_traverse callback for which DATA points to a 9518 bfd_link_info. If H uses the address of a PLT entry as the value 9519 of the symbol, then set the entry in the symbol table now. Prefer 9520 a standard MIPS PLT entry. */ 9521 9522 static bfd_boolean 9523 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data) 9524 { 9525 struct bfd_link_info *info = data; 9526 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd); 9527 struct mips_elf_link_hash_table *htab; 9528 unsigned int other; 9529 bfd_vma isa_bit; 9530 bfd_vma val; 9531 9532 htab = mips_elf_hash_table (info); 9533 BFD_ASSERT (htab != NULL); 9534 9535 if (h->use_plt_entry) 9536 { 9537 BFD_ASSERT (h->root.plt.plist != NULL); 9538 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE 9539 || h->root.plt.plist->comp_offset != MINUS_ONE); 9540 9541 val = htab->plt_header_size; 9542 if (h->root.plt.plist->mips_offset != MINUS_ONE) 9543 { 9544 isa_bit = 0; 9545 val += h->root.plt.plist->mips_offset; 9546 other = 0; 9547 } 9548 else 9549 { 9550 isa_bit = 1; 9551 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset; 9552 other = micromips_p ? STO_MICROMIPS : STO_MIPS16; 9553 } 9554 val += isa_bit; 9555 /* For VxWorks, point at the PLT load stub rather than the lazy 9556 resolution stub; this stub will become the canonical function 9557 address. */ 9558 if (htab->is_vxworks) 9559 val += 8; 9560 9561 h->root.root.u.def.section = htab->splt; 9562 h->root.root.u.def.value = val; 9563 h->root.other = other; 9564 } 9565 9566 return TRUE; 9567 } 9568 9569 /* Set the sizes of the dynamic sections. */ 9570 9571 bfd_boolean 9572 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd, 9573 struct bfd_link_info *info) 9574 { 9575 bfd *dynobj; 9576 asection *s, *sreldyn; 9577 bfd_boolean reltext; 9578 struct mips_elf_link_hash_table *htab; 9579 9580 htab = mips_elf_hash_table (info); 9581 BFD_ASSERT (htab != NULL); 9582 dynobj = elf_hash_table (info)->dynobj; 9583 BFD_ASSERT (dynobj != NULL); 9584 9585 if (elf_hash_table (info)->dynamic_sections_created) 9586 { 9587 /* Set the contents of the .interp section to the interpreter. */ 9588 if (bfd_link_executable (info) && !info->nointerp) 9589 { 9590 s = bfd_get_linker_section (dynobj, ".interp"); 9591 BFD_ASSERT (s != NULL); 9592 s->size 9593 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1; 9594 s->contents 9595 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd); 9596 } 9597 9598 /* Figure out the size of the PLT header if we know that we 9599 are using it. For the sake of cache alignment always use 9600 a standard header whenever any standard entries are present 9601 even if microMIPS entries are present as well. This also 9602 lets the microMIPS header rely on the value of $v0 only set 9603 by microMIPS entries, for a small size reduction. 9604 9605 Set symbol table entry values for symbols that use the 9606 address of their PLT entry now that we can calculate it. 9607 9608 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we 9609 haven't already in _bfd_elf_create_dynamic_sections. */ 9610 if (htab->splt && htab->plt_mips_offset + htab->plt_comp_offset != 0) 9611 { 9612 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd) 9613 && !htab->plt_mips_offset); 9614 unsigned int other = micromips_p ? STO_MICROMIPS : 0; 9615 bfd_vma isa_bit = micromips_p; 9616 struct elf_link_hash_entry *h; 9617 bfd_vma size; 9618 9619 BFD_ASSERT (htab->use_plts_and_copy_relocs); 9620 BFD_ASSERT (htab->sgotplt->size == 0); 9621 BFD_ASSERT (htab->splt->size == 0); 9622 9623 if (htab->is_vxworks && bfd_link_pic (info)) 9624 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry); 9625 else if (htab->is_vxworks) 9626 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry); 9627 else if (ABI_64_P (output_bfd)) 9628 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry); 9629 else if (ABI_N32_P (output_bfd)) 9630 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry); 9631 else if (!micromips_p) 9632 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry); 9633 else if (htab->insn32) 9634 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); 9635 else 9636 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry); 9637 9638 htab->plt_header_is_comp = micromips_p; 9639 htab->plt_header_size = size; 9640 htab->splt->size = (size 9641 + htab->plt_mips_offset 9642 + htab->plt_comp_offset); 9643 htab->sgotplt->size = (htab->plt_got_index 9644 * MIPS_ELF_GOT_SIZE (dynobj)); 9645 9646 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info); 9647 9648 if (htab->root.hplt == NULL) 9649 { 9650 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt, 9651 "_PROCEDURE_LINKAGE_TABLE_"); 9652 htab->root.hplt = h; 9653 if (h == NULL) 9654 return FALSE; 9655 } 9656 9657 h = htab->root.hplt; 9658 h->root.u.def.value = isa_bit; 9659 h->other = other; 9660 h->type = STT_FUNC; 9661 } 9662 } 9663 9664 /* Allocate space for global sym dynamic relocs. */ 9665 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info); 9666 9667 mips_elf_estimate_stub_size (output_bfd, info); 9668 9669 if (!mips_elf_lay_out_got (output_bfd, info)) 9670 return FALSE; 9671 9672 mips_elf_lay_out_lazy_stubs (info); 9673 9674 /* The check_relocs and adjust_dynamic_symbol entry points have 9675 determined the sizes of the various dynamic sections. Allocate 9676 memory for them. */ 9677 reltext = FALSE; 9678 for (s = dynobj->sections; s != NULL; s = s->next) 9679 { 9680 const char *name; 9681 9682 /* It's OK to base decisions on the section name, because none 9683 of the dynobj section names depend upon the input files. */ 9684 name = bfd_get_section_name (dynobj, s); 9685 9686 if ((s->flags & SEC_LINKER_CREATED) == 0) 9687 continue; 9688 9689 if (CONST_STRNEQ (name, ".rel")) 9690 { 9691 if (s->size != 0) 9692 { 9693 const char *outname; 9694 asection *target; 9695 9696 /* If this relocation section applies to a read only 9697 section, then we probably need a DT_TEXTREL entry. 9698 If the relocation section is .rel(a).dyn, we always 9699 assert a DT_TEXTREL entry rather than testing whether 9700 there exists a relocation to a read only section or 9701 not. */ 9702 outname = bfd_get_section_name (output_bfd, 9703 s->output_section); 9704 target = bfd_get_section_by_name (output_bfd, outname + 4); 9705 if ((target != NULL 9706 && (target->flags & SEC_READONLY) != 0 9707 && (target->flags & SEC_ALLOC) != 0) 9708 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0) 9709 reltext = TRUE; 9710 9711 /* We use the reloc_count field as a counter if we need 9712 to copy relocs into the output file. */ 9713 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0) 9714 s->reloc_count = 0; 9715 9716 /* If combreloc is enabled, elf_link_sort_relocs() will 9717 sort relocations, but in a different way than we do, 9718 and before we're done creating relocations. Also, it 9719 will move them around between input sections' 9720 relocation's contents, so our sorting would be 9721 broken, so don't let it run. */ 9722 info->combreloc = 0; 9723 } 9724 } 9725 else if (bfd_link_executable (info) 9726 && ! mips_elf_hash_table (info)->use_rld_obj_head 9727 && CONST_STRNEQ (name, ".rld_map")) 9728 { 9729 /* We add a room for __rld_map. It will be filled in by the 9730 rtld to contain a pointer to the _r_debug structure. */ 9731 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd); 9732 } 9733 else if (SGI_COMPAT (output_bfd) 9734 && CONST_STRNEQ (name, ".compact_rel")) 9735 s->size += mips_elf_hash_table (info)->compact_rel_size; 9736 else if (s == htab->splt) 9737 { 9738 /* If the last PLT entry has a branch delay slot, allocate 9739 room for an extra nop to fill the delay slot. This is 9740 for CPUs without load interlocking. */ 9741 if (! LOAD_INTERLOCKS_P (output_bfd) 9742 && ! htab->is_vxworks && s->size > 0) 9743 s->size += 4; 9744 } 9745 else if (! CONST_STRNEQ (name, ".init") 9746 && s != htab->sgot 9747 && s != htab->sgotplt 9748 && s != htab->sstubs 9749 && s != htab->sdynbss) 9750 { 9751 /* It's not one of our sections, so don't allocate space. */ 9752 continue; 9753 } 9754 9755 if (s->size == 0) 9756 { 9757 s->flags |= SEC_EXCLUDE; 9758 continue; 9759 } 9760 9761 if ((s->flags & SEC_HAS_CONTENTS) == 0) 9762 continue; 9763 9764 /* Allocate memory for the section contents. */ 9765 s->contents = bfd_zalloc (dynobj, s->size); 9766 if (s->contents == NULL) 9767 { 9768 bfd_set_error (bfd_error_no_memory); 9769 return FALSE; 9770 } 9771 } 9772 9773 if (elf_hash_table (info)->dynamic_sections_created) 9774 { 9775 /* Add some entries to the .dynamic section. We fill in the 9776 values later, in _bfd_mips_elf_finish_dynamic_sections, but we 9777 must add the entries now so that we get the correct size for 9778 the .dynamic section. */ 9779 9780 /* SGI object has the equivalence of DT_DEBUG in the 9781 DT_MIPS_RLD_MAP entry. This must come first because glibc 9782 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools 9783 may only look at the first one they see. */ 9784 if (!bfd_link_pic (info) 9785 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0)) 9786 return FALSE; 9787 9788 if (bfd_link_executable (info) 9789 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0)) 9790 return FALSE; 9791 9792 /* The DT_DEBUG entry may be filled in by the dynamic linker and 9793 used by the debugger. */ 9794 if (bfd_link_executable (info) 9795 && !SGI_COMPAT (output_bfd) 9796 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0)) 9797 return FALSE; 9798 9799 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks)) 9800 info->flags |= DF_TEXTREL; 9801 9802 if ((info->flags & DF_TEXTREL) != 0) 9803 { 9804 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0)) 9805 return FALSE; 9806 9807 /* Clear the DF_TEXTREL flag. It will be set again if we 9808 write out an actual text relocation; we may not, because 9809 at this point we do not know whether e.g. any .eh_frame 9810 absolute relocations have been converted to PC-relative. */ 9811 info->flags &= ~DF_TEXTREL; 9812 } 9813 9814 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0)) 9815 return FALSE; 9816 9817 sreldyn = mips_elf_rel_dyn_section (info, FALSE); 9818 if (htab->is_vxworks) 9819 { 9820 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not 9821 use any of the DT_MIPS_* tags. */ 9822 if (sreldyn && sreldyn->size > 0) 9823 { 9824 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0)) 9825 return FALSE; 9826 9827 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0)) 9828 return FALSE; 9829 9830 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0)) 9831 return FALSE; 9832 } 9833 } 9834 else 9835 { 9836 if (sreldyn && sreldyn->size > 0) 9837 { 9838 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0)) 9839 return FALSE; 9840 9841 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0)) 9842 return FALSE; 9843 9844 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0)) 9845 return FALSE; 9846 } 9847 9848 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0)) 9849 return FALSE; 9850 9851 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0)) 9852 return FALSE; 9853 9854 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0)) 9855 return FALSE; 9856 9857 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0)) 9858 return FALSE; 9859 9860 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0)) 9861 return FALSE; 9862 9863 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0)) 9864 return FALSE; 9865 9866 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0)) 9867 return FALSE; 9868 9869 if (IRIX_COMPAT (dynobj) == ict_irix5 9870 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0)) 9871 return FALSE; 9872 9873 if (IRIX_COMPAT (dynobj) == ict_irix6 9874 && (bfd_get_section_by_name 9875 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj))) 9876 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0)) 9877 return FALSE; 9878 } 9879 if (htab->splt->size > 0) 9880 { 9881 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0)) 9882 return FALSE; 9883 9884 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0)) 9885 return FALSE; 9886 9887 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0)) 9888 return FALSE; 9889 9890 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0)) 9891 return FALSE; 9892 } 9893 if (htab->is_vxworks 9894 && !elf_vxworks_add_dynamic_entries (output_bfd, info)) 9895 return FALSE; 9896 } 9897 9898 return TRUE; 9899 } 9900 9901 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD. 9902 Adjust its R_ADDEND field so that it is correct for the output file. 9903 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols 9904 and sections respectively; both use symbol indexes. */ 9905 9906 static void 9907 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info, 9908 bfd *input_bfd, Elf_Internal_Sym *local_syms, 9909 asection **local_sections, Elf_Internal_Rela *rel) 9910 { 9911 unsigned int r_type, r_symndx; 9912 Elf_Internal_Sym *sym; 9913 asection *sec; 9914 9915 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections)) 9916 { 9917 r_type = ELF_R_TYPE (output_bfd, rel->r_info); 9918 if (gprel16_reloc_p (r_type) 9919 || r_type == R_MIPS_GPREL32 9920 || literal_reloc_p (r_type)) 9921 { 9922 rel->r_addend += _bfd_get_gp_value (input_bfd); 9923 rel->r_addend -= _bfd_get_gp_value (output_bfd); 9924 } 9925 9926 r_symndx = ELF_R_SYM (output_bfd, rel->r_info); 9927 sym = local_syms + r_symndx; 9928 9929 /* Adjust REL's addend to account for section merging. */ 9930 if (!bfd_link_relocatable (info)) 9931 { 9932 sec = local_sections[r_symndx]; 9933 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); 9934 } 9935 9936 /* This would normally be done by the rela_normal code in elflink.c. */ 9937 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) 9938 rel->r_addend += local_sections[r_symndx]->output_offset; 9939 } 9940 } 9941 9942 /* Handle relocations against symbols from removed linkonce sections, 9943 or sections discarded by a linker script. We use this wrapper around 9944 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs 9945 on 64-bit ELF targets. In this case for any relocation handled, which 9946 always be the first in a triplet, the remaining two have to be processed 9947 together with the first, even if they are R_MIPS_NONE. It is the symbol 9948 index referred by the first reloc that applies to all the three and the 9949 remaining two never refer to an object symbol. And it is the final 9950 relocation (the last non-null one) that determines the output field of 9951 the whole relocation so retrieve the corresponding howto structure for 9952 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION. 9953 9954 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue" 9955 and therefore requires to be pasted in a loop. It also defines a block 9956 and does not protect any of its arguments, hence the extra brackets. */ 9957 9958 static void 9959 mips_reloc_against_discarded_section (bfd *output_bfd, 9960 struct bfd_link_info *info, 9961 bfd *input_bfd, asection *input_section, 9962 Elf_Internal_Rela **rel, 9963 const Elf_Internal_Rela **relend, 9964 bfd_boolean rel_reloc, 9965 reloc_howto_type *howto, 9966 bfd_byte *contents) 9967 { 9968 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); 9969 int count = bed->s->int_rels_per_ext_rel; 9970 unsigned int r_type; 9971 int i; 9972 9973 for (i = count - 1; i > 0; i--) 9974 { 9975 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info); 9976 if (r_type != R_MIPS_NONE) 9977 { 9978 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc); 9979 break; 9980 } 9981 } 9982 do 9983 { 9984 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, 9985 (*rel), count, (*relend), 9986 howto, i, contents); 9987 } 9988 while (0); 9989 } 9990 9991 /* Relocate a MIPS ELF section. */ 9992 9993 bfd_boolean 9994 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info, 9995 bfd *input_bfd, asection *input_section, 9996 bfd_byte *contents, Elf_Internal_Rela *relocs, 9997 Elf_Internal_Sym *local_syms, 9998 asection **local_sections) 9999 { 10000 Elf_Internal_Rela *rel; 10001 const Elf_Internal_Rela *relend; 10002 bfd_vma addend = 0; 10003 bfd_boolean use_saved_addend_p = FALSE; 10004 const struct elf_backend_data *bed; 10005 10006 bed = get_elf_backend_data (output_bfd); 10007 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel; 10008 for (rel = relocs; rel < relend; ++rel) 10009 { 10010 const char *name; 10011 bfd_vma value = 0; 10012 reloc_howto_type *howto; 10013 bfd_boolean cross_mode_jump_p = FALSE; 10014 /* TRUE if the relocation is a RELA relocation, rather than a 10015 REL relocation. */ 10016 bfd_boolean rela_relocation_p = TRUE; 10017 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info); 10018 const char *msg; 10019 unsigned long r_symndx; 10020 asection *sec; 10021 Elf_Internal_Shdr *symtab_hdr; 10022 struct elf_link_hash_entry *h; 10023 bfd_boolean rel_reloc; 10024 10025 rel_reloc = (NEWABI_P (input_bfd) 10026 && mips_elf_rel_relocation_p (input_bfd, input_section, 10027 relocs, rel)); 10028 /* Find the relocation howto for this relocation. */ 10029 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc); 10030 10031 r_symndx = ELF_R_SYM (input_bfd, rel->r_info); 10032 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 10033 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections)) 10034 { 10035 sec = local_sections[r_symndx]; 10036 h = NULL; 10037 } 10038 else 10039 { 10040 unsigned long extsymoff; 10041 10042 extsymoff = 0; 10043 if (!elf_bad_symtab (input_bfd)) 10044 extsymoff = symtab_hdr->sh_info; 10045 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff]; 10046 while (h->root.type == bfd_link_hash_indirect 10047 || h->root.type == bfd_link_hash_warning) 10048 h = (struct elf_link_hash_entry *) h->root.u.i.link; 10049 10050 sec = NULL; 10051 if (h->root.type == bfd_link_hash_defined 10052 || h->root.type == bfd_link_hash_defweak) 10053 sec = h->root.u.def.section; 10054 } 10055 10056 if (sec != NULL && discarded_section (sec)) 10057 { 10058 mips_reloc_against_discarded_section (output_bfd, info, input_bfd, 10059 input_section, &rel, &relend, 10060 rel_reloc, howto, contents); 10061 continue; 10062 } 10063 10064 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd)) 10065 { 10066 /* Some 32-bit code uses R_MIPS_64. In particular, people use 10067 64-bit code, but make sure all their addresses are in the 10068 lowermost or uppermost 32-bit section of the 64-bit address 10069 space. Thus, when they use an R_MIPS_64 they mean what is 10070 usually meant by R_MIPS_32, with the exception that the 10071 stored value is sign-extended to 64 bits. */ 10072 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE); 10073 10074 /* On big-endian systems, we need to lie about the position 10075 of the reloc. */ 10076 if (bfd_big_endian (input_bfd)) 10077 rel->r_offset += 4; 10078 } 10079 10080 if (!use_saved_addend_p) 10081 { 10082 /* If these relocations were originally of the REL variety, 10083 we must pull the addend out of the field that will be 10084 relocated. Otherwise, we simply use the contents of the 10085 RELA relocation. */ 10086 if (mips_elf_rel_relocation_p (input_bfd, input_section, 10087 relocs, rel)) 10088 { 10089 rela_relocation_p = FALSE; 10090 addend = mips_elf_read_rel_addend (input_bfd, rel, 10091 howto, contents); 10092 if (hi16_reloc_p (r_type) 10093 || (got16_reloc_p (r_type) 10094 && mips_elf_local_relocation_p (input_bfd, rel, 10095 local_sections))) 10096 { 10097 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend, 10098 contents, &addend)) 10099 { 10100 if (h) 10101 name = h->root.root.string; 10102 else 10103 name = bfd_elf_sym_name (input_bfd, symtab_hdr, 10104 local_syms + r_symndx, 10105 sec); 10106 (*_bfd_error_handler) 10107 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"), 10108 input_bfd, input_section, name, howto->name, 10109 rel->r_offset); 10110 } 10111 } 10112 else 10113 addend <<= howto->rightshift; 10114 } 10115 else 10116 addend = rel->r_addend; 10117 mips_elf_adjust_addend (output_bfd, info, input_bfd, 10118 local_syms, local_sections, rel); 10119 } 10120 10121 if (bfd_link_relocatable (info)) 10122 { 10123 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd) 10124 && bfd_big_endian (input_bfd)) 10125 rel->r_offset -= 4; 10126 10127 if (!rela_relocation_p && rel->r_addend) 10128 { 10129 addend += rel->r_addend; 10130 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type)) 10131 addend = mips_elf_high (addend); 10132 else if (r_type == R_MIPS_HIGHER) 10133 addend = mips_elf_higher (addend); 10134 else if (r_type == R_MIPS_HIGHEST) 10135 addend = mips_elf_highest (addend); 10136 else 10137 addend >>= howto->rightshift; 10138 10139 /* We use the source mask, rather than the destination 10140 mask because the place to which we are writing will be 10141 source of the addend in the final link. */ 10142 addend &= howto->src_mask; 10143 10144 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) 10145 /* See the comment above about using R_MIPS_64 in the 32-bit 10146 ABI. Here, we need to update the addend. It would be 10147 possible to get away with just using the R_MIPS_32 reloc 10148 but for endianness. */ 10149 { 10150 bfd_vma sign_bits; 10151 bfd_vma low_bits; 10152 bfd_vma high_bits; 10153 10154 if (addend & ((bfd_vma) 1 << 31)) 10155 #ifdef BFD64 10156 sign_bits = ((bfd_vma) 1 << 32) - 1; 10157 #else 10158 sign_bits = -1; 10159 #endif 10160 else 10161 sign_bits = 0; 10162 10163 /* If we don't know that we have a 64-bit type, 10164 do two separate stores. */ 10165 if (bfd_big_endian (input_bfd)) 10166 { 10167 /* Store the sign-bits (which are most significant) 10168 first. */ 10169 low_bits = sign_bits; 10170 high_bits = addend; 10171 } 10172 else 10173 { 10174 low_bits = addend; 10175 high_bits = sign_bits; 10176 } 10177 bfd_put_32 (input_bfd, low_bits, 10178 contents + rel->r_offset); 10179 bfd_put_32 (input_bfd, high_bits, 10180 contents + rel->r_offset + 4); 10181 continue; 10182 } 10183 10184 if (! mips_elf_perform_relocation (info, howto, rel, addend, 10185 input_bfd, input_section, 10186 contents, FALSE)) 10187 return FALSE; 10188 } 10189 10190 /* Go on to the next relocation. */ 10191 continue; 10192 } 10193 10194 /* In the N32 and 64-bit ABIs there may be multiple consecutive 10195 relocations for the same offset. In that case we are 10196 supposed to treat the output of each relocation as the addend 10197 for the next. */ 10198 if (rel + 1 < relend 10199 && rel->r_offset == rel[1].r_offset 10200 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE) 10201 use_saved_addend_p = TRUE; 10202 else 10203 use_saved_addend_p = FALSE; 10204 10205 /* Figure out what value we are supposed to relocate. */ 10206 switch (mips_elf_calculate_relocation (output_bfd, input_bfd, 10207 input_section, info, rel, 10208 addend, howto, local_syms, 10209 local_sections, &value, 10210 &name, &cross_mode_jump_p, 10211 use_saved_addend_p)) 10212 { 10213 case bfd_reloc_continue: 10214 /* There's nothing to do. */ 10215 continue; 10216 10217 case bfd_reloc_undefined: 10218 /* mips_elf_calculate_relocation already called the 10219 undefined_symbol callback. There's no real point in 10220 trying to perform the relocation at this point, so we 10221 just skip ahead to the next relocation. */ 10222 continue; 10223 10224 case bfd_reloc_notsupported: 10225 msg = _("internal error: unsupported relocation error"); 10226 info->callbacks->warning 10227 (info, msg, name, input_bfd, input_section, rel->r_offset); 10228 return FALSE; 10229 10230 case bfd_reloc_overflow: 10231 if (use_saved_addend_p) 10232 /* Ignore overflow until we reach the last relocation for 10233 a given location. */ 10234 ; 10235 else 10236 { 10237 struct mips_elf_link_hash_table *htab; 10238 10239 htab = mips_elf_hash_table (info); 10240 BFD_ASSERT (htab != NULL); 10241 BFD_ASSERT (name != NULL); 10242 if (!htab->small_data_overflow_reported 10243 && (gprel16_reloc_p (howto->type) 10244 || literal_reloc_p (howto->type))) 10245 { 10246 msg = _("small-data section exceeds 64KB;" 10247 " lower small-data size limit (see option -G)"); 10248 10249 htab->small_data_overflow_reported = TRUE; 10250 (*info->callbacks->einfo) ("%P: %s\n", msg); 10251 } 10252 if (! ((*info->callbacks->reloc_overflow) 10253 (info, NULL, name, howto->name, (bfd_vma) 0, 10254 input_bfd, input_section, rel->r_offset))) 10255 return FALSE; 10256 } 10257 break; 10258 10259 case bfd_reloc_ok: 10260 break; 10261 10262 case bfd_reloc_outofrange: 10263 if (jal_reloc_p (howto->type)) 10264 { 10265 msg = _("JALX to a non-word-aligned address"); 10266 info->callbacks->warning 10267 (info, msg, name, input_bfd, input_section, rel->r_offset); 10268 return FALSE; 10269 } 10270 if (aligned_pcrel_reloc_p (howto->type)) 10271 { 10272 msg = _("PC-relative load from unaligned address"); 10273 info->callbacks->warning 10274 (info, msg, name, input_bfd, input_section, rel->r_offset); 10275 return FALSE; 10276 } 10277 /* Fall through. */ 10278 10279 default: 10280 abort (); 10281 break; 10282 } 10283 10284 /* If we've got another relocation for the address, keep going 10285 until we reach the last one. */ 10286 if (use_saved_addend_p) 10287 { 10288 addend = value; 10289 continue; 10290 } 10291 10292 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) 10293 /* See the comment above about using R_MIPS_64 in the 32-bit 10294 ABI. Until now, we've been using the HOWTO for R_MIPS_32; 10295 that calculated the right value. Now, however, we 10296 sign-extend the 32-bit result to 64-bits, and store it as a 10297 64-bit value. We are especially generous here in that we 10298 go to extreme lengths to support this usage on systems with 10299 only a 32-bit VMA. */ 10300 { 10301 bfd_vma sign_bits; 10302 bfd_vma low_bits; 10303 bfd_vma high_bits; 10304 10305 if (value & ((bfd_vma) 1 << 31)) 10306 #ifdef BFD64 10307 sign_bits = ((bfd_vma) 1 << 32) - 1; 10308 #else 10309 sign_bits = -1; 10310 #endif 10311 else 10312 sign_bits = 0; 10313 10314 /* If we don't know that we have a 64-bit type, 10315 do two separate stores. */ 10316 if (bfd_big_endian (input_bfd)) 10317 { 10318 /* Undo what we did above. */ 10319 rel->r_offset -= 4; 10320 /* Store the sign-bits (which are most significant) 10321 first. */ 10322 low_bits = sign_bits; 10323 high_bits = value; 10324 } 10325 else 10326 { 10327 low_bits = value; 10328 high_bits = sign_bits; 10329 } 10330 bfd_put_32 (input_bfd, low_bits, 10331 contents + rel->r_offset); 10332 bfd_put_32 (input_bfd, high_bits, 10333 contents + rel->r_offset + 4); 10334 continue; 10335 } 10336 10337 /* Actually perform the relocation. */ 10338 if (! mips_elf_perform_relocation (info, howto, rel, value, 10339 input_bfd, input_section, 10340 contents, cross_mode_jump_p)) 10341 return