xref: /netbsd-src/external/gpl3/binutils/dist/bfd/elf64-sparc.c (revision a24efa7dea9f1f56c3bdb15a927d3516792ace1c)
1 /* SPARC-specific support for 64-bit ELF
2    Copyright (C) 1993-2015 Free Software Foundation, Inc.
3 
4    This file is part of BFD, the Binary File Descriptor library.
5 
6    This program is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3 of the License, or
9    (at your option) any later version.
10 
11    This program is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with this program; if not, write to the Free Software
18    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19    MA 02110-1301, USA.  */
20 
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "elf/sparc.h"
26 #include "opcode/sparc.h"
27 #include "elfxx-sparc.h"
28 
29 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value.  */
30 #define MINUS_ONE (~ (bfd_vma) 0)
31 
32 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
33    section can represent up to two relocs, we must tell the user to allocate
34    more space.  */
35 
36 static long
37 elf64_sparc_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED, asection *sec)
38 {
39   return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
40 }
41 
42 static long
43 elf64_sparc_get_dynamic_reloc_upper_bound (bfd *abfd)
44 {
45   return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
46 }
47 
48 /* Read  relocations for ASECT from REL_HDR.  There are RELOC_COUNT of
49    them.  We cannot use generic elf routines for this,  because R_SPARC_OLO10
50    has secondary addend in ELF64_R_TYPE_DATA.  We handle it as two relocations
51    for the same location,  R_SPARC_LO10 and R_SPARC_13.  */
52 
53 static bfd_boolean
54 elf64_sparc_slurp_one_reloc_table (bfd *abfd, asection *asect,
55 				   Elf_Internal_Shdr *rel_hdr,
56 				   asymbol **symbols, bfd_boolean dynamic)
57 {
58   void * allocated = NULL;
59   bfd_byte *native_relocs;
60   arelent *relent;
61   unsigned int i;
62   int entsize;
63   bfd_size_type count;
64   arelent *relents;
65 
66   allocated = bfd_malloc (rel_hdr->sh_size);
67   if (allocated == NULL)
68     goto error_return;
69 
70   if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
71       || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
72     goto error_return;
73 
74   native_relocs = (bfd_byte *) allocated;
75 
76   relents = asect->relocation + canon_reloc_count (asect);
77 
78   entsize = rel_hdr->sh_entsize;
79   BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
80 
81   count = rel_hdr->sh_size / entsize;
82 
83   for (i = 0, relent = relents; i < count;
84        i++, relent++, native_relocs += entsize)
85     {
86       Elf_Internal_Rela rela;
87       unsigned int r_type;
88 
89       bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
90 
91       /* The address of an ELF reloc is section relative for an object
92 	 file, and absolute for an executable file or shared library.
93 	 The address of a normal BFD reloc is always section relative,
94 	 and the address of a dynamic reloc is absolute..  */
95       if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
96 	relent->address = rela.r_offset;
97       else
98 	relent->address = rela.r_offset - asect->vma;
99 
100       if (ELF64_R_SYM (rela.r_info) == STN_UNDEF
101 	  /* PR 17512: file: 996185f8.  */
102 	  || ELF64_R_SYM (rela.r_info) > bfd_get_symcount (abfd))
103 	relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
104       else
105 	{
106 	  asymbol **ps, *s;
107 
108 	  ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
109 	  s = *ps;
110 
111 	  /* Canonicalize ELF section symbols.  FIXME: Why?  */
112 	  if ((s->flags & BSF_SECTION_SYM) == 0)
113 	    relent->sym_ptr_ptr = ps;
114 	  else
115 	    relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
116 	}
117 
118       relent->addend = rela.r_addend;
119 
120       r_type = ELF64_R_TYPE_ID (rela.r_info);
121       if (r_type == R_SPARC_OLO10)
122 	{
123 	  relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_LO10);
124 	  relent[1].address = relent->address;
125 	  relent++;
126 	  relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
