1 /* IA-64 support for 64-bit ELF 2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 3 2008, 2009, 2010 Free Software Foundation, Inc. 4 Contributed by David Mosberger-Tang <davidm@hpl.hp.com> 5 6 This file is part of BFD, the Binary File Descriptor library. 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License as published by 10 the Free Software Foundation; either version 3 of the License, or 11 (at your option) any later version. 12 13 This program is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 GNU General Public License for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with this program; if not, write to the Free Software 20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 21 MA 02110-1301, USA. */ 22 23 #include "sysdep.h" 24 #include "bfd.h" 25 #include "libbfd.h" 26 #include "elf-bfd.h" 27 #include "opcode/ia64.h" 28 #include "elf/ia64.h" 29 #include "objalloc.h" 30 #include "hashtab.h" 31 32 #define ARCH_SIZE NN 33 34 #if ARCH_SIZE == 64 35 #define LOG_SECTION_ALIGN 3 36 #endif 37 38 #if ARCH_SIZE == 32 39 #define LOG_SECTION_ALIGN 2 40 #endif 41 42 /* THE RULES for all the stuff the linker creates -- 43 44 GOT Entries created in response to LTOFF or LTOFF_FPTR 45 relocations. Dynamic relocs created for dynamic 46 symbols in an application; REL relocs for locals 47 in a shared library. 48 49 FPTR The canonical function descriptor. Created for local 50 symbols in applications. Descriptors for dynamic symbols 51 and local symbols in shared libraries are created by 52 ld.so. Thus there are no dynamic relocs against these 53 objects. The FPTR relocs for such _are_ passed through 54 to the dynamic relocation tables. 55 56 FULL_PLT Created for a PCREL21B relocation against a dynamic symbol. 57 Requires the creation of a PLTOFF entry. This does not 58 require any dynamic relocations. 59 60 PLTOFF Created by PLTOFF relocations. For local symbols, this 61 is an alternate function descriptor, and in shared libraries 62 requires two REL relocations. Note that this cannot be 63 transformed into an FPTR relocation, since it must be in 64 range of the GP. For dynamic symbols, this is a function 65 descriptor for a MIN_PLT entry, and requires one IPLT reloc. 66 67 MIN_PLT Created by PLTOFF entries against dynamic symbols. This 68 does not require dynamic relocations. */ 69 70 /* Only add code for vms when the vms target is enabled. This is required 71 because it depends on vms-lib.c for its archive format and we don't want 72 to compile that code if it is not used. */ 73 #if ARCH_SIZE == 64 && \ 74 (defined (HAVE_bfd_elf64_ia64_vms_vec) || defined (HAVE_all_vecs)) 75 #define INCLUDE_IA64_VMS 76 #endif 77 78 79 #define NELEMS(a) ((int) (sizeof (a) / sizeof ((a)[0]))) 80 81 typedef struct bfd_hash_entry *(*new_hash_entry_func) 82 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *); 83 84 /* In dynamically (linker-) created sections, we generally need to keep track 85 of the place a symbol or expression got allocated to. This is done via hash 86 tables that store entries of the following type. */ 87 88 struct elfNN_ia64_dyn_sym_info 89 { 90 /* The addend for which this entry is relevant. */ 91 bfd_vma addend; 92 93 bfd_vma got_offset; 94 bfd_vma fptr_offset; 95 bfd_vma pltoff_offset; 96 bfd_vma plt_offset; 97 bfd_vma plt2_offset; 98 bfd_vma tprel_offset; 99 bfd_vma dtpmod_offset; 100 bfd_vma dtprel_offset; 101 102 /* The symbol table entry, if any, that this was derived from. */ 103 struct elf_link_hash_entry *h; 104 105 /* Used to count non-got, non-plt relocations for delayed sizing 106 of relocation sections. */ 107 struct elfNN_ia64_dyn_reloc_entry 108 { 109 struct elfNN_ia64_dyn_reloc_entry *next; 110 asection *srel; 111 int type; 112 int count; 113 114 /* Is this reloc against readonly section? */ 115 bfd_boolean reltext; 116 } *reloc_entries; 117 118 /* TRUE when the section contents have been updated. */ 119 unsigned got_done : 1; 120 unsigned fptr_done : 1; 121 unsigned pltoff_done : 1; 122 unsigned tprel_done : 1; 123 unsigned dtpmod_done : 1; 124 unsigned dtprel_done : 1; 125 126 /* TRUE for the different kinds of linker data we want created. */ 127 unsigned want_got : 1; 128 unsigned want_gotx : 1; 129 unsigned want_fptr : 1; 130 unsigned want_ltoff_fptr : 1; 131 unsigned want_plt : 1; 132 unsigned want_plt2 : 1; 133 unsigned want_pltoff : 1; 134 unsigned want_tprel : 1; 135 unsigned want_dtpmod : 1; 136 unsigned want_dtprel : 1; 137 }; 138 139 struct elfNN_ia64_local_hash_entry 140 { 141 int id; 142 unsigned int r_sym; 143 /* The number of elements in elfNN_ia64_dyn_sym_info array. */ 144 unsigned int count; 145 /* The number of sorted elements in elfNN_ia64_dyn_sym_info array. */ 146 unsigned int sorted_count; 147 /* The size of elfNN_ia64_dyn_sym_info array. */ 148 unsigned int size; 149 /* The array of elfNN_ia64_dyn_sym_info. */ 150 struct elfNN_ia64_dyn_sym_info *info; 151 152 /* TRUE if this hash entry's addends was translated for 153 SHF_MERGE optimization. */ 154 unsigned sec_merge_done : 1; 155 }; 156 157 struct elfNN_ia64_link_hash_entry 158 { 159 struct elf_link_hash_entry root; 160 /* The number of elements in elfNN_ia64_dyn_sym_info array. */ 161 unsigned int count; 162 /* The number of sorted elements in elfNN_ia64_dyn_sym_info array. */ 163 unsigned int sorted_count; 164 /* The size of elfNN_ia64_dyn_sym_info array. */ 165 unsigned int size; 166 /* The array of elfNN_ia64_dyn_sym_info. */ 167 struct elfNN_ia64_dyn_sym_info *info; 168 }; 169 170 struct elfNN_ia64_link_hash_table 171 { 172 /* The main hash table. */ 173 struct elf_link_hash_table root; 174 175 asection *fptr_sec; /* Function descriptor table (or NULL). */ 176 asection *rel_fptr_sec; /* Dynamic relocation section for same. */ 177 asection *pltoff_sec; /* Private descriptors for plt (or NULL). */ 178 asection *rel_pltoff_sec; /* Dynamic relocation section for same. */ 179 180 bfd_size_type minplt_entries; /* Number of minplt entries. */ 181 unsigned reltext : 1; /* Are there relocs against readonly sections? */ 182 unsigned self_dtpmod_done : 1;/* Has self DTPMOD entry been finished? */ 183 bfd_vma self_dtpmod_offset; /* .got offset to self DTPMOD entry. */ 184 /* There are maybe R_IA64_GPREL22 relocations, including those 185 optimized from R_IA64_LTOFF22X, against non-SHF_IA_64_SHORT 186 sections. We need to record those sections so that we can choose 187 a proper GP to cover all R_IA64_GPREL22 relocations. */ 188 asection *max_short_sec; /* Maximum short output section. */ 189 bfd_vma max_short_offset; /* Maximum short offset. */ 190 asection *min_short_sec; /* Minimum short output section. */ 191 bfd_vma min_short_offset; /* Minimum short offset. */ 192 193 htab_t loc_hash_table; 194 void *loc_hash_memory; 195 }; 196 197 struct elfNN_ia64_allocate_data 198 { 199 struct bfd_link_info *info; 200 bfd_size_type ofs; 201 bfd_boolean only_got; 202 }; 203 204 #define elfNN_ia64_hash_table(p) \ 205 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \ 206 == IA64_ELF_DATA ? ((struct elfNN_ia64_link_hash_table *) ((p)->hash)) : NULL) 207 208 static struct elfNN_ia64_dyn_sym_info * get_dyn_sym_info 209 (struct elfNN_ia64_link_hash_table *ia64_info, 210 struct elf_link_hash_entry *h, 211 bfd *abfd, const Elf_Internal_Rela *rel, bfd_boolean create); 212 static bfd_boolean elfNN_ia64_dynamic_symbol_p 213 (struct elf_link_hash_entry *h, struct bfd_link_info *info, int); 214 static bfd_reloc_status_type elfNN_ia64_install_value 215 (bfd_byte *hit_addr, bfd_vma val, unsigned int r_type); 216 static bfd_boolean elfNN_ia64_choose_gp 217 (bfd *abfd, struct bfd_link_info *info); 218 static void elfNN_ia64_relax_ldxmov 219 (bfd_byte *contents, bfd_vma off); 220 static void elfNN_ia64_dyn_sym_traverse 221 (struct elfNN_ia64_link_hash_table *ia64_info, 222 bfd_boolean (*func) (struct elfNN_ia64_dyn_sym_info *, PTR), 223 PTR info); 224 static bfd_boolean allocate_global_data_got 225 (struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data); 226 static bfd_boolean allocate_global_fptr_got 227 (struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data); 228 static bfd_boolean allocate_local_got 229 (struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data); 230 static bfd_boolean elfNN_ia64_hpux_vec 231 (const bfd_target *vec); 232 static bfd_boolean allocate_dynrel_entries 233 (struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data); 234 static asection *get_pltoff 235 (bfd *abfd, struct bfd_link_info *info, 236 struct elfNN_ia64_link_hash_table *ia64_info); 237 238 /* ia64-specific relocation. */ 239 240 /* Perform a relocation. Not much to do here as all the hard work is 241 done in elfNN_ia64_final_link_relocate. */ 242 static bfd_reloc_status_type 243 elfNN_ia64_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc, 244 asymbol *sym ATTRIBUTE_UNUSED, 245 PTR data ATTRIBUTE_UNUSED, asection *input_section, 246 bfd *output_bfd, char **error_message) 247 { 248 if (output_bfd) 249 { 250 reloc->address += input_section->output_offset; 251 return bfd_reloc_ok; 252 } 253 254 if (input_section->flags & SEC_DEBUGGING) 255 return bfd_reloc_continue; 256 257 *error_message = "Unsupported call to elfNN_ia64_reloc"; 258 return bfd_reloc_notsupported; 259 } 260 261 #define IA64_HOWTO(TYPE, NAME, SIZE, PCREL, IN) \ 262 HOWTO (TYPE, 0, SIZE, 0, PCREL, 0, complain_overflow_signed, \ 263 elfNN_ia64_reloc, NAME, FALSE, 0, -1, IN) 264 265 /* This table has to be sorted according to increasing number of the 266 TYPE field. */ 267 static reloc_howto_type ia64_howto_table[] = 268 { 269 IA64_HOWTO (R_IA64_NONE, "NONE", 0, FALSE, TRUE), 270 271 IA64_HOWTO (R_IA64_IMM14, "IMM14", 0, FALSE, TRUE), 272 IA64_HOWTO (R_IA64_IMM22, "IMM22", 0, FALSE, TRUE), 273 IA64_HOWTO (R_IA64_IMM64, "IMM64", 0, FALSE, TRUE), 274 IA64_HOWTO (R_IA64_DIR32MSB, "DIR32MSB", 2, FALSE, TRUE), 275 IA64_HOWTO (R_IA64_DIR32LSB, "DIR32LSB", 2, FALSE, TRUE), 276 IA64_HOWTO (R_IA64_DIR64MSB, "DIR64MSB", 4, FALSE, TRUE), 277 IA64_HOWTO (R_IA64_DIR64LSB, "DIR64LSB", 4, FALSE, TRUE), 278 279 IA64_HOWTO (R_IA64_GPREL22, "GPREL22", 0, FALSE, TRUE), 280 IA64_HOWTO (R_IA64_GPREL64I, "GPREL64I", 0, FALSE, TRUE), 281 IA64_HOWTO (R_IA64_GPREL32MSB, "GPREL32MSB", 2, FALSE, TRUE), 282 IA64_HOWTO (R_IA64_GPREL32LSB, "GPREL32LSB", 2, FALSE, TRUE), 283 IA64_HOWTO (R_IA64_GPREL64MSB, "GPREL64MSB", 4, FALSE, TRUE), 284 IA64_HOWTO (R_IA64_GPREL64LSB, "GPREL64LSB", 4, FALSE, TRUE), 285 286 IA64_HOWTO (R_IA64_LTOFF22, "LTOFF22", 0, FALSE, TRUE), 287 IA64_HOWTO (R_IA64_LTOFF64I, "LTOFF64I", 0, FALSE, TRUE), 288 289 IA64_HOWTO (R_IA64_PLTOFF22, "PLTOFF22", 0, FALSE, TRUE), 290 IA64_HOWTO (R_IA64_PLTOFF64I, "PLTOFF64I", 0, FALSE, TRUE), 291 IA64_HOWTO (R_IA64_PLTOFF64MSB, "PLTOFF64MSB", 4, FALSE, TRUE), 292 IA64_HOWTO (R_IA64_PLTOFF64LSB, "PLTOFF64LSB", 4, FALSE, TRUE), 293 294 IA64_HOWTO (R_IA64_FPTR64I, "FPTR64I", 0, FALSE, TRUE), 295 IA64_HOWTO (R_IA64_FPTR32MSB, "FPTR32MSB", 2, FALSE, TRUE), 296 IA64_HOWTO (R_IA64_FPTR32LSB, "FPTR32LSB", 2, FALSE, TRUE), 297 IA64_HOWTO (R_IA64_FPTR64MSB, "FPTR64MSB", 4, FALSE, TRUE), 298 IA64_HOWTO (R_IA64_FPTR64LSB, "FPTR64LSB", 4, FALSE, TRUE), 299 300 IA64_HOWTO (R_IA64_PCREL60B, "PCREL60B", 0, TRUE, TRUE), 301 IA64_HOWTO (R_IA64_PCREL21B, "PCREL21B", 0, TRUE, TRUE), 302 IA64_HOWTO (R_IA64_PCREL21M, "PCREL21M", 0, TRUE, TRUE), 303 IA64_HOWTO (R_IA64_PCREL21F, "PCREL21F", 0, TRUE, TRUE), 304 IA64_HOWTO (R_IA64_PCREL32MSB, "PCREL32MSB", 2, TRUE, TRUE), 305 IA64_HOWTO (R_IA64_PCREL32LSB, "PCREL32LSB", 2, TRUE, TRUE), 306 IA64_HOWTO (R_IA64_PCREL64MSB, "PCREL64MSB", 4, TRUE, TRUE), 307 IA64_HOWTO (R_IA64_PCREL64LSB, "PCREL64LSB", 4, TRUE, TRUE), 308 309 IA64_HOWTO (R_IA64_LTOFF_FPTR22, "LTOFF_FPTR22", 0, FALSE, TRUE), 310 IA64_HOWTO (R_IA64_LTOFF_FPTR64I, "LTOFF_FPTR64I", 0, FALSE, TRUE), 311 IA64_HOWTO (R_IA64_LTOFF_FPTR32MSB, "LTOFF_FPTR32MSB", 2, FALSE, TRUE), 312 IA64_HOWTO (R_IA64_LTOFF_FPTR32LSB, "LTOFF_FPTR32LSB", 2, FALSE, TRUE), 313 IA64_HOWTO (R_IA64_LTOFF_FPTR64MSB, "LTOFF_FPTR64MSB", 4, FALSE, TRUE), 314 IA64_HOWTO (R_IA64_LTOFF_FPTR64LSB, "LTOFF_FPTR64LSB", 4, FALSE, TRUE), 315 316 IA64_HOWTO (R_IA64_SEGREL32MSB, "SEGREL32MSB", 2, FALSE, TRUE), 317 IA64_HOWTO (R_IA64_SEGREL32LSB, "SEGREL32LSB", 2, FALSE, TRUE), 318 IA64_HOWTO (R_IA64_SEGREL64MSB, "SEGREL64MSB", 4, FALSE, TRUE), 319 IA64_HOWTO (R_IA64_SEGREL64LSB, "SEGREL64LSB", 4, FALSE, TRUE), 320 321 IA64_HOWTO (R_IA64_SECREL32MSB, "SECREL32MSB", 2, FALSE, TRUE), 322 IA64_HOWTO (R_IA64_SECREL32LSB, "SECREL32LSB", 2, FALSE, TRUE), 323 IA64_HOWTO (R_IA64_SECREL64MSB, "SECREL64MSB", 4, FALSE, TRUE), 324 IA64_HOWTO (R_IA64_SECREL64LSB, "SECREL64LSB", 4, FALSE, TRUE), 325 326 IA64_HOWTO (R_IA64_REL32MSB, "REL32MSB", 2, FALSE, TRUE), 327 IA64_HOWTO (R_IA64_REL32LSB, "REL32LSB", 2, FALSE, TRUE), 328 IA64_HOWTO (R_IA64_REL64MSB, "REL64MSB", 4, FALSE, TRUE), 329 IA64_HOWTO (R_IA64_REL64LSB, "REL64LSB", 4, FALSE, TRUE), 330 331 IA64_HOWTO (R_IA64_LTV32MSB, "LTV32MSB", 2, FALSE, TRUE), 332 IA64_HOWTO (R_IA64_LTV32LSB, "LTV32LSB", 2, FALSE, TRUE), 333 IA64_HOWTO (R_IA64_LTV64MSB, "LTV64MSB", 4, FALSE, TRUE), 334 IA64_HOWTO (R_IA64_LTV64LSB, "LTV64LSB", 4, FALSE, TRUE), 335 336 IA64_HOWTO (R_IA64_PCREL21BI, "PCREL21BI", 0, TRUE, TRUE), 337 IA64_HOWTO (R_IA64_PCREL22, "PCREL22", 0, TRUE, TRUE), 338 IA64_HOWTO (R_IA64_PCREL64I, "PCREL64I", 0, TRUE, TRUE), 339 340 IA64_HOWTO (R_IA64_IPLTMSB, "IPLTMSB", 4, FALSE, TRUE), 341 IA64_HOWTO (R_IA64_IPLTLSB, "IPLTLSB", 4, FALSE, TRUE), 342 IA64_HOWTO (R_IA64_COPY, "COPY", 4, FALSE, TRUE), 343 IA64_HOWTO (R_IA64_LTOFF22X, "LTOFF22X", 0, FALSE, TRUE), 344 IA64_HOWTO (R_IA64_LDXMOV, "LDXMOV", 0, FALSE, TRUE), 345 346 IA64_HOWTO (R_IA64_TPREL14, "TPREL14", 0, FALSE, FALSE), 347 IA64_HOWTO (R_IA64_TPREL22, "TPREL22", 0, FALSE, FALSE), 348 IA64_HOWTO (R_IA64_TPREL64I, "TPREL64I", 0, FALSE, FALSE), 349 IA64_HOWTO (R_IA64_TPREL64MSB, "TPREL64MSB", 4, FALSE, FALSE), 350 IA64_HOWTO (R_IA64_TPREL64LSB, "TPREL64LSB", 4, FALSE, FALSE), 351 IA64_HOWTO (R_IA64_LTOFF_TPREL22, "LTOFF_TPREL22", 0, FALSE, FALSE), 352 353 IA64_HOWTO (R_IA64_DTPMOD64MSB, "DTPMOD64MSB", 4, FALSE, FALSE), 354 IA64_HOWTO (R_IA64_DTPMOD64LSB, "DTPMOD64LSB", 4, FALSE, FALSE), 355 IA64_HOWTO (R_IA64_LTOFF_DTPMOD22, "LTOFF_DTPMOD22", 0, FALSE, FALSE), 356 357 IA64_HOWTO (R_IA64_DTPREL14, "DTPREL14", 0, FALSE, FALSE), 358 IA64_HOWTO (R_IA64_DTPREL22, "DTPREL22", 0, FALSE, FALSE), 359 IA64_HOWTO (R_IA64_DTPREL64I, "DTPREL64I", 0, FALSE, FALSE), 360 IA64_HOWTO (R_IA64_DTPREL32MSB, "DTPREL32MSB", 2, FALSE, FALSE), 361 IA64_HOWTO (R_IA64_DTPREL32LSB, "DTPREL32LSB", 2, FALSE, FALSE), 362 IA64_HOWTO (R_IA64_DTPREL64MSB, "DTPREL64MSB", 4, FALSE, FALSE), 363 IA64_HOWTO (R_IA64_DTPREL64LSB, "DTPREL64LSB", 4, FALSE, FALSE), 364 IA64_HOWTO (R_IA64_LTOFF_DTPREL22, "LTOFF_DTPREL22", 0, FALSE, FALSE), 365 }; 366 367 static unsigned char elf_code_to_howto_index[R_IA64_MAX_RELOC_CODE + 1]; 368 369 /* Given a BFD reloc type, return the matching HOWTO structure. */ 370 371 static reloc_howto_type * 372 lookup_howto (unsigned int rtype) 373 { 374 static int inited = 0; 375 int i; 376 377 if (!inited) 378 { 379 inited = 1; 380 381 memset (elf_code_to_howto_index, 0xff, sizeof (elf_code_to_howto_index)); 382 for (i = 0; i < NELEMS (ia64_howto_table); ++i) 383 elf_code_to_howto_index[ia64_howto_table[i].type] = i; 384 } 385 386 if (rtype > R_IA64_MAX_RELOC_CODE) 387 return 0; 388 i = elf_code_to_howto_index[rtype]; 389 if (i >= NELEMS (ia64_howto_table)) 390 return 0; 391 return ia64_howto_table + i; 392 } 393 394 static reloc_howto_type* 395 elfNN_ia64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, 396 bfd_reloc_code_real_type bfd_code) 397 { 398 unsigned int rtype; 399 400 switch (bfd_code) 401 { 402 case BFD_RELOC_NONE: rtype = R_IA64_NONE; break; 403 404 case BFD_RELOC_IA64_IMM14: rtype = R_IA64_IMM14; break; 405 case BFD_RELOC_IA64_IMM22: rtype = R_IA64_IMM22; break; 406 case BFD_RELOC_IA64_IMM64: rtype = R_IA64_IMM64; break; 407 408 case BFD_RELOC_IA64_DIR32MSB: rtype = R_IA64_DIR32MSB; break; 409 case BFD_RELOC_IA64_DIR32LSB: rtype = R_IA64_DIR32LSB; break; 410 case BFD_RELOC_IA64_DIR64MSB: rtype = R_IA64_DIR64MSB; break; 411 case BFD_RELOC_IA64_DIR64LSB: rtype = R_IA64_DIR64LSB; break; 412 413 case BFD_RELOC_IA64_GPREL22: rtype = R_IA64_GPREL22; break; 414 case BFD_RELOC_IA64_GPREL64I: rtype = R_IA64_GPREL64I; break; 415 case BFD_RELOC_IA64_GPREL32MSB: rtype = R_IA64_GPREL32MSB; break; 416 case BFD_RELOC_IA64_GPREL32LSB: rtype = R_IA64_GPREL32LSB; break; 417 case BFD_RELOC_IA64_GPREL64MSB: rtype = R_IA64_GPREL64MSB; break; 418 case BFD_RELOC_IA64_GPREL64LSB: rtype = R_IA64_GPREL64LSB; break; 419 420 case BFD_RELOC_IA64_LTOFF22: rtype = R_IA64_LTOFF22; break; 421 case BFD_RELOC_IA64_LTOFF64I: rtype = R_IA64_LTOFF64I; break; 422 423 case BFD_RELOC_IA64_PLTOFF22: rtype = R_IA64_PLTOFF22; break; 424 case BFD_RELOC_IA64_PLTOFF64I: rtype = R_IA64_PLTOFF64I; break; 425 case BFD_RELOC_IA64_PLTOFF64MSB: rtype = R_IA64_PLTOFF64MSB; break; 426 case BFD_RELOC_IA64_PLTOFF64LSB: rtype = R_IA64_PLTOFF64LSB; break; 427 case BFD_RELOC_IA64_FPTR64I: rtype = R_IA64_FPTR64I; break; 428 case BFD_RELOC_IA64_FPTR32MSB: rtype = R_IA64_FPTR32MSB; break; 429 case BFD_RELOC_IA64_FPTR32LSB: rtype = R_IA64_FPTR32LSB; break; 430 case BFD_RELOC_IA64_FPTR64MSB: rtype = R_IA64_FPTR64MSB; break; 431 case BFD_RELOC_IA64_FPTR64LSB: rtype = R_IA64_FPTR64LSB; break; 432 433 case BFD_RELOC_IA64_PCREL21B: rtype = R_IA64_PCREL21B; break; 434 case BFD_RELOC_IA64_PCREL21BI: rtype = R_IA64_PCREL21BI; break; 435 case BFD_RELOC_IA64_PCREL21M: rtype = R_IA64_PCREL21M; break; 436 case BFD_RELOC_IA64_PCREL21F: rtype = R_IA64_PCREL21F; break; 437 case BFD_RELOC_IA64_PCREL22: rtype = R_IA64_PCREL22; break; 438 case BFD_RELOC_IA64_PCREL60B: rtype = R_IA64_PCREL60B; break; 439 case BFD_RELOC_IA64_PCREL64I: rtype = R_IA64_PCREL64I; break; 440 case BFD_RELOC_IA64_PCREL32MSB: rtype = R_IA64_PCREL32MSB; break; 441 case BFD_RELOC_IA64_PCREL32LSB: rtype = R_IA64_PCREL32LSB; break; 442 case BFD_RELOC_IA64_PCREL64MSB: rtype = R_IA64_PCREL64MSB; break; 443 case BFD_RELOC_IA64_PCREL64LSB: rtype = R_IA64_PCREL64LSB; break; 444 445 case BFD_RELOC_IA64_LTOFF_FPTR22: rtype = R_IA64_LTOFF_FPTR22; break; 446 case BFD_RELOC_IA64_LTOFF_FPTR64I: rtype = R_IA64_LTOFF_FPTR64I; break; 447 case BFD_RELOC_IA64_LTOFF_FPTR32MSB: rtype = R_IA64_LTOFF_FPTR32MSB; break; 448 case BFD_RELOC_IA64_LTOFF_FPTR32LSB: rtype = R_IA64_LTOFF_FPTR32LSB; break; 449 case BFD_RELOC_IA64_LTOFF_FPTR64MSB: rtype = R_IA64_LTOFF_FPTR64MSB; break; 450 case BFD_RELOC_IA64_LTOFF_FPTR64LSB: rtype = R_IA64_LTOFF_FPTR64LSB; break; 451 452 case BFD_RELOC_IA64_SEGREL32MSB: rtype = R_IA64_SEGREL32MSB; break; 453 case BFD_RELOC_IA64_SEGREL32LSB: rtype = R_IA64_SEGREL32LSB; break; 454 case BFD_RELOC_IA64_SEGREL64MSB: rtype = R_IA64_SEGREL64MSB; break; 455 case BFD_RELOC_IA64_SEGREL64LSB: rtype = R_IA64_SEGREL64LSB; break; 456 457 case BFD_RELOC_IA64_SECREL32MSB: rtype = R_IA64_SECREL32MSB; break; 458 case BFD_RELOC_IA64_SECREL32LSB: rtype = R_IA64_SECREL32LSB; break; 459 case BFD_RELOC_IA64_SECREL64MSB: rtype = R_IA64_SECREL64MSB; break; 460 case BFD_RELOC_IA64_SECREL64LSB: rtype = R_IA64_SECREL64LSB; break; 461 462 case BFD_RELOC_IA64_REL32MSB: rtype = R_IA64_REL32MSB; break; 463 case BFD_RELOC_IA64_REL32LSB: rtype = R_IA64_REL32LSB; break; 464 case BFD_RELOC_IA64_REL64MSB: rtype = R_IA64_REL64MSB; break; 465 case BFD_RELOC_IA64_REL64LSB: rtype = R_IA64_REL64LSB; break; 466 467 case BFD_RELOC_IA64_LTV32MSB: rtype = R_IA64_LTV32MSB; break; 468 case BFD_RELOC_IA64_LTV32LSB: rtype = R_IA64_LTV32LSB; break; 469 case BFD_RELOC_IA64_LTV64MSB: rtype = R_IA64_LTV64MSB; break; 470 case BFD_RELOC_IA64_LTV64LSB: rtype = R_IA64_LTV64LSB; break; 471 472 case BFD_RELOC_IA64_IPLTMSB: rtype = R_IA64_IPLTMSB; break; 473 case BFD_RELOC_IA64_IPLTLSB: rtype = R_IA64_IPLTLSB; break; 474 case BFD_RELOC_IA64_COPY: rtype = R_IA64_COPY; break; 475 case BFD_RELOC_IA64_LTOFF22X: rtype = R_IA64_LTOFF22X; break; 476 case BFD_RELOC_IA64_LDXMOV: rtype = R_IA64_LDXMOV; break; 477 478 case BFD_RELOC_IA64_TPREL14: rtype = R_IA64_TPREL14; break; 479 case BFD_RELOC_IA64_TPREL22: rtype = R_IA64_TPREL22; break; 480 case BFD_RELOC_IA64_TPREL64I: rtype = R_IA64_TPREL64I; break; 481 case BFD_RELOC_IA64_TPREL64MSB: rtype = R_IA64_TPREL64MSB; break; 482 case BFD_RELOC_IA64_TPREL64LSB: rtype = R_IA64_TPREL64LSB; break; 483 case BFD_RELOC_IA64_LTOFF_TPREL22: rtype = R_IA64_LTOFF_TPREL22; break; 484 485 case BFD_RELOC_IA64_DTPMOD64MSB: rtype = R_IA64_DTPMOD64MSB; break; 486 case BFD_RELOC_IA64_DTPMOD64LSB: rtype = R_IA64_DTPMOD64LSB; break; 487 case BFD_RELOC_IA64_LTOFF_DTPMOD22: rtype = R_IA64_LTOFF_DTPMOD22; break; 488 489 case BFD_RELOC_IA64_DTPREL14: rtype = R_IA64_DTPREL14; break; 490 case BFD_RELOC_IA64_DTPREL22: rtype = R_IA64_DTPREL22; break; 491 case BFD_RELOC_IA64_DTPREL64I: rtype = R_IA64_DTPREL64I; break; 492 case BFD_RELOC_IA64_DTPREL32MSB: rtype = R_IA64_DTPREL32MSB; break; 493 case BFD_RELOC_IA64_DTPREL32LSB: rtype = R_IA64_DTPREL32LSB; break; 494 case BFD_RELOC_IA64_DTPREL64MSB: rtype = R_IA64_DTPREL64MSB; break; 495 case BFD_RELOC_IA64_DTPREL64LSB: rtype = R_IA64_DTPREL64LSB; break; 496 case BFD_RELOC_IA64_LTOFF_DTPREL22: rtype = R_IA64_LTOFF_DTPREL22; break; 497 498 default: return 0; 499 } 500 return lookup_howto (rtype); 501 } 502 503 static reloc_howto_type * 504 elfNN_ia64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, 505 const char *r_name) 506 { 507 unsigned int i; 508 509 for (i = 0; 510 i < sizeof (ia64_howto_table) / sizeof (ia64_howto_table[0]); 511 i++) 512 if (ia64_howto_table[i].name != NULL 513 && strcasecmp (ia64_howto_table[i].name, r_name) == 0) 514 return &ia64_howto_table[i]; 515 516 return NULL; 517 } 518 519 /* Given a ELF reloc, return the matching HOWTO structure. */ 520 521 static void 522 elfNN_ia64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, 523 arelent *bfd_reloc, 524 Elf_Internal_Rela *elf_reloc) 525 { 526 bfd_reloc->howto 527 = lookup_howto ((unsigned int) ELFNN_R_TYPE (elf_reloc->r_info)); 528 } 529 530 #define PLT_HEADER_SIZE (3 * 16) 531 #define PLT_MIN_ENTRY_SIZE (1 * 16) 532 #define PLT_FULL_ENTRY_SIZE (2 * 16) 533 #define PLT_RESERVED_WORDS 3 534 535 static const bfd_byte plt_header[PLT_HEADER_SIZE] = 536 { 537 0x0b, 0x10, 0x00, 0x1c, 0x00, 0x21, /* [MMI] mov r2=r14;; */ 538 0xe0, 0x00, 0x08, 0x00, 0x48, 0x00, /* addl r14=0,r2 */ 539 0x00, 0x00, 0x04, 0x00, /* nop.i 0x0;; */ 540 0x0b, 0x80, 0x20, 0x1c, 0x18, 0x14, /* [MMI] ld8 r16=[r14],8;; */ 541 0x10, 0x41, 0x38, 0x30, 0x28, 0x00, /* ld8 r17=[r14],8 */ 542 0x00, 0x00, 0x04, 0x00, /* nop.i 0x0;; */ 543 0x11, 0x08, 0x00, 0x1c, 0x18, 0x10, /* [MIB] ld8 r1=[r14] */ 544 0x60, 0x88, 0x04, 0x80, 0x03, 0x00, /* mov b6=r17 */ 545 0x60, 0x00, 0x80, 0x00 /* br.few b6;; */ 546 }; 547 548 static const bfd_byte plt_min_entry[PLT_MIN_ENTRY_SIZE] = 549 { 550 0x11, 0x78, 0x00, 0x00, 0x00, 0x24, /* [MIB] mov r15=0 */ 551 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, /* nop.i 0x0 */ 552 0x00, 0x00, 0x00, 0x40 /* br.few 0 <PLT0>;; */ 553 }; 554 555 static const bfd_byte plt_full_entry[PLT_FULL_ENTRY_SIZE] = 556 { 557 0x0b, 0x78, 0x00, 0x02, 0x00, 0x24, /* [MMI] addl r15=0,r1;; */ 558 0x00, 0x41, 0x3c, 0x70, 0x29, 0xc0, /* ld8.acq r16=[r15],8*/ 559 0x01, 0x08, 0x00, 0x84, /* mov r14=r1;; */ 560 0x11, 0x08, 0x00, 0x1e, 0x18, 0x10, /* [MIB] ld8 r1=[r15] */ 561 0x60, 0x80, 0x04, 0x80, 0x03, 0x00, /* mov b6=r16 */ 562 0x60, 0x00, 0x80, 0x00 /* br.few b6;; */ 563 }; 564 565 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1" 566 567 static const bfd_byte oor_brl[16] = 568 { 569 0x05, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MLX] nop.m 0 */ 570 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* brl.sptk.few tgt;; */ 571 0x00, 0x00, 0x00, 0xc0 572 }; 573 574 static const bfd_byte oor_ip[48] = 575 { 576 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MLX] nop.m 0 */ 577 0x00, 0x00, 0x00, 0x00, 0x00, 0xe0, /* movl r15=0 */ 578 0x01, 0x00, 0x00, 0x60, 579 0x03, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MII] nop.m 0 */ 580 0x00, 0x01, 0x00, 0x60, 0x00, 0x00, /* mov r16=ip;; */ 581 0xf2, 0x80, 0x00, 0x80, /* add r16=r15,r16;; */ 582 0x11, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MIB] nop.m 0 */ 583 0x60, 0x80, 0x04, 0x80, 0x03, 0x00, /* mov b6=r16 */ 584 0x60, 0x00, 0x80, 0x00 /* br b6;; */ 585 }; 586 587 static size_t oor_branch_size = sizeof (oor_brl); 588 589 void 590 bfd_elfNN_ia64_after_parse (int itanium) 591 { 592 oor_branch_size = itanium ? sizeof (oor_ip) : sizeof (oor_brl); 593 } 594 595 #define BTYPE_SHIFT 6 596 #define Y_SHIFT 26 597 #define X6_SHIFT 27 598 #define X4_SHIFT 27 599 #define X3_SHIFT 33 600 #define X2_SHIFT 31 601 #define X_SHIFT 33 602 #define OPCODE_SHIFT 37 603 604 #define OPCODE_BITS (0xfLL << OPCODE_SHIFT) 605 #define X6_BITS (0x3fLL << X6_SHIFT) 606 #define X4_BITS (0xfLL << X4_SHIFT) 607 #define X3_BITS (0x7LL << X3_SHIFT) 608 #define X2_BITS (0x3LL << X2_SHIFT) 609 #define X_BITS (0x1LL << X_SHIFT) 610 #define Y_BITS (0x1LL << Y_SHIFT) 611 #define BTYPE_BITS (0x7LL << BTYPE_SHIFT) 612 #define PREDICATE_BITS (0x3fLL) 613 614 #define IS_NOP_B(i) \ 615 (((i) & (OPCODE_BITS | X6_BITS)) == (2LL << OPCODE_SHIFT)) 616 #define IS_NOP_F(i) \ 617 (((i) & (OPCODE_BITS | X_BITS | X6_BITS | Y_BITS)) \ 618 == (0x1LL << X6_SHIFT)) 619 #define IS_NOP_I(i) \ 620 (((i) & (OPCODE_BITS | X3_BITS | X6_BITS | Y_BITS)) \ 621 == (0x1LL << X6_SHIFT)) 622 #define IS_NOP_M(i) \ 623 (((i) & (OPCODE_BITS | X3_BITS | X2_BITS | X4_BITS | Y_BITS)) \ 624 == (0x1LL << X4_SHIFT)) 625 #define IS_BR_COND(i) \ 626 (((i) & (OPCODE_BITS | BTYPE_BITS)) == (0x4LL << OPCODE_SHIFT)) 627 #define IS_BR_CALL(i) \ 628 (((i) & OPCODE_BITS) == (0x5LL << OPCODE_SHIFT)) 629 630 static bfd_boolean 631 elfNN_ia64_relax_br (bfd_byte *contents, bfd_vma off) 632 { 633 unsigned int template_val, mlx; 634 bfd_vma t0, t1, s0, s1, s2, br_code; 635 long br_slot; 636 bfd_byte *hit_addr; 637 638 hit_addr = (bfd_byte *) (contents + off); 639 br_slot = (intptr_t) hit_addr & 0x3; 640 hit_addr -= br_slot; 641 t0 = bfd_getl64 (hit_addr + 0); 642 t1 = bfd_getl64 (hit_addr + 8); 643 644 /* Check if we can turn br into brl. A label is always at the start 645 of the bundle. Even if there are predicates on NOPs, we still 646 perform this optimization. */ 647 template_val = t0 & 0x1e; 648 s0 = (t0 >> 5) & 0x1ffffffffffLL; 649 s1 = ((t0 >> 46) | (t1 << 18)) & 0x1ffffffffffLL; 650 s2 = (t1 >> 23) & 0x1ffffffffffLL; 651 switch (br_slot) 652 { 653 case 0: 654 /* Check if slot 1 and slot 2 are NOPs. Possible template is 655 BBB. We only need to check nop.b. */ 656 if (!