FALSE; 10342 } 10343 10344 return TRUE; 10345 } 10346 10347 /* A function that iterates over each entry in la25_stubs and fills 10348 in the code for each one. DATA points to a mips_htab_traverse_info. */ 10349 10350 static int 10351 mips_elf_create_la25_stub (void **slot, void *data) 10352 { 10353 struct mips_htab_traverse_info *hti; 10354 struct mips_elf_link_hash_table *htab; 10355 struct mips_elf_la25_stub *stub; 10356 asection *s; 10357 bfd_byte *loc; 10358 bfd_vma offset, target, target_high, target_low; 10359 10360 stub = (struct mips_elf_la25_stub *) *slot; 10361 hti = (struct mips_htab_traverse_info *) data; 10362 htab = mips_elf_hash_table (hti->info); 10363 BFD_ASSERT (htab != NULL); 10364 10365 /* Create the section contents, if we haven't already. */ 10366 s = stub->stub_section; 10367 loc = s->contents; 10368 if (loc == NULL) 10369 { 10370 loc = bfd_malloc (s->size); 10371 if (loc == NULL) 10372 { 10373 hti->error = TRUE; 10374 return FALSE; 10375 } 10376 s->contents = loc; 10377 } 10378 10379 /* Work out where in the section this stub should go. */ 10380 offset = stub->offset; 10381 10382 /* Work out the target address. */ 10383 target = mips_elf_get_la25_target (stub, &s); 10384 target += s->output_section->vma + s->output_offset; 10385 10386 target_high = ((target + 0x8000) >> 16) & 0xffff; 10387 target_low = (target & 0xffff); 10388 10389 if (stub->stub_section != htab->strampoline) 10390 { 10391 /* This is a simple LUI/ADDIU stub. Zero out the beginning 10392 of the section and write the two instructions at the end. */ 10393 memset (loc, 0, offset); 10394 loc += offset; 10395 if (ELF_ST_IS_MICROMIPS (stub->h->root.other)) 10396 { 10397 bfd_put_micromips_32 (hti->output_bfd, 10398 LA25_LUI_MICROMIPS (target_high), 10399 loc); 10400 bfd_put_micromips_32 (hti->output_bfd, 10401 LA25_ADDIU_MICROMIPS (target_low), 10402 loc + 4); 10403 } 10404 else 10405 { 10406 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc); 10407 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4); 10408 } 10409 } 10410 else 10411 { 10412 /* This is trampoline. */ 10413 loc += offset; 10414 if (ELF_ST_IS_MICROMIPS (stub->h->root.other)) 10415 { 10416 bfd_put_micromips_32 (hti->output_bfd, 10417 LA25_LUI_MICROMIPS (target_high), loc); 10418 bfd_put_micromips_32 (hti->output_bfd, 10419 LA25_J_MICROMIPS (target), loc + 4); 10420 bfd_put_micromips_32 (hti->output_bfd, 10421 LA25_ADDIU_MICROMIPS (target_low), loc + 8); 10422 bfd_put_32 (hti->output_bfd, 0, loc + 12); 10423 } 10424 else 10425 { 10426 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc); 10427 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4); 10428 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8); 10429 bfd_put_32 (hti->output_bfd, 0, loc + 12); 10430 } 10431 } 10432 return TRUE; 10433 } 10434 10435 /* If NAME is one of the special IRIX6 symbols defined by the linker, 10436 adjust it appropriately now. */ 10437 10438 static void 10439 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED, 10440 const char *name, Elf_Internal_Sym *sym) 10441 { 10442 /* The linker script takes care of providing names and values for 10443 these, but we must place them into the right sections. */ 10444 static const char* const text_section_symbols[] = { 10445 "_ftext", 10446 "_etext", 10447 "__dso_displacement", 10448 "__elf_header", 10449 "__program_header_table", 10450 NULL 10451 }; 10452 10453 static const char* const data_section_symbols[] = { 10454 "_fdata", 10455 "_edata", 10456 "_end", 10457 "_fbss", 10458 NULL 10459 }; 10460 10461 const char* const *p; 10462 int i; 10463 10464 for (i = 0; i < 2; ++i) 10465 for (p = (i == 0) ? text_section_symbols : data_section_symbols; 10466 *p; 10467 ++p) 10468 if (strcmp (*p, name) == 0) 10469 { 10470 /* All of these symbols are given type STT_SECTION by the 10471 IRIX6 linker. */ 10472 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); 10473 sym->st_other = STO_PROTECTED; 10474 10475 /* The IRIX linker puts these symbols in special sections. */ 10476 if (i == 0) 10477 sym->st_shndx = SHN_MIPS_TEXT; 10478 else 10479 sym->st_shndx = SHN_MIPS_DATA; 10480 10481 break; 10482 } 10483 } 10484 10485 /* Finish up dynamic symbol handling. We set the contents of various 10486 dynamic sections here. */ 10487 10488 bfd_boolean 10489 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd, 10490 struct bfd_link_info *info, 10491 struct elf_link_hash_entry *h, 10492 Elf_Internal_Sym *sym) 10493 { 10494 bfd *dynobj; 10495 asection *sgot; 10496 struct mips_got_info *g, *gg; 10497 const char *name; 10498 int idx; 10499 struct mips_elf_link_hash_table *htab; 10500 struct mips_elf_link_hash_entry *hmips; 10501 10502 htab = mips_elf_hash_table (info); 10503 BFD_ASSERT (htab != NULL); 10504 dynobj = elf_hash_table (info)->dynobj; 10505 hmips = (struct mips_elf_link_hash_entry *) h; 10506 10507 BFD_ASSERT (!htab->is_vxworks); 10508 10509 if (h->plt.plist != NULL 10510 && (h->plt.plist->mips_offset != MINUS_ONE 10511 || h->plt.plist->comp_offset != MINUS_ONE)) 10512 { 10513 /* We've decided to create a PLT entry for this symbol. */ 10514 bfd_byte *loc; 10515 bfd_vma header_address, got_address; 10516 bfd_vma got_address_high, got_address_low, load; 10517 bfd_vma got_index; 10518 bfd_vma isa_bit; 10519 10520 got_index = h->plt.plist->gotplt_index; 10521 10522 BFD_ASSERT (htab->use_plts_and_copy_relocs); 10523 BFD_ASSERT (h->dynindx != -1); 10524 BFD_ASSERT (htab->splt != NULL); 10525 BFD_ASSERT (got_index != MINUS_ONE); 10526 BFD_ASSERT (!h->def_regular); 10527 10528 /* Calculate the address of the PLT header. */ 10529 isa_bit = htab->plt_header_is_comp; 10530 header_address = (htab->splt->output_section->vma 10531 + htab->splt->output_offset + isa_bit); 10532 10533 /* Calculate the address of the .got.plt entry. */ 10534 got_address = (htab->sgotplt->output_section->vma 10535 + htab->sgotplt->output_offset 10536 + got_index * MIPS_ELF_GOT_SIZE (dynobj)); 10537 10538 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff; 10539 got_address_low = got_address & 0xffff; 10540 10541 /* Initially point the .got.plt entry at the PLT header. */ 10542 loc = (htab->sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj)); 10543 if (ABI_64_P (output_bfd)) 10544 bfd_put_64 (output_bfd, header_address, loc); 10545 else 10546 bfd_put_32 (output_bfd, header_address, loc); 10547 10548 /* Now handle the PLT itself. First the standard entry (the order 10549 does not matter, we just have to pick one). */ 10550 if (h->plt.plist->mips_offset != MINUS_ONE) 10551 { 10552 const bfd_vma *plt_entry; 10553 bfd_vma plt_offset; 10554 10555 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset; 10556 10557 BFD_ASSERT (plt_offset <= htab->splt->size); 10558 10559 /* Find out where the .plt entry should go. */ 10560 loc = htab->splt->contents + plt_offset; 10561 10562 /* Pick the load opcode. */ 10563 load = MIPS_ELF_LOAD_WORD (output_bfd); 10564 10565 /* Fill in the PLT entry itself. */ 10566 10567 if (MIPSR6_P (output_bfd)) 10568 plt_entry = mipsr6_exec_plt_entry; 10569 else 10570 plt_entry = mips_exec_plt_entry; 10571 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc); 10572 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, 10573 loc + 4); 10574 10575 if (! LOAD_INTERLOCKS_P (output_bfd)) 10576 { 10577 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8); 10578 bfd_put_32 (output_bfd, plt_entry[3], loc + 12); 10579 } 10580 else 10581 { 10582 bfd_put_32 (output_bfd, plt_entry[3], loc + 8); 10583 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, 10584 loc + 12); 10585 } 10586 } 10587 10588 /* Now the compressed entry. They come after any standard ones. */ 10589 if (h->plt.plist->comp_offset != MINUS_ONE) 10590 { 10591 bfd_vma plt_offset; 10592 10593 plt_offset = (htab->plt_header_size + htab->plt_mips_offset 10594 + h->plt.plist->comp_offset); 10595 10596 BFD_ASSERT (plt_offset <= htab->splt->size); 10597 10598 /* Find out where the .plt entry should go. */ 10599 loc = htab->splt->contents + plt_offset; 10600 10601 /* Fill in the PLT entry itself. */ 10602 if (!MICROMIPS_P (output_bfd)) 10603 { 10604 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry; 10605 10606 bfd_put_16 (output_bfd, plt_entry[0], loc); 10607 bfd_put_16 (output_bfd, plt_entry[1], loc + 2); 10608 bfd_put_16 (output_bfd, plt_entry[2], loc + 4); 10609 bfd_put_16 (output_bfd, plt_entry[3], loc + 6); 10610 bfd_put_16 (output_bfd, plt_entry[4], loc + 8); 10611 bfd_put_16 (output_bfd, plt_entry[5], loc + 10); 10612 bfd_put_32 (output_bfd, got_address, loc + 12); 10613 } 10614 else if (htab->insn32) 10615 { 10616 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry; 10617 10618 bfd_put_16 (output_bfd, plt_entry[0], loc); 10619 bfd_put_16 (output_bfd, got_address_high, loc + 2); 10620 bfd_put_16 (output_bfd, plt_entry[2], loc + 4); 10621 bfd_put_16 (output_bfd, got_address_low, loc + 6); 10622 bfd_put_16 (output_bfd, plt_entry[4], loc + 8); 10623 bfd_put_16 (output_bfd, plt_entry[5], loc + 10); 10624 bfd_put_16 (output_bfd, plt_entry[6], loc + 12); 10625 bfd_put_16 (output_bfd, got_address_low, loc + 14); 10626 } 10627 else 10628 { 10629 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry; 10630 bfd_signed_vma gotpc_offset; 10631 bfd_vma loc_address; 10632 10633 BFD_ASSERT (got_address % 4 == 0); 10634 10635 loc_address = (htab->splt->output_section->vma 10636 + htab->splt->output_offset + plt_offset); 10637 gotpc_offset = got_address - ((loc_address | 3) ^ 3); 10638 10639 /* ADDIUPC has a span of +/-16MB, check we're in range. */ 10640 if (gotpc_offset + 0x1000000 >= 0x2000000) 10641 { 10642 (*_bfd_error_handler) 10643 (_("%B: `%A' offset of %ld from `%A' " 10644 "beyond the range of ADDIUPC"), 10645 output_bfd, 10646 htab->sgotplt->output_section, 10647 htab->splt->output_section, 10648 (long) gotpc_offset); 10649 bfd_set_error (bfd_error_no_error); 10650 return FALSE; 10651 } 10652 bfd_put_16 (output_bfd, 10653 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc); 10654 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2); 10655 bfd_put_16 (output_bfd, plt_entry[2], loc + 4); 10656 bfd_put_16 (output_bfd, plt_entry[3], loc + 6); 10657 bfd_put_16 (output_bfd, plt_entry[4], loc + 8); 10658 bfd_put_16 (output_bfd, plt_entry[5], loc + 10); 10659 } 10660 } 10661 10662 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */ 10663 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt, 10664 got_index - 2, h->dynindx, 10665 R_MIPS_JUMP_SLOT, got_address); 10666 10667 /* We distinguish between PLT entries and lazy-binding stubs by 10668 giving the former an st_other value of STO_MIPS_PLT. Set the 10669 flag and leave the value if there are any relocations in the 10670 binary where pointer equality matters. */ 10671 sym->st_shndx = SHN_UNDEF; 10672 if (h->pointer_equality_needed) 10673 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other); 10674 else 10675 { 10676 sym->st_value = 0; 10677 sym->st_other = 0; 10678 } 10679 } 10680 10681 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE) 10682 { 10683 /* We've decided to create a lazy-binding stub. */ 10684 bfd_boolean micromips_p = MICROMIPS_P (output_bfd); 10685 unsigned int other = micromips_p ? STO_MICROMIPS : 0; 10686 bfd_vma stub_size = htab->function_stub_size; 10687 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE]; 10688 bfd_vma isa_bit = micromips_p; 10689 bfd_vma stub_big_size; 10690 10691 if (!micromips_p) 10692 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE; 10693 else if (htab->insn32) 10694 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE; 10695 else 10696 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE; 10697 10698 /* This symbol has a stub. Set it up. */ 10699 10700 BFD_ASSERT (h->dynindx != -1); 10701 10702 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff); 10703 10704 /* Values up to 2^31 - 1 are allowed. Larger values would cause 10705 sign extension at runtime in the stub, resulting in a negative 10706 index value. */ 10707 if (h->dynindx & ~0x7fffffff) 10708 return FALSE; 10709 10710 /* Fill the stub. */ 10711 if (micromips_p) 10712 { 10713 idx = 0; 10714 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd), 10715 stub + idx); 10716 idx += 4; 10717 if (htab->insn32) 10718 { 10719 bfd_put_micromips_32 (output_bfd, 10720 STUB_MOVE32_MICROMIPS, stub + idx); 10721 idx += 4; 10722 } 10723 else 10724 { 10725 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx); 10726 idx += 2; 10727 } 10728 if (stub_size == stub_big_size) 10729 { 10730 long dynindx_hi = (h->dynindx >> 16) & 0x7fff; 10731 10732 bfd_put_micromips_32 (output_bfd, 10733 STUB_LUI_MICROMIPS (dynindx_hi), 10734 stub + idx); 10735 idx += 4; 10736 } 10737 if (htab->insn32) 10738 { 10739 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS, 10740 stub + idx); 10741 idx += 4; 10742 } 10743 else 10744 { 10745 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx); 10746 idx += 2; 10747 } 10748 10749 /* If a large stub is not required and sign extension is not a 10750 problem, then use legacy code in the stub. */ 10751 if (stub_size == stub_big_size) 10752 bfd_put_micromips_32 (output_bfd, 10753 STUB_ORI_MICROMIPS (h->dynindx & 0xffff), 10754 stub + idx); 10755 else if (h->dynindx & ~0x7fff) 10756 bfd_put_micromips_32 (output_bfd, 10757 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff), 10758 stub + idx); 10759 else 10760 bfd_put_micromips_32 (output_bfd, 10761 STUB_LI16S_MICROMIPS (output_bfd, 10762 h->dynindx), 10763 stub + idx); 10764 } 10765 else 10766 { 10767 idx = 0; 10768 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx); 10769 idx += 4; 10770 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx); 10771 idx += 4; 10772 if (stub_size == stub_big_size) 10773 { 10774 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff), 10775 stub + idx); 10776 idx += 4; 10777 } 10778 bfd_put_32 (output_bfd, STUB_JALR, stub + idx); 10779 idx += 4; 10780 10781 /* If a large stub is not required and sign extension is not a 10782 problem, then use legacy code in the stub. */ 10783 if (stub_size == stub_big_size) 10784 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), 10785 stub + idx); 10786 else if (h->dynindx & ~0x7fff) 10787 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), 10788 stub + idx); 10789 else 10790 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx), 10791 stub + idx); 10792 } 10793 10794 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size); 10795 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset, 10796 stub, stub_size); 10797 10798 /* Mark the symbol as undefined. stub_offset != -1 occurs 10799 only for the referenced symbol. */ 10800 sym->st_shndx = SHN_UNDEF; 10801 10802 /* The run-time linker uses the st_value field of the symbol 10803 to reset the global offset table entry for this external 10804 to its stub address when unlinking a shared object. */ 10805 sym->st_value = (htab->sstubs->output_section->vma 10806 + htab->sstubs->output_offset 10807 + h->plt.plist->stub_offset 10808 + isa_bit); 10809 sym->st_other = other; 10810 } 10811 10812 /* If we have a MIPS16 function with a stub, the dynamic symbol must 10813 refer to the stub, since only the stub uses the standard calling 10814 conventions. */ 10815 if (h->dynindx != -1 && hmips->fn_stub != NULL) 10816 { 10817 BFD_ASSERT (hmips->need_fn_stub); 10818 sym->st_value = (hmips->fn_stub->output_section->vma 10819 + hmips->fn_stub->output_offset); 10820 sym->st_size = hmips->fn_stub->size; 10821 sym->st_other = ELF_ST_VISIBILITY (sym->st_other); 10822 } 10823 10824 BFD_ASSERT (h->dynindx != -1 10825 || h->forced_local); 10826 10827 sgot = htab->sgot; 10828 g = htab->got_info; 10829 BFD_ASSERT (g != NULL); 10830 10831 /* Run through the global symbol table, creating GOT entries for all 10832 the symbols that need them. */ 10833 if (hmips->global_got_area != GGA_NONE) 10834 { 10835 bfd_vma offset; 10836 bfd_vma value; 10837 10838 value = sym->st_value; 10839 offset = mips_elf_primary_global_got_index (output_bfd, info, h); 10840 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset); 10841 } 10842 10843 if (hmips->global_got_area != GGA_NONE && g->next) 10844 { 10845 struct mips_got_entry e, *p; 10846 bfd_vma entry; 10847 bfd_vma offset; 10848 10849 gg = g; 10850 10851 e.abfd = output_bfd; 10852 e.symndx = -1; 10853 e.d.h = hmips; 10854 e.tls_type = GOT_TLS_NONE; 10855 10856 for (g = g->next; g->next != gg; g = g->next) 10857 { 10858 if (g->got_entries 10859 && (p = (struct mips_got_entry *) htab_find (g->got_entries, 10860 &e))) 10861 { 10862 offset = p->gotidx; 10863 BFD_ASSERT (offset > 0 && offset < htab->sgot->size); 10864 if (bfd_link_pic (info) 10865 || (elf_hash_table (info)->dynamic_sections_created 10866 && p->d.h != NULL 10867 && p->d.h->root.def_dynamic 10868 && !p->d.h->root.def_regular)) 10869 { 10870 /* Create an R_MIPS_REL32 relocation for this entry. Due to 10871 the various compatibility problems, it's easier to mock 10872 up an R_MIPS_32 or R_MIPS_64 relocation and leave 10873 mips_elf_create_dynamic_relocation to calculate the 10874 appropriate addend. */ 10875 Elf_Internal_Rela rel[3]; 10876 10877 memset (rel, 0, sizeof (rel)); 10878 if (ABI_64_P (output_bfd)) 10879 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64); 10880 else 10881 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32); 10882 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; 10883 10884 entry = 0; 10885 if (! (mips_elf_create_dynamic_relocation 10886 (output_bfd, info, rel, 10887 e.d.h, NULL, sym->st_value, &entry, sgot))) 10888 return FALSE; 10889 } 10890 else 10891 entry = sym->st_value; 10892 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset); 10893 } 10894 } 10895 } 10896 10897 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ 10898 name = h->root.root.string; 10899 if (h == elf_hash_table (info)->hdynamic 10900 || h == elf_hash_table (info)->hgot) 10901 sym->st_shndx = SHN_ABS; 10902 else if (strcmp (name, "_DYNAMIC_LINK") == 0 10903 || strcmp (name, "_DYNAMIC_LINKING") == 0) 10904 { 10905 sym->st_shndx = SHN_ABS; 10906 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); 10907 sym->st_value = 1; 10908 } 10909 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd)) 10910 { 10911 sym->st_shndx = SHN_ABS; 10912 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); 10913 sym->st_value = elf_gp (output_bfd); 10914 } 10915 else if (SGI_COMPAT (output_bfd)) 10916 { 10917 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 10918 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) 10919 { 10920 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); 10921 sym->st_other = STO_PROTECTED; 10922 sym->st_value = 0; 10923 sym->st_shndx = SHN_MIPS_DATA; 10924 } 10925 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) 10926 { 10927 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); 10928 sym->st_other = STO_PROTECTED; 10929 sym->st_value = mips_elf_hash_table (info)->procedure_count; 10930 sym->st_shndx = SHN_ABS; 10931 } 10932 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS) 10933 { 10934 if (h->type == STT_FUNC) 10935 sym->st_shndx = SHN_MIPS_TEXT; 10936 else if (h->type == STT_OBJECT) 10937 sym->st_shndx = SHN_MIPS_DATA; 10938 } 10939 } 10940 10941 /* Emit a copy reloc, if needed. */ 10942 if (h->needs_copy) 10943 { 10944 asection *s; 10945 bfd_vma symval; 10946 10947 BFD_ASSERT (h->dynindx != -1); 10948 BFD_ASSERT (htab->use_plts_and_copy_relocs); 10949 10950 s = mips_elf_rel_dyn_section (info, FALSE); 10951 symval = (h->root.u.def.section->output_section->vma 10952 + h->root.u.def.section->output_offset 10953 + h->root.u.def.value); 10954 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++, 10955 h->dynindx, R_MIPS_COPY, symval); 10956 } 10957 10958 /* Handle the IRIX6-specific symbols. */ 10959 if (IRIX_COMPAT (output_bfd) == ict_irix6) 10960 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym); 10961 10962 /* Keep dynamic compressed symbols odd. This allows the dynamic linker 10963 to treat compressed symbols like any other. */ 10964 if (ELF_ST_IS_MIPS16 (sym->st_other)) 10965 { 10966 BFD_ASSERT (sym->st_value & 1); 10967 sym->st_other -= STO_MIPS16; 10968 } 10969 else if (ELF_ST_IS_MICROMIPS (sym->st_other)) 10970 { 10971 BFD_ASSERT (sym->st_value & 1); 10972 sym->st_other -= STO_MICROMIPS; 10973 } 10974 10975 return TRUE; 10976 } 10977 10978 /* Likewise, for VxWorks. */ 10979 10980 bfd_boolean 10981 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd, 10982 struct bfd_link_info *info, 10983 struct elf_link_hash_entry *h, 10984 Elf_Internal_Sym *sym) 10985 { 10986 bfd *dynobj; 10987 asection *sgot; 10988 struct mips_got_info *g; 10989 struct mips_elf_link_hash_table *htab; 10990 struct mips_elf_link_hash_entry *hmips; 10991 10992 htab = mips_elf_hash_table (info); 10993 BFD_ASSERT (htab != NULL); 10994 dynobj = elf_hash_table (info)->dynobj; 10995 hmips = (struct mips_elf_link_hash_entry *) h; 10996 10997 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE) 10998 { 10999 bfd_byte *loc; 11000 bfd_vma plt_address, got_address, got_offset, branch_offset; 11001 Elf_Internal_Rela rel; 11002 static const bfd_vma *plt_entry; 11003 bfd_vma gotplt_index; 11004 bfd_vma plt_offset; 11005 11006 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset; 11007 gotplt_index = h->plt.plist->gotplt_index; 11008 11009 BFD_ASSERT (h->dynindx != -1); 11010 BFD_ASSERT (htab->splt != NULL); 11011 BFD_ASSERT (gotplt_index != MINUS_ONE); 11012 BFD_ASSERT (plt_offset <= htab->splt->size); 11013 11014 /* Calculate the address of the .plt entry. */ 11015 plt_address = (htab->splt->output_section->vma 11016 + htab->splt->output_offset 11017 + plt_offset); 11018 11019 /* Calculate the address of the .got.plt entry. */ 11020 got_address = (htab->sgotplt->output_section->vma 11021 + htab->sgotplt->output_offset 11022 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)); 11023 11024 /* Calculate the offset of the .got.plt entry from 11025 _GLOBAL_OFFSET_TABLE_. */ 11026 got_offset = mips_elf_gotplt_index (info, h); 11027 11028 /* Calculate the offset for the branch at the start of the PLT 11029 entry. The branch jumps to the beginning of .plt. */ 11030 branch_offset = -(plt_offset / 4 + 1) & 0xffff; 11031 11032 /* Fill in the initial value of the .got.plt entry. */ 11033 bfd_put_32 (output_bfd, plt_address, 11034 (htab->sgotplt->contents 11035 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd))); 11036 11037 /* Find out where the .plt entry should go. */ 11038 loc = htab->splt->contents + plt_offset; 11039 11040 if (bfd_link_pic (info)) 11041 { 11042 plt_entry = mips_vxworks_shared_plt_entry; 11043 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc); 11044 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4); 11045 } 11046 else 11047 { 11048 bfd_vma got_address_high, got_address_low; 11049 11050 plt_entry = mips_vxworks_exec_plt_entry; 11051 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff; 11052 got_address_low = got_address & 0xffff; 11053 11054 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc); 11055 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4); 11056 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8); 11057 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12); 11058 bfd_put_32 (output_bfd, plt_entry[4], loc + 16); 11059 bfd_put_32 (output_bfd, plt_entry[5], loc + 20); 11060 bfd_put_32 (output_bfd, plt_entry[6], loc + 24); 11061 bfd_put_32 (output_bfd, plt_entry[7], loc + 28); 11062 11063 loc = (htab->srelplt2->contents 11064 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela)); 11065 11066 /* Emit a relocation for the .got.plt entry. */ 11067 rel.r_offset = got_address; 11068 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32); 11069 rel.r_addend = plt_offset; 11070 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11071 11072 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */ 11073 loc += sizeof (Elf32_External_Rela); 11074 rel.r_offset = plt_address + 8; 11075 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); 11076 rel.r_addend = got_offset; 11077 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11078 11079 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */ 11080 loc += sizeof (Elf32_External_Rela); 11081 rel.r_offset += 4; 11082 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); 11083 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11084 } 11085 11086 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */ 11087 loc = (htab->srelplt->contents 11088 + gotplt_index * sizeof (Elf32_External_Rela)); 11089 rel.r_offset = got_address; 11090 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT); 11091 rel.r_addend = 0; 11092 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11093 11094 if (!h->def_regular) 11095 sym->st_shndx = SHN_UNDEF; 11096 } 11097 11098 BFD_ASSERT (h->dynindx != -1 || h->forced_local); 11099 11100 sgot = htab->sgot; 11101 g = htab->got_info; 11102 BFD_ASSERT (g != NULL); 11103 11104 /* See if this symbol has an entry in the GOT. */ 11105 if (hmips->global_got_area != GGA_NONE) 11106 { 11107 bfd_vma offset; 11108 Elf_Internal_Rela outrel; 11109 bfd_byte *loc; 11110 asection *s; 11111 11112 /* Install the symbol value in the GOT. */ 11113 offset = mips_elf_primary_global_got_index (output_bfd, info, h); 11114 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset); 11115 11116 /* Add a dynamic relocation for it. */ 11117 s = mips_elf_rel_dyn_section (info, FALSE); 11118 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela)); 11119 outrel.r_offset = (sgot->output_section->vma 11120 + sgot->output_offset 11121 + offset); 11122 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32); 11123 outrel.r_addend = 0; 11124 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc); 11125 } 11126 11127 /* Emit a copy reloc, if needed. */ 11128 if (h->needs_copy) 11129 { 11130 Elf_Internal_Rela rel; 11131 11132 BFD_ASSERT (h->dynindx != -1); 11133 11134 rel.r_offset = (h->root.u.def.section->output_section->vma 11135 + h->root.u.def.section->output_offset 11136 + h->root.u.def.value); 11137 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY); 11138 rel.r_addend = 0; 11139 bfd_elf32_swap_reloca_out (output_bfd, &rel, 11140 htab->srelbss->contents 11141 + (htab->srelbss->reloc_count 11142 * sizeof (Elf32_External_Rela))); 11143 ++htab->srelbss->reloc_count; 11144 } 11145 11146 /* If this is a mips16/microMIPS symbol, force the value to be even. */ 11147 if (ELF_ST_IS_COMPRESSED (sym->st_other)) 11148 sym->st_value &= ~1; 11149 11150 return TRUE; 11151 } 11152 11153 /* Write out a plt0 entry to the beginning of .plt. */ 11154 11155 static bfd_boolean 11156 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info) 