127 	  relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
128 	  relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_13);
129 	}
130       else
131 	relent->howto = _bfd_sparc_elf_info_to_howto_ptr (r_type);
132     }
133 
134   canon_reloc_count (asect) += relent - relents;
135 
136   if (allocated != NULL)
137     free (allocated);
138 
139   return TRUE;
140 
141  error_return:
142   if (allocated != NULL)
143     free (allocated);
144   return FALSE;
145 }
146 
147 /* Read in and swap the external relocs.  */
148 
149 static bfd_boolean
150 elf64_sparc_slurp_reloc_table (bfd *abfd, asection *asect,
151 			       asymbol **symbols, bfd_boolean dynamic)
152 {
153   struct bfd_elf_section_data * const d = elf_section_data (asect);
154   Elf_Internal_Shdr *rel_hdr;
155   Elf_Internal_Shdr *rel_hdr2;
156   bfd_size_type amt;
157 
158   if (asect->relocation != NULL)
159     return TRUE;
160 
161   if (! dynamic)
162     {
163       if ((asect->flags & SEC_RELOC) == 0
164 	  || asect->reloc_count == 0)
165 	return TRUE;
166 
167       rel_hdr = d->rel.hdr;
168       rel_hdr2 = d->rela.hdr;
169 
170       BFD_ASSERT ((rel_hdr && asect->rel_filepos == rel_hdr->sh_offset)
171 		  || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
172     }
173   else
174     {
175       /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
176 	 case because relocations against this section may use the
177 	 dynamic symbol table, and in that case bfd_section_from_shdr
178 	 in elf.c does not update the RELOC_COUNT.  */
179       if (asect->size == 0)
180 	return TRUE;
181 
182       rel_hdr = &d->this_hdr;
183       asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
184       rel_hdr2 = NULL;
185     }
186 
187   amt = asect->reloc_count;
188   amt *= 2 * sizeof (arelent);
189   asect->relocation = (arelent *) bfd_alloc (abfd, amt);
190   if (asect->relocation == NULL)
191     return FALSE;
192 
193   /* The elf64_sparc_slurp_one_reloc_table routine increments
194      canon_reloc_count.  */
195   canon_reloc_count (asect) = 0;
196 
197   if (rel_hdr
198       && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
199 					     dynamic))
200     return FALSE;
201 
202   if (rel_hdr2
203       && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
204 					     dynamic))
205     return FALSE;
206 
207   return TRUE;
208 }
209 
210 /* Canonicalize the relocs.  */
211 
212 static long
213 elf64_sparc_canonicalize_reloc (bfd *abfd, sec_ptr section,
214 				arelent **relptr, asymbol **symbols)
215 {
216   arelent *tblptr;
217   unsigned int i;
218   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
219 
220   if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
221     return -1;
222 
223   tblptr = section->relocation;
224   for (i = 0; i < canon_reloc_count (section); i++)
225     *relptr++ = tblptr++;
226 
227   *relptr = NULL;
228 
229   return canon_reloc_count (section);
230 }
231 
232 
233 /* Canonicalize the dynamic relocation entries.  Note that we return
234    the dynamic relocations as a single block, although they are
235    actually associated with particular sections; the interface, which
236    was designed for SunOS style shared libraries, expects that there
237    is only one set of dynamic relocs.  Any section that was actually
238    installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
239    the dynamic symbol table, is considered to be a dynamic reloc
240    section.  */
241 
242 static long
243 elf64_sparc_canonicalize_dynamic_reloc (bfd *abfd, arelent **storage,
244 					asymbol **syms)
245 {
246   asection *s;
247   long ret;
248 
249   if (elf_dynsymtab (abfd) == 0)
250     {
251       bfd_set_error (bfd_error_invalid_operation);
252       return -1;
253     }
254 
255   ret = 0;
256   for (s = abfd->sections; s != NULL; s = s->next)
257     {
258       if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
259 	  && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
260 	{
261 	  arelent *p;
262 	  long count, i;
263 
264 	  if (! elf64_sparc_slurp_reloc_table (abfd, s, syms, TRUE))
265 	    return -1;
266 	  count = canon_reloc_count (s);
267 	  p = s->relocation;
