1 /* PowerPC64-specific support for 64-bit ELF. 2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 3 2009, 2010, 2011, 2012 Free Software Foundation, Inc. 4 Written by Linus Nordberg, Swox AB <info@swox.com>, 5 based on elf32-ppc.c by Ian Lance Taylor. 6 Largely rewritten by Alan Modra. 7 8 This file is part of BFD, the Binary File Descriptor library. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation; either version 3 of the License, or 13 (at your option) any later version. 14 15 This program is distributed in the hope that it will be useful, 16 but WITHOUT ANY WARRANTY; without even the implied warranty of 17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 GNU General Public License for more details. 19 20 You should have received a copy of the GNU General Public License along 21 with this program; if not, write to the Free Software Foundation, Inc., 22 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ 23 24 25 /* The 64-bit PowerPC ELF ABI may be found at 26 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and 27 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */ 28 29 #include "sysdep.h" 30 #include <stdarg.h> 31 #include "bfd.h" 32 #include "bfdlink.h" 33 #include "libbfd.h" 34 #include "elf-bfd.h" 35 #include "elf/ppc64.h" 36 #include "elf64-ppc.h" 37 #include "dwarf2.h" 38 39 static bfd_reloc_status_type ppc64_elf_ha_reloc 40 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); 41 static bfd_reloc_status_type ppc64_elf_branch_reloc 42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); 43 static bfd_reloc_status_type ppc64_elf_brtaken_reloc 44 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); 45 static bfd_reloc_status_type ppc64_elf_sectoff_reloc 46 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); 47 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc 48 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); 49 static bfd_reloc_status_type ppc64_elf_toc_reloc 50 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); 51 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc 52 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); 53 static bfd_reloc_status_type ppc64_elf_toc64_reloc 54 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); 55 static bfd_reloc_status_type ppc64_elf_unhandled_reloc 56 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); 57 static bfd_vma opd_entry_value 58 (asection *, bfd_vma, asection **, bfd_vma *, bfd_boolean); 59 60 #define TARGET_LITTLE_SYM bfd_elf64_powerpcle_vec 61 #define TARGET_LITTLE_NAME "elf64-powerpcle" 62 #define TARGET_BIG_SYM bfd_elf64_powerpc_vec 63 #define TARGET_BIG_NAME "elf64-powerpc" 64 #define ELF_ARCH bfd_arch_powerpc 65 #define ELF_TARGET_ID PPC64_ELF_DATA 66 #define ELF_MACHINE_CODE EM_PPC64 67 #define ELF_MAXPAGESIZE 0x10000 68 #define ELF_COMMONPAGESIZE 0x1000 69 #define elf_info_to_howto ppc64_elf_info_to_howto 70 71 #define elf_backend_want_got_sym 0 72 #define elf_backend_want_plt_sym 0 73 #define elf_backend_plt_alignment 3 74 #define elf_backend_plt_not_loaded 1 75 #define elf_backend_got_header_size 8 76 #define elf_backend_can_gc_sections 1 77 #define elf_backend_can_refcount 1 78 #define elf_backend_rela_normal 1 79 #define elf_backend_default_execstack 0 80 81 #define bfd_elf64_mkobject ppc64_elf_mkobject 82 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup 83 #define bfd_elf64_bfd_reloc_name_lookup ppc64_elf_reloc_name_lookup 84 #define bfd_elf64_bfd_merge_private_bfd_data _bfd_generic_verify_endian_match 85 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook 86 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create 87 #define bfd_elf64_bfd_link_hash_table_free ppc64_elf_link_hash_table_free 88 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab 89 #define bfd_elf64_bfd_link_just_syms ppc64_elf_link_just_syms 90 91 #define elf_backend_object_p ppc64_elf_object_p 92 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus 93 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo 94 #define elf_backend_write_core_note ppc64_elf_write_core_note 95 #define elf_backend_create_dynamic_sections ppc64_elf_create_dynamic_sections 96 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol 97 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook 98 #define elf_backend_check_directives ppc64_elf_process_dot_syms 99 #define elf_backend_as_needed_cleanup ppc64_elf_as_needed_cleanup 100 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup 101 #define elf_backend_check_relocs ppc64_elf_check_relocs 102 #define elf_backend_gc_keep ppc64_elf_gc_keep 103 #define elf_backend_gc_mark_dynamic_ref ppc64_elf_gc_mark_dynamic_ref 104 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook 105 #define elf_backend_gc_sweep_hook ppc64_elf_gc_sweep_hook 106 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol 107 #define elf_backend_hide_symbol ppc64_elf_hide_symbol 108 #define elf_backend_maybe_function_sym ppc64_elf_maybe_function_sym 109 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust 110 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections 111 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections 112 #define elf_backend_action_discarded ppc64_elf_action_discarded 113 #define elf_backend_relocate_section ppc64_elf_relocate_section 114 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol 115 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class 116 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections 117 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook 118 #define elf_backend_special_sections ppc64_elf_special_sections 119 #define elf_backend_post_process_headers _bfd_elf_set_osabi 120 121 /* The name of the dynamic interpreter. This is put in the .interp 122 section. */ 123 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1" 124 125 /* The size in bytes of an entry in the procedure linkage table. */ 126 #define PLT_ENTRY_SIZE 24 127 128 /* The initial size of the plt reserved for the dynamic linker. */ 129 #define PLT_INITIAL_ENTRY_SIZE PLT_ENTRY_SIZE 130 131 /* TOC base pointers offset from start of TOC. */ 132 #define TOC_BASE_OFF 0x8000 133 134 /* Offset of tp and dtp pointers from start of TLS block. */ 135 #define TP_OFFSET 0x7000 136 #define DTP_OFFSET 0x8000 137 138 /* .plt call stub instructions. The normal stub is like this, but 139 sometimes the .plt entry crosses a 64k boundary and we need to 140 insert an addi to adjust r12. */ 141 #define PLT_CALL_STUB_SIZE (7*4) 142 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */ 143 #define STD_R2_40R1 0xf8410028 /* std %r2,40(%r1) */ 144 #define LD_R11_0R12 0xe96c0000 /* ld %r11,xxx+0@l(%r12) */ 145 #define MTCTR_R11 0x7d6903a6 /* mtctr %r11 */ 146 #define LD_R2_0R12 0xe84c0000 /* ld %r2,xxx+8@l(%r12) */ 147 /* ld %r11,xxx+16@l(%r12) */ 148 #define BCTR 0x4e800420 /* bctr */ 149 150 151 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,off@ha */ 152 #define ADDI_R12_R12 0x398c0000 /* addi %r12,%r12,off@l */ 153 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */ 154 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */ 155 156 #define XOR_R11_R11_R11 0x7d6b5a78 /* xor %r11,%r11,%r11 */ 157 #define ADD_R12_R12_R11 0x7d8c5a14 /* add %r12,%r12,%r11 */ 158 #define ADD_R2_R2_R11 0x7c425a14 /* add %r2,%r2,%r11 */ 159 #define CMPLDI_R2_0 0x28220000 /* cmpldi %r2,0 */ 160 #define BNECTR 0x4ca20420 /* bnectr+ */ 161 #define BNECTR_P4 0x4ce20420 /* bnectr+ */ 162 163 #define LD_R11_0R2 0xe9620000 /* ld %r11,xxx+0(%r2) */ 164 #define LD_R2_0R2 0xe8420000 /* ld %r2,xxx+0(%r2) */ 165 166 #define LD_R2_40R1 0xe8410028 /* ld %r2,40(%r1) */ 167 168 /* glink call stub instructions. We enter with the index in R0. */ 169 #define GLINK_CALL_STUB_SIZE (16*4) 170 /* 0: */ 171 /* .quad plt0-1f */ 172 /* __glink: */ 173 #define MFLR_R12 0x7d8802a6 /* mflr %12 */ 174 #define BCL_20_31 0x429f0005 /* bcl 20,31,1f */ 175 /* 1: */ 176 #define MFLR_R11 0x7d6802a6 /* mflr %11 */ 177 #define LD_R2_M16R11 0xe84bfff0 /* ld %2,(0b-1b)(%11) */ 178 #define MTLR_R12 0x7d8803a6 /* mtlr %12 */ 179 #define ADD_R12_R2_R11 0x7d825a14 /* add %12,%2,%11 */ 180 /* ld %11,0(%12) */ 181 /* ld %2,8(%12) */ 182 /* mtctr %11 */ 183 /* ld %11,16(%12) */ 184 /* bctr */ 185 186 /* Pad with this. */ 187 #define NOP 0x60000000 188 189 /* Some other nops. */ 190 #define CROR_151515 0x4def7b82 191 #define CROR_313131 0x4ffffb82 192 193 /* .glink entries for the first 32k functions are two instructions. */ 194 #define LI_R0_0 0x38000000 /* li %r0,0 */ 195 #define B_DOT 0x48000000 /* b . */ 196 197 /* After that, we need two instructions to load the index, followed by 198 a branch. */ 199 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */ 200 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */ 201 202 /* Instructions used by the save and restore reg functions. */ 203 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */ 204 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */ 205 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */ 206 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */ 207 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */ 208 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */ 209 #define LI_R12_0 0x39800000 /* li %r12,0 */ 210 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */ 211 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */ 212 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */ 213 #define BLR 0x4e800020 /* blr */ 214 215 /* Since .opd is an array of descriptors and each entry will end up 216 with identical R_PPC64_RELATIVE relocs, there is really no need to 217 propagate .opd relocs; The dynamic linker should be taught to 218 relocate .opd without reloc entries. */ 219 #ifndef NO_OPD_RELOCS 220 #define NO_OPD_RELOCS 0 221 #endif 222 223 #define ONES(n) (((bfd_vma) 1 << ((n) - 1) << 1) - 1) 224 225 /* Relocation HOWTO's. */ 226 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max]; 227 228 static reloc_howto_type ppc64_elf_howto_raw[] = { 229 /* This reloc does nothing. */ 230 HOWTO (R_PPC64_NONE, /* type */ 231 0, /* rightshift */ 232 2, /* size (0 = byte, 1 = short, 2 = long) */ 233 32, /* bitsize */ 234 FALSE, /* pc_relative */ 235 0, /* bitpos */ 236 complain_overflow_dont, /* complain_on_overflow */ 237 bfd_elf_generic_reloc, /* special_function */ 238 "R_PPC64_NONE", /* name */ 239 FALSE, /* partial_inplace */ 240 0, /* src_mask */ 241 0, /* dst_mask */ 242 FALSE), /* pcrel_offset */ 243 244 /* A standard 32 bit relocation. */ 245 HOWTO (R_PPC64_ADDR32, /* type */ 246 0, /* rightshift */ 247 2, /* size (0 = byte, 1 = short, 2 = long) */ 248 32, /* bitsize */ 249 FALSE, /* pc_relative */ 250 0, /* bitpos */ 251 complain_overflow_bitfield, /* complain_on_overflow */ 252 bfd_elf_generic_reloc, /* special_function */ 253 "R_PPC64_ADDR32", /* name */ 254 FALSE, /* partial_inplace */ 255 0, /* src_mask */ 256 0xffffffff, /* dst_mask */ 257 FALSE), /* pcrel_offset */ 258 259 /* An absolute 26 bit branch; the lower two bits must be zero. 260 FIXME: we don't check that, we just clear them. */ 261 HOWTO (R_PPC64_ADDR24, /* type */ 262 0, /* rightshift */ 263 2, /* size (0 = byte, 1 = short, 2 = long) */ 264 26, /* bitsize */ 265 FALSE, /* pc_relative */ 266 0, /* bitpos */ 267 complain_overflow_bitfield, /* complain_on_overflow */ 268 bfd_elf_generic_reloc, /* special_function */ 269 "R_PPC64_ADDR24", /* name */ 270 FALSE, /* partial_inplace */ 271 0, /* src_mask */ 272 0x03fffffc, /* dst_mask */ 273 FALSE), /* pcrel_offset */ 274 275 /* A standard 16 bit relocation. */ 276 HOWTO (R_PPC64_ADDR16, /* type */ 277 0, /* rightshift */ 278 1, /* size (0 = byte, 1 = short, 2 = long) */ 279 16, /* bitsize */ 280 FALSE, /* pc_relative */ 281 0, /* bitpos */ 282 complain_overflow_bitfield, /* complain_on_overflow */ 283 bfd_elf_generic_reloc, /* special_function */ 284 "R_PPC64_ADDR16", /* name */ 285 FALSE, /* partial_inplace */ 286 0, /* src_mask */ 287 0xffff, /* dst_mask */ 288 FALSE), /* pcrel_offset */ 289 290 /* A 16 bit relocation without overflow. */ 291 HOWTO (R_PPC64_ADDR16_LO, /* type */ 292 0, /* rightshift */ 293 1, /* size (0 = byte, 1 = short, 2 = long) */ 294 16, /* bitsize */ 295 FALSE, /* pc_relative */ 296 0, /* bitpos */ 297 complain_overflow_dont,/* complain_on_overflow */ 298 bfd_elf_generic_reloc, /* special_function */ 299 "R_PPC64_ADDR16_LO", /* name */ 300 FALSE, /* partial_inplace */ 301 0, /* src_mask */ 302 0xffff, /* dst_mask */ 303 FALSE), /* pcrel_offset */ 304 305 /* Bits 16-31 of an address. */ 306 HOWTO (R_PPC64_ADDR16_HI, /* type */ 307 16, /* rightshift */ 308 1, /* size (0 = byte, 1 = short, 2 = long) */ 309 16, /* bitsize */ 310 FALSE, /* pc_relative */ 311 0, /* bitpos */ 312 complain_overflow_dont, /* complain_on_overflow */ 313 bfd_elf_generic_reloc, /* special_function */ 314 "R_PPC64_ADDR16_HI", /* name */ 315 FALSE, /* partial_inplace */ 316 0, /* src_mask */ 317 0xffff, /* dst_mask */ 318 FALSE), /* pcrel_offset */ 319 320 /* Bits 16-31 of an address, plus 1 if the contents of the low 16 321 bits, treated as a signed number, is negative. */ 322 HOWTO (R_PPC64_ADDR16_HA, /* type */ 323 16, /* rightshift */ 324 1, /* size (0 = byte, 1 = short, 2 = long) */ 325 16, /* bitsize */ 326 FALSE, /* pc_relative */ 327 0, /* bitpos */ 328 complain_overflow_dont, /* complain_on_overflow */ 329 ppc64_elf_ha_reloc, /* special_function */ 330 "R_PPC64_ADDR16_HA", /* name */ 331 FALSE, /* partial_inplace */ 332 0, /* src_mask */ 333 0xffff, /* dst_mask */ 334 FALSE), /* pcrel_offset */ 335 336 /* An absolute 16 bit branch; the lower two bits must be zero. 337 FIXME: we don't check that, we just clear them. */ 338 HOWTO (R_PPC64_ADDR14, /* type */ 339 0, /* rightshift */ 340 2, /* size (0 = byte, 1 = short, 2 = long) */ 341 16, /* bitsize */ 342 FALSE, /* pc_relative */ 343 0, /* bitpos */ 344 complain_overflow_bitfield, /* complain_on_overflow */ 345 ppc64_elf_branch_reloc, /* special_function */ 346 "R_PPC64_ADDR14", /* name */ 347 FALSE, /* partial_inplace */ 348 0, /* src_mask */ 349 0x0000fffc, /* dst_mask */ 350 FALSE), /* pcrel_offset */ 351 352 /* An absolute 16 bit branch, for which bit 10 should be set to 353 indicate that the branch is expected to be taken. The lower two 354 bits must be zero. */ 355 HOWTO (R_PPC64_ADDR14_BRTAKEN, /* type */ 356 0, /* rightshift */ 357 2, /* size (0 = byte, 1 = short, 2 = long) */ 358 16, /* bitsize */ 359 FALSE, /* pc_relative */ 360 0, /* bitpos */ 361 complain_overflow_bitfield, /* complain_on_overflow */ 362 ppc64_elf_brtaken_reloc, /* special_function */ 363 "R_PPC64_ADDR14_BRTAKEN",/* name */ 364 FALSE, /* partial_inplace */ 365 0, /* src_mask */ 366 0x0000fffc, /* dst_mask */ 367 FALSE), /* pcrel_offset */ 368 369 /* An absolute 16 bit branch, for which bit 10 should be set to 370 indicate that the branch is not expected to be taken. The lower 371 two bits must be zero. */ 372 HOWTO (R_PPC64_ADDR14_BRNTAKEN, /* type */ 373 0, /* rightshift */ 374 2, /* size (0 = byte, 1 = short, 2 = long) */ 375 16, /* bitsize */ 376 FALSE, /* pc_relative */ 377 0, /* bitpos */ 378 complain_overflow_bitfield, /* complain_on_overflow */ 379 ppc64_elf_brtaken_reloc, /* special_function */ 380 "R_PPC64_ADDR14_BRNTAKEN",/* name */ 381 FALSE, /* partial_inplace */ 382 0, /* src_mask */ 383 0x0000fffc, /* dst_mask */ 384 FALSE), /* pcrel_offset */ 385 386 /* A relative 26 bit branch; the lower two bits must be zero. */ 387 HOWTO (R_PPC64_REL24, /* type */ 388 0, /* rightshift */ 389 2, /* size (0 = byte, 1 = short, 2 = long) */ 390 26, /* bitsize */ 391 TRUE, /* pc_relative */ 392 0, /* bitpos */ 393 complain_overflow_signed, /* complain_on_overflow */ 394 ppc64_elf_branch_reloc, /* special_function */ 395 "R_PPC64_REL24", /* name */ 396 FALSE, /* partial_inplace */ 397 0, /* src_mask */ 398 0x03fffffc, /* dst_mask */ 399 TRUE), /* pcrel_offset */ 400 401 /* A relative 16 bit branch; the lower two bits must be zero. */ 402 HOWTO (R_PPC64_REL14, /* type */ 403 0, /* rightshift */ 404 2, /* size (0 = byte, 1 = short, 2 = long) */ 405 16, /* bitsize */ 406 TRUE, /* pc_relative */ 407 0, /* bitpos */ 408 complain_overflow_signed, /* complain_on_overflow */ 409 ppc64_elf_branch_reloc, /* special_function */ 410 "R_PPC64_REL14", /* name */ 411 FALSE, /* partial_inplace */ 412 0, /* src_mask */ 413 0x0000fffc, /* dst_mask */ 414 TRUE), /* pcrel_offset */ 415 416 /* A relative 16 bit branch. Bit 10 should be set to indicate that 417 the branch is expected to be taken. The lower two bits must be 418 zero. */ 419 HOWTO (R_PPC64_REL14_BRTAKEN, /* type */ 420 0, /* rightshift */ 421 2, /* size (0 = byte, 1 = short, 2 = long) */ 422 16, /* bitsize */ 423 TRUE, /* pc_relative */ 424 0, /* bitpos */ 425 complain_overflow_signed, /* complain_on_overflow */ 426 ppc64_elf_brtaken_reloc, /* special_function */ 427 "R_PPC64_REL14_BRTAKEN", /* name */ 428 FALSE, /* partial_inplace */ 429 0, /* src_mask */ 430 0x0000fffc, /* dst_mask */ 431 TRUE), /* pcrel_offset */ 432 433 /* A relative 16 bit branch. Bit 10 should be set to indicate that 434 the branch is not expected to be taken. The lower two bits must 435 be zero. */ 436 HOWTO (R_PPC64_REL14_BRNTAKEN, /* type */ 437 0, /* rightshift */ 438 2, /* size (0 = byte, 1 = short, 2 = long) */ 439 16, /* bitsize */ 440 TRUE, /* pc_relative */ 441 0, /* bitpos */ 442 complain_overflow_signed, /* complain_on_overflow */ 443 ppc64_elf_brtaken_reloc, /* special_function */ 444 "R_PPC64_REL14_BRNTAKEN",/* name */ 445 FALSE, /* partial_inplace */ 446 0, /* src_mask */ 447 0x0000fffc, /* dst_mask */ 448 TRUE), /* pcrel_offset */ 449 450 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the 451 symbol. */ 452 HOWTO (R_PPC64_GOT16, /* type */ 453 0, /* rightshift */ 454 1, /* size (0 = byte, 1 = short, 2 = long) */ 455 16, /* bitsize */ 456 FALSE, /* pc_relative */ 457 0, /* bitpos */ 458 complain_overflow_signed, /* complain_on_overflow */ 459 ppc64_elf_unhandled_reloc, /* special_function */ 460 "R_PPC64_GOT16", /* name */ 461 FALSE, /* partial_inplace */ 462 0, /* src_mask */ 463 0xffff, /* dst_mask */ 464 FALSE), /* pcrel_offset */ 465 466 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for 467 the symbol. */ 468 HOWTO (R_PPC64_GOT16_LO, /* type */ 469 0, /* rightshift */ 470 1, /* size (0 = byte, 1 = short, 2 = long) */ 471 16, /* bitsize */ 472 FALSE, /* pc_relative */ 473 0, /* bitpos */ 474 complain_overflow_dont, /* complain_on_overflow */ 475 ppc64_elf_unhandled_reloc, /* special_function */ 476 "R_PPC64_GOT16_LO", /* name */ 477 FALSE, /* partial_inplace */ 478 0, /* src_mask */ 479 0xffff, /* dst_mask */ 480 FALSE), /* pcrel_offset */ 481 482 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for 483 the symbol. */ 484 HOWTO (R_PPC64_GOT16_HI, /* type */ 485 16, /* rightshift */ 486 1, /* size (0 = byte, 1 = short, 2 = long) */ 487 16, /* bitsize */ 488 FALSE, /* pc_relative */ 489 0, /* bitpos */ 490 complain_overflow_dont,/* complain_on_overflow */ 491 ppc64_elf_unhandled_reloc, /* special_function */ 492 "R_PPC64_GOT16_HI", /* name */ 493 FALSE, /* partial_inplace */ 494 0, /* src_mask */ 495 0xffff, /* dst_mask */ 496 FALSE), /* pcrel_offset */ 497 498 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for 499 the symbol. */ 500 HOWTO (R_PPC64_GOT16_HA, /* type */ 501 16, /* rightshift */ 502 1, /* size (0 = byte, 1 = short, 2 = long) */ 503 16, /* bitsize */ 504 FALSE, /* pc_relative */ 505 0, /* bitpos */ 506 complain_overflow_dont,/* complain_on_overflow */ 507 ppc64_elf_unhandled_reloc, /* special_function */ 508 "R_PPC64_GOT16_HA", /* name */ 509 FALSE, /* partial_inplace */ 510 0, /* src_mask */ 511 0xffff, /* dst_mask */ 512 FALSE), /* pcrel_offset */ 513 514 /* This is used only by the dynamic linker. The symbol should exist 515 both in the object being run and in some shared library. The 516 dynamic linker copies the data addressed by the symbol from the 517 shared library into the object, because the object being 518 run has to have the data at some particular address. */ 519 HOWTO (R_PPC64_COPY, /* type */ 520 0, /* rightshift */ 521 0, /* this one is variable size */ 522 0, /* bitsize */ 523 FALSE, /* pc_relative */ 524 0, /* bitpos */ 525 complain_overflow_dont, /* complain_on_overflow */ 526 ppc64_elf_unhandled_reloc, /* special_function */ 527 "R_PPC64_COPY", /* name */ 528 FALSE, /* partial_inplace */ 529 0, /* src_mask */ 530 0, /* dst_mask */ 531 FALSE), /* pcrel_offset */ 532 533 /* Like R_PPC64_ADDR64, but used when setting global offset table 534 entries. */ 535 HOWTO (R_PPC64_GLOB_DAT, /* type */ 536 0, /* rightshift */ 537 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */ 538 64, /* bitsize */ 539 FALSE, /* pc_relative */ 540 0, /* bitpos */ 541 complain_overflow_dont, /* complain_on_overflow */ 542 ppc64_elf_unhandled_reloc, /* special_function */ 543 "R_PPC64_GLOB_DAT", /* name */ 544 FALSE, /* partial_inplace */ 545 0, /* src_mask */ 546 ONES (64), /* dst_mask */ 547 FALSE), /* pcrel_offset */ 548 549 /* Created by the link editor. Marks a procedure linkage table 550 entry for a symbol. */ 551 HOWTO (R_PPC64_JMP_SLOT, /* type */ 552 0, /* rightshift */ 553 0, /* size (0 = byte, 1 = short, 2 = long) */ 554 0, /* bitsize */ 555 FALSE, /* pc_relative */ 556 0, /* bitpos */ 557 complain_overflow_dont, /* complain_on_overflow */ 558 ppc64_elf_unhandled_reloc, /* special_function */ 559 "R_PPC64_JMP_SLOT", /* name */ 560 FALSE, /* partial_inplace */ 561 0, /* src_mask */ 562 0, /* dst_mask */ 563 FALSE), /* pcrel_offset */ 564 565 /* Used only by the dynamic linker. When the object is run, this 566 doubleword64 is set to the load address of the object, plus the 567 addend. */ 568 HOWTO (R_PPC64_RELATIVE, /* type */ 569 0, /* rightshift */ 570 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */ 571 64, /* bitsize */ 572 FALSE, /* pc_relative */ 573 0, /* bitpos */ 574 complain_overflow_dont, /* complain_on_overflow */ 575 bfd_elf_generic_reloc, /* special_function */ 576 "R_PPC64_RELATIVE", /* name */ 577 FALSE, /* partial_inplace */ 578 0, /* src_mask */ 579 ONES (64), /* dst_mask */ 580 FALSE), /* pcrel_offset */ 581 582 /* Like R_PPC64_ADDR32, but may be unaligned. */ 583 HOWTO (R_PPC64_UADDR32, /* type */ 584 0, /* rightshift */ 585 2, /* size (0 = byte, 1 = short, 2 = long) */ 586 32, /* bitsize */ 587 FALSE, /* pc_relative */ 588 0, /* bitpos */ 589 complain_overflow_bitfield, /* complain_on_overflow */ 590 bfd_elf_generic_reloc, /* special_function */ 591 "R_PPC64_UADDR32", /* name */ 592 FALSE, /* partial_inplace */ 593 0, /* src_mask */ 594 0xffffffff, /* dst_mask */ 595 FALSE), /* pcrel_offset */ 596 597 /* Like R_PPC64_ADDR16, but may be unaligned. */ 598 HOWTO (R_PPC64_UADDR16, /* type */ 599 0, /* rightshift */ 600 1, /* size (0 = byte, 1 = short, 2 = long) */ 601 16, /* bitsize */ 602 FALSE, /* pc_relative */ 603 0, /* bitpos */ 604 complain_overflow_bitfield, /* complain_on_overflow */ 605 bfd_elf_generic_reloc, /* special_function */ 606 "R_PPC64_UADDR16", /* name */ 607 FALSE, /* partial_inplace */ 608 0, /* src_mask */ 609 0xffff, /* dst_mask */ 610 FALSE), /* pcrel_offset */ 611 612 /* 32-bit PC relative. */ 613 HOWTO (R_PPC64_REL32, /* type */ 614 0, /* rightshift */ 615 2, /* size (0 = byte, 1 = short, 2 = long) */ 616 32, /* bitsize */ 617 TRUE, /* pc_relative */ 618 0, /* bitpos */ 619 /* FIXME: Verify. Was complain_overflow_bitfield. */ 620 complain_overflow_signed, /* complain_on_overflow */ 621 bfd_elf_generic_reloc, /* special_function */ 622 "R_PPC64_REL32", /* name */ 623 FALSE, /* partial_inplace */ 624 0, /* src_mask */ 625 0xffffffff, /* dst_mask */ 626 TRUE), /* pcrel_offset */ 627 628 /* 32-bit relocation to the symbol's procedure linkage table. */ 629 HOWTO (R_PPC64_PLT32, /* type */ 630 0, /* rightshift */ 631 2, /* size (0 = byte, 1 = short, 2 = long) */ 632 32, /* bitsize */ 633 FALSE, /* pc_relative */ 634 0, /* bitpos */ 635 complain_overflow_bitfield, /* complain_on_overflow */ 636 ppc64_elf_unhandled_reloc, /* special_function */ 637 "R_PPC64_PLT32", /* name */ 638 FALSE, /* partial_inplace */ 639 0, /* src_mask */ 640 0xffffffff, /* dst_mask */ 641 FALSE), /* pcrel_offset */ 642 643 /* 32-bit PC relative relocation to the symbol's procedure linkage table. 