11157 { 11158 bfd_byte *loc; 11159 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low; 11160 static const bfd_vma *plt_entry; 11161 struct mips_elf_link_hash_table *htab; 11162 11163 htab = mips_elf_hash_table (info); 11164 BFD_ASSERT (htab != NULL); 11165 11166 if (ABI_64_P (output_bfd)) 11167 plt_entry = mips_n64_exec_plt0_entry; 11168 else if (ABI_N32_P (output_bfd)) 11169 plt_entry = mips_n32_exec_plt0_entry; 11170 else if (!htab->plt_header_is_comp) 11171 plt_entry = mips_o32_exec_plt0_entry; 11172 else if (htab->insn32) 11173 plt_entry = micromips_insn32_o32_exec_plt0_entry; 11174 else 11175 plt_entry = micromips_o32_exec_plt0_entry; 11176 11177 /* Calculate the value of .got.plt. */ 11178 gotplt_value = (htab->sgotplt->output_section->vma 11179 + htab->sgotplt->output_offset); 11180 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff; 11181 gotplt_value_low = gotplt_value & 0xffff; 11182 11183 /* The PLT sequence is not safe for N64 if .got.plt's address can 11184 not be loaded in two instructions. */ 11185 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0 11186 || ~(gotplt_value | 0x7fffffff) == 0); 11187 11188 /* Install the PLT header. */ 11189 loc = htab->splt->contents; 11190 if (plt_entry == micromips_o32_exec_plt0_entry) 11191 { 11192 bfd_vma gotpc_offset; 11193 bfd_vma loc_address; 11194 size_t i; 11195 11196 BFD_ASSERT (gotplt_value % 4 == 0); 11197 11198 loc_address = (htab->splt->output_section->vma 11199 + htab->splt->output_offset); 11200 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3); 11201 11202 /* ADDIUPC has a span of +/-16MB, check we're in range. */ 11203 if (gotpc_offset + 0x1000000 >= 0x2000000) 11204 { 11205 (*_bfd_error_handler) 11206 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"), 11207 output_bfd, 11208 htab->sgotplt->output_section, 11209 htab->splt->output_section, 11210 (long) gotpc_offset); 11211 bfd_set_error (bfd_error_no_error); 11212 return FALSE; 11213 } 11214 bfd_put_16 (output_bfd, 11215 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc); 11216 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2); 11217 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++) 11218 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2)); 11219 } 11220 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry) 11221 { 11222 size_t i; 11223 11224 bfd_put_16 (output_bfd, plt_entry[0], loc); 11225 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2); 11226 bfd_put_16 (output_bfd, plt_entry[2], loc + 4); 11227 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6); 11228 bfd_put_16 (output_bfd, plt_entry[4], loc + 8); 11229 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10); 11230 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++) 11231 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2)); 11232 } 11233 else 11234 { 11235 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc); 11236 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4); 11237 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8); 11238 bfd_put_32 (output_bfd, plt_entry[3], loc + 12); 11239 bfd_put_32 (output_bfd, plt_entry[4], loc + 16); 11240 bfd_put_32 (output_bfd, plt_entry[5], loc + 20); 11241 bfd_put_32 (output_bfd, plt_entry[6], loc + 24); 11242 bfd_put_32 (output_bfd, plt_entry[7], loc + 28); 11243 } 11244 11245 return TRUE; 11246 } 11247 11248 /* Install the PLT header for a VxWorks executable and finalize the 11249 contents of .rela.plt.unloaded. */ 11250 11251 static void 11252 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info) 11253 { 11254 Elf_Internal_Rela rela; 11255 bfd_byte *loc; 11256 bfd_vma got_value, got_value_high, got_value_low, plt_address; 11257 static const bfd_vma *plt_entry; 11258 struct mips_elf_link_hash_table *htab; 11259 11260 htab = mips_elf_hash_table (info); 11261 BFD_ASSERT (htab != NULL); 11262 11263 plt_entry = mips_vxworks_exec_plt0_entry; 11264 11265 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */ 11266 got_value = (htab->root.hgot->root.u.def.section->output_section->vma 11267 + htab->root.hgot->root.u.def.section->output_offset 11268 + htab->root.hgot->root.u.def.value); 11269 11270 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff; 11271 got_value_low = got_value & 0xffff; 11272 11273 /* Calculate the address of the PLT header. */ 11274 plt_address = htab->splt->output_section->vma + htab->splt->output_offset; 11275 11276 /* Install the PLT header. */ 11277 loc = htab->splt->contents; 11278 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc); 11279 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4); 11280 bfd_put_32 (output_bfd, plt_entry[2], loc + 8); 11281 bfd_put_32 (output_bfd, plt_entry[3], loc + 12); 11282 bfd_put_32 (output_bfd, plt_entry[4], loc + 16); 11283 bfd_put_32 (output_bfd, plt_entry[5], loc + 20); 11284 11285 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */ 11286 loc = htab->srelplt2->contents; 11287 rela.r_offset = plt_address; 11288 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); 11289 rela.r_addend = 0; 11290 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); 11291 loc += sizeof (Elf32_External_Rela); 11292 11293 /* Output the relocation for the following addiu of 11294 %lo(_GLOBAL_OFFSET_TABLE_). */ 11295 rela.r_offset += 4; 11296 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); 11297 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); 11298 loc += sizeof (Elf32_External_Rela); 11299 11300 /* Fix up the remaining relocations. They may have the wrong 11301 symbol index for _G_O_T_ or _P_L_T_ depending on the order 11302 in which symbols were output. */ 11303 while (loc < htab->srelplt2->contents + htab->srelplt2->size) 11304 { 11305 Elf_Internal_Rela rel; 11306 11307 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); 11308 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32); 11309 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11310 loc += sizeof (Elf32_External_Rela); 11311 11312 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); 11313 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); 11314 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11315 loc += sizeof (Elf32_External_Rela); 11316 11317 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); 11318 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); 11319 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11320 loc += sizeof (Elf32_External_Rela); 11321 } 11322 } 11323 11324 /* Install the PLT header for a VxWorks shared library. */ 11325 11326 static void 11327 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info) 11328 { 11329 unsigned int i; 11330 struct mips_elf_link_hash_table *htab; 11331 11332 htab = mips_elf_hash_table (info); 11333 BFD_ASSERT (htab != NULL); 11334 11335 /* We just need to copy the entry byte-by-byte. */ 11336 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++) 11337 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i], 11338 htab->splt->contents + i * 4); 11339 } 11340 11341 /* Finish up the dynamic sections. */ 11342 11343 bfd_boolean 11344 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd, 11345 struct bfd_link_info *info) 11346 { 11347 bfd *dynobj; 11348 asection *sdyn; 11349 asection *sgot; 11350 struct mips_got_info *gg, *g; 11351 struct mips_elf_link_hash_table *htab; 11352 11353 htab = mips_elf_hash_table (info); 11354 BFD_ASSERT (htab != NULL); 11355 11356 dynobj = elf_hash_table (info)->dynobj; 11357 11358 sdyn = bfd_get_linker_section (dynobj, ".dynamic"); 11359 11360 sgot = htab->sgot; 11361 gg = htab->got_info; 11362 11363 if (elf_hash_table (info)->dynamic_sections_created) 11364 { 11365 bfd_byte *b; 11366 int dyn_to_skip = 0, dyn_skipped = 0; 11367 11368 BFD_ASSERT (sdyn != NULL); 11369 BFD_ASSERT (gg != NULL); 11370 11371 g = mips_elf_bfd_got (output_bfd, FALSE); 11372 BFD_ASSERT (g != NULL); 11373 11374 for (b = sdyn->contents; 11375 b < sdyn->contents + sdyn->size; 11376 b += MIPS_ELF_DYN_SIZE (dynobj)) 11377 { 11378 Elf_Internal_Dyn dyn; 11379 const char *name; 11380 size_t elemsize; 11381 asection *s; 11382 bfd_boolean swap_out_p; 11383 11384 /* Read in the current dynamic entry. */ 11385 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); 11386 11387 /* Assume that we're going to modify it and write it out. */ 11388 swap_out_p = TRUE; 11389 11390 switch (dyn.d_tag) 11391 { 11392 case DT_RELENT: 11393 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj); 11394 break; 11395 11396 case DT_RELAENT: 11397 BFD_ASSERT (htab->is_vxworks); 11398 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj); 11399 break; 11400 11401 case DT_STRSZ: 11402 /* Rewrite DT_STRSZ. */ 11403 dyn.d_un.d_val = 11404 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); 11405 break; 11406 11407 case DT_PLTGOT: 11408 s = htab->sgot; 11409 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; 11410 break; 11411 11412 case DT_MIPS_PLTGOT: 11413 s = htab->sgotplt; 11414 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; 11415 break; 11416 11417 case DT_MIPS_RLD_VERSION: 11418 dyn.d_un.d_val = 1; /* XXX */ 11419 break; 11420 11421 case DT_MIPS_FLAGS: 11422 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */ 11423 break; 11424 11425 case DT_MIPS_TIME_STAMP: 11426 { 11427 time_t t; 11428 time (&t); 11429 dyn.d_un.d_val = t; 11430 } 11431 break; 11432 11433 case DT_MIPS_ICHECKSUM: 11434 /* XXX FIXME: */ 11435 swap_out_p = FALSE; 11436 break; 11437 11438 case DT_MIPS_IVERSION: 11439 /* XXX FIXME: */ 11440 swap_out_p = FALSE; 11441 break; 11442 11443 case DT_MIPS_BASE_ADDRESS: 11444 s = output_bfd->sections; 11445 BFD_ASSERT (s != NULL); 11446 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff; 11447 break; 11448 11449 case DT_MIPS_LOCAL_GOTNO: 11450 dyn.d_un.d_val = g->local_gotno; 11451 break; 11452 11453 case DT_MIPS_UNREFEXTNO: 11454 /* The index into the dynamic symbol table which is the 11455 entry of the first external symbol that is not 11456 referenced within the same object. */ 11457 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1; 11458 break; 11459 11460 case DT_MIPS_GOTSYM: 11461 if (htab->global_gotsym) 11462 { 11463 dyn.d_un.d_val = htab->global_gotsym->dynindx; 11464 break; 11465 } 11466 /* In case if we don't have global got symbols we default 11467 to setting DT_MIPS_GOTSYM to the same value as 11468 DT_MIPS_SYMTABNO, so we just fall through. */ 11469 11470 case DT_MIPS_SYMTABNO: 11471 name = ".dynsym"; 11472 elemsize = MIPS_ELF_SYM_SIZE (output_bfd); 11473 s = bfd_get_section_by_name (output_bfd, name); 11474 11475 if (s != NULL) 11476 dyn.d_un.d_val = s->size / elemsize; 11477 else 11478 dyn.d_un.d_val = 0; 11479 break; 11480 11481 case DT_MIPS_HIPAGENO: 11482 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno; 11483 break; 11484 11485 case DT_MIPS_RLD_MAP: 11486 { 11487 struct elf_link_hash_entry *h; 11488 h = mips_elf_hash_table (info)->rld_symbol; 11489 if (!h) 11490 { 11491 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj); 11492 swap_out_p = FALSE; 11493 break; 11494 } 11495 s = h->root.u.def.section; 11496 11497 /* The MIPS_RLD_MAP tag stores the absolute address of the 11498 debug pointer. */ 11499 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset 11500 + h->root.u.def.value); 11501 } 11502 break; 11503 11504 case DT_MIPS_RLD_MAP_REL: 11505 { 11506 struct elf_link_hash_entry *h; 11507 bfd_vma dt_addr, rld_addr; 11508 h = mips_elf_hash_table (info)->rld_symbol; 11509 if (!h) 11510 { 11511 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj); 11512 swap_out_p = FALSE; 11513 break; 11514 } 11515 s = h->root.u.def.section; 11516 11517 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug 11518 pointer, relative to the address of the tag. */ 11519 dt_addr = (sdyn->output_section->vma + sdyn->output_offset 11520 + (b - sdyn->contents)); 11521 rld_addr = (s->output_section->vma + s->output_offset 11522 + h->root.u.def.value); 11523 dyn.d_un.d_ptr = rld_addr - dt_addr; 11524 } 11525 break; 11526 11527 case DT_MIPS_OPTIONS: 11528 s = (bfd_get_section_by_name 11529 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd))); 11530 dyn.d_un.d_ptr = s->vma; 11531 break; 11532 11533 case DT_RELASZ: 11534 BFD_ASSERT (htab->is_vxworks); 11535 /* The count does not include the JUMP_SLOT relocations. */ 11536 if (htab->srelplt) 11537 dyn.d_un.d_val -= htab->srelplt->size; 11538 break; 11539 11540 case DT_PLTREL: 11541 BFD_ASSERT (htab->use_plts_and_copy_relocs); 11542 if (htab->is_vxworks) 11543 dyn.d_un.d_val = DT_RELA; 11544 else 11545 dyn.d_un.d_val = DT_REL; 11546 break; 11547 11548 case DT_PLTRELSZ: 11549 BFD_ASSERT (htab->use_plts_and_copy_relocs); 11550 dyn.d_un.d_val = htab->srelplt->size; 11551 break; 11552 11553 case DT_JMPREL: 11554 BFD_ASSERT (htab->use_plts_and_copy_relocs); 11555 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma 11556 + htab->srelplt->output_offset); 11557 break; 11558 11559 case DT_TEXTREL: 11560 /* If we didn't need any text relocations after all, delete 11561 the dynamic tag. */ 11562 if (!(info->flags & DF_TEXTREL)) 11563 { 11564 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj); 11565 swap_out_p = FALSE; 11566 } 11567 break; 11568 11569 case DT_FLAGS: 11570 /* If we didn't need any text relocations after all, clear 11571 DF_TEXTREL from DT_FLAGS. */ 11572 if (!(info->flags & DF_TEXTREL)) 11573 dyn.d_un.d_val &= ~DF_TEXTREL; 11574 else 11575 swap_out_p = FALSE; 11576 break; 11577 11578 default: 11579 swap_out_p = FALSE; 11580 if (htab->is_vxworks 11581 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn)) 11582 swap_out_p = TRUE; 11583 break; 11584 } 11585 11586 if (swap_out_p || dyn_skipped) 11587 (*get_elf_backend_data (dynobj)->s->swap_dyn_out) 11588 (dynobj, &dyn, b - dyn_skipped); 11589 11590 if (dyn_to_skip) 11591 { 11592 dyn_skipped += dyn_to_skip; 11593 dyn_to_skip = 0; 11594 } 11595 } 11596 11597 /* Wipe out any trailing entries if we shifted down a dynamic tag. */ 11598 if (dyn_skipped > 0) 11599 memset (b - dyn_skipped, 0, dyn_skipped); 11600 } 11601 11602 if (sgot != NULL && sgot->size > 0 11603 && !bfd_is_abs_section (sgot->output_section)) 11604 { 11605 if (htab->is_vxworks) 11606 { 11607 /* The first entry of the global offset table points to the 11608 ".dynamic" section. The second is initialized by the 11609 loader and contains the shared library identifier. 11610 The third is also initialized by the loader and points 11611 to the lazy resolution stub. */ 11612 MIPS_ELF_PUT_WORD (output_bfd, 11613 sdyn->output_offset + sdyn->output_section->vma, 11614 sgot->contents); 11615 MIPS_ELF_PUT_WORD (output_bfd, 0, 11616 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); 11617 MIPS_ELF_PUT_WORD (output_bfd, 0, 11618 sgot->contents 11619 + 2 * MIPS_ELF_GOT_SIZE (output_bfd)); 11620 } 11621 else 11622 { 11623 /* The first entry of the global offset table will be filled at 11624 runtime. The second entry will be used by some runtime loaders. 11625 This isn't the case of IRIX rld. */ 11626 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents); 11627 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd), 11628 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); 11629 } 11630 11631 elf_section_data (sgot->output_section)->this_hdr.sh_entsize 11632 = MIPS_ELF_GOT_SIZE (output_bfd); 11633 } 11634 11635 /* Generate dynamic relocations for the non-primary gots. */ 11636 if (gg != NULL && gg->next) 11637 { 11638 Elf_Internal_Rela rel[3]; 11639 bfd_vma addend = 0; 11640 11641 memset (rel, 0, sizeof (rel)); 11642 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32); 11643 11644 for (g = gg->next; g->next != gg; g = g->next) 11645 { 11646 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno 11647 + g->next->tls_gotno; 11648 11649 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents 11650 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd)); 11651 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd), 11652 sgot->contents 11653 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd)); 11654 11655 if (! bfd_link_pic (info)) 11656 continue; 11657 11658 for (; got_index < g->local_gotno; got_index++) 11659 { 11660 if (got_index >= g->assigned_low_gotno 11661 && got_index <= g->assigned_high_gotno) 11662 continue; 11663 11664 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset 11665 = got_index * MIPS_ELF_GOT_SIZE (output_bfd); 11666 if (!(mips_elf_create_dynamic_relocation 11667 (output_bfd, info, rel, NULL, 11668 bfd_abs_section_ptr, 11669 0, &addend, sgot))) 11670 return FALSE; 11671 BFD_ASSERT (addend == 0); 11672 } 11673 } 11674 } 11675 11676 /* The generation of dynamic relocations for the non-primary gots 11677 adds more dynamic relocations. We cannot count them until 11678 here. */ 11679 11680 if (elf_hash_table (info)->dynamic_sections_created) 11681 { 11682 bfd_byte *b; 11683 bfd_boolean swap_out_p; 11684 11685 BFD_ASSERT (sdyn != NULL); 11686 11687 for (b = sdyn->contents; 11688 b < sdyn->contents + sdyn->size; 11689 b += MIPS_ELF_DYN_SIZE (dynobj)) 11690 { 11691 Elf_Internal_Dyn dyn; 11692 asection *s; 11693 11694 /* Read in the current dynamic entry. */ 11695 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); 11696 11697 /* Assume that we're going to modify it and write it out. */ 11698 swap_out_p = TRUE; 11699 11700 switch (dyn.d_tag) 11701 { 11702 case DT_RELSZ: 11703 /* Reduce DT_RELSZ to account for any relocations we 11704 decided not to make. This is for the n64 irix rld, 11705 which doesn't seem to apply any relocations if there 11706 are trailing null entries. */ 11707 s = mips_elf_rel_dyn_section (info, FALSE); 11708 dyn.d_un.d_val = (s->reloc_count 11709 * (ABI_64_P (output_bfd) 11710 ? sizeof (Elf64_Mips_External_Rel) 11711 : sizeof (Elf32_External_Rel))); 11712 /* Adjust the section size too. Tools like the prelinker 11713 can reasonably expect the values to the same. */ 11714 elf_section_data (s->output_section)->this_hdr.sh_size 11715 = dyn.d_un.d_val; 11716 break; 11717 11718 default: 11719 swap_out_p = FALSE; 11720 break; 11721 } 11722 11723 if (swap_out_p) 11724 (*get_elf_backend_data (dynobj)->s->swap_dyn_out) 11725 (dynobj, &dyn, b); 11726 } 11727 } 11728 11729 { 11730 asection *s; 11731 Elf32_compact_rel cpt; 11732 11733 if (SGI_COMPAT (output_bfd)) 11734 { 11735 /* Write .compact_rel section out. */ 11736 s = bfd_get_linker_section (dynobj, ".compact_rel"); 11737 if (s != NULL) 11738 { 11739 cpt.id1 = 1; 11740 cpt.num = s->reloc_count; 11741 cpt.id2 = 2; 11742 cpt.offset = (s->output_section->filepos 11743 + sizeof (Elf32_External_compact_rel)); 11744 cpt.reserved0 = 0; 11745 cpt.reserved1 = 0; 11746 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt, 11747 ((Elf32_External_compact_rel *) 11748 s->contents)); 11749 11750 /* Clean up a dummy stub function entry in .text. */ 11751 if (htab->sstubs != NULL) 11752 { 11753 file_ptr dummy_offset; 11754 11755 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size); 11756 dummy_offset = htab->sstubs->size - htab->function_stub_size; 11757 memset (htab->sstubs->contents + dummy_offset, 0, 11758 htab->function_stub_size); 11759 } 11760 } 11761 } 11762 11763 /* The psABI says that the dynamic relocations must be sorted in 11764 increasing order of r_symndx. The VxWorks EABI doesn't require 11765 this, and because the code below handles REL rather than RELA 11766 relocations, using it for VxWorks would be outright harmful. */ 11767 if (!htab->is_vxworks) 11768 { 11769 s = mips_elf_rel_dyn_section (info, FALSE); 11770 if (s != NULL 11771 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd)) 11772 { 11773 reldyn_sorting_bfd = output_bfd; 11774 11775 if (ABI_64_P (output_bfd)) 11776 qsort ((Elf64_External_Rel *) s->contents + 1, 11777 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel), 11778 sort_dynamic_relocs_64); 11779 else 11780 qsort ((Elf32_External_Rel *) s->contents + 1, 11781 s->reloc_count - 1, sizeof (Elf32_External_Rel), 11782 sort_dynamic_relocs); 11783 } 11784 } 11785 } 11786 11787 if (htab->splt && htab->splt->size > 0) 11788 { 11789 if (htab->is_vxworks) 11790 { 11791 if (bfd_link_pic (info)) 11792 mips_vxworks_finish_shared_plt (output_bfd, info); 11793 else 11794 mips_vxworks_finish_exec_plt (output_bfd, info); 11795 } 11796 else 11797 { 11798 BFD_ASSERT (!bfd_link_pic (info)); 11799 if (!mips_finish_exec_plt (output_bfd, info)) 11800 return FALSE; 11801 } 11802 } 11803 return TRUE; 11804 } 11805 11806 11807 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */ 11808 11809 static void 11810 mips_set_isa_flags (bfd *abfd) 11811 { 11812 flagword val; 11813 11814 switch (bfd_get_mach (abfd)) 11815 { 11816 default: 11817 case bfd_mach_mips3000: 11818 val = E_MIPS_ARCH_1; 11819 break; 11820 11821 case bfd_mach_mips3900: 11822 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900; 11823 break; 11824 11825 case bfd_mach_mips6000: 11826 val = E_MIPS_ARCH_2; 11827 break; 11828 11829 case bfd_mach_mips4000: 11830 case bfd_mach_mips4300: 11831 case bfd_mach_mips4400: 11832 case bfd_mach_mips4600: 11833 val = E_MIPS_ARCH_3; 11834 break; 11835 11836 case bfd_mach_mips4010: 11837 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010; 11838 break; 11839 11840 case bfd_mach_mips4100: 11841 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100; 11842 break; 11843 11844 case bfd_mach_mips4111: 11845 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111; 11846 break; 11847 11848 case bfd_mach_mips4120: 11849 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120; 11850 break; 11851 11852 case bfd_mach_mips4650: 11853 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650; 11854 break; 11855 11856 case bfd_mach_mips5400: 11857 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400; 11858 break; 11859 11860 case bfd_mach_mips5500: 11861 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500; 11862 break; 11863 11864 case bfd_mach_mips5900: 11865 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900; 11866 break; 11867 11868 case bfd_mach_mips9000: 11869 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000; 11870 break; 11871 11872 case bfd_mach_mips5000: 11873 case bfd_mach_mips7000: 11874 case bfd_mach_mips8000: 11875 case bfd_mach_mips10000: 11876 case bfd_mach_mips12000: 11877 case bfd_mach_mips14000: 11878 case bfd_mach_mips16000: 11879 val = E_MIPS_ARCH_4; 11880 break; 11881 11882 case bfd_mach_mips5: 11883 val = E_MIPS_ARCH_5; 11884 break; 11885 11886 case bfd_mach_mips_loongson_2e: 11887 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E; 11888 break; 11889 11890 case bfd_mach_mips_loongson_2f: 11891 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F; 11892 break; 11893 11894 case bfd_mach_mips_sb1: 11895 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1; 11896 break; 11897 11898 case bfd_mach_mips_loongson_3a: 11899 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A; 11900 break; 11901 11902 case bfd_mach_mips_octeon: 11903 case bfd_mach_mips_octeonp: 11904 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON; 11905 break; 11906 11907 case bfd_mach_mips_octeon3: 11908 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3; 11909 break; 11910 11911 case bfd_mach_mips_xlr: 11912 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR; 11913 break; 11914 11915 case bfd_mach_mips_octeon2: 11916 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2; 11917 break; 11918 11919 case bfd_mach_mipsisa32: 11920 val = E_MIPS_ARCH_32; 11921 break; 11922 11923 case bfd_mach_mipsisa64: 11924 val = E_MIPS_ARCH_64; 11925 break; 11926 11927 case bfd_mach_mipsisa32r2: 11928 case bfd_mach_mipsisa32r3: 11929 case bfd_mach_mipsisa32r5: 11930 val = E_MIPS_ARCH_32R2; 11931 break; 11932 11933 case bfd_mach_mipsisa64r2: 11934 case bfd_mach_mipsisa64r3: 11935 case bfd_mach_mipsisa64r5: 11936 val = E_MIPS_ARCH_64R2; 11937 break; 11938 11939 case bfd_mach_mipsisa32r6: 11940 val = E_MIPS_ARCH_32R6; 11941 break; 11942 11943 case bfd_mach_mipsisa64r6: 11944 val = E_MIPS_ARCH_64R6; 11945 break; 11946 } 11947 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); 11948 elf_elfheader (abfd)->e_flags |= val; 11949 11950 } 11951 11952 11953 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset. 11954 Don't do so for code sections. We want to keep ordering of HI16/LO16 11955 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame 11956 relocs to be sorted. */ 11957 11958 bfd_boolean 11959 _bfd_mips_elf_sort_relocs_p (asection *sec) 11960 { 11961 return (sec->flags & SEC_CODE) == 0; 11962 } 11963 11964 11965 /* The final processing done just before writing out a MIPS ELF object 11966 file. This gets the MIPS architecture right based on the machine 11967 number. This is used by both the 32-bit and the 64-bit ABI. */ 11968 11969 void 11970 _bfd_mips_elf_final_write_processing (bfd *abfd, 11971 bfd_boolean linker ATTRIBUTE_UNUSED) 11972 { 11973 unsigned int i; 11974 Elf_Internal_Shdr **hdrpp; 11975 const char *name; 11976 asection *sec; 11977 11978 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former 11979 is nonzero. This is for compatibility with old objects, which used 11980 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */ 11981 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0) 11982 mips_set_isa_flags (abfd); 11983 11984 /* Set the sh_info field for .gptab sections and other appropriate 11985 info for each special section. */ 11986 for (i = 1, hdrpp = elf_elfsections (abfd) + 1; 11987 i < elf_numsections (abfd); 11988 i++, hdrpp++) 11989 { 11990 switch ((*hdrpp)->sh_type) 11991 { 11992 case SHT_MIPS_MSYM: 11993 case SHT_MIPS_LIBLIST: 11994 sec = bfd_get_section_by_name (abfd, ".dynstr"); 11995 if (sec != NULL) 11996 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; 11997 break; 11998 11999 case SHT_MIPS_GPTAB: 12000 BFD_ASSERT ((*hdrpp)->bfd_section != NULL); 12001 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); 12002 BFD_ASSERT (name != NULL 12003 && CONST_STRNEQ (name, ".gptab.")); 12004 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1); 12005 BFD_ASSERT (sec != NULL); 12006 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; 12007 break; 12008 12009 case SHT_MIPS_CONTENT: 12010 BFD_ASSERT ((*hdrpp)->bfd_section != NULL); 12011 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); 12012 BFD_ASSERT (name != NULL 12013 && CONST_STRNEQ (name, ".MIPS.content")); 12014 sec = bfd_get_section_by_name (abfd, 12015 name + sizeof ".MIPS.content" - 1); 12016 BFD_ASSERT (sec != NULL); 12017 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; 12018 break; 12019 12020 case SHT_MIPS_SYMBOL_LIB: 12021 sec = bfd_get_section_by_name (abfd, ".dynsym"); 12022 if (sec != NULL) 12023 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; 12024 sec = bfd_get_section_by_name (abfd, ".liblist"); 12025 if (sec != NULL) 12026 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; 12027 break; 12028 12029 case SHT_MIPS_EVENTS: 12030 BFD_ASSERT ((*hdrpp)->bfd_section != NULL); 12031 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); 12032 BFD_ASSERT (name != NULL); 12033 if (CONST_STRNEQ (name, ".MIPS.events")) 12034 sec = bfd_get_section_by_name (abfd, 12035 name + sizeof ".MIPS.events" - 1); 12036 else 12037 { 12038 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel")); 12039 sec = bfd_get_section_by_name (abfd, 12040 (name 12041 + sizeof ".MIPS.post_rel" - 1)); 12042 } 12043 BFD_ASSERT (sec != NULL); 12044 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; 12045 break; 12046 12047 } 12048 } 12049 } 12050 12051 /* When creating an IRIX5 executable, we need REGINFO and RTPROC 12052 segments. */ 12053 12054 int 12055 _bfd_mips_elf_additional_program_headers (bfd *abfd, 12056 struct bfd_link_info *info ATTRIBUTE_UNUSED) 12057 { 12058 asection *s; 12059 int ret = 0; 12060 12061 /* See if we need a PT_MIPS_REGINFO segment. */ 12062 s = bfd_get_section_by_name (abfd, ".reginfo"); 12063 if (s && (s->flags & SEC_LOAD)) 12064 ++ret; 12065 12066 /* See if we need a PT_MIPS_ABIFLAGS segment. */ 12067 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags")) 12068 ++ret; 12069 12070 /* See if we need a PT_MIPS_OPTIONS segment. */ 12071 if (IRIX_COMPAT (abfd) == ict_irix6 12072 && bfd_get_section_by_name (abfd, 12073 MIPS_ELF_OPTIONS_SECTION_NAME (abfd))) 12074 ++ret; 12075 12076 /* See if we need a PT_MIPS_RTPROC segment. */ 12077 if (IRIX_COMPAT (abfd) == ict_irix5 12078 && bfd_get_section_by_name (abfd, ".dynamic") 12079 && bfd_get_section_by_name (abfd, ".mdebug")) 12080 ++ret; 12081 12082 /* Allocate a PT_NULL header in dynamic objects. See 12083 _bfd_mips_elf_modify_segment_map for details. */ 12084 if (!SGI_COMPAT (abfd) 12085 && bfd_get_section_by_name (abfd, ".dynamic")) 12086 ++ret; 12087 12088 return ret; 12089 } 12090 12091 /* Modify the segment map for an IRIX5 executable. */ 12092 12093 bfd_boolean 12094 _bfd_mips_elf_modify_segment_map (bfd *abfd, 12095 struct bfd_link_info *info) 12096 { 12097 asection *s; 12098 struct elf_segment_map *m, **pm; 12099 bfd_size_type amt; 12100 12101 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO 12102 segment. */ 12103 s = bfd_get_section_by_name (abfd, ".reginfo"); 12104 if (s != NULL && (s->flags & SEC_LOAD) != 0) 12105 { 12106 for (m = elf_seg_map (abfd); m != NULL; m = m->next) 12107 if (m->p_type == PT_MIPS_REGINFO) 12108 break; 12109 if (m == NULL) 12110 { 12111 amt = sizeof *m; 12112 m = bfd_zalloc (abfd, amt); 12113 if (m == NULL) 12114 return FALSE; 12115 12116 m->p_type = PT_MIPS_REGINFO; 12117 m->count = 1; 12118 m->sections[0] = s; 12119 12120 /* We want to put it after the PHDR and INTERP segments. */ 12121 pm = &elf_seg_map (abfd); 12122 while (*pm != NULL 12123 && ((*pm)->p_type == PT_PHDR 12124 || (*pm)->p_type == PT_INTERP)) 12125 pm = &(*pm)->next; 12126 12127 m->next = *pm; 12128 *pm = m; 12129 } 12130 } 12131 12132 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS 12133 segment. */ 12134 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags"); 12135 if (s != NULL && (s->flags & SEC_LOAD) != 0) 12136 { 12137 for (m = elf_seg_map (abfd); m != NULL; m = m->next) 12138 if (m->p_type == PT_MIPS_ABIFLAGS) 12139 break; 12140 if (m == NULL) 12141 { 12142 amt = sizeof *m; 12143 m = bfd_zalloc (abfd, amt); 12144 if (m == NULL) 12145 return FALSE; 12146 12147 m->p_type = PT_MIPS_ABIFLAGS; 12148 m->count = 1; 12149 m->sections[0] = s; 12150 12151 /* We want to put it after the PHDR and INTERP segments. */ 12152 pm = &elf_seg_map (abfd); 12153 while (*pm != NULL 12154 && ((*pm)->p_type == PT_PHDR 12155 || (*pm)->p_type == PT_INTERP)) 12156 pm = &(*pm)->next; 12157 12158 m->next = *pm; 12159 *pm = m; 12160 } 12161 } 12162 12163 /* For IRIX 6, we don't have .mdebug sections, nor does anything but 12164 .dynamic end up in PT_DYNAMIC. However, we do have to insert a 12165 PT_MIPS_OPTIONS segment immediately following the program header 12166 table. */ 12167 if (NEWABI_P (abfd) 12168 /* On non-IRIX6 new abi, we'll have already created a segment 12169 for this section, so don't create another. I'm not sure this 12170 is not also the case for IRIX 6, but I can't test it right 12171 now. */ 12172 && IRIX_COMPAT (abfd) == ict_irix6) 12173 { 12174 for (s = abfd->sections; s; s = s->next) 12175 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS) 12176 break; 12177 12178 if (s) 12179 { 12180 struct elf_segment_map *options_segment; 12181 12182 pm = &elf_seg_map (abfd); 12183 while (*pm != NULL 12184 && ((*pm)->p_type == PT_PHDR 12185 || (*pm)->p_type == PT_INTERP)) 12186 pm = &(*pm)->next; 12187 12188 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS) 12189 { 12190 amt = sizeof (struct elf_segment_map); 12191 options_segment = bfd_zalloc (abfd, amt); 12192 options_segment->next = *pm; 12193 options_segment->p_type = PT_MIPS_OPTIONS; 12194 options_segment->p_flags = PF_R; 12195 options_segment->p_flags_valid = TRUE; 12196 options_segment->count = 1; 12197 options_segment->sections[0] = s; 12198 *pm = options_segment; 12199 } 12200 } 12201 } 12202 else 12203 { 12204 if (IRIX_COMPAT (abfd) == ict_irix5) 12205 { 12206 /* If there are .dynamic and .mdebug sections, we make a room 12207 for the RTPROC header. FIXME: Rewrite without section names. */ 12208 if (bfd_get_section_by_name (abfd, ".interp") == NULL 12209 && bfd_get_section_by_name (abfd, ".dynamic") != NULL 12210 && bfd_get_section_by_name (abfd, ".mdebug") != NULL) 12211 { 12212 for (m = elf_seg_map (abfd); m != NULL; m = m->next) 12213 if (m->p_type == PT_MIPS_RTPROC) 12214 break; 12215 if (m == NULL) 12216 { 12217 amt = sizeof *m; 12218 m = bfd_zalloc (abfd, amt); 12219 if (m == NULL) 12220 return FALSE; 12221 12222 m->p_type = PT_MIPS_RTPROC; 12223 12224 s = bfd_get_section_by_name (abfd, ".rtproc"); 12225 if (s == NULL) 12226 { 12227 m->count = 0; 12228 m->p_flags = 0; 12229 m->p_flags_valid = 1; 12230 } 12231 else 12232 { 12233 m->count = 1; 12234 m->sections[0] = s; 12235 } 12236 12237 /* We want to put it after the DYNAMIC segment. */ 12238 pm = &elf_seg_map (abfd); 12239 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC) 12240 pm = &(*pm)->next; 12241 if (*pm != NULL) 12242 pm = &(*pm)->next; 12243 12244 m->next = *pm; 12245 *pm = m; 12246 } 12247 } 12248 } 12249 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic, 12250 .dynstr, .dynsym, and .hash sections, and everything in 12251 between. */ 12252 for (pm = &elf_seg_map (abfd); *pm != NULL; 12253 pm = &(*pm)->next) 12254 if ((*pm)->p_type == PT_DYNAMIC) 12255 break; 12256 m = *pm; 12257 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section. 12258 glibc's dynamic linker has traditionally derived the number of 12259 tags from the p_filesz field, and sometimes allocates stack 12260 arrays of that size. An overly-big PT_DYNAMIC segment can 12261 be actively harmful in such cases. Making PT_DYNAMIC contain 12262 other sections can also make life hard for the prelinker, 12263 which might move one of the other sections to a different 12264 PT_LOAD segment. */ 12265 if (SGI_COMPAT (abfd) 12266 && m != NULL 12267 && m->count == 1 12268 && strcmp (m->sections[0]->name, ".dynamic") == 0) 12269 { 12270 static const char *sec_names[] = 12271 { 12272 ".dynamic", ".dynstr", ".dynsym", ".hash" 12273 }; 12274 bfd_vma low, high; 12275 unsigned int i, c; 12276 struct elf_segment_map *n; 12277 12278 low = ~(bfd_vma) 0; 12279 high = 0; 12280 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++) 12281 { 12282 s = bfd_get_section_by_name (abfd, sec_names[i]); 12283 if (s != NULL && (s->flags & SEC_LOAD) != 0) 12284 { 12285 bfd_size_type sz; 12286 12287 if (low > s->vma) 12288 low = s->vma; 12289 sz = s->size; 12290 if (high < s->vma + sz) 12291 high = s->vma + sz; 12292 } 12293 } 12294 12295 c = 0; 12296 for (s = abfd->sections; s != NULL; s = s->next) 12297 if ((s->flags & SEC_LOAD) != 0 12298 && s->vma >= low 12299 && s->vma + s->size <= high) 12300 ++c; 12301 12302 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *); 12303 n = bfd_zalloc (abfd, amt); 12304 if (n == NULL) 12305 return FALSE; 12306 *n = *m; 12307 n->count = c; 12308 12309 i = 0; 12310 for (s = abfd->sections; s != NULL; s = s->next) 12311 { 12312 if ((s->flags & SEC_LOAD) != 0 12313 && s->vma >= low 12314 && s->vma + s->size <= high) 12315 { 12316 n->sections[i] = s; 12317 ++i; 12318 } 12319 } 12320 12321 *pm = n; 12322 } 12323 } 12324 12325 /* Allocate a spare program header in dynamic objects so that tools 12326 like the prelinker can add an extra PT_LOAD entry. 12327 12328 If the prelinker needs to make room for a new PT_LOAD entry, its 12329 standard procedure is to move the first (read-only) sections into 12330 the new (writable) segment. However, the MIPS ABI requires 12331 .dynamic to be in a read-only segment, and the section will often 12332 start within sizeof (ElfNN_Phdr) bytes of the last program header. 12333 12334 Although the prelinker could in principle move .dynamic to a 12335 writable segment, it seems better to allocate a spare program 12336 header instead, and avoid the need to move any sections. 12337 There is a long tradition of allocating spare dynamic tags, 12338 so allocating a spare program header seems like a natural 12339 extension. 12340 12341 If INFO is NULL, we may be copying an already prelinked binary 12342 with objcopy or strip, so do not add this header. */ 12343 if (info != NULL 12344 && !SGI_COMPAT (abfd) 12345 && bfd_get_section_by_name (abfd, ".dynamic")) 12346 { 12347 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next) 12348 if ((*pm)->p_type == PT_NULL) 12349 break; 12350 if (*pm == NULL) 12351 { 12352 m = bfd_zalloc (abfd, sizeof (*m)); 12353 if (m == NULL) 12354 return FALSE; 12355 12356 m->p_type = PT_NULL; 12357 *pm = m; 12358 } 12359 } 12360 12361 return TRUE; 12362 } 12363 12364 /* Return the section that should be marked against GC for a given 12365 relocation. */ 12366 12367 asection * 12368 _bfd_mips_elf_gc_mark_hook (asection *sec, 12369 struct bfd_link_info *info, 12370 Elf_Internal_Rela *rel, 12371 struct elf_link_hash_entry *h, 12372 Elf_Internal_Sym *sym) 12373 { 12374 /* ??? Do mips16 stub sections need to be handled special? */ 12375 12376 if (h != NULL) 12377 switch (ELF_R_TYPE (sec->owner, rel->r_info)) 12378 { 12379 case R_MIPS_GNU_VTINHERIT: 12380 case R_MIPS_GNU_VTENTRY: 12381 return NULL; 12382 } 12383 12384 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); 12385 } 12386 12387 /* Update the got entry reference counts for the section being removed. */ 12388 12389 bfd_boolean 12390 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED, 12391 struct bfd_link_info *info ATTRIBUTE_UNUSED, 12392 asection *sec ATTRIBUTE_UNUSED, 12393 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED) 12394 { 12395 #if 0 12396 Elf_Internal_Shdr *symtab_hdr; 12397 struct elf_link_hash_entry **sym_hashes; 12398 bfd_signed_vma *local_got_refcounts; 12399 const Elf_Internal_Rela *rel, *relend; 12400 unsigned long r_symndx; 12401 struct elf_link_hash_entry *h; 12402 12403 if (bfd_link_relocatable (info)) 12404 return TRUE; 12405 12406 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 12407 sym_hashes = elf_sym_hashes (abfd); 12408 local_got_refcounts = elf_local_got_refcounts (abfd); 12409 12410 relend = relocs + sec->reloc_count; 12411 for (rel = relocs; rel < relend; rel++) 12412 switch (ELF_R_TYPE (abfd, rel->r_info)) 12413 { 12414 case R_MIPS16_GOT16: 12415 case R_MIPS16_CALL16: 12416 case R_MIPS_GOT16: 12417 case R_MIPS_CALL16: 12418 case R_MIPS_CALL_HI16: 12419 case R_MIPS_CALL_LO16: 12420 case R_MIPS_GOT_HI16: 12421 case R_MIPS_GOT_LO16: 12422 case R_MIPS_GOT_DISP: 12423 case R_MIPS_GOT_PAGE: 12424 case R_MIPS_GOT_OFST: 12425 case R_MICROMIPS_GOT16: 12426 case R_MICROMIPS_CALL16: 12427 case R_MICROMIPS_CALL_HI16: 12428 case R_MICROMIPS_CALL_LO16: 12429 case R_MICROMIPS_GOT_HI16: 12430 case R_MICROMIPS_GOT_LO16: 12431 case R_MICROMIPS_GOT_DISP: 12432 case R_MICROMIPS_GOT_PAGE: 12433 case R_MICROMIPS_GOT_OFST: 12434 /* ??? It would seem that the existing MIPS code does no sort 12435 of reference counting or whatnot on its GOT and PLT entries, 12436 so it is not possible to garbage collect them at this time. */ 12437 break; 12438 12439 default: 12440 break; 12441 } 12442 #endif 12443 12444 return TRUE; 12445 } 12446 12447 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */ 12448 12449 bfd_boolean 12450 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info, 12451 elf_gc_mark_hook_fn gc_mark_hook) 12452 { 12453 bfd *sub; 12454 12455 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook); 12456 12457 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) 12458 { 12459 asection *o; 12460 12461 if (! is_mips_elf (sub)) 12462 continue; 12463 12464 for (o = sub->sections; o != NULL; o = o->next) 12465 if (!o->gc_mark 12466 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P 12467 (bfd_get_section_name (sub, o))) 12468 { 12469 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook)) 12470 return FALSE; 12471 } 12472 } 12473 12474 return TRUE; 12475 } 12476 12477 /* Copy data from a MIPS ELF indirect symbol to its direct symbol, 12478 hiding the old indirect symbol. Process additional relocation 12479 information. Also called for weakdefs, in which case we just let 12480 _bfd_elf_link_hash_copy_indirect copy the flags for us. */ 12481 12482 void 12483 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info, 12484 struct elf_link_hash_entry *dir, 12485 struct elf_link_hash_entry *ind) 12486 { 12487 struct mips_elf_link_hash_entry *dirmips, *indmips; 12488 12489 _bfd_elf_link_hash_copy_indirect (info, dir, ind); 12490 12491 dirmips = (struct mips_elf_link_hash_entry *) dir; 12492 indmips = (struct mips_elf_link_hash_entry *) ind; 12493 /* Any absolute non-dynamic relocations against an indirect or weak 12494 definition will be against the target symbol. */ 12495 if (indmips->has_static_relocs) 12496 dirmips->has_static_relocs = TRUE; 12497 12498 if (ind->root.type != bfd_link_hash_indirect) 12499 return; 12500 12501 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs; 12502 if (indmips->readonly_reloc) 12503 dirmips->readonly_reloc = TRUE; 12504 if (indmips->no_fn_stub) 12505 dirmips->no_fn_stub = TRUE; 12506 if (indmips->fn_stub) 12507 { 12508 dirmips->fn_stub = indmips->fn_stub; 12509 indmips->fn_stub = NULL; 12510 } 12511 if (indmips->need_fn_stub) 12512 { 12513 dirmips->need_fn_stub = TRUE; 12514 indmips->need_fn_stub = FALSE; 12515 } 12516 if (indmips->call_stub) 12517 { 12518 dirmips->call_stub = indmips->call_stub; 12519 indmips->call_stub = NULL; 12520 } 12521 if (indmips->call_fp_stub) 12522 { 12523 dirmips->call_fp_stub = indmips->call_fp_stub; 12524 indmips->call_fp_stub = NULL; 12525 } 12526 if (indmips->global_got_area < dirmips->global_got_area) 12527 dirmips->global_got_area = indmips->global_got_area; 12528 if (indmips->global_got_area < GGA_NONE) 12529 indmips->global_got_area = GGA_NONE; 12530 if (indmips->has_nonpic_branches) 12531 dirmips->has_nonpic_branches = TRUE; 12532 } 12533 12534 #define PDR_SIZE 32 12535 12536 bfd_boolean 12537 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie, 12538 struct bfd_link_info *info) 12539 { 12540 asection *o; 12541 bfd_boolean ret = FALSE; 12542 unsigned char *tdata; 12543 size_t i, skip; 12544 12545 o = bfd_get_section_by_name (abfd, ".pdr"); 12546 if (! o) 12547 return FALSE; 12548 if (o->size == 0) 12549 return FALSE; 12550 if (o->size % PDR_SIZE != 0) 12551 return FALSE; 12552 if (o->output_section != NULL 12553 && bfd_is_abs_section (o->output_section)) 12554 return FALSE; 12555 12556 tdata = bfd_zmalloc (o->size / PDR_SIZE); 12557 if (! tdata) 12558 return FALSE; 12559 12560 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, 12561 info->keep_memory); 12562 if (!cookie->rels) 12563 { 12564 free (tdata); 12565 return FALSE; 12566 } 12567 12568 cookie->rel = cookie->rels; 12569 cookie->relend = cookie->rels + o->reloc_count; 12570 12571 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++) 12572 { 12573 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie)) 12574 { 12575 tdata[i] = 1; 12576 skip ++; 12577 } 12578 } 12579 12580 if (skip != 0) 12581 { 12582 mips_elf_section_data (o)->u.tdata = tdata; 12583 if (o->rawsize == 0) 12584 o->rawsize = o->size; 12585 o->size -= skip * PDR_SIZE; 12586 ret = TRUE; 12587 } 12588 else 12589 free (tdata); 12590 12591 if (! info->keep_memory) 12592 free (cookie->rels); 12593 12594 return ret; 12595 } 12596 12597 bfd_boolean 12598 _bfd_mips_elf_ignore_discarded_relocs (asection *sec) 12599 { 12600 if (strcmp (sec->name, ".pdr") == 0) 12601 return TRUE; 12602 return FALSE; 12603 } 12604 12605 bfd_boolean 12606 _bfd_mips_elf_write_section (bfd *output_bfd, 12607 struct bfd_link_info *link_info ATTRIBUTE_UNUSED, 12608 asection *sec, bfd_byte *contents) 12609 { 12610 bfd_byte *to, *from, *end; 12611 int i; 12612 12613 if (strcmp (sec->name, ".pdr") != 0) 12614 return FALSE; 12615 12616 if (mips_elf_section_data (sec)->u.tdata == NULL) 12617 return FALSE; 12618 12619 to = contents; 12620 end = contents + sec->size; 12621 for (from = contents, i = 0; 12622 from < end; 12623 from += PDR_SIZE, i++) 12624 { 12625 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1) 12626 continue; 12627 if (to != from) 12628 memcpy (to, from, PDR_SIZE); 12629 to += PDR_SIZE; 12630 } 12631 bfd_set_section_contents (output_bfd, sec->output_section, contents, 12632 sec->output_offset, sec->size); 12633 return TRUE; 12634 } 12635 12636 /* microMIPS code retains local labels for linker relaxation. Omit them 12637 from output by default for clarity. */ 12638 12639 bfd_boolean 12640 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym) 12641 { 12642 return _bfd_elf_is_local_label_name (abfd, sym->name); 12643 } 12644 12645 /* MIPS ELF uses a special find_nearest_line routine in order the 12646 handle the ECOFF debugging information. */ 12647 12648 struct mips_elf_find_line 12649 { 12650 struct ecoff_debug_info d; 12651 struct ecoff_find_line i; 12652 }; 12653 12654 bfd_boolean 12655 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols, 12656 asection *section, bfd_vma offset, 12657 const char **filename_ptr, 12658 const char **functionname_ptr, 12659 unsigned int *line_ptr, 12660 unsigned int *discriminator_ptr) 12661 { 12662 asection *msec; 12663 12664 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset, 12665 filename_ptr, functionname_ptr, 12666 line_ptr, discriminator_ptr, 12667 dwarf_debug_sections, 12668 ABI_64_P (abfd) ? 8 : 0, 12669 &elf_tdata (abfd)->dwarf2_find_line_info)) 12670 return TRUE; 12671 12672 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset, 12673 filename_ptr, functionname_ptr, 12674 line_ptr)) 12675 return TRUE; 12676 12677 msec = bfd_get_section_by_name (abfd, ".mdebug"); 12678 if (msec != NULL) 12679 { 12680 flagword origflags; 12681 struct mips_elf_find_line *fi; 12682 const struct ecoff_debug_swap * const swap = 12683 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; 12684 12685 /* If we are called during a link, mips_elf_final_link may have 12686 cleared the SEC_HAS_CONTENTS field. We force it back on here 12687 if appropriate (which it normally will be). */ 12688 origflags = msec->flags; 12689 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS) 12690 msec->flags |= SEC_HAS_CONTENTS; 12691 12692 fi = mips_elf_tdata (abfd)->find_line_info; 12693 if (fi == NULL) 12694 { 12695 bfd_size_type external_fdr_size; 12696 char *fraw_src; 12697 char *fraw_end; 12698 struct fdr *fdr_ptr; 12699 bfd_size_type amt = sizeof (struct mips_elf_find_line); 12700 12701 fi = bfd_zalloc (abfd, amt); 12702 if (fi == NULL) 12703 { 12704 msec->flags = origflags; 12705 return FALSE; 12706 } 12707 12708 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d)) 12709 { 12710 msec->flags = origflags; 12711 return FALSE; 12712 } 12713 12714 /* Swap in the FDR information. */ 12715 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr); 12716 fi->d.fdr = bfd_alloc (abfd, amt); 12717 if (fi->d.fdr == NULL) 12718 { 12719 msec->flags = origflags; 12720 return FALSE; 12721 } 12722 external_fdr_size = swap->external_fdr_size; 12723 fdr_ptr = fi->d.fdr; 12724 fraw_src = (char *) fi->d.external_fdr; 12725 fraw_end = (fraw_src 12726 + fi->d.symbolic_header.ifdMax * external_fdr_size); 12727 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++) 12728 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr); 12729 12730 mips_elf_tdata (abfd)->find_line_info = fi; 12731 12732 /* Note that we don't bother to ever free this information. 12733 find_nearest_line is either called all the time, as in 12734 objdump -l, so the information should be saved, or it is 12735 rarely called, as in ld error messages, so the memory 12736 wasted is unimportant. Still, it would probably be a 12737 good idea for free_cached_info to throw it away. */ 12738 } 12739 12740 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap, 12741 &fi->i, filename_ptr, functionname_ptr, 12742 line_ptr)) 12743 { 12744 msec->flags = origflags; 12745 return TRUE; 12746 } 12747 12748 msec->flags = origflags; 12749 } 12750 12751 /* Fall back on the generic ELF find_nearest_line routine. */ 12752 12753 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset, 12754 filename_ptr, functionname_ptr, 12755 line_ptr, discriminator_ptr); 12756 } 12757 12758 bfd_boolean 12759 _bfd_mips_elf_find_inliner_info (bfd *abfd, 12760 const char **filename_ptr, 12761 const char **functionname_ptr, 12762 unsigned int *line_ptr) 12763 { 12764 bfd_boolean found; 12765 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr, 12766 functionname_ptr, line_ptr, 12767 & elf_tdata (abfd)->dwarf2_find_line_info); 12768 return found; 12769 } 12770 12771 12772 /* When are writing out the .options or .MIPS.options section, 12773 remember the bytes we are writing out, so that we can install the 12774 GP value in the section_processing routine. */ 12775 12776 bfd_boolean 12777 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section, 12778 const void *location, 12779 file_ptr offset, bfd_size_type count) 12780 { 12781 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name)) 12782 { 12783 bfd_byte *c; 12784 12785 if (elf_section_data (section) == NULL) 12786 { 12787 bfd_size_type amt = sizeof (struct bfd_elf_section_data); 12788 section->used_by_bfd = bfd_zalloc (abfd, amt); 12789 if (elf_section_data (section) == NULL) 12790 return FALSE; 12791 } 12792 c = mips_elf_section_data (section)->u.tdata; 12793 if (c == NULL) 12794 { 12795 c = bfd_zalloc (abfd, section->size); 12796 if (c == NULL) 12797 return FALSE; 12798 mips_elf_section_data (section)->u.tdata = c; 12799 } 12800 12801 memcpy (c + offset, location, count); 12802 } 12803 12804 return _bfd_elf_set_section_contents (abfd, section, location, offset, 12805 count); 12806 } 12807 12808 /* This is almost identical to bfd_generic_get_... except that some 12809 MIPS relocations need to be handled specially. Sigh. */ 12810 12811 bfd_byte * 12812 _bfd_elf_mips_get_relocated_section_contents 12813 (bfd *abfd, 12814 struct bfd_link_info *link_info, 12815 struct bfd_link_order *link_order, 12816 bfd_byte *data, 12817 bfd_boolean relocatable, 12818 asymbol **symbols) 12819 { 12820 /* Get enough memory to hold the stuff */ 12821 bfd *input_bfd = link_order->u.indirect.section->owner; 12822 asection *input_section = link_order->u.indirect.section; 12823 bfd_size_type sz; 12824 12825 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section); 12826 arelent **reloc_vector = NULL; 12827 long reloc_count; 12828 12829 if (reloc_size < 0) 12830 goto error_return; 12831 12832 reloc_vector = bfd_malloc (reloc_size); 12833 if (reloc_vector == NULL && reloc_size != 0) 12834 goto error_return; 12835 12836 /* read in the section */ 12837 sz = input_section->rawsize ? input_section->rawsize : input_section->size; 12838 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz)) 12839 goto error_return; 12840 12841 reloc_count = bfd_canonicalize_reloc (input_bfd, 12842 input_section, 12843 reloc_vector, 12844 symbols); 12845 if (reloc_count < 0) 12846 goto error_return; 12847 12848 if (reloc_count > 0) 12849 { 12850 arelent **parent; 12851 /* for mips */ 12852 int gp_found; 12853 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */ 12854 12855 { 12856 struct bfd_hash_entry *h; 12857 struct bfd_link_hash_entry *lh; 12858 /* Skip all this stuff if we aren't mixing formats. */ 12859 if (abfd && input_bfd 12860 && abfd->xvec == input_bfd->xvec) 12861 lh = 0; 12862 else 12863 { 12864 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE); 12865 lh = (struct bfd_link_hash_entry *) h; 12866 } 12867 lookup: 12868 if (lh) 12869 { 12870 switch (lh->type) 12871 { 12872 case bfd_link_hash_undefined: 12873 case bfd_link_hash_undefweak: 12874 case bfd_link_hash_common: 12875 gp_found = 0; 12876 break; 12877 case bfd_link_hash_defined: 12878 case bfd_link_hash_defweak: 12879 gp_found = 1; 12880 gp = lh->u.def.value; 12881 break; 12882 case bfd_link_hash_indirect: 12883 case bfd_link_hash_warning: 12884 lh = lh->u.i.link; 12885 /* @@FIXME ignoring warning for now */ 12886 goto lookup; 12887 case bfd_link_hash_new: 12888 default: 12889 abort (); 12890 } 12891 } 12892 else 12893 gp_found = 0; 12894 } 12895 /* end mips */ 12896 for (parent = reloc_vector; *parent != NULL; parent++) 12897 { 12898 char *error_message = NULL; 12899 bfd_reloc_status_type r; 12900 12901 /* Specific to MIPS: Deal with relocation types that require 12902 knowing the gp of the output bfd. */ 12903 asymbol *sym = *(*parent)->sym_ptr_ptr; 12904 12905 /* If we've managed to find the gp and have a special 12906 function for the relocation then go ahead, else default 12907 to the generic handling. */ 12908 if (gp_found 12909 && (*parent)->howto->special_function 12910 == _bfd_mips_elf32_gprel16_reloc) 12911 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent, 12912 input_section, relocatable, 12913 data, gp); 12914 else 12915 r = bfd_perform_relocation (input_bfd, *parent, data, 12916 input_section, 12917 relocatable ? abfd : NULL, 12918 &error_message); 12919 12920 if (relocatable) 12921 { 12922 asection *os = input_section->output_section; 12923 12924 /* A partial link, so keep the relocs */ 12925 os->orelocation[os->reloc_count] = *parent; 12926 os->reloc_count++; 12927 } 12928 12929 if (r != bfd_reloc_ok) 12930 { 12931 switch (r) 12932 { 12933 case bfd_reloc_undefined: 12934 if (!