(IS_NOP_B (s1) && IS_NOP_B (s2))) 657 return FALSE; 658 br_code = s0; 659 break; 660 case 1: 661 /* Check if slot 2 is NOP. Possible templates are MBB and BBB. 662 For BBB, slot 0 also has to be nop.b. */ 663 if (!((template_val == 0x12 /* MBB */ 664 && IS_NOP_B (s2)) 665 || (template_val == 0x16 /* BBB */ 666 && IS_NOP_B (s0) 667 && IS_NOP_B (s2)))) 668 return FALSE; 669 br_code = s1; 670 break; 671 case 2: 672 /* Check if slot 1 is NOP. Possible templates are MIB, MBB, BBB, 673 MMB and MFB. For BBB, slot 0 also has to be nop.b. */ 674 if (!((template_val == 0x10 /* MIB */ 675 && IS_NOP_I (s1)) 676 || (template_val == 0x12 /* MBB */ 677 && IS_NOP_B (s1)) 678 || (template_val == 0x16 /* BBB */ 679 && IS_NOP_B (s0) 680 && IS_NOP_B (s1)) 681 || (template_val == 0x18 /* MMB */ 682 && IS_NOP_M (s1)) 683 || (template_val == 0x1c /* MFB */ 684 && IS_NOP_F (s1)))) 685 return FALSE; 686 br_code = s2; 687 break; 688 default: 689 /* It should never happen. */ 690 abort (); 691 } 692 693 /* We can turn br.cond/br.call into brl.cond/brl.call. */ 694 if (!(IS_BR_COND (br_code) || IS_BR_CALL (br_code))) 695 return FALSE; 696 697 /* Turn br into brl by setting bit 40. */ 698 br_code |= 0x1LL << 40; 699 700 /* Turn the old bundle into a MLX bundle with the same stop-bit 701 variety. */ 702 if (t0 & 0x1) 703 mlx = 0x5; 704 else 705 mlx = 0x4; 706 707 if (template_val == 0x16) 708 { 709 /* For BBB, we need to put nop.m in slot 0. We keep the original 710 predicate only if slot 0 isn't br. */ 711 if (br_slot == 0) 712 t0 = 0LL; 713 else 714 t0 &= PREDICATE_BITS << 5; 715 t0 |= 0x1LL << (X4_SHIFT + 5); 716 } 717 else 718 { 719 /* Keep the original instruction in slot 0. */ 720 t0 &= 0x1ffffffffffLL << 5; 721 } 722 723 t0 |= mlx; 724 725 /* Put brl in slot 1. */ 726 t1 = br_code << 23; 727 728 bfd_putl64 (t0, hit_addr); 729 bfd_putl64 (t1, hit_addr + 8); 730 return TRUE; 731 } 732 733 static void 734 elfNN_ia64_relax_brl (bfd_byte *contents, bfd_vma off) 735 { 736 int template_val; 737 bfd_byte *hit_addr; 738 bfd_vma t0, t1, i0, i1, i2; 739 740 hit_addr = (bfd_byte *) (contents + off); 741 hit_addr -= (intptr_t) hit_addr & 0x3; 742 t0 = bfd_getl64 (hit_addr); 743 t1 = bfd_getl64 (hit_addr + 8); 744 745 /* Keep the instruction in slot 0. */ 746 i0 = (t0 >> 5) & 0x1ffffffffffLL; 747 /* Use nop.b for slot 1. */ 748 i1 = 0x4000000000LL; 749 /* For slot 2, turn brl into br by masking out bit 40. */ 750 i2 = (t1 >> 23) & 0x0ffffffffffLL; 751 752 /* Turn a MLX bundle into a MBB bundle with the same stop-bit 753 variety. */ 754 if (t0 & 0x1) 755 template_val = 0x13; 756 else 757 template_val = 0x12; 758 t0 = (i1 << 46) | (i0 << 5) | template_val; 759 t1 = (i2 << 23) | (i1 >> 18); 760 761 bfd_putl64 (t0, hit_addr); 762 bfd_putl64 (t1, hit_addr + 8); 763 } 764 765 /* Rename some of the generic section flags to better document how they 766 are used here. */ 767 #define skip_relax_pass_0 sec_flg0 768 #define skip_relax_pass_1 sec_flg1 769 770 771 /* These functions do relaxation for IA-64 ELF. */ 772 773 static void 774 elfNN_ia64_update_short_info (asection *sec, bfd_vma offset, 775 struct elfNN_ia64_link_hash_table *ia64_info) 776 { 777 /* Skip ABS and SHF_IA_64_SHORT sections. */ 778 if (sec == bfd_abs_section_ptr 779 || (sec->flags & SEC_SMALL_DATA) != 0) 780 return; 781 782 if (!ia64_info->min_short_sec) 783 { 784 ia64_info->max_short_sec = sec; 785 ia64_info->max_short_offset = offset; 786 ia64_info->min_short_sec = sec; 787 ia64_info->min_short_offset = offset; 788 } 789 else if (sec == ia64_info->max_short_sec 790 && offset > ia64_info->max_short_offset) 791 ia64_info->max_short_offset = offset; 792 else if (sec == ia64_info->min_short_sec 793 && offset < ia64_info->min_short_offset) 794 ia64_info->min_short_offset = offset; 795 else if (sec->output_section->vma 796 > ia64_info->max_short_sec->vma) 797 { 798 ia64_info->max_short_sec = sec; 799 ia64_info->max_short_offset = offset; 800 } 801 else if (sec->output_section->vma 802 < ia64_info->min_short_sec->vma) 803 { 804 ia64_info->min_short_sec = sec; 805 ia64_info->min_short_offset = offset; 806 } 807 } 808 809 static bfd_boolean 810 elfNN_ia64_relax_section (bfd *abfd, asection *sec, 811 struct bfd_link_info *link_info, 812 bfd_boolean *again) 813 { 814 struct one_fixup 815 { 816 struct one_fixup *next; 817 asection *tsec; 818 bfd_vma toff; 819 bfd_vma trampoff; 820 }; 821 822 Elf_Internal_Shdr *symtab_hdr; 823 Elf_Internal_Rela *internal_relocs; 824 Elf_Internal_Rela *irel, *irelend; 825 bfd_byte *contents; 826 Elf_Internal_Sym *isymbuf = NULL; 827 struct elfNN_ia64_link_hash_table *ia64_info; 828 struct one_fixup *fixups = NULL; 829 bfd_boolean changed_contents = FALSE; 830 bfd_boolean changed_relocs = FALSE; 831 bfd_boolean changed_got = FALSE; 832 bfd_boolean skip_relax_pass_0 = TRUE; 833 bfd_boolean skip_relax_pass_1 = TRUE; 834 bfd_vma gp = 0; 835 836 /* Assume we're not going to change any sizes, and we'll only need 837 one pass. */ 838 *again = FALSE; 839 840 if (link_info->relocatable) 841 (*link_info->callbacks->einfo) 842 (_("%P%F: --relax and -r may not be used together\n")); 843 844 /* Don't even try to relax for non-ELF outputs. */ 845 if (!is_elf_hash_table (link_info->hash)) 846 return FALSE; 847 848 /* Nothing to do if there are no relocations or there is no need for 849 the current pass. */ 850 if ((sec->flags & SEC_RELOC) == 0 851 || sec->reloc_count == 0 852 || (link_info->relax_pass == 0 && sec->skip_relax_pass_0) 853 || (link_info->relax_pass == 1 && sec->skip_relax_pass_1)) 854 return TRUE; 855 856 ia64_info = elfNN_ia64_hash_table (link_info); 857 if (ia64_info == NULL) 858 return FALSE; 859 860 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 861 862 /* Load the relocations for this section. */ 863 internal_relocs = (_bfd_elf_link_read_relocs 864 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL, 865 link_info->keep_memory)); 866 if (internal_relocs == NULL) 867 return FALSE; 868 869 irelend = internal_relocs + sec->reloc_count; 870 871 /* Get the section contents. */ 872 if (elf_section_data (sec)->this_hdr.contents != NULL) 873 contents = elf_section_data (sec)->this_hdr.contents; 874 else 875 { 876 if (!bfd_malloc_and_get_section (abfd, sec, &contents)) 877 goto error_return; 878 } 879 880 for (irel = internal_relocs; irel < irelend; irel++) 881 { 882 unsigned long r_type = ELFNN_R_TYPE (irel->r_info); 883 bfd_vma symaddr, reladdr, trampoff, toff, roff; 884 asection *tsec; 885 struct one_fixup *f; 886 bfd_size_type amt; 887 bfd_boolean is_branch; 888 struct elfNN_ia64_dyn_sym_info *dyn_i; 889 char symtype; 890 891 switch (r_type) 892 { 893 case R_IA64_PCREL21B: 894 case R_IA64_PCREL21BI: 895 case R_IA64_PCREL21M: 896 case R_IA64_PCREL21F: 897 /* In pass 1, all br relaxations are done. We can skip it. */ 898 if (link_info->relax_pass == 1) 899 continue; 900 skip_relax_pass_0 = FALSE; 901 is_branch = TRUE; 902 break; 903 904 case R_IA64_PCREL60B: 905 /* We can't optimize brl to br in pass 0 since br relaxations 906 will increase the code size. Defer it to pass 1. */ 907 if (link_info->relax_pass == 0) 908 { 909 skip_relax_pass_1 = FALSE; 910 continue; 911 } 912 is_branch = TRUE; 913 break; 914 915 case R_IA64_GPREL22: 916 /* Update max_short_sec/min_short_sec. */ 917 918 case R_IA64_LTOFF22X: 919 case R_IA64_LDXMOV: 920 /* We can't relax ldx/mov in pass 0 since br relaxations will 921 increase the code size. Defer it to pass 1. */ 922 if (link_info->relax_pass == 0) 923 { 924 skip_relax_pass_1 = FALSE; 925 continue; 926 } 927 is_branch = FALSE; 928 break; 929 930 default: 931 continue; 932 } 933 934 /* Get the value of the symbol referred to by the reloc. */ 935 if (ELFNN_R_SYM (irel->r_info) < symtab_hdr->sh_info) 936 { 937 /* A local symbol. */ 938 Elf_Internal_Sym *isym; 939 940 /* Read this BFD's local symbols. */ 941 if (isymbuf == NULL) 942 { 943 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; 944 if (isymbuf == NULL) 945 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, 946 symtab_hdr->sh_info, 0, 947 NULL, NULL, NULL); 948 if (isymbuf == 0) 949 goto error_return; 950 } 951 952 isym = isymbuf + ELFNN_R_SYM (irel->r_info); 953 if (isym->st_shndx == SHN_UNDEF) 954 continue; /* We can't do anything with undefined symbols. */ 955 else if (isym->st_shndx == SHN_ABS) 956 tsec = bfd_abs_section_ptr; 957 else if (isym->st_shndx == SHN_COMMON) 958 tsec = bfd_com_section_ptr; 959 else if (isym->st_shndx == SHN_IA_64_ANSI_COMMON) 960 tsec = bfd_com_section_ptr; 961 else 962 tsec = bfd_section_from_elf_index (abfd, isym->st_shndx); 963 964 toff = isym->st_value; 965 dyn_i = get_dyn_sym_info (ia64_info, NULL, abfd, irel, FALSE); 966 symtype = ELF_ST_TYPE (isym->st_info); 967 } 968 else 969 { 970 unsigned long indx; 971 struct elf_link_hash_entry *h; 972 973 indx = ELFNN_R_SYM (irel->r_info) - symtab_hdr->sh_info; 974 h = elf_sym_hashes (abfd)[indx]; 975 BFD_ASSERT (h != NULL); 976 977 while (h->root.type == bfd_link_hash_indirect 978 || h->root.type == bfd_link_hash_warning) 979 h = (struct elf_link_hash_entry *) h->root.u.i.link; 980 981 dyn_i = get_dyn_sym_info (ia64_info, h, abfd, irel, FALSE); 982 983 /* For branches to dynamic symbols, we're interested instead 984 in a branch to the PLT entry. */ 985 if (is_branch && dyn_i && dyn_i->want_plt2) 986 { 987 /* Internal branches shouldn't be sent to the PLT. 988 Leave this for now and we'll give an error later. */ 989 if (r_type != R_IA64_PCREL21B) 990 continue; 991 992 tsec = ia64_info->root.splt; 993 toff = dyn_i->plt2_offset; 994 BFD_ASSERT (irel->r_addend == 0); 995 } 996 997 /* Can't do anything else with dynamic symbols. */ 998 else if (elfNN_ia64_dynamic_symbol_p (h, link_info, r_type)) 999 continue; 1000 1001 else 1002 { 1003 /* We can't do anything with undefined symbols. */ 1004 if (h->root.type == bfd_link_hash_undefined 1005 || h->root.type == bfd_link_hash_undefweak) 1006 continue; 1007 1008 tsec = h->root.u.def.section; 1009 toff = h->root.u.def.value; 1010 } 1011 1012 symtype = h->type; 1013 } 1014 1015 if (tsec->sec_info_type == ELF_INFO_TYPE_MERGE) 1016 { 1017 /* At this stage in linking, no SEC_MERGE symbol has been 1018 adjusted, so all references to such symbols need to be 1019 passed through _bfd_merged_section_offset. (Later, in 1020 relocate_section, all SEC_MERGE symbols *except* for 1021 section symbols have been adjusted.) 1022 1023 gas may reduce relocations against symbols in SEC_MERGE 1024 sections to a relocation against the section symbol when 1025 the original addend was zero. When the reloc is against 1026 a section symbol we should include the addend in the 1027 offset passed to _bfd_merged_section_offset, since the 1028 location of interest is the original symbol. On the 1029 other hand, an access to "sym+addend" where "sym" is not 1030 a section symbol should not include the addend; Such an 1031 access is presumed to be an offset from "sym"; The 1032 location of interest is just "sym". */ 1033 if (symtype == STT_SECTION) 1034 toff += irel->r_addend; 1035 1036 toff = _bfd_merged_section_offset (abfd, &tsec, 1037 elf_section_data (tsec)->sec_info, 1038 toff); 1039 1040 if (symtype != STT_SECTION) 1041 toff += irel->r_addend; 1042 } 1043 else 1044 toff += irel->r_addend; 1045 1046 symaddr = tsec->output_section->vma + tsec->output_offset + toff; 1047 1048 roff = irel->r_offset; 1049 1050 if (is_branch) 1051 { 1052 bfd_signed_vma offset; 1053 1054 reladdr = (sec->output_section->vma 1055 + sec->output_offset 1056 + roff) & (bfd_vma) -4; 1057 1058 /* The .plt section is aligned at 32byte and the .text section 1059 is aligned at 64byte. The .text section is right after the 1060 .plt section. After the first relaxation pass, linker may 1061 increase the gap between the .plt and .text sections up 1062 to 32byte. We assume linker will always insert 32byte 1063 between the .plt and .text sections after the the first 1064 relaxation pass. */ 1065 if (tsec == ia64_info->root.splt) 1066 offset = -0x1000000 + 32; 1067 else 1068 offset = -0x1000000; 1069 1070 /* If the branch is in range, no need to do anything. */ 1071 if ((bfd_signed_vma) (symaddr - reladdr) >= offset 1072 && (bfd_signed_vma) (symaddr - reladdr) <= 0x0FFFFF0) 1073 { 1074 /* If the 60-bit branch is in 21-bit range, optimize it. */ 1075 if (r_type == R_IA64_PCREL60B) 1076 { 1077 elfNN_ia64_relax_brl (contents, roff); 1078 1079 irel->r_info 1080 = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info), 1081 R_IA64_PCREL21B); 1082 1083 /* If the original relocation offset points to slot 1084 1, change it to slot 2. */ 1085 if ((irel->r_offset & 3) == 1) 1086 irel->r_offset += 1; 1087 } 1088 1089 continue; 1090 } 1091 else if (r_type == R_IA64_PCREL60B) 1092 continue; 1093 else if (elfNN_ia64_relax_br (contents, roff)) 1094 { 1095 irel->r_info 1096 = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info), 1097 R_IA64_PCREL60B); 1098 1099 /* Make the relocation offset point to slot 1. */ 1100 irel->r_offset = (irel->r_offset & ~((bfd_vma) 0x3)) + 1; 1101 continue; 1102 } 1103 1104 /* We can't put a trampoline in a .init/.fini section. Issue 1105 an error. */ 1106 if (strcmp (sec->output_section->name, ".init") == 0 1107 || strcmp (sec->output_section->name, ".fini") == 0) 1108 { 1109 (*_bfd_error_handler) 1110 (_("%B: Can't relax br at 0x%lx in section `%A'. Please use brl or indirect branch."), 1111 sec->owner, sec, (unsigned long) roff); 1112 bfd_set_error (bfd_error_bad_value); 1113 goto error_return; 1114 } 1115 1116 /* If the branch and target are in the same section, you've 1117 got one honking big section and we can't help you unless 1118 you are branching backwards. You'll get an error message 1119 later. */ 1120 if (tsec == sec && toff > roff) 1121 continue; 1122 1123 /* Look for an existing fixup to this address. */ 1124 for (f = fixups; f ; f = f->next) 1125 if (f->tsec == tsec && f->toff == toff) 1126 break; 1127 1128 if (f == NULL) 1129 { 1130 /* Two alternatives: If it's a branch to a PLT entry, we can 1131 make a copy of the FULL_PLT entry. Otherwise, we'll have 1132 to use a `brl' insn to get where we're going. */ 1133 1134 size_t size; 1135 1136 if (tsec == ia64_info->root.splt) 1137 size = sizeof (plt_full_entry); 1138 else 1139 size = oor_branch_size; 1140 1141 /* Resize the current section to make room for the new branch. */ 1142 trampoff = (sec->size + 15) & (bfd_vma) -16; 1143 1144 /* If trampoline is out of range, there is nothing we 1145 can do. */ 1146 offset = trampoff - (roff & (bfd_vma) -4); 1147 if (offset < -0x1000000 || offset > 0x0FFFFF0) 1148 continue; 1149 1150 amt = trampoff + size; 1151 contents = (bfd_byte *) bfd_realloc (contents, amt); 1152 if (contents == NULL) 1153 goto error_return; 1154 sec->size = amt; 1155 1156 if (tsec == ia64_info->root.splt) 1157 { 1158 memcpy (contents + trampoff, plt_full_entry, size); 1159 1160 /* Hijack the old relocation for use as the PLTOFF reloc. */ 1161 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info), 1162 R_IA64_PLTOFF22); 1163 irel->r_offset = trampoff; 1164 } 1165 else 1166 { 1167 if (size == sizeof (oor_ip)) 1168 { 1169 memcpy (contents + trampoff, oor_ip, size); 1170 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info), 1171 R_IA64_PCREL64I); 1172 irel->r_addend -= 16; 1173 irel->r_offset = trampoff + 2; 1174 } 1175 else 1176 { 1177 memcpy (contents + trampoff, oor_brl, size); 1178 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info), 1179 R_IA64_PCREL60B); 1180 irel->r_offset = trampoff + 2; 1181 } 1182 1183 } 1184 1185 /* Record the fixup so we don't do it again this section. */ 1186 f = (struct one_fixup *) 1187 bfd_malloc ((bfd_size_type) sizeof (*f)); 1188 f->next = fixups; 1189 f->tsec = tsec; 1190 f->toff = toff; 1191 f->trampoff = trampoff; 1192 fixups = f; 1193 } 1194 else 1195 { 1196 /* If trampoline is out of range, there is nothing we 1197 can do. */ 1198 offset = f->trampoff - (roff & (bfd_vma) -4); 1199 if (offset < -0x1000000 || offset > 0x0FFFFF0) 1200 continue; 1201 1202 /* Nop out the reloc, since we're finalizing things here. */ 1203 irel->r_info = ELFNN_R_INFO (0, R_IA64_NONE); 1204 } 1205 1206 /* Fix up the existing branch to hit the trampoline. */ 1207 if (elfNN_ia64_install_value (contents + roff, offset, r_type) 1208 != bfd_reloc_ok) 1209 goto error_return; 1210 1211 changed_contents = TRUE; 1212 changed_relocs = TRUE; 1213 } 1214 else 1215 { 1216 /* Fetch the gp. */ 1217 if (gp == 0) 1218 { 1219 bfd *obfd = sec->output_section->owner; 1220 gp = _bfd_get_gp_value (obfd); 1221 if (gp == 0) 1222 { 1223 if (!elfNN_ia64_choose_gp (obfd, link_info)) 1224 goto error_return; 1225 gp = _bfd_get_gp_value (obfd); 1226 } 1227 } 1228 1229 /* If the data is out of range, do nothing. */ 1230 if ((bfd_signed_vma) (symaddr - gp) >= 0x200000 1231 ||(bfd_signed_vma) (symaddr - gp) < -0x200000) 1232 continue; 1233 1234 if (r_type == R_IA64_GPREL22) 1235 elfNN_ia64_update_short_info (tsec->output_section, 1236 tsec->output_offset + toff, 1237 ia64_info); 1238 else if (r_type == R_IA64_LTOFF22X) 1239 { 1240 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info), 1241 R_IA64_GPREL22); 1242 changed_relocs = TRUE; 1243 if (dyn_i->want_gotx) 1244 { 1245 dyn_i->want_gotx = 0; 1246 changed_got |= !dyn_i->want_got; 1247 } 1248 1249 elfNN_ia64_update_short_info (tsec->output_section, 1250 tsec->output_offset + toff, 1251 ia64_info); 1252 } 1253 else 1254 { 1255 elfNN_ia64_relax_ldxmov (contents, roff); 1256 irel->r_info = ELFNN_R_INFO (0, R_IA64_NONE); 1257 changed_contents = TRUE; 1258 changed_relocs = TRUE; 1259 } 1260 } 1261 } 1262 1263 /* ??? If we created fixups, this may push the code segment large 1264 enough that the data segment moves, which will change the GP. 1265 Reset the GP so that we re-calculate next round. We need to 1266 do this at the _beginning_ of the next round; now will not do. */ 1267 1268 /* Clean up and go home. */ 1269 while (fixups) 1270 { 1271 struct one_fixup *f = fixups; 1272 fixups = fixups->next; 1273 free (f); 1274 } 1275 1276 if (isymbuf != NULL 1277 && symtab_hdr->contents != (unsigned char *) isymbuf) 1278 { 1279 if (! link_info->keep_memory) 1280 free (isymbuf); 1281 else 1282 { 1283 /* Cache the symbols for elf_link_input_bfd. */ 1284 symtab_hdr->contents = (unsigned char *) isymbuf; 1285 } 1286 } 1287 1288 if (contents != NULL 1289 && elf_section_data (sec)->this_hdr.contents != contents) 1290 { 1291 if (!changed_contents && !link_info->keep_memory) 1292 free (contents); 1293 else 1294 { 1295 /* Cache the section contents for elf_link_input_bfd. */ 1296 elf_section_data (sec)->this_hdr.contents = contents; 1297 } 1298 } 1299 1300 if (elf_section_data (sec)->relocs != internal_relocs) 1301 { 1302 if (!changed_relocs) 1303 free (internal_relocs); 1304 else 1305 elf_section_data (sec)->relocs = internal_relocs; 1306 } 1307 1308 if (changed_got) 1309 { 1310 struct elfNN_ia64_allocate_data data; 1311 data.info = link_info; 1312 data.ofs = 0; 1313 ia64_info->self_dtpmod_offset = (bfd_vma) -1; 1314 1315 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_data_got, &data); 1316 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_fptr_got, &data); 1317 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_local_got, &data); 1318 ia64_info->root.sgot->size = data.ofs; 1319 1320 if (ia64_info->root.dynamic_sections_created 1321 && ia64_info->root.srelgot != NULL) 1322 { 1323 /* Resize .rela.got. */ 1324 ia64_info->root.srelgot->size = 0; 1325 if (link_info->shared 1326 && ia64_info->self_dtpmod_offset != (bfd_vma) -1) 1327 ia64_info->root.srelgot->size += sizeof (ElfNN_External_Rela); 1328 data.only_got = TRUE; 1329 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_dynrel_entries, 1330 &data); 1331 } 1332 } 1333 1334 if (link_info->relax_pass == 0) 1335 { 1336 /* Pass 0 is only needed to relax br. */ 1337 