644 FIXME: R_PPC64_PLTREL32 not supported. */ 645 HOWTO (R_PPC64_PLTREL32, /* type */ 646 0, /* rightshift */ 647 2, /* size (0 = byte, 1 = short, 2 = long) */ 648 32, /* bitsize */ 649 TRUE, /* pc_relative */ 650 0, /* bitpos */ 651 complain_overflow_signed, /* complain_on_overflow */ 652 bfd_elf_generic_reloc, /* special_function */ 653 "R_PPC64_PLTREL32", /* name */ 654 FALSE, /* partial_inplace */ 655 0, /* src_mask */ 656 0xffffffff, /* dst_mask */ 657 TRUE), /* pcrel_offset */ 658 659 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for 660 the symbol. */ 661 HOWTO (R_PPC64_PLT16_LO, /* type */ 662 0, /* rightshift */ 663 1, /* size (0 = byte, 1 = short, 2 = long) */ 664 16, /* bitsize */ 665 FALSE, /* pc_relative */ 666 0, /* bitpos */ 667 complain_overflow_dont, /* complain_on_overflow */ 668 ppc64_elf_unhandled_reloc, /* special_function */ 669 "R_PPC64_PLT16_LO", /* name */ 670 FALSE, /* partial_inplace */ 671 0, /* src_mask */ 672 0xffff, /* dst_mask */ 673 FALSE), /* pcrel_offset */ 674 675 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for 676 the symbol. */ 677 HOWTO (R_PPC64_PLT16_HI, /* type */ 678 16, /* rightshift */ 679 1, /* size (0 = byte, 1 = short, 2 = long) */ 680 16, /* bitsize */ 681 FALSE, /* pc_relative */ 682 0, /* bitpos */ 683 complain_overflow_dont, /* complain_on_overflow */ 684 ppc64_elf_unhandled_reloc, /* special_function */ 685 "R_PPC64_PLT16_HI", /* name */ 686 FALSE, /* partial_inplace */ 687 0, /* src_mask */ 688 0xffff, /* dst_mask */ 689 FALSE), /* pcrel_offset */ 690 691 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for 692 the symbol. */ 693 HOWTO (R_PPC64_PLT16_HA, /* type */ 694 16, /* rightshift */ 695 1, /* size (0 = byte, 1 = short, 2 = long) */ 696 16, /* bitsize */ 697 FALSE, /* pc_relative */ 698 0, /* bitpos */ 699 complain_overflow_dont, /* complain_on_overflow */ 700 ppc64_elf_unhandled_reloc, /* special_function */ 701 "R_PPC64_PLT16_HA", /* name */ 702 FALSE, /* partial_inplace */ 703 0, /* src_mask */ 704 0xffff, /* dst_mask */ 705 FALSE), /* pcrel_offset */ 706 707 /* 16-bit section relative relocation. */ 708 HOWTO (R_PPC64_SECTOFF, /* type */ 709 0, /* rightshift */ 710 1, /* size (0 = byte, 1 = short, 2 = long) */ 711 16, /* bitsize */ 712 FALSE, /* pc_relative */ 713 0, /* bitpos */ 714 complain_overflow_bitfield, /* complain_on_overflow */ 715 ppc64_elf_sectoff_reloc, /* special_function */ 716 "R_PPC64_SECTOFF", /* name */ 717 FALSE, /* partial_inplace */ 718 0, /* src_mask */ 719 0xffff, /* dst_mask */ 720 FALSE), /* pcrel_offset */ 721 722 /* Like R_PPC64_SECTOFF, but no overflow warning. */ 723 HOWTO (R_PPC64_SECTOFF_LO, /* type */ 724 0, /* rightshift */ 725 1, /* size (0 = byte, 1 = short, 2 = long) */ 726 16, /* bitsize */ 727 FALSE, /* pc_relative */ 728 0, /* bitpos */ 729 complain_overflow_dont, /* complain_on_overflow */ 730 ppc64_elf_sectoff_reloc, /* special_function */ 731 "R_PPC64_SECTOFF_LO", /* name */ 732 FALSE, /* partial_inplace */ 733 0, /* src_mask */ 734 0xffff, /* dst_mask */ 735 FALSE), /* pcrel_offset */ 736 737 /* 16-bit upper half section relative relocation. */ 738 HOWTO (R_PPC64_SECTOFF_HI, /* type */ 739 16, /* rightshift */ 740 1, /* size (0 = byte, 1 = short, 2 = long) */ 741 16, /* bitsize */ 742 FALSE, /* pc_relative */ 743 0, /* bitpos */ 744 complain_overflow_dont, /* complain_on_overflow */ 745 ppc64_elf_sectoff_reloc, /* special_function */ 746 "R_PPC64_SECTOFF_HI", /* name */ 747 FALSE, /* partial_inplace */ 748 0, /* src_mask */ 749 0xffff, /* dst_mask */ 750 FALSE), /* pcrel_offset */ 751 752 /* 16-bit upper half adjusted section relative relocation. */ 753 HOWTO (R_PPC64_SECTOFF_HA, /* type */ 754 16, /* rightshift */ 755 1, /* size (0 = byte, 1 = short, 2 = long) */ 756 16, /* bitsize */ 757 FALSE, /* pc_relative */ 758 0, /* bitpos */ 759 complain_overflow_dont, /* complain_on_overflow */ 760 ppc64_elf_sectoff_ha_reloc, /* special_function */ 761 "R_PPC64_SECTOFF_HA", /* name */ 762 FALSE, /* partial_inplace */ 763 0, /* src_mask */ 764 0xffff, /* dst_mask */ 765 FALSE), /* pcrel_offset */ 766 767 /* Like R_PPC64_REL24 without touching the two least significant bits. */ 768 HOWTO (R_PPC64_REL30, /* type */ 769 2, /* rightshift */ 770 2, /* size (0 = byte, 1 = short, 2 = long) */ 771 30, /* bitsize */ 772 TRUE, /* pc_relative */ 773 0, /* bitpos */ 774 complain_overflow_dont, /* complain_on_overflow */ 775 bfd_elf_generic_reloc, /* special_function */ 776 "R_PPC64_REL30", /* name */ 777 FALSE, /* partial_inplace */ 778 0, /* src_mask */ 779 0xfffffffc, /* dst_mask */ 780 TRUE), /* pcrel_offset */ 781 782 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */ 783 784 /* A standard 64-bit relocation. */ 785 HOWTO (R_PPC64_ADDR64, /* type */ 786 0, /* rightshift */ 787 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */ 788 64, /* bitsize */ 789 FALSE, /* pc_relative */ 790 0, /* bitpos */ 791 complain_overflow_dont, /* complain_on_overflow */ 792 bfd_elf_generic_reloc, /* special_function */ 793 "R_PPC64_ADDR64", /* name */ 794 FALSE, /* partial_inplace */ 795 0, /* src_mask */ 796 ONES (64), /* dst_mask */ 797 FALSE), /* pcrel_offset */ 798 799 /* The bits 32-47 of an address. */ 800 HOWTO (R_PPC64_ADDR16_HIGHER, /* type */ 801 32, /* rightshift */ 802 1, /* size (0 = byte, 1 = short, 2 = long) */ 803 16, /* bitsize */ 804 FALSE, /* pc_relative */ 805 0, /* bitpos */ 806 complain_overflow_dont, /* complain_on_overflow */ 807 bfd_elf_generic_reloc, /* special_function */ 808 "R_PPC64_ADDR16_HIGHER", /* name */ 809 FALSE, /* partial_inplace */ 810 0, /* src_mask */ 811 0xffff, /* dst_mask */ 812 FALSE), /* pcrel_offset */ 813 814 /* The bits 32-47 of an address, plus 1 if the contents of the low 815 16 bits, treated as a signed number, is negative. */ 816 HOWTO (R_PPC64_ADDR16_HIGHERA, /* type */ 817 32, /* rightshift */ 818 1, /* size (0 = byte, 1 = short, 2 = long) */ 819 16, /* bitsize */ 820 FALSE, /* pc_relative */ 821 0, /* bitpos */ 822 complain_overflow_dont, /* complain_on_overflow */ 823 ppc64_elf_ha_reloc, /* special_function */ 824 "R_PPC64_ADDR16_HIGHERA", /* name */ 825 FALSE, /* partial_inplace */ 826 0, /* src_mask */ 827 0xffff, /* dst_mask */ 828 FALSE), /* pcrel_offset */ 829 830 /* The bits 48-63 of an address. */ 831 HOWTO (R_PPC64_ADDR16_HIGHEST,/* type */ 832 48, /* rightshift */ 833 1, /* size (0 = byte, 1 = short, 2 = long) */ 834 16, /* bitsize */ 835 FALSE, /* pc_relative */ 836 0, /* bitpos */ 837 complain_overflow_dont, /* complain_on_overflow */ 838 bfd_elf_generic_reloc, /* special_function */ 839 "R_PPC64_ADDR16_HIGHEST", /* name */ 840 FALSE, /* partial_inplace */ 841 0, /* src_mask */ 842 0xffff, /* dst_mask */ 843 FALSE), /* pcrel_offset */ 844 845 /* The bits 48-63 of an address, plus 1 if the contents of the low 846 16 bits, treated as a signed number, is negative. */ 847 HOWTO (R_PPC64_ADDR16_HIGHESTA,/* type */ 848 48, /* rightshift */ 849 1, /* size (0 = byte, 1 = short, 2 = long) */ 850 16, /* bitsize */ 851 FALSE, /* pc_relative */ 852 0, /* bitpos */ 853 complain_overflow_dont, /* complain_on_overflow */ 854 ppc64_elf_ha_reloc, /* special_function */ 855 "R_PPC64_ADDR16_HIGHESTA", /* name */ 856 FALSE, /* partial_inplace */ 857 0, /* src_mask */ 858 0xffff, /* dst_mask */ 859 FALSE), /* pcrel_offset */ 860 861 /* Like ADDR64, but may be unaligned. */ 862 HOWTO (R_PPC64_UADDR64, /* type */ 863 0, /* rightshift */ 864 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */ 865 64, /* bitsize */ 866 FALSE, /* pc_relative */ 867 0, /* bitpos */ 868 complain_overflow_dont, /* complain_on_overflow */ 869 bfd_elf_generic_reloc, /* special_function */ 870 "R_PPC64_UADDR64", /* name */ 871 FALSE, /* partial_inplace */ 872 0, /* src_mask */ 873 ONES (64), /* dst_mask */ 874 FALSE), /* pcrel_offset */ 875 876 /* 64-bit relative relocation. */ 877 HOWTO (R_PPC64_REL64, /* type */ 878 0, /* rightshift */ 879 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */ 880 64, /* bitsize */ 881 TRUE, /* pc_relative */ 882 0, /* bitpos */ 883 complain_overflow_dont, /* complain_on_overflow */ 884 bfd_elf_generic_reloc, /* special_function */ 885 "R_PPC64_REL64", /* name */ 886 FALSE, /* partial_inplace */ 887 0, /* src_mask */ 888 ONES (64), /* dst_mask */ 889 TRUE), /* pcrel_offset */ 890 891 /* 64-bit relocation to the symbol's procedure linkage table. */ 892 HOWTO (R_PPC64_PLT64, /* type */ 893 0, /* rightshift */ 894 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */ 895 64, /* bitsize */ 896 FALSE, /* pc_relative */ 897 0, /* bitpos */ 898 complain_overflow_dont, /* complain_on_overflow */ 899 ppc64_elf_unhandled_reloc, /* special_function */ 900 "R_PPC64_PLT64", /* name */ 901 FALSE, /* partial_inplace */ 902 0, /* src_mask */ 903 ONES (64), /* dst_mask */ 904 FALSE), /* pcrel_offset */ 905 906 /* 64-bit PC relative relocation to the symbol's procedure linkage 907 table. */ 908 /* FIXME: R_PPC64_PLTREL64 not supported. */ 909 HOWTO (R_PPC64_PLTREL64, /* type */ 910 0, /* rightshift */ 911 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */ 912 64, /* bitsize */ 913 TRUE, /* pc_relative */ 914 0, /* bitpos */ 915 complain_overflow_dont, /* complain_on_overflow */ 916 ppc64_elf_unhandled_reloc, /* special_function */ 917 "R_PPC64_PLTREL64", /* name */ 918 FALSE, /* partial_inplace */ 919 0, /* src_mask */ 920 ONES (64), /* dst_mask */ 921 TRUE), /* pcrel_offset */ 922 923 /* 16 bit TOC-relative relocation. */ 924 925 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */ 926 HOWTO (R_PPC64_TOC16, /* type */ 927 0, /* rightshift */ 928 1, /* size (0 = byte, 1 = short, 2 = long) */ 929 16, /* bitsize */ 930 FALSE, /* pc_relative */ 931 0, /* bitpos */ 932 complain_overflow_signed, /* complain_on_overflow */ 933 ppc64_elf_toc_reloc, /* special_function */ 934 "R_PPC64_TOC16", /* name */ 935 FALSE, /* partial_inplace */ 936 0, /* src_mask */ 937 0xffff, /* dst_mask */ 938 FALSE), /* pcrel_offset */ 939 940 /* 16 bit TOC-relative relocation without overflow. */ 941 942 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */ 943 HOWTO (R_PPC64_TOC16_LO, /* type */ 944 0, /* rightshift */ 945 1, /* size (0 = byte, 1 = short, 2 = long) */ 946 16, /* bitsize */ 947 FALSE, /* pc_relative */ 948 0, /* bitpos */ 949 complain_overflow_dont, /* complain_on_overflow */ 950 ppc64_elf_toc_reloc, /* special_function */ 951 "R_PPC64_TOC16_LO", /* name */ 952 FALSE, /* partial_inplace */ 953 0, /* src_mask */ 954 0xffff, /* dst_mask */ 955 FALSE), /* pcrel_offset */ 956 957 /* 16 bit TOC-relative relocation, high 16 bits. */ 958 959 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */ 960 HOWTO (R_PPC64_TOC16_HI, /* type */ 961 16, /* rightshift */ 962 1, /* size (0 = byte, 1 = short, 2 = long) */ 963 16, /* bitsize */ 964 FALSE, /* pc_relative */ 965 0, /* bitpos */ 966 complain_overflow_dont, /* complain_on_overflow */ 967 ppc64_elf_toc_reloc, /* special_function */ 968 "R_PPC64_TOC16_HI", /* name */ 969 FALSE, /* partial_inplace */ 970 0, /* src_mask */ 971 0xffff, /* dst_mask */ 972 FALSE), /* pcrel_offset */ 973 974 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the 975 contents of the low 16 bits, treated as a signed number, is 976 negative. */ 977 978 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */ 979 HOWTO (R_PPC64_TOC16_HA, /* type */ 980 16, /* rightshift */ 981 1, /* size (0 = byte, 1 = short, 2 = long) */ 982 16, /* bitsize */ 983 FALSE, /* pc_relative */ 984 0, /* bitpos */ 985 complain_overflow_dont, /* complain_on_overflow */ 986 ppc64_elf_toc_ha_reloc, /* special_function */ 987 "R_PPC64_TOC16_HA", /* name */ 988 FALSE, /* partial_inplace */ 989 0, /* src_mask */ 990 0xffff, /* dst_mask */ 991 FALSE), /* pcrel_offset */ 992 993 /* 64-bit relocation; insert value of TOC base (.TOC.). */ 994 995 /* R_PPC64_TOC 51 doubleword64 .TOC. */ 996 HOWTO (R_PPC64_TOC, /* type */ 997 0, /* rightshift */ 998 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */ 999 64, /* bitsize */ 1000 FALSE, /* pc_relative */ 1001 0, /* bitpos */ 1002 complain_overflow_bitfield, /* complain_on_overflow */ 1003 ppc64_elf_toc64_reloc, /* special_function */ 1004 "R_PPC64_TOC", /* name */ 1005 FALSE, /* partial_inplace */ 1006 0, /* src_mask */ 1007 ONES (64), /* dst_mask */ 1008 FALSE), /* pcrel_offset */ 1009 1010 /* Like R_PPC64_GOT16, but also informs the link editor that the 1011 value to relocate may (!) refer to a PLT entry which the link 1012 editor (a) may replace with the symbol value. If the link editor 1013 is unable to fully resolve the symbol, it may (b) create a PLT 1014 entry and store the address to the new PLT entry in the GOT. 1015 This permits lazy resolution of function symbols at run time. 1016 The link editor may also skip all of this and just (c) emit a 1017 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */ 1018 /* FIXME: R_PPC64_PLTGOT16 not implemented. */ 1019 HOWTO (R_PPC64_PLTGOT16, /* type */ 1020 0, /* rightshift */ 1021 1, /* size (0 = byte, 1 = short, 2 = long) */ 1022 16, /* bitsize */ 1023 FALSE, /* pc_relative */ 1024 0, /* bitpos */ 1025 complain_overflow_signed, /* complain_on_overflow */ 1026 ppc64_elf_unhandled_reloc, /* special_function */ 1027 "R_PPC64_PLTGOT16", /* name */ 1028 FALSE, /* partial_inplace */ 1029 0, /* src_mask */ 1030 0xffff, /* dst_mask */ 1031 FALSE), /* pcrel_offset */ 1032 1033 /* Like R_PPC64_PLTGOT16, but without overflow. */ 1034 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */ 1035 HOWTO (R_PPC64_PLTGOT16_LO, /* type */ 1036 0, /* rightshift */ 1037 1, /* size (0 = byte, 1 = short, 2 = long) */ 1038 16, /* bitsize */ 1039 FALSE, /* pc_relative */ 1040 0, /* bitpos */ 1041 complain_overflow_dont, /* complain_on_overflow */ 1042 ppc64_elf_unhandled_reloc, /* special_function */ 1043 "R_PPC64_PLTGOT16_LO", /* name */ 1044 FALSE, /* partial_inplace */ 1045 0, /* src_mask */ 1046 0xffff, /* dst_mask */ 1047 FALSE), /* pcrel_offset */ 1048 1049 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */ 1050 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */ 1051 HOWTO (R_PPC64_PLTGOT16_HI, /* type */ 1052 16, /* rightshift */ 1053 1, /* size (0 = byte, 1 = short, 2 = long) */ 1054 16, /* bitsize */ 1055 FALSE, /* pc_relative */ 1056 0, /* bitpos */ 1057 complain_overflow_dont, /* complain_on_overflow */ 1058 ppc64_elf_unhandled_reloc, /* special_function */ 1059 "R_PPC64_PLTGOT16_HI", /* name */ 1060 FALSE, /* partial_inplace */ 1061 0, /* src_mask */ 1062 0xffff, /* dst_mask */ 1063 FALSE), /* pcrel_offset */ 1064 1065 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus 1066 1 if the contents of the low 16 bits, treated as a signed number, 1067 is negative. */ 1068 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */ 1069 HOWTO (R_PPC64_PLTGOT16_HA, /* type */ 1070 16, /* rightshift */ 1071 1, /* size (0 = byte, 1 = short, 2 = long) */ 1072 16, /* bitsize */ 1073 FALSE, /* pc_relative */ 1074 0, /* bitpos */ 1075 complain_overflow_dont,/* complain_on_overflow */ 1076 ppc64_elf_unhandled_reloc, /* special_function */ 1077 "R_PPC64_PLTGOT16_HA", /* name */ 1078 FALSE, /* partial_inplace */ 1079 0, /* src_mask */ 1080 0xffff, /* dst_mask */ 1081 FALSE), /* pcrel_offset */ 1082 1083 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */ 1084 HOWTO (R_PPC64_ADDR16_DS, /* type */ 1085 0, /* rightshift */ 1086 1, /* size (0 = byte, 1 = short, 2 = long) */ 1087 16, /* bitsize */ 1088 FALSE, /* pc_relative */ 1089 0, /* bitpos */ 1090 complain_overflow_bitfield, /* complain_on_overflow */ 1091 bfd_elf_generic_reloc, /* special_function */ 1092 "R_PPC64_ADDR16_DS", /* name */ 1093 FALSE, /* partial_inplace */ 1094 0, /* src_mask */ 1095 0xfffc, /* dst_mask */ 1096 FALSE), /* pcrel_offset */ 1097 1098 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */ 1099 HOWTO (R_PPC64_ADDR16_LO_DS, /* type */ 1100 0, /* rightshift */ 1101 1, /* size (0 = byte, 1 = short, 2 = long) */ 1102 16, /* bitsize */ 1103 FALSE, /* pc_relative */ 1104 0, /* bitpos */ 1105 complain_overflow_dont,/* complain_on_overflow */ 1106 bfd_elf_generic_reloc, /* special_function */ 1107 "R_PPC64_ADDR16_LO_DS",/* name */ 1108 FALSE, /* partial_inplace */ 1109 0, /* src_mask */ 1110 0xfffc, /* dst_mask */ 1111 FALSE), /* pcrel_offset */ 1112 1113 /* Like R_PPC64_GOT16, but for instructions with a DS field. */ 1114 HOWTO (R_PPC64_GOT16_DS, /* type */ 1115 0, /* rightshift */ 1116 1, /* size (0 = byte, 1 = short, 2 = long) */ 1117 16, /* bitsize */ 1118 FALSE, /* pc_relative */ 1119 0, /* bitpos */ 1120 complain_overflow_signed, /* complain_on_overflow */ 1121 ppc64_elf_unhandled_reloc, /* special_function */ 1122 "R_PPC64_GOT16_DS", /* name */ 1123 FALSE, /* partial_inplace */ 1124 0, /* src_mask */ 1125 0xfffc, /* dst_mask */ 1126 FALSE), /* pcrel_offset */ 1127 1128 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */ 1129 HOWTO (R_PPC64_GOT16_LO_DS, /* type */ 1130 0, /* rightshift */ 1131 1, /* size (0 = byte, 1 = short, 2 = long) */ 1132 16, /* bitsize */ 1133 FALSE, /* pc_relative */ 1134 0, /* bitpos */ 1135 complain_overflow_dont, /* complain_on_overflow */ 1136 ppc64_elf_unhandled_reloc, /* special_function */ 1137 "R_PPC64_GOT16_LO_DS", /* name */ 1138 FALSE, /* partial_inplace */ 1139 0, /* src_mask */ 1140 0xfffc, /* dst_mask */ 1141 FALSE), /* pcrel_offset */ 1142 1143 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */ 1144 HOWTO (R_PPC64_PLT16_LO_DS, /* type */ 1145 0, /* rightshift */ 1146 1, /* size (0 = byte, 1 = short, 2 = long) */ 1147 16, /* bitsize */ 1148 FALSE, /* pc_relative */ 1149 0, /* bitpos */ 1150 complain_overflow_dont, /* complain_on_overflow */ 1151 ppc64_elf_unhandled_reloc, /* special_function */ 1152 "R_PPC64_PLT16_LO_DS", /* name */ 1153 FALSE, /* partial_inplace */ 1154 0, /* src_mask */ 1155 0xfffc, /* dst_mask */ 1156 FALSE), /* pcrel_offset */ 1157 1158 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */ 1159 HOWTO (R_PPC64_SECTOFF_DS, /* type */ 1160 0, /* rightshift */ 1161 1, /* size (0 = byte, 1 = short, 2 = long) */ 1162 16, /* bitsize */ 1163 FALSE, /* pc_relative */ 1164 0, /* bitpos */ 1165 complain_overflow_bitfield, /* complain_on_overflow */ 1166 ppc64_elf_sectoff_reloc, /* special_function */ 1167 "R_PPC64_SECTOFF_DS", /* name */ 1168 FALSE, /* partial_inplace */ 1169 0, /* src_mask */ 1170 0xfffc, /* dst_mask */ 1171 FALSE), /* pcrel_offset */ 1172 1173 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */ 1174 HOWTO (R_PPC64_SECTOFF_LO_DS, /* type */ 1175 0, /* rightshift */ 1176 1, /* size (0 = byte, 1 = short, 2 = long) */ 1177 16, /* bitsize */ 1178 FALSE, /* pc_relative */ 1179 0, /* bitpos */ 1180 complain_overflow_dont, /* complain_on_overflow */ 1181 ppc64_elf_sectoff_reloc, /* special_function */ 1182 "R_PPC64_SECTOFF_LO_DS",/* name */ 1183 FALSE, /* partial_inplace */ 1184 0, /* src_mask */ 1185 0xfffc, /* dst_mask */ 1186 FALSE), /* pcrel_offset */ 1187 1188 /* Like R_PPC64_TOC16, but for instructions with a DS field. */ 1189 HOWTO (R_PPC64_TOC16_DS, /* type */ 1190 0, /* rightshift */ 1191 1, /* size (0 = byte, 1 = short, 2 = long) */ 1192 16, /* bitsize */ 1193 FALSE, /* pc_relative */ 1194 0, /* bitpos */ 1195 complain_overflow_signed, /* complain_on_overflow */ 1196 ppc64_elf_toc_reloc, /* special_function */ 1197 "R_PPC64_TOC16_DS", /* name */ 1198 FALSE, /* partial_inplace */ 1199 0, /* src_mask */ 1200 0xfffc, /* dst_mask */ 1201 FALSE), /* pcrel_offset */ 1202 1203 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */ 1204 HOWTO (R_PPC64_TOC16_LO_DS, /* type */ 1205 0, /* rightshift */ 1206 1, /* size (0 = byte, 1 = short, 2 = long) */ 1207 16, /* bitsize */ 1208 FALSE, /* pc_relative */ 1209 0, /* bitpos */ 1210 complain_overflow_dont, /* complain_on_overflow */ 1211 ppc64_elf_toc_reloc, /* special_function */ 1212 "R_PPC64_TOC16_LO_DS", /* name */ 1213 FALSE, /* partial_inplace */ 1214 0, /* src_mask */ 1215 0xfffc, /* dst_mask */ 1216 FALSE), /* pcrel_offset */ 1217 1218 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */ 1219 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */ 1220 HOWTO (R_PPC64_PLTGOT16_DS, /* type */ 1221 0, /* rightshift */ 1222 1, /* size (0 = byte, 1 = short, 2 = long) */ 1223 16, /* bitsize */ 1224 FALSE, /* pc_relative */ 1225 0, /* bitpos */ 1226 complain_overflow_signed, /* complain_on_overflow */ 1227 ppc64_elf_unhandled_reloc, /* special_function */ 1228 "R_PPC64_PLTGOT16_DS", /* name */ 1229 FALSE, /* partial_inplace */ 1230 0, /* src_mask */ 1231 0xfffc, /* dst_mask */ 1232 FALSE), /* pcrel_offset */ 1233 1234 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */ 1235 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */ 1236 HOWTO (R_PPC64_PLTGOT16_LO_DS,/* type */ 1237 0, /* rightshift */ 1238 1, /* size (0 = byte, 1 = short, 2 = long) */ 1239 16, /* bitsize */ 1240 FALSE, /* pc_relative */ 1241 0, /* bitpos */ 1242 complain_overflow_dont, /* complain_on_overflow */ 1243 ppc64_elf_unhandled_reloc, /* special_function */ 1244 "R_PPC64_PLTGOT16_LO_DS",/* name */ 1245 FALSE, /* partial_inplace */ 1246 0, /* src_mask */ 1247 0xfffc, /* dst_mask */ 1248 FALSE), /* pcrel_offset */ 1249 1250 /* Marker relocs for TLS. */ 1251 HOWTO (R_PPC64_TLS, 1252 0, /* rightshift */ 1253 2, /* size (0 = byte, 1 = short, 2 = long) */ 1254 32, /* bitsize */ 1255 FALSE, /* pc_relative */ 1256 0, /* bitpos */ 1257 complain_overflow_dont, /* complain_on_overflow */ 1258 bfd_elf_generic_reloc, /* special_function */ 1259 "R_PPC64_TLS", /* name */ 1260 FALSE, /* partial_inplace */ 1261 0, /* src_mask */ 1262 0, /* dst_mask */ 1263 FALSE), /* pcrel_offset */ 1264 1265 HOWTO (R_PPC64_TLSGD, 1266 0, /* rightshift */ 1267 2, /* size (0 = byte, 1 = short, 2 = long) */ 1268 32, /* bitsize */ 1269 FALSE, /* pc_relative */ 1270 0, /* bitpos */ 1271 complain_overflow_dont, /* complain_on_overflow */ 1272 bfd_elf_generic_reloc, /* special_function */ 1273 "R_PPC64_TLSGD", /* name */ 1274 FALSE, /* partial_inplace */ 1275 0, /* src_mask */ 1276 0, /* dst_mask */ 1277 FALSE), /* pcrel_offset */ 1278 1279 HOWTO (R_PPC64_TLSLD, 1280 0, /* rightshift */ 1281 2, /* size (0 = byte, 1 = short, 2 = long) */ 1282 32, /* bitsize */ 1283 FALSE, /* pc_relative */ 1284 0, /* bitpos */ 1285 complain_overflow_dont, /* complain_on_overflow */ 1286 bfd_elf_generic_reloc, /* special_function */ 1287 "R_PPC64_TLSLD", /* name */ 1288 FALSE, /* partial_inplace */ 1289 0, /* src_mask */ 1290 0, /* dst_mask */ 1291 FALSE), /* pcrel_offset */ 1292 1293 HOWTO (R_PPC64_TOCSAVE, 1294 0, /* rightshift */ 1295 2, /* size (0 = byte, 1 = short, 2 = long) */ 1296 32, /* bitsize */ 1297 FALSE, /* pc_relative */ 1298 0, /* bitpos */ 1299 complain_overflow_dont, /* complain_on_overflow */ 1300 bfd_elf_generic_reloc, /* special_function */ 1301 "R_PPC64_TOCSAVE", /* name */ 1302 FALSE, /* partial_inplace */ 1303 0, /* src_mask */ 1304 0, /* dst_mask */ 1305 FALSE), /* pcrel_offset */ 1306 1307 /* Computes the load module index of the load module that contains the 1308 definition of its TLS sym. */ 1309 HOWTO (R_PPC64_DTPMOD64, 1310 0, /* rightshift */ 1311 4, /* size (0 = byte, 1 = short, 2 = long) */ 1312 64, /* bitsize */ 1313 FALSE, /* pc_relative */ 1314 0, /* bitpos */ 1315 complain_overflow_dont, /* complain_on_overflow */ 1316 ppc64_elf_unhandled_reloc, /* special_function */ 1317 "R_PPC64_DTPMOD64", /* name */ 1318 FALSE, /* partial_inplace */ 1319 0, /* src_mask */ 1320 ONES (64), /* dst_mask */ 1321 FALSE), /* pcrel_offset */ 1322 1323 /* Computes a dtv-relative displacement, the difference between the value 1324 of sym+add and the base address of the thread-local storage block that 1325 contains the definition of sym, minus 0x8000. */ 1326 HOWTO (R_PPC64_DTPREL64, 1327 0, /* rightshift */ 1328 4, /* size (0 = byte, 1 = short, 2 = long) */ 1329 64, /* bitsize */ 1330 FALSE, /* pc_relative */ 1331 0, /* bitpos */ 1332 complain_overflow_dont, /* complain_on_overflow */ 1333 ppc64_elf_unhandled_reloc, /* special_function */ 1334 "R_PPC64_DTPREL64", /* name */ 1335 FALSE, /* partial_inplace */ 1336 0, /* src_mask */ 1337 ONES (64), /* dst_mask */ 1338 FALSE), /* pcrel_offset */ 1339 1340 /* A 16 bit dtprel reloc. */ 1341 HOWTO (R_PPC64_DTPREL16, 1342 0, /* rightshift */ 1343 1, /* size (0 = byte, 1 = short, 2 = long) */ 1344 16, /* bitsize */ 1345 FALSE, /* pc_relative */ 1346 0, /* bitpos */ 1347 complain_overflow_signed, /* complain_on_overflow */ 1348 ppc64_elf_unhandled_reloc, /* special_function */ 1349 "R_PPC64_DTPREL16", /* name */ 1350 FALSE, /* partial_inplace */ 1351 0, /* src_mask */ 1352 0xffff, /* dst_mask */ 1353 FALSE), /* pcrel_offset */ 1354 1355 /* Like DTPREL16, but no overflow. */ 1356 HOWTO (R_PPC64_DTPREL16_LO, 1357 0, /* rightshift */ 1358 1, /* size (0 = byte, 1 = short, 2 = long) */ 1359 16, /* bitsize */ 1360 FALSE, /* pc_relative */ 1361 0, /* bitpos */ 1362 complain_overflow_dont, /* complain_on_overflow */ 1363 ppc64_elf_unhandled_reloc, /* special_function */ 1364 "R_PPC64_DTPREL16_LO", /* name */ 1365 FALSE, /* partial_inplace */ 1366 0, /* src_mask */ 1367 0xffff, /* dst_mask */ 1368 FALSE), /* pcrel_offset */ 1369 1370 /* Like DTPREL16_LO, but next higher group of 16 bits. */ 1371 HOWTO (R_PPC64_DTPREL16_HI, 1372 16, /* rightshift */ 1373 1, /* size (0 = byte, 1 = short, 2 = long) */ 1374 16, /* bitsize */ 1375 FALSE, /* pc_relative */ 1376 0, /* bitpos */ 1377 complain_overflow_dont, /* complain_on_overflow */ 1378 ppc64_elf_unhandled_reloc, /* special_function */ 1379 "R_PPC64_DTPREL16_HI", /* name */ 1380 FALSE, /* partial_inplace */ 1381 0, /* src_mask */ 1382 0xffff, /* dst_mask */ 1383 FALSE), /* pcrel_offset */ 1384 1385 /* Like DTPREL16_HI, but adjust for low 16 bits. */ 1386 HOWTO (R_PPC64_DTPREL16_HA, 1387 16, /* rightshift */ 1388 1, /* size (0 = byte, 1 = short, 2 = long) */ 1389 16, /* bitsize */ 1390 FALSE, /* pc_relative */ 1391 0, /* bitpos */ 1392 complain_overflow_dont, /* complain_on_overflow */ 1393 ppc64_elf_unhandled_reloc, /* special_function */ 1394 "R_PPC64_DTPREL16_HA", /* name */ 1395 FALSE, /* partial_inplace */ 1396 0, /* src_mask */ 1397 0xffff, /* dst_mask */ 1398 FALSE), /* pcrel_offset */ 1399 1400 /* Like DTPREL16_HI, but next higher group of 16 bits. */ 1401 HOWTO (R_PPC64_DTPREL16_HIGHER, 1402 32, /* rightshift */ 1403 1, /* size (0 = byte, 1 = short, 2 = long) */ 1404 16, /* bitsize */ 1405 FALSE, /* pc_relative */ 1406 0, /* bitpos */ 1407 complain_overflow_dont, /* complain_on_overflow */ 1408 ppc64_elf_unhandled_reloc, /* special_function */ 1409 "R_PPC64_DTPREL16_HIGHER", /* name */ 1410 FALSE, /* partial_inplace */ 1411 0, /* src_mask */ 1412 0xffff, /* dst_mask */ 1413 FALSE), /* pcrel_offset */ 1414 1415 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */ 1416 HOWTO (R_PPC64_DTPREL16_HIGHERA, 1417 32, /* rightshift */ 1418 1, /* size (0 = byte, 1 = short, 2 = long) */ 1419 16, /* bitsize */ 1420 FALSE, /* pc_relative */ 1421 0, /* bitpos */ 1422 complain_overflow_dont, /* complain_on_overflow */ 1423 ppc64_elf_unhandled_reloc, /* special_function */ 1424 "R_PPC64_DTPREL16_HIGHERA", /* name */ 1425 FALSE, /* partial_inplace */ 1426 0, /* src_mask */ 1427 0xffff, /* dst_mask */ 1428 FALSE), /* pcrel_offset */ 1429 1430 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */ 1431 HOWTO (R_PPC64_DTPREL16_HIGHEST, 1432 48, /* rightshift */ 1433 1, /* size (0 = byte, 1 = short, 2 = long) */ 1434 16, /* bitsize */ 1435 FALSE, /* pc_relative */ 1436 0, /* bitpos */ 1437 complain_overflow_dont, /* complain_on_overflow */ 1438 ppc64_elf_unhandled_reloc, /* special_function */ 1439 "R_PPC64_DTPREL16_HIGHEST", /* name */ 1440 FALSE, /* partial_inplace */ 1441 0, /* src_mask */ 1442 0xffff, /* dst_mask */ 1443 FALSE), /* pcrel_offset */ 1444 1445 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */ 1446 HOWTO (R_PPC64_DTPREL16_HIGHESTA, 1447 48, /* rightshift */ 1448 1, /* size (0 = byte, 1 = short, 2 = long) */ 1449 16, /* bitsize */ 1450 FALSE, /* pc_relative */ 1451 0, /* bitpos */ 1452 complain_overflow_dont, /* complain_on_overflow */ 1453 ppc64_elf_unhandled_reloc, /* special_function */ 1454 "R_PPC64_DTPREL16_HIGHESTA", /* name */ 1455 FALSE, /* partial_inplace */ 1456 0, /* src_mask */ 1457 0xffff, /* dst_mask */ 1458 FALSE), /* pcrel_offset */ 1459 1460 /* Like DTPREL16, but for insns with a DS field. */ 1461 HOWTO (R_PPC64_DTPREL16_DS, 1462 0, /* rightshift */ 1463 1, /* size (0 = byte, 1 = short, 2 = long) */ 1464 16, /* bitsize */ 1465 FALSE, /* pc_relative */ 1466 0, /* bitpos */ 1467 complain_overflow_signed, /* complain_on_overflow */ 1468 ppc64_elf_unhandled_reloc, /* special_function */ 1469 "R_PPC64_DTPREL16_DS", /* name */ 1470 FALSE, /* partial_inplace */ 1471 0, /* src_mask */ 1472 0xfffc, /* dst_mask */ 1473 FALSE), /* pcrel_offset */ 1474 1475 /* Like DTPREL16_DS, but no overflow. */ 1476 HOWTO (R_PPC64_DTPREL16_LO_DS, 1477 0, /* rightshift */ 1478 1, /* size (0 = byte, 1 = short, 2 = long) */ 1479 16, /* bitsize */ 1480 FALSE, /* pc_relative */ 1481 0, /* bitpos */ 1482 complain_overflow_dont, /* complain_on_overflow */ 1483 ppc64_elf_unhandled_reloc, /* special_function */ 1484 "R_PPC64_DTPREL16_LO_DS", /* name */ 1485 FALSE, /* partial_inplace */ 1486 0, /* src_mask */ 1487 0xfffc, /* dst_mask */ 1488 FALSE), /* pcrel_offset */ 1489 1490 /* Computes a tp-relative displacement, the difference between the value of 1491 sym+add and the value of the thread pointer (r13). */ 1492 HOWTO (R_PPC64_TPREL64, 1493 0, /* rightshift */ 1494 4, /* size (0 = byte, 1 = short, 2 = long) */ 1495 64, /* bitsize */ 1496 FALSE, /* pc_relative */ 1497 0, /* bitpos */ 1498 complain_overflow_dont, /* complain_on_overflow */ 1499 ppc64_elf_unhandled_reloc, /* special_function */ 1500 "R_PPC64_TPREL64", /* name */ 1501 FALSE, /* partial_inplace */ 1502 0, /* src_mask */ 1503 ONES (64), /* dst_mask */ 1504 FALSE), /* pcrel_offset */ 1505 1506 /* A 16 bit tprel reloc. */ 1507 HOWTO (R_PPC64_TPREL16, 1508 0, /* rightshift */ 1509 1, /* size (0 = byte, 1 = short, 2 = long) */ 1510 16, /* bitsize */ 1511 FALSE, /* pc_relative */ 1512 0, /* bitpos */ 1513 complain_overflow_signed, /* complain_on_overflow */ 1514 ppc64_elf_unhandled_reloc, /* special_function */ 1515 "R_PPC64_TPREL16", /* name */ 1516 FALSE, /* partial_inplace */ 1517 0, /* src_mask */ 1518 0xffff, /* dst_mask */ 1519 FALSE), /* pcrel_offset */ 1520 1521 /* Like TPREL16, but no overflow. */ 1522 HOWTO (R_PPC64_TPREL16_LO, 1523 0, /* rightshift */ 1524 1, /* size (0 = byte, 1 = short, 2 = long) */ 1525 16, /* bitsize */ 1526 FALSE, /* pc_relative */ 1527 0, /* bitpos */ 1528 complain_overflow_dont, /* complain_on_overflow */ 1529 ppc64_elf_unhandled_reloc, /* special_function */ 1530 "R_PPC64_TPREL16_LO", /* name */ 1531 FALSE, /* partial_inplace */ 1532 0, /* src_mask */ 1533 0xffff, /* dst_mask */ 1534 FALSE), /* pcrel_offset */ 1535 1536 /* Like TPREL16_LO, but next higher group of 16 bits. */ 1537 HOWTO (R_PPC64_TPREL16_HI, 1538 16, /* rightshift */ 1539 1, /* size (0 = byte, 1 = short, 2 = long) */ 1540 16, /* bitsize */ 1541 FALSE, /* pc_relative */ 1542 0, /* bitpos */ 1543 complain_overflow_dont, /* complain_on_overflow */ 1544 ppc64_elf_unhandled_reloc, /* special_function */ 1545 "R_PPC64_TPREL16_HI", /* name */ 1546 FALSE, /* partial_inplace */ 1547 0, /* src_mask */ 1548 0xffff, /* dst_mask */ 1549 FALSE), /* pcrel_offset */ 1550 1551 /* Like TPREL16_HI, but adjust for low 16 bits. */ 1552 HOWTO (R_PPC64_TPREL16_HA, 1553 16, /* rightshift */ 1554 1, /* size (0 = byte, 1 = short, 2 = long) */ 1555 16, /* bitsize */ 1556 FALSE, /* pc_relative */ 1557 0, /* bitpos */ 1558 complain_overflow_dont, /* complain_on_overflow */ 1559 ppc64_elf_unhandled_reloc, /* special_function */ 1560 "R_PPC64_TPREL16_HA", /* name */ 1561 FALSE, /* partial_inplace */ 1562 0, /* src_mask */ 1563 0xffff, /* dst_mask */ 1564 FALSE), /* pcrel_offset */ 1565 1566 /* Like TPREL16_HI, but next higher group of 16 bits. */ 1567 HOWTO (R_PPC64_TPREL16_HIGHER, 1568 32, /* rightshift */ 1569 1, /* size (0 = byte, 1 = short, 2 = long) */ 1570 16, /* bitsize */ 1571 FALSE, /* pc_relative */ 1572 0, /* bitpos */ 1573 complain_overflow_dont, /* complain_on_overflow */ 1574 ppc64_elf_unhandled_reloc, /* special_function */ 1575 "R_PPC64_TPREL16_HIGHER", /* name */ 1576 FALSE, /* partial_inplace */ 1577 0, /* src_mask */ 1578 0xffff, /* dst_mask */ 1579 FALSE), /* pcrel_offset */ 1580 1581 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */ 1582 HOWTO (R_PPC64_TPREL16_HIGHERA, 1583 32, /* rightshift */ 1584 1, /* size (0 = byte, 1 = short, 2 = long) */ 1585 16, /* bitsize */ 1586 FALSE, /* pc_relative */ 1587 0, /* bitpos */ 1588 complain_overflow_dont, /* complain_on_overflow */ 1589 ppc64_elf_unhandled_reloc, /* special_function */ 1590 "R_PPC64_TPREL16_HIGHERA", /* name */ 1591 FALSE, /* partial_inplace */ 1592 0, /* src_mask */ 1593 0xffff, /* dst_mask */ 1594 FALSE), /* pcrel_offset */ 1595 1596 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */ 1597 HOWTO (R_PPC64_TPREL16_HIGHEST, 1598 48, /* rightshift */ 1599 1, /* size (0 = byte, 1 = short, 2 = long) */ 1600 16, /* bitsize */ 1601 FALSE, /* pc_relative */ 1602 0, /* bitpos */ 1603 complain_overflow_dont, /* complain_on_overflow */ 1604 ppc64_elf_unhandled_reloc, /* special_function */ 1605 "R_PPC64_TPREL16_HIGHEST", /* name */ 1606 FALSE, /* partial_inplace */ 1607 0, /* src_mask */ 1608 0xffff, /* dst_mask */ 1609 FALSE), /* pcrel_offset */ 1610 1611 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */ 1612 HOWTO (R_PPC64_TPREL16_HIGHESTA, 1613 48, /* rightshift */ 1614 1, /* size (0 = byte, 1 = short, 2 = long) */ 1615 16, /* bitsize */ 1616 FALSE, /* pc_relative */ 1617 0, /* bitpos */ 1618 complain_overflow_dont, /* complain_on_overflow */ 1619 ppc64_elf_unhandled_reloc, /* special_function */ 1620 "R_PPC64_TPREL16_HIGHESTA", /* name */ 1621 FALSE, /* partial_inplace */ 1622 0, /* src_mask */ 1623 0xffff, /* dst_mask */ 1624 FALSE), /* pcrel_offset */ 1625 1626 /* Like TPREL16, but for insns with a DS field. */ 1627 HOWTO (R_PPC64_TPREL16_DS, 1628 0, /* rightshift */ 1629 1, /* size (0 = byte, 1 = short, 2 = long) */ 1630 16, /* bitsize */ 1631 FALSE, /* pc_relative */ 1632 0, /* bitpos */ 1633 complain_overflow_signed, /* complain_on_overflow */ 1634 ppc64_elf_unhandled_reloc, /* special_function */ 1635 "R_PPC64_TPREL16_DS", /* name */ 1636 FALSE, /* partial_inplace */ 1637 0, /* src_mask */ 1638 0xfffc, /* dst_mask */ 1639 FALSE), /* pcrel_offset */ 1640 1641 /* Like TPREL16_DS, but no overflow. */ 1642 HOWTO (R_PPC64_TPREL16_LO_DS, 1643 0, /* rightshift */ 1644 1, /* size (0 = byte, 1 = short, 2 = long) */ 1645 16, /* bitsize */ 1646 FALSE, /* pc_relative */ 1647 0, /* bitpos */ 1648 complain_overflow_dont, /* complain_on_overflow */ 1649 ppc64_elf_unhandled_reloc, /* special_function */ 1650 "R_PPC64_TPREL16_LO_DS", /* name */ 1651 FALSE, /* partial_inplace */ 1652 0, /* src_mask */ 1653 0xfffc, /* dst_mask */ 1654 FALSE), /* pcrel_offset */ 1655 1656 /* Allocates two contiguous entries in the GOT to hold a tls_index structure, 1657 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset 1658 to the first entry relative to the TOC base (r2). */ 1659 HOWTO (R_PPC64_GOT_TLSGD16, 1660 0, /* rightshift */ 1661 1, /* size (0 = byte, 1 = short, 2 = long) */ 1662 16, /* bitsize */ 1663 FALSE, /* pc_relative */ 1664 0, /* bitpos */ 1665 complain_overflow_signed, /* complain_on_overflow */ 1666 ppc64_elf_unhandled_reloc, /* special_function */ 1667 "R_PPC64_GOT_TLSGD16", /* name */ 1668 FALSE, /* partial_inplace */ 1669 0, /* src_mask */ 1670 0xffff, /* dst_mask */ 1671 FALSE), /* pcrel_offset */ 1672 1673 /* Like GOT_TLSGD16, but no overflow. */ 1674 HOWTO (R_PPC64_GOT_TLSGD16_LO, 1675 0, /* rightshift */ 1676 1, /* size (0 = byte, 1 = short, 2 = long) */ 1677 16, /* bitsize */ 1678 FALSE, /* pc_relative */ 1679 0, /* bitpos */ 1680 complain_overflow_dont, /* complain_on_overflow */ 1681 ppc64_elf_unhandled_reloc, /* special_function */ 1682 "R_PPC64_GOT_TLSGD16_LO", /* name */ 1683 FALSE, /* partial_inplace */ 1684 0, /* src_mask */ 1685 0xffff, /* dst_mask */ 1686 FALSE), /* pcrel_offset */ 1687 1688 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */ 1689 HOWTO (R_PPC64_GOT_TLSGD16_HI, 1690 16, /* rightshift */ 1691 1, /* size (0 = byte, 1 = short, 2 = long) */ 1692 16, /* bitsize */ 1693 FALSE, /* pc_relative */ 1694 0, /* bitpos */ 1695 complain_overflow_dont, /* complain_on_overflow */ 1696 ppc64_elf_unhandled_reloc, /* special_function */ 1697 "R_PPC64_GOT_TLSGD16_HI", /* name */ 1698 FALSE, /* partial_inplace */ 1699 0, /* src_mask */ 1700 0xffff, /* dst_mask */ 1701 FALSE), /* pcrel_offset */ 1702 1703 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */ 1704 HOWTO (R_PPC64_GOT_TLSGD16_HA, 1705 16, /* rightshift */ 1706 1, /* size (0 = byte, 1 = short, 2 = long) */ 1707 16, /* bitsize */ 1708 FALSE, /* pc_relative */ 1709 0, /* bitpos */ 1710 complain_overflow_dont, /* complain_on_overflow */ 1711 ppc64_elf_unhandled_reloc, /* special_function */ 1712 "R_PPC64_GOT_TLSGD16_HA", /* name */ 1713 FALSE, /* partial_inplace */ 1714 0, /* src_mask */ 1715 0xffff, /* dst_mask */ 1716 FALSE), /* pcrel_offset */ 1717 1718 /* Allocates two contiguous entries in the GOT to hold a tls_index structure, 1719 with values (sym+add)@dtpmod and zero, and computes the offset to the 1720 first entry relative to the TOC base (r2). */ 1721 HOWTO (R_PPC64_GOT_TLSLD16, 1722 0, /* rightshift */ 1723 1, /* size (0 = byte, 1 = short, 2 = long) */ 1724 16, /* bitsize */ 1725 FALSE, /* pc_relative */ 1726 0, /* bitpos */ 1727 complain_overflow_signed, /* complain_on_overflow */ 1728 ppc64_elf_unhandled_reloc, /* special_function */ 1729 "R_PPC64_GOT_TLSLD16", /* name */ 1730 FALSE, /* partial_inplace */ 1731 0, /* src_mask */ 1732 0xffff, /* dst_mask */ 1733 FALSE), /* pcrel_offset */ 1734 1735 /* Like GOT_TLSLD16, but no overflow. */ 1736 HOWTO (R_PPC64_GOT_TLSLD16_LO, 1737 0, /* rightshift */ 1738 1, /* size (0 = byte, 1 = short, 2 = long) */ 1739 16, /* bitsize */ 1740 FALSE, /* pc_relative */ 1741 0, /* bitpos */ 1742 complain_overflow_dont, /* complain_on_overflow */ 1743 ppc64_elf_unhandled_reloc, /* special_function */ 1744 "R_PPC64_GOT_TLSLD16_LO", /* name */ 1745 FALSE, /* partial_inplace */ 1746 0, /* src_mask */ 1747 0xffff, /* dst_mask */ 1748 FALSE), /* pcrel_offset */ 1749 1750 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */ 1751 HOWTO (R_PPC64_GOT_TLSLD16_HI, 1752 16, /* rightshift */ 1753 1, /* size (0 = byte, 1 = short, 2 = long) */ 1754 16, /* bitsize */ 1755 FALSE, /* pc_relative */ 1756 0, /* bitpos */ 1757 complain_overflow_dont, /* complain_on_overflow */ 1758 ppc64_elf_unhandled_reloc, /* special_function */ 1759 "R_PPC64_GOT_TLSLD16_HI", /* name */ 1760 FALSE, /* partial_inplace */ 1761 0, /* src_mask */ 1762 0xffff, /* dst_mask */ 1763 FALSE), /* pcrel_offset */ 1764 1765 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */ 1766 HOWTO (R_PPC64_GOT_TLSLD16_HA, 1767 16, /* rightshift */ 1768 1, /* size (0 = byte, 1 = short, 2 = long) */ 1769 16, /* bitsize */ 1770 FALSE, /* pc_relative */ 1771 0, /* bitpos */ 1772 complain_overflow_dont, /* complain_on_overflow */ 1773 ppc64_elf_unhandled_reloc, /* special_function */ 1774 "R_PPC64_GOT_TLSLD16_HA", /* name */ 1775 FALSE, /* partial_inplace */ 1776 0, /* src_mask */ 1777 0xffff, /* dst_mask */ 1778 FALSE), /* pcrel_offset */ 1779 1780 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes 1781 the offset to the entry relative to the TOC base (r2). */ 1782 HOWTO (R_PPC64_GOT_DTPREL16_DS, 1783 0, /* rightshift */ 1784 1, /* size (0 = byte, 1 = short, 2 = long) */ 1785 16, /* bitsize */ 1786 FALSE, /* pc_relative */ 1787 0, /* bitpos */ 1788 complain_overflow_signed, /* complain_on_overflow */ 1789 ppc64_elf_unhandled_reloc, /* special_function */ 1790 "R_PPC64_GOT_DTPREL16_DS", /* name */ 1791 FALSE, /* partial_inplace */ 1792 0, /* src_mask */ 1793 0xfffc, /* dst_mask */ 1794 FALSE), /* pcrel_offset */ 1795 1796 /* Like GOT_DTPREL16_DS, but no overflow. */ 1797 HOWTO (R_PPC64_GOT_DTPREL16_LO_DS, 1798 0, /* rightshift */ 1799 1, /* size (0 = byte, 1 = short, 2 = long) */ 1800 16, /* bitsize */ 1801 FALSE, /* pc_relative */ 1802 0, /* bitpos */ 1803 complain_overflow_dont, /* complain_on_overflow */ 1804 ppc64_elf_unhandled_reloc, /* special_function */ 1805 "R_PPC64_GOT_DTPREL16_LO_DS", /* name */ 1806 FALSE, /* partial_inplace */ 1807 0, /* src_mask */ 1808 0xfffc, /* dst_mask */ 1809 FALSE), /* pcrel_offset */ 1810 1811 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */ 1812 HOWTO (R_PPC64_GOT_DTPREL16_HI, 1813 16, /* rightshift */ 1814 1, /* size (0 = byte, 1 = short, 2 = long) */ 1815 16, /* bitsize */ 1816 FALSE, /* pc_relative */ 1817 0, /* bitpos */ 1818 complain_overflow_dont, /* complain_on_overflow */ 1819 ppc64_elf_unhandled_reloc, /* special_function */ 1820 "R_PPC64_GOT_DTPREL16_HI", /* name */ 1821 FALSE, /* partial_inplace */ 1822 0, /* src_mask */ 1823 0xffff, /* dst_mask */ 1824 FALSE), /* pcrel_offset */ 1825 1826 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */ 1827 HOWTO (R_PPC64_GOT_DTPREL16_HA, 1828 16, /* rightshift */ 1829 1, /* size (0 = byte, 1 = short, 2 = long) */ 1830 16, /* bitsize */ 1831 FALSE, /* pc_relative */ 1832 0, /* bitpos */ 1833 complain_overflow_dont, /* complain_on_overflow */ 1834 ppc64_elf_unhandled_reloc, /* special_function */ 1835 "R_PPC64_GOT_DTPREL16_HA", /* name */ 1836 FALSE, /* partial_inplace */ 1837 0, /* src_mask */ 1838 0xffff, /* dst_mask */ 1839 FALSE), /* pcrel_offset */ 1840 1841 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the 1842 offset to the entry relative to the TOC base (r2). */ 1843 HOWTO (R_PPC64_GOT_TPREL16_DS, 1844 0, /* rightshift */ 1845 1, /* size (0 = byte, 1 = short, 2 = long) */ 1846 16, /* bitsize */ 1847 FALSE, /* pc_relative */ 1848 0, /* bitpos */ 1849 complain_overflow_signed, /* complain_on_overflow */ 1850 ppc64_elf_unhandled_reloc, /* special_function */ 1851 "R_PPC64_GOT_TPREL16_DS", /* name */ 1852 FALSE, /* partial_inplace */ 1853 0, /* src_mask */ 1854 0xfffc, /* dst_mask */ 1855 FALSE), /* pcrel_offset */ 1856 1857 /* Like GOT_TPREL16_DS, but no overflow. */ 1858 HOWTO (R_PPC64_GOT_TPREL16_LO_DS, 1859 0, /* rightshift */ 1860 1, /* size (0 = byte, 1 = short, 2 = long) */ 1861 16, /* bitsize */ 1862 FALSE, /* pc_relative */ 1863 0, /* bitpos */ 1864 complain_overflow_dont, /* complain_on_overflow */ 1865 ppc64_elf_unhandled_reloc, /* special_function */ 1866 "R_PPC64_GOT_TPREL16_LO_DS", /* name */ 1867 FALSE, /* partial_inplace */ 1868 0, /* src_mask */ 1869 0xfffc, /* dst_mask */ 1870 FALSE), /* pcrel_offset */ 1871 1872 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */ 1873 HOWTO (R_PPC64_GOT_TPREL16_HI, 1874 16, /* rightshift */ 1875 1, /* size (0 = byte, 1 = short, 2 = long) */ 1876 16, /* bitsize */ 1877 FALSE, /* pc_relative */ 1878 0, /* bitpos */ 1879 complain_overflow_dont, /* complain_on_overflow */ 1880 ppc64_elf_unhandled_reloc, /* special_function */ 1881 "R_PPC64_GOT_TPREL16_HI", /* name */ 1882 FALSE, /* partial_inplace */ 1883 0, /* src_mask */ 1884 0xffff, /* dst_mask */ 1885 FALSE), /* pcrel_offset */ 1886 1887 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */ 1888 HOWTO (R_PPC64_GOT_TPREL16_HA, 1889 16, /* rightshift */ 1890 1, /* size (0 = byte, 1 = short, 2 = long) */ 1891 16, /* bitsize */ 1892 FALSE, /* pc_relative */ 1893 0, /* bitpos */ 1894 complain_overflow_dont, /* complain_on_overflow */ 1895 ppc64_elf_unhandled_reloc, /* special_function */ 1896 "R_PPC64_GOT_TPREL16_HA", /* name */ 1897 FALSE, /* partial_inplace */ 1898 0, /* src_mask */ 1899 0xffff, /* dst_mask */ 1900 FALSE), /* pcrel_offset */ 1901 1902 HOWTO (R_PPC64_JMP_IREL, /* type */ 1903 0, /* rightshift */ 1904 0, /* size (0=byte, 1=short, 2=long, 4=64 bits) */ 1905 0, /* bitsize */ 1906 FALSE, /* pc_relative */ 1907 0, /* bitpos */ 1908 complain_overflow_dont, /* complain_on_overflow */ 1909 ppc64_elf_unhandled_reloc, /* special_function */ 1910 "R_PPC64_JMP_IREL", /* name */ 1911 FALSE, /* partial_inplace */ 1912 0, /* src_mask */ 1913 0, /* dst_mask */ 1914 FALSE), /* pcrel_offset */ 1915 1916 HOWTO (R_PPC64_IRELATIVE, /* type */ 1917 0, /* rightshift */ 1918 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */ 1919 64, /* bitsize */ 1920 FALSE, /* pc_relative */ 1921 0, /* bitpos */ 1922 complain_overflow_dont, /* complain_on_overflow */ 1923 bfd_elf_generic_reloc, /* special_function */ 1924 "R_PPC64_IRELATIVE", /* name */ 1925 FALSE, /* partial_inplace */ 1926 0, /* src_mask */ 1927 ONES (64), /* dst_mask */ 1928 FALSE), /* pcrel_offset */ 1929 1930 /* A 16 bit relative relocation. */ 1931 HOWTO (R_PPC64_REL16, /* type */ 1932 0, /* rightshift */ 1933 1, /* size (0 = byte, 1 = short, 2 = long) */ 1934 16, /* bitsize */ 1935 TRUE, /* pc_relative */ 1936 0, /* bitpos */ 1937 complain_overflow_bitfield, /* complain_on_overflow */ 1938 bfd_elf_generic_reloc, /* special_function */ 1939 "R_PPC64_REL16", /* name */ 1940 FALSE, /* partial_inplace */ 1941 0, /* src_mask */ 1942 0xffff, /* dst_mask */ 1943 TRUE), /* pcrel_offset */ 1944 1945 /* A 16 bit relative relocation without overflow. */ 1946 HOWTO (R_PPC64_REL16_LO, /* type */ 1947 0, /* rightshift */ 1948 1, /* size (0 = byte, 1 = short, 2 = long) */ 1949 16, /* bitsize */ 1950 TRUE, /* pc_relative */ 1951 0, /* bitpos */ 1952 complain_overflow_dont,/* complain_on_overflow */ 1953 bfd_elf_generic_reloc, /* special_function */ 1954 "R_PPC64_REL16_LO", /* name */ 1955 FALSE, /* partial_inplace */ 1956 0, /* src_mask */ 1957 0xffff, /* dst_mask */ 1958 TRUE), /* pcrel_offset */ 1959 1960 /* The high order 16 bits of a relative address. */ 1961 HOWTO (R_PPC64_REL16_HI, /* type */ 1962 16, /* rightshift */ 1963 1, /* size (0 = byte, 1 = short, 2 = long) */ 1964 16, /* bitsize */ 1965 TRUE, /* pc_relative */ 1966 0, /* bitpos */ 1967 complain_overflow_dont, /* complain_on_overflow */ 1968 bfd_elf_generic_reloc, /* special_function */ 1969 "R_PPC64_REL16_HI", /* name */ 1970 FALSE, /* partial_inplace */ 1971 0, /* src_mask */ 1972 0xffff, /* dst_mask */ 1973 TRUE), /* pcrel_offset */ 1974 1975 /* The high order 16 bits of a relative address, plus 1 if the contents of 1976 the low 16 bits, treated as a signed number, is negative. */ 1977 HOWTO (R_PPC64_REL16_HA, /* type */ 1978 16, /* rightshift */ 1979 1, /* size (0 = byte, 1 = short, 2 = long) */ 1980 16, /* bitsize */ 1981 TRUE, /* pc_relative */ 1982 0, /* bitpos */ 1983 complain_overflow_dont, /* complain_on_overflow */ 1984 ppc64_elf_ha_reloc, /* special_function */ 1985 "R_PPC64_REL16_HA", /* name */ 1986 FALSE, /* partial_inplace */ 1987 0, /* src_mask */ 1988 0xffff, /* dst_mask */ 1989 TRUE), /* pcrel_offset */ 1990 1991 /* GNU extension to record C++ vtable hierarchy. */ 1992 HOWTO (R_PPC64_GNU_VTINHERIT, /* type */ 1993 0, /* rightshift */ 1994 0, /* size (0 = byte, 1 = short, 2 = long) */ 1995 0, /* bitsize */ 1996 FALSE, /* pc_relative */ 1997 0, /* bitpos */ 1998 complain_overflow_dont, /* complain_on_overflow */ 1999 NULL, /* special_function */ 2000 "R_PPC64_GNU_VTINHERIT", /* name */ 2001 FALSE, /* partial_inplace */ 2002 0, /* src_mask */ 2003 0, /* dst_mask */ 2004 FALSE), /* pcrel_offset */ 2005 2006 /* GNU extension to record C++ vtable member usage. */ 2007 HOWTO (R_PPC64_GNU_VTENTRY, /* type */ 2008 0, /* rightshift */ 2009 0, /* size (0 = byte, 1 = short, 2 = long) */ 2010 0, /* bitsize */ 2011 FALSE, /* pc_relative */ 2012 0, /* bitpos */ 2013 complain_overflow_dont, /* complain_on_overflow */ 2014 NULL, /* special_function */ 2015 "R_PPC64_GNU_VTENTRY", /* name */ 2016 FALSE, /* partial_inplace */ 2017 0, /* src_mask */ 2018 0, /* dst_mask */ 2019 FALSE), /* pcrel_offset */ 2020 }; 2021 2022 2023 /* Initialize the ppc64_elf_howto_table, so that linear accesses can 2024 be done. */ 2025 2026 static void 2027 ppc_howto_init (void) 2028 { 2029 unsigned int i, type; 2030 2031 for (i = 0; 2032 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]); 2033 i++) 2034 { 2035 type = ppc64_elf_howto_raw[i].type; 2036 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table) 2037 / sizeof (ppc64_elf_howto_table[0]))); 2038 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i]; 2039 } 2040 } 2041 2042 static reloc_howto_type * 2043 ppc64_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, 2044 bfd_reloc_code_real_type code) 2045 { 2046 enum elf_ppc64_reloc_type r = R_PPC64_NONE; 