((*link_info->callbacks->undefined_symbol) 12935 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr), 12936 input_bfd, input_section, (*parent)->address, TRUE))) 12937 goto error_return; 12938 break; 12939 case bfd_reloc_dangerous: 12940 BFD_ASSERT (error_message != NULL); 12941 if (!((*link_info->callbacks->reloc_dangerous) 12942 (link_info, error_message, input_bfd, input_section, 12943 (*parent)->address))) 12944 goto error_return; 12945 break; 12946 case bfd_reloc_overflow: 12947 if (!((*link_info->callbacks->reloc_overflow) 12948 (link_info, NULL, 12949 bfd_asymbol_name (*(*parent)->sym_ptr_ptr), 12950 (*parent)->howto->name, (*parent)->addend, 12951 input_bfd, input_section, (*parent)->address))) 12952 goto error_return; 12953 break; 12954 case bfd_reloc_outofrange: 12955 default: 12956 abort (); 12957 break; 12958 } 12959 12960 } 12961 } 12962 } 12963 if (reloc_vector != NULL) 12964 free (reloc_vector); 12965 return data; 12966 12967 error_return: 12968 if (reloc_vector != NULL) 12969 free (reloc_vector); 12970 return NULL; 12971 } 12972 12973 static bfd_boolean 12974 mips_elf_relax_delete_bytes (bfd *abfd, 12975 asection *sec, bfd_vma addr, int count) 12976 { 12977 Elf_Internal_Shdr *symtab_hdr; 12978 unsigned int sec_shndx; 12979 bfd_byte *contents; 12980 Elf_Internal_Rela *irel, *irelend; 12981 Elf_Internal_Sym *isym; 12982 Elf_Internal_Sym *isymend; 12983 struct elf_link_hash_entry **sym_hashes; 12984 struct elf_link_hash_entry **end_hashes; 12985 struct elf_link_hash_entry **start_hashes; 12986 unsigned int symcount; 12987 12988 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); 12989 contents = elf_section_data (sec)->this_hdr.contents; 12990 12991 irel = elf_section_data (sec)->relocs; 12992 irelend = irel + sec->reloc_count; 12993 12994 /* Actually delete the bytes. */ 12995 memmove (contents + addr, contents + addr + count, 12996 (size_t) (sec->size - addr - count)); 12997 sec->size -= count; 12998 12999 /* Adjust all the relocs. */ 13000 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++) 13001 { 13002 /* Get the new reloc address. */ 13003 if (irel->r_offset > addr) 13004 irel->r_offset -= count; 13005 } 13006 13007 BFD_ASSERT (addr % 2 == 0); 13008 BFD_ASSERT (count % 2 == 0); 13009 13010 /* Adjust the local symbols defined in this section. */ 13011 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 13012 isym = (Elf_Internal_Sym *) symtab_hdr->contents; 13013 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++) 13014 if (isym->st_shndx == sec_shndx && isym->st_value > addr) 13015 isym->st_value -= count; 13016 13017 /* Now adjust the global symbols defined in this section. */ 13018 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) 13019 - symtab_hdr->sh_info); 13020 sym_hashes = start_hashes = elf_sym_hashes (abfd); 13021 end_hashes = sym_hashes + symcount; 13022 13023 for (; sym_hashes < end_hashes; sym_hashes++) 13024 { 13025 struct elf_link_hash_entry *sym_hash = *sym_hashes; 13026 13027 if ((sym_hash->root.type == bfd_link_hash_defined 13028 || sym_hash->root.type == bfd_link_hash_defweak) 13029 && sym_hash->root.u.def.section == sec) 13030 { 13031 bfd_vma value = sym_hash->root.u.def.value; 13032 13033 if (ELF_ST_IS_MICROMIPS (sym_hash->other)) 13034 value &= MINUS_TWO; 13035 if (value > addr) 13036 sym_hash->root.u.def.value -= count; 13037 } 13038 } 13039 13040 return TRUE; 13041 } 13042 13043 13044 /* Opcodes needed for microMIPS relaxation as found in 13045 opcodes/micromips-opc.c. */ 13046 13047 struct opcode_descriptor { 13048 unsigned long match; 13049 unsigned long mask; 13050 }; 13051 13052 /* The $ra register aka $31. */ 13053 13054 #define RA 31 13055 13056 /* 32-bit instruction format register fields. */ 13057 13058 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f) 13059 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f) 13060 13061 /* Check if a 5-bit register index can be abbreviated to 3 bits. */ 13062 13063 #define OP16_VALID_REG(r) \ 13064 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17)) 13065 13066 13067 /* 32-bit and 16-bit branches. */ 13068 13069 static const struct opcode_descriptor b_insns_32[] = { 13070 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */ 13071 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */ 13072 { 0, 0 } /* End marker for find_match(). */ 13073 }; 13074 13075 static const struct opcode_descriptor bc_insn_32 = 13076 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 }; 13077 13078 static const struct opcode_descriptor bz_insn_32 = 13079 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 }; 13080 13081 static const struct opcode_descriptor bzal_insn_32 = 13082 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 }; 13083 13084 static const struct opcode_descriptor beq_insn_32 = 13085 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 }; 13086 13087 static const struct opcode_descriptor b_insn_16 = 13088 { /* "b", "mD", */ 0xcc00, 0xfc00 }; 13089 13090 static const struct opcode_descriptor bz_insn_16 = 13091 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 }; 13092 13093 13094 /* 32-bit and 16-bit branch EQ and NE zero. */ 13095 13096 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the 13097 eq and second the ne. This convention is used when replacing a 13098 32-bit BEQ/BNE with the 16-bit version. */ 13099 13100 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16) 13101 13102 static const struct opcode_descriptor bz_rs_insns_32[] = { 13103 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 }, 13104 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 }, 13105 { 0, 0 } /* End marker for find_match(). */ 13106 }; 13107 13108 static const struct opcode_descriptor bz_rt_insns_32[] = { 13109 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 }, 13110 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 }, 13111 { 0, 0 } /* End marker for find_match(). */ 13112 }; 13113 13114 static const struct opcode_descriptor bzc_insns_32[] = { 13115 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 }, 13116 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 }, 13117 { 0, 0 } /* End marker for find_match(). */ 13118 }; 13119 13120 static const struct opcode_descriptor bz_insns_16[] = { 13121 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 }, 13122 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 }, 13123 { 0, 0 } /* End marker for find_match(). */ 13124 }; 13125 13126 /* Switch between a 5-bit register index and its 3-bit shorthand. */ 13127 13128 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2) 13129 #define BZ16_REG_FIELD(r) \ 13130 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7) 13131 13132 13133 /* 32-bit instructions with a delay slot. */ 13134 13135 static const struct opcode_descriptor jal_insn_32_bd16 = 13136 { /* "jals", "a", */ 0x74000000, 0xfc000000 }; 13137 13138 static const struct opcode_descriptor jal_insn_32_bd32 = 13139 { /* "jal", "a", */ 0xf4000000, 0xfc000000 }; 13140 13141 static const struct opcode_descriptor jal_x_insn_32_bd32 = 13142 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 }; 13143 13144 static const struct opcode_descriptor j_insn_32 = 13145 { /* "j", "a", */ 0xd4000000, 0xfc000000 }; 13146 13147 static const struct opcode_descriptor jalr_insn_32 = 13148 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff }; 13149 13150 /* This table can be compacted, because no opcode replacement is made. */ 13151 13152 static const struct opcode_descriptor ds_insns_32_bd16[] = { 13153 { /* "jals", "a", */ 0x74000000, 0xfc000000 }, 13154 13155 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff }, 13156 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 }, 13157 13158 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 }, 13159 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 }, 13160 { /* "j", "a", */ 0xd4000000, 0xfc000000 }, 13161 { 0, 0 } /* End marker for find_match(). */ 13162 }; 13163 13164 /* This table can be compacted, because no opcode replacement is made. */ 13165 13166 static const struct opcode_descriptor ds_insns_32_bd32[] = { 13167 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 }, 13168 13169 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff }, 13170 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 }, 13171 { 0, 0 } /* End marker for find_match(). */ 13172 }; 13173 13174 13175 /* 16-bit instructions with a delay slot. */ 13176 13177 static const struct opcode_descriptor jalr_insn_16_bd16 = 13178 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 }; 13179 13180 static const struct opcode_descriptor jalr_insn_16_bd32 = 13181 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 }; 13182 13183 static const struct opcode_descriptor jr_insn_16 = 13184 { /* "jr", "mj", */ 0x4580, 0xffe0 }; 13185 13186 #define JR16_REG(opcode) ((opcode) & 0x1f) 13187 13188 /* This table can be compacted, because no opcode replacement is made. */ 13189 13190 static const struct opcode_descriptor ds_insns_16_bd16[] = { 13191 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 }, 13192 13193 { /* "b", "mD", */ 0xcc00, 0xfc00 }, 13194 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 }, 13195 { /* "jr", "mj", */ 0x4580, 0xffe0 }, 13196 { 0, 0 } /* End marker for find_match(). */ 13197 }; 13198 13199 13200 /* LUI instruction. */ 13201 13202 static const struct opcode_descriptor lui_insn = 13203 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 }; 13204 13205 13206 /* ADDIU instruction. */ 13207 13208 static const struct opcode_descriptor addiu_insn = 13209 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 }; 13210 13211 static const struct opcode_descriptor addiupc_insn = 13212 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 }; 13213 13214 #define ADDIUPC_REG_FIELD(r) \ 13215 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23) 13216 13217 13218 /* Relaxable instructions in a JAL delay slot: MOVE. */ 13219 13220 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves 13221 (ADDU, OR) have rd in 15:11 and rs in 10:16. */ 13222 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f) 13223 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f) 13224 13225 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5) 13226 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) ) 13227 13228 static const struct opcode_descriptor move_insns_32[] = { 13229 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */ 13230 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */ 13231 { 0, 0 } /* End marker for find_match(). */ 13232 }; 13233 13234 static const struct opcode_descriptor move_insn_16 = 13235 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 }; 13236 13237 13238 /* NOP instructions. */ 13239 13240 static const struct opcode_descriptor nop_insn_32 = 13241 { /* "nop", "", */ 0x00000000, 0xffffffff }; 13242 13243 static const struct opcode_descriptor nop_insn_16 = 13244 { /* "nop", "", */ 0x0c00, 0xffff }; 13245 13246 13247 /* Instruction match support. */ 13248 13249 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match) 13250 13251 static int 13252 find_match (unsigned long opcode, const struct opcode_descriptor insn[]) 13253 { 13254 unsigned long indx; 13255 13256 for (indx = 0; insn[indx].mask != 0; indx++) 13257 if (MATCH (opcode, insn[indx])) 13258 return indx; 13259 13260 return -1; 13261 } 13262 13263 13264 /* Branch and delay slot decoding support. */ 13265 13266 /* If PTR points to what *might* be a 16-bit branch or jump, then 13267 return the minimum length of its delay slot, otherwise return 0. 13268 Non-zero results are not definitive as we might be checking against 13269 the second half of another instruction. */ 13270 13271 static int 13272 check_br16_dslot (bfd *abfd, bfd_byte *ptr) 13273 { 13274 unsigned long opcode; 13275 int bdsize; 13276 13277 opcode = bfd_get_16 (abfd, ptr); 13278 if (MATCH (opcode, jalr_insn_16_bd32) != 0) 13279 /* 16-bit branch/jump with a 32-bit delay slot. */ 13280 bdsize = 4; 13281 else if (MATCH (opcode, jalr_insn_16_bd16) != 0 13282 || find_match (opcode, ds_insns_16_bd16) >= 0) 13283 /* 16-bit branch/jump with a 16-bit delay slot. */ 13284 bdsize = 2; 13285 else 13286 /* No delay slot. */ 13287 bdsize = 0; 13288 13289 return bdsize; 13290 } 13291 13292 /* If PTR points to what *might* be a 32-bit branch or jump, then 13293 return the minimum length of its delay slot, otherwise return 0. 13294 Non-zero results are not definitive as we might be checking against 13295 the second half of another instruction. */ 13296 13297 static int 13298 check_br32_dslot (bfd *abfd, bfd_byte *ptr) 13299 { 13300 unsigned long opcode; 13301 int bdsize; 13302 13303 opcode = bfd_get_micromips_32 (abfd, ptr); 13304 if (find_match (opcode, ds_insns_32_bd32) >= 0) 13305 /* 32-bit branch/jump with a 32-bit delay slot. */ 13306 bdsize = 4; 13307 else if (find_match (opcode, ds_insns_32_bd16) >= 0) 13308 /* 32-bit branch/jump with a 16-bit delay slot. */ 13309 bdsize = 2; 13310 else 13311 /* No delay slot. */ 13312 bdsize = 0; 13313 13314 return bdsize; 13315 } 13316 13317 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot 13318 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */ 13319 13320 static bfd_boolean 13321 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg) 13322 { 13323 unsigned long opcode; 13324 13325 opcode = bfd_get_16 (abfd, ptr); 13326 if (MATCH (opcode, b_insn_16) 13327 /* B16 */ 13328 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode)) 13329 /* JR16 */ 13330 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode)) 13331 /* BEQZ16, BNEZ16 */ 13332 || (MATCH (opcode, jalr_insn_16_bd32) 13333 /* JALR16 */ 13334 && reg != JR16_REG (opcode) && reg != RA)) 13335 return TRUE; 13336 13337 return FALSE; 13338 } 13339 13340 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG, 13341 then return TRUE, otherwise FALSE. */ 13342 13343 static bfd_boolean 13344 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg) 13345 { 13346 unsigned long opcode; 13347 13348 opcode = bfd_get_micromips_32 (abfd, ptr); 13349 if (MATCH (opcode, j_insn_32) 13350 /* J */ 13351 || MATCH (opcode, bc_insn_32) 13352 /* BC1F, BC1T, BC2F, BC2T */ 13353 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA) 13354 /* JAL, JALX */ 13355 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode)) 13356 /* BGEZ, BGTZ, BLEZ, BLTZ */ 13357 || (MATCH (opcode, bzal_insn_32) 13358 /* BGEZAL, BLTZAL */ 13359 && reg != OP32_SREG (opcode) && reg != RA) 13360 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32)) 13361 /* JALR, JALR.HB, BEQ, BNE */ 13362 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode))) 13363 return TRUE; 13364 13365 return FALSE; 13366 } 13367 13368 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS, 13369 IRELEND) at OFFSET indicate that there must be a compact branch there, 13370 then return TRUE, otherwise FALSE. */ 13371 13372 static bfd_boolean 13373 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset, 13374 const Elf_Internal_Rela *internal_relocs, 13375 const Elf_Internal_Rela *irelend) 13376 { 13377 const Elf_Internal_Rela *irel; 13378 unsigned long opcode; 13379 13380 opcode = bfd_get_micromips_32 (abfd, ptr); 13381 if (find_match (opcode, bzc_insns_32) < 0) 13382 return FALSE; 13383 13384 for (irel = internal_relocs; irel < irelend; irel++) 13385 if (irel->r_offset == offset 13386 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1) 13387 return TRUE; 13388 13389 return FALSE; 13390 } 13391 13392 /* Bitsize checking. */ 13393 #define IS_BITSIZE(val, N) \ 13394 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \ 13395 - (1ULL << ((N) - 1))) == (val)) 13396 13397 13398 bfd_boolean 13399 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec, 13400 struct bfd_link_info *link_info, 13401 bfd_boolean *again) 13402 { 13403 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32; 13404 Elf_Internal_Shdr *symtab_hdr; 13405 Elf_Internal_Rela *internal_relocs; 13406 Elf_Internal_Rela *irel, *irelend; 13407 bfd_byte *contents = NULL; 13408 Elf_Internal_Sym *isymbuf = NULL; 13409 13410 /* Assume nothing changes. */ 13411 *again = FALSE; 13412 13413 /* We don't have to do anything for a relocatable link, if 13414 this section does not have relocs, or if this is not a 13415 code section. */ 13416 13417 if (bfd_link_relocatable (link_info) 13418 || (sec->flags & SEC_RELOC) == 0 13419 || sec->reloc_count == 0 13420 || (sec->flags & SEC_CODE) == 0) 13421 return TRUE; 13422 13423 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 13424 13425 /* Get a copy of the native relocations. */ 13426 internal_relocs = (_bfd_elf_link_read_relocs 13427 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL, 13428 link_info->keep_memory)); 13429 if (internal_relocs == NULL) 13430 goto error_return; 13431 13432 /* Walk through them looking for relaxing opportunities. */ 13433 irelend = internal_relocs + sec->reloc_count; 13434 for (irel = internal_relocs; irel < irelend; irel++) 13435 { 13436 unsigned long r_symndx = ELF32_R_SYM (irel->r_info); 13437 unsigned int r_type = ELF32_R_TYPE (irel->r_info); 13438 bfd_boolean target_is_micromips_code_p; 13439 unsigned long opcode; 13440 bfd_vma symval; 13441 bfd_vma pcrval; 13442 bfd_byte *ptr; 13443 int fndopc; 13444 13445 /* The number of bytes to delete for relaxation and from where 13446 to delete these bytes starting at irel->r_offset. */ 13447 int delcnt = 0; 13448 int deloff = 0; 13449 13450 /* If this isn't something that can be relaxed, then ignore 13451 this reloc. */ 13452 if (r_type != R_MICROMIPS_HI16 13453 && r_type != R_MICROMIPS_PC16_S1 13454 && r_type != R_MICROMIPS_26_S1) 13455 continue; 13456 13457 /* Get the section contents if we haven't done so already. */ 13458 if (contents == NULL) 13459 { 13460 /* Get cached copy if it exists. */ 13461 if (elf_section_data (sec)->this_hdr.contents != NULL) 13462 contents = elf_section_data (sec)->this_hdr.contents; 13463 /* Go get them off disk. */ 13464 else if (!bfd_malloc_and_get_section (abfd, sec, &contents)) 13465 goto error_return; 13466 } 13467 ptr = contents + irel->r_offset; 13468 13469 /* Read this BFD's local symbols if we haven't done so already. */ 13470 if (isymbuf == NULL && symtab_hdr->sh_info != 0) 13471 { 13472 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; 13473 if (isymbuf == NULL) 13474 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, 13475 symtab_hdr->sh_info, 0, 13476 NULL, NULL, NULL); 13477 if (isymbuf == NULL) 13478 goto error_return; 13479 } 13480 13481 /* Get the value of the symbol referred to by the reloc. */ 13482 if (r_symndx < symtab_hdr->sh_info) 13483 { 13484 /* A local symbol. */ 13485 Elf_Internal_Sym *isym; 13486 asection *sym_sec; 13487 13488 isym = isymbuf + r_symndx; 13489 if (isym->st_shndx == SHN_UNDEF) 13490 sym_sec = bfd_und_section_ptr; 13491 else if (isym->st_shndx == SHN_ABS) 13492 sym_sec = bfd_abs_section_ptr; 13493 else if (isym->st_shndx == SHN_COMMON) 13494 sym_sec = bfd_com_section_ptr; 13495 else 13496 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx); 13497 symval = (isym->st_value 13498 + sym_sec->output_section->vma 13499 + sym_sec->output_offset); 13500 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other); 13501 } 13502 else 13503 { 13504 unsigned long indx; 13505 struct elf_link_hash_entry *h; 13506 13507 /* An external symbol. */ 13508 indx = r_symndx - symtab_hdr->sh_info; 13509 h = elf_sym_hashes (abfd)[indx]; 13510 BFD_ASSERT (h != NULL); 13511 13512 if (h->root.type != bfd_link_hash_defined 13513 && h->root.type != bfd_link_hash_defweak) 13514 /* This appears to be a reference to an undefined 13515 symbol. Just ignore it -- it will be caught by the 13516 regular reloc processing. */ 13517 continue; 13518 13519 symval = (h->root.u.def.value 13520 + h->root.u.def.section->output_section->vma 13521 + h->root.u.def.section->output_offset); 13522 target_is_micromips_code_p = (!h->needs_plt 13523 && ELF_ST_IS_MICROMIPS (h->other)); 13524 } 13525 13526 13527 /* For simplicity of coding, we are going to modify the 13528 section contents, the section relocs, and the BFD symbol 13529 table. We must tell the rest of the code not to free up this 13530 information. It would be possible to instead create a table 13531 of changes which have to be made, as is done in coff-mips.c; 13532 that would be more work, but would require less memory when 13533 the linker is run. */ 13534 13535 /* Only 32-bit instructions relaxed. */ 13536 if (irel->r_offset + 4 > sec->size) 13537 continue; 13538 13539 opcode = bfd_get_micromips_32 (abfd, ptr); 13540 13541 /* This is the pc-relative distance from the instruction the 13542 relocation is applied to, to the symbol referred. */ 13543 pcrval = (symval 13544 - (sec->output_section->vma + sec->output_offset) 13545 - irel->r_offset); 13546 13547 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation 13548 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or 13549 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is 13550 13551 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25)) 13552 13553 where pcrval has first to be adjusted to apply against the LO16 13554 location (we make the adjustment later on, when we have figured 13555 out the offset). */ 13556 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn)) 13557 { 13558 bfd_boolean bzc = FALSE; 13559 unsigned long nextopc; 13560 unsigned long reg; 13561 bfd_vma offset; 13562 13563 /* Give up if the previous reloc was a HI16 against this symbol 13564 too. */ 13565 if (irel > internal_relocs 13566 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16 13567 && ELF32_R_SYM (irel[-1].r_info) == r_symndx) 13568 continue; 13569 13570 /* Or if the next reloc is not a LO16 against this symbol. */ 13571 if (irel + 1 >= irelend 13572 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16 13573 || ELF32_R_SYM (irel[1].r_info) != r_symndx) 13574 continue; 13575 13576 /* Or if the second next reloc is a LO16 against this symbol too. */ 13577 if (irel + 2 >= irelend 13578 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16 13579 && ELF32_R_SYM (irel[2].r_info) == r_symndx) 13580 continue; 13581 13582 /* See if the LUI instruction *might* be in a branch delay slot. 13583 We check whether what looks like a 16-bit branch or jump is 13584 actually an immediate argument to a compact branch, and let 13585 it through if so. */ 13586 if (irel->r_offset >= 2 13587 && check_br16_dslot (abfd, ptr - 2) 13588 && !(irel->r_offset >= 4 13589 && (bzc = check_relocated_bzc (abfd, 13590 ptr - 4, irel->r_offset - 4, 13591 internal_relocs, irelend)))) 13592 continue; 13593 if (irel->r_offset >= 4 13594 && !bzc 13595 && check_br32_dslot (abfd, ptr - 4)) 13596 continue; 13597 13598 reg = OP32_SREG (opcode); 13599 13600 /* We only relax adjacent instructions or ones separated with 13601 a branch or jump that has a delay slot. The branch or jump 13602 must not fiddle with the register used to hold the address. 13603 Subtract 4 for the LUI itself. */ 13604 offset = irel[1].r_offset - irel[0].r_offset; 13605 switch (offset - 4) 13606 { 13607 case 0: 13608 break; 13609 case 2: 13610 if (check_br16 (abfd, ptr + 4, reg)) 13611 break; 13612 continue; 13613 case 4: 13614 if (check_br32 (abfd, ptr + 4, reg)) 13615 break; 13616 continue; 13617 default: 13618 continue; 13619 } 13620 13621 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset); 13622 13623 /* Give up unless the same register is used with both 13624 relocations. */ 13625 if (OP32_SREG (nextopc) != reg) 13626 continue; 13627 13628 /* Now adjust pcrval, subtracting the offset to the LO16 reloc 13629 and rounding up to take masking of the two LSBs into account. */ 13630 pcrval = ((pcrval - offset + 3) | 3) ^ 3; 13631 13632 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */ 13633 if (IS_BITSIZE (symval, 16)) 13634 { 13635 /* Fix the relocation's type. */ 13636 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16); 13637 13638 /* Instructions using R_MICROMIPS_LO16 have the base or 13639 source register in bits 20:16. This register becomes $0 13640 (zero) as the result of the R_MICROMIPS_HI16 being 0. */ 13641 nextopc &= ~0x001f0000; 13642 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff, 13643 contents + irel[1].r_offset); 13644 } 13645 13646 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2. 13647 We add 4 to take LUI deletion into account while checking 13648 the PC-relative distance. */ 13649 else if (symval % 4 == 0 13650 && IS_BITSIZE (pcrval + 4, 25) 13651 && MATCH (nextopc, addiu_insn) 13652 && OP32_TREG (nextopc) == OP32_SREG (nextopc) 13653 && OP16_VALID_REG (OP32_TREG (nextopc))) 13654 { 13655 /* Fix the relocation's type. */ 13656 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2); 13657 13658 /* Replace ADDIU with the ADDIUPC version. */ 13659 nextopc = (addiupc_insn.match 13660 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc))); 13661 13662 bfd_put_micromips_32 (abfd, nextopc, 13663 contents + irel[1].r_offset); 13664 } 13665 13666 /* Can't do anything, give up, sigh... */ 13667 else 13668 continue; 13669 13670 /* Fix the relocation's type. */ 13671 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE); 13672 13673 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */ 13674 delcnt = 4; 13675 deloff = 0; 13676 } 13677 13678 /* Compact branch relaxation -- due to the multitude of macros 13679 employed by the compiler/assembler, compact branches are not 13680 always generated. Obviously, this can/will be fixed elsewhere, 13681 but there is no drawback in double checking it here. */ 13682 else if (r_type == R_MICROMIPS_PC16_S1 13683 && irel->r_offset + 5 < sec->size 13684 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0 13685 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0) 13686 && ((!insn32 13687 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4), 13688 nop_insn_16) ? 2 : 0)) 13689 || (irel->r_offset + 7 < sec->size 13690 && (delcnt = MATCH (bfd_get_micromips_32 (abfd, 13691 ptr + 4), 13692 nop_insn_32) ? 