1 /* MIPS-specific support for ELF 2 Copyright (C) 1993-2022 Free Software Foundation, Inc. 3 4 Most of the information added by Ian Lance Taylor, Cygnus Support, 5 <ian@cygnus.com>. 6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC. 7 <mark@codesourcery.com> 8 Traditional MIPS targets support added by Koundinya.K, Dansk Data 9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net> 10 11 This file is part of BFD, the Binary File Descriptor library. 12 13 This program is free software; you can redistribute it and/or modify 14 it under the terms of the GNU General Public License as published by 15 the Free Software Foundation; either version 3 of the License, or 16 (at your option) any later version. 17 18 This program is distributed in the hope that it will be useful, 19 but WITHOUT ANY WARRANTY; without even the implied warranty of 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 GNU General Public License for more details. 22 23 You should have received a copy of the GNU General Public License 24 along with this program; if not, write to the Free Software 25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 26 MA 02110-1301, USA. */ 27 28 29 /* This file handles functionality common to the different MIPS ABI's. */ 30 31 #include "sysdep.h" 32 #include "bfd.h" 33 #include "libbfd.h" 34 #include "libiberty.h" 35 #include "elf-bfd.h" 36 #include "ecoff-bfd.h" 37 #include "elfxx-mips.h" 38 #include "elf/mips.h" 39 #include "elf-vxworks.h" 40 #include "dwarf2.h" 41 42 /* Get the ECOFF swapping routines. */ 43 #include "coff/sym.h" 44 #include "coff/symconst.h" 45 #include "coff/ecoff.h" 46 #include "coff/mips.h" 47 48 #include "hashtab.h" 49 50 /* Types of TLS GOT entry. */ 51 enum mips_got_tls_type { 52 GOT_TLS_NONE, 53 GOT_TLS_GD, 54 GOT_TLS_LDM, 55 GOT_TLS_IE 56 }; 57 58 /* This structure is used to hold information about one GOT entry. 59 There are four types of entry: 60 61 (1) an absolute address 62 requires: abfd == NULL 63 fields: d.address 64 65 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd 66 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM 67 fields: abfd, symndx, d.addend, tls_type 68 69 (3) a SYMBOL address, where SYMBOL is not local to an input bfd 70 requires: abfd != NULL, symndx == -1 71 fields: d.h, tls_type 72 73 (4) a TLS LDM slot 74 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM 75 fields: none; there's only one of these per GOT. */ 76 struct mips_got_entry 77 { 78 /* One input bfd that needs the GOT entry. */ 79 bfd *abfd; 80 /* The index of the symbol, as stored in the relocation r_info, if 81 we have a local symbol; -1 otherwise. */ 82 long symndx; 83 union 84 { 85 /* If abfd == NULL, an address that must be stored in the got. */ 86 bfd_vma address; 87 /* If abfd != NULL && symndx != -1, the addend of the relocation 88 that should be added to the symbol value. */ 89 bfd_vma addend; 90 /* If abfd != NULL && symndx == -1, the hash table entry 91 corresponding to a symbol in the GOT. The symbol's entry 92 is in the local area if h->global_got_area is GGA_NONE, 93 otherwise it is in the global area. */ 94 struct mips_elf_link_hash_entry *h; 95 } d; 96 97 /* The TLS type of this GOT entry. An LDM GOT entry will be a local 98 symbol entry with r_symndx == 0. */ 99 unsigned char tls_type; 100 101 /* True if we have filled in the GOT contents for a TLS entry, 102 and created the associated relocations. */ 103 unsigned char tls_initialized; 104 105 /* The offset from the beginning of the .got section to the entry 106 corresponding to this symbol+addend. If it's a global symbol 107 whose offset is yet to be decided, it's going to be -1. */ 108 long gotidx; 109 }; 110 111 /* This structure represents a GOT page reference from an input bfd. 112 Each instance represents a symbol + ADDEND, where the representation 113 of the symbol depends on whether it is local to the input bfd. 114 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD. 115 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry. 116 117 Page references with SYMNDX >= 0 always become page references 118 in the output. Page references with SYMNDX < 0 only become page 119 references if the symbol binds locally; in other cases, the page 120 reference decays to a global GOT reference. */ 121 struct mips_got_page_ref 122 { 123 long symndx; 124 union 125 { 126 struct mips_elf_link_hash_entry *h; 127 bfd *abfd; 128 } u; 129 bfd_vma addend; 130 }; 131 132 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND]. 133 The structures form a non-overlapping list that is sorted by increasing 134 MIN_ADDEND. */ 135 struct mips_got_page_range 136 { 137 struct mips_got_page_range *next; 138 bfd_signed_vma min_addend; 139 bfd_signed_vma max_addend; 140 }; 141 142 /* This structure describes the range of addends that are applied to page 143 relocations against a given section. */ 144 struct mips_got_page_entry 145 { 146 /* The section that these entries are based on. */ 147 asection *sec; 148 /* The ranges for this page entry. */ 149 struct mips_got_page_range *ranges; 150 /* The maximum number of page entries needed for RANGES. */ 151 bfd_vma num_pages; 152 }; 153 154 /* This structure is used to hold .got information when linking. */ 155 156 struct mips_got_info 157 { 158 /* The number of global .got entries. */ 159 unsigned int global_gotno; 160 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */ 161 unsigned int reloc_only_gotno; 162 /* The number of .got slots used for TLS. */ 163 unsigned int tls_gotno; 164 /* The first unused TLS .got entry. Used only during 165 mips_elf_initialize_tls_index. */ 166 unsigned int tls_assigned_gotno; 167 /* The number of local .got entries, eventually including page entries. */ 168 unsigned int local_gotno; 169 /* The maximum number of page entries needed. */ 170 unsigned int page_gotno; 171 /* The number of relocations needed for the GOT entries. */ 172 unsigned int relocs; 173 /* The first unused local .got entry. */ 174 unsigned int assigned_low_gotno; 175 /* The last unused local .got entry. */ 176 unsigned int assigned_high_gotno; 177 /* A hash table holding members of the got. */ 178 struct htab *got_entries; 179 /* A hash table holding mips_got_page_ref structures. */ 180 struct htab *got_page_refs; 181 /* A hash table of mips_got_page_entry structures. */ 182 struct htab *got_page_entries; 183 /* In multi-got links, a pointer to the next got (err, rather, most 184 of the time, it points to the previous got). */ 185 struct mips_got_info *next; 186 }; 187 188 /* Structure passed when merging bfds' gots. */ 189 190 struct mips_elf_got_per_bfd_arg 191 { 192 /* The output bfd. */ 193 bfd *obfd; 194 /* The link information. */ 195 struct bfd_link_info *info; 196 /* A pointer to the primary got, i.e., the one that's going to get 197 the implicit relocations from DT_MIPS_LOCAL_GOTNO and 198 DT_MIPS_GOTSYM. */ 199 struct mips_got_info *primary; 200 /* A non-primary got we're trying to merge with other input bfd's 201 gots. */ 202 struct mips_got_info *current; 203 /* The maximum number of got entries that can be addressed with a 204 16-bit offset. */ 205 unsigned int max_count; 206 /* The maximum number of page entries needed by each got. */ 207 unsigned int max_pages; 208 /* The total number of global entries which will live in the 209 primary got and be automatically relocated. This includes 210 those not referenced by the primary GOT but included in 211 the "master" GOT. */ 212 unsigned int global_count; 213 }; 214 215 /* A structure used to pass information to htab_traverse callbacks 216 when laying out the GOT. */ 217 218 struct mips_elf_traverse_got_arg 219 { 220 struct bfd_link_info *info; 221 struct mips_got_info *g; 222 int value; 223 }; 224 225 struct _mips_elf_section_data 226 { 227 struct bfd_elf_section_data elf; 228 union 229 { 230 bfd_byte *tdata; 231 } u; 232 }; 233 234 #define mips_elf_section_data(sec) \ 235 ((struct _mips_elf_section_data *) elf_section_data (sec)) 236 237 #define is_mips_elf(bfd) \ 238 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ 239 && elf_tdata (bfd) != NULL \ 240 && elf_object_id (bfd) == MIPS_ELF_DATA) 241 242 /* The ABI says that every symbol used by dynamic relocations must have 243 a global GOT entry. Among other things, this provides the dynamic 244 linker with a free, directly-indexed cache. The GOT can therefore 245 contain symbols that are not referenced by GOT relocations themselves 246 (in other words, it may have symbols that are not referenced by things 247 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE). 248 249 GOT relocations are less likely to overflow if we put the associated 250 GOT entries towards the beginning. We therefore divide the global 251 GOT entries into two areas: "normal" and "reloc-only". Entries in 252 the first area can be used for both dynamic relocations and GP-relative 253 accesses, while those in the "reloc-only" area are for dynamic 254 relocations only. 255 256 These GGA_* ("Global GOT Area") values are organised so that lower 257 values are more general than higher values. Also, non-GGA_NONE 258 values are ordered by the position of the area in the GOT. */ 259 #define GGA_NORMAL 0 260 #define GGA_RELOC_ONLY 1 261 #define GGA_NONE 2 262 263 /* Information about a non-PIC interface to a PIC function. There are 264 two ways of creating these interfaces. The first is to add: 265 266 lui $25,%hi(func) 267 addiu $25,$25,%lo(func) 268 269 immediately before a PIC function "func". The second is to add: 270 271 lui $25,%hi(func) 272 j func 273 addiu $25,$25,%lo(func) 274 275 to a separate trampoline section. 276 277 Stubs of the first kind go in a new section immediately before the 278 target function. Stubs of the second kind go in a single section 279 pointed to by the hash table's "strampoline" field. */ 280 struct mips_elf_la25_stub { 281 /* The generated section that contains this stub. */ 282 asection *stub_section; 283 284 /* The offset of the stub from the start of STUB_SECTION. */ 285 bfd_vma offset; 286 287 /* One symbol for the original function. Its location is available 288 in H->root.root.u.def. */ 289 struct mips_elf_link_hash_entry *h; 290 }; 291 292 /* Macros for populating a mips_elf_la25_stub. */ 293 294 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */ 295 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */ 296 #define LA25_BC(VAL) (0xc8000000 | (((VAL) >> 2) & 0x3ffffff)) /* bc VAL */ 297 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */ 298 #define LA25_LUI_MICROMIPS(VAL) \ 299 (0x41b90000 | (VAL)) /* lui t9,VAL */ 300 #define LA25_J_MICROMIPS(VAL) \ 301 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */ 302 #define LA25_ADDIU_MICROMIPS(VAL) \ 303 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */ 304 305 /* This structure is passed to mips_elf_sort_hash_table_f when sorting 306 the dynamic symbols. */ 307 308 struct mips_elf_hash_sort_data 309 { 310 /* The symbol in the global GOT with the lowest dynamic symbol table 311 index. */ 312 struct elf_link_hash_entry *low; 313 /* The least dynamic symbol table index corresponding to a non-TLS 314 symbol with a GOT entry. */ 315 bfd_size_type min_got_dynindx; 316 /* The greatest dynamic symbol table index corresponding to a symbol 317 with a GOT entry that is not referenced (e.g., a dynamic symbol 318 with dynamic relocations pointing to it from non-primary GOTs). */ 319 bfd_size_type max_unref_got_dynindx; 320 /* The greatest dynamic symbol table index corresponding to a local 321 symbol. */ 322 bfd_size_type max_local_dynindx; 323 /* The greatest dynamic symbol table index corresponding to an external 324 symbol without a GOT entry. */ 325 bfd_size_type max_non_got_dynindx; 326 /* If non-NULL, output BFD for .MIPS.xhash finalization. */ 327 bfd *output_bfd; 328 /* If non-NULL, pointer to contents of .MIPS.xhash for filling in 329 real final dynindx. */ 330 bfd_byte *mipsxhash; 331 }; 332 333 /* We make up to two PLT entries if needed, one for standard MIPS code 334 and one for compressed code, either a MIPS16 or microMIPS one. We 335 keep a separate record of traditional lazy-binding stubs, for easier 336 processing. */ 337 338 struct plt_entry 339 { 340 /* Traditional SVR4 stub offset, or -1 if none. */ 341 bfd_vma stub_offset; 342 343 /* Standard PLT entry offset, or -1 if none. */ 344 bfd_vma mips_offset; 345 346 /* Compressed PLT entry offset, or -1 if none. */ 347 bfd_vma comp_offset; 348 349 /* The corresponding .got.plt index, or -1 if none. */ 350 bfd_vma gotplt_index; 351 352 /* Whether we need a standard PLT entry. */ 353 unsigned int need_mips : 1; 354 355 /* Whether we need a compressed PLT entry. */ 356 unsigned int need_comp : 1; 357 }; 358 359 /* The MIPS ELF linker needs additional information for each symbol in 360 the global hash table. */ 361 362 struct mips_elf_link_hash_entry 363 { 364 struct elf_link_hash_entry root; 365 366 /* External symbol information. */ 367 EXTR esym; 368 369 /* The la25 stub we have created for ths symbol, if any. */ 370 struct mips_elf_la25_stub *la25_stub; 371 372 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against 373 this symbol. */ 374 unsigned int possibly_dynamic_relocs; 375 376 /* If there is a stub that 32 bit functions should use to call this 377 16 bit function, this points to the section containing the stub. */ 378 asection *fn_stub; 379 380 /* If there is a stub that 16 bit functions should use to call this 381 32 bit function, this points to the section containing the stub. */ 382 asection *call_stub; 383 384 /* This is like the call_stub field, but it is used if the function 385 being called returns a floating point value. */ 386 asection *call_fp_stub; 387 388 /* If non-zero, location in .MIPS.xhash to write real final dynindx. */ 389 bfd_vma mipsxhash_loc; 390 391 /* The highest GGA_* value that satisfies all references to this symbol. */ 392 unsigned int global_got_area : 2; 393 394 /* True if all GOT relocations against this symbol are for calls. This is 395 a looser condition than no_fn_stub below, because there may be other 396 non-call non-GOT relocations against the symbol. */ 397 unsigned int got_only_for_calls : 1; 398 399 /* True if one of the relocations described by possibly_dynamic_relocs 400 is against a readonly section. */ 401 unsigned int readonly_reloc : 1; 402 403 /* True if there is a relocation against this symbol that must be 404 resolved by the static linker (in other words, if the relocation 405 cannot possibly be made dynamic). */ 406 unsigned int has_static_relocs : 1; 407 408 /* True if we must not create a .MIPS.stubs entry for this symbol. 409 This is set, for example, if there are relocations related to 410 taking the function's address, i.e. any but R_MIPS_CALL*16 ones. 411 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */ 412 unsigned int no_fn_stub : 1; 413 414 /* Whether we need the fn_stub; this is true if this symbol appears 415 in any relocs other than a 16 bit call. */ 416 unsigned int need_fn_stub : 1; 417 418 /* True if this symbol is referenced by branch relocations from 419 any non-PIC input file. This is used to determine whether an 420 la25 stub is required. */ 421 unsigned int has_nonpic_branches : 1; 422 423 /* Does this symbol need a traditional MIPS lazy-binding stub 424 (as opposed to a PLT entry)? */ 425 unsigned int needs_lazy_stub : 1; 426 427 /* Does this symbol resolve to a PLT entry? */ 428 unsigned int use_plt_entry : 1; 429 }; 430 431 /* MIPS ELF linker hash table. */ 432 433 struct mips_elf_link_hash_table 434 { 435 struct elf_link_hash_table root; 436 437 /* The number of .rtproc entries. */ 438 bfd_size_type procedure_count; 439 440 /* The size of the .compact_rel section (if SGI_COMPAT). */ 441 bfd_size_type compact_rel_size; 442 443 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry 444 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */ 445 bool use_rld_obj_head; 446 447 /* The __rld_map or __rld_obj_head symbol. */ 448 struct elf_link_hash_entry *rld_symbol; 449 450 /* This is set if we see any mips16 stub sections. */ 451 bool mips16_stubs_seen; 452 453 /* True if we can generate copy relocs and PLTs. */ 454 bool use_plts_and_copy_relocs; 455 456 /* True if we can only use 32-bit microMIPS instructions. */ 457 bool insn32; 458 459 /* True if we suppress checks for invalid branches between ISA modes. */ 460 bool ignore_branch_isa; 461 462 /* True if we are targetting R6 compact branches. */ 463 bool compact_branches; 464 465 /* True if we already reported the small-data section overflow. */ 466 bool small_data_overflow_reported; 467 468 /* True if we use the special `__gnu_absolute_zero' symbol. */ 469 bool use_absolute_zero; 470 471 /* True if we have been configured for a GNU target. */ 472 bool gnu_target; 473 474 /* Shortcuts to some dynamic sections, or NULL if they are not 475 being used. */ 476 asection *srelplt2; 477 asection *sstubs; 478 479 /* The master GOT information. */ 480 struct mips_got_info *got_info; 481 482 /* The global symbol in the GOT with the lowest index in the dynamic 483 symbol table. */ 484 struct elf_link_hash_entry *global_gotsym; 485 486 /* The size of the PLT header in bytes. */ 487 bfd_vma plt_header_size; 488 489 /* The size of a standard PLT entry in bytes. */ 490 bfd_vma plt_mips_entry_size; 491 492 /* The size of a compressed PLT entry in bytes. */ 493 bfd_vma plt_comp_entry_size; 494 495 /* The offset of the next standard PLT entry to create. */ 496 bfd_vma plt_mips_offset; 497 498 /* The offset of the next compressed PLT entry to create. */ 499 bfd_vma plt_comp_offset; 500 501 /* The index of the next .got.plt entry to create. */ 502 bfd_vma plt_got_index; 503 504 /* The number of functions that need a lazy-binding stub. */ 505 bfd_vma lazy_stub_count; 506 507 /* The size of a function stub entry in bytes. */ 508 bfd_vma function_stub_size; 509 510 /* The number of reserved entries at the beginning of the GOT. */ 511 unsigned int reserved_gotno; 512 513 /* The section used for mips_elf_la25_stub trampolines. 514 See the comment above that structure for details. */ 515 asection *strampoline; 516 517 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset) 518 pairs. */ 519 htab_t la25_stubs; 520 521 /* A function FN (NAME, IS, OS) that creates a new input section 522 called NAME and links it to output section OS. If IS is nonnull, 523 the new section should go immediately before it, otherwise it 524 should go at the (current) beginning of OS. 525 526 The function returns the new section on success, otherwise it 527 returns null. */ 528 asection *(*add_stub_section) (const char *, asection *, asection *); 529 530 /* Is the PLT header compressed? */ 531 unsigned int plt_header_is_comp : 1; 532 }; 533 534 /* Get the MIPS ELF linker hash table from a link_info structure. */ 535 536 #define mips_elf_hash_table(p) \ 537 ((is_elf_hash_table ((p)->hash) \ 538 && elf_hash_table_id (elf_hash_table (p)) == MIPS_ELF_DATA) \ 539 ? (struct mips_elf_link_hash_table *) (p)->hash : NULL) 540 541 /* A structure used to communicate with htab_traverse callbacks. */ 542 struct mips_htab_traverse_info 543 { 544 /* The usual link-wide information. */ 545 struct bfd_link_info *info; 546 bfd *output_bfd; 547 548 /* Starts off FALSE and is set to TRUE if the link should be aborted. */ 549 bool error; 550 }; 551 552 /* MIPS ELF private object data. */ 553 554 struct mips_elf_obj_tdata 555 { 556 /* Generic ELF private object data. */ 557 struct elf_obj_tdata root; 558 559 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */ 560 bfd *abi_fp_bfd; 561 562 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */ 563 bfd *abi_msa_bfd; 564 565 /* The abiflags for this object. */ 566 Elf_Internal_ABIFlags_v0 abiflags; 567 bool abiflags_valid; 568 569 /* The GOT requirements of input bfds. */ 570 struct mips_got_info *got; 571 572 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be 573 included directly in this one, but there's no point to wasting 574 the memory just for the infrequently called find_nearest_line. */ 575 struct mips_elf_find_line *find_line_info; 576 577 /* An array of stub sections indexed by symbol number. */ 578 asection **local_stubs; 579 asection **local_call_stubs; 580 581 /* The Irix 5 support uses two virtual sections, which represent 582 text/data symbols defined in dynamic objects. */ 583 asymbol *elf_data_symbol; 584 asymbol *elf_text_symbol; 585 asection *elf_data_section; 586 asection *elf_text_section; 587 }; 588 589 /* Get MIPS ELF private object data from BFD's tdata. */ 590 591 #define mips_elf_tdata(bfd) \ 592 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any) 593 594 #define TLS_RELOC_P(r_type) \ 595 (r_type == R_MIPS_TLS_DTPMOD32 \ 596 || r_type == R_MIPS_TLS_DTPMOD64 \ 597 || r_type == R_MIPS_TLS_DTPREL32 \ 598 || r_type == R_MIPS_TLS_DTPREL64 \ 599 || r_type == R_MIPS_TLS_GD \ 600 || r_type == R_MIPS_TLS_LDM \ 601 || r_type == R_MIPS_TLS_DTPREL_HI16 \ 602 || r_type == R_MIPS_TLS_DTPREL_LO16 \ 603 || r_type == R_MIPS_TLS_GOTTPREL \ 604 || r_type == R_MIPS_TLS_TPREL32 \ 605 || r_type == R_MIPS_TLS_TPREL64 \ 606 || r_type == R_MIPS_TLS_TPREL_HI16 \ 607 || r_type == R_MIPS_TLS_TPREL_LO16 \ 608 || r_type == R_MIPS16_TLS_GD \ 609 || r_type == R_MIPS16_TLS_LDM \ 610 || r_type == R_MIPS16_TLS_DTPREL_HI16 \ 611 || r_type == R_MIPS16_TLS_DTPREL_LO16 \ 612 || r_type == R_MIPS16_TLS_GOTTPREL \ 613 || r_type == R_MIPS16_TLS_TPREL_HI16 \ 614 || r_type == R_MIPS16_TLS_TPREL_LO16 \ 615 || r_type == R_MICROMIPS_TLS_GD \ 616 || r_type == R_MICROMIPS_TLS_LDM \ 617 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \ 618 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \ 619 || r_type == R_MICROMIPS_TLS_GOTTPREL \ 620 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \ 621 || r_type == R_MICROMIPS_TLS_TPREL_LO16) 622 623 /* Structure used to pass information to mips_elf_output_extsym. */ 624 625 struct extsym_info 626 { 627 bfd *abfd; 628 struct bfd_link_info *info; 629 struct ecoff_debug_info *debug; 630 const struct ecoff_debug_swap *swap; 631 bool failed; 632 }; 633 634 /* The names of the runtime procedure table symbols used on IRIX5. */ 635 636 static const char * const mips_elf_dynsym_rtproc_names[] = 637 { 638 "_procedure_table", 639 "_procedure_string_table", 640 "_procedure_table_size", 641 NULL 642 }; 643 644 /* These structures are used to generate the .compact_rel section on 645 IRIX5. */ 646 647 typedef struct 648 { 649 unsigned long id1; /* Always one? */ 650 unsigned long num; /* Number of compact relocation entries. */ 651 unsigned long id2; /* Always two? */ 652 unsigned long offset; /* The file offset of the first relocation. */ 653 unsigned long reserved0; /* Zero? */ 654 unsigned long reserved1; /* Zero? */ 655 } Elf32_compact_rel; 656 657 typedef struct 658 { 659 bfd_byte id1[4]; 660 bfd_byte num[4]; 661 bfd_byte id2[4]; 662 bfd_byte offset[4]; 663 bfd_byte reserved0[4]; 664 bfd_byte reserved1[4]; 665 } Elf32_External_compact_rel; 666 667 typedef struct 668 { 669 unsigned int ctype : 1; /* 1: long 0: short format. See below. */ 670 unsigned int rtype : 4; /* Relocation types. See below. */ 671 unsigned int dist2to : 8; 672 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ 673 unsigned long konst; /* KONST field. See below. */ 674 unsigned long vaddr; /* VADDR to be relocated. */ 675 } Elf32_crinfo; 676 677 typedef struct 678 { 679 unsigned int ctype : 1; /* 1: long 0: short format. See below. */ 680 unsigned int rtype : 4; /* Relocation types. See below. */ 681 unsigned int dist2to : 8; 682 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ 683 unsigned long konst; /* KONST field. See below. */ 684 } Elf32_crinfo2; 685 686 typedef struct 687 { 688 bfd_byte info[4]; 689 bfd_byte konst[4]; 690 bfd_byte vaddr[4]; 691 } Elf32_External_crinfo; 692 693 typedef struct 694 { 695 bfd_byte info[4]; 696 bfd_byte konst[4]; 697 } Elf32_External_crinfo2; 698 699 /* These are the constants used to swap the bitfields in a crinfo. */ 700 701 #define CRINFO_CTYPE (0x1U) 702 #define CRINFO_CTYPE_SH (31) 703 #define CRINFO_RTYPE (0xfU) 704 #define CRINFO_RTYPE_SH (27) 705 #define CRINFO_DIST2TO (0xffU) 706 #define CRINFO_DIST2TO_SH (19) 707 #define CRINFO_RELVADDR (0x7ffffU) 708 #define CRINFO_RELVADDR_SH (0) 709 710 /* A compact relocation info has long (3 words) or short (2 words) 711 formats. A short format doesn't have VADDR field and relvaddr 712 fields contains ((VADDR - vaddr of the previous entry) >> 2). */ 713 #define CRF_MIPS_LONG 1 714 #define CRF_MIPS_SHORT 0 715 716 /* There are 4 types of compact relocation at least. The value KONST 717 has different meaning for each type: 718 719 (type) (konst) 720 CT_MIPS_REL32 Address in data 721 CT_MIPS_WORD Address in word (XXX) 722 CT_MIPS_GPHI_LO GP - vaddr 723 CT_MIPS_JMPAD Address to jump 724 */ 725 726 #define CRT_MIPS_REL32 0xa 727 #define CRT_MIPS_WORD 0xb 728 #define CRT_MIPS_GPHI_LO 0xc 729 #define CRT_MIPS_JMPAD 0xd 730 731 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format)) 732 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type)) 733 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v)) 734 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2) 735 736 /* The structure of the runtime procedure descriptor created by the 737 loader for use by the static exception system. */ 738 739 typedef struct runtime_pdr { 740 bfd_vma adr; /* Memory address of start of procedure. */ 741 long regmask; /* Save register mask. */ 742 long regoffset; /* Save register offset. */ 743 long fregmask; /* Save floating point register mask. */ 744 long fregoffset; /* Save floating point register offset. */ 745 long frameoffset; /* Frame size. */ 746 short framereg; /* Frame pointer register. */ 747 short pcreg; /* Offset or reg of return pc. */ 748 long irpss; /* Index into the runtime string table. */ 749 long reserved; 750 struct exception_info *exception_info;/* Pointer to exception array. */ 751 } RPDR, *pRPDR; 752 #define cbRPDR sizeof (RPDR) 753 #define rpdNil ((pRPDR) 0) 754 755 static struct mips_got_entry *mips_elf_create_local_got_entry 756 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long, 757 struct mips_elf_link_hash_entry *, int); 758 static bool mips_elf_sort_hash_table_f 759 (struct mips_elf_link_hash_entry *, void *); 760 static bfd_vma mips_elf_high 761 (bfd_vma); 762 static bool mips_elf_create_dynamic_relocation 763 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *, 764 struct mips_elf_link_hash_entry *, asection *, bfd_vma, 765 bfd_vma *, asection *); 766 static bfd_vma mips_elf_adjust_gp 767 (bfd *, struct mips_got_info *, bfd *); 768 769 /* This will be used when we sort the dynamic relocation records. */ 770 static bfd *reldyn_sorting_bfd; 771 772 /* True if ABFD is for CPUs with load interlocking that include 773 non-MIPS1 CPUs and R3900. */ 774 #define LOAD_INTERLOCKS_P(abfd) \ 775 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \ 776 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900)) 777 778 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL. 779 This should be safe for all architectures. We enable this predicate 780 for RM9000 for now. */ 781 #define JAL_TO_BAL_P(abfd) \ 782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000) 783 784 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL. 785 This should be safe for all architectures. We enable this predicate for 786 all CPUs. */ 787 #define JALR_TO_BAL_P(abfd) 1 788 789 /* True if ABFD is for CPUs that are faster if JR is converted to B. 790 This should be safe for all architectures. We enable this predicate for 791 all CPUs. */ 792 #define JR_TO_B_P(abfd) 1 793 794 /* True if ABFD is a PIC object. */ 795 #define PIC_OBJECT_P(abfd) \ 796 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0) 797 798 /* Nonzero if ABFD is using the O32 ABI. */ 799 #define ABI_O32_P(abfd) \ 800 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32) 801 802 /* Nonzero if ABFD is using the N32 ABI. */ 803 #define ABI_N32_P(abfd) \ 804 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0) 805 806 /* Nonzero if ABFD is using the N64 ABI. */ 807 #define ABI_64_P(abfd) \ 808 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64) 809 810 /* Nonzero if ABFD is using NewABI conventions. */ 811 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd)) 812 813 /* Nonzero if ABFD has microMIPS code. */ 814 #define MICROMIPS_P(abfd) \ 815 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0) 816 817 /* Nonzero if ABFD is MIPS R6. */ 818 #define MIPSR6_P(abfd) \ 819 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \ 820 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6) 821 822 /* The IRIX compatibility level we are striving for. */ 823 #define IRIX_COMPAT(abfd) \ 824 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd)) 825 826 /* Whether we are trying to be compatible with IRIX at all. */ 827 #define SGI_COMPAT(abfd) \ 828 (IRIX_COMPAT (abfd) != ict_none) 829 830 /* The name of the options section. */ 831 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \ 832 (NEWABI_P (abfd) ? ".MIPS.options" : ".options") 833 834 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section. 835 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */ 836 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \ 837 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0) 838 839 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */ 840 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \ 841 (strcmp (NAME, ".MIPS.abiflags") == 0) 842 843 /* Whether the section is readonly. */ 844 #define MIPS_ELF_READONLY_SECTION(sec) \ 845 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \ 846 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) 847 848 /* The name of the stub section. */ 849 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs" 850 851 /* The size of an external REL relocation. */ 852 #define MIPS_ELF_REL_SIZE(abfd) \ 853 (get_elf_backend_data (abfd)->s->sizeof_rel) 854 855 /* The size of an external RELA relocation. */ 856 #define MIPS_ELF_RELA_SIZE(abfd) \ 857 (get_elf_backend_data (abfd)->s->sizeof_rela) 858 859 /* The size of an external dynamic table entry. */ 860 #define MIPS_ELF_DYN_SIZE(abfd) \ 861 (get_elf_backend_data (abfd)->s->sizeof_dyn) 862 863 /* The size of a GOT entry. */ 864 #define MIPS_ELF_GOT_SIZE(abfd) \ 865 (get_elf_backend_data (abfd)->s->arch_size / 8) 866 867 /* The size of the .rld_map section. */ 868 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \ 869 (get_elf_backend_data (abfd)->s->arch_size / 8) 870 871 /* The size of a symbol-table entry. */ 872 #define MIPS_ELF_SYM_SIZE(abfd) \ 873 (get_elf_backend_data (abfd)->s->sizeof_sym) 874 875 /* The default alignment for sections, as a power of two. */ 876 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \ 877 (get_elf_backend_data (abfd)->s->log_file_align) 878 879 /* Get word-sized data. */ 880 #define MIPS_ELF_GET_WORD(abfd, ptr) \ 881 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr)) 882 883 /* Put out word-sized data. */ 884 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \ 885 (ABI_64_P (abfd) \ 886 ? bfd_put_64 (abfd, val, ptr) \ 887 : bfd_put_32 (abfd, val, ptr)) 888 889 /* The opcode for word-sized loads (LW or LD). */ 890 #define MIPS_ELF_LOAD_WORD(abfd) \ 891 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000) 892 893 /* Add a dynamic symbol table-entry. */ 894 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \ 895 _bfd_elf_add_dynamic_entry (info, tag, val) 896 897 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \ 898 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela)) 899 900 /* The name of the dynamic relocation section. */ 901 #define MIPS_ELF_REL_DYN_NAME(INFO) \ 902 (mips_elf_hash_table (INFO)->root.target_os == is_vxworks \ 903 ? ".rela.dyn" : ".rel.dyn") 904 905 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value 906 from smaller values. Start with zero, widen, *then* decrement. */ 907 #define MINUS_ONE (((bfd_vma)0) - 1) 908 #define MINUS_TWO (((bfd_vma)0) - 2) 909 910 /* The value to write into got[1] for SVR4 targets, to identify it is 911 a GNU object. The dynamic linker can then use got[1] to store the 912 module pointer. */ 913 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \ 914 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31)) 915 916 /* The offset of $gp from the beginning of the .got section. */ 917 #define ELF_MIPS_GP_OFFSET(INFO) \ 918 (mips_elf_hash_table (INFO)->root.target_os == is_vxworks \ 919 ? 0x0 : 0x7ff0) 920 921 /* The maximum size of the GOT for it to be addressable using 16-bit 922 offsets from $gp. */ 923 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff) 924 925 /* Instructions which appear in a stub. */ 926 #define STUB_LW(abfd) \ 927 ((ABI_64_P (abfd) \ 928 ? 0xdf998010 /* ld t9,0x8010(gp) */ \ 929 : 0x8f998010)) /* lw t9,0x8010(gp) */ 930 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */ 931 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */ 932 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */ 933 #define STUB_JALRC 0xf8190000 /* jalrc ra,t9 */ 934 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */ 935 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */ 936 #define STUB_LI16S(abfd, VAL) \ 937 ((ABI_64_P (abfd) \ 938 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \ 939 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */ 940 941 /* Likewise for the microMIPS ASE. */ 942 #define STUB_LW_MICROMIPS(abfd) \ 943 (ABI_64_P (abfd) \ 944 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \ 945 : 0xff3c8010) /* lw t9,0x8010(gp) */ 946 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */ 947 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */ 948 #define STUB_LUI_MICROMIPS(VAL) \ 949 (0x41b80000 + (VAL)) /* lui t8,VAL */ 950 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */ 951 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */ 952 #define STUB_ORI_MICROMIPS(VAL) \ 953 (0x53180000 + (VAL)) /* ori t8,t8,VAL */ 954 #define STUB_LI16U_MICROMIPS(VAL) \ 955 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */ 956 #define STUB_LI16S_MICROMIPS(abfd, VAL) \ 957 (ABI_64_P (abfd) \ 958 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \ 959 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */ 960 961 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16 962 #define MIPS_FUNCTION_STUB_BIG_SIZE 20 963 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12 964 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16 965 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16 966 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20 967 968 /* The name of the dynamic interpreter. This is put in the .interp 969 section. */ 970 971 #define ELF_DYNAMIC_INTERPRETER(abfd) \ 972 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \ 973 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \ 974 : "/usr/lib/libc.so.1") 975 976 #ifdef BFD64 977 #define MNAME(bfd,pre,pos) \ 978 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos)) 979 #define ELF_R_SYM(bfd, i) \ 980 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i)) 981 #define ELF_R_TYPE(bfd, i) \ 982 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i)) 983 #define ELF_R_INFO(bfd, s, t) \ 984 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t)) 985 #else 986 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos) 987 #define ELF_R_SYM(bfd, i) \ 988 (ELF32_R_SYM (i)) 989 #define ELF_R_TYPE(bfd, i) \ 990 (ELF32_R_TYPE (i)) 991 #define ELF_R_INFO(bfd, s, t) \ 992 (ELF32_R_INFO (s, t)) 993 #endif 994 995 /* The mips16 compiler uses a couple of special sections to handle 996 floating point arguments. 997 998 Section names that look like .mips16.fn.FNNAME contain stubs that 999 copy floating point arguments from the fp regs to the gp regs and 1000 then jump to FNNAME. If any 32 bit function calls FNNAME, the 1001 call should be redirected to the stub instead. If no 32 bit 1002 function calls FNNAME, the stub should be discarded. We need to 1003 consider any reference to the function, not just a call, because 1004 if the address of the function is taken we will need the stub, 1005 since the address might be passed to a 32 bit function. 1006 1007 Section names that look like .mips16.call.FNNAME contain stubs 1008 that copy floating point arguments from the gp regs to the fp 1009 regs and then jump to FNNAME. If FNNAME is a 32 bit function, 1010 then any 16 bit function that calls FNNAME should be redirected 1011 to the stub instead. If FNNAME is not a 32 bit function, the 1012 stub should be discarded. 1013 1014 .mips16.call.fp.FNNAME sections are similar, but contain stubs 1015 which call FNNAME and then copy the return value from the fp regs 1016 to the gp regs. These stubs store the return value in $18 while 1017 calling FNNAME; any function which might call one of these stubs 1018 must arrange to save $18 around the call. (This case is not 1019 needed for 32 bit functions that call 16 bit functions, because 1020 16 bit functions always return floating point values in both 1021 $f0/$f1 and $2/$3.) 1022 1023 Note that in all cases FNNAME might be defined statically. 1024 Therefore, FNNAME is not used literally. Instead, the relocation 1025 information will indicate which symbol the section is for. 1026 1027 We record any stubs that we find in the symbol table. */ 1028 1029 #define FN_STUB ".mips16.fn." 1030 #define CALL_STUB ".mips16.call." 1031 #define CALL_FP_STUB ".mips16.call.fp." 1032 1033 #define FN_STUB_P(name) startswith (name, FN_STUB) 1034 #define CALL_STUB_P(name) startswith (name, CALL_STUB) 1035 #define CALL_FP_STUB_P(name) startswith (name, CALL_FP_STUB) 1036 1037 /* The format of the first PLT entry in an O32 executable. */ 1038 static const bfd_vma mips_o32_exec_plt0_entry[] = 1039 { 1040 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */ 1041 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */ 1042 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */ 1043 0x031cc023, /* subu $24, $24, $28 */ 1044 0x03e07825, /* or t7, ra, zero */ 1045 0x0018c082, /* srl $24, $24, 2 */ 1046 0x0320f809, /* jalr $25 */ 1047 0x2718fffe /* subu $24, $24, 2 */ 1048 }; 1049 1050 /* The format of the first PLT entry in an O32 executable using compact 1051 jumps. */ 1052 static const bfd_vma mipsr6_o32_exec_plt0_entry_compact[] = 1053 { 1054 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */ 1055 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */ 1056 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */ 1057 0x031cc023, /* subu $24, $24, $28 */ 1058 0x03e07821, /* move $15, $31 # 32-bit move (addu) */ 1059 0x0018c082, /* srl $24, $24, 2 */ 1060 0x2718fffe, /* subu $24, $24, 2 */ 1061 0xf8190000 /* jalrc $25 */ 1062 }; 1063 1064 /* The format of the first PLT entry in an N32 executable. Different 1065 because gp ($28) is not available; we use t2 ($14) instead. */ 1066 static const bfd_vma mips_n32_exec_plt0_entry[] = 1067 { 1068 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */ 1069 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */ 1070 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */ 1071 0x030ec023, /* subu $24, $24, $14 */ 1072 0x03e07825, /* or t7, ra, zero */ 1073 0x0018c082, /* srl $24, $24, 2 */ 1074 0x0320f809, /* jalr $25 */ 1075 0x2718fffe /* subu $24, $24, 2 */ 1076 }; 1077 1078 /* The format of the first PLT entry in an N32 executable using compact 1079 jumps. Different because gp ($28) is not available; we use t2 ($14) 1080 instead. */ 1081 static const bfd_vma mipsr6_n32_exec_plt0_entry_compact[] = 1082 { 1083 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */ 1084 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */ 1085 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */ 1086 0x030ec023, /* subu $24, $24, $14 */ 1087 0x03e07821, /* move $15, $31 # 32-bit move (addu) */ 1088 0x0018c082, /* srl $24, $24, 2 */ 1089 0x2718fffe, /* subu $24, $24, 2 */ 1090 0xf8190000 /* jalrc $25 */ 1091 }; 1092 1093 /* The format of the first PLT entry in an N64 executable. Different 1094 from N32 because of the increased size of GOT entries. */ 1095 static const bfd_vma mips_n64_exec_plt0_entry[] = 1096 { 1097 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */ 1098 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */ 1099 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */ 1100 0x030ec023, /* subu $24, $24, $14 */ 1101 0x03e07825, /* or t7, ra, zero */ 1102 0x0018c0c2, /* srl $24, $24, 3 */ 1103 0x0320f809, /* jalr $25 */ 1104 0x2718fffe /* subu $24, $24, 2 */ 1105 }; 1106 1107 /* The format of the first PLT entry in an N64 executable using compact 1108 jumps. Different from N32 because of the increased size of GOT 1109 entries. */ 1110 static const bfd_vma mipsr6_n64_exec_plt0_entry_compact[] = 1111 { 1112 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */ 1113 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */ 1114 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */ 1115 0x030ec023, /* subu $24, $24, $14 */ 1116 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */ 1117 0x0018c0c2, /* srl $24, $24, 3 */ 1118 0x2718fffe, /* subu $24, $24, 2 */ 1119 0xf8190000 /* jalrc $25 */ 1120 }; 1121 1122 1123 /* The format of the microMIPS first PLT entry in an O32 executable. 1124 We rely on v0 ($2) rather than t8 ($24) to contain the address 1125 of the GOTPLT entry handled, so this stub may only be used when 1126 all the subsequent PLT entries are microMIPS code too. 1127 1128 The trailing NOP is for alignment and correct disassembly only. */ 1129 static const bfd_vma micromips_o32_exec_plt0_entry[] = 1130 { 1131 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */ 1132 0xff23, 0x0000, /* lw $25, 0($3) */ 1133 0x0535, /* subu $2, $2, $3 */ 1134 0x2525, /* srl $2, $2, 2 */ 1135 0x3302, 0xfffe, /* subu $24, $2, 2 */ 1136 0x0dff, /* move $15, $31 */ 1137 0x45f9, /* jalrs $25 */ 1138 0x0f83, /* move $28, $3 */ 1139 0x0c00 /* nop */ 1140 }; 1141 1142 /* The format of the microMIPS first PLT entry in an O32 executable 1143 in the insn32 mode. */ 1144 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] = 1145 { 1146 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */ 1147 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */ 1148 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */ 1149 0x0398, 0xc1d0, /* subu $24, $24, $28 */ 1150 0x001f, 0x7a90, /* or $15, $31, zero */ 1151 0x0318, 0x1040, /* srl $24, $24, 2 */ 1152 0x03f9, 0x0f3c, /* jalr $25 */ 1153 0x3318, 0xfffe /* subu $24, $24, 2 */ 1154 }; 1155 1156 /* The format of subsequent standard PLT entries. */ 1157 static const bfd_vma mips_exec_plt_entry[] = 1158 { 1159 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */ 1160 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */ 1161 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */ 1162 0x03200008 /* jr $25 */ 1163 }; 1164 1165 static const bfd_vma mipsr6_exec_plt_entry[] = 1166 { 1167 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */ 1168 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */ 1169 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */ 1170 0x03200009 /* jr $25 */ 1171 }; 1172 1173 static const bfd_vma mipsr6_exec_plt_entry_compact[] = 1174 { 1175 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */ 1176 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */ 1177 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */ 1178 0xd8190000 /* jic $25, 0 */ 1179 }; 1180 1181 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2) 1182 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not 1183 directly addressable. */ 1184 static const bfd_vma mips16_o32_exec_plt_entry[] = 1185 { 1186 0xb203, /* lw $2, 12($pc) */ 1187 0x9a60, /* lw $3, 0($2) */ 1188 0x651a, /* move $24, $2 */ 1189 0xeb00, /* jr $3 */ 1190 0x653b, /* move $25, $3 */ 1191 0x6500, /* nop */ 1192 0x0000, 0x0000 /* .word (.got.plt entry) */ 1193 }; 1194 1195 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2) 1196 as a temporary because t8 ($24) is not addressable with ADDIUPC. */ 1197 static const bfd_vma micromips_o32_exec_plt_entry[] = 1198 { 1199 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */ 1200 0xff22, 0x0000, /* lw $25, 0($2) */ 1201 0x4599, /* jr $25 */ 1202 0x0f02 /* move $24, $2 */ 1203 }; 1204 1205 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */ 1206 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] = 1207 { 1208 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */ 1209 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */ 1210 0x0019, 0x0f3c, /* jr $25 */ 1211 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */ 1212 }; 1213 1214 /* The format of the first PLT entry in a VxWorks executable. */ 1215 static const bfd_vma mips_vxworks_exec_plt0_entry[] = 1216 { 1217 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */ 1218 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */ 1219 0x8f390008, /* lw t9, 8(t9) */ 1220 0x00000000, /* nop */ 1221 0x03200008, /* jr t9 */ 1222 0x00000000 /* nop */ 1223 }; 1224 1225 /* The format of subsequent PLT entries. */ 1226 static const bfd_vma mips_vxworks_exec_plt_entry[] = 1227 { 1228 0x10000000, /* b .PLT_resolver */ 1229 0x24180000, /* li t8, <pltindex> */ 1230 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */ 1231 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */ 1232 0x8f390000, /* lw t9, 0(t9) */ 1233 0x00000000, /* nop */ 1234 0x03200008, /* jr t9 */ 1235 0x00000000 /* nop */ 1236 }; 1237 1238 /* The format of the first PLT entry in a VxWorks shared object. */ 1239 static const bfd_vma mips_vxworks_shared_plt0_entry[] = 1240 { 1241 0x8f990008, /* lw t9, 8(gp) */ 1242 0x00000000, /* nop */ 1243 0x03200008, /* jr t9 */ 1244 0x00000000, /* nop */ 1245 0x00000000, /* nop */ 1246 0x00000000 /* nop */ 1247 }; 1248 1249 /* The format of subsequent PLT entries. */ 1250 static const bfd_vma mips_vxworks_shared_plt_entry[] = 1251 { 1252 0x10000000, /* b .PLT_resolver */ 1253 0x24180000 /* li t8, <pltindex> */ 1254 }; 1255 1256 /* microMIPS 32-bit opcode helper installer. */ 1257 1258 static void 1259 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr) 1260 { 1261 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr); 1262 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2); 1263 } 1264 1265 /* microMIPS 32-bit opcode helper retriever. */ 1266 1267 static bfd_vma 1268 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr) 1269 { 1270 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2); 1271 } 1272 1273 /* Look up an entry in a MIPS ELF linker hash table. */ 1274 1275 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \ 1276 ((struct mips_elf_link_hash_entry *) \ 1277 elf_link_hash_lookup (&(table)->root, (string), (create), \ 1278 (copy), (follow))) 1279 1280 /* Traverse a MIPS ELF linker hash table. */ 1281 1282 #define mips_elf_link_hash_traverse(table, func, info) \ 1283 (elf_link_hash_traverse \ 1284 (&(table)->root, \ 1285 (bool (*) (struct elf_link_hash_entry *, void *)) (func), \ 1286 (info))) 1287 1288 /* Find the base offsets for thread-local storage in this object, 1289 for GD/LD and IE/LE respectively. */ 1290 1291 #define TP_OFFSET 0x7000 1292 #define DTP_OFFSET 0x8000 1293 1294 static bfd_vma 1295 dtprel_base (struct bfd_link_info *info) 1296 { 1297 /* If tls_sec is NULL, we should have signalled an error already. */ 1298 if (elf_hash_table (info)->tls_sec == NULL) 1299 return 0; 1300 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET; 1301 } 1302 1303 static bfd_vma 1304 tprel_base (struct bfd_link_info *info) 1305 { 1306 /* If tls_sec is NULL, we should have signalled an error already. */ 1307 if (elf_hash_table (info)->tls_sec == NULL) 1308 return 0; 1309 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET; 1310 } 1311 1312 /* Create an entry in a MIPS ELF linker hash table. */ 1313 1314 static struct bfd_hash_entry * 1315 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry, 1316 struct bfd_hash_table *table, const char *string) 1317 { 1318 struct mips_elf_link_hash_entry *ret = 1319 (struct mips_elf_link_hash_entry *) entry; 1320 1321 /* Allocate the structure if it has not already been allocated by a 1322 subclass. */ 1323 if (ret == NULL) 1324 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry)); 1325 if (ret == NULL) 1326 return (struct bfd_hash_entry *) ret; 1327 1328 /* Call the allocation method of the superclass. */ 1329 ret = ((struct mips_elf_link_hash_entry *) 1330 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, 1331 table, string)); 1332 if (ret != NULL) 1333 { 1334 /* Set local fields. */ 1335 memset (&ret->esym, 0, sizeof (EXTR)); 1336 /* We use -2 as a marker to indicate that the information has 1337 not been set. -1 means there is no associated ifd. */ 1338 ret->esym.ifd = -2; 1339 ret->la25_stub = 0; 1340 ret->possibly_dynamic_relocs = 0; 1341 ret->fn_stub = NULL; 1342 ret->call_stub = NULL; 1343 ret->call_fp_stub = NULL; 1344 ret->mipsxhash_loc = 0; 1345 ret->global_got_area = GGA_NONE; 1346 ret->got_only_for_calls = true; 1347 ret->readonly_reloc = false; 1348 ret->has_static_relocs = false; 1349 ret->no_fn_stub = false; 1350 ret->need_fn_stub = false; 1351 ret->has_nonpic_branches = false; 1352 ret->needs_lazy_stub = false; 1353 ret->use_plt_entry = false; 1354 } 1355 1356 return (struct bfd_hash_entry *) ret; 1357 } 1358 1359 /* Allocate MIPS ELF private object data. */ 1360 1361 bool 1362 _bfd_mips_elf_mkobject (bfd *abfd) 1363 { 1364 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata), 1365 MIPS_ELF_DATA); 1366 } 1367 1368 bool 1369 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec) 1370 { 1371 if (!sec->used_by_bfd) 1372 { 1373 struct _mips_elf_section_data *sdata; 1374 size_t amt = sizeof (*sdata); 1375 1376 sdata = bfd_zalloc (abfd, amt); 1377 if (sdata == NULL) 1378 return false; 1379 sec->used_by_bfd = sdata; 1380 } 1381 1382 return _bfd_elf_new_section_hook (abfd, sec); 1383 } 1384 1385 /* Read ECOFF debugging information from a .mdebug section into a 1386 ecoff_debug_info structure. */ 1387 1388 bool 1389 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section, 1390 struct ecoff_debug_info *debug) 1391 { 1392 HDRR *symhdr; 1393 const struct ecoff_debug_swap *swap; 1394 char *ext_hdr; 1395 1396 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; 1397 memset (debug, 0, sizeof (*debug)); 1398 1399 ext_hdr = bfd_malloc (swap->external_hdr_size); 1400 if (ext_hdr == NULL && swap->external_hdr_size != 0) 1401 goto error_return; 1402 1403 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0, 1404 swap->external_hdr_size)) 1405 goto error_return; 1406 1407 symhdr = &debug->symbolic_header; 1408 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr); 1409 1410 /* The symbolic header contains absolute file offsets and sizes to 1411 read. */ 1412 #define READ(ptr, offset, count, size, type) \ 1413 do \ 1414 { \ 1415 size_t amt; \ 1416 debug->ptr = NULL; \ 1417 if (symhdr->count == 0) \ 1418 break; \ 1419 if (_bfd_mul_overflow (size, symhdr->count, &amt)) \ 1420 { \ 1421 bfd_set_error (bfd_error_file_too_big); \ 1422 goto error_return; \ 1423 } \ 1424 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0) \ 1425 goto error_return; \ 1426 debug->ptr = (type) _bfd_malloc_and_read (abfd, amt, amt); \ 1427 if (debug->ptr == NULL) \ 1428 goto error_return; \ 1429 } while (0) 1430 1431 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *); 1432 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *); 1433 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *); 1434 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *); 1435 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *); 1436 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext), 1437 union aux_ext *); 1438 READ (ss, cbSsOffset, issMax, sizeof (char), char *); 1439 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *); 1440 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *); 1441 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *); 1442 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *); 1443 #undef READ 1444 1445 debug->fdr = NULL; 1446 1447 return true; 1448 1449 error_return: 1450 free (ext_hdr); 1451 free (debug->line); 1452 free (debug->external_dnr); 1453 free (debug->external_pdr); 1454 free (debug->external_sym); 1455 free (debug->external_opt); 1456 free (debug->external_aux); 1457 free (debug->ss); 1458 free (debug->ssext); 1459 free (debug->external_fdr); 1460 free (debug->external_rfd); 1461 free (debug->external_ext); 1462 return false; 1463 } 1464 1465 /* Swap RPDR (runtime procedure table entry) for output. */ 1466 1467 static void 1468 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex) 1469 { 1470 H_PUT_S32 (abfd, in->adr, ex->p_adr); 1471 H_PUT_32 (abfd, in->regmask, ex->p_regmask); 1472 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset); 1473 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask); 1474 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset); 1475 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset); 1476 1477 H_PUT_16 (abfd, in->framereg, ex->p_framereg); 1478 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg); 1479 1480 H_PUT_32 (abfd, in->irpss, ex->p_irpss); 1481 } 1482 1483 /* Create a runtime procedure table from the .mdebug section. */ 1484 1485 static bool 1486 mips_elf_create_procedure_table (void *handle, bfd *abfd, 1487 struct bfd_link_info *info, asection *s, 1488 struct ecoff_debug_info *debug) 1489 { 1490 const struct ecoff_debug_swap *swap; 1491 HDRR *hdr = &debug->symbolic_header; 1492 RPDR *rpdr, *rp; 1493 struct rpdr_ext *erp; 1494 void *rtproc; 1495 struct pdr_ext *epdr; 1496 struct sym_ext *esym; 1497 char *ss, **sv; 1498 char *str; 1499 bfd_size_type size; 1500 bfd_size_type count; 1501 unsigned long sindex; 1502 unsigned long i; 1503 PDR pdr; 1504 SYMR sym; 1505 const char *no_name_func = _("static procedure (no name)"); 1506 1507 epdr = NULL; 1508 rpdr = NULL; 1509 esym = NULL; 1510 ss = NULL; 1511 sv = NULL; 1512 1513 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; 1514 1515 sindex = strlen (no_name_func) + 1; 1516 count = hdr->ipdMax; 1517 if (count > 0) 1518 { 1519 size = swap->external_pdr_size; 1520 1521 epdr = bfd_malloc (size * count); 1522 if (epdr == NULL) 1523 goto error_return; 1524 1525 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr)) 1526 goto error_return; 1527 1528 size = sizeof (RPDR); 1529 rp = rpdr = bfd_malloc (size * count); 1530 if (rpdr == NULL) 1531 goto error_return; 1532 1533 size = sizeof (char *); 1534 sv = bfd_malloc (size * count); 1535 if (sv == NULL) 1536 goto error_return; 1537 1538 count = hdr->isymMax; 1539 size = swap->external_sym_size; 1540 esym = bfd_malloc (size * count); 1541 if (esym == NULL) 1542 goto error_return; 1543 1544 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym)) 1545 goto error_return; 1546 1547 count = hdr->issMax; 1548 ss = bfd_malloc (count); 1549 if (ss == NULL) 1550 goto error_return; 1551 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss)) 1552 goto error_return; 1553 1554 count = hdr->ipdMax; 1555 for (i = 0; i < (unsigned long) count; i++, rp++) 1556 { 1557 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr); 1558 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym); 1559 rp->adr = sym.value; 1560 rp->regmask = pdr.regmask; 1561 rp->regoffset = pdr.regoffset; 1562 rp->fregmask = pdr.fregmask; 1563 rp->fregoffset = pdr.fregoffset; 1564 rp->frameoffset = pdr.frameoffset; 1565 rp->framereg = pdr.framereg; 1566 rp->pcreg = pdr.pcreg; 1567 rp->irpss = sindex; 1568 sv[i] = ss + sym.iss; 1569 sindex += strlen (sv[i]) + 1; 1570 } 1571 } 1572 1573 size = sizeof (struct rpdr_ext) * (count + 2) + sindex; 1574 size = BFD_ALIGN (size, 16); 1575 rtproc = bfd_alloc (abfd, size); 1576 if (rtproc == NULL) 1577 { 1578 mips_elf_hash_table (info)->procedure_count = 0; 1579 goto error_return; 1580 } 1581 1582 mips_elf_hash_table (info)->procedure_count = count + 2; 1583 1584 erp = rtproc; 1585 memset (erp, 0, sizeof (struct rpdr_ext)); 1586 erp++; 1587 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2); 1588 strcpy (str, no_name_func); 1589 str += strlen (no_name_func) + 1; 1590 for (i = 0; i < count; i++) 1591 { 1592 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i); 1593 strcpy (str, sv[i]); 1594 str += strlen (sv[i]) + 1; 1595 } 1596 H_PUT_S32 (abfd, -1, (erp + count)->p_adr); 1597 1598 /* Set the size and contents of .rtproc section. */ 1599 s->size = size; 1600 s->contents = rtproc; 1601 1602 /* Skip this section later on (I don't think this currently 1603 matters, but someday it might). */ 1604 s->map_head.link_order = NULL; 1605 1606 free (epdr); 1607 free (rpdr); 1608 free (esym); 1609 free (ss); 1610 free (sv); 1611 return true; 1612 1613 error_return: 1614 free (epdr); 1615 free (rpdr); 1616 free (esym); 1617 free (ss); 1618 free (sv); 1619 return false; 1620 } 1621 1622 /* We're going to create a stub for H. Create a symbol for the stub's 1623 value and size, to help make the disassembly easier to read. */ 1624 1625 static bool 1626 mips_elf_create_stub_symbol (struct bfd_link_info *info, 1627 struct mips_elf_link_hash_entry *h, 1628 const char *prefix, asection *s, bfd_vma value, 1629 bfd_vma size) 1630 { 1631 bool micromips_p = ELF_ST_IS_MICROMIPS (h->root.other); 1632 struct bfd_link_hash_entry *bh; 1633 struct elf_link_hash_entry *elfh; 1634 char *name; 1635 bool res; 1636 1637 if (micromips_p) 1638 value |= 1; 1639 1640 /* Create a new symbol. */ 1641 name = concat (prefix, h->root.root.root.string, NULL); 1642 bh = NULL; 1643 res = _bfd_generic_link_add_one_symbol (info, s->owner, name, 1644 BSF_LOCAL, s, value, NULL, 1645 true, false, &bh); 1646 free (name); 1647 if (! res) 1648 return false; 1649 1650 /* Make it a local function. */ 1651 elfh = (struct elf_link_hash_entry *) bh; 1652 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); 1653 elfh->size = size; 1654 elfh->forced_local = 1; 1655 if (micromips_p) 1656 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other); 1657 return true; 1658 } 1659 1660 /* We're about to redefine H. Create a symbol to represent H's 1661 current value and size, to help make the disassembly easier 1662 to read. */ 1663 1664 static bool 1665 mips_elf_create_shadow_symbol (struct bfd_link_info *info, 1666 struct mips_elf_link_hash_entry *h, 1667 const char *prefix) 1668 { 1669 struct bfd_link_hash_entry *bh; 1670 struct elf_link_hash_entry *elfh; 1671 char *name; 1672 asection *s; 1673 bfd_vma value; 1674 bool res; 1675 1676 /* Read the symbol's value. */ 1677 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined 1678 || h->root.root.type == bfd_link_hash_defweak); 1679 s = h->root.root.u.def.section; 1680 value = h->root.root.u.def.value; 1681 1682 /* Create a new symbol. */ 1683 name = concat (prefix, h->root.root.root.string, NULL); 1684 bh = NULL; 1685 res = _bfd_generic_link_add_one_symbol (info, s->owner, name, 1686 BSF_LOCAL, s, value, NULL, 1687 true, false, &bh); 1688 free (name); 1689 if (! res) 1690 return false; 1691 1692 /* Make it local and copy the other attributes from H. */ 1693 elfh = (struct elf_link_hash_entry *) bh; 1694 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type)); 1695 elfh->other = h->root.other; 1696 elfh->size = h->root.size; 1697 elfh->forced_local = 1; 1698 return true; 1699 } 1700 1701 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16 1702 function rather than to a hard-float stub. */ 1703 1704 static bool 1705 section_allows_mips16_refs_p (asection *section) 1706 { 1707 const char *name; 1708 1709 name = bfd_section_name (section); 1710 return (FN_STUB_P (name) 1711 || CALL_STUB_P (name) 1712 || CALL_FP_STUB_P (name) 1713 || strcmp (name, ".pdr") == 0); 1714 } 1715 1716 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16 1717 stub section of some kind. Return the R_SYMNDX of the target 1718 function, or 0 if we can't decide which function that is. */ 1719 1720 static unsigned long 1721 mips16_stub_symndx (const struct elf_backend_data *bed, 1722 asection *sec ATTRIBUTE_UNUSED, 1723 const Elf_Internal_Rela *relocs, 1724 const Elf_Internal_Rela *relend) 1725 { 1726 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel; 1727 const Elf_Internal_Rela *rel; 1728 1729 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent 1730 one in a compound relocation. */ 1731 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel) 1732 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE) 1733 return ELF_R_SYM (sec->owner, rel->r_info); 1734 1735 /* Otherwise trust the first relocation, whatever its kind. This is 1736 the traditional behavior. */ 1737 if (relocs < relend) 1738 return ELF_R_SYM (sec->owner, relocs->r_info); 1739 1740 return 0; 1741 } 1742 1743 /* Check the mips16 stubs for a particular symbol, and see if we can 1744 discard them. */ 1745 1746 static void 1747 mips_elf_check_mips16_stubs (struct bfd_link_info *info, 1748 struct mips_elf_link_hash_entry *h) 1749 { 1750 /* Dynamic symbols must use the standard call interface, in case other 1751 objects try to call them. */ 1752 if (h->fn_stub != NULL 1753 && h->root.dynindx != -1) 1754 { 1755 mips_elf_create_shadow_symbol (info, h, ".mips16."); 1756 h->need_fn_stub = true; 1757 } 1758 1759 if (h->fn_stub != NULL 1760 && ! h->need_fn_stub) 1761 { 1762 /* We don't need the fn_stub; the only references to this symbol 1763 are 16 bit calls. Clobber the size to 0 to prevent it from 1764 being included in the link. */ 1765 h->fn_stub->size = 0; 1766 h->fn_stub->flags &= ~SEC_RELOC; 1767 h->fn_stub->reloc_count = 0; 1768 h->fn_stub->flags |= SEC_EXCLUDE; 1769 h->fn_stub->output_section = bfd_abs_section_ptr; 1770 } 1771 1772 if (h->call_stub != NULL 1773 && ELF_ST_IS_MIPS16 (h->root.other)) 1774 { 1775 /* We don't need the call_stub; this is a 16 bit function, so 1776 calls from other 16 bit functions are OK. Clobber the size 1777 to 0 to prevent it from being included in the link. */ 1778 h->call_stub->size = 0; 1779 h->call_stub->flags &= ~SEC_RELOC; 1780 h->call_stub->reloc_count = 0; 1781 h->call_stub->flags |= SEC_EXCLUDE; 1782 h->call_stub->output_section = bfd_abs_section_ptr; 1783 } 1784 1785 if (h->call_fp_stub != NULL 1786 && ELF_ST_IS_MIPS16 (h->root.other)) 1787 { 1788 /* We don't need the call_stub; this is a 16 bit function, so 1789 calls from other 16 bit functions are OK. Clobber the size 1790 to 0 to prevent it from being included in the link. */ 1791 h->call_fp_stub->size = 0; 1792 h->call_fp_stub->flags &= ~SEC_RELOC; 1793 h->call_fp_stub->reloc_count = 0; 1794 h->call_fp_stub->flags |= SEC_EXCLUDE; 1795 h->call_fp_stub->output_section = bfd_abs_section_ptr; 1796 } 1797 } 1798 1799 /* Hashtable callbacks for mips_elf_la25_stubs. */ 1800 1801 static hashval_t 1802 mips_elf_la25_stub_hash (const void *entry_) 1803 { 1804 const struct mips_elf_la25_stub *entry; 1805 1806 entry = (struct mips_elf_la25_stub *) entry_; 1807 return entry->h->root.root.u.def.section->id 1808 + entry->h->root.root.u.def.value; 1809 } 1810 1811 static int 1812 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_) 1813 { 1814 const struct mips_elf_la25_stub *entry1, *entry2; 1815 1816 entry1 = (struct mips_elf_la25_stub *) entry1_; 1817 entry2 = (struct mips_elf_la25_stub *) entry2_; 1818 return ((entry1->h->root.root.u.def.section 1819 == entry2->h->root.root.u.def.section) 1820 && (entry1->h->root.root.u.def.value 1821 == entry2->h->root.root.u.def.value)); 1822 } 1823 1824 /* Called by the linker to set up the la25 stub-creation code. FN is 1825 the linker's implementation of add_stub_function. Return true on 1826 success. */ 1827 1828 bool 1829 _bfd_mips_elf_init_stubs (struct bfd_link_info *info, 1830 asection *(*fn) (const char *, asection *, 1831 asection *)) 1832 { 1833 struct mips_elf_link_hash_table *htab; 1834 1835 htab = mips_elf_hash_table (info); 1836 if (htab == NULL) 1837 return false; 1838 1839 htab->add_stub_section = fn; 1840 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash, 1841 mips_elf_la25_stub_eq, NULL); 1842 if (htab->la25_stubs == NULL) 1843 return false; 1844 1845 return true; 1846 } 1847 1848 /* Return true if H is a locally-defined PIC function, in the sense 1849 that it or its fn_stub might need $25 to be valid on entry. 1850 Note that MIPS16 functions set up $gp using PC-relative instructions, 1851 so they themselves never need $25 to be valid. Only non-MIPS16 1852 entry points are of interest here. */ 1853 1854 static bool 1855 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h) 1856 { 1857 return ((h->root.root.type == bfd_link_hash_defined 1858 || h->root.root.type == bfd_link_hash_defweak) 1859 && h->root.def_regular 1860 && !bfd_is_abs_section (h->root.root.u.def.section) 1861 && !bfd_is_und_section (h->root.root.u.def.section) 1862 && (!ELF_ST_IS_MIPS16 (h->root.other) 1863 || (h->fn_stub && h->need_fn_stub)) 1864 && (PIC_OBJECT_P (h->root.root.u.def.section->owner) 1865 || ELF_ST_IS_MIPS_PIC (h->root.other))); 1866 } 1867 1868 /* Set *SEC to the input section that contains the target of STUB. 1869 Return the offset of the target from the start of that section. */ 1870 1871 static bfd_vma 1872 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub, 1873 asection **sec) 1874 { 1875 if (ELF_ST_IS_MIPS16 (stub->h->root.other)) 1876 { 1877 BFD_ASSERT (stub->h->need_fn_stub); 1878 *sec = stub->h->fn_stub; 1879 return 0; 1880 } 1881 else 1882 { 1883 *sec = stub->h->root.root.u.def.section; 1884 return stub->h->root.root.u.def.value; 1885 } 1886 } 1887 1888 /* STUB describes an la25 stub that we have decided to implement 1889 by inserting an LUI/ADDIU pair before the target function. 