xref: /netbsd-src/external/gpl3/binutils/dist/bfd/elf64-x86-64.c (revision 9aa0541bdf64142d9a27c2cf274394d60182818f)
1 /* X86-64 specific support for 64-bit ELF
2    Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3    2010  Free Software Foundation, Inc.
4    Contributed by Jan Hubicka <jh@suse.cz>.
5 
6    This file is part of BFD, the Binary File Descriptor library.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program; if not, write to the Free Software
20    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21    MA 02110-1301, USA.  */
22 
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #include "elf-bfd.h"
28 #include "bfd_stdint.h"
29 #include "objalloc.h"
30 #include "hashtab.h"
31 
32 #include "elf/x86-64.h"
33 
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value.  */
35 #define MINUS_ONE (~ (bfd_vma) 0)
36 
37 /* The relocation "howto" table.  Order of fields:
38    type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
39    special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset.  */
40 static reloc_howto_type x86_64_elf_howto_table[] =
41 {
42   HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
43 	bfd_elf_generic_reloc, "R_X86_64_NONE",	FALSE, 0x00000000, 0x00000000,
44 	FALSE),
45   HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
46 	bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
47 	FALSE),
48   HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
49 	bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
50 	TRUE),
51   HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
52 	bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
53 	FALSE),
54   HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
55 	bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
56 	TRUE),
57   HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
58 	bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
59 	FALSE),
60   HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
61 	bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
62 	MINUS_ONE, FALSE),
63   HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
64 	bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
65 	MINUS_ONE, FALSE),
66   HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
67 	bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
68 	MINUS_ONE, FALSE),
69   HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
70 	bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
71 	0xffffffff, TRUE),
72   HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
73 	bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
74 	FALSE),
75   HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
76 	bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
77 	FALSE),
78   HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
79 	bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
80   HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
81 	bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
82   HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
83 	bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
84   HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
85 	bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
86   HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
87 	bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
88 	MINUS_ONE, FALSE),
89   HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
90 	bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
91 	MINUS_ONE, FALSE),
92   HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
93 	bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
94 	MINUS_ONE, FALSE),
95   HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
96 	bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
97 	0xffffffff, TRUE),
98   HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
99 	bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
100 	0xffffffff, TRUE),
101   HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
102 	bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
103 	0xffffffff, FALSE),
104   HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
105 	bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
106 	0xffffffff, TRUE),
107   HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
108 	bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
109 	0xffffffff, FALSE),
110   HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
111 	bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
112 	TRUE),
113   HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
114 	bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
115 	FALSE, MINUS_ONE, MINUS_ONE, FALSE),
116   HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
117 	bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
118 	FALSE, 0xffffffff, 0xffffffff, TRUE),
119   HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
120 	bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
121 	FALSE),
122   HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
123 	bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
124 	MINUS_ONE, TRUE),
125   HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
126 	bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
127 	FALSE, MINUS_ONE, MINUS_ONE, TRUE),
128   HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
129 	bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
130 	MINUS_ONE, FALSE),
131   HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
132 	bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
133 	MINUS_ONE, FALSE),
134   EMPTY_HOWTO (32),
135   EMPTY_HOWTO (33),
136   HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
137 	complain_overflow_bitfield, bfd_elf_generic_reloc,
138 	"R_X86_64_GOTPC32_TLSDESC",
139 	FALSE, 0xffffffff, 0xffffffff, TRUE),
140   HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
141 	complain_overflow_dont, bfd_elf_generic_reloc,
142 	"R_X86_64_TLSDESC_CALL",
143 	FALSE, 0, 0, FALSE),
144   HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
145 	complain_overflow_bitfield, bfd_elf_generic_reloc,
146 	"R_X86_64_TLSDESC",
147 	FALSE, MINUS_ONE, MINUS_ONE, FALSE),
148   HOWTO(R_X86_64_IRELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
149 	bfd_elf_generic_reloc, "R_X86_64_IRELATIVE", FALSE, MINUS_ONE,
150 	MINUS_ONE, FALSE),
151 
152   /* We have a gap in the reloc numbers here.
153      R_X86_64_standard counts the number up to this point, and
154      R_X86_64_vt_offset is the value to subtract from a reloc type of
155      R_X86_64_GNU_VT* to form an index into this table.  */
156 #define R_X86_64_standard (R_X86_64_IRELATIVE + 1)
157 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
158 
159 /* GNU extension to record C++ vtable hierarchy.  */
160   HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
161 	 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
162 
163 /* GNU extension to record C++ vtable member usage.  */
164   HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
165 	 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
166 	 FALSE)
167 };
168 
169 #define IS_X86_64_PCREL_TYPE(TYPE)	\
170   (   ((TYPE) == R_X86_64_PC8)		\
171    || ((TYPE) == R_X86_64_PC16)		\
172    || ((TYPE) == R_X86_64_PC32)		\
173    || ((TYPE) == R_X86_64_PC64))
174 
175 /* Map BFD relocs to the x86_64 elf relocs.  */
176 struct elf_reloc_map
177 {
178   bfd_reloc_code_real_type bfd_reloc_val;
179   unsigned char elf_reloc_val;
180 };
181 
182 static const struct elf_reloc_map x86_64_reloc_map[] =
183 {
184   { BFD_RELOC_NONE,		R_X86_64_NONE, },
185   { BFD_RELOC_64,		R_X86_64_64,   },
186   { BFD_RELOC_32_PCREL,		R_X86_64_PC32, },
187   { BFD_RELOC_X86_64_GOT32,	R_X86_64_GOT32,},
188   { BFD_RELOC_X86_64_PLT32,	R_X86_64_PLT32,},
189   { BFD_RELOC_X86_64_COPY,	R_X86_64_COPY, },
190   { BFD_RELOC_X86_64_GLOB_DAT,	R_X86_64_GLOB_DAT, },
191   { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
192   { BFD_RELOC_X86_64_RELATIVE,	R_X86_64_RELATIVE, },
193   { BFD_RELOC_X86_64_GOTPCREL,	R_X86_64_GOTPCREL, },
194   { BFD_RELOC_32,		R_X86_64_32, },
195   { BFD_RELOC_X86_64_32S,	R_X86_64_32S, },
196   { BFD_RELOC_16,		R_X86_64_16, },
197   { BFD_RELOC_16_PCREL,		R_X86_64_PC16, },
198   { BFD_RELOC_8,		R_X86_64_8, },
199   { BFD_RELOC_8_PCREL,		R_X86_64_PC8, },
200   { BFD_RELOC_X86_64_DTPMOD64,	R_X86_64_DTPMOD64, },
201   { BFD_RELOC_X86_64_DTPOFF64,	R_X86_64_DTPOFF64, },
202   { BFD_RELOC_X86_64_TPOFF64,	R_X86_64_TPOFF64, },
203   { BFD_RELOC_X86_64_TLSGD,	R_X86_64_TLSGD, },
204   { BFD_RELOC_X86_64_TLSLD,	R_X86_64_TLSLD, },
205   { BFD_RELOC_X86_64_DTPOFF32,	R_X86_64_DTPOFF32, },
206   { BFD_RELOC_X86_64_GOTTPOFF,	R_X86_64_GOTTPOFF, },
207   { BFD_RELOC_X86_64_TPOFF32,	R_X86_64_TPOFF32, },
208   { BFD_RELOC_64_PCREL,		R_X86_64_PC64, },
209   { BFD_RELOC_X86_64_GOTOFF64,	R_X86_64_GOTOFF64, },
210   { BFD_RELOC_X86_64_GOTPC32,	R_X86_64_GOTPC32, },
211   { BFD_RELOC_X86_64_GOT64,	R_X86_64_GOT64, },
212   { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
213   { BFD_RELOC_X86_64_GOTPC64,	R_X86_64_GOTPC64, },
214   { BFD_RELOC_X86_64_GOTPLT64,	R_X86_64_GOTPLT64, },
215   { BFD_RELOC_X86_64_PLTOFF64,	R_X86_64_PLTOFF64, },
216   { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
217   { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
218   { BFD_RELOC_X86_64_TLSDESC,	R_X86_64_TLSDESC, },
219   { BFD_RELOC_X86_64_IRELATIVE,	R_X86_64_IRELATIVE, },
220   { BFD_RELOC_VTABLE_INHERIT,	R_X86_64_GNU_VTINHERIT, },
221   { BFD_RELOC_VTABLE_ENTRY,	R_X86_64_GNU_VTENTRY, },
222 };
223 
224 static reloc_howto_type *
225 elf64_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
226 {
227   unsigned i;
228 
229   if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
230       || r_type >= (unsigned int) R_X86_64_max)
231     {
232       if (r_type >= (unsigned int) R_X86_64_standard)
233 	{
234 	  (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
235 				 abfd, (int) r_type);
236 	  r_type = R_X86_64_NONE;
237 	}
238       i = r_type;
239     }
240   else
241     i = r_type - (unsigned int) R_X86_64_vt_offset;
242   BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
243   return &x86_64_elf_howto_table[i];
244 }
245 
246 /* Given a BFD reloc type, return a HOWTO structure.  */
247 static reloc_howto_type *
248 elf64_x86_64_reloc_type_lookup (bfd *abfd,
249 				bfd_reloc_code_real_type code)
250 {
251   unsigned int i;
252 
253   for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
254        i++)
255     {
256       if (x86_64_reloc_map[i].bfd_reloc_val == code)
257 	return elf64_x86_64_rtype_to_howto (abfd,
258 					    x86_64_reloc_map[i].elf_reloc_val);
259     }
260   return 0;
261 }
262 
263 static reloc_howto_type *
264 elf64_x86_64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
265 				const char *r_name)
266 {
267   unsigned int i;
268 
269   for (i = 0;
270        i < (sizeof (x86_64_elf_howto_table)
271 	    / sizeof (x86_64_elf_howto_table[0]));
272        i++)
273     if (x86_64_elf_howto_table[i].name != NULL
274 	&& strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
275       return &x86_64_elf_howto_table[i];
276 
277   return NULL;
278 }
279 
280 /* Given an x86_64 ELF reloc type, fill in an arelent structure.  */
281 
282 static void
283 elf64_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
284 			    Elf_Internal_Rela *dst)
285 {
286   unsigned r_type;
287 
288   r_type = ELF64_R_TYPE (dst->r_info);
289   cache_ptr->howto = elf64_x86_64_rtype_to_howto (abfd, r_type);
290   BFD_ASSERT (r_type == cache_ptr->howto->type);
291 }
292 
293 /* Support for core dump NOTE sections.  */
294 static bfd_boolean
295 elf64_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
296 {
297   int offset;
298   size_t size;
299 
300   switch (note->descsz)
301     {
302       default:
303 	return FALSE;
304 
305       case 336:		/* sizeof(istruct elf_prstatus) on Linux/x86_64 */
306 	/* pr_cursig */
307 	elf_tdata (abfd)->core_signal
308 	  = bfd_get_16 (abfd, note->descdata + 12);
309 
310 	/* pr_pid */
311 	elf_tdata (abfd)->core_lwpid
312 	  = bfd_get_32 (abfd, note->descdata + 32);
313 
314 	/* pr_reg */
315 	offset = 112;
316 	size = 216;
317 
318 	break;
319     }
320 
321   /* Make a ".reg/999" section.  */
322   return _bfd_elfcore_make_pseudosection (abfd, ".reg",
323 					  size, note->descpos + offset);
324 }
325 
326 static bfd_boolean
327 elf64_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
328 {
329   switch (note->descsz)
330     {
331       default:
332 	return FALSE;
333 
334       case 136:		/* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
335 	elf_tdata (abfd)->core_pid
336 	  = bfd_get_32 (abfd, note->descdata + 24);
337 	elf_tdata (abfd)->core_program
338 	 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
339 	elf_tdata (abfd)->core_command
340 	 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
341     }
342 
343   /* Note that for some reason, a spurious space is tacked
344      onto the end of the args in some (at least one anyway)
345      implementations, so strip it off if it exists.  */
346 
347   {
348     char *command = elf_tdata (abfd)->core_command;
349     int n = strlen (command);
350 
351     if (0 < n && command[n - 1] == ' ')
352       command[n - 1] = '\0';
353   }
354 
355   return TRUE;
356 }
357 
358 /* Functions for the x86-64 ELF linker.	 */
359 
360 /* The name of the dynamic interpreter.	 This is put in the .interp
361    section.  */
362 
363 #define ELF_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
364 
365 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
366    copying dynamic variables from a shared lib into an app's dynbss
367    section, and instead use a dynamic relocation to point into the
368    shared lib.  */
369 #define ELIMINATE_COPY_RELOCS 1
370 
371 /* The size in bytes of an entry in the global offset table.  */
372 
373 #define GOT_ENTRY_SIZE 8
374 
375 /* The size in bytes of an entry in the procedure linkage table.  */
376 
377 #define PLT_ENTRY_SIZE 16
378 
379 /* The first entry in a procedure linkage table looks like this.  See the
380    SVR4 ABI i386 supplement and the x86-64 ABI to see how this works.  */
381 
382 static const bfd_byte elf64_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
383 {
384   0xff, 0x35, 8, 0, 0, 0,	/* pushq GOT+8(%rip)  */
385   0xff, 0x25, 16, 0, 0, 0,	/* jmpq *GOT+16(%rip) */
386   0x0f, 0x1f, 0x40, 0x00	/* nopl 0(%rax)       */
387 };
388 
389 /* Subsequent entries in a procedure linkage table look like this.  */
390 
391 static const bfd_byte elf64_x86_64_plt_entry[PLT_ENTRY_SIZE] =
392 {
393   0xff, 0x25,	/* jmpq *name@GOTPC(%rip) */
394   0, 0, 0, 0,	/* replaced with offset to this symbol in .got.	 */
395   0x68,		/* pushq immediate */
396   0, 0, 0, 0,	/* replaced with index into relocation table.  */
397   0xe9,		/* jmp relative */
398   0, 0, 0, 0	/* replaced with offset to start of .plt0.  */
399 };
400 
401 /* x86-64 ELF linker hash entry.  */
402 
403 struct elf64_x86_64_link_hash_entry
404 {
405   struct elf_link_hash_entry elf;
406 
407   /* Track dynamic relocs copied for this symbol.  */
408   struct elf_dyn_relocs *dyn_relocs;
409 
410 #define GOT_UNKNOWN	0
411 #define GOT_NORMAL	1
412 #define GOT_TLS_GD	2
413 #define GOT_TLS_IE	3
414 #define GOT_TLS_GDESC	4
415 #define GOT_TLS_GD_BOTH_P(type) \
416   ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
417 #define GOT_TLS_GD_P(type) \
418   ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
419 #define GOT_TLS_GDESC_P(type) \
420   ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
421 #define GOT_TLS_GD_ANY_P(type) \
422   (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
423   unsigned char tls_type;
424 
425   /* Offset of the GOTPLT entry reserved for the TLS descriptor,
426      starting at the end of the jump table.  */
427   bfd_vma tlsdesc_got;
428 };
429 
430 #define elf64_x86_64_hash_entry(ent) \
431   ((struct elf64_x86_64_link_hash_entry *)(ent))
432 
433 struct elf64_x86_64_obj_tdata
434 {
435   struct elf_obj_tdata root;
436 
437   /* tls_type for each local got entry.  */
438   char *local_got_tls_type;
439 
440   /* GOTPLT entries for TLS descriptors.  */
441   bfd_vma *local_tlsdesc_gotent;
442 };
443 
444 #define elf64_x86_64_tdata(abfd) \
445   ((struct elf64_x86_64_obj_tdata *) (abfd)->tdata.any)
446 
447 #define elf64_x86_64_local_got_tls_type(abfd) \
448   (elf64_x86_64_tdata (abfd)->local_got_tls_type)
449 
450 #define elf64_x86_64_local_tlsdesc_gotent(abfd) \
451   (elf64_x86_64_tdata (abfd)->local_tlsdesc_gotent)
452 
453 #define is_x86_64_elf(bfd)				\
454   (bfd_get_flavour (bfd) == bfd_target_elf_flavour	\
455    && elf_tdata (bfd) != NULL				\
456    && elf_object_id (bfd) == X86_64_ELF_DATA)
457 
458 static bfd_boolean
459 elf64_x86_64_mkobject (bfd *abfd)
460 {
461   return bfd_elf_allocate_object (abfd, sizeof (struct elf64_x86_64_obj_tdata),
462 				  X86_64_ELF_DATA);
463 }
464 
465 /* x86-64 ELF linker hash table.  */
466 
467 struct elf64_x86_64_link_hash_table
468 {
469   struct elf_link_hash_table elf;
470 
471   /* Short-cuts to get to dynamic linker sections.  */
472   asection *sdynbss;
473   asection *srelbss;
474 
475   union
476   {
477     bfd_signed_vma refcount;
478     bfd_vma offset;
479   } tls_ld_got;
480 
481   /* The amount of space used by the jump slots in the GOT.  */
482   bfd_vma sgotplt_jump_table_size;
483 
484   /* Small local sym cache.  */
485   struct sym_cache sym_cache;
486 
487   /* _TLS_MODULE_BASE_ symbol.  */
488   struct bfd_link_hash_entry *tls_module_base;
489 
490   /* Used by local STT_GNU_IFUNC symbols.  */
491   htab_t loc_hash_table;
492   void * loc_hash_memory;
493 
494   /* The offset into splt of the PLT entry for the TLS descriptor
495      resolver.  Special values are 0, if not necessary (or not found
496      to be necessary yet), and -1 if needed but not determined
497      yet.  */
498   bfd_vma tlsdesc_plt;
499   /* The offset into sgot of the GOT entry used by the PLT entry
500      above.  */
501   bfd_vma tlsdesc_got;
502 };
503 
504 /* Get the x86-64 ELF linker hash table from a link_info structure.  */
505 
506 #define elf64_x86_64_hash_table(p) \
507   (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
508   == X86_64_ELF_DATA ? ((struct elf64_x86_64_link_hash_table *) ((p)->hash)) : NULL)
509 
510 #define elf64_x86_64_compute_jump_table_size(htab) \
511   ((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE)
512 
513 /* Create an entry in an x86-64 ELF linker hash table.	*/
514 
515 static struct bfd_hash_entry *
516 elf64_x86_64_link_hash_newfunc (struct bfd_hash_entry *entry,
517 				struct bfd_hash_table *table,
518 				const char *string)
519 {
520   /* Allocate the structure if it has not already been allocated by a
521      subclass.  */
522   if (entry == NULL)
523     {
524       entry = (struct bfd_hash_entry *)
525           bfd_hash_allocate (table,
526                              sizeof (struct elf64_x86_64_link_hash_entry));
527       if (entry == NULL)
528 	return entry;
529     }
530 
531   /* Call the allocation method of the superclass.  */
532   entry = _bfd_elf_link_hash_newfunc (entry, table, string);
533   if (entry != NULL)
534     {
535       struct elf64_x86_64_link_hash_entry *eh;
536 
537       eh = (struct elf64_x86_64_link_hash_entry *) entry;
538       eh->dyn_relocs = NULL;
539       eh->tls_type = GOT_UNKNOWN;
540       eh->tlsdesc_got = (bfd_vma) -1;
541     }
542 
543   return entry;
544 }
545 
546 /* Compute a hash of a local hash entry.  We use elf_link_hash_entry
547   for local symbol so that we can handle local STT_GNU_IFUNC symbols
548   as global symbol.  We reuse indx and dynstr_index for local symbol
549   hash since they aren't used by global symbols in this backend.  */
550 
551 static hashval_t
552 elf64_x86_64_local_htab_hash (const void *ptr)
553 {
554   struct elf_link_hash_entry *h
555     = (struct elf_link_hash_entry *) ptr;
556   return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
557 }
558 
559 /* Compare local hash entries.  */
560 
561 static int
562 elf64_x86_64_local_htab_eq (const void *ptr1, const void *ptr2)
563 {
564   struct elf_link_hash_entry *h1