2047 2048 if (!ppc64_elf_howto_table[R_PPC64_ADDR32]) 2049 /* Initialize howto table if needed. */ 2050 ppc_howto_init (); 2051 2052 switch (code) 2053 { 2054 default: 2055 return NULL; 2056 2057 case BFD_RELOC_NONE: r = R_PPC64_NONE; 2058 break; 2059 case BFD_RELOC_32: r = R_PPC64_ADDR32; 2060 break; 2061 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24; 2062 break; 2063 case BFD_RELOC_16: r = R_PPC64_ADDR16; 2064 break; 2065 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO; 2066 break; 2067 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI; 2068 break; 2069 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA; 2070 break; 2071 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14; 2072 break; 2073 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN; 2074 break; 2075 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN; 2076 break; 2077 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24; 2078 break; 2079 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14; 2080 break; 2081 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN; 2082 break; 2083 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN; 2084 break; 2085 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16; 2086 break; 2087 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO; 2088 break; 2089 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI; 2090 break; 2091 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA; 2092 break; 2093 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY; 2094 break; 2095 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT; 2096 break; 2097 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32; 2098 break; 2099 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32; 2100 break; 2101 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32; 2102 break; 2103 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO; 2104 break; 2105 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI; 2106 break; 2107 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA; 2108 break; 2109 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF; 2110 break; 2111 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO; 2112 break; 2113 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI; 2114 break; 2115 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA; 2116 break; 2117 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64; 2118 break; 2119 case BFD_RELOC_64: r = R_PPC64_ADDR64; 2120 break; 2121 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER; 2122 break; 2123 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA; 2124 break; 2125 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST; 2126 break; 2127 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA; 2128 break; 2129 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64; 2130 break; 2131 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64; 2132 break; 2133 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64; 2134 break; 2135 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16; 2136 break; 2137 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO; 2138 break; 2139 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI; 2140 break; 2141 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA; 2142 break; 2143 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC; 2144 break; 2145 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16; 2146 break; 2147 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO; 2148 break; 2149 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI; 2150 break; 2151 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA; 2152 break; 2153 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS; 2154 break; 2155 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS; 2156 break; 2157 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS; 2158 break; 2159 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS; 2160 break; 2161 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS; 2162 break; 2163 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS; 2164 break; 2165 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS; 2166 break; 2167 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS; 2168 break; 2169 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS; 2170 break; 2171 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS; 2172 break; 2173 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS; 2174 break; 2175 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS; 2176 break; 2177 case BFD_RELOC_PPC_TLSGD: r = R_PPC64_TLSGD; 2178 break; 2179 case BFD_RELOC_PPC_TLSLD: r = R_PPC64_TLSLD; 2180 break; 2181 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64; 2182 break; 2183 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16; 2184 break; 2185 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO; 2186 break; 2187 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI; 2188 break; 2189 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA; 2190 break; 2191 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64; 2192 break; 2193 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16; 2194 break; 2195 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO; 2196 break; 2197 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI; 2198 break; 2199 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA; 2200 break; 2201 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64; 2202 break; 2203 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16; 2204 break; 2205 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO; 2206 break; 2207 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI; 2208 break; 2209 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA; 2210 break; 2211 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16; 2212 break; 2213 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO; 2214 break; 2215 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI; 2216 break; 2217 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA; 2218 break; 2219 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS; 2220 break; 2221 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS; 2222 break; 2223 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI; 2224 break; 2225 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA; 2226 break; 2227 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS; 2228 break; 2229 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS; 2230 break; 2231 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI; 2232 break; 2233 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA; 2234 break; 2235 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS; 2236 break; 2237 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS; 2238 break; 2239 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER; 2240 break; 2241 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA; 2242 break; 2243 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST; 2244 break; 2245 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA; 2246 break; 2247 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS; 2248 break; 2249 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS; 2250 break; 2251 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER; 2252 break; 2253 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA; 2254 break; 2255 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST; 2256 break; 2257 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA; 2258 break; 2259 case BFD_RELOC_16_PCREL: r = R_PPC64_REL16; 2260 break; 2261 case BFD_RELOC_LO16_PCREL: r = R_PPC64_REL16_LO; 2262 break; 2263 case BFD_RELOC_HI16_PCREL: r = R_PPC64_REL16_HI; 2264 break; 2265 case BFD_RELOC_HI16_S_PCREL: r = R_PPC64_REL16_HA; 2266 break; 2267 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT; 2268 break; 2269 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY; 2270 break; 2271 } 2272 2273 return ppc64_elf_howto_table[r]; 2274 }; 2275 2276 static reloc_howto_type * 2277 ppc64_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, 2278 const char *r_name) 2279 { 2280 unsigned int i; 2281 2282 for (i = 0; 2283 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]); 2284 i++) 2285 if (ppc64_elf_howto_raw[i].name != NULL 2286 && strcasecmp (ppc64_elf_howto_raw[i].name, r_name) == 0) 2287 return &ppc64_elf_howto_raw[i]; 2288 2289 return NULL; 2290 } 2291 2292 /* Set the howto pointer for a PowerPC ELF reloc. */ 2293 2294 static void 2295 ppc64_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr, 2296 Elf_Internal_Rela *dst) 2297 { 2298 unsigned int type; 2299 2300 /* Initialize howto table if needed. */ 2301 if (!ppc64_elf_howto_table[R_PPC64_ADDR32]) 2302 ppc_howto_init (); 2303 2304 type = ELF64_R_TYPE (dst->r_info); 2305 if (type >= (sizeof (ppc64_elf_howto_table) 2306 / sizeof (ppc64_elf_howto_table[0]))) 2307 { 2308 (*_bfd_error_handler) (_("%B: invalid relocation type %d"), 2309 abfd, (int) type); 2310 type = R_PPC64_NONE; 2311 } 2312 cache_ptr->howto = ppc64_elf_howto_table[type]; 2313 } 2314 2315 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */ 2316 2317 static bfd_reloc_status_type 2318 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, 2319 void *data, asection *input_section, 2320 bfd *output_bfd, char **error_message) 2321 { 2322 /* If this is a relocatable link (output_bfd test tells us), just 2323 call the generic function. Any adjustment will be done at final 2324 link time. */ 2325 if (output_bfd != NULL) 2326 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data, 2327 input_section, output_bfd, error_message); 2328 2329 /* Adjust the addend for sign extension of the low 16 bits. 2330 We won't actually be using the low 16 bits, so trashing them 2331 doesn't matter. */ 2332 reloc_entry->addend += 0x8000; 2333 return bfd_reloc_continue; 2334 } 2335 2336 static bfd_reloc_status_type 2337 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, 2338 void *data, asection *input_section, 2339 bfd *output_bfd, char **error_message) 2340 { 2341 if (output_bfd != NULL) 2342 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data, 2343 input_section, output_bfd, error_message); 2344 2345 if (strcmp (symbol->section->name, ".opd") == 0 2346 && (symbol->section->owner->flags & DYNAMIC) == 0) 2347 { 2348 bfd_vma dest = opd_entry_value (symbol->section, 2349 symbol->value + reloc_entry->addend, 2350 NULL, NULL, FALSE); 2351 if (dest != (bfd_vma) -1) 2352 reloc_entry->addend = dest - (symbol->value 2353 + symbol->section->output_section->vma 2354 + symbol->section->output_offset); 2355 } 2356 return bfd_reloc_continue; 2357 } 2358 2359 static bfd_reloc_status_type 2360 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, 2361 void *data, asection *input_section, 2362 bfd *output_bfd, char **error_message) 2363 { 2364 long insn; 2365 enum elf_ppc64_reloc_type r_type; 2366 bfd_size_type octets; 2367 /* Assume 'at' branch hints. */ 2368 bfd_boolean is_isa_v2 = TRUE; 2369 2370 /* If this is a relocatable link (output_bfd test tells us), just 2371 call the generic function. Any adjustment will be done at final 2372 link time. */ 2373 if (output_bfd != NULL) 2374 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data, 2375 input_section, output_bfd, error_message); 2376 2377 octets = reloc_entry->address * bfd_octets_per_byte (abfd); 2378 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets); 2379 insn &= ~(0x01 << 21); 2380 r_type = reloc_entry->howto->type; 2381 if (r_type == R_PPC64_ADDR14_BRTAKEN 2382 || r_type == R_PPC64_REL14_BRTAKEN) 2383 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */ 2384 2385 if (is_isa_v2) 2386 { 2387 /* Set 'a' bit. This is 0b00010 in BO field for branch 2388 on CR(BI) insns (BO == 001at or 011at), and 0b01000 2389 for branch on CTR insns (BO == 1a00t or 1a01t). */ 2390 if ((insn & (0x14 << 21)) == (0x04 << 21)) 2391 insn |= 0x02 << 21; 2392 else if ((insn & (0x14 << 21)) == (0x10 << 21)) 2393 insn |= 0x08 << 21; 2394 else 2395 goto out; 2396 } 2397 else 2398 { 2399 bfd_vma target = 0; 2400 bfd_vma from; 2401 2402 if (!bfd_is_com_section (symbol->section)) 2403 target = symbol->value; 2404 target += symbol->section->output_section->vma; 2405 target += symbol->section->output_offset; 2406 target += reloc_entry->addend; 2407 2408 from = (reloc_entry->address 2409 + input_section->output_offset 2410 + input_section->output_section->vma); 2411 2412 /* Invert 'y' bit if not the default. */ 2413 if ((bfd_signed_vma) (target - from) < 0) 2414 insn ^= 0x01 << 21; 2415 } 2416 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets); 2417 out: 2418 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data, 2419 input_section, output_bfd, error_message); 2420 } 2421 2422 static bfd_reloc_status_type 2423 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, 2424 void *data, asection *input_section, 2425 bfd *output_bfd, char **error_message) 2426 { 2427 /* If this is a relocatable link (output_bfd test tells us), just 2428 call the generic function. Any adjustment will be done at final 2429 link time. */ 2430 if (output_bfd != NULL) 2431 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data, 2432 input_section, output_bfd, error_message); 2433 2434 /* Subtract the symbol section base address. */ 2435 reloc_entry->addend -= symbol->section->output_section->vma; 2436 return bfd_reloc_continue; 2437 } 2438 2439 static bfd_reloc_status_type 2440 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, 2441 void *data, asection *input_section, 2442 bfd *output_bfd, char **error_message) 2443 { 2444 /* If this is a relocatable link (output_bfd test tells us), just 2445 call the generic function. Any adjustment will be done at final 2446 link time. */ 2447 if (output_bfd != NULL) 2448 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data, 2449 input_section, output_bfd, error_message); 2450 2451 /* Subtract the symbol section base address. */ 2452 reloc_entry->addend -= symbol->section->output_section->vma; 2453 2454 /* Adjust the addend for sign extension of the low 16 bits. */ 2455 reloc_entry->addend += 0x8000; 2456 return bfd_reloc_continue; 2457 } 2458 2459 static bfd_reloc_status_type 2460 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, 2461 void *data, asection *input_section, 2462 bfd *output_bfd, char **error_message) 2463 { 2464 bfd_vma TOCstart; 2465 2466 /* If this is a relocatable link (output_bfd test tells us), just 2467 call the generic function. Any adjustment will be done at final 2468 link time. */ 2469 if (output_bfd != NULL) 2470 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data, 2471 input_section, output_bfd, error_message); 2472 2473 TOCstart = _bfd_get_gp_value (input_section->output_section->owner); 2474 if (TOCstart == 0) 2475 TOCstart = ppc64_elf_toc (input_section->output_section->owner); 2476 2477 /* Subtract the TOC base address. */ 2478 reloc_entry->addend -= TOCstart + TOC_BASE_OFF; 2479 return bfd_reloc_continue; 2480 } 2481 2482 static bfd_reloc_status_type 2483 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, 2484 void *data, asection *input_section, 2485 bfd *output_bfd, char **error_message) 2486 { 2487 bfd_vma TOCstart; 2488 2489 /* If this is a relocatable link (output_bfd test tells us), just 2490 call the generic function. Any adjustment will be done at final 2491 link time. */ 2492 if (output_bfd != NULL) 2493 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data, 2494 input_section, output_bfd, error_message); 2495 2496 TOCstart = _bfd_get_gp_value (input_section->output_section->owner); 2497 if (TOCstart == 0) 2498 TOCstart = ppc64_elf_toc (input_section->output_section->owner); 2499 2500 /* Subtract the TOC base address. */ 2501 reloc_entry->addend -= TOCstart + TOC_BASE_OFF; 2502 2503 /* Adjust the addend for sign extension of the low 16 bits. */ 2504 reloc_entry->addend += 0x8000; 2505 return bfd_reloc_continue; 2506 } 2507 2508 static bfd_reloc_status_type 2509 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, 2510 void *data, asection *input_section, 2511 bfd *output_bfd, char **error_message) 2512 { 2513 bfd_vma TOCstart; 2514 bfd_size_type octets; 2515 2516 /* If this is a relocatable link (output_bfd test tells us), just 2517 call the generic function. Any adjustment will be done at final 2518 link time. */ 2519 if (output_bfd != NULL) 2520 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data, 2521 input_section, output_bfd, error_message); 2522 2523 TOCstart = _bfd_get_gp_value (input_section->output_section->owner); 2524 if (TOCstart == 0) 2525 TOCstart = ppc64_elf_toc (input_section->output_section->owner); 2526 2527 octets = reloc_entry->address * bfd_octets_per_byte (abfd); 2528 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets); 2529 return bfd_reloc_ok; 2530 } 2531 2532 static bfd_reloc_status_type 2533 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, 2534 void *data, asection *input_section, 2535 bfd *output_bfd, char **error_message) 2536 { 2537 /* If this is a relocatable link (output_bfd test tells us), just 2538 call the generic function. Any adjustment will be done at final 2539 link time. */ 2540 if (output_bfd != NULL) 2541 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data, 2542 input_section, output_bfd, error_message); 2543 2544 if (error_message != NULL) 2545 { 2546 static char buf[60]; 2547 sprintf (buf, "generic linker can't handle %s", 2548 reloc_entry->howto->name); 2549 *error_message = buf; 2550 } 2551 return bfd_reloc_dangerous; 2552 } 2553 2554 /* Track GOT entries needed for a given symbol. We might need more 2555 than one got entry per symbol. */ 2556 struct got_entry 2557 { 2558 struct got_entry *next; 2559 2560 /* The symbol addend that we'll be placing in the GOT. */ 2561 bfd_vma addend; 2562 2563 /* Unlike other ELF targets, we use separate GOT entries for the same 2564 symbol referenced from different input files. This is to support 2565 automatic multiple TOC/GOT sections, where the TOC base can vary 2566 from one input file to another. After partitioning into TOC groups 2567 we merge entries within the group. 2568 2569 Point to the BFD owning this GOT entry. */ 2570 bfd *owner; 2571 2572 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD, 2573 TLS_TPREL or TLS_DTPREL for tls entries. */ 2574 unsigned char tls_type; 2575 2576 /* Non-zero if got.ent points to real entry. */ 2577 unsigned char is_indirect; 2578 2579 /* Reference count until size_dynamic_sections, GOT offset thereafter. */ 2580 union 2581 { 2582 bfd_signed_vma refcount; 2583 bfd_vma offset; 2584 struct got_entry *ent; 2585 } got; 2586 }; 2587 2588 /* The same for PLT. */ 2589 struct plt_entry 2590 { 2591 struct plt_entry *next; 2592 2593 bfd_vma addend; 2594 2595 union 2596 { 2597 bfd_signed_vma refcount; 2598 bfd_vma offset; 2599 } plt; 2600 }; 2601 2602 struct ppc64_elf_obj_tdata 2603 { 2604 struct elf_obj_tdata elf; 2605 2606 /* Shortcuts to dynamic linker sections. */ 2607 asection *got; 2608 asection *relgot; 2609 2610 /* Used during garbage collection. We attach global symbols defined 2611 on removed .opd entries to this section so that the sym is removed. */ 2612 asection *deleted_section; 2613 2614 /* TLS local dynamic got entry handling. Support for multiple GOT 2615 sections means we potentially need one of these for each input bfd. */ 2616 struct got_entry tlsld_got; 2617 2618 /* A copy of relocs before they are modified for --emit-relocs. */ 2619 Elf_Internal_Rela *opd_relocs; 2620 2621 /* Nonzero if this bfd has small toc/got relocs, ie. that expect 2622 the reloc to be in the range -32768 to 32767. */ 2623 unsigned int has_small_toc_reloc : 1; 2624 2625 /* Set if toc/got ha relocs detected not using r2, or lo reloc 2626 instruction not one we handle. */ 2627 unsigned int unexpected_toc_insn : 1; 2628 }; 2629 2630 #define ppc64_elf_tdata(bfd) \ 2631 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any) 2632 2633 #define ppc64_tlsld_got(bfd) \ 2634 (&ppc64_elf_tdata (bfd)->tlsld_got) 2635 2636 #define is_ppc64_elf(bfd) \ 2637 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ 2638 && elf_object_id (bfd) == PPC64_ELF_DATA) 2639 2640 /* Override the generic function because we store some extras. */ 2641 2642 static bfd_boolean 2643 ppc64_elf_mkobject (bfd *abfd) 2644 { 2645 return bfd_elf_allocate_object (abfd, sizeof (struct ppc64_elf_obj_tdata), 2646 PPC64_ELF_DATA); 2647 } 2648 2649 /* Fix bad default arch selected for a 64 bit input bfd when the 2650 default is 32 bit. */ 2651 2652 static bfd_boolean 2653 ppc64_elf_object_p (bfd *abfd) 2654 { 2655 if (abfd->arch_info->the_default && abfd->arch_info->bits_per_word == 32) 2656 { 2657 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd); 2658 2659 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64) 2660 { 2661 /* Relies on arch after 32 bit default being 64 bit default. */ 2662 abfd->arch_info = abfd->arch_info->next; 2663 BFD_ASSERT (abfd->arch_info->bits_per_word == 64); 2664 } 2665 } 2666 return TRUE; 2667 } 2668 2669 /* Support for core dump NOTE sections. */ 2670 2671 static bfd_boolean 2672 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) 2673 { 2674 size_t offset, size; 2675 2676 if (note->descsz != 504) 2677 return FALSE; 2678 2679 /* pr_cursig */ 2680 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12); 2681 2682 /* pr_pid */ 2683 elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 32); 2684 2685 /* pr_reg */ 2686 offset = 112; 2687 size = 384; 2688 2689 /* Make a ".reg/999" section. */ 2690 return _bfd_elfcore_make_pseudosection (abfd, ".reg", 2691 size, note->descpos + offset); 2692 } 2693 2694 static bfd_boolean 2695 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) 2696 { 2697 if (note->descsz != 136) 2698 return FALSE; 2699 2700 elf_tdata (abfd)->core_pid 2701 = bfd_get_32 (abfd, note->descdata + 24); 2702 elf_tdata (abfd)->core_program 2703 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16); 2704 elf_tdata (abfd)->core_command 2705 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80); 2706 2707 return TRUE; 2708 } 2709 2710 static char * 2711 ppc64_elf_write_core_note (bfd *abfd, char *buf, int *bufsiz, int note_type, 2712 ...) 