1890 Create the section and redirect the function symbol to it. */ 1891 1892 static bool 1893 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub, 1894 struct bfd_link_info *info) 1895 { 1896 struct mips_elf_link_hash_table *htab; 1897 char *name; 1898 asection *s, *input_section; 1899 unsigned int align; 1900 1901 htab = mips_elf_hash_table (info); 1902 if (htab == NULL) 1903 return false; 1904 1905 /* Create a unique name for the new section. */ 1906 name = bfd_malloc (11 + sizeof (".text.stub.")); 1907 if (name == NULL) 1908 return false; 1909 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs)); 1910 1911 /* Create the section. */ 1912 mips_elf_get_la25_target (stub, &input_section); 1913 s = htab->add_stub_section (name, input_section, 1914 input_section->output_section); 1915 if (s == NULL) 1916 return false; 1917 1918 /* Make sure that any padding goes before the stub. */ 1919 align = input_section->alignment_power; 1920 if (!bfd_set_section_alignment (s, align)) 1921 return false; 1922 if (align > 3) 1923 s->size = (1 << align) - 8; 1924 1925 /* Create a symbol for the stub. */ 1926 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8); 1927 stub->stub_section = s; 1928 stub->offset = s->size; 1929 1930 /* Allocate room for it. */ 1931 s->size += 8; 1932 return true; 1933 } 1934 1935 /* STUB describes an la25 stub that we have decided to implement 1936 with a separate trampoline. Allocate room for it and redirect 1937 the function symbol to it. */ 1938 1939 static bool 1940 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub, 1941 struct bfd_link_info *info) 1942 { 1943 struct mips_elf_link_hash_table *htab; 1944 asection *s; 1945 1946 htab = mips_elf_hash_table (info); 1947 if (htab == NULL) 1948 return false; 1949 1950 /* Create a trampoline section, if we haven't already. */ 1951 s = htab->strampoline; 1952 if (s == NULL) 1953 { 1954 asection *input_section = stub->h->root.root.u.def.section; 1955 s = htab->add_stub_section (".text", NULL, 1956 input_section->output_section); 1957 if (s == NULL || !bfd_set_section_alignment (s, 4)) 1958 return false; 1959 htab->strampoline = s; 1960 } 1961 1962 /* Create a symbol for the stub. */ 1963 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16); 1964 stub->stub_section = s; 1965 stub->offset = s->size; 1966 1967 /* Allocate room for it. */ 1968 s->size += 16; 1969 return true; 1970 } 1971 1972 /* H describes a symbol that needs an la25 stub. Make sure that an 1973 appropriate stub exists and point H at it. */ 1974 1975 static bool 1976 mips_elf_add_la25_stub (struct bfd_link_info *info, 1977 struct mips_elf_link_hash_entry *h) 1978 { 1979 struct mips_elf_link_hash_table *htab; 1980 struct mips_elf_la25_stub search, *stub; 1981 bool use_trampoline_p; 1982 asection *s; 1983 bfd_vma value; 1984 void **slot; 1985 1986 /* Describe the stub we want. */ 1987 search.stub_section = NULL; 1988 search.offset = 0; 1989 search.h = h; 1990 1991 /* See if we've already created an equivalent stub. */ 1992 htab = mips_elf_hash_table (info); 1993 if (htab == NULL) 1994 return false; 1995 1996 slot = htab_find_slot (htab->la25_stubs, &search, INSERT); 1997 if (slot == NULL) 1998 return false; 1999 2000 stub = (struct mips_elf_la25_stub *) *slot; 2001 if (stub != NULL) 2002 { 2003 /* We can reuse the existing stub. */ 2004 h->la25_stub = stub; 2005 return true; 2006 } 2007 2008 /* Create a permanent copy of ENTRY and add it to the hash table. */ 2009 stub = bfd_malloc (sizeof (search)); 2010 if (stub == NULL) 2011 return false; 2012 *stub = search; 2013 *slot = stub; 2014 2015 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning 2016 of the section and if we would need no more than 2 nops. */ 2017 value = mips_elf_get_la25_target (stub, &s); 2018 if (ELF_ST_IS_MICROMIPS (stub->h->root.other)) 2019 value &= ~1; 2020 use_trampoline_p = (value != 0 || s->alignment_power > 4); 2021 2022 h->la25_stub = stub; 2023 return (use_trampoline_p 2024 ? mips_elf_add_la25_trampoline (stub, info) 2025 : mips_elf_add_la25_intro (stub, info)); 2026 } 2027 2028 /* A mips_elf_link_hash_traverse callback that is called before sizing 2029 sections. DATA points to a mips_htab_traverse_info structure. */ 2030 2031 static bool 2032 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data) 2033 { 2034 struct mips_htab_traverse_info *hti; 2035 2036 hti = (struct mips_htab_traverse_info *) data; 2037 if (!bfd_link_relocatable (hti->info)) 2038 mips_elf_check_mips16_stubs (hti->info, h); 2039 2040 if (mips_elf_local_pic_function_p (h)) 2041 { 2042 /* PR 12845: If H is in a section that has been garbage 2043 collected it will have its output section set to *ABS*. */ 2044 if (bfd_is_abs_section (h->root.root.u.def.section->output_section)) 2045 return true; 2046 2047 /* H is a function that might need $25 to be valid on entry. 2048 If we're creating a non-PIC relocatable object, mark H as 2049 being PIC. If we're creating a non-relocatable object with 2050 non-PIC branches and jumps to H, make sure that H has an la25 2051 stub. */ 2052 if (bfd_link_relocatable (hti->info)) 2053 { 2054 if (!PIC_OBJECT_P (hti->output_bfd)) 2055 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other); 2056 } 2057 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h)) 2058 { 2059 hti->error = true; 2060 return false; 2061 } 2062 } 2063 return true; 2064 } 2065 2066 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions. 2067 Most mips16 instructions are 16 bits, but these instructions 2068 are 32 bits. 2069 2070 The format of these instructions is: 2071 2072 +--------------+--------------------------------+ 2073 | JALX | X| Imm 20:16 | Imm 25:21 | 2074 +--------------+--------------------------------+ 2075 | Immediate 15:0 | 2076 +-----------------------------------------------+ 2077 2078 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx. 2079 Note that the immediate value in the first word is swapped. 2080 2081 When producing a relocatable object file, R_MIPS16_26 is 2082 handled mostly like R_MIPS_26. In particular, the addend is 2083 stored as a straight 26-bit value in a 32-bit instruction. 2084 (gas makes life simpler for itself by never adjusting a 2085 R_MIPS16_26 reloc to be against a section, so the addend is 2086 always zero). However, the 32 bit instruction is stored as 2 2087 16-bit values, rather than a single 32-bit value. In a 2088 big-endian file, the result is the same; in a little-endian 2089 file, the two 16-bit halves of the 32 bit value are swapped. 2090 This is so that a disassembler can recognize the jal 2091 instruction. 2092 2093 When doing a final link, R_MIPS16_26 is treated as a 32 bit 2094 instruction stored as two 16-bit values. The addend A is the 2095 contents of the targ26 field. The calculation is the same as 2096 R_MIPS_26. When storing the calculated value, reorder the 2097 immediate value as shown above, and don't forget to store the 2098 value as two 16-bit values. 2099 2100 To put it in MIPS ABI terms, the relocation field is T-targ26-16, 2101 defined as 2102 2103 big-endian: 2104 +--------+----------------------+ 2105 | | | 2106 | | targ26-16 | 2107 |31 26|25 0| 2108 +--------+----------------------+ 2109 2110 little-endian: 2111 +----------+------+-------------+ 2112 | | | | 2113 | sub1 | | sub2 | 2114 |0 9|10 15|16 31| 2115 +----------+--------------------+ 2116 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is 2117 ((sub1 << 16) | sub2)). 2118 2119 When producing a relocatable object file, the calculation is 2120 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) 2121 When producing a fully linked file, the calculation is 2122 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) 2123 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) 2124 2125 The table below lists the other MIPS16 instruction relocations. 2126 Each one is calculated in the same way as the non-MIPS16 relocation 2127 given on the right, but using the extended MIPS16 layout of 16-bit 2128 immediate fields: 2129 2130 R_MIPS16_GPREL R_MIPS_GPREL16 2131 R_MIPS16_GOT16 R_MIPS_GOT16 2132 R_MIPS16_CALL16 R_MIPS_CALL16 2133 R_MIPS16_HI16 R_MIPS_HI16 2134 R_MIPS16_LO16 R_MIPS_LO16 2135 2136 A typical instruction will have a format like this: 2137 2138 +--------------+--------------------------------+ 2139 | EXTEND | Imm 10:5 | Imm 15:11 | 2140 +--------------+--------------------------------+ 2141 | Major | rx | ry | Imm 4:0 | 2142 +--------------+--------------------------------+ 2143 2144 EXTEND is the five bit value 11110. Major is the instruction 2145 opcode. 2146 2147 All we need to do here is shuffle the bits appropriately. 2148 As above, the two 16-bit halves must be swapped on a 2149 little-endian system. 2150 2151 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the 2152 relocatable field is shifted by 1 rather than 2 and the same bit 2153 shuffling is done as with the relocations above. */ 2154 2155 static inline bool 2156 mips16_reloc_p (int r_type) 2157 { 2158 switch (r_type) 2159 { 2160 case R_MIPS16_26: 2161 case R_MIPS16_GPREL: 2162 case R_MIPS16_GOT16: 2163 case R_MIPS16_CALL16: 2164 case R_MIPS16_HI16: 2165 case R_MIPS16_LO16: 2166 case R_MIPS16_TLS_GD: 2167 case R_MIPS16_TLS_LDM: 2168 case R_MIPS16_TLS_DTPREL_HI16: 2169 case R_MIPS16_TLS_DTPREL_LO16: 2170 case R_MIPS16_TLS_GOTTPREL: 2171 case R_MIPS16_TLS_TPREL_HI16: 2172 case R_MIPS16_TLS_TPREL_LO16: 2173 case R_MIPS16_PC16_S1: 2174 return true; 2175 2176 default: 2177 return false; 2178 } 2179 } 2180 2181 /* Check if a microMIPS reloc. */ 2182 2183 static inline bool 2184 micromips_reloc_p (unsigned int r_type) 2185 { 2186 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max; 2187 } 2188 2189 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped 2190 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1 2191 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */ 2192 2193 static inline bool 2194 micromips_reloc_shuffle_p (unsigned int r_type) 2195 { 2196 return (micromips_reloc_p (r_type) 2197 && r_type != R_MICROMIPS_PC7_S1 2198 && r_type != R_MICROMIPS_PC10_S1); 2199 } 2200 2201 static inline bool 2202 got16_reloc_p (int r_type) 2203 { 2204 return (r_type == R_MIPS_GOT16 2205 || r_type == R_MIPS16_GOT16 2206 || r_type == R_MICROMIPS_GOT16); 2207 } 2208 2209 static inline bool 2210 call16_reloc_p (int r_type) 2211 { 2212 return (r_type == R_MIPS_CALL16 2213 || r_type == R_MIPS16_CALL16 2214 || r_type == R_MICROMIPS_CALL16); 2215 } 2216 2217 static inline bool 2218 got_disp_reloc_p (unsigned int r_type) 2219 { 2220 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP; 2221 } 2222 2223 static inline bool 2224 got_page_reloc_p (unsigned int r_type) 2225 { 2226 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE; 2227 } 2228 2229 static inline bool 2230 got_lo16_reloc_p (unsigned int r_type) 2231 { 2232 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16; 2233 } 2234 2235 static inline bool 2236 call_hi16_reloc_p (unsigned int r_type) 2237 { 2238 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16; 2239 } 2240 2241 static inline bool 2242 call_lo16_reloc_p (unsigned int r_type) 2243 { 2244 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16; 2245 } 2246 2247 static inline bool 2248 hi16_reloc_p (int r_type) 2249 { 2250 return (r_type == R_MIPS_HI16 2251 || r_type == R_MIPS16_HI16 2252 || r_type == R_MICROMIPS_HI16 2253 || r_type == R_MIPS_PCHI16); 2254 } 2255 2256 static inline bool 2257 lo16_reloc_p (int r_type) 2258 { 2259 return (r_type == R_MIPS_LO16 2260 || r_type == R_MIPS16_LO16 2261 || r_type == R_MICROMIPS_LO16 2262 || r_type == R_MIPS_PCLO16); 2263 } 2264 2265 static inline bool 2266 mips16_call_reloc_p (int r_type) 2267 { 2268 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16; 2269 } 2270 2271 static inline bool 2272 jal_reloc_p (int r_type) 2273 { 2274 return (r_type == R_MIPS_26 2275 || r_type == R_MIPS16_26 2276 || r_type == R_MICROMIPS_26_S1); 2277 } 2278 2279 static inline bool 2280 b_reloc_p (int r_type) 2281 { 2282 return (r_type == R_MIPS_PC26_S2 2283 || r_type == R_MIPS_PC21_S2 2284 || r_type == R_MIPS_PC16 2285 || r_type == R_MIPS_GNU_REL16_S2 2286 || r_type == R_MIPS16_PC16_S1 2287 || r_type == R_MICROMIPS_PC16_S1 2288 || r_type == R_MICROMIPS_PC10_S1 2289 || r_type == R_MICROMIPS_PC7_S1); 2290 } 2291 2292 static inline bool 2293 aligned_pcrel_reloc_p (int r_type) 2294 { 2295 return (r_type == R_MIPS_PC18_S3 2296 || r_type == R_MIPS_PC19_S2); 2297 } 2298 2299 static inline bool 2300 branch_reloc_p (int r_type) 2301 { 2302 return (r_type == R_MIPS_26 2303 || r_type == R_MIPS_PC26_S2 2304 || r_type == R_MIPS_PC21_S2 2305 || r_type == R_MIPS_PC16 2306 || r_type == R_MIPS_GNU_REL16_S2); 2307 } 2308 2309 static inline bool 2310 mips16_branch_reloc_p (int r_type) 2311 { 2312 return (r_type == R_MIPS16_26 2313 || r_type == R_MIPS16_PC16_S1); 2314 } 2315 2316 static inline bool 2317 micromips_branch_reloc_p (int r_type) 2318 { 2319 return (r_type == R_MICROMIPS_26_S1 2320 || r_type == R_MICROMIPS_PC16_S1 2321 || r_type == R_MICROMIPS_PC10_S1 2322 || r_type == R_MICROMIPS_PC7_S1); 2323 } 2324 2325 static inline bool 2326 tls_gd_reloc_p (unsigned int r_type) 2327 { 2328 return (r_type == R_MIPS_TLS_GD 2329 || r_type == R_MIPS16_TLS_GD 2330 || r_type == R_MICROMIPS_TLS_GD); 2331 } 2332 2333 static inline bool 2334 tls_ldm_reloc_p (unsigned int r_type) 2335 { 2336 return (r_type == R_MIPS_TLS_LDM 2337 || r_type == R_MIPS16_TLS_LDM 2338 || r_type == R_MICROMIPS_TLS_LDM); 2339 } 2340 2341 static inline bool 2342 tls_gottprel_reloc_p (unsigned int r_type) 2343 { 2344 return (r_type == R_MIPS_TLS_GOTTPREL 2345 || r_type == R_MIPS16_TLS_GOTTPREL 2346 || r_type == R_MICROMIPS_TLS_GOTTPREL); 2347 } 2348 2349 void 2350 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type, 2351 bool jal_shuffle, bfd_byte *data) 2352 { 2353 bfd_vma first, second, val; 2354 2355 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type)) 2356 return; 2357 2358 /* Pick up the first and second halfwords of the instruction. */ 2359 first = bfd_get_16 (abfd, data); 2360 second = bfd_get_16 (abfd, data + 2); 2361 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle)) 2362 val = first << 16 | second; 2363 else if (r_type != R_MIPS16_26) 2364 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11) 2365 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f)); 2366 else 2367 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11) 2368 | ((first & 0x1f) << 21) | second); 2369 bfd_put_32 (abfd, val, data); 2370 } 2371 2372 void 2373 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type, 2374 bool jal_shuffle, bfd_byte *data) 2375 { 2376 bfd_vma first, second, val; 2377 2378 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type)) 2379 return; 2380 2381 val = bfd_get_32 (abfd, data); 2382 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle)) 2383 { 2384 second = val & 0xffff; 2385 first = val >> 16; 2386 } 2387 else if (r_type != R_MIPS16_26) 2388 { 2389 second = ((val >> 11) & 0xffe0) | (val & 0x1f); 2390 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0); 2391 } 2392 else 2393 { 2394 second = val & 0xffff; 2395 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0) 2396 | ((val >> 21) & 0x1f); 2397 } 2398 bfd_put_16 (abfd, second, data + 2); 2399 bfd_put_16 (abfd, first, data); 2400 } 2401 2402 bfd_reloc_status_type 2403 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol, 2404 arelent *reloc_entry, asection *input_section, 2405 bool relocatable, void *data, bfd_vma gp) 2406 { 2407 bfd_vma relocation; 2408 bfd_signed_vma val; 2409 bfd_reloc_status_type status; 2410 2411 if (bfd_is_com_section (symbol->section)) 2412 relocation = 0; 2413 else 2414 relocation = symbol->value; 2415 2416 relocation += symbol->section->output_section->vma; 2417 relocation += symbol->section->output_offset; 2418 2419 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) 2420 return bfd_reloc_outofrange; 2421 2422 /* Set val to the offset into the section or symbol. */ 2423 val = reloc_entry->addend; 2424 2425 _bfd_mips_elf_sign_extend (val, 16); 2426 2427 /* Adjust val for the final section location and GP value. If we 2428 are producing relocatable output, we don't want to do this for 2429 an external symbol. */ 2430 if (! relocatable 2431 || (symbol->flags & BSF_SECTION_SYM) != 0) 2432 val += relocation - gp; 2433 2434 if (reloc_entry->howto->partial_inplace) 2435 { 2436 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, 2437 (bfd_byte *) data 2438 + reloc_entry->address); 2439 if (status != bfd_reloc_ok) 2440 return status; 2441 } 2442 else 2443 reloc_entry->addend = val; 2444 2445 if (relocatable) 2446 reloc_entry->address += input_section->output_offset; 2447 2448 return bfd_reloc_ok; 2449 } 2450 2451 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or 2452 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section 2453 that contains the relocation field and DATA points to the start of 2454 INPUT_SECTION. */ 2455 2456 struct mips_hi16 2457 { 2458 struct mips_hi16 *next; 2459 bfd_byte *data; 2460 asection *input_section; 2461 arelent rel; 2462 }; 2463 2464 /* FIXME: This should not be a static variable. */ 2465 2466 static struct mips_hi16 *mips_hi16_list; 2467 2468 /* A howto special_function for REL *HI16 relocations. We can only 2469 calculate the correct value once we've seen the partnering 2470 *LO16 relocation, so just save the information for later. 2471 2472 The ABI requires that the *LO16 immediately follow the *HI16. 2473 However, as a GNU extension, we permit an arbitrary number of 2474 *HI16s to be associated with a single *LO16. This significantly 2475 simplies the relocation handling in gcc. */ 2476 2477 bfd_reloc_status_type 2478 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, 2479 asymbol *symbol ATTRIBUTE_UNUSED, void *data, 2480 asection *input_section, bfd *output_bfd, 2481 char **error_message ATTRIBUTE_UNUSED) 2482 { 2483 struct mips_hi16 *n; 2484 2485 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) 2486 return bfd_reloc_outofrange; 2487 2488 n = bfd_malloc (sizeof *n); 2489 if (n == NULL) 2490 return bfd_reloc_outofrange; 2491 2492 n->next = mips_hi16_list; 2493 n->data = data; 2494 n->input_section = input_section; 2495 n->rel = *reloc_entry; 2496 mips_hi16_list = n; 2497 2498 if (output_bfd != NULL) 2499 reloc_entry->address += input_section->output_offset; 2500 2501 return bfd_reloc_ok; 2502 } 2503 2504 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just 2505 like any other 16-bit relocation when applied to global symbols, but is 2506 treated in the same as R_MIPS_HI16 when applied to local symbols. */ 2507 2508 bfd_reloc_status_type 2509 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, 2510 void *data, asection *input_section, 2511 bfd *output_bfd, char **error_message) 2512 { 2513 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0 2514 || bfd_is_und_section (bfd_asymbol_section (symbol)) 2515 || bfd_is_com_section (bfd_asymbol_section (symbol))) 2516 /* The relocation is against a global symbol. */ 2517 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, 2518 input_section, output_bfd, 2519 error_message); 2520 2521 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data, 2522 input_section, output_bfd, error_message); 2523 } 2524 2525 /* A howto special_function for REL *LO16 relocations. The *LO16 itself 2526 is a straightforward 16 bit inplace relocation, but we must deal with 2527 any partnering high-part relocations as well. */ 2528 2529 bfd_reloc_status_type 2530 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, 2531 void *data, asection *input_section, 2532 bfd *output_bfd, char **error_message) 2533 { 2534 bfd_vma vallo; 2535 bfd_byte *location = (bfd_byte *) data + reloc_entry->address; 2536 2537 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) 2538 return bfd_reloc_outofrange; 2539 2540 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, false, 2541 location); 2542 vallo = bfd_get_32 (abfd, location); 2543 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, false, 2544 location); 2545 2546 while (mips_hi16_list != NULL) 2547 { 2548 bfd_reloc_status_type ret; 2549 struct mips_hi16 *hi; 2550 2551 hi = mips_hi16_list; 2552 2553 /* R_MIPS*_GOT16 relocations are something of a special case. We 2554 want to install the addend in the same way as for a R_MIPS*_HI16 2555 relocation (with a rightshift of 16). However, since GOT16 2556 relocations can also be used with global symbols, their howto 2557 has a rightshift of 0. */ 2558 if (hi->rel.howto->type == R_MIPS_GOT16) 2559 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, false); 2560 else if (hi->rel.howto->type == R_MIPS16_GOT16) 2561 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, false); 2562 else if (hi->rel.howto->type == R_MICROMIPS_GOT16) 2563 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, false); 2564 2565 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any 2566 carry or borrow will induce a change of +1 or -1 in the high part. */ 2567 hi->rel.addend += (vallo + 0x8000) & 0xffff; 2568 2569 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data, 2570 hi->input_section, output_bfd, 2571 error_message); 2572 if (ret != bfd_reloc_ok) 2573 return ret; 2574 2575 mips_hi16_list = hi->next; 2576 free (hi); 2577 } 2578 2579 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, 2580 input_section, output_bfd, 2581 error_message); 2582 } 2583 2584 /* A generic howto special_function. This calculates and installs the 2585 relocation itself, thus avoiding the oft-discussed problems in 2586 bfd_perform_relocation and bfd_install_relocation. */ 2587 2588 bfd_reloc_status_type 2589 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, 2590 asymbol *symbol, void *data ATTRIBUTE_UNUSED, 2591 asection *input_section, bfd *output_bfd, 2592 char **error_message ATTRIBUTE_UNUSED) 2593 { 2594 bfd_signed_vma val; 2595 bfd_reloc_status_type status; 2596 bool relocatable; 2597 2598 relocatable = (output_bfd != NULL); 2599 2600 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) 2601 return bfd_reloc_outofrange; 2602 2603 /* Build up the field adjustment in VAL. */ 2604 val = 0; 2605 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0) 2606 { 2607 /* Either we're calculating the final field value or we have a 2608 relocation against a section symbol. Add in the section's 2609 offset or address. */ 2610 val += symbol->section->output_section->vma; 2611 val += symbol->section->output_offset; 2612 } 2613 2614 if (!relocatable) 2615 { 2616 /* We're calculating the final field value. Add in the symbol's value 2617 and, if pc-relative, subtract the address of the field itself. */ 2618 val += symbol->value; 2619 if (reloc_entry->howto->pc_relative) 2620 { 2621 val -= input_section->output_section->vma; 2622 val -= input_section->output_offset; 2623 val -= reloc_entry->address; 2624 } 2625 } 2626 2627 /* VAL is now the final adjustment. If we're keeping this relocation 2628 in the output file, and if the relocation uses a separate addend, 2629 we just need to add VAL to that addend. Otherwise we need to add 2630 VAL to the relocation field itself. */ 2631 if (relocatable && !reloc_entry->howto->partial_inplace) 2632 reloc_entry->addend += val; 2633 else 2634 { 2635 bfd_byte *location = (bfd_byte *) data + reloc_entry->address; 2636 2637 /* Add in the separate addend, if any. */ 2638 val += reloc_entry->addend; 2639 2640 /* Add VAL to the relocation field. */ 2641 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, false, 2642 location); 2643 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, 2644 location); 2645 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, false, 2646 location); 2647 2648 if (status != bfd_reloc_ok) 2649 return status; 2650 } 2651 2652 if (relocatable) 2653 reloc_entry->address += input_section->output_offset; 2654 2655 return bfd_reloc_ok; 2656 } 2657 2658 /* Swap an entry in a .gptab section. Note that these routines rely 2659 on the equivalence of the two elements of the union. */ 2660 2661 static void 2662 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex, 2663 Elf32_gptab *in) 2664 { 2665 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value); 2666 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes); 2667 } 2668 2669 static void 2670 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in, 2671 Elf32_External_gptab *ex) 2672 { 2673 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value); 2674 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes); 2675 } 2676 2677 static void 2678 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in, 2679 Elf32_External_compact_rel *ex) 2680 { 2681 H_PUT_32 (abfd, in->id1, ex->id1); 2682 H_PUT_32 (abfd, in->num, ex->num); 2683 H_PUT_32 (abfd, in->id2, ex->id2); 2684 H_PUT_32 (abfd, in->offset, ex->offset); 2685 H_PUT_32 (abfd, in->reserved0, ex->reserved0); 2686 H_PUT_32 (abfd, in->reserved1, ex->reserved1); 2687 } 2688 2689 static void 2690 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in, 2691 Elf32_External_crinfo *ex) 2692 { 2693 unsigned long l; 2694 2695 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH) 2696 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH) 2697 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH) 2698 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH)); 2699 H_PUT_32 (abfd, l, ex->info); 2700 H_PUT_32 (abfd, in->konst, ex->konst); 2701 H_PUT_32 (abfd, in->vaddr, ex->vaddr); 2702 } 2703 2704 /* A .reginfo section holds a single Elf32_RegInfo structure. These 2705 routines swap this structure in and out. They are used outside of 2706 BFD, so they are globally visible. */ 2707 2708 void 2709 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex, 2710 Elf32_RegInfo *in) 2711 { 2712 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); 2713 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); 2714 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); 2715 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); 2716 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); 2717 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value); 2718 } 2719 2720 void 2721 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in, 2722 Elf32_External_RegInfo *ex) 2723 { 2724 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); 2725 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); 2726 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); 2727 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); 2728 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); 2729 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value); 2730 } 2731 2732 /* In the 64 bit ABI, the .MIPS.options section holds register 2733 information in an Elf64_Reginfo structure. These routines swap 2734 them in and out. They are globally visible because they are used 2735 outside of BFD. These routines are here so that gas can call them 2736 without worrying about whether the 64 bit ABI has been included. */ 2737 2738 void 2739 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex, 2740 Elf64_Internal_RegInfo *in) 2741 { 2742 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); 2743 in->ri_pad = H_GET_32 (abfd, ex->ri_pad); 2744 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); 2745 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); 2746 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); 2747 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); 2748 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value); 2749 } 2750 2751 void 2752 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in, 2753 Elf64_External_RegInfo *ex) 2754 { 2755 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); 2756 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad); 2757 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); 2758 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); 2759 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); 2760 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); 2761 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value); 2762 } 2763 2764 /* Swap in an options header. */ 2765 2766 void 2767 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex, 2768 Elf_Internal_Options *in) 2769 { 2770 in->kind = H_GET_8 (abfd, ex->kind); 2771 in->size = H_GET_8 (abfd, ex->size); 2772 in->section = H_GET_16 (abfd, ex->section); 2773 in->info = H_GET_32 (abfd, ex->info); 2774 } 2775 2776 /* Swap out an options header. */ 2777 2778 void 2779 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in, 2780 Elf_External_Options *ex) 2781 { 2782 H_PUT_8 (abfd, in->kind, ex->kind); 2783 H_PUT_8 (abfd, in->size, ex->size); 2784 H_PUT_16 (abfd, in->section, ex->section); 2785 H_PUT_32 (abfd, in->info, ex->info); 2786 } 2787 2788 /* Swap in an abiflags structure. */ 2789 2790 void 2791 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd, 2792 const Elf_External_ABIFlags_v0 *ex, 2793 Elf_Internal_ABIFlags_v0 *in) 2794 { 2795 in->version = H_GET_16 (abfd, ex->version); 2796 in->isa_level = H_GET_8 (abfd, ex->isa_level); 2797 in->isa_rev = H_GET_8 (abfd, ex->isa_rev); 2798 in->gpr_size = H_GET_8 (abfd, ex->gpr_size); 2799 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size); 2800 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size); 2801 in->fp_abi = H_GET_8 (abfd, ex->fp_abi); 2802 in->isa_ext = H_GET_32 (abfd, ex->isa_ext); 2803 in->ases = H_GET_32 (abfd, ex->ases); 2804 in->flags1 = H_GET_32 (abfd, ex->flags1); 2805 in->flags2 = H_GET_32 (abfd, ex->flags2); 2806 } 2807 2808 /* Swap out an abiflags structure. */ 2809 2810 void 2811 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd, 2812 const Elf_Internal_ABIFlags_v0 *in, 2813 Elf_External_ABIFlags_v0 *ex) 2814 { 2815 H_PUT_16 (abfd, in->version, ex->version); 2816 H_PUT_8 (abfd, in->isa_level, ex->isa_level); 2817 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev); 2818 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size); 2819 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size); 2820 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size); 2821 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi); 2822 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext); 2823 H_PUT_32 (abfd, in->ases, ex->ases); 2824 H_PUT_32 (abfd, in->flags1, ex->flags1); 2825 H_PUT_32 (abfd, in->flags2, ex->flags2); 2826 } 2827 2828 /* This function is called via qsort() to sort the dynamic relocation 2829 entries by increasing r_symndx value. */ 2830 2831 static int 2832 sort_dynamic_relocs (const void *arg1, const void *arg2) 2833 { 2834 Elf_Internal_Rela int_reloc1; 2835 Elf_Internal_Rela int_reloc2; 2836 int diff; 2837 2838 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1); 2839 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2); 2840 2841 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info); 2842 if (diff != 0) 2843 return diff; 2844 2845 if (int_reloc1.r_offset < int_reloc2.r_offset) 2846 return -1; 2847 if (int_reloc1.r_offset > int_reloc2.r_offset) 2848 return 1; 2849 return 0; 2850 } 2851 2852 /* Like sort_dynamic_relocs, but used for elf64 relocations. */ 2853 2854 static int 2855 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED, 2856 const void *arg2 ATTRIBUTE_UNUSED) 2857 { 2858 #ifdef BFD64 2859 Elf_Internal_Rela int_reloc1[3]; 2860 Elf_Internal_Rela int_reloc2[3]; 2861 2862 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) 2863 (reldyn_sorting_bfd, arg1, int_reloc1); 2864 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) 2865 (reldyn_sorting_bfd, arg2, int_reloc2); 2866 2867 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info)) 2868 return -1; 2869 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info)) 2870 return 1; 2871 2872 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset) 2873 return -1; 2874 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset) 2875 return 1; 2876 return 0; 2877 #else 2878 abort (); 2879 #endif 2880 } 2881 2882 2883 /* This routine is used to write out ECOFF debugging external symbol 2884 information. It is called via mips_elf_link_hash_traverse. The 2885 ECOFF external symbol information must match the ELF external 2886 symbol information. Unfortunately, at this point we don't know 2887 whether a symbol is required by reloc information, so the two 2888 tables may wind up being different. We must sort out the external 2889 symbol information before we can set the final size of the .mdebug 2890 section, and we must set the size of the .mdebug section before we 2891 can relocate any sections, and we can't know which symbols are 2892 required by relocation until we relocate the sections. 2893 Fortunately, it is relatively unlikely that any symbol will be 2894 stripped but required by a reloc. In particular, it can not happen 2895 when generating a final executable. */ 2896 2897 static bool 2898 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data) 2899 { 2900 struct extsym_info *einfo = data; 2901 bool strip; 2902 asection *sec, *output_section; 2903 2904 if (h->root.indx == -2) 2905 strip = false; 2906 else if ((h->root.def_dynamic 2907 || h->root.ref_dynamic 2908 || h->root.type == bfd_link_hash_new) 2909 && !h->root.def_regular 2910 && !h->root.ref_regular) 2911 strip = true; 2912 else if (einfo->info->strip == strip_all 2913 || (einfo->info->strip == strip_some 2914 && bfd_hash_lookup (einfo->info->keep_hash, 2915 h->root.root.root.string, 2916 false, false) == NULL)) 2917 strip = true; 2918 else 2919 strip = false; 2920 2921 if (strip) 2922 return true; 2923 2924 if (h->esym.ifd == -2) 2925 { 2926 h->esym.jmptbl = 0; 2927 h->esym.cobol_main = 0; 2928 h->esym.weakext = 0; 2929 h->esym.reserved = 0; 2930 h->esym.ifd = ifdNil; 2931 h->esym.asym.value = 0; 2932 h->esym.asym.st = stGlobal; 2933 2934 if (h->root.root.type == bfd_link_hash_undefined 2935 || h->root.root.type == bfd_link_hash_undefweak) 2936 { 2937 const char *name; 2938 2939 /* Use undefined class. Also, set class and type for some 2940 special symbols. */ 2941 name = h->root.root.root.string; 2942 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 2943 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) 2944 { 2945 h->esym.asym.sc = scData; 2946 h->esym.asym.st = stLabel; 2947 h->esym.asym.value = 0; 2948 } 2949 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) 2950 { 2951 h->esym.asym.sc = scAbs; 2952 h->esym.asym.st = stLabel; 2953 h->esym.asym.value = 2954 mips_elf_hash_table (einfo->info)->procedure_count; 2955 } 2956 else 2957 h->esym.asym.sc = scUndefined; 2958 } 2959 else if (h->root.root.type != bfd_link_hash_defined 2960 && h->root.root.type != bfd_link_hash_defweak) 2961 h->esym.asym.sc = scAbs; 2962 else 2963 { 2964 const char *name; 2965 2966 sec = h->root.root.u.def.section; 2967 output_section = sec->output_section; 2968 2969 /* When making a shared library and symbol h is the one from 2970 the another shared library, OUTPUT_SECTION may be null. */ 2971 if (output_section == NULL) 2972 h->esym.asym.sc = scUndefined; 2973 else 2974 { 2975 name = bfd_section_name (output_section); 2976 2977 if (strcmp (name, ".text") == 0) 2978 h->esym.asym.sc = scText; 2979 else if (strcmp (name, ".data") == 0) 2980 h->esym.asym.sc = scData; 2981 else if (strcmp (name, ".sdata") == 0) 2982 h->esym.asym.sc = scSData; 2983 else if (strcmp (name, ".rodata") == 0 2984 || strcmp (name, ".rdata") == 0) 2985 h->esym.asym.sc = scRData; 2986 else if (strcmp (name, ".bss") == 0) 2987 h->esym.asym.sc = scBss; 2988 else if (strcmp (name, ".sbss") == 0) 2989 h->esym.asym.sc = scSBss; 2990 else if (strcmp (name, ".init") == 0) 2991 h->esym.asym.sc = scInit; 2992 else if (strcmp (name, ".fini") == 0) 2993 h->esym.asym.sc = scFini; 2994 else 2995 h->esym.asym.sc = scAbs; 2996 } 2997 } 2998 2999 h->esym.asym.reserved = 0; 3000 h->esym.asym.index = indexNil; 3001 } 3002 3003 if (h->root.root.type == bfd_link_hash_common) 3004 h->esym.asym.value = h->root.root.u.c.size; 3005 else if (h->root.root.type == bfd_link_hash_defined 3006 || h->root.root.type == bfd_link_hash_defweak) 3007 { 3008 if (h->esym.asym.sc == scCommon) 3009 h->esym.asym.sc = scBss; 3010 else if (h->esym.asym.sc == scSCommon) 3011 h->esym.asym.sc = scSBss; 3012 3013 sec = h->root.root.u.def.section; 3014 output_section = sec->output_section; 3015 if (output_section != NULL) 3016 h->esym.asym.value = (h->root.root.u.def.value 3017 + sec->output_offset 3018 + output_section->vma); 3019 else 3020 h->esym.asym.value = 0; 3021 } 3022 else 3023 { 3024 struct mips_elf_link_hash_entry *hd = h; 3025 3026 while (hd->root.root.type == bfd_link_hash_indirect) 3027 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link; 3028 3029 if (hd->needs_lazy_stub) 3030 { 3031 BFD_ASSERT (hd->root.plt.plist != NULL); 3032 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE); 3033 /* Set type and value for a symbol with a function stub. */ 3034 h->esym.asym.st = stProc; 3035 sec = hd->root.root.u.def.section; 3036 if (sec == NULL) 3037 h->esym.asym.value = 0; 3038 else 3039 { 3040 output_section = sec->output_section; 3041 if (output_section != NULL) 3042 h->esym.asym.value = (hd->root.plt.plist->stub_offset 3043 + sec->output_offset 3044 + output_section->vma); 3045 else 3046 h->esym.asym.value = 0; 3047 } 3048 } 3049 } 3050 3051 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap, 3052 h->root.root.root.string, 3053 &h->esym)) 3054 { 3055 einfo->failed = true; 3056 return false; 3057 } 3058 3059 return true; 3060 } 3061 3062 /* A comparison routine used to sort .gptab entries. */ 3063 3064 static int 3065 gptab_compare (const void *p1, const void *p2) 3066 { 3067 const Elf32_gptab *a1 = p1; 3068 const Elf32_gptab *a2 = p2; 3069 3070 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value; 3071 } 3072 3073 /* Functions to manage the got entry hash table. */ 3074 3075 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit 3076 hash number. */ 3077 3078 static inline hashval_t 3079 mips_elf_hash_bfd_vma (bfd_vma addr) 3080 { 3081 #ifdef BFD64 3082 return addr + (addr >> 32); 3083 #else 3084 return addr; 3085 #endif 3086 } 3087 3088 static hashval_t 3089 mips_elf_got_entry_hash (const void *entry_) 3090 { 3091 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_; 3092 3093 return (entry->symndx 3094 + ((entry->tls_type == GOT_TLS_LDM) << 18) 3095 + (entry->tls_type == GOT_TLS_LDM ? 0 3096 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address) 3097 : entry->symndx >= 0 ? (entry->abfd->id 3098 + mips_elf_hash_bfd_vma (entry->d.addend)) 3099 : entry->d.h->root.root.root.hash)); 3100 } 3101 3102 static int 3103 mips_elf_got_entry_eq (const void *entry1, const void *entry2) 3104 { 3105 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1; 3106 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2; 3107 3108 return (e1->symndx == e2->symndx 3109 && e1->tls_type == e2->tls_type 3110 && (e1->tls_type == GOT_TLS_LDM ? true 3111 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address 3112 : e1->symndx >= 0 ? (e1->abfd == e2->abfd 3113 && e1->d.addend == e2->d.addend) 3114 : e2->abfd && e1->d.h == e2->d.h)); 3115 } 3116 3117 static hashval_t 3118 mips_got_page_ref_hash (const void *ref_) 3119 { 3120 const struct mips_got_page_ref *ref; 3121 3122 ref = (const struct mips_got_page_ref *) ref_; 3123 return ((ref->symndx >= 0 3124 ? (hashval_t) (ref->u.abfd->id + ref->symndx) 3125 : ref->u.h->root.root.root.hash) 3126 + mips_elf_hash_bfd_vma (ref->addend)); 3127 } 3128 3129 static int 3130 mips_got_page_ref_eq (const void *ref1_, const void *ref2_) 3131 { 3132 const struct mips_got_page_ref *ref1, *ref2; 3133 3134 ref1 = (const struct mips_got_page_ref *) ref1_; 3135 ref2 = (const struct mips_got_page_ref *) ref2_; 3136 return (ref1->symndx == ref2->symndx 3137 && (ref1->symndx < 0 3138 ? ref1->u.h == ref2->u.h 3139 : ref1->u.abfd == ref2->u.abfd) 3140 && ref1->addend == ref2->addend); 3141 } 3142 3143 static hashval_t 3144 mips_got_page_entry_hash (const void *entry_) 3145 { 3146 const struct mips_got_page_entry *entry; 3147 3148 entry = (const struct mips_got_page_entry *) entry_; 3149 return entry->sec->id; 3150 } 3151 3152 static int 3153 mips_got_page_entry_eq (const void *entry1_, const void *entry2_) 3154 { 3155 const struct mips_got_page_entry *entry1, *entry2; 3156 3157 entry1 = (const struct mips_got_page_entry *) entry1_; 3158 entry2 = (const struct mips_got_page_entry *) entry2_; 3159 return entry1->sec == entry2->sec; 3160 } 3161 3162 /* Create and return a new mips_got_info structure. */ 3163 3164 static struct mips_got_info * 3165 mips_elf_create_got_info (bfd *abfd) 3166 { 3167 struct mips_got_info *g; 3168 3169 g = bfd_zalloc (abfd, sizeof (struct mips_got_info)); 3170 if (g == NULL) 3171 return NULL; 3172 3173 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash, 3174 mips_elf_got_entry_eq, NULL); 3175 if (g->got_entries == NULL) 3176 return NULL; 3177 3178 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash, 3179 mips_got_page_ref_eq, NULL); 3180 if (g->got_page_refs == NULL) 3181 return NULL; 3182 3183 return g; 3184 } 3185 3186 /* Return the GOT info for input bfd ABFD, trying to create a new one if 3187 CREATE_P and if ABFD doesn't already have a GOT. */ 3188 3189 static struct mips_got_info * 3190 mips_elf_bfd_got (bfd *abfd, bool create_p) 3191 { 3192 struct mips_elf_obj_tdata *tdata; 3193 3194 if (!is_mips_elf (abfd)) 3195 return NULL; 3196 3197 tdata = mips_elf_tdata (abfd); 3198 if (!tdata->got && create_p) 3199 tdata->got = mips_elf_create_got_info (abfd); 3200 return tdata->got; 3201 } 3202 3203 /* Record that ABFD should use output GOT G. */ 3204 3205 static void 3206 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g) 3207 { 3208 struct mips_elf_obj_tdata *tdata; 3209 3210 BFD_ASSERT (is_mips_elf (abfd)); 3211 tdata = mips_elf_tdata (abfd); 3212 if (tdata->got) 3213 { 3214 /* The GOT structure itself and the hash table entries are 3215 allocated to a bfd, but the hash tables aren't. */ 3216 htab_delete (tdata->got->got_entries); 3217 htab_delete (tdata->got->got_page_refs); 3218 if (tdata->got->got_page_entries) 3219 htab_delete (tdata->got->got_page_entries); 3220 } 3221 tdata->got = g; 3222 } 3223 3224 /* Return the dynamic relocation section. If it doesn't exist, try to 3225 create a new it if CREATE_P, otherwise return NULL. Also return NULL 3226 if creation fails. */ 3227 3228 static asection * 3229 mips_elf_rel_dyn_section (struct bfd_link_info *info, bool create_p) 3230 { 3231 const char *dname; 3232 asection *sreloc; 3233 bfd *dynobj; 3234 3235 dname = MIPS_ELF_REL_DYN_NAME (info); 3236 dynobj = elf_hash_table (info)->dynobj; 3237 sreloc = bfd_get_linker_section (dynobj, dname); 3238 if (sreloc == NULL && create_p) 3239 { 3240 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname, 3241 (SEC_ALLOC 3242 | SEC_LOAD 3243 | SEC_HAS_CONTENTS 3244 | SEC_IN_MEMORY 3245 | SEC_LINKER_CREATED 3246 | SEC_READONLY)); 3247 if (sreloc == NULL 3248 || !bfd_set_section_alignment (sreloc, 3249 MIPS_ELF_LOG_FILE_ALIGN (dynobj))) 3250 return NULL; 3251 } 3252 return sreloc; 3253 } 3254 3255 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */ 3256 3257 static int 3258 mips_elf_reloc_tls_type (unsigned int r_type) 3259 { 3260 if (tls_gd_reloc_p (r_type)) 3261 return GOT_TLS_GD; 3262 3263 if (tls_ldm_reloc_p (r_type)) 3264 return GOT_TLS_LDM; 3265 3266 if (tls_gottprel_reloc_p (r_type)) 3267 return GOT_TLS_IE; 3268 3269 return GOT_TLS_NONE; 3270 } 3271 3272 /* Return the number of GOT slots needed for GOT TLS type TYPE. */ 3273 3274 static int 3275 mips_tls_got_entries (unsigned int type) 3276 { 3277 switch (type) 3278 { 3279 case GOT_TLS_GD: 3280 case GOT_TLS_LDM: 3281 return 2; 3282 3283 case GOT_TLS_IE: 3284 return 1; 3285 3286 case GOT_TLS_NONE: 3287 return 0; 3288 } 3289 abort (); 3290 } 3291 3292 /* Count the number of relocations needed for a TLS GOT entry, with 3293 access types from TLS_TYPE, and symbol H (or a local symbol if H 3294 is NULL). */ 3295 3296 static int 3297 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type, 3298 struct elf_link_hash_entry *h) 3299 { 3300 int indx = 0; 3301 bool need_relocs = false; 3302 bool dyn = elf_hash_table (info)->dynamic_sections_created; 3303 3304 if (h != NULL 3305 && h->dynindx != -1 3306 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h) 3307 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, h))) 3308 indx = h->dynindx; 3309 3310 if ((bfd_link_dll (info) || indx != 0) 3311 && (h == NULL 3312 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 3313 || h->root.type != bfd_link_hash_undefweak)) 3314 need_relocs = true; 3315 3316 if (!need_relocs) 3317 return 0; 3318 3319 switch (tls_type) 3320 { 3321 case GOT_TLS_GD: 3322 return indx != 0 ? 2 : 1; 3323 3324 case GOT_TLS_IE: 3325 return 1; 3326 3327 case GOT_TLS_LDM: 3328 return bfd_link_dll (info) ? 1 : 0; 3329 3330 default: 3331 return 0; 3332 } 3333 } 3334 3335 /* Add the number of GOT entries and TLS relocations required by ENTRY 3336 to G. */ 3337 3338 static void 3339 mips_elf_count_got_entry (struct bfd_link_info *info, 3340 struct mips_got_info *g, 3341 struct mips_got_entry *entry) 3342 { 3343 if (entry->tls_type) 3344 { 3345 g->tls_gotno += mips_tls_got_entries (entry->tls_type); 3346 g->relocs += mips_tls_got_relocs (info, entry->tls_type, 3347 entry->symndx < 0 3348 ? &entry->d.h->root : NULL); 3349 } 3350 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE) 3351 g->local_gotno += 1; 3352 else 3353 g->global_gotno += 1; 3354 } 3355 3356 /* Output a simple dynamic relocation into SRELOC. */ 3357 3358 static void 3359 mips_elf_output_dynamic_relocation (bfd *output_bfd, 3360 asection *sreloc, 3361 unsigned long reloc_index, 3362 unsigned long indx, 3363 int r_type, 3364 bfd_vma offset) 3365 { 3366 Elf_Internal_Rela rel[3]; 3367 3368 memset (rel, 0, sizeof (rel)); 3369 3370 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type); 3371 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; 3372 3373 if (ABI_64_P (output_bfd)) 3374 { 3375 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) 3376 (output_bfd, &rel[0], 3377 (sreloc->contents 3378 + reloc_index * sizeof (Elf64_Mips_External_Rel))); 3379 } 3380 else 3381 bfd_elf32_swap_reloc_out 3382 (output_bfd, &rel[0], 3383 (sreloc->contents 3384 + reloc_index * sizeof (Elf32_External_Rel))); 3385 } 3386 3387 /* Initialize a set of TLS GOT entries for one symbol. */ 3388 3389 static void 3390 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info, 3391 struct mips_got_entry *entry, 3392 struct mips_elf_link_hash_entry *h, 3393 bfd_vma value) 3394 { 3395 bool dyn = elf_hash_table (info)->dynamic_sections_created; 3396 struct mips_elf_link_hash_table *htab; 3397 int indx; 3398 asection *sreloc, *sgot; 3399 bfd_vma got_offset, got_offset2; 3400 bool need_relocs = false; 3401 3402 htab = mips_elf_hash_table (info); 3403 if (htab == NULL) 3404 return; 3405 3406 sgot = htab->root.sgot; 3407 3408 indx = 0; 3409 if (h != NULL 3410 && h->root.dynindx != -1 3411 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), &h->root) 3412 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, &h->root))) 3413 indx = h->root.dynindx; 3414 3415 if (entry->tls_initialized) 3416 return; 3417 3418 if ((bfd_link_dll (info) || indx != 0) 3419 && (h == NULL 3420 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT 3421 || h->root.type != bfd_link_hash_undefweak)) 3422 need_relocs = true; 3423 3424 /* MINUS_ONE means the symbol is not defined in this object. It may not 3425 be defined at all; assume that the value doesn't matter in that 3426 case. Otherwise complain if we would use the value. */ 3427 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs) 3428 || h->root.root.type == bfd_link_hash_undefweak); 3429 3430 /* Emit necessary relocations. */ 3431 sreloc = mips_elf_rel_dyn_section (info, false); 3432 got_offset = entry->gotidx; 3433 3434 switch (entry->tls_type) 3435 { 3436 case GOT_TLS_GD: 3437 /* General Dynamic. */ 3438 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd); 3439 3440 if (need_relocs) 3441 { 3442 mips_elf_output_dynamic_relocation 3443 (abfd, sreloc, sreloc->reloc_count++, indx, 3444 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32, 3445 sgot->output_offset + sgot->output_section->vma + got_offset); 3446 3447 if (indx) 3448 mips_elf_output_dynamic_relocation 3449 (abfd, sreloc, sreloc->reloc_count++, indx, 3450 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32, 3451 sgot->output_offset + sgot->output_section->vma + got_offset2); 3452 else 3453 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info), 3454 sgot->contents + got_offset2); 3455 } 3456 else 3457 { 3458 MIPS_ELF_PUT_WORD (abfd, 1, 3459 sgot->contents + got_offset); 3460 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info), 3461 sgot->contents + got_offset2); 3462 } 3463 break; 3464 3465 case GOT_TLS_IE: 3466 /* Initial Exec model. */ 3467 if (need_relocs) 3468 { 3469 if (indx == 0) 3470 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma, 3471 sgot->contents + got_offset); 3472 else 3473 MIPS_ELF_PUT_WORD (abfd, 0, 3474 sgot->contents + got_offset); 3475 3476 mips_elf_output_dynamic_relocation 3477 (abfd, sreloc, sreloc->reloc_count++, indx, 3478 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32, 3479 sgot->output_offset + sgot->output_section->vma + got_offset); 3480 } 3481 else 3482 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info), 3483 sgot->contents + got_offset); 3484 break; 3485 3486 case GOT_TLS_LDM: 3487 /* The initial offset is zero, and the LD offsets will include the 3488 bias by DTP_OFFSET. */ 3489 MIPS_ELF_PUT_WORD (abfd, 0, 3490 sgot->contents + got_offset 3491 + MIPS_ELF_GOT_SIZE (abfd)); 3492 3493 if (!bfd_link_dll (info)) 3494 MIPS_ELF_PUT_WORD (abfd, 1, 3495 sgot->contents + got_offset); 3496 else 3497 mips_elf_output_dynamic_relocation 3498 (abfd, sreloc, sreloc->reloc_count++, indx, 3499 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32, 3500 sgot->output_offset + sgot->output_section->vma + got_offset); 3501 break; 3502 3503 default: 3504 abort (); 3505 } 3506 3507 entry->tls_initialized = true; 3508 } 3509 3510 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry 3511 for global symbol H. .got.plt comes before the GOT, so the offset 3512 will be negative. */ 3513 3514 static bfd_vma 3515 mips_elf_gotplt_index (struct bfd_link_info *info, 3516 struct elf_link_hash_entry *h) 3517 { 3518 bfd_vma got_address, got_value; 3519 struct mips_elf_link_hash_table *htab; 3520 3521 htab = mips_elf_hash_table (info); 3522 BFD_ASSERT (htab != NULL); 3523 3524 BFD_ASSERT (h->plt.plist != NULL); 3525 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE); 3526 3527 /* Calculate the address of the associated .got.plt entry. */ 3528 got_address = (htab->root.sgotplt->output_section->vma 3529 + htab->root.sgotplt->output_offset 3530 + (h->plt.plist->gotplt_index 3531 * MIPS_ELF_GOT_SIZE (info->output_bfd))); 3532 3533 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */ 3534 got_value = (htab->root.hgot->root.u.def.section->output_section->vma 3535 + htab->root.hgot->root.u.def.section->output_offset 3536 + htab->root.hgot->root.u.def.value); 3537 3538 return got_address - got_value; 3539 } 3540 3541 /* Return the GOT offset for address VALUE. If there is not yet a GOT 3542 entry for this value, create one. If R_SYMNDX refers to a TLS symbol, 3543 create a TLS GOT entry instead. Return -1 if no satisfactory GOT 3544 offset can be found. */ 3545 3546 static bfd_vma 3547 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, 3548 bfd_vma value, unsigned long r_symndx, 3549 struct mips_elf_link_hash_entry *h, int r_type) 3550 { 3551 struct mips_elf_link_hash_table *htab; 3552 struct mips_got_entry *entry; 3553 3554 htab = mips_elf_hash_table (info); 3555 BFD_ASSERT (htab != NULL); 3556 3557 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 3558 r_symndx, h, r_type); 3559 if (!entry) 3560 return MINUS_ONE; 3561 3562 if (entry->tls_type) 3563 mips_elf_initialize_tls_slots (abfd, info, entry, h, value); 3564 return entry->gotidx; 3565 } 3566 3567 /* Return the GOT index of global symbol H in the primary GOT. */ 3568 3569 static bfd_vma 3570 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info, 3571 struct elf_link_hash_entry *h) 3572 { 3573 struct mips_elf_link_hash_table *htab; 3574 long global_got_dynindx; 3575 struct mips_got_info *g; 3576 bfd_vma got_index; 3577 3578 htab = mips_elf_hash_table (info); 3579 BFD_ASSERT (htab != NULL); 3580 3581 global_got_dynindx = 0; 3582 if (htab->global_gotsym != NULL) 3583 global_got_dynindx = htab->global_gotsym->dynindx; 3584 3585 /* Once we determine the global GOT entry with the lowest dynamic 3586 symbol table index, we must put all dynamic symbols with greater 3587 indices into the primary GOT. That makes it easy to calculate the 3588 GOT offset. */ 3589 BFD_ASSERT (h->dynindx >= global_got_dynindx); 3590 g = mips_elf_bfd_got (obfd, false); 3591 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno) 3592 * MIPS_ELF_GOT_SIZE (obfd)); 3593 BFD_ASSERT (got_index < htab->root.sgot->size); 3594 3595 return got_index; 3596 } 3597 3598 /* Return the GOT index for the global symbol indicated by H, which is 3599 referenced by a relocation of type R_TYPE in IBFD. */ 3600 3601 static bfd_vma 3602 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd, 3603 struct elf_link_hash_entry *h, int r_type) 3604 { 3605 struct mips_elf_link_hash_table *htab; 3606 struct mips_got_info *g; 3607 struct mips_got_entry lookup, *entry; 3608 bfd_vma gotidx; 3609 3610 htab = mips_elf_hash_table (info); 3611 BFD_ASSERT (htab != NULL); 3612 3613 g = mips_elf_bfd_got (ibfd, false); 3614 BFD_ASSERT (g); 3615 3616 lookup.tls_type = mips_elf_reloc_tls_type (r_type); 3617 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, false)) 3618 return mips_elf_primary_global_got_index (obfd, info, h); 3619 3620 lookup.abfd = ibfd; 3621 lookup.symndx = -1; 3622 lookup.d.h = (struct mips_elf_link_hash_entry *) h; 3623 entry = htab_find (g->got_entries, &lookup); 3624 BFD_ASSERT (entry); 3625 3626 gotidx = entry->gotidx; 3627 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size); 3628 3629 if (lookup.tls_type) 3630 { 3631 bfd_vma value = MINUS_ONE; 3632 3633 if ((h->root.type == bfd_link_hash_defined 3634 || h->root.type == bfd_link_hash_defweak) 3635 && h->root.u.def.section->output_section) 3636 value = (h->root.u.def.value 3637 + h->root.u.def.section->output_offset 3638 + h->root.u.def.section->output_section->vma); 3639 3640 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value); 3641 } 3642 return gotidx; 3643 } 3644 3645 /* Find a GOT page entry that points to within 32KB of VALUE. These 3646 entries are supposed to be placed at small offsets in the GOT, i.e., 3647 within 32KB of GP. Return the index of the GOT entry, or -1 if no 3648 entry could be created. If OFFSETP is nonnull, use it to return the 3649 offset of the GOT entry from VALUE. */ 3650 3651 static bfd_vma 3652 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, 3653 bfd_vma value, bfd_vma *offsetp) 3654 { 3655 bfd_vma page, got_index; 3656 struct mips_got_entry *entry; 3657 3658 page = (value + 0x8000) & ~(bfd_vma) 0xffff; 3659 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0, 3660 NULL, R_MIPS_GOT_PAGE); 3661 3662 if (!entry) 3663 return MINUS_ONE; 3664 3665 got_index = entry->gotidx; 3666 3667 if (offsetp) 3668 *offsetp = value - entry->d.address; 3669 3670 return got_index; 3671 } 3672 3673 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE. 3674 EXTERNAL is true if the relocation was originally against a global 3675 symbol that binds locally. */ 3676 3677 static bfd_vma 3678 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, 3679 bfd_vma value, bool external) 3680 { 3681 struct mips_got_entry *entry; 3682 3683 /* GOT16 relocations against local symbols are followed by a LO16 3684 relocation; those against global symbols are not. Thus if the 3685 symbol was originally local, the GOT16 relocation should load the 3686 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */ 3687 if (! external) 3688 value = mips_elf_high (value) << 16; 3689 3690 /* It doesn't matter whether the original relocation was R_MIPS_GOT16, 3691 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the 3692 same in all cases. */ 3693 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0, 3694 NULL, R_MIPS_GOT16); 3695 if (entry) 3696 return entry->gotidx; 3697 else 3698 return MINUS_ONE; 3699 } 3700 3701 /* Returns the offset for the entry at the INDEXth position 3702 in the GOT. */ 3703 3704 static bfd_vma 3705 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd, 3706 bfd *input_bfd, bfd_vma got_index) 3707 { 3708 struct mips_elf_link_hash_table *htab; 3709 asection *sgot; 3710 bfd_vma gp; 3711 3712 htab = mips_elf_hash_table (info); 3713 BFD_ASSERT (htab != NULL); 3714 3715 sgot = htab->root.sgot; 3716 gp = _bfd_get_gp_value (output_bfd) 3717 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd); 3718 3719 return sgot->output_section->vma + sgot->output_offset + got_index - gp; 3720 } 3721 3722 /* Create and return a local GOT entry for VALUE, which was calculated 3723 from a symbol belonging to INPUT_SECTON. Return NULL if it could not 3724 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry 3725 instead. */ 3726 3727 static struct mips_got_entry * 3728 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info, 3729 bfd *ibfd, bfd_vma value, 3730 unsigned long r_symndx, 3731 struct mips_elf_link_hash_entry *h, 3732 int r_type) 3733 { 3734 struct mips_got_entry lookup, *entry; 3735 void **loc; 3736 struct mips_got_info *g; 3737 struct mips_elf_link_hash_table *htab; 3738 bfd_vma gotidx; 3739 3740 htab = mips_elf_hash_table (info); 3741 BFD_ASSERT (htab != NULL); 3742 3743 g = mips_elf_bfd_got (ibfd, false); 3744 if (g == NULL) 3745 { 3746 g = mips_elf_bfd_got (abfd, false); 3747 BFD_ASSERT (g != NULL); 3748 } 3749 3750 /* This function shouldn't be called for symbols that live in the global 3751 area of the GOT. */ 3752 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE); 3753 3754 lookup.tls_type = mips_elf_reloc_tls_type (r_type); 3755 if (lookup.tls_type) 3756 { 3757 lookup.abfd = ibfd; 3758 if (tls_ldm_reloc_p (r_type)) 3759 { 3760 lookup.symndx = 0; 3761 lookup.d.addend = 0; 3762 } 3763 else if (h == NULL) 3764 { 3765 lookup.symndx = r_symndx; 3766 lookup.d.addend = 0; 3767 } 3768 else 3769 { 3770 lookup.symndx = -1; 3771 lookup.d.h = h; 3772 } 3773 3774 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup); 3775 BFD_ASSERT (entry); 3776 3777 gotidx = entry->gotidx; 3778 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size); 3779 3780 return entry; 3781 } 3782 3783 lookup.abfd = NULL; 3784 lookup.symndx = -1; 3785 lookup.d.address = value; 3786 loc = htab_find_slot (g->got_entries, &lookup, INSERT); 3787 if (!loc) 3788 return NULL; 3789 3790 entry = (struct mips_got_entry *) *loc; 3791 if (entry) 3792 return entry; 3793 3794 if (g->assigned_low_gotno > g->assigned_high_gotno) 3795 { 3796 /* We didn't allocate enough space in the GOT. */ 3797 _bfd_error_handler 3798 (_("not enough GOT space for local GOT entries")); 3799 bfd_set_error (bfd_error_bad_value); 3800 return NULL; 3801 } 3802 3803 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry)); 3804 if (!entry) 3805 return NULL; 3806 3807 if (got16_reloc_p (r_type) 3808 || call16_reloc_p (r_type) 3809 || got_page_reloc_p (r_type) 3810 || got_disp_reloc_p (r_type)) 3811 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++; 3812 else 3813 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--; 3814 3815 *entry = lookup; 3816 *loc = entry; 3817 3818 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx); 3819 3820 /* These GOT entries need a dynamic relocation on VxWorks. */ 3821 if (htab->root.target_os == is_vxworks) 3822 { 3823 Elf_Internal_Rela outrel; 3824 asection *s; 3825 bfd_byte *rloc; 3826 bfd_vma got_address; 3827 3828 s = mips_elf_rel_dyn_section (info, false); 3829 got_address = (htab->root.sgot->output_section->vma 3830 + htab->root.sgot->output_offset 3831 + entry->gotidx); 3832 3833 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela)); 3834 outrel.r_offset = got_address; 3835 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32); 3836 outrel.r_addend = value; 3837 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc); 3838 } 3839 3840 return entry; 3841 } 3842 3843 /* Return the number of dynamic section symbols required by OUTPUT_BFD. 3844 The number might be exact or a worst-case estimate, depending on how 3845 much information is available to elf_backend_omit_section_dynsym at 3846 the current linking stage. */ 3847 3848 static bfd_size_type 3849 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info) 3850 { 3851 bfd_size_type count; 3852 3853 count = 0; 3854 if (bfd_link_pic (info) 3855 || elf_hash_table (info)->is_relocatable_executable) 3856 { 3857 asection *p; 3858 const struct elf_backend_data *bed; 3859 3860 bed = get_elf_backend_data (output_bfd); 3861 for (p = output_bfd->sections; p ; p = p->next) 3862 if ((p->flags & SEC_EXCLUDE) == 0 3863 && (p->flags & SEC_ALLOC) != 0 3864 && elf_hash_table (info)->dynamic_relocs 3865 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p)) 3866 ++count; 3867 } 3868 return count; 3869 } 3870 3871 /* Sort the dynamic symbol table so that symbols that need GOT entries 3872 appear towards the end. */ 3873 3874 static bool 3875 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info) 3876 { 3877 struct mips_elf_link_hash_table *htab; 3878 struct mips_elf_hash_sort_data hsd; 3879 struct mips_got_info *g; 3880 3881 htab = mips_elf_hash_table (info); 3882 BFD_ASSERT (htab != NULL); 3883 3884 if (htab->root.dynsymcount == 0) 3885 return true; 3886 3887 g = htab->got_info; 3888 if (g == NULL) 3889 return true; 3890 3891 hsd.low = NULL; 3892 hsd.max_unref_got_dynindx 3893 = hsd.min_got_dynindx 3894 = (htab->root.dynsymcount - g->reloc_only_gotno); 3895 /* Add 1 to local symbol indices to account for the mandatory NULL entry 3896 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */ 3897 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1; 3898 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1; 3899 hsd.output_bfd = abfd; 3900 if (htab->root.dynobj != NULL 3901 && htab->root.dynamic_sections_created 3902 && info->emit_gnu_hash) 3903 { 3904 asection *s = bfd_get_linker_section (htab->root.dynobj, ".MIPS.xhash"); 3905 BFD_ASSERT (s != NULL); 3906 hsd.mipsxhash = s->contents; 3907 BFD_ASSERT (hsd.mipsxhash != NULL); 3908 } 3909 else 3910 hsd.mipsxhash = NULL; 3911 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd); 3912 3913 /* There should have been enough room in the symbol table to 3914 accommodate both the GOT and non-GOT symbols. */ 3915 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1); 3916 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx); 3917 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount); 3918 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno); 3919 3920 /* Now we know which dynamic symbol has the lowest dynamic symbol 3921 table index in the GOT. */ 3922 htab->global_gotsym = hsd.low; 3923 3924 return true; 3925 } 3926 3927 /* If H needs a GOT entry, assign it the highest available dynamic 3928 index. Otherwise, assign it the lowest available dynamic 3929 index. */ 3930 3931 static bool 3932 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data) 3933 { 3934 struct mips_elf_hash_sort_data *hsd = data; 3935 3936 /* Symbols without dynamic symbol table entries aren't interesting 3937 at all. */ 3938 if (h->root.dynindx == -1) 3939 return true; 3940 3941 switch (h->global_got_area) 3942 { 3943 case GGA_NONE: 3944 if (h->root.forced_local) 3945 h->root.dynindx = hsd->max_local_dynindx++; 3946 else 3947 h->root.dynindx = hsd->max_non_got_dynindx++; 3948 break; 3949 3950 case GGA_NORMAL: 3951 h->root.dynindx = --hsd->min_got_dynindx; 3952 hsd->low = (struct elf_link_hash_entry *) h; 3953 break; 3954 3955 case GGA_RELOC_ONLY: 3956 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx) 3957 hsd->low = (struct elf_link_hash_entry *) h; 3958 h->root.dynindx = hsd->max_unref_got_dynindx++; 3959 break; 3960 } 3961 3962 /* Populate the .MIPS.xhash translation table entry with 3963 the symbol dynindx. */ 3964 if (h->mipsxhash_loc != 0 && hsd->mipsxhash != NULL) 3965 bfd_put_32 (hsd->output_bfd, h->root.dynindx, 3966 hsd->mipsxhash + h->mipsxhash_loc); 3967 3968 return true; 3969 } 3970 3971 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP 3972 (which is owned by the caller and shouldn't be added to the 3973 hash table directly). */ 3974 3975 static bool 3976 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd, 3977 struct mips_got_entry *lookup) 3978 { 3979 struct mips_elf_link_hash_table *htab; 3980 struct mips_got_entry *entry; 3981 struct mips_got_info *g; 3982 void **loc, **bfd_loc; 3983 3984 /* Make sure there's a slot for this entry in the master GOT. */ 3985 htab = mips_elf_hash_table (info); 3986 g = htab->got_info; 3987 loc = htab_find_slot (g->got_entries, lookup, INSERT); 3988 if (!loc) 3989 return false; 3990 3991 /* Populate the entry if it isn't already. */ 3992 entry = (struct mips_got_entry *) *loc; 3993 if (!entry) 3994 { 3995 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry)); 3996 if (!entry) 3997 return false; 3998 3999 lookup->tls_initialized = false; 4000 lookup->gotidx = -1; 4001 *entry = *lookup; 4002 *loc = entry; 4003 } 4004 4005 /* Reuse the same GOT entry for the BFD's GOT. */ 4006 g = mips_elf_bfd_got (abfd, true); 4007 if (!g) 4008 return false; 4009 4010 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT); 4011 if (!bfd_loc) 4012 return false; 4013 4014 if (!*bfd_loc) 4015 *bfd_loc = entry; 4016 return true; 4017 } 4018 4019 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT 4020 entry for it. FOR_CALL is true if the caller is only interested in 4021 using the GOT entry for calls. */ 4022 4023 static bool 4024 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h, 4025 bfd *abfd, struct bfd_link_info *info, 4026 bool for_call, int r_type) 4027 { 4028 struct mips_elf_link_hash_table *htab; 4029 struct mips_elf_link_hash_entry *hmips; 4030 struct mips_got_entry entry; 4031 unsigned char tls_type; 4032 4033 htab = mips_elf_hash_table (info); 4034 BFD_ASSERT (htab != NULL); 4035 4036 hmips = (struct mips_elf_link_hash_entry *) h; 4037 if (!for_call) 4038 hmips->got_only_for_calls = false; 4039 4040 /* A global symbol in the GOT must also be in the dynamic symbol 4041 table. */ 4042 if (h->dynindx == -1) 4043 { 4044 switch (ELF_ST_VISIBILITY (h->other)) 4045 { 4046 case STV_INTERNAL: 4047 case STV_HIDDEN: 4048 _bfd_mips_elf_hide_symbol (info, h, true); 4049 break; 4050 } 4051 if (!bfd_elf_link_record_dynamic_symbol (info, h)) 4052 return false; 4053 } 4054 4055 tls_type = mips_elf_reloc_tls_type (r_type); 4056 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL) 4057 hmips->global_got_area = GGA_NORMAL; 4058 4059 entry.abfd = abfd; 4060 entry.symndx = -1; 4061 entry.d.h = (struct mips_elf_link_hash_entry *) h; 4062 entry.tls_type = tls_type; 4063 return mips_elf_record_got_entry (info, abfd, &entry); 4064 } 4065 4066 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND, 4067 where SYMNDX is a local symbol. Reserve a GOT entry for it. */ 4068 4069 static bool 4070 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend, 4071 struct bfd_link_info *info, int r_type) 4072 { 4073 struct mips_elf_link_hash_table *htab; 4074 struct mips_got_info *g; 4075 struct mips_got_entry entry; 4076 4077 htab = mips_elf_hash_table (info); 4078 BFD_ASSERT (htab != NULL); 4079 4080 g = htab->got_info; 4081 BFD_ASSERT (g != NULL); 4082 4083 entry.abfd = abfd; 4084 entry.symndx = symndx; 4085 entry.d.addend = addend; 4086 entry.tls_type = mips_elf_reloc_tls_type (r_type); 4087 return mips_elf_record_got_entry (info, abfd, &entry); 4088 } 4089 4090 /* Record that ABFD has a page relocation against SYMNDX + ADDEND. 4091 H is the symbol's hash table entry, or null if SYMNDX is local 4092 to ABFD. */ 4093 4094 static bool 4095 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd, 4096 long symndx, struct elf_link_hash_entry *h, 4097 bfd_signed_vma addend) 4098 { 4099 struct mips_elf_link_hash_table *htab; 4100 struct mips_got_info *g1, *g2; 4101 struct mips_got_page_ref lookup, *entry; 4102 void **loc, **bfd_loc; 4103 4104 htab = mips_elf_hash_table (info); 4105 BFD_ASSERT (htab != NULL); 4106 4107 g1 = htab->got_info; 4108 BFD_ASSERT (g1 != NULL); 4109 4110 if (h) 4111 { 4112 lookup.symndx = -1; 4113 lookup.u.h = (struct mips_elf_link_hash_entry *) h; 4114 } 4115 else 4116 { 4117 lookup.symndx = symndx; 4118 lookup.u.abfd = abfd; 4119 } 4120 lookup.addend = addend; 4121 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT); 4122 if (loc == NULL) 4123 return false; 4124 4125 entry = (struct mips_got_page_ref *) *loc; 4126 if (!entry) 4127 { 4128 entry = bfd_alloc (abfd, sizeof (*entry)); 4129 if (!entry) 4130 return false; 4131 4132 *entry = lookup; 4133 *loc = entry; 4134 } 4135 4136 /* Add the same entry to the BFD's GOT. */ 4137 g2 = mips_elf_bfd_got (abfd, true); 4138 if (!g2) 4139 return false; 4140 4141 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT); 4142 if (!bfd_loc) 4143 return false; 4144 4145 if (!