565      = (struct elf_link_hash_entry *) ptr1;
566   struct elf_link_hash_entry *h2
567     = (struct elf_link_hash_entry *) ptr2;
568 
569   return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
570 }
571 
572 /* Find and/or create a hash entry for local symbol.  */
573 
574 static struct elf_link_hash_entry *
575 elf64_x86_64_get_local_sym_hash (struct elf64_x86_64_link_hash_table *htab,
576 				 bfd *abfd, const Elf_Internal_Rela *rel,
577 				 bfd_boolean create)
578 {
579   struct elf64_x86_64_link_hash_entry e, *ret;
580   asection *sec = abfd->sections;
581   hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
582 				       ELF64_R_SYM (rel->r_info));
583   void **slot;
584 
585   e.elf.indx = sec->id;
586   e.elf.dynstr_index = ELF64_R_SYM (rel->r_info);
587   slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
588 				   create ? INSERT : NO_INSERT);
589 
590   if (!slot)
591     return NULL;
592 
593   if (*slot)
594     {
595       ret = (struct elf64_x86_64_link_hash_entry *) *slot;
596       return &ret->elf;
597     }
598 
599   ret = (struct elf64_x86_64_link_hash_entry *)
600 	objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
601 			sizeof (struct elf64_x86_64_link_hash_entry));
602   if (ret)
603     {
604       memset (ret, 0, sizeof (*ret));
605       ret->elf.indx = sec->id;
606       ret->elf.dynstr_index = ELF64_R_SYM (rel->r_info);
607       ret->elf.dynindx = -1;
608       *slot = ret;
609     }
610   return &ret->elf;
611 }
612 
613 /* Create an X86-64 ELF linker hash table.  */
614 
615 static struct bfd_link_hash_table *
616 elf64_x86_64_link_hash_table_create (bfd *abfd)
617 {
618   struct elf64_x86_64_link_hash_table *ret;
619   bfd_size_type amt = sizeof (struct elf64_x86_64_link_hash_table);
620 
621   ret = (struct elf64_x86_64_link_hash_table *) bfd_malloc (amt);
622   if (ret == NULL)
623     return NULL;
624 
625   if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
626 				      elf64_x86_64_link_hash_newfunc,
627 				      sizeof (struct elf64_x86_64_link_hash_entry),
628 				      X86_64_ELF_DATA))
629     {
630       free (ret);
631       return NULL;
632     }
633 
634   ret->sdynbss = NULL;
635   ret->srelbss = NULL;
636   ret->sym_cache.abfd = NULL;
637   ret->tlsdesc_plt = 0;
638   ret->tlsdesc_got = 0;
639   ret->tls_ld_got.refcount = 0;
640   ret->sgotplt_jump_table_size = 0;
641   ret->tls_module_base = NULL;
642 
643   ret->loc_hash_table = htab_try_create (1024,
644 					 elf64_x86_64_local_htab_hash,
645 					 elf64_x86_64_local_htab_eq,
646 					 NULL);
647   ret->loc_hash_memory = objalloc_create ();
648   if (!ret->loc_hash_table || !ret->loc_hash_memory)
649     {
650       free (ret);
651       return NULL;
652     }
653 
654   return &ret->elf.root;
655 }
656 
657 /* Destroy an X86-64 ELF linker hash table.  */
658 
659 static void
660 elf64_x86_64_link_hash_table_free (struct bfd_link_hash_table *hash)
661 {
662   struct elf64_x86_64_link_hash_table *htab
663     = (struct elf64_x86_64_link_hash_table *) hash;
664 
665   if (htab->loc_hash_table)
666     htab_delete (htab->loc_hash_table);
667   if (htab->loc_hash_memory)
668     objalloc_free ((struct objalloc *) htab->loc_hash_memory);
669   _bfd_generic_link_hash_table_free (hash);
670 }
671 
672 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
673    .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
674    hash table.  */
675 
676 static bfd_boolean
677 elf64_x86_64_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
678 {
679   struct elf64_x86_64_link_hash_table *htab;
680 
681   if (!_bfd_elf_create_dynamic_sections (dynobj, info))
682     return FALSE;
683 
684   htab = elf64_x86_64_hash_table (info);
685   if (htab == NULL)
686     return FALSE;
687 
688   htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
689   if (!info->shared)
690     htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
691 
692   if (!htab->sdynbss
693       || (!info->shared && !htab->srelbss))
694     abort ();
695 
696   return TRUE;
697 }
698 
699 /* Copy the extra info we tack onto an elf_link_hash_entry.  */
700 
701 static void
702 elf64_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
703 				   struct elf_link_hash_entry *dir,
704 				   struct elf_link_hash_entry *ind)
705 {
706   struct elf64_x86_64_link_hash_entry *edir, *eind;
707 
708   edir = (struct elf64_x86_64_link_hash_entry *) dir;
709   eind = (struct elf64_x86_64_link_hash_entry *) ind;
710 
711   if (eind->dyn_relocs != NULL)
712     {
713       if (edir->dyn_relocs != NULL)
714 	{
715 	  struct elf_dyn_relocs **pp;
716 	  struct elf_dyn_relocs *p;
717 
718 	  /* Add reloc counts against the indirect sym to the direct sym
719 	     list.  Merge any entries against the same section.  */
720 	  for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
721 	    {
722 	      struct elf_dyn_relocs *q;
723 
724 	      for (q = edir->dyn_relocs; q != NULL; q = q->next)
725 		if (q->sec == p->sec)
726 		  {
727 		    q->pc_count += p->pc_count;
728 		    q->count += p->count;
729 		    *pp = p->next;
730 		    break;
731 		  }
732 	      if (q == NULL)
733 		pp = &p->next;
734 	    }
735 	  *pp = edir->dyn_relocs;
736 	}
737 
738       edir->dyn_relocs = eind->dyn_relocs;
739       eind->dyn_relocs = NULL;
740     }
741 
742   if (ind->root.type == bfd_link_hash_indirect
743       && dir->got.refcount <= 0)
744     {
745       edir->tls_type = eind->tls_type;
746       eind->tls_type = GOT_UNKNOWN;
747     }
748 
749   if (ELIMINATE_COPY_RELOCS
750       && ind->root.type != bfd_link_hash_indirect
751       && dir->dynamic_adjusted)
752     {
753       /* If called to transfer flags for a weakdef during processing
754 	 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
755 	 We clear it ourselves for ELIMINATE_COPY_RELOCS.  */
756       dir->ref_dynamic |= ind->ref_dynamic;
757       dir->ref_regular |= ind->ref_regular;
758       dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
759       dir->needs_plt |= ind->needs_plt;
760       dir->pointer_equality_needed |= ind->pointer_equality_needed;
761     }
762   else
763     _bfd_elf_link_hash_copy_indirect (info, dir, ind);
764 }
765 
766 static bfd_boolean
767 elf64_x86_64_elf_object_p (bfd *abfd)
768 {
769   /* Set the right machine number for an x86-64 elf64 file.  */
770   bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
771   return TRUE;
772 }
773 
774 typedef union
775   {
776     unsigned char c[2];
777     uint16_t i;
778   }
779 x86_64_opcode16;
780 
781 typedef union
782   {
783     unsigned char c[4];
784     uint32_t i;
785   }
786 x86_64_opcode32;
787 
788 /* Return TRUE if the TLS access code sequence support transition
789    from R_TYPE.  */
790 
791 static bfd_boolean
792 elf64_x86_64_check_tls_transition (bfd *abfd, asection *sec,
793 				   bfd_byte *contents,
794 				   Elf_Internal_Shdr *symtab_hdr,
795 				   struct elf_link_hash_entry **sym_hashes,
796 				   unsigned int r_type,
797 				   const Elf_Internal_Rela *rel,
798 				   const Elf_Internal_Rela *relend)
799 {
800   unsigned int val;
801   unsigned long r_symndx;
802   struct elf_link_hash_entry *h;
803   bfd_vma offset;
804 
805   /* Get the section contents.  */
806   if (contents == NULL)
807     {
808       if (elf_section_data (sec)->this_hdr.contents != NULL)
809 	contents = elf_section_data (sec)->this_hdr.contents;
810       else
811 	{
812 	  /* FIXME: How to better handle error condition?  */
813 	  if (!bfd_malloc_and_get_section (abfd, sec, &contents))
814 	    return FALSE;
815 
816 	  /* Cache the section contents for elf_link_input_bfd.  */
817 	  elf_section_data (sec)->this_hdr.contents = contents;
818 	}
819     }
820 
821   offset = rel->r_offset;
822   switch (r_type)
823     {
824     case R_X86_64_TLSGD:
825     case R_X86_64_TLSLD:
826       if ((rel + 1) >= relend)
827 	return FALSE;
828 
829       if (r_type == R_X86_64_TLSGD)
830 	{
831 	  /* Check transition from GD access model.  Only
832 		.byte 0x66; leaq foo@tlsgd(%rip), %rdi
833 		.word 0x6666; rex64; call __tls_get_addr
834 	     can transit to different access model.  */
835 
836 	  static x86_64_opcode32 leaq = { { 0x66, 0x48, 0x8d, 0x3d } },
837 				 call = { { 0x66, 0x66, 0x48, 0xe8 } };
838 	  if (offset < 4
839 	      || (offset + 12) > sec->size
840 	      || bfd_get_32 (abfd, contents + offset - 4) != leaq.i
841 	      || bfd_get_32 (abfd, contents + offset + 4) != call.i)
842 	    return FALSE;
843 	}
844       else
845 	{
846 	  /* Check transition from LD access model.  Only
847 		leaq foo@tlsld(%rip), %rdi;
848 		call __tls_get_addr
849 	     can transit to different access model.  */
850 
851 	  static x86_64_opcode32 ld = { { 0x48, 0x8d, 0x3d, 0xe8 } };
852 	  x86_64_opcode32 op;
853 
854 	  if (offset < 3 || (offset + 9) > sec->size)
855 	    return FALSE;
856 
857 	  op.i = bfd_get_32 (abfd, contents + offset - 3);
858 	  op.c[3] = bfd_get_8 (abfd, contents + offset + 4);
859 	  if (op.i != ld.i)
860 	    return FALSE;
861 	}
862 
863       r_symndx = ELF64_R_SYM (rel[1].r_info);
864       if (r_symndx < symtab_hdr->sh_info)
865 	return FALSE;
866 
867       h = sym_hashes[r_symndx - symtab_hdr->sh_info];
868       /* Use strncmp to check __tls_get_addr since __tls_get_addr
869 	 may be versioned.  */
870       return (h != NULL
871 	      && h->root.root.string != NULL
872 	      && (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PC32
873 		  || ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32)
874 	      && (strncmp (h->root.root.string,
875 			   "__tls_get_addr", 14) == 0));
876 
877     case R_X86_64_GOTTPOFF:
878       /* Check transition from IE access model:
879 		movq foo@gottpoff(%rip), %reg
880 		addq foo@gottpoff(%rip), %reg
881        */
882 
883       if (offset < 3 || (offset + 4) > sec->size)
884 	return FALSE;
885 
886       val = bfd_get_8 (abfd, contents + offset - 3);
887       if (val != 0x48 && val != 0x4c)
888 	return FALSE;
889 
890       val = bfd_get_8 (abfd, contents + offset - 2);
891       if (val != 0x8b && val != 0x03)
892 	return FALSE;
893 
894       val = bfd_get_8 (abfd, contents + offset - 1);
895       return (val & 0xc7) == 5;
896 
897     case R_X86_64_GOTPC32_TLSDESC:
898       /* Check transition from GDesc access model:
899 		leaq x@tlsdesc(%rip), %rax
900 
901 	 Make sure it's a leaq adding rip to a 32-bit offset
902 	 into any register, although it's probably almost always
903 	 going to be rax.  */
904 
905       if (offset < 3 || (offset + 4) > sec->size)
906 	return FALSE;
907 
908       val = bfd_get_8 (abfd, contents + offset - 3);
909       if ((val & 0xfb) != 0x48)
910 	return FALSE;
911 
912       if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
913 	return FALSE;
914 
915       val = bfd_get_8 (abfd, contents + offset - 1);
916       return (val & 0xc7) == 0x05;
917 
918     case R_X86_64_TLSDESC_CALL:
919       /* Check transition from GDesc access model:
920 		call *x@tlsdesc(%rax)
921        */
922       if (offset + 2 <= sec->size)
923 	{
924 	  /* Make sure that it's a call *x@tlsdesc(%rax).  */
925 	  static x86_64_opcode16 call = { { 0xff, 0x10 } };
926 	  return bfd_get_16 (abfd, contents + offset) == call.i;
927 	}
928 
929       return FALSE;
930 
931     default:
932       abort ();
933     }
934 }
935 
936 /* Return TRUE if the TLS access transition is OK or no transition
937    will be performed.  Update R_TYPE if there is a transition.  */
938 
939 static bfd_boolean
940 elf64_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
941 			     asection *sec, bfd_byte *contents,
942 			     Elf_Internal_Shdr *symtab_hdr,
943 			     struct elf_link_hash_entry **sym_hashes,
944 			     unsigned int *r_type, int tls_type,
945 			     const Elf_Internal_Rela *rel,
946 			     const Elf_Internal_Rela *relend,
947 			     struct elf_link_hash_entry *h,
948 			     unsigned long r_symndx)
949 {
950   unsigned int from_type = *r_type;
951   unsigned int to_type = from_type;
952   bfd_boolean check = TRUE;
953 
954   /* Skip TLS transition for functions.  */
955   if (h != NULL
956       && (h->type == STT_FUNC
957 	  || h->type == STT_GNU_IFUNC))
958     return TRUE;
959 
960   switch (from_type)
961     {
962     case R_X86_64_TLSGD:
963     case R_X86_64_GOTPC32_TLSDESC:
964     case R_X86_64_TLSDESC_CALL:
965     case R_X86_64_GOTTPOFF:
966       if (info->executable)
967 	{
968 	  if (h == NULL)
969 	    to_type = R_X86_64_TPOFF32;
970 	  else
971 	    to_type = R_X86_64_GOTTPOFF;
972 	}
973 
974       /* When we are called from elf64_x86_64_relocate_section,
975 	 CONTENTS isn't NULL and there may be additional transitions
976 	 based on TLS_TYPE.  */
977       if (contents != NULL)
978 	{
979 	  unsigned int new_to_type = to_type;
980 
981 	  if (info->executable
982 	      && h != NULL
983 	      && h->dynindx == -1
984 	      && tls_type == GOT_TLS_IE)
985 	    new_to_type = R_X86_64_TPOFF32;
986 
987 	  if (to_type == R_X86_64_TLSGD
988 	      || to_type == R_X86_64_GOTPC32_TLSDESC
989 	      || to_type == R_X86_64_TLSDESC_CALL)
990 	    {
991 	      if (tls_type == GOT_TLS_IE)
992 		new_to_type = R_X86_64_GOTTPOFF;
993 	    }
994 
995 	  /* We checked the transition before when we were called from
996 	     elf64_x86_64_check_relocs.  We only want to check the new
997 	     transition which hasn't been checked before.  */
998 	  check = new_to_type != to_type && from_type == to_type;
999 	  to_type = new_to_type;
1000 	}
1001 
1002       break;
1003 
1004     case R_X86_64_TLSLD:
1005       if (info->executable)
1006 	to_type = R_X86_64_TPOFF32;
1007       break;
1008 
1009     default:
1010       return TRUE;
1011     }
1012 
1013   /* Return TRUE if there is no transition.  */
1014   if (from_type == to_type)
1015     return TRUE;
1016 
1017   /* Check if the transition can be performed.  */
1018   if (check
1019       && ! elf64_x86_64_check_tls_transition (abfd, sec, contents,
1020 					      symtab_hdr, sym_hashes,
1021 					      from_type, rel, relend))
1022     {
1023       reloc_howto_type *from, *to;
1024       const char *name;
1025 
1026       from = elf64_x86_64_rtype_to_howto (abfd, from_type);
1027       to = elf64_x86_64_rtype_to_howto (abfd, to_type);
1028 
1029       if (h)
1030 	name = h->root.root.string;
1031       else
1032 	{
1033 	  struct elf64_x86_64_link_hash_table *htab;
1034 
1035 	  htab = elf64_x86_64_hash_table (info);
1036 	  if (htab == NULL)
1037 	    name = "*unknown*";
1038 	  else
1039 	    {
1040 	      Elf_Internal_Sym *isym;
1041 
1042 	      isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1043 					    abfd, r_symndx);
1044 	      name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1045 	    }
1046 	}
1047 
1048       (*_bfd_error_handler)
1049 	(_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
1050 	   "in section `%A' failed"),
1051 	 abfd, sec, from->name, to->name, name,
1052 	 (unsigned long) rel->r_offset);
1053       bfd_set_error (bfd_error_bad_value);
1054       return FALSE;
1055     }
1056 
1057   *r_type = to_type;
1058   return TRUE;
1059 }
1060 
1061 /* Look through the relocs for a section during the first phase, and
1062    calculate needed space in the global offset table, procedure
1063    linkage table, and dynamic reloc sections.  */
1064 
1065 static bfd_boolean
1066 elf64_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
1067 			   asection *sec,
1068 			   const Elf_Internal_Rela *relocs)
1069 {
1070   struct elf64_x86_64_link_hash_table *htab;
1071   Elf_Internal_Shdr *symtab_hdr;
1072   struct elf_link_hash_entry **sym_hashes;
1073   const Elf_Internal_Rela *rel;
1074   const Elf_Internal_Rela *rel_end;
1075   asection *sreloc;
1076 
1077   if (info->relocatable)
1078     return TRUE;
1079 
1080   BFD_ASSERT (is_x86_64_elf (abfd));
1081 
1082   htab = elf64_x86_64_hash_table (info);
1083   if (htab == NULL)
1084     return FALSE;
1085 
1086   symtab_hdr = &elf_symtab_hdr (abfd);
1087   sym_hashes = elf_sym_hashes (abfd);
1088 
1089   sreloc = NULL;
1090 
1091   rel_end = relocs + sec->reloc_count;
1092   for (rel = relocs; rel < rel_end; rel++)
1093     {
1094       unsigned int r_type;
1095       unsigned long r_symndx;
1096       struct elf_link_hash_entry *h;
1097       Elf_Internal_Sym *isym;
1098       const char *name;
1099 
1100       r_symndx = ELF64_R_SYM (rel->r_info);
1101       r_type = ELF64_R_TYPE (rel->r_info);
1102 
1103       if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1104 	{
1105 	  (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1106 				 abfd, r_symndx);
1107 	  return FALSE;
1108 	}
1109 
1110       if (r_symndx < symtab_hdr->sh_info)
1111 	{
1112 	  /* A local symbol.  */
1113 	  isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1114 					abfd, r_symndx);
1115 	  if (isym == NULL)
1116 	    return FALSE;
1117 
1118 	  /* Check relocation against local STT_GNU_IFUNC symbol.  */
1119 	  if (ELF64_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1120 	    {
1121 	      h = elf64_x86_64_get_local_sym_hash (htab, abfd, rel,
1122 						   TRUE);
1123 	      if (h == NULL)
1124 		return FALSE;
1125 
1126 	      /* Fake a STT_GNU_IFUNC symbol.  */
1127 	      h->type = STT_GNU_IFUNC;
1128 	      h->def_regular = 1;
1129 	      h->ref_regular = 1;
1130 	      h->forced_local = 1;
1131 	      h->root.type = bfd_link_hash_defined;
1132 	    }
1133 	  else
1134 	    h = NULL;
1135 	}
1136       else
1137 	{
1138 	  isym = NULL;
1139 	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1140 	  while (h->root.type == bfd_link_hash_indirect
1141 		 || h->root.type == bfd_link_hash_warning)
1142 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
1143 	}
1144 
1145       if (h != NULL)
1146 	{
1147 	  /* Create the ifunc sections for static executables.  If we
1148 	     never see an indirect function symbol nor we are building
1149 	     a static executable, those sections will be empty and
1150 	     won't appear in output.  */
1151 	  switch (r_type)
1152 	    {
1153 	    default:
1154 	      break;
1155 
1156 	    case R_X86_64_32S:
1157 	    case R_X86_64_32:
1158 	    case R_X86_64_64:
1159 	    case R_X86_64_PC32:
1160 	    case R_X86_64_PC64:
1161 	    case R_X86_64_PLT32:
1162 	    case R_X86_64_GOTPCREL:
1163 	    case R_X86_64_GOTPCREL64:
1164 	      if (!_bfd_elf_create_ifunc_sections (abfd, info))
1165 		return FALSE;
1166 	      break;
1167 	    }
1168 
1169 	  /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
1170 	     it here if it is defined in a non-shared object.  */
1171 	  if (h->type == STT_GNU_IFUNC
1172 	      && h->def_regular)
1173 	    {
1174 	      /* It is referenced by a non-shared object. */
1175 	      h->ref_regular = 1;
1176 	      h->needs_plt = 1;
1177 
1178 	      /* STT_GNU_IFUNC symbol must go through PLT.  */
1179 	      h->plt.refcount += 1;
1180 
1181 	      /* STT_GNU_IFUNC needs dynamic sections.  */
1182 	      if (htab->elf.dynobj == NULL)
1183 		htab->elf.dynobj = abfd;
1184 
1185 	      switch (r_type)
1186 		{
1187 		default:
1188 		  if (h->root.root.string)
1189 		    name = h->root.root.string;
1190 		  else
1191 		    name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1192 					     NULL);
1193 		  (*_bfd_error_handler)
1194 		    (_("%B: relocation %s against STT_GNU_IFUNC "
1195 		       "symbol `%s' isn't handled by %s"), abfd,
1196 		     x86_64_elf_howto_table[r_type].name,
1197 		     name, __FUNCTION__);
1198 		  bfd_set_error (bfd_error_bad_value);
1199 		  return FALSE;
1200 
1201 		case R_X86_64_64:
1202 		  h->non_got_ref = 1;
1203 		  h->pointer_equality_needed = 1;
1204 		  if (info->shared)
1205 		    {
1206 		      /* We must copy these reloc types into the output
1207 			 file.  Create a reloc section in dynobj and
1208 			 make room for this reloc.  */
1209 		      sreloc = _bfd_elf_create_ifunc_dyn_reloc
1210 			(abfd, info, sec, sreloc,
1211 			 &((struct elf64_x86_64_link_hash_entry *) h)->dyn_relocs);
1212 		      if (sreloc == NULL)
1213 			return FALSE;
1214 		    }
1215 		  break;
1216 
1217 		case R_X86_64_32S:
1218 		case R_X86_64_32:
1219 		case R_X86_64_PC32:
1220 		case R_X86_64_PC64:
1221 		  h->non_got_ref = 1;