2713 { 2714 switch (note_type) 2715 { 2716 default: 2717 return NULL; 2718 2719 case NT_PRPSINFO: 2720 { 2721 char data[136]; 2722 va_list ap; 2723 2724 va_start (ap, note_type); 2725 memset (data, 0, sizeof (data)); 2726 strncpy (data + 40, va_arg (ap, const char *), 16); 2727 strncpy (data + 56, va_arg (ap, const char *), 80); 2728 va_end (ap); 2729 return elfcore_write_note (abfd, buf, bufsiz, 2730 "CORE", note_type, data, sizeof (data)); 2731 } 2732 2733 case NT_PRSTATUS: 2734 { 2735 char data[504]; 2736 va_list ap; 2737 long pid; 2738 int cursig; 2739 const void *greg; 2740 2741 va_start (ap, note_type); 2742 memset (data, 0, 112); 2743 pid = va_arg (ap, long); 2744 bfd_put_32 (abfd, pid, data + 32); 2745 cursig = va_arg (ap, int); 2746 bfd_put_16 (abfd, cursig, data + 12); 2747 greg = va_arg (ap, const void *); 2748 memcpy (data + 112, greg, 384); 2749 memset (data + 496, 0, 8); 2750 va_end (ap); 2751 return elfcore_write_note (abfd, buf, bufsiz, 2752 "CORE", note_type, data, sizeof (data)); 2753 } 2754 } 2755 } 2756 2757 /* Add extra PPC sections. */ 2758 2759 static const struct bfd_elf_special_section ppc64_elf_special_sections[]= 2760 { 2761 { STRING_COMMA_LEN (".plt"), 0, SHT_NOBITS, 0 }, 2762 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE }, 2763 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, 2764 { STRING_COMMA_LEN (".toc"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, 2765 { STRING_COMMA_LEN (".toc1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, 2766 { STRING_COMMA_LEN (".tocbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE }, 2767 { NULL, 0, 0, 0, 0 } 2768 }; 2769 2770 enum _ppc64_sec_type { 2771 sec_normal = 0, 2772 sec_opd = 1, 2773 sec_toc = 2 2774 }; 2775 2776 struct _ppc64_elf_section_data 2777 { 2778 struct bfd_elf_section_data elf; 2779 2780 union 2781 { 2782 /* An array with one entry for each opd function descriptor. */ 2783 struct _opd_sec_data 2784 { 2785 /* Points to the function code section for local opd entries. */ 2786 asection **func_sec; 2787 2788 /* After editing .opd, adjust references to opd local syms. */ 2789 long *adjust; 2790 } opd; 2791 2792 /* An array for toc sections, indexed by offset/8. */ 2793 struct _toc_sec_data 2794 { 2795 /* Specifies the relocation symbol index used at a given toc offset. */ 2796 unsigned *symndx; 2797 2798 /* And the relocation addend. */ 2799 bfd_vma *add; 2800 } toc; 2801 } u; 2802 2803 enum _ppc64_sec_type sec_type:2; 2804 2805 /* Flag set when small branches are detected. Used to 2806 select suitable defaults for the stub group size. */ 2807 unsigned int has_14bit_branch:1; 2808 }; 2809 2810 #define ppc64_elf_section_data(sec) \ 2811 ((struct _ppc64_elf_section_data *) elf_section_data (sec)) 2812 2813 static bfd_boolean 2814 ppc64_elf_new_section_hook (bfd *abfd, asection *sec) 2815 { 2816 if (!sec->used_by_bfd) 2817 { 2818 struct _ppc64_elf_section_data *sdata; 2819 bfd_size_type amt = sizeof (*sdata); 2820 2821 sdata = bfd_zalloc (abfd, amt); 2822 if (sdata == NULL) 2823 return FALSE; 2824 sec->used_by_bfd = sdata; 2825 } 2826 2827 return _bfd_elf_new_section_hook (abfd, sec); 2828 } 2829 2830 static struct _opd_sec_data * 2831 get_opd_info (asection * sec) 2832 { 2833 if (sec != NULL 2834 && ppc64_elf_section_data (sec) != NULL 2835 && ppc64_elf_section_data (sec)->sec_type == sec_opd) 2836 return &ppc64_elf_section_data (sec)->u.opd; 2837 return NULL; 2838 } 2839 2840 /* Parameters for the qsort hook. */ 2841 static bfd_boolean synthetic_relocatable; 2842 2843 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */ 2844 2845 static int 2846 compare_symbols (const void *ap, const void *bp) 2847 { 2848 const asymbol *a = * (const asymbol **) ap; 2849 const asymbol *b = * (const asymbol **) bp; 2850 2851 /* Section symbols first. */ 2852 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM)) 2853 return -1; 2854 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM)) 2855 return 1; 2856 2857 /* then .opd symbols. */ 2858 if (strcmp (a->section->name, ".opd") == 0 2859 && strcmp (b->section->name, ".opd") != 0) 2860 return -1; 2861 if (strcmp (a->section->name, ".opd") != 0 2862 && strcmp (b->section->name, ".opd") == 0) 2863 return 1; 2864 2865 /* then other code symbols. */ 2866 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL)) 2867 == (SEC_CODE | SEC_ALLOC) 2868 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL)) 2869 != (SEC_CODE | SEC_ALLOC)) 2870 return -1; 2871 2872 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL)) 2873 != (SEC_CODE | SEC_ALLOC) 2874 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL)) 2875 == (SEC_CODE | SEC_ALLOC)) 2876 return 1; 2877 2878 if (synthetic_relocatable) 2879 { 2880 if (a->section->id < b->section->id) 2881 return -1; 2882 2883 if (a->section->id > b->section->id) 2884 return 1; 2885 } 2886 2887 if (a->value + a->section->vma < b->value + b->section->vma) 2888 return -1; 2889 2890 if (a->value + a->section->vma > b->value + b->section->vma) 2891 return 1; 2892 2893 /* For syms with the same value, prefer strong dynamic global function 2894 syms over other syms. */ 2895 if ((a->flags & BSF_GLOBAL) != 0 && (b->flags & BSF_GLOBAL) == 0) 2896 return -1; 2897 2898 if ((a->flags & BSF_GLOBAL) == 0 && (b->flags & BSF_GLOBAL) != 0) 2899 return 1; 2900 2901 if ((a->flags & BSF_FUNCTION) != 0 && (b->flags & BSF_FUNCTION) == 0) 2902 return -1; 2903 2904 if ((a->flags & BSF_FUNCTION) == 0 && (b->flags & BSF_FUNCTION) != 0) 2905 return 1; 2906 2907 if ((a->flags & BSF_WEAK) == 0 && (b->flags & BSF_WEAK) != 0) 2908 return -1; 2909 2910 if ((a->flags & BSF_WEAK) != 0 && (b->flags & BSF_WEAK) == 0) 2911 return 1; 2912 2913 if ((a->flags & BSF_DYNAMIC) != 0 && (b->flags & BSF_DYNAMIC) == 0) 2914 return -1; 2915 2916 if ((a->flags & BSF_DYNAMIC) == 0 && (b->flags & BSF_DYNAMIC) != 0) 2917 return 1; 2918 2919 return 0; 2920 } 2921 2922 /* Search SYMS for a symbol of the given VALUE. */ 2923 2924 static asymbol * 2925 sym_exists_at (asymbol **syms, long lo, long hi, int id, bfd_vma value) 2926 { 2927 long mid; 2928 2929 if (id == -1) 2930 { 2931 while (lo < hi) 2932 { 2933 mid = (lo + hi) >> 1; 2934 if (syms[mid]->value + syms[mid]->section->vma < value) 2935 lo = mid + 1; 2936 else if (syms[mid]->value + syms[mid]->section->vma > value) 2937 hi = mid; 2938 else 2939 return syms[mid]; 2940 } 2941 } 2942 else 2943 { 2944 while (lo < hi) 2945 { 2946 mid = (lo + hi) >> 1; 2947 if (syms[mid]->section->id < id) 2948 lo = mid + 1; 2949 else if (syms[mid]->section->id > id) 2950 hi = mid; 2951 else if (syms[mid]->value < value) 2952 lo = mid + 1; 2953 else if (syms[mid]->value > value) 2954 hi = mid; 2955 else 2956 return syms[mid]; 2957 } 2958 } 2959 return NULL; 2960 } 2961 2962 static bfd_boolean 2963 section_covers_vma (bfd *abfd ATTRIBUTE_UNUSED, asection *section, void *ptr) 2964 { 2965 bfd_vma vma = *(bfd_vma *) ptr; 2966 return ((section->flags & SEC_ALLOC) != 0 2967 && section->vma <= vma 2968 && vma < section->vma + section->size); 2969 } 2970 2971 /* Create synthetic symbols, effectively restoring "dot-symbol" function 2972 entry syms. Also generate @plt symbols for the glink branch table. */ 2973 2974 static long 2975 ppc64_elf_get_synthetic_symtab (bfd *abfd, 2976 long static_count, asymbol **static_syms, 2977 long dyn_count, asymbol **dyn_syms, 2978 asymbol **ret) 2979 { 2980 asymbol *s; 2981 long i; 2982 long count; 2983 char *names; 2984 long symcount, codesecsym, codesecsymend, secsymend, opdsymend; 2985 asection *opd; 2986 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0; 2987 asymbol **syms; 2988 2989 *ret = NULL; 2990 2991 opd = bfd_get_section_by_name (abfd, ".opd"); 2992 if (opd == NULL) 2993 return 0; 2994 2995 symcount = static_count; 2996 if (!relocatable) 2997 symcount += dyn_count; 2998 if (symcount == 0) 2999 return 0; 3000 3001 syms = bfd_malloc ((symcount + 1) * sizeof (*syms)); 3002 if (syms == NULL) 3003 return -1; 3004 3005 if (!relocatable && static_count != 0 && dyn_count != 0) 3006 { 3007 /* Use both symbol tables. */ 3008 memcpy (syms, static_syms, static_count * sizeof (*syms)); 3009 memcpy (syms + static_count, dyn_syms, (dyn_count + 1) * sizeof (*syms)); 3010 } 3011 else if (!relocatable && static_count == 0) 3012 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms)); 3013 else 3014 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms)); 3015 3016 synthetic_relocatable = relocatable; 3017 qsort (syms, symcount, sizeof (*syms), compare_symbols); 3018 3019 if (!relocatable && symcount > 1) 3020 { 3021 long j; 3022 /* Trim duplicate syms, since we may have merged the normal and 3023 dynamic symbols. Actually, we only care about syms that have 3024 different values, so trim any with the same value. */ 3025 for (i = 1, j = 1; i < symcount; ++i) 3026 if (syms[i - 1]->value + syms[i - 1]->section->vma 3027 != syms[i]->value + syms[i]->section->vma) 3028 syms[j++] = syms[i]; 3029 symcount = j; 3030 } 3031 3032 i = 0; 3033 if (strcmp (syms[i]->section->name, ".opd") == 0) 3034 ++i; 3035 codesecsym = i; 3036 3037 for (; i < symcount; ++i) 3038 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL)) 3039 != (SEC_CODE | SEC_ALLOC)) 3040 || (syms[i]->flags & BSF_SECTION_SYM) == 0) 3041 break; 3042 codesecsymend = i; 3043 3044 for (; i < symcount; ++i) 3045 if ((syms[i]->flags & BSF_SECTION_SYM) == 0) 3046 break; 3047 secsymend = i; 3048 3049 for (; i < symcount; ++i) 3050 if (strcmp (syms[i]->section->name, ".opd") != 0) 3051 break; 3052 opdsymend = i; 3053 3054 for (; i < symcount; ++i) 3055 if ((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL)) 3056 != (SEC_CODE | SEC_ALLOC)) 3057 break; 3058 symcount = i; 3059 3060 count = 0; 3061 3062 if (relocatable) 3063 { 3064 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean); 3065 arelent *r; 3066 size_t size; 3067 long relcount; 3068 3069 if (opdsymend == secsymend) 3070 goto done; 3071 3072 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table; 3073 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0; 3074 if (relcount == 0) 3075 goto done; 3076 3077 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE)) 3078 { 3079 count = -1; 3080 goto done; 3081 } 3082 3083 size = 0; 3084 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i) 3085 { 3086 asymbol *sym; 3087 3088 while (r < opd->relocation + relcount 3089 && r->address < syms[i]->value + opd->vma) 3090 ++r; 3091 3092 if (r == opd->relocation + relcount) 3093 break; 3094 3095 if (r->address != syms[i]->value + opd->vma) 3096 continue; 3097 3098 if (r->howto->type != R_PPC64_ADDR64) 3099 continue; 3100 3101 sym = *r->sym_ptr_ptr; 3102 if (!sym_exists_at (syms, opdsymend, symcount, 3103 sym->section->id, sym->value + r->addend)) 3104 { 3105 ++count; 3106 size += sizeof (asymbol); 3107 size += strlen (syms[i]->name) + 2; 3108 } 3109 } 3110 3111 s = *ret = bfd_malloc (size); 3112 if (s == NULL) 3113 { 3114 count = -1; 3115 goto done; 3116 } 3117 3118 names = (char *) (s + count); 3119 3120 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i) 3121 { 3122 asymbol *sym; 3123 3124 while (r < opd->relocation + relcount 3125 && r->address < syms[i]->value + opd->vma) 3126 ++r; 3127 3128 if (r == opd->relocation + relcount) 3129 break; 3130 3131 if (r->address != syms[i]->value + opd->vma) 3132 continue; 3133 3134 if (r->howto->type != R_PPC64_ADDR64) 3135 continue; 3136 3137 sym = *r->sym_ptr_ptr; 3138 if (!sym_exists_at (syms, opdsymend, symcount, 3139 sym->section->id, sym->value + r->addend)) 3140 { 3141 size_t len; 3142 3143 *s = *syms[i]; 3144 s->flags |= BSF_SYNTHETIC; 3145 s->section = sym->section; 3146 s->value = sym->value + r->addend; 3147 s->name = names; 3148 *names++ = '.'; 3149 len = strlen (syms[i]->name); 3150 memcpy (names, syms[i]->name, len + 1); 3151 names += len + 1; 3152 /* Have udata.p point back to the original symbol this 3153 synthetic symbol was derived from. */ 3154 s->udata.p = syms[i]; 3155 s++; 3156 } 3157 } 3158 } 3159 else 3160 { 3161 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean); 3162 bfd_byte *contents; 3163 size_t size; 3164 long plt_count = 0; 3165 bfd_vma glink_vma = 0, resolv_vma = 0; 3166 asection *dynamic, *glink = NULL, *relplt = NULL; 3167 arelent *p; 3168 3169 if (!bfd_malloc_and_get_section (abfd, opd, &contents)) 3170 { 3171 if (contents) 3172 { 3173 free_contents_and_exit: 3174 free (contents); 3175 } 3176 count = -1; 3177 goto done; 3178 } 3179 3180 size = 0; 3181 for (i = secsymend; i < opdsymend; ++i) 3182 { 3183 bfd_vma ent; 3184 3185 /* Ignore bogus symbols. */ 3186 if (syms[i]->value > opd->size - 8) 3187 continue; 3188 3189 ent = bfd_get_64 (abfd, contents + syms[i]->value); 3190 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent)) 3191 { 3192 ++count; 3193 size += sizeof (asymbol); 3194 size += strlen (syms[i]->name) + 2; 3195 } 3196 } 3197 3198 /* Get start of .glink stubs from DT_PPC64_GLINK. */ 3199 if (dyn_count != 0 3200 && (dynamic = bfd_get_section_by_name (abfd, ".dynamic")) != NULL) 3201 { 3202 bfd_byte *dynbuf, *extdyn, *extdynend; 3203 size_t extdynsize; 3204 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *); 3205 3206 if (!bfd_malloc_and_get_section (abfd, dynamic, &dynbuf)) 3207 goto free_contents_and_exit; 3208 3209 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn; 3210 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in; 3211 3212 extdyn = dynbuf; 3213 extdynend = extdyn + dynamic->size; 3214 for (; extdyn < extdynend; extdyn += extdynsize) 3215 { 3216 Elf_Internal_Dyn dyn; 3217 (*swap_dyn_in) (abfd, extdyn, &dyn); 3218 3219 if (dyn.d_tag == DT_NULL) 3220 break; 3221 3222 if (dyn.d_tag == DT_PPC64_GLINK) 3223 { 3224 /* The first glink stub starts at offset 32; see comment in 3225 ppc64_elf_finish_dynamic_sections. */ 3226 glink_vma = dyn.d_un.d_val + 32; 3227 /* The .glink section usually does not survive the final 3228 link; search for the section (usually .text) where the 3229 glink stubs now reside. */ 3230 glink = bfd_sections_find_if (abfd, section_covers_vma, 3231 &glink_vma); 3232 break; 3233 } 3234 } 3235 3236 free (dynbuf); 3237 } 3238 3239 if (glink != NULL) 3240 { 3241 /* Determine __glink trampoline by reading the relative branch 3242 from the first glink stub. */ 3243 bfd_byte buf[4]; 3244 if (bfd_get_section_contents (abfd, glink, buf, 3245 glink_vma + 4 - glink->vma, 4)) 3246 { 3247 unsigned int insn = bfd_get_32 (abfd, buf); 3248 insn ^= B_DOT; 3249 if ((insn & ~0x3fffffc) == 0) 3250 resolv_vma = glink_vma + 4 + (insn ^ 0x2000000) - 0x2000000; 3251 } 3252 3253 if (resolv_vma) 3254 size += sizeof (asymbol) + sizeof ("__glink_PLTresolve"); 3255 3256 relplt = bfd_get_section_by_name (abfd, ".rela.plt"); 3257 if (relplt != NULL) 3258 { 3259 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table; 3260 if (! (*slurp_relocs) (abfd, relplt, dyn_syms, TRUE)) 3261 goto free_contents_and_exit; 3262 3263 plt_count = relplt->size / sizeof (Elf64_External_Rela); 3264 size += plt_count * sizeof (asymbol); 3265 3266 p = relplt->relocation; 3267 for (i = 0; i < plt_count; i++, p++) 3268 { 3269 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt"); 3270 if (p->addend != 0) 3271 size += sizeof ("+0x") - 1 + 16; 3272 } 3273 } 3274 } 3275 3276 s = *ret = bfd_malloc (size); 3277 if (s == NULL) 3278 goto free_contents_and_exit; 3279 3280 names = (char *) (s + count + plt_count + (resolv_vma != 0)); 3281 3282 for (i = secsymend; i < opdsymend; ++i) 3283 { 3284 bfd_vma ent; 3285 3286 if (syms[i]->value > opd->size - 8) 3287 continue; 3288 3289 ent = bfd_get_64 (abfd, contents + syms[i]->value); 3290 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent)) 3291 { 3292 long lo, hi; 3293 size_t len; 3294 asection *sec = abfd->sections; 3295 3296 *s = *syms[i]; 3297 lo = codesecsym; 3298 hi = codesecsymend; 3299 while (lo < hi) 3300 { 3301 long mid = (lo + hi) >> 1; 3302 if (syms[mid]->section->vma < ent) 3303 lo = mid + 1; 3304 else if (syms[mid]->section->vma > ent) 3305 hi = mid; 3306 else 3307 { 3308 sec = syms[mid]->section; 3309 break; 3310 } 3311 } 3312 3313 if (lo >= hi && lo > codesecsym) 3314 sec = syms[lo - 1]->section; 3315 3316 for (; sec != NULL; sec = sec->next) 3317 { 3318 if (sec->vma > ent) 3319 break; 3320 /* SEC_LOAD may not be set if SEC is from a separate debug 3321 info file. */ 3322 if ((sec->flags & SEC_ALLOC) == 0) 3323 break; 3324 if ((sec->flags & SEC_CODE) != 0) 3325 s->section = sec; 3326 } 3327 s->flags |= BSF_SYNTHETIC; 3328 s->value = ent - s->section->vma; 3329 s->name = names; 3330 *names++ = '.'; 3331 len = strlen (syms[i]->name); 3332 memcpy (names, syms[i]->name, len + 1); 3333 names += len + 1; 3334 /* Have udata.p point back to the original symbol this 3335 synthetic symbol was derived from. */ 3336 s->udata.p = syms[i]; 3337 s++; 3338 } 3339 } 3340 free (contents); 3341 3342 if (glink != NULL && relplt != NULL) 3343 { 3344 if (resolv_vma) 3345 { 3346 /* Add a symbol for the main glink trampoline. */ 3347 memset (s, 0, sizeof *s); 3348 s->the_bfd = abfd; 3349 s->flags = BSF_GLOBAL | BSF_SYNTHETIC; 3350 s->section = glink; 3351 s->value = resolv_vma - glink->vma; 3352 s->name = names; 3353 memcpy (names, "__glink_PLTresolve", sizeof ("__glink_PLTresolve")); 3354 names += sizeof ("__glink_PLTresolve"); 3355 s++; 3356 count++; 3357 } 3358 3359 /* FIXME: It would be very much nicer to put sym@plt on the 3360 stub rather than on the glink branch table entry. The 3361 objdump disassembler would then use a sensible symbol 3362 name on plt calls. The difficulty in doing so is 3363 a) finding the stubs, and, 3364 b) matching stubs against plt entries, and, 3365 c) there can be multiple stubs for a given plt entry. 3366 3367 Solving (a) could be done by code scanning, but older 3368 ppc64 binaries used different stubs to current code. 3369 (b) is the tricky one since you need to known the toc 3370 pointer for at least one function that uses a pic stub to 3371 be able to calculate the plt address referenced. 3372 (c) means gdb would need to set multiple breakpoints (or 3373 find the glink branch itself) when setting breakpoints 3374 for pending shared library loads. */ 3375 p = relplt->relocation; 3376 for (i = 0; i < plt_count; i++, p++) 3377 { 3378 size_t len; 3379 3380 *s = **p->sym_ptr_ptr; 3381 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since 3382 we are defining a symbol, ensure one of them is set. */ 3383 if ((s->flags & BSF_LOCAL) == 0) 3384 s->flags |= BSF_GLOBAL; 3385 s->flags |= BSF_SYNTHETIC; 3386 s->section = glink; 3387 s->value = glink_vma - glink->vma; 3388 s->name = names; 3389 s->udata.p = NULL; 3390 len = strlen ((*p->sym_ptr_ptr)->name); 3391 memcpy (names, (*p->sym_ptr_ptr)->name, len); 3392 names += len; 3393 if (p->addend != 0) 3394 { 3395 memcpy (names, "+0x", sizeof ("+0x") - 1); 3396 names += sizeof ("+0x") - 1; 3397 bfd_sprintf_vma (abfd, names, p->addend); 3398 names += strlen (names); 3399 } 3400 memcpy (names, "@plt", sizeof ("@plt")); 3401 names += sizeof ("@plt"); 3402 s++; 3403 glink_vma += 8; 3404 if (i >= 0x8000) 3405 glink_vma += 4; 3406 } 3407 count += plt_count; 3408 } 3409 } 3410 3411 done: 3412 free (syms); 3413 return count; 3414 } 3415 3416 /* The following functions are specific to the ELF linker, while 3417 functions above are used generally. Those named ppc64_elf_* are 3418 called by the main ELF linker code. They appear in this file more 3419 or less in the order in which they are called. eg. 3420 ppc64_elf_check_relocs is called early in the link process, 3421 ppc64_elf_finish_dynamic_sections is one of the last functions 3422 called. 3423 3424 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that 3425 functions have both a function code symbol and a function descriptor 3426 symbol. A call to foo in a relocatable object file looks like: 3427 3428 . .text 3429 . x: 3430 . bl .foo 3431 . nop 3432 3433 The function definition in another object file might be: 3434 3435 . .section .opd 3436 . foo: .quad .foo 3437 . .quad .TOC.@tocbase 3438 . .quad 0 3439 . 3440 . .text 3441 . .foo: blr 3442 3443 When the linker resolves the call during a static link, the branch 3444 unsurprisingly just goes to .foo and the .opd information is unused. 3445 If the function definition is in a shared library, things are a little 3446 different: The call goes via a plt call stub, the opd information gets 3447 copied to the plt, and the linker patches the nop. 3448 3449 . x: 3450 . bl .foo_stub 3451 . ld 2,40(1) 3452 . 3453 . 3454 . .foo_stub: 3455 . addis 12,2,Lfoo@toc@ha # in practice, the call stub 3456 . addi 12,12,Lfoo@toc@l # is slightly optimized, but 3457 . std 2,40(1) # this is the general idea 3458 . ld 11,0(12) 3459 . ld 2,8(12) 3460 . mtctr 11 3461 . ld 11,16(12) 3462 . bctr 3463 . 3464 . .section .plt 3465 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo) 3466 3467 The "reloc ()" notation is supposed to indicate that the linker emits 3468 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd 3469 copying. 3470 3471 What are the difficulties here? Well, firstly, the relocations 3472 examined by the linker in check_relocs are against the function code 3473 sym .foo, while the dynamic relocation in the plt is emitted against 3474 the function descriptor symbol, foo. Somewhere along the line, we need 3475 to carefully copy dynamic link information from one symbol to the other. 3476 Secondly, the generic part of the elf linker will make .foo a dynamic 3477 symbol as is normal for most other backends. We need foo dynamic 3478 instead, at least for an application final link. However, when 3479 creating a shared library containing foo, we need to have both symbols 3480 dynamic so that references to .foo are satisfied during the early 3481 stages of linking. Otherwise the linker might decide to pull in a 3482 definition from some other object, eg. a static library. 3483 3484 Update: As of August 2004, we support a new convention. Function 3485 calls may use the function descriptor symbol, ie. "bl foo". This 3486 behaves exactly as "bl .foo". */ 3487 3488 /* Of those relocs that might be copied as dynamic relocs, this function 3489 selects those that must be copied when linking a shared library, 3490 even when the symbol is local. */ 3491 3492 static int 3493 must_be_dyn_reloc (struct bfd_link_info *info, 3494 enum elf_ppc64_reloc_type r_type) 3495 { 3496 switch (r_type) 3497 { 3498 default: 3499 return 1; 3500 3501 case R_PPC64_REL32: 3502 case R_PPC64_REL64: 3503 case R_PPC64_REL30: 3504 return 0; 3505 3506 case R_PPC64_TPREL16: 3507 case R_PPC64_TPREL16_LO: 3508 case R_PPC64_TPREL16_HI: 3509 case R_PPC64_TPREL16_HA: 3510 case R_PPC64_TPREL16_DS: 3511 case R_PPC64_TPREL16_LO_DS: 3512 case R_PPC64_TPREL16_HIGHER: 3513 case R_PPC64_TPREL16_HIGHERA: 3514 case R_PPC64_TPREL16_HIGHEST: 3515 case R_PPC64_TPREL16_HIGHESTA: 3516 case R_PPC64_TPREL64: 3517 return !info->executable; 3518 } 3519 } 3520 3521 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid 3522 copying dynamic variables from a shared lib into an app's dynbss 3523 section, and instead use a dynamic relocation to point into the 3524 shared lib. With code that gcc generates, it's vital that this be 3525 enabled; In the PowerPC64 ABI, the address of a function is actually 3526 the address of a function descriptor, which resides in the .opd 3527 section. gcc uses the descriptor directly rather than going via the 3528 GOT as some other ABI's do, which means that initialized function 3529 pointers must reference the descriptor. Thus, a function pointer 3530 initialized to the address of a function in a shared library will 3531 either require a copy reloc, or a dynamic reloc. Using a copy reloc 3532 redefines the function descriptor symbol to point to the copy. This 3533 presents a problem as a plt entry for that function is also 3534 initialized from the function descriptor symbol and the copy reloc 3535 may not be initialized first. */ 3536 #define ELIMINATE_COPY_RELOCS 1 3537 3538 /* Section name for stubs is the associated section name plus this 3539 string. */ 3540 #define STUB_SUFFIX ".stub" 3541 3542 /* Linker stubs. 3543 ppc_stub_long_branch: 3544 Used when a 14 bit branch (or even a 24 bit branch) can't reach its 3545 destination, but a 24 bit branch in a stub section will reach. 3546 . b dest 3547 3548 ppc_stub_plt_branch: 3549 Similar to the above, but a 24 bit branch in the stub section won't 3550 reach its destination. 3551 . addis %r12,%r2,xxx@toc@ha 3552 . ld %r11,xxx@toc@l(%r12) 3553 . mtctr %r11 3554 . bctr 3555 3556 ppc_stub_plt_call: 3557 Used to call a function in a shared library. If it so happens that 3558 the plt entry referenced crosses a 64k boundary, then an extra 3559 "addi %r12,%r12,xxx@toc@l" will be inserted before the "mtctr". 3560 . addis %r12,%r2,xxx@toc@ha 3561 . std %r2,40(%r1) 3562 . ld %r11,xxx+0@toc@l(%r12) 3563 . mtctr %r11 3564 . ld %r2,xxx+8@toc@l(%r12) 3565 . ld %r11,xxx+16@toc@l(%r12) 3566 . bctr 3567 3568 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional 3569 code to adjust the value and save r2 to support multiple toc sections. 3570 A ppc_stub_long_branch with an r2 offset looks like: 3571 . std %r2,40(%r1) 3572 . addis %r2,%r2,off@ha 3573 . addi %r2,%r2,off@l 3574 . b dest 3575 3576 A ppc_stub_plt_branch with an r2 offset looks like: 3577 . std %r2,40(%r1) 3578 . addis %r12,%r2,xxx@toc@ha 3579 . ld %r11,xxx@toc@l(%r12) 3580 . addis %r2,%r2,off@ha 3581 . addi %r2,%r2,off@l 3582 . mtctr %r11 3583 . bctr 3584 3585 In cases where the "addis" instruction would add zero, the "addis" is 3586 omitted and following instructions modified slightly in some cases. 