4 : 0)))) 13693 { 13694 unsigned long reg; 13695 13696 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode); 13697 13698 /* Replace BEQZ/BNEZ with the compact version. */ 13699 opcode = (bzc_insns_32[fndopc].match 13700 | BZC32_REG_FIELD (reg) 13701 | (opcode & 0xffff)); /* Addend value. */ 13702 13703 bfd_put_micromips_32 (abfd, opcode, ptr); 13704 13705 /* Delete the delay slot NOP: two or four bytes from 13706 irel->offset + 4; delcnt has already been set above. */ 13707 deloff = 4; 13708 } 13709 13710 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need 13711 to check the distance from the next instruction, so subtract 2. */ 13712 else if (!insn32 13713 && r_type == R_MICROMIPS_PC16_S1 13714 && IS_BITSIZE (pcrval - 2, 11) 13715 && find_match (opcode, b_insns_32) >= 0) 13716 { 13717 /* Fix the relocation's type. */ 13718 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1); 13719 13720 /* Replace the 32-bit opcode with a 16-bit opcode. */ 13721 bfd_put_16 (abfd, 13722 (b_insn_16.match 13723 | (opcode & 0x3ff)), /* Addend value. */ 13724 ptr); 13725 13726 /* Delete 2 bytes from irel->r_offset + 2. */ 13727 delcnt = 2; 13728 deloff = 2; 13729 } 13730 13731 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need 13732 to check the distance from the next instruction, so subtract 2. */ 13733 else if (!insn32 13734 && r_type == R_MICROMIPS_PC16_S1 13735 && IS_BITSIZE (pcrval - 2, 8) 13736 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0 13737 && OP16_VALID_REG (OP32_SREG (opcode))) 13738 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0 13739 && OP16_VALID_REG (OP32_TREG (opcode))))) 13740 { 13741 unsigned long reg; 13742 13743 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode); 13744 13745 /* Fix the relocation's type. */ 13746 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1); 13747 13748 /* Replace the 32-bit opcode with a 16-bit opcode. */ 13749 bfd_put_16 (abfd, 13750 (bz_insns_16[fndopc].match 13751 | BZ16_REG_FIELD (reg) 13752 | (opcode & 0x7f)), /* Addend value. */ 13753 ptr); 13754 13755 /* Delete 2 bytes from irel->r_offset + 2. */ 13756 delcnt = 2; 13757 deloff = 2; 13758 } 13759 13760 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */ 13761 else if (!insn32 13762 && r_type == R_MICROMIPS_26_S1 13763 && target_is_micromips_code_p 13764 && irel->r_offset + 7 < sec->size 13765 && MATCH (opcode, jal_insn_32_bd32)) 13766 { 13767 unsigned long n32opc; 13768 bfd_boolean relaxed = FALSE; 13769 13770 n32opc = bfd_get_micromips_32 (abfd, ptr + 4); 13771 13772 if (MATCH (n32opc, nop_insn_32)) 13773 { 13774 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */ 13775 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4); 13776 13777 relaxed = TRUE; 13778 } 13779 else if (find_match (n32opc, move_insns_32) >= 0) 13780 { 13781 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */ 13782 bfd_put_16 (abfd, 13783 (move_insn_16.match 13784 | MOVE16_RD_FIELD (MOVE32_RD (n32opc)) 13785 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))), 13786 ptr + 4); 13787 13788 relaxed = TRUE; 13789 } 13790 /* Other 32-bit instructions relaxable to 16-bit 13791 instructions will be handled here later. */ 13792 13793 if (relaxed) 13794 { 13795 /* JAL with 32-bit delay slot that is changed to a JALS 13796 with 16-bit delay slot. */ 13797 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr); 13798 13799 /* Delete 2 bytes from irel->r_offset + 6. */ 13800 delcnt = 2; 13801 deloff = 6; 13802 } 13803 } 13804 13805 if (delcnt != 0) 13806 { 13807 /* Note that we've changed the relocs, section contents, etc. */ 13808 elf_section_data (sec)->relocs = internal_relocs; 13809 elf_section_data (sec)->this_hdr.contents = contents; 13810 symtab_hdr->contents = (unsigned char *) isymbuf; 13811 13812 /* Delete bytes depending on the delcnt and deloff. */ 13813 if (!mips_elf_relax_delete_bytes (abfd, sec, 13814 irel->r_offset + deloff, delcnt)) 13815 goto error_return; 13816 13817 /* That will change things, so we should relax again. 13818 Note that this is not required, and it may be slow. */ 13819 *again = TRUE; 13820 } 13821 } 13822 13823 if (isymbuf != NULL 13824 && symtab_hdr->contents != (unsigned char *) isymbuf) 13825 { 13826 if (! link_info->keep_memory) 13827 free (isymbuf); 13828 else 13829 { 13830 /* Cache the symbols for elf_link_input_bfd. */ 13831 symtab_hdr->contents = (unsigned char *) isymbuf; 13832 } 13833 } 13834 13835 if (contents != NULL 13836 && elf_section_data (sec)->this_hdr.contents != contents) 13837 { 13838 if (! link_info->keep_memory) 13839 free (contents); 13840 else 13841 { 13842 /* Cache the section contents for elf_link_input_bfd. */ 13843 elf_section_data (sec)->this_hdr.contents = contents; 13844 } 13845 } 13846 13847 if (internal_relocs != NULL 13848 && elf_section_data (sec)->relocs != internal_relocs) 13849 free (internal_relocs); 13850 13851 return TRUE; 13852 13853 error_return: 13854 if (isymbuf != NULL 13855 && symtab_hdr->contents != (unsigned char *) isymbuf) 13856 free (isymbuf); 13857 if (contents != NULL 13858 && elf_section_data (sec)->this_hdr.contents != contents) 13859 free (contents); 13860 if (internal_relocs != NULL 13861 && elf_section_data (sec)->relocs != internal_relocs) 13862 free (internal_relocs); 13863 13864 return FALSE; 13865 } 13866 13867 /* Create a MIPS ELF linker hash table. */ 13868 13869 struct bfd_link_hash_table * 13870 _bfd_mips_elf_link_hash_table_create (bfd *abfd) 13871 { 13872 struct mips_elf_link_hash_table *ret; 13873 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table); 13874 13875 ret = bfd_zmalloc (amt); 13876 if (ret == NULL) 13877 return NULL; 13878 13879 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, 13880 mips_elf_link_hash_newfunc, 13881 sizeof (struct mips_elf_link_hash_entry), 13882 MIPS_ELF_DATA)) 13883 { 13884 free (ret); 13885 return NULL; 13886 } 13887 ret->root.init_plt_refcount.plist = NULL; 13888 ret->root.init_plt_offset.plist = NULL; 13889 13890 return &ret->root.root; 13891 } 13892 13893 /* Likewise, but indicate that the target is VxWorks. */ 13894 13895 struct bfd_link_hash_table * 13896 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd) 13897 { 13898 struct bfd_link_hash_table *ret; 13899 13900 ret = _bfd_mips_elf_link_hash_table_create (abfd); 13901 if (ret) 13902 { 13903 struct mips_elf_link_hash_table *htab; 13904 13905 htab = (struct mips_elf_link_hash_table *) ret; 13906 htab->use_plts_and_copy_relocs = TRUE; 13907 htab->is_vxworks = TRUE; 13908 } 13909 return ret; 13910 } 13911 13912 /* A function that the linker calls if we are allowed to use PLTs 13913 and copy relocs. */ 13914 13915 void 13916 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info) 13917 { 13918 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE; 13919 } 13920 13921 /* A function that the linker calls to select between all or only 13922 32-bit microMIPS instructions. */ 13923 13924 void 13925 _bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on) 13926 { 13927 mips_elf_hash_table (info)->insn32 = on; 13928 } 13929 13930 /* Structure for saying that BFD machine EXTENSION extends BASE. */ 13931 13932 struct mips_mach_extension 13933 { 13934 unsigned long extension, base; 13935 }; 13936 13937 13938 /* An array describing how BFD machines relate to one another. The entries 13939 are ordered topologically with MIPS I extensions listed last. */ 13940 13941 static const struct mips_mach_extension mips_mach_extensions[] = 13942 { 13943 /* MIPS64r2 extensions. */ 13944 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 }, 13945 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp }, 13946 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon }, 13947 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 }, 13948 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 }, 13949 13950 /* MIPS64 extensions. */ 13951 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 }, 13952 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 }, 13953 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 }, 13954 13955 /* MIPS V extensions. */ 13956 { bfd_mach_mipsisa64, bfd_mach_mips5 }, 13957 13958 /* R10000 extensions. */ 13959 { bfd_mach_mips12000, bfd_mach_mips10000 }, 13960 { bfd_mach_mips14000, bfd_mach_mips10000 }, 13961 { bfd_mach_mips16000, bfd_mach_mips10000 }, 13962 13963 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core 13964 vr5400 ISA, but doesn't include the multimedia stuff. It seems 13965 better to allow vr5400 and vr5500 code to be merged anyway, since 13966 many libraries will just use the core ISA. Perhaps we could add 13967 some sort of ASE flag if this ever proves a problem. */ 13968 { bfd_mach_mips5500, bfd_mach_mips5400 }, 13969 { bfd_mach_mips5400, bfd_mach_mips5000 }, 13970 13971 /* MIPS IV extensions. */ 13972 { bfd_mach_mips5, bfd_mach_mips8000 }, 13973 { bfd_mach_mips10000, bfd_mach_mips8000 }, 13974 { bfd_mach_mips5000, bfd_mach_mips8000 }, 13975 { bfd_mach_mips7000, bfd_mach_mips8000 }, 13976 { bfd_mach_mips9000, bfd_mach_mips8000 }, 13977 13978 /* VR4100 extensions. */ 13979 { bfd_mach_mips4120, bfd_mach_mips4100 }, 13980 { bfd_mach_mips4111, bfd_mach_mips4100 }, 13981 13982 /* MIPS III extensions. */ 13983 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 }, 13984 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 }, 13985 { bfd_mach_mips8000, bfd_mach_mips4000 }, 13986 { bfd_mach_mips4650, bfd_mach_mips4000 }, 13987 { bfd_mach_mips4600, bfd_mach_mips4000 }, 13988 { bfd_mach_mips4400, bfd_mach_mips4000 }, 13989 { bfd_mach_mips4300, bfd_mach_mips4000 }, 13990 { bfd_mach_mips4100, bfd_mach_mips4000 }, 13991 { bfd_mach_mips4010, bfd_mach_mips4000 }, 13992 { bfd_mach_mips5900, bfd_mach_mips4000 }, 13993 13994 /* MIPS32 extensions. */ 13995 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 }, 13996 13997 /* MIPS II extensions. */ 13998 { bfd_mach_mips4000, bfd_mach_mips6000 }, 13999 { bfd_mach_mipsisa32, bfd_mach_mips6000 }, 14000 14001 /* MIPS I extensions. */ 14002 { bfd_mach_mips6000, bfd_mach_mips3000 }, 14003 { bfd_mach_mips3900, bfd_mach_mips3000 } 14004 }; 14005 14006 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */ 14007 14008 static bfd_boolean 14009 mips_mach_extends_p (unsigned long base, unsigned long extension) 14010 { 14011 size_t i; 14012 14013 if (extension == base) 14014 return TRUE; 14015 14016 if (base == bfd_mach_mipsisa32 14017 && mips_mach_extends_p (bfd_mach_mipsisa64, extension)) 14018 return TRUE; 14019 14020 if (base == bfd_mach_mipsisa32r2 14021 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension)) 14022 return TRUE; 14023 14024 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++) 14025 if (extension == mips_mach_extensions[i].extension) 14026 { 14027 extension = mips_mach_extensions[i].base; 14028 if (extension == base) 14029 return TRUE; 14030 } 14031 14032 return FALSE; 14033 } 14034 14035 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */ 14036 14037 static unsigned long 14038 bfd_mips_isa_ext_mach (unsigned int isa_ext) 14039 { 14040 switch (isa_ext) 14041 { 14042 case AFL_EXT_3900: return bfd_mach_mips3900; 14043 case AFL_EXT_4010: return bfd_mach_mips4010; 14044 case AFL_EXT_4100: return bfd_mach_mips4100; 14045 case AFL_EXT_4111: return bfd_mach_mips4111; 14046 case AFL_EXT_4120: return bfd_mach_mips4120; 14047 case AFL_EXT_4650: return bfd_mach_mips4650; 14048 case AFL_EXT_5400: return bfd_mach_mips5400; 14049 case AFL_EXT_5500: return bfd_mach_mips5500; 14050 case AFL_EXT_5900: return bfd_mach_mips5900; 14051 case AFL_EXT_10000: return bfd_mach_mips10000; 14052 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e; 14053 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f; 14054 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a; 14055 case AFL_EXT_SB1: return bfd_mach_mips_sb1; 14056 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon; 14057 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp; 14058 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2; 14059 case AFL_EXT_XLR: return bfd_mach_mips_xlr; 14060 default: return bfd_mach_mips3000; 14061 } 14062 } 14063 14064 /* Return the .MIPS.abiflags value representing each ISA Extension. */ 14065 14066 unsigned int 14067 bfd_mips_isa_ext (bfd *abfd) 14068 { 14069 switch (bfd_get_mach (abfd)) 14070 { 14071 case bfd_mach_mips3900: return AFL_EXT_3900; 14072 case bfd_mach_mips4010: return AFL_EXT_4010; 14073 case bfd_mach_mips4100: return AFL_EXT_4100; 14074 case bfd_mach_mips4111: return AFL_EXT_4111; 14075 case bfd_mach_mips4120: return AFL_EXT_4120; 14076 case bfd_mach_mips4650: return AFL_EXT_4650; 14077 case bfd_mach_mips5400: return AFL_EXT_5400; 14078 case bfd_mach_mips5500: return AFL_EXT_5500; 14079 case bfd_mach_mips5900: return AFL_EXT_5900; 14080 case bfd_mach_mips10000: return AFL_EXT_10000; 14081 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E; 14082 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F; 14083 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A; 14084 case bfd_mach_mips_sb1: return AFL_EXT_SB1; 14085 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON; 14086 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP; 14087 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3; 14088 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2; 14089 case bfd_mach_mips_xlr: return AFL_EXT_XLR; 14090 default: return 0; 14091 } 14092 } 14093 14094 /* Encode ISA level and revision as a single value. */ 14095 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV)) 14096 14097 /* Decode a single value into level and revision. */ 14098 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3) 14099 #define ISA_REV(LEVREV) ((LEVREV) & 0x7) 14100 14101 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */ 14102 14103 static void 14104 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags) 14105 { 14106 int new_isa = 0; 14107 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) 14108 { 14109 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break; 14110 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break; 14111 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break; 14112 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break; 14113 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break; 14114 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break; 14115 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break; 14116 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break; 14117 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break; 14118 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break; 14119 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break; 14120 default: 14121 (*_bfd_error_handler) 14122 (_("%B: Unknown architecture %s"), 14123 abfd, bfd_printable_name (abfd)); 14124 } 14125 14126 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev)) 14127 { 14128 abiflags->isa_level = ISA_LEVEL (new_isa); 14129 abiflags->isa_rev = ISA_REV (new_isa); 14130 } 14131 14132 /* Update the isa_ext if ABFD describes a further extension. */ 14133 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext), 14134 bfd_get_mach (abfd))) 14135 abiflags->isa_ext = bfd_mips_isa_ext (abfd); 14136 } 14137 14138 /* Return true if the given ELF header flags describe a 32-bit binary. */ 14139 14140 static bfd_boolean 14141 mips_32bit_flags_p (flagword flags) 14142 { 14143 return ((flags & EF_MIPS_32BITMODE) != 0 14144 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32 14145 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32 14146 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1 14147 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2 14148 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32 14149 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2 14150 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6); 14151 } 14152 14153 /* Infer the content of the ABI flags based on the elf header. */ 14154 14155 static void 14156 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags) 14157 { 14158 obj_attribute *in_attr; 14159 14160 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0)); 14161 update_mips_abiflags_isa (abfd, abiflags); 14162 14163 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags)) 14164 abiflags->gpr_size = AFL_REG_32; 14165 else 14166 abiflags->gpr_size = AFL_REG_64; 14167 14168 abiflags->cpr1_size = AFL_REG_NONE; 14169 14170 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU]; 14171 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i; 14172 14173 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE 14174 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX 14175 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE 14176 && abiflags->gpr_size == AFL_REG_32)) 14177 abiflags->cpr1_size = AFL_REG_32; 14178 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE 14179 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64 14180 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A) 14181 abiflags->cpr1_size = AFL_REG_64; 14182 14183 abiflags->cpr2_size = AFL_REG_NONE; 14184 14185 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX) 14186 abiflags->ases |= AFL_ASE_MDMX; 14187 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16) 14188 abiflags->ases |= AFL_ASE_MIPS16; 14189 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) 14190 abiflags->ases |= AFL_ASE_MICROMIPS; 14191 14192 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY 14193 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT 14194 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A 14195 && abiflags->isa_level >= 32 14196 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A) 14197 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG; 14198 } 14199 14200 /* We need to use a special link routine to handle the .reginfo and 14201 the .mdebug sections. We need to merge all instances of these 14202 sections together, not write them all out sequentially. */ 14203 14204 bfd_boolean 14205 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info) 14206 { 14207 asection *o; 14208 struct bfd_link_order *p; 14209 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec; 14210 asection *rtproc_sec, *abiflags_sec; 14211 Elf32_RegInfo reginfo; 14212 struct ecoff_debug_info debug; 14213 struct mips_htab_traverse_info hti; 14214 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 14215 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap; 14216 HDRR *symhdr = &debug.symbolic_header; 14217 void *mdebug_handle = NULL; 14218 asection *s; 14219 EXTR esym; 14220 unsigned int i; 14221 bfd_size_type amt; 14222 struct mips_elf_link_hash_table *htab; 14223 14224 static const char * const secname[] = 14225 { 14226 ".text", ".init", ".fini", ".data", 14227 ".rodata", ".sdata", ".sbss", ".bss" 14228 }; 14229 static const int sc[] = 14230 { 14231 scText, scInit, scFini, scData, 14232 scRData, scSData, scSBss, scBss 14233 }; 14234 14235 /* Sort the dynamic symbols so that those with GOT entries come after 14236 those without. */ 14237 htab = mips_elf_hash_table (info); 14238 BFD_ASSERT (htab != NULL); 14239 14240 if (!mips_elf_sort_hash_table (abfd, info)) 14241 return FALSE; 14242 14243 /* Create any scheduled LA25 stubs. */ 14244 hti.info = info; 14245 hti.output_bfd = abfd; 14246 hti.error = FALSE; 14247 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti); 14248 if (hti.error) 14249 return FALSE; 14250 14251 /* Get a value for the GP register. */ 14252 if (elf_gp (abfd) == 0) 14253 { 14254 struct bfd_link_hash_entry *h; 14255 14256 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE); 14257 if (h != NULL && h->type == bfd_link_hash_defined) 14258 elf_gp (abfd) = (h->u.def.value 14259 + h->u.def.section->output_section->vma 14260 + h->u.def.section->output_offset); 14261 else if (htab->is_vxworks 14262 && (h = bfd_link_hash_lookup (info->hash, 14263 "_GLOBAL_OFFSET_TABLE_", 14264 FALSE, FALSE, TRUE)) 14265 && h->type == bfd_link_hash_defined) 14266 elf_gp (abfd) = (h->u.def.section->output_section->vma 14267 + h->u.def.section->output_offset 14268 + h->u.def.value); 14269 else if (bfd_link_relocatable (info)) 14270 { 14271 bfd_vma lo = MINUS_ONE; 14272 14273 /* Find the GP-relative section with the lowest offset. */ 14274 for (o = abfd->sections; o != NULL; o = o->next) 14275 if (o->vma < lo 14276 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL)) 14277 lo = o->vma; 14278 14279 /* And calculate GP relative to that. */ 14280 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info); 14281 } 14282 else 14283 { 14284 /* If the relocate_section function needs to do a reloc 14285 involving the GP value, it should make a reloc_dangerous 14286 callback to warn that GP is not defined. */ 14287 } 14288 } 14289 14290 /* Go through the sections and collect the .reginfo and .mdebug 14291 information. */ 14292 abiflags_sec = NULL; 14293 reginfo_sec = NULL; 14294 mdebug_sec = NULL; 14295 gptab_data_sec = NULL; 14296 gptab_bss_sec = NULL; 14297 for (o = abfd->sections; o != NULL; o = o->next) 14298 { 14299 if (strcmp (o->name, ".MIPS.abiflags") == 0) 14300 { 14301 /* We have found the .MIPS.abiflags section in the output file. 14302 Look through all the link_orders comprising it and remove them. 14303 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */ 14304 for (p = o->map_head.link_order; p != NULL; p = p->next) 14305 { 14306 asection *input_section; 14307 14308 if (p->type != bfd_indirect_link_order) 14309 { 14310 if (p->type == bfd_data_link_order) 14311 continue; 14312 abort (); 14313 } 14314 14315 input_section = p->u.indirect.section; 14316 14317 /* Hack: reset the SEC_HAS_CONTENTS flag so that 14318 elf_link_input_bfd ignores this section. */ 14319 input_section->flags &= ~SEC_HAS_CONTENTS; 14320 } 14321 14322 /* Size has been set in _bfd_mips_elf_always_size_sections. */ 14323 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0)); 14324 14325 /* Skip this section later on (I don't think this currently 14326 matters, but someday it might). */ 14327 o->map_head.link_order = NULL; 14328 14329 abiflags_sec = o; 14330 } 14331 14332 if (strcmp (o->name, ".reginfo") == 0) 14333 { 14334 memset (®info, 0, sizeof reginfo); 14335 14336 /* We have found the .reginfo section in the output file. 14337 Look through all the link_orders comprising it and merge 14338 the information together. */ 14339 for (p = o->map_head.link_order; p != NULL; p = p->next) 14340 { 14341 asection *input_section; 14342 bfd *input_bfd; 14343 Elf32_External_RegInfo ext; 14344 Elf32_RegInfo sub; 14345 14346 if (p->type != bfd_indirect_link_order) 14347 { 14348 if (p->type == bfd_data_link_order) 14349 continue; 14350 abort (); 14351 } 14352 14353 input_section = p->u.indirect.section; 14354 input_bfd = input_section->owner; 14355 14356 if (! bfd_get_section_contents (input_bfd, input_section, 14357 &ext, 0, sizeof ext)) 14358 return FALSE; 14359 14360 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub); 14361 14362 reginfo.ri_gprmask |= sub.ri_gprmask; 14363 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0]; 14364 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1]; 14365 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2]; 14366 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3]; 14367 14368 /* ri_gp_value is set by the function 14369 mips_elf32_section_processing when the section is 14370 finally written out. */ 14371 14372 /* Hack: reset the SEC_HAS_CONTENTS flag so that 14373 elf_link_input_bfd ignores this section. */ 14374 input_section->flags &= ~SEC_HAS_CONTENTS; 14375 } 14376 14377 /* Size has been set in _bfd_mips_elf_always_size_sections. */ 14378 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo)); 14379 14380 /* Skip this section later on (I don't think this currently 14381 matters, but someday it might). */ 14382 o->map_head.link_order = NULL; 14383 14384 reginfo_sec = o; 14385 } 14386 14387 if (strcmp (o->name, ".mdebug") == 0) 14388 { 14389 struct extsym_info einfo; 14390 bfd_vma last; 14391 14392 /* We have found the .mdebug section in the output file. 14393 Look through all the link_orders comprising it and merge 14394 the information together. */ 14395 symhdr->magic = swap->sym_magic; 14396 /* FIXME: What should the version stamp be? */ 14397 symhdr->vstamp = 0; 14398 symhdr->ilineMax = 0; 14399 symhdr->cbLine = 0; 14400 symhdr->idnMax = 0; 14401 symhdr->ipdMax = 0; 14402 symhdr->isymMax = 0; 14403 symhdr->ioptMax = 0; 14404 symhdr->iauxMax = 0; 14405 symhdr->issMax = 0; 14406 symhdr->issExtMax = 0; 14407 symhdr->ifdMax = 0; 14408 symhdr->crfd = 0; 14409 symhdr->iextMax = 0; 14410 14411 /* We accumulate the debugging information itself in the 14412 debug_info structure. */ 14413 debug.line = NULL; 14414 debug.external_dnr = NULL; 14415 debug.external_pdr = NULL; 14416 debug.external_sym = NULL; 14417 debug.external_opt = NULL; 14418 debug.external_aux = NULL; 14419 debug.ss = NULL; 14420 debug.ssext = debug.ssext_end = NULL; 14421 debug.external_fdr = NULL; 14422 debug.external_rfd = NULL; 14423 debug.external_ext = debug.external_ext_end = NULL; 14424 14425 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info); 14426 if (mdebug_handle == NULL) 14427 return FALSE; 14428 14429 esym.jmptbl = 0; 14430 esym.cobol_main = 0; 14431 esym.weakext = 0; 14432 esym.reserved = 0; 14433 esym.ifd = ifdNil; 14434 esym.asym.iss = issNil; 14435 esym.asym.st = stLocal; 14436 esym.asym.reserved = 0; 14437 esym.asym.index = indexNil; 14438 last = 0; 14439 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++) 14440 { 14441 esym.asym.sc = sc[i]; 14442 s = bfd_get_section_by_name (abfd, secname[i]); 14443 if (s != NULL) 14444 { 14445 esym.asym.value = s->vma; 14446 last = s->vma + s->size; 14447 } 14448 else 14449 esym.asym.value = last; 14450 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap, 14451 secname[i], &esym)) 14452 return FALSE; 14453 } 14454 14455 for (p = o->map_head.link_order; p != NULL; p = p->next) 14456 { 14457 asection *input_section; 14458 bfd *input_bfd; 14459 const struct ecoff_debug_swap *input_swap; 14460 struct ecoff_debug_info input_debug; 14461 char *eraw_src; 14462 char *eraw_end; 14463 14464 if (p->type != bfd_indirect_link_order) 14465 { 14466 if (p->type == bfd_data_link_order) 14467 continue; 14468 abort (); 14469 } 14470 14471 input_section = p->u.indirect.section; 14472 input_bfd = input_section->owner; 14473 14474 if (!is_mips_elf (input_bfd)) 14475 { 14476 /* I don't know what a non MIPS ELF bfd would be 14477 doing with a .mdebug section, but I don't really 14478 want to deal with it. */ 14479 continue; 14480 } 14481 14482 input_swap = (get_elf_backend_data (input_bfd) 14483 ->elf_backend_ecoff_debug_swap); 14484 14485 BFD_ASSERT (p->size == input_section->size); 14486 14487 /* The ECOFF linking code expects that we have already 14488 read in the debugging information and set up an 14489 ecoff_debug_info structure, so we do that now. */ 14490 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section, 14491 &input_debug)) 14492 return FALSE; 14493 14494 if (! (bfd_ecoff_debug_accumulate 14495 (mdebug_handle, abfd, &debug, swap, input_bfd, 14496 &input_debug, input_swap, info))) 14497 return FALSE; 14498 14499 /* Loop through the external symbols. For each one with 14500 interesting information, try to find the symbol in 14501 the linker global hash table and save the information 14502 for the output external symbols. */ 14503 eraw_src = input_debug.external_ext; 14504 eraw_end = (eraw_src 14505 + (input_debug.symbolic_header.iextMax 14506 * input_swap->external_ext_size)); 14507 for (; 14508 eraw_src < eraw_end; 14509 eraw_src += input_swap->external_ext_size) 14510 { 14511 EXTR ext; 14512 const char *name; 14513 struct mips_elf_link_hash_entry *h; 14514 14515 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext); 14516 if (ext.asym.sc == scNil 14517 || ext.asym.sc == scUndefined 14518 || ext.asym.sc == scSUndefined) 14519 continue; 14520 14521 name = input_debug.ssext + ext.asym.iss; 14522 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info), 14523 name, FALSE, FALSE, TRUE); 14524 if (h == NULL || h->esym.ifd != -2) 14525 continue; 14526 14527 if (ext.ifd != -1) 14528 { 14529 BFD_ASSERT (ext.ifd 14530 < input_debug.symbolic_header.ifdMax); 14531 ext.ifd = input_debug.ifdmap[ext.ifd]; 14532 } 14533 14534 h->esym = ext; 14535 } 14536 14537 /* Free up the information we just read. */ 14538 free (input_debug.line); 14539 free (input_debug.external_dnr); 14540 free (input_debug.external_pdr); 14541 free (input_debug.external_sym); 14542 free (input_debug.external_opt); 14543 free (input_debug.external_aux); 14544 free (input_debug.ss); 14545 free (input_debug.ssext); 14546 free (input_debug.external_fdr); 14547 free (input_debug.external_rfd); 14548 free (input_debug.external_ext); 14549 14550 /* Hack: reset the SEC_HAS_CONTENTS flag so that 14551 elf_link_input_bfd ignores this section. */ 14552 input_section->flags &= ~SEC_HAS_CONTENTS; 14553 } 14554 14555 if (SGI_COMPAT (abfd) && bfd_link_pic (info)) 14556 { 14557 /* Create .rtproc section. */ 14558 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc"); 14559 if (rtproc_sec == NULL) 14560 { 14561 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY 14562 | SEC_LINKER_CREATED | SEC_READONLY); 14563 14564 rtproc_sec = bfd_make_section_anyway_with_flags (abfd, 14565 ".rtproc", 14566 flags); 14567 if (rtproc_sec == NULL 14568 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4)) 14569 return FALSE; 14570 } 14571 14572 if (! mips_elf_create_procedure_table (mdebug_handle, abfd, 14573 info, rtproc_sec, 14574 &debug)) 14575 return FALSE; 14576 } 14577 14578 /* Build the external symbol information. */ 14579 einfo.abfd = abfd; 14580 einfo.info = info; 14581 einfo.debug = &debug; 14582 einfo.swap = swap; 14583 einfo.failed = FALSE; 14584 mips_elf_link_hash_traverse (mips_elf_hash_table (info), 14585 mips_elf_output_extsym, &einfo); 14586 if (einfo.failed) 14587 return FALSE; 14588 14589 /* Set the size of the .mdebug section. */ 14590 o->size = bfd_ecoff_debug_size (abfd, &debug, swap); 14591 14592 /* Skip this section later on (I don't think this currently 14593 matters, but someday it might). */ 14594 o->map_head.link_order = NULL; 14595 14596 mdebug_sec = o; 14597 } 14598 14599 if (CONST_STRNEQ (o->name, ".gptab.")) 