*bfd_loc) 4146 *bfd_loc = entry; 4147 4148 return true; 4149 } 4150 4151 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */ 4152 4153 static void 4154 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info, 4155 unsigned int n) 4156 { 4157 asection *s; 4158 struct mips_elf_link_hash_table *htab; 4159 4160 htab = mips_elf_hash_table (info); 4161 BFD_ASSERT (htab != NULL); 4162 4163 s = mips_elf_rel_dyn_section (info, false); 4164 BFD_ASSERT (s != NULL); 4165 4166 if (htab->root.target_os == is_vxworks) 4167 s->size += n * MIPS_ELF_RELA_SIZE (abfd); 4168 else 4169 { 4170 if (s->size == 0) 4171 { 4172 /* Make room for a null element. */ 4173 s->size += MIPS_ELF_REL_SIZE (abfd); 4174 ++s->reloc_count; 4175 } 4176 s->size += n * MIPS_ELF_REL_SIZE (abfd); 4177 } 4178 } 4179 4180 /* A htab_traverse callback for GOT entries, with DATA pointing to a 4181 mips_elf_traverse_got_arg structure. Count the number of GOT 4182 entries and TLS relocs. Set DATA->value to true if we need 4183 to resolve indirect or warning symbols and then recreate the GOT. */ 4184 4185 static int 4186 mips_elf_check_recreate_got (void **entryp, void *data) 4187 { 4188 struct mips_got_entry *entry; 4189 struct mips_elf_traverse_got_arg *arg; 4190 4191 entry = (struct mips_got_entry *) *entryp; 4192 arg = (struct mips_elf_traverse_got_arg *) data; 4193 if (entry->abfd != NULL && entry->symndx == -1) 4194 { 4195 struct mips_elf_link_hash_entry *h; 4196 4197 h = entry->d.h; 4198 if (h->root.root.type == bfd_link_hash_indirect 4199 || h->root.root.type == bfd_link_hash_warning) 4200 { 4201 arg->value = true; 4202 return 0; 4203 } 4204 } 4205 mips_elf_count_got_entry (arg->info, arg->g, entry); 4206 return 1; 4207 } 4208 4209 /* A htab_traverse callback for GOT entries, with DATA pointing to a 4210 mips_elf_traverse_got_arg structure. Add all entries to DATA->g, 4211 converting entries for indirect and warning symbols into entries 4212 for the target symbol. Set DATA->g to null on error. */ 4213 4214 static int 4215 mips_elf_recreate_got (void **entryp, void *data) 4216 { 4217 struct mips_got_entry new_entry, *entry; 4218 struct mips_elf_traverse_got_arg *arg; 4219 void **slot; 4220 4221 entry = (struct mips_got_entry *) *entryp; 4222 arg = (struct mips_elf_traverse_got_arg *) data; 4223 if (entry->abfd != NULL 4224 && entry->symndx == -1 4225 && (entry->d.h->root.root.type == bfd_link_hash_indirect 4226 || entry->d.h->root.root.type == bfd_link_hash_warning)) 4227 { 4228 struct mips_elf_link_hash_entry *h; 4229 4230 new_entry = *entry; 4231 entry = &new_entry; 4232 h = entry->d.h; 4233 do 4234 { 4235 BFD_ASSERT (h->global_got_area == GGA_NONE); 4236 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; 4237 } 4238 while (h->root.root.type == bfd_link_hash_indirect 4239 || h->root.root.type == bfd_link_hash_warning); 4240 entry->d.h = h; 4241 } 4242 slot = htab_find_slot (arg->g->got_entries, entry, INSERT); 4243 if (slot == NULL) 4244 { 4245 arg->g = NULL; 4246 return 0; 4247 } 4248 if (*slot == NULL) 4249 { 4250 if (entry == &new_entry) 4251 { 4252 entry = bfd_alloc (entry->abfd, sizeof (*entry)); 4253 if (!entry) 4254 { 4255 arg->g = NULL; 4256 return 0; 4257 } 4258 *entry = new_entry; 4259 } 4260 *slot = entry; 4261 mips_elf_count_got_entry (arg->info, arg->g, entry); 4262 } 4263 return 1; 4264 } 4265 4266 /* Return the maximum number of GOT page entries required for RANGE. */ 4267 4268 static bfd_vma 4269 mips_elf_pages_for_range (const struct mips_got_page_range *range) 4270 { 4271 return (range->max_addend - range->min_addend + 0x1ffff) >> 16; 4272 } 4273 4274 /* Record that G requires a page entry that can reach SEC + ADDEND. */ 4275 4276 static bool 4277 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg, 4278 asection *sec, bfd_signed_vma addend) 4279 { 4280 struct mips_got_info *g = arg->g; 4281 struct mips_got_page_entry lookup, *entry; 4282 struct mips_got_page_range **range_ptr, *range; 4283 bfd_vma old_pages, new_pages; 4284 void **loc; 4285 4286 /* Find the mips_got_page_entry hash table entry for this section. */ 4287 lookup.sec = sec; 4288 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT); 4289 if (loc == NULL) 4290 return false; 4291 4292 /* Create a mips_got_page_entry if this is the first time we've 4293 seen the section. */ 4294 entry = (struct mips_got_page_entry *) *loc; 4295 if (!entry) 4296 { 4297 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry)); 4298 if (!entry) 4299 return false; 4300 4301 entry->sec = sec; 4302 *loc = entry; 4303 } 4304 4305 /* Skip over ranges whose maximum extent cannot share a page entry 4306 with ADDEND. */ 4307 range_ptr = &entry->ranges; 4308 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff) 4309 range_ptr = &(*range_ptr)->next; 4310 4311 /* If we scanned to the end of the list, or found a range whose 4312 minimum extent cannot share a page entry with ADDEND, create 4313 a new singleton range. */ 4314 range = *range_ptr; 4315 if (!range || addend < range->min_addend - 0xffff) 4316 { 4317 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range)); 4318 if (!range) 4319 return false; 4320 4321 range->next = *range_ptr; 4322 range->min_addend = addend; 4323 range->max_addend = addend; 4324 4325 *range_ptr = range; 4326 entry->num_pages++; 4327 g->page_gotno++; 4328 return true; 4329 } 4330 4331 /* Remember how many pages the old range contributed. */ 4332 old_pages = mips_elf_pages_for_range (range); 4333 4334 /* Update the ranges. */ 4335 if (addend < range->min_addend) 4336 range->min_addend = addend; 4337 else if (addend > range->max_addend) 4338 { 4339 if (range->next && addend >= range->next->min_addend - 0xffff) 4340 { 4341 old_pages += mips_elf_pages_for_range (range->next); 4342 range->max_addend = range->next->max_addend; 4343 range->next = range->next->next; 4344 } 4345 else 4346 range->max_addend = addend; 4347 } 4348 4349 /* Record any change in the total estimate. */ 4350 new_pages = mips_elf_pages_for_range (range); 4351 if (old_pages != new_pages) 4352 { 4353 entry->num_pages += new_pages - old_pages; 4354 g->page_gotno += new_pages - old_pages; 4355 } 4356 4357 return true; 4358 } 4359 4360 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref 4361 and for which DATA points to a mips_elf_traverse_got_arg. Work out 4362 whether the page reference described by *REFP needs a GOT page entry, 4363 and record that entry in DATA->g if so. Set DATA->g to null on failure. */ 4364 4365 static int 4366 mips_elf_resolve_got_page_ref (void **refp, void *data) 4367 { 4368 struct mips_got_page_ref *ref; 4369 struct mips_elf_traverse_got_arg *arg; 4370 struct mips_elf_link_hash_table *htab; 4371 asection *sec; 4372 bfd_vma addend; 4373 4374 ref = (struct mips_got_page_ref *) *refp; 4375 arg = (struct mips_elf_traverse_got_arg *) data; 4376 htab = mips_elf_hash_table (arg->info); 4377 4378 if (ref->symndx < 0) 4379 { 4380 struct mips_elf_link_hash_entry *h; 4381 4382 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */ 4383 h = ref->u.h; 4384 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root)) 4385 return 1; 4386 4387 /* Ignore undefined symbols; we'll issue an error later if 4388 appropriate. */ 4389 if (!((h->root.root.type == bfd_link_hash_defined 4390 || h->root.root.type == bfd_link_hash_defweak) 4391 && h->root.root.u.def.section)) 4392 return 1; 4393 4394 sec = h->root.root.u.def.section; 4395 addend = h->root.root.u.def.value + ref->addend; 4396 } 4397 else 4398 { 4399 Elf_Internal_Sym *isym; 4400 4401 /* Read in the symbol. */ 4402 isym = bfd_sym_from_r_symndx (&htab->root.sym_cache, ref->u.abfd, 4403 ref->symndx); 4404 if (isym == NULL) 4405 { 4406 arg->g = NULL; 4407 return 0; 4408 } 4409 4410 /* Get the associated input section. */ 4411 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx); 4412 if (sec == NULL) 4413 { 4414 arg->g = NULL; 4415 return 0; 4416 } 4417 4418 /* If this is a mergable section, work out the section and offset 4419 of the merged data. For section symbols, the addend specifies 4420 of the offset _of_ the first byte in the data, otherwise it 4421 specifies the offset _from_ the first byte. */ 4422 if (sec->flags & SEC_MERGE) 4423 { 4424 void *secinfo; 4425 4426 secinfo = elf_section_data (sec)->sec_info; 4427 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) 4428 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo, 4429 isym->st_value + ref->addend); 4430 else 4431 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo, 4432 isym->st_value) + ref->addend; 4433 } 4434 else 4435 addend = isym->st_value + ref->addend; 4436 } 4437 if (!mips_elf_record_got_page_entry (arg, sec, addend)) 4438 { 4439 arg->g = NULL; 4440 return 0; 4441 } 4442 return 1; 4443 } 4444 4445 /* If any entries in G->got_entries are for indirect or warning symbols, 4446 replace them with entries for the target symbol. Convert g->got_page_refs 4447 into got_page_entry structures and estimate the number of page entries 4448 that they require. */ 4449 4450 static bool 4451 mips_elf_resolve_final_got_entries (struct bfd_link_info *info, 4452 struct mips_got_info *g) 4453 { 4454 struct mips_elf_traverse_got_arg tga; 4455 struct mips_got_info oldg; 4456 4457 oldg = *g; 4458 4459 tga.info = info; 4460 tga.g = g; 4461 tga.value = false; 4462 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga); 4463 if (tga.value) 4464 { 4465 *g = oldg; 4466 g->got_entries = htab_create (htab_size (oldg.got_entries), 4467 mips_elf_got_entry_hash, 4468 mips_elf_got_entry_eq, NULL); 4469 if (!g->got_entries) 4470 return false; 4471 4472 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga); 4473 if (!tga.g) 4474 return false; 4475 4476 htab_delete (oldg.got_entries); 4477 } 4478 4479 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash, 4480 mips_got_page_entry_eq, NULL); 4481 if (g->got_page_entries == NULL) 4482 return false; 4483 4484 tga.info = info; 4485 tga.g = g; 4486 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga); 4487 4488 return true; 4489 } 4490 4491 /* Return true if a GOT entry for H should live in the local rather than 4492 global GOT area. */ 4493 4494 static bool 4495 mips_use_local_got_p (struct bfd_link_info *info, 4496 struct mips_elf_link_hash_entry *h) 4497 { 4498 /* Symbols that aren't in the dynamic symbol table must live in the 4499 local GOT. This includes symbols that are completely undefined 4500 and which therefore don't bind locally. We'll report undefined 4501 symbols later if appropriate. */ 4502 if (h->root.dynindx == -1) 4503 return true; 4504 4505 /* Absolute symbols, if ever they need a GOT entry, cannot ever go 4506 to the local GOT, as they would be implicitly relocated by the 4507 base address by the dynamic loader. */ 4508 if (bfd_is_abs_symbol (&h->root.root)) 4509 return false; 4510 4511 /* Symbols that bind locally can (and in the case of forced-local 4512 symbols, must) live in the local GOT. */ 4513 if (h->got_only_for_calls 4514 ? SYMBOL_CALLS_LOCAL (info, &h->root) 4515 : SYMBOL_REFERENCES_LOCAL (info, &h->root)) 4516 return true; 4517 4518 /* If this is an executable that must provide a definition of the symbol, 4519 either though PLTs or copy relocations, then that address should go in 4520 the local rather than global GOT. */ 4521 if (bfd_link_executable (info) && h->has_static_relocs) 4522 return true; 4523 4524 return false; 4525 } 4526 4527 /* A mips_elf_link_hash_traverse callback for which DATA points to the 4528 link_info structure. Decide whether the hash entry needs an entry in 4529 the global part of the primary GOT, setting global_got_area accordingly. 4530 Count the number of global symbols that are in the primary GOT only 4531 because they have relocations against them (reloc_only_gotno). */ 4532 4533 static bool 4534 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data) 4535 { 4536 struct bfd_link_info *info; 4537 struct mips_elf_link_hash_table *htab; 4538 struct mips_got_info *g; 4539 4540 info = (struct bfd_link_info *) data; 4541 htab = mips_elf_hash_table (info); 4542 g = htab->got_info; 4543 if (h->global_got_area != GGA_NONE) 4544 { 4545 /* Make a final decision about whether the symbol belongs in the 4546 local or global GOT. */ 4547 if (mips_use_local_got_p (info, h)) 4548 /* The symbol belongs in the local GOT. We no longer need this 4549 entry if it was only used for relocations; those relocations 4550 will be against the null or section symbol instead of H. */ 4551 h->global_got_area = GGA_NONE; 4552 else if (htab->root.target_os == is_vxworks 4553 && h->got_only_for_calls 4554 && h->root.plt.plist->mips_offset != MINUS_ONE) 4555 /* On VxWorks, calls can refer directly to the .got.plt entry; 4556 they don't need entries in the regular GOT. .got.plt entries 4557 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */ 4558 h->global_got_area = GGA_NONE; 4559 else if (h->global_got_area == GGA_RELOC_ONLY) 4560 { 4561 g->reloc_only_gotno++; 4562 g->global_gotno++; 4563 } 4564 } 4565 return 1; 4566 } 4567 4568 /* A htab_traverse callback for GOT entries. Add each one to the GOT 4569 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */ 4570 4571 static int 4572 mips_elf_add_got_entry (void **entryp, void *data) 4573 { 4574 struct mips_got_entry *entry; 4575 struct mips_elf_traverse_got_arg *arg; 4576 void **slot; 4577 4578 entry = (struct mips_got_entry *) *entryp; 4579 arg = (struct mips_elf_traverse_got_arg *) data; 4580 slot = htab_find_slot (arg->g->got_entries, entry, INSERT); 4581 if (!slot) 4582 { 4583 arg->g = NULL; 4584 return 0; 4585 } 4586 if (!*slot) 4587 { 4588 *slot = entry; 4589 mips_elf_count_got_entry (arg->info, arg->g, entry); 4590 } 4591 return 1; 4592 } 4593 4594 /* A htab_traverse callback for GOT page entries. Add each one to the GOT 4595 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */ 4596 4597 static int 4598 mips_elf_add_got_page_entry (void **entryp, void *data) 4599 { 4600 struct mips_got_page_entry *entry; 4601 struct mips_elf_traverse_got_arg *arg; 4602 void **slot; 4603 4604 entry = (struct mips_got_page_entry *) *entryp; 4605 arg = (struct mips_elf_traverse_got_arg *) data; 4606 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT); 4607 if (!slot) 4608 { 4609 arg->g = NULL; 4610 return 0; 4611 } 4612 if (!*slot) 4613 { 4614 *slot = entry; 4615 arg->g->page_gotno += entry->num_pages; 4616 } 4617 return 1; 4618 } 4619 4620 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if 4621 this would lead to overflow, 1 if they were merged successfully, 4622 and 0 if a merge failed due to lack of memory. (These values are chosen 4623 so that nonnegative return values can be returned by a htab_traverse 4624 callback.) */ 4625 4626 static int 4627 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from, 4628 struct mips_got_info *to, 4629 struct mips_elf_got_per_bfd_arg *arg) 4630 { 4631 struct mips_elf_traverse_got_arg tga; 4632 unsigned int estimate; 4633 4634 /* Work out how many page entries we would need for the combined GOT. */ 4635 estimate = arg->max_pages; 4636 if (estimate >= from->page_gotno + to->page_gotno) 4637 estimate = from->page_gotno + to->page_gotno; 4638 4639 /* And conservatively estimate how many local and TLS entries 4640 would be needed. */ 4641 estimate += from->local_gotno + to->local_gotno; 4642 estimate += from->tls_gotno + to->tls_gotno; 4643 4644 /* If we're merging with the primary got, any TLS relocations will 4645 come after the full set of global entries. Otherwise estimate those 4646 conservatively as well. */ 4647 if (to == arg->primary && from->tls_gotno + to->tls_gotno) 4648 estimate += arg->global_count; 4649 else 4650 estimate += from->global_gotno + to->global_gotno; 4651 4652 /* Bail out if the combined GOT might be too big. */ 4653 if (estimate > arg->max_count) 4654 return -1; 4655 4656 /* Transfer the bfd's got information from FROM to TO. */ 4657 tga.info = arg->info; 4658 tga.g = to; 4659 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga); 4660 if (!tga.g) 4661 return 0; 4662 4663 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga); 4664 if (!tga.g) 4665 return 0; 4666 4667 mips_elf_replace_bfd_got (abfd, to); 4668 return 1; 4669 } 4670 4671 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much 4672 as possible of the primary got, since it doesn't require explicit 4673 dynamic relocations, but don't use bfds that would reference global 4674 symbols out of the addressable range. Failing the primary got, 4675 attempt to merge with the current got, or finish the current got 4676 and then make make the new got current. */ 4677 4678 static bool 4679 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g, 4680 struct mips_elf_got_per_bfd_arg *arg) 4681 { 4682 unsigned int estimate; 4683 int result; 4684 4685 if (!mips_elf_resolve_final_got_entries (arg->info, g)) 4686 return false; 4687 4688 /* Work out the number of page, local and TLS entries. */ 4689 estimate = arg->max_pages; 4690 if (estimate > g->page_gotno) 4691 estimate = g->page_gotno; 4692 estimate += g->local_gotno + g->tls_gotno; 4693 4694 /* We place TLS GOT entries after both locals and globals. The globals 4695 for the primary GOT may overflow the normal GOT size limit, so be 4696 sure not to merge a GOT which requires TLS with the primary GOT in that 4697 case. This doesn't affect non-primary GOTs. */ 4698 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno); 4699 4700 if (estimate <= arg->max_count) 4701 { 4702 /* If we don't have a primary GOT, use it as 4703 a starting point for the primary GOT. */ 4704 if (!arg->primary) 4705 { 4706 arg->primary = g; 4707 return true; 4708 } 4709 4710 /* Try merging with the primary GOT. */ 4711 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg); 4712 if (result >= 0) 4713 return result; 4714 } 4715 4716 /* If we can merge with the last-created got, do it. */ 4717 if (arg->current) 4718 { 4719 result = mips_elf_merge_got_with (abfd, g, arg->current, arg); 4720 if (result >= 0) 4721 return result; 4722 } 4723 4724 /* Well, we couldn't merge, so create a new GOT. Don't check if it 4725 fits; if it turns out that it doesn't, we'll get relocation 4726 overflows anyway. */ 4727 g->next = arg->current; 4728 arg->current = g; 4729 4730 return true; 4731 } 4732 4733 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx 4734 to GOTIDX, duplicating the entry if it has already been assigned 4735 an index in a different GOT. */ 4736 4737 static bool 4738 mips_elf_set_gotidx (void **entryp, long gotidx) 4739 { 4740 struct mips_got_entry *entry; 4741 4742 entry = (struct mips_got_entry *) *entryp; 4743 if (entry->gotidx > 0) 4744 { 4745 struct mips_got_entry *new_entry; 4746 4747 new_entry = bfd_alloc (entry->abfd, sizeof (*entry)); 4748 if (!new_entry) 4749 return false; 4750 4751 *new_entry = *entry; 4752 *entryp = new_entry; 4753 entry = new_entry; 4754 } 4755 entry->gotidx = gotidx; 4756 return true; 4757 } 4758 4759 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a 4760 mips_elf_traverse_got_arg in which DATA->value is the size of one 4761 GOT entry. Set DATA->g to null on failure. */ 4762 4763 static int 4764 mips_elf_initialize_tls_index (void **entryp, void *data) 4765 { 4766 struct mips_got_entry *entry; 4767 struct mips_elf_traverse_got_arg *arg; 4768 4769 /* We're only interested in TLS symbols. */ 4770 entry = (struct mips_got_entry *) *entryp; 4771 if (entry->tls_type == GOT_TLS_NONE) 4772 return 1; 4773 4774 arg = (struct mips_elf_traverse_got_arg *) data; 4775 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno)) 4776 { 4777 arg->g = NULL; 4778 return 0; 4779 } 4780 4781 /* Account for the entries we've just allocated. */ 4782 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type); 4783 return 1; 4784 } 4785 4786 /* A htab_traverse callback for GOT entries, where DATA points to a 4787 mips_elf_traverse_got_arg. Set the global_got_area of each global 4788 symbol to DATA->value. */ 4789 4790 static int 4791 mips_elf_set_global_got_area (void **entryp, void *data) 4792 { 4793 struct mips_got_entry *entry; 4794 struct mips_elf_traverse_got_arg *arg; 4795 4796 entry = (struct mips_got_entry *) *entryp; 4797 arg = (struct mips_elf_traverse_got_arg *) data; 4798 if (entry->abfd != NULL 4799 && entry->symndx == -1 4800 && entry->d.h->global_got_area != GGA_NONE) 4801 entry->d.h->global_got_area = arg->value; 4802 return 1; 4803 } 4804 4805 /* A htab_traverse callback for secondary GOT entries, where DATA points 4806 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries 4807 and record the number of relocations they require. DATA->value is 4808 the size of one GOT entry. Set DATA->g to null on failure. */ 4809 4810 static int 4811 mips_elf_set_global_gotidx (void **entryp, void *data) 4812 { 4813 struct mips_got_entry *entry; 4814 struct mips_elf_traverse_got_arg *arg; 4815 4816 entry = (struct mips_got_entry *) *entryp; 4817 arg = (struct mips_elf_traverse_got_arg *) data; 4818 if (entry->abfd != NULL 4819 && entry->symndx == -1 4820 && entry->d.h->global_got_area != GGA_NONE) 4821 { 4822 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno)) 4823 { 4824 arg->g = NULL; 4825 return 0; 4826 } 4827 arg->g->assigned_low_gotno += 1; 4828 4829 if (bfd_link_pic (arg->info) 4830 || (elf_hash_table (arg->info)->dynamic_sections_created 4831 && entry->d.h->root.def_dynamic 4832 && !entry->d.h->root.def_regular)) 4833 arg->g->relocs += 1; 4834 } 4835 4836 return 1; 4837 } 4838 4839 /* A htab_traverse callback for GOT entries for which DATA is the 4840 bfd_link_info. Forbid any global symbols from having traditional 4841 lazy-binding stubs. */ 4842 4843 static int 4844 mips_elf_forbid_lazy_stubs (void **entryp, void *data) 4845 { 4846 struct bfd_link_info *info; 4847 struct mips_elf_link_hash_table *htab; 4848 struct mips_got_entry *entry; 4849 4850 entry = (struct mips_got_entry *) *entryp; 4851 info = (struct bfd_link_info *) data; 4852 htab = mips_elf_hash_table (info); 4853 BFD_ASSERT (htab != NULL); 4854 4855 if (entry->abfd != NULL 4856 && entry->symndx == -1 4857 && entry->d.h->needs_lazy_stub) 4858 { 4859 entry->d.h->needs_lazy_stub = false; 4860 htab->lazy_stub_count--; 4861 } 4862 4863 return 1; 4864 } 4865 4866 /* Return the offset of an input bfd IBFD's GOT from the beginning of 4867 the primary GOT. */ 4868 static bfd_vma 4869 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd) 4870 { 4871 if (!g->next) 4872 return 0; 4873 4874 g = mips_elf_bfd_got (ibfd, false); 4875 if (! g) 4876 return 0; 4877 4878 BFD_ASSERT (g->next); 4879 4880 g = g->next; 4881 4882 return (g->local_gotno + g->global_gotno + g->tls_gotno) 4883 * MIPS_ELF_GOT_SIZE (abfd); 4884 } 4885 4886 /* Turn a single GOT that is too big for 16-bit addressing into 4887 a sequence of GOTs, each one 16-bit addressable. */ 4888 4889 static bool 4890 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info, 4891 asection *got, bfd_size_type pages) 4892 { 4893 struct mips_elf_link_hash_table *htab; 4894 struct mips_elf_got_per_bfd_arg got_per_bfd_arg; 4895 struct mips_elf_traverse_got_arg tga; 4896 struct mips_got_info *g, *gg; 4897 unsigned int assign, needed_relocs; 4898 bfd *dynobj, *ibfd; 4899 4900 dynobj = elf_hash_table (info)->dynobj; 4901 htab = mips_elf_hash_table (info); 4902 BFD_ASSERT (htab != NULL); 4903 4904 g = htab->got_info; 4905 4906 got_per_bfd_arg.obfd = abfd; 4907 got_per_bfd_arg.info = info; 4908 got_per_bfd_arg.current = NULL; 4909 got_per_bfd_arg.primary = NULL; 4910 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info) 4911 / MIPS_ELF_GOT_SIZE (abfd)) 4912 - htab->reserved_gotno); 4913 got_per_bfd_arg.max_pages = pages; 4914 /* The number of globals that will be included in the primary GOT. 4915 See the calls to mips_elf_set_global_got_area below for more 4916 information. */ 4917 got_per_bfd_arg.global_count = g->global_gotno; 4918 4919 /* Try to merge the GOTs of input bfds together, as long as they 4920 don't seem to exceed the maximum GOT size, choosing one of them 4921 to be the primary GOT. */ 4922 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next) 4923 { 4924 gg = mips_elf_bfd_got (ibfd, false); 4925 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg)) 4926 return false; 4927 } 4928 4929 /* If we do not find any suitable primary GOT, create an empty one. */ 4930 if (got_per_bfd_arg.primary == NULL) 4931 g->next = mips_elf_create_got_info (abfd); 4932 else 4933 g->next = got_per_bfd_arg.primary; 4934 g->next->next = got_per_bfd_arg.current; 4935 4936 /* GG is now the master GOT, and G is the primary GOT. */ 4937 gg = g; 4938 g = g->next; 4939 4940 /* Map the output bfd to the primary got. That's what we're going 4941 to use for bfds that use GOT16 or GOT_PAGE relocations that we 4942 didn't mark in check_relocs, and we want a quick way to find it. 4943 We can't just use gg->next because we're going to reverse the 4944 list. */ 4945 mips_elf_replace_bfd_got (abfd, g); 4946 4947 /* Every symbol that is referenced in a dynamic relocation must be 4948 present in the primary GOT, so arrange for them to appear after 4949 those that are actually referenced. */ 4950 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno; 4951 g->global_gotno = gg->global_gotno; 4952 4953 tga.info = info; 4954 tga.value = GGA_RELOC_ONLY; 4955 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga); 4956 tga.value = GGA_NORMAL; 4957 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga); 4958 4959 /* Now go through the GOTs assigning them offset ranges. 4960 [assigned_low_gotno, local_gotno[ will be set to the range of local 4961 entries in each GOT. We can then compute the end of a GOT by 4962 adding local_gotno to global_gotno. We reverse the list and make 4963 it circular since then we'll be able to quickly compute the 4964 beginning of a GOT, by computing the end of its predecessor. To 4965 avoid special cases for the primary GOT, while still preserving 4966 assertions that are valid for both single- and multi-got links, 4967 we arrange for the main got struct to have the right number of 4968 global entries, but set its local_gotno such that the initial 4969 offset of the primary GOT is zero. Remember that the primary GOT 4970 will become the last item in the circular linked list, so it 4971 points back to the master GOT. */ 4972 gg->local_gotno = -g->global_gotno; 4973 gg->global_gotno = g->global_gotno; 4974 gg->tls_gotno = 0; 4975 assign = 0; 4976 gg->next = gg; 4977 4978 do 4979 { 4980 struct mips_got_info *gn; 4981 4982 assign += htab->reserved_gotno; 4983 g->assigned_low_gotno = assign; 4984 g->local_gotno += assign; 4985 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno); 4986 g->assigned_high_gotno = g->local_gotno - 1; 4987 assign = g->local_gotno + g->global_gotno + g->tls_gotno; 4988 4989 /* Take g out of the direct list, and push it onto the reversed 4990 list that gg points to. g->next is guaranteed to be nonnull after 4991 this operation, as required by mips_elf_initialize_tls_index. */ 4992 gn = g->next; 4993 g->next = gg->next; 4994 gg->next = g; 4995 4996 /* Set up any TLS entries. We always place the TLS entries after 4997 all non-TLS entries. */ 4998 g->tls_assigned_gotno = g->local_gotno + g->global_gotno; 4999 tga.g = g; 5000 tga.value = MIPS_ELF_GOT_SIZE (abfd); 5001 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga); 5002 if (!tga.g) 5003 return false; 5004 BFD_ASSERT (g->tls_assigned_gotno == assign); 5005 5006 /* Move onto the next GOT. It will be a secondary GOT if nonull. */ 5007 g = gn; 5008 5009 /* Forbid global symbols in every non-primary GOT from having 5010 lazy-binding stubs. */ 5011 if (g) 5012 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info); 5013 } 5014 while (g); 5015 5016 got->size = assign * MIPS_ELF_GOT_SIZE (abfd); 5017 5018 needed_relocs = 0; 5019 for (g = gg->next; g && g->next != gg; g = g->next) 5020 { 5021 unsigned int save_assign; 5022 5023 /* Assign offsets to global GOT entries and count how many 5024 relocations they need. */ 5025 save_assign = g->assigned_low_gotno; 5026 g->assigned_low_gotno = g->local_gotno; 5027 tga.info = info; 5028 tga.value = MIPS_ELF_GOT_SIZE (abfd); 5029 tga.g = g; 5030 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga); 5031 if (!tga.g) 5032 return false; 5033 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno); 5034 g->assigned_low_gotno = save_assign; 5035 5036 if (bfd_link_pic (info)) 5037 { 5038 g->relocs += g->local_gotno - g->assigned_low_gotno; 5039 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno 5040 + g->next->global_gotno 5041 + g->next->tls_gotno 5042 + htab->reserved_gotno); 5043 } 5044 needed_relocs += g->relocs; 5045 } 5046 needed_relocs += g->relocs; 5047 5048 if (needed_relocs) 5049 mips_elf_allocate_dynamic_relocations (dynobj, info, 5050 needed_relocs); 5051 5052 return true; 5053 } 5054 5055 5056 /* Returns the first relocation of type r_type found, beginning with 5057 RELOCATION. RELEND is one-past-the-end of the relocation table. */ 5058 5059 static const Elf_Internal_Rela * 5060 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type, 5061 const Elf_Internal_Rela *relocation, 5062 const Elf_Internal_Rela *relend) 5063 { 5064 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info); 5065 5066 while (relocation < relend) 5067 { 5068 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type 5069 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx) 5070 return relocation; 5071 5072 ++relocation; 5073 } 5074 5075 /* We didn't find it. */ 5076 return NULL; 5077 } 5078 5079 /* Return whether an input relocation is against a local symbol. */ 5080 5081 static bool 5082 mips_elf_local_relocation_p (bfd *input_bfd, 5083 const Elf_Internal_Rela *relocation, 5084 asection **local_sections) 5085 { 5086 unsigned long r_symndx; 5087 Elf_Internal_Shdr *symtab_hdr; 5088 size_t extsymoff; 5089 5090 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); 5091 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 5092 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info; 5093 5094 if (r_symndx < extsymoff) 5095 return true; 5096 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL) 5097 return true; 5098 5099 return false; 5100 } 5101 5102 /* Sign-extend VALUE, which has the indicated number of BITS. */ 5103 5104 bfd_vma 5105 _bfd_mips_elf_sign_extend (bfd_vma value, int bits) 5106 { 5107 if (value & ((bfd_vma) 1 << (bits - 1))) 5108 /* VALUE is negative. */ 5109 value |= ((bfd_vma) - 1) << bits; 5110 5111 return value; 5112 } 5113 5114 /* Return non-zero if the indicated VALUE has overflowed the maximum 5115 range expressible by a signed number with the indicated number of 5116 BITS. */ 5117 5118 static bool 5119 mips_elf_overflow_p (bfd_vma value, int bits) 5120 { 5121 bfd_signed_vma svalue = (bfd_signed_vma) value; 5122 5123 if (svalue > (1 << (bits - 1)) - 1) 5124 /* The value is too big. */ 5125 return true; 5126 else if (svalue < -(1 << (bits - 1))) 5127 /* The value is too small. */ 5128 return true; 5129 5130 /* All is well. */ 5131 return false; 5132 } 5133 5134 /* Calculate the %high function. */ 5135 5136 static bfd_vma 5137 mips_elf_high (bfd_vma value) 5138 { 5139 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff; 5140 } 5141 5142 /* Calculate the %higher function. */ 5143 5144 static bfd_vma 5145 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED) 5146 { 5147 #ifdef BFD64 5148 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff; 5149 #else 5150 abort (); 5151 return MINUS_ONE; 5152 #endif 5153 } 5154 5155 /* Calculate the %highest function. */ 5156 5157 static bfd_vma 5158 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED) 5159 { 5160 #ifdef BFD64 5161 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff; 5162 #else 5163 abort (); 5164 return MINUS_ONE; 5165 #endif 5166 } 5167 5168 /* Create the .compact_rel section. */ 5169 5170 static bool 5171 mips_elf_create_compact_rel_section 5172 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED) 5173 { 5174 flagword flags; 5175 register asection *s; 5176 5177 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL) 5178 { 5179 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED 5180 | SEC_READONLY); 5181 5182 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags); 5183 if (s == NULL 5184 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd))) 5185 return false; 5186 5187 s->size = sizeof (Elf32_External_compact_rel); 5188 } 5189 5190 return true; 5191 } 5192 5193 /* Create the .got section to hold the global offset table. */ 5194 5195 static bool 5196 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info) 5197 { 5198 flagword flags; 5199 register asection *s; 5200 struct elf_link_hash_entry *h; 5201 struct bfd_link_hash_entry *bh; 5202 struct mips_elf_link_hash_table *htab; 5203 5204 htab = mips_elf_hash_table (info); 5205 BFD_ASSERT (htab != NULL); 5206 5207 /* This function may be called more than once. */ 5208 if (htab->root.sgot) 5209 return true; 5210 5211 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY 5212 | SEC_LINKER_CREATED); 5213 5214 /* We have to use an alignment of 2**4 here because this is hardcoded 5215 in the function stub generation and in the linker script. */ 5216 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags); 5217 if (s == NULL 5218 || !bfd_set_section_alignment (s, 4)) 5219 return false; 5220 htab->root.sgot = s; 5221 5222 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the 5223 linker script because we don't want to define the symbol if we 5224 are not creating a global offset table. */ 5225 bh = NULL; 5226 if (! (_bfd_generic_link_add_one_symbol 5227 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s, 5228 0, NULL, false, get_elf_backend_data (abfd)->collect, &bh))) 5229 return false; 5230 5231 h = (struct elf_link_hash_entry *) bh; 5232 h->non_elf = 0; 5233 h->def_regular = 1; 5234 h->type = STT_OBJECT; 5235 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN; 5236 elf_hash_table (info)->hgot = h; 5237 5238 if (bfd_link_pic (info) 5239 && ! bfd_elf_link_record_dynamic_symbol (info, h)) 5240 return false; 5241 5242 htab->got_info = mips_elf_create_got_info (abfd); 5243 mips_elf_section_data (s)->elf.this_hdr.sh_flags 5244 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; 5245 5246 /* We also need a .got.plt section when generating PLTs. */ 5247 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", 5248 SEC_ALLOC | SEC_LOAD 5249 | SEC_HAS_CONTENTS 5250 | SEC_IN_MEMORY 5251 | SEC_LINKER_CREATED); 5252 if (s == NULL) 5253 return false; 5254 htab->root.sgotplt = s; 5255 5256 return true; 5257 } 5258 5259 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or 5260 __GOTT_INDEX__ symbols. These symbols are only special for 5261 shared objects; they are not used in executables. */ 5262 5263 static bool 5264 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h) 5265 { 5266 return (mips_elf_hash_table (info)->root.target_os == is_vxworks 5267 && bfd_link_pic (info) 5268 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0 5269 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0)); 5270 } 5271 5272 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might 5273 require an la25 stub. See also mips_elf_local_pic_function_p, 5274 which determines whether the destination function ever requires a 5275 stub. */ 5276 5277 static bool 5278 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type, 5279 bool target_is_16_bit_code_p) 5280 { 5281 /* We specifically ignore branches and jumps from EF_PIC objects, 5282 where the onus is on the compiler or programmer to perform any 5283 necessary initialization of $25. Sometimes such initialization 5284 is unnecessary; for example, -mno-shared functions do not use 5285 the incoming value of $25, and may therefore be called directly. */ 5286 if (PIC_OBJECT_P (input_bfd)) 5287 return false; 5288 5289 switch (r_type) 5290 { 5291 case R_MIPS_26: 5292 case R_MIPS_PC16: 5293 case R_MIPS_PC21_S2: 5294 case R_MIPS_PC26_S2: 5295 case R_MICROMIPS_26_S1: 5296 case R_MICROMIPS_PC7_S1: 5297 case R_MICROMIPS_PC10_S1: 5298 case R_MICROMIPS_PC16_S1: 5299 case R_MICROMIPS_PC23_S2: 5300 return true; 5301 5302 case R_MIPS16_26: 5303 return !target_is_16_bit_code_p; 5304 5305 default: 5306 return false; 5307 } 5308 } 5309 5310 /* Obtain the field relocated by RELOCATION. */ 5311 5312 static bfd_vma 5313 mips_elf_obtain_contents (reloc_howto_type *howto, 5314 const Elf_Internal_Rela *relocation, 5315 bfd *input_bfd, bfd_byte *contents) 5316 { 5317 bfd_vma x = 0; 5318 bfd_byte *location = contents + relocation->r_offset; 5319 unsigned int size = bfd_get_reloc_size (howto); 5320 5321 /* Obtain the bytes. */ 5322 if (size != 0) 5323 x = bfd_get (8 * size, input_bfd, location); 5324 5325 return x; 5326 } 5327 5328 /* Store the field relocated by RELOCATION. */ 5329 5330 static void 5331 mips_elf_store_contents (reloc_howto_type *howto, 5332 const Elf_Internal_Rela *relocation, 5333 bfd *input_bfd, bfd_byte *contents, bfd_vma x) 5334 { 5335 bfd_byte *location = contents + relocation->r_offset; 5336 unsigned int size = bfd_get_reloc_size (howto); 5337 5338 /* Put the value into the output. */ 5339 if (size != 0) 5340 bfd_put (8 * size, input_bfd, x, location); 5341 } 5342 5343 /* Try to patch a load from GOT instruction in CONTENTS pointed to by 5344 RELOCATION described by HOWTO, with a move of 0 to the load target 5345 register, returning TRUE if that is successful and FALSE otherwise. 5346 If DOIT is FALSE, then only determine it patching is possible and 5347 return status without actually changing CONTENTS. 5348 */ 5349 5350 static bool 5351 mips_elf_nullify_got_load (bfd *input_bfd, bfd_byte *contents, 5352 const Elf_Internal_Rela *relocation, 5353 reloc_howto_type *howto, bool doit) 5354 { 5355 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info); 5356 bfd_byte *location = contents + relocation->r_offset; 5357 bool nullified = true; 5358 bfd_vma x; 5359 5360 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, false, location); 5361 5362 /* Obtain the current value. */ 5363 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents); 5364 5365 /* Note that in the unshuffled MIPS16 encoding RX is at bits [21:19] 5366 while RY is at bits [18:16] of the combined 32-bit instruction word. */ 5367 if (mips16_reloc_p (r_type) 5368 && (((x >> 22) & 0x3ff) == 0x3d3 /* LW */ 5369 || ((x >> 22) & 0x3ff) == 0x3c7)) /* LD */ 5370 x = (0x3cdU << 22) | (x & (7 << 16)) << 3; /* LI */ 5371 else if (micromips_reloc_p (r_type) 5372 && ((x >> 26) & 0x37) == 0x37) /* LW/LD */ 5373 x = (0xc << 26) | (x & (0x1f << 21)); /* ADDIU */ 5374 else if (((x >> 26) & 0x3f) == 0x23 /* LW */ 5375 || ((x >> 26) & 0x3f) == 0x37) /* LD */ 5376 x = (0x9 << 26) | (x & (0x1f << 16)); /* ADDIU */ 5377 else 5378 nullified = false; 5379 5380 /* Put the value into the output. */ 5381 if (doit && nullified) 5382 mips_elf_store_contents (howto, relocation, input_bfd, contents, x); 5383 5384 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, false, location); 5385 5386 return nullified; 5387 } 5388 5389 /* Calculate the value produced by the RELOCATION (which comes from 5390 the INPUT_BFD). The ADDEND is the addend to use for this 5391 RELOCATION; RELOCATION->R_ADDEND is ignored. 5392 5393 The result of the relocation calculation is stored in VALUEP. 5394 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field 5395 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa. 5396 5397 This function returns bfd_reloc_continue if the caller need take no 5398 further action regarding this relocation, bfd_reloc_notsupported if 5399 something goes dramatically wrong, bfd_reloc_overflow if an 5400 overflow occurs, and bfd_reloc_ok to indicate success. */ 5401 5402 static bfd_reloc_status_type 5403 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd, 5404 asection *input_section, bfd_byte *contents, 5405 struct bfd_link_info *info, 5406 const Elf_Internal_Rela *relocation, 5407 bfd_vma addend, reloc_howto_type *howto, 5408 Elf_Internal_Sym *local_syms, 5409 asection **local_sections, bfd_vma *valuep, 5410 const char **namep, 5411 bool *cross_mode_jump_p, 5412 bool save_addend) 5413 { 5414 /* The eventual value we will return. */ 5415 bfd_vma value; 5416 /* The address of the symbol against which the relocation is 5417 occurring. */ 5418 bfd_vma symbol = 0; 5419 /* The final GP value to be used for the relocatable, executable, or 5420 shared object file being produced. */ 5421 bfd_vma gp; 5422 /* The place (section offset or address) of the storage unit being 5423 relocated. */ 5424 bfd_vma p; 5425 /* The value of GP used to create the relocatable object. */ 5426 bfd_vma gp0; 5427 /* The offset into the global offset table at which the address of 5428 the relocation entry symbol, adjusted by the addend, resides 5429 during execution. */ 5430 bfd_vma g = MINUS_ONE; 5431 /* The section in which the symbol referenced by the relocation is 5432 located. */ 5433 asection *sec = NULL; 5434 struct mips_elf_link_hash_entry *h = NULL; 5435 /* TRUE if the symbol referred to by this relocation is a local 5436 symbol. */ 5437 bool local_p, was_local_p; 5438 /* TRUE if the symbol referred to by this relocation is a section 5439 symbol. */ 5440 bool section_p = false; 5441 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */ 5442 bool gp_disp_p = false; 5443 /* TRUE if the symbol referred to by this relocation is 5444 "__gnu_local_gp". */ 5445 bool gnu_local_gp_p = false; 5446 Elf_Internal_Shdr *symtab_hdr; 5447 size_t extsymoff; 5448 unsigned long r_symndx; 5449 int r_type; 5450 /* TRUE if overflow occurred during the calculation of the 5451 relocation value. */ 5452 bool overflowed_p; 5453 /* TRUE if this relocation refers to a MIPS16 function. */ 5454 bool target_is_16_bit_code_p = false; 5455 bool target_is_micromips_code_p = false; 5456 struct mips_elf_link_hash_table *htab; 5457 bfd *dynobj; 5458 bool resolved_to_zero; 5459 5460 dynobj = elf_hash_table (info)->dynobj; 5461 htab = mips_elf_hash_table (info); 5462 BFD_ASSERT (htab != NULL); 5463 5464 /* Parse the relocation. */ 5465 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); 5466 r_type = ELF_R_TYPE (input_bfd, relocation->r_info); 5467 p = (input_section->output_section->vma 5468 + input_section->output_offset 5469 + relocation->r_offset); 5470 5471 /* Assume that there will be no overflow. */ 5472 overflowed_p = false; 5473 5474 /* Figure out whether or not the symbol is local, and get the offset 5475 used in the array of hash table entries. */ 5476 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 5477 local_p = mips_elf_local_relocation_p (input_bfd, relocation, 5478 local_sections); 5479 was_local_p = local_p; 5480 if (! elf_bad_symtab (input_bfd)) 5481 extsymoff = symtab_hdr->sh_info; 5482 else 5483 { 5484 /* The symbol table does not follow the rule that local symbols 5485 must come before globals. */ 5486 extsymoff = 0; 5487 } 5488 5489 /* Figure out the value of the symbol. */ 5490 if (local_p) 5491 { 5492 bool micromips_p = MICROMIPS_P (abfd); 5493 Elf_Internal_Sym *sym; 5494 5495 sym = local_syms + r_symndx; 5496 sec = local_sections[r_symndx]; 5497 5498 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION; 5499 5500 symbol = sec->output_section->vma + sec->output_offset; 5501 if (!section_p || (sec->flags & SEC_MERGE)) 5502 symbol += sym->st_value; 5503 if ((sec->flags & SEC_MERGE) && section_p) 5504 { 5505 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend); 5506 addend -= symbol; 5507 addend += sec->output_section->vma + sec->output_offset; 5508 } 5509 5510 /* MIPS16/microMIPS text labels should be treated as odd. */ 5511 if (ELF_ST_IS_COMPRESSED (sym->st_other)) 5512 ++symbol; 5513 5514 /* Record the name of this symbol, for our caller. */ 5515 *namep = bfd_elf_string_from_elf_section (input_bfd, 5516 symtab_hdr->sh_link, 5517 sym->st_name); 5518 if (*namep == NULL || **namep == '\0') 5519 *namep = bfd_section_name (sec); 5520 5521 /* For relocations against a section symbol and ones against no 5522 symbol (absolute relocations) infer the ISA mode from the addend. */ 5523 if (section_p || r_symndx == STN_UNDEF) 5524 { 5525 target_is_16_bit_code_p = (addend & 1) && !micromips_p; 5526 target_is_micromips_code_p = (addend & 1) && micromips_p; 5527 } 5528 /* For relocations against an absolute symbol infer the ISA mode 5529 from the value of the symbol plus addend. */ 5530 else if (bfd_is_abs_section (sec)) 5531 { 5532 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p; 5533 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p; 5534 } 5535 /* Otherwise just use the regular symbol annotation available. */ 5536 else 5537 { 5538 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other); 5539 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other); 5540 } 5541 } 5542 else 5543 { 5544 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */ 5545 5546 /* For global symbols we look up the symbol in the hash-table. */ 5547 h = ((struct mips_elf_link_hash_entry *) 5548 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]); 5549 /* Find the real hash-table entry for this symbol. */ 5550 while (h->root.root.type == bfd_link_hash_indirect 5551 || h->root.root.type == bfd_link_hash_warning) 5552 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; 5553 5554 /* Record the name of this symbol, for our caller. */ 5555 *namep = h->root.root.root.string; 5556 5557 /* See if this is the special _gp_disp symbol. Note that such a 5558 symbol must always be a global symbol. */ 5559 if (strcmp (*namep, "_gp_disp") == 0 5560 && ! NEWABI_P (input_bfd)) 5561 { 5562 /* Relocations against _gp_disp are permitted only with 5563 R_MIPS_HI16 and R_MIPS_LO16 relocations. */ 5564 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type)) 5565 return bfd_reloc_notsupported; 5566 5567 gp_disp_p = true; 5568 } 5569 /* See if this is the special _gp symbol. Note that such a 5570 symbol must always be a global symbol. */ 5571 else if (strcmp (*namep, "__gnu_local_gp") == 0) 5572 gnu_local_gp_p = true; 5573 5574 5575 /* If this symbol is defined, calculate its address. Note that 5576 _gp_disp is a magic symbol, always implicitly defined by the 5577 linker, so it's inappropriate to check to see whether or not 5578 its defined. */ 5579 else if ((h->root.root.type == bfd_link_hash_defined 5580 || h->root.root.type == bfd_link_hash_defweak) 5581 && h->root.root.u.def.section) 5582 { 5583 sec = h->root.root.u.def.section; 5584 if (sec->output_section) 5585 symbol = (h->root.root.u.def.value 5586 + sec->output_section->vma 5587 + sec->output_offset); 5588 else 5589 symbol = h->root.root.u.def.value; 5590 } 5591 else if (h->root.root.type == bfd_link_hash_undefweak) 5592 /* We allow relocations against undefined weak symbols, giving 5593 it the value zero, so that you can undefined weak functions 5594 and check to see if they exist by looking at their 5595 addresses. */ 5596 symbol = 0; 5597 else if (info->unresolved_syms_in_objects == RM_IGNORE 5598 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT) 5599 symbol = 0; 5600 else if (strcmp (*namep, SGI_COMPAT (input_bfd) 5601 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0) 5602 { 5603 /* If this is a dynamic link, we should have created a 5604 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol 5605 in _bfd_mips_elf_create_dynamic_sections. 5606 Otherwise, we should define the symbol with a value of 0. 5607 FIXME: It should probably get into the symbol table 5608 somehow as well. */ 5609 BFD_ASSERT (! bfd_link_pic (info)); 5610 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL); 5611 symbol = 0; 5612 } 5613 else if (ELF_MIPS_IS_OPTIONAL (h->root.other)) 5614 { 5615 /* This is an optional symbol - an Irix specific extension to the 5616 ELF spec. Ignore it for now. 5617 XXX - FIXME - there is more to the spec for OPTIONAL symbols 5618 than simply ignoring them, but we do not handle this for now. 5619 For information see the "64-bit ELF Object File Specification" 5620 which is available from here: 5621 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */ 5622 symbol = 0; 5623 } 5624 else 5625 { 5626 bool reject_undefined 5627 = ((info->unresolved_syms_in_objects == RM_DIAGNOSE 5628 && !info->warn_unresolved_syms) 5629 || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT); 5630 5631 info->callbacks->undefined_symbol 5632 (info, h->root.root.root.string, input_bfd, 5633 input_section, relocation->r_offset, reject_undefined); 5634 5635 if (reject_undefined) 5636 return bfd_reloc_undefined; 5637 5638 symbol = 0; 5639 } 5640 5641 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other); 5642 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other); 5643 } 5644 5645 /* If this is a reference to a 16-bit function with a stub, we need 5646 to redirect the relocation to the stub unless: 5647 5648 (a) the relocation is for a MIPS16 JAL; 5649 5650 (b) the relocation is for a MIPS16 PIC call, and there are no 5651 non-MIPS16 uses of the GOT slot; or 5652 5653 (c) the section allows direct references to MIPS16 functions. */ 5654 if (r_type != R_MIPS16_26 5655 && !bfd_link_relocatable (info) 5656 && ((h != NULL 5657 && h->fn_stub != NULL 5658 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub)) 5659 || (local_p 5660 && mips_elf_tdata (input_bfd)->local_stubs != NULL 5661 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL)) 5662 && !section_allows_mips16_refs_p (input_section)) 5663 { 5664 /* This is a 32- or 64-bit call to a 16-bit function. We should 5665 have already noticed that we were going to need the 5666 stub. */ 5667 if (local_p) 5668 { 5669 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx]; 5670 value = 0; 5671 } 5672 else 5673 { 5674 BFD_ASSERT (h->need_fn_stub); 5675 if (h->la25_stub) 5676 { 5677 /* If a LA25 header for the stub itself exists, point to the 5678 prepended LUI/ADDIU sequence. */ 5679 sec = h->la25_stub->stub_section; 5680 value = h->la25_stub->offset; 5681 } 5682 else 5683 { 5684 sec = h->fn_stub; 5685 value = 0; 5686 } 5687 } 5688 5689 symbol = sec->output_section->vma + sec->output_offset + value; 5690 /* The target is 16-bit, but the stub isn't. */ 5691 target_is_16_bit_code_p = false; 5692 } 5693 /* If this is a MIPS16 call with a stub, that is made through the PLT or 5694 to a standard MIPS function, we need to redirect the call to the stub. 5695 Note that we specifically exclude R_MIPS16_CALL16 from this behavior; 5696 indirect calls should use an indirect stub instead. */ 5697 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info) 5698 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL)) 5699 || (local_p 5700 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL 5701 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL)) 5702 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p)) 5703 { 5704 if (local_p) 5705 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx]; 5706 else 5707 { 5708 /* If both call_stub and call_fp_stub are defined, we can figure 5709 out which one to use by checking which one appears in the input 5710 file. */ 5711 if (h->call_stub != NULL && h->call_fp_stub != NULL) 5712 { 5713 asection *o; 5714 5715 sec = NULL; 5716 for (o = input_bfd->sections; o != NULL; o = o->next) 5717 { 5718 if (CALL_FP_STUB_P (bfd_section_name (o))) 5719 { 5720 sec = h->call_fp_stub; 5721 break; 5722 } 5723 } 5724 if (sec == NULL) 5725 sec = h->call_stub; 5726 } 5727 else if (h->call_stub != NULL) 5728 sec = h->call_stub; 5729 else 5730 sec = h->call_fp_stub; 5731 } 5732 5733 BFD_ASSERT (sec->size > 0); 5734 symbol = sec->output_section->vma + sec->output_offset; 5735 } 5736 /* If this is a direct call to a PIC function, redirect to the 5737 non-PIC stub. */ 5738 else if (h != NULL && h->la25_stub 5739 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type, 5740 target_is_16_bit_code_p)) 5741 { 5742 symbol = (h->la25_stub->stub_section->output_section->vma 5743 + h->la25_stub->stub_section->output_offset 5744 + h->la25_stub->offset); 5745 if (ELF_ST_IS_MICROMIPS (h->root.other)) 5746 symbol |= 1; 5747 } 5748 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT 5749 entry is used if a standard PLT entry has also been made. In this 5750 case the symbol will have been set by mips_elf_set_plt_sym_value 5751 to point to the standard PLT entry, so redirect to the compressed 5752 one. */ 5753 else if ((mips16_branch_reloc_p (r_type) 5754 || micromips_branch_reloc_p (r_type)) 5755 && !bfd_link_relocatable (info) 5756 && h != NULL 5757 && h->use_plt_entry 5758 && h->root.plt.plist->comp_offset != MINUS_ONE 5759 && h->root.plt.plist->mips_offset != MINUS_ONE) 5760 { 5761 bool micromips_p = MICROMIPS_P (abfd); 5762 5763 sec = htab->root.splt; 5764 symbol = (sec->output_section->vma 5765 + sec->output_offset 5766 + htab->plt_header_size 5767 + htab->plt_mips_offset 5768 + h->root.plt.plist->comp_offset 5769 + 1); 5770 5771 target_is_16_bit_code_p = !micromips_p; 5772 target_is_micromips_code_p = micromips_p; 5773 } 5774 5775 /* Make sure MIPS16 and microMIPS are not used together. */ 5776 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p) 5777 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p)) 5778 { 5779 _bfd_error_handler 5780 (_("MIPS16 and microMIPS functions cannot call each other")); 5781 return bfd_reloc_notsupported; 5782 } 5783 5784 /* Calls from 16-bit code to 32-bit code and vice versa require the 5785 mode change. However, we can ignore calls to undefined weak symbols, 5786 which should never be executed at runtime. This exception is important 5787 because the assembly writer may have "known" that any definition of the 5788 symbol would be 16-bit code, and that direct jumps were therefore 5789 acceptable. */ 5790 *cross_mode_jump_p = (!bfd_link_relocatable (info) 5791 && !(h && h->root.root.type == bfd_link_hash_undefweak) 5792 && ((mips16_branch_reloc_p (r_type) 5793 && !target_is_16_bit_code_p) 5794 || (micromips_branch_reloc_p (r_type) 5795 && !target_is_micromips_code_p) 5796 || ((branch_reloc_p (r_type) 5797 || r_type == R_MIPS_JALR) 5798 && (target_is_16_bit_code_p 5799 || target_is_micromips_code_p)))); 5800 5801 resolved_to_zero = (h != NULL 5802 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->root)); 5803 5804 switch (r_type) 5805 { 5806 case R_MIPS16_CALL16: 5807 case R_MIPS16_GOT16: 5808 case R_MIPS_CALL16: 5809 case R_MIPS_GOT16: 5810 case R_MIPS_GOT_PAGE: 5811 case R_MIPS_GOT_DISP: 5812 case R_MIPS_GOT_LO16: 5813 case R_MIPS_CALL_LO16: 5814 case R_MICROMIPS_CALL16: 5815 case R_MICROMIPS_GOT16: 5816 case R_MICROMIPS_GOT_PAGE: 5817 case R_MICROMIPS_GOT_DISP: 5818 case R_MICROMIPS_GOT_LO16: 5819 case R_MICROMIPS_CALL_LO16: 5820 if (resolved_to_zero 5821 && !bfd_link_relocatable (info) 5822 && mips_elf_nullify_got_load (input_bfd, contents, 5823 relocation, howto, true)) 5824 return bfd_reloc_continue; 5825 5826 /* Fall through. */ 5827 case R_MIPS_GOT_HI16: 5828 case R_MIPS_CALL_HI16: 5829 case R_MICROMIPS_GOT_HI16: 5830 case R_MICROMIPS_CALL_HI16: 5831 if (resolved_to_zero 5832 && htab->use_absolute_zero 5833 && bfd_link_pic (info)) 5834 { 5835 /* Redirect to the special `__gnu_absolute_zero' symbol. */ 5836 h = mips_elf_link_hash_lookup (htab, "__gnu_absolute_zero", 5837 false, false, false); 5838 BFD_ASSERT (h != NULL); 5839 } 5840 break; 5841 } 5842 5843 local_p = (h == NULL || mips_use_local_got_p (info, h)); 5844 5845 gp0 = _bfd_get_gp_value (input_bfd); 5846 gp = _bfd_get_gp_value (abfd); 5847 if (htab->got_info) 5848 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd); 5849 5850 if (gnu_local_gp_p) 5851 symbol = gp; 5852 5853 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent 5854 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the 5855 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */ 5856 if (got_page_reloc_p (r_type) && !local_p) 5857 { 5858 r_type = (micromips_reloc_p (r_type) 5859 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP); 5860 addend = 0; 5861 } 5862 5863 /* If we haven't already determined the GOT offset, and we're going 5864 to need it, get it now. */ 5865 switch (r_type) 5866 { 5867 case R_MIPS16_CALL16: 5868 case R_MIPS16_GOT16: 5869 case R_MIPS_CALL16: 5870 case R_MIPS_GOT16: 5871 case R_MIPS_GOT_DISP: 5872 case R_MIPS_GOT_HI16: 5873 case R_MIPS_CALL_HI16: 5874 case R_MIPS_GOT_LO16: 5875 case R_MIPS_CALL_LO16: 5876 case R_MICROMIPS_CALL16: 5877 case R_MICROMIPS_GOT16: 5878 case R_MICROMIPS_GOT_DISP: 5879 case R_MICROMIPS_GOT_HI16: 5880 case R_MICROMIPS_CALL_HI16: 5881 case R_MICROMIPS_GOT_LO16: 5882 case R_MICROMIPS_CALL_LO16: 5883 case R_MIPS_TLS_GD: 5884 case R_MIPS_TLS_GOTTPREL: 5885 case R_MIPS_TLS_LDM: 5886 case R_MIPS16_TLS_GD: 5887 case R_MIPS16_TLS_GOTTPREL: 5888 case R_MIPS16_TLS_LDM: 5889 case R_MICROMIPS_TLS_GD: 5890 case R_MICROMIPS_TLS_GOTTPREL: 5891 case R_MICROMIPS_TLS_LDM: 5892 /* Find the index into the GOT where this value is located. */ 5893 if (tls_ldm_reloc_p (r_type)) 5894 { 5895 g = mips_elf_local_got_index (abfd, input_bfd, info, 5896 0, 0, NULL, r_type); 5897 if (g == MINUS_ONE) 5898 return bfd_reloc_outofrange; 5899 } 5900 else if (!local_p) 5901 { 5902 /* On VxWorks, CALL relocations should refer to the .got.plt 5903 entry, which is initialized to point at the PLT stub. */ 5904 if (htab->root.target_os == is_vxworks 5905 && (call_hi16_reloc_p (r_type) 5906 || call_lo16_reloc_p (r_type) 5907 || call16_reloc_p (r_type))) 5908 { 5909 BFD_ASSERT (addend == 0); 5910 BFD_ASSERT (h->root.needs_plt); 5911 g = mips_elf_gotplt_index (info, &h->root); 5912 } 5913 else 5914 { 5915 BFD_ASSERT (addend == 0); 5916 g = mips_elf_global_got_index (abfd, info, input_bfd, 5917 &h->root, r_type); 5918 if (!TLS_RELOC_P (r_type) 5919 && !elf_hash_table (info)->dynamic_sections_created) 5920 /* This is a static link. We must initialize the GOT entry. */ 5921 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g); 5922 } 5923 } 5924 else if (htab->root.target_os != is_vxworks 5925 && (call16_reloc_p (r_type) || got16_reloc_p (r_type))) 5926 /* The calculation below does not involve "g". */ 5927 break; 5928 else 5929 { 5930 g = mips_elf_local_got_index (abfd, input_bfd, info, 5931 symbol + addend, r_symndx, h, r_type); 5932 if (g == MINUS_ONE) 5933 return bfd_reloc_outofrange; 5934 } 5935 5936 /* Convert GOT indices to actual offsets. */ 5937 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g); 5938 break; 5939 } 5940 5941 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__ 5942 symbols are resolved by the loader. Add them to .rela.dyn. */ 5943 if (h != NULL && is_gott_symbol (info, &h->root)) 5944 { 5945 Elf_Internal_Rela outrel; 5946 bfd_byte *loc; 5947 asection *s; 5948 5949 s = mips_elf_rel_dyn_section (info, false); 5950 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela); 5951 5952 outrel.r_offset = (input_section->output_section->vma 5953 + input_section->output_offset 5954 + relocation->r_offset); 5955 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type); 5956 outrel.r_addend = addend; 5957 bfd_elf32_swap_reloca_out (abfd, &outrel, loc); 5958 5959 /* If we've written this relocation for a readonly section, 5960 we need to set DF_TEXTREL again, so that we do not delete the 5961 DT_TEXTREL tag. */ 5962 if (MIPS_ELF_READONLY_SECTION (input_section)) 5963 info->flags |= DF_TEXTREL; 5964 5965 *valuep = 0; 5966 return bfd_reloc_ok; 5967 } 5968 5969 /* Figure out what kind of relocation is being performed. */ 5970 switch (r_type) 5971 { 5972 case R_MIPS_NONE: 5973 return bfd_reloc_continue; 5974 5975 case R_MIPS_16: 5976 if (howto->partial_inplace) 5977 addend = _bfd_mips_elf_sign_extend (addend, 16); 5978 value = symbol + addend; 5979 overflowed_p = mips_elf_overflow_p (value, 16); 5980 break; 5981 5982 case R_MIPS_32: 5983 case R_MIPS_REL32: 5984 case R_MIPS_64: 5985 if ((bfd_link_pic (info) 5986 || (htab->root.dynamic_sections_created 5987 && h != NULL 5988 && h->root.def_dynamic 5989 && !h->root.def_regular 5990 && !h->has_static_relocs)) 5991 && r_symndx != STN_UNDEF 5992 && (h == NULL 5993 || h->root.root.type != bfd_link_hash_undefweak 5994 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT 5995 && !resolved_to_zero)) 5996 && (input_section->flags & SEC_ALLOC) != 0) 5997 { 5998 /* If we're creating a shared library, then we can't know 5999 where the symbol will end up. So, we create a relocation 6000 record in the output, and leave the job up to the dynamic 6001 linker. We must do the same for executable references to 6002 shared library symbols, unless we've decided to use copy 6003 relocs or PLTs instead. */ 6004 value = addend; 6005 if (!mips_elf_create_dynamic_relocation (abfd, 6006 info, 6007 relocation, 6008 h, 6009 sec, 6010 symbol, 6011 &value, 6012 input_section)) 6013 return bfd_reloc_undefined; 6014 } 6015 else 6016 { 6017 if (r_type != R_MIPS_REL32) 6018 value = symbol + addend; 6019 else 6020 value = addend; 6021 } 6022 value &= howto->dst_mask; 6023 break; 6024 6025 case R_MIPS_PC32: 6026 value = symbol + addend - p; 6027 value &= howto->dst_mask; 6028 break; 6029 6030 case R_MIPS16_26: 6031 /* The calculation for R_MIPS16_26 is just the same as for an 6032 R_MIPS_26. It's only the storage of the relocated field into 6033 the output file that's different. That's handled in 6034 mips_elf_perform_relocation. So, we just fall through to the 6035 R_MIPS_26 case here. */ 6036 case R_MIPS_26: 6037 case R_MICROMIPS_26_S1: 6038 { 6039 unsigned int shift; 6040 6041 /* Shift is 2, unusually, for microMIPS JALX. */ 6042 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2; 6043 6044 if (howto->partial_inplace && !section_p) 6045 value = _bfd_mips_elf_sign_extend (addend, 26 + shift); 6046 else 6047 value = addend; 6048 value += symbol; 6049 6050 /* Make sure the target of a jump is suitably aligned. Bit 0 must 6051 be the correct ISA mode selector except for weak undefined 6052 symbols. */ 6053 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6054 && (*cross_mode_jump_p 6055 ? (value & 3) != (r_type == R_MIPS_26) 6056 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26))) 6057 return bfd_reloc_outofrange; 6058 6059 value >>= shift; 6060 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6061 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift)); 6062 value &= howto->dst_mask; 6063 } 6064 break; 6065 6066 case R_MIPS_TLS_DTPREL_HI16: 6067 case R_MIPS16_TLS_DTPREL_HI16: 6068 case R_MICROMIPS_TLS_DTPREL_HI16: 6069 value = (mips_elf_high (addend + symbol - dtprel_base (info)) 6070 & howto->dst_mask); 6071 break; 6072 6073 case R_MIPS_TLS_DTPREL_LO16: 6074 case R_MIPS_TLS_DTPREL32: 6075 case R_MIPS_TLS_DTPREL64: 6076 case R_MIPS16_TLS_DTPREL_LO16: 6077 case R_MICROMIPS_TLS_DTPREL_LO16: 6078 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask; 6079 break; 6080 6081 case R_MIPS_TLS_TPREL_HI16: 6082 case R_MIPS16_TLS_TPREL_HI16: 6083 case R_MICROMIPS_TLS_TPREL_HI16: 6084 value = (mips_elf_high (addend + symbol - tprel_base (info)) 6085 & howto->dst_mask); 6086 break; 6087 6088 case R_MIPS_TLS_TPREL_LO16: 6089 case R_MIPS_TLS_TPREL32: 6090 case R_MIPS_TLS_TPREL64: 6091 case R_MIPS16_TLS_TPREL_LO16: 6092 case R_MICROMIPS_TLS_TPREL_LO16: 6093 value = (symbol + addend - tprel_base (info)) & howto->dst_mask; 6094 break; 6095 6096 case R_MIPS_HI16: 6097 case R_MIPS16_HI16: 6098 case R_MICROMIPS_HI16: 6099 if (!gp_disp_p) 6100 { 6101 value = mips_elf_high (addend + symbol); 6102 value &= howto->dst_mask; 6103 } 6104 else 6105 { 6106 /* For MIPS16 ABI code we generate this sequence 6107 0: li $v0,%hi(_gp_disp) 6108 4: addiupc $v1,%lo(_gp_disp) 6109 8: sll $v0,16 6110 12: addu $v0,$v1 6111 14: move $gp,$v0 6112 So the offsets of hi and lo relocs are the same, but the 6113 base $pc is that used by the ADDIUPC instruction at $t9 + 4. 6114 ADDIUPC clears the low two bits of the instruction address, 6115 so the base is ($t9 + 4) & ~3. */ 6116 if (r_type == R_MIPS16_HI16) 6117 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3)); 6118 /* The microMIPS .cpload sequence uses the same assembly 6119 instructions as the traditional psABI version, but the 6120 incoming $t9 has the low bit set. */ 6121 else if (r_type == R_MICROMIPS_HI16) 6122 value = mips_elf_high (addend + gp - p - 1); 6123 else 6124 value = mips_elf_high (addend + gp - p); 6125 } 6126 break; 6127 6128 case R_MIPS_LO16: 6129 case R_MIPS16_LO16: 6130 case R_MICROMIPS_LO16: 6131 case R_MICROMIPS_HI0_LO16: 6132 if (!gp_disp_p) 6133 value = (symbol + addend) & howto->dst_mask; 6134 else 6135 { 6136 /* See the comment for R_MIPS16_HI16 above for the reason 6137 for this conditional. */ 6138 if (r_type == R_MIPS16_LO16) 6139 value = addend + gp - (p & ~(bfd_vma) 0x3); 6140 else if (r_type == R_MICROMIPS_LO16 6141 || r_type == R_MICROMIPS_HI0_LO16) 6142 value = addend + gp - p + 3; 6143 else 6144 value = addend + gp - p + 4; 6145 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation 6146 for overflow. But, on, say, IRIX5, relocations against 6147 _gp_disp are normally generated from the .cpload 6148 pseudo-op. It generates code that normally looks like 6149 this: 6150 6151 lui $gp,%hi(_gp_disp) 6152 addiu $gp,$gp,%lo(_gp_disp) 6153 addu $gp,$gp,$t9 6154 6155 Here $t9 holds the address of the function being called, 6156 as required by the MIPS ELF ABI. The R_MIPS_LO16 6157 relocation can easily overflow in this situation, but the 6158 R_MIPS_HI16 relocation will handle the overflow. 