1222 		  if (r_type != R_X86_64_PC32
1223 		      && r_type != R_X86_64_PC64)
1224 		    h->pointer_equality_needed = 1;
1225 		  break;
1226 
1227 		case R_X86_64_PLT32:
1228 		  break;
1229 
1230 		case R_X86_64_GOTPCREL:
1231 		case R_X86_64_GOTPCREL64:
1232 		  h->got.refcount += 1;
1233 		  if (htab->elf.sgot == NULL
1234 		      && !_bfd_elf_create_got_section (htab->elf.dynobj,
1235 						       info))
1236 		    return FALSE;
1237 		  break;
1238 		}
1239 
1240 	      continue;
1241 	    }
1242 	}
1243 
1244       if (! elf64_x86_64_tls_transition (info, abfd, sec, NULL,
1245 					 symtab_hdr, sym_hashes,
1246 					 &r_type, GOT_UNKNOWN,
1247 					 rel, rel_end, h, r_symndx))
1248 	return FALSE;
1249 
1250       switch (r_type)
1251 	{
1252 	case R_X86_64_TLSLD:
1253 	  htab->tls_ld_got.refcount += 1;
1254 	  goto create_got;
1255 
1256 	case R_X86_64_TPOFF32:
1257 	  if (!info->executable)
1258 	    {
1259 	      if (h)
1260 		name = h->root.root.string;
1261 	      else
1262 		name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1263 					 NULL);
1264 	      (*_bfd_error_handler)
1265 		(_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1266 		 abfd,
1267 		 x86_64_elf_howto_table[r_type].name, name);
1268 	      bfd_set_error (bfd_error_bad_value);
1269 	      return FALSE;
1270 	    }
1271 	  break;
1272 
1273 	case R_X86_64_GOTTPOFF:
1274 	  if (!info->executable)
1275 	    info->flags |= DF_STATIC_TLS;
1276 	  /* Fall through */
1277 
1278 	case R_X86_64_GOT32:
1279 	case R_X86_64_GOTPCREL:
1280 	case R_X86_64_TLSGD:
1281 	case R_X86_64_GOT64:
1282 	case R_X86_64_GOTPCREL64:
1283 	case R_X86_64_GOTPLT64:
1284 	case R_X86_64_GOTPC32_TLSDESC:
1285 	case R_X86_64_TLSDESC_CALL:
1286 	  /* This symbol requires a global offset table entry.	*/
1287 	  {
1288 	    int tls_type, old_tls_type;
1289 
1290 	    switch (r_type)
1291 	      {
1292 	      default: tls_type = GOT_NORMAL; break;
1293 	      case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
1294 	      case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
1295 	      case R_X86_64_GOTPC32_TLSDESC:
1296 	      case R_X86_64_TLSDESC_CALL:
1297 		tls_type = GOT_TLS_GDESC; break;
1298 	      }
1299 
1300 	    if (h != NULL)
1301 	      {
1302 		if (r_type == R_X86_64_GOTPLT64)
1303 		  {
1304 		    /* This relocation indicates that we also need
1305 		       a PLT entry, as this is a function.  We don't need
1306 		       a PLT entry for local symbols.  */
1307 		    h->needs_plt = 1;
1308 		    h->plt.refcount += 1;
1309 		  }
1310 		h->got.refcount += 1;
1311 		old_tls_type = elf64_x86_64_hash_entry (h)->tls_type;
1312 	      }
1313 	    else
1314 	      {
1315 		bfd_signed_vma *local_got_refcounts;
1316 
1317 		/* This is a global offset table entry for a local symbol.  */
1318 		local_got_refcounts = elf_local_got_refcounts (abfd);
1319 		if (local_got_refcounts == NULL)
1320 		  {
1321 		    bfd_size_type size;
1322 
1323 		    size = symtab_hdr->sh_info;
1324 		    size *= sizeof (bfd_signed_vma)
1325 		      + sizeof (bfd_vma) + sizeof (char);
1326 		    local_got_refcounts = ((bfd_signed_vma *)
1327 					   bfd_zalloc (abfd, size));
1328 		    if (local_got_refcounts == NULL)
1329 		      return FALSE;
1330 		    elf_local_got_refcounts (abfd) = local_got_refcounts;
1331 		    elf64_x86_64_local_tlsdesc_gotent (abfd)
1332 		      = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1333 		    elf64_x86_64_local_got_tls_type (abfd)
1334 		      = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1335 		  }
1336 		local_got_refcounts[r_symndx] += 1;
1337 		old_tls_type
1338 		  = elf64_x86_64_local_got_tls_type (abfd) [r_symndx];
1339 	      }
1340 
1341 	    /* If a TLS symbol is accessed using IE at least once,
1342 	       there is no point to use dynamic model for it.  */
1343 	    if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1344 		&& (! GOT_TLS_GD_ANY_P (old_tls_type)
1345 		    || tls_type != GOT_TLS_IE))
1346 	      {
1347 		if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
1348 		  tls_type = old_tls_type;
1349 		else if (GOT_TLS_GD_ANY_P (old_tls_type)
1350 			 && GOT_TLS_GD_ANY_P (tls_type))
1351 		  tls_type |= old_tls_type;
1352 		else
1353 		  {
1354 		    if (h)
1355 		      name = h->root.root.string;
1356 		    else
1357 		      name = bfd_elf_sym_name (abfd, symtab_hdr,
1358 					       isym, NULL);
1359 		    (*_bfd_error_handler)
1360 		      (_("%B: '%s' accessed both as normal and thread local symbol"),
1361 		       abfd, name);
1362 		    return FALSE;
1363 		  }
1364 	      }
1365 
1366 	    if (old_tls_type != tls_type)
1367 	      {
1368 		if (h != NULL)
1369 		  elf64_x86_64_hash_entry (h)->tls_type = tls_type;
1370 		else
1371 		  elf64_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
1372 	      }
1373 	  }
1374 	  /* Fall through */
1375 
1376 	case R_X86_64_GOTOFF64:
1377 	case R_X86_64_GOTPC32:
1378 	case R_X86_64_GOTPC64:
1379 	create_got:
1380 	  if (htab->elf.sgot == NULL)
1381 	    {
1382 	      if (htab->elf.dynobj == NULL)
1383 		htab->elf.dynobj = abfd;
1384 	      if (!_bfd_elf_create_got_section (htab->elf.dynobj,
1385 						info))
1386 		return FALSE;
1387 	    }
1388 	  break;
1389 
1390 	case R_X86_64_PLT32:
1391 	  /* This symbol requires a procedure linkage table entry.  We
1392 	     actually build the entry in adjust_dynamic_symbol,
1393 	     because this might be a case of linking PIC code which is
1394 	     never referenced by a dynamic object, in which case we
1395 	     don't need to generate a procedure linkage table entry
1396 	     after all.	 */
1397 
1398 	  /* If this is a local symbol, we resolve it directly without
1399 	     creating a procedure linkage table entry.	*/
1400 	  if (h == NULL)
1401 	    continue;
1402 
1403 	  h->needs_plt = 1;
1404 	  h->plt.refcount += 1;
1405 	  break;
1406 
1407 	case R_X86_64_PLTOFF64:
1408 	  /* This tries to form the 'address' of a function relative
1409 	     to GOT.  For global symbols we need a PLT entry.  */
1410 	  if (h != NULL)
1411 	    {
1412 	      h->needs_plt = 1;
1413 	      h->plt.refcount += 1;
1414 	    }
1415 	  goto create_got;
1416 
1417 	case R_X86_64_8:
1418 	case R_X86_64_16:
1419 	case R_X86_64_32:
1420 	case R_X86_64_32S:
1421 	  /* Let's help debug shared library creation.  These relocs
1422 	     cannot be used in shared libs.  Don't error out for
1423 	     sections we don't care about, such as debug sections or
1424 	     non-constant sections.  */
1425 	  if (info->shared
1426 	      && (sec->flags & SEC_ALLOC) != 0
1427 	      && (sec->flags & SEC_READONLY) != 0)
1428 	    {
1429 	      if (h)
1430 		name = h->root.root.string;
1431 	      else
1432 		name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1433 	      (*_bfd_error_handler)
1434 		(_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1435 		 abfd, x86_64_elf_howto_table[r_type].name, name);
1436 	      bfd_set_error (bfd_error_bad_value);
1437 	      return FALSE;
1438 	    }
1439 	  /* Fall through.  */
1440 
1441 	case R_X86_64_PC8:
1442 	case R_X86_64_PC16:
1443 	case R_X86_64_PC32:
1444 	case R_X86_64_PC64:
1445 	case R_X86_64_64:
1446 	  if (h != NULL && info->executable)
1447 	    {
1448 	      /* If this reloc is in a read-only section, we might
1449 		 need a copy reloc.  We can't check reliably at this
1450 		 stage whether the section is read-only, as input
1451 		 sections have not yet been mapped to output sections.
1452 		 Tentatively set the flag for now, and correct in
1453 		 adjust_dynamic_symbol.  */
1454 	      h->non_got_ref = 1;
1455 
1456 	      /* We may need a .plt entry if the function this reloc
1457 		 refers to is in a shared lib.  */
1458 	      h->plt.refcount += 1;
1459 	      if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64)
1460 		h->pointer_equality_needed = 1;
1461 	    }
1462 
1463 	  /* If we are creating a shared library, and this is a reloc
1464 	     against a global symbol, or a non PC relative reloc
1465 	     against a local symbol, then we need to copy the reloc
1466 	     into the shared library.  However, if we are linking with
1467 	     -Bsymbolic, we do not need to copy a reloc against a
1468 	     global symbol which is defined in an object we are
1469 	     including in the link (i.e., DEF_REGULAR is set).	At
1470 	     this point we have not seen all the input files, so it is
1471 	     possible that DEF_REGULAR is not set now but will be set
1472 	     later (it is never cleared).  In case of a weak definition,
1473 	     DEF_REGULAR may be cleared later by a strong definition in
1474 	     a shared library.  We account for that possibility below by
1475 	     storing information in the relocs_copied field of the hash
1476 	     table entry.  A similar situation occurs when creating
1477 	     shared libraries and symbol visibility changes render the
1478 	     symbol local.
1479 
1480 	     If on the other hand, we are creating an executable, we
1481 	     may need to keep relocations for symbols satisfied by a
1482 	     dynamic library if we manage to avoid copy relocs for the
1483 	     symbol.  */
1484 	  if ((info->shared
1485 	       && (sec->flags & SEC_ALLOC) != 0
1486 	       && (! IS_X86_64_PCREL_TYPE (r_type)
1487 		   || (h != NULL
1488 		       && (! SYMBOLIC_BIND (info, h)
1489 			   || h->root.type == bfd_link_hash_defweak
1490 			   || !h->def_regular))))
1491 	      || (ELIMINATE_COPY_RELOCS
1492 		  && !info->shared
1493 		  && (sec->flags & SEC_ALLOC) != 0
1494 		  && h != NULL
1495 		  && (h->root.type == bfd_link_hash_defweak
1496 		      || !h->def_regular)))
1497 	    {
1498 	      struct elf_dyn_relocs *p;
1499 	      struct elf_dyn_relocs **head;
1500 
1501 	      /* We must copy these reloc types into the output file.
1502 		 Create a reloc section in dynobj and make room for
1503 		 this reloc.  */
1504 	      if (sreloc == NULL)
1505 		{
1506 		  if (htab->elf.dynobj == NULL)
1507 		    htab->elf.dynobj = abfd;
1508 
1509 		  sreloc = _bfd_elf_make_dynamic_reloc_section
1510 		    (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
1511 
1512 		  if (sreloc == NULL)
1513 		    return FALSE;
1514 		}
1515 
1516 	      /* If this is a global symbol, we count the number of
1517 		 relocations we need for this symbol.  */
1518 	      if (h != NULL)
1519 		{
1520 		  head = &((struct elf64_x86_64_link_hash_entry *) h)->dyn_relocs;
1521 		}
1522 	      else
1523 		{
1524 		  /* Track dynamic relocs needed for local syms too.
1525 		     We really need local syms available to do this
1526 		     easily.  Oh well.  */
1527 		  asection *s;
1528 		  void **vpp;
1529 
1530 		  isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1531 						abfd, r_symndx);
1532 		  if (isym == NULL)
1533 		    return FALSE;
1534 
1535 		  s = bfd_section_from_elf_index (abfd, isym->st_shndx);
1536 		  if (s == NULL)
1537 		    s = sec;
1538 
1539 		  /* Beware of type punned pointers vs strict aliasing
1540 		     rules.  */
1541 		  vpp = &(elf_section_data (s)->local_dynrel);
1542 		  head = (struct elf_dyn_relocs **)vpp;
1543 		}
1544 
1545 	      p = *head;
1546 	      if (p == NULL || p->sec != sec)
1547 		{
1548 		  bfd_size_type amt = sizeof *p;
1549 
1550 		  p = ((struct elf_dyn_relocs *)
1551 		       bfd_alloc (htab->elf.dynobj, amt));
1552 		  if (p == NULL)
1553 		    return FALSE;
1554 		  p->next = *head;
1555 		  *head = p;
1556 		  p->sec = sec;
1557 		  p->count = 0;
1558 		  p->pc_count = 0;
1559 		}
1560 
1561 	      p->count += 1;
1562 	      if (IS_X86_64_PCREL_TYPE (r_type))
1563 		p->pc_count += 1;
1564 	    }
1565 	  break;
1566 
1567 	  /* This relocation describes the C++ object vtable hierarchy.
1568 	     Reconstruct it for later use during GC.  */
1569 	case R_X86_64_GNU_VTINHERIT:
1570 	  if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1571 	    return FALSE;
1572 	  break;
1573 
1574 	  /* This relocation describes which C++ vtable entries are actually
1575 	     used.  Record for later use during GC.  */
1576 	case R_X86_64_GNU_VTENTRY:
1577 	  BFD_ASSERT (h != NULL);
1578 	  if (h != NULL
1579 	      && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1580 	    return FALSE;
1581 	  break;
1582 
1583 	default:
1584 	  break;
1585 	}
1586     }
1587 
1588   return TRUE;
1589 }
1590 
1591 /* Return the section that should be marked against GC for a given
1592    relocation.	*/
1593 
1594 static asection *
1595 elf64_x86_64_gc_mark_hook (asection *sec,
1596 			   struct bfd_link_info *info,
1597 			   Elf_Internal_Rela *rel,
1598 			   struct elf_link_hash_entry *h,
1599 			   Elf_Internal_Sym *sym)
1600 {
1601   if (h != NULL)
1602     switch (ELF64_R_TYPE (rel->r_info))
1603       {
1604       case R_X86_64_GNU_VTINHERIT:
1605       case R_X86_64_GNU_VTENTRY:
1606 	return NULL;
1607       }
1608 
1609   return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1610 }
1611 
1612 /* Update the got entry reference counts for the section being removed.	 */
1613 
1614 static bfd_boolean
1615 elf64_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1616 			    asection *sec,
1617 			    const Elf_Internal_Rela *relocs)
1618 {
1619   struct elf64_x86_64_link_hash_table *htab;
1620   Elf_Internal_Shdr *symtab_hdr;
1621   struct elf_link_hash_entry **sym_hashes;
1622   bfd_signed_vma *local_got_refcounts;
1623   const Elf_Internal_Rela *rel, *relend;
1624 
1625   if (info->relocatable)
1626     return TRUE;
1627 
1628   htab = elf64_x86_64_hash_table (info);
1629   if (htab == NULL)
1630     return FALSE;
1631 
1632   elf_section_data (sec)->local_dynrel = NULL;
1633 
1634   symtab_hdr = &elf_symtab_hdr (abfd);
1635   sym_hashes = elf_sym_hashes (abfd);
1636   local_got_refcounts = elf_local_got_refcounts (abfd);
1637 
1638   relend = relocs + sec->reloc_count;
1639   for (rel = relocs; rel < relend; rel++)
1640     {
1641       unsigned long r_symndx;
1642       unsigned int r_type;
1643       struct elf_link_hash_entry *h = NULL;
1644 
1645       r_symndx = ELF64_R_SYM (rel->r_info);
1646       if (r_symndx >= symtab_hdr->sh_info)
1647 	{
1648 	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1649 	  while (h->root.type == bfd_link_hash_indirect
1650 		 || h->root.type == bfd_link_hash_warning)
1651 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
1652 	}
1653       else
1654 	{
1655 	  /* A local symbol.  */
1656 	  Elf_Internal_Sym *isym;
1657 
1658 	  isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1659 					abfd, r_symndx);
1660 
1661 	  /* Check relocation against local STT_GNU_IFUNC symbol.  */
1662 	  if (isym != NULL
1663 	      && ELF64_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1664 	    {
1665 	      h = elf64_x86_64_get_local_sym_hash (htab, abfd, rel,
1666 						   FALSE);
1667 	      if (h == NULL)
1668 		abort ();
1669 	    }
1670 	}
1671 
1672       if (h)
1673 	{
1674 	  struct elf64_x86_64_link_hash_entry *eh;
1675 	  struct elf_dyn_relocs **pp;
1676 	  struct elf_dyn_relocs *p;
1677 
1678 	  eh = (struct elf64_x86_64_link_hash_entry *) h;
1679 
1680 	  for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1681 	    if (p->sec == sec)
1682 	      {
1683 		/* Everything must go for SEC.  */
1684 		*pp = p->next;
1685 		break;
1686 	      }
1687 	}
1688 
1689       r_type = ELF32_R_TYPE (rel->r_info);
1690       if (! elf64_x86_64_tls_transition (info, abfd, sec, NULL,
1691 					 symtab_hdr, sym_hashes,
1692 					 &r_type, GOT_UNKNOWN,
1693 					 rel, relend, h, r_symndx))
1694 	return FALSE;
1695 
1696       switch (r_type)
1697 	{
1698 	case R_X86_64_TLSLD:
1699 	  if (htab->tls_ld_got.refcount > 0)
1700 	    htab->tls_ld_got.refcount -= 1;
1701 	  break;
1702 
1703 	case R_X86_64_TLSGD:
1704 	case R_X86_64_GOTPC32_TLSDESC:
1705 	case R_X86_64_TLSDESC_CALL:
1706 	case R_X86_64_GOTTPOFF:
1707 	case R_X86_64_GOT32:
1708 	case R_X86_64_GOTPCREL:
1709 	case R_X86_64_GOT64:
1710 	case R_X86_64_GOTPCREL64:
1711 	case R_X86_64_GOTPLT64:
1712 	  if (h != NULL)
1713 	    {
1714 	      if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0)
1715 	        h->plt.refcount -= 1;
1716 	      if (h->got.refcount > 0)
1717 		h->got.refcount -= 1;
1718 	      if (h->type == STT_GNU_IFUNC)
1719 		{
1720 		  if (h->plt.refcount > 0)
1721 		    h->plt.refcount -= 1;
1722 		}
1723 	    }
1724 	  else if (local_got_refcounts != NULL)
1725 	    {
1726 	      if (local_got_refcounts[r_symndx] > 0)
1727 		local_got_refcounts[r_symndx] -= 1;
1728 	    }
1729 	  break;
1730 
1731 	case R_X86_64_8:
1732 	case R_X86_64_16:
1733 	case R_X86_64_32:
1734 	case R_X86_64_64:
1735 	case R_X86_64_32S:
1736 	case R_X86_64_PC8:
1737 	case R_X86_64_PC16:
1738 	case R_X86_64_PC32:
1739 	case R_X86_64_PC64:
1740 	  if (info->shared
1741 	      && (h == NULL || h->type != STT_GNU_IFUNC))
1742 	    break;
1743 	  /* Fall thru */
1744 
1745 	case R_X86_64_PLT32:
1746 	case R_X86_64_PLTOFF64:
1747 	  if (h != NULL)
1748 	    {
1749 	      if (h->plt.refcount > 0)
1750 		h->plt.refcount -= 1;
1751 	    }
1752 	  break;
1753 
1754 	default:
1755 	  break;
1756 	}
1757     }
1758 
1759   return TRUE;
1760 }
1761 
1762 /* Adjust a symbol defined by a dynamic object and referenced by a
1763    regular object.  The current definition is in some section of the
1764    dynamic object, but we're not including those sections.  We have to
1765    change the definition to something the rest of the link can
1766    understand.	*/
1767 
1768 static bfd_boolean
1769 elf64_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
1770 				    struct elf_link_hash_entry *h)
1771 {
1772   struct elf64_x86_64_link_hash_table *htab;
1773   asection *s;
1774 
1775   /* STT_GNU_IFUNC symbol must go through PLT. */
1776   if (h->type == STT_GNU_IFUNC)
1777     {
1778       if (h->plt.refcount <= 0)
1779 	{
1780 	  h->plt.offset = (bfd_vma) -1;
1781 	  h->needs_plt = 0;
1782 	}
1783       return TRUE;
1784     }
1785 
1786   /* If this is a function, put it in the procedure linkage table.  We
1787      will fill in the contents of the procedure linkage table later,
1788      when we know the address of the .got section.  */
1789   if (h->type == STT_FUNC
1790       || h->needs_plt)
1791     {
1792       if (h->plt.refcount <= 0
1793 	  || SYMBOL_CALLS_LOCAL (info, h)
1794 	  || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1795 	      && h->root.type == bfd_link_hash_undefweak))
1796 	{
1797 	  /* This case can occur if we saw a PLT32 reloc in an input
1798 	     file, but the symbol was never referred to by a dynamic
1799 	     object, or if all references were garbage collected.  In
1800 	     such a case, we don't actually need to build a procedure
1801 	     linkage table, and we can just do a PC32 reloc instead.  */
1802 	  h->plt.offset = (bfd_vma) -1;
1803 	  h->needs_plt = 0;
1804 	}
1805 
1806       return TRUE;
1807     }
1808   else
1809     /* It's possible that we incorrectly decided a .plt reloc was
1810        needed for an R_X86_64_PC32 reloc to a non-function sym in
1811        check_relocs.  We can't decide accurately between function and
1812        non-function syms in check-relocs;  Objects loaded later in
1813        the link may change h->type.  So fix it now.  */
1814     h->plt.offset = (bfd_vma) -1;
1815 
1816   /* If this is a weak symbol, and there is a real definition, the
1817      processor independent code will have arranged for us to see the
1818      real definition first, and we can just use the same value.	 */
1819   if (h->u.weakdef != NULL)
1820     {
1821       BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1822 		  || h->u.weakdef->root.type == bfd_link_hash_defweak);
1823       h->root.u.def.section = h->u.weakdef->root.u.def.section;
1824       h->root.u.def.value = h->u.weakdef->root.u.def.value;
1825       if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
1826 	h->non_got_ref = h->u.weakdef->non_got_ref;
1827       return TRUE;
1828     }
1829 
1830   /* This is a reference to a symbol defined by a dynamic object which
1831      is not a function.	 */
1832 
1833   /* If we are creating a shared library, we must presume that the
1834      only references to the symbol are via the global offset table.