sec->skip_relax_pass_0 = skip_relax_pass_0; 1338 sec->skip_relax_pass_1 = skip_relax_pass_1; 1339 } 1340 1341 *again = changed_contents || changed_relocs; 1342 return TRUE; 1343 1344 error_return: 1345 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents) 1346 free (isymbuf); 1347 if (contents != NULL 1348 && elf_section_data (sec)->this_hdr.contents != contents) 1349 free (contents); 1350 if (internal_relocs != NULL 1351 && elf_section_data (sec)->relocs != internal_relocs) 1352 free (internal_relocs); 1353 return FALSE; 1354 } 1355 #undef skip_relax_pass_0 1356 #undef skip_relax_pass_1 1357 1358 static void 1359 elfNN_ia64_relax_ldxmov (bfd_byte *contents, bfd_vma off) 1360 { 1361 int shift, r1, r3; 1362 bfd_vma dword, insn; 1363 1364 switch ((int)off & 0x3) 1365 { 1366 case 0: shift = 5; break; 1367 case 1: shift = 14; off += 3; break; 1368 case 2: shift = 23; off += 6; break; 1369 default: 1370 abort (); 1371 } 1372 1373 dword = bfd_getl64 (contents + off); 1374 insn = (dword >> shift) & 0x1ffffffffffLL; 1375 1376 r1 = (insn >> 6) & 127; 1377 r3 = (insn >> 20) & 127; 1378 if (r1 == r3) 1379 insn = 0x8000000; /* nop */ 1380 else 1381 insn = (insn & 0x7f01fff) | 0x10800000000LL; /* (qp) mov r1 = r3 */ 1382 1383 dword &= ~(0x1ffffffffffLL << shift); 1384 dword |= (insn << shift); 1385 bfd_putl64 (dword, contents + off); 1386 } 1387 1388 /* Return TRUE if NAME is an unwind table section name. */ 1389 1390 static inline bfd_boolean 1391 is_unwind_section_name (bfd *abfd, const char *name) 1392 { 1393 if (elfNN_ia64_hpux_vec (abfd->xvec) 1394 && !strcmp (name, ELF_STRING_ia64_unwind_hdr)) 1395 return FALSE; 1396 1397 return ((CONST_STRNEQ (name, ELF_STRING_ia64_unwind) 1398 && ! CONST_STRNEQ (name, ELF_STRING_ia64_unwind_info)) 1399 || CONST_STRNEQ (name, ELF_STRING_ia64_unwind_once)); 1400 } 1401 1402 /* Handle an IA-64 specific section when reading an object file. This 1403 is called when bfd_section_from_shdr finds a section with an unknown 1404 type. */ 1405 1406 static bfd_boolean 1407 elfNN_ia64_section_from_shdr (bfd *abfd, 1408 Elf_Internal_Shdr *hdr, 1409 const char *name, 1410 int shindex) 1411 { 1412 /* There ought to be a place to keep ELF backend specific flags, but 1413 at the moment there isn't one. We just keep track of the 1414 sections by their name, instead. Fortunately, the ABI gives 1415 suggested names for all the MIPS specific sections, so we will 1416 probably get away with this. */ 1417 switch (hdr->sh_type) 1418 { 1419 case SHT_IA_64_UNWIND: 1420 case SHT_IA_64_HP_OPT_ANOT: 1421 break; 1422 1423 case SHT_IA_64_EXT: 1424 if (strcmp (name, ELF_STRING_ia64_archext) != 0) 1425 return FALSE; 1426 break; 1427 1428 default: 1429 return FALSE; 1430 } 1431 1432 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) 1433 return FALSE; 1434 1435 return TRUE; 1436 } 1437 1438 /* Convert IA-64 specific section flags to bfd internal section flags. */ 1439 1440 /* ??? There is no bfd internal flag equivalent to the SHF_IA_64_NORECOV 1441 flag. */ 1442 1443 static bfd_boolean 1444 elfNN_ia64_section_flags (flagword *flags, 1445 const Elf_Internal_Shdr *hdr) 1446 { 1447 if (hdr->sh_flags & SHF_IA_64_SHORT) 1448 *flags |= SEC_SMALL_DATA; 1449 1450 return TRUE; 1451 } 1452 1453 /* Set the correct type for an IA-64 ELF section. We do this by the 1454 section name, which is a hack, but ought to work. */ 1455 1456 static bfd_boolean 1457 elfNN_ia64_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, 1458 asection *sec) 1459 { 1460 const char *name; 1461 1462 name = bfd_get_section_name (abfd, sec); 1463 1464 if (is_unwind_section_name (abfd, name)) 1465 { 1466 /* We don't have the sections numbered at this point, so sh_info 1467 is set later, in elfNN_ia64_final_write_processing. */ 1468 hdr->sh_type = SHT_IA_64_UNWIND; 1469 hdr->sh_flags |= SHF_LINK_ORDER; 1470 } 1471 else if (strcmp (name, ELF_STRING_ia64_archext) == 0) 1472 hdr->sh_type = SHT_IA_64_EXT; 1473 else if (strcmp (name, ".HP.opt_annot") == 0) 1474 hdr->sh_type = SHT_IA_64_HP_OPT_ANOT; 1475 else if (strcmp (name, ".reloc") == 0) 1476 /* This is an ugly, but unfortunately necessary hack that is 1477 needed when producing EFI binaries on IA-64. It tells 1478 elf.c:elf_fake_sections() not to consider ".reloc" as a section 1479 containing ELF relocation info. We need this hack in order to 1480 be able to generate ELF binaries that can be translated into 1481 EFI applications (which are essentially COFF objects). Those 1482 files contain a COFF ".reloc" section inside an ELFNN object, 1483 which would normally cause BFD to segfault because it would 1484 attempt to interpret this section as containing relocation 1485 entries for section "oc". With this hack enabled, ".reloc" 1486 will be treated as a normal data section, which will avoid the 1487 segfault. However, you won't be able to create an ELFNN binary 1488 with a section named "oc" that needs relocations, but that's 1489 the kind of ugly side-effects you get when detecting section 1490 types based on their names... In practice, this limitation is 1491 unlikely to bite. */ 1492 hdr->sh_type = SHT_PROGBITS; 1493 1494 if (sec->flags & SEC_SMALL_DATA) 1495 hdr->sh_flags |= SHF_IA_64_SHORT; 1496 1497 /* Some HP linkers look for the SHF_IA_64_HP_TLS flag instead of SHF_TLS. */ 1498 1499 if (elfNN_ia64_hpux_vec (abfd->xvec) && (sec->flags & SHF_TLS)) 1500 hdr->sh_flags |= SHF_IA_64_HP_TLS; 1501 1502 return TRUE; 1503 } 1504 1505 /* The final processing done just before writing out an IA-64 ELF 1506 object file. */ 1507 1508 static void 1509 elfNN_ia64_final_write_processing (bfd *abfd, 1510 bfd_boolean linker ATTRIBUTE_UNUSED) 1511 { 1512 Elf_Internal_Shdr *hdr; 1513 asection *s; 1514 1515 for (s = abfd->sections; s; s = s->next) 1516 { 1517 hdr = &elf_section_data (s)->this_hdr; 1518 switch (hdr->sh_type) 1519 { 1520 case SHT_IA_64_UNWIND: 1521 /* The IA-64 processor-specific ABI requires setting sh_link 1522 to the unwind section, whereas HP-UX requires sh_info to 1523 do so. For maximum compatibility, we'll set both for 1524 now... */ 1525 hdr->sh_info = hdr->sh_link; 1526 break; 1527 } 1528 } 1529 1530 if (! elf_flags_init (abfd)) 1531 { 1532 unsigned long flags = 0; 1533 1534 if (abfd->xvec->byteorder == BFD_ENDIAN_BIG) 1535 flags |= EF_IA_64_BE; 1536 if (bfd_get_mach (abfd) == bfd_mach_ia64_elf64) 1537 flags |= EF_IA_64_ABI64; 1538 1539 elf_elfheader(abfd)->e_flags = flags; 1540 elf_flags_init (abfd) = TRUE; 1541 } 1542 } 1543 1544 /* Hook called by the linker routine which adds symbols from an object 1545 file. We use it to put .comm items in .sbss, and not .bss. */ 1546 1547 static bfd_boolean 1548 elfNN_ia64_add_symbol_hook (bfd *abfd, 1549 struct bfd_link_info *info, 1550 Elf_Internal_Sym *sym, 1551 const char **namep ATTRIBUTE_UNUSED, 1552 flagword *flagsp ATTRIBUTE_UNUSED, 1553 asection **secp, 1554 bfd_vma *valp) 1555 { 1556 if (sym->st_shndx == SHN_COMMON 1557 && !info->relocatable 1558 && sym->st_size <= elf_gp_size (abfd)) 1559 { 1560 /* Common symbols less than or equal to -G nn bytes are 1561 automatically put into .sbss. */ 1562 1563 asection *scomm = bfd_get_section_by_name (abfd, ".scommon"); 1564 1565 if (scomm == NULL) 1566 { 1567 scomm = bfd_make_section_with_flags (abfd, ".scommon", 1568 (SEC_ALLOC 1569 | SEC_IS_COMMON 1570 | SEC_LINKER_CREATED)); 1571 if (scomm == NULL) 1572 return FALSE; 1573 } 1574 1575 *secp = scomm; 1576 *valp = sym->st_size; 1577 } 1578 1579 return TRUE; 1580 } 1581 1582 /* Return the number of additional phdrs we will need. */ 1583 1584 static int 1585 elfNN_ia64_additional_program_headers (bfd *abfd, 1586 struct bfd_link_info *info ATTRIBUTE_UNUSED) 1587 { 1588 asection *s; 1589 int ret = 0; 1590 1591 /* See if we need a PT_IA_64_ARCHEXT segment. */ 1592 s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_archext); 1593 if (s && (s->flags & SEC_LOAD)) 1594 ++ret; 1595 1596 /* Count how many PT_IA_64_UNWIND segments we need. */ 1597 for (s = abfd->sections; s; s = s->next) 1598 if (is_unwind_section_name (abfd, s->name) && (s->flags & SEC_LOAD)) 1599 ++ret; 1600 1601 return ret; 1602 } 1603 1604 static bfd_boolean 1605 elfNN_ia64_modify_segment_map (bfd *abfd, 1606 struct bfd_link_info *info ATTRIBUTE_UNUSED) 1607 { 1608 struct elf_segment_map *m, **pm; 1609 Elf_Internal_Shdr *hdr; 1610 asection *s; 1611 1612 /* If we need a PT_IA_64_ARCHEXT segment, it must come before 1613 all PT_LOAD segments. */ 1614 s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_archext); 1615 if (s && (s->flags & SEC_LOAD)) 1616 { 1617 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) 1618 if (m->p_type == PT_IA_64_ARCHEXT) 1619 break; 1620 if (m == NULL) 1621 { 1622 m = ((struct elf_segment_map *) 1623 bfd_zalloc (abfd, (bfd_size_type) sizeof *m)); 1624 if (m == NULL) 1625 return FALSE; 1626 1627 m->p_type = PT_IA_64_ARCHEXT; 1628 m->count = 1; 1629 m->sections[0] = s; 1630 1631 /* We want to put it after the PHDR and INTERP segments. */ 1632 pm = &elf_tdata (abfd)->segment_map; 1633 while (*pm != NULL 1634 && ((*pm)->p_type == PT_PHDR 1635 || (*pm)->p_type == PT_INTERP)) 1636 pm = &(*pm)->next; 1637 1638 m->next = *pm; 1639 *pm = m; 1640 } 1641 } 1642 1643 /* Install PT_IA_64_UNWIND segments, if needed. */ 1644 for (s = abfd->sections; s; s = s->next) 1645 { 1646 hdr = &elf_section_data (s)->this_hdr; 1647 if (hdr->sh_type != SHT_IA_64_UNWIND) 1648 continue; 1649 1650 if (s && (s->flags & SEC_LOAD)) 1651 { 1652 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) 1653 if (m->p_type == PT_IA_64_UNWIND) 1654 { 1655 int i; 1656 1657 /* Look through all sections in the unwind segment 1658 for a match since there may be multiple sections 1659 to a segment. */ 1660 for (i = m->count - 1; i >= 0; --i) 1661 if (m->sections[i] == s) 1662 break; 1663 1664 if (i >= 0) 1665 break; 1666 } 1667 1668 if (m == NULL) 1669 { 1670 m = ((struct elf_segment_map *) 1671 bfd_zalloc (abfd, (bfd_size_type) sizeof *m)); 1672 if (m == NULL) 1673 return FALSE; 1674 1675 m->p_type = PT_IA_64_UNWIND; 1676 m->count = 1; 1677 m->sections[0] = s; 1678 m->next = NULL; 1679 1680 /* We want to put it last. */ 1681 pm = &elf_tdata (abfd)->segment_map; 1682 while (*pm != NULL) 1683 pm = &(*pm)->next; 1684 *pm = m; 1685 } 1686 } 1687 } 1688 1689 return TRUE; 1690 } 1691 1692 /* Turn on PF_IA_64_NORECOV if needed. This involves traversing all of 1693 the input sections for each output section in the segment and testing 1694 for SHF_IA_64_NORECOV on each. */ 1695 1696 static bfd_boolean 1697 elfNN_ia64_modify_program_headers (bfd *abfd, 1698 struct bfd_link_info *info ATTRIBUTE_UNUSED) 1699 { 1700 struct elf_obj_tdata *tdata = elf_tdata (abfd); 1701 struct elf_segment_map *m; 1702 Elf_Internal_Phdr *p; 1703 1704 for (p = tdata->phdr, m = tdata->segment_map; m != NULL; m = m->next, p++) 1705 if (m->p_type == PT_LOAD) 1706 { 1707 int i; 1708 for (i = m->count - 1; i >= 0; --i) 1709 { 1710 struct bfd_link_order *order = m->sections[i]->map_head.link_order; 1711 1712 while (order != NULL) 1713 { 1714 if (order->type == bfd_indirect_link_order) 1715 { 1716 asection *is = order->u.indirect.section; 1717 bfd_vma flags = elf_section_data(is)->this_hdr.sh_flags; 1718 if (flags & SHF_IA_64_NORECOV) 1719 { 1720 p->p_flags |= PF_IA_64_NORECOV; 1721 goto found; 1722 } 1723 } 1724 order = order->next; 1725 } 1726 } 1727 found:; 1728 } 1729 1730 return TRUE; 1731 } 1732 1733 /* According to the Tahoe assembler spec, all labels starting with a 1734 '.' are local. */ 1735 1736 static bfd_boolean 1737 elfNN_ia64_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED, 1738 const char *name) 1739 { 1740 return name[0] == '.'; 1741 } 1742 1743 /* Should we do dynamic things to this symbol? */ 1744 1745 static bfd_boolean 1746 elfNN_ia64_dynamic_symbol_p (struct elf_link_hash_entry *h, 1747 struct bfd_link_info *info, int r_type) 1748 { 1749 bfd_boolean ignore_protected 1750 = ((r_type & 0xf8) == 0x40 /* FPTR relocs */ 1751 || (r_type & 0xf8) == 0x50); /* LTOFF_FPTR relocs */ 1752 1753 return _bfd_elf_dynamic_symbol_p (h, info, ignore_protected); 1754 } 1755 1756 static struct bfd_hash_entry* 1757 elfNN_ia64_new_elf_hash_entry (struct bfd_hash_entry *entry, 1758 struct bfd_hash_table *table, 1759 const char *string) 1760 { 1761 struct elfNN_ia64_link_hash_entry *ret; 1762 ret = (struct elfNN_ia64_link_hash_entry *) entry; 1763 1764 /* Allocate the structure if it has not already been allocated by a 1765 subclass. */ 1766 if (!ret) 1767 ret = bfd_hash_allocate (table, sizeof (*ret)); 1768 1769 if (!ret) 1770 return 0; 1771 1772 /* Call the allocation method of the superclass. */ 1773 ret = ((struct elfNN_ia64_link_hash_entry *) 1774 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, 1775 table, string)); 1776 1777 ret->info = NULL; 1778 ret->count = 0; 1779 ret->sorted_count = 0; 1780 ret->size = 0; 1781 return (struct bfd_hash_entry *) ret; 1782 } 1783 1784 static void 1785 elfNN_ia64_hash_copy_indirect (struct bfd_link_info *info, 1786 struct elf_link_hash_entry *xdir, 1787 struct elf_link_hash_entry *xind) 1788 { 1789 struct elfNN_ia64_link_hash_entry *dir, *ind; 1790 1791 dir = (struct elfNN_ia64_link_hash_entry *) xdir; 1792 ind = (struct elfNN_ia64_link_hash_entry *) xind; 1793 1794 /* Copy down any references that we may have already seen to the 1795 symbol which just became indirect. */ 1796 1797 dir->root.ref_dynamic |= ind->root.ref_dynamic; 1798 dir->root.ref_regular |= ind->root.ref_regular; 1799 dir->root.ref_regular_nonweak |= ind->root.ref_regular_nonweak; 1800 dir->root.needs_plt |= ind->root.needs_plt; 1801 1802 if (ind->root.root.type != bfd_link_hash_indirect) 1803 return; 1804 1805 /* Copy over the got and plt data. This would have been done 1806 by check_relocs. */ 1807 1808 if (ind->info != NULL) 1809 { 1810 struct elfNN_ia64_dyn_sym_info *dyn_i; 1811 unsigned int count; 1812 1813 if (dir->info) 1814 free (dir->info); 1815 1816 dir->info = ind->info; 1817 dir->count = ind->count; 1818 dir->sorted_count = ind->sorted_count; 1819 dir->size = ind->size; 1820 1821 ind->info = NULL; 1822 ind->count = 0; 1823 ind->sorted_count = 0; 1824 ind->size = 0; 1825 1826 /* Fix up the dyn_sym_info pointers to the global symbol. */ 1827 for (count = dir->count, dyn_i = dir->info; 1828 count != 0; 1829 count--, dyn_i++) 1830 dyn_i->h = &dir->root; 1831 } 1832 1833 /* Copy over the dynindx. */ 1834 1835 if (ind->root.dynindx != -1) 1836 { 1837 if (dir->root.dynindx != -1) 1838 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr, 1839 dir->root.dynstr_index); 1840 dir->root.dynindx = ind->root.dynindx; 1841 dir->root.dynstr_index = ind->root.dynstr_index; 1842 ind->root.dynindx = -1; 1843 ind->root.dynstr_index = 0; 1844 } 1845 } 1846 1847 static void 1848 elfNN_ia64_hash_hide_symbol (struct bfd_link_info *info, 1849 struct elf_link_hash_entry *xh, 1850 bfd_boolean force_local) 1851 { 1852 struct elfNN_ia64_link_hash_entry *h; 1853 struct elfNN_ia64_dyn_sym_info *dyn_i; 1854 unsigned int count; 1855 1856 h = (struct elfNN_ia64_link_hash_entry *)xh; 1857 1858 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local); 1859 1860 for (count = h->count, dyn_i = h->info; 1861 count != 0; 1862 count--, dyn_i++) 1863 { 1864 dyn_i->want_plt2 = 0; 1865 dyn_i->want_plt = 0; 1866 } 1867 } 1868 1869 /* Compute a hash of a local hash entry. */ 1870 1871 static hashval_t 1872 elfNN_ia64_local_htab_hash (const void *ptr) 1873 { 1874 struct elfNN_ia64_local_hash_entry *entry 1875 = (struct elfNN_ia64_local_hash_entry *) ptr; 1876 1877 return ELF_LOCAL_SYMBOL_HASH (entry->id, entry->r_sym); 1878 } 1879 1880 /* Compare local hash entries. */ 1881 1882 static int 1883 elfNN_ia64_local_htab_eq (const void *ptr1, const void *ptr2) 1884 { 1885 struct elfNN_ia64_local_hash_entry *entry1 1886 = (struct elfNN_ia64_local_hash_entry *) ptr1; 1887 struct elfNN_ia64_local_hash_entry *entry2 1888 = (struct elfNN_ia64_local_hash_entry *) ptr2; 1889 1890 return entry1->id == entry2->id && entry1->r_sym == entry2->r_sym; 1891 } 1892 1893 /* Create the derived linker hash table. The IA-64 ELF port uses this 1894 derived hash table to keep information specific to the IA-64 ElF 1895 linker (without using static variables). */ 1896 1897 static struct bfd_link_hash_table * 1898 elfNN_ia64_hash_table_create (bfd *abfd) 1899 { 1900 struct elfNN_ia64_link_hash_table *ret; 1901 1902 ret = bfd_zmalloc ((bfd_size_type) sizeof (*ret)); 1903 if (!ret) 1904 return NULL; 1905 1906 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, 1907 elfNN_ia64_new_elf_hash_entry, 1908 sizeof (struct elfNN_ia64_link_hash_entry), 1909 IA64_ELF_DATA)) 1910 { 1911 free (ret); 1912 return NULL; 1913 } 1914 1915 ret->loc_hash_table = htab_try_create (1024, elfNN_ia64_local_htab_hash, 1916 elfNN_ia64_local_htab_eq, NULL); 1917 ret->loc_hash_memory = objalloc_create (); 1918 if (!ret->loc_hash_table || !ret->loc_hash_memory) 1919 { 1920 free (ret); 1921 return NULL; 1922 } 1923 1924 return &ret->root.root; 1925 } 1926 1927 /* Free the global elfNN_ia64_dyn_sym_info array. */ 1928 1929 static bfd_boolean 1930 elfNN_ia64_global_dyn_info_free (void **xentry, 1931 PTR unused ATTRIBUTE_UNUSED) 1932 { 1933 struct elfNN_ia64_link_hash_entry *entry 1934 = (struct elfNN_ia64_link_hash_entry *) xentry; 1935 1936 if (entry->root.root.type == bfd_link_hash_warning) 1937 entry = (struct elfNN_ia64_link_hash_entry *) entry->root.root.u.i.link; 1938 1939 if (entry->info) 1940 { 1941 free (entry->info); 1942 entry->info = NULL; 1943 entry->count = 0; 1944 entry->sorted_count = 0; 1945 entry->size = 0; 1946 } 1947 1948 return TRUE; 1949 } 1950 1951 /* Free the local elfNN_ia64_dyn_sym_info array. */ 1952 1953 static bfd_boolean 1954 elfNN_ia64_local_dyn_info_free (void **slot, 1955 PTR unused ATTRIBUTE_UNUSED) 1956 { 1957 struct elfNN_ia64_local_hash_entry *entry 1958 = (struct elfNN_ia64_local_hash_entry *) *slot; 1959 1960 if (entry->info) 1961 { 1962 free (entry->info); 1963 entry->info = NULL; 1964 entry->count = 0; 1965 entry->sorted_count = 0; 1966 entry->size = 0; 1967 } 1968 1969 return TRUE; 1970 } 1971 1972 /* Destroy IA-64 linker hash table. */ 1973 1974 static void 1975 elfNN_ia64_hash_table_free (struct bfd_link_hash_table *hash) 1976 { 1977 struct elfNN_ia64_link_hash_table *ia64_info 1978 = (struct elfNN_ia64_link_hash_table *) hash; 1979 if (ia64_info->loc_hash_table) 1980 { 1981 htab_traverse (ia64_info->loc_hash_table, 1982 elfNN_ia64_local_dyn_info_free, NULL); 1983 htab_delete (ia64_info->loc_hash_table); 1984 } 1985 if (ia64_info->loc_hash_memory) 1986 objalloc_free ((struct objalloc *) ia64_info->loc_hash_memory); 1987 elf_link_hash_traverse (&ia64_info->root, 1988 elfNN_ia64_global_dyn_info_free, NULL); 1989 _bfd_generic_link_hash_table_free (hash); 1990 } 1991 1992 /* Traverse both local and global hash tables. */ 1993 1994 struct elfNN_ia64_dyn_sym_traverse_data 1995 { 1996 bfd_boolean (*func) (struct elfNN_ia64_dyn_sym_info *, PTR); 1997 PTR data; 1998 }; 1999 2000 static bfd_boolean 2001 elfNN_ia64_global_dyn_sym_thunk (struct bfd_hash_entry *xentry, 2002 PTR xdata) 2003 { 2004 struct elfNN_ia64_link_hash_entry *entry 2005 = (struct elfNN_ia64_link_hash_entry *) xentry; 2006 struct elfNN_ia64_dyn_sym_traverse_data *data 2007 = (struct elfNN_ia64_dyn_sym_traverse_data *) xdata; 2008 struct elfNN_ia64_dyn_sym_info *dyn_i; 2009 unsigned int count; 2010 2011 if (entry->root.root.type == bfd_link_hash_warning) 2012 entry = (struct elfNN_ia64_link_hash_entry *) entry->root.root.u.i.link; 2013 2014 for (count = entry->count, dyn_i = entry->info; 2015 count != 0; 2016 count--, dyn_i++) 2017 if (! (*data->func) (dyn_i, data->data)) 2018 return FALSE; 2019 return TRUE; 2020 } 2021 2022 static bfd_boolean 2023 elfNN_ia64_local_dyn_sym_thunk (void **slot, PTR xdata) 2024 { 2025 struct elfNN_ia64_local_hash_entry *entry 2026 = (struct elfNN_ia64_local_hash_entry *) *slot; 2027 struct elfNN_ia64_dyn_sym_traverse_data *data 2028 = (struct elfNN_ia64_dyn_sym_traverse_data *) xdata; 2029 struct elfNN_ia64_dyn_sym_info *dyn_i; 2030 unsigned int count; 2031 2032 for (count = entry->count, dyn_i = entry->info; 2033 count != 0; 2034 count--, dyn_i++) 2035 if (! (*data->func) (dyn_i, data->data)) 2036 return FALSE; 2037 return TRUE; 2038 } 2039 2040 static void 2041 elfNN_ia64_dyn_sym_traverse (struct elfNN_ia64_link_hash_table *ia64_info, 2042 bfd_boolean (*func) (struct elfNN_ia64_dyn_sym_info *, PTR), 2043 PTR data) 2044 { 2045 struct elfNN_ia64_dyn_sym_traverse_data xdata; 2046 2047 xdata.func = func; 2048 xdata.data = data; 2049 2050 elf_link_hash_traverse (&ia64_info->root, 2051 elfNN_ia64_global_dyn_sym_thunk, &xdata); 2052 htab_traverse (ia64_info->loc_hash_table, 2053 elfNN_ia64_local_dyn_sym_thunk, &xdata); 2054 } 2055 2056 static bfd_boolean 2057 elfNN_ia64_create_dynamic_sections (bfd *abfd, 2058 struct bfd_link_info *info) 2059 { 2060 struct elfNN_ia64_link_hash_table *ia64_info; 2061 asection *s; 2062 2063 if (! _bfd_elf_create_dynamic_sections (abfd, info)) 2064 return FALSE; 2065 2066 ia64_info = elfNN_ia64_hash_table (info); 2067 if (ia64_info == NULL) 2068 return FALSE; 2069 2070 { 2071 flagword flags = bfd_get_section_flags (abfd, ia64_info->root.sgot); 2072 bfd_set_section_flags (abfd, ia64_info->root.sgot, 2073 SEC_SMALL_DATA | flags); 2074 /* The .got section is always aligned at 8 bytes. */ 2075 bfd_set_section_alignment (abfd, ia64_info->root.sgot, 3); 2076 } 2077 2078 if (!get_pltoff (abfd, info, ia64_info)) 2079 return FALSE; 2080 2081 s = bfd_make_section_with_flags (abfd, ".rela.IA_64.pltoff", 2082 (SEC_ALLOC | SEC_LOAD 2083 | SEC_HAS_CONTENTS 2084 | SEC_IN_MEMORY 2085 | SEC_LINKER_CREATED 2086 | SEC_READONLY)); 2087 if (s == NULL 2088 || !bfd_set_section_alignment (abfd, s, LOG_SECTION_ALIGN)) 2089 return FALSE; 2090 ia64_info->rel_pltoff_sec = s; 2091 2092 return TRUE; 2093 } 2094 2095 /* Find and/or create a hash entry for local symbol. */ 2096 static struct elfNN_ia64_local_hash_entry * 2097 get_local_sym_hash (struct elfNN_ia64_link_hash_table *ia64_info, 2098 bfd *abfd, const Elf_Internal_Rela *rel, 2099 bfd_boolean create) 2100 { 2101 struct elfNN_ia64_local_hash_entry e, *ret; 2102 asection *sec = abfd->sections; 2103 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id, 2104 ELFNN_R_SYM (rel->r_info)); 2105 void **slot; 2106 2107 e.id = sec->id; 2108 e.r_sym = ELFNN_R_SYM (rel->r_info); 2109 slot = htab_find_slot_with_hash (ia64_info->loc_hash_table, &e, h, 2110 create ? INSERT : NO_INSERT); 2111 2112 if (!slot) 2113 return NULL; 2114 2115 if (*slot) 2116 return (struct elfNN_ia64_local_hash_entry *) *slot; 2117 2118 ret = (struct elfNN_ia64_local_hash_entry *) 2119 objalloc_alloc ((struct objalloc *) ia64_info->loc_hash_memory, 2120 sizeof (struct elfNN_ia64_local_hash_entry)); 2121 if (ret) 2122 { 2123 memset (ret, 0, sizeof (*ret)); 2124 ret->id = sec->id; 2125 ret->r_sym = ELFNN_R_SYM (rel->r_info); 2126 *slot = ret; 2127 } 2128 return ret; 2129 } 2130 2131 /* Used to sort elfNN_ia64_dyn_sym_info array. */ 2132 2133 static int 2134 addend_compare (const void *xp, const void *yp) 2135 { 2136 const struct elfNN_ia64_dyn_sym_info *x 2137 = (const struct elfNN_ia64_dyn_sym_info *) xp; 2138 const struct elfNN_ia64_dyn_sym_info *y 2139 = (const struct elfNN_ia64_dyn_sym_info *) yp; 2140 2141 return x->addend < y->addend ? -1 : x->addend > y->addend ? 