6159 Therefore, we consider this a bug in the MIPS ABI, and do 6160 not check for overflow here. */ 6161 } 6162 break; 6163 6164 case R_MIPS_LITERAL: 6165 case R_MICROMIPS_LITERAL: 6166 /* Because we don't merge literal sections, we can handle this 6167 just like R_MIPS_GPREL16. In the long run, we should merge 6168 shared literals, and then we will need to additional work 6169 here. */ 6170 6171 /* Fall through. */ 6172 6173 case R_MIPS16_GPREL: 6174 /* The R_MIPS16_GPREL performs the same calculation as 6175 R_MIPS_GPREL16, but stores the relocated bits in a different 6176 order. We don't need to do anything special here; the 6177 differences are handled in mips_elf_perform_relocation. */ 6178 case R_MIPS_GPREL16: 6179 case R_MICROMIPS_GPREL7_S2: 6180 case R_MICROMIPS_GPREL16: 6181 /* Only sign-extend the addend if it was extracted from the 6182 instruction. If the addend was separate, leave it alone, 6183 otherwise we may lose significant bits. */ 6184 if (howto->partial_inplace) 6185 addend = _bfd_mips_elf_sign_extend (addend, 16); 6186 value = symbol + addend - gp; 6187 /* If the symbol was local, any earlier relocatable links will 6188 have adjusted its addend with the gp offset, so compensate 6189 for that now. Don't do it for symbols forced local in this 6190 link, though, since they won't have had the gp offset applied 6191 to them before. */ 6192 if (was_local_p) 6193 value += gp0; 6194 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6195 overflowed_p = mips_elf_overflow_p (value, 16); 6196 break; 6197 6198 case R_MIPS16_GOT16: 6199 case R_MIPS16_CALL16: 6200 case R_MIPS_GOT16: 6201 case R_MIPS_CALL16: 6202 case R_MICROMIPS_GOT16: 6203 case R_MICROMIPS_CALL16: 6204 /* VxWorks does not have separate local and global semantics for 6205 R_MIPS*_GOT16; every relocation evaluates to "G". */ 6206 if (htab->root.target_os != is_vxworks && local_p) 6207 { 6208 value = mips_elf_got16_entry (abfd, input_bfd, info, 6209 symbol + addend, !was_local_p); 6210 if (value == MINUS_ONE) 6211 return bfd_reloc_outofrange; 6212 value 6213 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value); 6214 overflowed_p = mips_elf_overflow_p (value, 16); 6215 break; 6216 } 6217 6218 /* Fall through. */ 6219 6220 case R_MIPS_TLS_GD: 6221 case R_MIPS_TLS_GOTTPREL: 6222 case R_MIPS_TLS_LDM: 6223 case R_MIPS_GOT_DISP: 6224 case R_MIPS16_TLS_GD: 6225 case R_MIPS16_TLS_GOTTPREL: 6226 case R_MIPS16_TLS_LDM: 6227 case R_MICROMIPS_TLS_GD: 6228 case R_MICROMIPS_TLS_GOTTPREL: 6229 case R_MICROMIPS_TLS_LDM: 6230 case R_MICROMIPS_GOT_DISP: 6231 value = g; 6232 overflowed_p = mips_elf_overflow_p (value, 16); 6233 break; 6234 6235 case R_MIPS_GPREL32: 6236 value = (addend + symbol + gp0 - gp); 6237 if (!save_addend) 6238 value &= howto->dst_mask; 6239 break; 6240 6241 case R_MIPS_PC16: 6242 case R_MIPS_GNU_REL16_S2: 6243 if (howto->partial_inplace) 6244 addend = _bfd_mips_elf_sign_extend (addend, 18); 6245 6246 /* No need to exclude weak undefined symbols here as they resolve 6247 to 0 and never set `*cross_mode_jump_p', so this alignment check 6248 will never trigger for them. */ 6249 if (*cross_mode_jump_p 6250 ? ((symbol + addend) & 3) != 1 6251 : ((symbol + addend) & 3) != 0) 6252 return bfd_reloc_outofrange; 6253 6254 value = symbol + addend - p; 6255 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6256 overflowed_p = mips_elf_overflow_p (value, 18); 6257 value >>= howto->rightshift; 6258 value &= howto->dst_mask; 6259 break; 6260 6261 case R_MIPS16_PC16_S1: 6262 if (howto->partial_inplace) 6263 addend = _bfd_mips_elf_sign_extend (addend, 17); 6264 6265 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6266 && (*cross_mode_jump_p 6267 ? ((symbol + addend) & 3) != 0 6268 : ((symbol + addend) & 1) == 0)) 6269 return bfd_reloc_outofrange; 6270 6271 value = symbol + addend - p; 6272 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6273 overflowed_p = mips_elf_overflow_p (value, 17); 6274 value >>= howto->rightshift; 6275 value &= howto->dst_mask; 6276 break; 6277 6278 case R_MIPS_PC21_S2: 6279 if (howto->partial_inplace) 6280 addend = _bfd_mips_elf_sign_extend (addend, 23); 6281 6282 if ((symbol + addend) & 3) 6283 return bfd_reloc_outofrange; 6284 6285 value = symbol + addend - p; 6286 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6287 overflowed_p = mips_elf_overflow_p (value, 23); 6288 value >>= howto->rightshift; 6289 value &= howto->dst_mask; 6290 break; 6291 6292 case R_MIPS_PC26_S2: 6293 if (howto->partial_inplace) 6294 addend = _bfd_mips_elf_sign_extend (addend, 28); 6295 6296 if ((symbol + addend) & 3) 6297 return bfd_reloc_outofrange; 6298 6299 value = symbol + addend - p; 6300 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6301 overflowed_p = mips_elf_overflow_p (value, 28); 6302 value >>= howto->rightshift; 6303 value &= howto->dst_mask; 6304 break; 6305 6306 case R_MIPS_PC18_S3: 6307 if (howto->partial_inplace) 6308 addend = _bfd_mips_elf_sign_extend (addend, 21); 6309 6310 if ((symbol + addend) & 7) 6311 return bfd_reloc_outofrange; 6312 6313 value = symbol + addend - ((p | 7) ^ 7); 6314 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6315 overflowed_p = mips_elf_overflow_p (value, 21); 6316 value >>= howto->rightshift; 6317 value &= howto->dst_mask; 6318 break; 6319 6320 case R_MIPS_PC19_S2: 6321 if (howto->partial_inplace) 6322 addend = _bfd_mips_elf_sign_extend (addend, 21); 6323 6324 if ((symbol + addend) & 3) 6325 return bfd_reloc_outofrange; 6326 6327 value = symbol + addend - p; 6328 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6329 overflowed_p = mips_elf_overflow_p (value, 21); 6330 value >>= howto->rightshift; 6331 value &= howto->dst_mask; 6332 break; 6333 6334 case R_MIPS_PCHI16: 6335 value = mips_elf_high (symbol + addend - p); 6336 value &= howto->dst_mask; 6337 break; 6338 6339 case R_MIPS_PCLO16: 6340 if (howto->partial_inplace) 6341 addend = _bfd_mips_elf_sign_extend (addend, 16); 6342 value = symbol + addend - p; 6343 value &= howto->dst_mask; 6344 break; 6345 6346 case R_MICROMIPS_PC7_S1: 6347 if (howto->partial_inplace) 6348 addend = _bfd_mips_elf_sign_extend (addend, 8); 6349 6350 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6351 && (*cross_mode_jump_p 6352 ? ((symbol + addend + 2) & 3) != 0 6353 : ((symbol + addend + 2) & 1) == 0)) 6354 return bfd_reloc_outofrange; 6355 6356 value = symbol + addend - p; 6357 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6358 overflowed_p = mips_elf_overflow_p (value, 8); 6359 value >>= howto->rightshift; 6360 value &= howto->dst_mask; 6361 break; 6362 6363 case R_MICROMIPS_PC10_S1: 6364 if (howto->partial_inplace) 6365 addend = _bfd_mips_elf_sign_extend (addend, 11); 6366 6367 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6368 && (*cross_mode_jump_p 6369 ? ((symbol + addend + 2) & 3) != 0 6370 : ((symbol + addend + 2) & 1) == 0)) 6371 return bfd_reloc_outofrange; 6372 6373 value = symbol + addend - p; 6374 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6375 overflowed_p = mips_elf_overflow_p (value, 11); 6376 value >>= howto->rightshift; 6377 value &= howto->dst_mask; 6378 break; 6379 6380 case R_MICROMIPS_PC16_S1: 6381 if (howto->partial_inplace) 6382 addend = _bfd_mips_elf_sign_extend (addend, 17); 6383 6384 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6385 && (*cross_mode_jump_p 6386 ? ((symbol + addend) & 3) != 0 6387 : ((symbol + addend) & 1) == 0)) 6388 return bfd_reloc_outofrange; 6389 6390 value = symbol + addend - p; 6391 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6392 overflowed_p = mips_elf_overflow_p (value, 17); 6393 value >>= howto->rightshift; 6394 value &= howto->dst_mask; 6395 break; 6396 6397 case R_MICROMIPS_PC23_S2: 6398 if (howto->partial_inplace) 6399 addend = _bfd_mips_elf_sign_extend (addend, 25); 6400 value = symbol + addend - ((p | 3) ^ 3); 6401 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6402 overflowed_p = mips_elf_overflow_p (value, 25); 6403 value >>= howto->rightshift; 6404 value &= howto->dst_mask; 6405 break; 6406 6407 case R_MIPS_GOT_HI16: 6408 case R_MIPS_CALL_HI16: 6409 case R_MICROMIPS_GOT_HI16: 6410 case R_MICROMIPS_CALL_HI16: 6411 /* We're allowed to handle these two relocations identically. 6412 The dynamic linker is allowed to handle the CALL relocations 6413 differently by creating a lazy evaluation stub. */ 6414 value = g; 6415 value = mips_elf_high (value); 6416 value &= howto->dst_mask; 6417 break; 6418 6419 case R_MIPS_GOT_LO16: 6420 case R_MIPS_CALL_LO16: 6421 case R_MICROMIPS_GOT_LO16: 6422 case R_MICROMIPS_CALL_LO16: 6423 value = g & howto->dst_mask; 6424 break; 6425 6426 case R_MIPS_GOT_PAGE: 6427 case R_MICROMIPS_GOT_PAGE: 6428 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL); 6429 if (value == MINUS_ONE) 6430 return bfd_reloc_outofrange; 6431 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value); 6432 overflowed_p = mips_elf_overflow_p (value, 16); 6433 break; 6434 6435 case R_MIPS_GOT_OFST: 6436 case R_MICROMIPS_GOT_OFST: 6437 if (local_p) 6438 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value); 6439 else 6440 value = addend; 6441 overflowed_p = mips_elf_overflow_p (value, 16); 6442 break; 6443 6444 case R_MIPS_SUB: 6445 case R_MICROMIPS_SUB: 6446 value = symbol - addend; 6447 value &= howto->dst_mask; 6448 break; 6449 6450 case R_MIPS_HIGHER: 6451 case R_MICROMIPS_HIGHER: 6452 value = mips_elf_higher (addend + symbol); 6453 value &= howto->dst_mask; 6454 break; 6455 6456 case R_MIPS_HIGHEST: 6457 case R_MICROMIPS_HIGHEST: 6458 value = mips_elf_highest (addend + symbol); 6459 value &= howto->dst_mask; 6460 break; 6461 6462 case R_MIPS_SCN_DISP: 6463 case R_MICROMIPS_SCN_DISP: 6464 value = symbol + addend - sec->output_offset; 6465 value &= howto->dst_mask; 6466 break; 6467 6468 case R_MIPS_JALR: 6469 case R_MICROMIPS_JALR: 6470 /* This relocation is only a hint. In some cases, we optimize 6471 it into a bal instruction. But we don't try to optimize 6472 when the symbol does not resolve locally. */ 6473 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root)) 6474 return bfd_reloc_continue; 6475 /* We can't optimize cross-mode jumps either. */ 6476 if (*cross_mode_jump_p) 6477 return bfd_reloc_continue; 6478 value = symbol + addend; 6479 /* Neither we can non-instruction-aligned targets. */ 6480 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0) 6481 return bfd_reloc_continue; 6482 break; 6483 6484 case R_MIPS_PJUMP: 6485 case R_MIPS_GNU_VTINHERIT: 6486 case R_MIPS_GNU_VTENTRY: 6487 /* We don't do anything with these at present. */ 6488 return bfd_reloc_continue; 6489 6490 default: 6491 /* An unrecognized relocation type. */ 6492 return bfd_reloc_notsupported; 6493 } 6494 6495 /* Store the VALUE for our caller. */ 6496 *valuep = value; 6497 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok; 6498 } 6499 6500 /* It has been determined that the result of the RELOCATION is the 6501 VALUE. Use HOWTO to place VALUE into the output file at the 6502 appropriate position. The SECTION is the section to which the 6503 relocation applies. 6504 CROSS_MODE_JUMP_P is true if the relocation field 6505 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa. 6506 6507 Returns FALSE if anything goes wrong. */ 6508 6509 static bool 6510 mips_elf_perform_relocation (struct bfd_link_info *info, 6511 reloc_howto_type *howto, 6512 const Elf_Internal_Rela *relocation, 6513 bfd_vma value, bfd *input_bfd, 6514 asection *input_section, bfd_byte *contents, 6515 bool cross_mode_jump_p) 6516 { 6517 bfd_vma x; 6518 bfd_byte *location; 6519 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info); 6520 6521 /* Figure out where the relocation is occurring. */ 6522 location = contents + relocation->r_offset; 6523 6524 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, false, location); 6525 6526 /* Obtain the current value. */ 6527 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents); 6528 6529 /* Clear the field we are setting. */ 6530 x &= ~howto->dst_mask; 6531 6532 /* Set the field. */ 6533 x |= (value & howto->dst_mask); 6534 6535 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */ 6536 if (!cross_mode_jump_p && jal_reloc_p (r_type)) 6537 { 6538 bfd_vma opcode = x >> 26; 6539 6540 if (r_type == R_MIPS16_26 ? opcode == 0x7 6541 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c 6542 : opcode == 0x1d) 6543 { 6544 info->callbacks->einfo 6545 (_("%X%H: unsupported JALX to the same ISA mode\n"), 6546 input_bfd, input_section, relocation->r_offset); 6547 return true; 6548 } 6549 } 6550 if (cross_mode_jump_p && jal_reloc_p (r_type)) 6551 { 6552 bool ok; 6553 bfd_vma opcode = x >> 26; 6554 bfd_vma jalx_opcode; 6555 6556 /* Check to see if the opcode is already JAL or JALX. */ 6557 if (r_type == R_MIPS16_26) 6558 { 6559 ok = ((opcode == 0x6) || (opcode == 0x7)); 6560 jalx_opcode = 0x7; 6561 } 6562 else if (r_type == R_MICROMIPS_26_S1) 6563 { 6564 ok = ((opcode == 0x3d) || (opcode == 0x3c)); 6565 jalx_opcode = 0x3c; 6566 } 6567 else 6568 { 6569 ok = ((opcode == 0x3) || (opcode == 0x1d)); 6570 jalx_opcode = 0x1d; 6571 } 6572 6573 /* If the opcode is not JAL or JALX, there's a problem. We cannot 6574 convert J or JALS to JALX. */ 6575 if (!ok) 6576 { 6577 info->callbacks->einfo 6578 (_("%X%H: unsupported jump between ISA modes; " 6579 "consider recompiling with interlinking enabled\n"), 6580 input_bfd, input_section, relocation->r_offset); 6581 return true; 6582 } 6583 6584 /* Make this the JALX opcode. */ 6585 x = (x & ~(0x3fu << 26)) | (jalx_opcode << 26); 6586 } 6587 else if (cross_mode_jump_p && b_reloc_p (r_type)) 6588 { 6589 bool ok = false; 6590 bfd_vma opcode = x >> 16; 6591 bfd_vma jalx_opcode = 0; 6592 bfd_vma sign_bit = 0; 6593 bfd_vma addr; 6594 bfd_vma dest; 6595 6596 if (r_type == R_MICROMIPS_PC16_S1) 6597 { 6598 ok = opcode == 0x4060; 6599 jalx_opcode = 0x3c; 6600 sign_bit = 0x10000; 6601 value <<= 1; 6602 } 6603 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2) 6604 { 6605 ok = opcode == 0x411; 6606 jalx_opcode = 0x1d; 6607 sign_bit = 0x20000; 6608 value <<= 2; 6609 } 6610 6611 if (ok && !bfd_link_pic (info)) 6612 { 6613 addr = (input_section->output_section->vma 6614 + input_section->output_offset 6615 + relocation->r_offset 6616 + 4); 6617 dest = (addr 6618 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit)); 6619 6620 if ((addr >> 28) << 28 != (dest >> 28) << 28) 6621 { 6622 info->callbacks->einfo 6623 (_("%X%H: cannot convert branch between ISA modes " 6624 "to JALX: relocation out of range\n"), 6625 input_bfd, input_section, relocation->r_offset); 6626 return true; 6627 } 6628 6629 /* Make this the JALX opcode. */ 6630 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26; 6631 } 6632 else if (!mips_elf_hash_table (info)->ignore_branch_isa) 6633 { 6634 info->callbacks->einfo 6635 (_("%X%H: unsupported branch between ISA modes\n"), 6636 input_bfd, input_section, relocation->r_offset); 6637 return true; 6638 } 6639 } 6640 6641 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in 6642 range. */ 6643 if (!bfd_link_relocatable (info) 6644 && !cross_mode_jump_p 6645 && ((JAL_TO_BAL_P (input_bfd) 6646 && r_type == R_MIPS_26 6647 && (x >> 26) == 0x3) /* jal addr */ 6648 || (JALR_TO_BAL_P (input_bfd) 6649 && r_type == R_MIPS_JALR 6650 && x == 0x0320f809) /* jalr t9 */ 6651 || (JR_TO_B_P (input_bfd) 6652 && r_type == R_MIPS_JALR 6653 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */ 6654 { 6655 bfd_vma addr; 6656 bfd_vma dest; 6657 bfd_signed_vma off; 6658 6659 addr = (input_section->output_section->vma 6660 + input_section->output_offset 6661 + relocation->r_offset 6662 + 4); 6663 if (r_type == R_MIPS_26) 6664 dest = (value << 2) | ((addr >> 28) << 28); 6665 else 6666 dest = value; 6667 off = dest - addr; 6668 if (off <= 0x1ffff && off >= -0x20000) 6669 { 6670 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */ 6671 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */ 6672 else 6673 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */ 6674 } 6675 } 6676 6677 /* Put the value into the output. */ 6678 mips_elf_store_contents (howto, relocation, input_bfd, contents, x); 6679 6680 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info), 6681 location); 6682 6683 return true; 6684 } 6685 6686 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL 6687 is the original relocation, which is now being transformed into a 6688 dynamic relocation. The ADDENDP is adjusted if necessary; the 6689 caller should store the result in place of the original addend. */ 6690 6691 static bool 6692 mips_elf_create_dynamic_relocation (bfd *output_bfd, 6693 struct bfd_link_info *info, 6694 const Elf_Internal_Rela *rel, 6695 struct mips_elf_link_hash_entry *h, 6696 asection *sec, bfd_vma symbol, 6697 bfd_vma *addendp, asection *input_section) 6698 { 6699 Elf_Internal_Rela outrel[3]; 6700 asection *sreloc; 6701 bfd *dynobj; 6702 int r_type; 6703 long indx; 6704 bool defined_p; 6705 struct mips_elf_link_hash_table *htab; 6706 6707 htab = mips_elf_hash_table (info); 6708 BFD_ASSERT (htab != NULL); 6709 6710 r_type = ELF_R_TYPE (output_bfd, rel->r_info); 6711 dynobj = elf_hash_table (info)->dynobj; 6712 sreloc = mips_elf_rel_dyn_section (info, false); 6713 BFD_ASSERT (sreloc != NULL); 6714 BFD_ASSERT (sreloc->contents != NULL); 6715 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd) 6716 < sreloc->size); 6717 6718 outrel[0].r_offset = 6719 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset); 6720 if (ABI_64_P (output_bfd)) 6721 { 6722 outrel[1].r_offset = 6723 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset); 6724 outrel[2].r_offset = 6725 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset); 6726 } 6727 6728 if (outrel[0].r_offset == MINUS_ONE) 6729 /* The relocation field has been deleted. */ 6730 return true; 6731 6732 if (outrel[0].r_offset == MINUS_TWO) 6733 { 6734 /* The relocation field has been converted into a relative value of 6735 some sort. Functions like _bfd_elf_write_section_eh_frame expect 6736 the field to be fully relocated, so add in the symbol's value. */ 6737 *addendp += symbol; 6738 return true; 6739 } 6740 6741 /* We must now calculate the dynamic symbol table index to use 6742 in the relocation. */ 6743 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root)) 6744 { 6745 BFD_ASSERT (htab->root.target_os == is_vxworks 6746 || h->global_got_area != GGA_NONE); 6747 indx = h->root.dynindx; 6748 if (SGI_COMPAT (output_bfd)) 6749 defined_p = h->root.def_regular; 6750 else 6751 /* ??? glibc's ld.so just adds the final GOT entry to the 6752 relocation field. It therefore treats relocs against 6753 defined symbols in the same way as relocs against 6754 undefined symbols. */ 6755 defined_p = false; 6756 } 6757 else 6758 { 6759 if (sec != NULL && bfd_is_abs_section (sec)) 6760 indx = 0; 6761 else if (sec == NULL || sec->owner == NULL) 6762 { 6763 bfd_set_error (bfd_error_bad_value); 6764 return false; 6765 } 6766 else 6767 { 6768 indx = elf_section_data (sec->output_section)->dynindx; 6769 if (indx == 0) 6770 { 6771 asection *osec = htab->root.text_index_section; 6772 indx = elf_section_data (osec)->dynindx; 6773 } 6774 if (indx == 0) 6775 abort (); 6776 } 6777 6778 /* Instead of generating a relocation using the section 6779 symbol, we may as well make it a fully relative 6780 relocation. We want to avoid generating relocations to 6781 local symbols because we used to generate them 6782 incorrectly, without adding the original symbol value, 6783 which is mandated by the ABI for section symbols. In 6784 order to give dynamic loaders and applications time to 6785 phase out the incorrect use, we refrain from emitting 6786 section-relative relocations. It's not like they're 6787 useful, after all. This should be a bit more efficient 6788 as well. */ 6789 /* ??? Although this behavior is compatible with glibc's ld.so, 6790 the ABI says that relocations against STN_UNDEF should have 6791 a symbol value of 0. Irix rld honors this, so relocations 6792 against STN_UNDEF have no effect. */ 6793 if (!SGI_COMPAT (output_bfd)) 6794 indx = 0; 6795 defined_p = true; 6796 } 6797 6798 /* If the relocation was previously an absolute relocation and 6799 this symbol will not be referred to by the relocation, we must 6800 adjust it by the value we give it in the dynamic symbol table. 6801 Otherwise leave the job up to the dynamic linker. */ 6802 if (defined_p && r_type != R_MIPS_REL32) 6803 *addendp += symbol; 6804 6805 if (htab->root.target_os == is_vxworks) 6806 /* VxWorks uses non-relative relocations for this. */ 6807 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32); 6808 else 6809 /* The relocation is always an REL32 relocation because we don't 6810 know where the shared library will wind up at load-time. */ 6811 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx, 6812 R_MIPS_REL32); 6813 6814 /* For strict adherence to the ABI specification, we should 6815 generate a R_MIPS_64 relocation record by itself before the 6816 _REL32/_64 record as well, such that the addend is read in as 6817 a 64-bit value (REL32 is a 32-bit relocation, after all). 6818 However, since none of the existing ELF64 MIPS dynamic 6819 loaders seems to care, we don't waste space with these 6820 artificial relocations. If this turns out to not be true, 6821 mips_elf_allocate_dynamic_relocation() should be tweaked so 6822 as to make room for a pair of dynamic relocations per 6823 invocation if ABI_64_P, and here we should generate an 6824 additional relocation record with R_MIPS_64 by itself for a 6825 NULL symbol before this relocation record. */ 6826 outrel[1].r_info = ELF_R_INFO (output_bfd, 0, 6827 ABI_64_P (output_bfd) 6828 ? R_MIPS_64 6829 : R_MIPS_NONE); 6830 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE); 6831 6832 /* Adjust the output offset of the relocation to reference the 6833 correct location in the output file. */ 6834 outrel[0].r_offset += (input_section->output_section->vma 6835 + input_section->output_offset); 6836 outrel[1].r_offset += (input_section->output_section->vma 6837 + input_section->output_offset); 6838 outrel[2].r_offset += (input_section->output_section->vma 6839 + input_section->output_offset); 6840 6841 /* Put the relocation back out. We have to use the special 6842 relocation outputter in the 64-bit case since the 64-bit 6843 relocation format is non-standard. */ 6844 if (ABI_64_P (output_bfd)) 6845 { 6846 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) 6847 (output_bfd, &outrel[0], 6848 (sreloc->contents 6849 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel))); 6850 } 6851 else if (htab->root.target_os == is_vxworks) 6852 { 6853 /* VxWorks uses RELA rather than REL dynamic relocations. */ 6854 outrel[0].r_addend = *addendp; 6855 bfd_elf32_swap_reloca_out 6856 (output_bfd, &outrel[0], 6857 (sreloc->contents 6858 + sreloc->reloc_count * sizeof (Elf32_External_Rela))); 6859 } 6860 else 6861 bfd_elf32_swap_reloc_out 6862 (output_bfd, &outrel[0], 6863 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel))); 6864 6865 /* We've now added another relocation. */ 6866 ++sreloc->reloc_count; 6867 6868 /* Make sure the output section is writable. The dynamic linker 6869 will be writing to it. */ 6870 elf_section_data (input_section->output_section)->this_hdr.sh_flags 6871 |= SHF_WRITE; 6872 6873 /* On IRIX5, make an entry of compact relocation info. */ 6874 if (IRIX_COMPAT (output_bfd) == ict_irix5) 6875 { 6876 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel"); 6877 bfd_byte *cr; 6878 6879 if (scpt) 6880 { 6881 Elf32_crinfo cptrel; 6882 6883 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG); 6884 cptrel.vaddr = (rel->r_offset 6885 + input_section->output_section->vma 6886 + input_section->output_offset); 6887 if (r_type == R_MIPS_REL32) 6888 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32); 6889 else 6890 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD); 6891 mips_elf_set_cr_dist2to (cptrel, 0); 6892 cptrel.konst = *addendp; 6893 6894 cr = (scpt->contents 6895 + sizeof (Elf32_External_compact_rel)); 6896 mips_elf_set_cr_relvaddr (cptrel, 0); 6897 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel, 6898 ((Elf32_External_crinfo *) cr 6899 + scpt->reloc_count)); 6900 ++scpt->reloc_count; 6901 } 6902 } 6903 6904 /* If we've written this relocation for a readonly section, 6905 we need to set DF_TEXTREL again, so that we do not delete the 6906 DT_TEXTREL tag. */ 6907 if (MIPS_ELF_READONLY_SECTION (input_section)) 6908 info->flags |= DF_TEXTREL; 6909 6910 return true; 6911 } 6912 6913 /* Return the MACH for a MIPS e_flags value. */ 6914 6915 unsigned long 6916 _bfd_elf_mips_mach (flagword flags) 6917 { 6918 switch (flags & EF_MIPS_MACH) 6919 { 6920 case E_MIPS_MACH_3900: 6921 return bfd_mach_mips3900; 6922 6923 case E_MIPS_MACH_4010: 6924 return bfd_mach_mips4010; 6925 6926 case E_MIPS_MACH_4100: 6927 return bfd_mach_mips4100; 6928 6929 case E_MIPS_MACH_4111: 6930 return bfd_mach_mips4111; 6931 6932 case E_MIPS_MACH_4120: 6933 return bfd_mach_mips4120; 6934 6935 case E_MIPS_MACH_4650: 6936 return bfd_mach_mips4650; 6937 6938 case E_MIPS_MACH_5400: 6939 return bfd_mach_mips5400; 6940 6941 case E_MIPS_MACH_5500: 6942 return bfd_mach_mips5500; 6943 6944 case E_MIPS_MACH_5900: 6945 return bfd_mach_mips5900; 6946 6947 case E_MIPS_MACH_9000: 6948 return bfd_mach_mips9000; 6949 6950 case E_MIPS_MACH_SB1: 6951 return bfd_mach_mips_sb1; 6952 6953 case E_MIPS_MACH_LS2E: 6954 return bfd_mach_mips_loongson_2e; 6955 6956 case E_MIPS_MACH_LS2F: 6957 return bfd_mach_mips_loongson_2f; 6958 6959 case E_MIPS_MACH_GS464: 6960 return bfd_mach_mips_gs464; 6961 6962 case E_MIPS_MACH_GS464E: 6963 return bfd_mach_mips_gs464e; 6964 6965 case E_MIPS_MACH_GS264E: 6966 return bfd_mach_mips_gs264e; 6967 6968 case E_MIPS_MACH_OCTEON3: 6969 return bfd_mach_mips_octeon3; 6970 6971 case E_MIPS_MACH_OCTEON2: 6972 return bfd_mach_mips_octeon2; 6973 6974 case E_MIPS_MACH_OCTEON: 6975 return bfd_mach_mips_octeon; 6976 6977 case E_MIPS_MACH_XLR: 6978 return bfd_mach_mips_xlr; 6979 6980 case E_MIPS_MACH_IAMR2: 6981 return bfd_mach_mips_interaptiv_mr2; 6982 6983 default: 6984 switch (flags & EF_MIPS_ARCH) 6985 { 6986 default: 6987 case E_MIPS_ARCH_1: 6988 return bfd_mach_mips3000; 6989 6990 case E_MIPS_ARCH_2: 6991 return bfd_mach_mips6000; 6992 6993 case E_MIPS_ARCH_3: 6994 return bfd_mach_mips4000; 6995 6996 case E_MIPS_ARCH_4: 6997 return bfd_mach_mips8000; 6998 6999 case E_MIPS_ARCH_5: 7000 return bfd_mach_mips5; 7001 7002 case E_MIPS_ARCH_32: 7003 return bfd_mach_mipsisa32; 7004 7005 case E_MIPS_ARCH_64: 7006 return bfd_mach_mipsisa64; 7007 7008 case E_MIPS_ARCH_32R2: 7009 return bfd_mach_mipsisa32r2; 7010 7011 case E_MIPS_ARCH_64R2: 7012 return bfd_mach_mipsisa64r2; 7013 7014 case E_MIPS_ARCH_32R6: 7015 return bfd_mach_mipsisa32r6; 7016 7017 case E_MIPS_ARCH_64R6: 7018 return bfd_mach_mipsisa64r6; 7019 } 7020 } 7021 7022 return 0; 7023 } 7024 7025 /* Return printable name for ABI. */ 7026 7027 static inline char * 7028 elf_mips_abi_name (bfd *abfd) 7029 { 7030 flagword flags; 7031 7032 flags = elf_elfheader (abfd)->e_flags; 7033 switch (flags & EF_MIPS_ABI) 7034 { 7035 case 0: 7036 if (ABI_N32_P (abfd)) 7037 return "N32"; 7038 else if (ABI_64_P (abfd)) 7039 return "64"; 7040 else 7041 return "none"; 7042 case E_MIPS_ABI_O32: 7043 return "O32"; 7044 case E_MIPS_ABI_O64: 7045 return "O64"; 7046 case E_MIPS_ABI_EABI32: 7047 return "EABI32"; 7048 case E_MIPS_ABI_EABI64: 7049 return "EABI64"; 7050 default: 7051 return "unknown abi"; 7052 } 7053 } 7054 7055 /* MIPS ELF uses two common sections. One is the usual one, and the 7056 other is for small objects. All the small objects are kept 7057 together, and then referenced via the gp pointer, which yields 7058 faster assembler code. This is what we use for the small common 7059 section. This approach is copied from ecoff.c. */ 7060 static asection mips_elf_scom_section; 7061 static const asymbol mips_elf_scom_symbol = 7062 GLOBAL_SYM_INIT (".scommon", &mips_elf_scom_section); 7063 static asection mips_elf_scom_section = 7064 BFD_FAKE_SECTION (mips_elf_scom_section, &mips_elf_scom_symbol, 7065 ".scommon", 0, SEC_IS_COMMON | SEC_SMALL_DATA); 7066 7067 /* MIPS ELF also uses an acommon section, which represents an 7068 allocated common symbol which may be overridden by a 7069 definition in a shared library. */ 7070 static asection mips_elf_acom_section; 7071 static const asymbol mips_elf_acom_symbol = 7072 GLOBAL_SYM_INIT (".acommon", &mips_elf_acom_section); 7073 static asection mips_elf_acom_section = 7074 BFD_FAKE_SECTION (mips_elf_acom_section, &mips_elf_acom_symbol, 7075 ".acommon", 0, SEC_ALLOC); 7076 7077 /* This is used for both the 32-bit and the 64-bit ABI. */ 7078 7079 void 7080 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym) 7081 { 7082 elf_symbol_type *elfsym; 7083 7084 /* Handle the special MIPS section numbers that a symbol may use. */ 7085 elfsym = (elf_symbol_type *) asym; 7086 switch (elfsym->internal_elf_sym.st_shndx) 7087 { 7088 case SHN_MIPS_ACOMMON: 7089 /* This section is used in a dynamically linked executable file. 7090 It is an allocated common section. The dynamic linker can 7091 either resolve these symbols to something in a shared 7092 library, or it can just leave them here. For our purposes, 7093 we can consider these symbols to be in a new section. */ 7094 asym->section = &mips_elf_acom_section; 7095 break; 7096 7097 case SHN_COMMON: 7098 /* Common symbols less than the GP size are automatically 7099 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */ 7100 if (asym->value > elf_gp_size (abfd) 7101 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS 7102 || IRIX_COMPAT (abfd) == ict_irix6) 7103 break; 7104 /* Fall through. */ 7105 case SHN_MIPS_SCOMMON: 7106 asym->section = &mips_elf_scom_section; 7107 asym->value = elfsym->internal_elf_sym.st_size; 7108 break; 7109 7110 case SHN_MIPS_SUNDEFINED: 7111 asym->section = bfd_und_section_ptr; 7112 break; 7113 7114 case SHN_MIPS_TEXT: 7115 { 7116 asection *section = bfd_get_section_by_name (abfd, ".text"); 7117 7118 if (section != NULL) 7119 { 7120 asym->section = section; 7121 /* MIPS_TEXT is a bit special, the address is not an offset 7122 to the base of the .text section. So subtract the section 7123 base address to make it an offset. */ 7124 asym->value -= section->vma; 7125 } 7126 } 7127 break; 7128 7129 case SHN_MIPS_DATA: 7130 { 7131 asection *section = bfd_get_section_by_name (abfd, ".data"); 7132 7133 if (section != NULL) 7134 { 7135 asym->section = section; 7136 /* MIPS_DATA is a bit special, the address is not an offset 7137 to the base of the .data section. So subtract the section 7138 base address to make it an offset. */ 7139 asym->value -= section->vma; 7140 } 7141 } 7142 break; 7143 } 7144 7145 /* If this is an odd-valued function symbol, assume it's a MIPS16 7146 or microMIPS one. */ 7147 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC 7148 && (asym->value & 1) != 0) 7149 { 7150 asym->value--; 7151 if (MICROMIPS_P (abfd)) 7152 elfsym->internal_elf_sym.st_other 7153 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other); 7154 else 7155 elfsym->internal_elf_sym.st_other 7156 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other); 7157 } 7158 } 7159 7160 /* Implement elf_backend_eh_frame_address_size. This differs from 7161 the default in the way it handles EABI64. 7162 7163 EABI64 was originally specified as an LP64 ABI, and that is what 7164 -mabi=eabi normally gives on a 64-bit target. However, gcc has 7165 historically accepted the combination of -mabi=eabi and -mlong32, 7166 and this ILP32 variation has become semi-official over time. 7167 Both forms use elf32 and have pointer-sized FDE addresses. 7168 7169 If an EABI object was generated by GCC 4.0 or above, it will have 7170 an empty .gcc_compiled_longXX section, where XX is the size of longs 7171 in bits. Unfortunately, ILP32 objects generated by earlier compilers 7172 have no special marking to distinguish them from LP64 objects. 7173 7174 We don't want users of the official LP64 ABI to be punished for the 7175 existence of the ILP32 variant, but at the same time, we don't want 7176 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects. 7177 We therefore take the following approach: 7178 7179 - If ABFD contains a .gcc_compiled_longXX section, use it to 7180 determine the pointer size. 7181 7182 - Otherwise check the type of the first relocation. Assume that 7183 the LP64 ABI is being used if the relocation is of type R_MIPS_64. 7184 7185 - Otherwise punt. 7186 7187 The second check is enough to detect LP64 objects generated by pre-4.0 7188 compilers because, in the kind of output generated by those compilers, 7189 the first relocation will be associated with either a CIE personality 7190 routine or an FDE start address. Furthermore, the compilers never 7191 used a special (non-pointer) encoding for this ABI. 7192 7193 Checking the relocation type should also be safe because there is no 7194 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never 7195 did so. */ 7196 7197 unsigned int 7198 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec) 7199 { 7200 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) 7201 return 8; 7202 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) 7203 { 7204 bool long32_p, long64_p; 7205 7206 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0; 7207 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0; 7208 if (long32_p && long64_p) 7209 return 0; 7210 if (long32_p) 7211 return 4; 7212 if (long64_p) 7213 return 8; 7214 7215 if (sec->reloc_count > 0 7216 && elf_section_data (sec)->relocs != NULL 7217 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info) 7218 == R_MIPS_64)) 7219 return 8; 7220 7221 return 0; 7222 } 7223 return 4; 7224 } 7225 7226 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP 7227 relocations against two unnamed section symbols to resolve to the 7228 same address. For example, if we have code like: 7229 7230 lw $4,%got_disp(.data)($gp) 7231 lw $25,%got_disp(.text)($gp) 7232 jalr $25 7233 7234 then the linker will resolve both relocations to .data and the program 7235 will jump there rather than to .text. 7236 7237 We can work around this problem by giving names to local section symbols. 7238 This is also what the MIPSpro tools do. */ 7239 7240 bool 7241 _bfd_mips_elf_name_local_section_symbols (bfd *abfd) 7242 { 7243 return elf_elfheader (abfd)->e_type == ET_REL && SGI_COMPAT (abfd); 7244 } 7245 7246 /* Work over a section just before writing it out. This routine is 7247 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize 7248 sections that need the SHF_MIPS_GPREL flag by name; there has to be 7249 a better way. */ 7250 7251 bool 7252 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr) 7253 { 7254 if (hdr->sh_type == SHT_MIPS_REGINFO 7255 && hdr->sh_size > 0) 7256 { 7257 bfd_byte buf[4]; 7258 7259 BFD_ASSERT (hdr->contents == NULL); 7260 7261 if (hdr->sh_size != sizeof (Elf32_External_RegInfo)) 7262 { 7263 _bfd_error_handler 7264 (_("%pB: incorrect `.reginfo' section size; " 7265 "expected %" PRIu64 ", got %" PRIu64), 7266 abfd, (uint64_t) sizeof (Elf32_External_RegInfo), 7267 (uint64_t) hdr->sh_size); 7268 bfd_set_error (bfd_error_bad_value); 7269 return false; 7270 } 7271 7272 if (bfd_seek (abfd, 7273 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4, 7274 SEEK_SET) != 0) 7275 return false; 7276 H_PUT_32 (abfd, elf_gp (abfd), buf); 7277 if (bfd_bwrite (buf, 4, abfd) != 4) 7278 return false; 7279 } 7280 7281 if (hdr->sh_type == SHT_MIPS_OPTIONS 7282 && hdr->bfd_section != NULL 7283 && mips_elf_section_data (hdr->bfd_section) != NULL 7284 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL) 7285 { 7286 bfd_byte *contents, *l, *lend; 7287 7288 /* We stored the section contents in the tdata field in the 7289 set_section_contents routine. We save the section contents 7290 so that we don't have to read them again. 7291 At this point we know that elf_gp is set, so we can look 7292 through the section contents to see if there is an 7293 ODK_REGINFO structure. */ 7294 7295 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata; 7296 l = contents; 7297 lend = contents + hdr->sh_size; 7298 while (l + sizeof (Elf_External_Options) <= lend) 7299 { 7300 Elf_Internal_Options intopt; 7301 7302 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, 7303 &intopt); 7304 if (intopt.size < sizeof (Elf_External_Options)) 7305 { 7306 _bfd_error_handler 7307 /* xgettext:c-format */ 7308 (_("%pB: warning: bad `%s' option size %u smaller than" 7309 " its header"), 7310 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size); 7311 break; 7312 } 7313 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) 7314 { 7315 bfd_byte buf[8]; 7316 7317 if (bfd_seek (abfd, 7318 (hdr->sh_offset 7319 + (l - contents) 7320 + sizeof (Elf_External_Options) 7321 + (sizeof (Elf64_External_RegInfo) - 8)), 7322 SEEK_SET) != 0) 7323 return false; 7324 H_PUT_64 (abfd, elf_gp (abfd), buf); 7325 if (bfd_bwrite (buf, 8, abfd) != 8) 7326 return false; 7327 } 7328 else if (intopt.kind == ODK_REGINFO) 7329 { 7330 bfd_byte buf[4]; 7331 7332 if (bfd_seek (abfd, 7333 (hdr->sh_offset 7334 + (l - contents) 7335 + sizeof (Elf_External_Options) 7336 + (sizeof (Elf32_External_RegInfo) - 4)), 7337 SEEK_SET) != 0) 7338 return false; 7339 H_PUT_32 (abfd, elf_gp (abfd), buf); 7340 if (bfd_bwrite (buf, 4, abfd) != 4) 7341 return false; 7342 } 7343 l += intopt.size; 7344 } 7345 } 7346 7347 if (hdr->bfd_section != NULL) 7348 { 7349 const char *name = bfd_section_name (hdr->bfd_section); 7350 7351 /* .sbss is not handled specially here because the GNU/Linux 7352 prelinker can convert .sbss from NOBITS to PROGBITS and 7353 changing it back to NOBITS breaks the binary. The entry in 7354 _bfd_mips_elf_special_sections will ensure the correct flags 7355 are set on .sbss if BFD creates it without reading it from an 7356 input file, and without special handling here the flags set 7357 on it in an input file will be followed. */ 7358 if (strcmp (name, ".sdata") == 0 7359 || strcmp (name, ".lit8") == 0 7360 || strcmp (name, ".lit4") == 0) 7361 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; 7362 else if (strcmp (name, ".srdata") == 0) 7363 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL; 7364 else if (strcmp (name, ".compact_rel") == 0) 7365 hdr->sh_flags = 0; 7366 else if (strcmp (name, ".rtproc") == 0) 7367 { 7368 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0) 7369 { 7370 unsigned int adjust; 7371 7372 adjust = hdr->sh_size % hdr->sh_addralign; 7373 if (adjust != 0) 7374 hdr->sh_size += hdr->sh_addralign - adjust; 7375 } 7376 } 7377 } 7378 7379 return true; 7380 } 7381 7382 /* Handle a MIPS specific section when reading an object file. This 7383 is called when elfcode.h finds a section with an unknown type. 7384 This routine supports both the 32-bit and 64-bit ELF ABI. */ 7385 7386 bool 7387 _bfd_mips_elf_section_from_shdr (bfd *abfd, 7388 Elf_Internal_Shdr *hdr, 7389 const char *name, 7390 int shindex) 7391 { 7392 flagword flags = 0; 7393 7394 /* There ought to be a place to keep ELF backend specific flags, but 7395 at the moment there isn't one. We just keep track of the 7396 sections by their name, instead. Fortunately, the ABI gives 7397 suggested names for all the MIPS specific sections, so we will 7398 probably get away with this. */ 7399 switch (hdr->sh_type) 7400 { 7401 case SHT_MIPS_LIBLIST: 7402 if (strcmp (name, ".liblist") != 0) 7403 return false; 7404 break; 7405 case SHT_MIPS_MSYM: 7406 if (strcmp (name, ".msym") != 0) 7407 return false; 7408 break; 7409 case SHT_MIPS_CONFLICT: 7410 if (strcmp (name, ".conflict") != 0) 7411 return false; 7412 break; 7413 case SHT_MIPS_GPTAB: 7414 if (! startswith (name, ".gptab.")) 7415 return false; 7416 break; 7417 case SHT_MIPS_UCODE: 7418 if (strcmp (name, ".ucode") != 0) 7419 return false; 7420 break; 7421 case SHT_MIPS_DEBUG: 7422 if (strcmp (name, ".mdebug") != 0) 7423 return false; 7424 flags = SEC_DEBUGGING; 7425 break; 7426 case SHT_MIPS_REGINFO: 7427 if (strcmp (name, ".reginfo") != 0 7428 || hdr->sh_size != sizeof (Elf32_External_RegInfo)) 7429 return false; 7430 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE); 7431 break; 7432 case SHT_MIPS_IFACE: 7433 if (strcmp (name, ".MIPS.interfaces") != 0) 7434 return false; 7435 break; 7436 case SHT_MIPS_CONTENT: 7437 if (! startswith (name, ".MIPS.content")) 7438 return false; 7439 break; 7440 case SHT_MIPS_OPTIONS: 7441 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name)) 7442 return false; 7443 break; 7444 case SHT_MIPS_ABIFLAGS: 7445 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name)) 7446 return false; 7447 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE); 7448 break; 7449 case SHT_MIPS_DWARF: 7450 if (! startswith (name, ".debug_") 7451 && ! startswith (name, ".gnu.debuglto_.debug_") 7452 && ! startswith (name, ".zdebug_") 7453 && ! startswith (name, ".gnu.debuglto_.zdebug_")) 7454 return false; 7455 break; 7456 case SHT_MIPS_SYMBOL_LIB: 7457 if (strcmp (name, ".MIPS.symlib") != 0) 7458 return false; 7459 break; 7460 case SHT_MIPS_EVENTS: 7461 if (! startswith (name, ".MIPS.events") 7462 && ! startswith (name, ".MIPS.post_rel")) 7463 return false; 7464 break; 7465 case SHT_MIPS_XHASH: 7466 if (strcmp (name, ".MIPS.xhash") != 0) 7467 return false; 7468 default: 7469 break; 7470 } 7471 7472 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) 7473 return false; 7474 7475 if (hdr->sh_flags & SHF_MIPS_GPREL) 7476 flags |= SEC_SMALL_DATA; 7477 7478 if (flags) 7479 { 7480 if (!bfd_set_section_flags (hdr->bfd_section, 7481 (bfd_section_flags (hdr->bfd_section) 7482 | flags))) 7483 return false; 7484 } 7485 7486 if (hdr->sh_type == SHT_MIPS_ABIFLAGS) 7487 { 7488 Elf_External_ABIFlags_v0 ext; 7489 7490 if (! bfd_get_section_contents (abfd, hdr->bfd_section, 7491 &ext, 0, sizeof ext)) 7492 return false; 7493 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext, 7494 &mips_elf_tdata (abfd)->abiflags); 7495 if (mips_elf_tdata (abfd)->abiflags.version != 0) 7496 return false; 7497 mips_elf_tdata (abfd)->abiflags_valid = true; 7498 } 7499 7500 /* FIXME: We should record sh_info for a .gptab section. */ 7501 7502 /* For a .reginfo section, set the gp value in the tdata information 7503 from the contents of this section. We need the gp value while 7504 processing relocs, so we just get it now. The .reginfo section 7505 is not used in the 64-bit MIPS ELF ABI. */ 7506 if (hdr->sh_type == SHT_MIPS_REGINFO) 7507 { 7508 Elf32_External_RegInfo ext; 7509 Elf32_RegInfo s; 7510 7511 if (! bfd_get_section_contents (abfd, hdr->bfd_section, 7512 &ext, 0, sizeof ext)) 7513 return false; 7514 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s); 7515 elf_gp (abfd) = s.ri_gp_value; 7516 } 7517 7518 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and 7519 set the gp value based on what we find. We may see both 7520 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, 7521 they should agree. */ 7522 if (hdr->sh_type == SHT_MIPS_OPTIONS) 7523 { 7524 bfd_byte *contents, *l, *lend; 7525 7526 contents = bfd_malloc (hdr->sh_size); 7527 if (contents == NULL) 7528 return false; 7529 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents, 7530 0, hdr->sh_size)) 7531 { 7532 free (contents); 7533 return false; 7534 } 7535 l = contents; 7536 lend = contents + hdr->sh_size; 7537 while (l + sizeof (Elf_External_Options) <= lend) 7538 { 7539 Elf_Internal_Options intopt; 7540 7541 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, 7542 &intopt); 7543 if (intopt.size < sizeof (Elf_External_Options)) 7544 { 7545 bad_opt: 7546 _bfd_error_handler 7547 /* xgettext:c-format */ 7548 (_("%pB: warning: truncated `%s' option"), 7549 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)); 7550 break; 7551 } 7552 if (intopt.kind == ODK_REGINFO) 7553 { 7554 if (ABI_64_P (abfd)) 7555 { 7556 Elf64_Internal_RegInfo intreg; 7557 size_t needed = (sizeof (Elf_External_Options) 7558 + sizeof (Elf64_External_RegInfo)); 7559 if (intopt.size < needed || (size_t) (lend - l) < needed) 7560 goto bad_opt; 7561 bfd_mips_elf64_swap_reginfo_in 7562 (abfd, 7563 ((Elf64_External_RegInfo *) 7564 (l + sizeof (Elf_External_Options))), 7565 &intreg); 7566 elf_gp (abfd) = intreg.ri_gp_value; 7567 } 7568 else 7569 { 7570 Elf32_RegInfo intreg; 7571 size_t needed = (sizeof (Elf_External_Options) 7572 + sizeof (Elf32_External_RegInfo)); 7573 if (intopt.size < needed || (size_t) (lend - l) < needed) 7574 goto bad_opt; 7575 bfd_mips_elf32_swap_reginfo_in 7576 (abfd, 7577 ((Elf32_External_RegInfo *) 7578 (l + sizeof (Elf_External_Options))), 7579 &intreg); 7580 elf_gp (abfd) = intreg.ri_gp_value; 7581 } 7582 } 7583 l += intopt.size; 7584 } 7585 free (contents); 7586 } 7587 7588 return true; 7589 } 7590 7591 /* Set the correct type for a MIPS ELF section. We do this by the 7592 section name, which is a hack, but ought to work. This routine is 7593 used by both the 32-bit and the 64-bit ABI. */ 7594 7595 bool 7596 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec) 7597 { 7598 const char *name = bfd_section_name (sec); 7599 7600 if (strcmp (name, ".liblist") == 0) 7601 { 7602 hdr->sh_type = SHT_MIPS_LIBLIST; 7603 hdr->sh_info = sec->size / sizeof (Elf32_Lib); 7604 /* The sh_link field is set in final_write_processing. */ 7605 } 7606 else if (strcmp (name, ".conflict") == 0) 7607 hdr->sh_type = SHT_MIPS_CONFLICT; 7608 else if (startswith (name, ".gptab.")) 7609 { 7610 hdr->sh_type = SHT_MIPS_GPTAB; 7611 hdr->sh_entsize = sizeof (Elf32_External_gptab); 7612 /* The sh_info field is set in final_write_processing. */ 7613 } 7614 else if (strcmp (name, ".ucode") == 0) 7615 hdr->sh_type = SHT_MIPS_UCODE; 7616 else if (strcmp (name, ".mdebug") == 0) 7617 { 7618 hdr->sh_type = SHT_MIPS_DEBUG; 7619 /* In a shared object on IRIX 5.3, the .mdebug section has an 7620 entsize of 0. FIXME: Does this matter? */ 7621 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0) 7622 hdr->sh_entsize = 0; 7623 else 7624 hdr->sh_entsize = 1; 7625 } 7626 else if (strcmp (name, ".reginfo") == 0) 7627 { 7628 hdr->sh_type = SHT_MIPS_REGINFO; 7629 /* In a shared object on IRIX 5.3, the .reginfo section has an 7630 entsize of 0x18. FIXME: Does this matter? */ 7631 if (SGI_COMPAT (abfd)) 7632 { 7633 if ((abfd->flags & DYNAMIC) != 0) 7634 hdr->sh_entsize = sizeof (Elf32_External_RegInfo); 7635 else 7636 hdr->sh_entsize = 1; 7637 } 7638 else 7639 hdr->sh_entsize = sizeof (Elf32_External_RegInfo); 7640 } 7641 else if (SGI_COMPAT (abfd) 7642 && (strcmp (name, ".hash") == 0 7643 || strcmp (name, ".dynamic") == 0 7644 || strcmp (name, ".dynstr") == 0)) 7645 { 7646 if (SGI_COMPAT (abfd)) 7647 hdr->sh_entsize = 0; 7648 #if 0 7649 /* This isn't how the IRIX6 linker behaves. */ 7650 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES; 7651 #endif 7652 } 7653 else if (strcmp (name, ".got") == 0 7654 || strcmp (name, ".srdata") == 0 7655 || strcmp (name, ".sdata") == 0 7656 || strcmp (name, ".sbss") == 0 7657 || strcmp (name, ".lit4") == 0 7658 || strcmp (name, ".lit8") == 0) 7659 hdr->sh_flags |= SHF_MIPS_GPREL; 7660 else if (strcmp (name, ".MIPS.interfaces") == 0) 7661 { 7662 hdr->sh_type = SHT_MIPS_IFACE; 7663 hdr->sh_flags |= SHF_MIPS_NOSTRIP; 7664 } 7665 else if (startswith (name, ".MIPS.content")) 7666 { 7667 hdr->sh_type = SHT_MIPS_CONTENT; 7668 hdr->sh_flags |= SHF_MIPS_NOSTRIP; 7669 /* The sh_info field is set in final_write_processing. */ 7670 } 7671 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name)) 7672 { 7673 hdr->sh_type = SHT_MIPS_OPTIONS; 7674 hdr->sh_entsize = 1; 7675 hdr->sh_flags |= SHF_MIPS_NOSTRIP; 7676 } 7677 else if (startswith (name, ".MIPS.abiflags")) 7678 { 7679 hdr->sh_type = SHT_MIPS_ABIFLAGS; 7680 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0); 7681 } 7682 else if (startswith (name, ".debug_") 7683 || startswith (name, ".gnu.debuglto_.debug_") 7684 || startswith (name, ".zdebug_") 7685 || startswith (name, ".gnu.debuglto_.zdebug_")) 7686 { 7687 hdr->sh_type = SHT_MIPS_DWARF; 7688 7689 /* Irix facilities such as libexc expect a single .debug_frame 7690 per executable, the system ones have NOSTRIP set and the linker 7691 doesn't merge sections with different flags so ... */ 7692 if (SGI_COMPAT (abfd) && startswith (name, ".debug_frame")) 7693 hdr->sh_flags |= SHF_MIPS_NOSTRIP; 7694 } 7695 else if (strcmp (name, ".MIPS.symlib") == 0) 7696 { 7697 hdr->sh_type = SHT_MIPS_SYMBOL_LIB; 7698 /* The sh_link and sh_info fields are set in 7699 final_write_processing. */ 7700 } 7701 else if (startswith (name, ".MIPS.events") 7702 || startswith (name, ".MIPS.post_rel")) 7703 { 7704 hdr->sh_type = SHT_MIPS_EVENTS; 7705 hdr->sh_flags |= SHF_MIPS_NOSTRIP; 7706 /* The sh_link field is set in final_write_processing. */ 7707 } 7708 else if (strcmp (name, ".msym") == 0) 7709 { 7710 hdr->sh_type = SHT_MIPS_MSYM; 7711 hdr->sh_flags |= SHF_ALLOC; 7712 hdr->sh_entsize = 8; 7713 } 7714 else if (strcmp (name, ".MIPS.xhash") == 0) 7715 { 7716 hdr->sh_type = SHT_MIPS_XHASH; 7717 hdr->sh_flags |= SHF_ALLOC; 7718 hdr->sh_entsize = get_elf_backend_data(abfd)->s->arch_size == 64 ? 0 : 4; 7719 } 7720 7721 /* The generic elf_fake_sections will set up REL_HDR using the default 7722 kind of relocations. We used to set up a second header for the 7723 non-default kind of relocations here, but only NewABI would use 7724 these, and the IRIX ld doesn't like resulting empty RELA sections. 7725 Thus we create those header only on demand now. */ 7726 7727 return true; 7728 } 7729 7730 /* Given a BFD section, try to locate the corresponding ELF section 7731 index. This is used by both the 32-bit and the 64-bit ABI. 7732 Actually, it's not clear to me that the 64-bit ABI supports these, 7733 but for non-PIC objects we will certainly want support for at least 7734 the .scommon section. */ 7735 7736 bool 7737 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED, 7738 asection *sec, int *retval) 7739 { 7740 if (strcmp (bfd_section_name (sec), ".scommon") == 0) 7741 { 7742 *retval = SHN_MIPS_SCOMMON; 7743 return true; 7744 } 7745 if (strcmp (bfd_section_name (sec), ".acommon") == 0) 7746 { 7747 *retval = SHN_MIPS_ACOMMON; 7748 return true; 7749 } 7750 return false; 7751 } 7752 7753 /* Hook called by the linker routine which adds symbols from an object 7754 file. We must handle the special MIPS section numbers here. */ 7755 7756 bool 7757 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, 7758 Elf_Internal_Sym *sym, const char **namep, 7759 flagword *flagsp ATTRIBUTE_UNUSED, 7760 asection **secp, bfd_vma *valp) 7761 { 7762 if (SGI_COMPAT (abfd) 7763 && (abfd->flags & DYNAMIC) != 0 7764 && strcmp (*namep, "_rld_new_interface") == 0) 7765 { 7766 /* Skip IRIX5 rld entry name. */ 7767 *namep = NULL; 7768 return true; 7769 } 7770 7771 /* Shared objects may have a dynamic symbol '_gp_disp' defined as 7772 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp 7773 by setting a DT_NEEDED for the shared object. Since _gp_disp is 7774 a magic symbol resolved by the linker, we ignore this bogus definition 7775 of _gp_disp. New ABI objects do not suffer from this problem so this 7776 is not done for them. */ 7777 if (!NEWABI_P(abfd) 7778 && (sym->st_shndx == SHN_ABS) 7779 && (strcmp (*namep, "_gp_disp") == 0)) 7780 { 7781 *namep = NULL; 7782 return true; 7783 } 7784 7785 switch (sym->st_shndx) 7786 { 7787 case SHN_COMMON: 7788 /* Common symbols less than the GP size are automatically 7789 treated as SHN_MIPS_SCOMMON symbols. */ 7790 if (sym->st_size > elf_gp_size (abfd) 7791 || ELF_ST_TYPE (sym->st_info) == STT_TLS 7792 || IRIX_COMPAT (abfd) == ict_irix6) 7793 break; 7794 /* Fall through. */ 7795 case SHN_MIPS_SCOMMON: 7796 *secp = bfd_make_section_old_way (abfd, ".scommon"); 7797 (*secp)->flags |= SEC_IS_COMMON | SEC_SMALL_DATA; 7798 *valp = sym->st_size; 7799 break; 7800 7801 case SHN_MIPS_TEXT: 7802 /* This section is used in a shared object. */ 7803 if (mips_elf_tdata (abfd)->elf_text_section == NULL) 7804 { 7805 asymbol *elf_text_symbol; 7806 asection *elf_text_section; 7807 size_t amt = sizeof (asection); 7808 7809 elf_text_section = bfd_zalloc (abfd, amt); 7810 if (elf_text_section == NULL) 7811 return false; 7812 7813 amt = sizeof (asymbol); 7814 elf_text_symbol = bfd_zalloc (abfd, amt); 7815 if (elf_text_symbol == NULL) 7816 return false; 7817 7818 /* Initialize the section. */ 7819 7820 mips_elf_tdata (abfd)->elf_text_section = elf_text_section; 7821 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol; 7822 7823 elf_text_section->symbol = elf_text_symbol; 7824 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol; 7825 7826 elf_text_section->name = ".text"; 7827 elf_text_section->flags = SEC_NO_FLAGS; 7828 elf_text_section->output_section = NULL; 7829 elf_text_section->owner = abfd; 7830 elf_text_symbol->name = ".text"; 7831 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; 7832 elf_text_symbol->section = elf_text_section; 7833 } 7834 /* This code used to do *secp = bfd_und_section_ptr if 7835 bfd_link_pic (info). I don't know why, and that doesn't make sense, 7836 so I took it out. */ 7837 *secp = mips_elf_tdata (abfd)->elf_text_section; 7838 break; 7839 7840 case SHN_MIPS_ACOMMON: 7841 /* Fall through. XXX Can we treat this as allocated data? */ 7842 case SHN_MIPS_DATA: 7843 /* This section is used in a shared object. */ 7844 if (mips_elf_tdata (abfd)->elf_data_section == NULL) 7845 { 7846 asymbol *elf_data_symbol; 7847 asection *elf_data_section; 7848 size_t amt = sizeof (asection); 7849 7850 elf_data_section = bfd_zalloc (abfd, amt); 7851 if (elf_data_section == NULL) 7852 return false; 7853 7854 amt = sizeof (asymbol); 7855 elf_data_symbol = bfd_zalloc (abfd, amt); 7856 if (elf_data_symbol == NULL) 7857 return false; 7858 7859 /* Initialize the section. */ 7860 7861 mips_elf_tdata (abfd)->elf_data_section = elf_data_section; 7862 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol; 7863 7864 elf_data_section->symbol = elf_data_symbol; 7865 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol; 7866 7867 elf_data_section->name = ".data"; 7868 elf_data_section->flags = SEC_NO_FLAGS; 7869 elf_data_section->output_section = NULL; 7870 elf_data_section->owner = abfd; 7871 elf_data_symbol->name = ".data"; 7872 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; 7873 elf_data_symbol->section = elf_data_section; 7874 } 7875 /* This code used to do *secp = bfd_und_section_ptr if 7876 bfd_link_pic (info). I don't know why, and that doesn't make sense, 7877 so I took it out. */ 7878 *secp = mips_elf_tdata (abfd)->elf_data_section; 7879 break; 7880 7881 case SHN_MIPS_SUNDEFINED: 7882 *secp = bfd_und_section_ptr; 7883 break; 7884 } 7885 7886 if (SGI_COMPAT (abfd) 7887 && ! bfd_link_pic (info) 7888 && info->output_bfd->xvec == abfd->xvec 7889 && strcmp (*namep, "__rld_obj_head") == 0) 7890 { 7891 struct elf_link_hash_entry *h; 7892 struct bfd_link_hash_entry *bh; 7893 7894 /* Mark __rld_obj_head as dynamic. */ 7895 bh = NULL; 7896 if (! (_bfd_generic_link_add_one_symbol 7897 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, false, 7898 get_elf_backend_data (abfd)->collect, &bh))) 7899 return false; 7900 7901 h = (struct elf_link_hash_entry *) bh; 7902 h->non_elf = 0; 7903 h->def_regular = 1; 7904 h->type = STT_OBJECT; 7905 7906 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 7907 return false; 7908 7909 mips_elf_hash_table (info)->use_rld_obj_head = true; 7910 mips_elf_hash_table (info)->rld_symbol = h; 7911 } 7912 7913 /* If this is a mips16 text symbol, add 1 to the value to make it 7914 odd. This will cause something like .word SYM to come up with 7915 the right value when it is loaded into the PC. */ 7916 if (ELF_ST_IS_COMPRESSED (sym->st_other)) 7917 ++*valp; 7918 7919 return true; 7920 } 7921 7922 /* This hook function is called before the linker writes out a global 7923 symbol. We mark symbols as small common if appropriate. This is 7924 also where we undo the increment of the value for a mips16 symbol. */ 7925 7926 int 7927 _bfd_mips_elf_link_output_symbol_hook 7928 (struct bfd_link_info *info ATTRIBUTE_UNUSED, 7929 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym, 7930 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED) 7931 { 7932 /* If we see a common symbol, which implies a relocatable link, then 7933 if a symbol was small common in an input file, mark it as small 7934 common in the output file. */ 7935 if (sym->st_shndx == SHN_COMMON 7936 && strcmp (input_sec->name, ".scommon") == 0) 7937 sym->st_shndx = SHN_MIPS_SCOMMON; 7938 7939 if (ELF_ST_IS_COMPRESSED (sym->st_other)) 7940 sym->st_value &= ~1; 7941 7942 return 1; 7943 } 7944 7945 /* Functions for the dynamic linker. */ 7946 7947 /* Create dynamic sections when linking against a dynamic object. */ 7948 7949 bool 7950 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) 7951 { 7952 struct elf_link_hash_entry *h; 7953 struct bfd_link_hash_entry *bh; 7954 flagword flags; 7955 register asection *s; 7956 const char * const *namep; 7957 struct mips_elf_link_hash_table *htab; 7958 7959 htab = mips_elf_hash_table (info); 7960 BFD_ASSERT (htab != NULL); 7961 7962 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY 7963 | SEC_LINKER_CREATED | SEC_READONLY); 7964 7965 /* The psABI requires a read-only .dynamic section, but the VxWorks 7966 EABI doesn't. */ 7967 if (htab->root.target_os != is_vxworks) 7968 { 7969 s = bfd_get_linker_section (abfd, ".dynamic"); 7970 if (s != NULL) 7971 { 7972 if (!bfd_set_section_flags (s, flags)) 7973 return false; 7974 } 7975 } 7976 7977 /* We need to create .got section. */ 7978 if (!mips_elf_create_got_section (abfd, info)) 7979 return false; 7980 7981 if (! mips_elf_rel_dyn_section (info, true)) 7982 return false; 7983 7984 /* Create .stub section. */ 7985 s = bfd_make_section_anyway_with_flags (abfd, 7986 MIPS_ELF_STUB_SECTION_NAME (abfd), 7987 flags | SEC_CODE); 7988 if (s == NULL 7989 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd))) 7990 return false; 7991 htab->sstubs = s; 7992 7993 if (!mips_elf_hash_table (info)->use_rld_obj_head 7994 && bfd_link_executable (info) 7995 && bfd_get_linker_section (abfd, ".rld_map") == NULL) 7996 { 7997 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map", 7998 flags &~ (flagword) SEC_READONLY); 7999 if (s == NULL 8000 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd))) 8001 return false; 8002 } 8003 8004 /* Create .MIPS.xhash section. */ 8005 if (info->emit_gnu_hash) 8006 s = bfd_make_section_anyway_with_flags (abfd, ".MIPS.xhash", 8007 flags | SEC_READONLY); 8008 8009 /* On IRIX5, we adjust add some additional symbols and change the 8010 alignments of several sections. There is no ABI documentation 8011 indicating that this is necessary on IRIX6, nor any evidence that 8012 the linker takes such action. */ 8013 if (IRIX_COMPAT (abfd) == ict_irix5) 8014 { 8015 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++) 8016 { 8017 bh = NULL; 8018 if (! (_bfd_generic_link_add_one_symbol 8019 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0, 8020 NULL, false, get_elf_backend_data (abfd)->collect, &bh))) 8021 return false; 8022 8023 h = (struct elf_link_hash_entry *) bh; 8024 h->mark = 1; 8025 h->non_elf = 0; 8026 h->def_regular = 1; 8027 h->type = STT_SECTION; 8028 8029 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 8030 return false; 8031 } 8032 8033 /* We need to create a .compact_rel section. */ 8034 if (SGI_COMPAT (abfd)) 8035 { 8036 if (!mips_elf_create_compact_rel_section (abfd, info)) 8037 return false; 8038 } 8039 8040 /* Change alignments of some sections. */ 8041 s = bfd_get_linker_section (abfd, ".hash"); 8042 if (s != NULL) 8043 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); 8044 8045 s = bfd_get_linker_section (abfd, ".dynsym"); 8046 if (s != NULL) 8047 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); 8048 8049 s = bfd_get_linker_section (abfd, ".dynstr"); 8050 if (s != NULL) 8051 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); 8052 8053 /* ??? */ 8054 s = bfd_get_section_by_name (abfd, ".reginfo"); 8055 if (s != NULL) 8056 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); 8057 8058 s = bfd_get_linker_section (abfd, ".dynamic"); 8059 if (s != NULL) 8060 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); 8061 } 8062 8063 if (bfd_link_executable (info)) 8064 { 8065 const char *name; 8066 8067 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING"; 8068 bh = NULL; 8069 if (!(_bfd_generic_link_add_one_symbol 8070 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0, 8071 NULL, false, get_elf_backend_data (abfd)->collect, &bh))) 8072 return false; 8073 8074 h = (struct elf_link_hash_entry *) bh; 8075 h->non_elf = 0; 8076 h->def_regular = 1; 8077 h->type = STT_SECTION; 8078 8079 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 8080 return false; 8081 8082 if (! mips_elf_hash_table (info)->use_rld_obj_head) 8083 { 8084 /* __rld_map is a four byte word located in the .data section 8085 and is filled in by the rtld to contain a pointer to 8086 the _r_debug structure. Its symbol value will be set in 8087 _bfd_mips_elf_finish_dynamic_symbol. */ 8088 s = bfd_get_linker_section (abfd, ".rld_map"); 8089 BFD_ASSERT (s != NULL); 8090 8091 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP"; 8092 bh = NULL; 8093 if (!(_bfd_generic_link_add_one_symbol 8094 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, false, 8095 get_elf_backend_data (abfd)->collect, &bh))) 8096 return false; 8097 8098 h = (struct elf_link_hash_entry *) bh; 8099 h->non_elf = 0; 8100 h->def_regular = 1; 8101 h->type = STT_OBJECT; 8102 8103 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 8104 return false; 8105 mips_elf_hash_table (info)->rld_symbol = h; 8106 } 8107 } 8108 8109 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections. 8110 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */ 8111 if (!_bfd_elf_create_dynamic_sections (abfd, info)) 8112 return false; 8113 8114 /* Do the usual VxWorks handling. */ 8115 if (htab->root.target_os == is_vxworks 8116 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2)) 8117 return false; 8118 8119 return true; 8120 } 8121 8122 /* Return true if relocation REL against section SEC is a REL rather than 8123 RELA relocation. RELOCS is the first relocation in the section and 8124 ABFD is the bfd that contains SEC. */ 8125 8126 static bool 8127 mips_elf_rel_relocation_p (bfd *abfd, asection *sec, 8128 const Elf_Internal_Rela *relocs, 8129 const Elf_Internal_Rela *rel) 8130 { 8131 Elf_Internal_Shdr *rel_hdr; 8132 const struct elf_backend_data *bed; 8133 8134 /* To determine which flavor of relocation this is, we depend on the 8135 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */ 8136 rel_hdr = elf_section_data (sec)->rel.hdr; 8137 if (rel_hdr == NULL) 8138 return false; 8139 bed = get_elf_backend_data (abfd); 8140 return ((size_t) (rel - relocs) 8141 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel); 8142 } 8143 8144 /* Read the addend for REL relocation REL, which belongs to bfd ABFD. 8145 HOWTO is the relocation's howto and CONTENTS points to the contents 8146 of the section that REL is against. */ 8147 8148 static bfd_vma 8149 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel, 8150 reloc_howto_type *howto, bfd_byte *contents) 8151 { 8152 bfd_byte *location; 8153 unsigned int r_type; 8154 bfd_vma addend; 8155 bfd_vma bytes; 8156 8157 r_type = ELF_R_TYPE (abfd, rel->r_info); 8158 location = contents + rel->r_offset; 8159 8160 /* Get the addend, which is stored in the input file. */ 8161 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, false, location); 8162 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents); 8163 _bfd_mips_elf_reloc_shuffle (abfd, r_type, false, location); 8164 8165 addend = bytes & howto->src_mask; 8166 8167 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend 8168 accordingly. */ 8169 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c) 8170 addend <<= 1; 8171 8172 return addend; 8173 } 8174 8175 /* REL is a relocation in ABFD that needs a partnering LO16 relocation 8176 and *ADDEND is the addend for REL itself. Look for the LO16 relocation 8177 and update *ADDEND with the final addend. Return true on success 8178 or false if the LO16 could not be found. RELEND is the exclusive 8179 upper bound on the relocations for REL's section. */ 8180 8181 static bool 8182 mips_elf_add_lo16_rel_addend (bfd *abfd, 8183 const Elf_Internal_Rela *rel, 8184 const Elf_Internal_Rela *relend, 8185 bfd_byte *contents, bfd_vma *addend) 8186 { 8187 unsigned int r_type, lo16_type; 8188 const Elf_Internal_Rela *lo16_relocation; 8189 reloc_howto_type *lo16_howto; 8190 bfd_vma l; 8191 8192 r_type = ELF_R_TYPE (abfd, rel->r_info); 8193 if (mips16_reloc_p (r_type)) 8194 lo16_type = R_MIPS16_LO16; 8195 else if (micromips_reloc_p (r_type)) 8196 lo16_type = R_MICROMIPS_LO16; 8197 else if (r_type == R_MIPS_PCHI16) 8198 lo16_type = R_MIPS_PCLO16; 8199 else 8200 lo16_type = R_MIPS_LO16; 8201 8202 /* The combined value is the sum of the HI16 addend, left-shifted by 8203 sixteen bits, and the LO16 addend, sign extended. (Usually, the 8204 code does a `lui' of the HI16 value, and then an `addiu' of the 8205 LO16 value.) 8206 8207 Scan ahead to find a matching LO16 relocation. 8208 8209 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must 8210 be immediately following. However, for the IRIX6 ABI, the next 8211 relocation may be a composed relocation consisting of several 8212 relocations for the same address. In that case, the R_MIPS_LO16 8213 relocation may occur as one of these. We permit a similar 8214 extension in general, as that is useful for GCC. 8215 8216 In some cases GCC dead code elimination removes the LO16 but keeps 8217 the corresponding HI16. This is strictly speaking a violation of 8218 the ABI but not immediately harmful. */ 8219 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend); 8220 if (lo16_relocation == NULL) 8221 return false; 8222 8223 /* Obtain the addend kept there. */ 8224 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, false); 8225 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents); 8226 8227 l <<= lo16_howto->rightshift; 8228 l = _bfd_mips_elf_sign_extend (l, 16); 8229 8230 *addend <<= 16; 8231 *addend += l; 8232 return true; 8233 } 8234 8235 /* Try to read the contents of section SEC in bfd ABFD. Return true and 8236 store the contents in *CONTENTS on success. Assume that *CONTENTS 8237 already holds the contents if it is nonull on entry. */ 8238 8239 static bool 8240 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents) 8241 { 8242 if (*contents) 8243 return true; 8244 8245 /* Get cached copy if it exists. */ 8246 if (elf_section_data (sec)->this_hdr.contents != NULL) 8247 { 8248 *contents = elf_section_data (sec)->this_hdr.contents; 8249 return true; 8250 } 8251 8252 return bfd_malloc_and_get_section (abfd, sec, contents); 8253 } 8254 8255 /* Make a new PLT record to keep internal data. */ 8256 8257 static struct plt_entry * 8258 mips_elf_make_plt_record (bfd *abfd) 8259 { 8260 struct plt_entry *entry; 8261 8262 entry = bfd_zalloc (abfd, sizeof (*entry)); 8263 if (entry == NULL) 8264 return NULL; 8265 8266 entry->stub_offset = MINUS_ONE; 8267 entry->mips_offset = MINUS_ONE; 8268 entry->comp_offset = MINUS_ONE; 8269 entry->gotplt_index = MINUS_ONE; 8270 return entry; 8271 } 8272 8273 /* Define the special `__gnu_absolute_zero' symbol. We only need this 8274 for PIC code, as otherwise there is no load-time relocation involved 8275 and local GOT entries whose value is zero at static link time will 8276 retain their value at load time. */ 8277 8278 static bool 8279 mips_elf_define_absolute_zero (bfd *abfd, struct bfd_link_info *info, 8280 struct mips_elf_link_hash_table *htab, 8281 unsigned int r_type) 8282 { 8283 union 8284 { 8285 struct elf_link_hash_entry *eh; 8286 struct bfd_link_hash_entry *bh; 8287 } 8288 hzero; 8289 8290 BFD_ASSERT (!htab->use_absolute_zero); 8291 BFD_ASSERT (bfd_link_pic (info)); 8292 8293 hzero.bh = NULL; 8294 if (!