1835      For such cases we need not do anything here; the relocations will
1836      be handled correctly by relocate_section.	*/
1837   if (info->shared)
1838     return TRUE;
1839 
1840   /* If there are no references to this symbol that do not use the
1841      GOT, we don't need to generate a copy reloc.  */
1842   if (!h->non_got_ref)
1843     return TRUE;
1844 
1845   /* If -z nocopyreloc was given, we won't generate them either.  */
1846   if (info->nocopyreloc)
1847     {
1848       h->non_got_ref = 0;
1849       return TRUE;
1850     }
1851 
1852   if (ELIMINATE_COPY_RELOCS)
1853     {
1854       struct elf64_x86_64_link_hash_entry * eh;
1855       struct elf_dyn_relocs *p;
1856 
1857       eh = (struct elf64_x86_64_link_hash_entry *) h;
1858       for (p = eh->dyn_relocs; p != NULL; p = p->next)
1859 	{
1860 	  s = p->sec->output_section;
1861 	  if (s != NULL && (s->flags & SEC_READONLY) != 0)
1862 	    break;
1863 	}
1864 
1865       /* If we didn't find any dynamic relocs in read-only sections, then
1866 	 we'll be keeping the dynamic relocs and avoiding the copy reloc.  */
1867       if (p == NULL)
1868 	{
1869 	  h->non_got_ref = 0;
1870 	  return TRUE;
1871 	}
1872     }
1873 
1874   if (h->size == 0)
1875     {
1876       (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1877 			     h->root.root.string);
1878       return TRUE;
1879     }
1880 
1881   /* We must allocate the symbol in our .dynbss section, which will
1882      become part of the .bss section of the executable.	 There will be
1883      an entry for this symbol in the .dynsym section.  The dynamic
1884      object will contain position independent code, so all references
1885      from the dynamic object to this symbol will go through the global
1886      offset table.  The dynamic linker will use the .dynsym entry to
1887      determine the address it must put in the global offset table, so
1888      both the dynamic object and the regular object will refer to the
1889      same memory location for the variable.  */
1890 
1891   htab = elf64_x86_64_hash_table (info);
1892   if (htab == NULL)
1893     return FALSE;
1894 
1895   /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
1896      to copy the initial value out of the dynamic object and into the
1897      runtime process image.  */
1898   if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1899     {
1900       htab->srelbss->size += sizeof (Elf64_External_Rela);
1901       h->needs_copy = 1;
1902     }
1903 
1904   s = htab->sdynbss;
1905 
1906   return _bfd_elf_adjust_dynamic_copy (h, s);
1907 }
1908 
1909 /* Allocate space in .plt, .got and associated reloc sections for
1910    dynamic relocs.  */
1911 
1912 static bfd_boolean
1913 elf64_x86_64_allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1914 {
1915   struct bfd_link_info *info;
1916   struct elf64_x86_64_link_hash_table *htab;
1917   struct elf64_x86_64_link_hash_entry *eh;
1918   struct elf_dyn_relocs *p;
1919 
1920   if (h->root.type == bfd_link_hash_indirect)
1921     return TRUE;
1922 
1923   if (h->root.type == bfd_link_hash_warning)
1924     h = (struct elf_link_hash_entry *) h->root.u.i.link;
1925   eh = (struct elf64_x86_64_link_hash_entry *) h;
1926 
1927   info = (struct bfd_link_info *) inf;
1928   htab = elf64_x86_64_hash_table (info);
1929   if (htab == NULL)
1930     return FALSE;
1931 
1932   /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
1933      here if it is defined and referenced in a non-shared object.  */
1934   if (h->type == STT_GNU_IFUNC
1935       && h->def_regular)
1936     return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
1937 					       &eh->dyn_relocs,
1938 					       PLT_ENTRY_SIZE,
1939 					       GOT_ENTRY_SIZE);
1940   else if (htab->elf.dynamic_sections_created
1941 	   && h->plt.refcount > 0)
1942     {
1943       /* Make sure this symbol is output as a dynamic symbol.
1944 	 Undefined weak syms won't yet be marked as dynamic.  */
1945       if (h->dynindx == -1
1946 	  && !h->forced_local)
1947 	{
1948 	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
1949 	    return FALSE;
1950 	}
1951 
1952       if (info->shared
1953 	  || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
1954 	{
1955 	  asection *s = htab->elf.splt;
1956 
1957 	  /* If this is the first .plt entry, make room for the special
1958 	     first entry.  */
1959 	  if (s->size == 0)
1960 	    s->size += PLT_ENTRY_SIZE;
1961 
1962 	  h->plt.offset = s->size;
1963 
1964 	  /* If this symbol is not defined in a regular file, and we are
1965 	     not generating a shared library, then set the symbol to this
1966 	     location in the .plt.  This is required to make function
1967 	     pointers compare as equal between the normal executable and
1968 	     the shared library.  */
1969 	  if (! info->shared
1970 	      && !h->def_regular)
1971 	    {
1972 	      h->root.u.def.section = s;
1973 	      h->root.u.def.value = h->plt.offset;
1974 	    }
1975 
1976 	  /* Make room for this entry.  */
1977 	  s->size += PLT_ENTRY_SIZE;
1978 
1979 	  /* We also need to make an entry in the .got.plt section, which
1980 	     will be placed in the .got section by the linker script.  */
1981 	  htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
1982 
1983 	  /* We also need to make an entry in the .rela.plt section.  */
1984 	  htab->elf.srelplt->size += sizeof (Elf64_External_Rela);
1985 	  htab->elf.srelplt->reloc_count++;
1986 	}
1987       else
1988 	{
1989 	  h->plt.offset = (bfd_vma) -1;
1990 	  h->needs_plt = 0;
1991 	}
1992     }
1993   else
1994     {
1995       h->plt.offset = (bfd_vma) -1;
1996       h->needs_plt = 0;
1997     }
1998 
1999   eh->tlsdesc_got = (bfd_vma) -1;
2000 
2001   /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
2002      make it a R_X86_64_TPOFF32 requiring no GOT entry.  */
2003   if (h->got.refcount > 0
2004       && info->executable
2005       && h->dynindx == -1
2006       && elf64_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
2007     {
2008       h->got.offset = (bfd_vma) -1;
2009     }
2010   else if (h->got.refcount > 0)
2011     {
2012       asection *s;
2013       bfd_boolean dyn;
2014       int tls_type = elf64_x86_64_hash_entry (h)->tls_type;
2015 
2016       /* Make sure this symbol is output as a dynamic symbol.
2017 	 Undefined weak syms won't yet be marked as dynamic.  */
2018       if (h->dynindx == -1
2019 	  && !h->forced_local)
2020 	{
2021 	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
2022 	    return FALSE;
2023 	}
2024 
2025       if (GOT_TLS_GDESC_P (tls_type))
2026 	{
2027 	  eh->tlsdesc_got = htab->elf.sgotplt->size
2028 	    - elf64_x86_64_compute_jump_table_size (htab);
2029 	  htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2030 	  h->got.offset = (bfd_vma) -2;
2031 	}
2032       if (! GOT_TLS_GDESC_P (tls_type)
2033 	  || GOT_TLS_GD_P (tls_type))
2034 	{
2035 	  s = htab->elf.sgot;
2036 	  h->got.offset = s->size;
2037 	  s->size += GOT_ENTRY_SIZE;
2038 	  if (GOT_TLS_GD_P (tls_type))
2039 	    s->size += GOT_ENTRY_SIZE;
2040 	}
2041       dyn = htab->elf.dynamic_sections_created;
2042       /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
2043 	 and two if global.
2044 	 R_X86_64_GOTTPOFF needs one dynamic relocation.  */
2045       if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
2046 	  || tls_type == GOT_TLS_IE)
2047 	htab->elf.srelgot->size += sizeof (Elf64_External_Rela);
2048       else if (GOT_TLS_GD_P (tls_type))
2049 	htab->elf.srelgot->size += 2 * sizeof (Elf64_External_Rela);
2050       else if (! GOT_TLS_GDESC_P (tls_type)
2051 	       && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2052 		   || h->root.type != bfd_link_hash_undefweak)
2053 	       && (info->shared
2054 		   || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
2055 	htab->elf.srelgot->size += sizeof (Elf64_External_Rela);
2056       if (GOT_TLS_GDESC_P (tls_type))
2057 	{
2058 	  htab->elf.srelplt->size += sizeof (Elf64_External_Rela);
2059 	  htab->tlsdesc_plt = (bfd_vma) -1;
2060 	}
2061     }
2062   else
2063     h->got.offset = (bfd_vma) -1;
2064 
2065   if (eh->dyn_relocs == NULL)
2066     return TRUE;
2067 
2068   /* In the shared -Bsymbolic case, discard space allocated for
2069      dynamic pc-relative relocs against symbols which turn out to be
2070      defined in regular objects.  For the normal shared case, discard
2071      space for pc-relative relocs that have become local due to symbol
2072      visibility changes.  */
2073 
2074   if (info->shared)
2075     {
2076       /* Relocs that use pc_count are those that appear on a call
2077 	 insn, or certain REL relocs that can generated via assembly.
2078 	 We want calls to protected symbols to resolve directly to the
2079 	 function rather than going via the plt.  If people want
2080 	 function pointer comparisons to work as expected then they
2081 	 should avoid writing weird assembly.  */
2082       if (SYMBOL_CALLS_LOCAL (info, h))
2083 	{
2084 	  struct elf_dyn_relocs **pp;
2085 
2086 	  for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2087 	    {
2088 	      p->count -= p->pc_count;
2089 	      p->pc_count = 0;
2090 	      if (p->count == 0)
2091 		*pp = p->next;
2092 	      else
2093 		pp = &p->next;
2094 	    }
2095 	}
2096 
2097       /* Also discard relocs on undefined weak syms with non-default
2098 	 visibility.  */
2099       if (eh->dyn_relocs != NULL
2100 	  && h->root.type == bfd_link_hash_undefweak)
2101 	{
2102 	  if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2103 	    eh->dyn_relocs = NULL;
2104 
2105 	  /* Make sure undefined weak symbols are output as a dynamic
2106 	     symbol in PIEs.  */
2107 	  else if (h->dynindx == -1
2108 		   && ! h->forced_local
2109 		   && ! bfd_elf_link_record_dynamic_symbol (info, h))
2110 	    return FALSE;
2111 	}
2112 
2113     }
2114   else if (ELIMINATE_COPY_RELOCS)
2115     {
2116       /* For the non-shared case, discard space for relocs against
2117 	 symbols which turn out to need copy relocs or are not
2118 	 dynamic.  */
2119 
2120       if (!h->non_got_ref
2121 	  && ((h->def_dynamic
2122 	       && !h->def_regular)
2123 	      || (htab->elf.dynamic_sections_created
2124 		  && (h->root.type == bfd_link_hash_undefweak
2125 		      || h->root.type == bfd_link_hash_undefined))))
2126 	{
2127 	  /* Make sure this symbol is output as a dynamic symbol.
2128 	     Undefined weak syms won't yet be marked as dynamic.  */
2129 	  if (h->dynindx == -1
2130 	      && ! h->forced_local
2131 	      && ! bfd_elf_link_record_dynamic_symbol (info, h))
2132 	    return FALSE;
2133 
2134 	  /* If that succeeded, we know we'll be keeping all the
2135 	     relocs.  */
2136 	  if (h->dynindx != -1)
2137 	    goto keep;
2138 	}
2139 
2140       eh->dyn_relocs = NULL;
2141 
2142     keep: ;
2143     }
2144 
2145   /* Finally, allocate space.  */
2146   for (p = eh->dyn_relocs; p != NULL; p = p->next)
2147     {
2148       asection * sreloc;
2149 
2150       sreloc = elf_section_data (p->sec)->sreloc;
2151 
2152       BFD_ASSERT (sreloc != NULL);
2153 
2154       sreloc->size += p->count * sizeof (Elf64_External_Rela);
2155     }
2156 
2157   return TRUE;
2158 }
2159 
2160 /* Allocate space in .plt, .got and associated reloc sections for
2161    local dynamic relocs.  */
2162 
2163 static bfd_boolean
2164 elf64_x86_64_allocate_local_dynrelocs (void **slot, void *inf)
2165 {
2166   struct elf_link_hash_entry *h
2167     = (struct elf_link_hash_entry *) *slot;
2168 
2169   if (h->type != STT_GNU_IFUNC
2170       || !h->def_regular
2171       || !h->ref_regular
2172       || !h->forced_local
2173       || h->root.type != bfd_link_hash_defined)
2174     abort ();
2175 
2176   return elf64_x86_64_allocate_dynrelocs (h, inf);
2177 }
2178 
2179 /* Find any dynamic relocs that apply to read-only sections.  */
2180 
2181 static bfd_boolean
2182 elf64_x86_64_readonly_dynrelocs (struct elf_link_hash_entry *h, void * inf)
2183 {
2184   struct elf64_x86_64_link_hash_entry *eh;
2185   struct elf_dyn_relocs *p;
2186 
2187   if (h->root.type == bfd_link_hash_warning)
2188     h = (struct elf_link_hash_entry *) h->root.u.i.link;
2189 
2190   eh = (struct elf64_x86_64_link_hash_entry *) h;
2191   for (p = eh->dyn_relocs; p != NULL; p = p->next)
2192     {
2193       asection *s = p->sec->output_section;
2194 
2195       if (s != NULL && (s->flags & SEC_READONLY) != 0)
2196 	{
2197 	  struct bfd_link_info *info = (struct bfd_link_info *) inf;
2198 
2199           if (info->warn_shared_textrel)
2200             (*_bfd_error_handler)
2201               (_("warning: dynamic relocation in readonly section `%s'"),
2202               h->root.root.string);
2203 	  info->flags |= DF_TEXTREL;
2204 
2205 	  /* Not an error, just cut short the traversal.  */
2206 	  return FALSE;
2207 	}
2208     }
2209   return TRUE;
2210 }
2211 
2212 /* Set the sizes of the dynamic sections.  */
2213 
2214 static bfd_boolean
2215 elf64_x86_64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2216 				    struct bfd_link_info *info)
2217 {
2218   struct elf64_x86_64_link_hash_table *htab;
2219   bfd *dynobj;
2220   asection *s;
2221   bfd_boolean relocs;
2222   bfd *ibfd;
2223 
2224   htab = elf64_x86_64_hash_table (info);
2225   if (htab == NULL)
2226     return FALSE;
2227 
2228   dynobj = htab->elf.dynobj;
2229   if (dynobj == NULL)
2230     abort ();
2231 
2232   if (htab->elf.dynamic_sections_created)
2233     {
2234       /* Set the contents of the .interp section to the interpreter.  */
2235       if (info->executable)
2236 	{
2237 	  s = bfd_get_section_by_name (dynobj, ".interp");
2238 	  if (s == NULL)
2239 	    abort ();
2240 	  s->size = sizeof ELF_DYNAMIC_INTERPRETER;
2241 	  s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2242 	}
2243     }
2244 
2245   /* Set up .got offsets for local syms, and space for local dynamic
2246      relocs.  */
2247   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2248     {
2249       bfd_signed_vma *local_got;
2250       bfd_signed_vma *end_local_got;
2251       char *local_tls_type;
2252       bfd_vma *local_tlsdesc_gotent;
2253       bfd_size_type locsymcount;
2254       Elf_Internal_Shdr *symtab_hdr;
2255       asection *srel;
2256 
2257       if (! is_x86_64_elf (ibfd))
2258 	continue;
2259 
2260       for (s = ibfd->sections; s != NULL; s = s->next)
2261 	{
2262 	  struct elf_dyn_relocs *p;
2263 
2264 	  for (p = (struct elf_dyn_relocs *)
2265 		    (elf_section_data (s)->local_dynrel);
2266 	       p != NULL;
2267 	       p = p->next)
2268 	    {
2269 	      if (!bfd_is_abs_section (p->sec)
2270 		  && bfd_is_abs_section (p->sec->output_section))
2271 		{
2272 		  /* Input section has been discarded, either because
2273 		     it is a copy of a linkonce section or due to
2274 		     linker script /DISCARD/, so we'll be discarding
2275 		     the relocs too.  */
2276 		}
2277 	      else if (p->count != 0)
2278 		{
2279 		  srel = elf_section_data (p->sec)->sreloc;
2280 		  srel->size += p->count * sizeof (Elf64_External_Rela);
2281 		  if ((p->sec->output_section->flags & SEC_READONLY) != 0)
2282 		    info->flags |= DF_TEXTREL;
2283 		}
2284 	    }
2285 	}
2286 
2287       local_got = elf_local_got_refcounts (ibfd);
2288       if (!local_got)
2289 	continue;
2290 
2291       symtab_hdr = &elf_symtab_hdr (ibfd);
2292       locsymcount = symtab_hdr->sh_info;
2293       end_local_got = local_got + locsymcount;
2294       local_tls_type = elf64_x86_64_local_got_tls_type (ibfd);
2295       local_tlsdesc_gotent = elf64_x86_64_local_tlsdesc_gotent (ibfd);
2296       s = htab->elf.sgot;
2297       srel = htab->elf.srelgot;
2298       for (; local_got < end_local_got;
2299 	   ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
2300 	{
2301 	  *local_tlsdesc_gotent = (bfd_vma) -1;
2302 	  if (*local_got > 0)
2303 	    {
2304 	      if (GOT_TLS_GDESC_P (*local_tls_type))
2305 		{
2306 		  *local_tlsdesc_gotent = htab->elf.sgotplt->size
2307 		    - elf64_x86_64_compute_jump_table_size (htab);
2308 		  htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2309 		  *local_got = (bfd_vma) -2;
2310 		}
2311 	      if (! GOT_TLS_GDESC_P (*local_tls_type)
2312 		  || GOT_TLS_GD_P (*local_tls_type))
2313 		{
2314 		  *local_got = s->size;
2315 		  s->size += GOT_ENTRY_SIZE;
2316 		  if (GOT_TLS_GD_P (*local_tls_type))
2317 		    s->size += GOT_ENTRY_SIZE;
2318 		}
2319 	      if (info->shared
2320 		  || GOT_TLS_GD_ANY_P (*local_tls_type)
2321 		  || *local_tls_type == GOT_TLS_IE)
2322 		{
2323 		  if (GOT_TLS_GDESC_P (*local_tls_type))
2324 		    {
2325 		      htab->elf.srelplt->size
2326 			+= sizeof (Elf64_External_Rela);
2327 		      htab->tlsdesc_plt = (bfd_vma) -1;
2328 		    }
2329 		  if (! GOT_TLS_GDESC_P (*local_tls_type)
2330 		      || GOT_TLS_GD_P (*local_tls_type))
2331 		    srel->size += sizeof (Elf64_External_Rela);
2332 		}
2333 	    }
2334 	  else
2335 	    *local_got = (bfd_vma) -1;
2336 	}
2337     }
2338 
2339   if (htab->tls_ld_got.refcount > 0)
2340     {
2341       /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
2342 	 relocs.  */
2343       htab->tls_ld_got.offset = htab->elf.sgot->size;
2344       htab->elf.sgot->size += 2 * GOT_ENTRY_SIZE;
2345       htab->elf.srelgot->size += sizeof (Elf64_External_Rela);
2346     }
2347   else
2348     htab->tls_ld_got.offset = -1;
2349 
2350   /* Allocate global sym .plt and .got entries, and space for global
2351      sym dynamic relocs.  */
2352   elf_link_hash_traverse (&htab->elf, elf64_x86_64_allocate_dynrelocs,
2353 			  info);
2354 
2355   /* Allocate .plt and .got entries, and space for local symbols.  */
2356   htab_traverse (htab->loc_hash_table,
2357 		 elf64_x86_64_allocate_local_dynrelocs,
2358 		 info);
2359 
2360   /* For every jump slot reserved in the sgotplt, reloc_count is
2361      incremented.  However, when we reserve space for TLS descriptors,
2362      it's not incremented, so in order to compute the space reserved
2363      for them, it suffices to multiply the reloc count by the jump
2364      slot size.  */
2365   if (htab->elf.srelplt)
2366     htab->sgotplt_jump_table_size
2367       = elf64_x86_64_compute_jump_table_size (htab);
2368 
2369   if (htab->tlsdesc_plt)
2370     {
2371       /* If we're not using lazy TLS relocations, don't generate the
2372 	 PLT and GOT entries they require.  */
2373       if ((info->flags & DF_BIND_NOW))
2374 	htab->tlsdesc_plt = 0;
2375       else
2376 	{
2377 	  htab->tlsdesc_got = htab->elf.sgot->size;
2378 	  htab->elf.sgot->size += GOT_ENTRY_SIZE;
2379 	  /* Reserve room for the initial entry.
2380 	     FIXME: we could probably do away with it in this case.  */
2381 	  if (htab->elf.splt->size == 0)
2382 	    htab->elf.splt->size += PLT_ENTRY_SIZE;
2383 	  htab->tlsdesc_plt = htab->elf.splt->size;
2384 	  htab->elf.splt->size += PLT_ENTRY_SIZE;
2385 	}
2386     }
2387 
2388   if (htab->elf.sgotplt)
2389     {
2390       struct elf_link_hash_entry *got;
2391       got = elf_link_hash_lookup (elf_hash_table (info),
2392 				  "_GLOBAL_OFFSET_TABLE_",
2393 				  FALSE, FALSE, FALSE);
2394 
2395       /* Don't allocate .got.plt section if there are no GOT nor PLT
2396          entries and there is no refeence to _GLOBAL_OFFSET_TABLE_.  */
2397       if ((got == NULL
2398 	   || !got->ref_regular_nonweak)
2399 	  && (htab->elf.sgotplt->size
2400 	      == get_elf_backend_data (output_bfd)->got_header_size)
2401 	  && (htab->elf.splt == NULL
2402 	      || htab->elf.splt->size == 0)
2403 	  && (htab->elf.sgot == NULL
2404 	      || htab->elf.sgot->size == 0)
2405 	  && (htab->elf.iplt == NULL
2406 	      || htab->elf.iplt->size == 0)
2407 	  && (htab->elf.igotplt == NULL
2408 	      || htab->elf.igotplt->size == 0))
2409 	htab->elf.sgotplt->size = 0;
2410     }
2411 
2412   /* We now have determined the sizes of the various dynamic sections.