268 	  for (i = 0; i < count; i++)
269 	    *storage++ = p++;
270 	  ret += count;
271 	}
272     }
273 
274   *storage = NULL;
275 
276   return ret;
277 }
278 
279 /* Write out the relocs.  */
280 
281 static void
282 elf64_sparc_write_relocs (bfd *abfd, asection *sec, void * data)
283 {
284   bfd_boolean *failedp = (bfd_boolean *) data;
285   Elf_Internal_Shdr *rela_hdr;
286   bfd_vma addr_offset;
287   Elf64_External_Rela *outbound_relocas, *src_rela;
288   unsigned int idx, count;
289   asymbol *last_sym = 0;
290   int last_sym_idx = 0;
291 
292   /* If we have already failed, don't do anything.  */
293   if (*failedp)
294     return;
295 
296   if ((sec->flags & SEC_RELOC) == 0)
297     return;
298 
299   /* The linker backend writes the relocs out itself, and sets the
300      reloc_count field to zero to inhibit writing them here.  Also,
301      sometimes the SEC_RELOC flag gets set even when there aren't any
302      relocs.  */
303   if (sec->reloc_count == 0)
304     return;
305 
306   /* We can combine two relocs that refer to the same address
307      into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
308      latter is R_SPARC_13 with no associated symbol.  */
309   count = 0;
310   for (idx = 0; idx < sec->reloc_count; idx++)
311     {
312       bfd_vma addr;
313 
314       ++count;
315 
316       addr = sec->orelocation[idx]->address;
317       if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
318 	  && idx < sec->reloc_count - 1)
319 	{
320 	  arelent *r = sec->orelocation[idx + 1];
321 
322 	  if (r->howto->type == R_SPARC_13
323 	      && r->address == addr
324 	      && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
325 	      && (*r->sym_ptr_ptr)->value == 0)
326 	    ++idx;
327 	}
328     }
329 
330   rela_hdr = elf_section_data (sec)->rela.hdr;
331 
332   rela_hdr->sh_size = rela_hdr->sh_entsize * count;
333   rela_hdr->contents = bfd_alloc (abfd, rela_hdr->sh_size);
334   if (rela_hdr->contents == NULL)
335     {
336       *failedp = TRUE;
337       return;
338     }
339 
340   /* Figure out whether the relocations are RELA or REL relocations.  */
341   if (rela_hdr->sh_type != SHT_RELA)
342     abort ();
343 
344   /* The address of an ELF reloc is section relative for an object
345      file, and absolute for an executable file or shared library.
346      The address of a BFD reloc is always section relative.  */
347   addr_offset = 0;
348   if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
349     addr_offset = sec->vma;
350 
351   /* orelocation has the data, reloc_count has the count...  */
352   outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
353   src_rela = outbound_relocas;
354 
355   for (idx = 0; idx < sec->reloc_count; idx++)
356     {
357       Elf_Internal_Rela dst_rela;
358       arelent *ptr;
359       asymbol *sym;
360       int n;
361 
362       ptr = sec->orelocation[idx];
363       sym = *ptr->sym_ptr_ptr;
364       if (sym == last_sym)
365 	n = last_sym_idx;
366       else if (bfd_is_abs_section (sym->section) && sym->value == 0)
367 	n = STN_UNDEF;
368       else
369 	{
370 	  last_sym = sym;
371 	  n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
372 	  if (n < 0)
373 	    {
374 	      *failedp = TRUE;
375 	      return;
376 	    }
377 	  last_sym_idx = n;
378 	}
379 
380       if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
381 	  && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
382 	  && ! _bfd_elf_validate_reloc (abfd, ptr))
383 	{
384 	  *failedp = TRUE;
385 	  return;
386 	}
387 
388       if (ptr->howto->type == R_SPARC_LO10
389 	  && idx < sec->reloc_count - 1)
390 	{
391 	  arelent *r = sec->orelocation[idx + 1];
392 
393 	  if (r->howto->type == R_SPARC_13
394 	      && r->address == ptr->address
395 	      && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
396 	      && (*r->sym_ptr_ptr)->value == 0)
397 	    {
398 	      idx++;
399 	      dst_rela.r_info
400 		= ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
401 						      R_SPARC_OLO10));
402 	    }
403 	  else
404 	    dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
405 	}
406       else