3587 */ 3588 3589 enum ppc_stub_type { 3590 ppc_stub_none, 3591 ppc_stub_long_branch, 3592 ppc_stub_long_branch_r2off, 3593 ppc_stub_plt_branch, 3594 ppc_stub_plt_branch_r2off, 3595 ppc_stub_plt_call, 3596 ppc_stub_plt_call_r2save 3597 }; 3598 3599 struct ppc_stub_hash_entry { 3600 3601 /* Base hash table entry structure. */ 3602 struct bfd_hash_entry root; 3603 3604 enum ppc_stub_type stub_type; 3605 3606 /* The stub section. */ 3607 asection *stub_sec; 3608 3609 /* Offset within stub_sec of the beginning of this stub. */ 3610 bfd_vma stub_offset; 3611 3612 /* Given the symbol's value and its section we can determine its final 3613 value when building the stubs (so the stub knows where to jump. */ 3614 bfd_vma target_value; 3615 asection *target_section; 3616 3617 /* The symbol table entry, if any, that this was derived from. */ 3618 struct ppc_link_hash_entry *h; 3619 struct plt_entry *plt_ent; 3620 3621 /* And the reloc addend that this was derived from. */ 3622 bfd_vma addend; 3623 3624 /* Where this stub is being called from, or, in the case of combined 3625 stub sections, the first input section in the group. */ 3626 asection *id_sec; 3627 }; 3628 3629 struct ppc_branch_hash_entry { 3630 3631 /* Base hash table entry structure. */ 3632 struct bfd_hash_entry root; 3633 3634 /* Offset within branch lookup table. */ 3635 unsigned int offset; 3636 3637 /* Generation marker. */ 3638 unsigned int iter; 3639 }; 3640 3641 struct ppc_link_hash_entry 3642 { 3643 struct elf_link_hash_entry elf; 3644 3645 union { 3646 /* A pointer to the most recently used stub hash entry against this 3647 symbol. */ 3648 struct ppc_stub_hash_entry *stub_cache; 3649 3650 /* A pointer to the next symbol starting with a '.' */ 3651 struct ppc_link_hash_entry *next_dot_sym; 3652 } u; 3653 3654 /* Track dynamic relocs copied for this symbol. */ 3655 struct elf_dyn_relocs *dyn_relocs; 3656 3657 /* Link between function code and descriptor symbols. */ 3658 struct ppc_link_hash_entry *oh; 3659 3660 /* Flag function code and descriptor symbols. */ 3661 unsigned int is_func:1; 3662 unsigned int is_func_descriptor:1; 3663 unsigned int fake:1; 3664 3665 /* Whether global opd/toc sym has been adjusted or not. 3666 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag 3667 should be set for all globals defined in any opd/toc section. */ 3668 unsigned int adjust_done:1; 3669 3670 /* Set if we twiddled this symbol to weak at some stage. */ 3671 unsigned int was_undefined:1; 3672 3673 /* Contexts in which symbol is used in the GOT (or TOC). 3674 TLS_GD .. TLS_EXPLICIT bits are or'd into the mask as the 3675 corresponding relocs are encountered during check_relocs. 3676 tls_optimize clears TLS_GD .. TLS_TPREL when optimizing to 3677 indicate the corresponding GOT entry type is not needed. 3678 tls_optimize may also set TLS_TPRELGD when a GD reloc turns into 3679 a TPREL one. We use a separate flag rather than setting TPREL 3680 just for convenience in distinguishing the two cases. */ 3681 #define TLS_GD 1 /* GD reloc. */ 3682 #define TLS_LD 2 /* LD reloc. */ 3683 #define TLS_TPREL 4 /* TPREL reloc, => IE. */ 3684 #define TLS_DTPREL 8 /* DTPREL reloc, => LD. */ 3685 #define TLS_TLS 16 /* Any TLS reloc. */ 3686 #define TLS_EXPLICIT 32 /* Marks TOC section TLS relocs. */ 3687 #define TLS_TPRELGD 64 /* TPREL reloc resulting from GD->IE. */ 3688 #define PLT_IFUNC 128 /* STT_GNU_IFUNC. */ 3689 unsigned char tls_mask; 3690 }; 3691 3692 /* ppc64 ELF linker hash table. */ 3693 3694 struct ppc_link_hash_table 3695 { 3696 struct elf_link_hash_table elf; 3697 3698 /* The stub hash table. */ 3699 struct bfd_hash_table stub_hash_table; 3700 3701 /* Another hash table for plt_branch stubs. */ 3702 struct bfd_hash_table branch_hash_table; 3703 3704 /* Hash table for function prologue tocsave. */ 3705 htab_t tocsave_htab; 3706 3707 /* Linker stub bfd. */ 3708 bfd *stub_bfd; 3709 3710 /* Linker call-backs. */ 3711 asection * (*add_stub_section) (const char *, asection *); 3712 void (*layout_sections_again) (void); 3713 3714 /* Array to keep track of which stub sections have been created, and 3715 information on stub grouping. */ 3716 struct map_stub { 3717 /* This is the section to which stubs in the group will be attached. */ 3718 asection *link_sec; 3719 /* The stub section. */ 3720 asection *stub_sec; 3721 /* Along with elf_gp, specifies the TOC pointer used in this group. */ 3722 bfd_vma toc_off; 3723 } *stub_group; 3724 3725 /* Temp used when calculating TOC pointers. */ 3726 bfd_vma toc_curr; 3727 bfd *toc_bfd; 3728 asection *toc_first_sec; 3729 3730 /* Highest input section id. */ 3731 int top_id; 3732 3733 /* Highest output section index. */ 3734 int top_index; 3735 3736 /* Used when adding symbols. */ 3737 struct ppc_link_hash_entry *dot_syms; 3738 3739 /* List of input sections for each output section. */ 3740 asection **input_list; 3741 3742 /* Short-cuts to get to dynamic linker sections. */ 3743 asection *got; 3744 asection *plt; 3745 asection *relplt; 3746 asection *iplt; 3747 asection *reliplt; 3748 asection *dynbss; 3749 asection *relbss; 3750 asection *glink; 3751 asection *sfpr; 3752 asection *brlt; 3753 asection *relbrlt; 3754 asection *glink_eh_frame; 3755 3756 /* Shortcut to .__tls_get_addr and __tls_get_addr. */ 3757 struct ppc_link_hash_entry *tls_get_addr; 3758 struct ppc_link_hash_entry *tls_get_addr_fd; 3759 3760 /* The size of reliplt used by got entry relocs. */ 3761 bfd_size_type got_reli_size; 3762 3763 /* Statistics. */ 3764 unsigned long stub_count[ppc_stub_plt_call_r2save]; 3765 3766 /* Number of stubs against global syms. */ 3767 unsigned long stub_globals; 3768 3769 /* Alignment of PLT call stubs. */ 3770 unsigned int plt_stub_align:4; 3771 3772 /* Set if PLT call stubs should load r11. */ 3773 unsigned int plt_static_chain:1; 3774 3775 /* Set if PLT call stubs need a read-read barrier. */ 3776 unsigned int plt_thread_safe:1; 3777 3778 /* Set if we should emit symbols for stubs. */ 3779 unsigned int emit_stub_syms:1; 3780 3781 /* Set if __tls_get_addr optimization should not be done. */ 3782 unsigned int no_tls_get_addr_opt:1; 3783 3784 /* Support for multiple toc sections. */ 3785 unsigned int do_multi_toc:1; 3786 unsigned int multi_toc_needed:1; 3787 unsigned int second_toc_pass:1; 3788 unsigned int do_toc_opt:1; 3789 3790 /* Set on error. */ 3791 unsigned int stub_error:1; 3792 3793 /* Temp used by ppc64_elf_process_dot_syms. */ 3794 unsigned int twiddled_syms:1; 3795 3796 /* Incremented every time we size stubs. */ 3797 unsigned int stub_iteration; 3798 3799 /* Small local sym cache. */ 3800 struct sym_cache sym_cache; 3801 }; 3802 3803 /* Rename some of the generic section flags to better document how they 3804 are used here. */ 3805 3806 /* Nonzero if this section has TLS related relocations. */ 3807 #define has_tls_reloc sec_flg0 3808 3809 /* Nonzero if this section has a call to __tls_get_addr. */ 3810 #define has_tls_get_addr_call sec_flg1 3811 3812 /* Nonzero if this section has any toc or got relocs. */ 3813 #define has_toc_reloc sec_flg2 3814 3815 /* Nonzero if this section has a call to another section that uses 3816 the toc or got. */ 3817 #define makes_toc_func_call sec_flg3 3818 3819 /* Recursion protection when determining above flag. */ 3820 #define call_check_in_progress sec_flg4 3821 #define call_check_done sec_flg5 3822 3823 /* Get the ppc64 ELF linker hash table from a link_info structure. */ 3824 3825 #define ppc_hash_table(p) \ 3826 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \ 3827 == PPC64_ELF_DATA ? ((struct ppc_link_hash_table *) ((p)->hash)) : NULL) 3828 3829 #define ppc_stub_hash_lookup(table, string, create, copy) \ 3830 ((struct ppc_stub_hash_entry *) \ 3831 bfd_hash_lookup ((table), (string), (create), (copy))) 3832 3833 #define ppc_branch_hash_lookup(table, string, create, copy) \ 3834 ((struct ppc_branch_hash_entry *) \ 3835 bfd_hash_lookup ((table), (string), (create), (copy))) 3836 3837 /* Create an entry in the stub hash table. */ 3838 3839 static struct bfd_hash_entry * 3840 stub_hash_newfunc (struct bfd_hash_entry *entry, 3841 struct bfd_hash_table *table, 3842 const char *string) 3843 { 3844 /* Allocate the structure if it has not already been allocated by a 3845 subclass. */ 3846 if (entry == NULL) 3847 { 3848 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry)); 3849 if (entry == NULL) 3850 return entry; 3851 } 3852 3853 /* Call the allocation method of the superclass. */ 3854 entry = bfd_hash_newfunc (entry, table, string); 3855 if (entry != NULL) 3856 { 3857 struct ppc_stub_hash_entry *eh; 3858 3859 /* Initialize the local fields. */ 3860 eh = (struct ppc_stub_hash_entry *) entry; 3861 eh->stub_type = ppc_stub_none; 3862 eh->stub_sec = NULL; 3863 eh->stub_offset = 0; 3864 eh->target_value = 0; 3865 eh->target_section = NULL; 3866 eh->h = NULL; 3867 eh->id_sec = NULL; 3868 } 3869 3870 return entry; 3871 } 3872 3873 /* Create an entry in the branch hash table. */ 3874 3875 static struct bfd_hash_entry * 3876 branch_hash_newfunc (struct bfd_hash_entry *entry, 3877 struct bfd_hash_table *table, 3878 const char *string) 3879 { 3880 /* Allocate the structure if it has not already been allocated by a 3881 subclass. */ 3882 if (entry == NULL) 3883 { 3884 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry)); 3885 if (entry == NULL) 3886 return entry; 3887 } 3888 3889 /* Call the allocation method of the superclass. */ 3890 entry = bfd_hash_newfunc (entry, table, string); 3891 if (entry != NULL) 3892 { 3893 struct ppc_branch_hash_entry *eh; 3894 3895 /* Initialize the local fields. */ 3896 eh = (struct ppc_branch_hash_entry *) entry; 3897 eh->offset = 0; 3898 eh->iter = 0; 3899 } 3900 3901 return entry; 3902 } 3903 3904 /* Create an entry in a ppc64 ELF linker hash table. */ 3905 3906 static struct bfd_hash_entry * 3907 link_hash_newfunc (struct bfd_hash_entry *entry, 3908 struct bfd_hash_table *table, 3909 const char *string) 3910 { 3911 /* Allocate the structure if it has not already been allocated by a 3912 subclass. */ 3913 if (entry == NULL) 3914 { 3915 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry)); 3916 if (entry == NULL) 3917 return entry; 3918 } 3919 3920 /* Call the allocation method of the superclass. */ 3921 entry = _bfd_elf_link_hash_newfunc (entry, table, string); 3922 if (entry != NULL) 3923 { 3924 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry; 3925 3926 memset (&eh->u.stub_cache, 0, 3927 (sizeof (struct ppc_link_hash_entry) 3928 - offsetof (struct ppc_link_hash_entry, u.stub_cache))); 3929 3930 /* When making function calls, old ABI code references function entry 3931 points (dot symbols), while new ABI code references the function 3932 descriptor symbol. We need to make any combination of reference and 3933 definition work together, without breaking archive linking. 3934 3935 For a defined function "foo" and an undefined call to "bar": 3936 An old object defines "foo" and ".foo", references ".bar" (possibly 3937 "bar" too). 3938 A new object defines "foo" and references "bar". 3939 3940 A new object thus has no problem with its undefined symbols being 3941 satisfied by definitions in an old object. On the other hand, the 3942 old object won't have ".bar" satisfied by a new object. 3943 3944 Keep a list of newly added dot-symbols. */ 3945 3946 if (string[0] == '.') 3947 { 3948 struct ppc_link_hash_table *htab; 3949 3950 htab = (struct ppc_link_hash_table *) table; 3951 eh->u.next_dot_sym = htab->dot_syms; 3952 htab->dot_syms = eh; 3953 } 3954 } 3955 3956 return entry; 3957 } 3958 3959 struct tocsave_entry { 3960 asection *sec; 3961 bfd_vma offset; 3962 }; 3963 3964 static hashval_t 3965 tocsave_htab_hash (const void *p) 3966 { 3967 const struct tocsave_entry *e = (const struct tocsave_entry *) p; 3968 return ((bfd_vma)(intptr_t) e->sec ^ e->offset) >> 3; 3969 } 3970 3971 static int 3972 tocsave_htab_eq (const void *p1, const void *p2) 3973 { 3974 const struct tocsave_entry *e1 = (const struct tocsave_entry *) p1; 3975 const struct tocsave_entry *e2 = (const struct tocsave_entry *) p2; 3976 return e1->sec == e2->sec && e1->offset == e2->offset; 3977 } 3978 3979 /* Create a ppc64 ELF linker hash table. */ 3980 3981 static struct bfd_link_hash_table * 3982 ppc64_elf_link_hash_table_create (bfd *abfd) 3983 { 3984 struct ppc_link_hash_table *htab; 3985 bfd_size_type amt = sizeof (struct ppc_link_hash_table); 3986 3987 htab = bfd_zmalloc (amt); 3988 if (htab == NULL) 3989 return NULL; 3990 3991 if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc, 3992 sizeof (struct ppc_link_hash_entry), 3993 PPC64_ELF_DATA)) 3994 { 3995 free (htab); 3996 return NULL; 3997 } 3998 3999 /* Init the stub hash table too. */ 4000 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc, 4001 sizeof (struct ppc_stub_hash_entry))) 4002 return NULL; 4003 4004 /* And the branch hash table. */ 4005 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc, 4006 sizeof (struct ppc_branch_hash_entry))) 4007 return NULL; 4008 4009 htab->tocsave_htab = htab_try_create (1024, 4010 tocsave_htab_hash, 4011 tocsave_htab_eq, 4012 NULL); 4013 if (htab->tocsave_htab == NULL) 4014 return NULL; 4015 4016 /* Initializing two fields of the union is just cosmetic. We really 4017 only care about glist, but when compiled on a 32-bit host the 4018 bfd_vma fields are larger. Setting the bfd_vma to zero makes 4019 debugger inspection of these fields look nicer. */ 4020 htab->elf.init_got_refcount.refcount = 0; 4021 htab->elf.init_got_refcount.glist = NULL; 4022 htab->elf.init_plt_refcount.refcount = 0; 4023 htab->elf.init_plt_refcount.glist = NULL; 4024 htab->elf.init_got_offset.offset = 0; 4025 htab->elf.init_got_offset.glist = NULL; 4026 htab->elf.init_plt_offset.offset = 0; 4027 htab->elf.init_plt_offset.glist = NULL; 4028 4029 return &htab->elf.root; 4030 } 4031 4032 /* Free the derived linker hash table. */ 4033 4034 static void 4035 ppc64_elf_link_hash_table_free (struct bfd_link_hash_table *hash) 4036 { 4037 struct ppc_link_hash_table *htab = (struct ppc_link_hash_table *) hash; 4038 4039 bfd_hash_table_free (&htab->stub_hash_table); 4040 bfd_hash_table_free (&htab->branch_hash_table); 4041 if (htab->tocsave_htab) 4042 htab_delete (htab->tocsave_htab); 4043 _bfd_generic_link_hash_table_free (hash); 4044 } 4045 4046 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */ 4047 4048 void 4049 ppc64_elf_init_stub_bfd (bfd *abfd, struct bfd_link_info *info) 4050 { 4051 struct ppc_link_hash_table *htab; 4052 4053 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS64; 4054 4055 /* Always hook our dynamic sections into the first bfd, which is the 4056 linker created stub bfd. This ensures that the GOT header is at 4057 the start of the output TOC section. */ 4058 htab = ppc_hash_table (info); 4059 if (htab == NULL) 4060 return; 4061 htab->stub_bfd = abfd; 4062 htab->elf.dynobj = abfd; 4063 } 4064 4065 /* Build a name for an entry in the stub hash table. */ 4066 4067 static char * 4068 ppc_stub_name (const asection *input_section, 4069 const asection *sym_sec, 4070 const struct ppc_link_hash_entry *h, 4071 const Elf_Internal_Rela *rel) 4072 { 4073 char *stub_name; 4074 bfd_size_type len; 4075 4076 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31 4077 offsets from a sym as a branch target? In fact, we could 4078 probably assume the addend is always zero. */ 4079 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend); 4080 4081 if (h) 4082 { 4083 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1; 4084 stub_name = bfd_malloc (len); 4085 if (stub_name == NULL) 4086 return stub_name; 4087 4088 sprintf (stub_name, "%08x.%s+%x", 4089 input_section->id & 0xffffffff, 4090 h->elf.root.root.string, 4091 (int) rel->r_addend & 0xffffffff); 4092 } 4093 else 4094 { 4095 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1; 4096 stub_name = bfd_malloc (len); 4097 if (stub_name == NULL) 4098 return stub_name; 4099 4100 sprintf (stub_name, "%08x.%x:%x+%x", 4101 input_section->id & 0xffffffff, 4102 sym_sec->id & 0xffffffff, 4103 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff, 4104 (int) rel->r_addend & 0xffffffff); 4105 } 4106 if (stub_name[len - 2] == '+' && stub_name[len - 1] == '0') 4107 stub_name[len - 2] = 0; 4108 return stub_name; 4109 } 4110 4111 /* Look up an entry in the stub hash. Stub entries are cached because 4112 creating the stub name takes a bit of time. */ 4113 4114 static struct ppc_stub_hash_entry * 4115 ppc_get_stub_entry (const asection *input_section, 4116 const asection *sym_sec, 4117 struct ppc_link_hash_entry *h, 4118 const Elf_Internal_Rela *rel, 4119 struct ppc_link_hash_table *htab) 4120 { 4121 struct ppc_stub_hash_entry *stub_entry; 4122 const asection *id_sec; 4123 4124 /* If this input section is part of a group of sections sharing one 4125 stub section, then use the id of the first section in the group. 4126 Stub names need to include a section id, as there may well be 4127 more than one stub used to reach say, printf, and we need to 4128 distinguish between them. */ 4129 id_sec = htab->stub_group[input_section->id].link_sec; 4130 4131 if (h != NULL && h->u.stub_cache != NULL 4132 && h->u.stub_cache->h == h 4133 && h->u.stub_cache->id_sec == id_sec) 4134 { 4135 stub_entry = h->u.stub_cache; 4136 } 4137 else 4138 { 4139 char *stub_name; 4140 4141 stub_name = ppc_stub_name (id_sec, sym_sec, h, rel); 4142 if (stub_name == NULL) 4143 return NULL; 4144 4145 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, 4146 stub_name, FALSE, FALSE); 4147 if (h != NULL) 4148 h->u.stub_cache = stub_entry; 4149 4150 free (stub_name); 4151 } 4152 4153 return stub_entry; 4154 } 4155 4156 /* Add a new stub entry to the stub hash. Not all fields of the new 4157 stub entry are initialised. */ 4158 4159 static struct ppc_stub_hash_entry * 4160 ppc_add_stub (const char *stub_name, 4161 asection *section, 4162 struct bfd_link_info *info) 4163 { 4164 struct ppc_link_hash_table *htab = ppc_hash_table (info); 4165 asection *link_sec; 4166 asection *stub_sec; 4167 struct ppc_stub_hash_entry *stub_entry; 4168 4169 link_sec = htab->stub_group[section->id].link_sec; 4170 stub_sec = htab->stub_group[section->id].stub_sec; 4171 if (stub_sec == NULL) 4172 { 4173 stub_sec = htab->stub_group[link_sec->id].stub_sec; 4174 if (stub_sec == NULL) 4175 { 4176 size_t namelen; 4177 bfd_size_type len; 4178 char *s_name; 4179 4180 namelen = strlen (link_sec->name); 4181 len = namelen + sizeof (STUB_SUFFIX); 4182 s_name = bfd_alloc (htab->stub_bfd, len); 4183 if (s_name == NULL) 4184 return NULL; 4185 4186 memcpy (s_name, link_sec->name, namelen); 4187 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX)); 4188 stub_sec = (*htab->add_stub_section) (s_name, link_sec); 4189 if (stub_sec == NULL) 4190 return NULL; 4191 htab->stub_group[link_sec->id].stub_sec = stub_sec; 4192 } 4193 htab->stub_group[section->id].stub_sec = stub_sec; 4194 } 4195 4196 /* Enter this entry into the linker stub hash table. */ 4197 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name, 4198 TRUE, FALSE); 4199 if (stub_entry == NULL) 4200 { 4201 info->callbacks->einfo (_("%P: %B: cannot create stub entry %s\n"), 4202 section->owner, stub_name); 4203 return NULL; 4204 } 4205 4206 stub_entry->stub_sec = stub_sec; 4207 stub_entry->stub_offset = 0; 4208 stub_entry->id_sec = link_sec; 4209 return stub_entry; 4210 } 4211 4212 /* Create sections for linker generated code. */ 4213 4214 static bfd_boolean 4215 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info) 4216 { 4217 struct ppc_link_hash_table *htab; 4218 flagword flags; 4219 4220 htab = ppc_hash_table (info); 4221 if (htab == NULL) 4222 return FALSE; 4223 4224 /* Create .sfpr for code to save and restore fp regs. */ 4225 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY 4226 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED); 4227 htab->sfpr = bfd_make_section_anyway_with_flags (dynobj, ".sfpr", 4228 flags); 4229 if (htab->sfpr == NULL 4230 || ! bfd_set_section_alignment (dynobj, htab->sfpr, 2)) 4231 return FALSE; 4232 4233 /* Create .glink for lazy dynamic linking support. */ 4234 htab->glink = bfd_make_section_anyway_with_flags (dynobj, ".glink", 4235 flags); 4236 if (htab->glink == NULL 4237 || ! bfd_set_section_alignment (dynobj, htab->glink, 3)) 4238 return FALSE; 4239 4240 if (!info->no_ld_generated_unwind_info) 4241 { 4242 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS 4243 | SEC_IN_MEMORY | SEC_LINKER_CREATED); 4244 htab->glink_eh_frame = bfd_make_section_anyway_with_flags (dynobj, 4245 ".eh_frame", 4246 flags); 4247 if (htab->glink_eh_frame == NULL 4248 || !bfd_set_section_alignment (dynobj, htab->glink_eh_frame, 2)) 4249 return FALSE; 4250 } 4251 4252 flags = SEC_ALLOC | SEC_LINKER_CREATED; 4253 htab->iplt = bfd_make_section_anyway_with_flags (dynobj, ".iplt", flags); 4254 if (htab->iplt == NULL 4255 || ! bfd_set_section_alignment (dynobj, htab->iplt, 3)) 4256 return FALSE; 4257 4258 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY 4259 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED); 4260 htab->reliplt = bfd_make_section_anyway_with_flags (dynobj, 4261 ".rela.iplt", 4262 flags); 4263 if (htab->reliplt == NULL 4264 || ! bfd_set_section_alignment (dynobj, htab->reliplt, 3)) 4265 return FALSE; 4266 4267 /* Create branch lookup table for plt_branch stubs. */ 4268 flags = (SEC_ALLOC | SEC_LOAD 4269 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED); 4270 htab->brlt = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt", 4271 flags); 4272 if (htab->brlt == NULL 4273 || ! bfd_set_section_alignment (dynobj, htab->brlt, 3)) 4274 return FALSE; 4275 4276 if (!info->shared) 4277 return TRUE; 4278 4279 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY 4280 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED); 4281 htab->relbrlt = bfd_make_section_anyway_with_flags (dynobj, 4282 ".rela.branch_lt", 4283 flags); 4284 if (htab->relbrlt == NULL 4285 || ! bfd_set_section_alignment (dynobj, htab->relbrlt, 3)) 4286 return FALSE; 4287 4288 return TRUE; 4289 } 4290 4291 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if 4292 not already done. */ 4293 4294 static bfd_boolean 4295 create_got_section (bfd *abfd, struct bfd_link_info *info) 4296 { 4297 asection *got, *relgot; 4298 flagword flags; 4299 struct ppc_link_hash_table *htab = ppc_hash_table (info); 4300 4301 if (!is_ppc64_elf (abfd)) 4302 return FALSE; 4303 if (htab == NULL) 4304 return FALSE; 4305 4306 if (!htab->got) 4307 { 4308 if (! _bfd_elf_create_got_section (htab->elf.dynobj, info)) 4309 return FALSE; 4310 4311 htab->got = bfd_get_linker_section (htab->elf.dynobj, ".got"); 4312 if (!htab->got) 4313 abort (); 4314 } 4315 4316 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY 4317 | SEC_LINKER_CREATED); 4318 4319 got = bfd_make_section_anyway_with_flags (abfd, ".got", flags); 4320 if (!got 4321 || !bfd_set_section_alignment (abfd, got, 3)) 4322 return FALSE; 4323 4324 relgot = bfd_make_section_anyway_with_flags (abfd, ".rela.got", 4325 flags | SEC_READONLY); 4326 if (!relgot 4327 || ! bfd_set_section_alignment (abfd, relgot, 3)) 4328 return FALSE; 4329 4330 ppc64_elf_tdata (abfd)->got = got; 4331 ppc64_elf_tdata (abfd)->relgot = relgot; 4332 return TRUE; 4333 } 4334 4335 /* Create the dynamic sections, and set up shortcuts. */ 4336 4337 static bfd_boolean 4338 ppc64_elf_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info) 4339 { 4340 struct ppc_link_hash_table *htab; 4341 4342 if (!