2413      Allocate memory for them.  */
2414   relocs = FALSE;
2415   for (s = dynobj->sections; s != NULL; s = s->next)
2416     {
2417       if ((s->flags & SEC_LINKER_CREATED) == 0)
2418 	continue;
2419 
2420       if (s == htab->elf.splt
2421 	  || s == htab->elf.sgot
2422 	  || s == htab->elf.sgotplt
2423 	  || s == htab->elf.iplt
2424 	  || s == htab->elf.igotplt
2425 	  || s == htab->sdynbss)
2426 	{
2427 	  /* Strip this section if we don't need it; see the
2428 	     comment below.  */
2429 	}
2430       else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
2431 	{
2432 	  if (s->size != 0 && s != htab->elf.srelplt)
2433 	    relocs = TRUE;
2434 
2435 	  /* We use the reloc_count field as a counter if we need
2436 	     to copy relocs into the output file.  */
2437 	  if (s != htab->elf.srelplt)
2438 	    s->reloc_count = 0;
2439 	}
2440       else
2441 	{
2442 	  /* It's not one of our sections, so don't allocate space.  */
2443 	  continue;
2444 	}
2445 
2446       if (s->size == 0)
2447 	{
2448 	  /* If we don't need this section, strip it from the
2449 	     output file.  This is mostly to handle .rela.bss and
2450 	     .rela.plt.  We must create both sections in
2451 	     create_dynamic_sections, because they must be created
2452 	     before the linker maps input sections to output
2453 	     sections.  The linker does that before
2454 	     adjust_dynamic_symbol is called, and it is that
2455 	     function which decides whether anything needs to go
2456 	     into these sections.  */
2457 
2458 	  s->flags |= SEC_EXCLUDE;
2459 	  continue;
2460 	}
2461 
2462       if ((s->flags & SEC_HAS_CONTENTS) == 0)
2463 	continue;
2464 
2465       /* Allocate memory for the section contents.  We use bfd_zalloc
2466 	 here in case unused entries are not reclaimed before the
2467 	 section's contents are written out.  This should not happen,
2468 	 but this way if it does, we get a R_X86_64_NONE reloc instead
2469 	 of garbage.  */
2470       s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
2471       if (s->contents == NULL)
2472 	return FALSE;
2473     }
2474 
2475   if (htab->elf.dynamic_sections_created)
2476     {
2477       /* Add some entries to the .dynamic section.  We fill in the
2478 	 values later, in elf64_x86_64_finish_dynamic_sections, but we
2479 	 must add the entries now so that we get the correct size for
2480 	 the .dynamic section.	The DT_DEBUG entry is filled in by the
2481 	 dynamic linker and used by the debugger.  */
2482 #define add_dynamic_entry(TAG, VAL) \
2483   _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2484 
2485       if (info->executable)
2486 	{
2487 	  if (!add_dynamic_entry (DT_DEBUG, 0))
2488 	    return FALSE;
2489 	}
2490 
2491       if (htab->elf.splt->size != 0)
2492 	{
2493 	  if (!add_dynamic_entry (DT_PLTGOT, 0)
2494 	      || !add_dynamic_entry (DT_PLTRELSZ, 0)
2495 	      || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2496 	      || !add_dynamic_entry (DT_JMPREL, 0))
2497 	    return FALSE;
2498 
2499 	  if (htab->tlsdesc_plt
2500 	      && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
2501 		  || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
2502 	    return FALSE;
2503 	}
2504 
2505       if (relocs)
2506 	{
2507 	  if (!add_dynamic_entry (DT_RELA, 0)
2508 	      || !add_dynamic_entry (DT_RELASZ, 0)
2509 	      || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
2510 	    return FALSE;
2511 
2512 	  /* If any dynamic relocs apply to a read-only section,
2513 	     then we need a DT_TEXTREL entry.  */
2514 	  if ((info->flags & DF_TEXTREL) == 0)
2515 	    elf_link_hash_traverse (&htab->elf,
2516 				    elf64_x86_64_readonly_dynrelocs,
2517 				    info);
2518 
2519 	  if ((info->flags & DF_TEXTREL) != 0)
2520 	    {
2521 	      if (!add_dynamic_entry (DT_TEXTREL, 0))
2522 		return FALSE;
2523 	    }
2524 	}
2525     }
2526 #undef add_dynamic_entry
2527 
2528   return TRUE;
2529 }
2530 
2531 static bfd_boolean
2532 elf64_x86_64_always_size_sections (bfd *output_bfd,
2533 				   struct bfd_link_info *info)
2534 {
2535   asection *tls_sec = elf_hash_table (info)->tls_sec;
2536 
2537   if (tls_sec)
2538     {
2539       struct elf_link_hash_entry *tlsbase;
2540 
2541       tlsbase = elf_link_hash_lookup (elf_hash_table (info),
2542 				      "_TLS_MODULE_BASE_",
2543 				      FALSE, FALSE, FALSE);
2544 
2545       if (tlsbase && tlsbase->type == STT_TLS)
2546 	{
2547 	  struct elf64_x86_64_link_hash_table *htab;
2548 	  struct bfd_link_hash_entry *bh = NULL;
2549 	  const struct elf_backend_data *bed
2550 	    = get_elf_backend_data (output_bfd);
2551 
2552 	  htab = elf64_x86_64_hash_table (info);
2553 	  if (htab == NULL)
2554 	    return FALSE;
2555 
2556 	  if (!(_bfd_generic_link_add_one_symbol
2557 		(info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
2558 		 tls_sec, 0, NULL, FALSE,
2559 		 bed->collect, &bh)))
2560 	    return FALSE;
2561 
2562 	  htab->tls_module_base = bh;
2563 
2564 	  tlsbase = (struct elf_link_hash_entry *)bh;
2565 	  tlsbase->def_regular = 1;
2566 	  tlsbase->other = STV_HIDDEN;
2567 	  (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
2568 	}
2569     }
2570 
2571   return TRUE;
2572 }
2573 
2574 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
2575    executables.  Rather than setting it to the beginning of the TLS
2576    section, we have to set it to the end.  This function may be called
2577    multiple times, it is idempotent.  */
2578 
2579 static void
2580 elf64_x86_64_set_tls_module_base (struct bfd_link_info *info)
2581 {
2582   struct elf64_x86_64_link_hash_table *htab;
2583   struct bfd_link_hash_entry *base;
2584 
2585   if (!info->executable)
2586     return;
2587 
2588   htab = elf64_x86_64_hash_table (info);
2589   if (htab == NULL)
2590     return;
2591 
2592   base = htab->tls_module_base;
2593   if (base == NULL)
2594     return;
2595 
2596   base->u.def.value = htab->elf.tls_size;
2597 }
2598 
2599 /* Return the base VMA address which should be subtracted from real addresses
2600    when resolving @dtpoff relocation.
2601    This is PT_TLS segment p_vaddr.  */
2602 
2603 static bfd_vma
2604 elf64_x86_64_dtpoff_base (struct bfd_link_info *info)
2605 {
2606   /* If tls_sec is NULL, we should have signalled an error already.  */
2607   if (elf_hash_table (info)->tls_sec == NULL)
2608     return 0;
2609   return elf_hash_table (info)->tls_sec->vma;
2610 }
2611 
2612 /* Return the relocation value for @tpoff relocation
2613    if STT_TLS virtual address is ADDRESS.  */
2614 
2615 static bfd_vma
2616 elf64_x86_64_tpoff (struct bfd_link_info *info, bfd_vma address)
2617 {
2618   struct elf_link_hash_table *htab = elf_hash_table (info);
2619   const struct elf_backend_data *bed = get_elf_backend_data (info->output_bfd);
2620   bfd_vma static_tls_size;
2621 
2622   /* If tls_segment is NULL, we should have signalled an error already.  */
2623   if (htab->tls_sec == NULL)
2624     return 0;
2625 
2626   /* Consider special static TLS alignment requirements.  */
2627   static_tls_size = BFD_ALIGN (htab->tls_size, bed->static_tls_alignment);
2628   return address - static_tls_size - htab->tls_sec->vma;
2629 }
2630 
2631 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
2632    branch?  */
2633 
2634 static bfd_boolean
2635 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
2636 {
2637   /* Opcode		Instruction
2638      0xe8		call
2639      0xe9		jump
2640      0x0f 0x8x		conditional jump */
2641   return ((offset > 0
2642 	   && (contents [offset - 1] == 0xe8
2643 	       || contents [offset - 1] == 0xe9))
2644 	  || (offset > 1
2645 	      && contents [offset - 2] == 0x0f
2646 	      && (contents [offset - 1] & 0xf0) == 0x80));
2647 }
2648 
2649 static void
2650 elf64_x86_64_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
2651 {
2652   bfd_byte *loc = s->contents;
2653   loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
2654   BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
2655 	      <= s->contents + s->size);
2656   bfd_elf64_swap_reloca_out (abfd, rel, loc);
2657 }
2658 
2659 /* Relocate an x86_64 ELF section.  */
2660 
2661 static bfd_boolean
2662 elf64_x86_64_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
2663 			       bfd *input_bfd, asection *input_section,
2664 			       bfd_byte *contents, Elf_Internal_Rela *relocs,
2665 			       Elf_Internal_Sym *local_syms,
2666 			       asection **local_sections)
2667 {
2668   struct elf64_x86_64_link_hash_table *htab;
2669   Elf_Internal_Shdr *symtab_hdr;
2670   struct elf_link_hash_entry **sym_hashes;
2671   bfd_vma *local_got_offsets;
2672   bfd_vma *local_tlsdesc_gotents;
2673   Elf_Internal_Rela *rel;
2674   Elf_Internal_Rela *relend;
2675 
2676   BFD_ASSERT (is_x86_64_elf (input_bfd));
2677 
2678   htab = elf64_x86_64_hash_table (info);
2679   if (htab == NULL)
2680     return FALSE;
2681   symtab_hdr = &elf_symtab_hdr (input_bfd);
2682   sym_hashes = elf_sym_hashes (input_bfd);
2683   local_got_offsets = elf_local_got_offsets (input_bfd);
2684   local_tlsdesc_gotents = elf64_x86_64_local_tlsdesc_gotent (input_bfd);
2685 
2686   elf64_x86_64_set_tls_module_base (info);
2687 
2688   rel = relocs;
2689   relend = relocs + input_section->reloc_count;
2690   for (; rel < relend; rel++)
2691     {
2692       unsigned int r_type;
2693       reloc_howto_type *howto;
2694       unsigned long r_symndx;
2695       struct elf_link_hash_entry *h;
2696       Elf_Internal_Sym *sym;
2697       asection *sec;
2698       bfd_vma off, offplt;
2699       bfd_vma relocation;
2700       bfd_boolean unresolved_reloc;
2701       bfd_reloc_status_type r;
2702       int tls_type;
2703       asection *base_got;
2704 
2705       r_type = ELF64_R_TYPE (rel->r_info);
2706       if (r_type == (int) R_X86_64_GNU_VTINHERIT
2707 	  || r_type == (int) R_X86_64_GNU_VTENTRY)
2708 	continue;
2709 
2710       if (r_type >= R_X86_64_max)
2711 	{
2712 	  bfd_set_error (bfd_error_bad_value);
2713 	  return FALSE;
2714 	}
2715 
2716       howto = x86_64_elf_howto_table + r_type;
2717       r_symndx = ELF64_R_SYM (rel->r_info);
2718       h = NULL;
2719       sym = NULL;
2720       sec = NULL;
2721       unresolved_reloc = FALSE;
2722       if (r_symndx < symtab_hdr->sh_info)
2723 	{
2724 	  sym = local_syms + r_symndx;
2725 	  sec = local_sections[r_symndx];
2726 
2727 	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym,
2728 						&sec, rel);
2729 
2730 	  /* Relocate against local STT_GNU_IFUNC symbol.  */
2731 	  if (!info->relocatable
2732 	      && ELF64_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
2733 	    {
2734 	      h = elf64_x86_64_get_local_sym_hash (htab, input_bfd,
2735 						   rel, FALSE);
2736 	      if (h == NULL)
2737 		abort ();
2738 
2739 	      /* Set STT_GNU_IFUNC symbol value.  */
2740 	      h->root.u.def.value = sym->st_value;
2741 	      h->root.u.def.section = sec;
2742 	    }
2743 	}
2744       else
2745 	{
2746 	  bfd_boolean warned ATTRIBUTE_UNUSED;
2747 
2748 	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2749 				   r_symndx, symtab_hdr, sym_hashes,
2750 				   h, sec, relocation,
2751 				   unresolved_reloc, warned);
2752 	}
2753 
2754       if (sec != NULL && elf_discarded_section (sec))
2755 	RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
2756 					 rel, relend, howto, contents);
2757 
2758       if (info->relocatable)
2759 	continue;
2760 
2761       /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
2762 	 it here if it is defined in a non-shared object.  */
2763       if (h != NULL
2764 	  && h->type == STT_GNU_IFUNC
2765 	  && h->def_regular)
2766 	{
2767 	  asection *plt;
2768 	  bfd_vma plt_index;
2769 	  const char *name;
2770 
2771 	  if ((input_section->flags & SEC_ALLOC) == 0
2772 	      || h->plt.offset == (bfd_vma) -1)
2773 	    abort ();
2774 
2775 	  /* STT_GNU_IFUNC symbol must go through PLT.  */
2776 	  plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
2777 	  relocation = (plt->output_section->vma
2778 			+ plt->output_offset + h->plt.offset);
2779 
2780 	  switch (r_type)
2781 	    {
2782 	    default:
2783 	      if (h->root.root.string)
2784 		name = h->root.root.string;
2785 	      else
2786 		name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
2787 					 NULL);
2788 	      (*_bfd_error_handler)
2789 		(_("%B: relocation %s against STT_GNU_IFUNC "
2790 		   "symbol `%s' isn't handled by %s"), input_bfd,
2791 		 x86_64_elf_howto_table[r_type].name,
2792 		 name, __FUNCTION__);
2793 	      bfd_set_error (bfd_error_bad_value);
2794 	      return FALSE;
2795 
2796 	    case R_X86_64_32S:
2797 	      if (info->shared)
2798 		abort ();
2799 	      goto do_relocation;
2800 
2801 	    case R_X86_64_64:
2802 	      if (rel->r_addend != 0)
2803 		{
2804 		  if (h->root.root.string)
2805 		    name = h->root.root.string;
2806 		  else
2807 		    name = bfd_elf_sym_name (input_bfd, symtab_hdr,
2808 					     sym, NULL);
2809 		  (*_bfd_error_handler)
2810 		    (_("%B: relocation %s against STT_GNU_IFUNC "
2811 		       "symbol `%s' has non-zero addend: %d"),
2812 		     input_bfd, x86_64_elf_howto_table[r_type].name,
2813 		     name, rel->r_addend);
2814 		  bfd_set_error (bfd_error_bad_value);
2815 		  return FALSE;
2816 		}
2817 
2818 	      /* Generate dynamic relcoation only when there is a
2819 		 non-GOF reference in a shared object.  */
2820 	      if (info->shared && h->non_got_ref)
2821 		{
2822 		  Elf_Internal_Rela outrel;
2823 		  asection *sreloc;
2824 
2825 		  /* Need a dynamic relocation to get the real function
2826 		     address.  */
2827 		  outrel.r_offset = _bfd_elf_section_offset (output_bfd,
2828 							     info,
2829 							     input_section,
2830 							     rel->r_offset);
2831 		  if (outrel.r_offset == (bfd_vma) -1
2832 		      || outrel.r_offset == (bfd_vma) -2)
2833 		    abort ();
2834 
2835 		  outrel.r_offset += (input_section->output_section->vma
2836 				      + input_section->output_offset);
2837 
2838 		  if (h->dynindx == -1
2839 		      || h->forced_local
2840 		      || info->executable)
2841 		    {
2842 		      /* This symbol is resolved locally.  */
2843 		      outrel.r_info = ELF64_R_INFO (0, R_X86_64_IRELATIVE);
2844 		      outrel.r_addend = (h->root.u.def.value
2845 					 + h->root.u.def.section->output_section->vma
2846 					 + h->root.u.def.section->output_offset);
2847 		    }
2848 		  else
2849 		    {
2850 		      outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
2851 		      outrel.r_addend = 0;
2852 		    }
2853 
2854 		  sreloc = htab->elf.irelifunc;
2855 		  elf64_x86_64_append_rela (output_bfd, sreloc, &outrel);
2856 
2857 		  /* If this reloc is against an external symbol, we
2858 		     do not want to fiddle with the addend.  Otherwise,
2859 		     we need to include the symbol value so that it
2860 		     becomes an addend for the dynamic reloc.  For an
2861 		     internal symbol, we have updated addend.  */
2862 		  continue;
2863 		}
2864 
2865 	    case R_X86_64_32:
2866 	    case R_X86_64_PC32:
2867 	    case R_X86_64_PC64:
2868 	    case R_X86_64_PLT32:
2869 	      goto do_relocation;
2870 
2871 	    case R_X86_64_GOTPCREL:
2872 	    case R_X86_64_GOTPCREL64:
2873 	      base_got = htab->elf.sgot;
2874 	      off = h->got.offset;
2875 
2876 	      if (base_got == NULL)
2877 		abort ();
2878 
2879 	      if (off == (bfd_vma) -1)
2880 		{
2881 		  /* We can't use h->got.offset here to save state, or
2882 		     even just remember the offset, as finish_dynamic_symbol
2883 		     would use that as offset into .got.  */
2884 
2885 		  if (htab->elf.splt != NULL)
2886 		    {
2887 		      plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2888 		      off = (plt_index + 3) * GOT_ENTRY_SIZE;
2889 		      base_got = htab->elf.sgotplt;
2890 		    }
2891 		  else
2892 		    {
2893 		      plt_index = h->plt.offset / PLT_ENTRY_SIZE;
2894 		      off = plt_index * GOT_ENTRY_SIZE;
2895 		      base_got = htab->elf.igotplt;
2896 		    }
2897 
2898 		  if (h->dynindx == -1
2899 		      || h->forced_local
2900 		      || info->symbolic)
2901 		    {
2902 		      /* This references the local defitionion.  We must
2903 			 initialize this entry in the global offset table.
2904 			 Since the offset must always be a multiple of 8,
2905 			 we use the least significant bit to record
2906 			 whether we have initialized it already.
2907 
2908 			 When doing a dynamic link, we create a .rela.got
2909 			 relocation entry to initialize the value.  This
2910 			 is done in the finish_dynamic_symbol routine.	 */
2911 		      if ((off & 1) != 0)
2912 			off &= ~1;
2913 		      else
2914 			{
2915 			  bfd_put_64 (output_bfd, relocation,
2916 				      base_got->contents + off);
2917 			  /* Note that this is harmless for the GOTPLT64
2918 			     case, as -1 | 1 still is -1.  */
2919 			  h->got.offset |= 1;
2920 			}
2921 		    }
2922 		}
2923 
2924 	      relocation = (base_got->output_section->vma
2925 			    + base_got->output_offset + off);
2926 
2927 	      if (r_type != R_X86_64_GOTPCREL
2928 		  && r_type != R_X86_64_GOTPCREL64)
2929 		{
2930 		  asection *gotplt;
2931 		  if (htab->elf.splt != NULL)
2932 		    gotplt = htab->elf.sgotplt;
2933 		  else
2934 		    gotplt = htab->elf.igotplt;
2935 		  relocation -= (gotplt->output_section->vma
2936 				 - gotplt->output_offset);
2937 		}
2938 
2939 	      goto do_relocation;
2940 	    }
2941 	}
2942 
2943       /* When generating a shared object, the relocations handled here are
2944 	 copied into the output file to be resolved at run time.  */
2945       switch (r_type)
2946 	{
2947 	case R_X86_64_GOT32:
2948 	case R_X86_64_GOT64:
2949 	  /* Relocation is to the entry for this symbol in the global
2950 	     offset table.  */
2951 	case R_X86_64_GOTPCREL:
2952 	case R_X86_64_GOTPCREL64:
2953 	  /* Use global offset table entry as symbol value.  */
2954 	case R_X86_64_GOTPLT64:
2955 	  /* This is the same as GOT64 for relocation purposes, but
2956 	     indicates the existence of a PLT entry.  The difficulty is,
2957 	     that we must calculate the GOT slot offset from the PLT
2958 	     offset, if this symbol got a PLT entry (it was global).