407 	dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
408 
409       dst_rela.r_offset = ptr->address + addr_offset;
410       dst_rela.r_addend = ptr->addend;
411 
412       bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
413       ++src_rela;
414     }
415 }
416 
417 /* Hook called by the linker routine which adds symbols from an object
418    file.  We use it for STT_REGISTER symbols.  */
419 
420 static bfd_boolean
421 elf64_sparc_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
422 			     Elf_Internal_Sym *sym, const char **namep,
423 			     flagword *flagsp ATTRIBUTE_UNUSED,
424 			     asection **secp ATTRIBUTE_UNUSED,
425 			     bfd_vma *valp ATTRIBUTE_UNUSED)
426 {
427   static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
428 
429   if ((ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
430        || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE)
431       && (abfd->flags & DYNAMIC) == 0
432       && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
433     elf_tdata (info->output_bfd)->has_gnu_symbols = elf_gnu_symbol_any;
434 
435   if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
436     {
437       int reg;
438       struct _bfd_sparc_elf_app_reg *p;
439 
440       reg = (int)sym->st_value;
441       switch (reg & ~1)
442 	{
443 	case 2: reg -= 2; break;
444 	case 6: reg -= 4; break;
445 	default:
446           (*_bfd_error_handler)
447             (_("%B: Only registers %%g[2367] can be declared using STT_REGISTER"),
448              abfd);
449 	  return FALSE;
450 	}
451 
452       if (info->output_bfd->xvec != abfd->xvec
453 	  || (abfd->flags & DYNAMIC) != 0)
454         {
455 	  /* STT_REGISTER only works when linking an elf64_sparc object.
456 	     If STT_REGISTER comes from a dynamic object, don't put it into
457 	     the output bfd.  The dynamic linker will recheck it.  */
458 	  *namep = NULL;
459 	  return TRUE;
460         }
461 
462       p = _bfd_sparc_elf_hash_table(info)->app_regs + reg;
463 
464       if (p->name != NULL && strcmp (p->name, *namep))
465 	{
466           (*_bfd_error_handler)
467             (_("Register %%g%d used incompatibly: %s in %B, previously %s in %B"),
468              abfd, p->abfd, (int) sym->st_value,
469              **namep ? *namep : "#scratch",
470              *p->name ? p->name : "#scratch");
471 	  return FALSE;
472 	}
473 
474       if (p->name == NULL)
475 	{
476 	  if (**namep)
477 	    {
478 	      struct elf_link_hash_entry *h;
479 
480 	      h = (struct elf_link_hash_entry *)
481 		bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE);
482 
483 	      if (h != NULL)
484 		{
485 		  unsigned char type = h->type;
486 
487 		  if (type > STT_FUNC)
488 		    type = 0;
489 		  (*_bfd_error_handler)
490 		    (_("Symbol `%s' has differing types: REGISTER in %B, previously %s in %B"),
491 		     abfd, p->abfd, *namep, stt_types[type]);
492 		  return FALSE;
493 		}
494 
495 	      p->name = bfd_hash_allocate (&info->hash->table,
496 					   strlen (*namep) + 1);
497 	      if (!p->name)
498 		return FALSE;
499 
500 	      strcpy (p->name, *namep);
501 	    }
502 	  else
503 	    p->name = "";
504 	  p->bind = ELF_ST_BIND (sym->st_info);
505 	  p->abfd = abfd;
506 	  p->shndx = sym->st_shndx;
507 	}
508       else
509 	{
510 	  if (p->bind == STB_WEAK
511 	      && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
512 	    {
513 	      p->bind = STB_GLOBAL;
514 	      p->abfd = abfd;
515 	    }
516 	}
517       *namep = NULL;
518       return TRUE;
519     }
520   else if (*namep && **namep
521 	   && info->output_bfd->xvec == abfd->xvec)
522     {
523       int i;
524       struct _bfd_sparc_elf_app_reg *p;
525 
526       p = _bfd_sparc_elf_hash_table(info)->app_regs;
527       for (i = 0; i < 4; i++, p++)
528 	if (p->name != NULL && ! strcmp (p->name, *namep))
529 	  {
530 	    unsigned char type = ELF_ST_TYPE (sym->st_info);
531 
532 	    if (type > STT_FUNC)
533 	      type = 0;
534 	    (*_bfd_error_handler)
535 	      (_("Symbol `%s' has differing types: %s in %B, previously REGISTER in %B"),
536 	       abfd, p->abfd, *namep, stt_types[type]);
537 	    return FALSE;
538 	  }
539     }
540   return TRUE;