1 : 0; 2142 } 2143 2144 /* Sort elfNN_ia64_dyn_sym_info array and remove duplicates. */ 2145 2146 static unsigned int 2147 sort_dyn_sym_info (struct elfNN_ia64_dyn_sym_info *info, 2148 unsigned int count) 2149 { 2150 bfd_vma curr, prev, got_offset; 2151 unsigned int i, kept, dupes, diff, dest, src, len; 2152 2153 qsort (info, count, sizeof (*info), addend_compare); 2154 2155 /* Find the first duplicate. */ 2156 prev = info [0].addend; 2157 got_offset = info [0].got_offset; 2158 for (i = 1; i < count; i++) 2159 { 2160 curr = info [i].addend; 2161 if (curr == prev) 2162 { 2163 /* For duplicates, make sure that GOT_OFFSET is valid. */ 2164 if (got_offset == (bfd_vma) -1) 2165 got_offset = info [i].got_offset; 2166 break; 2167 } 2168 got_offset = info [i].got_offset; 2169 prev = curr; 2170 } 2171 2172 /* We may move a block of elements to here. */ 2173 dest = i++; 2174 2175 /* Remove duplicates. */ 2176 if (i < count) 2177 { 2178 while (i < count) 2179 { 2180 /* For duplicates, make sure that the kept one has a valid 2181 got_offset. */ 2182 kept = dest - 1; 2183 if (got_offset != (bfd_vma) -1) 2184 info [kept].got_offset = got_offset; 2185 2186 curr = info [i].addend; 2187 got_offset = info [i].got_offset; 2188 2189 /* Move a block of elements whose first one is different from 2190 the previous. */ 2191 if (curr == prev) 2192 { 2193 for (src = i + 1; src < count; src++) 2194 { 2195 if (info [src].addend != curr) 2196 break; 2197 /* For duplicates, make sure that GOT_OFFSET is 2198 valid. */ 2199 if (got_offset == (bfd_vma) -1) 2200 got_offset = info [src].got_offset; 2201 } 2202 2203 /* Make sure that the kept one has a valid got_offset. */ 2204 if (got_offset != (bfd_vma) -1) 2205 info [kept].got_offset = got_offset; 2206 } 2207 else 2208 src = i; 2209 2210 if (src >= count) 2211 break; 2212 2213 /* Find the next duplicate. SRC will be kept. */ 2214 prev = info [src].addend; 2215 got_offset = info [src].got_offset; 2216 for (dupes = src + 1; dupes < count; dupes ++) 2217 { 2218 curr = info [dupes].addend; 2219 if (curr == prev) 2220 { 2221 /* Make sure that got_offset is valid. */ 2222 if (got_offset == (bfd_vma) -1) 2223 got_offset = info [dupes].got_offset; 2224 2225 /* For duplicates, make sure that the kept one has 2226 a valid got_offset. */ 2227 if (got_offset != (bfd_vma) -1) 2228 info [dupes - 1].got_offset = got_offset; 2229 break; 2230 } 2231 got_offset = info [dupes].got_offset; 2232 prev = curr; 2233 } 2234 2235 /* How much to move. */ 2236 len = dupes - src; 2237 i = dupes + 1; 2238 2239 if (len == 1 && dupes < count) 2240 { 2241 /* If we only move 1 element, we combine it with the next 2242 one. There must be at least a duplicate. Find the 2243 next different one. */ 2244 for (diff = dupes + 1, src++; diff < count; diff++, src++) 2245 { 2246 if (info [diff].addend != curr) 2247 break; 2248 /* Make sure that got_offset is valid. */ 2249 if (got_offset == (bfd_vma) -1) 2250 got_offset = info [diff].got_offset; 2251 } 2252 2253 /* Makre sure that the last duplicated one has an valid 2254 offset. */ 2255 BFD_ASSERT (curr == prev); 2256 if (got_offset != (bfd_vma) -1) 2257 info [diff - 1].got_offset = got_offset; 2258 2259 if (diff < count) 2260 { 2261 /* Find the next duplicate. Track the current valid 2262 offset. */ 2263 prev = info [diff].addend; 2264 got_offset = info [diff].got_offset; 2265 for (dupes = diff + 1; dupes < count; dupes ++) 2266 { 2267 curr = info [dupes].addend; 2268 if (curr == prev) 2269 { 2270 /* For duplicates, make sure that GOT_OFFSET 2271 is valid. */ 2272 if (got_offset == (bfd_vma) -1) 2273 got_offset = info [dupes].got_offset; 2274 break; 2275 } 2276 got_offset = info [dupes].got_offset; 2277 prev = curr; 2278 diff++; 2279 } 2280 2281 len = diff - src + 1; 2282 i = diff + 1; 2283 } 2284 } 2285 2286 memmove (&info [dest], &info [src], len * sizeof (*info)); 2287 2288 dest += len; 2289 } 2290 2291 count = dest; 2292 } 2293 else 2294 { 2295 /* When we get here, either there is no duplicate at all or 2296 the only duplicate is the last element. */ 2297 if (dest < count) 2298 { 2299 /* If the last element is a duplicate, make sure that the 2300 kept one has a valid got_offset. We also update count. */ 2301 if (got_offset != (bfd_vma) -1) 2302 info [dest - 1].got_offset = got_offset; 2303 count = dest; 2304 } 2305 } 2306 2307 return count; 2308 } 2309 2310 /* Find and/or create a descriptor for dynamic symbol info. This will 2311 vary based on global or local symbol, and the addend to the reloc. 2312 2313 We don't sort when inserting. Also, we sort and eliminate 2314 duplicates if there is an unsorted section. Typically, this will 2315 only happen once, because we do all insertions before lookups. We 2316 then use bsearch to do a lookup. This also allows lookups to be 2317 fast. So we have fast insertion (O(log N) due to duplicate check), 2318 fast lookup (O(log N)) and one sort (O(N log N) expected time). 2319 Previously, all lookups were O(N) because of the use of the linked 2320 list and also all insertions were O(N) because of the check for 2321 duplicates. There are some complications here because the array 2322 size grows occasionally, which may add an O(N) factor, but this 2323 should be rare. Also, we free the excess array allocation, which 2324 requires a copy which is O(N), but this only happens once. */ 2325 2326 static struct elfNN_ia64_dyn_sym_info * 2327 get_dyn_sym_info (struct elfNN_ia64_link_hash_table *ia64_info, 2328 struct elf_link_hash_entry *h, bfd *abfd, 2329 const Elf_Internal_Rela *rel, bfd_boolean create) 2330 { 2331 struct elfNN_ia64_dyn_sym_info **info_p, *info, *dyn_i, key; 2332 unsigned int *count_p, *sorted_count_p, *size_p; 2333 unsigned int count, sorted_count, size; 2334 bfd_vma addend = rel ? rel->r_addend : 0; 2335 bfd_size_type amt; 2336 2337 if (h) 2338 { 2339 struct elfNN_ia64_link_hash_entry *global_h; 2340 2341 global_h = (struct elfNN_ia64_link_hash_entry *) h; 2342 info_p = &global_h->info; 2343 count_p = &global_h->count; 2344 sorted_count_p = &global_h->sorted_count; 2345 size_p = &global_h->size; 2346 } 2347 else 2348 { 2349 struct elfNN_ia64_local_hash_entry *loc_h; 2350 2351 loc_h = get_local_sym_hash (ia64_info, abfd, rel, create); 2352 if (!loc_h) 2353 { 2354 BFD_ASSERT (!create); 2355 return NULL; 2356 } 2357 2358 info_p = &loc_h->info; 2359 count_p = &loc_h->count; 2360 sorted_count_p = &loc_h->sorted_count; 2361 size_p = &loc_h->size; 2362 } 2363 2364 count = *count_p; 2365 sorted_count = *sorted_count_p; 2366 size = *size_p; 2367 info = *info_p; 2368 if (create) 2369 { 2370 /* When we create the array, we don't check for duplicates, 2371 except in the previously sorted section if one exists, and 2372 against the last inserted entry. This allows insertions to 2373 be fast. */ 2374 if (info) 2375 { 2376 if (sorted_count) 2377 { 2378 /* Try bsearch first on the sorted section. */ 2379 key.addend = addend; 2380 dyn_i = bsearch (&key, info, sorted_count, 2381 sizeof (*info), addend_compare); 2382 2383 if (dyn_i) 2384 { 2385 return dyn_i; 2386 } 2387 } 2388 2389 /* Do a quick check for the last inserted entry. */ 2390 dyn_i = info + count - 1; 2391 if (dyn_i->addend == addend) 2392 { 2393 return dyn_i; 2394 } 2395 } 2396 2397 if (size == 0) 2398 { 2399 /* It is the very first element. We create the array of size 2400 1. */ 2401 size = 1; 2402 amt = size * sizeof (*info); 2403 info = bfd_malloc (amt); 2404 } 2405 else if (size <= count) 2406 { 2407 /* We double the array size every time when we reach the 2408 size limit. */ 2409 size += size; 2410 amt = size * sizeof (*info); 2411 info = bfd_realloc (info, amt); 2412 } 2413 else 2414 goto has_space; 2415 2416 if (info == NULL) 2417 return NULL; 2418 *size_p = size; 2419 *info_p = info; 2420 2421 has_space: 2422 /* Append the new one to the array. */ 2423 dyn_i = info + count; 2424 memset (dyn_i, 0, sizeof (*dyn_i)); 2425 dyn_i->got_offset = (bfd_vma) -1; 2426 dyn_i->addend = addend; 2427 2428 /* We increment count only since the new ones are unsorted and 2429 may have duplicate. */ 2430 (*count_p)++; 2431 } 2432 else 2433 { 2434 /* It is a lookup without insertion. Sort array if part of the 2435 array isn't sorted. */ 2436 if (count != sorted_count) 2437 { 2438 count = sort_dyn_sym_info (info, count); 2439 *count_p = count; 2440 *sorted_count_p = count; 2441 } 2442 2443 /* Free unused memory. */ 2444 if (size != count) 2445 { 2446 amt = count * sizeof (*info); 2447 info = bfd_malloc (amt); 2448 if (info != NULL) 2449 { 2450 memcpy (info, *info_p, amt); 2451 free (*info_p); 2452 *size_p = count; 2453 *info_p = info; 2454 } 2455 } 2456 2457 key.addend = addend; 2458 dyn_i = bsearch (&key, info, count, 2459 sizeof (*info), addend_compare); 2460 } 2461 2462 return dyn_i; 2463 } 2464 2465 static asection * 2466 get_got (bfd *abfd, struct bfd_link_info *info, 2467 struct elfNN_ia64_link_hash_table *ia64_info) 2468 { 2469 asection *got; 2470 bfd *dynobj; 2471 2472 got = ia64_info->root.sgot; 2473 if (!got) 2474 { 2475 flagword flags; 2476 2477 dynobj = ia64_info->root.dynobj; 2478 if (!dynobj) 2479 ia64_info->root.dynobj = dynobj = abfd; 2480 if (!_bfd_elf_create_got_section (dynobj, info)) 2481 return 0; 2482 2483 got = ia64_info->root.sgot; 2484 2485 /* The .got section is always aligned at 8 bytes. */ 2486 if (!bfd_set_section_alignment (abfd, got, 3)) 2487 return 0; 2488 2489 flags = bfd_get_section_flags (abfd, got); 2490 bfd_set_section_flags (abfd, got, SEC_SMALL_DATA | flags); 2491 } 2492 2493 return got; 2494 } 2495 2496 /* Create function descriptor section (.opd). This section is called .opd 2497 because it contains "official procedure descriptors". The "official" 2498 refers to the fact that these descriptors are used when taking the address 2499 of a procedure, thus ensuring a unique address for each procedure. */ 2500 2501 static asection * 2502 get_fptr (bfd *abfd, struct bfd_link_info *info, 2503 struct elfNN_ia64_link_hash_table *ia64_info) 2504 { 2505 asection *fptr; 2506 bfd *dynobj; 2507 2508 fptr = ia64_info->fptr_sec; 2509 if (!fptr) 2510 { 2511 dynobj = ia64_info->root.dynobj; 2512 if (!dynobj) 2513 ia64_info->root.dynobj = dynobj = abfd; 2514 2515 fptr = bfd_make_section_with_flags (dynobj, ".opd", 2516 (SEC_ALLOC 2517 | SEC_LOAD 2518 | SEC_HAS_CONTENTS 2519 | SEC_IN_MEMORY 2520 | (info->pie ? 0 : SEC_READONLY) 2521 | SEC_LINKER_CREATED)); 2522 if (!fptr 2523 || !bfd_set_section_alignment (abfd, fptr, 4)) 2524 { 2525 BFD_ASSERT (0); 2526 return NULL; 2527 } 2528 2529 ia64_info->fptr_sec = fptr; 2530 2531 if (info->pie) 2532 { 2533 asection *fptr_rel; 2534 fptr_rel = bfd_make_section_with_flags (dynobj, ".rela.opd", 2535 (SEC_ALLOC | SEC_LOAD 2536 | SEC_HAS_CONTENTS 2537 | SEC_IN_MEMORY 2538 | SEC_LINKER_CREATED 2539 | SEC_READONLY)); 2540 if (fptr_rel == NULL 2541 || !bfd_set_section_alignment (abfd, fptr_rel, 2542 LOG_SECTION_ALIGN)) 2543 { 2544 BFD_ASSERT (0); 2545 return NULL; 2546 } 2547 2548 ia64_info->rel_fptr_sec = fptr_rel; 2549 } 2550 } 2551 2552 return fptr; 2553 } 2554 2555 static asection * 2556 get_pltoff (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED, 2557 struct elfNN_ia64_link_hash_table *ia64_info) 2558 { 2559 asection *pltoff; 2560 bfd *dynobj; 2561 2562 pltoff = ia64_info->pltoff_sec; 2563 if (!pltoff) 2564 { 2565 dynobj = ia64_info->root.dynobj; 2566 if (!dynobj) 2567 ia64_info->root.dynobj = dynobj = abfd; 2568 2569 pltoff = bfd_make_section_with_flags (dynobj, 2570 ELF_STRING_ia64_pltoff, 2571 (SEC_ALLOC 2572 | SEC_LOAD 2573 | SEC_HAS_CONTENTS 2574 | SEC_IN_MEMORY 2575 | SEC_SMALL_DATA 2576 | SEC_LINKER_CREATED)); 2577 if (!pltoff 2578 || !bfd_set_section_alignment (abfd, pltoff, 4)) 2579 { 2580 BFD_ASSERT (0); 2581 return NULL; 2582 } 2583 2584 ia64_info->pltoff_sec = pltoff; 2585 } 2586 2587 return pltoff; 2588 } 2589 2590 static asection * 2591 get_reloc_section (bfd *abfd, 2592 struct elfNN_ia64_link_hash_table *ia64_info, 2593 asection *sec, bfd_boolean create) 2594 { 2595 const char *srel_name; 2596 asection *srel; 2597 bfd *dynobj; 2598 2599 srel_name = (bfd_elf_string_from_elf_section 2600 (abfd, elf_elfheader(abfd)->e_shstrndx, 2601 _bfd_elf_single_rel_hdr (sec)->sh_name)); 2602 if (srel_name == NULL) 2603 return NULL; 2604 2605 dynobj = ia64_info->root.dynobj; 2606 if (!dynobj) 2607 ia64_info->root.dynobj = dynobj = abfd; 2608 2609 srel = bfd_get_section_by_name (dynobj, srel_name); 2610 if (srel == NULL && create) 2611 { 2612 srel = bfd_make_section_with_flags (dynobj, srel_name, 2613 (SEC_ALLOC | SEC_LOAD 2614 | SEC_HAS_CONTENTS 2615 | SEC_IN_MEMORY 2616 | SEC_LINKER_CREATED 2617 | SEC_READONLY)); 2618 if (srel == NULL 2619 || !bfd_set_section_alignment (dynobj, srel, 2620 LOG_SECTION_ALIGN)) 2621 return NULL; 2622 } 2623 2624 return srel; 2625 } 2626 2627 static bfd_boolean 2628 count_dyn_reloc (bfd *abfd, struct elfNN_ia64_dyn_sym_info *dyn_i, 2629 asection *srel, int type, bfd_boolean reltext) 2630 { 2631 struct elfNN_ia64_dyn_reloc_entry *rent; 2632 2633 for (rent = dyn_i->reloc_entries; rent; rent = rent->next) 2634 if (rent->srel == srel && rent->type == type) 2635 break; 2636 2637 if (!rent) 2638 { 2639 rent = ((struct elfNN_ia64_dyn_reloc_entry *) 2640 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent))); 2641 if (!rent) 2642 return FALSE; 2643 2644 rent->next = dyn_i->reloc_entries; 2645 rent->srel = srel; 2646 rent->type = type; 2647 rent->count = 0; 2648 dyn_i->reloc_entries = rent; 2649 } 2650 rent->reltext = reltext; 2651 rent->count++; 2652 2653 return TRUE; 2654 } 2655 2656 static bfd_boolean 2657 elfNN_ia64_check_relocs (bfd *abfd, struct bfd_link_info *info, 2658 asection *sec, 2659 const Elf_Internal_Rela *relocs) 2660 { 2661 struct elfNN_ia64_link_hash_table *ia64_info; 2662 const Elf_Internal_Rela *relend; 2663 Elf_Internal_Shdr *symtab_hdr; 2664 const Elf_Internal_Rela *rel; 2665 asection *got, *fptr, *srel, *pltoff; 2666 enum { 2667 NEED_GOT = 1, 2668 NEED_GOTX = 2, 2669 NEED_FPTR = 4, 2670 NEED_PLTOFF = 8, 2671 NEED_MIN_PLT = 16, 2672 NEED_FULL_PLT = 32, 2673 NEED_DYNREL = 64, 2674 NEED_LTOFF_FPTR = 128, 2675 NEED_TPREL = 256, 2676 NEED_DTPMOD = 512, 2677 NEED_DTPREL = 1024 2678 }; 2679 int need_entry; 2680 struct elf_link_hash_entry *h; 2681 unsigned long r_symndx; 2682 bfd_boolean maybe_dynamic; 2683 2684 if (info->relocatable) 2685 return TRUE; 2686 2687 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 2688 ia64_info = elfNN_ia64_hash_table (info); 2689 if (ia64_info == NULL) 2690 return FALSE; 2691 2692 got = fptr = srel = pltoff = NULL; 2693 2694 relend = relocs + sec->reloc_count; 2695 2696 /* We scan relocations first to create dynamic relocation arrays. We 2697 modified get_dyn_sym_info to allow fast insertion and support fast 2698 lookup in the next loop. */ 2699 for (rel = relocs; rel < relend; ++rel) 2700 { 2701 r_symndx = ELFNN_R_SYM (rel->r_info); 2702 if (r_symndx >= symtab_hdr->sh_info) 2703 { 2704 long indx = r_symndx - symtab_hdr->sh_info; 2705 h = elf_sym_hashes (abfd)[indx]; 2706 while (h->root.type == bfd_link_hash_indirect 2707 || h->root.type == bfd_link_hash_warning) 2708 h = (struct elf_link_hash_entry *) h->root.u.i.link; 2709 } 2710 else 2711 h = NULL; 2712 2713 /* We can only get preliminary data on whether a symbol is 2714 locally or externally defined, as not all of the input files 2715 have yet been processed. Do something with what we know, as 2716 this may help reduce memory usage and processing time later. */ 2717 maybe_dynamic = (h && ((!info->executable 2718 && (!SYMBOLIC_BIND (info, h) 2719 || info->unresolved_syms_in_shared_libs == RM_IGNORE)) 2720 || !h->def_regular 2721 || h->root.type == bfd_link_hash_defweak)); 2722 2723 need_entry = 0; 2724 switch (ELFNN_R_TYPE (rel->r_info)) 2725 { 2726 case R_IA64_TPREL64MSB: 2727 case R_IA64_TPREL64LSB: 2728 if (info->shared || maybe_dynamic) 2729 need_entry = NEED_DYNREL; 2730 break; 2731 2732 case R_IA64_LTOFF_TPREL22: 2733 need_entry = NEED_TPREL; 2734 if (info->shared) 2735 info->flags |= DF_STATIC_TLS; 2736 break; 2737 2738 case R_IA64_DTPREL32MSB: 2739 case R_IA64_DTPREL32LSB: 2740 case R_IA64_DTPREL64MSB: 2741 case R_IA64_DTPREL64LSB: 2742 if (info->shared || maybe_dynamic) 2743 need_entry = NEED_DYNREL; 2744 break; 2745 2746 case R_IA64_LTOFF_DTPREL22: 2747 need_entry = NEED_DTPREL; 2748 break; 2749 2750 case R_IA64_DTPMOD64MSB: 2751 case R_IA64_DTPMOD64LSB: 2752 if (info->shared || maybe_dynamic) 2753 need_entry = NEED_DYNREL; 2754 break; 2755 2756 case R_IA64_LTOFF_DTPMOD22: 2757 need_entry = NEED_DTPMOD; 2758 break; 2759 2760 case R_IA64_LTOFF_FPTR22: 2761 case R_IA64_LTOFF_FPTR64I: 2762 case R_IA64_LTOFF_FPTR32MSB: 2763 case R_IA64_LTOFF_FPTR32LSB: 2764 case R_IA64_LTOFF_FPTR64MSB: 2765 case R_IA64_LTOFF_FPTR64LSB: 2766 need_entry = NEED_FPTR | NEED_GOT | NEED_LTOFF_FPTR; 2767 break; 2768 2769 case R_IA64_FPTR64I: 2770 case R_IA64_FPTR32MSB: 2771 case R_IA64_FPTR32LSB: 2772 case R_IA64_FPTR64MSB: 2773 case R_IA64_FPTR64LSB: 2774 if (info->shared || h) 2775 need_entry = NEED_FPTR | NEED_DYNREL; 2776 else 2777 need_entry = NEED_FPTR; 2778 break; 2779 2780 case R_IA64_LTOFF22: 2781 case R_IA64_LTOFF64I: 2782 need_entry = NEED_GOT; 2783 break; 2784 2785 case R_IA64_LTOFF22X: 2786 need_entry = NEED_GOTX; 2787 break; 2788 2789 case R_IA64_PLTOFF22: 2790 case R_IA64_PLTOFF64I: 2791 case R_IA64_PLTOFF64MSB: 2792 case R_IA64_PLTOFF64LSB: 2793 need_entry = NEED_PLTOFF; 2794 if (h) 2795 { 2796 if (maybe_dynamic) 2797 need_entry |= NEED_MIN_PLT; 2798 } 2799 else 2800 { 2801 (*info->callbacks->warning) 2802 (info, _("@pltoff reloc against local symbol"), 0, 2803 abfd, 0, (bfd_vma) 0); 2804 } 2805 break; 2806 2807 case R_IA64_PCREL21B: 2808 case R_IA64_PCREL60B: 2809 /* Depending on where this symbol is defined, we may or may not 2810 need a full plt entry. Only skip if we know we'll not need 2811 the entry -- static or symbolic, and the symbol definition 2812 has already been seen. */ 2813 if (maybe_dynamic && rel->r_addend == 0) 2814 need_entry = NEED_FULL_PLT; 2815 break; 2816 2817 case R_IA64_IMM14: 2818 case R_IA64_IMM22: 2819 case R_IA64_IMM64: 2820 case R_IA64_DIR32MSB: 2821 case R_IA64_DIR32LSB: 2822 case R_IA64_DIR64MSB: 2823 case R_IA64_DIR64LSB: 2824 /* Shared objects will always need at least a REL relocation. */ 2825 if (info->shared || maybe_dynamic) 2826 need_entry = NEED_DYNREL; 2827 break; 2828 2829 case R_IA64_IPLTMSB: 2830 case R_IA64_IPLTLSB: 2831 /* Shared objects will always need at least a REL relocation. */ 2832 if (info->shared || maybe_dynamic) 2833 need_entry = NEED_DYNREL; 2834 break; 2835 2836 case R_IA64_PCREL22: 2837 case R_IA64_PCREL64I: 2838 case R_IA64_PCREL32MSB: 2839 case R_IA64_PCREL32LSB: 2840 case R_IA64_PCREL64MSB: 2841 case R_IA64_PCREL64LSB: 2842 if (maybe_dynamic) 2843 need_entry = NEED_DYNREL; 2844 break; 2845 } 2846 2847 if (!need_entry) 2848 continue; 2849 2850 if ((need_entry & NEED_FPTR) != 0 2851 && rel->r_addend) 2852 { 2853 (*info->callbacks->warning) 2854 (info, _("non-zero addend in @fptr reloc"), 0, 2855 abfd, 0, (bfd_vma) 0); 2856 } 2857 2858 if (get_dyn_sym_info (ia64_info, h, abfd, rel, TRUE) == NULL) 2859 return FALSE; 2860 } 2861 2862 /* Now, we only do lookup without insertion, which is very fast 2863 with the modified get_dyn_sym_info. */ 2864 for (rel = relocs; rel < relend; ++rel) 2865 { 2866 struct elfNN_ia64_dyn_sym_info *dyn_i; 2867 int dynrel_type = R_IA64_NONE; 2868 2869 r_symndx = ELFNN_R_SYM (rel->r_info); 2870 if (r_symndx >= symtab_hdr->sh_info) 2871 { 2872 /* We're dealing with a global symbol -- find its hash entry 2873 and mark it as being referenced. */ 2874 long indx = r_symndx - symtab_hdr->sh_info; 2875 h = elf_sym_hashes (abfd)[indx]; 2876 while (h->root.type == bfd_link_hash_indirect 2877 || h->root.type == bfd_link_hash_warning) 2878 h = (struct elf_link_hash_entry *) h->root.u.i.link; 2879 2880 h->ref_regular = 1; 2881 } 2882 else 2883 h = NULL; 2884 2885 /* We can only get preliminary data on whether a symbol is 2886 locally or externally defined, as not all of the input files 2887 have yet been processed. Do something with what we know, as 2888 this may help reduce memory usage and processing time later. */ 2889 maybe_dynamic = (h && ((!info->executable 2890 && (!SYMBOLIC_BIND (info, h) 2891 || info->unresolved_syms_in_shared_libs == RM_IGNORE)) 2892 || !h->def_regular 2893 || h->root.type == bfd_link_hash_defweak)); 2894 2895 need_entry = 0; 2896 switch (ELFNN_R_TYPE (rel->r_info)) 2897 { 2898 case R_IA64_TPREL64MSB: 2899 case R_IA64_TPREL64LSB: 2900 if (info->shared || maybe_dynamic) 2901 need_entry = NEED_DYNREL; 2902 dynrel_type = R_IA64_TPREL64LSB; 2903 if (info->shared) 2904 info->flags |= DF_STATIC_TLS; 2905 break; 2906 2907 case R_IA64_LTOFF_TPREL22: 2908 need_entry = NEED_TPREL; 2909 if (info->shared) 2910 info->flags |= DF_STATIC_TLS; 2911 break; 2912 2913 case R_IA64_DTPREL32MSB: 2914 case R_IA64_DTPREL32LSB: 2915 case R_IA64_DTPREL64MSB: 2916 case R_IA64_DTPREL64LSB: 2917 if (info->shared || maybe_dynamic) 2918 need_entry = NEED_DYNREL; 2919 dynrel_type = R_IA64_DTPRELNNLSB; 2920 break; 2921 2922 case R_IA64_LTOFF_DTPREL22: 2923 need_entry = NEED_DTPREL; 2924 break; 2925 2926 case R_IA64_DTPMOD64MSB: 2927 case R_IA64_DTPMOD64LSB: 2928 if (info->shared || maybe_dynamic) 2929 need_entry = NEED_DYNREL; 2930 dynrel_type = R_IA64_DTPMOD64LSB; 2931 break; 2932 2933 case R_IA64_LTOFF_DTPMOD22: 2934 need_entry = NEED_DTPMOD; 2935 break; 2936 2937 case R_IA64_LTOFF_FPTR22: 2938 case R_IA64_LTOFF_FPTR64I: 2939 case R_IA64_LTOFF_FPTR32MSB: 2940 case R_IA64_LTOFF_FPTR32LSB: 2941 case R_IA64_LTOFF_FPTR64MSB: 2942 case R_IA64_LTOFF_FPTR64LSB: 2943 need_entry = NEED_FPTR | NEED_GOT | NEED_LTOFF_FPTR; 2944 break; 2945 2946 case R_IA64_FPTR64I: 2947 case R_IA64_FPTR32MSB: 2948 case R_IA64_FPTR32LSB: 2949 case R_IA64_FPTR64MSB: 2950 case R_IA64_FPTR64LSB: 2951 if (info->shared || h) 2952 need_entry = NEED_FPTR | NEED_DYNREL; 2953 else 2954 need_entry = NEED_FPTR; 2955 dynrel_type = R_IA64_FPTRNNLSB; 2956 break; 2957 2958 case R_IA64_LTOFF22: 2959 case R_IA64_LTOFF64I: 2960 need_entry = NEED_GOT; 2961 break; 2962 2963 case R_IA64_LTOFF22X: 2964 need_entry = NEED_GOTX; 2965 break; 2966 2967 case R_IA64_PLTOFF22: 2968 case R_IA64_PLTOFF64I: 2969 case R_IA64_PLTOFF64MSB: 2970 case R_IA64_PLTOFF64LSB: 2971 need_entry = NEED_PLTOFF; 2972 if (h) 2973 { 2974 if (maybe_dynamic) 2975 need_entry |= NEED_MIN_PLT; 2976 } 2977 break; 2978 2979 case R_IA64_PCREL21B: 2980 case R_IA64_PCREL60B: 2981 /* Depending on where this symbol is defined, we may or may not 2982 need a full plt entry. Only skip if we know we'll not need 2983 the entry -- static or symbolic, and the symbol definition 2984 has already been seen. */ 2985 if (maybe_dynamic && rel->r_addend == 0) 2986 need_entry = NEED_FULL_PLT; 2987 break; 2988 2989 case R_IA64_IMM14: 2990 case R_IA64_IMM22: 2991 case R_IA64_IMM64: 2992 case R_IA64_DIR32MSB: 2993 case R_IA64_DIR32LSB: 2994 case R_IA64_DIR64MSB: 2995 case R_IA64_DIR64LSB: 2996 /* Shared objects will always need at least a REL relocation. */ 2997 if (info->shared || maybe_dynamic) 2998 need_entry = NEED_DYNREL; 2999 dynrel_type = R_IA64_DIRNNLSB; 3000 break; 3001 3002 case R_IA64_IPLTMSB: 3003 case R_IA64_IPLTLSB: 3004 /* Shared objects will always need at least a REL relocation. */ 3005 if (info->shared || maybe_dynamic) 3006 need_entry = NEED_DYNREL; 3007 dynrel_type = R_IA64_IPLTLSB; 3008 break; 3009 3010 case R_IA64_PCREL22: 3011 case R_IA64_PCREL64I: 3012 case R_IA64_PCREL32MSB: 3013 case R_IA64_PCREL32LSB: 3014 case R_IA64_PCREL64MSB: 3015 case R_IA64_PCREL64LSB: 3016 if (maybe_dynamic) 3017 need_entry = NEED_DYNREL; 3018 dynrel_type = R_IA64_PCRELNNLSB; 3019 break; 3020 } 3021 3022 if (!need_entry) 3023 continue; 3024 3025 dyn_i = get_dyn_sym_info (ia64_info, h, abfd, rel, FALSE); 3026 3027 /* Record whether or not this is a local symbol. */ 3028 dyn_i->h = h; 3029 3030 /* Create what's needed. */ 3031 if (need_entry & (NEED_GOT | NEED_GOTX | NEED_TPREL 3032 | NEED_DTPMOD | NEED_DTPREL)) 3033 { 3034 if (!got) 3035 { 3036 got = get_got (abfd, info, ia64_info); 3037 if (!got) 3038 return FALSE; 3039 } 3040 if (need_entry & NEED_GOT) 3041 dyn_i->want_got = 1; 3042 if (need_entry & NEED_GOTX) 3043 dyn_i->want_gotx = 1; 3044 if (need_entry & NEED_TPREL) 3045 dyn_i->want_tprel = 1; 3046 if (need_entry & NEED_DTPMOD) 3047 dyn_i->want_dtpmod = 1; 3048 if (need_entry & NEED_DTPREL) 3049 dyn_i->want_dtprel = 1; 3050 } 3051 if (need_entry & NEED_FPTR) 3052 { 3053 if (!fptr) 3054 { 3055 fptr = get_fptr (abfd, info, ia64_info); 3056 if (!fptr) 3057 return FALSE; 3058 } 3059 3060 /* FPTRs for shared libraries are allocated by the dynamic 3061 linker. Make sure this local symbol will appear in the 3062 dynamic symbol table. */ 3063 if (!h && info->shared) 3064 { 3065 if (! (bfd_elf_link_record_local_dynamic_symbol 3066 (info, abfd, (long) r_symndx))) 3067 return FALSE; 3068 } 3069 3070 dyn_i->want_fptr = 1; 3071 } 3072 if (need_entry & NEED_LTOFF_FPTR) 3073 dyn_i->want_ltoff_fptr = 1; 3074 if (need_entry & (NEED_MIN_PLT | NEED_FULL_PLT)) 3075 { 3076 if (!ia64_info->root.dynobj) 3077 ia64_info->root.dynobj = abfd; 3078 h->needs_plt = 1; 3079 dyn_i->want_plt = 1; 3080 } 3081 if (need_entry & NEED_FULL_PLT) 3082 dyn_i->want_plt2 = 1; 3083 if (need_entry & NEED_PLTOFF) 3084 { 3085 /* This is needed here, in case @pltoff is used in a non-shared 3086 link. */ 3087 if (!pltoff) 3088 { 3089 pltoff = get_pltoff (abfd, info, ia64_info); 3090 if (!pltoff) 3091 return FALSE; 3092 } 3093 3094 dyn_i->want_pltoff = 1; 3095 } 3096 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC)) 3097 { 3098 if (!srel) 3099 { 3100 srel = get_reloc_section (abfd, ia64_info, sec, TRUE); 3101 if (!srel) 3102 return FALSE; 3103 } 3104 if (!count_dyn_reloc (abfd, dyn_i, srel, dynrel_type, 3105 (sec->flags & SEC_READONLY) != 0)) 3106 return FALSE; 3107 } 3108 } 3109 3110 return TRUE; 3111 } 3112 3113 /* For cleanliness, and potentially faster dynamic loading, allocate 3114 external GOT entries first. */ 3115 3116 static bfd_boolean 3117 allocate_global_data_got (struct elfNN_ia64_dyn_sym_info *dyn_i, 3118 void * data) 3119 { 3120 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data; 3121 3122 if ((dyn_i->want_got || dyn_i->want_gotx) 3123 && ! dyn_i->want_fptr 3124 && elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0)) 3125 { 3126 dyn_i->got_offset = x->ofs; 3127 x->ofs += 8; 3128 } 3129 if (dyn_i->want_tprel) 3130 { 3131 dyn_i->tprel_offset = x->ofs; 3132 x->ofs += 8; 3133 } 3134 if (dyn_i->want_dtpmod) 3135 { 3136 if (elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0)) 3137 { 3138 dyn_i->dtpmod_offset = x->ofs; 3139 x->ofs += 8; 3140 } 3141 else 3142 { 3143 struct elfNN_ia64_link_hash_table *ia64_info; 3144 3145 ia64_info = elfNN_ia64_hash_table (x->info); 3146 if (ia64_info == NULL) 3147 return FALSE; 3148 3149 if (ia64_info->self_dtpmod_offset == (bfd_vma) -1) 3150 { 3151 ia64_info->self_dtpmod_offset = x->ofs; 3152 x->ofs += 8; 3153 } 3154 dyn_i->dtpmod_offset = ia64_info->self_dtpmod_offset; 3155 } 3156 } 3157 if (dyn_i->want_dtprel) 3158 { 3159 dyn_i->dtprel_offset = x->ofs; 3160 x->ofs += 8; 3161 } 3162 return TRUE; 3163 } 3164 3165 /* Next, allocate all the GOT entries used by LTOFF_FPTR relocs. */ 3166 3167 static bfd_boolean 3168 allocate_global_fptr_got (struct elfNN_ia64_dyn_sym_info *dyn_i, 3169 void * data) 3170 { 3171 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data; 3172 3173 if (dyn_i->want_got 3174 && dyn_i->want_fptr 3175 && elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, R_IA64_FPTRNNLSB)) 3176 { 3177 dyn_i->got_offset = x->ofs; 3178 x->ofs += 8; 3179 } 3180 return TRUE; 3181 } 3182 3183 /* Lastly, allocate all the GOT entries for local data. */ 3184 3185 static bfd_boolean 3186 allocate_local_got (struct elfNN_ia64_dyn_sym_info *dyn_i, 3187 PTR data) 3188 { 3189 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data; 3190 3191 if ((dyn_i->want_got || dyn_i->want_gotx) 3192 && !elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0)) 3193 { 3194 dyn_i->got_offset = x->ofs; 3195 x->ofs += 8; 3196 } 3197 return TRUE; 3198 } 3199 3200 /* Search for the index of a global symbol in it's defining object file. */ 3201 3202 static long 3203 global_sym_index (struct elf_link_hash_entry *h) 3204 { 3205 struct elf_link_hash_entry **p; 3206 bfd *obj; 3207 3208 BFD_ASSERT (h->root.type == bfd_link_hash_defined 3209 || h->root.type == bfd_link_hash_defweak); 3210 3211 obj = h->root.u.def.section->owner; 3212 for (p = elf_sym_hashes (obj); *p != h; ++p) 3213 continue; 3214 3215 return p - elf_sym_hashes (obj) + elf_tdata (obj)->symtab_hdr.sh_info; 3216 } 3217 3218 /* Allocate function descriptors. We can do these for every function 3219 in a main executable that is not exported. */ 3220 3221 static bfd_boolean 3222 allocate_fptr (struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data) 3223 { 3224 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data; 3225 3226 if (dyn_i->want_fptr) 3227 { 3228 struct elf_link_hash_entry *h = dyn_i->h; 3229 3230 if (h) 3231 while (h->root.type == bfd_link_hash_indirect 3232 || h->root.type == bfd_link_hash_warning) 3233 h = (struct elf_link_hash_entry *) h->root.u.i.link; 3234 3235 if (!x->info->executable 3236 && (!h 3237 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 3238 || (h->root.type != bfd_link_hash_undefweak 3239 && h->root.type != bfd_link_hash_undefined))) 3240 { 3241 if (h && h->dynindx == -1) 3242 { 3243 BFD_ASSERT ((h->root.type == bfd_link_hash_defined) 3244 || (h->root.type == bfd_link_hash_defweak)); 3245 3246 if (!bfd_elf_link_record_local_dynamic_symbol 3247 (x->info, h->root.u.def.section->owner, 3248 global_sym_index (h))) 3249 return FALSE; 3250 } 3251 3252 dyn_i->want_fptr = 0; 3253 } 3254 else if (h == NULL || h->dynindx == -1) 3255 { 3256 dyn_i->fptr_offset = x->ofs; 3257 x->ofs += 16; 3258 } 3259 else 3260 dyn_i->want_fptr = 0; 3261 } 3262 return TRUE; 3263 } 3264 3265 /* Allocate all the minimal PLT entries. */ 3266 3267 static bfd_boolean 3268 allocate_plt_entries (struct elfNN_ia64_dyn_sym_info *dyn_i, 3269 PTR data) 3270 { 3271 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data; 3272 3273 if (dyn_i->want_plt) 3274 { 3275 struct elf_link_hash_entry *h = dyn_i->h; 3276 3277 if (h) 3278 while (h->root.type == bfd_link_hash_indirect 3279 || h->root.type == bfd_link_hash_warning) 3280 h = (struct elf_link_hash_entry *) h->root.u.i.link; 3281 3282 /* ??? Versioned symbols seem to lose NEEDS_PLT. */ 3283 if (elfNN_ia64_dynamic_symbol_p (h, x->info, 0)) 3284 { 3285 bfd_size_type offset = x->ofs; 3286 if (offset == 0) 3287 offset = PLT_HEADER_SIZE; 3288 dyn_i->plt_offset = offset; 3289 x->ofs = offset + PLT_MIN_ENTRY_SIZE; 3290 3291 dyn_i->want_pltoff = 1; 3292 } 3293 else 3294 { 3295 dyn_i->want_plt = 0; 3296 dyn_i->want_plt2 = 0; 3297 } 3298 } 3299 return TRUE; 3300 } 3301 3302 /* Allocate all the full PLT entries. */ 3303 3304 static bfd_boolean 3305 allocate_plt2_entries (struct elfNN_ia64_dyn_sym_info *dyn_i, 3306 PTR data) 3307 { 3308 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data; 3309 3310 if (dyn_i->want_plt2) 3311 { 3312 struct elf_link_hash_entry *h = dyn_i->h; 3313 bfd_size_type ofs = x->ofs; 3314 3315 dyn_i->plt2_offset = ofs; 3316 x->ofs = ofs + PLT_FULL_ENTRY_SIZE; 3317 3318 while (h->root.type == bfd_link_hash_indirect 3319 || h->root.type == bfd_link_hash_warning) 3320 h = (struct elf_link_hash_entry *) h->root.u.i.link; 3321 dyn_i->h->plt.offset = ofs; 3322 } 3323 return TRUE; 3324 } 3325 3326 /* Allocate all the PLTOFF entries requested by relocations and 3327 plt entries. We can't share space with allocated FPTR entries, 3328 because the latter are not necessarily addressable by the GP. 3329 ??? Relaxation might be able to determine that they are. */ 3330 3331 static bfd_boolean 3332 allocate_pltoff_entries (struct elfNN_ia64_dyn_sym_info *dyn_i, 3333 PTR data) 3334 { 3335 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data; 3336 3337 if (dyn_i->want_pltoff) 3338 { 3339 dyn_i->pltoff_offset = x->ofs; 3340 x->ofs += 16; 3341 } 3342 return TRUE; 3343 } 3344 3345 /* Allocate dynamic relocations for those symbols that turned out 3346 to be dynamic. */ 3347 3348 static bfd_boolean 3349 allocate_dynrel_entries (struct elfNN_ia64_dyn_sym_info *dyn_i, 3350 PTR data) 3351 { 3352 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data; 3353 struct elfNN_ia64_link_hash_table *ia64_info; 3354 struct elfNN_ia64_dyn_reloc_entry *rent; 3355 bfd_boolean dynamic_symbol, shared, resolved_zero; 3356 3357 ia64_info = elfNN_ia64_hash_table (x->info); 3358 if (ia64_info == NULL) 3359 return FALSE; 3360 3361 /* Note that this can't be used in relation to FPTR relocs below. */ 3362 dynamic_symbol = elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0); 3363 3364 shared = x->info->shared; 3365 resolved_zero = (dyn_i->h 3366 && ELF_ST_VISIBILITY (dyn_i->h->other) 3367 && dyn_i->h->root.type == bfd_link_hash_undefweak); 3368 3369 /* Take care of the GOT and PLT relocations. */ 3370 3371 if ((!resolved_zero 3372 && (dynamic_symbol || shared) 3373 && (dyn_i->want_got || dyn_i->want_gotx)) 3374 || (dyn_i->want_ltoff_fptr 3375 && dyn_i->h 3376 && dyn_i->h->dynindx != -1)) 3377 { 3378 if (!dyn_i->want_ltoff_fptr 3379 || !x->info->pie 3380 || dyn_i->h == NULL 3381 || dyn_i->h->root.type != bfd_link_hash_undefweak) 3382 ia64_info->root.srelgot->size += sizeof (ElfNN_External_Rela); 3383 } 3384 if ((dynamic_symbol || shared) && dyn_i->want_tprel) 3385 ia64_info->root.srelgot->size += sizeof (ElfNN_External_Rela); 3386 if (dynamic_symbol && dyn_i->want_dtpmod) 3387 ia64_info->root.srelgot->size += sizeof (ElfNN_External_Rela); 3388 if (dynamic_symbol && dyn_i->want_dtprel) 3389 ia64_info->root.srelgot->size += sizeof (ElfNN_External_Rela); 3390 3391 if (x->only_got) 3392 return TRUE; 3393 3394 if (ia64_info->rel_fptr_sec && dyn_i->want_fptr) 3395 { 3396 if (dyn_i->h == NULL || dyn_i->h->root.type != bfd_link_hash_undefweak) 3397 ia64_info->rel_fptr_sec->size += sizeof (ElfNN_External_Rela); 3398 } 3399 3400 if (!resolved_zero && dyn_i->want_pltoff) 3401 { 3402 bfd_size_type t = 0; 3403 3404 /* Dynamic symbols get one IPLT relocation. Local symbols in 3405 shared libraries get two REL relocations. Local symbols in 3406 main applications get nothing. */ 3407 if (dynamic_symbol) 3408 t = sizeof (ElfNN_External_Rela); 3409 else if (shared) 3410 t = 2 * sizeof (ElfNN_External_Rela); 3411 3412 ia64_info->rel_pltoff_sec->size += t; 3413 } 3414 3415 /* Take care of the normal data relocations. */ 3416 3417 for (rent = dyn_i->reloc_entries; rent; rent = rent->next) 3418 { 3419 int count = rent->count; 3420 3421 switch (rent->type) 3422 { 3423 case R_IA64_FPTR32LSB: 3424 case R_IA64_FPTR64LSB: 3425 /* Allocate one iff !want_fptr and not PIE, which by this point 3426 will be true only if we're actually allocating one statically 3427 in the main executable. Position independent executables 3428 need a relative reloc. */ 3429 if (dyn_i->want_fptr && !x->info->pie) 3430 continue; 3431 break; 3432 case R_IA64_PCREL32LSB: 3433 case R_IA64_PCREL64LSB: 3434 if (!dynamic_symbol) 3435 continue; 3436 break; 3437 case R_IA64_DIR32LSB: 3438 case R_IA64_DIR64LSB: 3439 if (!dynamic_symbol && !shared) 3440 continue; 3441 break; 3442 case R_IA64_IPLTLSB: 3443 if (!dynamic_symbol && !shared) 3444 continue; 3445 /* Use two REL relocations for IPLT relocations 3446 against local symbols. */ 3447 if (!dynamic_symbol) 3448 count *= 2; 3449 break; 3450 case R_IA64_DTPREL32LSB: 3451 case R_IA64_TPREL64LSB: 3452 case R_IA64_DTPREL64LSB: 3453 case R_IA64_DTPMOD64LSB: 3454 break; 3455 default: 3456 abort (); 3457 } 3458 if (rent->reltext) 3459 ia64_info->reltext = 1; 3460 rent->srel->size += sizeof (ElfNN_External_Rela) * count; 3461 } 3462 3463 return TRUE; 3464 } 3465 3466 static bfd_boolean 3467 elfNN_ia64_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED, 3468 struct elf_link_hash_entry *h) 3469 { 3470 /* ??? Undefined symbols with PLT entries should be re-defined 3471 to be the PLT entry. */ 3472 3473 /* If this is a weak symbol, and there is a real definition, the 3474 processor independent code will have arranged for us to see the 3475 real definition first, and we can just use the same value. */ 3476 if (h->u.weakdef != NULL) 3477 { 3478 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined 3479 || h->u.weakdef->root.type == bfd_link_hash_defweak); 3480 h->root.u.def.section = h->u.weakdef->root.u.def.section; 3481 h->root.u.def.value = h->u.weakdef->root.u.def.value; 3482 return TRUE; 3483 } 3484 3485 /* If this is a reference to a symbol defined by a dynamic object which 3486 is not a function, we might allocate the symbol in our .dynbss section 3487 and allocate a COPY dynamic relocation. 3488 3489 But IA-64 code is canonically PIC, so as a rule we can avoid this sort 3490 of hackery. */ 3491 3492 return TRUE; 3493 } 3494 3495 static bfd_boolean 3496 elfNN_ia64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED, 3497 struct bfd_link_info *info) 3498 { 3499 struct elfNN_ia64_allocate_data data; 3500 struct elfNN_ia64_link_hash_table *ia64_info; 3501 asection *sec; 3502 bfd *dynobj; 3503 bfd_boolean relplt = FALSE; 3504 3505 dynobj = elf_hash_table(info)->dynobj; 3506 ia64_info = elfNN_ia64_hash_table (info); 3507 if (ia64_info == NULL) 3508 return FALSE; 3509 ia64_info->self_dtpmod_offset = (bfd_vma) -1; 3510 BFD_ASSERT(dynobj != NULL); 3511 data.info = info; 3512 3513 /* Set the contents of the .interp section to the interpreter. */ 3514 if (ia64_info->root.dynamic_sections_created 3515 && info->executable) 3516 { 3517 sec = bfd_get_section_by_name (dynobj, ".interp"); 3518 BFD_ASSERT (sec != NULL); 3519 sec->contents = (bfd_byte *) ELF_DYNAMIC_INTERPRETER; 3520 sec->size = strlen (ELF_DYNAMIC_INTERPRETER) + 1; 3521 } 3522 3523 /* Allocate the GOT entries. */ 3524 3525 if (ia64_info->root.sgot) 3526 { 3527 data.ofs = 0; 3528 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_data_got, &data); 3529 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_fptr_got, &data); 3530 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_local_got, &data); 3531 ia64_info->root.sgot->size = data.ofs; 3532 } 3533 3534 /* Allocate the FPTR entries. */ 3535 3536 if (ia64_info->fptr_sec) 3537 { 3538 data.ofs = 0; 3539 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_fptr, &data); 3540 ia64_info->fptr_sec->size = data.ofs; 3541 } 3542 3543 /* Now that we've seen all of the input files, we can decide which 3544 symbols need plt entries. Allocate the minimal PLT entries first. 3545 We do this even though dynamic_sections_created may be FALSE, because 3546 this has the side-effect of clearing want_plt and want_plt2. */ 3547 3548 data.ofs = 0; 3549 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_plt_entries, &data); 3550 3551 ia64_info->minplt_entries = 0; 3552 if (data.ofs) 3553 { 3554 ia64_info->minplt_entries 3555 = (data.ofs - PLT_HEADER_SIZE) / PLT_MIN_ENTRY_SIZE; 3556 } 3557 3558 /* Align the pointer for the plt2 entries. */ 3559 data.ofs = (data.ofs + 31) & (bfd_vma) -32; 3560 3561 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_plt2_entries, &data); 3562 if (data.ofs != 0 || ia64_info->root.dynamic_sections_created) 3563 { 3564 /* FIXME: we always reserve the memory for dynamic linker even if 3565 there are no PLT entries since dynamic linker may assume the 3566 reserved memory always exists. */ 3567 3568 BFD_ASSERT (ia64_info->root.dynamic_sections_created); 3569 3570 ia64_info->root.splt->size = data.ofs; 3571 3572 /* If we've got a .plt, we need some extra memory for the dynamic 3573 linker. We stuff these in .got.plt. */ 3574 sec = bfd_get_section_by_name (dynobj, ".got.plt"); 3575 sec->size = 8 * PLT_RESERVED_WORDS; 3576 } 3577 3578 /* Allocate the PLTOFF entries. */ 3579 3580 if (ia64_info->pltoff_sec) 3581 { 3582 data.ofs = 0; 3583 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_pltoff_entries, &data); 3584 ia64_info->pltoff_sec->size = data.ofs; 3585 } 3586 3587 if (ia64_info->root.dynamic_sections_created) 3588 { 3589 /* Allocate space for the dynamic relocations that turned out to be 3590 required. */ 3591 3592 if (info->shared && ia64_info->self_dtpmod_offset != (bfd_vma) -1) 3593 ia64_info->root.srelgot->size += sizeof (ElfNN_External_Rela); 3594 data.only_got = FALSE; 3595 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_dynrel_entries, &data); 3596 } 3597 3598 /* We have now determined the sizes of the various dynamic sections. 3599 Allocate memory for them. */ 3600 for (sec = dynobj->sections; sec != NULL; sec = sec->next) 3601 { 3602 bfd_boolean strip; 3603 3604 if (!(sec->flags & SEC_LINKER_CREATED)) 3605 continue; 3606 3607 /* If we don't need this section, strip it from the output file. 3608 There were several sections primarily related to dynamic 3609 linking that must be create before the linker maps input 3610 sections to output sections. The linker does that before 3611 bfd_elf_size_dynamic_sections is called, and it is that 3612 function which decides whether anything needs to go into 3613 these sections. */ 3614 3615 strip = (sec->size == 0); 3616 3617 if (sec == ia64_info->root.sgot) 3618 strip = FALSE; 3619 else if (sec == ia64_info->root.srelgot) 3620 { 3621 if (strip) 3622 ia64_info->root.srelgot = NULL; 3623 else 3624 /* We use the reloc_count field as a counter if we need to 3625 copy relocs into the output file. */ 3626 sec->reloc_count = 0; 3627 } 3628 else if (sec == ia64_info->fptr_sec) 3629 { 3630 if (strip) 3631 ia64_info->fptr_sec = NULL; 3632 } 3633 else if (sec == ia64_info->rel_fptr_sec) 3634 { 3635 if (strip) 3636 ia64_info->rel_fptr_sec = NULL; 3637 else 3638 /* We use the reloc_count field as a counter if we need to 3639 copy relocs into the output file. */ 3640 sec->reloc_count = 0; 3641 } 3642 else if (sec == ia64_info->root.splt) 3643 { 3644 if (strip) 3645 ia64_info->root.splt = NULL; 3646 } 3647 else if (sec == ia64_info->pltoff_sec) 3648 { 3649 if (strip) 3650 ia64_info->pltoff_sec = NULL; 3651 } 3652 else if (sec == ia64_info->rel_pltoff_sec) 3653 { 3654 if (strip) 3655 ia64_info->rel_pltoff_sec = NULL; 3656 else 3657 { 3658 relplt = TRUE; 3659 /* We use the reloc_count field as a counter if we need to 3660 copy relocs into the output file. */ 3661 sec->reloc_count = 0; 3662 } 3663 } 3664 else 3665 { 3666 const char *name; 3667 3668 /* It's OK to base decisions on the section name, because none 3669 of the dynobj section names depend upon the input files. */ 3670 name = bfd_get_section_name (dynobj, sec); 3671 3672 if (strcmp (name, ".got.plt") == 0) 3673 strip = FALSE; 3674 else if (CONST_STRNEQ (name, ".rel")) 3675 { 3676 if (!strip) 3677 { 3678 /* We use the reloc_count field as a counter if we need to 3679 copy relocs into the output file. */ 3680 sec->reloc_count = 0; 3681 } 3682 } 3683 else 3684 continue; 3685 } 3686 3687 if (strip) 3688 sec->flags |= SEC_EXCLUDE; 3689 else 3690 { 3691 /* Allocate memory for the section contents. */ 3692 sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->size); 3693 if (sec->contents == NULL && sec->size != 0) 3694 return FALSE; 3695 } 3696 } 3697 3698 if (elf_hash_table (info)->dynamic_sections_created) 3699 { 3700 /* Add some entries to the .dynamic section. We fill in the values 3701 later (in finish_dynamic_sections) but we must add the entries now 3702 so that we get the correct size for the .dynamic section. */ 3703 3704 if (info->executable) 3705 { 3706 /* The DT_DEBUG entry is filled in by the dynamic linker and used 3707 by the debugger. */ 3708 #define add_dynamic_entry(TAG, VAL) \ 3709 _bfd_elf_add_dynamic_entry (info, TAG, VAL) 3710 3711 if (!add_dynamic_entry (DT_DEBUG, 0)) 3712 return FALSE; 3713 } 3714 3715 if (!add_dynamic_entry (DT_IA_64_PLT_RESERVE, 0)) 3716 return FALSE; 3717 if (!add_dynamic_entry (DT_PLTGOT, 0)) 3718 return FALSE; 3719 3720 if (relplt) 3721 { 3722 if (!add_dynamic_entry (DT_PLTRELSZ, 0) 3723 || !add_dynamic_entry (DT_PLTREL, DT_RELA) 3724 || !add_dynamic_entry (DT_JMPREL, 0)) 3725 return FALSE; 3726 } 3727 3728 if (!add_dynamic_entry (DT_RELA, 0) 3729 || !add_dynamic_entry (DT_RELASZ, 0) 3730 || !add_dynamic_entry (DT_RELAENT, sizeof (ElfNN_External_Rela))) 3731 return FALSE; 3732 3733 if (ia64_info->reltext) 3734 { 3735 if (!add_dynamic_entry (DT_TEXTREL, 0)) 3736 return FALSE; 3737 info->flags |= DF_TEXTREL; 3738 } 3739 } 3740 3741 /* ??? Perhaps force __gp local. */ 3742 3743 return TRUE; 3744 } 3745 3746 static bfd_reloc_status_type 3747 elfNN_ia64_install_value (bfd_byte *hit_addr, bfd_vma v, 3748 unsigned int r_type) 3749 { 3750 const struct ia64_operand *op; 3751 int bigendian = 0, shift = 0; 3752 bfd_vma t0, t1, dword; 3753 ia64_insn insn; 3754 enum ia64_opnd opnd; 3755 const char *err; 3756 size_t size = 8; 3757 #ifdef BFD_HOST_U_64_BIT 3758 BFD_HOST_U_64_BIT val = (BFD_HOST_U_64_BIT) v; 3759 #else 3760 bfd_vma val = v; 3761 #endif 3762 3763 opnd = IA64_OPND_NIL; 3764 switch (r_type) 3765 { 3766 case R_IA64_NONE: 3767 case R_IA64_LDXMOV: 3768 return bfd_reloc_ok; 3769 3770 /* Instruction relocations. */ 3771 3772 case R_IA64_IMM14: 3773 case R_IA64_TPREL14: 3774 case R_IA64_DTPREL14: 3775 opnd = IA64_OPND_IMM14; 3776 break; 3777 3778 case R_IA64_PCREL21F: opnd = IA64_OPND_TGT25; break; 3779 case R_IA64_PCREL21M: opnd = IA64_OPND_TGT25b; break; 3780 case R_IA64_PCREL60B: opnd = IA64_OPND_TGT64; break; 3781 case R_IA64_PCREL21B: 3782 case R_IA64_PCREL21BI: 3783 opnd = IA64_OPND_TGT25c; 3784 break; 3785 3786 case R_IA64_IMM22: 3787 case R_IA64_GPREL22: 3788 case R_IA64_LTOFF22: 3789 case R_IA64_LTOFF22X: 3790 case R_IA64_PLTOFF22: 3791 case R_IA64_PCREL22: 3792 case R_IA64_LTOFF_FPTR22: 3793 case R_IA64_TPREL22: 3794 case R_IA64_DTPREL22: 3795 case R_IA64_LTOFF_TPREL22: 3796 case R_IA64_LTOFF_DTPMOD22: 3797 case R_IA64_LTOFF_DTPREL22: 3798 opnd = IA64_OPND_IMM22; 3799 break; 3800 3801 case R_IA64_IMM64: 3802 case R_IA64_GPREL64I: 3803 case R_IA64_LTOFF64I: 3804 case R_IA64_PLTOFF64I: 3805 case R_IA64_PCREL64I: 3806 case R_IA64_FPTR64I: 3807 case R_IA64_LTOFF_FPTR64I: 3808 case R_IA64_TPREL64I: 3809 case R_IA64_DTPREL64I: 3810 opnd = IA64_OPND_IMMU64; 3811 break; 3812 3813 /* Data relocations. */ 3814 3815 case R_IA64_DIR32MSB: 3816 case R_IA64_GPREL32MSB: 3817 case R_IA64_FPTR32MSB: 3818 case R_IA64_PCREL32MSB: 3819 case R_IA64_LTOFF_FPTR32MSB: 3820 case R_IA64_SEGREL32MSB: 3821 case R_IA64_SECREL32MSB: 3822 case R_IA64_LTV32MSB: 3823 case R_IA64_DTPREL32MSB: 3824 size = 4; bigendian = 1; 3825 break; 3826 3827 case R_IA64_DIR32LSB: 3828 case R_IA64_GPREL32LSB: 3829 case R_IA64_FPTR32LSB: 3830 case R_IA64_PCREL32LSB: 3831 case R_IA64_LTOFF_FPTR32LSB: 3832 case R_IA64_SEGREL32LSB: 3833 case R_IA64_SECREL32LSB: 3834 case R_IA64_LTV32LSB: 3835 case R_IA64_DTPREL32LSB: 3836 size = 4; bigendian = 0; 3837 break; 3838 3839 case R_IA64_DIR64MSB: 3840 case R_IA64_GPREL64MSB: 3841 case R_IA64_PLTOFF64MSB: 3842 case R_IA64_FPTR64MSB: 3843 case R_IA64_PCREL64MSB: 3844 case R_IA64_LTOFF_FPTR64MSB: 3845 case R_IA64_SEGREL64MSB: 3846 case R_IA64_SECREL64MSB: 3847 case R_IA64_LTV64MSB: 3848 case R_IA64_TPREL64MSB: 3849 case R_IA64_DTPMOD64MSB: 3850 case R_IA64_DTPREL64MSB: 3851 size = 8; bigendian = 1; 3852 break; 3853 3854 case R_IA64_DIR64LSB: 3855 case R_IA64_GPREL64LSB: 3856 case R_IA64_PLTOFF64LSB: 3857 case R_IA64_FPTR64LSB: 3858 case R_IA64_PCREL64LSB: 3859 case R_IA64_LTOFF_FPTR64LSB: 3860 case R_IA64_SEGREL64LSB: 3861 case R_IA64_SECREL64LSB: 3862 case R_IA64_LTV64LSB: 3863 case R_IA64_TPREL64LSB: 3864 case R_IA64_DTPMOD64LSB: 3865 case R_IA64_DTPREL64LSB: 3866 size = 8; bigendian = 0; 3867 break; 3868 3869 /* Unsupported / Dynamic relocations. */ 3870 default: 3871 return bfd_reloc_notsupported; 3872 } 3873 3874 switch (opnd) 3875 { 3876 case IA64_OPND_IMMU64: 3877 hit_addr -= (intptr_t) hit_addr & 0x3; 3878 t0 = bfd_getl64 (hit_addr); 3879 t1 = bfd_getl64 (hit_addr + 8); 3880 3881 /* tmpl/s: bits 0.. 