2959 	     Additionally if it's computed from the PLT entry, then that
2960 	     GOT offset is relative to .got.plt, not to .got.  */
2961 	  base_got = htab->elf.sgot;
2962 
2963 	  if (htab->elf.sgot == NULL)
2964 	    abort ();
2965 
2966 	  if (h != NULL)
2967 	    {
2968 	      bfd_boolean dyn;
2969 
2970 	      off = h->got.offset;
2971 	      if (h->needs_plt
2972 	          && h->plt.offset != (bfd_vma)-1
2973 		  && off == (bfd_vma)-1)
2974 		{
2975 		  /* We can't use h->got.offset here to save
2976 		     state, or even just remember the offset, as
2977 		     finish_dynamic_symbol would use that as offset into
2978 		     .got.  */
2979 		  bfd_vma plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2980 		  off = (plt_index + 3) * GOT_ENTRY_SIZE;
2981 		  base_got = htab->elf.sgotplt;
2982 		}
2983 
2984 	      dyn = htab->elf.dynamic_sections_created;
2985 
2986 	      if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2987 		  || (info->shared
2988 		      && SYMBOL_REFERENCES_LOCAL (info, h))
2989 		  || (ELF_ST_VISIBILITY (h->other)
2990 		      && h->root.type == bfd_link_hash_undefweak))
2991 		{
2992 		  /* This is actually a static link, or it is a -Bsymbolic
2993 		     link and the symbol is defined locally, or the symbol
2994 		     was forced to be local because of a version file.	We
2995 		     must initialize this entry in the global offset table.
2996 		     Since the offset must always be a multiple of 8, we
2997 		     use the least significant bit to record whether we
2998 		     have initialized it already.
2999 
3000 		     When doing a dynamic link, we create a .rela.got
3001 		     relocation entry to initialize the value.	This is
3002 		     done in the finish_dynamic_symbol routine.	 */
3003 		  if ((off & 1) != 0)
3004 		    off &= ~1;
3005 		  else
3006 		    {
3007 		      bfd_put_64 (output_bfd, relocation,
3008 				  base_got->contents + off);
3009 		      /* Note that this is harmless for the GOTPLT64 case,
3010 		         as -1 | 1 still is -1.  */
3011 		      h->got.offset |= 1;
3012 		    }
3013 		}
3014 	      else
3015 		unresolved_reloc = FALSE;
3016 	    }
3017 	  else
3018 	    {
3019 	      if (local_got_offsets == NULL)
3020 		abort ();
3021 
3022 	      off = local_got_offsets[r_symndx];
3023 
3024 	      /* The offset must always be a multiple of 8.  We use
3025 		 the least significant bit to record whether we have
3026 		 already generated the necessary reloc.	 */
3027 	      if ((off & 1) != 0)
3028 		off &= ~1;
3029 	      else
3030 		{
3031 		  bfd_put_64 (output_bfd, relocation,
3032 			      base_got->contents + off);
3033 
3034 		  if (info->shared)
3035 		    {
3036 		      asection *s;
3037 		      Elf_Internal_Rela outrel;
3038 
3039 		      /* We need to generate a R_X86_64_RELATIVE reloc
3040 			 for the dynamic linker.  */
3041 		      s = htab->elf.srelgot;
3042 		      if (s == NULL)
3043 			abort ();
3044 
3045 		      outrel.r_offset = (base_got->output_section->vma
3046 					 + base_got->output_offset
3047 					 + off);
3048 		      outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
3049 		      outrel.r_addend = relocation;
3050 		      elf64_x86_64_append_rela (output_bfd, s, &outrel);
3051 		    }
3052 
3053 		  local_got_offsets[r_symndx] |= 1;
3054 		}
3055 	    }
3056 
3057 	  if (off >= (bfd_vma) -2)
3058 	    abort ();
3059 
3060 	  relocation = base_got->output_section->vma
3061 		       + base_got->output_offset + off;
3062 	  if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
3063 	    relocation -= htab->elf.sgotplt->output_section->vma
3064 			  - htab->elf.sgotplt->output_offset;
3065 
3066 	  break;
3067 
3068 	case R_X86_64_GOTOFF64:
3069 	  /* Relocation is relative to the start of the global offset
3070 	     table.  */
3071 
3072 	  /* Check to make sure it isn't a protected function symbol
3073 	     for shared library since it may not be local when used
3074 	     as function address.  */
3075 	  if (info->shared
3076 	      && h
3077 	      && h->def_regular
3078 	      && h->type == STT_FUNC
3079 	      && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
3080 	    {
3081 	      (*_bfd_error_handler)
3082 		(_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
3083 		 input_bfd, h->root.root.string);
3084 	      bfd_set_error (bfd_error_bad_value);
3085 	      return FALSE;
3086 	    }
3087 
3088 	  /* Note that sgot is not involved in this
3089 	     calculation.  We always want the start of .got.plt.  If we
3090 	     defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
3091 	     permitted by the ABI, we might have to change this
3092 	     calculation.  */
3093 	  relocation -= htab->elf.sgotplt->output_section->vma
3094 			+ htab->elf.sgotplt->output_offset;
3095 	  break;
3096 
3097 	case R_X86_64_GOTPC32:
3098 	case R_X86_64_GOTPC64:
3099 	  /* Use global offset table as symbol value.  */
3100 	  relocation = htab->elf.sgotplt->output_section->vma
3101 		       + htab->elf.sgotplt->output_offset;
3102 	  unresolved_reloc = FALSE;
3103 	  break;
3104 
3105 	case R_X86_64_PLTOFF64:
3106 	  /* Relocation is PLT entry relative to GOT.  For local
3107 	     symbols it's the symbol itself relative to GOT.  */
3108           if (h != NULL
3109 	      /* See PLT32 handling.  */
3110 	      && h->plt.offset != (bfd_vma) -1
3111 	      && htab->elf.splt != NULL)
3112 	    {
3113 	      relocation = (htab->elf.splt->output_section->vma
3114 			    + htab->elf.splt->output_offset
3115 			    + h->plt.offset);
3116 	      unresolved_reloc = FALSE;
3117 	    }
3118 
3119 	  relocation -= htab->elf.sgotplt->output_section->vma
3120 			+ htab->elf.sgotplt->output_offset;
3121 	  break;
3122 
3123 	case R_X86_64_PLT32:
3124 	  /* Relocation is to the entry for this symbol in the
3125 	     procedure linkage table.  */
3126 
3127 	  /* Resolve a PLT32 reloc against a local symbol directly,
3128 	     without using the procedure linkage table.	 */
3129 	  if (h == NULL)
3130 	    break;
3131 
3132 	  if (h->plt.offset == (bfd_vma) -1
3133 	      || htab->elf.splt == NULL)
3134 	    {
3135 	      /* We didn't make a PLT entry for this symbol.  This
3136 		 happens when statically linking PIC code, or when
3137 		 using -Bsymbolic.  */
3138 	      break;
3139 	    }
3140 
3141 	  relocation = (htab->elf.splt->output_section->vma
3142 			+ htab->elf.splt->output_offset
3143 			+ h->plt.offset);
3144 	  unresolved_reloc = FALSE;
3145 	  break;
3146 
3147 	case R_X86_64_PC8:
3148 	case R_X86_64_PC16:
3149 	case R_X86_64_PC32:
3150 	  if (info->shared
3151 	      && (input_section->flags & SEC_ALLOC) != 0
3152 	      && (input_section->flags & SEC_READONLY) != 0
3153 	      && h != NULL)
3154 	    {
3155 	      bfd_boolean fail = FALSE;
3156 	      bfd_boolean branch
3157 		= (r_type == R_X86_64_PC32
3158 		   && is_32bit_relative_branch (contents, rel->r_offset));
3159 
3160 	      if (SYMBOL_REFERENCES_LOCAL (info, h))
3161 		{
3162 		  /* Symbol is referenced locally.  Make sure it is
3163 		     defined locally or for a branch.  */
3164 		  fail = !h->def_regular && !branch;
3165 		}
3166 	      else
3167 		{
3168 		  /* Symbol isn't referenced locally.  We only allow
3169 		     branch to symbol with non-default visibility. */
3170 		  fail = (!branch
3171 			  || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
3172 		}
3173 
3174 	      if (fail)
3175 		{
3176 		  const char *fmt;
3177 		  const char *v;
3178 		  const char *pic = "";
3179 
3180 		  switch (ELF_ST_VISIBILITY (h->other))
3181 		    {
3182 		    case STV_HIDDEN:
3183 		      v = _("hidden symbol");
3184 		      break;
3185 		    case STV_INTERNAL:
3186 		      v = _("internal symbol");
3187 		      break;
3188 		    case STV_PROTECTED:
3189 		      v = _("protected symbol");
3190 		      break;
3191 		    default:
3192 		      v = _("symbol");
3193 		      pic = _("; recompile with -fPIC");
3194 		      break;
3195 		    }
3196 
3197 		  if (h->def_regular)
3198 		    fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
3199 		  else
3200 		    fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
3201 
3202 		  (*_bfd_error_handler) (fmt, input_bfd,
3203 					 x86_64_elf_howto_table[r_type].name,
3204 					 v,  h->root.root.string, pic);
3205 		  bfd_set_error (bfd_error_bad_value);
3206 		  return FALSE;
3207 		}
3208 	    }
3209 	  /* Fall through.  */
3210 
3211 	case R_X86_64_8:
3212 	case R_X86_64_16:
3213 	case R_X86_64_32:
3214 	case R_X86_64_PC64:
3215 	case R_X86_64_64:
3216 	  /* FIXME: The ABI says the linker should make sure the value is
3217 	     the same when it's zeroextended to 64 bit.	 */
3218 
3219 	  if ((input_section->flags & SEC_ALLOC) == 0)
3220 	    break;
3221 
3222 	  if ((info->shared
3223 	       && (h == NULL
3224 		   || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3225 		   || h->root.type != bfd_link_hash_undefweak)
3226 	       && (! IS_X86_64_PCREL_TYPE (r_type)
3227 		   || ! SYMBOL_CALLS_LOCAL (info, h)))
3228 	      || (ELIMINATE_COPY_RELOCS
3229 		  && !info->shared
3230 		  && h != NULL
3231 		  && h->dynindx != -1
3232 		  && !h->non_got_ref
3233 		  && ((h->def_dynamic
3234 		       && !h->def_regular)
3235 		      || h->root.type == bfd_link_hash_undefweak
3236 		      || h->root.type == bfd_link_hash_undefined)))
3237 	    {
3238 	      Elf_Internal_Rela outrel;
3239 	      bfd_boolean skip, relocate;
3240 	      asection *sreloc;
3241 
3242 	      /* When generating a shared object, these relocations
3243 		 are copied into the output file to be resolved at run
3244 		 time.	*/
3245 	      skip = FALSE;
3246 	      relocate = FALSE;
3247 
3248 	      outrel.r_offset =
3249 		_bfd_elf_section_offset (output_bfd, info, input_section,
3250 					 rel->r_offset);
3251 	      if (outrel.r_offset == (bfd_vma) -1)
3252 		skip = TRUE;
3253 	      else if (outrel.r_offset == (bfd_vma) -2)
3254 		skip = TRUE, relocate = TRUE;
3255 
3256 	      outrel.r_offset += (input_section->output_section->vma
3257 				  + input_section->output_offset);
3258 
3259 	      if (skip)
3260 		memset (&outrel, 0, sizeof outrel);
3261 
3262 	      /* h->dynindx may be -1 if this symbol was marked to
3263 		 become local.  */
3264 	      else if (h != NULL
3265 		       && h->dynindx != -1
3266 		       && (IS_X86_64_PCREL_TYPE (r_type)
3267 			   || ! info->shared
3268 			   || ! SYMBOLIC_BIND (info, h)
3269 			   || ! h->def_regular))
3270 		{
3271 		  outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
3272 		  outrel.r_addend = rel->r_addend;
3273 		}
3274 	      else
3275 		{
3276 		  /* This symbol is local, or marked to become local.  */
3277 		  if (r_type == R_X86_64_64)
3278 		    {
3279 		      relocate = TRUE;
3280 		      outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
3281 		      outrel.r_addend = relocation + rel->r_addend;
3282 		    }
3283 		  else
3284 		    {
3285 		      long sindx;
3286 
3287 		      if (bfd_is_abs_section (sec))
3288 			sindx = 0;
3289 		      else if (sec == NULL || sec->owner == NULL)
3290 			{
3291 			  bfd_set_error (bfd_error_bad_value);
3292 			  return FALSE;
3293 			}
3294 		      else
3295 			{
3296 			  asection *osec;
3297 
3298 			  /* We are turning this relocation into one
3299 			     against a section symbol.  It would be
3300 			     proper to subtract the symbol's value,
3301 			     osec->vma, from the emitted reloc addend,
3302 			     but ld.so expects buggy relocs.  */
3303 			  osec = sec->output_section;
3304 			  sindx = elf_section_data (osec)->dynindx;
3305 			  if (sindx == 0)
3306 			    {
3307 			      asection *oi = htab->elf.text_index_section;
3308 			      sindx = elf_section_data (oi)->dynindx;
3309 			    }
3310 			  BFD_ASSERT (sindx != 0);
3311 			}
3312 
3313 		      outrel.r_info = ELF64_R_INFO (sindx, r_type);
3314 		      outrel.r_addend = relocation + rel->r_addend;
3315 		    }
3316 		}
3317 
3318 	      sreloc = elf_section_data (input_section)->sreloc;
3319 
3320 	      BFD_ASSERT (sreloc != NULL && sreloc->contents != NULL);
3321 
3322 	      elf64_x86_64_append_rela (output_bfd, sreloc, &outrel);
3323 
3324 	      /* If this reloc is against an external symbol, we do
3325 		 not want to fiddle with the addend.  Otherwise, we
3326 		 need to include the symbol value so that it becomes
3327 		 an addend for the dynamic reloc.  */
3328 	      if (! relocate)
3329 		continue;
3330 	    }
3331 
3332 	  break;
3333 
3334 	case R_X86_64_TLSGD:
3335 	case R_X86_64_GOTPC32_TLSDESC:
3336 	case R_X86_64_TLSDESC_CALL:
3337 	case R_X86_64_GOTTPOFF:
3338 	  tls_type = GOT_UNKNOWN;
3339 	  if (h == NULL && local_got_offsets)
3340 	    tls_type = elf64_x86_64_local_got_tls_type (input_bfd) [r_symndx];
3341 	  else if (h != NULL)
3342 	    tls_type = elf64_x86_64_hash_entry (h)->tls_type;
3343 
3344 	  if (! elf64_x86_64_tls_transition (info, input_bfd,
3345 					     input_section, contents,
3346 					     symtab_hdr, sym_hashes,
3347 					     &r_type, tls_type, rel,
3348 					     relend, h, r_symndx))
3349 	    return FALSE;
3350 
3351 	  if (r_type == R_X86_64_TPOFF32)
3352 	    {
3353 	      bfd_vma roff = rel->r_offset;
3354 
3355 	      BFD_ASSERT (! unresolved_reloc);
3356 
3357 	      if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3358 		{
3359 		  /* GD->LE transition.
3360 		     .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3361 		     .word 0x6666; rex64; call __tls_get_addr
3362 		     Change it into:
3363 		     movq %fs:0, %rax
3364 		     leaq foo@tpoff(%rax), %rax */
3365 		  memcpy (contents + roff - 4,
3366 			  "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3367 			  16);
3368 		  bfd_put_32 (output_bfd,
3369 			      elf64_x86_64_tpoff (info, relocation),
3370 			      contents + roff + 8);
3371 		  /* Skip R_X86_64_PC32/R_X86_64_PLT32.  */
3372 		  rel++;
3373 		  continue;
3374 		}
3375 	      else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3376 		{
3377 		  /* GDesc -> LE transition.
3378 		     It's originally something like:
3379 		     leaq x@tlsdesc(%rip), %rax
3380 
3381 		     Change it to:
3382 		     movl $x@tpoff, %rax.  */
3383 
3384 		  unsigned int val, type;
3385 
3386 		  type = bfd_get_8 (input_bfd, contents + roff - 3);
3387 		  val = bfd_get_8 (input_bfd, contents + roff - 1);
3388 		  bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
3389 			     contents + roff - 3);
3390 		  bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
3391 		  bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
3392 			     contents + roff - 1);
3393 		  bfd_put_32 (output_bfd,
3394 			      elf64_x86_64_tpoff (info, relocation),
3395 			      contents + roff);
3396 		  continue;
3397 		}
3398 	      else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
3399 		{
3400 		  /* GDesc -> LE transition.
3401 		     It's originally:
3402 		     call *(%rax)
3403 		     Turn it into:
3404 		     xchg %ax,%ax.  */
3405 		  bfd_put_8 (output_bfd, 0x66, contents + roff);
3406 		  bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
3407 		  continue;
3408 		}
3409 	      else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
3410 		{
3411 		  /* IE->LE transition:
3412 		     Originally it can be one of:
3413 		     movq foo@gottpoff(%rip), %reg
3414 		     addq foo@gottpoff(%rip), %reg
3415 		     We change it into:
3416 		     movq $foo, %reg
3417 		     leaq foo(%reg), %reg
3418 		     addq $foo, %reg.  */
3419 
3420 		  unsigned int val, type, reg;
3421 
3422 		  val = bfd_get_8 (input_bfd, contents + roff - 3);
3423 		  type = bfd_get_8 (input_bfd, contents + roff - 2);
3424 		  reg = bfd_get_8 (input_bfd, contents + roff - 1);
3425 		  reg >>= 3;
3426 		  if (type == 0x8b)
3427 		    {
3428 		      /* movq */
3429 		      if (val == 0x4c)
3430 			bfd_put_8 (output_bfd, 0x49,
3431 				   contents + roff - 3);
3432 		      bfd_put_8 (output_bfd, 0xc7,
3433 				 contents + roff - 2);
3434 		      bfd_put_8 (output_bfd, 0xc0 | reg,
3435 				 contents + roff - 1);
3436 		    }
3437 		  else if (reg == 4)
3438 		    {
3439 		      /* addq -> addq - addressing with %rsp/%r12 is
3440 			 special  */
3441 		      if (val == 0x4c)
3442 			bfd_put_8 (output_bfd, 0x49,
3443 				   contents + roff - 3);
3444 		      bfd_put_8 (output_bfd, 0x81,
3445 				 contents + roff - 2);
3446 		      bfd_put_8 (output_bfd, 0xc0 | reg,
3447 				 contents + roff - 1);
3448 		    }
3449 		  else
3450 		    {
3451 		      /* addq -> leaq */
3452 		      if (val == 0x4c)
3453 			bfd_put_8 (output_bfd, 0x4d,
3454 				   contents + roff - 3);
3455 		      bfd_put_8 (output_bfd, 0x8d,
3456 				 contents + roff - 2);
3457 		      bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
3458 				 contents + roff - 1);
3459 		    }
3460 		  bfd_put_32 (output_bfd,
3461 			      elf64_x86_64_tpoff (info, relocation),
3462 			      contents + roff);
3463 		  continue;
3464 		}
3465 	      else
3466 		BFD_ASSERT (FALSE);
3467 	    }
3468 
3469 	  if (htab->elf.sgot == NULL)
3470 	    abort ();
3471 
3472 	  if (h != NULL)
3473 	    {
3474 	      off = h->got.offset;
3475 	      offplt = elf64_x86_64_hash_entry (h)->tlsdesc_got;
3476 	    }
3477 	  else
3478 	    {
3479 	      if (local_got_offsets == NULL)
3480 		abort ();
3481 
3482 	      off = local_got_offsets[r_symndx];
3483 	      offplt = local_tlsdesc_gotents[r_symndx];
3484 	    }
3485 
3486 	  if ((off & 1) != 0)
3487 	    off &= ~1;
3488 	  else
3489 	    {
3490 	      Elf_Internal_Rela outrel;
3491 	      int dr_type, indx;
3492 	      asection *sreloc;
3493 
3494 	      if (htab->elf.srelgot == NULL)
3495 		abort ();
3496 
3497 	      indx = h && h->dynindx != -1 ? h->dynindx : 0;
3498 
3499 	      if (GOT_TLS_GDESC_P (tls_type))
3500 		{
3501 		  outrel.r_info = ELF64_R_INFO (indx, R_X86_64_TLSDESC);
3502 		  BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
3503 			      + 2 * GOT_ENTRY_SIZE <= htab->elf.sgotplt->size);
3504 		  outrel.r_offset = (htab->elf.sgotplt->output_section->vma
3505 				     + htab->elf.sgotplt->output_offset
3506 				     + offplt
3507 				     + htab->sgotplt_jump_table_size);
3508 		  sreloc = htab->elf.srelplt;
3509 		  if (indx == 0)
3510 		    outrel.r_addend = relocation - elf64_x86_64_dtpoff_base (info);
3511 		  else
3512 		    outrel.r_addend = 0;
3513 		  elf64_x86_64_append_rela (output_bfd, sreloc, &outrel);
3514 		}
3515 
3516 	      sreloc = htab->elf.srelgot;
3517 
3518 	      outrel.r_offset = (htab->elf.sgot->output_section->vma
3519 				 + htab->elf.sgot->output_offset + off);
3520 
3521 	      if (GOT_TLS_GD_P (tls_type))
3522 		dr_type = R_X86_64_DTPMOD64;
3523 	      else if (GOT_TLS_GDESC_P (tls_type))
3524 		goto dr_done;
3525 	      else
3526 		dr_type = R_X86_64_TPOFF64;
3527 
3528 	      bfd_put_64 (output_bfd, 0, htab->elf.sgot->contents + off);
3529 	      outrel.r_addend = 0;
3530 	      if ((dr_type == R_X86_64_TPOFF64
3531 		   || dr_type == R_X86_64_TLSDESC) && indx == 0)
3532 		outrel.r_addend = relocation - elf64_x86_64_dtpoff_base (info);
3533 	      outrel.r_info = ELF64_R_INFO (indx, dr_type);
3534 
3535 	      elf64_x86_64_append_rela (output_bfd, sreloc, &outrel);
3536 
3537 	      if (GOT_TLS_GD_P (tls_type))
3538 		{
3539 		  if (indx == 0)
3540 		    {
3541 		      BFD_ASSERT (! unresolved_reloc);
3542 		      bfd_put_64 (output_bfd,
3543 				  relocation - elf64_x86_64_dtpoff_base (info),
3544 				  htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
3545 		    }
3546 		  else
3547 		    {
3548 		      bfd_put_64 (output_bfd, 0,
3549 				  htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
3550 		      outrel.r_info = ELF64_R_INFO (indx,
3551 						    R_X86_64_DTPOFF64);
3552 		      outrel.r_offset += GOT_ENTRY_SIZE;
3553 		      elf64_x86_64_append_rela (output_bfd, sreloc,
3554 						&outrel);
3555 		    }
3556 		}
3557 
3558 	    dr_done:
3559 	      if (h != NULL)
3560 		h->got.offset |= 1;
3561 	      else
3562 		local_got_offsets[r_symndx] |= 1;
3563 	    }
3564 
3565 	  if (off >= (bfd_vma) -2
3566 	      && ! GOT_TLS_GDESC_P (tls_type))
3567 	    abort ();
3568 	  if (r_type == ELF64_R_TYPE (rel->r_info))
3569 	    {
3570 	      if (r_type == R_X86_64_GOTPC32_TLSDESC
3571 		  || r_type == R_X86_64_TLSDESC_CALL)
3572 		relocation = htab->elf.sgotplt->output_section->vma
3573 		  + htab->elf.sgotplt->output_offset
3574 		  + offplt + htab->sgotplt_jump_table_size;
3575 	      else
3576 		relocation = htab->elf.sgot->output_section->vma
3577 		  + htab->elf.sgot->output_offset + off;
3578 	      unresolved_reloc = FALSE;
3579 	    }
3580 	  else
3581 	    {
3582 	      bfd_vma roff = rel->r_offset;
3583 
3584 	      if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3585 		{
3586 		  /* GD->IE transition.