541 }
542 
543 /* This function takes care of emitting STT_REGISTER symbols
544    which we cannot easily keep in the symbol hash table.  */
545 
546 static bfd_boolean
547 elf64_sparc_output_arch_syms (bfd *output_bfd ATTRIBUTE_UNUSED,
548 			      struct bfd_link_info *info,
549 			      void * flaginfo,
550 			      int (*func) (void *, const char *,
551 					   Elf_Internal_Sym *,
552 					   asection *,
553 					   struct elf_link_hash_entry *))
554 {
555   int reg;
556   struct _bfd_sparc_elf_app_reg *app_regs =
557     _bfd_sparc_elf_hash_table(info)->app_regs;
558   Elf_Internal_Sym sym;
559 
560   /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
561      at the end of the dynlocal list, so they came at the end of the local
562      symbols in the symtab.  Except that they aren't STB_LOCAL, so we need
563      to back up symtab->sh_info.  */
564   if (elf_hash_table (info)->dynlocal)
565     {
566       bfd * dynobj = elf_hash_table (info)->dynobj;
567       asection *dynsymsec = bfd_get_linker_section (dynobj, ".dynsym");
568       struct elf_link_local_dynamic_entry *e;
569 
570       for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
571 	if (e->input_indx == -1)
572 	  break;
573       if (e)
574 	{
575 	  elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
576 	    = e->dynindx;
577 	}
578     }
579 
580   if (info->strip == strip_all)
581     return TRUE;
582 
583   for (reg = 0; reg < 4; reg++)
584     if (app_regs [reg].name != NULL)
585       {
586 	if (info->strip == strip_some
587 	    && bfd_hash_lookup (info->keep_hash,
588 				app_regs [reg].name,
589 				FALSE, FALSE) == NULL)
590 	  continue;
591 
592 	sym.st_value = reg < 2 ? reg + 2 : reg + 4;
593 	sym.st_size = 0;
594 	sym.st_other = 0;
595 	sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
596 	sym.st_shndx = app_regs [reg].shndx;
597 	sym.st_target_internal = 0;
598 	if ((*func) (flaginfo, app_regs [reg].name, &sym,
599 		     sym.st_shndx == SHN_ABS
600 		     ? bfd_abs_section_ptr : bfd_und_section_ptr,
601 		     NULL) != 1)
602 	  return FALSE;
603       }
604 
605   return TRUE;
606 }
607 
608 static int
609 elf64_sparc_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
610 {
611   if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
612     return STT_REGISTER;
613   else
614     return type;
615 }
616 
617 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
618    even in SHN_UNDEF section.  */
619 
620 static void
621 elf64_sparc_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym)
622 {
623   elf_symbol_type *elfsym;
624 
625   elfsym = (elf_symbol_type *) asym;
626   if (elfsym->internal_elf_sym.st_info
627       == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
628     {
629       asym->flags |= BSF_GLOBAL;
630     }
631 }
632 
633 
634 /* Functions for dealing with the e_flags field.  */
635 
636 /* Merge backend specific data from an object file to the output
637    object file when linking.  */
638 
639 static bfd_boolean
640 elf64_sparc_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
641 {
642   bfd_boolean error;
643   flagword new_flags, old_flags;
644   int new_mm, old_mm;
645 
646   if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
647       || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
648     return TRUE;
649 
650   new_flags = elf_elfheader (ibfd)->e_flags;
651   old_flags = elf_elfheader (obfd)->e_flags;
652 
653   if (!elf_flags_init (obfd))   /* First call, no flags set */
654     {
655       elf_flags_init (obfd) = TRUE;
656       elf_elfheader (obfd)->e_flags = new_flags;
657     }
658 
659   else if (new_flags == old_flags)      /* Compatible flags are ok */
660     ;
661 
662   else                                  /* Incompatible flags */
663     {
664       error = FALSE;
665 
666 #define EF_SPARC_ISA_EXTENSIONS \
667   (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
668 
669       if ((ibfd->flags & DYNAMIC) != 0)
670 	{
671 	  /* We don't want dynamic objects memory ordering and
672 	     architecture to have any role. That's what dynamic linker
673 	     should do.  */
674 	  new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