_bfd_elf_create_dynamic_sections (dynobj, info)) 4343 return FALSE; 4344 4345 htab = ppc_hash_table (info); 4346 if (htab == NULL) 4347 return FALSE; 4348 4349 if (!htab->got) 4350 htab->got = bfd_get_linker_section (dynobj, ".got"); 4351 htab->plt = bfd_get_linker_section (dynobj, ".plt"); 4352 htab->relplt = bfd_get_linker_section (dynobj, ".rela.plt"); 4353 htab->dynbss = bfd_get_linker_section (dynobj, ".dynbss"); 4354 if (!info->shared) 4355 htab->relbss = bfd_get_linker_section (dynobj, ".rela.bss"); 4356 4357 if (!htab->got || !htab->plt || !htab->relplt || !htab->dynbss 4358 || (!info->shared && !htab->relbss)) 4359 abort (); 4360 4361 return TRUE; 4362 } 4363 4364 /* Follow indirect and warning symbol links. */ 4365 4366 static inline struct bfd_link_hash_entry * 4367 follow_link (struct bfd_link_hash_entry *h) 4368 { 4369 while (h->type == bfd_link_hash_indirect 4370 || h->type == bfd_link_hash_warning) 4371 h = h->u.i.link; 4372 return h; 4373 } 4374 4375 static inline struct elf_link_hash_entry * 4376 elf_follow_link (struct elf_link_hash_entry *h) 4377 { 4378 return (struct elf_link_hash_entry *) follow_link (&h->root); 4379 } 4380 4381 static inline struct ppc_link_hash_entry * 4382 ppc_follow_link (struct ppc_link_hash_entry *h) 4383 { 4384 return (struct ppc_link_hash_entry *) follow_link (&h->elf.root); 4385 } 4386 4387 /* Merge PLT info on FROM with that on TO. */ 4388 4389 static void 4390 move_plt_plist (struct ppc_link_hash_entry *from, 4391 struct ppc_link_hash_entry *to) 4392 { 4393 if (from->elf.plt.plist != NULL) 4394 { 4395 if (to->elf.plt.plist != NULL) 4396 { 4397 struct plt_entry **entp; 4398 struct plt_entry *ent; 4399 4400 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; ) 4401 { 4402 struct plt_entry *dent; 4403 4404 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next) 4405 if (dent->addend == ent->addend) 4406 { 4407 dent->plt.refcount += ent->plt.refcount; 4408 *entp = ent->next; 4409 break; 4410 } 4411 if (dent == NULL) 4412 entp = &ent->next; 4413 } 4414 *entp = to->elf.plt.plist; 4415 } 4416 4417 to->elf.plt.plist = from->elf.plt.plist; 4418 from->elf.plt.plist = NULL; 4419 } 4420 } 4421 4422 /* Copy the extra info we tack onto an elf_link_hash_entry. */ 4423 4424 static void 4425 ppc64_elf_copy_indirect_symbol (struct bfd_link_info *info, 4426 struct elf_link_hash_entry *dir, 4427 struct elf_link_hash_entry *ind) 4428 { 4429 struct ppc_link_hash_entry *edir, *eind; 4430 4431 edir = (struct ppc_link_hash_entry *) dir; 4432 eind = (struct ppc_link_hash_entry *) ind; 4433 4434 edir->is_func |= eind->is_func; 4435 edir->is_func_descriptor |= eind->is_func_descriptor; 4436 edir->tls_mask |= eind->tls_mask; 4437 if (eind->oh != NULL) 4438 edir->oh = ppc_follow_link (eind->oh); 4439 4440 /* If called to transfer flags for a weakdef during processing 4441 of elf_adjust_dynamic_symbol, don't copy NON_GOT_REF. 4442 We clear it ourselves for ELIMINATE_COPY_RELOCS. */ 4443 if (!(ELIMINATE_COPY_RELOCS 4444 && eind->elf.root.type != bfd_link_hash_indirect 4445 && edir->elf.dynamic_adjusted)) 4446 edir->elf.non_got_ref |= eind->elf.non_got_ref; 4447 4448 edir->elf.ref_dynamic |= eind->elf.ref_dynamic; 4449 edir->elf.ref_regular |= eind->elf.ref_regular; 4450 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak; 4451 edir->elf.needs_plt |= eind->elf.needs_plt; 4452 4453 /* Copy over any dynamic relocs we may have on the indirect sym. */ 4454 if (eind->dyn_relocs != NULL) 4455 { 4456 if (edir->dyn_relocs != NULL) 4457 { 4458 struct elf_dyn_relocs **pp; 4459 struct elf_dyn_relocs *p; 4460 4461 /* Add reloc counts against the indirect sym to the direct sym 4462 list. Merge any entries against the same section. */ 4463 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; ) 4464 { 4465 struct elf_dyn_relocs *q; 4466 4467 for (q = edir->dyn_relocs; q != NULL; q = q->next) 4468 if (q->sec == p->sec) 4469 { 4470 q->pc_count += p->pc_count; 4471 q->count += p->count; 4472 *pp = p->next; 4473 break; 4474 } 4475 if (q == NULL) 4476 pp = &p->next; 4477 } 4478 *pp = edir->dyn_relocs; 4479 } 4480 4481 edir->dyn_relocs = eind->dyn_relocs; 4482 eind->dyn_relocs = NULL; 4483 } 4484 4485 /* If we were called to copy over info for a weak sym, that's all. 4486 You might think dyn_relocs need not be copied over; After all, 4487 both syms will be dynamic or both non-dynamic so we're just 4488 moving reloc accounting around. However, ELIMINATE_COPY_RELOCS 4489 code in ppc64_elf_adjust_dynamic_symbol needs to check for 4490 dyn_relocs in read-only sections, and it does so on what is the 4491 DIR sym here. */ 4492 if (eind->elf.root.type != bfd_link_hash_indirect) 4493 return; 4494 4495 /* Copy over got entries that we may have already seen to the 4496 symbol which just became indirect. */ 4497 if (eind->elf.got.glist != NULL) 4498 { 4499 if (edir->elf.got.glist != NULL) 4500 { 4501 struct got_entry **entp; 4502 struct got_entry *ent; 4503 4504 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; ) 4505 { 4506 struct got_entry *dent; 4507 4508 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next) 4509 if (dent->addend == ent->addend 4510 && dent->owner == ent->owner 4511 && dent->tls_type == ent->tls_type) 4512 { 4513 dent->got.refcount += ent->got.refcount; 4514 *entp = ent->next; 4515 break; 4516 } 4517 if (dent == NULL) 4518 entp = &ent->next; 4519 } 4520 *entp = edir->elf.got.glist; 4521 } 4522 4523 edir->elf.got.glist = eind->elf.got.glist; 4524 eind->elf.got.glist = NULL; 4525 } 4526 4527 /* And plt entries. */ 4528 move_plt_plist (eind, edir); 4529 4530 if (eind->elf.dynindx != -1) 4531 { 4532 if (edir->elf.dynindx != -1) 4533 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr, 4534 edir->elf.dynstr_index); 4535 edir->elf.dynindx = eind->elf.dynindx; 4536 edir->elf.dynstr_index = eind->elf.dynstr_index; 4537 eind->elf.dynindx = -1; 4538 eind->elf.dynstr_index = 0; 4539 } 4540 } 4541 4542 /* Find the function descriptor hash entry from the given function code 4543 hash entry FH. Link the entries via their OH fields. */ 4544 4545 static struct ppc_link_hash_entry * 4546 lookup_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab) 4547 { 4548 struct ppc_link_hash_entry *fdh = fh->oh; 4549 4550 if (fdh == NULL) 4551 { 4552 const char *fd_name = fh->elf.root.root.string + 1; 4553 4554 fdh = (struct ppc_link_hash_entry *) 4555 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE); 4556 if (fdh == NULL) 4557 return fdh; 4558 4559 fdh->is_func_descriptor = 1; 4560 fdh->oh = fh; 4561 fh->is_func = 1; 4562 fh->oh = fdh; 4563 } 4564 4565 return ppc_follow_link (fdh); 4566 } 4567 4568 /* Make a fake function descriptor sym for the code sym FH. */ 4569 4570 static struct ppc_link_hash_entry * 4571 make_fdh (struct bfd_link_info *info, 4572 struct ppc_link_hash_entry *fh) 4573 { 4574 bfd *abfd; 4575 asymbol *newsym; 4576 struct bfd_link_hash_entry *bh; 4577 struct ppc_link_hash_entry *fdh; 4578 4579 abfd = fh->elf.root.u.undef.abfd; 4580 newsym = bfd_make_empty_symbol (abfd); 4581 newsym->name = fh->elf.root.root.string + 1; 4582 newsym->section = bfd_und_section_ptr; 4583 newsym->value = 0; 4584 newsym->flags = BSF_WEAK; 4585 4586 bh = NULL; 4587 if (!_bfd_generic_link_add_one_symbol (info, abfd, newsym->name, 4588 newsym->flags, newsym->section, 4589 newsym->value, NULL, FALSE, FALSE, 4590 &bh)) 4591 return NULL; 4592 4593 fdh = (struct ppc_link_hash_entry *) bh; 4594 fdh->elf.non_elf = 0; 4595 fdh->fake = 1; 4596 fdh->is_func_descriptor = 1; 4597 fdh->oh = fh; 4598 fh->is_func = 1; 4599 fh->oh = fdh; 4600 return fdh; 4601 } 4602 4603 /* Fix function descriptor symbols defined in .opd sections to be 4604 function type. */ 4605 4606 static bfd_boolean 4607 ppc64_elf_add_symbol_hook (bfd *ibfd, 4608 struct bfd_link_info *info, 4609 Elf_Internal_Sym *isym, 4610 const char **name ATTRIBUTE_UNUSED, 4611 flagword *flags ATTRIBUTE_UNUSED, 4612 asection **sec, 4613 bfd_vma *value ATTRIBUTE_UNUSED) 4614 { 4615 if ((ibfd->flags & DYNAMIC) == 0 4616 && ELF_ST_BIND (isym->st_info) == STB_GNU_UNIQUE) 4617 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE; 4618 4619 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC) 4620 { 4621 if ((ibfd->flags & DYNAMIC) == 0) 4622 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE; 4623 } 4624 else if (ELF_ST_TYPE (isym->st_info) == STT_FUNC) 4625 ; 4626 else if (*sec != NULL 4627 && strcmp ((*sec)->name, ".opd") == 0) 4628 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC); 4629 4630 return TRUE; 4631 } 4632 4633 /* This function makes an old ABI object reference to ".bar" cause the 4634 inclusion of a new ABI object archive that defines "bar". 4635 NAME is a symbol defined in an archive. Return a symbol in the hash 4636 table that might be satisfied by the archive symbols. */ 4637 4638 static struct elf_link_hash_entry * 4639 ppc64_elf_archive_symbol_lookup (bfd *abfd, 4640 struct bfd_link_info *info, 4641 const char *name) 4642 { 4643 struct elf_link_hash_entry *h; 4644 char *dot_name; 4645 size_t len; 4646 4647 h = _bfd_elf_archive_symbol_lookup (abfd, info, name); 4648 if (h != NULL 4649 /* Don't return this sym if it is a fake function descriptor 4650 created by add_symbol_adjust. */ 4651 && !(h->root.type == bfd_link_hash_undefweak 4652 && ((struct ppc_link_hash_entry *) h)->fake)) 4653 return h; 4654 4655 if (name[0] == '.') 4656 return h; 4657 4658 len = strlen (name); 4659 dot_name = bfd_alloc (abfd, len + 2); 4660 if (dot_name == NULL) 4661 return (struct elf_link_hash_entry *) 0 - 1; 4662 dot_name[0] = '.'; 4663 memcpy (dot_name + 1, name, len + 1); 4664 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name); 4665 bfd_release (abfd, dot_name); 4666 return h; 4667 } 4668 4669 /* This function satisfies all old ABI object references to ".bar" if a 4670 new ABI object defines "bar". Well, at least, undefined dot symbols 4671 are made weak. This stops later archive searches from including an 4672 object if we already have a function descriptor definition. It also 4673 prevents the linker complaining about undefined symbols. 4674 We also check and correct mismatched symbol visibility here. The 4675 most restrictive visibility of the function descriptor and the 4676 function entry symbol is used. */ 4677 4678 static bfd_boolean 4679 add_symbol_adjust (struct ppc_link_hash_entry *eh, struct bfd_link_info *info) 4680 { 4681 struct ppc_link_hash_table *htab; 4682 struct ppc_link_hash_entry *fdh; 4683 4684 if (eh->elf.root.type == bfd_link_hash_indirect) 4685 return TRUE; 4686 4687 if (eh->elf.root.type == bfd_link_hash_warning) 4688 eh = (struct ppc_link_hash_entry *) eh->elf.root.u.i.link; 4689 4690 if (eh->elf.root.root.string[0] != '.') 4691 abort (); 4692 4693 htab = ppc_hash_table (info); 4694 if (htab == NULL) 4695 return FALSE; 4696 4697 fdh = lookup_fdh (eh, htab); 4698 if (fdh == NULL) 4699 { 4700 if (!info->relocatable 4701 && (eh->elf.root.type == bfd_link_hash_undefined 4702 || eh->elf.root.type == bfd_link_hash_undefweak) 4703 && eh->elf.ref_regular) 4704 { 4705 /* Make an undefweak function descriptor sym, which is enough to 4706 pull in an --as-needed shared lib, but won't cause link 4707 errors. Archives are handled elsewhere. */ 4708 fdh = make_fdh (info, eh); 4709 if (fdh == NULL) 4710 return FALSE; 4711 fdh->elf.ref_regular = 1; 4712 } 4713 } 4714 else 4715 { 4716 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1; 4717 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1; 4718 if (entry_vis < descr_vis) 4719 fdh->elf.other += entry_vis - descr_vis; 4720 else if (entry_vis > descr_vis) 4721 eh->elf.other += descr_vis - entry_vis; 4722 4723 if ((fdh->elf.root.type == bfd_link_hash_defined 4724 || fdh->elf.root.type == bfd_link_hash_defweak) 4725 && eh->elf.root.type == bfd_link_hash_undefined) 4726 { 4727 eh->elf.root.type = bfd_link_hash_undefweak; 4728 eh->was_undefined = 1; 4729 htab->twiddled_syms = 1; 4730 } 4731 } 4732 4733 return TRUE; 4734 } 4735 4736 /* Process list of dot-symbols we made in link_hash_newfunc. */ 4737 4738 static bfd_boolean 4739 ppc64_elf_process_dot_syms (bfd *ibfd, struct bfd_link_info *info) 4740 { 4741 struct ppc_link_hash_table *htab; 4742 struct ppc_link_hash_entry **p, *eh; 4743 4744 if (!is_ppc64_elf (info->output_bfd)) 4745 return TRUE; 4746 htab = ppc_hash_table (info); 4747 if (htab == NULL) 4748 return FALSE; 4749 4750 if (is_ppc64_elf (ibfd)) 4751 { 4752 p = &htab->dot_syms; 4753 while ((eh = *p) != NULL) 4754 { 4755 *p = NULL; 4756 if (!add_symbol_adjust (eh, info)) 4757 return FALSE; 4758 p = &eh->u.next_dot_sym; 4759 } 4760 } 4761 4762 /* Clear the list for non-ppc64 input files. */ 4763 p = &htab->dot_syms; 4764 while ((eh = *p) != NULL) 4765 { 4766 *p = NULL; 4767 p = &eh->u.next_dot_sym; 4768 } 4769 4770 /* We need to fix the undefs list for any syms we have twiddled to 4771 undef_weak. */ 4772 if (htab->twiddled_syms) 4773 { 4774 bfd_link_repair_undef_list (&htab->elf.root); 4775 htab->twiddled_syms = 0; 4776 } 4777 return TRUE; 4778 } 4779 4780 /* Undo hash table changes when an --as-needed input file is determined 4781 not to be needed. */ 4782 4783 static bfd_boolean 4784 ppc64_elf_as_needed_cleanup (bfd *ibfd ATTRIBUTE_UNUSED, 4785 struct bfd_link_info *info) 4786 { 4787 struct ppc_link_hash_table *htab = ppc_hash_table (info); 4788 4789 if (htab == NULL) 4790 return FALSE; 4791 4792 htab->dot_syms = NULL; 4793 return TRUE; 4794 } 4795 4796 /* If --just-symbols against a final linked binary, then assume we need 4797 toc adjusting stubs when calling functions defined there. */ 4798 4799 static void 4800 ppc64_elf_link_just_syms (asection *sec, struct bfd_link_info *info) 4801 { 4802 if ((sec->flags & SEC_CODE) != 0 4803 && (sec->owner->flags & (EXEC_P | DYNAMIC)) != 0 4804 && is_ppc64_elf (sec->owner)) 4805 { 4806 asection *got = bfd_get_section_by_name (sec->owner, ".got"); 4807 if (got != NULL 4808 && got->size >= elf_backend_got_header_size 4809 && bfd_get_section_by_name (sec->owner, ".opd") != NULL) 4810 sec->has_toc_reloc = 1; 4811 } 4812 _bfd_elf_link_just_syms (sec, info); 4813 } 4814 4815 static struct plt_entry ** 4816 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr, 4817 unsigned long r_symndx, bfd_vma r_addend, int tls_type) 4818 { 4819 struct got_entry **local_got_ents = elf_local_got_ents (abfd); 4820 struct plt_entry **local_plt; 4821 unsigned char *local_got_tls_masks; 4822 4823 if (local_got_ents == NULL) 4824 { 4825 bfd_size_type size = symtab_hdr->sh_info; 4826 4827 size *= (sizeof (*local_got_ents) 4828 + sizeof (*local_plt) 4829 + sizeof (*local_got_tls_masks)); 4830 local_got_ents = bfd_zalloc (abfd, size); 4831 if (local_got_ents == NULL) 4832 return NULL; 4833 elf_local_got_ents (abfd) = local_got_ents; 4834 } 4835 4836 if ((tls_type & (PLT_IFUNC | TLS_EXPLICIT)) == 0) 4837 { 4838 struct got_entry *ent; 4839 4840 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next) 4841 if (ent->addend == r_addend 4842 && ent->owner == abfd 4843 && ent->tls_type == tls_type) 4844 break; 4845 if (ent == NULL) 4846 { 4847 bfd_size_type amt = sizeof (*ent); 4848 ent = bfd_alloc (abfd, amt); 4849 if (ent == NULL) 4850 return FALSE; 4851 ent->next = local_got_ents[r_symndx]; 4852 ent->addend = r_addend; 4853 ent->owner = abfd; 4854 ent->tls_type = tls_type; 4855 ent->is_indirect = FALSE; 4856 ent->got.refcount = 0; 4857 local_got_ents[r_symndx] = ent; 4858 } 4859 ent->got.refcount += 1; 4860 } 4861 4862 local_plt = (struct plt_entry **) (local_got_ents + symtab_hdr->sh_info); 4863 local_got_tls_masks = (unsigned char *) (local_plt + symtab_hdr->sh_info); 4864 local_got_tls_masks[r_symndx] |= tls_type; 4865 4866 return local_plt + r_symndx; 4867 } 4868 4869 static bfd_boolean 4870 update_plt_info (bfd *abfd, struct plt_entry **plist, bfd_vma addend) 4871 { 4872 struct plt_entry *ent; 4873 4874 for (ent = *plist; ent != NULL; ent = ent->next) 4875 if (ent->addend == addend) 4876 break; 4877 if (ent == NULL) 4878 { 4879 bfd_size_type amt = sizeof (*ent); 4880 ent = bfd_alloc (abfd, amt); 4881 if (ent == NULL) 4882 return FALSE; 4883 ent->next = *plist; 4884 ent->addend = addend; 4885 ent->plt.refcount = 0; 4886 *plist = ent; 4887 } 4888 ent->plt.refcount += 1; 4889 return TRUE; 4890 } 4891 4892 static bfd_boolean 4893 is_branch_reloc (enum elf_ppc64_reloc_type r_type) 4894 { 4895 return (r_type == R_PPC64_REL24 4896 || r_type == R_PPC64_REL14 4897 || r_type == R_PPC64_REL14_BRTAKEN 4898 || r_type == R_PPC64_REL14_BRNTAKEN 4899 || r_type == R_PPC64_ADDR24 4900 || r_type == R_PPC64_ADDR14 4901 || r_type == R_PPC64_ADDR14_BRTAKEN 4902 || r_type == R_PPC64_ADDR14_BRNTAKEN); 4903 } 4904 4905 /* Look through the relocs for a section during the first phase, and 4906 calculate needed space in the global offset table, procedure 4907 linkage table, and dynamic reloc sections. */ 4908 4909 static bfd_boolean 4910 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info, 4911 asection *sec, const Elf_Internal_Rela *relocs) 4912 { 4913 struct ppc_link_hash_table *htab; 4914 Elf_Internal_Shdr *symtab_hdr; 4915 struct elf_link_hash_entry **sym_hashes; 4916 const Elf_Internal_Rela *rel; 4917 const Elf_Internal_Rela *rel_end; 4918 asection *sreloc; 4919 asection **opd_sym_map; 4920 struct elf_link_hash_entry *tga, *dottga; 4921 4922 if (info->relocatable) 4923 return TRUE; 4924 4925 /* Don't do anything special with non-loaded, non-alloced sections. 4926 In particular, any relocs in such sections should not affect GOT 4927 and PLT reference counting (ie. we don't allow them to create GOT 4928 or PLT entries), there's no possibility or desire to optimize TLS 4929 relocs, and there's not much point in propagating relocs to shared 4930 libs that the dynamic linker won't relocate. */ 4931 if ((sec->flags & SEC_ALLOC) == 0) 4932 return TRUE; 4933 4934 BFD_ASSERT (is_ppc64_elf (abfd)); 4935 4936 htab = ppc_hash_table (info); 4937 if (htab == NULL) 4938 return FALSE; 4939 4940 tga = elf_link_hash_lookup (&htab->elf, "__tls_get_addr", 4941 FALSE, FALSE, TRUE); 4942 dottga = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr", 4943 FALSE, FALSE, TRUE); 4944 symtab_hdr = &elf_symtab_hdr (abfd); 4945 sym_hashes = elf_sym_hashes (abfd); 4946 sreloc = NULL; 4947 opd_sym_map = NULL; 4948 if (strcmp (sec->name, ".opd") == 0) 4949 { 4950 /* Garbage collection needs some extra help with .opd sections. 4951 We don't want to necessarily keep everything referenced by 4952 relocs in .opd, as that would keep all functions. Instead, 4953 if we reference an .opd symbol (a function descriptor), we 4954 want to keep the function code symbol's section. This is 4955 easy for global symbols, but for local syms we need to keep 4956 information about the associated function section. */ 4957 bfd_size_type amt; 4958 4959 amt = sec->size * sizeof (*opd_sym_map) / 8; 4960 opd_sym_map = bfd_zalloc (abfd, amt); 4961 if (opd_sym_map == NULL) 4962 return FALSE; 4963 ppc64_elf_section_data (sec)->u.opd.func_sec = opd_sym_map; 4964 BFD_ASSERT (ppc64_elf_section_data (sec)->sec_type == sec_normal); 4965 ppc64_elf_section_data (sec)->sec_type = sec_opd; 4966 } 4967 4968 if (htab->sfpr == NULL 4969 && !create_linkage_sections (htab->elf.dynobj, info)) 4970 return FALSE; 4971 4972 rel_end = relocs + sec->reloc_count; 4973 for (rel = relocs; rel < rel_end; rel++) 4974 { 4975 unsigned long r_symndx; 4976 struct elf_link_hash_entry *h; 4977 enum elf_ppc64_reloc_type r_type; 4978 int tls_type; 4979 struct _ppc64_elf_section_data *ppc64_sec; 4980 struct plt_entry **ifunc; 4981 4982 r_symndx = ELF64_R_SYM (rel->r_info); 4983 if (r_symndx < symtab_hdr->sh_info) 4984 h = NULL; 4985 else 4986 { 4987 h = sym_hashes[r_symndx - symtab_hdr->sh_info]; 4988 h = elf_follow_link (h); 4989 } 4990 4991 tls_type = 0; 4992 ifunc = NULL; 4993 if (h != NULL) 4994 { 4995 if (h->type == STT_GNU_IFUNC) 4996 { 4997 h->needs_plt = 1; 4998 ifunc = &h->plt.plist; 4999 } 5000 } 5001 else 5002 { 5003 Elf_Internal_Sym *isym = bfd_sym_from_r_symndx (&htab->sym_cache, 5004 abfd, r_symndx); 5005 if (isym == NULL) 5006 return FALSE; 5007 5008 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC) 5009 { 5010 ifunc = update_local_sym_info (abfd, symtab_hdr, r_symndx, 5011 rel->r_addend, PLT_IFUNC); 5012 if (ifunc == NULL) 5013 return FALSE; 5014 } 5015 } 5016 r_type = ELF64_R_TYPE (rel->r_info); 5017 if (is_branch_reloc (r_type)) 5018 { 5019 if (h != NULL && (h == tga || h == dottga)) 5020 { 5021 if (rel != relocs 5022 && (ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSGD 5023 || ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSLD)) 5024 /* We have a new-style __tls_get_addr call with a marker 5025 reloc. */ 5026 ; 5027 else 5028 /* Mark this section as having an old-style call. */ 5029 sec->has_tls_get_addr_call = 1; 5030 } 5031 5032 /* STT_GNU_IFUNC symbols must have a PLT entry. */ 5033 if (ifunc != NULL 5034 && !update_plt_info (abfd, ifunc, rel->r_addend)) 5035 return FALSE; 5036 } 5037 5038 switch (r_type) 5039 { 5040 case R_PPC64_TLSGD: 5041 case R_PPC64_TLSLD: 5042 /* These special tls relocs tie a call to __tls_get_addr with 5043 its parameter symbol. */ 5044 break; 5045 5046 case R_PPC64_GOT_TLSLD16: 5047 case R_PPC64_GOT_TLSLD16_LO: 5048 case R_PPC64_GOT_TLSLD16_HI: 5049 case R_PPC64_GOT_TLSLD16_HA: 5050 tls_type = TLS_TLS | TLS_LD; 5051 goto dogottls; 5052 5053 case R_PPC64_GOT_TLSGD16: 5054 case R_PPC64_GOT_TLSGD16_LO: 5055 case R_PPC64_GOT_TLSGD16_HI: 5056 case R_PPC64_GOT_TLSGD16_HA: 5057 tls_type = TLS_TLS | TLS_GD; 5058 goto dogottls; 5059 5060 case R_PPC64_GOT_TPREL16_DS: 5061 case R_PPC64_GOT_TPREL16_LO_DS: 5062 case R_PPC64_GOT_TPREL16_HI: 5063 case R_PPC64_GOT_TPREL16_HA: 5064 if (!info->executable) 5065 info->flags |= DF_STATIC_TLS; 5066 tls_type = TLS_TLS | TLS_TPREL; 5067 goto dogottls; 5068 5069 case R_PPC64_GOT_DTPREL16_DS: 5070 case R_PPC64_GOT_DTPREL16_LO_DS: 5071 case R_PPC64_GOT_DTPREL16_HI: 5072 case R_PPC64_GOT_DTPREL16_HA: 5073 tls_type = TLS_TLS | TLS_DTPREL; 5074 dogottls: 5075 sec->has_tls_reloc = 1; 5076 /* Fall thru */ 5077 5078 case R_PPC64_GOT16: 5079 case R_PPC64_GOT16_DS: 5080 case R_PPC64_GOT16_HA: 5081 case R_PPC64_GOT16_HI: 5082 case R_PPC64_GOT16_LO: 5083 case R_PPC64_GOT16_LO_DS: 5084 /* This symbol requires a global offset table entry. */ 5085 sec->has_toc_reloc = 1; 5086 if (r_type == R_PPC64_GOT_TLSLD16 5087 || r_type == R_PPC64_GOT_TLSGD16 5088 || r_type == R_PPC64_GOT_TPREL16_DS 5089 || r_type == R_PPC64_GOT_DTPREL16_DS 5090 || r_type == R_PPC64_GOT16 5091 || r_type == R_PPC64_GOT16_DS) 5092 { 5093 htab->do_multi_toc = 1; 5094 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1; 5095 } 5096 5097 if (ppc64_elf_tdata (abfd)->got == NULL 5098 && !create_got_section (abfd, info)) 5099 return FALSE; 5100 5101 if (h != NULL) 5102 { 5103 struct ppc_link_hash_entry *eh; 5104 struct got_entry *ent; 5105 5106 eh = (struct ppc_link_hash_entry *) h; 5107 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next) 5108 if (ent->addend == rel->r_addend 5109 && ent->owner == abfd 5110 && ent->tls_type == tls_type) 5111 break; 5112 if (ent == NULL) 5113 { 5114 bfd_size_type amt = sizeof (*ent); 5115 ent = bfd_alloc (abfd, amt); 5116 if (ent == NULL) 5117 return FALSE; 5118 ent->next = eh->elf.got.glist; 5119 ent->addend = rel->r_addend; 5120 ent->owner = abfd; 5121 ent->tls_type = tls_type; 5122 ent->is_indirect = FALSE; 5123 ent->got.refcount = 0; 5124 eh->elf.got.glist = ent; 5125 } 5126 ent->got.refcount += 1; 5127 eh->tls_mask |= tls_type; 5128 } 5129 else 5130 /* This is a global offset table entry for a local symbol. */ 5131 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx, 5132 rel->r_addend, tls_type)) 5133 return FALSE; 5134 break; 5135 5136 case R_PPC64_PLT16_HA: 5137 case R_PPC64_PLT16_HI: 5138 case R_PPC64_PLT16_LO: 5139 case R_PPC64_PLT32: 5140 case R_PPC64_PLT64: 5141 /* This symbol requires a procedure linkage table entry. We 5142 actually build the entry in adjust_dynamic_symbol, 5143 because this might be a case of linking PIC code without 5144 linking in any dynamic objects, in which case we don't 5145 need to generate a procedure linkage table after all. */ 5146 if (h == NULL) 5147 { 5148 /* It does not make sense to have a procedure linkage 5149 table entry for a local symbol. */ 5150 bfd_set_error (bfd_error_bad_value); 5151 return FALSE; 5152 } 5153 else 5154 { 5155 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend)) 5156 return FALSE; 5157 h->needs_plt = 1; 5158 if (h->root.root.string[0] == '.' 5159 && h->root.root.string[1] != '\0') 5160 ((struct ppc_link_hash_entry *) h)->is_func = 1; 5161 } 5162 break; 5163 5164 /* The following relocations don't need to propagate the 5165 relocation if linking a shared object since they are 5166 section relative. */ 5167 case R_PPC64_SECTOFF: 5168 case R_PPC64_SECTOFF_LO: 5169 case R_PPC64_SECTOFF_HI: 5170 case R_PPC64_SECTOFF_HA: 5171 case R_PPC64_SECTOFF_DS: 5172 case R_PPC64_SECTOFF_LO_DS: 5173 case R_PPC64_DTPREL16: 5174 case R_PPC64_DTPREL16_LO: 5175 case R_PPC64_DTPREL16_HI: 5176 case R_PPC64_DTPREL16_HA: 5177 case R_PPC64_DTPREL16_DS: 5178 case R_PPC64_DTPREL16_LO_DS: 5179 case R_PPC64_DTPREL16_HIGHER: 5180 case R_PPC64_DTPREL16_HIGHERA: 5181 case R_PPC64_DTPREL16_HIGHEST: 5182 case R_PPC64_DTPREL16_HIGHESTA: 5183 break; 5184 5185 /* Nor do these. */ 5186 case R_PPC64_REL16: 5187 case R_PPC64_REL16_LO: 5188 case R_PPC64_REL16_HI: 5189 case R_PPC64_REL16_HA: 5190 break; 5191 5192 case R_PPC64_TOC16: 5193 case R_PPC64_TOC16_DS: 5194 htab->do_multi_toc = 1; 5195 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1; 5196 case R_PPC64_TOC16_LO: 5197 case R_PPC64_TOC16_HI: 5198 case R_PPC64_TOC16_HA: 5199 case R_PPC64_TOC16_LO_DS: 5200 sec->has_toc_reloc = 1; 5201 break; 5202 5203 /* This relocation describes the C++ object vtable hierarchy. 