5 in t0 3882 slot 0: bits 5..45 in t0 3883 slot 1: bits 46..63 in t0, bits 0..22 in t1 3884 slot 2: bits 23..63 in t1 */ 3885 3886 /* First, clear the bits that form the 64 bit constant. */ 3887 t0 &= ~(0x3ffffLL << 46); 3888 t1 &= ~(0x7fffffLL 3889 | (( (0x07fLL << 13) | (0x1ffLL << 27) 3890 | (0x01fLL << 22) | (0x001LL << 21) 3891 | (0x001LL << 36)) << 23)); 3892 3893 t0 |= ((val >> 22) & 0x03ffffLL) << 46; /* 18 lsbs of imm41 */ 3894 t1 |= ((val >> 40) & 0x7fffffLL) << 0; /* 23 msbs of imm41 */ 3895 t1 |= ( (((val >> 0) & 0x07f) << 13) /* imm7b */ 3896 | (((val >> 7) & 0x1ff) << 27) /* imm9d */ 3897 | (((val >> 16) & 0x01f) << 22) /* imm5c */ 3898 | (((val >> 21) & 0x001) << 21) /* ic */ 3899 | (((val >> 63) & 0x001) << 36)) << 23; /* i */ 3900 3901 bfd_putl64 (t0, hit_addr); 3902 bfd_putl64 (t1, hit_addr + 8); 3903 break; 3904 3905 case IA64_OPND_TGT64: 3906 hit_addr -= (intptr_t) hit_addr & 0x3; 3907 t0 = bfd_getl64 (hit_addr); 3908 t1 = bfd_getl64 (hit_addr + 8); 3909 3910 /* tmpl/s: bits 0.. 5 in t0 3911 slot 0: bits 5..45 in t0 3912 slot 1: bits 46..63 in t0, bits 0..22 in t1 3913 slot 2: bits 23..63 in t1 */ 3914 3915 /* First, clear the bits that form the 64 bit constant. */ 3916 t0 &= ~(0x3ffffLL << 46); 3917 t1 &= ~(0x7fffffLL 3918 | ((1LL << 36 | 0xfffffLL << 13) << 23)); 3919 3920 val >>= 4; 3921 t0 |= ((val >> 20) & 0xffffLL) << 2 << 46; /* 16 lsbs of imm39 */ 3922 t1 |= ((val >> 36) & 0x7fffffLL) << 0; /* 23 msbs of imm39 */ 3923 t1 |= ((((val >> 0) & 0xfffffLL) << 13) /* imm20b */ 3924 | (((val >> 59) & 0x1LL) << 36)) << 23; /* i */ 3925 3926 bfd_putl64 (t0, hit_addr); 3927 bfd_putl64 (t1, hit_addr + 8); 3928 break; 3929 3930 default: 3931 switch ((intptr_t) hit_addr & 0x3) 3932 { 3933 case 0: shift = 5; break; 3934 case 1: shift = 14; hit_addr += 3; break; 3935 case 2: shift = 23; hit_addr += 6; break; 3936 case 3: return bfd_reloc_notsupported; /* shouldn't happen... */ 3937 } 3938 dword = bfd_getl64 (hit_addr); 3939 insn = (dword >> shift) & 0x1ffffffffffLL; 3940 3941 op = elf64_ia64_operands + opnd; 3942 err = (*op->insert) (op, val, &insn); 3943 if (err) 3944 return bfd_reloc_overflow; 3945 3946 dword &= ~(0x1ffffffffffLL << shift); 3947 dword |= (insn << shift); 3948 bfd_putl64 (dword, hit_addr); 3949 break; 3950 3951 case IA64_OPND_NIL: 3952 /* A data relocation. */ 3953 if (bigendian) 3954 if (size == 4) 3955 bfd_putb32 (val, hit_addr); 3956 else 3957 bfd_putb64 (val, hit_addr); 3958 else 3959 if (size == 4) 3960 bfd_putl32 (val, hit_addr); 3961 else 3962 bfd_putl64 (val, hit_addr); 3963 break; 3964 } 3965 3966 return bfd_reloc_ok; 3967 } 3968 3969 static void 3970 elfNN_ia64_install_dyn_reloc (bfd *abfd, struct bfd_link_info *info, 3971 asection *sec, asection *srel, 3972 bfd_vma offset, unsigned int type, 3973 long dynindx, bfd_vma addend) 3974 { 3975 Elf_Internal_Rela outrel; 3976 bfd_byte *loc; 3977 3978 BFD_ASSERT (dynindx != -1); 3979 outrel.r_info = ELFNN_R_INFO (dynindx, type); 3980 outrel.r_addend = addend; 3981 outrel.r_offset = _bfd_elf_section_offset (abfd, info, sec, offset); 3982 if (outrel.r_offset >= (bfd_vma) -2) 3983 { 3984 /* Run for the hills. We shouldn't be outputting a relocation 3985 for this. So do what everyone else does and output a no-op. */ 3986 outrel.r_info = ELFNN_R_INFO (0, R_IA64_NONE); 3987 outrel.r_addend = 0; 3988 outrel.r_offset = 0; 3989 } 3990 else 3991 outrel.r_offset += sec->output_section->vma + sec->output_offset; 3992 3993 loc = srel->contents; 3994 loc += srel->reloc_count++ * sizeof (ElfNN_External_Rela); 3995 bfd_elfNN_swap_reloca_out (abfd, &outrel, loc); 3996 BFD_ASSERT (sizeof (ElfNN_External_Rela) * srel->reloc_count <= srel->size); 3997 } 3998 3999 /* Store an entry for target address TARGET_ADDR in the linkage table 4000 and return the gp-relative address of the linkage table entry. */ 4001 4002 static bfd_vma 4003 set_got_entry (bfd *abfd, struct bfd_link_info *info, 4004 struct elfNN_ia64_dyn_sym_info *dyn_i, 4005 long dynindx, bfd_vma addend, bfd_vma value, 4006 unsigned int dyn_r_type) 4007 { 4008 struct elfNN_ia64_link_hash_table *ia64_info; 4009 asection *got_sec; 4010 bfd_boolean done; 4011 bfd_vma got_offset; 4012 4013 ia64_info = elfNN_ia64_hash_table (info); 4014 if (ia64_info == NULL) 4015 return 0; 4016 4017 got_sec = ia64_info->root.sgot; 4018 4019 switch (dyn_r_type) 4020 { 4021 case R_IA64_TPREL64LSB: 4022 done = dyn_i->tprel_done; 4023 dyn_i->tprel_done = TRUE; 4024 got_offset = dyn_i->tprel_offset; 4025 break; 4026 case R_IA64_DTPMOD64LSB: 4027 if (dyn_i->dtpmod_offset != ia64_info->self_dtpmod_offset) 4028 { 4029 done = dyn_i->dtpmod_done; 4030 dyn_i->dtpmod_done = TRUE; 4031 } 4032 else 4033 { 4034 done = ia64_info->self_dtpmod_done; 4035 ia64_info->self_dtpmod_done = TRUE; 4036 dynindx = 0; 4037 } 4038 got_offset = dyn_i->dtpmod_offset; 4039 break; 4040 case R_IA64_DTPREL32LSB: 4041 case R_IA64_DTPREL64LSB: 4042 done = dyn_i->dtprel_done; 4043 dyn_i->dtprel_done = TRUE; 4044 got_offset = dyn_i->dtprel_offset; 4045 break; 4046 default: 4047 done = dyn_i->got_done; 4048 dyn_i->got_done = TRUE; 4049 got_offset = dyn_i->got_offset; 4050 break; 4051 } 4052 4053 BFD_ASSERT ((got_offset & 7) == 0); 4054 4055 if (! done) 4056 { 4057 /* Store the target address in the linkage table entry. */ 4058 bfd_put_64 (abfd, value, got_sec->contents + got_offset); 4059 4060 /* Install a dynamic relocation if needed. */ 4061 if (((info->shared 4062 && (!dyn_i->h 4063 || ELF_ST_VISIBILITY (dyn_i->h->other) == STV_DEFAULT 4064 || dyn_i->h->root.type != bfd_link_hash_undefweak) 4065 && dyn_r_type != R_IA64_DTPREL32LSB 4066 && dyn_r_type != R_IA64_DTPREL64LSB) 4067 || elfNN_ia64_dynamic_symbol_p (dyn_i->h, info, dyn_r_type) 4068 || (dynindx != -1 4069 && (dyn_r_type == R_IA64_FPTR32LSB 4070 || dyn_r_type == R_IA64_FPTR64LSB))) 4071 && (!dyn_i->want_ltoff_fptr 4072 || !info->pie 4073 || !dyn_i->h 4074 || dyn_i->h->root.type != bfd_link_hash_undefweak)) 4075 { 4076 if (dynindx == -1 4077 && dyn_r_type != R_IA64_TPREL64LSB 4078 && dyn_r_type != R_IA64_DTPMOD64LSB 4079 && dyn_r_type != R_IA64_DTPREL32LSB 4080 && dyn_r_type != R_IA64_DTPREL64LSB) 4081 { 4082 dyn_r_type = R_IA64_RELNNLSB; 4083 dynindx = 0; 4084 addend = value; 4085 } 4086 4087 if (bfd_big_endian (abfd)) 4088 { 4089 switch (dyn_r_type) 4090 { 4091 case R_IA64_REL32LSB: 4092 dyn_r_type = R_IA64_REL32MSB; 4093 break; 4094 case R_IA64_DIR32LSB: 4095 dyn_r_type = R_IA64_DIR32MSB; 4096 break; 4097 case R_IA64_FPTR32LSB: 4098 dyn_r_type = R_IA64_FPTR32MSB; 4099 break; 4100 case R_IA64_DTPREL32LSB: 4101 dyn_r_type = R_IA64_DTPREL32MSB; 4102 break; 4103 case R_IA64_REL64LSB: 4104 dyn_r_type = R_IA64_REL64MSB; 4105 break; 4106 case R_IA64_DIR64LSB: 4107 dyn_r_type = R_IA64_DIR64MSB; 4108 break; 4109 case R_IA64_FPTR64LSB: 4110 dyn_r_type = R_IA64_FPTR64MSB; 4111 break; 4112 case R_IA64_TPREL64LSB: 4113 dyn_r_type = R_IA64_TPREL64MSB; 4114 break; 4115 case R_IA64_DTPMOD64LSB: 4116 dyn_r_type = R_IA64_DTPMOD64MSB; 4117 break; 4118 case R_IA64_DTPREL64LSB: 4119 dyn_r_type = R_IA64_DTPREL64MSB; 4120 break; 4121 default: 4122 BFD_ASSERT (FALSE); 4123 break; 4124 } 4125 } 4126 4127 elfNN_ia64_install_dyn_reloc (abfd, NULL, got_sec, 4128 ia64_info->root.srelgot, 4129 got_offset, dyn_r_type, 4130 dynindx, addend); 4131 } 4132 } 4133 4134 /* Return the address of the linkage table entry. */ 4135 value = (got_sec->output_section->vma 4136 + got_sec->output_offset 4137 + got_offset); 4138 4139 return value; 4140 } 4141 4142 /* Fill in a function descriptor consisting of the function's code 4143 address and its global pointer. Return the descriptor's address. */ 4144 4145 static bfd_vma 4146 set_fptr_entry (bfd *abfd, struct bfd_link_info *info, 4147 struct elfNN_ia64_dyn_sym_info *dyn_i, 4148 bfd_vma value) 4149 { 4150 struct elfNN_ia64_link_hash_table *ia64_info; 4151 asection *fptr_sec; 4152 4153 ia64_info = elfNN_ia64_hash_table (info); 4154 if (ia64_info == NULL) 4155 return 0; 4156 4157 fptr_sec = ia64_info->fptr_sec; 4158 4159 if (!dyn_i->fptr_done) 4160 { 4161 dyn_i->fptr_done = 1; 4162 4163 /* Fill in the function descriptor. */ 4164 bfd_put_64 (abfd, value, fptr_sec->contents + dyn_i->fptr_offset); 4165 bfd_put_64 (abfd, _bfd_get_gp_value (abfd), 4166 fptr_sec->contents + dyn_i->fptr_offset + 8); 4167 if (ia64_info->rel_fptr_sec) 4168 { 4169 Elf_Internal_Rela outrel; 4170 bfd_byte *loc; 4171 4172 if (bfd_little_endian (abfd)) 4173 outrel.r_info = ELFNN_R_INFO (0, R_IA64_IPLTLSB); 4174 else 4175 outrel.r_info = ELFNN_R_INFO (0, R_IA64_IPLTMSB); 4176 outrel.r_addend = value; 4177 outrel.r_offset = (fptr_sec->output_section->vma 4178 + fptr_sec->output_offset 4179 + dyn_i->fptr_offset); 4180 loc = ia64_info->rel_fptr_sec->contents; 4181 loc += ia64_info->rel_fptr_sec->reloc_count++ 4182 * sizeof (ElfNN_External_Rela); 4183 bfd_elfNN_swap_reloca_out (abfd, &outrel, loc); 4184 } 4185 } 4186 4187 /* Return the descriptor's address. */ 4188 value = (fptr_sec->output_section->vma 4189 + fptr_sec->output_offset 4190 + dyn_i->fptr_offset); 4191 4192 return value; 4193 } 4194 4195 /* Fill in a PLTOFF entry consisting of the function's code address 4196 and its global pointer. Return the descriptor's address. */ 4197 4198 static bfd_vma 4199 set_pltoff_entry (bfd *abfd, struct bfd_link_info *info, 4200 struct elfNN_ia64_dyn_sym_info *dyn_i, 4201 bfd_vma value, bfd_boolean is_plt) 4202 { 4203 struct elfNN_ia64_link_hash_table *ia64_info; 4204 asection *pltoff_sec; 4205 4206 ia64_info = elfNN_ia64_hash_table (info); 4207 if (ia64_info == NULL) 4208 return 0; 4209 4210 pltoff_sec = ia64_info->pltoff_sec; 4211 4212 /* Don't do anything if this symbol uses a real PLT entry. In 4213 that case, we'll fill this in during finish_dynamic_symbol. */ 4214 if ((! dyn_i->want_plt || is_plt) 4215 && !dyn_i->pltoff_done) 4216 { 4217 bfd_vma gp = _bfd_get_gp_value (abfd); 4218 4219 /* Fill in the function descriptor. */ 4220 bfd_put_64 (abfd, value, pltoff_sec->contents + dyn_i->pltoff_offset); 4221 bfd_put_64 (abfd, gp, pltoff_sec->contents + dyn_i->pltoff_offset + 8); 4222 4223 /* Install dynamic relocations if needed. */ 4224 if (!is_plt 4225 && info->shared 4226 && (!dyn_i->h 4227 || ELF_ST_VISIBILITY (dyn_i->h->other) == STV_DEFAULT 4228 || dyn_i->h->root.type != bfd_link_hash_undefweak)) 4229 { 4230 unsigned int dyn_r_type; 4231 4232 if (bfd_big_endian (abfd)) 4233 dyn_r_type = R_IA64_RELNNMSB; 4234 else 4235 dyn_r_type = R_IA64_RELNNLSB; 4236 4237 elfNN_ia64_install_dyn_reloc (abfd, NULL, pltoff_sec, 4238 ia64_info->rel_pltoff_sec, 4239 dyn_i->pltoff_offset, 4240 dyn_r_type, 0, value); 4241 elfNN_ia64_install_dyn_reloc (abfd, NULL, pltoff_sec, 4242 ia64_info->rel_pltoff_sec, 4243 dyn_i->pltoff_offset + ARCH_SIZE / 8, 4244 dyn_r_type, 0, gp); 4245 } 4246 4247 dyn_i->pltoff_done = 1; 4248 } 4249 4250 /* Return the descriptor's address. */ 4251 value = (pltoff_sec->output_section->vma 4252 + pltoff_sec->output_offset 4253 + dyn_i->pltoff_offset); 4254 4255 return value; 4256 } 4257 4258 /* Return the base VMA address which should be subtracted from real addresses 4259 when resolving @tprel() relocation. 4260 Main program TLS (whose template starts at PT_TLS p_vaddr) 4261 is assigned offset round(2 * size of pointer, PT_TLS p_align). */ 4262 4263 static bfd_vma 4264 elfNN_ia64_tprel_base (struct bfd_link_info *info) 4265 { 4266 asection *tls_sec = elf_hash_table (info)->tls_sec; 4267 return tls_sec->vma - align_power ((bfd_vma) ARCH_SIZE / 4, 4268 tls_sec->alignment_power); 4269 } 4270 4271 /* Return the base VMA address which should be subtracted from real addresses 4272 when resolving @dtprel() relocation. 4273 This is PT_TLS segment p_vaddr. */ 4274 4275 static bfd_vma 4276 elfNN_ia64_dtprel_base (struct bfd_link_info *info) 4277 { 4278 return elf_hash_table (info)->tls_sec->vma; 4279 } 4280 4281 /* Called through qsort to sort the .IA_64.unwind section during a 4282 non-relocatable link. Set elfNN_ia64_unwind_entry_compare_bfd 4283 to the output bfd so we can do proper endianness frobbing. */ 4284 4285 static bfd *elfNN_ia64_unwind_entry_compare_bfd; 4286 4287 static int 4288 elfNN_ia64_unwind_entry_compare (const PTR a, const PTR b) 4289 { 4290 bfd_vma av, bv; 4291 4292 av = bfd_get_64 (elfNN_ia64_unwind_entry_compare_bfd, a); 4293 bv = bfd_get_64 (elfNN_ia64_unwind_entry_compare_bfd, b); 4294 4295 return (av < bv ? -1 : av > bv ? 1 : 0); 4296 } 4297 4298 /* Make sure we've got ourselves a nice fat __gp value. */ 4299 static bfd_boolean 4300 elfNN_ia64_choose_gp (bfd *abfd, struct bfd_link_info *info) 4301 { 4302 bfd_vma min_vma = (bfd_vma) -1, max_vma = 0; 4303 bfd_vma min_short_vma = min_vma, max_short_vma = 0; 4304 struct elf_link_hash_entry *gp; 4305 bfd_vma gp_val; 4306 asection *os; 4307 struct elfNN_ia64_link_hash_table *ia64_info; 4308 4309 ia64_info = elfNN_ia64_hash_table (info); 4310 if (ia64_info == NULL) 4311 return FALSE; 4312 4313 /* Find the min and max vma of all sections marked short. Also collect 4314 min and max vma of any type, for use in selecting a nice gp. */ 4315 for (os = abfd->sections; os ; os = os->next) 4316 { 4317 bfd_vma lo, hi; 4318 4319 if ((os->flags & SEC_ALLOC) == 0) 4320 continue; 4321 4322 lo = os->vma; 4323 hi = os->vma + (os->rawsize ? os->rawsize : os->size); 4324 if (hi < lo) 4325 hi = (bfd_vma) -1; 4326 4327 if (min_vma > lo) 4328 min_vma = lo; 4329 if (max_vma < hi) 4330 max_vma = hi; 4331 if (os->flags & SEC_SMALL_DATA) 4332 { 4333 if (min_short_vma > lo) 4334 min_short_vma = lo; 4335 if (max_short_vma < hi) 4336 max_short_vma = hi; 4337 } 4338 } 4339 4340 if (ia64_info->min_short_sec) 4341 { 4342 if (min_short_vma 4343 > (ia64_info->min_short_sec->vma 4344 + ia64_info->min_short_offset)) 4345 min_short_vma = (ia64_info->min_short_sec->vma 4346 + ia64_info->min_short_offset); 4347 if (max_short_vma 4348 < (ia64_info->max_short_sec->vma 4349 + ia64_info->max_short_offset)) 4350 max_short_vma = (ia64_info->max_short_sec->vma 4351 + ia64_info->max_short_offset); 4352 } 4353 4354 /* See if the user wants to force a value. */ 4355 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE, 4356 FALSE, FALSE); 4357 4358 if (gp 4359 && (gp->root.type == bfd_link_hash_defined 4360 || gp->root.type == bfd_link_hash_defweak)) 4361 { 4362 asection *gp_sec = gp->root.u.def.section; 4363 gp_val = (gp->root.u.def.value 4364 + gp_sec->output_section->vma 4365 + gp_sec->output_offset); 4366 } 4367 else 4368 { 4369 /* Pick a sensible value. */ 4370 4371 if (ia64_info->min_short_sec) 4372 { 4373 bfd_vma short_range = max_short_vma - min_short_vma; 4374 4375 /* If min_short_sec is set, pick one in the middle bewteen 4376 min_short_vma and max_short_vma. */ 4377 if (short_range >= 0x400000) 4378 goto overflow; 4379 gp_val = min_short_vma + short_range / 2; 4380 } 4381 else 4382 { 4383 asection *got_sec = ia64_info->root.sgot; 4384 4385 /* Start with just the address of the .got. */ 4386 if (got_sec) 4387 gp_val = got_sec->output_section->vma; 4388 else if (max_short_vma != 0) 4389 gp_val = min_short_vma; 4390 else if (max_vma - min_vma < 0x200000) 4391 gp_val = min_vma; 4392 else 4393 gp_val = max_vma - 0x200000 + 8; 4394 } 4395 4396 /* If it is possible to address the entire image, but we 4397 don't with the choice above, adjust. */ 4398 if (max_vma - min_vma < 0x400000 4399 && (max_vma - gp_val >= 0x200000 4400 || gp_val - min_vma > 0x200000)) 4401 gp_val = min_vma + 0x200000; 4402 else if (max_short_vma != 0) 4403 { 4404 /* If we don't cover all the short data, adjust. */ 4405 if (max_short_vma - gp_val >= 0x200000) 4406 gp_val = min_short_vma + 0x200000; 4407 4408 /* If we're addressing stuff past the end, adjust back. */ 4409 if (gp_val > max_vma) 4410 gp_val = max_vma - 0x200000 + 8; 4411 } 4412 } 4413 4414 /* Validate whether all SHF_IA_64_SHORT sections are within 4415 range of the chosen GP. */ 4416 4417 if (max_short_vma != 0) 4418 { 4419 if (max_short_vma - min_short_vma >= 0x400000) 4420 { 4421 overflow: 4422 (*_bfd_error_handler) 4423 (_("%s: short data segment overflowed (0x%lx >= 0x400000)"), 4424 bfd_get_filename (abfd), 4425 (unsigned long) (max_short_vma - min_short_vma)); 4426 return FALSE; 4427 } 4428 else if ((gp_val > min_short_vma 4429 && gp_val - min_short_vma > 0x200000) 4430 || (gp_val < max_short_vma 4431 && max_short_vma - gp_val >= 0x200000)) 4432 { 4433 (*_bfd_error_handler) 4434 (_("%s: __gp does not cover short data segment"), 4435 bfd_get_filename (abfd)); 4436 return FALSE; 4437 } 4438 } 4439 4440 _bfd_set_gp_value (abfd, gp_val); 4441 4442 return TRUE; 4443 } 4444 4445 static bfd_boolean 4446 elfNN_ia64_final_link (bfd *abfd, struct bfd_link_info *info) 4447 { 4448 struct elfNN_ia64_link_hash_table *ia64_info; 4449 asection *unwind_output_sec; 4450 4451 ia64_info = elfNN_ia64_hash_table (info); 4452 if (ia64_info == NULL) 4453 return FALSE; 4454 4455 /* Make sure we've got ourselves a nice fat __gp value. */ 4456 if (!info->relocatable) 4457 { 4458 bfd_vma gp_val; 4459 struct elf_link_hash_entry *gp; 4460 4461 /* We assume after gp is set, section size will only decrease. We 4462 need to adjust gp for it. */ 4463 _bfd_set_gp_value (abfd, 0); 4464 if (! elfNN_ia64_choose_gp (abfd, info)) 4465 return FALSE; 4466 gp_val = _bfd_get_gp_value (abfd); 4467 4468 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE, 4469 FALSE, FALSE); 4470 if (gp) 4471 { 4472 gp->root.type = bfd_link_hash_defined; 4473 gp->root.u.def.value = gp_val; 4474 gp->root.u.def.section = bfd_abs_section_ptr; 4475 } 4476 } 4477 4478 /* If we're producing a final executable, we need to sort the contents 4479 of the .IA_64.unwind section. Force this section to be relocated 4480 into memory rather than written immediately to the output file. */ 4481 unwind_output_sec = NULL; 4482 if (!info->relocatable) 4483 { 4484 asection *s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_unwind); 4485 if (s) 4486 { 4487 unwind_output_sec = s->output_section; 4488 unwind_output_sec->contents 4489 = bfd_malloc (unwind_output_sec->size); 4490 if (unwind_output_sec->contents == NULL) 4491 return FALSE; 4492 } 4493 } 4494 4495 /* Invoke the regular ELF backend linker to do all the work. */ 4496 if (!bfd_elf_final_link (abfd, info)) 4497 return FALSE; 4498 4499 if (unwind_output_sec) 4500 { 4501 elfNN_ia64_unwind_entry_compare_bfd = abfd; 4502 qsort (unwind_output_sec->contents, 4503 (size_t) (unwind_output_sec->size / 24), 4504 24, 4505 elfNN_ia64_unwind_entry_compare); 4506 4507 if (! bfd_set_section_contents (abfd, unwind_output_sec, 4508 unwind_output_sec->contents, (bfd_vma) 0, 4509 unwind_output_sec->size)) 4510 return FALSE; 4511 } 4512 4513 return TRUE; 4514 } 4515 4516 static bfd_boolean 4517 elfNN_ia64_relocate_section (bfd *output_bfd, 4518 struct bfd_link_info *info, 4519 bfd *input_bfd, 4520 asection *input_section, 4521 bfd_byte *contents, 4522 Elf_Internal_Rela *relocs, 4523 Elf_Internal_Sym *local_syms, 4524 asection **local_sections) 4525 { 4526 struct elfNN_ia64_link_hash_table *ia64_info; 4527 Elf_Internal_Shdr *symtab_hdr; 4528 Elf_Internal_Rela *rel; 4529 Elf_Internal_Rela *relend; 4530 asection *srel; 4531 bfd_boolean ret_val = TRUE; /* for non-fatal errors */ 4532 bfd_vma gp_val; 4533 4534 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 4535 ia64_info = elfNN_ia64_hash_table (info); 4536 if (ia64_info == NULL) 4537 return FALSE; 4538 4539 /* Infect various flags from the input section to the output section. */ 4540 if (info->relocatable) 4541 { 4542 bfd_vma flags; 4543 4544 flags = elf_section_data(input_section)->this_hdr.sh_flags; 4545 flags &= SHF_IA_64_NORECOV; 4546 4547 elf_section_data(input_section->output_section) 4548 ->this_hdr.sh_flags |= flags; 4549 } 4550 4551 gp_val = _bfd_get_gp_value (output_bfd); 4552 srel = get_reloc_section (input_bfd, ia64_info, input_section, FALSE); 4553 4554 rel = relocs; 4555 relend = relocs + input_section->reloc_count; 4556 for (; rel < relend; ++rel) 4557 { 4558 struct elf_link_hash_entry *h; 4559 struct elfNN_ia64_dyn_sym_info *dyn_i; 4560 bfd_reloc_status_type r; 4561 reloc_howto_type *howto; 4562 unsigned long r_symndx; 4563 Elf_Internal_Sym *sym; 4564 unsigned int r_type; 4565 bfd_vma value; 4566 asection *sym_sec; 4567 bfd_byte *hit_addr; 4568 bfd_boolean dynamic_symbol_p; 4569 bfd_boolean undef_weak_ref; 4570 4571 r_type = ELFNN_R_TYPE (rel->r_info); 4572 if (r_type > R_IA64_MAX_RELOC_CODE) 4573 { 4574 (*_bfd_error_handler) 4575 (_("%B: unknown relocation type %d"), 4576 input_bfd, (int) r_type); 4577 bfd_set_error (bfd_error_bad_value); 4578 ret_val = FALSE; 4579 continue; 4580 } 4581 4582 howto = lookup_howto (r_type); 4583 r_symndx = ELFNN_R_SYM (rel->r_info); 4584 h = NULL; 4585 sym = NULL; 4586 sym_sec = NULL; 4587 undef_weak_ref = FALSE; 4588 4589 if (r_symndx < symtab_hdr->sh_info) 4590 { 4591 /* Reloc against local symbol. */ 4592 asection *msec; 4593 sym = local_syms + r_symndx; 4594 sym_sec = local_sections[r_symndx]; 4595 msec = sym_sec; 4596 value = _bfd_elf_rela_local_sym (output_bfd, sym, &msec, rel); 4597 if (!info->relocatable 4598 && (sym_sec->flags & SEC_MERGE) != 0 4599 && ELF_ST_TYPE (sym->st_info) == STT_SECTION 4600 && sym_sec->sec_info_type == ELF_INFO_TYPE_MERGE) 4601 { 4602 struct elfNN_ia64_local_hash_entry *loc_h; 4603 4604 loc_h = get_local_sym_hash (ia64_info, input_bfd, rel, FALSE); 4605 if (loc_h && ! loc_h->sec_merge_done) 4606 { 4607 struct elfNN_ia64_dyn_sym_info *dynent; 4608 unsigned int count; 4609 4610 for (count = loc_h->count, dynent = loc_h->info; 4611 count != 0; 4612 count--, dynent++) 4613 { 4614 msec = sym_sec; 4615 dynent->addend = 4616 _bfd_merged_section_offset (output_bfd, &msec, 4617 elf_section_data (msec)-> 4618 sec_info, 4619 sym->st_value 4620 + dynent->addend); 4621 dynent->addend -= sym->st_value; 4622 dynent->addend += msec->output_section->vma 4623 + msec->output_offset 4624 - sym_sec->output_section->vma 4625 - sym_sec->output_offset; 4626 } 4627 4628 /* We may have introduced duplicated entries. We need 4629 to remove them properly. */ 4630 count = sort_dyn_sym_info (loc_h->info, loc_h->count); 4631 if (count != loc_h->count) 4632 { 4633 loc_h->count = count; 4634 loc_h->sorted_count = count; 4635 } 4636 4637 loc_h->sec_merge_done = 1; 4638 } 4639 } 4640 } 4641 else 4642 { 4643 bfd_boolean unresolved_reloc; 4644 bfd_boolean warned; 4645 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd); 4646 4647 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, 4648 r_symndx, symtab_hdr, sym_hashes, 4649 h, sym_sec, value, 4650 unresolved_reloc, warned); 4651 4652 if (h->root.type == bfd_link_hash_undefweak) 4653 undef_weak_ref = TRUE; 4654 else if (warned) 4655 continue; 4656 } 4657 4658 if (sym_sec != NULL && elf_discarded_section (sym_sec)) 4659 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, 4660 rel, relend, howto, contents); 4661 4662 if (info->relocatable) 4663 continue; 4664 4665 hit_addr = contents + rel->r_offset; 4666 value += rel->r_addend; 4667 dynamic_symbol_p = elfNN_ia64_dynamic_symbol_p (h, info, r_type); 4668 4669 switch (r_type) 4670 { 4671 case R_IA64_NONE: 4672 case R_IA64_LDXMOV: 4673 continue; 4674 4675 case R_IA64_IMM14: 4676 case R_IA64_IMM22: 4677 case R_IA64_IMM64: 4678 case R_IA64_DIR32MSB: 4679 case R_IA64_DIR32LSB: 4680 case R_IA64_DIR64MSB: 4681 case R_IA64_DIR64LSB: 4682 /* Install a dynamic relocation for this reloc. */ 4683 if ((dynamic_symbol_p || info->shared) 4684 && r_symndx != STN_UNDEF 4685 && (input_section->flags & SEC_ALLOC) != 0) 4686 { 4687 unsigned int dyn_r_type; 4688 long dynindx; 4689 bfd_vma addend; 4690 4691 BFD_ASSERT (srel != NULL); 4692 4693 switch (r_type) 4694 { 4695 case R_IA64_IMM14: 4696 case R_IA64_IMM22: 4697 case R_IA64_IMM64: 4698 /* ??? People shouldn't be doing non-pic code in 4699 shared libraries nor dynamic executables. */ 4700 (*_bfd_error_handler) 4701 (_("%B: non-pic code with imm relocation against dynamic symbol `%s'"), 4702 input_bfd, 4703 h ? h->root.root.string 4704 : bfd_elf_sym_name (input_bfd, symtab_hdr, sym, 4705 sym_sec)); 4706 ret_val = FALSE; 4707 continue; 4708 4709 default: 4710 break; 4711 } 4712 4713 /* If we don't need dynamic symbol lookup, find a 4714 matching RELATIVE relocation. */ 4715 dyn_r_type = r_type; 4716 if (dynamic_symbol_p) 4717 { 4718 dynindx = h->dynindx; 4719 addend = rel->r_addend; 4720 value = 0; 4721 } 4722 else 4723 { 4724 switch (r_type) 4725 { 4726 case R_IA64_DIR32MSB: 4727 dyn_r_type = R_IA64_REL32MSB; 4728 break; 4729 case R_IA64_DIR32LSB: 4730 dyn_r_type = R_IA64_REL32LSB; 4731 break; 4732 case R_IA64_DIR64MSB: 4733 dyn_r_type = R_IA64_REL64MSB; 4734 break; 4735 case R_IA64_DIR64LSB: 4736 dyn_r_type = R_IA64_REL64LSB; 4737 break; 4738 4739 default: 4740 break; 4741 } 4742 dynindx = 0; 4743 addend = value; 4744 } 4745 4746 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section, 4747 srel, rel->r_offset, dyn_r_type, 4748 dynindx, addend); 4749 } 4750 /* Fall through. */ 4751 4752 case R_IA64_LTV32MSB: 4753 case R_IA64_LTV32LSB: 4754 case R_IA64_LTV64MSB: 4755 case R_IA64_LTV64LSB: 4756 r = elfNN_ia64_install_value (hit_addr, value, r_type); 4757 break; 4758 4759 case R_IA64_GPREL22: 4760 case R_IA64_GPREL64I: 4761 case R_IA64_GPREL32MSB: 4762 case R_IA64_GPREL32LSB: 4763 case R_IA64_GPREL64MSB: 4764 case R_IA64_GPREL64LSB: 4765 if (dynamic_symbol_p) 4766 { 4767 (*_bfd_error_handler) 4768 (_("%B: @gprel relocation against dynamic symbol %s"), 4769 input_bfd, 4770 h ? h->root.root.string 4771 : bfd_elf_sym_name (input_bfd, symtab_hdr, sym, 4772 sym_sec)); 4773 ret_val = FALSE; 4774 continue; 4775 } 4776 value -= gp_val; 4777 r = elfNN_ia64_install_value (hit_addr, value, r_type); 4778 break; 4779 4780 case R_IA64_LTOFF22: 4781 case R_IA64_LTOFF22X: 4782 case R_IA64_LTOFF64I: 4783 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE); 4784 value = set_got_entry (input_bfd, info, dyn_i, (h ? h->dynindx : -1), 4785 rel->r_addend, value, R_IA64_DIRNNLSB); 4786 value -= gp_val; 4787 r = elfNN_ia64_install_value (hit_addr, value, r_type); 4788 break; 4789 4790 case R_IA64_PLTOFF22: 4791 case R_IA64_PLTOFF64I: 4792 case R_IA64_PLTOFF64MSB: 4793 case R_IA64_PLTOFF64LSB: 4794 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE); 4795 value = set_pltoff_entry (output_bfd, info, dyn_i, value, FALSE); 4796 value -= gp_val; 4797 r = elfNN_ia64_install_value (hit_addr, value, r_type); 4798 break; 4799 4800 case R_IA64_FPTR64I: 4801 case R_IA64_FPTR32MSB: 4802 case R_IA64_FPTR32LSB: 4803 case R_IA64_FPTR64MSB: 4804 case R_IA64_FPTR64LSB: 4805 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE); 4806 if (dyn_i->want_fptr) 4807 { 4808 if (!undef_weak_ref) 4809 value = set_fptr_entry (output_bfd, info, dyn_i, value); 4810 } 4811 if (!dyn_i->want_fptr || info->pie) 4812 { 4813 long dynindx; 4814 unsigned int dyn_r_type = r_type; 4815 bfd_vma addend = rel->r_addend; 4816 4817 /* Otherwise, we expect the dynamic linker to create 4818 the entry. */ 4819 4820 if (dyn_i->want_fptr) 4821 { 4822 if (r_type == R_IA64_FPTR64I) 4823 { 4824 /* We can't represent this without a dynamic symbol. 4825 Adjust the relocation to be against an output 4826 section symbol, which are always present in the 4827 dynamic symbol table. */ 4828 /* ??? People shouldn't be doing non-pic code in 4829 shared libraries. Hork. */ 4830 (*_bfd_error_handler) 4831 (_("%B: linking non-pic code in a position independent executable"), 4832 input_bfd); 4833 ret_val = FALSE; 4834 continue; 4835 } 4836 dynindx = 0; 4837 addend = value; 4838 dyn_r_type = r_type + R_IA64_RELNNLSB - R_IA64_FPTRNNLSB; 4839 } 4840 else if (h) 4841 { 4842 if (h->dynindx != -1) 4843 dynindx = h->dynindx; 4844 else 4845 dynindx = (_bfd_elf_link_lookup_local_dynindx 4846 (info, h->root.u.def.section->owner, 4847 global_sym_index (h))); 4848 value = 0; 4849 } 4850 else 4851 { 4852 dynindx = (_bfd_elf_link_lookup_local_dynindx 4853 (info, input_bfd, (long) r_symndx)); 4854 value = 0; 4855 } 4856 4857 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section, 4858 srel, rel->r_offset, dyn_r_type, 4859 dynindx, addend); 4860 } 4861 4862 r = elfNN_ia64_install_value (hit_addr, value, r_type); 4863 break; 4864 4865 case R_IA64_LTOFF_FPTR22: 4866 case R_IA64_LTOFF_FPTR64I: 4867 case R_IA64_LTOFF_FPTR32MSB: 4868 case R_IA64_LTOFF_FPTR32LSB: 4869 case R_IA64_LTOFF_FPTR64MSB: 4870 case R_IA64_LTOFF_FPTR64LSB: 4871 { 4872 long dynindx; 4873 4874 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE); 4875 if (dyn_i->want_fptr) 4876 { 4877 BFD_ASSERT (h == NULL || h->dynindx == -1); 4878 if (!undef_weak_ref) 4879 value = set_fptr_entry (output_bfd, info, dyn_i, value); 4880 dynindx = -1; 4881 } 4882 else 4883 { 4884 /* Otherwise, we expect the dynamic linker to create 4885 the entry. */ 4886 if (h) 4887 { 4888 if (h->dynindx != -1) 4889 dynindx = h->dynindx; 4890 else 4891 dynindx = (_bfd_elf_link_lookup_local_dynindx 4892 (info, h->root.u.def.section->owner, 4893 global_sym_index (h))); 4894 } 4895 else 4896 dynindx = (_bfd_elf_link_lookup_local_dynindx 4897 (info, input_bfd, (long) r_symndx)); 4898 value = 0; 4899 } 4900 4901 value = set_got_entry (output_bfd, info, dyn_i, dynindx, 4902 rel->r_addend, value, R_IA64_FPTRNNLSB); 4903 value -= gp_val; 4904 r = elfNN_ia64_install_value (hit_addr, value, r_type); 4905 } 4906 break; 4907 4908 case R_IA64_PCREL32MSB: 4909 case R_IA64_PCREL32LSB: 4910 case R_IA64_PCREL64MSB: 4911 case R_IA64_PCREL64LSB: 4912 /* Install a dynamic relocation for this reloc. */ 4913 if (dynamic_symbol_p && r_symndx != STN_UNDEF) 4914 { 4915 BFD_ASSERT (srel != NULL); 4916 4917 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section, 4918 srel, rel->r_offset, r_type, 4919 h->dynindx, rel->r_addend); 4920 } 4921 goto finish_pcrel; 4922 4923 case R_IA64_PCREL21B: 4924 case R_IA64_PCREL60B: 4925 /* We should have created a PLT entry for any dynamic symbol. */ 4926 dyn_i = NULL; 4927 if (h) 4928 dyn_i = get_dyn_sym_info (ia64_info, h, NULL, NULL, FALSE); 4929 4930 if (dyn_i && dyn_i->want_plt2) 4931 { 4932 /* Should have caught this earlier. */ 4933 BFD_ASSERT (rel->r_addend == 0); 4934 4935 value = (ia64_info->root.splt->output_section->vma 4936 + ia64_info->root.splt->output_offset 4937 + dyn_i->plt2_offset); 4938 } 4939 else 4940 { 4941 /* Since there's no PLT entry, Validate that this is 4942 locally defined. */ 4943 BFD_ASSERT (undef_weak_ref || sym_sec->output_section != NULL); 4944 4945 /* If the symbol is undef_weak, we shouldn't be trying 4946 to call it. There's every chance that we'd wind up 4947 with an out-of-range fixup here. Don't bother setting 4948 any value at all. */ 4949 if (undef_weak_ref) 4950 continue; 4951 } 4952 goto finish_pcrel; 4953 4954 case R_IA64_PCREL21BI: 4955 case R_IA64_PCREL21F: 4956 case R_IA64_PCREL21M: 4957 case R_IA64_PCREL22: 4958 case R_IA64_PCREL64I: 4959 /* The PCREL21BI reloc is specifically not intended for use with 4960 dynamic relocs. PCREL21F and PCREL21M are used for speculation 4961 fixup code, and thus probably ought not be dynamic. The 4962 PCREL22 and PCREL64I relocs aren't emitted as dynamic relocs. */ 4963 if (dynamic_symbol_p) 4964 { 4965 const char *msg; 4966 4967 if (r_type == R_IA64_PCREL21BI) 4968 msg = _("%B: @internal branch to dynamic symbol %s"); 4969 else if (r_type == R_IA64_PCREL21F || r_type == R_IA64_PCREL21M) 4970 msg = _("%B: speculation fixup to dynamic symbol %s"); 4971 else 4972 msg = _("%B: @pcrel relocation against dynamic symbol %s"); 4973 (*_bfd_error_handler) (msg, input_bfd, 4974 h ? h->root.root.string 4975 : bfd_elf_sym_name (input_bfd, 4976 symtab_hdr, 4977 sym, 4978 sym_sec)); 4979 ret_val = FALSE; 4980 continue; 4981 } 4982 goto finish_pcrel; 4983 4984 finish_pcrel: 4985 /* Make pc-relative. */ 4986 value -= (input_section->output_section->vma 4987 + input_section->output_offset 4988 + rel->r_offset) & ~ (bfd_vma) 0x3; 4989 r = elfNN_ia64_install_value (hit_addr, value, r_type); 4990 break; 4991 4992 case R_IA64_SEGREL32MSB: 4993 case R_IA64_SEGREL32LSB: 4994 case R_IA64_SEGREL64MSB: 4995 case R_IA64_SEGREL64LSB: 4996 { 4997 /* Find the segment that contains the output_section. */ 4998 Elf_Internal_Phdr *p = _bfd_elf_find_segment_containing_section 4999 (output_bfd, input_section->output_section); 5000 5001 if (p == NULL) 5002 { 5003 r = bfd_reloc_notsupported; 5004 } 5005 else 5006 { 5007 /* The VMA of the segment is the vaddr of the associated 5008 program header. */ 5009 if (value > p->p_vaddr) 5010 value -= p->p_vaddr; 5011 else 5012 value = 0; 5013 r = elfNN_ia64_install_value (hit_addr, value, r_type); 5014 } 5015 break; 5016 } 5017 5018 case R_IA64_SECREL32MSB: 5019 case R_IA64_SECREL32LSB: 5020 case R_IA64_SECREL64MSB: 5021 case R_IA64_SECREL64LSB: 5022 /* Make output-section relative to section where the symbol 5023 is defined. PR 475 */ 5024 if (sym_sec) 5025 value -= sym_sec->output_section->vma; 5026 r = elfNN_ia64_install_value (hit_addr, value, r_type); 5027 break; 5028 5029 case R_IA64_IPLTMSB: 5030 case R_IA64_IPLTLSB: 5031 /* Install a dynamic relocation for this reloc. */ 5032 if ((dynamic_symbol_p || info->shared) 5033 && (input_section->flags & SEC_ALLOC) != 0) 5034 { 5035 BFD_ASSERT (srel != NULL); 5036 5037 /* If we don't need dynamic symbol lookup, install two 5038 RELATIVE relocations. */ 5039 if (!dynamic_symbol_p) 5040 { 5041 unsigned int dyn_r_type; 5042 5043 if (r_type == R_IA64_IPLTMSB) 5044 dyn_r_type = R_IA64_REL64MSB; 5045 else 5046 dyn_r_type = R_IA64_REL64LSB; 5047 5048 elfNN_ia64_install_dyn_reloc (output_bfd, info, 5049 input_section, 5050 srel, rel->r_offset, 5051 dyn_r_type, 0, value); 5052 elfNN_ia64_install_dyn_reloc (output_bfd, info, 5053 input_section, 5054 srel, rel->r_offset + 8, 5055 dyn_r_type, 0, gp_val); 5056 } 5057 else 5058 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section, 5059 srel, rel->r_offset, r_type, 5060 h->dynindx, rel->r_addend); 5061 } 5062 5063 if (r_type == R_IA64_IPLTMSB) 5064 r_type = R_IA64_DIR64MSB; 5065 else 5066 r_type = R_IA64_DIR64LSB; 5067 elfNN_ia64_install_value (hit_addr, value, r_type); 5068 r = elfNN_ia64_install_value (hit_addr + 8, gp_val, r_type); 5069 break; 5070 5071 case R_IA64_TPREL14: 5072 case R_IA64_TPREL22: 5073 case R_IA64_TPREL64I: 5074 if (elf_hash_table (info)->tls_sec == NULL) 5075 goto missing_tls_sec; 5076 value -= elfNN_ia64_tprel_base (info); 5077 r = elfNN_ia64_install_value (hit_addr, value, r_type); 5078 break; 5079 5080 case R_IA64_DTPREL14: 5081 case R_IA64_DTPREL22: 5082 case R_IA64_DTPREL64I: 5083 case R_IA64_DTPREL32LSB: 5084 case R_IA64_DTPREL32MSB: 5085 case R_IA64_DTPREL64LSB: 5086 case R_IA64_DTPREL64MSB: 5087 if (elf_hash_table (info)->tls_sec == NULL) 5088 goto missing_tls_sec; 5089 value -= elfNN_ia64_dtprel_base (info); 5090 r = elfNN_ia64_install_value (hit_addr, value, r_type); 5091 break; 5092 5093 case R_IA64_LTOFF_TPREL22: 5094 case R_IA64_LTOFF_DTPMOD22: 5095 case R_IA64_LTOFF_DTPREL22: 5096 { 5097 int got_r_type; 5098 long dynindx = h ? h->dynindx : -1; 5099 bfd_vma r_addend = rel->r_addend; 5100 5101 switch (r_type) 5102 { 5103 default: 5104 case R_IA64_LTOFF_TPREL22: 5105 if (!dynamic_symbol_p) 5106 { 5107 if (elf_hash_table (info)->tls_sec == NULL) 5108 goto missing_tls_sec; 5109 if (!info->shared) 5110 value -= elfNN_ia64_tprel_base (info); 5111 else 5112 { 5113 r_addend += value - elfNN_ia64_dtprel_base (info); 5114 dynindx = 0; 5115 } 5116 } 5117 got_r_type = R_IA64_TPREL64LSB; 5118 break; 5119 case R_IA64_LTOFF_DTPMOD22: 5120 if (!dynamic_symbol_p && !info->shared) 5121 value = 1; 5122 got_r_type = R_IA64_DTPMOD64LSB; 5123 break; 5124 case R_IA64_LTOFF_DTPREL22: 5125 if (!dynamic_symbol_p) 5126 { 5127 if (elf_hash_table (info)->tls_sec == NULL) 5128 goto missing_tls_sec; 5129 value -= elfNN_ia64_dtprel_base (info); 5130 } 5131 got_r_type = R_IA64_DTPRELNNLSB; 5132 break; 5133 } 5134 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE); 5135 value = set_got_entry (input_bfd, info, dyn_i, dynindx, r_addend, 5136 value, got_r_type); 5137 value -= gp_val; 5138 r = elfNN_ia64_install_value (hit_addr, value, r_type); 5139 } 5140 break; 5141 5142 default: 5143 r = bfd_reloc_notsupported; 5144 break; 5145 } 5146 5147 switch (r) 5148 { 5149 case bfd_reloc_ok: 5150 break; 5151 5152 case bfd_reloc_undefined: 5153 /* This can happen for global table relative relocs if 5154 __gp is undefined. This is a panic situation so we 5155 don't try to continue. */ 5156 (*info->callbacks->undefined_symbol) 5157 (info, "__gp", input_bfd, input_section, rel->r_offset, 1); 5158 return FALSE; 5159 5160 case bfd_reloc_notsupported: 5161 { 5162 const char *name; 5163 5164 if (h) 5165 name = h->root.root.string; 5166 else 5167 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, 5168 sym_sec); 5169 if (!(*info->callbacks->warning) (info, _("unsupported reloc"), 5170 name, input_bfd, 5171 input_section, rel->r_offset)) 5172 return FALSE; 5173 ret_val = FALSE; 5174 } 5175 break; 5176 5177 case bfd_reloc_dangerous: 5178 case bfd_reloc_outofrange: 5179 case bfd_reloc_overflow: 5180 default: 5181 missing_tls_sec: 5182 { 5183 const char *name; 5184 5185 if (h) 5186 name = h->root.root.string; 5187 else 5188 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, 5189 sym_sec); 5190 5191 switch (r_type) 5192 { 5193 case R_IA64_TPREL14: 5194 case R_IA64_TPREL22: 5195 case R_IA64_TPREL64I: 5196 case R_IA64_DTPREL14: 5197 case R_IA64_DTPREL22: 5198 case R_IA64_DTPREL64I: 5199 case R_IA64_DTPREL32LSB: 5200 case R_IA64_DTPREL32MSB: 5201 case R_IA64_DTPREL64LSB: 5202 case R_IA64_DTPREL64MSB: 5203 case R_IA64_LTOFF_TPREL22: 5204 case R_IA64_LTOFF_DTPMOD22: 5205 case R_IA64_LTOFF_DTPREL22: 5206 (*_bfd_error_handler) 5207 (_("%B: missing TLS section for relocation %s against `%s' at 0x%lx in section `%A'."), 5208 input_bfd, input_section, howto->name, name, 5209 rel->r_offset); 5210 break; 5211 5212 case R_IA64_PCREL21B: 5213 case R_IA64_PCREL21BI: 5214 case R_IA64_PCREL21M: 5215 case R_IA64_PCREL21F: 5216 if (is_elf_hash_table (info->hash)) 5217 { 5218 /* Relaxtion is always performed for ELF output. 5219 Overflow failures for those relocations mean 5220 that the section is too big to relax. */ 5221 (*_bfd_error_handler) 5222 (_("%B: Can't relax br (%s) to `%s' at 0x%lx in section `%A' with size 0x%lx (> 0x1000000)."), 5223 input_bfd, input_section, howto->name, name, 5224 rel->r_offset, input_section->size); 5225 break; 5226 } 5227 default: 5228 if (!(*info->callbacks->reloc_overflow) (info, 5229 &h->root, 5230 name, 5231 howto->name, 5232 (bfd_vma) 0, 5233 input_bfd, 5234 input_section, 5235 rel->r_offset)) 5236 return FALSE; 5237 break; 5238 } 5239 5240 ret_val = FALSE; 5241 } 5242 break; 5243 } 5244 } 5245 5246 return ret_val; 5247 } 5248 5249 static bfd_boolean 5250 elfNN_ia64_finish_dynamic_symbol (bfd *output_bfd, 5251 struct bfd_link_info *info, 5252 struct elf_link_hash_entry *h, 5253 Elf_Internal_Sym *sym) 5254 { 5255 struct elfNN_ia64_link_hash_table *ia64_info; 5256 struct elfNN_ia64_dyn_sym_info *dyn_i; 5257 5258 ia64_info = elfNN_ia64_hash_table (info); 5259 if (ia64_info == NULL) 5260 return FALSE; 5261 5262 dyn_i = get_dyn_sym_info (ia64_info, h, NULL, NULL, FALSE); 5263 5264 /* Fill in the PLT data, if required. */ 5265 if (dyn_i && dyn_i->want_plt) 5266 { 5267 Elf_Internal_Rela outrel; 5268 bfd_byte *loc; 5269 asection *plt_sec; 5270 bfd_vma plt_addr, pltoff_addr, gp_val, plt_index; 5271 5272 gp_val = _bfd_get_gp_value (output_bfd); 5273 5274 /* Initialize the minimal PLT entry. */ 5275 5276 plt_index = (dyn_i->plt_offset - PLT_HEADER_SIZE) / PLT_MIN_ENTRY_SIZE; 5277 plt_sec = ia64_info->root.splt; 5278 loc = plt_sec->contents + dyn_i->plt_offset; 5279 5280 memcpy (loc, plt_min_entry, PLT_MIN_ENTRY_SIZE); 5281 elfNN_ia64_install_value (loc, plt_index, R_IA64_IMM22); 5282 elfNN_ia64_install_value (loc+2, -dyn_i->plt_offset, R_IA64_PCREL21B); 5283 5284 plt_addr = (plt_sec->output_section->vma 5285 + plt_sec->output_offset 5286 + dyn_i->plt_offset); 5287 pltoff_addr = set_pltoff_entry (output_bfd, info, dyn_i, plt_addr, TRUE); 5288 5289 /* Initialize the FULL PLT entry, if needed. */ 5290 if (dyn_i->want_plt2) 5291 { 5292 loc = plt_sec->contents + dyn_i->plt2_offset; 5293 5294 memcpy (loc, plt_full_entry, PLT_FULL_ENTRY_SIZE); 5295 elfNN_ia64_install_value (loc, pltoff_addr - gp_val, R_IA64_IMM22); 5296 5297 /* Mark the symbol as undefined, rather than as defined in the 5298 plt section. Leave the value alone. */ 5299 /* ??? We didn't redefine it in adjust_dynamic_symbol in the 5300 first place. But perhaps elflink.c did some for us. */ 5301 if (!h->def_regular) 5302 sym->st_shndx = SHN_UNDEF; 5303 } 5304 5305 /* Create the dynamic relocation. */ 5306 outrel.r_offset = pltoff_addr; 5307 if (bfd_little_endian (output_bfd)) 5308 outrel.r_info = ELFNN_R_INFO (h->dynindx, R_IA64_IPLTLSB); 5309 else 5310 outrel.r_info = ELFNN_R_INFO (h->dynindx, R_IA64_IPLTMSB); 5311 outrel.r_addend = 0; 5312 5313 /* This is fun. In the .IA_64.pltoff section, we've got entries 5314 that correspond both to real PLT entries, and those that 5315 happened to resolve to local symbols but need to be created 5316 to satisfy @pltoff relocations. The .rela.IA_64.pltoff 5317 relocations for the real PLT should come at the end of the 5318 section, so that they can be indexed by plt entry at runtime. 5319 5320 We emitted all of the relocations for the non-PLT @pltoff 5321 entries during relocate_section. So we can consider the 5322 existing sec->reloc_count to be the base of the array of 5323 PLT relocations. */ 5324 5325 loc = ia64_info->rel_pltoff_sec->contents; 5326 loc += ((ia64_info->rel_pltoff_sec->reloc_count + plt_index) 5327 * sizeof (ElfNN_External_Rela)); 5328 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc); 5329 } 5330 5331 /* Mark some specially defined symbols as absolute. */ 5332 if (strcmp (h->root.root.string, "_DYNAMIC") == 0 5333 || h == ia64_info->root.hgot 5334 || h == ia64_info->root.hplt) 5335 sym->st_shndx = SHN_ABS; 5336 5337 return TRUE; 5338 } 5339 5340 static bfd_boolean 5341 elfNN_ia64_finish_dynamic_sections (bfd *abfd, 5342 struct bfd_link_info *info) 5343 { 5344 struct elfNN_ia64_link_hash_table *ia64_info; 5345 bfd *dynobj; 5346 5347 ia64_info = elfNN_ia64_hash_table (info); 5348 if (ia64_info == NULL) 5349 return FALSE; 5350 5351 dynobj = ia64_info->root.dynobj; 5352 5353 if (elf_hash_table (info)->dynamic_sections_created) 5354 { 5355 ElfNN_External_Dyn *dyncon, *dynconend; 5356 asection *sdyn, *sgotplt; 5357 bfd_vma gp_val; 5358 5359 sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); 5360 sgotplt = bfd_get_section_by_name (dynobj, ".got.plt"); 5361 BFD_ASSERT (sdyn != NULL); 5362 dyncon = (ElfNN_External_Dyn *) sdyn->contents; 5363 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size); 5364 5365 gp_val = _bfd_get_gp_value (abfd); 5366 5367 for (; dyncon < dynconend; dyncon++) 5368 { 5369 Elf_Internal_Dyn dyn; 5370 5371 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn); 5372 5373 switch (dyn.d_tag) 5374 { 5375 case DT_PLTGOT: 5376 dyn.d_un.d_ptr = gp_val; 5377 break; 5378 5379 case DT_PLTRELSZ: 5380 dyn.d_un.d_val = (ia64_info->minplt_entries 5381 * sizeof (ElfNN_External_Rela)); 5382 break; 5383 5384 case DT_JMPREL: 5385 /* See the comment above in finish_dynamic_symbol. */ 5386 dyn.d_un.d_ptr = (ia64_info->rel_pltoff_sec->output_section->vma 5387 + ia64_info->rel_pltoff_sec->output_offset 5388 + (ia64_info->rel_pltoff_sec->reloc_count 5389 * sizeof (ElfNN_External_Rela))); 5390 break; 5391 5392 case DT_IA_64_PLT_RESERVE: 5393 dyn.d_un.d_ptr = (sgotplt->output_section->vma 5394 + sgotplt->output_offset); 5395 break; 5396 5397 case DT_RELASZ: 5398 /* Do not have RELASZ include JMPREL. This makes things 5399 easier on ld.so. This is not what the rest of BFD set up. */ 5400 dyn.d_un.d_val -= (ia64_info->minplt_entries 5401 * sizeof (ElfNN_External_Rela)); 5402 break; 5403 } 5404 5405 bfd_elfNN_swap_dyn_out (abfd, &dyn, dyncon); 5406 } 5407 5408 /* Initialize the PLT0 entry. */ 5409 if (ia64_info->root.splt) 5410 { 5411 bfd_byte *loc = ia64_info->root.splt->contents; 5412 bfd_vma pltres; 5413 5414 memcpy (loc, plt_header, PLT_HEADER_SIZE); 5415 5416 pltres = (sgotplt->output_section->vma 5417 + sgotplt->output_offset 5418 - gp_val); 5419 5420 elfNN_ia64_install_value (loc+1, pltres, R_IA64_GPREL22); 5421 } 5422 } 5423 5424 return TRUE; 5425 } 5426 5427 /* ELF file flag handling: */ 5428 5429 /* Function to keep IA-64 specific file flags. */ 5430 static bfd_boolean 5431 elfNN_ia64_set_private_flags (bfd *abfd, flagword flags) 5432 { 5433 BFD_ASSERT (!elf_flags_init (abfd) 5434 || elf_elfheader (abfd)->e_flags == flags); 5435 5436 elf_elfheader (abfd)->e_flags = flags; 5437 elf_flags_init (abfd) = TRUE; 5438 return TRUE; 5439 } 5440 5441 /* Merge backend specific data from an object file to the output 5442 object file when linking. */ 5443 static bfd_boolean 5444 elfNN_ia64_merge_private_bfd_data (bfd *ibfd, bfd *obfd) 5445 { 5446 flagword out_flags; 5447 flagword in_flags; 5448 bfd_boolean ok = TRUE; 5449 5450 /* Don't even pretend to support mixed-format linking. */ 5451 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour 5452 || bfd_get_flavour (obfd) != bfd_target_elf_flavour) 5453 return FALSE; 5454 5455 in_flags = elf_elfheader (ibfd)->e_flags; 5456 out_flags = elf_elfheader (obfd)->e_flags; 5457 5458 if (! elf_flags_init (obfd)) 5459 { 5460 elf_flags_init (obfd) = TRUE; 5461 elf_elfheader (obfd)->e_flags = in_flags; 5462 5463 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) 5464 && bfd_get_arch_info (obfd)->the_default) 5465 { 5466 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), 5467 bfd_get_mach (ibfd)); 5468 } 5469 5470 return TRUE; 5471 } 5472 5473 /* Check flag compatibility. */ 5474 if (in_flags == out_flags) 5475 return TRUE; 5476 5477 /* Output has EF_IA_64_REDUCEDFP set only if all inputs have it set. */ 5478 if (!