14600 { 14601 const char *subname; 14602 unsigned int c; 14603 Elf32_gptab *tab; 14604 Elf32_External_gptab *ext_tab; 14605 unsigned int j; 14606 14607 /* The .gptab.sdata and .gptab.sbss sections hold 14608 information describing how the small data area would 14609 change depending upon the -G switch. These sections 14610 not used in executables files. */ 14611 if (! bfd_link_relocatable (info)) 14612 { 14613 for (p = o->map_head.link_order; p != NULL; p = p->next) 14614 { 14615 asection *input_section; 14616 14617 if (p->type != bfd_indirect_link_order) 14618 { 14619 if (p->type == bfd_data_link_order) 14620 continue; 14621 abort (); 14622 } 14623 14624 input_section = p->u.indirect.section; 14625 14626 /* Hack: reset the SEC_HAS_CONTENTS flag so that 14627 elf_link_input_bfd ignores this section. */ 14628 input_section->flags &= ~SEC_HAS_CONTENTS; 14629 } 14630 14631 /* Skip this section later on (I don't think this 14632 currently matters, but someday it might). */ 14633 o->map_head.link_order = NULL; 14634 14635 /* Really remove the section. */ 14636 bfd_section_list_remove (abfd, o); 14637 --abfd->section_count; 14638 14639 continue; 14640 } 14641 14642 /* There is one gptab for initialized data, and one for 14643 uninitialized data. */ 14644 if (strcmp (o->name, ".gptab.sdata") == 0) 14645 gptab_data_sec = o; 14646 else if (strcmp (o->name, ".gptab.sbss") == 0) 14647 gptab_bss_sec = o; 14648 else 14649 { 14650 (*_bfd_error_handler) 14651 (_("%s: illegal section name `%s'"), 14652 bfd_get_filename (abfd), o->name); 14653 bfd_set_error (bfd_error_nonrepresentable_section); 14654 return FALSE; 14655 } 14656 14657 /* The linker script always combines .gptab.data and 14658 .gptab.sdata into .gptab.sdata, and likewise for 14659 .gptab.bss and .gptab.sbss. It is possible that there is 14660 no .sdata or .sbss section in the output file, in which 14661 case we must change the name of the output section. */ 14662 subname = o->name + sizeof ".gptab" - 1; 14663 if (bfd_get_section_by_name (abfd, subname) == NULL) 14664 { 14665 if (o == gptab_data_sec) 14666 o->name = ".gptab.data"; 14667 else 14668 o->name = ".gptab.bss"; 14669 subname = o->name + sizeof ".gptab" - 1; 14670 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL); 14671 } 14672 14673 /* Set up the first entry. */ 14674 c = 1; 14675 amt = c * sizeof (Elf32_gptab); 14676 tab = bfd_malloc (amt); 14677 if (tab == NULL) 14678 return FALSE; 14679 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd); 14680 tab[0].gt_header.gt_unused = 0; 14681 14682 /* Combine the input sections. */ 14683 for (p = o->map_head.link_order; p != NULL; p = p->next) 14684 { 14685 asection *input_section; 14686 bfd *input_bfd; 14687 bfd_size_type size; 14688 unsigned long last; 14689 bfd_size_type gpentry; 14690 14691 if (p->type != bfd_indirect_link_order) 14692 { 14693 if (p->type == bfd_data_link_order) 14694 continue; 14695 abort (); 14696 } 14697 14698 input_section = p->u.indirect.section; 14699 input_bfd = input_section->owner; 14700 14701 /* Combine the gptab entries for this input section one 14702 by one. We know that the input gptab entries are 14703 sorted by ascending -G value. */ 14704 size = input_section->size; 14705 last = 0; 14706 for (gpentry = sizeof (Elf32_External_gptab); 14707 gpentry < size; 14708 gpentry += sizeof (Elf32_External_gptab)) 14709 { 14710 Elf32_External_gptab ext_gptab; 14711 Elf32_gptab int_gptab; 14712 unsigned long val; 14713 unsigned long add; 14714 bfd_boolean exact; 14715 unsigned int look; 14716 14717 if (! (bfd_get_section_contents 14718 (input_bfd, input_section, &ext_gptab, gpentry, 14719 sizeof (Elf32_External_gptab)))) 14720 { 14721 free (tab); 14722 return FALSE; 14723 } 14724 14725 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab, 14726 &int_gptab); 14727 val = int_gptab.gt_entry.gt_g_value; 14728 add = int_gptab.gt_entry.gt_bytes - last; 14729 14730 exact = FALSE; 14731 for (look = 1; look < c; look++) 14732 { 14733 if (tab[look].gt_entry.gt_g_value >= val) 14734 tab[look].gt_entry.gt_bytes += add; 14735 14736 if (tab[look].gt_entry.gt_g_value == val) 14737 exact = TRUE; 14738 } 14739 14740 if (! exact) 14741 { 14742 Elf32_gptab *new_tab; 14743 unsigned int max; 14744 14745 /* We need a new table entry. */ 14746 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab); 14747 new_tab = bfd_realloc (tab, amt); 14748 if (new_tab == NULL) 14749 { 14750 free (tab); 14751 return FALSE; 14752 } 14753 tab = new_tab; 14754 tab[c].gt_entry.gt_g_value = val; 14755 tab[c].gt_entry.gt_bytes = add; 14756 14757 /* Merge in the size for the next smallest -G 14758 value, since that will be implied by this new 14759 value. */ 14760 max = 0; 14761 for (look = 1; look < c; look++) 14762 { 14763 if (tab[look].gt_entry.gt_g_value < val 14764 && (max == 0 14765 || (tab[look].gt_entry.gt_g_value 14766 > tab[max].gt_entry.gt_g_value))) 14767 max = look; 14768 } 14769 if (max != 0) 14770 tab[c].gt_entry.gt_bytes += 14771 tab[max].gt_entry.gt_bytes; 14772 14773 ++c; 14774 } 14775 14776 last = int_gptab.gt_entry.gt_bytes; 14777 } 14778 14779 /* Hack: reset the SEC_HAS_CONTENTS flag so that 14780 elf_link_input_bfd ignores this section. */ 14781 input_section->flags &= ~SEC_HAS_CONTENTS; 14782 } 14783 14784 /* The table must be sorted by -G value. */ 14785 if (c > 2) 14786 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare); 14787 14788 /* Swap out the table. */ 14789 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab); 14790 ext_tab = bfd_alloc (abfd, amt); 14791 if (ext_tab == NULL) 14792 { 14793 free (tab); 14794 return FALSE; 14795 } 14796 14797 for (j = 0; j < c; j++) 14798 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j); 14799 free (tab); 14800 14801 o->size = c * sizeof (Elf32_External_gptab); 14802 o->contents = (bfd_byte *) ext_tab; 14803 14804 /* Skip this section later on (I don't think this currently 14805 matters, but someday it might). */ 14806 o->map_head.link_order = NULL; 14807 } 14808 } 14809 14810 /* Invoke the regular ELF backend linker to do all the work. */ 14811 if (!bfd_elf_final_link (abfd, info)) 14812 return FALSE; 14813 14814 /* Now write out the computed sections. */ 14815 14816 if (abiflags_sec != NULL) 14817 { 14818 Elf_External_ABIFlags_v0 ext; 14819 Elf_Internal_ABIFlags_v0 *abiflags; 14820 14821 abiflags = &mips_elf_tdata (abfd)->abiflags; 14822 14823 /* Set up the abiflags if no valid input sections were found. */ 14824 if (!mips_elf_tdata (abfd)->abiflags_valid) 14825 { 14826 infer_mips_abiflags (abfd, abiflags); 14827 mips_elf_tdata (abfd)->abiflags_valid = TRUE; 14828 } 14829 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext); 14830 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext)) 14831 return FALSE; 14832 } 14833 14834 if (reginfo_sec != NULL) 14835 { 14836 Elf32_External_RegInfo ext; 14837 14838 bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext); 14839 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext)) 14840 return FALSE; 14841 } 14842 14843 if (mdebug_sec != NULL) 14844 { 14845 BFD_ASSERT (abfd->output_has_begun); 14846 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug, 14847 swap, info, 14848 mdebug_sec->filepos)) 14849 return FALSE; 14850 14851 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info); 14852 } 14853 14854 if (gptab_data_sec != NULL) 14855 { 14856 if (! bfd_set_section_contents (abfd, gptab_data_sec, 14857 gptab_data_sec->contents, 14858 0, gptab_data_sec->size)) 14859 return FALSE; 14860 } 14861 14862 if (gptab_bss_sec != NULL) 14863 { 14864 if (! bfd_set_section_contents (abfd, gptab_bss_sec, 14865 gptab_bss_sec->contents, 14866 0, gptab_bss_sec->size)) 14867 return FALSE; 14868 } 14869 14870 if (SGI_COMPAT (abfd)) 14871 { 14872 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); 14873 if (rtproc_sec != NULL) 14874 { 14875 if (! bfd_set_section_contents (abfd, rtproc_sec, 14876 rtproc_sec->contents, 14877 0, rtproc_sec->size)) 14878 return FALSE; 14879 } 14880 } 14881 14882 return TRUE; 14883 } 14884 14885 /* Merge object attributes from IBFD into OBFD. Raise an error if 14886 there are conflicting attributes. */ 14887 static bfd_boolean 14888 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd) 14889 { 14890 obj_attribute *in_attr; 14891 obj_attribute *out_attr; 14892 bfd *abi_fp_bfd; 14893 bfd *abi_msa_bfd; 14894 14895 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd; 14896 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU]; 14897 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY) 14898 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd; 14899 14900 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd; 14901 if (!abi_msa_bfd 14902 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY) 14903 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd; 14904 14905 if (!elf_known_obj_attributes_proc (obfd)[0].i) 14906 { 14907 /* This is the first object. Copy the attributes. */ 14908 _bfd_elf_copy_obj_attributes (ibfd, obfd); 14909 14910 /* Use the Tag_null value to indicate the attributes have been 14911 initialized. */ 14912 elf_known_obj_attributes_proc (obfd)[0].i = 1; 14913 14914 return TRUE; 14915 } 14916 14917 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge 14918 non-conflicting ones. */ 14919 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU]; 14920 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i) 14921 { 14922 int out_fp, in_fp; 14923 14924 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i; 14925 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i; 14926 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1; 14927 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY) 14928 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp; 14929 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX 14930 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE 14931 || in_fp == Val_GNU_MIPS_ABI_FP_64 14932 || in_fp == Val_GNU_MIPS_ABI_FP_64A)) 14933 { 14934 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd; 14935 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i; 14936 } 14937 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX 14938 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE 14939 || out_fp == Val_GNU_MIPS_ABI_FP_64 14940 || out_fp == Val_GNU_MIPS_ABI_FP_64A)) 14941 /* Keep the current setting. */; 14942 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A 14943 && in_fp == Val_GNU_MIPS_ABI_FP_64) 14944 { 14945 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd; 14946 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i; 14947 } 14948 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A 14949 && out_fp == Val_GNU_MIPS_ABI_FP_64) 14950 /* Keep the current setting. */; 14951 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY) 14952 { 14953 const char *out_string, *in_string; 14954 14955 out_string = _bfd_mips_fp_abi_string (out_fp); 14956 in_string = _bfd_mips_fp_abi_string (in_fp); 14957 /* First warn about cases involving unrecognised ABIs. */ 14958 if (!out_string && !in_string) 14959 _bfd_error_handler 14960 (_("Warning: %B uses unknown floating point ABI %d " 14961 "(set by %B), %B uses unknown floating point ABI %d"), 14962 obfd, abi_fp_bfd, ibfd, out_fp, in_fp); 14963 else if (!out_string) 14964 _bfd_error_handler 14965 (_("Warning: %B uses unknown floating point ABI %d " 14966 "(set by %B), %B uses %s"), 14967 obfd, abi_fp_bfd, ibfd, out_fp, in_string); 14968 else if (!in_string) 14969 _bfd_error_handler 14970 (_("Warning: %B uses %s (set by %B), " 14971 "%B uses unknown floating point ABI %d"), 14972 obfd, abi_fp_bfd, ibfd, out_string, in_fp); 14973 else 14974 { 14975 /* If one of the bfds is soft-float, the other must be 14976 hard-float. The exact choice of hard-float ABI isn't 14977 really relevant to the error message. */ 14978 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT) 14979 out_string = "-mhard-float"; 14980 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT) 14981 in_string = "-mhard-float"; 14982 _bfd_error_handler 14983 (_("Warning: %B uses %s (set by %B), %B uses %s"), 14984 obfd, abi_fp_bfd, ibfd, out_string, in_string); 14985 } 14986 } 14987 } 14988 14989 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge 14990 non-conflicting ones. */ 14991 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i) 14992 { 14993 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1; 14994 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY) 14995 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i; 14996 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY) 14997 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i) 14998 { 14999 case Val_GNU_MIPS_ABI_MSA_128: 15000 _bfd_error_handler 15001 (_("Warning: %B uses %s (set by %B), " 15002 "%B uses unknown MSA ABI %d"), 15003 obfd, abi_msa_bfd, ibfd, 15004 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i); 15005 break; 15006 15007 default: 15008 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i) 15009 { 15010 case Val_GNU_MIPS_ABI_MSA_128: 15011 _bfd_error_handler 15012 (_("Warning: %B uses unknown MSA ABI %d " 15013 "(set by %B), %B uses %s"), 15014 obfd, abi_msa_bfd, ibfd, 15015 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa"); 15016 break; 15017 15018 default: 15019 _bfd_error_handler 15020 (_("Warning: %B uses unknown MSA ABI %d " 15021 "(set by %B), %B uses unknown MSA ABI %d"), 15022 obfd, abi_msa_bfd, ibfd, 15023 out_attr[Tag_GNU_MIPS_ABI_MSA].i, 15024 in_attr[Tag_GNU_MIPS_ABI_MSA].i); 15025 break; 15026 } 15027 } 15028 } 15029 15030 /* Merge Tag_compatibility attributes and any common GNU ones. */ 15031 return _bfd_elf_merge_object_attributes (ibfd, obfd); 15032 } 15033 15034 /* Merge backend specific data from an object file to the output 15035 object file when linking. */ 15036 15037 bfd_boolean 15038 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd) 15039 { 15040 flagword old_flags; 15041 flagword new_flags; 15042 bfd_boolean ok; 15043 bfd_boolean null_input_bfd = TRUE; 15044 asection *sec; 15045 obj_attribute *out_attr; 15046 15047 /* Check if we have the same endianness. */ 15048 if (! _bfd_generic_verify_endian_match (ibfd, obfd)) 15049 { 15050 (*_bfd_error_handler) 15051 (_("%B: endianness incompatible with that of the selected emulation"), 15052 ibfd); 15053 return FALSE; 15054 } 15055 15056 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd)) 15057 return TRUE; 15058 15059 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0) 15060 { 15061 (*_bfd_error_handler) 15062 (_("%B: ABI is incompatible with that of the selected emulation"), 15063 ibfd); 15064 return FALSE; 15065 } 15066 15067 /* Set up the FP ABI attribute from the abiflags if it is not already 15068 set. */ 15069 if (mips_elf_tdata (ibfd)->abiflags_valid) 15070 { 15071 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU]; 15072 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY) 15073 in_attr[Tag_GNU_MIPS_ABI_FP].i = 15074 mips_elf_tdata (ibfd)->abiflags.fp_abi; 15075 } 15076 15077 if (!mips_elf_merge_obj_attributes (ibfd, obfd)) 15078 return FALSE; 15079 15080 /* Check to see if the input BFD actually contains any sections. 15081 If not, its flags may not have been initialised either, but it cannot 15082 actually cause any incompatibility. */ 15083 for (sec = ibfd->sections; sec != NULL; sec = sec->next) 15084 { 15085 /* Ignore synthetic sections and empty .text, .data and .bss sections 15086 which are automatically generated by gas. Also ignore fake 15087 (s)common sections, since merely defining a common symbol does 15088 not affect compatibility. */ 15089 if ((sec->flags & SEC_IS_COMMON) == 0 15090 && strcmp (sec->name, ".reginfo") 15091 && strcmp (sec->name, ".mdebug") 15092 && (sec->size != 0 15093 || (strcmp (sec->name, ".text") 15094 && strcmp (sec->name, ".data") 15095 && strcmp (sec->name, ".bss")))) 15096 { 15097 null_input_bfd = FALSE; 15098 break; 15099 } 15100 } 15101 if (null_input_bfd) 15102 return TRUE; 15103 15104 /* Populate abiflags using existing information. */ 15105 if (!mips_elf_tdata (ibfd)->abiflags_valid) 15106 { 15107 infer_mips_abiflags (ibfd, &mips_elf_tdata (ibfd)->abiflags); 15108 mips_elf_tdata (ibfd)->abiflags_valid = TRUE; 15109 } 15110 else 15111 { 15112 Elf_Internal_ABIFlags_v0 abiflags; 15113 Elf_Internal_ABIFlags_v0 in_abiflags; 15114 infer_mips_abiflags (ibfd, &abiflags); 15115 in_abiflags = mips_elf_tdata (ibfd)->abiflags; 15116 15117 /* It is not possible to infer the correct ISA revision 15118 for R3 or R5 so drop down to R2 for the checks. */ 15119 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5) 15120 in_abiflags.isa_rev = 2; 15121 15122 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev) 15123 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev)) 15124 (*_bfd_error_handler) 15125 (_("%B: warning: Inconsistent ISA between e_flags and " 15126 ".MIPS.abiflags"), ibfd); 15127 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY 15128 && in_abiflags.fp_abi != abiflags.fp_abi) 15129 (*_bfd_error_handler) 15130 (_("%B: warning: Inconsistent FP ABI between e_flags and " 15131 ".MIPS.abiflags"), ibfd); 15132 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases) 15133 (*_bfd_error_handler) 15134 (_("%B: warning: Inconsistent ASEs between e_flags and " 15135 ".MIPS.abiflags"), ibfd); 15136 /* The isa_ext is allowed to be an extension of what can be inferred 15137 from e_flags. */ 15138 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext), 15139 bfd_mips_isa_ext_mach (in_abiflags.isa_ext))) 15140 (*_bfd_error_handler) 15141 (_("%B: warning: Inconsistent ISA extensions between e_flags and " 15142 ".MIPS.abiflags"), ibfd); 15143 if (in_abiflags.flags2 != 0) 15144 (*_bfd_error_handler) 15145 (_("%B: warning: Unexpected flag in the flags2 field of " 15146 ".MIPS.abiflags (0x%lx)"), ibfd, 15147 (unsigned long) in_abiflags.flags2); 15148 } 15149 15150 if (!mips_elf_tdata (obfd)->abiflags_valid) 15151 { 15152 /* Copy input abiflags if output abiflags are not already valid. */ 15153 mips_elf_tdata (obfd)->abiflags = mips_elf_tdata (ibfd)->abiflags; 15154 mips_elf_tdata (obfd)->abiflags_valid = TRUE; 15155 } 15156 15157 if (! elf_flags_init (obfd)) 15158 { 15159 elf_flags_init (obfd) = TRUE; 15160 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags; 15161 elf_elfheader (obfd)->e_ident[EI_CLASS] 15162 = elf_elfheader (ibfd)->e_ident[EI_CLASS]; 15163 15164 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) 15165 && (bfd_get_arch_info (obfd)->the_default 15166 || mips_mach_extends_p (bfd_get_mach (obfd), 15167 bfd_get_mach (ibfd)))) 15168 { 15169 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), 15170 bfd_get_mach (ibfd))) 15171 return FALSE; 15172 15173 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */ 15174 update_mips_abiflags_isa (obfd, &mips_elf_tdata (obfd)->abiflags); 15175 } 15176 15177 return TRUE; 15178 } 15179 15180 /* Update the output abiflags fp_abi using the computed fp_abi. */ 15181 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU]; 15182 mips_elf_tdata (obfd)->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i; 15183 15184 #define max(a,b) ((a) > (b) ? (a) : (b)) 15185 /* Merge abiflags. */ 15186 mips_elf_tdata (obfd)->abiflags.isa_level 15187 = max (mips_elf_tdata (obfd)->abiflags.isa_level, 15188 mips_elf_tdata (ibfd)->abiflags.isa_level); 15189 mips_elf_tdata (obfd)->abiflags.isa_rev 15190 = max (mips_elf_tdata (obfd)->abiflags.isa_rev, 15191 mips_elf_tdata (ibfd)->abiflags.isa_rev); 15192 mips_elf_tdata (obfd)->abiflags.gpr_size 15193 = max (mips_elf_tdata (obfd)->abiflags.gpr_size, 15194 mips_elf_tdata (ibfd)->abiflags.gpr_size); 15195 mips_elf_tdata (obfd)->abiflags.cpr1_size 15196 = max (mips_elf_tdata (obfd)->abiflags.cpr1_size, 15197 mips_elf_tdata (ibfd)->abiflags.cpr1_size); 15198 mips_elf_tdata (obfd)->abiflags.cpr2_size 15199 = max (mips_elf_tdata (obfd)->abiflags.cpr2_size, 15200 mips_elf_tdata (ibfd)->abiflags.cpr2_size); 15201 #undef max 15202 mips_elf_tdata (obfd)->abiflags.ases 15203 |= mips_elf_tdata (ibfd)->abiflags.ases; 15204 mips_elf_tdata (obfd)->abiflags.flags1 15205 |= mips_elf_tdata (ibfd)->abiflags.flags1; 15206 15207 new_flags = elf_elfheader (ibfd)->e_flags; 15208 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER; 15209 old_flags = elf_elfheader (obfd)->e_flags; 15210 15211 /* Check flag compatibility. */ 15212 15213 new_flags &= ~EF_MIPS_NOREORDER; 15214 old_flags &= ~EF_MIPS_NOREORDER; 15215 15216 /* Some IRIX 6 BSD-compatibility objects have this bit set. It 15217 doesn't seem to matter. */ 15218 new_flags &= ~EF_MIPS_XGOT; 15219 old_flags &= ~EF_MIPS_XGOT; 15220 15221 /* MIPSpro generates ucode info in n64 objects. Again, we should 15222 just be able to ignore this. */ 15223 new_flags &= ~EF_MIPS_UCODE; 15224 old_flags &= ~EF_MIPS_UCODE; 15225 15226 /* DSOs should only be linked with CPIC code. */ 15227 if ((ibfd->flags & DYNAMIC) != 0) 15228 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC; 15229 15230 if (new_flags == old_flags) 15231 return TRUE; 15232 15233 ok = TRUE; 15234 15235 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0) 15236 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)) 15237 { 15238 (*_bfd_error_handler) 15239 (_("%B: warning: linking abicalls files with non-abicalls files"), 15240 ibfd); 15241 ok = TRUE; 15242 } 15243 15244 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) 15245 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC; 15246 if (! (new_flags & EF_MIPS_PIC)) 15247 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC; 15248 15249 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); 15250 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); 15251 15252 /* Compare the ISAs. */ 15253 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags)) 15254 { 15255 (*_bfd_error_handler) 15256 (_("%B: linking 32-bit code with 64-bit code"), 15257 ibfd); 15258 ok = FALSE; 15259 } 15260 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd))) 15261 { 15262 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */ 15263 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd))) 15264 { 15265 /* Copy the architecture info from IBFD to OBFD. Also copy 15266 the 32-bit flag (if set) so that we continue to recognise 15267 OBFD as a 32-bit binary. */ 15268 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd)); 15269 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); 15270 elf_elfheader (obfd)->e_flags 15271 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); 15272 15273 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */ 15274 update_mips_abiflags_isa (obfd, &mips_elf_tdata (obfd)->abiflags); 15275 15276 /* Copy across the ABI flags if OBFD doesn't use them 15277 and if that was what caused us to treat IBFD as 32-bit. */ 15278 if ((old_flags & EF_MIPS_ABI) == 0 15279 && mips_32bit_flags_p (new_flags) 15280 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI)) 15281 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI; 15282 } 15283 else 15284 { 15285 /* The ISAs aren't compatible. */ 15286 (*_bfd_error_handler) 15287 (_("%B: linking %s module with previous %s modules"), 15288 ibfd, 15289 bfd_printable_name (ibfd), 15290 bfd_printable_name (obfd)); 15291 ok = FALSE; 15292 } 15293 } 15294 15295 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); 15296 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); 15297 15298 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it 15299 does set EI_CLASS differently from any 32-bit ABI. */ 15300 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI) 15301 || (elf_elfheader (ibfd)->e_ident[EI_CLASS] 15302 != elf_elfheader (obfd)->e_ident[EI_CLASS])) 15303 { 15304 /* Only error if both are set (to different values). */ 15305 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI)) 15306 || (elf_elfheader (ibfd)->e_ident[EI_CLASS] 15307 != elf_elfheader (obfd)->e_ident[EI_CLASS])) 