3587 		     .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3588 		     .word 0x6666; rex64; call __tls_get_addr@plt
3589 		     Change it into:
3590 		     movq %fs:0, %rax
3591 		     addq foo@gottpoff(%rip), %rax */
3592 		  memcpy (contents + roff - 4,
3593 			  "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
3594 			  16);
3595 
3596 		  relocation = (htab->elf.sgot->output_section->vma
3597 				+ htab->elf.sgot->output_offset + off
3598 				- roff
3599 				- input_section->output_section->vma
3600 				- input_section->output_offset
3601 				- 12);
3602 		  bfd_put_32 (output_bfd, relocation,
3603 			      contents + roff + 8);
3604 		  /* Skip R_X86_64_PLT32.  */
3605 		  rel++;
3606 		  continue;
3607 		}
3608 	      else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3609 		{
3610 		  /* GDesc -> IE transition.
3611 		     It's originally something like:
3612 		     leaq x@tlsdesc(%rip), %rax
3613 
3614 		     Change it to:
3615 		     movq x@gottpoff(%rip), %rax # before xchg %ax,%ax.  */
3616 
3617 		  /* Now modify the instruction as appropriate. To
3618 		     turn a leaq into a movq in the form we use it, it
3619 		     suffices to change the second byte from 0x8d to
3620 		     0x8b.  */
3621 		  bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
3622 
3623 		  bfd_put_32 (output_bfd,
3624 			      htab->elf.sgot->output_section->vma
3625 			      + htab->elf.sgot->output_offset + off
3626 			      - rel->r_offset
3627 			      - input_section->output_section->vma
3628 			      - input_section->output_offset
3629 			      - 4,
3630 			      contents + roff);
3631 		  continue;
3632 		}
3633 	      else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
3634 		{
3635 		  /* GDesc -> IE transition.
3636 		     It's originally:
3637 		     call *(%rax)
3638 
3639 		     Change it to:
3640 		     xchg %ax, %ax.  */
3641 
3642 		  bfd_put_8 (output_bfd, 0x66, contents + roff);
3643 		  bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
3644 		  continue;
3645 		}
3646 	      else
3647 		BFD_ASSERT (FALSE);
3648 	    }
3649 	  break;
3650 
3651 	case R_X86_64_TLSLD:
3652 	  if (! elf64_x86_64_tls_transition (info, input_bfd,
3653 					     input_section, contents,
3654 					     symtab_hdr, sym_hashes,
3655 					     &r_type, GOT_UNKNOWN,
3656 					     rel, relend, h, r_symndx))
3657 	    return FALSE;
3658 
3659 	  if (r_type != R_X86_64_TLSLD)
3660 	    {
3661 	      /* LD->LE transition:
3662 		 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
3663 		 We change it into:
3664 		 .word 0x6666; .byte 0x66; movl %fs:0, %rax.  */
3665 
3666 	      BFD_ASSERT (r_type == R_X86_64_TPOFF32);
3667 	      memcpy (contents + rel->r_offset - 3,
3668 		      "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
3669 	      /* Skip R_X86_64_PC32/R_X86_64_PLT32.  */
3670 	      rel++;
3671 	      continue;
3672 	    }
3673 
3674 	  if (htab->elf.sgot == NULL)
3675 	    abort ();
3676 
3677 	  off = htab->tls_ld_got.offset;
3678 	  if (off & 1)
3679 	    off &= ~1;
3680 	  else
3681 	    {
3682 	      Elf_Internal_Rela outrel;
3683 
3684 	      if (htab->elf.srelgot == NULL)
3685 		abort ();
3686 
3687 	      outrel.r_offset = (htab->elf.sgot->output_section->vma
3688 				 + htab->elf.sgot->output_offset + off);
3689 
3690 	      bfd_put_64 (output_bfd, 0,
3691 			  htab->elf.sgot->contents + off);
3692 	      bfd_put_64 (output_bfd, 0,
3693 			  htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
3694 	      outrel.r_info = ELF64_R_INFO (0, R_X86_64_DTPMOD64);
3695 	      outrel.r_addend = 0;
3696 	      elf64_x86_64_append_rela (output_bfd, htab->elf.srelgot,
3697 					&outrel);
3698 	      htab->tls_ld_got.offset |= 1;
3699 	    }
3700 	  relocation = htab->elf.sgot->output_section->vma
3701 		       + htab->elf.sgot->output_offset + off;
3702 	  unresolved_reloc = FALSE;
3703 	  break;
3704 
3705 	case R_X86_64_DTPOFF32:
3706 	  if (!info->executable|| (input_section->flags & SEC_CODE) == 0)
3707 	    relocation -= elf64_x86_64_dtpoff_base (info);
3708 	  else
3709 	    relocation = elf64_x86_64_tpoff (info, relocation);
3710 	  break;
3711 
3712 	case R_X86_64_TPOFF32:
3713 	  BFD_ASSERT (info->executable);
3714 	  relocation = elf64_x86_64_tpoff (info, relocation);
3715 	  break;
3716 
3717 	default:
3718 	  break;
3719 	}
3720 
3721       /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3722 	 because such sections are not SEC_ALLOC and thus ld.so will
3723 	 not process them.  */
3724       if (unresolved_reloc
3725 	  && !((input_section->flags & SEC_DEBUGGING) != 0
3726 	       && h->def_dynamic))
3727 	(*_bfd_error_handler)
3728 	  (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3729 	   input_bfd,
3730 	   input_section,
3731 	   (long) rel->r_offset,
3732 	   howto->name,
3733 	   h->root.root.string);
3734 
3735 do_relocation:
3736       r = _bfd_final_link_relocate (howto, input_bfd, input_section,
3737 				    contents, rel->r_offset,
3738 				    relocation, rel->r_addend);
3739 
3740       if (r != bfd_reloc_ok)
3741 	{
3742 	  const char *name;
3743 
3744 	  if (h != NULL)
3745 	    name = h->root.root.string;
3746 	  else
3747 	    {
3748 	      name = bfd_elf_string_from_elf_section (input_bfd,
3749 						      symtab_hdr->sh_link,
3750 						      sym->st_name);
3751 	      if (name == NULL)
3752 		return FALSE;
3753 	      if (*name == '\0')
3754 		name = bfd_section_name (input_bfd, sec);
3755 	    }
3756 
3757 	  if (r == bfd_reloc_overflow)
3758 	    {
3759 	      if (! ((*info->callbacks->reloc_overflow)
3760 		     (info, (h ? &h->root : NULL), name, howto->name,
3761 		      (bfd_vma) 0, input_bfd, input_section,
3762 		      rel->r_offset)))
3763 		return FALSE;
3764 	    }
3765 	  else
3766 	    {
3767 	      (*_bfd_error_handler)
3768 		(_("%B(%A+0x%lx): reloc against `%s': error %d"),
3769 		 input_bfd, input_section,
3770 		 (long) rel->r_offset, name, (int) r);
3771 	      return FALSE;
3772 	    }
3773 	}
3774     }
3775 
3776   return TRUE;
3777 }
3778 
3779 /* Finish up dynamic symbol handling.  We set the contents of various
3780    dynamic sections here.  */
3781 
3782 static bfd_boolean
3783 elf64_x86_64_finish_dynamic_symbol (bfd *output_bfd,
3784 				    struct bfd_link_info *info,
3785 				    struct elf_link_hash_entry *h,
3786 				    Elf_Internal_Sym *sym)
3787 {
3788   struct elf64_x86_64_link_hash_table *htab;
3789 
3790   htab = elf64_x86_64_hash_table (info);
3791   if (htab == NULL)
3792     return FALSE;
3793 
3794   if (h->plt.offset != (bfd_vma) -1)
3795     {
3796       bfd_vma plt_index;
3797       bfd_vma got_offset;
3798       Elf_Internal_Rela rela;
3799       bfd_byte *loc;
3800       asection *plt, *gotplt, *relplt;
3801 
3802       /* When building a static executable, use .iplt, .igot.plt and
3803 	 .rela.iplt sections for STT_GNU_IFUNC symbols.  */
3804       if (htab->elf.splt != NULL)
3805 	{
3806 	  plt = htab->elf.splt;
3807 	  gotplt = htab->elf.sgotplt;
3808 	  relplt = htab->elf.srelplt;
3809 	}
3810       else
3811 	{
3812 	  plt = htab->elf.iplt;
3813 	  gotplt = htab->elf.igotplt;
3814 	  relplt = htab->elf.irelplt;
3815 	}
3816 
3817       /* This symbol has an entry in the procedure linkage table.  Set
3818 	 it up.	 */
3819       if ((h->dynindx == -1
3820 	   && !((h->forced_local || info->executable)
3821 		&& h->def_regular
3822 		&& h->type == STT_GNU_IFUNC))
3823 	  || plt == NULL
3824 	  || gotplt == NULL
3825 	  || relplt == NULL)
3826 	abort ();
3827 
3828       /* Get the index in the procedure linkage table which
3829 	 corresponds to this symbol.  This is the index of this symbol
3830 	 in all the symbols for which we are making plt entries.  The
3831 	 first entry in the procedure linkage table is reserved.
3832 
3833 	 Get the offset into the .got table of the entry that
3834 	 corresponds to this function.	Each .got entry is GOT_ENTRY_SIZE
3835 	 bytes. The first three are reserved for the dynamic linker.
3836 
3837 	 For static executables, we don't reserve anything.  */
3838 
3839       if (plt == htab->elf.splt)
3840 	{
3841 	  plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3842 	  got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
3843 	}
3844       else
3845 	{
3846 	  plt_index = h->plt.offset / PLT_ENTRY_SIZE;
3847 	  got_offset = plt_index * GOT_ENTRY_SIZE;
3848 	}
3849 
3850       /* Fill in the entry in the procedure linkage table.  */
3851       memcpy (plt->contents + h->plt.offset, elf64_x86_64_plt_entry,
3852 	      PLT_ENTRY_SIZE);
3853 
3854       /* Insert the relocation positions of the plt section.  The magic
3855 	 numbers at the end of the statements are the positions of the
3856 	 relocations in the plt section.  */
3857       /* Put offset for jmp *name@GOTPCREL(%rip), since the
3858 	 instruction uses 6 bytes, subtract this value.  */
3859       bfd_put_32 (output_bfd,
3860 		      (gotplt->output_section->vma
3861 		       + gotplt->output_offset
3862 		       + got_offset
3863 		       - plt->output_section->vma
3864 		       - plt->output_offset
3865 		       - h->plt.offset
3866 		       - 6),
3867 		  plt->contents + h->plt.offset + 2);
3868 
3869       /* Don't fill PLT entry for static executables.  */
3870       if (plt == htab->elf.splt)
3871 	{
3872 	  /* Put relocation index.  */
3873 	  bfd_put_32 (output_bfd, plt_index,
3874 		      plt->contents + h->plt.offset + 7);
3875 	  /* Put offset for jmp .PLT0.  */
3876 	  bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
3877 		      plt->contents + h->plt.offset + 12);
3878 	}
3879 
3880       /* Fill in the entry in the global offset table, initially this
3881 	 points to the pushq instruction in the PLT which is at offset 6.  */
3882       bfd_put_64 (output_bfd, (plt->output_section->vma
3883 			       + plt->output_offset
3884 			       + h->plt.offset + 6),
3885 		  gotplt->contents + got_offset);
3886 
3887       /* Fill in the entry in the .rela.plt section.  */
3888       rela.r_offset = (gotplt->output_section->vma
3889 		       + gotplt->output_offset
3890 		       + got_offset);
3891       if (h->dynindx == -1
3892 	  || ((info->executable
3893 	       || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
3894 	      && h->def_regular
3895 	      && h->type == STT_GNU_IFUNC))
3896 	{
3897 	  /* If an STT_GNU_IFUNC symbol is locally defined, generate
3898 	     R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT.  */
3899 	  rela.r_info = ELF64_R_INFO (0, R_X86_64_IRELATIVE);
3900 	  rela.r_addend = (h->root.u.def.value
3901 			   + h->root.u.def.section->output_section->vma
3902 			   + h->root.u.def.section->output_offset);
3903 	}
3904       else
3905 	{
3906 	  rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_JUMP_SLOT);
3907 	  rela.r_addend = 0;
3908 	}
3909       loc = relplt->contents + plt_index * sizeof (Elf64_External_Rela);
3910       bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
3911 
3912       if (!h->def_regular)
3913 	{
3914 	  /* Mark the symbol as undefined, rather than as defined in
3915 	     the .plt section.  Leave the value if there were any
3916 	     relocations where pointer equality matters (this is a clue
3917 	     for the dynamic linker, to make function pointer
3918 	     comparisons work between an application and shared
3919 	     library), otherwise set it to zero.  If a function is only
3920 	     called from a binary, there is no need to slow down
3921 	     shared libraries because of that.  */
3922 	  sym->st_shndx = SHN_UNDEF;
3923 	  if (!h->pointer_equality_needed)
3924 	    sym->st_value = 0;
3925 	}
3926     }
3927 
3928   if (h->got.offset != (bfd_vma) -1
3929       && ! GOT_TLS_GD_ANY_P (elf64_x86_64_hash_entry (h)->tls_type)
3930       && elf64_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
3931     {
3932       Elf_Internal_Rela rela;
3933 
3934       /* This symbol has an entry in the global offset table.  Set it
3935 	 up.  */
3936       if (htab->elf.sgot == NULL || htab->elf.srelgot == NULL)
3937 	abort ();
3938 
3939       rela.r_offset = (htab->elf.sgot->output_section->vma
3940 		       + htab->elf.sgot->output_offset
3941 		       + (h->got.offset &~ (bfd_vma) 1));
3942 
3943       /* If this is a static link, or it is a -Bsymbolic link and the
3944 	 symbol is defined locally or was forced to be local because
3945 	 of a version file, we just want to emit a RELATIVE reloc.
3946 	 The entry in the global offset table will already have been
3947 	 initialized in the relocate_section function.  */
3948       if (h->def_regular
3949 	  && h->type == STT_GNU_IFUNC)
3950 	{
3951 	  if (info->shared)
3952 	    {
3953 	      /* Generate R_X86_64_GLOB_DAT.  */
3954 	      goto do_glob_dat;
3955 	    }
3956 	  else
3957 	    {
3958 	      asection *plt;
3959 
3960 	      if (!h->pointer_equality_needed)
3961 		abort ();
3962 
3963 	      /* For non-shared object, we can't use .got.plt, which
3964 		 contains the real function addres if we need pointer
3965 		 equality.  We load the GOT entry with the PLT entry.  */
3966 	      plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
3967 	      bfd_put_64 (output_bfd, (plt->output_section->vma
3968 				       + plt->output_offset
3969 				       + h->plt.offset),
3970 			  htab->elf.sgot->contents + h->got.offset);
3971 	      return TRUE;
3972 	    }
3973 	}
3974       else if (info->shared
3975 	       && SYMBOL_REFERENCES_LOCAL (info, h))
3976 	{
3977 	  if (!h->def_regular)
3978 	    return FALSE;
3979 	  BFD_ASSERT((h->got.offset & 1) != 0);
3980 	  rela.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
3981 	  rela.r_addend = (h->root.u.def.value
3982 			   + h->root.u.def.section->output_section->vma
3983 			   + h->root.u.def.section->output_offset);
3984 	}
3985       else
3986 	{
3987 	  BFD_ASSERT((h->got.offset & 1) == 0);
3988 do_glob_dat:
3989 	  bfd_put_64 (output_bfd, (bfd_vma) 0,
3990 		      htab->elf.sgot->contents + h->got.offset);
3991 	  rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_GLOB_DAT);
3992 	  rela.r_addend = 0;
3993 	}
3994 
3995       elf64_x86_64_append_rela (output_bfd, htab->elf.srelgot, &rela);
3996     }
3997 
3998   if (h->needs_copy)
3999     {
4000       Elf_Internal_Rela rela;
4001 
4002       /* This symbol needs a copy reloc.  Set it up.  */
4003 
4004       if (h->dynindx == -1
4005 	  || (h->root.type != bfd_link_hash_defined
4006 	      && h->root.type != bfd_link_hash_defweak)
4007 	  || htab->srelbss == NULL)
4008 	abort ();
4009 
4010       rela.r_offset = (h->root.u.def.value
4011 		       + h->root.u.def.section->output_section->vma
4012 		       + h->root.u.def.section->output_offset);
4013       rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_COPY);
4014       rela.r_addend = 0;
4015       elf64_x86_64_append_rela (output_bfd, htab->srelbss, &rela);
4016     }
4017 
4018   /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  SYM may
4019      be NULL for local symbols.  */
4020   if (sym != NULL
4021       && (strcmp (h->root.root.string, "_DYNAMIC") == 0
4022 	  || h == htab->elf.hgot))
4023     sym->st_shndx = SHN_ABS;
4024 
4025   return TRUE;
4026 }
4027 
4028 /* Finish up local dynamic symbol handling.  We set the contents of
4029    various dynamic sections here.  */
4030 
4031 static bfd_boolean
4032 elf64_x86_64_finish_local_dynamic_symbol (void **slot, void *inf)
4033 {
4034   struct elf_link_hash_entry *h
4035     = (struct elf_link_hash_entry *) *slot;
4036   struct bfd_link_info *info
4037     = (struct bfd_link_info *) inf;
4038 
4039   return elf64_x86_64_finish_dynamic_symbol (info->output_bfd,
4040 					     info, h, NULL);
4041 }
4042 
4043 /* Used to decide how to sort relocs in an optimal manner for the
4044    dynamic linker, before writing them out.  */
4045 
4046 static enum elf_reloc_type_class
4047 elf64_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
4048 {
4049   switch ((int) ELF64_R_TYPE (rela->r_info))
4050     {
4051     case R_X86_64_RELATIVE:
4052       return reloc_class_relative;
4053     case R_X86_64_JUMP_SLOT:
4054       return reloc_class_plt;
4055     case R_X86_64_COPY:
4056       return reloc_class_copy;
4057     default:
4058       return reloc_class_normal;
4059     }
4060 }
4061 
4062 /* Finish up the dynamic sections.  */
4063 
4064 static bfd_boolean
4065 elf64_x86_64_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
4066 {
4067   struct elf64_x86_64_link_hash_table *htab;
4068   bfd *dynobj;
4069   asection *sdyn;
4070 
4071   htab = elf64_x86_64_hash_table (info);
4072   if (htab == NULL)
4073     return FALSE;
4074 
4075   dynobj = htab->elf.dynobj;
4076   sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4077 
4078   if (htab->elf.dynamic_sections_created)
4079     {
4080       Elf64_External_Dyn *dyncon, *dynconend;
4081 
4082       if (sdyn == NULL || htab->elf.sgot == NULL)
4083 	abort ();
4084 
4085       dyncon = (Elf64_External_Dyn *) sdyn->contents;
4086       dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
4087       for (; dyncon < dynconend; dyncon++)
4088 	{
4089 	  Elf_Internal_Dyn dyn;
4090 	  asection *s;
4091 
4092 	  bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
4093 
4094 	  switch (dyn.d_tag)
4095 	    {
4096 	    default:
4097 	      continue;
4098 
4099 	    case DT_PLTGOT:
4100 	      s = htab->elf.sgotplt;
4101 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4102 	      break;
4103 
4104 	    case DT_JMPREL:
4105 	      dyn.d_un.d_ptr = htab->elf.srelplt->output_section->vma;
4106 	      break;
4107 
4108 	    case DT_PLTRELSZ:
4109 	      s = htab->elf.srelplt->output_section;
4110 	      dyn.d_un.d_val = s->size;
4111 	      break;
4112 
4113 	    case DT_RELASZ:
4114 	      /* The procedure linkage table relocs (DT_JMPREL) should
4115 		 not be included in the overall relocs (DT_RELA).