(in_flags & EF_IA_64_REDUCEDFP) && (out_flags & EF_IA_64_REDUCEDFP)) 5479 elf_elfheader (obfd)->e_flags &= ~EF_IA_64_REDUCEDFP; 5480 5481 if ((in_flags & EF_IA_64_TRAPNIL) != (out_flags & EF_IA_64_TRAPNIL)) 5482 { 5483 (*_bfd_error_handler) 5484 (_("%B: linking trap-on-NULL-dereference with non-trapping files"), 5485 ibfd); 5486 5487 bfd_set_error (bfd_error_bad_value); 5488 ok = FALSE; 5489 } 5490 if ((in_flags & EF_IA_64_BE) != (out_flags & EF_IA_64_BE)) 5491 { 5492 (*_bfd_error_handler) 5493 (_("%B: linking big-endian files with little-endian files"), 5494 ibfd); 5495 5496 bfd_set_error (bfd_error_bad_value); 5497 ok = FALSE; 5498 } 5499 if ((in_flags & EF_IA_64_ABI64) != (out_flags & EF_IA_64_ABI64)) 5500 { 5501 (*_bfd_error_handler) 5502 (_("%B: linking 64-bit files with 32-bit files"), 5503 ibfd); 5504 5505 bfd_set_error (bfd_error_bad_value); 5506 ok = FALSE; 5507 } 5508 if ((in_flags & EF_IA_64_CONS_GP) != (out_flags & EF_IA_64_CONS_GP)) 5509 { 5510 (*_bfd_error_handler) 5511 (_("%B: linking constant-gp files with non-constant-gp files"), 5512 ibfd); 5513 5514 bfd_set_error (bfd_error_bad_value); 5515 ok = FALSE; 5516 } 5517 if ((in_flags & EF_IA_64_NOFUNCDESC_CONS_GP) 5518 != (out_flags & EF_IA_64_NOFUNCDESC_CONS_GP)) 5519 { 5520 (*_bfd_error_handler) 5521 (_("%B: linking auto-pic files with non-auto-pic files"), 5522 ibfd); 5523 5524 bfd_set_error (bfd_error_bad_value); 5525 ok = FALSE; 5526 } 5527 5528 return ok; 5529 } 5530 5531 static bfd_boolean 5532 elfNN_ia64_print_private_bfd_data (bfd *abfd, PTR ptr) 5533 { 5534 FILE *file = (FILE *) ptr; 5535 flagword flags = elf_elfheader (abfd)->e_flags; 5536 5537 BFD_ASSERT (abfd != NULL && ptr != NULL); 5538 5539 fprintf (file, "private flags = %s%s%s%s%s%s%s%s\n", 5540 (flags & EF_IA_64_TRAPNIL) ? "TRAPNIL, " : "", 5541 (flags & EF_IA_64_EXT) ? "EXT, " : "", 5542 (flags & EF_IA_64_BE) ? "BE, " : "LE, ", 5543 (flags & EF_IA_64_REDUCEDFP) ? "REDUCEDFP, " : "", 5544 (flags & EF_IA_64_CONS_GP) ? "CONS_GP, " : "", 5545 (flags & EF_IA_64_NOFUNCDESC_CONS_GP) ? "NOFUNCDESC_CONS_GP, " : "", 5546 (flags & EF_IA_64_ABSOLUTE) ? "ABSOLUTE, " : "", 5547 (flags & EF_IA_64_ABI64) ? "ABI64" : "ABI32"); 5548 5549 _bfd_elf_print_private_bfd_data (abfd, ptr); 5550 return TRUE; 5551 } 5552 5553 static enum elf_reloc_type_class 5554 elfNN_ia64_reloc_type_class (const Elf_Internal_Rela *rela) 5555 { 5556 switch ((int) ELFNN_R_TYPE (rela->r_info)) 5557 { 5558 case R_IA64_REL32MSB: 5559 case R_IA64_REL32LSB: 5560 case R_IA64_REL64MSB: 5561 case R_IA64_REL64LSB: 5562 return reloc_class_relative; 5563 case R_IA64_IPLTMSB: 5564 case R_IA64_IPLTLSB: 5565 return reloc_class_plt; 5566 case R_IA64_COPY: 5567 return reloc_class_copy; 5568 default: 5569 return reloc_class_normal; 5570 } 5571 } 5572 5573 static const struct bfd_elf_special_section elfNN_ia64_special_sections[] = 5574 { 5575 { STRING_COMMA_LEN (".sbss"), -1, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_IA_64_SHORT }, 5576 { STRING_COMMA_LEN (".sdata"), -1, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_IA_64_SHORT }, 5577 { NULL, 0, 0, 0, 0 } 5578 }; 5579 5580 static bfd_boolean 5581 elfNN_ia64_object_p (bfd *abfd) 5582 { 5583 asection *sec; 5584 asection *group, *unwi, *unw; 5585 flagword flags; 5586 const char *name; 5587 char *unwi_name, *unw_name; 5588 bfd_size_type amt; 5589 5590 if (abfd->flags & DYNAMIC) 5591 return TRUE; 5592 5593 /* Flags for fake group section. */ 5594 flags = (SEC_LINKER_CREATED | SEC_GROUP | SEC_LINK_ONCE 5595 | SEC_EXCLUDE); 5596 5597 /* We add a fake section group for each .gnu.linkonce.t.* section, 5598 which isn't in a section group, and its unwind sections. */ 5599 for (sec = abfd->sections; sec != NULL; sec = sec->next) 5600 { 5601 if (elf_sec_group (sec) == NULL 5602 && ((sec->flags & (SEC_LINK_ONCE | SEC_CODE | SEC_GROUP)) 5603 == (SEC_LINK_ONCE | SEC_CODE)) 5604 && CONST_STRNEQ (sec->name, ".gnu.linkonce.t.")) 5605 { 5606 name = sec->name + 16; 5607 5608 amt = strlen (name) + sizeof (".gnu.linkonce.ia64unwi."); 5609 unwi_name = bfd_alloc (abfd, amt); 5610 if (!unwi_name) 5611 return FALSE; 5612 5613 strcpy (stpcpy (unwi_name, ".gnu.linkonce.ia64unwi."), name); 5614 unwi = bfd_get_section_by_name (abfd, unwi_name); 5615 5616 amt = strlen (name) + sizeof (".gnu.linkonce.ia64unw."); 5617 unw_name = bfd_alloc (abfd, amt); 5618 if (!unw_name) 5619 return FALSE; 5620 5621 strcpy (stpcpy (unw_name, ".gnu.linkonce.ia64unw."), name); 5622 unw = bfd_get_section_by_name (abfd, unw_name); 5623 5624 /* We need to create a fake group section for it and its 5625 unwind sections. */ 5626 group = bfd_make_section_anyway_with_flags (abfd, name, 5627 flags); 5628 if (group == NULL) 5629 return FALSE; 5630 5631 /* Move the fake group section to the beginning. */ 5632 bfd_section_list_remove (abfd, group); 5633 bfd_section_list_prepend (abfd, group); 5634 5635 elf_next_in_group (group) = sec; 5636 5637 elf_group_name (sec) = name; 5638 elf_next_in_group (sec) = sec; 5639 elf_sec_group (sec) = group; 5640 5641 if (unwi) 5642 { 5643 elf_group_name (unwi) = name; 5644 elf_next_in_group (unwi) = sec; 5645 elf_next_in_group (sec) = unwi; 5646 elf_sec_group (unwi) = group; 5647 } 5648 5649 if (unw) 5650 { 5651 elf_group_name (unw) = name; 5652 if (unwi) 5653 { 5654 elf_next_in_group (unw) = elf_next_in_group (unwi); 5655 elf_next_in_group (unwi) = unw; 5656 } 5657 else 5658 { 5659 elf_next_in_group (unw) = sec; 5660 elf_next_in_group (sec) = unw; 5661 } 5662 elf_sec_group (unw) = group; 5663 } 5664 5665 /* Fake SHT_GROUP section header. */ 5666 elf_section_data (group)->this_hdr.bfd_section = group; 5667 elf_section_data (group)->this_hdr.sh_type = SHT_GROUP; 5668 } 5669 } 5670 return TRUE; 5671 } 5672 5673 static bfd_boolean 5674 elfNN_ia64_hpux_vec (const bfd_target *vec) 5675 { 5676 extern const bfd_target bfd_elfNN_ia64_hpux_big_vec; 5677 return (vec == & bfd_elfNN_ia64_hpux_big_vec); 5678 } 5679 5680 static void 5681 elfNN_hpux_post_process_headers (bfd *abfd, 5682 struct bfd_link_info *info ATTRIBUTE_UNUSED) 5683 { 5684 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd); 5685 5686 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi; 5687 i_ehdrp->e_ident[EI_ABIVERSION] = 1; 5688 } 5689 5690 static bfd_boolean 5691 elfNN_hpux_backend_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED, 5692 asection *sec, int *retval) 5693 { 5694 if (bfd_is_com_section (sec)) 5695 { 5696 *retval = SHN_IA_64_ANSI_COMMON; 5697 return TRUE; 5698 } 5699 return FALSE; 5700 } 5701 5702 static void 5703 elfNN_hpux_backend_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, 5704 asymbol *asym) 5705 { 5706 elf_symbol_type *elfsym = (elf_symbol_type *) asym; 5707 5708 switch (elfsym->internal_elf_sym.st_shndx) 5709 { 5710 case SHN_IA_64_ANSI_COMMON: 5711 asym->section = bfd_com_section_ptr; 5712 asym->value = elfsym->internal_elf_sym.st_size; 5713 asym->flags &= ~BSF_GLOBAL; 5714 break; 5715 } 5716 } 5717 5718 #ifdef INCLUDE_IA64_VMS 5719 5720 static bfd_boolean 5721 elfNN_vms_section_from_shdr (bfd *abfd, 5722 Elf_Internal_Shdr *hdr, 5723 const char *name, 5724 int shindex) 5725 { 5726 switch (hdr->sh_type) 5727 { 5728 case SHT_IA_64_VMS_TRACE: 5729 case SHT_IA_64_VMS_DEBUG: 5730 case SHT_IA_64_VMS_DEBUG_STR: 5731 break; 5732 5733 default: 5734 return elfNN_ia64_section_from_shdr (abfd, hdr, name, shindex); 5735 } 5736 5737 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) 5738 return FALSE; 5739 5740 return TRUE; 5741 } 5742 5743 static bfd_boolean 5744 elfNN_vms_object_p (bfd *abfd) 5745 { 5746 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd); 5747 Elf_Internal_Phdr *i_phdr = elf_tdata (abfd)->phdr; 5748 unsigned int i; 5749 unsigned int num_text = 0; 5750 unsigned int num_data = 0; 5751 unsigned int num_rodata = 0; 5752 char name[16]; 5753 5754 if (!elfNN_ia64_object_p (abfd)) 5755 return FALSE; 5756 5757 for (i = 0; i < i_ehdrp->e_phnum; i++, i_phdr++) 5758 { 5759 /* Is there a section for this segment? */ 5760 bfd_vma base_vma = i_phdr->p_vaddr; 5761 bfd_vma limit_vma = base_vma + i_phdr->p_filesz; 5762 5763 if (i_phdr->p_type != PT_LOAD) 5764 continue; 5765 5766 again: 5767 while (base_vma < limit_vma) 5768 { 5769 bfd_vma next_vma = limit_vma; 5770 asection *nsec; 5771 asection *sec; 5772 flagword flags; 5773 char *nname = NULL; 5774 5775 /* Find a section covering base_vma. */ 5776 for (sec = abfd->sections; sec != NULL; sec = sec->next) 5777 { 5778 if ((sec->flags & (SEC_ALLOC | SEC_LOAD)) == 0) 5779 continue; 5780 if (sec->vma <= base_vma && sec->vma + sec->size > base_vma) 5781 { 5782 base_vma = sec->vma + sec->size; 5783 goto again; 5784 } 5785 if (sec->vma < next_vma && sec->vma + sec->size >= base_vma) 5786 next_vma = sec->vma; 5787 } 5788 5789 /* No section covering [base_vma; next_vma). Create a fake one. */ 5790 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS; 5791 if (i_phdr->p_flags & PF_X) 5792 { 5793 flags |= SEC_CODE; 5794 if (num_text++ == 0) 5795 nname = ".text"; 5796 else 5797 sprintf (name, ".text$%u", num_text); 5798 } 5799 else if ((i_phdr->p_flags & (PF_R | PF_W)) == PF_R) 5800 { 5801 flags |= SEC_READONLY; 5802 sprintf (name, ".rodata$%u", num_rodata++); 5803 } 5804 else 5805 { 5806 flags |= SEC_DATA; 5807 sprintf (name, ".data$%u", num_data++); 5808 } 5809 5810 /* Allocate name. */ 5811 if (nname == NULL) 5812 { 5813 size_t name_len = strlen (name) + 1; 5814 nname = bfd_alloc (abfd, name_len); 5815 if (nname == NULL) 5816 return FALSE; 5817 memcpy (nname, name, name_len); 5818 } 5819 5820 /* Create and fill new section. */ 5821 nsec = bfd_make_section_anyway_with_flags (abfd, nname, flags); 5822 if (nsec == NULL) 5823 return FALSE; 5824 nsec->vma = base_vma; 5825 nsec->size = next_vma - base_vma; 5826 nsec->filepos = i_phdr->p_offset + (base_vma - i_phdr->p_vaddr); 5827 5828 base_vma = next_vma; 5829 } 5830 } 5831 return TRUE; 5832 } 5833 5834 static void 5835 elfNN_vms_post_process_headers (bfd *abfd, 5836 struct bfd_link_info *info ATTRIBUTE_UNUSED) 5837 { 5838 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd); 5839 5840 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_OPENVMS; 5841 i_ehdrp->e_ident[EI_ABIVERSION] = 2; 5842 } 5843 5844 static bfd_boolean 5845 elfNN_vms_section_processing (bfd *abfd ATTRIBUTE_UNUSED, 5846 Elf_Internal_Shdr *hdr) 5847 { 5848 if (hdr->bfd_section != NULL) 5849 { 5850 const char *name = bfd_get_section_name (abfd, hdr->bfd_section); 5851 5852 if (strcmp (name, ".text") == 0) 5853 hdr->sh_flags |= SHF_IA_64_VMS_SHARED; 5854 else if ((strcmp (name, ".debug") == 0) 5855 || (strcmp (name, ".debug_abbrev") == 0) 5856 || (strcmp (name, ".debug_aranges") == 0) 5857 || (strcmp (name, ".debug_frame") == 0) 5858 || (strcmp (name, ".debug_info") == 0) 5859 || (strcmp (name, ".debug_loc") == 0) 5860 || (strcmp (name, ".debug_macinfo") == 0) 5861 || (strcmp (name, ".debug_pubnames") == 0) 5862 || (strcmp (name, ".debug_pubtypes") == 0)) 5863 hdr->sh_type = SHT_IA_64_VMS_DEBUG; 5864 else if ((strcmp (name, ".debug_line") == 0) 5865 || (strcmp (name, ".debug_ranges") == 0)) 5866 hdr->sh_type = SHT_IA_64_VMS_TRACE; 5867 else if (strcmp (name, ".debug_str") == 0) 5868 hdr->sh_type = SHT_IA_64_VMS_DEBUG_STR; 5869 else if (strcmp (name, ".vms_display_name_info") == 0) 5870 { 5871 int idx, symcount; 5872 asymbol **syms; 5873 struct elf_obj_tdata *t = elf_tdata (abfd); 5874 int buf[2]; 5875 int demangler_sym_idx = -1; 5876 5877 symcount = bfd_get_symcount (abfd); 5878 syms = bfd_get_outsymbols (abfd); 5879 for (idx = 0; idx < symcount; idx++) 5880 { 5881 asymbol *sym; 5882 sym = syms[idx]; 5883 if ((sym->flags & (BSF_DEBUGGING | BSF_DYNAMIC)) 5884 && strchr (sym->name, '@') 5885 && (strcmp (sym->section->name, BFD_ABS_SECTION_NAME) == 0)) 5886 { 5887 demangler_sym_idx = sym->udata.i; 5888 break; 5889 } 5890 } 5891 5892 hdr->sh_type = SHT_IA_64_VMS_DISPLAY_NAME_INFO; 5893 hdr->sh_entsize = 4; 5894 hdr->sh_addralign = 0; 5895 hdr->sh_link = t->symtab_section; 5896 5897 /* Find symtab index of demangler routine and stuff it in 5898 the second long word of section data. */ 5899 5900 if (demangler_sym_idx > -1) 5901 { 5902 bfd_seek (abfd, hdr->sh_offset, SEEK_SET); 5903 bfd_bread (buf, hdr->sh_size, abfd); 5904 buf [1] = demangler_sym_idx; 5905 bfd_seek (abfd, hdr->sh_offset, SEEK_SET); 5906 bfd_bwrite (buf, hdr->sh_size, abfd); 5907 } 5908 } 5909 } 5910 5911 return TRUE; 5912 } 5913 5914 /* The final processing done just before writing out a VMS IA-64 ELF 5915 object file. */ 5916 5917 static void 5918 elfNN_vms_final_write_processing (bfd *abfd, 5919 bfd_boolean linker ATTRIBUTE_UNUSED) 5920 { 5921 Elf_Internal_Shdr *hdr; 5922 asection *s; 5923 int unwind_info_sect_idx = 0; 5924 5925 for (s = abfd->sections; s; s = s->next) 5926 { 5927 hdr = &elf_section_data (s)->this_hdr; 5928 5929 if (strcmp (bfd_get_section_name (abfd, hdr->bfd_section), 5930 ".IA_64.unwind_info") == 0) 5931 unwind_info_sect_idx = elf_section_data (s)->this_idx; 5932 5933 switch (hdr->sh_type) 5934 { 5935 case SHT_IA_64_UNWIND: 5936 /* VMS requires sh_info to point to the unwind info section. */ 5937 hdr->sh_info = unwind_info_sect_idx; 5938 break; 5939 } 5940 } 5941 5942 if (! elf_flags_init (abfd)) 5943 { 5944 unsigned long flags = 0; 5945 5946 if (abfd->xvec->byteorder == BFD_ENDIAN_BIG) 5947 flags |= EF_IA_64_BE; 5948 if (bfd_get_mach (abfd) == bfd_mach_ia64_elf64) 5949 flags |= EF_IA_64_ABI64; 5950 5951 elf_elfheader(abfd)->e_flags = flags; 5952 elf_flags_init (abfd) = TRUE; 5953 } 5954 } 5955 5956 static bfd_boolean 5957 elfNN_vms_close_and_cleanup (bfd *abfd) 5958 { 5959 if (bfd_get_format (abfd) == bfd_object) 5960 { 5961 long isize, irsize; 5962 5963 if (elf_shstrtab (abfd) != NULL) 5964 _bfd_elf_strtab_free (elf_shstrtab (abfd)); 5965 5966 /* Pad to 8 byte boundary for IPF/VMS. */ 5967 isize = bfd_get_size (abfd); 5968 if ((irsize = isize/8*8) < isize) 5969 { 5970 int ishort = (irsize + 8) - isize; 5971 bfd_seek (abfd, isize, SEEK_SET); 5972 bfd_bwrite (bfd_zmalloc (ishort), ishort, abfd); 5973 } 5974 } 5975 5976 return _bfd_generic_close_and_cleanup (abfd); 5977 } 5978 #endif /* INCLUDE_IA64_VMS */ 5979 5980 #define TARGET_LITTLE_SYM bfd_elfNN_ia64_little_vec 5981 #define TARGET_LITTLE_NAME "elfNN-ia64-little" 5982 #define TARGET_BIG_SYM bfd_elfNN_ia64_big_vec 5983 #define TARGET_BIG_NAME "elfNN-ia64-big" 5984 #define ELF_ARCH bfd_arch_ia64 5985 #define ELF_TARGET_ID IA64_ELF_DATA 5986 #define ELF_MACHINE_CODE EM_IA_64 5987 #define ELF_MACHINE_ALT1 1999 /* EAS2.3 */ 5988 #define ELF_MACHINE_ALT2 1998 /* EAS2.2 */ 5989 #define ELF_MAXPAGESIZE 0x10000 /* 64KB */ 5990 #define ELF_COMMONPAGESIZE 0x4000 /* 16KB */ 5991 5992 #define elf_backend_section_from_shdr \ 5993 elfNN_ia64_section_from_shdr 5994 #define elf_backend_section_flags \ 5995 elfNN_ia64_section_flags 5996 #define elf_backend_fake_sections \ 5997 elfNN_ia64_fake_sections 5998 #define elf_backend_final_write_processing \ 5999 elfNN_ia64_final_write_processing 6000 #define elf_backend_add_symbol_hook \ 6001 elfNN_ia64_add_symbol_hook 6002 #define elf_backend_additional_program_headers \ 6003 elfNN_ia64_additional_program_headers 6004 #define elf_backend_modify_segment_map \ 6005 elfNN_ia64_modify_segment_map 6006 #define elf_backend_modify_program_headers \ 6007 elfNN_ia64_modify_program_headers 6008 #define elf_info_to_howto \ 6009 elfNN_ia64_info_to_howto 6010 6011 #define bfd_elfNN_bfd_reloc_type_lookup \ 6012 elfNN_ia64_reloc_type_lookup 6013 #define bfd_elfNN_bfd_reloc_name_lookup \ 6014 elfNN_ia64_reloc_name_lookup 6015 #define bfd_elfNN_bfd_is_local_label_name \ 6016 elfNN_ia64_is_local_label_name 6017 #define bfd_elfNN_bfd_relax_section \ 6018 elfNN_ia64_relax_section 6019 6020 #define elf_backend_object_p \ 6021 elfNN_ia64_object_p 6022 6023 /* Stuff for the BFD linker: */ 6024 #define bfd_elfNN_bfd_link_hash_table_create \ 6025 elfNN_ia64_hash_table_create 6026 #define bfd_elfNN_bfd_link_hash_table_free \ 6027 elfNN_ia64_hash_table_free 6028 #define elf_backend_create_dynamic_sections \ 6029 elfNN_ia64_create_dynamic_sections 6030 #define elf_backend_check_relocs \ 6031 elfNN_ia64_check_relocs 6032 #define elf_backend_adjust_dynamic_symbol \ 6033 elfNN_ia64_adjust_dynamic_symbol 6034 #define elf_backend_size_dynamic_sections \ 6035 elfNN_ia64_size_dynamic_sections 6036 #define elf_backend_omit_section_dynsym \ 6037 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true) 6038 #define elf_backend_relocate_section \ 6039 elfNN_ia64_relocate_section 6040 #define elf_backend_finish_dynamic_symbol \ 6041 elfNN_ia64_finish_dynamic_symbol 6042 #define elf_backend_finish_dynamic_sections \ 6043 elfNN_ia64_finish_dynamic_sections 6044 #define bfd_elfNN_bfd_final_link \ 6045 elfNN_ia64_final_link 6046 6047 #define bfd_elfNN_bfd_merge_private_bfd_data \ 6048 elfNN_ia64_merge_private_bfd_data 6049 #define bfd_elfNN_bfd_set_private_flags \ 6050 elfNN_ia64_set_private_flags 6051 #define bfd_elfNN_bfd_print_private_bfd_data \ 6052 elfNN_ia64_print_private_bfd_data 6053 6054 #define elf_backend_plt_readonly 1 6055 #define elf_backend_want_plt_sym 0 6056 #define elf_backend_plt_alignment 5 6057 #define elf_backend_got_header_size 0 6058 #define elf_backend_want_got_plt 1 6059 #define elf_backend_may_use_rel_p 1 6060 #define elf_backend_may_use_rela_p 1 6061 #define elf_backend_default_use_rela_p 1 6062 #define elf_backend_want_dynbss 0 6063 #define elf_backend_copy_indirect_symbol elfNN_ia64_hash_copy_indirect 6064 #define elf_backend_hide_symbol elfNN_ia64_hash_hide_symbol 6065 #define elf_backend_fixup_symbol _bfd_elf_link_hash_fixup_symbol 6066 #define elf_backend_reloc_type_class elfNN_ia64_reloc_type_class 6067 #define elf_backend_rela_normal 1 6068 #define elf_backend_special_sections elfNN_ia64_special_sections 6069 #define elf_backend_default_execstack 0 6070 6071 /* FIXME: PR 290: The Intel C compiler generates SHT_IA_64_UNWIND with 6072 SHF_LINK_ORDER. But it doesn't set the sh_link or sh_info fields. 6073 We don't want to flood users with so many error messages. We turn 6074 off the warning for now. It will be turned on later when the Intel 6075 compiler is fixed. */ 6076 #define elf_backend_link_order_error_handler NULL 6077 6078 #include "elfNN-target.h" 6079 6080 /* HPUX-specific vectors. */ 6081 6082 #undef TARGET_LITTLE_SYM 6083 #undef TARGET_LITTLE_NAME 6084 #undef TARGET_BIG_SYM 6085 #define TARGET_BIG_SYM bfd_elfNN_ia64_hpux_big_vec 6086 #undef TARGET_BIG_NAME 6087 #define TARGET_BIG_NAME "elfNN-ia64-hpux-big" 6088 6089 /* These are HP-UX specific functions. */ 6090 6091 #undef elf_backend_post_process_headers 6092 #define elf_backend_post_process_headers elfNN_hpux_post_process_headers 6093 6094 #undef elf_backend_section_from_bfd_section 6095 #define elf_backend_section_from_bfd_section elfNN_hpux_backend_section_from_bfd_section 6096 6097 #undef elf_backend_symbol_processing 6098 #define elf_backend_symbol_processing elfNN_hpux_backend_symbol_processing 6099 6100 #undef elf_backend_want_p_paddr_set_to_zero 6101 #define elf_backend_want_p_paddr_set_to_zero 1 6102 6103 #undef ELF_COMMONPAGESIZE 6104 #undef ELF_OSABI 6105 #define ELF_OSABI ELFOSABI_HPUX 6106 6107 #undef elfNN_bed 6108 #define elfNN_bed elfNN_ia64_hpux_bed 6109 6110 #include "elfNN-target.h" 6111 6112 /* VMS-specific vectors. */ 6113 #ifdef INCLUDE_IA64_VMS 6114 6115 #undef TARGET_LITTLE_SYM 6116 #define TARGET_LITTLE_SYM bfd_elfNN_ia64_vms_vec 6117 #undef TARGET_LITTLE_NAME 6118 #define TARGET_LITTLE_NAME "elfNN-ia64-vms" 6119 #undef TARGET_BIG_SYM 6120 #undef TARGET_BIG_NAME 6121 6122 /* These are VMS specific functions. */ 6123 6124 #undef elf_backend_object_p 6125 #define elf_backend_object_p elfNN_vms_object_p 6126 6127 #undef elf_backend_section_from_shdr 6128 #define elf_backend_section_from_shdr elfNN_vms_section_from_shdr 6129 6130 #undef elf_backend_post_process_headers 6131 #define elf_backend_post_process_headers elfNN_vms_post_process_headers 6132 6133 #undef elf_backend_section_processing 6134 #define elf_backend_section_processing elfNN_vms_section_processing 6135 6136 #undef elf_backend_final_write_processing 6137 #define elf_backend_final_write_processing elfNN_vms_final_write_processing 6138 6139 #undef bfd_elfNN_close_and_cleanup 6140 #define bfd_elfNN_close_and_cleanup elfNN_vms_close_and_cleanup 6141 6142 #undef elf_backend_section_from_bfd_section 6143 6144 #undef elf_backend_symbol_processing 6145 6146 #undef elf_backend_want_p_paddr_set_to_zero 6147 6148 #undef ELF_OSABI 6149 #define ELF_OSABI ELFOSABI_OPENVMS 6150 6151 #undef ELF_MAXPAGESIZE 6152 #define ELF_MAXPAGESIZE 0x10000 /* 64KB */ 6153 6154 #undef elfNN_bed 6155 #define elfNN_bed elfNN_ia64_vms_bed 6156 6157 /* Use VMS-style archives (in particular, don't use the standard coff 6158 archive format). */ 6159 #define bfd_elfNN_archive_functions 6160 6161 #undef bfd_elfNN_archive_p 6162 #define bfd_elfNN_archive_p _bfd_vms_lib_ia64_archive_p 6163 #undef bfd_elfNN_write_archive_contents 6164 #define bfd_elfNN_write_archive_contents _bfd_vms_lib_write_archive_contents 6165 #undef bfd_elfNN_mkarchive 6166 #define bfd_elfNN_mkarchive _bfd_vms_lib_ia64_mkarchive 6167 6168 #define bfd_elfNN_archive_slurp_armap \ 6169 _bfd_vms_lib_slurp_armap 6170 #define bfd_elfNN_archive_slurp_extended_name_table \ 6171 _bfd_vms_lib_slurp_extended_name_table 6172 #define bfd_elfNN_archive_construct_extended_name_table \ 6173 _bfd_vms_lib_construct_extended_name_table 6174 #define bfd_elfNN_archive_truncate_arname \ 6175 _bfd_vms_lib_truncate_arname 6176 #define bfd_elfNN_archive_write_armap \ 6177 _bfd_vms_lib_write_armap 6178 #define bfd_elfNN_archive_read_ar_hdr \ 6179 _bfd_vms_lib_read_ar_hdr 6180 #define bfd_elfNN_archive_write_ar_hdr \ 6181 _bfd_vms_lib_write_ar_hdr 6182 #define bfd_elfNN_archive_openr_next_archived_file \ 6183 _bfd_vms_lib_openr_next_archived_file 6184 #define bfd_elfNN_archive_get_elt_at_index \ 6185 _bfd_vms_lib_get_elt_at_index 6186 #define bfd_elfNN_archive_generic_stat_arch_elt \ 6187 _bfd_vms_lib_generic_stat_arch_elt 6188 #define bfd_elfNN_archive_update_armap_timestamp \ 6189 _bfd_vms_lib_update_armap_timestamp 6190 6191 #include "elfNN-target.h" 6192 6193 #endif /* INCLUDE_IA64_VMS */ 6194