675 	  new_flags |= (old_flags
676 			& (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
677 	}
678       else
679 	{
680 	  /* Choose the highest architecture requirements.  */
681 	  old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
682 	  new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
683 	  if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
684 	      && (old_flags & EF_SPARC_HAL_R1))
685 	    {
686 	      error = TRUE;
687 	      (*_bfd_error_handler)
688 		(_("%B: linking UltraSPARC specific with HAL specific code"),
689 		 ibfd);
690 	    }
691 	  /* Choose the most restrictive memory ordering.  */
692 	  old_mm = (old_flags & EF_SPARCV9_MM);
693 	  new_mm = (new_flags & EF_SPARCV9_MM);
694 	  old_flags &= ~EF_SPARCV9_MM;
695 	  new_flags &= ~EF_SPARCV9_MM;
696 	  if (new_mm < old_mm)
697 	    old_mm = new_mm;
698 	  old_flags |= old_mm;
699 	  new_flags |= old_mm;
700 	}
701 
702       /* Warn about any other mismatches */
703       if (new_flags != old_flags)
704         {
705           error = TRUE;
706           (*_bfd_error_handler)
707             (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
708              ibfd, (long) new_flags, (long) old_flags);
709         }
710 
711       elf_elfheader (obfd)->e_flags = old_flags;
712 
713       if (error)
714         {
715           bfd_set_error (bfd_error_bad_value);
716           return FALSE;
717         }
718     }
719   return _bfd_sparc_elf_merge_private_bfd_data (ibfd, obfd);
720 }
721 
722 /* MARCO: Set the correct entry size for the .stab section.  */
723 
724 static bfd_boolean
725 elf64_sparc_fake_sections (bfd *abfd ATTRIBUTE_UNUSED,
726 			   Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED,
727 			   asection *sec)
728 {
729   const char *name;
730 
731   name = bfd_get_section_name (abfd, sec);
732 
733   if (strcmp (name, ".stab") == 0)
734     {
735       /* Even in the 64bit case the stab entries are only 12 bytes long.  */
736       elf_section_data (sec)->this_hdr.sh_entsize = 12;
737     }
738 
739   return TRUE;
740 }
741 
742 /* Print a STT_REGISTER symbol to file FILE.  */
743 
744 static const char *
745 elf64_sparc_print_symbol_all (bfd *abfd ATTRIBUTE_UNUSED, void * filep,
746 			      asymbol *symbol)
747 {
748   FILE *file = (FILE *) filep;
749   int reg, type;
750 
751   if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
752       != STT_REGISTER)
753     return NULL;
754 
755   reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
756   type = symbol->flags;
757   fprintf (file, "REG_%c%c%11s%c%c    R", "GOLI" [reg / 8], '0' + (reg & 7), "",
758 		 ((type & BSF_LOCAL)
759 		  ? (type & BSF_GLOBAL) ? '!' : 'l'
760 	          : (type & BSF_GLOBAL) ? 'g' : ' '),
761 	         (type & BSF_WEAK) ? 'w' : ' ');
762   if (symbol->name == NULL || symbol->name [0] == '\0')
763     return "#scratch";
764   else
765     return symbol->name;
766 }
767 
768 static enum elf_reloc_type_class
769 elf64_sparc_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
770 			      const asection *rel_sec ATTRIBUTE_UNUSED,
771 			      const Elf_Internal_Rela *rela)
772 {
773   switch ((int) ELF64_R_TYPE (rela->r_info))
774     {
775     case R_SPARC_RELATIVE:
776       return reloc_class_relative;
777     case R_SPARC_JMP_SLOT:
778       return reloc_class_plt;
779     case R_SPARC_COPY:
780       return reloc_class_copy;
781     default:
782       return reloc_class_normal;
783     }
784 }
785 
786 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
787    standard ELF, because R_SPARC_OLO10 has secondary addend in
788    ELF64_R_TYPE_DATA field.  This structure is used to redirect the
789    relocation handling routines.  */
790 
791 const struct elf_size_info elf64_sparc_size_info =
792 {
793   sizeof (Elf64_External_Ehdr),
794   sizeof (Elf64_External_Phdr),
795   sizeof (Elf64_External_Shdr),
796   sizeof (Elf64_External_Rel),
797   sizeof (Elf64_External_Rela),
798   sizeof (Elf64_External_Sym),
799   sizeof (Elf64_External_Dyn),
800   sizeof (Elf_External_Note),
801   4,		/* hash-table entry size.  */
802   /* Internal relocations per external relocations.