_bfd_generic_link_add_one_symbol (info, abfd, "__gnu_absolute_zero", 8295 BSF_GLOBAL, bfd_abs_section_ptr, 0, 8296 NULL, false, false, &hzero.bh)) 8297 return false; 8298 8299 BFD_ASSERT (hzero.bh != NULL); 8300 hzero.eh->size = 0; 8301 hzero.eh->type = STT_NOTYPE; 8302 hzero.eh->other = STV_PROTECTED; 8303 hzero.eh->def_regular = 1; 8304 hzero.eh->non_elf = 0; 8305 8306 if (!mips_elf_record_global_got_symbol (hzero.eh, abfd, info, true, r_type)) 8307 return false; 8308 8309 htab->use_absolute_zero = true; 8310 8311 return true; 8312 } 8313 8314 /* Look through the relocs for a section during the first phase, and 8315 allocate space in the global offset table and record the need for 8316 standard MIPS and compressed procedure linkage table entries. */ 8317 8318 bool 8319 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info, 8320 asection *sec, const Elf_Internal_Rela *relocs) 8321 { 8322 const char *name; 8323 bfd *dynobj; 8324 Elf_Internal_Shdr *symtab_hdr; 8325 struct elf_link_hash_entry **sym_hashes; 8326 size_t extsymoff; 8327 const Elf_Internal_Rela *rel; 8328 const Elf_Internal_Rela *rel_end; 8329 asection *sreloc; 8330 const struct elf_backend_data *bed; 8331 struct mips_elf_link_hash_table *htab; 8332 bfd_byte *contents; 8333 bfd_vma addend; 8334 reloc_howto_type *howto; 8335 8336 if (bfd_link_relocatable (info)) 8337 return true; 8338 8339 htab = mips_elf_hash_table (info); 8340 BFD_ASSERT (htab != NULL); 8341 8342 dynobj = elf_hash_table (info)->dynobj; 8343 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 8344 sym_hashes = elf_sym_hashes (abfd); 8345 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; 8346 8347 bed = get_elf_backend_data (abfd); 8348 rel_end = relocs + sec->reloc_count; 8349 8350 /* Check for the mips16 stub sections. */ 8351 8352 name = bfd_section_name (sec); 8353 if (FN_STUB_P (name)) 8354 { 8355 unsigned long r_symndx; 8356 8357 /* Look at the relocation information to figure out which symbol 8358 this is for. */ 8359 8360 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end); 8361 if (r_symndx == 0) 8362 { 8363 _bfd_error_handler 8364 /* xgettext:c-format */ 8365 (_("%pB: warning: cannot determine the target function for" 8366 " stub section `%s'"), 8367 abfd, name); 8368 bfd_set_error (bfd_error_bad_value); 8369 return false; 8370 } 8371 8372 if (r_symndx < extsymoff 8373 || sym_hashes[r_symndx - extsymoff] == NULL) 8374 { 8375 asection *o; 8376 8377 /* This stub is for a local symbol. This stub will only be 8378 needed if there is some relocation in this BFD, other 8379 than a 16 bit function call, which refers to this symbol. */ 8380 for (o = abfd->sections; o != NULL; o = o->next) 8381 { 8382 Elf_Internal_Rela *sec_relocs; 8383 const Elf_Internal_Rela *r, *rend; 8384 8385 /* We can ignore stub sections when looking for relocs. */ 8386 if ((o->flags & SEC_RELOC) == 0 8387 || o->reloc_count == 0 8388 || section_allows_mips16_refs_p (o)) 8389 continue; 8390 8391 sec_relocs 8392 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, 8393 info->keep_memory); 8394 if (sec_relocs == NULL) 8395 return false; 8396 8397 rend = sec_relocs + o->reloc_count; 8398 for (r = sec_relocs; r < rend; r++) 8399 if (ELF_R_SYM (abfd, r->r_info) == r_symndx 8400 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info))) 8401 break; 8402 8403 if (elf_section_data (o)->relocs != sec_relocs) 8404 free (sec_relocs); 8405 8406 if (r < rend) 8407 break; 8408 } 8409 8410 if (o == NULL) 8411 { 8412 /* There is no non-call reloc for this stub, so we do 8413 not need it. Since this function is called before 8414 the linker maps input sections to output sections, we 8415 can easily discard it by setting the SEC_EXCLUDE 8416 flag. */ 8417 sec->flags |= SEC_EXCLUDE; 8418 return true; 8419 } 8420 8421 /* Record this stub in an array of local symbol stubs for 8422 this BFD. */ 8423 if (mips_elf_tdata (abfd)->local_stubs == NULL) 8424 { 8425 unsigned long symcount; 8426 asection **n; 8427 bfd_size_type amt; 8428 8429 if (elf_bad_symtab (abfd)) 8430 symcount = NUM_SHDR_ENTRIES (symtab_hdr); 8431 else 8432 symcount = symtab_hdr->sh_info; 8433 amt = symcount * sizeof (asection *); 8434 n = bfd_zalloc (abfd, amt); 8435 if (n == NULL) 8436 return false; 8437 mips_elf_tdata (abfd)->local_stubs = n; 8438 } 8439 8440 sec->flags |= SEC_KEEP; 8441 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec; 8442 8443 /* We don't need to set mips16_stubs_seen in this case. 8444 That flag is used to see whether we need to look through 8445 the global symbol table for stubs. We don't need to set 8446 it here, because we just have a local stub. */ 8447 } 8448 else 8449 { 8450 struct mips_elf_link_hash_entry *h; 8451 8452 h = ((struct mips_elf_link_hash_entry *) 8453 sym_hashes[r_symndx - extsymoff]); 8454 8455 while (h->root.root.type == bfd_link_hash_indirect 8456 || h->root.root.type == bfd_link_hash_warning) 8457 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; 8458 8459 /* H is the symbol this stub is for. */ 8460 8461 /* If we already have an appropriate stub for this function, we 8462 don't need another one, so we can discard this one. Since 8463 this function is called before the linker maps input sections 8464 to output sections, we can easily discard it by setting the 8465 SEC_EXCLUDE flag. */ 8466 if (h->fn_stub != NULL) 8467 { 8468 sec->flags |= SEC_EXCLUDE; 8469 return true; 8470 } 8471 8472 sec->flags |= SEC_KEEP; 8473 h->fn_stub = sec; 8474 mips_elf_hash_table (info)->mips16_stubs_seen = true; 8475 } 8476 } 8477 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name)) 8478 { 8479 unsigned long r_symndx; 8480 struct mips_elf_link_hash_entry *h; 8481 asection **loc; 8482 8483 /* Look at the relocation information to figure out which symbol 8484 this is for. */ 8485 8486 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end); 8487 if (r_symndx == 0) 8488 { 8489 _bfd_error_handler 8490 /* xgettext:c-format */ 8491 (_("%pB: warning: cannot determine the target function for" 8492 " stub section `%s'"), 8493 abfd, name); 8494 bfd_set_error (bfd_error_bad_value); 8495 return false; 8496 } 8497 8498 if (r_symndx < extsymoff 8499 || sym_hashes[r_symndx - extsymoff] == NULL) 8500 { 8501 asection *o; 8502 8503 /* This stub is for a local symbol. This stub will only be 8504 needed if there is some relocation (R_MIPS16_26) in this BFD 8505 that refers to this symbol. */ 8506 for (o = abfd->sections; o != NULL; o = o->next) 8507 { 8508 Elf_Internal_Rela *sec_relocs; 8509 const Elf_Internal_Rela *r, *rend; 8510 8511 /* We can ignore stub sections when looking for relocs. */ 8512 if ((o->flags & SEC_RELOC) == 0 8513 || o->reloc_count == 0 8514 || section_allows_mips16_refs_p (o)) 8515 continue; 8516 8517 sec_relocs 8518 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, 8519 info->keep_memory); 8520 if (sec_relocs == NULL) 8521 return false; 8522 8523 rend = sec_relocs + o->reloc_count; 8524 for (r = sec_relocs; r < rend; r++) 8525 if (ELF_R_SYM (abfd, r->r_info) == r_symndx 8526 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26) 8527 break; 8528 8529 if (elf_section_data (o)->relocs != sec_relocs) 8530 free (sec_relocs); 8531 8532 if (r < rend) 8533 break; 8534 } 8535 8536 if (o == NULL) 8537 { 8538 /* There is no non-call reloc for this stub, so we do 8539 not need it. Since this function is called before 8540 the linker maps input sections to output sections, we 8541 can easily discard it by setting the SEC_EXCLUDE 8542 flag. */ 8543 sec->flags |= SEC_EXCLUDE; 8544 return true; 8545 } 8546 8547 /* Record this stub in an array of local symbol call_stubs for 8548 this BFD. */ 8549 if (mips_elf_tdata (abfd)->local_call_stubs == NULL) 8550 { 8551 unsigned long symcount; 8552 asection **n; 8553 bfd_size_type amt; 8554 8555 if (elf_bad_symtab (abfd)) 8556 symcount = NUM_SHDR_ENTRIES (symtab_hdr); 8557 else 8558 symcount = symtab_hdr->sh_info; 8559 amt = symcount * sizeof (asection *); 8560 n = bfd_zalloc (abfd, amt); 8561 if (n == NULL) 8562 return false; 8563 mips_elf_tdata (abfd)->local_call_stubs = n; 8564 } 8565 8566 sec->flags |= SEC_KEEP; 8567 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec; 8568 8569 /* We don't need to set mips16_stubs_seen in this case. 8570 That flag is used to see whether we need to look through 8571 the global symbol table for stubs. We don't need to set 8572 it here, because we just have a local stub. */ 8573 } 8574 else 8575 { 8576 h = ((struct mips_elf_link_hash_entry *) 8577 sym_hashes[r_symndx - extsymoff]); 8578 8579 /* H is the symbol this stub is for. */ 8580 8581 if (CALL_FP_STUB_P (name)) 8582 loc = &h->call_fp_stub; 8583 else 8584 loc = &h->call_stub; 8585 8586 /* If we already have an appropriate stub for this function, we 8587 don't need another one, so we can discard this one. Since 8588 this function is called before the linker maps input sections 8589 to output sections, we can easily discard it by setting the 8590 SEC_EXCLUDE flag. */ 8591 if (*loc != NULL) 8592 { 8593 sec->flags |= SEC_EXCLUDE; 8594 return true; 8595 } 8596 8597 sec->flags |= SEC_KEEP; 8598 *loc = sec; 8599 mips_elf_hash_table (info)->mips16_stubs_seen = true; 8600 } 8601 } 8602 8603 sreloc = NULL; 8604 contents = NULL; 8605 for (rel = relocs; rel < rel_end; ++rel) 8606 { 8607 unsigned long r_symndx; 8608 unsigned int r_type; 8609 struct elf_link_hash_entry *h; 8610 bool can_make_dynamic_p; 8611 bool call_reloc_p; 8612 bool constrain_symbol_p; 8613 8614 r_symndx = ELF_R_SYM (abfd, rel->r_info); 8615 r_type = ELF_R_TYPE (abfd, rel->r_info); 8616 8617 if (r_symndx < extsymoff) 8618 h = NULL; 8619 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr)) 8620 { 8621 _bfd_error_handler 8622 /* xgettext:c-format */ 8623 (_("%pB: malformed reloc detected for section %s"), 8624 abfd, name); 8625 bfd_set_error (bfd_error_bad_value); 8626 return false; 8627 } 8628 else 8629 { 8630 h = sym_hashes[r_symndx - extsymoff]; 8631 if (h != NULL) 8632 { 8633 while (h->root.type == bfd_link_hash_indirect 8634 || h->root.type == bfd_link_hash_warning) 8635 h = (struct elf_link_hash_entry *) h->root.u.i.link; 8636 } 8637 } 8638 8639 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this 8640 relocation into a dynamic one. */ 8641 can_make_dynamic_p = false; 8642 8643 /* Set CALL_RELOC_P to true if the relocation is for a call, 8644 and if pointer equality therefore doesn't matter. */ 8645 call_reloc_p = false; 8646 8647 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation 8648 into account when deciding how to define the symbol. */ 8649 constrain_symbol_p = true; 8650 8651 switch (r_type) 8652 { 8653 case R_MIPS_CALL16: 8654 case R_MIPS_CALL_HI16: 8655 case R_MIPS_CALL_LO16: 8656 case R_MIPS16_CALL16: 8657 case R_MICROMIPS_CALL16: 8658 case R_MICROMIPS_CALL_HI16: 8659 case R_MICROMIPS_CALL_LO16: 8660 call_reloc_p = true; 8661 /* Fall through. */ 8662 8663 case R_MIPS_GOT16: 8664 case R_MIPS_GOT_LO16: 8665 case R_MIPS_GOT_PAGE: 8666 case R_MIPS_GOT_DISP: 8667 case R_MIPS16_GOT16: 8668 case R_MICROMIPS_GOT16: 8669 case R_MICROMIPS_GOT_LO16: 8670 case R_MICROMIPS_GOT_PAGE: 8671 case R_MICROMIPS_GOT_DISP: 8672 /* If we have a symbol that will resolve to zero at static link 8673 time and it is used by a GOT relocation applied to code we 8674 cannot relax to an immediate zero load, then we will be using 8675 the special `__gnu_absolute_zero' symbol whose value is zero 8676 at dynamic load time. We ignore HI16-type GOT relocations at 8677 this stage, because their handling will depend entirely on 8678 the corresponding LO16-type GOT relocation. */ 8679 if (!call_hi16_reloc_p (r_type) 8680 && h != NULL 8681 && bfd_link_pic (info) 8682 && !htab->use_absolute_zero 8683 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)) 8684 { 8685 bool rel_reloc; 8686 8687 if (!mips_elf_get_section_contents (abfd, sec, &contents)) 8688 return false; 8689 8690 rel_reloc = mips_elf_rel_relocation_p (abfd, sec, relocs, rel); 8691 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, !rel_reloc); 8692 8693 if (!mips_elf_nullify_got_load (abfd, contents, rel, howto, 8694 false)) 8695 if (!mips_elf_define_absolute_zero (abfd, info, htab, r_type)) 8696 return false; 8697 } 8698 8699 /* Fall through. */ 8700 case R_MIPS_GOT_HI16: 8701 case R_MIPS_GOT_OFST: 8702 case R_MIPS_TLS_GOTTPREL: 8703 case R_MIPS_TLS_GD: 8704 case R_MIPS_TLS_LDM: 8705 case R_MIPS16_TLS_GOTTPREL: 8706 case R_MIPS16_TLS_GD: 8707 case R_MIPS16_TLS_LDM: 8708 case R_MICROMIPS_GOT_HI16: 8709 case R_MICROMIPS_GOT_OFST: 8710 case R_MICROMIPS_TLS_GOTTPREL: 8711 case R_MICROMIPS_TLS_GD: 8712 case R_MICROMIPS_TLS_LDM: 8713 if (dynobj == NULL) 8714 elf_hash_table (info)->dynobj = dynobj = abfd; 8715 if (!mips_elf_create_got_section (dynobj, info)) 8716 return false; 8717 if (htab->root.target_os == is_vxworks 8718 && !bfd_link_pic (info)) 8719 { 8720 _bfd_error_handler 8721 /* xgettext:c-format */ 8722 (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"), 8723 abfd, (uint64_t) rel->r_offset); 8724 bfd_set_error (bfd_error_bad_value); 8725 return false; 8726 } 8727 can_make_dynamic_p = true; 8728 break; 8729 8730 case R_MIPS_NONE: 8731 case R_MIPS_JALR: 8732 case R_MICROMIPS_JALR: 8733 /* These relocations have empty fields and are purely there to 8734 provide link information. The symbol value doesn't matter. */ 8735 constrain_symbol_p = false; 8736 break; 8737 8738 case R_MIPS_GPREL16: 8739 case R_MIPS_GPREL32: 8740 case R_MIPS16_GPREL: 8741 case R_MICROMIPS_GPREL16: 8742 /* GP-relative relocations always resolve to a definition in a 8743 regular input file, ignoring the one-definition rule. This is 8744 important for the GP setup sequence in NewABI code, which 8745 always resolves to a local function even if other relocations 8746 against the symbol wouldn't. */ 8747 constrain_symbol_p = false; 8748 break; 8749 8750 case R_MIPS_32: 8751 case R_MIPS_REL32: 8752 case R_MIPS_64: 8753 /* In VxWorks executables, references to external symbols 8754 must be handled using copy relocs or PLT entries; it is not 8755 possible to convert this relocation into a dynamic one. 8756 8757 For executables that use PLTs and copy-relocs, we have a 8758 choice between converting the relocation into a dynamic 8759 one or using copy relocations or PLT entries. It is 8760 usually better to do the former, unless the relocation is 8761 against a read-only section. */ 8762 if ((bfd_link_pic (info) 8763 || (h != NULL 8764 && htab->root.target_os != is_vxworks 8765 && strcmp (h->root.root.string, "__gnu_local_gp") != 0 8766 && !(!info->nocopyreloc 8767 && !PIC_OBJECT_P (abfd) 8768 && MIPS_ELF_READONLY_SECTION (sec)))) 8769 && (sec->flags & SEC_ALLOC) != 0) 8770 { 8771 can_make_dynamic_p = true; 8772 if (dynobj == NULL) 8773 elf_hash_table (info)->dynobj = dynobj = abfd; 8774 } 8775 break; 8776 8777 case R_MIPS_26: 8778 case R_MIPS_PC16: 8779 case R_MIPS_PC21_S2: 8780 case R_MIPS_PC26_S2: 8781 case R_MIPS16_26: 8782 case R_MIPS16_PC16_S1: 8783 case R_MICROMIPS_26_S1: 8784 case R_MICROMIPS_PC7_S1: 8785 case R_MICROMIPS_PC10_S1: 8786 case R_MICROMIPS_PC16_S1: 8787 case R_MICROMIPS_PC23_S2: 8788 call_reloc_p = true; 8789 break; 8790 } 8791 8792 if (h) 8793 { 8794 if (constrain_symbol_p) 8795 { 8796 if (!can_make_dynamic_p) 8797 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1; 8798 8799 if (!call_reloc_p) 8800 h->pointer_equality_needed = 1; 8801 8802 /* We must not create a stub for a symbol that has 8803 relocations related to taking the function's address. 8804 This doesn't apply to VxWorks, where CALL relocs refer 8805 to a .got.plt entry instead of a normal .got entry. */ 8806 if (htab->root.target_os != is_vxworks 8807 && (!can_make_dynamic_p || !call_reloc_p)) 8808 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = true; 8809 } 8810 8811 /* Relocations against the special VxWorks __GOTT_BASE__ and 8812 __GOTT_INDEX__ symbols must be left to the loader. Allocate 8813 room for them in .rela.dyn. */ 8814 if (is_gott_symbol (info, h)) 8815 { 8816 if (sreloc == NULL) 8817 { 8818 sreloc = mips_elf_rel_dyn_section (info, true); 8819 if (sreloc == NULL) 8820 return false; 8821 } 8822 mips_elf_allocate_dynamic_relocations (dynobj, info, 1); 8823 if (MIPS_ELF_READONLY_SECTION (sec)) 8824 /* We tell the dynamic linker that there are 8825 relocations against the text segment. */ 8826 info->flags |= DF_TEXTREL; 8827 } 8828 } 8829 else if (call_lo16_reloc_p (r_type) 8830 || got_lo16_reloc_p (r_type) 8831 || got_disp_reloc_p (r_type) 8832 || (got16_reloc_p (r_type) 8833 && htab->root.target_os == is_vxworks)) 8834 { 8835 /* We may need a local GOT entry for this relocation. We 8836 don't count R_MIPS_GOT_PAGE because we can estimate the 8837 maximum number of pages needed by looking at the size of 8838 the segment. Similar comments apply to R_MIPS*_GOT16 and 8839 R_MIPS*_CALL16, except on VxWorks, where GOT relocations 8840 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or 8841 R_MIPS_CALL_HI16 because these are always followed by an 8842 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */ 8843 if (!mips_elf_record_local_got_symbol (abfd, r_symndx, 8844 rel->r_addend, info, r_type)) 8845 return false; 8846 } 8847 8848 if (h != NULL 8849 && mips_elf_relocation_needs_la25_stub (abfd, r_type, 8850 ELF_ST_IS_MIPS16 (h->other))) 8851 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = true; 8852 8853 switch (r_type) 8854 { 8855 case R_MIPS_CALL16: 8856 case R_MIPS16_CALL16: 8857 case R_MICROMIPS_CALL16: 8858 if (h == NULL) 8859 { 8860 _bfd_error_handler 8861 /* xgettext:c-format */ 8862 (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"), 8863 abfd, (uint64_t) rel->r_offset); 8864 bfd_set_error (bfd_error_bad_value); 8865 return false; 8866 } 8867 /* Fall through. */ 8868 8869 case R_MIPS_CALL_HI16: 8870 case R_MIPS_CALL_LO16: 8871 case R_MICROMIPS_CALL_HI16: 8872 case R_MICROMIPS_CALL_LO16: 8873 if (h != NULL) 8874 { 8875 /* Make sure there is room in the regular GOT to hold the 8876 function's address. We may eliminate it in favour of 8877 a .got.plt entry later; see mips_elf_count_got_symbols. */ 8878 if (!mips_elf_record_global_got_symbol (h, abfd, info, true, 8879 r_type)) 8880 return false; 8881 8882 /* We need a stub, not a plt entry for the undefined 8883 function. But we record it as if it needs plt. See 8884 _bfd_elf_adjust_dynamic_symbol. */ 8885 h->needs_plt = 1; 8886 h->type = STT_FUNC; 8887 } 8888 break; 8889 8890 case R_MIPS_GOT_PAGE: 8891 case R_MICROMIPS_GOT_PAGE: 8892 case R_MIPS16_GOT16: 8893 case R_MIPS_GOT16: 8894 case R_MIPS_GOT_HI16: 8895 case R_MIPS_GOT_LO16: 8896 case R_MICROMIPS_GOT16: 8897 case R_MICROMIPS_GOT_HI16: 8898 case R_MICROMIPS_GOT_LO16: 8899 if (!h || got_page_reloc_p (r_type)) 8900 { 8901 /* This relocation needs (or may need, if h != NULL) a 8902 page entry in the GOT. For R_MIPS_GOT_PAGE we do not 8903 know for sure until we know whether the symbol is 8904 preemptible. */ 8905 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel)) 8906 { 8907 if (!mips_elf_get_section_contents (abfd, sec, &contents)) 8908 return false; 8909 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, false); 8910 addend = mips_elf_read_rel_addend (abfd, rel, 8911 howto, contents); 8912 if (got16_reloc_p (r_type)) 8913 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end, 8914 contents, &addend); 8915 else 8916 addend <<= howto->rightshift; 8917 } 8918 else 8919 addend = rel->r_addend; 8920 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx, 8921 h, addend)) 8922 return false; 8923 8924 if (h) 8925 { 8926 struct mips_elf_link_hash_entry *hmips = 8927 (struct mips_elf_link_hash_entry *) h; 8928 8929 /* This symbol is definitely not overridable. */ 8930 if (hmips->root.def_regular 8931 && ! (bfd_link_pic (info) && ! info->symbolic 8932 && ! hmips->root.forced_local)) 8933 h = NULL; 8934 } 8935 } 8936 /* If this is a global, overridable symbol, GOT_PAGE will 8937 decay to GOT_DISP, so we'll need a GOT entry for it. */ 8938 /* Fall through. */ 8939 8940 case R_MIPS_GOT_DISP: 8941 case R_MICROMIPS_GOT_DISP: 8942 if (h && !mips_elf_record_global_got_symbol (h, abfd, info, 8943 false, r_type)) 8944 return false; 8945 break; 8946 8947 case R_MIPS_TLS_GOTTPREL: 8948 case R_MIPS16_TLS_GOTTPREL: 8949 case R_MICROMIPS_TLS_GOTTPREL: 8950 if (bfd_link_pic (info)) 8951 info->flags |= DF_STATIC_TLS; 8952 /* Fall through */ 8953 8954 case R_MIPS_TLS_LDM: 8955 case R_MIPS16_TLS_LDM: 8956 case R_MICROMIPS_TLS_LDM: 8957 if (tls_ldm_reloc_p (r_type)) 8958 { 8959 r_symndx = STN_UNDEF; 8960 h = NULL; 8961 } 8962 /* Fall through */ 8963 8964 case R_MIPS_TLS_GD: 8965 case R_MIPS16_TLS_GD: 8966 case R_MICROMIPS_TLS_GD: 8967 /* This symbol requires a global offset table entry, or two 8968 for TLS GD relocations. */ 8969 if (h != NULL) 8970 { 8971 if (!mips_elf_record_global_got_symbol (h, abfd, info, 8972 false, r_type)) 8973 return false; 8974 } 8975 else 8976 { 8977 if (!mips_elf_record_local_got_symbol (abfd, r_symndx, 8978 rel->r_addend, 8979 info, r_type)) 8980 return false; 8981 } 8982 break; 8983 8984 case R_MIPS_32: 8985 case R_MIPS_REL32: 8986 case R_MIPS_64: 8987 /* In VxWorks executables, references to external symbols 8988 are handled using copy relocs or PLT stubs, so there's 8989 no need to add a .rela.dyn entry for this relocation. */ 8990 if (can_make_dynamic_p) 8991 { 8992 if (sreloc == NULL) 8993 { 8994 sreloc = mips_elf_rel_dyn_section (info, true); 8995 if (sreloc == NULL) 8996 return false; 8997 } 8998 if (bfd_link_pic (info) && h == NULL) 8999 { 9000 /* When creating a shared object, we must copy these 9001 reloc types into the output file as R_MIPS_REL32 9002 relocs. Make room for this reloc in .rel(a).dyn. */ 9003 mips_elf_allocate_dynamic_relocations (dynobj, info, 1); 9004 /* In the N32 and 64-bit ABIs there may be multiple 9005 consecutive relocations for the same offset. If we have 9006 a R_MIPS_GPREL32 followed by a R_MIPS_64 then that 9007 relocation is complete and needs no futher adjustment. 9008 9009 Silently ignore absolute relocations in the .eh_frame 9010 section, they will be dropped latter. 9011 */ 9012 if ((rel == relocs 9013 || rel[-1].r_offset != rel->r_offset 9014 || r_type != R_MIPS_64 9015 || ELF_R_TYPE(abfd, rel[-1].r_info) != R_MIPS_GPREL32) 9016 && MIPS_ELF_READONLY_SECTION (sec) 9017 && !((r_type == R_MIPS_32 || r_type == R_MIPS_64) 9018 && strcmp(sec->name, ".eh_frame") == 0)) 9019 { 9020 /* We tell the dynamic linker that there are 9021 relocations against the text segment. */ 9022 info->flags |= DF_TEXTREL; 9023 info->callbacks->warning 9024 (info, 9025 _("relocation emitted against readonly section"), 9026 NULL, abfd, sec, rel->r_offset); 9027 } 9028 } 9029 else 9030 { 9031 struct mips_elf_link_hash_entry *hmips; 9032 9033 /* For a shared object, we must copy this relocation 9034 unless the symbol turns out to be undefined and 9035 weak with non-default visibility, in which case 9036 it will be left as zero. 9037 9038 We could elide R_MIPS_REL32 for locally binding symbols 9039 in shared libraries, but do not yet do so. 9040 9041 For an executable, we only need to copy this 9042 reloc if the symbol is defined in a dynamic 9043 object. */ 9044 hmips = (struct mips_elf_link_hash_entry *) h; 9045 ++hmips->possibly_dynamic_relocs; 9046 if (MIPS_ELF_READONLY_SECTION (sec)) 9047 /* We need it to tell the dynamic linker if there 9048 are relocations against the text segment. */ 9049 hmips->readonly_reloc = true; 9050 } 9051 } 9052 9053 if (SGI_COMPAT (abfd)) 9054 mips_elf_hash_table (info)->compact_rel_size += 9055 sizeof (Elf32_External_crinfo); 9056 break; 9057 9058 case R_MIPS_26: 9059 case R_MIPS_GPREL16: 9060 case R_MIPS_LITERAL: 9061 case R_MIPS_GPREL32: 9062 case R_MICROMIPS_26_S1: 9063 case R_MICROMIPS_GPREL16: 9064 case R_MICROMIPS_LITERAL: 9065 case R_MICROMIPS_GPREL7_S2: 9066 if (SGI_COMPAT (abfd)) 9067 mips_elf_hash_table (info)->compact_rel_size += 9068 sizeof (Elf32_External_crinfo); 9069 break; 9070 9071 /* This relocation describes the C++ object vtable hierarchy. 9072 Reconstruct it for later use during GC. */ 9073 case R_MIPS_GNU_VTINHERIT: 9074 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) 9075 return false; 9076 break; 9077 9078 /* This relocation describes which C++ vtable entries are actually 9079 used. Record for later use during GC. */ 9080 case R_MIPS_GNU_VTENTRY: 9081 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset)) 9082 return false; 9083 break; 9084 9085 default: 9086 break; 9087 } 9088 9089 /* Record the need for a PLT entry. At this point we don't know 9090 yet if we are going to create a PLT in the first place, but 9091 we only record whether the relocation requires a standard MIPS 9092 or a compressed code entry anyway. If we don't make a PLT after 9093 all, then we'll just ignore these arrangements. Likewise if 9094 a PLT entry is not created because the symbol is satisfied 9095 locally. */ 9096 if (h != NULL 9097 && (branch_reloc_p (r_type) 9098 || mips16_branch_reloc_p (r_type) 9099 || micromips_branch_reloc_p (r_type)) 9100 && !SYMBOL_CALLS_LOCAL (info, h)) 9101 { 9102 if (h->plt.plist == NULL) 9103 h->plt.plist = mips_elf_make_plt_record (abfd); 9104 if (h->plt.plist == NULL) 9105 return false; 9106 9107 if (branch_reloc_p (r_type)) 9108 h->plt.plist->need_mips = true; 9109 else 9110 h->plt.plist->need_comp = true; 9111 } 9112 9113 /* See if this reloc would need to refer to a MIPS16 hard-float stub, 9114 if there is one. We only need to handle global symbols here; 9115 we decide whether to keep or delete stubs for local symbols 9116 when processing the stub's relocations. */ 9117 if (h != NULL 9118 && !mips16_call_reloc_p (r_type) 9119 && !section_allows_mips16_refs_p (sec)) 9120 { 9121 struct mips_elf_link_hash_entry *mh; 9122 9123 mh = (struct mips_elf_link_hash_entry *) h; 9124 mh->need_fn_stub = true; 9125 } 9126 9127 /* Refuse some position-dependent relocations when creating a 9128 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're 9129 not PIC, but we can create dynamic relocations and the result 9130 will be fine. Also do not refuse R_MIPS_LO16, which can be 9131 combined with R_MIPS_GOT16. */ 9132 if (bfd_link_pic (info)) 9133 { 9134 switch (r_type) 9135 { 9136 case R_MIPS_TLS_TPREL_HI16: 9137 case R_MIPS16_TLS_TPREL_HI16: 9138 case R_MICROMIPS_TLS_TPREL_HI16: 9139 case R_MIPS_TLS_TPREL_LO16: 9140 case R_MIPS16_TLS_TPREL_LO16: 9141 case R_MICROMIPS_TLS_TPREL_LO16: 9142 /* These are okay in PIE, but not in a shared library. */ 9143 if (bfd_link_executable (info)) 9144 break; 9145 9146 /* FALLTHROUGH */ 9147 9148 case R_MIPS16_HI16: 9149 case R_MIPS_HI16: 9150 case R_MIPS_HIGHER: 9151 case R_MIPS_HIGHEST: 9152 case R_MICROMIPS_HI16: 9153 case R_MICROMIPS_HIGHER: 9154 case R_MICROMIPS_HIGHEST: 9155 /* Don't refuse a high part relocation if it's against 9156 no symbol (e.g. part of a compound relocation). */ 9157 if (r_symndx == STN_UNDEF) 9158 break; 9159 9160 /* Likewise an absolute symbol. */ 9161 if (h != NULL && bfd_is_abs_symbol (&h->root)) 9162 break; 9163 9164 /* R_MIPS_HI16 against _gp_disp is used for $gp setup, 9165 and has a special meaning. */ 9166 if (!NEWABI_P (abfd) && h != NULL 9167 && strcmp (h->root.root.string, "_gp_disp") == 0) 9168 break; 9169 9170 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */ 9171 if (is_gott_symbol (info, h)) 9172 break; 9173 9174 /* FALLTHROUGH */ 9175 9176 case R_MIPS16_26: 9177 case R_MIPS_26: 9178 case R_MICROMIPS_26_S1: 9179 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, NEWABI_P (abfd)); 9180 /* An error for unsupported relocations is raised as part 9181 of the above search, so we can skip the following. */ 9182 if (howto != NULL) 9183 info->callbacks->einfo 9184 /* xgettext:c-format */ 9185 (_("%X%H: relocation %s against `%s' cannot be used" 9186 " when making a shared object; recompile with -fPIC\n"), 9187 abfd, sec, rel->r_offset, howto->name, 9188 (h) ? h->root.root.string : "a local symbol"); 9189 break; 9190 default: 9191 break; 9192 } 9193 } 9194 } 9195 9196 return true; 9197 } 9198 9199 /* Allocate space for global sym dynamic relocs. */ 9200 9201 static bool 9202 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf) 9203 { 9204 struct bfd_link_info *info = inf; 9205 bfd *dynobj; 9206 struct mips_elf_link_hash_entry *hmips; 9207 struct mips_elf_link_hash_table *htab; 9208 9209 htab = mips_elf_hash_table (info); 9210 BFD_ASSERT (htab != NULL); 9211 9212 dynobj = elf_hash_table (info)->dynobj; 9213 hmips = (struct mips_elf_link_hash_entry *) h; 9214 9215 /* VxWorks executables are handled elsewhere; we only need to 9216 allocate relocations in shared objects. */ 9217 if (htab->root.target_os == is_vxworks && !bfd_link_pic (info)) 9218 return true; 9219 9220 /* Ignore indirect symbols. All relocations against such symbols 9221 will be redirected to the target symbol. */ 9222 if (h->root.type == bfd_link_hash_indirect) 9223 return true; 9224 9225 /* If this symbol is defined in a dynamic object, or we are creating 9226 a shared library, we will need to copy any R_MIPS_32 or 9227 R_MIPS_REL32 relocs against it into the output file. */ 9228 if (! bfd_link_relocatable (info) 9229 && hmips->possibly_dynamic_relocs != 0 9230 && (h->root.type == bfd_link_hash_defweak 9231 || (!h->def_regular && !ELF_COMMON_DEF_P (h)) 9232 || bfd_link_pic (info))) 9233 { 9234 bool do_copy = true; 9235 9236 if (h->root.type == bfd_link_hash_undefweak) 9237 { 9238 /* Do not copy relocations for undefined weak symbols that 9239 we are not going to export. */ 9240 if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)) 9241 do_copy = false; 9242 9243 /* Make sure undefined weak symbols are output as a dynamic 9244 symbol in PIEs. */ 9245 else if (h->dynindx == -1 && !h->forced_local) 9246 { 9247 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 9248 return false; 9249 } 9250 } 9251 9252 if (do_copy) 9253 { 9254 /* Even though we don't directly need a GOT entry for this symbol, 9255 the SVR4 psABI requires it to have a dynamic symbol table 9256 index greater that DT_MIPS_GOTSYM if there are dynamic 9257 relocations against it. 9258 9259 VxWorks does not enforce the same mapping between the GOT 9260 and the symbol table, so the same requirement does not 9261 apply there. */ 9262 if (htab->root.target_os != is_vxworks) 9263 { 9264 if (hmips->global_got_area > GGA_RELOC_ONLY) 9265 hmips->global_got_area = GGA_RELOC_ONLY; 9266 hmips->got_only_for_calls = false; 9267 } 9268 9269 mips_elf_allocate_dynamic_relocations 9270 (dynobj, info, hmips->possibly_dynamic_relocs); 9271 if (hmips->readonly_reloc) 9272 /* We tell the dynamic linker that there are relocations 9273 against the text segment. */ 9274 info->flags |= DF_TEXTREL; 9275 } 9276 } 9277 9278 return true; 9279 } 9280 9281 /* Adjust a symbol defined by a dynamic object and referenced by a 9282 regular object. The current definition is in some section of the 9283 dynamic object, but we're not including those sections. We have to 9284 change the definition to something the rest of the link can 9285 understand. */ 9286 9287 bool 9288 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info, 9289 struct elf_link_hash_entry *h) 9290 { 9291 bfd *dynobj; 9292 struct mips_elf_link_hash_entry *hmips; 9293 struct mips_elf_link_hash_table *htab; 9294 asection *s, *srel; 9295 9296 htab = mips_elf_hash_table (info); 9297 BFD_ASSERT (htab != NULL); 9298 9299 dynobj = elf_hash_table (info)->dynobj; 9300 hmips = (struct mips_elf_link_hash_entry *) h; 9301 9302 /* Make sure we know what is going on here. */ 9303 if (dynobj == NULL 9304 || (! h->needs_plt 9305 && ! h->is_weakalias 9306 && (! h->def_dynamic 9307 || ! h->ref_regular 9308 || h->def_regular))) 9309 { 9310 if (h->type == STT_GNU_IFUNC) 9311 _bfd_error_handler (_("IFUNC symbol %s in dynamic symbol table - IFUNCS are not supported"), 9312 h->root.root.string); 9313 else 9314 _bfd_error_handler (_("non-dynamic symbol %s in dynamic symbol table"), 9315 h->root.root.string); 9316 return true; 9317 } 9318 9319 hmips = (struct mips_elf_link_hash_entry *) h; 9320 9321 /* If there are call relocations against an externally-defined symbol, 9322 see whether we can create a MIPS lazy-binding stub for it. We can 9323 only do this if all references to the function are through call 9324 relocations, and in that case, the traditional lazy-binding stubs 9325 are much more efficient than PLT entries. 9326 9327 Traditional stubs are only available on SVR4 psABI-based systems; 9328 VxWorks always uses PLTs instead. */ 9329 if (htab->root.target_os != is_vxworks 9330 && h->needs_plt 9331 && !hmips->no_fn_stub) 9332 { 9333 if (! elf_hash_table (info)->dynamic_sections_created) 9334 return true; 9335 9336 /* If this symbol is not defined in a regular file, then set 9337 the symbol to the stub location. This is required to make 9338 function pointers compare as equal between the normal 9339 executable and the shared library. */ 9340 if (!h->def_regular 9341 && !bfd_is_abs_section (htab->sstubs->output_section)) 9342 { 9343 hmips->needs_lazy_stub = true; 9344 htab->lazy_stub_count++; 9345 return true; 9346 } 9347 } 9348 /* As above, VxWorks requires PLT entries for externally-defined 9349 functions that are only accessed through call relocations. 9350 9351 Both VxWorks and non-VxWorks targets also need PLT entries if there 9352 are static-only relocations against an externally-defined function. 9353 This can technically occur for shared libraries if there are 9354 branches to the symbol, although it is unlikely that this will be 9355 used in practice due to the short ranges involved. It can occur 9356 for any relative or absolute relocation in executables; in that 9357 case, the PLT entry becomes the function's canonical address. */ 9358 else if (((h->needs_plt && !hmips->no_fn_stub) 9359 || (h->type == STT_FUNC && hmips->has_static_relocs)) 9360 && htab->use_plts_and_copy_relocs 9361 && !SYMBOL_CALLS_LOCAL (info, h) 9362 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT 9363 && h->root.type == bfd_link_hash_undefweak)) 9364 { 9365 bool micromips_p = MICROMIPS_P (info->output_bfd); 9366 bool newabi_p = NEWABI_P (info->output_bfd); 9367 9368 /* If this is the first symbol to need a PLT entry, then make some 9369 basic setup. Also work out PLT entry sizes. We'll need them 9370 for PLT offset calculations. */ 9371 if (htab->plt_mips_offset + htab->plt_comp_offset == 0) 9372 { 9373 BFD_ASSERT (htab->root.sgotplt->size == 0); 9374 BFD_ASSERT (htab->plt_got_index == 0); 9375 9376 /* If we're using the PLT additions to the psABI, each PLT 9377 entry is 16 bytes and the PLT0 entry is 32 bytes. 9378 Encourage better cache usage by aligning. We do this 9379 lazily to avoid pessimizing traditional objects. */ 9380 if (htab->root.target_os != is_vxworks 9381 && !bfd_set_section_alignment (htab->root.splt, 5)) 9382 return false; 9383 9384 /* Make sure that .got.plt is word-aligned. We do this lazily 9385 for the same reason as above. */ 9386 if (!bfd_set_section_alignment (htab->root.sgotplt, 9387 MIPS_ELF_LOG_FILE_ALIGN (dynobj))) 9388 return false; 9389 9390 /* On non-VxWorks targets, the first two entries in .got.plt 9391 are reserved. */ 9392 if (htab->root.target_os != is_vxworks) 9393 htab->plt_got_index 9394 += (get_elf_backend_data (dynobj)->got_header_size 9395 / MIPS_ELF_GOT_SIZE (dynobj)); 9396 9397 /* On VxWorks, also allocate room for the header's 9398 .rela.plt.unloaded entries. */ 9399 if (htab->root.target_os == is_vxworks 9400 && !bfd_link_pic (info)) 9401 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela); 9402 9403 /* Now work out the sizes of individual PLT entries. */ 9404 if (htab->root.target_os == is_vxworks 9405 && bfd_link_pic (info)) 9406 htab->plt_mips_entry_size 9407 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry); 9408 else if (htab->root.target_os == is_vxworks) 9409 htab->plt_mips_entry_size 9410 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry); 9411 else if (newabi_p) 9412 htab->plt_mips_entry_size 9413 = 4 * ARRAY_SIZE (mips_exec_plt_entry); 9414 else if (!micromips_p) 9415 { 9416 htab->plt_mips_entry_size 9417 = 4 * ARRAY_SIZE (mips_exec_plt_entry); 9418 htab->plt_comp_entry_size 9419 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry); 9420 } 9421 else if (htab->insn32) 9422 { 9423 htab->plt_mips_entry_size 9424 = 4 * ARRAY_SIZE (mips_exec_plt_entry); 9425 htab->plt_comp_entry_size 9426 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry); 9427 } 9428 else 9429 { 9430 htab->plt_mips_entry_size 9431 = 4 * ARRAY_SIZE (mips_exec_plt_entry); 9432 htab->plt_comp_entry_size 9433 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry); 9434 } 9435 } 9436 9437 if (h->plt.plist == NULL) 9438 h->plt.plist = mips_elf_make_plt_record (dynobj); 9439 if (h->plt.plist == NULL) 9440 return false; 9441 9442 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks, 9443 n32 or n64, so always use a standard entry there. 9444 9445 If the symbol has a MIPS16 call stub and gets a PLT entry, then 9446 all MIPS16 calls will go via that stub, and there is no benefit 9447 to having a MIPS16 entry. And in the case of call_stub a 9448 standard entry actually has to be used as the stub ends with a J 9449 instruction. */ 9450 if (newabi_p 9451 || htab->root.target_os == is_vxworks 9452 || hmips->call_stub 9453 || hmips->call_fp_stub) 9454 { 9455 h->plt.plist->need_mips = true; 9456 h->plt.plist->need_comp = false; 9457 } 9458 9459 /* Otherwise, if there are no direct calls to the function, we 9460 have a free choice of whether to use standard or compressed 9461 entries. Prefer microMIPS entries if the object is known to 9462 contain microMIPS code, so that it becomes possible to create 9463 pure microMIPS binaries. Prefer standard entries otherwise, 9464 because MIPS16 ones are no smaller and are usually slower. */ 9465 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp) 9466 { 9467 if (micromips_p) 9468 h->plt.plist->need_comp = true; 9469 else 9470 h->plt.plist->need_mips = true; 9471 } 9472 9473 if (h->plt.plist->need_mips) 9474 { 9475 h->plt.plist->mips_offset = htab->plt_mips_offset; 9476 htab->plt_mips_offset += htab->plt_mips_entry_size; 9477 } 9478 if (h->plt.plist->need_comp) 9479 { 9480 h->plt.plist->comp_offset = htab->plt_comp_offset; 9481 htab->plt_comp_offset += htab->plt_comp_entry_size; 9482 } 9483 9484 /* Reserve the corresponding .got.plt entry now too. */ 9485 h->plt.plist->gotplt_index = htab->plt_got_index++; 9486 9487 /* If the output file has no definition of the symbol, set the 9488 symbol's value to the address of the stub. */ 9489 if (!bfd_link_pic (info) && !h->def_regular) 9490 hmips->use_plt_entry = true; 9491 9492 /* Make room for the R_MIPS_JUMP_SLOT relocation. */ 9493 htab->root.srelplt->size += (htab->root.target_os == is_vxworks 9494 ? MIPS_ELF_RELA_SIZE (dynobj) 9495 : MIPS_ELF_REL_SIZE (dynobj)); 9496 9497 /* Make room for the .rela.plt.unloaded relocations. */ 9498 if (htab->root.target_os == is_vxworks && !bfd_link_pic (info)) 9499 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela); 9500 9501 /* All relocations against this symbol that could have been made 9502 dynamic will now refer to the PLT entry instead. */ 9503 hmips->possibly_dynamic_relocs = 0; 9504 9505 return true; 9506 } 9507 9508 /* If this is a weak symbol, and there is a real definition, the 9509 processor independent code will have arranged for us to see the 9510 real definition first, and we can just use the same value. */ 9511 if (h->is_weakalias) 9512 { 9513 struct elf_link_hash_entry *def = weakdef (h); 9514 BFD_ASSERT (def->root.type == bfd_link_hash_defined); 9515 h->root.u.def.section = def->root.u.def.section; 9516 h->root.u.def.value = def->root.u.def.value; 9517 return true; 9518 } 9519 9520 /* Otherwise, there is nothing further to do for symbols defined 9521 in regular objects. */ 9522 if (h->def_regular) 9523 return true; 9524 9525 /* There's also nothing more to do if we'll convert all relocations 9526 against this symbol into dynamic relocations. */ 9527 if (!hmips->has_static_relocs) 9528 return true; 9529 9530 /* We're now relying on copy relocations. Complain if we have 9531 some that we can't convert. */ 9532 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info)) 9533 { 9534 _bfd_error_handler (_("non-dynamic relocations refer to " 9535 "dynamic symbol %s"), 9536 h->root.root.string); 9537 bfd_set_error (bfd_error_bad_value); 9538 return false; 9539 } 9540 9541 /* We must allocate the symbol in our .dynbss section, which will 9542 become part of the .bss section of the executable. There will be 9543 an entry for this symbol in the .dynsym section. The dynamic 9544 object will contain position independent code, so all references 9545 from the dynamic object to this symbol will go through the global 9546 offset table. The dynamic linker will use the .dynsym entry to 9547 determine the address it must put in the global offset table, so 9548 both the dynamic object and the regular object will refer to the 9549 same memory location for the variable. */ 9550 9551 if ((h->root.u.def.section->flags & SEC_READONLY) != 0) 9552 { 9553 s = htab->root.sdynrelro; 9554 srel = htab->root.sreldynrelro; 9555 } 9556 else 9557 { 9558 s = htab->root.sdynbss; 9559 srel = htab->root.srelbss; 9560 } 9561 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0) 9562 { 9563 if (htab->root.target_os == is_vxworks) 9564 srel->size += sizeof (Elf32_External_Rela); 9565 else 9566 mips_elf_allocate_dynamic_relocations (dynobj, info, 1); 9567 h->needs_copy = 1; 9568 } 9569 9570 /* All relocations against this symbol that could have been made 9571 dynamic will now refer to the local copy instead. */ 9572 hmips->possibly_dynamic_relocs = 0; 9573 9574 return _bfd_elf_adjust_dynamic_copy (info, h, s); 9575 } 9576 9577 /* This function is called after all the input files have been read, 9578 and the input sections have been assigned to output sections. We 9579 check for any mips16 stub sections that we can discard. */ 9580 9581 bool 9582 _bfd_mips_elf_always_size_sections (bfd *output_bfd, 9583 struct bfd_link_info *info) 9584 { 9585 asection *sect; 9586 struct mips_elf_link_hash_table *htab; 9587 struct mips_htab_traverse_info hti; 9588 9589 htab = mips_elf_hash_table (info); 9590 BFD_ASSERT (htab != NULL); 9591 9592 /* The .reginfo section has a fixed size. */ 9593 sect = bfd_get_section_by_name (output_bfd, ".reginfo"); 9594 if (sect != NULL) 9595 { 9596 bfd_set_section_size (sect, sizeof (Elf32_External_RegInfo)); 9597 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS; 9598 } 9599 9600 /* The .MIPS.abiflags section has a fixed size. */ 9601 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags"); 9602 if (sect != NULL) 9603 { 9604 bfd_set_section_size (sect, sizeof (Elf_External_ABIFlags_v0)); 9605 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS; 9606 } 9607 9608 hti.info = info; 9609 hti.output_bfd = output_bfd; 9610 hti.error = false; 9611 mips_elf_link_hash_traverse (mips_elf_hash_table (info), 9612 mips_elf_check_symbols, &hti); 9613 if (hti.error) 9614 return false; 9615 9616 return true; 9617 } 9618 9619 /* If the link uses a GOT, lay it out and work out its size. */ 9620 9621 static bool 9622 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info) 9623 { 9624 bfd *dynobj; 9625 asection *s; 9626 struct mips_got_info *g; 9627 bfd_size_type loadable_size = 0; 9628 bfd_size_type page_gotno; 9629 bfd *ibfd; 9630 struct mips_elf_traverse_got_arg tga; 9631 struct mips_elf_link_hash_table *htab; 9632 9633 htab = mips_elf_hash_table (info); 9634 BFD_ASSERT (htab != NULL); 9635 9636 s = htab->root.sgot; 9637 if (s == NULL) 9638 return true; 9639 9640 dynobj = elf_hash_table (info)->dynobj; 9641 g = htab->got_info; 9642 9643 /* Allocate room for the reserved entries. VxWorks always reserves 9644 3 entries; other objects only reserve 2 entries. */ 9645 BFD_ASSERT (g->assigned_low_gotno == 0); 9646 if (htab->root.target_os == is_vxworks) 9647 htab->reserved_gotno = 3; 9648 else 9649 htab->reserved_gotno = 2; 9650 g->local_gotno += htab->reserved_gotno; 9651 g->assigned_low_gotno = htab->reserved_gotno; 9652 9653 /* Decide which symbols need to go in the global part of the GOT and 9654 count the number of reloc-only GOT symbols. */ 9655 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info); 9656 9657 if (!mips_elf_resolve_final_got_entries (info, g)) 9658 return false; 9659 9660 /* Calculate the total loadable size of the output. That 9661 will give us the maximum number of GOT_PAGE entries 9662 required. */ 9663 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next) 9664 { 9665 asection *subsection; 9666 9667 for (subsection = ibfd->sections; 9668 subsection; 9669 subsection = subsection->next) 9670 { 9671 if ((subsection->flags & SEC_ALLOC) == 0) 9672 continue; 9673 loadable_size += ((subsection->size + 0xf) 9674 &~ (bfd_size_type) 0xf); 9675 } 9676 } 9677 9678 if (htab->root.target_os == is_vxworks) 9679 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16 9680 relocations against local symbols evaluate to "G", and the EABI does 9681 not include R_MIPS_GOT_PAGE. */ 9682 page_gotno = 0; 9683 else 9684 /* Assume there are two loadable segments consisting of contiguous 9685 sections. Is 5 enough? */ 9686 page_gotno = (loadable_size >> 16) + 5; 9687 9688 /* Choose the smaller of the two page estimates; both are intended to be 9689 conservative. */ 9690 if (page_gotno > g->page_gotno) 9691 page_gotno = g->page_gotno; 9692 9693 g->local_gotno += page_gotno; 9694 g->assigned_high_gotno = g->local_gotno - 1; 9695 9696 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd); 9697 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd); 9698 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd); 9699 9700 /* VxWorks does not support multiple GOTs. It initializes $gp to 9701 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the 9702 dynamic loader. */ 9703 if (htab->root.target_os != is_vxworks 9704 && s->size > MIPS_ELF_GOT_MAX_SIZE (info)) 9705 { 9706 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno)) 9707 return false; 9708 } 9709 else 9710 { 9711 /* Record that all bfds use G. This also has the effect of freeing 9712 the per-bfd GOTs, which we no longer need. */ 9713 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next) 9714 if (mips_elf_bfd_got (ibfd, false)) 9715 mips_elf_replace_bfd_got (ibfd, g); 9716 mips_elf_replace_bfd_got (output_bfd, g); 9717 9718 /* Set up TLS entries. */ 9719 g->tls_assigned_gotno = g->global_gotno + g->local_gotno; 9720 tga.info = info; 9721 tga.g = g; 9722 tga.value = MIPS_ELF_GOT_SIZE (output_bfd); 9723 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga); 9724 if (!tga.g) 9725 return false; 9726 BFD_ASSERT (g->tls_assigned_gotno 9727 == g->global_gotno + g->local_gotno + g->tls_gotno); 9728 9729 /* Each VxWorks GOT entry needs an explicit relocation. */ 9730 if (htab->root.target_os == is_vxworks && bfd_link_pic (info)) 9731 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno; 9732 9733 /* Allocate room for the TLS relocations. */ 9734 if (g->relocs) 9735 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs); 9736 } 9737 9738 return true; 9739 } 9740 9741 /* Estimate the size of the .MIPS.stubs section. */ 9742 9743 static void 9744 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info) 9745 { 9746 struct mips_elf_link_hash_table *htab; 9747 bfd_size_type dynsymcount; 9748 9749 htab = mips_elf_hash_table (info); 9750 BFD_ASSERT (htab != NULL); 9751 9752 if (htab->lazy_stub_count == 0) 9753 return; 9754 9755 /* IRIX rld assumes that a function stub isn't at the end of the .text 9756 section, so add a dummy entry to the end. */ 9757 htab->lazy_stub_count++; 9758 9759 /* Get a worst-case estimate of the number of dynamic symbols needed. 9760 At this point, dynsymcount does not account for section symbols 9761 and count_section_dynsyms may overestimate the number that will 9762 be needed. */ 9763 dynsymcount = (elf_hash_table (info)->dynsymcount 9764 + count_section_dynsyms (output_bfd, info)); 9765 9766 /* Determine the size of one stub entry. There's no disadvantage 9767 from using microMIPS code here, so for the sake of pure-microMIPS 9768 binaries we prefer it whenever there's any microMIPS code in 9769 output produced at all. This has a benefit of stubs being 9770 shorter by 4 bytes each too, unless in the insn32 mode. */ 9771 if (!MICROMIPS_P (output_bfd)) 9772 htab->function_stub_size = (dynsymcount > 0x10000 9773 ? MIPS_FUNCTION_STUB_BIG_SIZE 9774 : MIPS_FUNCTION_STUB_NORMAL_SIZE); 9775 else if (htab->insn32) 9776 htab->function_stub_size = (dynsymcount > 0x10000 9777 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 9778 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE); 9779 else 9780 htab->function_stub_size = (dynsymcount > 0x10000 9781 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE 9782 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE); 9783 9784 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size; 9785 } 9786 9787 /* A mips_elf_link_hash_traverse callback for which DATA points to a 9788 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding 9789 stub, allocate an entry in the stubs section. */ 9790 9791 static bool 9792 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data) 9793 { 9794 struct mips_htab_traverse_info *hti = data; 9795 struct mips_elf_link_hash_table *htab; 9796 struct bfd_link_info *info; 9797 bfd *output_bfd; 9798 9799 info = hti->info; 9800 output_bfd = hti->output_bfd; 9801 htab = mips_elf_hash_table (info); 9802 BFD_ASSERT (htab != NULL); 9803 9804 if (h->needs_lazy_stub) 9805 { 9806 bool micromips_p = MICROMIPS_P (output_bfd); 9807 unsigned int other = micromips_p ? STO_MICROMIPS : 0; 9808 bfd_vma isa_bit = micromips_p; 9809 9810 BFD_ASSERT (htab->root.dynobj != NULL); 9811 if (h->root.plt.plist == NULL) 9812 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner); 9813 if (h->root.plt.plist == NULL) 9814 { 9815 hti->error = true; 9816 return false; 9817 } 9818 h->root.root.u.def.section = htab->sstubs; 9819 h->root.root.u.def.value = htab->sstubs->size + isa_bit; 9820 h->root.plt.plist->stub_offset = htab->sstubs->size; 9821 h->root.other = other; 9822 htab->sstubs->size += htab->function_stub_size; 9823 } 9824 return true; 9825 } 9826 9827 /* Allocate offsets in the stubs section to each symbol that needs one. 9828 Set the final size of the .MIPS.stub section. */ 9829 9830 static bool 9831 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info) 9832 { 9833 bfd *output_bfd = info->output_bfd; 9834 bool micromips_p = MICROMIPS_P (output_bfd); 9835 unsigned int other = micromips_p ? STO_MICROMIPS : 0; 9836 bfd_vma isa_bit = micromips_p; 9837 struct mips_elf_link_hash_table *htab; 9838 struct mips_htab_traverse_info hti; 9839 struct elf_link_hash_entry *h; 9840 bfd *dynobj; 9841 9842 htab = mips_elf_hash_table (info); 9843 BFD_ASSERT (htab != NULL); 9844 9845 if (htab->lazy_stub_count == 0) 9846 return true; 9847 9848 htab->sstubs->size = 0; 9849 hti.info = info; 9850 hti.output_bfd = output_bfd; 9851 hti.error = false; 9852 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti); 9853 if (hti.error) 9854 return false; 9855 htab->sstubs->size += htab->function_stub_size; 9856 BFD_ASSERT (htab->sstubs->size 9857 == htab->lazy_stub_count * htab->function_stub_size); 9858 9859 dynobj = elf_hash_table (info)->dynobj; 9860 BFD_ASSERT (dynobj != NULL); 9861 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_"); 9862 if (h == NULL) 9863 return false; 9864 h->root.u.def.value = isa_bit; 9865 h->other = other; 9866 h->type = STT_FUNC; 9867 9868 return true; 9869 } 9870 9871 /* A mips_elf_link_hash_traverse callback for which DATA points to a 9872 bfd_link_info. If H uses the address of a PLT entry as the value 9873 of the symbol, then set the entry in the symbol table now. Prefer 9874 a standard MIPS PLT entry. */ 9875 9876 static bool 9877 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data) 9878 { 9879 struct bfd_link_info *info = data; 9880 bool micromips_p = MICROMIPS_P (info->output_bfd); 9881 struct mips_elf_link_hash_table *htab; 9882 unsigned int other; 9883 bfd_vma isa_bit; 9884 bfd_vma val; 9885 9886 htab = mips_elf_hash_table (info); 9887 BFD_ASSERT (htab != NULL); 9888 9889 if (h->use_plt_entry) 9890 { 9891 BFD_ASSERT (h->root.plt.plist != NULL); 9892 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE 9893 || h->root.plt.plist->comp_offset != MINUS_ONE); 9894 9895 val = htab->plt_header_size; 9896 if (h->root.plt.plist->mips_offset != MINUS_ONE) 9897 { 9898 isa_bit = 0; 9899 val += h->root.plt.plist->mips_offset; 9900 other = 0; 9901 } 9902 else 9903 { 9904 isa_bit = 1; 9905 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset; 9906 other = micromips_p ? STO_MICROMIPS : STO_MIPS16; 9907 } 9908 val += isa_bit; 9909 /* For VxWorks, point at the PLT load stub rather than the lazy 9910 resolution stub; this stub will become the canonical function 9911 address. */ 9912 if (htab->root.target_os == is_vxworks) 9913 val += 8; 9914 9915 h->root.root.u.def.section = htab->root.splt; 9916 h->root.root.u.def.value = val; 9917 h->root.other = other; 9918 } 9919 9920 return true; 9921 } 9922 9923 /* Set the sizes of the dynamic sections. */ 9924 9925 bool 9926 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd, 9927 struct bfd_link_info *info) 9928 { 9929 bfd *dynobj; 9930 asection *s, *sreldyn; 9931 bool reltext; 9932 struct mips_elf_link_hash_table *htab; 9933 9934 htab = mips_elf_hash_table (info); 9935 BFD_ASSERT (htab != NULL); 9936 dynobj = elf_hash_table (info)->dynobj; 9937 BFD_ASSERT (dynobj != NULL); 9938 9939 if (elf_hash_table (info)->dynamic_sections_created) 9940 { 9941 /* Set the contents of the .interp section to the interpreter. */ 9942 if (bfd_link_executable (info) && !info->nointerp) 9943 { 9944 s = bfd_get_linker_section (dynobj, ".interp"); 9945 BFD_ASSERT (s != NULL); 9946 s->size 9947 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1; 9948 s->contents 9949 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd); 9950 } 9951 9952 /* Figure out the size of the PLT header if we know that we 9953 are using it. For the sake of cache alignment always use 9954 a standard header whenever any standard entries are present 9955 even if microMIPS entries are present as well. This also 9956 lets the microMIPS header rely on the value of $v0 only set 9957 by microMIPS entries, for a small size reduction. 9958 9959 Set symbol table entry values for symbols that use the 9960 address of their PLT entry now that we can calculate it. 9961 9962 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we 9963 haven't already in _bfd_elf_create_dynamic_sections. */ 9964 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0) 9965 { 9966 bool micromips_p = (MICROMIPS_P (output_bfd) 9967 && !htab->plt_mips_offset); 9968 unsigned int other = micromips_p ? STO_MICROMIPS : 0; 9969 bfd_vma isa_bit = micromips_p; 9970 struct elf_link_hash_entry *h; 9971 bfd_vma size; 9972 9973 BFD_ASSERT (htab->use_plts_and_copy_relocs); 9974 BFD_ASSERT (htab->root.sgotplt->size == 0); 9975 BFD_ASSERT (htab->root.splt->size == 0); 9976 9977 if (htab->root.target_os == is_vxworks && bfd_link_pic (info)) 9978 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry); 9979 else if (htab->root.target_os == is_vxworks) 9980 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry); 9981 else if (ABI_64_P (output_bfd)) 9982 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry); 9983 else if (ABI_N32_P (output_bfd)) 9984 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry); 9985 else if (!micromips_p) 9986 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry); 9987 else if (htab->insn32) 9988 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); 9989 else 9990 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry); 9991 9992 htab->plt_header_is_comp = micromips_p; 9993 htab->plt_header_size = size; 9994 htab->root.splt->size = (size 9995 + htab->plt_mips_offset 9996 + htab->plt_comp_offset); 9997 htab->root.sgotplt->size = (htab->plt_got_index 9998 * MIPS_ELF_GOT_SIZE (dynobj)); 9999 10000 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info); 10001 10002 if (htab->root.hplt == NULL) 10003 { 10004 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt, 10005 "_PROCEDURE_LINKAGE_TABLE_"); 10006 htab->root.hplt = h; 10007 if (h == NULL) 10008 return false; 10009 } 10010 10011 h = htab->root.hplt; 10012 h->root.u.def.value = isa_bit; 10013 h->other = other; 10014 h->type = STT_FUNC; 10015 } 10016 } 10017 10018 /* Allocate space for global sym dynamic relocs. */ 10019 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info); 10020 10021 mips_elf_estimate_stub_size (output_bfd, info); 10022 10023 if (!mips_elf_lay_out_got (output_bfd, info)) 10024 return false; 10025 10026 mips_elf_lay_out_lazy_stubs (info); 10027 10028 /* The check_relocs and adjust_dynamic_symbol entry points have 10029 determined the sizes of the various dynamic sections. Allocate 10030 memory for them. */ 10031 reltext = false; 10032 for (s = dynobj->sections; s != NULL; s = s->next) 10033 { 10034 const char *name; 10035 10036 /* It's OK to base decisions on the section name, because none 10037 of the dynobj section names depend upon the input files. */ 10038 name = bfd_section_name (s); 10039 10040 if ((s->flags & SEC_LINKER_CREATED) == 0) 10041 continue; 10042 10043 if (startswith (name, ".rel")) 10044 { 10045 if (s->size != 0) 10046 { 10047 const char *outname; 10048 asection *target; 10049 10050 /* If this relocation section applies to a read only 10051 section, then we probably need a DT_TEXTREL entry. 10052 If the relocation section is .rel(a).dyn, we always 10053 assert a DT_TEXTREL entry rather than testing whether 10054 there exists a relocation to a read only section or 10055 not. */ 10056 outname = bfd_section_name (s->output_section); 10057 target = bfd_get_section_by_name (output_bfd, outname + 4); 10058 if ((target != NULL 10059 && (target->flags & SEC_READONLY) != 0 10060 && (target->flags & SEC_ALLOC) != 0) 10061 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0) 10062 reltext = true; 10063 10064 /* We use the reloc_count field as a counter if we need 10065 to copy relocs into the output file. */ 10066 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0) 10067 s->reloc_count = 0; 10068 10069 /* If combreloc is enabled, elf_link_sort_relocs() will 10070 sort relocations, but in a different way than we do, 10071 and before we're done creating relocations. Also, it 10072 will move them around between input sections' 10073 relocation's contents, so our sorting would be 10074 broken, so don't let it run. */ 10075 info->combreloc = 0; 10076 } 10077 } 10078 else if (bfd_link_executable (info) 10079 && ! mips_elf_hash_table (info)->use_rld_obj_head 10080 && startswith (name, ".rld_map")) 10081 { 10082 /* We add a room for __rld_map. It will be filled in by the 10083 rtld to contain a pointer to the _r_debug structure. */ 10084 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd); 10085 } 10086 else if (SGI_COMPAT (output_bfd) 10087 && startswith (name, ".compact_rel")) 10088 s->size += mips_elf_hash_table (info)->compact_rel_size; 10089 else if (s == htab->root.splt) 10090 { 10091 /* If the last PLT entry has a branch delay slot, allocate 10092 room for an extra nop to fill the delay slot. This is 10093 for CPUs without load interlocking. */ 10094 if (! LOAD_INTERLOCKS_P (output_bfd) 10095 && htab->root.target_os != is_vxworks 10096 && s->size > 0) 10097 s->size += 4; 10098 } 10099 else if (! startswith (name, ".init") 10100 && s != htab->root.sgot 10101 && s != htab->root.sgotplt 10102 && s != htab->sstubs 10103 && s != htab->root.sdynbss 10104 && s != htab->root.sdynrelro) 10105 { 10106 /* It's not one of our sections, so don't allocate space. */ 10107 continue; 10108 } 10109 10110 if (s->size == 0) 10111 { 10112 s->flags |= SEC_EXCLUDE; 10113 continue; 10114 } 10115 10116 if ((s->flags & SEC_HAS_CONTENTS) == 0) 10117 continue; 10118 10119 /* Allocate memory for the section contents. */ 10120 s->contents = bfd_zalloc (dynobj, s->size); 10121 if (s->contents == NULL) 10122 { 10123 bfd_set_error (bfd_error_no_memory); 10124 return false; 10125 } 10126 } 10127 10128 if (elf_hash_table (info)->dynamic_sections_created) 10129 { 10130 /* Add some entries to the .dynamic section. We fill in the 10131 values later, in _bfd_mips_elf_finish_dynamic_sections, but we 10132 must add the entries now so that we get the correct size for 10133 the .dynamic section. */ 10134 10135 /* SGI object has the equivalence of DT_DEBUG in the 10136 DT_MIPS_RLD_MAP entry. This must come first because glibc 10137 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools 10138 may only look at the first one they see. */ 10139 if (!bfd_link_pic (info) 10140 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0)) 10141 return false; 10142 10143 if (bfd_link_executable (info) 10144 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0)) 10145 return false; 10146 10147 /* The DT_DEBUG entry may be filled in by the dynamic linker and 10148 used by the debugger. */ 10149 if (bfd_link_executable (info) 10150 && !SGI_COMPAT (output_bfd) 10151 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0)) 10152 return false; 10153 10154 if (reltext 10155 && (SGI_COMPAT (output_bfd) 10156 || htab->root.target_os == is_vxworks)) 10157 info->flags |= DF_TEXTREL; 10158 10159 if ((info->flags & DF_TEXTREL) != 0) 10160 { 10161 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0)) 10162 return false; 10163 10164 /* Clear the DF_TEXTREL flag. It will be set again if we 10165 write out an actual text relocation; we may not, because 10166 at this point we do not know whether e.g. any .eh_frame 10167 absolute relocations have been converted to PC-relative. */ 10168 info->flags &= ~DF_TEXTREL; 10169 } 10170 10171 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0)) 10172 return false; 10173 10174 sreldyn = mips_elf_rel_dyn_section (info, false); 10175 if (htab->root.target_os == is_vxworks) 10176 { 10177 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not 10178 use any of the DT_MIPS_* tags. */ 10179 if (sreldyn && sreldyn->size > 0) 10180 { 10181 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0)) 10182 return false; 10183 10184 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0)) 10185 return false; 10186 10187 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0)) 10188 return false; 10189 } 10190 } 10191 else 10192 { 10193 if (sreldyn && sreldyn->size > 0 10194 && !bfd_is_abs_section (sreldyn->output_section)) 10195 { 10196 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0)) 10197 return false; 10198 10199 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0)) 10200 return false; 10201 10202 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0)) 10203 return false; 10204 } 10205 10206 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0)) 10207 return false; 10208 10209 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0)) 10210 return false; 10211 10212 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0)) 10213 return false; 10214 10215 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0)) 10216 return false; 10217 10218 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0)) 10219 return false; 10220 10221 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0)) 10222 return false; 10223 10224 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0)) 10225 return false; 10226 10227 if (info->emit_gnu_hash 10228 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_XHASH, 0)) 10229 return false; 10230 10231 if (IRIX_COMPAT (dynobj) == ict_irix5 10232 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0)) 10233 return false; 10234 10235 if (IRIX_COMPAT (dynobj) == ict_irix6 10236 && (bfd_get_section_by_name 10237 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj))) 10238 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0)) 10239 return false; 10240 } 10241 if (htab->root.splt->size > 0) 10242 { 10243 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0)) 10244 return false; 10245 10246 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0)) 10247 return false; 10248 10249 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0)) 10250 return false; 10251 10252 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0)) 10253 return false; 10254 } 10255 if (htab->root.target_os == is_vxworks 10256 && !elf_vxworks_add_dynamic_entries (output_bfd, info)) 10257 return false; 10258 } 10259 10260 return true; 10261 } 10262 10263 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD. 10264 Adjust its R_ADDEND field so that it is correct for the output file. 10265 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols 10266 and sections respectively; both use symbol indexes. */ 10267 10268 static void 10269 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info, 10270 bfd *input_bfd, Elf_Internal_Sym *local_syms, 10271 asection **local_sections, Elf_Internal_Rela *rel) 10272 { 10273 unsigned int r_type, r_symndx; 10274 Elf_Internal_Sym *sym; 10275 asection *sec; 10276 10277 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections)) 10278 { 10279 r_type = ELF_R_TYPE (output_bfd, rel->r_info); 10280 if (gprel16_reloc_p (r_type) 10281 || r_type == R_MIPS_GPREL32 10282 || literal_reloc_p (r_type)) 10283 { 10284 rel->r_addend += _bfd_get_gp_value (input_bfd); 10285 rel->r_addend -= _bfd_get_gp_value (output_bfd); 10286 } 10287 10288 r_symndx = ELF_R_SYM (output_bfd, rel->r_info); 10289 sym = local_syms + r_symndx; 10290 10291 /* Adjust REL's addend to account for section merging. */ 10292 if (!bfd_link_relocatable (info)) 10293 { 10294 sec = local_sections[r_symndx]; 10295 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); 10296 } 10297 10298 /* This would normally be done by the rela_normal code in elflink.c. */ 10299 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) 10300 rel->r_addend += local_sections[r_symndx]->output_offset; 10301 } 10302 } 10303 10304 /* Handle relocations against symbols from removed linkonce sections, 10305 or sections discarded by a linker script. We use this wrapper around 10306 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs 10307 on 64-bit ELF targets. In this case for any relocation handled, which 10308 always be the first in a triplet, the remaining two have to be processed 10309 together with the first, even if they are R_MIPS_NONE. It is the symbol 10310 index referred by the first reloc that applies to all the three and the 10311 remaining two never refer to an object symbol. And it is the final 10312 relocation (the last non-null one) that determines the output field of 10313 the whole relocation so retrieve the corresponding howto structure for 10314 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION. 10315 10316 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue" 10317 and therefore requires to be pasted in a loop. It also defines a block 10318 and does not protect any of its arguments, hence the extra brackets. */ 10319 10320 static void 10321 mips_reloc_against_discarded_section (bfd *output_bfd, 10322 struct bfd_link_info *info, 10323 bfd *input_bfd, asection *input_section, 10324 Elf_Internal_Rela **rel, 10325 const Elf_Internal_Rela **relend, 10326 bool rel_reloc, 10327 reloc_howto_type *howto, 10328 bfd_byte *contents) 10329 { 10330 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); 10331 int count = bed->s->int_rels_per_ext_rel; 10332 unsigned int r_type; 10333 int i; 10334 10335 for (i = count - 1; i > 0; i--) 10336 { 10337 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info); 10338 if (r_type != R_MIPS_NONE) 10339 { 10340 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc); 10341 break; 10342 } 10343 } 10344 do 10345 { 10346 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, 10347 (*rel), count, (*relend), 10348 howto, i, contents); 10349 } 10350 while (0); 10351 } 10352 10353 /* Relocate a MIPS ELF section. */ 10354 10355 int 10356 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info, 10357 bfd *input_bfd, asection *input_section, 10358 bfd_byte *contents, Elf_Internal_Rela *relocs, 10359 Elf_Internal_Sym *local_syms, 10360 asection **local_sections) 10361 { 10362 Elf_Internal_Rela *rel; 10363 const Elf_Internal_Rela *relend; 10364 bfd_vma addend = 0; 10365 bool use_saved_addend_p = false; 10366 10367 relend = relocs + input_section->reloc_count; 10368 for (rel = relocs; rel < relend; ++rel) 10369 { 10370 const char *name; 10371 bfd_vma value = 0; 10372 reloc_howto_type *howto; 10373 bool cross_mode_jump_p = false; 10374 /* TRUE if the relocation is a RELA relocation, rather than a 10375 REL relocation. */ 10376 bool rela_relocation_p = true; 10377 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info); 10378 const char *msg; 10379 unsigned long r_symndx; 10380 asection *sec; 10381 Elf_Internal_Shdr *symtab_hdr; 10382 struct elf_link_hash_entry *h; 10383 bool rel_reloc; 10384 10385 rel_reloc = (NEWABI_P (input_bfd) 10386 && mips_elf_rel_relocation_p (input_bfd, input_section, 10387 relocs, rel)); 10388 /* Find the relocation howto for this relocation. */ 10389 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc); 10390 10391 r_symndx = ELF_R_SYM (input_bfd, rel->r_info); 10392 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 10393 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections)) 10394 { 10395 sec = local_sections[r_symndx]; 10396 h = NULL; 10397 } 10398 else 10399 { 10400 unsigned long extsymoff; 10401 10402 extsymoff = 0; 10403 if (!elf_bad_symtab (input_bfd)) 10404 extsymoff = symtab_hdr->sh_info; 10405 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff]; 10406 while (h->root.type == bfd_link_hash_indirect 10407 || h->root.type == bfd_link_hash_warning) 10408 h = (struct elf_link_hash_entry *) h->root.u.i.link; 10409 10410 sec = NULL; 10411 if (h->root.type == bfd_link_hash_defined 10412 || h->root.type == bfd_link_hash_defweak) 10413 sec = h->root.u.def.section; 10414 } 10415 10416 if (sec != NULL && discarded_section (sec)) 10417 { 10418 mips_reloc_against_discarded_section (output_bfd, info, input_bfd, 10419 input_section, &rel, &relend, 10420 rel_reloc, howto, contents); 10421 continue; 10422 } 10423 10424 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd)) 10425 { 10426 /* Some 32-bit code uses R_MIPS_64. In particular, people use 10427 64-bit code, but make sure all their addresses are in the 10428 lowermost or uppermost 32-bit section of the 64-bit address 10429 space. Thus, when they use an R_MIPS_64 they mean what is 10430 usually meant by R_MIPS_32, with the exception that the 10431 stored value is sign-extended to 64 bits. */ 10432 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, false); 10433 10434 /* On big-endian systems, we need to lie about the position 10435 of the reloc. */ 10436 if (bfd_big_endian (input_bfd)) 10437 rel->r_offset += 4; 10438 } 10439 10440 if (!use_saved_addend_p) 10441 { 10442 /* If these relocations were originally of the REL variety, 10443 we must pull the addend out of the field that will be 10444 relocated. Otherwise, we simply use the contents of the 10445 RELA relocation. */ 10446 if (mips_elf_rel_relocation_p (input_bfd, input_section, 10447 relocs, rel)) 10448 { 10449 rela_relocation_p = false; 10450 addend = mips_elf_read_rel_addend (input_bfd, rel, 10451 howto, contents); 10452 if (hi16_reloc_p (r_type) 10453 || (got16_reloc_p (r_type) 10454 && mips_elf_local_relocation_p (input_bfd, rel, 10455 local_sections))) 10456 { 10457 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend, 10458 contents, &addend)) 10459 { 10460 if (h) 10461 name = h->root.root.string; 10462 else 10463 name = bfd_elf_sym_name (input_bfd, symtab_hdr, 10464 local_syms + r_symndx, 10465 