4116 		 Therefore, we override the DT_RELASZ entry here to
4117 		 make it not include the JMPREL relocs.  Since the
4118 		 linker script arranges for .rela.plt to follow all
4119 		 other relocation sections, we don't have to worry
4120 		 about changing the DT_RELA entry.  */
4121 	      if (htab->elf.srelplt != NULL)
4122 		{
4123 		  s = htab->elf.srelplt->output_section;
4124 		  dyn.d_un.d_val -= s->size;
4125 		}
4126 	      break;
4127 
4128 	    case DT_TLSDESC_PLT:
4129 	      s = htab->elf.splt;
4130 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4131 		+ htab->tlsdesc_plt;
4132 	      break;
4133 
4134 	    case DT_TLSDESC_GOT:
4135 	      s = htab->elf.sgot;
4136 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4137 		+ htab->tlsdesc_got;
4138 	      break;
4139 	    }
4140 
4141 	  bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
4142 	}
4143 
4144       /* Fill in the special first entry in the procedure linkage table.  */
4145       if (htab->elf.splt && htab->elf.splt->size > 0)
4146 	{
4147 	  /* Fill in the first entry in the procedure linkage table.  */
4148 	  memcpy (htab->elf.splt->contents, elf64_x86_64_plt0_entry,
4149 		  PLT_ENTRY_SIZE);
4150 	  /* Add offset for pushq GOT+8(%rip), since the instruction
4151 	     uses 6 bytes subtract this value.  */
4152 	  bfd_put_32 (output_bfd,
4153 		      (htab->elf.sgotplt->output_section->vma
4154 		       + htab->elf.sgotplt->output_offset
4155 		       + 8
4156 		       - htab->elf.splt->output_section->vma
4157 		       - htab->elf.splt->output_offset
4158 		       - 6),
4159 		      htab->elf.splt->contents + 2);
4160 	  /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
4161 	     the end of the instruction.  */
4162 	  bfd_put_32 (output_bfd,
4163 		      (htab->elf.sgotplt->output_section->vma
4164 		       + htab->elf.sgotplt->output_offset
4165 		       + 16
4166 		       - htab->elf.splt->output_section->vma
4167 		       - htab->elf.splt->output_offset
4168 		       - 12),
4169 		      htab->elf.splt->contents + 8);
4170 
4171 	  elf_section_data (htab->elf.splt->output_section)->this_hdr.sh_entsize =
4172 	    PLT_ENTRY_SIZE;
4173 
4174 	  if (htab->tlsdesc_plt)
4175 	    {
4176 	      bfd_put_64 (output_bfd, (bfd_vma) 0,
4177 			  htab->elf.sgot->contents + htab->tlsdesc_got);
4178 
4179 	      memcpy (htab->elf.splt->contents + htab->tlsdesc_plt,
4180 		      elf64_x86_64_plt0_entry,
4181 		      PLT_ENTRY_SIZE);
4182 
4183 	      /* Add offset for pushq GOT+8(%rip), since the
4184 		 instruction uses 6 bytes subtract this value.  */
4185 	      bfd_put_32 (output_bfd,
4186 			  (htab->elf.sgotplt->output_section->vma
4187 			   + htab->elf.sgotplt->output_offset
4188 			   + 8
4189 			   - htab->elf.splt->output_section->vma
4190 			   - htab->elf.splt->output_offset
4191 			   - htab->tlsdesc_plt
4192 			   - 6),
4193 			  htab->elf.splt->contents + htab->tlsdesc_plt + 2);
4194 	      /* Add offset for jmp *GOT+TDG(%rip), where TGD stands for
4195 		 htab->tlsdesc_got. The 12 is the offset to the end of
4196 		 the instruction.  */
4197 	      bfd_put_32 (output_bfd,
4198 			  (htab->elf.sgot->output_section->vma
4199 			   + htab->elf.sgot->output_offset
4200 			   + htab->tlsdesc_got
4201 			   - htab->elf.splt->output_section->vma
4202 			   - htab->elf.splt->output_offset
4203 			   - htab->tlsdesc_plt
4204 			   - 12),
4205 			  htab->elf.splt->contents + htab->tlsdesc_plt + 8);
4206 	    }
4207 	}
4208     }
4209 
4210   if (htab->elf.sgotplt)
4211     {
4212       if (bfd_is_abs_section (htab->elf.sgotplt->output_section))
4213 	{
4214 	  (*_bfd_error_handler)
4215 	    (_("discarded output section: `%A'"), htab->elf.sgotplt);
4216 	  return FALSE;
4217 	}
4218 
4219       /* Fill in the first three entries in the global offset table.  */
4220       if (htab->elf.sgotplt->size > 0)
4221 	{
4222 	  /* Set the first entry in the global offset table to the address of
4223 	     the dynamic section.  */
4224 	  if (sdyn == NULL)
4225 	    bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents);
4226 	  else
4227 	    bfd_put_64 (output_bfd,
4228 			sdyn->output_section->vma + sdyn->output_offset,
4229 			htab->elf.sgotplt->contents);
4230 	  /* Write GOT[1] and GOT[2], needed for the dynamic linker.  */
4231 	  bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
4232 	  bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE*2);
4233 	}
4234 
4235       elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize =
4236 	GOT_ENTRY_SIZE;
4237     }
4238 
4239   if (htab->elf.sgot && htab->elf.sgot->size > 0)
4240     elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
4241       = GOT_ENTRY_SIZE;
4242 
4243   /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols.  */
4244   htab_traverse (htab->loc_hash_table,
4245 		 elf64_x86_64_finish_local_dynamic_symbol,
4246 		 info);
4247 
4248   return TRUE;
4249 }
4250 
4251 /* Return address for Ith PLT stub in section PLT, for relocation REL
4252    or (bfd_vma) -1 if it should not be included.  */
4253 
4254 static bfd_vma
4255 elf64_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
4256 			  const arelent *rel ATTRIBUTE_UNUSED)
4257 {
4258   return plt->vma + (i + 1) * PLT_ENTRY_SIZE;
4259 }
4260 
4261 /* Handle an x86-64 specific section when reading an object file.  This
4262    is called when elfcode.h finds a section with an unknown type.  */
4263 
4264 static bfd_boolean
4265 elf64_x86_64_section_from_shdr (bfd *abfd,
4266 				Elf_Internal_Shdr *hdr,
4267 				const char *name,
4268 				int shindex)
4269 {
4270   if (hdr->sh_type != SHT_X86_64_UNWIND)
4271     return FALSE;
4272 
4273   if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
4274     return FALSE;
4275 
4276   return TRUE;
4277 }
4278 
4279 /* Hook called by the linker routine which adds symbols from an object
4280    file.  We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
4281    of .bss.  */
4282 
4283 static bfd_boolean
4284 elf64_x86_64_add_symbol_hook (bfd *abfd,
4285 			      struct bfd_link_info *info,
4286 			      Elf_Internal_Sym *sym,
4287 			      const char **namep ATTRIBUTE_UNUSED,
4288 			      flagword *flagsp ATTRIBUTE_UNUSED,
4289 			      asection **secp,
4290 			      bfd_vma *valp)
4291 {
4292   asection *lcomm;
4293 
4294   switch (sym->st_shndx)
4295     {
4296     case SHN_X86_64_LCOMMON:
4297       lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
4298       if (lcomm == NULL)
4299 	{
4300 	  lcomm = bfd_make_section_with_flags (abfd,
4301 					       "LARGE_COMMON",
4302 					       (SEC_ALLOC
4303 						| SEC_IS_COMMON
4304 						| SEC_LINKER_CREATED));
4305 	  if (lcomm == NULL)
4306 	    return FALSE;
4307 	  elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
4308 	}
4309       *secp = lcomm;
4310       *valp = sym->st_size;
4311       return TRUE;
4312     }
4313 
4314   if ((abfd->flags & DYNAMIC) == 0
4315       && (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
4316 	  || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE))
4317     elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4318 
4319   return TRUE;
4320 }
4321 
4322 
4323 /* Given a BFD section, try to locate the corresponding ELF section
4324    index.  */
4325 
4326 static bfd_boolean
4327 elf64_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
4328 					   asection *sec, int *index_return)
4329 {
4330   if (sec == &_bfd_elf_large_com_section)
4331     {
4332       *index_return = SHN_X86_64_LCOMMON;
4333       return TRUE;
4334     }
4335   return FALSE;
4336 }
4337 
4338 /* Process a symbol.  */
4339 
4340 static void
4341 elf64_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
4342 				asymbol *asym)
4343 {
4344   elf_symbol_type *elfsym = (elf_symbol_type *) asym;
4345 
4346   switch (elfsym->internal_elf_sym.st_shndx)
4347     {
4348     case SHN_X86_64_LCOMMON:
4349       asym->section = &_bfd_elf_large_com_section;
4350       asym->value = elfsym->internal_elf_sym.st_size;
4351       /* Common symbol doesn't set BSF_GLOBAL.  */
4352       asym->flags &= ~BSF_GLOBAL;
4353       break;
4354     }
4355 }
4356 
4357 static bfd_boolean
4358 elf64_x86_64_common_definition (Elf_Internal_Sym *sym)
4359 {
4360   return (sym->st_shndx == SHN_COMMON
4361 	  || sym->st_shndx == SHN_X86_64_LCOMMON);
4362 }
4363 
4364 static unsigned int
4365 elf64_x86_64_common_section_index (asection *sec)
4366 {
4367   if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
4368     return SHN_COMMON;
4369   else
4370     return SHN_X86_64_LCOMMON;
4371 }
4372 
4373 static asection *
4374 elf64_x86_64_common_section (asection *sec)
4375 {
4376   if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
4377     return bfd_com_section_ptr;
4378   else
4379     return &_bfd_elf_large_com_section;
4380 }
4381 
4382 static bfd_boolean
4383 elf64_x86_64_merge_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
4384 			   struct elf_link_hash_entry **sym_hash ATTRIBUTE_UNUSED,
4385 			   struct elf_link_hash_entry *h,
4386 			   Elf_Internal_Sym *sym,
4387 			   asection **psec,
4388 			   bfd_vma *pvalue ATTRIBUTE_UNUSED,
4389 			   unsigned int *pold_alignment ATTRIBUTE_UNUSED,
4390 			   bfd_boolean *skip ATTRIBUTE_UNUSED,
4391 			   bfd_boolean *override ATTRIBUTE_UNUSED,
4392 			   bfd_boolean *type_change_ok ATTRIBUTE_UNUSED,
4393 			   bfd_boolean *size_change_ok ATTRIBUTE_UNUSED,
4394 			   bfd_boolean *newdef ATTRIBUTE_UNUSED,
4395 			   bfd_boolean *newdyn,
4396 			   bfd_boolean *newdyncommon ATTRIBUTE_UNUSED,
4397 			   bfd_boolean *newweak ATTRIBUTE_UNUSED,
4398 			   bfd *abfd ATTRIBUTE_UNUSED,
4399 			   asection **sec,
4400 			   bfd_boolean *olddef ATTRIBUTE_UNUSED,
4401 			   bfd_boolean *olddyn,
4402 			   bfd_boolean *olddyncommon ATTRIBUTE_UNUSED,
4403 			   bfd_boolean *oldweak ATTRIBUTE_UNUSED,
4404 			   bfd *oldbfd,
4405 			   asection **oldsec)
4406 {
4407   /* A normal common symbol and a large common symbol result in a
4408      normal common symbol.  We turn the large common symbol into a
4409      normal one.  */
4410   if (!*olddyn
4411       && h->root.type == bfd_link_hash_common
4412       && !*newdyn
4413       && bfd_is_com_section (*sec)
4414       && *oldsec != *sec)
4415     {
4416       if (sym->st_shndx == SHN_COMMON
4417 	  && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) != 0)
4418 	{
4419 	  h->root.u.c.p->section
4420 	    = bfd_make_section_old_way (oldbfd, "COMMON");
4421 	  h->root.u.c.p->section->flags = SEC_ALLOC;
4422 	}
4423       else if (sym->st_shndx == SHN_X86_64_LCOMMON
4424 	       && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) == 0)
4425 	*psec = *sec = bfd_com_section_ptr;
4426     }
4427 
4428   return TRUE;
4429 }
4430 
4431 static int
4432 elf64_x86_64_additional_program_headers (bfd *abfd,
4433 					 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4434 {
4435   asection *s;
4436   int count = 0;
4437 
4438   /* Check to see if we need a large readonly segment.  */
4439   s = bfd_get_section_by_name (abfd, ".lrodata");
4440   if (s && (s->flags & SEC_LOAD))
4441     count++;
4442 
4443   /* Check to see if we need a large data segment.  Since .lbss sections
4444      is placed right after the .bss section, there should be no need for
4445      a large data segment just because of .lbss.  */
4446   s = bfd_get_section_by_name (abfd, ".ldata");
4447   if (s && (s->flags & SEC_LOAD))
4448     count++;
4449 
4450   return count;
4451 }
4452 
4453 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section.  */
4454 
4455 static bfd_boolean
4456 elf64_x86_64_hash_symbol (struct elf_link_hash_entry *h)
4457 {
4458   if (h->plt.offset != (bfd_vma) -1
4459       && !h->def_regular
4460       && !h->pointer_equality_needed)
4461     return FALSE;
4462 
4463   return _bfd_elf_hash_symbol (h);
4464 }
4465 
4466 static const struct bfd_elf_special_section
4467   elf64_x86_64_special_sections[]=
4468 {
4469   { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS,   SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4470   { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
4471   { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
4472   { STRING_COMMA_LEN (".lbss"),	           -2, SHT_NOBITS,   SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4473   { STRING_COMMA_LEN (".ldata"),	   -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4474   { STRING_COMMA_LEN (".lrodata"),	   -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
4475   { NULL,	                0,          0, 0,            0 }
4476 };
4477 
4478 #define TARGET_LITTLE_SYM		    bfd_elf64_x86_64_vec
4479 #define TARGET_LITTLE_NAME		    "elf64-x86-64"
4480 #define ELF_ARCH			    bfd_arch_i386
4481 #define ELF_TARGET_ID			    X86_64_ELF_DATA
4482 #define ELF_MACHINE_CODE		    EM_X86_64
4483 #define ELF_MAXPAGESIZE			    0x200000
4484 #define ELF_MINPAGESIZE			    0x1000
4485 #define ELF_COMMONPAGESIZE		    0x1000
4486 
4487 #define elf_backend_can_gc_sections	    1
4488 #define elf_backend_can_refcount	    1
4489 #define elf_backend_want_got_plt	    1
4490 #define elf_backend_plt_readonly	    1
4491 #define elf_backend_want_plt_sym	    0
4492 #define elf_backend_got_header_size	    (GOT_ENTRY_SIZE*3)
4493 #define elf_backend_rela_normal		    1
4494 
4495 #define elf_info_to_howto		    elf64_x86_64_info_to_howto
4496 
4497 #define bfd_elf64_bfd_link_hash_table_create \
4498   elf64_x86_64_link_hash_table_create
4499 #define bfd_elf64_bfd_link_hash_table_free \
4500   elf64_x86_64_link_hash_table_free
4501 #define bfd_elf64_bfd_reloc_type_lookup	    elf64_x86_64_reloc_type_lookup
4502 #define bfd_elf64_bfd_reloc_name_lookup \
4503   elf64_x86_64_reloc_name_lookup
4504 
4505 #define elf_backend_adjust_dynamic_symbol   elf64_x86_64_adjust_dynamic_symbol
4506 #define elf_backend_relocs_compatible	    _bfd_elf_relocs_compatible
4507 #define elf_backend_check_relocs	    elf64_x86_64_check_relocs
4508 #define elf_backend_copy_indirect_symbol    elf64_x86_64_copy_indirect_symbol
4509 #define elf_backend_create_dynamic_sections elf64_x86_64_create_dynamic_sections
4510 #define elf_backend_finish_dynamic_sections elf64_x86_64_finish_dynamic_sections
4511 #define elf_backend_finish_dynamic_symbol   elf64_x86_64_finish_dynamic_symbol
4512 #define elf_backend_gc_mark_hook	    elf64_x86_64_gc_mark_hook
4513 #define elf_backend_gc_sweep_hook	    elf64_x86_64_gc_sweep_hook
4514 #define elf_backend_grok_prstatus	    elf64_x86_64_grok_prstatus
4515 #define elf_backend_grok_psinfo		    elf64_x86_64_grok_psinfo
4516 #define elf_backend_reloc_type_class	    elf64_x86_64_reloc_type_class
4517 #define elf_backend_relocate_section	    elf64_x86_64_relocate_section
4518 #define elf_backend_size_dynamic_sections   elf64_x86_64_size_dynamic_sections
4519 #define elf_backend_always_size_sections    elf64_x86_64_always_size_sections
4520 #define elf_backend_init_index_section	    _bfd_elf_init_1_index_section
4521 #define elf_backend_plt_sym_val		    elf64_x86_64_plt_sym_val
4522 #define elf_backend_object_p		    elf64_x86_64_elf_object_p
4523 #define bfd_elf64_mkobject		    elf64_x86_64_mkobject
4524 
4525 #define elf_backend_section_from_shdr \
4526 	elf64_x86_64_section_from_shdr
4527 
4528 #define elf_backend_section_from_bfd_section \
4529   elf64_x86_64_elf_section_from_bfd_section
4530 #define elf_backend_add_symbol_hook \
4531   elf64_x86_64_add_symbol_hook
4532 #define elf_backend_symbol_processing \
4533   elf64_x86_64_symbol_processing
4534 #define elf_backend_common_section_index \
4535   elf64_x86_64_common_section_index
4536 #define elf_backend_common_section \
4537   elf64_x86_64_common_section
4538 #define elf_backend_common_definition \
4539   elf64_x86_64_common_definition
4540 #define elf_backend_merge_symbol \
4541   elf64_x86_64_merge_symbol
4542 #define elf_backend_special_sections \
4543   elf64_x86_64_special_sections
4544 #define elf_backend_additional_program_headers \
4545   elf64_x86_64_additional_program_headers
4546 #define elf_backend_hash_symbol \
4547   elf64_x86_64_hash_symbol
4548 
4549 #undef  elf_backend_post_process_headers
4550 #define elf_backend_post_process_headers  _bfd_elf_set_osabi
4551 
4552 #include "elf64-target.h"
4553 
4554 /* FreeBSD support.  */
4555 
4556 #undef  TARGET_LITTLE_SYM
4557 #define TARGET_LITTLE_SYM		    bfd_elf64_x86_64_freebsd_vec
4558 #undef  TARGET_LITTLE_NAME
4559 #define TARGET_LITTLE_NAME		    "elf64-x86-64-freebsd"
4560 
4561 #undef	ELF_OSABI
4562 #define	ELF_OSABI			    ELFOSABI_FREEBSD
4563 
4564 #undef  elf64_bed
4565 #define elf64_bed elf64_x86_64_fbsd_bed
4566 
4567 #include "elf64-target.h"
4568 
4569 /* Solaris 2 support.  */
4570 
4571 #undef  TARGET_LITTLE_SYM
4572 #define TARGET_LITTLE_SYM		    bfd_elf64_x86_64_sol2_vec
4573 #undef  TARGET_LITTLE_NAME
4574 #define TARGET_LITTLE_NAME		    "elf64-x86-64-sol2"
4575 
4576 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
4577    objects won't be recognized.  */
4578 #undef ELF_OSABI
4579 
4580 #undef  elf64_bed
4581 #define elf64_bed			    elf64_x86_64_sol2_bed
4582 
4583 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
4584    boundary.  */
4585 #undef elf_backend_static_tls_alignment
4586 #define elf_backend_static_tls_alignment    16
4587 
4588 /* The Solaris 2 ABI requires a plt symbol on all platforms.
4589 
4590    Cf. Linker and Libraries Guide, Ch. 2, Link-Editor, Generating the Output
4591    File, p.63.  */
4592 #undef elf_backend_want_plt_sym
4593 #define elf_backend_want_plt_sym	    1
4594 
4595 #include "elf64-target.h"
4596 
4597 /* Intel L1OM support.  */
4598 
4599 static bfd_boolean
4600 elf64_l1om_elf_object_p (bfd *abfd)
4601 {
4602   /* Set the right machine number for an L1OM elf64 file.  */
4603   bfd_default_set_arch_mach (abfd, bfd_arch_l1om, bfd_mach_l1om);
4604   return TRUE;
4605 }
4606 
4607 #undef  TARGET_LITTLE_SYM
4608 #define TARGET_LITTLE_SYM		    bfd_elf64_l1om_vec
4609 #undef  TARGET_LITTLE_NAME
4610 #define TARGET_LITTLE_NAME		    "elf64-l1om"
4611 #undef ELF_ARCH
4612 #define ELF_ARCH			    bfd_arch_l1om
4613 
4614 #undef	ELF_MACHINE_CODE
4615 #define ELF_MACHINE_CODE		    EM_L1OM
4616 
4617 #undef	ELF_OSABI
4618 
4619 #undef  elf64_bed
4620 #define elf64_bed elf64_l1om_bed
4621 
4622 #undef elf_backend_object_p
4623 #define elf_backend_object_p		    elf64_l1om_elf_object_p
4624 
4625 #undef  elf_backend_post_process_headers
4626 #undef  elf_backend_static_tls_alignment
4627 
4628 #include "elf64-target.h"
4629 
4630 /* FreeBSD L1OM support.  */
4631 
4632 #undef  TARGET_LITTLE_SYM
4633 #define TARGET_LITTLE_SYM		    bfd_elf64_l1om_freebsd_vec
4634 #undef  TARGET_LITTLE_NAME
4635 #define TARGET_LITTLE_NAME		    "elf64-l1om-freebsd"
4636 
4637 #undef	ELF_OSABI
4638 #define	ELF_OSABI			    ELFOSABI_FREEBSD
4639 
4640 #undef  elf64_bed
4641 #define elf64_bed elf64_l1om_fbsd_bed
4642 
4643 #undef  elf_backend_post_process_headers
4644 #define elf_backend_post_process_headers  _bfd_elf_set_osabi
4645 
4646 #include "elf64-target.h"
4647