803      For link purposes we use just 1 internal per
804      1 external, for assembly and slurp symbol table
805      we use 2.  */
806   1,
807   64,		/* arch_size.  */
808   3,		/* log_file_align.  */
809   ELFCLASS64,
810   EV_CURRENT,
811   bfd_elf64_write_out_phdrs,
812   bfd_elf64_write_shdrs_and_ehdr,
813   bfd_elf64_checksum_contents,
814   elf64_sparc_write_relocs,
815   bfd_elf64_swap_symbol_in,
816   bfd_elf64_swap_symbol_out,
817   elf64_sparc_slurp_reloc_table,
818   bfd_elf64_slurp_symbol_table,
819   bfd_elf64_swap_dyn_in,
820   bfd_elf64_swap_dyn_out,
821   bfd_elf64_swap_reloc_in,
822   bfd_elf64_swap_reloc_out,
823   bfd_elf64_swap_reloca_in,
824   bfd_elf64_swap_reloca_out
825 };
826 
827 #define TARGET_BIG_SYM	sparc_elf64_vec
828 #define TARGET_BIG_NAME	"elf64-sparc"
829 #define ELF_ARCH	bfd_arch_sparc
830 #define ELF_MAXPAGESIZE 0x100000
831 #define ELF_COMMONPAGESIZE 0x2000
832 
833 /* This is the official ABI value.  */
834 #define ELF_MACHINE_CODE EM_SPARCV9
835 
836 /* This is the value that we used before the ABI was released.  */
837 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
838 
839 #define elf_backend_reloc_type_class \
840   elf64_sparc_reloc_type_class
841 #define bfd_elf64_get_reloc_upper_bound \
842   elf64_sparc_get_reloc_upper_bound
843 #define bfd_elf64_get_dynamic_reloc_upper_bound \
844   elf64_sparc_get_dynamic_reloc_upper_bound
845 #define bfd_elf64_canonicalize_reloc \
846   elf64_sparc_canonicalize_reloc
847 #define bfd_elf64_canonicalize_dynamic_reloc \
848   elf64_sparc_canonicalize_dynamic_reloc
849 #define elf_backend_add_symbol_hook \
850   elf64_sparc_add_symbol_hook
851 #define elf_backend_get_symbol_type \
852   elf64_sparc_get_symbol_type
853 #define elf_backend_symbol_processing \
854   elf64_sparc_symbol_processing
855 #define elf_backend_print_symbol_all \
856   elf64_sparc_print_symbol_all
857 #define elf_backend_output_arch_syms \
858   elf64_sparc_output_arch_syms
859 #define bfd_elf64_bfd_merge_private_bfd_data \
860   elf64_sparc_merge_private_bfd_data
861 #define elf_backend_fake_sections \
862   elf64_sparc_fake_sections
863 #define elf_backend_size_info \
864   elf64_sparc_size_info
865 
866 #define elf_backend_plt_sym_val	\
867   _bfd_sparc_elf_plt_sym_val
868 #define bfd_elf64_bfd_link_hash_table_create \
869   _bfd_sparc_elf_link_hash_table_create
870 #define elf_info_to_howto \
871   _bfd_sparc_elf_info_to_howto
872 #define elf_backend_copy_indirect_symbol \
873   _bfd_sparc_elf_copy_indirect_symbol
874 #define bfd_elf64_bfd_reloc_type_lookup \
875   _bfd_sparc_elf_reloc_type_lookup
876 #define bfd_elf64_bfd_reloc_name_lookup \
877   _bfd_sparc_elf_reloc_name_lookup