sec); 10466 _bfd_error_handler 10467 /* xgettext:c-format */ 10468 (_("%pB: can't find matching LO16 reloc against `%s'" 10469 " for %s at %#" PRIx64 " in section `%pA'"), 10470 input_bfd, name, 10471 howto->name, (uint64_t) rel->r_offset, input_section); 10472 } 10473 } 10474 else 10475 addend <<= howto->rightshift; 10476 } 10477 else 10478 addend = rel->r_addend; 10479 mips_elf_adjust_addend (output_bfd, info, input_bfd, 10480 local_syms, local_sections, rel); 10481 } 10482 10483 if (bfd_link_relocatable (info)) 10484 { 10485 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd) 10486 && bfd_big_endian (input_bfd)) 10487 rel->r_offset -= 4; 10488 10489 if (!rela_relocation_p && rel->r_addend) 10490 { 10491 addend += rel->r_addend; 10492 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type)) 10493 addend = mips_elf_high (addend); 10494 else if (r_type == R_MIPS_HIGHER) 10495 addend = mips_elf_higher (addend); 10496 else if (r_type == R_MIPS_HIGHEST) 10497 addend = mips_elf_highest (addend); 10498 else 10499 addend >>= howto->rightshift; 10500 10501 /* We use the source mask, rather than the destination 10502 mask because the place to which we are writing will be 10503 source of the addend in the final link. */ 10504 addend &= howto->src_mask; 10505 10506 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) 10507 /* See the comment above about using R_MIPS_64 in the 32-bit 10508 ABI. Here, we need to update the addend. It would be 10509 possible to get away with just using the R_MIPS_32 reloc 10510 but for endianness. */ 10511 { 10512 bfd_vma sign_bits; 10513 bfd_vma low_bits; 10514 bfd_vma high_bits; 10515 10516 if (addend & ((bfd_vma) 1 << 31)) 10517 #ifdef BFD64 10518 sign_bits = ((bfd_vma) 1 << 32) - 1; 10519 #else 10520 sign_bits = -1; 10521 #endif 10522 else 10523 sign_bits = 0; 10524 10525 /* If we don't know that we have a 64-bit type, 10526 do two separate stores. */ 10527 if (bfd_big_endian (input_bfd)) 10528 { 10529 /* Store the sign-bits (which are most significant) 10530 first. */ 10531 low_bits = sign_bits; 10532 high_bits = addend; 10533 } 10534 else 10535 { 10536 low_bits = addend; 10537 high_bits = sign_bits; 10538 } 10539 bfd_put_32 (input_bfd, low_bits, 10540 contents + rel->r_offset); 10541 bfd_put_32 (input_bfd, high_bits, 10542 contents + rel->r_offset + 4); 10543 continue; 10544 } 10545 10546 if (! mips_elf_perform_relocation (info, howto, rel, addend, 10547 input_bfd, input_section, 10548 contents, false)) 10549 return false; 10550 } 10551 10552 /* Go on to the next relocation. */ 10553 continue; 10554 } 10555 10556 /* In the N32 and 64-bit ABIs there may be multiple consecutive 10557 relocations for the same offset. In that case we are 10558 supposed to treat the output of each relocation as the addend 10559 for the next. */ 10560 if (rel + 1 < relend 10561 && rel->r_offset == rel[1].r_offset 10562 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE) 10563 use_saved_addend_p = true; 10564 else 10565 use_saved_addend_p = false; 10566 10567 /* Figure out what value we are supposed to relocate. */ 10568 switch (mips_elf_calculate_relocation (output_bfd, input_bfd, 10569 input_section, contents, 10570 info, rel, addend, howto, 10571 local_syms, local_sections, 10572 &value, &name, &cross_mode_jump_p, 10573 use_saved_addend_p)) 10574 { 10575 case bfd_reloc_continue: 10576 /* There's nothing to do. */ 10577 continue; 10578 10579 case bfd_reloc_undefined: 10580 /* mips_elf_calculate_relocation already called the 10581 undefined_symbol callback. There's no real point in 10582 trying to perform the relocation at this point, so we 10583 just skip ahead to the next relocation. */ 10584 continue; 10585 10586 case bfd_reloc_notsupported: 10587 msg = _("internal error: unsupported relocation error"); 10588 info->callbacks->warning 10589 (info, msg, name, input_bfd, input_section, rel->r_offset); 10590 return false; 10591 10592 case bfd_reloc_overflow: 10593 if (use_saved_addend_p) 10594 /* Ignore overflow until we reach the last relocation for 10595 a given location. */ 10596 ; 10597 else 10598 { 10599 struct mips_elf_link_hash_table *htab; 10600 10601 htab = mips_elf_hash_table (info); 10602 BFD_ASSERT (htab != NULL); 10603 BFD_ASSERT (name != NULL); 10604 if (!htab->small_data_overflow_reported 10605 && (gprel16_reloc_p (howto->type) 10606 || literal_reloc_p (howto->type))) 10607 { 10608 msg = _("small-data section exceeds 64KB;" 10609 " lower small-data size limit (see option -G)"); 10610 10611 htab->small_data_overflow_reported = true; 10612 (*info->callbacks->einfo) ("%P: %s\n", msg); 10613 } 10614 (*info->callbacks->reloc_overflow) 10615 (info, NULL, name, howto->name, (bfd_vma) 0, 10616 input_bfd, input_section, rel->r_offset); 10617 } 10618 break; 10619 10620 case bfd_reloc_ok: 10621 break; 10622 10623 case bfd_reloc_outofrange: 10624 msg = NULL; 10625 if (jal_reloc_p (howto->type)) 10626 msg = (cross_mode_jump_p 10627 ? _("cannot convert a jump to JALX " 10628 "for a non-word-aligned address") 10629 : (howto->type == R_MIPS16_26 10630 ? _("jump to a non-word-aligned address") 10631 : _("jump to a non-instruction-aligned address"))); 10632 else if (b_reloc_p (howto->type)) 10633 msg = (cross_mode_jump_p 10634 ? _("cannot convert a branch to JALX " 10635 "for a non-word-aligned address") 10636 : _("branch to a non-instruction-aligned address")); 10637 else if (aligned_pcrel_reloc_p (howto->type)) 10638 msg = _("PC-relative load from unaligned address"); 10639 if (msg) 10640 { 10641 info->callbacks->einfo 10642 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg); 10643 break; 10644 } 10645 /* Fall through. */ 10646 10647 default: 10648 abort (); 10649 break; 10650 } 10651 10652 /* If we've got another relocation for the address, keep going 10653 until we reach the last one. */ 10654 if (use_saved_addend_p) 10655 { 10656 addend = value; 10657 continue; 10658 } 10659 10660 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) 10661 /* See the comment above about using R_MIPS_64 in the 32-bit 10662 ABI. Until now, we've been using the HOWTO for R_MIPS_32; 10663 that calculated the right value. Now, however, we 10664 sign-extend the 32-bit result to 64-bits, and store it as a 10665 64-bit value. We are especially generous here in that we 10666 go to extreme lengths to support this usage on systems with 10667 only a 32-bit VMA. */ 10668 { 10669 bfd_vma sign_bits; 10670 bfd_vma low_bits; 10671 bfd_vma high_bits; 10672 10673 if (value & ((bfd_vma) 1 << 31)) 10674 #ifdef BFD64 10675 sign_bits = ((bfd_vma) 1 << 32) - 1; 10676 #else 10677 sign_bits = -1; 10678 #endif 10679 else 10680 sign_bits = 0; 10681 10682 /* If we don't know that we have a 64-bit type, 10683 do two separate stores. */ 10684 if (bfd_big_endian (input_bfd)) 10685 { 10686 /* Undo what we did above. */ 10687 rel->r_offset -= 4; 10688 /* Store the sign-bits (which are most significant) 10689 first. */ 10690 low_bits = sign_bits; 10691 high_bits = value; 10692 } 10693 else 10694 { 10695 low_bits = value; 10696 high_bits = sign_bits; 10697 } 10698 bfd_put_32 (input_bfd, low_bits, 10699 contents + rel->r_offset); 10700 bfd_put_32 (input_bfd, high_bits, 10701 contents + rel->r_offset + 4); 10702 continue; 10703 } 10704 10705 /* Actually perform the relocation. */ 10706 if (! mips_elf_perform_relocation (info, howto, rel, value, 10707 input_bfd, input_section, 10708 contents, cross_mode_jump_p)) 10709 return false; 10710 } 10711 10712 return true; 10713 } 10714 10715 /* A function that iterates over each entry in la25_stubs and fills 10716 in the code for each one. DATA points to a mips_htab_traverse_info. */ 10717 10718 static int 10719 mips_elf_create_la25_stub (void **slot, void *data) 10720 { 10721 struct mips_htab_traverse_info *hti; 10722 struct mips_elf_link_hash_table *htab; 10723 struct mips_elf_la25_stub *stub; 10724 asection *s; 10725 bfd_byte *loc; 10726 bfd_vma offset, target, target_high, target_low; 10727 bfd_vma branch_pc; 10728 bfd_signed_vma pcrel_offset = 0; 10729 10730 stub = (struct mips_elf_la25_stub *) *slot; 10731 hti = (struct mips_htab_traverse_info *) data; 10732 htab = mips_elf_hash_table (hti->info); 10733 BFD_ASSERT (htab != NULL); 10734 10735 /* Create the section contents, if we haven't already. */ 10736 s = stub->stub_section; 10737 loc = s->contents; 10738 if (loc == NULL) 10739 { 10740 loc = bfd_malloc (s->size); 10741 if (loc == NULL) 10742 { 10743 hti->error = true; 10744 return false; 10745 } 10746 s->contents = loc; 10747 } 10748 10749 /* Work out where in the section this stub should go. */ 10750 offset = stub->offset; 10751 10752 /* We add 8 here to account for the LUI/ADDIU instructions 10753 before the branch instruction. This cannot be moved down to 10754 where pcrel_offset is calculated as 's' is updated in 10755 mips_elf_get_la25_target. */ 10756 branch_pc = s->output_section->vma + s->output_offset + offset + 8; 10757 10758 /* Work out the target address. */ 10759 target = mips_elf_get_la25_target (stub, &s); 10760 target += s->output_section->vma + s->output_offset; 10761 10762 target_high = ((target + 0x8000) >> 16) & 0xffff; 10763 target_low = (target & 0xffff); 10764 10765 /* Calculate the PC of the compact branch instruction (for the case where 10766 compact branches are used for either microMIPSR6 or MIPSR6 with 10767 compact branches. Add 4-bytes to account for BC using the PC of the 10768 next instruction as the base. */ 10769 pcrel_offset = target - (branch_pc + 4); 10770 10771 if (stub->stub_section != htab->strampoline) 10772 { 10773 /* This is a simple LUI/ADDIU stub. Zero out the beginning 10774 of the section and write the two instructions at the end. */ 10775 memset (loc, 0, offset); 10776 loc += offset; 10777 if (ELF_ST_IS_MICROMIPS (stub->h->root.other)) 10778 { 10779 bfd_put_micromips_32 (hti->output_bfd, 10780 LA25_LUI_MICROMIPS (target_high), 10781 loc); 10782 bfd_put_micromips_32 (hti->output_bfd, 10783 LA25_ADDIU_MICROMIPS (target_low), 10784 loc + 4); 10785 } 10786 else 10787 { 10788 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc); 10789 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4); 10790 } 10791 } 10792 else 10793 { 10794 /* This is trampoline. */ 10795 loc += offset; 10796 if (ELF_ST_IS_MICROMIPS (stub->h->root.other)) 10797 { 10798 bfd_put_micromips_32 (hti->output_bfd, 10799 LA25_LUI_MICROMIPS (target_high), loc); 10800 bfd_put_micromips_32 (hti->output_bfd, 10801 LA25_J_MICROMIPS (target), loc + 4); 10802 bfd_put_micromips_32 (hti->output_bfd, 10803 LA25_ADDIU_MICROMIPS (target_low), loc + 8); 10804 bfd_put_32 (hti->output_bfd, 0, loc + 12); 10805 } 10806 else 10807 { 10808 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc); 10809 if (MIPSR6_P (hti->output_bfd) && htab->compact_branches) 10810 { 10811 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4); 10812 bfd_put_32 (hti->output_bfd, LA25_BC (pcrel_offset), loc + 8); 10813 } 10814 else 10815 { 10816 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4); 10817 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8); 10818 } 10819 bfd_put_32 (hti->output_bfd, 0, loc + 12); 10820 } 10821 } 10822 return true; 10823 } 10824 10825 /* If NAME is one of the special IRIX6 symbols defined by the linker, 10826 adjust it appropriately now. */ 10827 10828 static void 10829 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED, 10830 const char *name, Elf_Internal_Sym *sym) 10831 { 10832 /* The linker script takes care of providing names and values for 10833 these, but we must place them into the right sections. */ 10834 static const char* const text_section_symbols[] = { 10835 "_ftext", 10836 "_etext", 10837 "__dso_displacement", 10838 "__elf_header", 10839 "__program_header_table", 10840 NULL 10841 }; 10842 10843 static const char* const data_section_symbols[] = { 10844 "_fdata", 10845 "_edata", 10846 "_end", 10847 "_fbss", 10848 NULL 10849 }; 10850 10851 const char* const *p; 10852 int i; 10853 10854 for (i = 0; i < 2; ++i) 10855 for (p = (i == 0) ? text_section_symbols : data_section_symbols; 10856 *p; 10857 ++p) 10858 if (strcmp (*p, name) == 0) 10859 { 10860 /* All of these symbols are given type STT_SECTION by the 10861 IRIX6 linker. */ 10862 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); 10863 sym->st_other = STO_PROTECTED; 10864 10865 /* The IRIX linker puts these symbols in special sections. */ 10866 if (i == 0) 10867 sym->st_shndx = SHN_MIPS_TEXT; 10868 else 10869 sym->st_shndx = SHN_MIPS_DATA; 10870 10871 break; 10872 } 10873 } 10874 10875 /* Finish up dynamic symbol handling. We set the contents of various 10876 dynamic sections here. */ 10877 10878 bool 10879 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd, 10880 struct bfd_link_info *info, 10881 struct elf_link_hash_entry *h, 10882 Elf_Internal_Sym *sym) 10883 { 10884 bfd *dynobj; 10885 asection *sgot; 10886 struct mips_got_info *g, *gg; 10887 const char *name; 10888 int idx; 10889 struct mips_elf_link_hash_table *htab; 10890 struct mips_elf_link_hash_entry *hmips; 10891 10892 htab = mips_elf_hash_table (info); 10893 BFD_ASSERT (htab != NULL); 10894 dynobj = elf_hash_table (info)->dynobj; 10895 hmips = (struct mips_elf_link_hash_entry *) h; 10896 10897 BFD_ASSERT (htab->root.target_os != is_vxworks); 10898 10899 if (h->plt.plist != NULL 10900 && (h->plt.plist->mips_offset != MINUS_ONE 10901 || h->plt.plist->comp_offset != MINUS_ONE)) 10902 { 10903 /* We've decided to create a PLT entry for this symbol. */ 10904 bfd_byte *loc; 10905 bfd_vma header_address, got_address; 10906 bfd_vma got_address_high, got_address_low, load; 10907 bfd_vma got_index; 10908 bfd_vma isa_bit; 10909 10910 got_index = h->plt.plist->gotplt_index; 10911 10912 BFD_ASSERT (htab->use_plts_and_copy_relocs); 10913 BFD_ASSERT (h->dynindx != -1); 10914 BFD_ASSERT (htab->root.splt != NULL); 10915 BFD_ASSERT (got_index != MINUS_ONE); 10916 BFD_ASSERT (!h->def_regular); 10917 10918 /* Calculate the address of the PLT header. */ 10919 isa_bit = htab->plt_header_is_comp; 10920 header_address = (htab->root.splt->output_section->vma 10921 + htab->root.splt->output_offset + isa_bit); 10922 10923 /* Calculate the address of the .got.plt entry. */ 10924 got_address = (htab->root.sgotplt->output_section->vma 10925 + htab->root.sgotplt->output_offset 10926 + got_index * MIPS_ELF_GOT_SIZE (dynobj)); 10927 10928 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff; 10929 got_address_low = got_address & 0xffff; 10930 10931 /* The PLT sequence is not safe for N64 if .got.plt entry's address 10932 cannot be loaded in two instructions. */ 10933 if (ABI_64_P (output_bfd) 10934 && ((got_address + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0) 10935 { 10936 _bfd_error_handler 10937 /* xgettext:c-format */ 10938 (_("%pB: `%pA' entry VMA of %#" PRIx64 " outside the 32-bit range " 10939 "supported; consider using `-Ttext-segment=...'"), 10940 output_bfd, 10941 htab->root.sgotplt->output_section, 10942 (int64_t) got_address); 10943 bfd_set_error (bfd_error_no_error); 10944 return false; 10945 } 10946 10947 /* Initially point the .got.plt entry at the PLT header. */ 10948 loc = (htab->root.sgotplt->contents 10949 + got_index * MIPS_ELF_GOT_SIZE (dynobj)); 10950 if (ABI_64_P (output_bfd)) 10951 bfd_put_64 (output_bfd, header_address, loc); 10952 else 10953 bfd_put_32 (output_bfd, header_address, loc); 10954 10955 /* Now handle the PLT itself. First the standard entry (the order 10956 does not matter, we just have to pick one). */ 10957 if (h->plt.plist->mips_offset != MINUS_ONE) 10958 { 10959 const bfd_vma *plt_entry; 10960 bfd_vma plt_offset; 10961 10962 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset; 10963 10964 BFD_ASSERT (plt_offset <= htab->root.splt->size); 10965 10966 /* Find out where the .plt entry should go. */ 10967 loc = htab->root.splt->contents + plt_offset; 10968 10969 /* Pick the load opcode. */ 10970 load = MIPS_ELF_LOAD_WORD (output_bfd); 10971 10972 /* Fill in the PLT entry itself. */ 10973 10974 if (MIPSR6_P (output_bfd)) 10975 plt_entry = htab->compact_branches ? mipsr6_exec_plt_entry_compact 10976 : mipsr6_exec_plt_entry; 10977 else 10978 plt_entry = mips_exec_plt_entry; 10979 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc); 10980 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, 10981 loc + 4); 10982 10983 if (! LOAD_INTERLOCKS_P (output_bfd) 10984 || (MIPSR6_P (output_bfd) && htab->compact_branches)) 10985 { 10986 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8); 10987 bfd_put_32 (output_bfd, plt_entry[3], loc + 12); 10988 } 10989 else 10990 { 10991 bfd_put_32 (output_bfd, plt_entry[3], loc + 8); 10992 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, 10993 loc + 12); 10994 } 10995 } 10996 10997 /* Now the compressed entry. They come after any standard ones. */ 10998 if (h->plt.plist->comp_offset != MINUS_ONE) 10999 { 11000 bfd_vma plt_offset; 11001 11002 plt_offset = (htab->plt_header_size + htab->plt_mips_offset 11003 + h->plt.plist->comp_offset); 11004 11005 BFD_ASSERT (plt_offset <= htab->root.splt->size); 11006 11007 /* Find out where the .plt entry should go. */ 11008 loc = htab->root.splt->contents + plt_offset; 11009 11010 /* Fill in the PLT entry itself. */ 11011 if (!MICROMIPS_P (output_bfd)) 11012 { 11013 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry; 11014 11015 bfd_put_16 (output_bfd, plt_entry[0], loc); 11016 bfd_put_16 (output_bfd, plt_entry[1], loc + 2); 11017 bfd_put_16 (output_bfd, plt_entry[2], loc + 4); 11018 bfd_put_16 (output_bfd, plt_entry[3], loc + 6); 11019 bfd_put_16 (output_bfd, plt_entry[4], loc + 8); 11020 bfd_put_16 (output_bfd, plt_entry[5], loc + 10); 11021 bfd_put_32 (output_bfd, got_address, loc + 12); 11022 } 11023 else if (htab->insn32) 11024 { 11025 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry; 11026 11027 bfd_put_16 (output_bfd, plt_entry[0], loc); 11028 bfd_put_16 (output_bfd, got_address_high, loc + 2); 11029 bfd_put_16 (output_bfd, plt_entry[2], loc + 4); 11030 bfd_put_16 (output_bfd, got_address_low, loc + 6); 11031 bfd_put_16 (output_bfd, plt_entry[4], loc + 8); 11032 bfd_put_16 (output_bfd, plt_entry[5], loc + 10); 11033 bfd_put_16 (output_bfd, plt_entry[6], loc + 12); 11034 bfd_put_16 (output_bfd, got_address_low, loc + 14); 11035 } 11036 else 11037 { 11038 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry; 11039 bfd_signed_vma gotpc_offset; 11040 bfd_vma loc_address; 11041 11042 BFD_ASSERT (got_address % 4 == 0); 11043 11044 loc_address = (htab->root.splt->output_section->vma 11045 + htab->root.splt->output_offset + plt_offset); 11046 gotpc_offset = got_address - ((loc_address | 3) ^ 3); 11047 11048 /* ADDIUPC has a span of +/-16MB, check we're in range. */ 11049 if (gotpc_offset + 0x1000000 >= 0x2000000) 11050 { 11051 _bfd_error_handler 11052 /* xgettext:c-format */ 11053 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' " 11054 "beyond the range of ADDIUPC"), 11055 output_bfd, 11056 htab->root.sgotplt->output_section, 11057 (int64_t) gotpc_offset, 11058 htab->root.splt->output_section); 11059 bfd_set_error (bfd_error_no_error); 11060 return false; 11061 } 11062 bfd_put_16 (output_bfd, 11063 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc); 11064 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2); 11065 bfd_put_16 (output_bfd, plt_entry[2], loc + 4); 11066 bfd_put_16 (output_bfd, plt_entry[3], loc + 6); 11067 bfd_put_16 (output_bfd, plt_entry[4], loc + 8); 11068 bfd_put_16 (output_bfd, plt_entry[5], loc + 10); 11069 } 11070 } 11071 11072 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */ 11073 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt, 11074 got_index - 2, h->dynindx, 11075 R_MIPS_JUMP_SLOT, got_address); 11076 11077 /* We distinguish between PLT entries and lazy-binding stubs by 11078 giving the former an st_other value of STO_MIPS_PLT. Set the 11079 flag and leave the value if there are any relocations in the 11080 binary where pointer equality matters. */ 11081 sym->st_shndx = SHN_UNDEF; 11082 if (h->pointer_equality_needed) 11083 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other); 11084 else 11085 { 11086 sym->st_value = 0; 11087 sym->st_other = 0; 11088 } 11089 } 11090 11091 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE) 11092 { 11093 /* We've decided to create a lazy-binding stub. */ 11094 bool micromips_p = MICROMIPS_P (output_bfd); 11095 unsigned int other = micromips_p ? STO_MICROMIPS : 0; 11096 bfd_vma stub_size = htab->function_stub_size; 11097 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE]; 11098 bfd_vma isa_bit = micromips_p; 11099 bfd_vma stub_big_size; 11100 11101 if (!micromips_p) 11102 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE; 11103 else if (htab->insn32) 11104 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE; 11105 else 11106 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE; 11107 11108 /* This symbol has a stub. Set it up. */ 11109 11110 BFD_ASSERT (h->dynindx != -1); 11111 11112 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff); 11113 11114 /* Values up to 2^31 - 1 are allowed. Larger values would cause 11115 sign extension at runtime in the stub, resulting in a negative 11116 index value. */ 11117 if (h->dynindx & ~0x7fffffff) 11118 return false; 11119 11120 /* Fill the stub. */ 11121 if (micromips_p) 11122 { 11123 idx = 0; 11124 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd), 11125 stub + idx); 11126 idx += 4; 11127 if (htab->insn32) 11128 { 11129 bfd_put_micromips_32 (output_bfd, 11130 STUB_MOVE32_MICROMIPS, stub + idx); 11131 idx += 4; 11132 } 11133 else 11134 { 11135 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx); 11136 idx += 2; 11137 } 11138 if (stub_size == stub_big_size) 11139 { 11140 long dynindx_hi = (h->dynindx >> 16) & 0x7fff; 11141 11142 bfd_put_micromips_32 (output_bfd, 11143 STUB_LUI_MICROMIPS (dynindx_hi), 11144 stub + idx); 11145 idx += 4; 11146 } 11147 if (htab->insn32) 11148 { 11149 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS, 11150 stub + idx); 11151 idx += 4; 11152 } 11153 else 11154 { 11155 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx); 11156 idx += 2; 11157 } 11158 11159 /* If a large stub is not required and sign extension is not a 11160 problem, then use legacy code in the stub. */ 11161 if (stub_size == stub_big_size) 11162 bfd_put_micromips_32 (output_bfd, 11163 STUB_ORI_MICROMIPS (h->dynindx & 0xffff), 11164 stub + idx); 11165 else if (h->dynindx & ~0x7fff) 11166 bfd_put_micromips_32 (output_bfd, 11167 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff), 11168 stub + idx); 11169 else 11170 bfd_put_micromips_32 (output_bfd, 11171 STUB_LI16S_MICROMIPS (output_bfd, 11172 h->dynindx), 11173 stub + idx); 11174 } 11175 else 11176 { 11177 idx = 0; 11178 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx); 11179 idx += 4; 11180 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx); 11181 idx += 4; 11182 if (stub_size == stub_big_size) 11183 { 11184 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff), 11185 stub + idx); 11186 idx += 4; 11187 } 11188 11189 if (!(MIPSR6_P (output_bfd) && htab->compact_branches)) 11190 { 11191 bfd_put_32 (output_bfd, STUB_JALR, stub + idx); 11192 idx += 4; 11193 } 11194 11195 /* If a large stub is not required and sign extension is not a 11196 problem, then use legacy code in the stub. */ 11197 if (stub_size == stub_big_size) 11198 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), 11199 stub + idx); 11200 else if (h->dynindx & ~0x7fff) 11201 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), 11202 stub + idx); 11203 else 11204 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx), 11205 stub + idx); 11206 idx += 4; 11207 11208 if (MIPSR6_P (output_bfd) && htab->compact_branches) 11209 bfd_put_32 (output_bfd, STUB_JALRC, stub + idx); 11210 } 11211 11212 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size); 11213 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset, 11214 stub, stub_size); 11215 11216 /* Mark the symbol as undefined. stub_offset != -1 occurs 11217 only for the referenced symbol. */ 11218 sym->st_shndx = SHN_UNDEF; 11219 11220 /* The run-time linker uses the st_value field of the symbol 11221 to reset the global offset table entry for this external 11222 to its stub address when unlinking a shared object. */ 11223 sym->st_value = (htab->sstubs->output_section->vma 11224 + htab->sstubs->output_offset 11225 + h->plt.plist->stub_offset 11226 + isa_bit); 11227 sym->st_other = other; 11228 } 11229 11230 /* If we have a MIPS16 function with a stub, the dynamic symbol must 11231 refer to the stub, since only the stub uses the standard calling 11232 conventions. */ 11233 if (h->dynindx != -1 && hmips->fn_stub != NULL) 11234 { 11235 BFD_ASSERT (hmips->need_fn_stub); 11236 sym->st_value = (hmips->fn_stub->output_section->vma 11237 + hmips->fn_stub->output_offset); 11238 sym->st_size = hmips->fn_stub->size; 11239 sym->st_other = ELF_ST_VISIBILITY (sym->st_other); 11240 } 11241 11242 BFD_ASSERT (h->dynindx != -1 11243 || h->forced_local); 11244 11245 sgot = htab->root.sgot; 11246 g = htab->got_info; 11247 BFD_ASSERT (g != NULL); 11248 11249 /* Run through the global symbol table, creating GOT entries for all 11250 the symbols that need them. */ 11251 if (hmips->global_got_area != GGA_NONE) 11252 { 11253 bfd_vma offset; 11254 bfd_vma value; 11255 11256 value = sym->st_value; 11257 offset = mips_elf_primary_global_got_index (output_bfd, info, h); 11258 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset); 11259 } 11260 11261 if (hmips->global_got_area != GGA_NONE && g->next) 11262 { 11263 struct mips_got_entry e, *p; 11264 bfd_vma entry; 11265 bfd_vma offset; 11266 11267 gg = g; 11268 11269 e.abfd = output_bfd; 11270 e.symndx = -1; 11271 e.d.h = hmips; 11272 e.tls_type = GOT_TLS_NONE; 11273 11274 for (g = g->next; g->next != gg; g = g->next) 11275 { 11276 if (g->got_entries 11277 && (p = (struct mips_got_entry *) htab_find (g->got_entries, 11278 &e))) 11279 { 11280 offset = p->gotidx; 11281 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size); 11282 if (bfd_link_pic (info) 11283 || (elf_hash_table (info)->dynamic_sections_created 11284 && p->d.h != NULL 11285 && p->d.h->root.def_dynamic 11286 && !p->d.h->root.def_regular)) 11287 { 11288 /* Create an R_MIPS_REL32 relocation for this entry. Due to 11289 the various compatibility problems, it's easier to mock 11290 up an R_MIPS_32 or R_MIPS_64 relocation and leave 11291 mips_elf_create_dynamic_relocation to calculate the 11292 appropriate addend. */ 11293 Elf_Internal_Rela rel[3]; 11294 11295 memset (rel, 0, sizeof (rel)); 11296 if (ABI_64_P (output_bfd)) 11297 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64); 11298 else 11299 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32); 11300 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; 11301 11302 entry = 0; 11303 if (! (mips_elf_create_dynamic_relocation 11304 (output_bfd, info, rel, 11305 e.d.h, NULL, sym->st_value, &entry, sgot))) 11306 return false; 11307 } 11308 else 11309 entry = sym->st_value; 11310 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset); 11311 } 11312 } 11313 } 11314 11315 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ 11316 name = h->root.root.string; 11317 if (h == elf_hash_table (info)->hdynamic 11318 || h == elf_hash_table (info)->hgot) 11319 sym->st_shndx = SHN_ABS; 11320 else if (strcmp (name, "_DYNAMIC_LINK") == 0 11321 || strcmp (name, "_DYNAMIC_LINKING") == 0) 11322 { 11323 sym->st_shndx = SHN_ABS; 11324 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); 11325 sym->st_value = 1; 11326 } 11327 else if (SGI_COMPAT (output_bfd)) 11328 { 11329 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 11330 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) 11331 { 11332 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); 11333 sym->st_other = STO_PROTECTED; 11334 sym->st_value = 0; 11335 sym->st_shndx = SHN_MIPS_DATA; 11336 } 11337 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) 11338 { 11339 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); 11340 sym->st_other = STO_PROTECTED; 11341 sym->st_value = mips_elf_hash_table (info)->procedure_count; 11342 sym->st_shndx = SHN_ABS; 11343 } 11344 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS) 11345 { 11346 if (h->type == STT_FUNC) 11347 sym->st_shndx = SHN_MIPS_TEXT; 11348 else if (h->type == STT_OBJECT) 11349 sym->st_shndx = SHN_MIPS_DATA; 11350 } 11351 } 11352 11353 /* Emit a copy reloc, if needed. */ 11354 if (h->needs_copy) 11355 { 11356 asection *s; 11357 bfd_vma symval; 11358 11359 BFD_ASSERT (h->dynindx != -1); 11360 BFD_ASSERT (htab->use_plts_and_copy_relocs); 11361 11362 s = mips_elf_rel_dyn_section (info, false); 11363 symval = (h->root.u.def.section->output_section->vma 11364 + h->root.u.def.section->output_offset 11365 + h->root.u.def.value); 11366 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++, 11367 h->dynindx, R_MIPS_COPY, symval); 11368 } 11369 11370 /* Handle the IRIX6-specific symbols. */ 11371 if (IRIX_COMPAT (output_bfd) == ict_irix6) 11372 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym); 11373 11374 /* Keep dynamic compressed symbols odd. This allows the dynamic linker 11375 to treat compressed symbols like any other. */ 11376 if (ELF_ST_IS_MIPS16 (sym->st_other)) 11377 { 11378 BFD_ASSERT (sym->st_value & 1); 11379 sym->st_other -= STO_MIPS16; 11380 } 11381 else if (ELF_ST_IS_MICROMIPS (sym->st_other)) 11382 { 11383 BFD_ASSERT (sym->st_value & 1); 11384 sym->st_other -= STO_MICROMIPS; 11385 } 11386 11387 return true; 11388 } 11389 11390 /* Likewise, for VxWorks. */ 11391 11392 bool 11393 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd, 11394 struct bfd_link_info *info, 11395 struct elf_link_hash_entry *h, 11396 Elf_Internal_Sym *sym) 11397 { 11398 bfd *dynobj; 11399 asection *sgot; 11400 struct mips_got_info *g; 11401 struct mips_elf_link_hash_table *htab; 11402 struct mips_elf_link_hash_entry *hmips; 11403 11404 htab = mips_elf_hash_table (info); 11405 BFD_ASSERT (htab != NULL); 11406 dynobj = elf_hash_table (info)->dynobj; 11407 hmips = (struct mips_elf_link_hash_entry *) h; 11408 11409 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE) 11410 { 11411 bfd_byte *loc; 11412 bfd_vma plt_address, got_address, got_offset, branch_offset; 11413 Elf_Internal_Rela rel; 11414 static const bfd_vma *plt_entry; 11415 bfd_vma gotplt_index; 11416 bfd_vma plt_offset; 11417 11418 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset; 11419 gotplt_index = h->plt.plist->gotplt_index; 11420 11421 BFD_ASSERT (h->dynindx != -1); 11422 BFD_ASSERT (htab->root.splt != NULL); 11423 BFD_ASSERT (gotplt_index != MINUS_ONE); 11424 BFD_ASSERT (plt_offset <= htab->root.splt->size); 11425 11426 /* Calculate the address of the .plt entry. */ 11427 plt_address = (htab->root.splt->output_section->vma 11428 + htab->root.splt->output_offset 11429 + plt_offset); 11430 11431 /* Calculate the address of the .got.plt entry. */ 11432 got_address = (htab->root.sgotplt->output_section->vma 11433 + htab->root.sgotplt->output_offset 11434 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)); 11435 11436 /* Calculate the offset of the .got.plt entry from 11437 _GLOBAL_OFFSET_TABLE_. */ 11438 got_offset = mips_elf_gotplt_index (info, h); 11439 11440 /* Calculate the offset for the branch at the start of the PLT 11441 entry. The branch jumps to the beginning of .plt. */ 11442 branch_offset = -(plt_offset / 4 + 1) & 0xffff; 11443 11444 /* Fill in the initial value of the .got.plt entry. */ 11445 bfd_put_32 (output_bfd, plt_address, 11446 (htab->root.sgotplt->contents 11447 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd))); 11448 11449 /* Find out where the .plt entry should go. */ 11450 loc = htab->root.splt->contents + plt_offset; 11451 11452 if (bfd_link_pic (info)) 11453 { 11454 plt_entry = mips_vxworks_shared_plt_entry; 11455 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc); 11456 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4); 11457 } 11458 else 11459 { 11460 bfd_vma got_address_high, got_address_low; 11461 11462 plt_entry = mips_vxworks_exec_plt_entry; 11463 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff; 11464 got_address_low = got_address & 0xffff; 11465 11466 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc); 11467 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4); 11468 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8); 11469 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12); 11470 bfd_put_32 (output_bfd, plt_entry[4], loc + 16); 11471 bfd_put_32 (output_bfd, plt_entry[5], loc + 20); 11472 bfd_put_32 (output_bfd, plt_entry[6], loc + 24); 11473 bfd_put_32 (output_bfd, plt_entry[7], loc + 28); 11474 11475 loc = (htab->srelplt2->contents 11476 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela)); 11477 11478 /* Emit a relocation for the .got.plt entry. */ 11479 rel.r_offset = got_address; 11480 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32); 11481 rel.r_addend = plt_offset; 11482 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11483 11484 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */ 11485 loc += sizeof (Elf32_External_Rela); 11486 rel.r_offset = plt_address + 8; 11487 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); 11488 rel.r_addend = got_offset; 11489 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11490 11491 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */ 11492 loc += sizeof (Elf32_External_Rela); 11493 rel.r_offset += 4; 11494 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); 11495 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11496 } 11497 11498 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */ 11499 loc = (htab->root.srelplt->contents 11500 + gotplt_index * sizeof (Elf32_External_Rela)); 11501 rel.r_offset = got_address; 11502 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT); 11503 rel.r_addend = 0; 11504 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11505 11506 if (!h->def_regular) 11507 sym->st_shndx = SHN_UNDEF; 11508 } 11509 11510 BFD_ASSERT (h->dynindx != -1 || h->forced_local); 11511 11512 sgot = htab->root.sgot; 11513 g = htab->got_info; 11514 BFD_ASSERT (g != NULL); 11515 11516 /* See if this symbol has an entry in the GOT. */ 11517 if (hmips->global_got_area != GGA_NONE) 11518 { 11519 bfd_vma offset; 11520 Elf_Internal_Rela outrel; 11521 bfd_byte *loc; 11522 asection *s; 11523 11524 /* Install the symbol value in the GOT. */ 11525 offset = mips_elf_primary_global_got_index (output_bfd, info, h); 11526 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset); 11527 11528 /* Add a dynamic relocation for it. */ 11529 s = mips_elf_rel_dyn_section (info, false); 11530 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela)); 11531 outrel.r_offset = (sgot->output_section->vma 11532 + sgot->output_offset 11533 + offset); 11534 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32); 11535 outrel.r_addend = 0; 11536 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc); 11537 } 11538 11539 /* Emit a copy reloc, if needed. */ 11540 if (h->needs_copy) 11541 { 11542 Elf_Internal_Rela rel; 11543 asection *srel; 11544 bfd_byte *loc; 11545 11546 BFD_ASSERT (h->dynindx != -1); 11547 11548 rel.r_offset = (h->root.u.def.section->output_section->vma 11549 + h->root.u.def.section->output_offset 11550 + h->root.u.def.value); 11551 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY); 11552 rel.r_addend = 0; 11553 if (h->root.u.def.section == htab->root.sdynrelro) 11554 srel = htab->root.sreldynrelro; 11555 else 11556 srel = htab->root.srelbss; 11557 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela); 11558 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11559 ++srel->reloc_count; 11560 } 11561 11562 /* If this is a mips16/microMIPS symbol, force the value to be even. */ 11563 if (ELF_ST_IS_COMPRESSED (sym->st_other)) 11564 sym->st_value &= ~1; 11565 11566 return true; 11567 } 11568 11569 /* Write out a plt0 entry to the beginning of .plt. */ 11570 11571 static bool 11572 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info) 11573 { 11574 bfd_byte *loc; 11575 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low; 11576 static const bfd_vma *plt_entry; 11577 struct mips_elf_link_hash_table *htab; 11578 11579 htab = mips_elf_hash_table (info); 11580 BFD_ASSERT (htab != NULL); 11581 11582 if (ABI_64_P (output_bfd)) 11583 plt_entry = (htab->compact_branches 11584 ? mipsr6_n64_exec_plt0_entry_compact 11585 : mips_n64_exec_plt0_entry); 11586 else if (ABI_N32_P (output_bfd)) 11587 plt_entry = (htab->compact_branches 11588 ? mipsr6_n32_exec_plt0_entry_compact 11589 : mips_n32_exec_plt0_entry); 11590 else if (!htab->plt_header_is_comp) 11591 plt_entry = (htab->compact_branches 11592 ? mipsr6_o32_exec_plt0_entry_compact 11593 : mips_o32_exec_plt0_entry); 11594 else if (htab->insn32) 11595 plt_entry = micromips_insn32_o32_exec_plt0_entry; 11596 else 11597 plt_entry = micromips_o32_exec_plt0_entry; 11598 11599 /* Calculate the value of .got.plt. */ 11600 gotplt_value = (htab->root.sgotplt->output_section->vma 11601 + htab->root.sgotplt->output_offset); 11602 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff; 11603 gotplt_value_low = gotplt_value & 0xffff; 11604 11605 /* The PLT sequence is not safe for N64 if .got.plt's address can 11606 not be loaded in two instructions. */ 11607 if (ABI_64_P (output_bfd) 11608 && ((gotplt_value + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0) 11609 { 11610 _bfd_error_handler 11611 /* xgettext:c-format */ 11612 (_("%pB: `%pA' start VMA of %#" PRIx64 " outside the 32-bit range " 11613 "supported; consider using `-Ttext-segment=...'"), 11614 output_bfd, 11615 htab->root.sgotplt->output_section, 11616 (int64_t) gotplt_value); 11617 bfd_set_error (bfd_error_no_error); 11618 return false; 11619 } 11620 11621 /* Install the PLT header. */ 11622 loc = htab->root.splt->contents; 11623 if (plt_entry == micromips_o32_exec_plt0_entry) 11624 { 11625 bfd_vma gotpc_offset; 11626 bfd_vma loc_address; 11627 size_t i; 11628 11629 BFD_ASSERT (gotplt_value % 4 == 0); 11630 11631 loc_address = (htab->root.splt->output_section->vma 11632 + htab->root.splt->output_offset); 11633 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3); 11634 11635 /* ADDIUPC has a span of +/-16MB, check we're in range. */ 11636 if (gotpc_offset + 0x1000000 >= 0x2000000) 11637 { 11638 _bfd_error_handler 11639 /* xgettext:c-format */ 11640 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' " 11641 "beyond the range of ADDIUPC"), 11642 output_bfd, 11643 htab->root.sgotplt->output_section, 11644 (int64_t) gotpc_offset, 11645 htab->root.splt->output_section); 11646 bfd_set_error (bfd_error_no_error); 11647 return false; 11648 } 11649 bfd_put_16 (output_bfd, 11650 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc); 11651 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2); 11652 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++) 11653 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2)); 11654 } 11655 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry) 11656 { 11657 size_t i; 11658 11659 bfd_put_16 (output_bfd, plt_entry[0], loc); 11660 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2); 11661 bfd_put_16 (output_bfd, plt_entry[2], loc + 4); 11662 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6); 11663 bfd_put_16 (output_bfd, plt_entry[4], loc + 8); 11664 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10); 11665 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++) 11666 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2)); 11667 } 11668 else 11669 { 11670 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc); 11671 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4); 11672 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8); 11673 bfd_put_32 (output_bfd, plt_entry[3], loc + 12); 11674 bfd_put_32 (output_bfd, plt_entry[4], loc + 16); 11675 bfd_put_32 (output_bfd, plt_entry[5], loc + 20); 11676 bfd_put_32 (output_bfd, plt_entry[6], loc + 24); 11677 bfd_put_32 (output_bfd, plt_entry[7], loc + 28); 11678 } 11679 11680 return true; 11681 } 11682 11683 /* Install the PLT header for a VxWorks executable and finalize the 11684 contents of .rela.plt.unloaded. */ 11685 11686 static void 11687 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info) 11688 { 11689 Elf_Internal_Rela rela; 11690 bfd_byte *loc; 11691 bfd_vma got_value, got_value_high, got_value_low, plt_address; 11692 static const bfd_vma *plt_entry; 11693 struct mips_elf_link_hash_table *htab; 11694 11695 htab = mips_elf_hash_table (info); 11696 BFD_ASSERT (htab != NULL); 11697 11698 plt_entry = mips_vxworks_exec_plt0_entry; 11699 11700 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */ 11701 got_value = (htab->root.hgot->root.u.def.section->output_section->vma 11702 + htab->root.hgot->root.u.def.section->output_offset 11703 + htab->root.hgot->root.u.def.value); 11704 11705 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff; 11706 got_value_low = got_value & 0xffff; 11707 11708 /* Calculate the address of the PLT header. */ 11709 plt_address = (htab->root.splt->output_section->vma 11710 + htab->root.splt->output_offset); 11711 11712 /* Install the PLT header. */ 11713 loc = htab->root.splt->contents; 11714 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc); 11715 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4); 11716 bfd_put_32 (output_bfd, plt_entry[2], loc + 8); 11717 bfd_put_32 (output_bfd, plt_entry[3], loc + 12); 11718 bfd_put_32 (output_bfd, plt_entry[4], loc + 16); 11719 bfd_put_32 (output_bfd, plt_entry[5], loc + 20); 11720 11721 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */ 11722 loc = htab->srelplt2->contents; 11723 rela.r_offset = plt_address; 11724 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); 11725 rela.r_addend = 0; 11726 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); 11727 loc += sizeof (Elf32_External_Rela); 11728 11729 /* Output the relocation for the following addiu of 11730 %lo(_GLOBAL_OFFSET_TABLE_). */ 11731 rela.r_offset += 4; 11732 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); 11733 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); 11734 loc += sizeof (Elf32_External_Rela); 11735 11736 /* Fix up the remaining relocations. They may have the wrong 11737 symbol index for _G_O_T_ or _P_L_T_ depending on the order 11738 in which symbols were output. */ 11739 while (loc < htab->srelplt2->contents + htab->srelplt2->size) 11740 { 11741 Elf_Internal_Rela rel; 11742 11743 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); 11744 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32); 11745 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11746 loc += sizeof (Elf32_External_Rela); 11747 11748 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); 11749 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); 11750 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11751 loc += sizeof (Elf32_External_Rela); 11752 11753 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); 11754 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); 11755 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11756 loc += sizeof (Elf32_External_Rela); 11757 } 11758 } 11759 11760 /* Install the PLT header for a VxWorks shared library. */ 11761 11762 static void 11763 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info) 11764 { 11765 unsigned int i; 11766 struct mips_elf_link_hash_table *htab; 11767 11768 htab = mips_elf_hash_table (info); 11769 BFD_ASSERT (htab != NULL); 11770 11771 /* We just need to copy the entry byte-by-byte. */ 11772 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++) 11773 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i], 11774 htab->root.splt->contents + i * 4); 11775 } 11776 11777 /* Finish up the dynamic sections. */ 11778 11779 bool 11780 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd, 11781 struct bfd_link_info *info) 11782 { 11783 bfd *dynobj; 11784 asection *sdyn; 11785 asection *sgot; 11786 struct mips_got_info *gg, *g; 11787 struct mips_elf_link_hash_table *htab; 11788 11789 htab = mips_elf_hash_table (info); 11790 BFD_ASSERT (htab != NULL); 11791 11792 dynobj = elf_hash_table (info)->dynobj; 11793 11794 sdyn = bfd_get_linker_section (dynobj, ".dynamic"); 11795 11796 sgot = htab->root.sgot; 11797 gg = htab->got_info; 11798 11799 if (elf_hash_table (info)->dynamic_sections_created) 11800 { 11801 bfd_byte *b; 11802 int dyn_to_skip = 0, dyn_skipped = 0; 11803 11804 BFD_ASSERT (sdyn != NULL); 11805 BFD_ASSERT (gg != NULL); 11806 11807 g = mips_elf_bfd_got (output_bfd, false); 11808 BFD_ASSERT (g != NULL); 11809 11810 for (b = sdyn->contents; 11811 b < sdyn->contents + sdyn->size; 11812 b += MIPS_ELF_DYN_SIZE (dynobj)) 11813 { 11814 Elf_Internal_Dyn dyn; 11815 const char *name; 11816 size_t elemsize; 11817 asection *s; 11818 bool swap_out_p; 11819 11820 /* Read in the current dynamic entry. */ 11821 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); 11822 11823 /* Assume that we're going to modify it and write it out. */ 11824 swap_out_p = true; 11825 11826 switch (dyn.d_tag) 11827 { 11828 case DT_RELENT: 11829 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj); 11830 break; 11831 11832 case DT_RELAENT: 11833 BFD_ASSERT (htab->root.target_os == is_vxworks); 11834 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj); 11835 break; 11836 11837 case DT_STRSZ: 11838 /* Rewrite DT_STRSZ. */ 11839 dyn.d_un.d_val = 11840 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); 11841 break; 11842 11843 case DT_PLTGOT: 11844 s = htab->root.sgot; 11845 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; 11846 break; 11847 11848 case DT_MIPS_PLTGOT: 11849 s = htab->root.sgotplt; 11850 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; 11851 break; 11852 11853 case DT_MIPS_RLD_VERSION: 11854 dyn.d_un.d_val = 1; /* XXX */ 11855 break; 11856 11857 case DT_MIPS_FLAGS: 11858 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */ 11859 break; 11860 11861 case DT_MIPS_TIME_STAMP: 11862 { 11863 time_t t; 11864 time (&t); 11865 dyn.d_un.d_val = t; 11866 } 11867 break; 11868 11869 case DT_MIPS_ICHECKSUM: 11870 /* XXX FIXME: */ 11871 swap_out_p = false; 11872 break; 11873 11874 case DT_MIPS_IVERSION: 11875 /* XXX FIXME: */ 11876 swap_out_p = false; 11877 break; 11878 11879 case DT_MIPS_BASE_ADDRESS: 11880 s = output_bfd->sections; 11881 BFD_ASSERT (s != NULL); 11882 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff; 11883 break; 11884 11885 case DT_MIPS_LOCAL_GOTNO: 11886 dyn.d_un.d_val = g->local_gotno; 11887 break; 11888 11889 case DT_MIPS_UNREFEXTNO: 11890 /* The index into the dynamic symbol table which is the 11891 entry of the first external symbol that is not 11892 referenced within the same object. */ 11893 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1; 11894 break; 11895 11896 case DT_MIPS_GOTSYM: 11897 if (htab->global_gotsym) 11898 { 11899 dyn.d_un.d_val = htab->global_gotsym->dynindx; 11900 break; 11901 } 11902 /* In case if we don't have global got symbols we default 11903 to setting DT_MIPS_GOTSYM to the same value as 11904 DT_MIPS_SYMTABNO. */ 11905 /* Fall through. */ 11906 11907 case DT_MIPS_SYMTABNO: 11908 name = ".dynsym"; 11909 elemsize = MIPS_ELF_SYM_SIZE (output_bfd); 11910 s = bfd_get_linker_section (dynobj, name); 11911 11912 if (s != NULL) 11913 dyn.d_un.d_val = s->size / elemsize; 11914 else 11915 dyn.d_un.d_val = 0; 11916 break; 11917 11918 case DT_MIPS_HIPAGENO: 11919 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno; 11920 break; 11921 11922 case DT_MIPS_RLD_MAP: 11923 { 11924 struct elf_link_hash_entry *h; 11925 h = mips_elf_hash_table (info)->rld_symbol; 11926 if (!h) 11927 { 11928 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj); 11929 swap_out_p = false; 11930 break; 11931 } 11932 s = h->root.u.def.section; 11933 11934 /* The MIPS_RLD_MAP tag stores the absolute address of the 11935 debug pointer. */ 11936 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset 11937 + h->root.u.def.value); 11938 } 11939 break; 11940 11941 case DT_MIPS_RLD_MAP_REL: 11942 { 11943 struct elf_link_hash_entry *h; 11944 bfd_vma dt_addr, rld_addr; 11945 h = mips_elf_hash_table (info)->rld_symbol; 11946 if (!h) 11947 { 11948 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj); 11949 swap_out_p = false; 11950 break; 11951 } 11952 s = h->root.u.def.section; 11953 11954 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug 11955 pointer, relative to the address of the tag. */ 11956 dt_addr = (sdyn->output_section->vma + sdyn->output_offset 11957 + (b - sdyn->contents)); 11958 rld_addr = (s->output_section->vma + s->output_offset 11959 + h->root.u.def.value); 11960 dyn.d_un.d_ptr = rld_addr - dt_addr; 11961 } 11962 break; 11963 11964 case DT_MIPS_OPTIONS: 11965 s = (bfd_get_section_by_name 11966 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd))); 11967 dyn.d_un.d_ptr = s->vma; 11968 break; 11969 11970 case DT_PLTREL: 11971 BFD_ASSERT (htab->use_plts_and_copy_relocs); 11972 if (htab->root.target_os == is_vxworks) 11973 dyn.d_un.d_val = DT_RELA; 11974 else 11975 dyn.d_un.d_val = DT_REL; 11976 break; 11977 11978 case DT_PLTRELSZ: 11979 BFD_ASSERT (htab->use_plts_and_copy_relocs); 11980 dyn.d_un.d_val = htab->root.srelplt->size; 11981 break; 11982 11983 case DT_JMPREL: 11984 BFD_ASSERT (htab->use_plts_and_copy_relocs); 11985 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma 11986 + htab->root.srelplt->output_offset); 11987 break; 11988 11989 case DT_TEXTREL: 11990 /* If we didn't need any text relocations after all, delete 11991 the dynamic tag. */ 11992 if (!(info->flags & DF_TEXTREL)) 11993 { 11994 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj); 11995 swap_out_p = false; 11996 } 11997 break; 11998 11999 case DT_FLAGS: 12000 /* If we didn't need any text relocations after all, clear 12001 DF_TEXTREL from DT_FLAGS. */ 12002 if (!(info->flags & DF_TEXTREL)) 12003 dyn.d_un.d_val &= ~DF_TEXTREL; 12004 else 12005 swap_out_p = false; 12006 break; 12007 12008 case DT_MIPS_XHASH: 12009 name = ".MIPS.xhash"; 12010 s = bfd_get_linker_section (dynobj, name); 12011 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; 12012 break; 12013 12014 default: 12015 swap_out_p = false; 12016 if (htab->root.target_os == is_vxworks 12017 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn)) 12018 swap_out_p = true; 12019 break; 12020 } 12021 12022 if (swap_out_p || dyn_skipped) 12023 (*get_elf_backend_data (dynobj)->s->swap_dyn_out) 12024 (dynobj, &dyn, b - dyn_skipped); 12025 12026 if (dyn_to_skip) 12027 { 12028 dyn_skipped += dyn_to_skip; 12029 dyn_to_skip = 0; 12030 } 12031 } 12032 12033 /* Wipe out any trailing entries if we shifted down a dynamic tag. */ 12034 if (dyn_skipped > 0) 12035 memset (b - dyn_skipped, 0, dyn_skipped); 12036 } 12037 12038 if (sgot != NULL && sgot->size > 0 12039 && !bfd_is_abs_section (sgot->output_section)) 12040 { 12041 if (htab->root.target_os == is_vxworks) 12042 { 12043 /* The first entry of the global offset table points to the 12044 ".dynamic" section. The second is initialized by the 12045 loader and contains the shared library identifier. 12046 The third is also initialized by the loader and points 12047 to the lazy resolution stub. */ 12048 MIPS_ELF_PUT_WORD (output_bfd, 12049 sdyn->output_offset + sdyn->output_section->vma, 12050 sgot->contents); 12051 MIPS_ELF_PUT_WORD (output_bfd, 0, 12052 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); 12053 MIPS_ELF_PUT_WORD (output_bfd, 0, 12054 sgot->contents 12055 + 2 * MIPS_ELF_GOT_SIZE (output_bfd)); 12056 } 12057 else 12058 { 12059 /* The first entry of the global offset table will be filled at 12060 runtime. The second entry will be used by some runtime loaders. 12061 This isn't the case of IRIX rld. */ 12062 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents); 12063 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd), 12064 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); 12065 } 12066 12067 elf_section_data (sgot->output_section)->this_hdr.sh_entsize 12068 = MIPS_ELF_GOT_SIZE (output_bfd); 12069 } 12070 12071 /* Generate dynamic relocations for the non-primary gots. */ 12072 if (gg != NULL && gg->next) 12073 { 12074 Elf_Internal_Rela rel[3]; 12075 bfd_vma addend = 0; 12076 12077 memset (rel, 0, sizeof (rel)); 12078 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32); 12079 12080 for (g = gg->next; g->next != gg; g = g->next) 12081 { 12082 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno 12083 + g->next->tls_gotno; 12084 12085 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents 12086 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd)); 12087 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd), 12088 sgot->contents 12089 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd)); 12090 12091 if (! bfd_link_pic (info)) 12092 continue; 12093 12094 for (; got_index < g->local_gotno; got_index++) 12095 { 12096 if (got_index >= g->assigned_low_gotno 12097 && got_index <= g->assigned_high_gotno) 12098 continue; 12099 12100 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset 12101 = got_index * MIPS_ELF_GOT_SIZE (output_bfd); 12102 if (!(mips_elf_create_dynamic_relocation 12103 (output_bfd, info, rel, NULL, 12104 bfd_abs_section_ptr, 12105 0, &addend, sgot))) 12106 return false; 12107 BFD_ASSERT (addend == 0); 12108 } 12109 } 12110 } 12111 12112 /* The generation of dynamic relocations for the non-primary gots 12113 adds more dynamic relocations. We cannot count them until 12114 here. */ 12115 12116 if (elf_hash_table (info)->dynamic_sections_created) 12117 { 12118 bfd_byte *b; 12119 bool swap_out_p; 12120 12121 BFD_ASSERT (sdyn != NULL); 12122 12123 for (b = sdyn->contents; 12124 b < sdyn->contents + sdyn->size; 12125 b += MIPS_ELF_DYN_SIZE (dynobj)) 12126 { 12127 Elf_Internal_Dyn dyn; 12128 asection *s; 12129 12130 /* Read in the current dynamic entry. */ 12131 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); 12132 12133 /* Assume that we're going to modify it and write it out. */ 12134 swap_out_p = true; 12135 12136 switch (dyn.d_tag) 12137 { 12138 case DT_RELSZ: 12139 /* Reduce DT_RELSZ to account for any relocations we 12140 decided not to make. This is for the n64 irix rld, 12141 which doesn't seem to apply any relocations if there 12142 are trailing null entries. */ 12143 s = mips_elf_rel_dyn_section (info, false); 12144 dyn.d_un.d_val = (s->reloc_count 12145 * (ABI_64_P (output_bfd) 12146 ? sizeof (Elf64_Mips_External_Rel) 12147 : sizeof (Elf32_External_Rel))); 12148 /* Adjust the section size too. Tools like the prelinker 12149 can reasonably expect the values to the same. */ 12150 BFD_ASSERT (!bfd_is_abs_section (s->output_section)); 12151 elf_section_data (s->output_section)->this_hdr.sh_size 12152 = dyn.d_un.d_val; 12153 break; 12154 12155 default: 12156 swap_out_p = false; 12157 break; 12158 } 12159 12160 if (swap_out_p) 12161 (*get_elf_backend_data (dynobj)->s->swap_dyn_out) 12162 (dynobj, &dyn, b); 12163 } 12164 } 12165 12166 { 12167 asection *s; 12168 Elf32_compact_rel cpt; 12169 12170 if (SGI_COMPAT (output_bfd)) 12171 { 12172 /* Write .compact_rel section out. */ 12173 s = bfd_get_linker_section (dynobj, ".compact_rel"); 12174 if (s != NULL) 12175 { 12176 cpt.id1 = 1; 12177 cpt.num = s->reloc_count; 12178 cpt.id2 = 2; 12179 cpt.offset = (s->output_section->filepos 12180 + sizeof (Elf32_External_compact_rel)); 12181 cpt.reserved0 = 0; 12182 cpt.reserved1 = 0; 12183 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt, 12184 ((Elf32_External_compact_rel *) 12185 s->contents)); 12186 12187 /* Clean up a dummy stub function entry in .text. */ 12188 if (htab->sstubs != NULL 12189 && htab->sstubs->contents != NULL) 12190 { 12191 file_ptr dummy_offset; 12192 12193 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size); 12194 dummy_offset = htab->sstubs->size - htab->function_stub_size; 12195 memset (htab->sstubs->contents + dummy_offset, 0, 12196 htab->function_stub_size); 12197 } 12198 } 12199 } 12200 12201 /* The psABI says that the dynamic relocations must be sorted in 12202 increasing order of r_symndx. The VxWorks EABI doesn't require 12203 this, and because the code below handles REL rather than RELA 12204 relocations, using it for VxWorks would be outright harmful. */ 12205 if (htab->root.target_os != is_vxworks) 12206 { 12207 s = mips_elf_rel_dyn_section (info, false); 12208 if (s != NULL 12209 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd)) 12210 { 12211 reldyn_sorting_bfd = output_bfd; 12212 12213 if (ABI_64_P (output_bfd)) 12214 qsort ((Elf64_External_Rel *) s->contents + 1, 12215 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel), 12216 sort_dynamic_relocs_64); 12217 else 12218 qsort ((Elf32_External_Rel *) s->contents + 1, 12219 s->reloc_count - 1, sizeof (Elf32_External_Rel), 12220 sort_dynamic_relocs); 12221 } 12222 } 12223 } 12224 12225 if (htab->root.splt && htab->root.splt->size > 0) 12226 { 12227 if (htab->root.target_os == is_vxworks) 12228 { 12229 if (bfd_link_pic (info)) 12230 mips_vxworks_finish_shared_plt (output_bfd, info); 12231 else 12232 mips_vxworks_finish_exec_plt (output_bfd, info); 12233 } 12234 else 12235 { 12236 BFD_ASSERT (!bfd_link_pic (info)); 12237 if (!mips_finish_exec_plt (output_bfd, info)) 12238 return false; 12239 } 12240 } 12241 return true; 12242 } 12243 12244 12245 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */ 12246 12247 static void 12248 mips_set_isa_flags (bfd *abfd) 12249 { 12250 flagword val; 12251 12252 switch (bfd_get_mach (abfd)) 12253 { 12254 default: 12255 if (ABI_N32_P (abfd) || ABI_64_P (abfd)) 12256 val = E_MIPS_ARCH_3; 12257 else 12258 val = E_MIPS_ARCH_1; 12259 break; 12260 12261 case bfd_mach_mips3000: 12262 val = E_MIPS_ARCH_1; 12263 break; 12264 12265 case bfd_mach_mips3900: 12266 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900; 12267 break; 12268 12269 case bfd_mach_mips6000: 12270 val = E_MIPS_ARCH_2; 12271 break; 12272 12273 case bfd_mach_mips4010: 12274 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010; 12275 break; 12276 12277 case bfd_mach_mips4000: 12278 case bfd_mach_mips4300: 12279 case bfd_mach_mips4400: 12280 case bfd_mach_mips4600: 12281 val = E_MIPS_ARCH_3; 12282 break; 12283 12284 case bfd_mach_mips4100: 12285 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100; 12286 break; 12287 12288 case bfd_mach_mips4111: 12289 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111; 12290 break; 12291 12292 case bfd_mach_mips4120: 12293 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120; 12294 break; 12295 12296 case bfd_mach_mips4650: 12297 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650; 12298 break; 12299 12300 case bfd_mach_mips5400: 12301 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400; 12302 break; 12303 12304 case bfd_mach_mips5500: 12305 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500; 12306 break; 12307 12308 case bfd_mach_mips5900: 12309 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900; 12310 break; 12311 12312 case bfd_mach_mips9000: 12313 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000; 12314 break; 12315 12316 case bfd_mach_mips5000: 12317 case bfd_mach_mips7000: 12318 case bfd_mach_mips8000: 12319 case bfd_mach_mips10000: 12320 case bfd_mach_mips12000: 12321 case bfd_mach_mips14000: 12322 case bfd_mach_mips16000: 12323 val = E_MIPS_ARCH_4; 12324 break; 12325 12326 case bfd_mach_mips5: 12327 val = E_MIPS_ARCH_5; 12328 break; 12329 12330 case bfd_mach_mips_loongson_2e: 12331 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E; 12332 break; 12333 12334 case bfd_mach_mips_loongson_2f: 12335 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F; 12336 break; 12337 12338 case bfd_mach_mips_sb1: 12339 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1; 12340 break; 12341 12342 case bfd_mach_mips_gs464: 12343 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464; 12344 break; 12345 12346 case bfd_mach_mips_gs464e: 12347 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464E; 12348 break; 12349 12350 case bfd_mach_mips_gs264e: 12351 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS264E; 12352 break; 12353 12354 case bfd_mach_mips_octeon: 12355 case bfd_mach_mips_octeonp: 12356 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON; 12357 break; 12358 12359 case bfd_mach_mips_octeon3: 12360 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3; 12361 break; 12362 12363 case bfd_mach_mips_xlr: 12364 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR; 12365 break; 12366 12367 case bfd_mach_mips_octeon2: 12368 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2; 12369 break; 12370 12371 case bfd_mach_mipsisa32: 12372 val = E_MIPS_ARCH_32; 12373 break; 12374 12375 case bfd_mach_mipsisa64: 12376 val = E_MIPS_ARCH_64; 12377 break; 12378 12379 case bfd_mach_mipsisa32r2: 12380 case bfd_mach_mipsisa32r3: 12381 case bfd_mach_mipsisa32r5: 12382 val = E_MIPS_ARCH_32R2; 12383 break; 12384 12385 case bfd_mach_mips_interaptiv_mr2: 12386 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2; 12387 break; 12388 12389 case bfd_mach_mipsisa64r2: 12390 case bfd_mach_mipsisa64r3: 12391 case bfd_mach_mipsisa64r5: 12392 val = E_MIPS_ARCH_64R2; 12393 break; 12394 12395 case bfd_mach_mipsisa32r6: 12396 val = E_MIPS_ARCH_32R6; 12397 break; 12398 12399 case bfd_mach_mipsisa64r6: 12400 val = E_MIPS_ARCH_64R6; 12401 break; 12402 } 12403 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); 12404 elf_elfheader (abfd)->e_flags |= val; 12405 12406 } 12407 12408 12409 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset. 12410 Don't do so for code sections. We want to keep ordering of HI16/LO16 12411 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame 12412 relocs to be sorted. */ 12413 12414 bool 12415 _bfd_mips_elf_sort_relocs_p (asection *sec) 12416 { 12417 return (sec->flags & SEC_CODE) == 0; 12418 } 12419 12420 12421 /* The final processing done just before writing out a MIPS ELF object 12422 file. This gets the MIPS architecture right based on the machine 12423 number. This is used by both the 32-bit and the 64-bit ABI. */ 12424 12425 void 12426 _bfd_mips_final_write_processing (bfd *abfd) 12427 { 12428 unsigned int i; 12429 Elf_Internal_Shdr **hdrpp; 12430 const char *name; 12431 asection *sec; 12432 12433 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former 12434 is nonzero. This is for compatibility with old objects, which used 12435 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */ 12436 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0) 12437 mips_set_isa_flags (abfd); 12438 12439 /* Set the sh_info field for .gptab sections and other appropriate 12440 info for each special section. */ 12441 for (i = 1, hdrpp = elf_elfsections (abfd) + 1; 12442 i < elf_numsections (abfd); 12443 i++, hdrpp++) 12444 { 12445 switch ((*hdrpp)->sh_type) 12446 { 12447 case SHT_MIPS_MSYM: 12448 case SHT_MIPS_LIBLIST: 12449 sec = bfd_get_section_by_name (abfd, ".dynstr"); 12450 if (sec != NULL) 12451 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; 12452 break; 12453 12454 case SHT_MIPS_GPTAB: 12455 BFD_ASSERT ((*hdrpp)->bfd_section != NULL); 12456 name = bfd_section_name ((*hdrpp)->bfd_section); 12457 BFD_ASSERT (name != NULL 12458 && startswith (name, ".gptab.")); 12459 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1); 12460 BFD_ASSERT (sec != NULL); 12461 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; 12462 break; 12463 12464 case SHT_MIPS_CONTENT: 12465 BFD_ASSERT ((*hdrpp)->bfd_section != NULL); 12466 name = bfd_section_name ((*hdrpp)->bfd_section); 12467 BFD_ASSERT (name != NULL 12468 && startswith (name, ".MIPS.content")); 12469 sec = bfd_get_section_by_name (abfd, 12470 name + sizeof ".MIPS.content" - 1); 12471 BFD_ASSERT (sec != NULL); 12472 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; 12473 break; 12474 12475 case SHT_MIPS_SYMBOL_LIB: 12476 sec = bfd_get_section_by_name (abfd, ".dynsym"); 12477 if (sec != NULL) 12478 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; 12479 sec = bfd_get_section_by_name (abfd, ".liblist"); 12480 if (sec != NULL) 12481 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; 12482 break; 12483 12484 case SHT_MIPS_EVENTS: 12485 BFD_ASSERT ((*hdrpp)->bfd_section != NULL); 12486 name = bfd_section_name ((*hdrpp)->bfd_section); 12487 BFD_ASSERT (name != NULL); 12488 if (startswith (name, ".MIPS.events")) 12489 sec = bfd_get_section_by_name (abfd, 12490 name + sizeof ".MIPS.events" - 1); 12491 else 12492 { 12493 BFD_ASSERT (startswith (name, ".MIPS.post_rel")); 12494 sec = bfd_get_section_by_name (abfd, 12495 (name 12496 + sizeof ".MIPS.post_rel" - 1)); 12497 } 12498 BFD_ASSERT (sec != NULL); 12499 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; 12500 break; 12501 12502 case SHT_MIPS_XHASH: 12503 sec = bfd_get_section_by_name (abfd, ".dynsym"); 12504 if (sec != NULL) 12505 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; 12506 } 12507 } 12508 } 12509 12510 bool 12511 _bfd_mips_elf_final_write_processing (bfd *abfd) 12512 { 12513 _bfd_mips_final_write_processing (abfd); 12514 return _bfd_elf_final_write_processing (abfd); 12515 } 12516 12517 /* When creating an IRIX5 executable, we need REGINFO and RTPROC 12518 segments. */ 12519 12520 int 12521 _bfd_mips_elf_additional_program_headers (bfd *abfd, 12522 struct bfd_link_info *info ATTRIBUTE_UNUSED) 12523 { 12524 asection *s; 12525 int ret = 0; 12526 12527 /* See if we need a PT_MIPS_REGINFO segment. */ 12528 s = bfd_get_section_by_name (abfd, ".reginfo"); 12529 if (s && (s->flags & SEC_LOAD)) 12530 ++ret; 12531 12532 /* See if we need a PT_MIPS_ABIFLAGS segment. */ 12533 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags")) 12534 ++ret; 12535 12536 /* See if we need a PT_MIPS_OPTIONS segment. */ 12537 if (IRIX_COMPAT (abfd) == ict_irix6 12538 && bfd_get_section_by_name (abfd, 12539 MIPS_ELF_OPTIONS_SECTION_NAME (abfd))) 12540 ++ret; 12541 12542 /* See if we need a PT_MIPS_RTPROC segment. */ 12543 if (IRIX_COMPAT (abfd) == ict_irix5 12544 && bfd_get_section_by_name (abfd, ".dynamic") 12545 && bfd_get_section_by_name (abfd, ".mdebug")) 12546 ++ret; 12547 12548 /* Allocate a PT_NULL header in dynamic objects. See 12549 _bfd_mips_elf_modify_segment_map for details. */ 12550 if (!SGI_COMPAT (abfd) 12551 && bfd_get_section_by_name (abfd, ".dynamic")) 12552 ++ret; 12553 12554 return ret; 12555 } 12556 12557 /* Modify the segment map for an IRIX5 executable. */ 12558 12559 bool 12560 _bfd_mips_elf_modify_segment_map (bfd *abfd, 12561 struct bfd_link_info *info) 12562 { 12563 asection *s; 12564 struct elf_segment_map *m, **pm; 12565 size_t amt; 12566 12567 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO 12568 segment. */ 12569 s = bfd_get_section_by_name (abfd, ".reginfo"); 12570 if (s != NULL && (s->flags & SEC_LOAD) != 0) 12571 { 12572 for (m = elf_seg_map (abfd); m != NULL; m = m->next) 12573 if (m->p_type == PT_MIPS_REGINFO) 12574 break; 12575 if (m == NULL) 12576 { 12577 amt = sizeof *m; 12578 m = bfd_zalloc (abfd, amt); 12579 if (m == NULL) 12580 return false; 12581 12582 m->p_type = PT_MIPS_REGINFO; 12583 m->count = 1; 12584 m->sections[0] = s; 12585 12586 /* We want to put it after the PHDR and INTERP segments. */ 12587 pm = &elf_seg_map (abfd); 12588 while (*pm != NULL 12589 && ((*pm)->p_type == PT_PHDR 12590 || (*pm)->p_type == PT_INTERP)) 12591 pm = &(*pm)->next; 12592 12593 m->next = *pm; 12594 *pm = m; 12595 } 12596 } 12597 12598 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS 12599 segment. */ 12600 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags"); 12601 if (s != NULL && (s->flags & SEC_LOAD) != 0) 12602 { 12603 for (m = elf_seg_map (abfd); m != NULL; m = m->next) 12604 if (m->p_type == PT_MIPS_ABIFLAGS) 12605 break; 12606 if (m == NULL) 12607 { 12608 amt = sizeof *m; 12609 m = bfd_zalloc (abfd, amt); 12610 if (m == NULL) 12611 return false; 12612 12613 m->p_type = PT_MIPS_ABIFLAGS; 12614 m->count = 1; 12615 m->sections[0] = s; 12616 12617 /* We want to put it after the PHDR and INTERP segments. */ 12618 pm = &elf_seg_map (abfd); 12619 while (*pm != NULL 12620 && ((*pm)->p_type == PT_PHDR 12621 || (*pm)->p_type == PT_INTERP)) 12622 pm = &(*pm)->next; 12623 12624 m->next = *pm; 12625 *pm = m; 12626 } 12627 } 12628 12629 /* For IRIX 6, we don't have .mdebug sections, nor does anything but 12630 .dynamic end up in PT_DYNAMIC. However, we do have to insert a 12631 PT_MIPS_OPTIONS segment immediately following the program header 12632 table. */ 12633 if (NEWABI_P (abfd) 12634 /* On non-IRIX6 new abi, we'll have already created a segment 12635 for this section, so don't create another. I'm not sure this 12636 is not also the case for IRIX 6, but I can't test it right 12637 now. */ 12638 && IRIX_COMPAT (abfd) == ict_irix6) 12639 { 12640 for (s = abfd->sections; s; s = s->next) 12641 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS) 12642 break; 12643 12644 if (s) 12645 { 12646 struct elf_segment_map *options_segment; 12647 12648 pm = &elf_seg_map (abfd); 12649 while (*pm != NULL 12650 && ((*pm)->p_type == PT_PHDR 12651 || (*pm)->p_type == PT_INTERP)) 12652 pm = &(*pm)->next; 12653 12654 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS) 12655 { 12656 amt = sizeof (struct elf_segment_map); 12657 options_segment = bfd_zalloc (abfd, amt); 12658 options_segment->next = *pm; 12659 options_segment->p_type = PT_MIPS_OPTIONS; 12660 options_segment->p_flags = PF_R; 12661 options_segment->p_flags_valid = true; 12662 options_segment->count = 1; 12663 options_segment->sections[0] = s; 12664 *pm = options_segment; 12665 } 12666 } 12667 } 12668 else 12669 { 12670 if (IRIX_COMPAT (abfd) == ict_irix5) 12671 { 12672 /* If there are .dynamic and .mdebug sections, we make a room 12673 for the RTPROC header. FIXME: Rewrite without section names. */ 12674 if (bfd_get_section_by_name (abfd, ".interp") == NULL 12675 && bfd_get_section_by_name (abfd, ".dynamic") != NULL 12676 && bfd_get_section_by_name (abfd, ".mdebug") != NULL) 12677 { 12678 for (m = elf_seg_map (abfd); m != NULL; m = m->next) 12679 if (m->p_type == PT_MIPS_RTPROC) 12680 break; 12681 if (m == NULL) 12682 { 12683 amt = sizeof *m; 12684 m = bfd_zalloc (abfd, amt); 12685 if (m == NULL) 12686 return false; 12687 12688 m->p_type = PT_MIPS_RTPROC; 12689 12690 s = bfd_get_section_by_name (abfd, ".rtproc"); 12691 if (s == NULL) 12692 { 12693 m->count = 0; 12694 m->p_flags = 0; 12695 m->p_flags_valid = 1; 12696 } 12697 else 12698 { 12699 m->count = 1; 12700 m->sections[0] = s; 12701 } 12702 12703 /* We want to put it after the DYNAMIC segment. */ 12704 pm = &elf_seg_map (abfd); 12705 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC) 12706 pm = &(*pm)->next; 12707 if (*pm != NULL) 12708 pm = &(*pm)->next; 12709 12710 m->next = *pm; 12711 *pm = m; 12712 } 12713 } 12714 } 12715 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic, 12716 .dynstr, .dynsym, and .hash sections, and everything in 12717 between. */ 12718 for (pm = &elf_seg_map (abfd); *pm != NULL; 12719 pm = &(*pm)->next) 12720 if ((*pm)->p_type == PT_DYNAMIC) 12721 break; 12722 m = *pm; 12723 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section. 