15308 { 15309 (*_bfd_error_handler) 15310 (_("%B: ABI mismatch: linking %s module with previous %s modules"), 15311 ibfd, 15312 elf_mips_abi_name (ibfd), 15313 elf_mips_abi_name (obfd)); 15314 ok = FALSE; 15315 } 15316 new_flags &= ~EF_MIPS_ABI; 15317 old_flags &= ~EF_MIPS_ABI; 15318 } 15319 15320 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together 15321 and allow arbitrary mixing of the remaining ASEs (retain the union). */ 15322 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE)) 15323 { 15324 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS; 15325 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS; 15326 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16; 15327 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16; 15328 int micro_mis = old_m16 && new_micro; 15329 int m16_mis = old_micro && new_m16; 15330 15331 if (m16_mis || micro_mis) 15332 { 15333 (*_bfd_error_handler) 15334 (_("%B: ASE mismatch: linking %s module with previous %s modules"), 15335 ibfd, 15336 m16_mis ? "MIPS16" : "microMIPS", 15337 m16_mis ? "microMIPS" : "MIPS16"); 15338 ok = FALSE; 15339 } 15340 15341 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE; 15342 15343 new_flags &= ~ EF_MIPS_ARCH_ASE; 15344 old_flags &= ~ EF_MIPS_ARCH_ASE; 15345 } 15346 15347 /* Compare NaN encodings. */ 15348 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008)) 15349 { 15350 _bfd_error_handler (_("%B: linking %s module with previous %s modules"), 15351 ibfd, 15352 (new_flags & EF_MIPS_NAN2008 15353 ? "-mnan=2008" : "-mnan=legacy"), 15354 (old_flags & EF_MIPS_NAN2008 15355 ? "-mnan=2008" : "-mnan=legacy")); 15356 ok = FALSE; 15357 new_flags &= ~EF_MIPS_NAN2008; 15358 old_flags &= ~EF_MIPS_NAN2008; 15359 } 15360 15361 /* Compare FP64 state. */ 15362 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64)) 15363 { 15364 _bfd_error_handler (_("%B: linking %s module with previous %s modules"), 15365 ibfd, 15366 (new_flags & EF_MIPS_FP64 15367 ? "-mfp64" : "-mfp32"), 15368 (old_flags & EF_MIPS_FP64 15369 ? "-mfp64" : "-mfp32")); 15370 ok = FALSE; 15371 new_flags &= ~EF_MIPS_FP64; 15372 old_flags &= ~EF_MIPS_FP64; 15373 } 15374 15375 /* Warn about any other mismatches */ 15376 if (new_flags != old_flags) 15377 { 15378 (*_bfd_error_handler) 15379 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"), 15380 ibfd, (unsigned long) new_flags, 15381 (unsigned long) old_flags); 15382 ok = FALSE; 15383 } 15384 15385 if (! ok) 15386 { 15387 bfd_set_error (bfd_error_bad_value); 15388 return FALSE; 15389 } 15390 15391 return TRUE; 15392 } 15393 15394 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */ 15395 15396 bfd_boolean 15397 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags) 15398 { 15399 BFD_ASSERT (!elf_flags_init (abfd) 15400 || elf_elfheader (abfd)->e_flags == flags); 15401 15402 elf_elfheader (abfd)->e_flags = flags; 15403 elf_flags_init (abfd) = TRUE; 15404 return TRUE; 15405 } 15406 15407 char * 15408 _bfd_mips_elf_get_target_dtag (bfd_vma dtag) 15409 { 15410 switch (dtag) 15411 { 15412 default: return ""; 15413 case DT_MIPS_RLD_VERSION: 15414 return "MIPS_RLD_VERSION"; 15415 case DT_MIPS_TIME_STAMP: 15416 return "MIPS_TIME_STAMP"; 15417 case DT_MIPS_ICHECKSUM: 15418 return "MIPS_ICHECKSUM"; 15419 case DT_MIPS_IVERSION: 15420 return "MIPS_IVERSION"; 15421 case DT_MIPS_FLAGS: 15422 return "MIPS_FLAGS"; 15423 case DT_MIPS_BASE_ADDRESS: 15424 return "MIPS_BASE_ADDRESS"; 15425 case DT_MIPS_MSYM: 15426 return "MIPS_MSYM"; 15427 case DT_MIPS_CONFLICT: 15428 return "MIPS_CONFLICT"; 15429 case DT_MIPS_LIBLIST: 15430 return "MIPS_LIBLIST"; 15431 case DT_MIPS_LOCAL_GOTNO: 15432 return "MIPS_LOCAL_GOTNO"; 15433 case DT_MIPS_CONFLICTNO: 15434 return "MIPS_CONFLICTNO"; 15435 case DT_MIPS_LIBLISTNO: 15436 return "MIPS_LIBLISTNO"; 15437 case DT_MIPS_SYMTABNO: 15438 return "MIPS_SYMTABNO"; 15439 case DT_MIPS_UNREFEXTNO: 15440 return "MIPS_UNREFEXTNO"; 15441 case DT_MIPS_GOTSYM: 15442 return "MIPS_GOTSYM"; 15443 case DT_MIPS_HIPAGENO: 15444 return "MIPS_HIPAGENO"; 15445 case DT_MIPS_RLD_MAP: 15446 return "MIPS_RLD_MAP"; 15447 case DT_MIPS_RLD_MAP_REL: 15448 return "MIPS_RLD_MAP_REL"; 15449 case DT_MIPS_DELTA_CLASS: 15450 return "MIPS_DELTA_CLASS"; 15451 case DT_MIPS_DELTA_CLASS_NO: 15452 return "MIPS_DELTA_CLASS_NO"; 15453 case DT_MIPS_DELTA_INSTANCE: 15454 return "MIPS_DELTA_INSTANCE"; 15455 case DT_MIPS_DELTA_INSTANCE_NO: 15456 return "MIPS_DELTA_INSTANCE_NO"; 15457 case DT_MIPS_DELTA_RELOC: 15458 return "MIPS_DELTA_RELOC"; 15459 case DT_MIPS_DELTA_RELOC_NO: 15460 return "MIPS_DELTA_RELOC_NO"; 15461 case DT_MIPS_DELTA_SYM: 15462 return "MIPS_DELTA_SYM"; 15463 case DT_MIPS_DELTA_SYM_NO: 15464 return "MIPS_DELTA_SYM_NO"; 15465 case DT_MIPS_DELTA_CLASSSYM: 15466 return "MIPS_DELTA_CLASSSYM"; 15467 case DT_MIPS_DELTA_CLASSSYM_NO: 15468 return "MIPS_DELTA_CLASSSYM_NO"; 15469 case DT_MIPS_CXX_FLAGS: 15470 return "MIPS_CXX_FLAGS"; 15471 case DT_MIPS_PIXIE_INIT: 15472 return "MIPS_PIXIE_INIT"; 15473 case DT_MIPS_SYMBOL_LIB: 15474 return "MIPS_SYMBOL_LIB"; 15475 case DT_MIPS_LOCALPAGE_GOTIDX: 15476 return "MIPS_LOCALPAGE_GOTIDX"; 15477 case DT_MIPS_LOCAL_GOTIDX: 15478 return "MIPS_LOCAL_GOTIDX"; 15479 case DT_MIPS_HIDDEN_GOTIDX: 15480 return "MIPS_HIDDEN_GOTIDX"; 15481 case DT_MIPS_PROTECTED_GOTIDX: 15482 return "MIPS_PROTECTED_GOT_IDX"; 15483 case DT_MIPS_OPTIONS: 15484 return "MIPS_OPTIONS"; 15485 case DT_MIPS_INTERFACE: 15486 return "MIPS_INTERFACE"; 15487 case DT_MIPS_DYNSTR_ALIGN: 15488 return "DT_MIPS_DYNSTR_ALIGN"; 15489 case DT_MIPS_INTERFACE_SIZE: 15490 return "DT_MIPS_INTERFACE_SIZE"; 15491 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: 15492 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR"; 15493 case DT_MIPS_PERF_SUFFIX: 15494 return "DT_MIPS_PERF_SUFFIX"; 15495 case DT_MIPS_COMPACT_SIZE: 15496 return "DT_MIPS_COMPACT_SIZE"; 15497 case DT_MIPS_GP_VALUE: 15498 return "DT_MIPS_GP_VALUE"; 15499 case DT_MIPS_AUX_DYNAMIC: 15500 return "DT_MIPS_AUX_DYNAMIC"; 15501 case DT_MIPS_PLTGOT: 15502 return "DT_MIPS_PLTGOT"; 15503 case DT_MIPS_RWPLT: 15504 return "DT_MIPS_RWPLT"; 15505 } 15506 } 15507 15508 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if 15509 not known. */ 15510 15511 const char * 15512 _bfd_mips_fp_abi_string (int fp) 15513 { 15514 switch (fp) 15515 { 15516 /* These strings aren't translated because they're simply 15517 option lists. */ 15518 case Val_GNU_MIPS_ABI_FP_DOUBLE: 15519 return "-mdouble-float"; 15520 15521 case Val_GNU_MIPS_ABI_FP_SINGLE: 15522 return "-msingle-float"; 15523 15524 case Val_GNU_MIPS_ABI_FP_SOFT: 15525 return "-msoft-float"; 15526 15527 case Val_GNU_MIPS_ABI_FP_OLD_64: 15528 return _("-mips32r2 -mfp64 (12 callee-saved)"); 15529 15530 case Val_GNU_MIPS_ABI_FP_XX: 15531 return "-mfpxx"; 15532 15533 case Val_GNU_MIPS_ABI_FP_64: 15534 return "-mgp32 -mfp64"; 15535 15536 case Val_GNU_MIPS_ABI_FP_64A: 15537 return "-mgp32 -mfp64 -mno-odd-spreg"; 15538 15539 default: 15540 return 0; 15541 } 15542 } 15543 15544 static void 15545 print_mips_ases (FILE *file, unsigned int mask) 15546 { 15547 if (mask & AFL_ASE_DSP) 15548 fputs ("\n\tDSP ASE", file); 15549 if (mask & AFL_ASE_DSPR2) 15550 fputs ("\n\tDSP R2 ASE", file); 15551 if (mask & AFL_ASE_EVA) 15552 fputs ("\n\tEnhanced VA Scheme", file); 15553 if (mask & AFL_ASE_MCU) 15554 fputs ("\n\tMCU (MicroController) ASE", file); 15555 if (mask & AFL_ASE_MDMX) 15556 fputs ("\n\tMDMX ASE", file); 15557 if (mask & AFL_ASE_MIPS3D) 15558 fputs ("\n\tMIPS-3D ASE", file); 15559 if (mask & AFL_ASE_MT) 15560 fputs ("\n\tMT ASE", file); 15561 if (mask & AFL_ASE_SMARTMIPS) 15562 fputs ("\n\tSmartMIPS ASE", file); 15563 if (mask & AFL_ASE_VIRT) 15564 fputs ("\n\tVZ ASE", file); 15565 if (mask & AFL_ASE_MSA) 15566 fputs ("\n\tMSA ASE", file); 15567 if (mask & AFL_ASE_MIPS16) 15568 fputs ("\n\tMIPS16 ASE", file); 15569 if (mask & AFL_ASE_MICROMIPS) 15570 fputs ("\n\tMICROMIPS ASE", file); 15571 if (mask & AFL_ASE_XPA) 15572 fputs ("\n\tXPA ASE", file); 15573 if (mask == 0) 15574 fprintf (file, "\n\t%s", _("None")); 15575 else if ((mask & ~AFL_ASE_MASK) != 0) 15576 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK); 15577 } 15578 15579 static void 15580 print_mips_isa_ext (FILE *file, unsigned int isa_ext) 15581 { 15582 switch (isa_ext) 15583 { 15584 case 0: 15585 fputs (_("None"), file); 15586 break; 15587 case AFL_EXT_XLR: 15588 fputs ("RMI XLR", file); 15589 break; 15590 case AFL_EXT_OCTEON3: 15591 fputs ("Cavium Networks Octeon3", file); 15592 break; 15593 case AFL_EXT_OCTEON2: 15594 fputs ("Cavium Networks Octeon2", file); 15595 break; 15596 case AFL_EXT_OCTEONP: 15597 fputs ("Cavium Networks OcteonP", file); 15598 break; 15599 case AFL_EXT_LOONGSON_3A: 15600 fputs ("Loongson 3A", file); 15601 break; 15602 case AFL_EXT_OCTEON: 15603 fputs ("Cavium Networks Octeon", file); 15604 break; 15605 case AFL_EXT_5900: 15606 fputs ("Toshiba R5900", file); 15607 break; 15608 case AFL_EXT_4650: 15609 fputs ("MIPS R4650", file); 15610 break; 15611 case AFL_EXT_4010: 15612 fputs ("LSI R4010", file); 15613 break; 15614 case AFL_EXT_4100: 15615 fputs ("NEC VR4100", file); 15616 break; 15617 case AFL_EXT_3900: 15618 fputs ("Toshiba R3900", file); 15619 break; 15620 case AFL_EXT_10000: 15621 fputs ("MIPS R10000", file); 15622 break; 15623 case AFL_EXT_SB1: 15624 fputs ("Broadcom SB-1", file); 15625 break; 15626 case AFL_EXT_4111: 15627 fputs ("NEC VR4111/VR4181", file); 15628 break; 15629 case AFL_EXT_4120: 15630 fputs ("NEC VR4120", file); 15631 break; 15632 case AFL_EXT_5400: 15633 fputs ("NEC VR5400", file); 15634 break; 15635 case AFL_EXT_5500: 15636 fputs ("NEC VR5500", file); 15637 break; 15638 case AFL_EXT_LOONGSON_2E: 15639 fputs ("ST Microelectronics Loongson 2E", file); 15640 break; 15641 case AFL_EXT_LOONGSON_2F: 15642 fputs ("ST Microelectronics Loongson 2F", file); 15643 break; 15644 default: 15645 fprintf (file, "%s (%d)", _("Unknown"), isa_ext); 15646 break; 15647 } 15648 } 15649 15650 static void 15651 print_mips_fp_abi_value (FILE *file, int val) 15652 { 15653 switch (val) 15654 { 15655 case Val_GNU_MIPS_ABI_FP_ANY: 15656 fprintf (file, _("Hard or soft float\n")); 15657 break; 15658 case Val_GNU_MIPS_ABI_FP_DOUBLE: 15659 fprintf (file, _("Hard float (double precision)\n")); 15660 break; 15661 case Val_GNU_MIPS_ABI_FP_SINGLE: 15662 fprintf (file, _("Hard float (single precision)\n")); 15663 break; 15664 case Val_GNU_MIPS_ABI_FP_SOFT: 15665 fprintf (file, _("Soft float\n")); 15666 break; 15667 case Val_GNU_MIPS_ABI_FP_OLD_64: 15668 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n")); 15669 break; 15670 case Val_GNU_MIPS_ABI_FP_XX: 15671 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n")); 15672 break; 15673 case Val_GNU_MIPS_ABI_FP_64: 15674 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n")); 15675 break; 15676 case Val_GNU_MIPS_ABI_FP_64A: 15677 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n")); 15678 break; 15679 default: 15680 fprintf (file, "??? (%d)\n", val); 15681 break; 15682 } 15683 } 15684 15685 static int 15686 get_mips_reg_size (int reg_size) 15687 { 15688 return (reg_size == AFL_REG_NONE) ? 0 15689 : (reg_size == AFL_REG_32) ? 32 15690 : (reg_size == AFL_REG_64) ? 64 15691 : (reg_size == AFL_REG_128) ? 128 15692 : -1; 15693 } 15694 15695 bfd_boolean 15696 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr) 15697 { 15698 FILE *file = ptr; 15699 15700 BFD_ASSERT (abfd != NULL && ptr != NULL); 15701 15702 /* Print normal ELF private data. */ 15703 _bfd_elf_print_private_bfd_data (abfd, ptr); 15704 15705 /* xgettext:c-format */ 15706 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); 15707 15708 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32) 15709 fprintf (file, _(" [abi=O32]")); 15710 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64) 15711 fprintf (file, _(" [abi=O64]")); 15712 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32) 15713 fprintf (file, _(" [abi=EABI32]")); 15714 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) 15715 fprintf (file, _(" [abi=EABI64]")); 15716 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI)) 15717 fprintf (file, _(" [abi unknown]")); 15718 else if (ABI_N32_P (abfd)) 15719 fprintf (file, _(" [abi=N32]")); 15720 else if (ABI_64_P (abfd)) 15721 fprintf (file, _(" [abi=64]")); 15722 else 15723 fprintf (file, _(" [no abi set]")); 15724 15725 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1) 15726 fprintf (file, " [mips1]"); 15727 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2) 15728 fprintf (file, " [mips2]"); 15729 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3) 15730 fprintf (file, " [mips3]"); 15731 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4) 15732 fprintf (file, " [mips4]"); 15733 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5) 15734 fprintf (file, " [mips5]"); 15735 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32) 15736 fprintf (file, " [mips32]"); 15737 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64) 15738 fprintf (file, " [mips64]"); 15739 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2) 15740 fprintf (file, " [mips32r2]"); 15741 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2) 15742 fprintf (file, " [mips64r2]"); 15743 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6) 15744 fprintf (file, " [mips32r6]"); 15745 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6) 15746 fprintf (file, " [mips64r6]"); 15747 else 15748 fprintf (file, _(" [unknown ISA]")); 15749 15750 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX) 15751 fprintf (file, " [mdmx]"); 15752 15753 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16) 15754 fprintf (file, " [mips16]"); 15755 15756 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) 15757 fprintf (file, " [micromips]"); 15758 15759 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008) 15760 fprintf (file, " [nan2008]"); 15761 15762 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64) 15763 fprintf (file, " [old fp64]"); 15764 15765 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE) 15766 fprintf (file, " [32bitmode]"); 15767 else 15768 fprintf (file, _(" [not 32bitmode]")); 15769 15770 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER) 15771 fprintf (file, " [noreorder]"); 15772 15773 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) 15774 fprintf (file, " [PIC]"); 15775 15776 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC) 15777 fprintf (file, " [CPIC]"); 15778 15779 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT) 15780 fprintf (file, " [XGOT]"); 15781 15782 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE) 15783 fprintf (file, " [UCODE]"); 15784 15785 fputc ('\n', file); 15786 15787 if (mips_elf_tdata (abfd)->abiflags_valid) 15788 { 15789 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags; 15790 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version); 15791 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level); 15792 if (abiflags->isa_rev > 1) 15793 fprintf (file, "r%d", abiflags->isa_rev); 15794 fprintf (file, "\nGPR size: %d", 15795 get_mips_reg_size (abiflags->gpr_size)); 15796 fprintf (file, "\nCPR1 size: %d", 15797 get_mips_reg_size (abiflags->cpr1_size)); 15798 fprintf (file, "\nCPR2 size: %d", 15799 get_mips_reg_size (abiflags->cpr2_size)); 15800 fputs ("\nFP ABI: ", file); 15801 print_mips_fp_abi_value (file, abiflags->fp_abi); 15802 fputs ("ISA Extension: ", file); 15803 print_mips_isa_ext (file, abiflags->isa_ext); 15804 fputs ("\nASEs:", file); 15805 print_mips_ases (file, abiflags->ases); 15806 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1); 15807 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2); 15808 fputc ('\n', file); 15809 } 15810 15811 return TRUE; 15812 } 15813 15814 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] = 15815 { 15816 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, 15817 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, 15818 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 }, 15819 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, 15820 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, 15821 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 }, 15822 { NULL, 0, 0, 0, 0 } 15823 }; 15824 15825 /* Merge non visibility st_other attributes. Ensure that the 15826 STO_OPTIONAL flag is copied into h->other, even if this is not a 15827 definiton of the symbol. */ 15828 void 15829 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h, 15830 const Elf_Internal_Sym *isym, 15831 bfd_boolean definition, 15832 bfd_boolean dynamic ATTRIBUTE_UNUSED) 15833 { 15834 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0) 15835 { 15836 unsigned char other; 15837 15838 other = (definition ? isym->st_other : h->other); 15839 other &= ~ELF_ST_VISIBILITY (-1); 15840 h->other = other | ELF_ST_VISIBILITY (h->other); 15841 } 15842 15843 if (!definition 15844 && ELF_MIPS_IS_OPTIONAL (isym->st_other)) 15845 h->other |= STO_OPTIONAL; 15846 } 15847 15848 /* Decide whether an undefined symbol is special and can be ignored. 15849 This is the case for OPTIONAL symbols on IRIX. */ 15850 bfd_boolean 15851 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h) 15852 { 15853 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE; 15854 } 15855 15856 bfd_boolean 15857 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym) 15858 { 15859 return (sym->st_shndx == SHN_COMMON 15860 || sym->st_shndx == SHN_MIPS_ACOMMON 15861 || sym->st_shndx == SHN_MIPS_SCOMMON); 15862 } 15863 15864 /* Return address for Ith PLT stub in section PLT, for relocation REL 15865 or (bfd_vma) -1 if it should not be included. */ 15866 15867 bfd_vma 15868 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt, 15869 const arelent *rel ATTRIBUTE_UNUSED) 15870 { 15871 return (plt->vma 15872 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry) 15873 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry)); 15874 } 15875 15876 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16 15877 and microMIPS PLT slots we may have a many-to-one mapping between .plt 15878 and .got.plt and also the slots may be of a different size each we walk 15879 the PLT manually fetching instructions and matching them against known 15880 patterns. To make things easier standard MIPS slots, if any, always come 15881 first. As we don't create proper ELF symbols we use the UDATA.I member 15882 of ASYMBOL to carry ISA annotation. The encoding used is the same as 15883 with the ST_OTHER member of the ELF symbol. */ 15884 15885 long 15886 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd, 15887 long symcount ATTRIBUTE_UNUSED, 15888 asymbol **syms ATTRIBUTE_UNUSED, 15889 long dynsymcount, asymbol **dynsyms, 15890 asymbol **ret) 15891 { 15892 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_"; 15893 static const char microsuffix[] = "@micromipsplt"; 15894 static const char m16suffix[] = "@mips16plt"; 15895 static const char mipssuffix[] = "@plt"; 15896 15897 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean); 15898 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 15899 bfd_boolean micromips_p = MICROMIPS_P (abfd); 15900 Elf_Internal_Shdr *hdr; 15901 bfd_byte *plt_data; 15902 bfd_vma plt_offset; 15903 unsigned int other; 15904 bfd_vma entry_size; 15905 bfd_vma plt0_size; 15906 asection *relplt; 15907 bfd_vma opcode; 15908 asection *plt; 15909 asymbol *send; 15910 size_t size; 15911 char *names; 15912 long counti; 15913 arelent *p; 15914 asymbol *s; 15915 char *nend; 15916 long count; 15917 long pi; 15918 long i; 15919 long n; 15920 15921 *ret = NULL; 15922 15923 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0) 15924 return 0; 15925 15926 relplt = bfd_get_section_by_name (abfd, ".rel.plt"); 15927 if (relplt == NULL) 15928 return 0; 15929 15930 hdr = &elf_section_data (relplt)->this_hdr; 15931 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL) 15932 return 0; 15933 15934 plt = bfd_get_section_by_name (abfd, ".plt"); 15935 if (plt == NULL) 15936 return 0; 15937 15938 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table; 15939 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE)) 15940 return -1; 15941 p = relplt->relocation; 15942 15943 /* Calculating the exact amount of space required for symbols would 15944 require two passes over the PLT, so just pessimise assuming two 15945 PLT slots per relocation. */ 15946 count = relplt->size / hdr->sh_entsize; 15947 counti = count * bed->s->int_rels_per_ext_rel; 15948 size = 2 * count * sizeof (asymbol); 15949 size += count * (sizeof (mipssuffix) + 15950 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix))); 15951 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel) 15952 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name); 15953 15954 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */ 15955 size += sizeof (asymbol) + sizeof (pltname); 15956 15957 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data)) 15958 return -1; 15959 15960 if (plt->size < 16) 15961 return -1; 15962 15963 s = *ret = bfd_malloc (size); 15964 if (s == NULL) 15965 return -1; 15966 send = s + 2 * count + 1; 15967 15968 names = (char *) send; 15969 nend = (char *) s + size; 15970 n = 0; 15971 15972 opcode = bfd_get_micromips_32 (abfd, plt_data + 12); 15973 if (opcode == 0x3302fffe) 15974 { 15975 if (!micromips_p) 15976 return -1; 15977 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry); 15978 other = STO_MICROMIPS; 15979 } 15980 else if (opcode == 0x0398c1d0) 15981 { 15982 if (!micromips_p) 15983 return -1; 15984 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); 15985 other = STO_MICROMIPS; 15986 } 15987 else 15988 { 15989 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry); 15990 other = 0; 15991 } 15992 15993 s->the_bfd = abfd; 15994 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL; 15995 s->section = plt; 15996 s->value = 0; 15997 s->name = names; 15998 s->udata.i = other; 15999 memcpy (names, pltname, sizeof (pltname)); 16000 names += sizeof (pltname); 16001 ++s, ++n; 16002 16003 pi = 0; 16004 for (plt_offset = plt0_size; 16005 plt_offset + 8 <= plt->size && s < send; 16006 plt_offset += entry_size) 16007 { 16008 bfd_vma gotplt_addr; 16009 const char *suffix; 16010 bfd_vma gotplt_hi; 16011 bfd_vma gotplt_lo; 16012 size_t suffixlen; 16013 16014 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4); 16015 16016 /* Check if the second word matches the expected MIPS16 instruction. */ 16017 if (opcode == 0x651aeb00) 16018 { 16019 if (micromips_p) 16020 return -1; 16021 /* Truncated table??? */ 16022 if (plt_offset + 16 > plt->size) 16023 break; 16024 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12); 16025 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry); 16026 suffixlen = sizeof (m16suffix); 16027 suffix = m16suffix; 16028 other = STO_MIPS16; 16029 } 16030 /* Likewise the expected microMIPS instruction (no insn32 mode). */ 16031 else if (opcode == 0xff220000) 16032 { 16033 if (!micromips_p) 16034 return -1; 16035 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f; 16036 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff; 16037 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18; 16038 gotplt_lo <<= 2; 16039 gotplt_addr = gotplt_hi + gotplt_lo; 16040 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3; 16041 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry); 16042 suffixlen = sizeof (microsuffix); 16043 suffix = microsuffix; 16044 other = STO_MICROMIPS; 16045 } 16046 /* Likewise the expected microMIPS instruction (insn32 mode). */ 16047 else if ((opcode & 0xffff0000) == 0xff2f0000) 16048 { 16049 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff; 16050 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff; 16051 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16; 16052 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000; 16053 gotplt_addr = gotplt_hi + gotplt_lo; 16054 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry); 16055 suffixlen = sizeof (microsuffix); 16056 suffix = microsuffix; 16057 other = STO_MICROMIPS; 16058 } 16059 /* Otherwise assume standard MIPS code. */ 16060 else 16061 { 16062 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff; 16063 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff; 16064 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16; 16065 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000; 16066 gotplt_addr = gotplt_hi + gotplt_lo; 16067 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry); 16068 suffixlen = sizeof (mipssuffix); 16069 suffix = mipssuffix; 16070 other = 0; 16071 } 16072 /* Truncated table??? */ 16073 if (plt_offset + entry_size > plt->size) 16074 break; 16075 16076 for (i = 0; 16077 i < count && p[pi].address != gotplt_addr; 16078 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti); 16079 16080 if (i < count) 16081 { 16082 size_t namelen; 16083 size_t len; 16084 16085 *s = **p[pi].sym_ptr_ptr; 16086 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since 16087 we are defining a symbol, ensure one of them is set. */ 16088 if ((s->flags & BSF_LOCAL) == 0) 16089 s->flags |= BSF_GLOBAL; 16090 s->flags |= BSF_SYNTHETIC; 16091 s->section = plt; 16092 s->value = plt_offset; 16093 s->name = names; 16094 s->udata.i = other; 16095 16096 len = strlen ((*p[pi].sym_ptr_ptr)->name); 16097 namelen = len + suffixlen; 16098 if (names + namelen > nend) 16099 break; 16100 16101 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len); 16102 names += len; 16103 memcpy (names, suffix, suffixlen); 16104 names += suffixlen; 16105 16106 ++s, ++n; 16107 pi = (pi + bed->s->int_rels_per_ext_rel) % counti; 16108 } 16109 } 16110 16111 free (plt_data); 16112 16113 return n; 16114 } 16115 16116 void 16117 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info) 16118 { 16119 struct mips_elf_link_hash_table *htab; 16120 Elf_Internal_Ehdr *i_ehdrp; 16121 16122 i_ehdrp = elf_elfheader (abfd); 16123 if (link_info) 16124 { 16125 htab = mips_elf_hash_table (link_info); 16126 BFD_ASSERT (htab != NULL); 16127 16128 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks) 16129 i_ehdrp->e_ident[EI_ABIVERSION] = 1; 16130 } 16131 16132 _bfd_elf_post_process_headers (abfd, link_info); 16133 16134 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64 16135 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A) 16136 i_ehdrp->e_ident[EI_ABIVERSION] = 3; 16137 } 16138 16139 int 16140 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED) 16141 { 16142 return DW_EH_PE_pcrel | DW_EH_PE_sdata4; 16143 } 16144 16145 /* Return the opcode for can't unwind. */ 16146 16147 int 16148 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED) 16149 { 16150 return COMPACT_EH_CANT_UNWIND_OPCODE; 16151 } 16152