878 #define bfd_elf64_bfd_relax_section \
879   _bfd_sparc_elf_relax_section
880 #define bfd_elf64_new_section_hook \
881   _bfd_sparc_elf_new_section_hook
882 
883 #define elf_backend_create_dynamic_sections \
884   _bfd_sparc_elf_create_dynamic_sections
885 #define elf_backend_relocs_compatible \
886   _bfd_elf_relocs_compatible
887 #define elf_backend_check_relocs \
888   _bfd_sparc_elf_check_relocs
889 #define elf_backend_adjust_dynamic_symbol \
890   _bfd_sparc_elf_adjust_dynamic_symbol
891 #define elf_backend_omit_section_dynsym \
892   _bfd_sparc_elf_omit_section_dynsym
893 #define elf_backend_size_dynamic_sections \
894   _bfd_sparc_elf_size_dynamic_sections
895 #define elf_backend_relocate_section \
896   _bfd_sparc_elf_relocate_section
897 #define elf_backend_finish_dynamic_symbol \
898   _bfd_sparc_elf_finish_dynamic_symbol
899 #define elf_backend_finish_dynamic_sections \
900   _bfd_sparc_elf_finish_dynamic_sections
901 
902 #define bfd_elf64_mkobject \
903   _bfd_sparc_elf_mkobject
904 #define elf_backend_object_p \
905   _bfd_sparc_elf_object_p
906 #define elf_backend_gc_mark_hook \
907   _bfd_sparc_elf_gc_mark_hook
908 #define elf_backend_gc_sweep_hook \
909   _bfd_sparc_elf_gc_sweep_hook
910 #define elf_backend_init_index_section \
911   _bfd_elf_init_1_index_section
912 
913 #define elf_backend_can_gc_sections 1
914 #define elf_backend_can_refcount 1
915 #define elf_backend_want_got_plt 0
916 #define elf_backend_plt_readonly 0
917 #define elf_backend_want_plt_sym 1
918 #define elf_backend_got_header_size 8
919 #define elf_backend_rela_normal 1
920 
921 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table.  */
922 #define elf_backend_plt_alignment 8
923 
924 #include "elf64-target.h"
925 
926 /* FreeBSD support */
927 #undef  TARGET_BIG_SYM
928 #define TARGET_BIG_SYM sparc_elf64_fbsd_vec
929 #undef  TARGET_BIG_NAME
930 #define TARGET_BIG_NAME "elf64-sparc-freebsd"
931 #undef	ELF_OSABI
932 #define	ELF_OSABI ELFOSABI_FREEBSD
933 
934 #undef  elf64_bed
935 #define elf64_bed				elf64_sparc_fbsd_bed
936 
937 #include "elf64-target.h"
938 
939 /* Solaris 2.  */
940 
941 #undef	TARGET_BIG_SYM
942 #define	TARGET_BIG_SYM				sparc_elf64_sol2_vec
943 #undef	TARGET_BIG_NAME
944 #define	TARGET_BIG_NAME				"elf64-sparc-sol2"
945 
946 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
947    objects won't be recognized.  */
948 #undef	ELF_OSABI
949 
950 #undef elf64_bed
951 #define elf64_bed				elf64_sparc_sol2_bed
952 
953 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
954    boundary.  */
955 #undef elf_backend_static_tls_alignment
956 #define elf_backend_static_tls_alignment	16
957 
958 #include "elf64-target.h"
959