12724 glibc's dynamic linker has traditionally derived the number of 12725 tags from the p_filesz field, and sometimes allocates stack 12726 arrays of that size. An overly-big PT_DYNAMIC segment can 12727 be actively harmful in such cases. Making PT_DYNAMIC contain 12728 other sections can also make life hard for the prelinker, 12729 which might move one of the other sections to a different 12730 PT_LOAD segment. */ 12731 if (SGI_COMPAT (abfd) 12732 && m != NULL 12733 && m->count == 1 12734 && strcmp (m->sections[0]->name, ".dynamic") == 0) 12735 { 12736 static const char *sec_names[] = 12737 { 12738 ".dynamic", ".dynstr", ".dynsym", ".hash" 12739 }; 12740 bfd_vma low, high; 12741 unsigned int i, c; 12742 struct elf_segment_map *n; 12743 12744 low = ~(bfd_vma) 0; 12745 high = 0; 12746 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++) 12747 { 12748 s = bfd_get_section_by_name (abfd, sec_names[i]); 12749 if (s != NULL && (s->flags & SEC_LOAD) != 0) 12750 { 12751 bfd_size_type sz; 12752 12753 if (low > s->vma) 12754 low = s->vma; 12755 sz = s->size; 12756 if (high < s->vma + sz) 12757 high = s->vma + sz; 12758 } 12759 } 12760 12761 c = 0; 12762 for (s = abfd->sections; s != NULL; s = s->next) 12763 if ((s->flags & SEC_LOAD) != 0 12764 && s->vma >= low 12765 && s->vma + s->size <= high) 12766 ++c; 12767 12768 amt = sizeof *n - sizeof (asection *) + c * sizeof (asection *); 12769 n = bfd_zalloc (abfd, amt); 12770 if (n == NULL) 12771 return false; 12772 *n = *m; 12773 n->count = c; 12774 12775 i = 0; 12776 for (s = abfd->sections; s != NULL; s = s->next) 12777 { 12778 if ((s->flags & SEC_LOAD) != 0 12779 && s->vma >= low 12780 && s->vma + s->size <= high) 12781 { 12782 n->sections[i] = s; 12783 ++i; 12784 } 12785 } 12786 12787 *pm = n; 12788 } 12789 } 12790 12791 /* Allocate a spare program header in dynamic objects so that tools 12792 like the prelinker can add an extra PT_LOAD entry. 12793 12794 If the prelinker needs to make room for a new PT_LOAD entry, its 12795 standard procedure is to move the first (read-only) sections into 12796 the new (writable) segment. However, the MIPS ABI requires 12797 .dynamic to be in a read-only segment, and the section will often 12798 start within sizeof (ElfNN_Phdr) bytes of the last program header. 12799 12800 Although the prelinker could in principle move .dynamic to a 12801 writable segment, it seems better to allocate a spare program 12802 header instead, and avoid the need to move any sections. 12803 There is a long tradition of allocating spare dynamic tags, 12804 so allocating a spare program header seems like a natural 12805 extension. 12806 12807 If INFO is NULL, we may be copying an already prelinked binary 12808 with objcopy or strip, so do not add this header. */ 12809 if (info != NULL 12810 && !SGI_COMPAT (abfd) 12811 && bfd_get_section_by_name (abfd, ".dynamic")) 12812 { 12813 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next) 12814 if ((*pm)->p_type == PT_NULL) 12815 break; 12816 if (*pm == NULL) 12817 { 12818 m = bfd_zalloc (abfd, sizeof (*m)); 12819 if (m == NULL) 12820 return false; 12821 12822 m->p_type = PT_NULL; 12823 *pm = m; 12824 } 12825 } 12826 12827 return true; 12828 } 12829 12830 /* Return the section that should be marked against GC for a given 12831 relocation. */ 12832 12833 asection * 12834 _bfd_mips_elf_gc_mark_hook (asection *sec, 12835 struct bfd_link_info *info, 12836 Elf_Internal_Rela *rel, 12837 struct elf_link_hash_entry *h, 12838 Elf_Internal_Sym *sym) 12839 { 12840 /* ??? Do mips16 stub sections need to be handled special? */ 12841 12842 if (h != NULL) 12843 switch (ELF_R_TYPE (sec->owner, rel->r_info)) 12844 { 12845 case R_MIPS_GNU_VTINHERIT: 12846 case R_MIPS_GNU_VTENTRY: 12847 return NULL; 12848 } 12849 12850 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); 12851 } 12852 12853 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */ 12854 12855 bool 12856 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info, 12857 elf_gc_mark_hook_fn gc_mark_hook) 12858 { 12859 bfd *sub; 12860 12861 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook); 12862 12863 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) 12864 { 12865 asection *o; 12866 12867 if (! is_mips_elf (sub)) 12868 continue; 12869 12870 for (o = sub->sections; o != NULL; o = o->next) 12871 if (!o->gc_mark 12872 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P (bfd_section_name (o))) 12873 { 12874 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook)) 12875 return false; 12876 } 12877 } 12878 12879 return true; 12880 } 12881 12882 /* Copy data from a MIPS ELF indirect symbol to its direct symbol, 12883 hiding the old indirect symbol. Process additional relocation 12884 information. Also called for weakdefs, in which case we just let 12885 _bfd_elf_link_hash_copy_indirect copy the flags for us. */ 12886 12887 void 12888 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info, 12889 struct elf_link_hash_entry *dir, 12890 struct elf_link_hash_entry *ind) 12891 { 12892 struct mips_elf_link_hash_entry *dirmips, *indmips; 12893 12894 _bfd_elf_link_hash_copy_indirect (info, dir, ind); 12895 12896 dirmips = (struct mips_elf_link_hash_entry *) dir; 12897 indmips = (struct mips_elf_link_hash_entry *) ind; 12898 /* Any absolute non-dynamic relocations against an indirect or weak 12899 definition will be against the target symbol. */ 12900 if (indmips->has_static_relocs) 12901 dirmips->has_static_relocs = true; 12902 12903 if (ind->root.type != bfd_link_hash_indirect) 12904 return; 12905 12906 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs; 12907 if (indmips->readonly_reloc) 12908 dirmips->readonly_reloc = true; 12909 if (indmips->no_fn_stub) 12910 dirmips->no_fn_stub = true; 12911 if (indmips->fn_stub) 12912 { 12913 dirmips->fn_stub = indmips->fn_stub; 12914 indmips->fn_stub = NULL; 12915 } 12916 if (indmips->need_fn_stub) 12917 { 12918 dirmips->need_fn_stub = true; 12919 indmips->need_fn_stub = false; 12920 } 12921 if (indmips->call_stub) 12922 { 12923 dirmips->call_stub = indmips->call_stub; 12924 indmips->call_stub = NULL; 12925 } 12926 if (indmips->call_fp_stub) 12927 { 12928 dirmips->call_fp_stub = indmips->call_fp_stub; 12929 indmips->call_fp_stub = NULL; 12930 } 12931 if (indmips->global_got_area < dirmips->global_got_area) 12932 dirmips->global_got_area = indmips->global_got_area; 12933 if (indmips->global_got_area < GGA_NONE) 12934 indmips->global_got_area = GGA_NONE; 12935 if (indmips->has_nonpic_branches) 12936 dirmips->has_nonpic_branches = true; 12937 } 12938 12939 /* Take care of the special `__gnu_absolute_zero' symbol and ignore attempts 12940 to hide it. It has to remain global (it will also be protected) so as to 12941 be assigned a global GOT entry, which will then remain unchanged at load 12942 time. */ 12943 12944 void 12945 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info, 12946 struct elf_link_hash_entry *entry, 12947 bool force_local) 12948 { 12949 struct mips_elf_link_hash_table *htab; 12950 12951 htab = mips_elf_hash_table (info); 12952 BFD_ASSERT (htab != NULL); 12953 if (htab->use_absolute_zero 12954 && strcmp (entry->root.root.string, "__gnu_absolute_zero") == 0) 12955 return; 12956 12957 _bfd_elf_link_hash_hide_symbol (info, entry, force_local); 12958 } 12959 12960 #define PDR_SIZE 32 12961 12962 bool 12963 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie, 12964 struct bfd_link_info *info) 12965 { 12966 asection *o; 12967 bool ret = false; 12968 unsigned char *tdata; 12969 size_t i, skip; 12970 12971 o = bfd_get_section_by_name (abfd, ".pdr"); 12972 if (! o) 12973 return false; 12974 if (o->size == 0) 12975 return false; 12976 if (o->size % PDR_SIZE != 0) 12977 return false; 12978 if (o->output_section != NULL 12979 && bfd_is_abs_section (o->output_section)) 12980 return false; 12981 12982 tdata = bfd_zmalloc (o->size / PDR_SIZE); 12983 if (! tdata) 12984 return false; 12985 12986 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, 12987 info->keep_memory); 12988 if (!cookie->rels) 12989 { 12990 free (tdata); 12991 return false; 12992 } 12993 12994 cookie->rel = cookie->rels; 12995 cookie->relend = cookie->rels + o->reloc_count; 12996 12997 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++) 12998 { 12999 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie)) 13000 { 13001 tdata[i] = 1; 13002 skip ++; 13003 } 13004 } 13005 13006 if (skip != 0) 13007 { 13008 mips_elf_section_data (o)->u.tdata = tdata; 13009 if (o->rawsize == 0) 13010 o->rawsize = o->size; 13011 o->size -= skip * PDR_SIZE; 13012 ret = true; 13013 } 13014 else 13015 free (tdata); 13016 13017 if (! info->keep_memory) 13018 free (cookie->rels); 13019 13020 return ret; 13021 } 13022 13023 bool 13024 _bfd_mips_elf_ignore_discarded_relocs (asection *sec) 13025 { 13026 if (strcmp (sec->name, ".pdr") == 0) 13027 return true; 13028 return false; 13029 } 13030 13031 bool 13032 _bfd_mips_elf_write_section (bfd *output_bfd, 13033 struct bfd_link_info *link_info ATTRIBUTE_UNUSED, 13034 asection *sec, bfd_byte *contents) 13035 { 13036 bfd_byte *to, *from, *end; 13037 int i; 13038 13039 if (strcmp (sec->name, ".pdr") != 0) 13040 return false; 13041 13042 if (mips_elf_section_data (sec)->u.tdata == NULL) 13043 return false; 13044 13045 to = contents; 13046 end = contents + sec->size; 13047 for (from = contents, i = 0; 13048 from < end; 13049 from += PDR_SIZE, i++) 13050 { 13051 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1) 13052 continue; 13053 if (to != from) 13054 memcpy (to, from, PDR_SIZE); 13055 to += PDR_SIZE; 13056 } 13057 bfd_set_section_contents (output_bfd, sec->output_section, contents, 13058 sec->output_offset, sec->size); 13059 return true; 13060 } 13061 13062 /* microMIPS code retains local labels for linker relaxation. Omit them 13063 from output by default for clarity. */ 13064 13065 bool 13066 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym) 13067 { 13068 return _bfd_elf_is_local_label_name (abfd, sym->name); 13069 } 13070 13071 /* MIPS ELF uses a special find_nearest_line routine in order the 13072 handle the ECOFF debugging information. */ 13073 13074 struct mips_elf_find_line 13075 { 13076 struct ecoff_debug_info d; 13077 struct ecoff_find_line i; 13078 }; 13079 13080 bool 13081 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols, 13082 asection *section, bfd_vma offset, 13083 const char **filename_ptr, 13084 const char **functionname_ptr, 13085 unsigned int *line_ptr, 13086 unsigned int *discriminator_ptr) 13087 { 13088 asection *msec; 13089 13090 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset, 13091 filename_ptr, functionname_ptr, 13092 line_ptr, discriminator_ptr, 13093 dwarf_debug_sections, 13094 &elf_tdata (abfd)->dwarf2_find_line_info) 13095 == 1) 13096 return true; 13097 13098 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset, 13099 filename_ptr, functionname_ptr, 13100 line_ptr)) 13101 { 13102 if (!*functionname_ptr) 13103 _bfd_elf_find_function (abfd, symbols, section, offset, 13104 *filename_ptr ? NULL : filename_ptr, 13105 functionname_ptr); 13106 return true; 13107 } 13108 13109 msec = bfd_get_section_by_name (abfd, ".mdebug"); 13110 if (msec != NULL) 13111 { 13112 flagword origflags; 13113 struct mips_elf_find_line *fi; 13114 const struct ecoff_debug_swap * const swap = 13115 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; 13116 13117 /* If we are called during a link, mips_elf_final_link may have 13118 cleared the SEC_HAS_CONTENTS field. We force it back on here 13119 if appropriate (which it normally will be). */ 13120 origflags = msec->flags; 13121 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS) 13122 msec->flags |= SEC_HAS_CONTENTS; 13123 13124 fi = mips_elf_tdata (abfd)->find_line_info; 13125 if (fi == NULL) 13126 { 13127 bfd_size_type external_fdr_size; 13128 char *fraw_src; 13129 char *fraw_end; 13130 struct fdr *fdr_ptr; 13131 bfd_size_type amt = sizeof (struct mips_elf_find_line); 13132 13133 fi = bfd_zalloc (abfd, amt); 13134 if (fi == NULL) 13135 { 13136 msec->flags = origflags; 13137 return false; 13138 } 13139 13140 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d)) 13141 { 13142 msec->flags = origflags; 13143 return false; 13144 } 13145 13146 /* Swap in the FDR information. */ 13147 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr); 13148 fi->d.fdr = bfd_alloc (abfd, amt); 13149 if (fi->d.fdr == NULL) 13150 { 13151 msec->flags = origflags; 13152 return false; 13153 } 13154 external_fdr_size = swap->external_fdr_size; 13155 fdr_ptr = fi->d.fdr; 13156 fraw_src = (char *) fi->d.external_fdr; 13157 fraw_end = (fraw_src 13158 + fi->d.symbolic_header.ifdMax * external_fdr_size); 13159 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++) 13160 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr); 13161 13162 mips_elf_tdata (abfd)->find_line_info = fi; 13163 13164 /* Note that we don't bother to ever free this information. 13165 find_nearest_line is either called all the time, as in 13166 objdump -l, so the information should be saved, or it is 13167 rarely called, as in ld error messages, so the memory 13168 wasted is unimportant. Still, it would probably be a 13169 good idea for free_cached_info to throw it away. */ 13170 } 13171 13172 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap, 13173 &fi->i, filename_ptr, functionname_ptr, 13174 line_ptr)) 13175 { 13176 msec->flags = origflags; 13177 return true; 13178 } 13179 13180 msec->flags = origflags; 13181 } 13182 13183 /* Fall back on the generic ELF find_nearest_line routine. */ 13184 13185 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset, 13186 filename_ptr, functionname_ptr, 13187 line_ptr, discriminator_ptr); 13188 } 13189 13190 bool 13191 _bfd_mips_elf_find_inliner_info (bfd *abfd, 13192 const char **filename_ptr, 13193 const char **functionname_ptr, 13194 unsigned int *line_ptr) 13195 { 13196 bool found; 13197 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr, 13198 functionname_ptr, line_ptr, 13199 & elf_tdata (abfd)->dwarf2_find_line_info); 13200 return found; 13201 } 13202 13203 13204 /* When are writing out the .options or .MIPS.options section, 13205 remember the bytes we are writing out, so that we can install the 13206 GP value in the section_processing routine. */ 13207 13208 bool 13209 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section, 13210 const void *location, 13211 file_ptr offset, bfd_size_type count) 13212 { 13213 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name)) 13214 { 13215 bfd_byte *c; 13216 13217 if (elf_section_data (section) == NULL) 13218 { 13219 size_t amt = sizeof (struct bfd_elf_section_data); 13220 section->used_by_bfd = bfd_zalloc (abfd, amt); 13221 if (elf_section_data (section) == NULL) 13222 return false; 13223 } 13224 c = mips_elf_section_data (section)->u.tdata; 13225 if (c == NULL) 13226 { 13227 c = bfd_zalloc (abfd, section->size); 13228 if (c == NULL) 13229 return false; 13230 mips_elf_section_data (section)->u.tdata = c; 13231 } 13232 13233 memcpy (c + offset, location, count); 13234 } 13235 13236 return _bfd_elf_set_section_contents (abfd, section, location, offset, 13237 count); 13238 } 13239 13240 /* This is almost identical to bfd_generic_get_... except that some 13241 MIPS relocations need to be handled specially. Sigh. */ 13242 13243 bfd_byte * 13244 _bfd_elf_mips_get_relocated_section_contents 13245 (bfd *abfd, 13246 struct bfd_link_info *link_info, 13247 struct bfd_link_order *link_order, 13248 bfd_byte *data, 13249 bool relocatable, 13250 asymbol **symbols) 13251 { 13252 bfd *input_bfd = link_order->u.indirect.section->owner; 13253 asection *input_section = link_order->u.indirect.section; 13254 long reloc_size; 13255 arelent **reloc_vector; 13256 long reloc_count; 13257 13258 reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section); 13259 if (reloc_size < 0) 13260 return NULL; 13261 13262 /* Read in the section. */ 13263 if (!bfd_get_full_section_contents (input_bfd, input_section, &data)) 13264 return NULL; 13265 13266 if (data == NULL) 13267 return NULL; 13268 13269 if (reloc_size == 0) 13270 return data; 13271 13272 reloc_vector = (arelent **) bfd_malloc (reloc_size); 13273 if (reloc_vector == NULL) 13274 { 13275 struct mips_hi16 **hip, *hi; 13276 error_return: 13277 /* If we are going to return an error, remove entries on 13278 mips_hi16_list that point into this section's data. Data 13279 will typically be freed on return from this function. */ 13280 hip = &mips_hi16_list; 13281 while ((hi = *hip) != NULL) 13282 { 13283 if (hi->input_section == input_section) 13284 { 13285 *hip = hi->next; 13286 free (hi); 13287 } 13288 else 13289 hip = &hi->next; 13290 } 13291 data = NULL; 13292 goto out; 13293 } 13294 13295 reloc_count = bfd_canonicalize_reloc (input_bfd, 13296 input_section, 13297 reloc_vector, 13298 symbols); 13299 if (reloc_count < 0) 13300 goto error_return; 13301 13302 if (reloc_count > 0) 13303 { 13304 arelent **parent; 13305 /* for mips */ 13306 int gp_found; 13307 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */ 13308 13309 { 13310 struct bfd_hash_entry *h; 13311 struct bfd_link_hash_entry *lh; 13312 /* Skip all this stuff if we aren't mixing formats. */ 13313 if (abfd && input_bfd 13314 && abfd->xvec == input_bfd->xvec) 13315 lh = 0; 13316 else 13317 { 13318 h = bfd_hash_lookup (&link_info->hash->table, "_gp", false, false); 13319 lh = (struct bfd_link_hash_entry *) h; 13320 } 13321 lookup: 13322 if (lh) 13323 { 13324 switch (lh->type) 13325 { 13326 case bfd_link_hash_undefined: 13327 case bfd_link_hash_undefweak: 13328 case bfd_link_hash_common: 13329 gp_found = 0; 13330 break; 13331 case bfd_link_hash_defined: 13332 case bfd_link_hash_defweak: 13333 gp_found = 1; 13334 gp = lh->u.def.value; 13335 break; 13336 case bfd_link_hash_indirect: 13337 case bfd_link_hash_warning: 13338 lh = lh->u.i.link; 13339 /* @@FIXME ignoring warning for now */ 13340 goto lookup; 13341 case bfd_link_hash_new: 13342 default: 13343 abort (); 13344 } 13345 } 13346 else 13347 gp_found = 0; 13348 } 13349 /* end mips */ 13350 13351 for (parent = reloc_vector; *parent != NULL; parent++) 13352 { 13353 char *error_message = NULL; 13354 asymbol *symbol; 13355 bfd_reloc_status_type r; 13356 13357 symbol = *(*parent)->sym_ptr_ptr; 13358 /* PR ld/19628: A specially crafted input file 13359 can result in a NULL symbol pointer here. */ 13360 if (symbol == NULL) 13361 { 13362 link_info->callbacks->einfo 13363 /* xgettext:c-format */ 13364 (_("%X%P: %pB(%pA): error: relocation for offset %V has no value\n"), 13365 abfd, input_section, (* parent)->address); 13366 goto error_return; 13367 } 13368 13369 /* Zap reloc field when the symbol is from a discarded 13370 section, ignoring any addend. Do the same when called 13371 from bfd_simple_get_relocated_section_contents for 13372 undefined symbols in debug sections. This is to keep 13373 debug info reasonably sane, in particular so that 13374 DW_FORM_ref_addr to another file's .debug_info isn't 13375 confused with an offset into the current file's 13376 .debug_info. */ 13377 if ((symbol->section != NULL && discarded_section (symbol->section)) 13378 || (symbol->section == bfd_und_section_ptr 13379 && (input_section->flags & SEC_DEBUGGING) != 0 13380 && link_info->input_bfds == link_info->output_bfd)) 13381 { 13382 bfd_vma off; 13383 static reloc_howto_type none_howto 13384 = HOWTO (0, 0, 0, 0, false, 0, complain_overflow_dont, NULL, 13385 "unused", false, 0, 0, false); 13386 13387 off = ((*parent)->address 13388 * bfd_octets_per_byte (input_bfd, input_section)); 13389 _bfd_clear_contents ((*parent)->howto, input_bfd, 13390 input_section, data, off); 13391 (*parent)->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr; 13392 (*parent)->addend = 0; 13393 (*parent)->howto = &none_howto; 13394 r = bfd_reloc_ok; 13395 } 13396 13397 /* Specific to MIPS: Deal with relocation types that require 13398 knowing the gp of the output bfd. */ 13399 13400 /* If we've managed to find the gp and have a special 13401 function for the relocation then go ahead, else default 13402 to the generic handling. */ 13403 else if (gp_found 13404 && ((*parent)->howto->special_function 13405 == _bfd_mips_elf32_gprel16_reloc)) 13406 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, symbol, *parent, 13407 input_section, relocatable, 13408 data, gp); 13409 else 13410 r = bfd_perform_relocation (input_bfd, 13411 *parent, 13412 data, 13413 input_section, 13414 relocatable ? abfd : NULL, 13415 &error_message); 13416 13417 if (relocatable) 13418 { 13419 asection *os = input_section->output_section; 13420 13421 /* A partial link, so keep the relocs. */ 13422 os->orelocation[os->reloc_count] = *parent; 13423 os->reloc_count++; 13424 } 13425 13426 if (r != bfd_reloc_ok) 13427 { 13428 switch (r) 13429 { 13430 case bfd_reloc_undefined: 13431 (*link_info->callbacks->undefined_symbol) 13432 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr), 13433 input_bfd, input_section, (*parent)->address, true); 13434 break; 13435 case bfd_reloc_dangerous: 13436 BFD_ASSERT (error_message != NULL); 13437 (*link_info->callbacks->reloc_dangerous) 13438 (link_info, error_message, 13439 input_bfd, input_section, (*parent)->address); 13440 break; 13441 case bfd_reloc_overflow: 13442 (*link_info->callbacks->reloc_overflow) 13443 (link_info, NULL, 13444 bfd_asymbol_name (*(*parent)->sym_ptr_ptr), 13445 (*parent)->howto->name, (*parent)->addend, 13446 input_bfd, input_section, (*parent)->address); 13447 break; 13448 case bfd_reloc_outofrange: 13449 /* PR ld/13730: 13450 This error can result when processing some partially 13451 complete binaries. Do not abort, but issue an error 13452 message instead. */ 13453 link_info->callbacks->einfo 13454 /* xgettext:c-format */ 13455 (_("%X%P: %pB(%pA): relocation \"%pR\" goes out of range\n"), 13456 abfd, input_section, * parent); 13457 goto error_return; 13458 13459 case bfd_reloc_notsupported: 13460 /* PR ld/17512 13461 This error can result when processing a corrupt binary. 13462 Do not abort. Issue an error message instead. */ 13463 link_info->callbacks->einfo 13464 /* xgettext:c-format */ 13465 (_("%X%P: %pB(%pA): relocation \"%pR\" is not supported\n"), 13466 abfd, input_section, * parent); 13467 goto error_return; 13468 13469 default: 13470 /* PR 17512; file: 90c2a92e. 13471 Report unexpected results, without aborting. */ 13472 link_info->callbacks->einfo 13473 /* xgettext:c-format */ 13474 (_("%X%P: %pB(%pA): relocation \"%pR\" returns an unrecognized value %x\n"), 13475 abfd, input_section, * parent, r); 13476 break; 13477 } 13478 13479 } 13480 } 13481 } 13482 13483 out: 13484 free (reloc_vector); 13485 return data; 13486 } 13487 13488 static bool 13489 mips_elf_relax_delete_bytes (bfd *abfd, 13490 asection *sec, bfd_vma addr, int count) 13491 { 13492 Elf_Internal_Shdr *symtab_hdr; 13493 unsigned int sec_shndx; 13494 bfd_byte *contents; 13495 Elf_Internal_Rela *irel, *irelend; 13496 Elf_Internal_Sym *isym; 13497 Elf_Internal_Sym *isymend; 13498 struct elf_link_hash_entry **sym_hashes; 13499 struct elf_link_hash_entry **end_hashes; 13500 struct elf_link_hash_entry **start_hashes; 13501 unsigned int symcount; 13502 13503 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); 13504 contents = elf_section_data (sec)->this_hdr.contents; 13505 13506 irel = elf_section_data (sec)->relocs; 13507 irelend = irel + sec->reloc_count; 13508 13509 /* Actually delete the bytes. */ 13510 memmove (contents + addr, contents + addr + count, 13511 (size_t) (sec->size - addr - count)); 13512 sec->size -= count; 13513 13514 /* Adjust all the relocs. */ 13515 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++) 13516 { 13517 /* Get the new reloc address. */ 13518 if (irel->r_offset > addr) 13519 irel->r_offset -= count; 13520 } 13521 13522 BFD_ASSERT (addr % 2 == 0); 13523 BFD_ASSERT (count % 2 == 0); 13524 13525 /* Adjust the local symbols defined in this section. */ 13526 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 13527 isym = (Elf_Internal_Sym *) symtab_hdr->contents; 13528 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++) 13529 if (isym->st_shndx == sec_shndx && isym->st_value > addr) 13530 isym->st_value -= count; 13531 13532 /* Now adjust the global symbols defined in this section. */ 13533 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) 13534 - symtab_hdr->sh_info); 13535 sym_hashes = start_hashes = elf_sym_hashes (abfd); 13536 end_hashes = sym_hashes + symcount; 13537 13538 for (; sym_hashes < end_hashes; sym_hashes++) 13539 { 13540 struct elf_link_hash_entry *sym_hash = *sym_hashes; 13541 13542 if ((sym_hash->root.type == bfd_link_hash_defined 13543 || sym_hash->root.type == bfd_link_hash_defweak) 13544 && sym_hash->root.u.def.section == sec) 13545 { 13546 bfd_vma value = sym_hash->root.u.def.value; 13547 13548 if (ELF_ST_IS_MICROMIPS (sym_hash->other)) 13549 value &= MINUS_TWO; 13550 if (value > addr) 13551 sym_hash->root.u.def.value -= count; 13552 } 13553 } 13554 13555 return true; 13556 } 13557 13558 13559 /* Opcodes needed for microMIPS relaxation as found in 13560 opcodes/micromips-opc.c. */ 13561 13562 struct opcode_descriptor { 13563 unsigned long match; 13564 unsigned long mask; 13565 }; 13566 13567 /* The $ra register aka $31. */ 13568 13569 #define RA 31 13570 13571 /* 32-bit instruction format register fields. */ 13572 13573 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f) 13574 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f) 13575 13576 /* Check if a 5-bit register index can be abbreviated to 3 bits. */ 13577 13578 #define OP16_VALID_REG(r) \ 13579 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17)) 13580 13581 13582 /* 32-bit and 16-bit branches. */ 13583 13584 static const struct opcode_descriptor b_insns_32[] = { 13585 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */ 13586 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */ 13587 { 0, 0 } /* End marker for find_match(). */ 13588 }; 13589 13590 static const struct opcode_descriptor bc_insn_32 = 13591 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 }; 13592 13593 static const struct opcode_descriptor bz_insn_32 = 13594 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 }; 13595 13596 static const struct opcode_descriptor bzal_insn_32 = 13597 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 }; 13598 13599 static const struct opcode_descriptor beq_insn_32 = 13600 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 }; 13601 13602 static const struct opcode_descriptor b_insn_16 = 13603 { /* "b", "mD", */ 0xcc00, 0xfc00 }; 13604 13605 static const struct opcode_descriptor bz_insn_16 = 13606 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 }; 13607 13608 13609 /* 32-bit and 16-bit branch EQ and NE zero. */ 13610 13611 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the 13612 eq and second the ne. This convention is used when replacing a 13613 32-bit BEQ/BNE with the 16-bit version. */ 13614 13615 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16) 13616 13617 static const struct opcode_descriptor bz_rs_insns_32[] = { 13618 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 }, 13619 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 }, 13620 { 0, 0 } /* End marker for find_match(). */ 13621 }; 13622 13623 static const struct opcode_descriptor bz_rt_insns_32[] = { 13624 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 }, 13625 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 }, 13626 { 0, 0 } /* End marker for find_match(). */ 13627 }; 13628 13629 static const struct opcode_descriptor bzc_insns_32[] = { 13630 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 }, 13631 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 }, 13632 { 0, 0 } /* End marker for find_match(). */ 13633 }; 13634 13635 static const struct opcode_descriptor bz_insns_16[] = { 13636 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 }, 13637 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 }, 13638 { 0, 0 } /* End marker for find_match(). */ 13639 }; 13640 13641 /* Switch between a 5-bit register index and its 3-bit shorthand. */ 13642 13643 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2) 13644 #define BZ16_REG_FIELD(r) (((r) & 7) << 7) 13645 13646 13647 /* 32-bit instructions with a delay slot. */ 13648 13649 static const struct opcode_descriptor jal_insn_32_bd16 = 13650 { /* "jals", "a", */ 0x74000000, 0xfc000000 }; 13651 13652 static const struct opcode_descriptor jal_insn_32_bd32 = 13653 { /* "jal", "a", */ 0xf4000000, 0xfc000000 }; 13654 13655 static const struct opcode_descriptor jal_x_insn_32_bd32 = 13656 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 }; 13657 13658 static const struct opcode_descriptor j_insn_32 = 13659 { /* "j", "a", */ 0xd4000000, 0xfc000000 }; 13660 13661 static const struct opcode_descriptor jalr_insn_32 = 13662 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff }; 13663 13664 /* This table can be compacted, because no opcode replacement is made. */ 13665 13666 static const struct opcode_descriptor ds_insns_32_bd16[] = { 13667 { /* "jals", "a", */ 0x74000000, 0xfc000000 }, 13668 13669 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff }, 13670 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 }, 13671 13672 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 }, 13673 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 }, 13674 { /* "j", "a", */ 0xd4000000, 0xfc000000 }, 13675 { 0, 0 } /* End marker for find_match(). */ 13676 }; 13677 13678 /* This table can be compacted, because no opcode replacement is made. */ 13679 13680 static const struct opcode_descriptor ds_insns_32_bd32[] = { 13681 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 }, 13682 13683 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff }, 13684 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 }, 13685 { 0, 0 } /* End marker for find_match(). */ 13686 }; 13687 13688 13689 /* 16-bit instructions with a delay slot. */ 13690 13691 static const struct opcode_descriptor jalr_insn_16_bd16 = 13692 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 }; 13693 13694 static const struct opcode_descriptor jalr_insn_16_bd32 = 13695 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 }; 13696 13697 static const struct opcode_descriptor jr_insn_16 = 13698 { /* "jr", "mj", */ 0x4580, 0xffe0 }; 13699 13700 #define JR16_REG(opcode) ((opcode) & 0x1f) 13701 13702 /* This table can be compacted, because no opcode replacement is made. */ 13703 13704 static const struct opcode_descriptor ds_insns_16_bd16[] = { 13705 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 }, 13706 13707 { /* "b", "mD", */ 0xcc00, 0xfc00 }, 13708 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 }, 13709 { /* "jr", "mj", */ 0x4580, 0xffe0 }, 13710 { 0, 0 } /* End marker for find_match(). */ 13711 }; 13712 13713 13714 /* LUI instruction. */ 13715 13716 static const struct opcode_descriptor lui_insn = 13717 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 }; 13718 13719 13720 /* ADDIU instruction. */ 13721 13722 static const struct opcode_descriptor addiu_insn = 13723 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 }; 13724 13725 static const struct opcode_descriptor addiupc_insn = 13726 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 }; 13727 13728 #define ADDIUPC_REG_FIELD(r) \ 13729 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23) 13730 13731 13732 /* Relaxable instructions in a JAL delay slot: MOVE. */ 13733 13734 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves 13735 (ADDU, OR) have rd in 15:11 and rs in 10:16. */ 13736 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f) 13737 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f) 13738 13739 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5) 13740 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) ) 13741 13742 static const struct opcode_descriptor move_insns_32[] = { 13743 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */ 13744 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */ 13745 { 0, 0 } /* End marker for find_match(). */ 13746 }; 13747 13748 static const struct opcode_descriptor move_insn_16 = 13749 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 }; 13750 13751 13752 /* NOP instructions. */ 13753 13754 static const struct opcode_descriptor nop_insn_32 = 13755 { /* "nop", "", */ 0x00000000, 0xffffffff }; 13756 13757 static const struct opcode_descriptor nop_insn_16 = 13758 { /* "nop", "", */ 0x0c00, 0xffff }; 13759 13760 13761 /* Instruction match support. */ 13762 13763 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match) 13764 13765 static int 13766 find_match (unsigned long opcode, const struct opcode_descriptor insn[]) 13767 { 13768 unsigned long indx; 13769 13770 for (indx = 0; insn[indx].mask != 0; indx++) 13771 if (MATCH (opcode, insn[indx])) 13772 return indx; 13773 13774 return -1; 13775 } 13776 13777 13778 /* Branch and delay slot decoding support. */ 13779 13780 /* If PTR points to what *might* be a 16-bit branch or jump, then 13781 return the minimum length of its delay slot, otherwise return 0. 13782 Non-zero results are not definitive as we might be checking against 13783 the second half of another instruction. */ 13784 13785 static int 13786 check_br16_dslot (bfd *abfd, bfd_byte *ptr) 13787 { 13788 unsigned long opcode; 13789 int bdsize; 13790 13791 opcode = bfd_get_16 (abfd, ptr); 13792 if (MATCH (opcode, jalr_insn_16_bd32) != 0) 13793 /* 16-bit branch/jump with a 32-bit delay slot. */ 13794 bdsize = 4; 13795 else if (MATCH (opcode, jalr_insn_16_bd16) != 0 13796 || find_match (opcode, ds_insns_16_bd16) >= 0) 13797 /* 16-bit branch/jump with a 16-bit delay slot. */ 13798 bdsize = 2; 13799 else 13800 /* No delay slot. */ 13801 bdsize = 0; 13802 13803 return bdsize; 13804 } 13805 13806 /* If PTR points to what *might* be a 32-bit branch or jump, then 13807 return the minimum length of its delay slot, otherwise return 0. 13808 Non-zero results are not definitive as we might be checking against 13809 the second half of another instruction. */ 13810 13811 static int 13812 check_br32_dslot (bfd *abfd, bfd_byte *ptr) 13813 { 13814 unsigned long opcode; 13815 int bdsize; 13816 13817 opcode = bfd_get_micromips_32 (abfd, ptr); 13818 if (find_match (opcode, ds_insns_32_bd32) >= 0) 13819 /* 32-bit branch/jump with a 32-bit delay slot. */ 13820 bdsize = 4; 13821 else if (find_match (opcode, ds_insns_32_bd16) >= 0) 13822 /* 32-bit branch/jump with a 16-bit delay slot. */ 13823 bdsize = 2; 13824 else 13825 /* No delay slot. */ 13826 bdsize = 0; 13827 13828 return bdsize; 13829 } 13830 13831 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot 13832 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */ 13833 13834 static bool 13835 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg) 13836 { 13837 unsigned long opcode; 13838 13839 opcode = bfd_get_16 (abfd, ptr); 13840 if (MATCH (opcode, b_insn_16) 13841 /* B16 */ 13842 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode)) 13843 /* JR16 */ 13844 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode)) 13845 /* BEQZ16, BNEZ16 */ 13846 || (MATCH (opcode, jalr_insn_16_bd32) 13847 /* JALR16 */ 13848 && reg != JR16_REG (opcode) && reg != RA)) 13849 return true; 13850 13851 return false; 13852 } 13853 13854 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG, 13855 then return TRUE, otherwise FALSE. */ 13856 13857 static bool 13858 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg) 13859 { 13860 unsigned long opcode; 13861 13862 opcode = bfd_get_micromips_32 (abfd, ptr); 13863 if (MATCH (opcode, j_insn_32) 13864 /* J */ 13865 || MATCH (opcode, bc_insn_32) 13866 /* BC1F, BC1T, BC2F, BC2T */ 13867 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA) 13868 /* JAL, JALX */ 13869 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode)) 13870 /* BGEZ, BGTZ, BLEZ, BLTZ */ 13871 || (MATCH (opcode, bzal_insn_32) 13872 /* BGEZAL, BLTZAL */ 13873 && reg != OP32_SREG (opcode) && reg != RA) 13874 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32)) 13875 /* JALR, JALR.HB, BEQ, BNE */ 13876 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode))) 13877 return true; 13878 13879 return false; 13880 } 13881 13882 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS, 13883 IRELEND) at OFFSET indicate that there must be a compact branch there, 13884 then return TRUE, otherwise FALSE. */ 13885 13886 static bool 13887 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset, 13888 const Elf_Internal_Rela *internal_relocs, 13889 const Elf_Internal_Rela *irelend) 13890 { 13891 const Elf_Internal_Rela *irel; 13892 unsigned long opcode; 13893 13894 opcode = bfd_get_micromips_32 (abfd, ptr); 13895 if (find_match (opcode, bzc_insns_32) < 0) 13896 return false; 13897 13898 for (irel = internal_relocs; irel < irelend; irel++) 13899 if (irel->r_offset == offset 13900 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1) 13901 return true; 13902 13903 return false; 13904 } 13905 13906 /* Bitsize checking. */ 13907 #define IS_BITSIZE(val, N) \ 13908 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \ 13909 - (1ULL << ((N) - 1))) == (val)) 13910 13911 13912 bool 13913 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec, 13914 struct bfd_link_info *link_info, 13915 bool *again) 13916 { 13917 bool insn32 = mips_elf_hash_table (link_info)->insn32; 13918 Elf_Internal_Shdr *symtab_hdr; 13919 Elf_Internal_Rela *internal_relocs; 13920 Elf_Internal_Rela *irel, *irelend; 13921 bfd_byte *contents = NULL; 13922 Elf_Internal_Sym *isymbuf = NULL; 13923 13924 /* Assume nothing changes. */ 13925 *again = false; 13926 13927 /* We don't have to do anything for a relocatable link, if 13928 this section does not have relocs, or if this is not a 13929 code section. */ 13930 13931 if (bfd_link_relocatable (link_info) 13932 || (sec->flags & SEC_RELOC) == 0 13933 || sec->reloc_count == 0 13934 || (sec->flags & SEC_CODE) == 0) 13935 return true; 13936 13937 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 13938 13939 /* Get a copy of the native relocations. */ 13940 internal_relocs = (_bfd_elf_link_read_relocs 13941 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL, 13942 link_info->keep_memory)); 13943 if (internal_relocs == NULL) 13944 goto error_return; 13945 13946 /* Walk through them looking for relaxing opportunities. */ 13947 irelend = internal_relocs + sec->reloc_count; 13948 for (irel = internal_relocs; irel < irelend; irel++) 13949 { 13950 unsigned long r_symndx = ELF32_R_SYM (irel->r_info); 13951 unsigned int r_type = ELF32_R_TYPE (irel->r_info); 13952 bool target_is_micromips_code_p; 13953 unsigned long opcode; 13954 bfd_vma symval; 13955 bfd_vma pcrval; 13956 bfd_byte *ptr; 13957 int fndopc; 13958 13959 /* The number of bytes to delete for relaxation and from where 13960 to delete these bytes starting at irel->r_offset. */ 13961 int delcnt = 0; 13962 int deloff = 0; 13963 13964 /* If this isn't something that can be relaxed, then ignore 13965 this reloc. */ 13966 if (r_type != R_MICROMIPS_HI16 13967 && r_type != R_MICROMIPS_PC16_S1 13968 && r_type != R_MICROMIPS_26_S1) 13969 continue; 13970 13971 /* Get the section contents if we haven't done so already. */ 13972 if (contents == NULL) 13973 { 13974 /* Get cached copy if it exists. */ 13975 if (elf_section_data (sec)->this_hdr.contents != NULL) 13976 contents = elf_section_data (sec)->this_hdr.contents; 13977 /* Go get them off disk. */ 13978 else if (!bfd_malloc_and_get_section (abfd, sec, &contents)) 13979 goto error_return; 13980 } 13981 ptr = contents + irel->r_offset; 13982 13983 /* Read this BFD's local symbols if we haven't done so already. */ 13984 if (isymbuf == NULL && symtab_hdr->sh_info != 0) 13985 { 13986 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; 13987 if (isymbuf == NULL) 13988 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, 13989 symtab_hdr->sh_info, 0, 13990 NULL, NULL, NULL); 13991 if (isymbuf == NULL) 13992 goto error_return; 13993 } 13994 13995 /* Get the value of the symbol referred to by the reloc. */ 13996 if (r_symndx < symtab_hdr->sh_info) 13997 { 13998 /* A local symbol. */ 13999 Elf_Internal_Sym *isym; 14000 asection *sym_sec; 14001 14002 isym = isymbuf + r_symndx; 14003 if (isym->st_shndx == SHN_UNDEF) 14004 sym_sec = bfd_und_section_ptr; 14005 else if (isym->st_shndx == SHN_ABS) 14006 sym_sec = bfd_abs_section_ptr; 14007 else if (isym->st_shndx == SHN_COMMON) 14008 sym_sec = bfd_com_section_ptr; 14009 else 14010 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx); 14011 symval = (isym->st_value 14012 + sym_sec->output_section->vma 14013 + sym_sec->output_offset); 14014 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other); 14015 } 14016 else 14017 { 14018 unsigned long indx; 14019 struct elf_link_hash_entry *h; 14020 14021 /* An external symbol. */ 14022 indx = r_symndx - symtab_hdr->sh_info; 14023 h = elf_sym_hashes (abfd)[indx]; 14024 BFD_ASSERT (h != NULL); 14025 14026 if (h->root.type != bfd_link_hash_defined 14027 && h->root.type != bfd_link_hash_defweak) 14028 /* This appears to be a reference to an undefined 14029 symbol. Just ignore it -- it will be caught by the 14030 regular reloc processing. */ 14031 continue; 14032 14033 symval = (h->root.u.def.value 14034 + h->root.u.def.section->output_section->vma 14035 + h->root.u.def.section->output_offset); 14036 target_is_micromips_code_p = (!h->needs_plt 14037 && ELF_ST_IS_MICROMIPS (h->other)); 14038 } 14039 14040 14041 /* For simplicity of coding, we are going to modify the 14042 section contents, the section relocs, and the BFD symbol 14043 table. We must tell the rest of the code not to free up this 14044 information. It would be possible to instead create a table 14045 of changes which have to be made, as is done in coff-mips.c; 14046 that would be more work, but would require less memory when 14047 the linker is run. */ 14048 14049 /* Only 32-bit instructions relaxed. */ 14050 if (irel->r_offset + 4 > sec->size) 14051 continue; 14052 14053 opcode = bfd_get_micromips_32 (abfd, ptr); 14054 14055 /* This is the pc-relative distance from the instruction the 14056 relocation is applied to, to the symbol referred. */ 14057 pcrval = (symval 14058 - (sec->output_section->vma + sec->output_offset) 14059 - irel->r_offset); 14060 14061 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation 14062 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or 14063 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is 14064 14065 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25)) 14066 14067 where pcrval has first to be adjusted to apply against the LO16 14068 location (we make the adjustment later on, when we have figured 14069 out the offset). */ 14070 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn)) 14071 { 14072 bool bzc = false; 14073 unsigned long nextopc; 14074 unsigned long reg; 14075 bfd_vma offset; 14076 14077 /* Give up if the previous reloc was a HI16 against this symbol 14078 too. */ 14079 if (irel > internal_relocs 14080 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16 14081 && ELF32_R_SYM (irel[-1].r_info) == r_symndx) 14082 continue; 14083 14084 /* Or if the next reloc is not a LO16 against this symbol. */ 14085 if (irel + 1 >= irelend 14086 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16 14087 || ELF32_R_SYM (irel[1].r_info) != r_symndx) 14088 continue; 14089 14090 /* Or if the second next reloc is a LO16 against this symbol too. */ 14091 if (irel + 2 >= irelend 14092 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16 14093 && ELF32_R_SYM (irel[2].r_info) == r_symndx) 14094 continue; 14095 14096 /* See if the LUI instruction *might* be in a branch delay slot. 14097 We check whether what looks like a 16-bit branch or jump is 14098 actually an immediate argument to a compact branch, and let 14099 it through if so. */ 14100 if (irel->r_offset >= 2 14101 && check_br16_dslot (abfd, ptr - 2) 14102 && !(irel->r_offset >= 4 14103 && (bzc = check_relocated_bzc (abfd, 14104 ptr - 4, irel->r_offset - 4, 14105 internal_relocs, irelend)))) 14106 continue; 14107 if (irel->r_offset >= 4 14108 && !bzc 14109 && check_br32_dslot (abfd, ptr - 4)) 14110 continue; 14111 14112 reg = OP32_SREG (opcode); 14113 14114 /* We only relax adjacent instructions or ones separated with 14115 a branch or jump that has a delay slot. The branch or jump 14116 must not fiddle with the register used to hold the address. 14117 Subtract 4 for the LUI itself. */ 14118 offset = irel[1].r_offset - irel[0].r_offset; 14119 switch (offset - 4) 14120 { 14121 case 0: 14122 break; 14123 case 2: 14124 if (check_br16 (abfd, ptr + 4, reg)) 14125 break; 14126 continue; 14127 case 4: 14128 if (check_br32 (abfd, ptr + 4, reg)) 14129 break; 14130 continue; 14131 default: 14132 continue; 14133 } 14134 14135 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset); 14136 14137 /* Give up unless the same register is used with both 14138 relocations. */ 14139 if (OP32_SREG (nextopc) != reg) 14140 continue; 14141 14142 /* Now adjust pcrval, subtracting the offset to the LO16 reloc 14143 and rounding up to take masking of the two LSBs into account. */ 14144 pcrval = ((pcrval - offset + 3) | 3) ^ 3; 14145 14146 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */ 14147 if (IS_BITSIZE (symval, 16)) 14148 { 14149 /* Fix the relocation's type. */ 14150 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16); 14151 14152 /* Instructions using R_MICROMIPS_LO16 have the base or 14153 source register in bits 20:16. This register becomes $0 14154 (zero) as the result of the R_MICROMIPS_HI16 being 0. */ 14155 nextopc &= ~0x001f0000; 14156 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff, 14157 contents + irel[1].r_offset); 14158 } 14159 14160 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2. 14161 We add 4 to take LUI deletion into account while checking 14162 the PC-relative distance. */ 14163 else if (symval % 4 == 0 14164 && IS_BITSIZE (pcrval + 4, 25) 14165 && MATCH (nextopc, addiu_insn) 14166 && OP32_TREG (nextopc) == OP32_SREG (nextopc) 14167 && OP16_VALID_REG (OP32_TREG (nextopc))) 14168 { 14169 /* Fix the relocation's type. */ 14170 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2); 14171 14172 /* Replace ADDIU with the ADDIUPC version. */ 14173 nextopc = (addiupc_insn.match 14174 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc))); 14175 14176 bfd_put_micromips_32 (abfd, nextopc, 14177 contents + irel[1].r_offset); 14178 } 14179 14180 /* Can't do anything, give up, sigh... */ 14181 else 14182 continue; 14183 14184 /* Fix the relocation's type. */ 14185 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE); 14186 14187 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */ 14188 delcnt = 4; 14189 deloff = 0; 14190 } 14191 14192 /* Compact branch relaxation -- due to the multitude of macros 14193 employed by the compiler/assembler, compact branches are not 14194 always generated. Obviously, this can/will be fixed elsewhere, 14195 but there is no drawback in double checking it here. */ 14196 else if (r_type == R_MICROMIPS_PC16_S1 14197 && irel->r_offset + 5 < sec->size 14198 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0 14199 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0) 14200 && ((!insn32 14201 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4), 14202 nop_insn_16) ? 2 : 0)) 14203 || (irel->r_offset + 7 < sec->size 14204 && (delcnt = MATCH (bfd_get_micromips_32 (abfd, 14205 ptr + 4), 14206 nop_insn_32) ? 4 : 0)))) 14207 { 14208 unsigned long reg; 14209 14210 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode); 14211 14212 /* Replace BEQZ/BNEZ with the compact version. */ 14213 opcode = (bzc_insns_32[fndopc].match 14214 | BZC32_REG_FIELD (reg) 14215 | (opcode & 0xffff)); /* Addend value. */ 14216 14217 bfd_put_micromips_32 (abfd, opcode, ptr); 14218 14219 /* Delete the delay slot NOP: two or four bytes from 14220 irel->offset + 4; delcnt has already been set above. */ 14221 deloff = 4; 14222 } 14223 14224 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need 14225 to check the distance from the next instruction, so subtract 2. */ 14226 else if (!insn32 14227 && r_type == R_MICROMIPS_PC16_S1 14228 && IS_BITSIZE (pcrval - 2, 11) 14229 && find_match (opcode, b_insns_32) >= 0) 14230 { 14231 /* Fix the relocation's type. */ 14232 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1); 14233 14234 /* Replace the 32-bit opcode with a 16-bit opcode. */ 14235 bfd_put_16 (abfd, 14236 (b_insn_16.match 14237 | (opcode & 0x3ff)), /* Addend value. */ 14238 ptr); 14239 14240 /* Delete 2 bytes from irel->r_offset + 2. */ 14241 delcnt = 2; 14242 deloff = 2; 14243 } 14244 14245 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need 14246 to check the distance from the next instruction, so subtract 2. */ 14247 else if (!insn32 14248 && r_type == R_MICROMIPS_PC16_S1 14249 && IS_BITSIZE (pcrval - 2, 8) 14250 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0 14251 && OP16_VALID_REG (OP32_SREG (opcode))) 14252 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0 14253 && OP16_VALID_REG (OP32_TREG (opcode))))) 14254 { 14255 unsigned long reg; 14256 14257 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode); 14258 14259 /* Fix the relocation's type. */ 14260 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1); 14261 14262 /* Replace the 32-bit opcode with a 16-bit opcode. */ 14263 bfd_put_16 (abfd, 14264 (bz_insns_16[fndopc].match 14265 | BZ16_REG_FIELD (reg) 14266 | (opcode & 0x7f)), /* Addend value. */ 14267 ptr); 14268 14269 /* Delete 2 bytes from irel->r_offset + 2. */ 14270 delcnt = 2; 14271 deloff = 2; 14272 } 14273 14274 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */ 14275 else if (!insn32 14276 && r_type == R_MICROMIPS_26_S1 14277 && target_is_micromips_code_p 14278 && irel->r_offset + 7 < sec->size 14279 && MATCH (opcode, jal_insn_32_bd32)) 14280 { 14281 unsigned long n32opc; 14282 bool relaxed = false; 14283 14284 n32opc = bfd_get_micromips_32 (abfd, ptr + 4); 14285 14286 if (MATCH (n32opc, nop_insn_32)) 14287 { 14288 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */ 14289 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4); 14290 14291 relaxed = true; 14292 } 14293 else if (find_match (n32opc, move_insns_32) >= 0) 14294 { 14295 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */ 14296 bfd_put_16 (abfd, 14297 (move_insn_16.match 14298 | MOVE16_RD_FIELD (MOVE32_RD (n32opc)) 14299 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))), 14300 ptr + 4); 14301 14302 relaxed = true; 14303 } 14304 /* Other 32-bit instructions relaxable to 16-bit 14305 instructions will be handled here later. */ 14306 14307 if (relaxed) 14308 { 14309 /* JAL with 32-bit delay slot that is changed to a JALS 14310 with 16-bit delay slot. */ 14311 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr); 14312 14313 /* Delete 2 bytes from irel->r_offset + 6. */ 14314 delcnt = 2; 14315 deloff = 6; 14316 } 14317 } 14318 14319 if (delcnt != 0) 14320 { 14321 /* Note that we've changed the relocs, section contents, etc. */ 14322 elf_section_data (sec)->relocs = internal_relocs; 14323 elf_section_data (sec)->this_hdr.contents = contents; 14324 symtab_hdr->contents = (unsigned char *) isymbuf; 14325 14326 /* Delete bytes depending on the delcnt and deloff. */ 14327 if (!mips_elf_relax_delete_bytes (abfd, sec, 14328 irel->r_offset + deloff, delcnt)) 14329 goto error_return; 14330 14331 /* That will change things, so we should relax again. 14332 Note that this is not required, and it may be slow. */ 14333 *again = true; 14334 } 14335 } 14336 14337 if (isymbuf != NULL 14338 && symtab_hdr->contents != (unsigned char *) isymbuf) 14339 { 14340 if (! link_info->keep_memory) 14341 free (isymbuf); 14342 else 14343 { 14344 /* Cache the symbols for elf_link_input_bfd. */ 14345 symtab_hdr->contents = (unsigned char *) isymbuf; 14346 } 14347 } 14348 14349 if (contents != NULL 14350 && elf_section_data (sec)->this_hdr.contents != contents) 14351 { 14352 if (! link_info->keep_memory) 14353 free (contents); 14354 else 14355 { 14356 /* Cache the section contents for elf_link_input_bfd. */ 14357 elf_section_data (sec)->this_hdr.contents = contents; 14358 } 14359 } 14360 14361 if (elf_section_data (sec)->relocs != internal_relocs) 14362 free (internal_relocs); 14363 14364 return true; 14365 14366 error_return: 14367 if (symtab_hdr->contents != (unsigned char *) isymbuf) 14368 free (isymbuf); 14369 if (elf_section_data (sec)->this_hdr.contents != contents) 14370 free (contents); 14371 if (elf_section_data (sec)->relocs != internal_relocs) 14372 free (internal_relocs); 14373 14374 return false; 14375 } 14376 14377 /* Create a MIPS ELF linker hash table. */ 14378 14379 struct bfd_link_hash_table * 14380 _bfd_mips_elf_link_hash_table_create (bfd *abfd) 14381 { 14382 struct mips_elf_link_hash_table *ret; 14383 size_t amt = sizeof (struct mips_elf_link_hash_table); 14384 14385 ret = bfd_zmalloc (amt); 14386 if (ret == NULL) 14387 return NULL; 14388 14389 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, 14390 mips_elf_link_hash_newfunc, 14391 sizeof (struct mips_elf_link_hash_entry), 14392 MIPS_ELF_DATA)) 14393 { 14394 free (ret); 14395 return NULL; 14396 } 14397 ret->root.init_plt_refcount.plist = NULL; 14398 ret->root.init_plt_offset.plist = NULL; 14399 14400 return &ret->root.root; 14401 } 14402 14403 /* Likewise, but indicate that the target is VxWorks. */ 14404 14405 struct bfd_link_hash_table * 14406 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd) 14407 { 14408 struct bfd_link_hash_table *ret; 14409 14410 ret = _bfd_mips_elf_link_hash_table_create (abfd); 14411 if (ret) 14412 { 14413 struct mips_elf_link_hash_table *htab; 14414 14415 htab = (struct mips_elf_link_hash_table *) ret; 14416 htab->use_plts_and_copy_relocs = true; 14417 } 14418 return ret; 14419 } 14420 14421 /* A function that the linker calls if we are allowed to use PLTs 14422 and copy relocs. */ 14423 14424 void 14425 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info) 14426 { 14427 mips_elf_hash_table (info)->use_plts_and_copy_relocs = true; 14428 } 14429 14430 /* A function that the linker calls to select between all or only 14431 32-bit microMIPS instructions, and between making or ignoring 14432 branch relocation checks for invalid transitions between ISA modes. 14433 Also record whether we have been configured for a GNU target. */ 14434 14435 void 14436 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bool insn32, 14437 bool ignore_branch_isa, 14438 bool gnu_target) 14439 { 14440 mips_elf_hash_table (info)->insn32 = insn32; 14441 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa; 14442 mips_elf_hash_table (info)->gnu_target = gnu_target; 14443 } 14444 14445 /* A function that the linker calls to enable use of compact branches in 14446 linker generated code for MIPSR6. */ 14447 14448 void 14449 _bfd_mips_elf_compact_branches (struct bfd_link_info *info, bool on) 14450 { 14451 mips_elf_hash_table (info)->compact_branches = on; 14452 } 14453 14454 14455 /* Structure for saying that BFD machine EXTENSION extends BASE. */ 14456 14457 struct mips_mach_extension 14458 { 14459 unsigned long extension, base; 14460 }; 14461 14462 14463 /* An array describing how BFD machines relate to one another. The entries 14464 are ordered topologically with MIPS I extensions listed last. */ 14465 14466 static const struct mips_mach_extension mips_mach_extensions[] = 14467 { 14468 /* MIPS64r2 extensions. */ 14469 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 }, 14470 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp }, 14471 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon }, 14472 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 }, 14473 { bfd_mach_mips_gs264e, bfd_mach_mips_gs464e }, 14474 { bfd_mach_mips_gs464e, bfd_mach_mips_gs464 }, 14475 { bfd_mach_mips_gs464, bfd_mach_mipsisa64r2 }, 14476 14477 /* MIPS64 extensions. */ 14478 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 }, 14479 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 }, 14480 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 }, 14481 14482 /* MIPS V extensions. */ 14483 { bfd_mach_mipsisa64, bfd_mach_mips5 }, 14484 14485 /* R10000 extensions. */ 14486 { bfd_mach_mips12000, bfd_mach_mips10000 }, 14487 { bfd_mach_mips14000, bfd_mach_mips10000 }, 14488 { bfd_mach_mips16000, bfd_mach_mips10000 }, 14489 14490 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core 14491 vr5400 ISA, but doesn't include the multimedia stuff. It seems 14492 better to allow vr5400 and vr5500 code to be merged anyway, since 14493 many libraries will just use the core ISA. Perhaps we could add 14494 some sort of ASE flag if this ever proves a problem. */ 14495 { bfd_mach_mips5500, bfd_mach_mips5400 }, 14496 { bfd_mach_mips5400, bfd_mach_mips5000 }, 14497 14498 /* MIPS IV extensions. */ 14499 { bfd_mach_mips5, bfd_mach_mips8000 }, 14500 { bfd_mach_mips10000, bfd_mach_mips8000 }, 14501 { bfd_mach_mips5000, bfd_mach_mips8000 }, 14502 { bfd_mach_mips7000, bfd_mach_mips8000 }, 14503 { bfd_mach_mips9000, bfd_mach_mips8000 }, 14504 14505 /* VR4100 extensions. */ 14506 { bfd_mach_mips4120, bfd_mach_mips4100 }, 14507 { bfd_mach_mips4111, bfd_mach_mips4100 }, 14508 14509 /* MIPS III extensions. */ 14510 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 }, 14511 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 }, 14512 { bfd_mach_mips8000, bfd_mach_mips4000 }, 14513 { bfd_mach_mips4650, bfd_mach_mips4000 }, 14514 { bfd_mach_mips4600, bfd_mach_mips4000 }, 14515 { bfd_mach_mips4400, bfd_mach_mips4000 }, 14516 { bfd_mach_mips4300, bfd_mach_mips4000 }, 14517 { bfd_mach_mips4100, bfd_mach_mips4000 }, 14518 { bfd_mach_mips5900, bfd_mach_mips4000 }, 14519 14520 /* MIPS32r3 extensions. */ 14521 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 }, 14522 14523 /* MIPS32r2 extensions. */ 14524 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 }, 14525 14526 /* MIPS32 extensions. */ 14527 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 }, 14528 14529 /* MIPS II extensions. */ 14530 { bfd_mach_mips4000, bfd_mach_mips6000 }, 14531 { bfd_mach_mipsisa32, bfd_mach_mips6000 }, 14532 { bfd_mach_mips4010, bfd_mach_mips6000 }, 14533 14534 /* MIPS I extensions. */ 14535 { bfd_mach_mips6000, bfd_mach_mips3000 }, 14536 { bfd_mach_mips3900, bfd_mach_mips3000 } 14537 }; 14538 14539 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */ 14540 14541 static bool 14542 mips_mach_extends_p (unsigned long base, unsigned long extension) 14543 { 14544 size_t i; 14545 14546 if (extension == base) 14547 return true; 14548 14549 if (base == bfd_mach_mipsisa32 14550 && mips_mach_extends_p (bfd_mach_mipsisa64, extension)) 14551 return true; 14552 14553 if (base == bfd_mach_mipsisa32r2 14554 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension)) 14555 return true; 14556 14557 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++) 14558 if (extension == mips_mach_extensions[i].extension) 14559 { 14560 extension = mips_mach_extensions[i].base; 14561 if (extension == base) 14562 return true; 14563 } 14564 14565 return false; 14566 } 14567 14568 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */ 14569 14570 static unsigned long 14571 bfd_mips_isa_ext_mach (unsigned int isa_ext) 14572 { 14573 switch (isa_ext) 14574 { 14575 case AFL_EXT_3900: return bfd_mach_mips3900; 14576 case AFL_EXT_4010: return bfd_mach_mips4010; 14577 case AFL_EXT_4100: return bfd_mach_mips4100; 14578 case AFL_EXT_4111: return bfd_mach_mips4111; 14579 case AFL_EXT_4120: return bfd_mach_mips4120; 14580 case AFL_EXT_4650: return bfd_mach_mips4650; 14581 case AFL_EXT_5400: return bfd_mach_mips5400; 14582 case AFL_EXT_5500: return bfd_mach_mips5500; 14583 case AFL_EXT_5900: return bfd_mach_mips5900; 14584 case AFL_EXT_10000: return bfd_mach_mips10000; 14585 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e; 14586 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f; 14587 case AFL_EXT_SB1: return bfd_mach_mips_sb1; 14588 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon; 14589 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp; 14590 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2; 14591 case AFL_EXT_XLR: return bfd_mach_mips_xlr; 14592 default: return bfd_mach_mips3000; 14593 } 14594 } 14595 14596 /* Return the .MIPS.abiflags value representing each ISA Extension. */ 14597 14598 unsigned int 14599 bfd_mips_isa_ext (bfd *abfd) 14600 { 14601 switch (bfd_get_mach (abfd)) 14602 { 14603 case bfd_mach_mips3900: return AFL_EXT_3900; 14604 case bfd_mach_mips4010: return AFL_EXT_4010; 14605 case bfd_mach_mips4100: return AFL_EXT_4100; 14606 case bfd_mach_mips4111: return AFL_EXT_4111; 14607 case bfd_mach_mips4120: return AFL_EXT_4120; 14608 case bfd_mach_mips4650: return AFL_EXT_4650; 14609 case bfd_mach_mips5400: return AFL_EXT_5400; 14610 case bfd_mach_mips5500: return AFL_EXT_5500; 14611 case bfd_mach_mips5900: return AFL_EXT_5900; 14612 case bfd_mach_mips10000: return AFL_EXT_10000; 14613 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E; 14614 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F; 14615 case bfd_mach_mips_sb1: return AFL_EXT_SB1; 14616 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON; 14617 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP; 14618 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3; 14619 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2; 14620 case bfd_mach_mips_xlr: return AFL_EXT_XLR; 14621 case bfd_mach_mips_interaptiv_mr2: 14622 return AFL_EXT_INTERAPTIV_MR2; 14623 default: return 0; 14624 } 14625 } 14626 14627 /* Encode ISA level and revision as a single value. */ 14628 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV)) 14629 14630 /* Decode a single value into level and revision. */ 14631 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3) 14632 #define ISA_REV(LEVREV) ((LEVREV) & 0x7) 14633 14634 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */ 14635 14636 static void 14637 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags) 14638 { 14639 int new_isa = 0; 14640 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) 14641 { 14642 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break; 14643 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break; 14644 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break; 14645 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break; 14646 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break; 14647 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break; 14648 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break; 14649 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break; 14650 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break; 14651 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break; 14652 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break; 14653 default: 14654 _bfd_error_handler 14655 /* xgettext:c-format */ 14656 (_("%pB: unknown architecture %s"), 14657 abfd, bfd_printable_name (abfd)); 14658 } 14659 14660 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev)) 14661 { 14662 abiflags->isa_level = ISA_LEVEL (new_isa); 14663 abiflags->isa_rev = ISA_REV (new_isa); 14664 } 14665 14666 /* Update the isa_ext if ABFD describes a further extension. */ 14667 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext), 14668 bfd_get_mach (abfd))) 14669 abiflags->isa_ext = bfd_mips_isa_ext (abfd); 14670 } 14671 14672 /* Return true if the given ELF header flags describe a 32-bit binary. */ 14673 14674 static bool 14675 mips_32bit_flags_p (flagword flags) 14676 { 14677 return ((flags & EF_MIPS_32BITMODE) != 0 14678 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32 14679 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32 14680 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1 14681 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2 14682 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32 14683 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2 14684 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6); 14685 } 14686 14687 /* Infer the content of the ABI flags based on the elf header. */ 14688 14689 static void 14690 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags) 14691 { 14692 obj_attribute *in_attr; 14693 14694 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0)); 14695 update_mips_abiflags_isa (abfd, abiflags); 14696 14697 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags)) 14698 abiflags->gpr_size = AFL_REG_32; 14699 else 14700 abiflags->gpr_size = AFL_REG_64; 14701 14702 abiflags->cpr1_size = AFL_REG_NONE; 14703 14704 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU]; 14705 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i; 14706 14707 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE 14708 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX 14709 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE 14710 && abiflags->gpr_size == AFL_REG_32)) 14711 abiflags->cpr1_size = AFL_REG_32; 14712 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE 14713 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64 14714 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A) 14715 abiflags->cpr1_size = AFL_REG_64; 14716 14717 abiflags->cpr2_size = AFL_REG_NONE; 14718 14719 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX) 14720 abiflags->ases |= AFL_ASE_MDMX; 14721 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16) 14722 abiflags->ases |= AFL_ASE_MIPS16; 14723 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) 14724 abiflags->ases |= AFL_ASE_MICROMIPS; 14725 14726 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY 14727 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT 14728 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A 14729 && abiflags->isa_level >= 32 14730 && abiflags->ases != AFL_ASE_LOONGSON_EXT) 14731 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG; 14732 } 14733 14734 /* We need to use a special link routine to handle the .reginfo and 14735 the .mdebug sections. We need to merge all instances of these 14736 sections together, not write them all out sequentially. */ 14737 14738 bool 14739 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info) 14740 { 14741 asection *o; 14742 struct bfd_link_order *p; 14743 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec; 14744 asection *rtproc_sec, *abiflags_sec; 14745 Elf32_RegInfo reginfo; 14746 struct ecoff_debug_info debug; 14747 struct mips_htab_traverse_info hti; 14748 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 14749 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap; 14750 HDRR *symhdr = &debug.symbolic_header; 14751 void *mdebug_handle = NULL; 14752 asection *s; 14753 EXTR esym; 14754 unsigned int i; 14755 bfd_size_type amt; 14756 struct mips_elf_link_hash_table *htab; 14757 14758 static const char * const secname[] = 14759 { 14760 ".text", ".init", ".fini", ".data", 14761 ".rodata", ".sdata", ".sbss", ".bss" 14762 }; 14763 static const int sc[] = 14764 { 14765 scText, scInit, scFini, scData, 14766 scRData, scSData, scSBss, scBss 14767 }; 14768 14769 htab = mips_elf_hash_table (info); 14770 BFD_ASSERT (htab != NULL); 14771 14772 /* Sort the dynamic symbols so that those with GOT entries come after 14773 those without. */ 14774 if (!mips_elf_sort_hash_table (abfd, info)) 14775 return false; 14776 14777 /* Create any scheduled LA25 stubs. */ 14778 hti.info = info; 14779 hti.output_bfd = abfd; 14780 hti.error = false; 14781 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti); 14782 if (hti.error) 14783 return false; 14784 14785 /* Get a value for the GP register. */ 14786 if (elf_gp (abfd) == 0) 14787 { 14788 struct bfd_link_hash_entry *h; 14789 14790 h = bfd_link_hash_lookup (info->hash, "_gp", false, false, true); 14791 if (h != NULL && h->type == bfd_link_hash_defined) 14792 elf_gp (abfd) = (h->u.def.value 14793 + h->u.def.section->output_section->vma 14794 + h->u.def.section->output_offset); 14795 else if (htab->root.target_os == is_vxworks 14796 && (h = bfd_link_hash_lookup (info->hash, 14797 "_GLOBAL_OFFSET_TABLE_", 14798 false, false, true)) 14799 && h->type == bfd_link_hash_defined) 14800 elf_gp (abfd) = (h->u.def.section->output_section->vma 14801 + h->u.def.section->output_offset 14802 + h->u.def.value); 14803 else if (bfd_link_relocatable (info)) 14804 { 14805 bfd_vma lo = MINUS_ONE; 14806 14807 /* Find the GP-relative section with the lowest offset. */ 14808 for (o = abfd->sections; o != NULL; o = o->next) 14809 if (o->vma < lo 14810 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL)) 14811 lo = o->vma; 14812 14813 /* And calculate GP relative to that. */ 14814 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info); 14815 } 14816 else 14817 { 14818 /* If the relocate_section function needs to do a reloc 14819 involving the GP value, it should make a reloc_dangerous 14820 callback to warn that GP is not defined. */ 14821 } 14822 } 14823 14824 /* Go through the sections and collect the .reginfo and .mdebug 14825 information. */ 14826 abiflags_sec = NULL; 14827 reginfo_sec = NULL; 14828 mdebug_sec = NULL; 14829 gptab_data_sec = NULL; 14830 gptab_bss_sec = NULL; 14831 for (o = abfd->sections; o != NULL; o = o->next) 14832 { 14833 if (strcmp (o->name, ".MIPS.abiflags") == 0) 14834 { 14835 /* We have found the .MIPS.abiflags section in the output file. 14836 Look through all the link_orders comprising it and remove them. 14837 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */ 14838 for (p = o->map_head.link_order; p != NULL; p = p->next) 14839 { 14840 asection *input_section; 14841 14842 if (p->type != bfd_indirect_link_order) 14843 { 14844 if (p->type == bfd_data_link_order) 14845 continue; 14846 abort (); 14847 } 14848 14849 input_section = p->u.indirect.section; 14850 14851 /* Hack: reset the SEC_HAS_CONTENTS flag so that 14852 elf_link_input_bfd ignores this section. */ 14853 input_section->flags &= ~SEC_HAS_CONTENTS; 14854 } 14855 14856 /* Size has been set in _bfd_mips_elf_always_size_sections. */ 14857 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0)); 14858 14859 /* Skip this section later on (I don't think this currently 14860 matters, but someday it might). */ 14861 o->map_head.link_order = NULL; 14862 14863 abiflags_sec = o; 14864 } 14865 14866 if (strcmp (o->name, ".reginfo") == 0) 14867 { 14868 memset (®info, 0, sizeof reginfo); 14869 14870 /* We have found the .reginfo section in the output file. 14871 Look through all the link_orders comprising it and merge 14872 the information together. */ 14873 for (p = o->map_head.link_order; p != NULL; p = p->next) 14874 { 14875 asection *input_section; 14876 bfd *input_bfd; 14877 Elf32_External_RegInfo ext; 14878 Elf32_RegInfo sub; 14879 bfd_size_type sz; 14880 14881 if (p->type != bfd_indirect_link_order) 14882 { 14883 if (p->type == bfd_data_link_order) 14884 continue; 14885 abort (); 14886 } 14887 14888 input_section = p->u.indirect.section; 14889 input_bfd = input_section->owner; 14890 14891 sz = (input_section->size < sizeof (ext) 14892 ? input_section->size : sizeof (ext)); 14893 memset (&ext, 0, sizeof (ext)); 14894 if (! bfd_get_section_contents (input_bfd, input_section, 14895 &ext, 0, sz)) 14896 return false; 14897 14898 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub); 14899 14900 reginfo.ri_gprmask |= sub.ri_gprmask; 14901 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0]; 14902 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1]; 14903 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2]; 14904 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3]; 14905 14906 /* ri_gp_value is set by the function 14907 `_bfd_mips_elf_section_processing' when the section is 14908 finally written out. */ 14909 14910 /* Hack: reset the SEC_HAS_CONTENTS flag so that 14911 elf_link_input_bfd ignores this section. */ 14912 input_section->flags &= ~SEC_HAS_CONTENTS; 14913 } 14914 14915 /* Size has been set in _bfd_mips_elf_always_size_sections. */ 14916 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo)); 14917 14918 /* Skip this section later on (I don't think this currently 14919 matters, but someday it might). */ 14920 o->map_head.link_order = NULL; 14921 14922 reginfo_sec = o; 14923 } 14924 14925 if (strcmp (o->name, ".mdebug") == 0) 14926 { 14927 struct extsym_info einfo; 14928 bfd_vma last; 14929 14930 /* We have found the .mdebug section in the output file. 14931 Look through all the link_orders comprising it and merge 14932 the information together. */ 14933 symhdr->magic = swap->sym_magic; 14934 /* FIXME: What should the version stamp be? */ 14935 symhdr->vstamp = 0; 14936 symhdr->ilineMax = 0; 14937 symhdr->cbLine = 0; 14938 symhdr->idnMax = 0; 14939 symhdr->ipdMax = 0; 14940 symhdr->isymMax = 0; 14941 symhdr->ioptMax = 0; 14942 symhdr->iauxMax = 0; 14943 symhdr->issMax = 0; 14944 symhdr->issExtMax = 0; 14945 symhdr->ifdMax = 0; 14946 symhdr->crfd = 0; 14947 symhdr->iextMax = 0; 14948 14949 /* We accumulate the debugging information itself in the 14950 debug_info structure. */ 14951 debug.line = NULL; 14952 debug.external_dnr = NULL; 14953 debug.external_pdr = NULL; 14954 debug.external_sym = NULL; 14955 debug.external_opt = NULL; 14956 debug.external_aux = NULL; 14957 debug.ss = NULL; 14958 debug.ssext = debug.ssext_end = NULL; 14959 debug.external_fdr = NULL; 14960 debug.external_rfd = NULL; 14961 debug.external_ext = debug.external_ext_end = NULL; 14962 14963 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info); 14964 if (mdebug_handle == NULL) 14965 return false; 14966 14967 esym.jmptbl = 0; 14968 esym.cobol_main = 0; 14969 esym.weakext = 0; 14970 esym.reserved = 0; 14971 esym.ifd = ifdNil; 14972 esym.asym.iss = issNil; 14973 esym.asym.st = stLocal; 14974 esym.asym.reserved = 0; 14975 esym.asym.index = indexNil; 14976 last = 0; 14977 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++) 14978 { 14979 esym.asym.sc = sc[i]; 14980 s = bfd_get_section_by_name (abfd, secname[i]); 14981 if (s != NULL) 14982 { 14983 esym.asym.value = s->vma; 14984 last = s->vma + s->size; 14985 } 14986 else 14987 esym.asym.value = last; 14988 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap, 14989 secname[i], &esym)) 14990 return false; 14991 } 14992 14993 for (p = o->map_head.link_order; p != NULL; p = p->next) 14994 { 14995 asection *input_section; 14996 bfd *input_bfd; 14997 const struct ecoff_debug_swap *input_swap; 14998 struct ecoff_debug_info input_debug; 14999 char *eraw_src; 15000 char *eraw_end; 15001 15002 if (p->type != bfd_indirect_link_order) 15003 { 15004 if (p->type == bfd_data_link_order) 15005 continue; 15006 abort (); 15007 } 15008 15009 input_section = p->u.indirect.section; 15010 input_bfd = input_section->owner; 15011 15012 if (!is_mips_elf (input_bfd)) 15013 { 15014 /* I don't know what a non MIPS ELF bfd would be 15015 doing with a .mdebug section, but I don't really 15016 want to deal with it. */ 15017 continue; 15018 } 15019 15020 input_swap = (get_elf_backend_data (input_bfd) 15021 ->elf_backend_ecoff_debug_swap); 15022 15023 BFD_ASSERT (p->size == input_section->size); 15024 15025 /* The ECOFF linking code expects that we have already 15026 read in the debugging information and set up an 15027 ecoff_debug_info structure, so we do that now. */ 15028 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section, 15029 &input_debug)) 15030 return false; 15031 15032 if (! (bfd_ecoff_debug_accumulate 15033 (mdebug_handle, abfd, &debug, swap, input_bfd, 15034 &input_debug, input_swap, info))) 15035 return false; 15036 15037 /* Loop through the external symbols. For each one with 15038 interesting information, try to find the symbol in 15039 the linker global hash table and save the information 15040 for the output external symbols. */ 15041 eraw_src = input_debug.external_ext; 15042 eraw_end = (eraw_src 15043 + (input_debug.symbolic_header.iextMax 15044 * input_swap->external_ext_size)); 15045 for (; 15046 eraw_src < eraw_end; 15047 eraw_src += input_swap->external_ext_size) 15048 { 15049 EXTR ext; 15050 const char *name; 15051 struct mips_elf_link_hash_entry *h; 15052 15053 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext); 15054 if (ext.asym.sc == scNil 15055 || ext.asym.sc == scUndefined 15056 || ext.asym.sc == scSUndefined) 15057 continue; 15058 15059 name = input_debug.ssext + ext.asym.iss; 15060 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info), 15061 name, false, false, true); 15062 if (h == NULL || h->esym.ifd != -2) 15063 continue; 15064 15065 if (ext.ifd != -1) 15066 { 15067 BFD_ASSERT (ext.ifd 15068 < input_debug.symbolic_header.ifdMax); 15069 ext.ifd = input_debug.ifdmap[ext.ifd]; 15070 } 15071 15072 h->esym = ext; 15073 } 15074 15075 /* Free up the information we just read. */ 15076 free (input_debug.line); 15077 free (input_debug.external_dnr); 15078 free (input_debug.external_pdr); 15079 free (input_debug.external_sym); 15080 free (input_debug.external_opt); 15081 free (input_debug.external_aux); 15082 free (input_debug.ss); 15083 free (input_debug.ssext); 15084 free (input_debug.external_fdr); 15085 free (input_debug.external_rfd); 15086 free (input_debug.external_ext); 15087 15088 /* Hack: reset the SEC_HAS_CONTENTS flag so that 15089 elf_link_input_bfd ignores this section. */ 15090 input_section->flags &= ~SEC_HAS_CONTENTS; 15091 } 15092 15093 if (SGI_COMPAT (abfd) && bfd_link_pic (info)) 15094 { 15095 /* Create .rtproc section. */ 15096 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc"); 15097 if (rtproc_sec == NULL) 15098 { 15099 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY 15100 | SEC_LINKER_CREATED | SEC_READONLY); 15101 15102 rtproc_sec = bfd_make_section_anyway_with_flags (abfd, 15103 ".rtproc", 15104 flags); 15105 if (rtproc_sec == NULL 15106 || !bfd_set_section_alignment (rtproc_sec, 4)) 15107 return false; 15108 } 15109 15110 if (! mips_elf_create_procedure_table (mdebug_handle, abfd, 15111 info, rtproc_sec, 15112 &debug)) 15113 return false; 15114 } 15115 15116 /* Build the external symbol information. */ 15117 einfo.abfd = abfd; 15118 einfo.info = info; 15119 einfo.debug = &debug; 15120 einfo.swap = swap; 15121 einfo.failed = false; 15122 mips_elf_link_hash_traverse (mips_elf_hash_table (info), 15123 mips_elf_output_extsym, &einfo); 15124 if (einfo.failed) 15125 return false; 15126 15127 /* Set the size of the .mdebug section. */ 15128 o->size = bfd_ecoff_debug_size (abfd, &debug, swap); 15129 15130 /* Skip this section later on (I don't think this currently 15131 matters, but someday it might). */ 15132 o->map_head.link_order = NULL; 15133 15134 mdebug_sec = o; 15135 } 15136 15137 if (startswith (o->name, ".gptab.")) 15138 { 15139 const char *subname; 15140 unsigned int c; 15141 Elf32_gptab *tab; 15142 Elf32_External_gptab *ext_tab; 15143 unsigned int j; 15144 15145 /* The .gptab.sdata and .gptab.sbss sections hold 15146 information describing how the small data area would 15147 change depending upon the -G switch. These sections 15148 not used in executables files. */ 15149 if (! bfd_link_relocatable (info)) 15150 { 15151 for (p = o->map_head.link_order; p != NULL; p = p->next) 15152 { 15153 asection *input_section; 15154 15155 if (p->type != bfd_indirect_link_order) 15156 { 15157 if (p->type == bfd_data_link_order) 15158 continue; 15159 abort (); 15160 } 15161 15162 input_section = p->u.indirect.section; 15163 15164 /* Hack: reset the SEC_HAS_CONTENTS flag so that 15165 elf_link_input_bfd ignores this section. */ 15166 input_section->flags &= ~SEC_HAS_CONTENTS; 15167 } 15168 15169 /* Skip this section later on (I don't think this 15170 currently matters, but someday it might). */ 15171 o->map_head.link_order = NULL; 15172 15173 /* Really remove the section. */ 15174 bfd_section_list_remove (abfd, o); 15175 --abfd->section_count; 15176 15177 continue; 15178 } 15179 15180 /* There is one gptab for initialized data, and one for 15181 uninitialized data. */ 15182 if (strcmp (o->name, ".gptab.sdata") == 0) 15183 gptab_data_sec = o; 15184 else if (strcmp (o->name, ".gptab.sbss") == 0) 15185 gptab_bss_sec = o; 15186 else 15187 { 15188 _bfd_error_handler 15189 /* xgettext:c-format */ 15190 (_("%pB: illegal section name `%pA'"), abfd, o); 15191 bfd_set_error (bfd_error_nonrepresentable_section); 15192 return false; 15193 } 15194 15195 /* The linker script always combines .gptab.data and 15196 .gptab.sdata into .gptab.sdata, and likewise for 15197 .gptab.bss and .gptab.sbss. It is possible that there is 15198 no .sdata or .sbss section in the output file, in which 15199 case we must change the name of the output section. */ 15200 subname = o->name + sizeof ".gptab" - 1; 15201 if (bfd_get_section_by_name (abfd, subname) == NULL) 15202 { 15203 if (o == gptab_data_sec) 15204 o->name = ".gptab.data"; 15205 else 15206 o->name = ".gptab.bss"; 15207 subname = o->name + sizeof ".gptab" - 1; 15208 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL); 15209 } 15210 15211 /* Set up the first entry. */ 15212 c = 1; 15213 amt = c * sizeof (Elf32_gptab); 15214 tab = bfd_malloc (amt); 15215 if (tab == NULL) 15216 return false; 15217 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd); 15218 tab[0].gt_header.gt_unused = 0; 15219 15220 /* Combine the input sections. */ 15221 for (p = o->map_head.link_order; p != NULL; p = p->next) 15222 { 15223 asection *input_section; 15224 bfd *input_bfd; 15225 bfd_size_type size; 15226 unsigned long last; 15227 bfd_size_type gpentry; 15228 15229 if (p->type != bfd_indirect_link_order) 15230 { 15231 if (p->type == bfd_data_link_order) 15232 continue; 15233 abort (); 15234 } 15235 15236 input_section = p->u.indirect.section; 15237 input_bfd = input_section->owner; 15238 15239 /* Combine the gptab entries for this input section one 15240 by one. We know that the input gptab entries are 15241 sorted by ascending -G value. */ 15242 size = input_section->size; 15243 last = 0; 15244 for (gpentry = sizeof (Elf32_External_gptab); 15245 gpentry < size; 15246 gpentry += sizeof (Elf32_External_gptab)) 15247 { 15248 Elf32_External_gptab ext_gptab; 15249 Elf32_gptab int_gptab; 15250 unsigned long val; 15251 unsigned long add; 15252 bool exact; 15253 unsigned int look; 15254 15255 if (! (bfd_get_section_contents 15256 (input_bfd, input_section, &ext_gptab, gpentry, 15257 sizeof (Elf32_External_gptab)))) 15258 { 15259 free (tab); 15260 return false; 15261 } 15262 15263 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab, 15264 &int_gptab); 15265 val = int_gptab.gt_entry.gt_g_value; 15266 add = int_gptab.gt_entry.gt_bytes - last; 15267 15268 exact = false; 15269 for (look = 1; look < c; look++) 15270 { 15271 if (tab[look].gt_entry.gt_g_value >= val) 15272 tab[look].gt_entry.gt_bytes += add; 15273 15274 if (tab[look].gt_entry.gt_g_value == val) 15275 exact = true; 15276 } 15277 15278 if (! exact) 15279 { 15280 Elf32_gptab *new_tab; 15281 unsigned int max; 15282 15283 /* We need a new table entry. */ 15284 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab); 15285 new_tab = bfd_realloc (tab, amt); 15286 if (new_tab == NULL) 15287 { 15288 free (tab); 15289 return false; 15290 } 15291 tab = new_tab; 15292 tab[c].gt_entry.gt_g_value = val; 15293 tab[c].gt_entry.gt_bytes = add; 15294 15295 /* Merge in the size for the next smallest -G 15296 value, since that will be implied by this new 15297 value. */ 15298 max = 0; 15299 for (look = 1; look < c; look++) 15300 { 15301 if (tab[look].gt_entry.gt_g_value < val 15302 && (max == 0 15303 || (tab[look].gt_entry.gt_g_value 15304 > tab[max].gt_entry.gt_g_value))) 15305 max = look; 15306 } 15307 if (max != 0) 15308 tab[c].gt_entry.gt_bytes += 15309 tab[max].gt_entry.gt_bytes; 15310 15311 ++c; 15312 } 15313 15314 last = int_gptab.gt_entry.gt_bytes; 15315 } 15316 15317 /* Hack: reset the SEC_HAS_CONTENTS flag so that 15318 elf_link_input_bfd ignores this section. */ 15319 input_section->flags &= ~SEC_HAS_CONTENTS; 15320 } 15321 15322 /* The table must be sorted by -G value. */ 15323 if (c > 2) 15324 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare); 15325 15326 /* Swap out the table. */ 15327 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab); 15328 ext_tab = bfd_alloc (abfd, amt); 15329 if (ext_tab == NULL) 15330 { 15331 free (tab); 15332 return false; 15333 } 15334 15335 for (j = 0; j < c; j++) 15336 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j); 15337 free (tab); 15338 15339 o->size = c * sizeof (Elf32_External_gptab); 15340 o->contents = (bfd_byte *) ext_tab; 15341 15342 /* Skip this section later on (I don't think this currently 15343 matters, but someday it might). */ 15344 o->map_head.link_order = NULL; 15345 } 15346 } 15347 15348 /* Invoke the regular ELF backend linker to do all the work. */ 15349 if (!bfd_elf_final_link (abfd, info)) 15350 return false; 15351 15352 /* Now write out the computed sections. */ 15353 15354 if (abiflags_sec != NULL) 15355 { 15356 Elf_External_ABIFlags_v0 ext; 15357 Elf_Internal_ABIFlags_v0 *abiflags; 15358 15359 abiflags = &mips_elf_tdata (abfd)->abiflags; 15360 15361 /* Set up the abiflags if no valid input sections were found. */ 15362 if (!mips_elf_tdata (abfd)->abiflags_valid) 15363 { 15364 infer_mips_abiflags (abfd, abiflags); 15365 mips_elf_tdata (abfd)->abiflags_valid = true; 15366 } 15367 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext); 15368 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext)) 15369 return false; 15370 } 15371 15372 if (reginfo_sec != NULL) 15373 { 15374 Elf32_External_RegInfo ext; 15375 15376 bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext); 15377 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext)) 15378 return false; 15379 } 15380 15381 if (mdebug_sec != NULL) 15382 { 15383 BFD_ASSERT (abfd->output_has_begun); 15384 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug, 15385 swap, info, 15386 mdebug_sec->filepos)) 15387 return false; 15388 15389 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info); 15390 } 15391 15392 if (gptab_data_sec != NULL) 15393 { 15394 if (! bfd_set_section_contents (abfd, gptab_data_sec, 15395 gptab_data_sec->contents, 15396 0, gptab_data_sec->size)) 15397 return false; 15398 } 15399 15400 if (gptab_bss_sec != NULL) 15401 { 15402 if (! bfd_set_section_contents (abfd, gptab_bss_sec, 15403 gptab_bss_sec->contents, 15404 0, gptab_bss_sec->size)) 15405 return false; 15406 } 15407 15408 if (SGI_COMPAT (abfd)) 15409 { 15410 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); 15411 if (rtproc_sec != NULL) 15412 { 15413 if (! bfd_set_section_contents (abfd, rtproc_sec, 15414 rtproc_sec->contents, 15415 0, rtproc_sec->size)) 15416 return false; 15417 } 15418 } 15419 15420 return true; 15421 } 15422 15423 /* Merge object file header flags from IBFD into OBFD. Raise an error 15424 if there are conflicting settings. */ 15425 15426 static bool 15427 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info) 15428 { 15429 bfd *obfd = info->output_bfd; 15430 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd); 15431 flagword old_flags; 15432 flagword new_flags; 15433 bool ok; 15434 15435 new_flags = elf_elfheader (ibfd)->e_flags; 15436 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER; 15437 old_flags = elf_elfheader (obfd)->e_flags; 15438 15439 /* Check flag compatibility. */ 15440 15441 new_flags &= ~EF_MIPS_NOREORDER; 15442 old_flags &= ~EF_MIPS_NOREORDER; 15443 15444 /* Some IRIX 6 BSD-compatibility objects have this bit set. It 15445 doesn't seem to matter. */ 15446 new_flags &= ~EF_MIPS_XGOT; 15447 old_flags &= ~EF_MIPS_XGOT; 15448 15449 /* MIPSpro generates ucode info in n64 objects. Again, we should 15450 just be able to ignore this. */ 15451 new_flags &= ~EF_MIPS_UCODE; 15452 old_flags &= ~EF_MIPS_UCODE; 15453 15454 /* DSOs should only be linked with CPIC code. */ 15455 if ((ibfd->flags & DYNAMIC) != 0) 15456 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC; 15457 15458 if (new_flags == old_flags) 15459 return true; 15460 15461 ok = true; 15462 15463 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0) 15464 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)) 15465 { 15466 _bfd_error_handler 15467 (_("%pB: warning: linking abicalls files with non-abicalls files"), 15468 ibfd); 15469 ok = true; 15470 } 15471 15472 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) 15473 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC; 15474 if (! (new_flags & EF_MIPS_PIC)) 15475 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC; 15476 15477 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); 15478 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); 15479 15480 /* Compare the ISAs. */ 15481 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags)) 15482 { 15483 _bfd_error_handler 15484 (_("%pB: linking 32-bit code with 64-bit code"), 15485 ibfd); 15486 ok = false; 15487 } 15488 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd))) 15489 { 15490 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */ 15491 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd))) 15492 { 15493 /* Copy the architecture info from IBFD to OBFD. Also copy 15494 the 32-bit flag (if set) so that we continue to recognise 15495 OBFD as a 32-bit binary. */ 15496 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd)); 15497 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); 15498 elf_elfheader (obfd)->e_flags 15499 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); 15500 15501 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */ 15502 update_mips_abiflags_isa (obfd, &out_tdata->abiflags); 15503 15504 /* Copy across the ABI flags if OBFD doesn't use them 15505 and if that was what caused us to treat IBFD as 32-bit. */ 15506 if ((old_flags & EF_MIPS_ABI) == 0 15507 && mips_32bit_flags_p (new_flags) 15508 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI)) 15509 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI; 15510 } 15511 else 15512 { 15513 /* The ISAs aren't compatible. */ 15514 _bfd_error_handler 15515 /* xgettext:c-format */ 15516 (_("%pB: linking %s module with previous %s modules"), 15517 ibfd, 15518 bfd_printable_name (ibfd), 15519 bfd_printable_name (obfd)); 15520 ok = false; 15521 } 15522 } 15523 15524 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); 15525 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); 15526 15527 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it 15528 does set EI_CLASS differently from any 32-bit ABI. */ 15529 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI) 15530 || (elf_elfheader (ibfd)->e_ident[EI_CLASS] 15531 != elf_elfheader (obfd)->e_ident[EI_CLASS])) 15532 { 15533 /* Only error if both are set (to different values). */ 15534 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI)) 15535 || (elf_elfheader (ibfd)->e_ident[EI_CLASS] 15536 != elf_elfheader (obfd)->e_ident[EI_CLASS])) 15537 { 15538 _bfd_error_handler 15539 /* xgettext:c-format */ 15540 (_("%pB: ABI mismatch: linking %s module with previous %s modules"), 15541 ibfd, 15542 elf_mips_abi_name (ibfd), 15543 elf_mips_abi_name (obfd)); 15544 ok = false; 15545 } 15546 new_flags &= ~EF_MIPS_ABI; 15547 old_flags &= ~EF_MIPS_ABI; 15548 } 15549 15550 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together 15551 and allow arbitrary mixing of the remaining ASEs (retain the union). */ 15552 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE)) 15553 { 15554 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS; 15555 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS; 15556 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16; 15557 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16; 15558 int micro_mis = old_m16 && new_micro; 15559 int m16_mis = old_micro && new_m16; 15560 15561 if (m16_mis || micro_mis) 15562 { 15563 _bfd_error_handler 15564 /* xgettext:c-format */ 15565 (_("%pB: ASE mismatch: linking %s module with previous %s modules"), 15566 ibfd, 15567 m16_mis ? "MIPS16" : "microMIPS", 15568 m16_mis ? "microMIPS" : "MIPS16"); 15569 ok = false; 15570 } 15571 15572 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE; 15573 15574 new_flags &= ~ EF_MIPS_ARCH_ASE; 15575 old_flags &= ~ EF_MIPS_ARCH_ASE; 15576 } 15577 15578 /* Compare NaN encodings. */ 15579 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008)) 15580 { 15581 /* xgettext:c-format */ 15582 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"), 15583 ibfd, 15584 (new_flags & EF_MIPS_NAN2008 15585 ? "-mnan=2008" : "-mnan=legacy"), 15586 (old_flags & EF_MIPS_NAN2008 15587 ? "-mnan=2008" : "-mnan=legacy")); 15588 ok = false; 15589 new_flags &= ~EF_MIPS_NAN2008; 15590 old_flags &= ~EF_MIPS_NAN2008; 15591 } 15592 15593 /* Compare FP64 state. */ 15594 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64)) 15595 { 15596 /* xgettext:c-format */ 15597 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"), 15598 ibfd, 15599 (new_flags & EF_MIPS_FP64 15600 ? "-mfp64" : "-mfp32"), 15601 (old_flags & EF_MIPS_FP64 15602 ? "-mfp64" : "-mfp32")); 15603 ok = false; 15604 new_flags &= ~EF_MIPS_FP64; 15605 old_flags &= ~EF_MIPS_FP64; 15606 } 15607 15608 /* Warn about any other mismatches */ 15609 if (new_flags != old_flags) 15610 { 15611 /* xgettext:c-format */ 15612 _bfd_error_handler 15613 (_("%pB: uses different e_flags (%#x) fields than previous modules " 15614 "(%#x)"), 15615 ibfd, new_flags, old_flags); 15616 ok = false; 15617 } 15618 15619 return ok; 15620 } 15621 15622 /* Merge object attributes from IBFD into OBFD. Raise an error if 15623 there are conflicting attributes. */ 15624 static bool 15625 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info) 15626 { 15627 bfd *obfd = info->output_bfd; 15628 obj_attribute *in_attr; 15629 obj_attribute *out_attr; 15630 bfd *abi_fp_bfd; 15631 bfd *abi_msa_bfd; 15632 15633 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd; 15634 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU]; 15635 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY) 15636 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd; 15637 15638 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd; 15639 if (!abi_msa_bfd 15640 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY) 15641 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd; 15642 15643 if (!elf_known_obj_attributes_proc (obfd)[0].i) 15644 { 15645 /* This is the first object. Copy the attributes. */ 15646 _bfd_elf_copy_obj_attributes (ibfd, obfd); 15647 15648 /* Use the Tag_null value to indicate the attributes have been 15649 initialized. */ 15650 elf_known_obj_attributes_proc (obfd)[0].i = 1; 15651 15652 return true; 15653 } 15654 15655 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge 15656 non-conflicting ones. */ 15657 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU]; 15658 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i) 15659 { 15660 int out_fp, in_fp; 15661 15662 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i; 15663 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i; 15664 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1; 15665 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY) 15666 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp; 15667 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX 15668 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE 15669 || in_fp == Val_GNU_MIPS_ABI_FP_64 15670 || in_fp == Val_GNU_MIPS_ABI_FP_64A)) 15671 { 15672 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd; 15673 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i; 15674 } 15675 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX 15676 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE 15677 || out_fp == Val_GNU_MIPS_ABI_FP_64 15678 || out_fp == Val_GNU_MIPS_ABI_FP_64A)) 15679 /* Keep the current setting. */; 15680 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A 15681 && in_fp == Val_GNU_MIPS_ABI_FP_64) 15682 { 15683 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd; 15684 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i; 15685 } 15686 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A 15687 && out_fp == Val_GNU_MIPS_ABI_FP_64) 15688 /* Keep the current setting. */; 15689 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY) 15690 { 15691 const char *out_string, *in_string; 15692 15693 out_string = _bfd_mips_fp_abi_string (out_fp); 15694 in_string = _bfd_mips_fp_abi_string (in_fp); 15695 /* First warn about cases involving unrecognised ABIs. */ 15696 if (!out_string && !in_string) 15697 /* xgettext:c-format */ 15698 _bfd_error_handler 15699 (_("warning: %pB uses unknown floating point ABI %d " 15700 "(set by %pB), %pB uses unknown floating point ABI %d"), 15701 obfd, out_fp, abi_fp_bfd, ibfd, in_fp); 15702 else if (!out_string) 15703 _bfd_error_handler 15704 /* xgettext:c-format */ 15705 (_("warning: %pB uses unknown floating point ABI %d " 15706 "(set by %pB), %pB uses %s"), 15707 obfd, out_fp, abi_fp_bfd, ibfd, in_string); 15708 else if (!in_string) 15709 _bfd_error_handler 15710 /* xgettext:c-format */ 15711 (_("warning: %pB uses %s (set by %pB), " 15712 "%pB uses unknown floating point ABI %d"), 15713 obfd, out_string, abi_fp_bfd, ibfd, in_fp); 15714 else 15715 { 15716 /* If one of the bfds is soft-float, the other must be 15717 hard-float. The exact choice of hard-float ABI isn't 15718 really relevant to the error message. */ 15719 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT) 15720 out_string = "-mhard-float"; 15721 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT) 15722 in_string = "-mhard-float"; 15723 _bfd_error_handler 15724 /* xgettext:c-format */ 15725 (_("warning: %pB uses %s (set by %pB), %pB uses %s"), 15726 obfd, out_string, abi_fp_bfd, ibfd, in_string); 15727 } 15728 } 15729 } 15730 15731 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge 15732 non-conflicting ones. */ 15733 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i) 15734 { 15735 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1; 15736 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY) 15737 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i; 15738 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY) 15739 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i) 15740 { 15741 case Val_GNU_MIPS_ABI_MSA_128: 15742 _bfd_error_handler 15743 /* xgettext:c-format */ 15744 (_("warning: %pB uses %s (set by %pB), " 15745 "%pB uses unknown MSA ABI %d"), 15746 obfd, "-mmsa", abi_msa_bfd, 15747 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i); 15748 break; 15749 15750 default: 15751 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i) 15752 { 15753 case Val_GNU_MIPS_ABI_MSA_128: 15754 _bfd_error_handler 15755 /* xgettext:c-format */ 15756 (_("warning: %pB uses unknown MSA ABI %d " 15757 "(set by %pB), %pB uses %s"), 15758 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i, 15759 abi_msa_bfd, ibfd, "-mmsa"); 15760 break; 15761 15762 default: 15763 _bfd_error_handler 15764 /* xgettext:c-format */ 15765 (_("warning: %pB uses unknown MSA ABI %d " 15766 "(set by %pB), %pB uses unknown MSA ABI %d"), 15767 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i, 15768 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i); 15769 break; 15770 } 15771 } 15772 } 15773 15774 /* Merge Tag_compatibility attributes and any common GNU ones. */ 15775 return _bfd_elf_merge_object_attributes (ibfd, info); 15776 } 15777 15778 /* Merge object ABI flags from IBFD into OBFD. Raise an error if 15779 there are conflicting settings. */ 15780 15781 static bool 15782 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd) 15783 { 15784 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU]; 15785 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd); 15786 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd); 15787 15788 /* Update the output abiflags fp_abi using the computed fp_abi. */ 15789 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i; 15790 15791 #define max(a, b) ((a) > (b) ? (a) : (b)) 15792 /* Merge abiflags. */ 15793 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level, 15794 in_tdata->abiflags.isa_level); 15795 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev, 15796 in_tdata->abiflags.isa_rev); 15797 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size, 15798 in_tdata->abiflags.gpr_size); 15799 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size, 15800 in_tdata->abiflags.cpr1_size); 15801 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size, 15802 in_tdata->abiflags.cpr2_size); 15803 #undef max 15804 out_tdata->abiflags.ases |= in_tdata->abiflags.ases; 15805 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1; 15806 15807 return true; 15808 } 15809 15810 /* Merge backend specific data from an object file to the output 15811 object file when linking. */ 15812 15813 bool 15814 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info) 15815 { 15816 bfd *obfd = info->output_bfd; 15817 struct mips_elf_obj_tdata *out_tdata; 15818 struct mips_elf_obj_tdata *in_tdata; 15819 bool null_input_bfd = true; 15820 asection *sec; 15821 bool ok; 15822 15823 /* Check if we have the same endianness. */ 15824 if (! _bfd_generic_verify_endian_match (ibfd, info)) 15825 { 15826 _bfd_error_handler 15827 (_("%pB: endianness incompatible with that of the selected emulation"), 15828 ibfd); 15829 return false; 15830 } 15831 15832 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd)) 15833 return true; 15834 15835 in_tdata = mips_elf_tdata (ibfd); 15836 out_tdata = mips_elf_tdata (obfd); 15837 15838 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0) 15839 { 15840 _bfd_error_handler 15841 (_("%pB: ABI is incompatible with that of the selected emulation"), 15842 ibfd); 15843 return false; 15844 } 15845 15846 /* Check to see if the input BFD actually contains any sections. If not, 15847 then it has no attributes, and its flags may not have been initialized 15848 either, but it cannot actually cause any incompatibility. */ 15849 /* FIXME: This excludes any input shared library from consideration. */ 15850 for (sec = ibfd->sections; sec != NULL; sec = sec->next) 15851 { 15852 /* Ignore synthetic sections and empty .text, .data and .bss sections 15853 which are automatically generated by gas. Also ignore fake 15854 (s)common sections, since merely defining a common symbol does 15855 not affect compatibility. */ 15856 if ((sec->flags & SEC_IS_COMMON) == 0 15857 && strcmp (sec->name, ".reginfo") 15858 && strcmp (sec->name, ".mdebug") 15859 && (sec->size != 0 15860 || (strcmp (sec->name, ".text") 15861 && strcmp (sec->name, ".data") 15862 && strcmp (sec->name, ".bss")))) 15863 { 15864 null_input_bfd = false; 15865 break; 15866 } 15867 } 15868 if (null_input_bfd) 15869 return true; 15870 15871 /* Populate abiflags using existing information. */ 15872 if (in_tdata->abiflags_valid) 15873 { 15874 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU]; 15875 Elf_Internal_ABIFlags_v0 in_abiflags; 15876 Elf_Internal_ABIFlags_v0 abiflags; 15877 15878 /* Set up the FP ABI attribute from the abiflags if it is not already 15879 set. */ 15880 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY) 15881 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi; 15882 15883 infer_mips_abiflags (ibfd, &abiflags); 15884 in_abiflags = in_tdata->abiflags; 15885 15886 /* It is not possible to infer the correct ISA revision 15887 for R3 or R5 so drop down to R2 for the checks. */ 15888 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5) 15889 in_abiflags.isa_rev = 2; 15890 15891 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev) 15892 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev)) 15893 _bfd_error_handler 15894 (_("%pB: warning: inconsistent ISA between e_flags and " 15895 ".MIPS.abiflags"), ibfd); 15896 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY 15897 && in_abiflags.fp_abi != abiflags.fp_abi) 15898 _bfd_error_handler 15899 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and " 15900 ".MIPS.abiflags"), ibfd); 15901 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases) 15902 _bfd_error_handler 15903 (_("%pB: warning: inconsistent ASEs between e_flags and " 15904 ".MIPS.abiflags"), ibfd); 15905 /* The isa_ext is allowed to be an extension of what can be inferred 15906 from e_flags. */ 15907 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext), 15908 bfd_mips_isa_ext_mach (in_abiflags.isa_ext))) 15909 _bfd_error_handler 15910 (_("%pB: warning: inconsistent ISA extensions between e_flags and " 15911 ".MIPS.abiflags"), ibfd); 15912 if (in_abiflags.flags2 != 0) 15913 _bfd_error_handler 15914 (_("%pB: warning: unexpected flag in the flags2 field of " 15915 ".MIPS.abiflags (0x%lx)"), ibfd, 15916 in_abiflags.flags2); 15917 } 15918 else 15919 { 15920 infer_mips_abiflags (ibfd, &in_tdata->abiflags); 15921 in_tdata->abiflags_valid = true; 15922 } 15923 15924 if (!out_tdata->abiflags_valid) 15925 { 15926 /* Copy input abiflags if output abiflags are not already valid. */ 15927 out_tdata->abiflags = in_tdata->abiflags; 15928 out_tdata->abiflags_valid = true; 15929 } 15930 15931 if (! elf_flags_init (obfd)) 15932 { 15933 elf_flags_init (obfd) = true; 15934 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags; 15935 elf_elfheader (obfd)->e_ident[EI_CLASS] 15936 = elf_elfheader (ibfd)->e_ident[EI_CLASS]; 15937 15938 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) 15939 && (bfd_get_arch_info (obfd)->the_default 15940 || mips_mach_extends_p (bfd_get_mach (obfd), 15941 bfd_get_mach (ibfd)))) 15942 { 15943 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), 15944 bfd_get_mach (ibfd))) 15945 return false; 15946 15947 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */ 15948 update_mips_abiflags_isa (obfd, &out_tdata->abiflags); 15949 } 15950 15951 ok = true; 15952 } 15953 else 15954 ok = mips_elf_merge_obj_e_flags (ibfd, info); 15955 15956 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok; 15957 15958 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok; 15959 15960 if (!ok) 15961 { 15962 bfd_set_error (bfd_error_bad_value); 15963 return false; 15964 } 15965 15966 return true; 15967 } 15968 15969 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */ 15970 15971 bool 15972 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags) 15973 { 15974 BFD_ASSERT (!elf_flags_init (abfd) 15975 || elf_elfheader (abfd)->e_flags == flags); 15976 15977 elf_elfheader (abfd)->e_flags = flags; 15978 elf_flags_init (abfd) = true; 15979 return true; 15980 } 15981 15982 char * 15983 _bfd_mips_elf_get_target_dtag (bfd_vma dtag) 15984 { 15985 switch (dtag) 15986 { 15987 default: return ""; 15988 case DT_MIPS_RLD_VERSION: 15989 return "MIPS_RLD_VERSION"; 15990 case DT_MIPS_TIME_STAMP: 15991 return "MIPS_TIME_STAMP"; 15992 case DT_MIPS_ICHECKSUM: 15993 return "MIPS_ICHECKSUM"; 15994 case DT_MIPS_IVERSION: 15995 return "MIPS_IVERSION"; 15996 case DT_MIPS_FLAGS: 15997 return "MIPS_FLAGS"; 15998 case DT_MIPS_BASE_ADDRESS: 15999 return "MIPS_BASE_ADDRESS"; 16000 case DT_MIPS_MSYM: 16001 return "MIPS_MSYM"; 16002 case DT_MIPS_CONFLICT: 16003 return "MIPS_CONFLICT"; 16004 case DT_MIPS_LIBLIST: 16005 return "MIPS_LIBLIST"; 16006 case DT_MIPS_LOCAL_GOTNO: 16007 return "MIPS_LOCAL_GOTNO"; 16008 case DT_MIPS_CONFLICTNO: 16009 return "MIPS_CONFLICTNO"; 16010 case DT_MIPS_LIBLISTNO: 16011 return "MIPS_LIBLISTNO"; 16012 case DT_MIPS_SYMTABNO: 16013 return "MIPS_SYMTABNO"; 16014 case DT_MIPS_UNREFEXTNO: 16015 return "MIPS_UNREFEXTNO"; 16016 case DT_MIPS_GOTSYM: 16017 return "MIPS_GOTSYM"; 16018 case DT_MIPS_HIPAGENO: 16019 return "MIPS_HIPAGENO"; 16020 case DT_MIPS_RLD_MAP: 16021 return "MIPS_RLD_MAP"; 16022 case DT_MIPS_RLD_MAP_REL: 16023 return "MIPS_RLD_MAP_REL"; 16024 case DT_MIPS_DELTA_CLASS: 16025 return "MIPS_DELTA_CLASS"; 16026 case DT_MIPS_DELTA_CLASS_NO: 16027 return "MIPS_DELTA_CLASS_NO"; 16028 case DT_MIPS_DELTA_INSTANCE: 16029 return "MIPS_DELTA_INSTANCE"; 16030 case DT_MIPS_DELTA_INSTANCE_NO: 16031 return "MIPS_DELTA_INSTANCE_NO"; 16032 case DT_MIPS_DELTA_RELOC: 16033 return "MIPS_DELTA_RELOC"; 16034 case DT_MIPS_DELTA_RELOC_NO: 16035 return "MIPS_DELTA_RELOC_NO"; 16036 case DT_MIPS_DELTA_SYM: 16037 return "MIPS_DELTA_SYM"; 16038 case DT_MIPS_DELTA_SYM_NO: 16039 return "MIPS_DELTA_SYM_NO"; 16040 case DT_MIPS_DELTA_CLASSSYM: 16041 return "MIPS_DELTA_CLASSSYM"; 16042 case DT_MIPS_DELTA_CLASSSYM_NO: 16043 return "MIPS_DELTA_CLASSSYM_NO"; 16044 case DT_MIPS_CXX_FLAGS: 16045 return "MIPS_CXX_FLAGS"; 16046 case DT_MIPS_PIXIE_INIT: 16047 return "MIPS_PIXIE_INIT"; 16048 case DT_MIPS_SYMBOL_LIB: 16049 return "MIPS_SYMBOL_LIB"; 16050 case DT_MIPS_LOCALPAGE_GOTIDX: 16051 return "MIPS_LOCALPAGE_GOTIDX"; 16052 case DT_MIPS_LOCAL_GOTIDX: 16053 return "MIPS_LOCAL_GOTIDX"; 16054 case DT_MIPS_HIDDEN_GOTIDX: 16055 return "MIPS_HIDDEN_GOTIDX"; 16056 case DT_MIPS_PROTECTED_GOTIDX: 16057 return "MIPS_PROTECTED_GOT_IDX"; 16058 case DT_MIPS_OPTIONS: 16059 return "MIPS_OPTIONS"; 16060 case DT_MIPS_INTERFACE: 16061 return "MIPS_INTERFACE"; 16062 case DT_MIPS_DYNSTR_ALIGN: 16063 return "DT_MIPS_DYNSTR_ALIGN"; 16064 case DT_MIPS_INTERFACE_SIZE: 16065 return "DT_MIPS_INTERFACE_SIZE"; 16066 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: 16067 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR"; 16068 case DT_MIPS_PERF_SUFFIX: 16069 return "DT_MIPS_PERF_SUFFIX"; 16070 case DT_MIPS_COMPACT_SIZE: 16071 return "DT_MIPS_COMPACT_SIZE"; 16072 case DT_MIPS_GP_VALUE: 16073 return "DT_MIPS_GP_VALUE"; 16074 case DT_MIPS_AUX_DYNAMIC: 16075 return "DT_MIPS_AUX_DYNAMIC"; 16076 case DT_MIPS_PLTGOT: 16077 return "DT_MIPS_PLTGOT"; 16078 case DT_MIPS_RWPLT: 16079 return "DT_MIPS_RWPLT"; 16080 case DT_MIPS_XHASH: 16081 return "DT_MIPS_XHASH"; 16082 } 16083 } 16084 16085 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if 16086 not known. */ 16087 16088 const char * 16089 _bfd_mips_fp_abi_string (int fp) 16090 { 16091 switch (fp) 16092 { 16093 /* These strings aren't translated because they're simply 16094 option lists. */ 16095 case Val_GNU_MIPS_ABI_FP_DOUBLE: 16096 return "-mdouble-float"; 16097 16098 case Val_GNU_MIPS_ABI_FP_SINGLE: 16099 return "-msingle-float"; 16100 16101 case Val_GNU_MIPS_ABI_FP_SOFT: 16102 return "-msoft-float"; 16103 16104 case Val_GNU_MIPS_ABI_FP_OLD_64: 16105 return _("-mips32r2 -mfp64 (12 callee-saved)"); 16106 16107 case Val_GNU_MIPS_ABI_FP_XX: 16108 return "-mfpxx"; 16109 16110 case Val_GNU_MIPS_ABI_FP_64: 16111 return "-mgp32 -mfp64"; 16112 16113 case Val_GNU_MIPS_ABI_FP_64A: 16114 return "-mgp32 -mfp64 -mno-odd-spreg"; 16115 16116 default: 16117 return 0; 16118 } 16119 } 16120 16121 static void 16122 print_mips_ases (FILE *file, unsigned int mask) 16123 { 16124 if (mask & AFL_ASE_DSP) 16125 fputs ("\n\tDSP ASE", file); 16126 if (mask & AFL_ASE_DSPR2) 16127 fputs ("\n\tDSP R2 ASE", file); 16128 if (mask & AFL_ASE_DSPR3) 16129 fputs ("\n\tDSP R3 ASE", file); 16130 if (mask & AFL_ASE_EVA) 16131 fputs ("\n\tEnhanced VA Scheme", file); 16132 if (mask & AFL_ASE_MCU) 16133 fputs ("\n\tMCU (MicroController) ASE", file); 16134 if (mask & AFL_ASE_MDMX) 16135 fputs ("\n\tMDMX ASE", file); 16136 if (mask & AFL_ASE_MIPS3D) 16137 fputs ("\n\tMIPS-3D ASE", file); 16138 if (mask & AFL_ASE_MT) 16139 fputs ("\n\tMT ASE", file); 16140 if (mask & AFL_ASE_SMARTMIPS) 16141 fputs ("\n\tSmartMIPS ASE", file); 16142 if (mask & AFL_ASE_VIRT) 16143 fputs ("\n\tVZ ASE", file); 16144 if (mask & AFL_ASE_MSA) 16145 fputs ("\n\tMSA ASE", file); 16146 if (mask & AFL_ASE_MIPS16) 16147 fputs ("\n\tMIPS16 ASE", file); 16148 if (mask & AFL_ASE_MICROMIPS) 16149 fputs ("\n\tMICROMIPS ASE", file); 16150 if (mask & AFL_ASE_XPA) 16151 fputs ("\n\tXPA ASE", file); 16152 if (mask & AFL_ASE_MIPS16E2) 16153 fputs ("\n\tMIPS16e2 ASE", file); 16154 if (mask & AFL_ASE_CRC) 16155 fputs ("\n\tCRC ASE", file); 16156 if (mask & AFL_ASE_GINV) 16157 fputs ("\n\tGINV ASE", file); 16158 if (mask & AFL_ASE_LOONGSON_MMI) 16159 fputs ("\n\tLoongson MMI ASE", file); 16160 if (mask & AFL_ASE_LOONGSON_CAM) 16161 fputs ("\n\tLoongson CAM ASE", file); 16162 if (mask & AFL_ASE_LOONGSON_EXT) 16163 fputs ("\n\tLoongson EXT ASE", file); 16164 if (mask & AFL_ASE_LOONGSON_EXT2) 16165 fputs ("\n\tLoongson EXT2 ASE", file); 16166 if (mask == 0) 16167 fprintf (file, "\n\t%s", _("None")); 16168 else if ((mask & ~AFL_ASE_MASK) != 0) 16169 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK); 16170 } 16171 16172 static void 16173 print_mips_isa_ext (FILE *file, unsigned int isa_ext) 16174 { 16175 switch (isa_ext) 16176 { 16177 case 0: 16178 fputs (_("None"), file); 16179 break; 16180 case AFL_EXT_XLR: 16181 fputs ("RMI XLR", file); 16182 break; 16183 case AFL_EXT_OCTEON3: 16184 fputs ("Cavium Networks Octeon3", file); 16185 break; 16186 case AFL_EXT_OCTEON2: 16187 fputs ("Cavium Networks Octeon2", file); 16188 break; 16189 case AFL_EXT_OCTEONP: 16190 fputs ("Cavium Networks OcteonP", file); 16191 break; 16192 case AFL_EXT_OCTEON: 16193 fputs ("Cavium Networks Octeon", file); 16194 break; 16195 case AFL_EXT_5900: 16196 fputs ("Toshiba R5900", file); 16197 break; 16198 case AFL_EXT_4650: 16199 fputs ("MIPS R4650", file); 16200 break; 16201 case AFL_EXT_4010: 16202 fputs ("LSI R4010", file); 16203 break; 16204 case AFL_EXT_4100: 16205 fputs ("NEC VR4100", file); 16206 break; 16207 case AFL_EXT_3900: 16208 fputs ("Toshiba R3900", file); 16209 break; 16210 case AFL_EXT_10000: 16211 fputs ("MIPS R10000", file); 16212 break; 16213 case AFL_EXT_SB1: 16214 fputs ("Broadcom SB-1", file); 16215 break; 16216 case AFL_EXT_4111: 16217 fputs ("NEC VR4111/VR4181", file); 16218 break; 16219 case AFL_EXT_4120: 16220 fputs ("NEC VR4120", file); 16221 break; 16222 case AFL_EXT_5400: 16223 fputs ("NEC VR5400", file); 16224 break; 16225 case AFL_EXT_5500: 16226 fputs ("NEC VR5500", file); 16227 break; 16228 case AFL_EXT_LOONGSON_2E: 16229 fputs ("ST Microelectronics Loongson 2E", file); 16230 break; 16231 case AFL_EXT_LOONGSON_2F: 16232 fputs ("ST Microelectronics Loongson 2F", file); 16233 break; 16234 case AFL_EXT_INTERAPTIV_MR2: 16235 fputs ("Imagination interAptiv MR2", file); 16236 break; 16237 default: 16238 fprintf (file, "%s (%d)", _("Unknown"), isa_ext); 16239 break; 16240 } 16241 } 16242 16243 static void 16244 print_mips_fp_abi_value (FILE *file, int val) 16245 { 16246 switch (val) 16247 { 16248 case Val_GNU_MIPS_ABI_FP_ANY: 16249 fprintf (file, _("Hard or soft float\n")); 16250 break; 16251 case Val_GNU_MIPS_ABI_FP_DOUBLE: 16252 fprintf (file, _("Hard float (double precision)\n")); 16253 break; 16254 case Val_GNU_MIPS_ABI_FP_SINGLE: 16255 fprintf (file, _("Hard float (single precision)\n")); 16256 break; 16257 case Val_GNU_MIPS_ABI_FP_SOFT: 16258 fprintf (file, _("Soft float\n")); 16259 break; 16260 case Val_GNU_MIPS_ABI_FP_OLD_64: 16261 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n")); 16262 break; 16263 case Val_GNU_MIPS_ABI_FP_XX: 16264 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n")); 16265 break; 16266 case Val_GNU_MIPS_ABI_FP_64: 16267 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n")); 16268 break; 16269 case Val_GNU_MIPS_ABI_FP_64A: 16270 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n")); 16271 break; 16272 default: 16273 fprintf (file, "??? (%d)\n", val); 16274 break; 16275 } 16276 } 16277 16278 static int 16279 get_mips_reg_size (int reg_size) 16280 { 16281 return (reg_size == AFL_REG_NONE) ? 0 16282 : (reg_size == AFL_REG_32) ? 32 16283 : (reg_size == AFL_REG_64) ? 64 16284 : (reg_size == AFL_REG_128) ? 128 16285 : -1; 16286 } 16287 16288 bool 16289 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr) 16290 { 16291 FILE *file = ptr; 16292 16293 BFD_ASSERT (abfd != NULL && ptr != NULL); 16294 16295 /* Print normal ELF private data. */ 16296 _bfd_elf_print_private_bfd_data (abfd, ptr); 16297 16298 /* xgettext:c-format */ 16299 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); 16300 16301 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32) 16302 fprintf (file, _(" [abi=O32]")); 16303 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64) 16304 fprintf (file, _(" [abi=O64]")); 16305 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32) 16306 fprintf (file, _(" [abi=EABI32]")); 16307 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) 16308 fprintf (file, _(" [abi=EABI64]")); 16309 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI)) 16310 fprintf (file, _(" [abi unknown]")); 16311 else if (ABI_N32_P (abfd)) 16312 fprintf (file, _(" [abi=N32]")); 16313 else if (ABI_64_P (abfd)) 16314 fprintf (file, _(" [abi=64]")); 16315 else 16316 fprintf (file, _(" [no abi set]")); 16317 16318 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1) 16319 fprintf (file, " [mips1]"); 16320 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2) 16321 fprintf (file, " [mips2]"); 16322 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3) 16323 fprintf (file, " [mips3]"); 16324 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4) 16325 fprintf (file, " [mips4]"); 16326 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5) 16327 fprintf (file, " [mips5]"); 16328 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32) 16329 fprintf (file, " [mips32]"); 16330 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64) 16331 fprintf (file, " [mips64]"); 16332 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2) 16333 fprintf (file, " [mips32r2]"); 16334 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2) 16335 fprintf (file, " [mips64r2]"); 16336 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6) 16337 fprintf (file, " [mips32r6]"); 16338 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6) 16339 fprintf (file, " [mips64r6]"); 16340 else 16341 fprintf (file, _(" [unknown ISA]")); 16342 16343 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX) 16344 fprintf (file, " [mdmx]"); 16345 16346 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16) 16347 fprintf (file, " [mips16]"); 16348 16349 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) 16350 fprintf (file, " [micromips]"); 16351 16352 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008) 16353 fprintf (file, " [nan2008]"); 16354 16355 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64) 16356 fprintf (file, " [old fp64]"); 16357 16358 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE) 16359 fprintf (file, " [32bitmode]"); 16360 else 16361 fprintf (file, _(" [not 32bitmode]")); 16362 16363 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER) 16364 fprintf (file, " [noreorder]"); 16365 16366 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) 16367 fprintf (file, " [PIC]"); 16368 16369 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC) 16370 fprintf (file, " [CPIC]"); 16371 16372 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT) 16373 fprintf (file, " [XGOT]"); 16374 16375 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE) 16376 fprintf (file, " [UCODE]"); 16377 16378 fputc ('\n', file); 16379 16380 if (mips_elf_tdata (abfd)->abiflags_valid) 16381 { 16382 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags; 16383 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version); 16384 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level); 16385 if (abiflags->isa_rev > 1) 16386 fprintf (file, "r%d", abiflags->isa_rev); 16387 fprintf (file, "\nGPR size: %d", 16388 get_mips_reg_size (abiflags->gpr_size)); 16389 fprintf (file, "\nCPR1 size: %d", 16390 get_mips_reg_size (abiflags->cpr1_size)); 16391 fprintf (file, "\nCPR2 size: %d", 16392 get_mips_reg_size (abiflags->cpr2_size)); 16393 fputs ("\nFP ABI: ", file); 16394 print_mips_fp_abi_value (file, abiflags->fp_abi); 16395 fputs ("ISA Extension: ", file); 16396 print_mips_isa_ext (file, abiflags->isa_ext); 16397 fputs ("\nASEs:", file); 16398 print_mips_ases (file, abiflags->ases); 16399 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1); 16400 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2); 16401 fputc ('\n', file); 16402 } 16403 16404 return true; 16405 } 16406 16407 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] = 16408 { 16409 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, 16410 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, 16411 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 }, 16412 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, 16413 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, 16414 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 }, 16415 { STRING_COMMA_LEN (".MIPS.xhash"), 0, SHT_MIPS_XHASH, SHF_ALLOC }, 16416 { NULL, 0, 0, 0, 0 } 16417 }; 16418 16419 /* Merge non visibility st_other attributes. Ensure that the 16420 STO_OPTIONAL flag is copied into h->other, even if this is not a 16421 definiton of the symbol. */ 16422 void 16423 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h, 16424 unsigned int st_other, 16425 bool definition, 16426 bool dynamic ATTRIBUTE_UNUSED) 16427 { 16428 if ((st_other & ~ELF_ST_VISIBILITY (-1)) != 0) 16429 { 16430 unsigned char other; 16431 16432 other = (definition ? st_other : h->other); 16433 other &= ~ELF_ST_VISIBILITY (-1); 16434 h->other = other | ELF_ST_VISIBILITY (h->other); 16435 } 16436 16437 if (!definition 16438 && ELF_MIPS_IS_OPTIONAL (st_other)) 16439 h->other |= STO_OPTIONAL; 16440 } 16441 16442 /* Decide whether an undefined symbol is special and can be ignored. 16443 This is the case for OPTIONAL symbols on IRIX. */ 16444 bool 16445 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h) 16446 { 16447 return ELF_MIPS_IS_OPTIONAL (h->other) != 0; 16448 } 16449 16450 bool 16451 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym) 16452 { 16453 return (sym->st_shndx == SHN_COMMON 16454 || sym->st_shndx == SHN_MIPS_ACOMMON 16455 || sym->st_shndx == SHN_MIPS_SCOMMON); 16456 } 16457 16458 /* Return address for Ith PLT stub in section PLT, for relocation REL 16459 or (bfd_vma) -1 if it should not be included. */ 16460 16461 bfd_vma 16462 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt, 16463 const arelent *rel ATTRIBUTE_UNUSED) 16464 { 16465 return (plt->vma 16466 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry) 16467 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry)); 16468 } 16469 16470 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16 16471 and microMIPS PLT slots we may have a many-to-one mapping between .plt 16472 and .got.plt and also the slots may be of a different size each we walk 16473 the PLT manually fetching instructions and matching them against known 16474 patterns. To make things easier standard MIPS slots, if any, always come 16475 first. As we don't create proper ELF symbols we use the UDATA.I member 16476 of ASYMBOL to carry ISA annotation. The encoding used is the same as 16477 with the ST_OTHER member of the ELF symbol. */ 16478 16479 long 16480 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd, 16481 long symcount ATTRIBUTE_UNUSED, 16482 asymbol **syms ATTRIBUTE_UNUSED, 16483 long dynsymcount, asymbol **dynsyms, 16484 asymbol **ret) 16485 { 16486 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_"; 16487 static const char microsuffix[] = "@micromipsplt"; 16488 static const char m16suffix[] = "@mips16plt"; 16489 static const char mipssuffix[] = "@plt"; 16490 16491 bool (*slurp_relocs) (bfd *, asection *, asymbol **, bool); 16492 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 16493 bool micromips_p = MICROMIPS_P (abfd); 16494 Elf_Internal_Shdr *hdr; 16495 bfd_byte *plt_data; 16496 bfd_vma plt_offset; 16497 unsigned int other; 16498 bfd_vma entry_size; 16499 bfd_vma plt0_size; 16500 asection *relplt; 16501 bfd_vma opcode; 16502 asection *plt; 16503 asymbol *send; 16504 size_t size; 16505 char *names; 16506 long counti; 16507 arelent *p; 16508 asymbol *s; 16509 char *nend; 16510 long count; 16511 long pi; 16512 long i; 16513 long n; 16514 16515 *ret = NULL; 16516 16517 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0) 16518 return 0; 16519 16520 relplt = bfd_get_section_by_name (abfd, ".rel.plt"); 16521 if (relplt == NULL) 16522 return 0; 16523 16524 hdr = &elf_section_data (relplt)->this_hdr; 16525 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL) 16526 return 0; 16527 16528 plt = bfd_get_section_by_name (abfd, ".plt"); 16529 if (plt == NULL) 16530 return 0; 16531 16532 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table; 16533 if (!(*slurp_relocs) (abfd, relplt, dynsyms, true)) 16534 return -1; 16535 p = relplt->relocation; 16536 16537 /* Calculating the exact amount of space required for symbols would 16538 require two passes over the PLT, so just pessimise assuming two 16539 PLT slots per relocation. */ 16540 count = relplt->size / hdr->sh_entsize; 16541 counti = count * bed->s->int_rels_per_ext_rel; 16542 size = 2 * count * sizeof (asymbol); 16543 size += count * (sizeof (mipssuffix) + 16544 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix))); 16545 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel) 16546 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name); 16547 16548 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */ 16549 size += sizeof (asymbol) + sizeof (pltname); 16550 16551 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data)) 16552 return -1; 16553 16554 if (plt->size < 16) 16555 return -1; 16556 16557 s = *ret = bfd_malloc (size); 16558 if (s == NULL) 16559 return -1; 16560 send = s + 2 * count + 1; 16561 16562 names = (char *) send; 16563 nend = (char *) s + size; 16564 n = 0; 16565 16566 opcode = bfd_get_micromips_32 (abfd, plt_data + 12); 16567 if (opcode == 0x3302fffe) 16568 { 16569 if (!micromips_p) 16570 return -1; 16571 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry); 16572 other = STO_MICROMIPS; 16573 } 16574 else if (opcode == 0x0398c1d0) 16575 { 16576 if (!micromips_p) 16577 return -1; 16578 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); 16579 other = STO_MICROMIPS; 16580 } 16581 else 16582 { 16583 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry); 16584 other = 0; 16585 } 16586 16587 s->the_bfd = abfd; 16588 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL; 16589 s->section = plt; 16590 s->value = 0; 16591 s->name = names; 16592 s->udata.i = other; 16593 memcpy (names, pltname, sizeof (pltname)); 16594 names += sizeof (pltname); 16595 ++s, ++n; 16596 16597 pi = 0; 16598 for (plt_offset = plt0_size; 16599 plt_offset + 8 <= plt->size && s < send; 16600 plt_offset += entry_size) 16601 { 16602 bfd_vma gotplt_addr; 16603 const char *suffix; 16604 bfd_vma gotplt_hi; 16605 bfd_vma gotplt_lo; 16606 size_t suffixlen; 16607 16608 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4); 16609 16610 /* Check if the second word matches the expected MIPS16 instruction. */ 16611 if (opcode == 0x651aeb00) 16612 { 16613 if (micromips_p) 16614 return -1; 16615 /* Truncated table??? */ 16616 if (plt_offset + 16 > plt->size) 16617 break; 16618 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12); 16619 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry); 16620 suffixlen = sizeof (m16suffix); 16621 suffix = m16suffix; 16622 other = STO_MIPS16; 16623 } 16624 /* Likewise the expected microMIPS instruction (no insn32 mode). */ 16625 else if (opcode == 0xff220000) 16626 { 16627 if (!micromips_p) 16628 return -1; 16629 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f; 16630 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff; 16631 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18; 16632 gotplt_lo <<= 2; 16633 gotplt_addr = gotplt_hi + gotplt_lo; 16634 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3; 16635 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry); 16636 suffixlen = sizeof (microsuffix); 16637 suffix = microsuffix; 16638 other = STO_MICROMIPS; 16639 } 16640 /* Likewise the expected microMIPS instruction (insn32 mode). */ 16641 else if ((opcode & 0xffff0000) == 0xff2f0000) 16642 { 16643 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff; 16644 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff; 16645 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16; 16646 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000; 16647 gotplt_addr = gotplt_hi + gotplt_lo; 16648 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry); 16649 suffixlen = sizeof (microsuffix); 16650 suffix = microsuffix; 16651 other = STO_MICROMIPS; 16652 } 16653 /* Otherwise assume standard MIPS code. */ 16654 else 16655 { 16656 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff; 16657 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff; 16658 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16; 16659 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000; 16660 gotplt_addr = gotplt_hi + gotplt_lo; 16661 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry); 16662 suffixlen = sizeof (mipssuffix); 16663 suffix = mipssuffix; 16664 other = 0; 16665 } 16666 /* Truncated table??? */ 16667 if (plt_offset + entry_size > plt->size) 16668 break; 16669 16670 for (i = 0; 16671 i < count && p[pi].address != gotplt_addr; 16672 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti); 16673 16674 if (i < count) 16675 { 16676 size_t namelen; 16677 size_t len; 16678 16679 *s = **p[pi].sym_ptr_ptr; 16680 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since 16681 we are defining a symbol, ensure one of them is set. */ 16682 if ((s->flags & BSF_LOCAL) == 0) 16683 s->flags |= BSF_GLOBAL; 16684 s->flags |= BSF_SYNTHETIC; 16685 s->section = plt; 16686 s->value = plt_offset; 16687 s->name = names; 16688 s->udata.i = other; 16689 16690 len = strlen ((*p[pi].sym_ptr_ptr)->name); 16691 namelen = len + suffixlen; 16692 if (names + namelen > nend) 16693 break; 16694 16695 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len); 16696 names += len; 16697 memcpy (names, suffix, suffixlen); 16698 names += suffixlen; 16699 16700 ++s, ++n; 16701 pi = (pi + bed->s->int_rels_per_ext_rel) % counti; 16702 } 16703 } 16704 16705 free (plt_data); 16706 16707 return n; 16708 } 16709 16710 /* Return the ABI flags associated with ABFD if available. */ 16711 16712 Elf_Internal_ABIFlags_v0 * 16713 bfd_mips_elf_get_abiflags (bfd *abfd) 16714 { 16715 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd); 16716 16717 return tdata->abiflags_valid ? &tdata->abiflags : NULL; 16718 } 16719 16720 /* MIPS libc ABI versions, used with the EI_ABIVERSION ELF file header 16721 field. Taken from `libc-abis.h' generated at GNU libc build time. 16722 Using a MIPS_ prefix as other libc targets use different values. */ 16723 enum 16724 { 16725 MIPS_LIBC_ABI_DEFAULT = 0, 16726 MIPS_LIBC_ABI_MIPS_PLT, 16727 MIPS_LIBC_ABI_UNIQUE, 16728 MIPS_LIBC_ABI_MIPS_O32_FP64, 16729 MIPS_LIBC_ABI_ABSOLUTE, 16730 MIPS_LIBC_ABI_XHASH, 16731 MIPS_LIBC_ABI_MAX 16732 }; 16733 16734 bool 16735 _bfd_mips_init_file_header (bfd *abfd, struct bfd_link_info *link_info) 16736 { 16737 struct mips_elf_link_hash_table *htab = NULL; 16738 Elf_Internal_Ehdr *i_ehdrp; 16739 16740 if (!_bfd_elf_init_file_header (abfd, link_info)) 16741 return false; 16742 16743 i_ehdrp = elf_elfheader (abfd); 16744 if (link_info) 16745 { 16746 htab = mips_elf_hash_table (link_info); 16747 BFD_ASSERT (htab != NULL); 16748 } 16749 16750 if (htab != NULL 16751 && htab->use_plts_and_copy_relocs 16752 && htab->root.target_os != is_vxworks) 16753 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_PLT; 16754 16755 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64 16756 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A) 16757 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_O32_FP64; 16758 16759 /* Mark that we need support for absolute symbols in the dynamic loader. */ 16760 if (htab != NULL && htab->use_absolute_zero && htab->gnu_target) 16761 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_ABSOLUTE; 16762 16763 /* Mark that we need support for .MIPS.xhash in the dynamic linker, 16764 if it is the only hash section that will be created. */ 16765 if (link_info && link_info->emit_gnu_hash && !link_info->emit_hash) 16766 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_XHASH; 16767 return true; 16768 } 16769 16770 int 16771 _bfd_mips_elf_compact_eh_encoding 16772 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED) 16773 { 16774 return DW_EH_PE_pcrel | DW_EH_PE_sdata4; 16775 } 16776 16777 /* Return the opcode for can't unwind. */ 16778 16779 int 16780 _bfd_mips_elf_cant_unwind_opcode 16781 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED) 16782 { 16783 return COMPACT_EH_CANT_UNWIND_OPCODE; 16784 } 16785 16786 /* Record a position XLAT_LOC in the xlat translation table, associated with 16787 the hash entry H. The entry in the translation table will later be 16788 populated with the real symbol dynindx. */ 16789 16790 void 16791 _bfd_mips_elf_record_xhash_symbol (struct elf_link_hash_entry *h, 16792 bfd_vma xlat_loc) 16793 { 16794 struct mips_elf_link_hash_entry *hmips; 16795 16796 hmips = (struct mips_elf_link_hash_entry *) h; 16797 hmips->mipsxhash_loc = xlat_loc; 16798 } 16799