5204 Reconstruct it for later use during GC. */ 5205 case R_PPC64_GNU_VTINHERIT: 5206 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) 5207 return FALSE; 5208 break; 5209 5210 /* This relocation describes which C++ vtable entries are actually 5211 used. Record for later use during GC. */ 5212 case R_PPC64_GNU_VTENTRY: 5213 BFD_ASSERT (h != NULL); 5214 if (h != NULL 5215 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) 5216 return FALSE; 5217 break; 5218 5219 case R_PPC64_REL14: 5220 case R_PPC64_REL14_BRTAKEN: 5221 case R_PPC64_REL14_BRNTAKEN: 5222 { 5223 asection *dest = NULL; 5224 5225 /* Heuristic: If jumping outside our section, chances are 5226 we are going to need a stub. */ 5227 if (h != NULL) 5228 { 5229 /* If the sym is weak it may be overridden later, so 5230 don't assume we know where a weak sym lives. */ 5231 if (h->root.type == bfd_link_hash_defined) 5232 dest = h->root.u.def.section; 5233 } 5234 else 5235 { 5236 Elf_Internal_Sym *isym; 5237 5238 isym = bfd_sym_from_r_symndx (&htab->sym_cache, 5239 abfd, r_symndx); 5240 if (isym == NULL) 5241 return FALSE; 5242 5243 dest = bfd_section_from_elf_index (abfd, isym->st_shndx); 5244 } 5245 5246 if (dest != sec) 5247 ppc64_elf_section_data (sec)->has_14bit_branch = 1; 5248 } 5249 /* Fall through. */ 5250 5251 case R_PPC64_REL24: 5252 if (h != NULL && ifunc == NULL) 5253 { 5254 /* We may need a .plt entry if the function this reloc 5255 refers to is in a shared lib. */ 5256 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend)) 5257 return FALSE; 5258 h->needs_plt = 1; 5259 if (h->root.root.string[0] == '.' 5260 && h->root.root.string[1] != '\0') 5261 ((struct ppc_link_hash_entry *) h)->is_func = 1; 5262 if (h == tga || h == dottga) 5263 sec->has_tls_reloc = 1; 5264 } 5265 break; 5266 5267 case R_PPC64_TPREL64: 5268 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL; 5269 if (!info->executable) 5270 info->flags |= DF_STATIC_TLS; 5271 goto dotlstoc; 5272 5273 case R_PPC64_DTPMOD64: 5274 if (rel + 1 < rel_end 5275 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64) 5276 && rel[1].r_offset == rel->r_offset + 8) 5277 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD; 5278 else 5279 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD; 5280 goto dotlstoc; 5281 5282 case R_PPC64_DTPREL64: 5283 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL; 5284 if (rel != relocs 5285 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64) 5286 && rel[-1].r_offset == rel->r_offset - 8) 5287 /* This is the second reloc of a dtpmod, dtprel pair. 5288 Don't mark with TLS_DTPREL. */ 5289 goto dodyn; 5290 5291 dotlstoc: 5292 sec->has_tls_reloc = 1; 5293 if (h != NULL) 5294 { 5295 struct ppc_link_hash_entry *eh; 5296 eh = (struct ppc_link_hash_entry *) h; 5297 eh->tls_mask |= tls_type; 5298 } 5299 else 5300 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx, 5301 rel->r_addend, tls_type)) 5302 return FALSE; 5303 5304 ppc64_sec = ppc64_elf_section_data (sec); 5305 if (ppc64_sec->sec_type != sec_toc) 5306 { 5307 bfd_size_type amt; 5308 5309 /* One extra to simplify get_tls_mask. */ 5310 amt = sec->size * sizeof (unsigned) / 8 + sizeof (unsigned); 5311 ppc64_sec->u.toc.symndx = bfd_zalloc (abfd, amt); 5312 if (ppc64_sec->u.toc.symndx == NULL) 5313 return FALSE; 5314 amt = sec->size * sizeof (bfd_vma) / 8; 5315 ppc64_sec->u.toc.add = bfd_zalloc (abfd, amt); 5316 if (ppc64_sec->u.toc.add == NULL) 5317 return FALSE; 5318 BFD_ASSERT (ppc64_sec->sec_type == sec_normal); 5319 ppc64_sec->sec_type = sec_toc; 5320 } 5321 BFD_ASSERT (rel->r_offset % 8 == 0); 5322 ppc64_sec->u.toc.symndx[rel->r_offset / 8] = r_symndx; 5323 ppc64_sec->u.toc.add[rel->r_offset / 8] = rel->r_addend; 5324 5325 /* Mark the second slot of a GD or LD entry. 5326 -1 to indicate GD and -2 to indicate LD. */ 5327 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD)) 5328 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -1; 5329 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD)) 5330 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -2; 5331 goto dodyn; 5332 5333 case R_PPC64_TPREL16: 5334 case R_PPC64_TPREL16_LO: 5335 case R_PPC64_TPREL16_HI: 5336 case R_PPC64_TPREL16_HA: 5337 case R_PPC64_TPREL16_DS: 5338 case R_PPC64_TPREL16_LO_DS: 5339 case R_PPC64_TPREL16_HIGHER: 5340 case R_PPC64_TPREL16_HIGHERA: 5341 case R_PPC64_TPREL16_HIGHEST: 5342 case R_PPC64_TPREL16_HIGHESTA: 5343 if (info->shared) 5344 { 5345 if (!info->executable) 5346 info->flags |= DF_STATIC_TLS; 5347 goto dodyn; 5348 } 5349 break; 5350 5351 case R_PPC64_ADDR64: 5352 if (opd_sym_map != NULL 5353 && rel + 1 < rel_end 5354 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC) 5355 { 5356 if (h != NULL) 5357 { 5358 if (h->root.root.string[0] == '.' 5359 && h->root.root.string[1] != 0 5360 && lookup_fdh ((struct ppc_link_hash_entry *) h, htab)) 5361 ; 5362 else 5363 ((struct ppc_link_hash_entry *) h)->is_func = 1; 5364 } 5365 else 5366 { 5367 asection *s; 5368 Elf_Internal_Sym *isym; 5369 5370 isym = bfd_sym_from_r_symndx (&htab->sym_cache, 5371 abfd, r_symndx); 5372 if (isym == NULL) 5373 return FALSE; 5374 5375 s = bfd_section_from_elf_index (abfd, isym->st_shndx); 5376 if (s != NULL && s != sec) 5377 opd_sym_map[rel->r_offset / 8] = s; 5378 } 5379 } 5380 /* Fall through. */ 5381 5382 case R_PPC64_REL30: 5383 case R_PPC64_REL32: 5384 case R_PPC64_REL64: 5385 case R_PPC64_ADDR14: 5386 case R_PPC64_ADDR14_BRNTAKEN: 5387 case R_PPC64_ADDR14_BRTAKEN: 5388 case R_PPC64_ADDR16: 5389 case R_PPC64_ADDR16_DS: 5390 case R_PPC64_ADDR16_HA: 5391 case R_PPC64_ADDR16_HI: 5392 case R_PPC64_ADDR16_HIGHER: 5393 case R_PPC64_ADDR16_HIGHERA: 5394 case R_PPC64_ADDR16_HIGHEST: 5395 case R_PPC64_ADDR16_HIGHESTA: 5396 case R_PPC64_ADDR16_LO: 5397 case R_PPC64_ADDR16_LO_DS: 5398 case R_PPC64_ADDR24: 5399 case R_PPC64_ADDR32: 5400 case R_PPC64_UADDR16: 5401 case R_PPC64_UADDR32: 5402 case R_PPC64_UADDR64: 5403 case R_PPC64_TOC: 5404 if (h != NULL && !info->shared) 5405 /* We may need a copy reloc. */ 5406 h->non_got_ref = 1; 5407 5408 /* Don't propagate .opd relocs. */ 5409 if (NO_OPD_RELOCS && opd_sym_map != NULL) 5410 break; 5411 5412 /* If we are creating a shared library, and this is a reloc 5413 against a global symbol, or a non PC relative reloc 5414 against a local symbol, then we need to copy the reloc 5415 into the shared library. However, if we are linking with 5416 -Bsymbolic, we do not need to copy a reloc against a 5417 global symbol which is defined in an object we are 5418 including in the link (i.e., DEF_REGULAR is set). At 5419 this point we have not seen all the input files, so it is 5420 possible that DEF_REGULAR is not set now but will be set 5421 later (it is never cleared). In case of a weak definition, 5422 DEF_REGULAR may be cleared later by a strong definition in 5423 a shared library. We account for that possibility below by 5424 storing information in the dyn_relocs field of the hash 5425 table entry. A similar situation occurs when creating 5426 shared libraries and symbol visibility changes render the 5427 symbol local. 5428 5429 If on the other hand, we are creating an executable, we 5430 may need to keep relocations for symbols satisfied by a 5431 dynamic library if we manage to avoid copy relocs for the 5432 symbol. */ 5433 dodyn: 5434 if ((info->shared 5435 && (must_be_dyn_reloc (info, r_type) 5436 || (h != NULL 5437 && (! info->symbolic 5438 || h->root.type == bfd_link_hash_defweak 5439 || !h->def_regular)))) 5440 || (ELIMINATE_COPY_RELOCS 5441 && !info->shared 5442 && h != NULL 5443 && (h->root.type == bfd_link_hash_defweak 5444 || !h->def_regular)) 5445 || (!info->shared 5446 && ifunc != NULL)) 5447 { 5448 struct elf_dyn_relocs *p; 5449 struct elf_dyn_relocs **head; 5450 5451 /* We must copy these reloc types into the output file. 5452 Create a reloc section in dynobj and make room for 5453 this reloc. */ 5454 if (sreloc == NULL) 5455 { 5456 sreloc = _bfd_elf_make_dynamic_reloc_section 5457 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE); 5458 5459 if (sreloc == NULL) 5460 return FALSE; 5461 } 5462 5463 /* If this is a global symbol, we count the number of 5464 relocations we need for this symbol. */ 5465 if (h != NULL) 5466 { 5467 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs; 5468 } 5469 else 5470 { 5471 /* Track dynamic relocs needed for local syms too. 5472 We really need local syms available to do this 5473 easily. Oh well. */ 5474 asection *s; 5475 void *vpp; 5476 Elf_Internal_Sym *isym; 5477 5478 isym = bfd_sym_from_r_symndx (&htab->sym_cache, 5479 abfd, r_symndx); 5480 if (isym == NULL) 5481 return FALSE; 5482 5483 s = bfd_section_from_elf_index (abfd, isym->st_shndx); 5484 if (s == NULL) 5485 s = sec; 5486 5487 vpp = &elf_section_data (s)->local_dynrel; 5488 head = (struct elf_dyn_relocs **) vpp; 5489 } 5490 5491 p = *head; 5492 if (p == NULL || p->sec != sec) 5493 { 5494 p = bfd_alloc (htab->elf.dynobj, sizeof *p); 5495 if (p == NULL) 5496 return FALSE; 5497 p->next = *head; 5498 *head = p; 5499 p->sec = sec; 5500 p->count = 0; 5501 p->pc_count = 0; 5502 } 5503 5504 p->count += 1; 5505 if (!must_be_dyn_reloc (info, r_type)) 5506 p->pc_count += 1; 5507 } 5508 break; 5509 5510 default: 5511 break; 5512 } 5513 } 5514 5515 return TRUE; 5516 } 5517 5518 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address 5519 of the code entry point, and its section. */ 5520 5521 static bfd_vma 5522 opd_entry_value (asection *opd_sec, 5523 bfd_vma offset, 5524 asection **code_sec, 5525 bfd_vma *code_off, 5526 bfd_boolean in_code_sec) 5527 { 5528 bfd *opd_bfd = opd_sec->owner; 5529 Elf_Internal_Rela *relocs; 5530 Elf_Internal_Rela *lo, *hi, *look; 5531 bfd_vma val; 5532 5533 /* No relocs implies we are linking a --just-symbols object, or looking 5534 at a final linked executable with addr2line or somesuch. */ 5535 if (opd_sec->reloc_count == 0) 5536 { 5537 char buf[8]; 5538 5539 if (!bfd_get_section_contents (opd_bfd, opd_sec, buf, offset, 8)) 5540 return (bfd_vma) -1; 5541 5542 val = bfd_get_64 (opd_bfd, buf); 5543 if (code_sec != NULL) 5544 { 5545 asection *sec, *likely = NULL; 5546 5547 if (in_code_sec) 5548 { 5549 sec = *code_sec; 5550 if (sec->vma <= val 5551 && val < sec->vma + sec->size) 5552 likely = sec; 5553 else 5554 val = -1; 5555 } 5556 else 5557 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next) 5558 if (sec->vma <= val 5559 && (sec->flags & SEC_LOAD) != 0 5560 && (sec->flags & SEC_ALLOC) != 0) 5561 likely = sec; 5562 if (likely != NULL) 5563 { 5564 *code_sec = likely; 5565 if (code_off != NULL) 5566 *code_off = val - likely->vma; 5567 } 5568 } 5569 return val; 5570 } 5571 5572 BFD_ASSERT (is_ppc64_elf (opd_bfd)); 5573 5574 relocs = ppc64_elf_tdata (opd_bfd)->opd_relocs; 5575 if (relocs == NULL) 5576 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE); 5577 5578 /* Go find the opd reloc at the sym address. */ 5579 lo = relocs; 5580 BFD_ASSERT (lo != NULL); 5581 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */ 5582 val = (bfd_vma) -1; 5583 while (lo < hi) 5584 { 5585 look = lo + (hi - lo) / 2; 5586 if (look->r_offset < offset) 5587 lo = look + 1; 5588 else if (look->r_offset > offset) 5589 hi = look; 5590 else 5591 { 5592 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (opd_bfd); 5593 5594 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64 5595 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC) 5596 { 5597 unsigned long symndx = ELF64_R_SYM (look->r_info); 5598 asection *sec; 5599 5600 if (symndx < symtab_hdr->sh_info 5601 || elf_sym_hashes (opd_bfd) == NULL) 5602 { 5603 Elf_Internal_Sym *sym; 5604 5605 sym = (Elf_Internal_Sym *) symtab_hdr->contents; 5606 if (sym == NULL) 5607 { 5608 size_t symcnt = symtab_hdr->sh_info; 5609 if (elf_sym_hashes (opd_bfd) == NULL) 5610 symcnt = symtab_hdr->sh_size / symtab_hdr->sh_entsize; 5611 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr, symcnt, 5612 0, NULL, NULL, NULL); 5613 if (sym == NULL) 5614 break; 5615 symtab_hdr->contents = (bfd_byte *) sym; 5616 } 5617 5618 sym += symndx; 5619 val = sym->st_value; 5620 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx); 5621 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0); 5622 } 5623 else 5624 { 5625 struct elf_link_hash_entry **sym_hashes; 5626 struct elf_link_hash_entry *rh; 5627 5628 sym_hashes = elf_sym_hashes (opd_bfd); 5629 rh = sym_hashes[symndx - symtab_hdr->sh_info]; 5630 rh = elf_follow_link (rh); 5631 BFD_ASSERT (rh->root.type == bfd_link_hash_defined 5632 || rh->root.type == bfd_link_hash_defweak); 5633 val = rh->root.u.def.value; 5634 sec = rh->root.u.def.section; 5635 } 5636 val += look->r_addend; 5637 if (code_off != NULL) 5638 *code_off = val; 5639 if (code_sec != NULL) 5640 { 5641 if (in_code_sec && *code_sec != sec) 5642 return -1; 5643 else 5644 *code_sec = sec; 5645 } 5646 if (sec != NULL && sec->output_section != NULL) 5647 val += sec->output_section->vma + sec->output_offset; 5648 } 5649 break; 5650 } 5651 } 5652 5653 return val; 5654 } 5655 5656 /* If the ELF symbol SYM might be a function in SEC, return the 5657 function size and set *CODE_OFF to the function's entry point, 5658 otherwise return zero. */ 5659 5660 static bfd_size_type 5661 ppc64_elf_maybe_function_sym (const asymbol *sym, asection *sec, 5662 bfd_vma *code_off) 5663 { 5664 bfd_size_type size; 5665 5666 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT 5667 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0) 5668 return 0; 5669 5670 size = 0; 5671 if (!(sym->flags & BSF_SYNTHETIC)) 5672 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size; 5673 5674 if (strcmp (sym->section->name, ".opd") == 0) 5675 { 5676 if (opd_entry_value (sym->section, sym->value, 5677 &sec, code_off, TRUE) == (bfd_vma) -1) 5678 return 0; 5679 /* An old ABI binary with dot-syms has a size of 24 on the .opd 5680 symbol. This size has nothing to do with the code size of the 5681 function, which is what we're supposed to return, but the 5682 code size isn't available without looking up the dot-sym. 5683 However, doing that would be a waste of time particularly 5684 since elf_find_function will look at the dot-sym anyway. 5685 Now, elf_find_function will keep the largest size of any 5686 function sym found at the code address of interest, so return 5687 1 here to avoid it incorrectly caching a larger function size 5688 for a small function. This does mean we return the wrong 5689 size for a new-ABI function of size 24, but all that does is 5690 disable caching for such functions. */ 5691 if (size == 24) 5692 size = 1; 5693 } 5694 else 5695 { 5696 if (sym->section != sec) 5697 return 0; 5698 *code_off = sym->value; 5699 } 5700 if (size == 0) 5701 size = 1; 5702 return size; 5703 } 5704 5705 /* Return true if symbol is defined in a regular object file. */ 5706 5707 static bfd_boolean 5708 is_static_defined (struct elf_link_hash_entry *h) 5709 { 5710 return ((h->root.type == bfd_link_hash_defined 5711 || h->root.type == bfd_link_hash_defweak) 5712 && h->root.u.def.section != NULL 5713 && h->root.u.def.section->output_section != NULL); 5714 } 5715 5716 /* If FDH is a function descriptor symbol, return the associated code 5717 entry symbol if it is defined. Return NULL otherwise. */ 5718 5719 static struct ppc_link_hash_entry * 5720 defined_code_entry (struct ppc_link_hash_entry *fdh) 5721 { 5722 if (fdh->is_func_descriptor) 5723 { 5724 struct ppc_link_hash_entry *fh = ppc_follow_link (fdh->oh); 5725 if (fh->elf.root.type == bfd_link_hash_defined 5726 || fh->elf.root.type == bfd_link_hash_defweak) 5727 return fh; 5728 } 5729 return NULL; 5730 } 5731 5732 /* If FH is a function code entry symbol, return the associated 5733 function descriptor symbol if it is defined. Return NULL otherwise. */ 5734 5735 static struct ppc_link_hash_entry * 5736 defined_func_desc (struct ppc_link_hash_entry *fh) 5737 { 5738 if (fh->oh != NULL 5739 && fh->oh->is_func_descriptor) 5740 { 5741 struct ppc_link_hash_entry *fdh = ppc_follow_link (fh->oh); 5742 if (fdh->elf.root.type == bfd_link_hash_defined 5743 || fdh->elf.root.type == bfd_link_hash_defweak) 5744 return fdh; 5745 } 5746 return NULL; 5747 } 5748 5749 /* Mark all our entry sym sections, both opd and code section. */ 5750 5751 static void 5752 ppc64_elf_gc_keep (struct bfd_link_info *info) 5753 { 5754 struct ppc_link_hash_table *htab = ppc_hash_table (info); 5755 struct bfd_sym_chain *sym; 5756 5757 if (htab == NULL) 5758 return; 5759 5760 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next) 5761 { 5762 struct ppc_link_hash_entry *eh, *fh; 5763 asection *sec; 5764 5765 eh = (struct ppc_link_hash_entry *) 5766 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, TRUE); 5767 if (eh == NULL) 5768 continue; 5769 if (eh->elf.root.type != bfd_link_hash_defined 5770 && eh->elf.root.type != bfd_link_hash_defweak) 5771 continue; 5772 5773 fh = defined_code_entry (eh); 5774 if (fh != NULL) 5775 { 5776 sec = fh->elf.root.u.def.section; 5777 sec->flags |= SEC_KEEP; 5778 } 5779 else if (get_opd_info (eh->elf.root.u.def.section) != NULL 5780 && opd_entry_value (eh->elf.root.u.def.section, 5781 eh->elf.root.u.def.value, 5782 &sec, NULL, FALSE) != (bfd_vma) -1) 5783 sec->flags |= SEC_KEEP; 5784 5785 sec = eh->elf.root.u.def.section; 5786 sec->flags |= SEC_KEEP; 5787 } 5788 } 5789 5790 /* Mark sections containing dynamically referenced symbols. When 5791 building shared libraries, we must assume that any visible symbol is 5792 referenced. */ 5793 5794 static bfd_boolean 5795 ppc64_elf_gc_mark_dynamic_ref (struct elf_link_hash_entry *h, void *inf) 5796 { 5797 struct bfd_link_info *info = (struct bfd_link_info *) inf; 5798 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h; 5799 struct ppc_link_hash_entry *fdh; 5800 5801 /* Dynamic linking info is on the func descriptor sym. */ 5802 fdh = defined_func_desc (eh); 5803 if (fdh != NULL) 5804 eh = fdh; 5805 5806 if ((eh->elf.root.type == bfd_link_hash_defined 5807 || eh->elf.root.type == bfd_link_hash_defweak) 5808 && (eh->elf.ref_dynamic 5809 || (!info->executable 5810 && eh->elf.def_regular 5811 && ELF_ST_VISIBILITY (eh->elf.other) != STV_INTERNAL 5812 && ELF_ST_VISIBILITY (eh->elf.other) != STV_HIDDEN 5813 && (strchr (eh->elf.root.root.string, ELF_VER_CHR) != NULL 5814 || !bfd_hide_sym_by_version (info->version_info, 5815 eh->elf.root.root.string))))) 5816 { 5817 asection *code_sec; 5818 struct ppc_link_hash_entry *fh; 5819 5820 eh->elf.root.u.def.section->flags |= SEC_KEEP; 5821 5822 /* Function descriptor syms cause the associated 5823 function code sym section to be marked. */ 5824 fh = defined_code_entry (eh); 5825 if (fh != NULL) 5826 { 5827 code_sec = fh->elf.root.u.def.section; 5828 code_sec->flags |= SEC_KEEP; 5829 } 5830 else if (get_opd_info (eh->elf.root.u.def.section) != NULL 5831 && opd_entry_value (eh->elf.root.u.def.section, 5832 eh->elf.root.u.def.value, 5833 &code_sec, NULL, FALSE) != (bfd_vma) -1) 5834 code_sec->flags |= SEC_KEEP; 5835 } 5836 5837 return TRUE; 5838 } 5839 5840 /* Return the section that should be marked against GC for a given 5841 relocation. */ 5842 5843 static asection * 5844 ppc64_elf_gc_mark_hook (asection *sec, 5845 struct bfd_link_info *info, 5846 Elf_Internal_Rela *rel, 5847 struct elf_link_hash_entry *h, 5848 Elf_Internal_Sym *sym) 5849 { 5850 asection *rsec; 5851 5852 /* Syms return NULL if we're marking .opd, so we avoid marking all 5853 function sections, as all functions are referenced in .opd. */ 5854 rsec = NULL; 5855 if (get_opd_info (sec) != NULL) 5856 return rsec; 5857 5858 if (h != NULL) 5859 { 5860 enum elf_ppc64_reloc_type r_type; 5861 struct ppc_link_hash_entry *eh, *fh, *fdh; 5862 5863 r_type = ELF64_R_TYPE (rel->r_info); 5864 switch (r_type) 5865 { 5866 case R_PPC64_GNU_VTINHERIT: 5867 case R_PPC64_GNU_VTENTRY: 5868 break; 5869 5870 default: 5871 switch (h->root.type) 5872 { 5873 case bfd_link_hash_defined: 5874 case bfd_link_hash_defweak: 5875 eh = (struct ppc_link_hash_entry *) h; 5876 fdh = defined_func_desc (eh); 5877 if (fdh != NULL) 5878 eh = fdh; 5879 5880 /* Function descriptor syms cause the associated 5881 function code sym section to be marked. */ 5882 fh = defined_code_entry (eh); 5883 if (fh != NULL) 5884 { 5885 /* They also mark their opd section. */ 5886 eh->elf.root.u.def.section->gc_mark = 1; 5887 5888 rsec = fh->elf.root.u.def.section; 5889 } 5890 else if (get_opd_info (eh->elf.root.u.def.section) != NULL 5891 && opd_entry_value (eh->elf.root.u.def.section, 5892 eh->elf.root.u.def.value, 5893 &rsec, NULL, FALSE) != (bfd_vma) -1) 5894 eh->elf.root.u.def.section->gc_mark = 1; 5895 else 5896 rsec = h->root.u.def.section; 5897 break; 5898 5899 case bfd_link_hash_common: 5900 rsec = h->root.u.c.p->section; 5901 break; 5902 5903 default: 5904 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); 5905 } 5906 } 5907 } 5908 else 5909 { 5910 struct _opd_sec_data *opd; 5911 5912 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx); 5913 opd = get_opd_info (rsec); 5914 if (opd != NULL && opd->func_sec != NULL) 5915 { 5916 rsec->gc_mark = 1; 5917 5918 rsec = opd->func_sec[(sym->st_value + rel->r_addend) / 8]; 5919 } 5920 } 5921 5922 return rsec; 5923 } 5924 5925 /* Update the .got, .plt. and dynamic reloc reference counts for the 5926 section being removed. */ 5927 5928 static bfd_boolean 5929 ppc64_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info, 5930 asection *sec, const Elf_Internal_Rela *relocs) 5931 { 5932 struct ppc_link_hash_table *htab; 5933 Elf_Internal_Shdr *symtab_hdr; 5934 struct elf_link_hash_entry **sym_hashes; 5935 struct got_entry **local_got_ents; 5936 const Elf_Internal_Rela *rel, *relend; 5937 5938 if (info->relocatable) 5939 return TRUE; 5940 5941 if ((sec->flags & SEC_ALLOC) == 0) 5942 return TRUE; 5943 5944 elf_section_data (sec)->local_dynrel = NULL; 5945 5946 htab = ppc_hash_table (info); 5947 if (htab == NULL) 5948 return FALSE; 5949 5950 symtab_hdr = &elf_symtab_hdr (abfd); 5951 sym_hashes = elf_sym_hashes (abfd); 5952 local_got_ents = elf_local_got_ents (abfd); 5953 5954 relend = relocs + sec->reloc_count; 5955 for (rel = relocs; rel < relend; rel++) 5956 { 5957 unsigned long r_symndx; 5958 enum elf_ppc64_reloc_type r_type; 5959 struct elf_link_hash_entry *h = NULL; 5960 unsigned char tls_type = 0; 5961 5962 r_symndx = ELF64_R_SYM (rel->r_info); 5963 r_type = ELF64_R_TYPE (rel->r_info); 5964 if (r_symndx >= symtab_hdr->sh_info) 5965 { 5966 struct ppc_link_hash_entry *eh; 5967 struct elf_dyn_relocs **pp; 5968 struct elf_dyn_relocs *p; 5969 5970 h = sym_hashes[r_symndx - symtab_hdr->sh_info]; 5971 h = elf_follow_link (h); 5972 eh = (struct ppc_link_hash_entry *) h; 5973 5974 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next) 5975 if (p->sec == sec) 5976 { 5977 /* Everything must go for SEC. */ 5978 *pp = p->next; 5979 break; 5980 } 5981 } 5982 5983 if (is_branch_reloc (r_type)) 5984 { 5985 struct plt_entry **ifunc = NULL; 5986 if (h != NULL) 5987 { 5988 if (h->type == STT_GNU_IFUNC) 5989 ifunc = &h->plt.plist; 5990 } 5991 else if (local_got_ents != NULL) 5992 { 5993 struct plt_entry **local_plt = (struct plt_entry **) 5994 (local_got_ents + symtab_hdr->sh_info); 5995 unsigned char *local_got_tls_masks = (unsigned char *) 5996 (local_plt + symtab_hdr->sh_info); 5997 if ((local_got_tls_masks[r_symndx] & PLT_IFUNC) != 0) 5998 ifunc = local_plt + r_symndx; 5999 } 6000 if (ifunc != NULL) 6001 { 6002 struct plt_entry *ent; 6003 6004 for (ent = *ifunc; ent != NULL; ent = ent->next) 6005 if (ent->addend == rel->r_addend) 6006 break; 6007 if (ent == NULL) 6008 abort (); 6009 if (ent->plt.refcount > 0) 6010 ent->plt.refcount -= 1; 6011 continue; 6012 } 6013 } 6014 6015 switch (r_type) 6016 { 6017 case R_PPC64_GOT_TLSLD16: 6018 case R_PPC64_GOT_TLSLD16_LO: 6019 case R_PPC64_GOT_TLSLD16_HI: 6020 case R_PPC64_GOT_TLSLD16_HA: 6021 tls_type = TLS_TLS | TLS_LD; 6022 goto dogot; 6023 6024 case R_PPC64_GOT_TLSGD16: 6025 case R_PPC64_GOT_TLSGD16_LO: 6026 case R_PPC64_GOT_TLSGD16_HI: 6027 case R_PPC64_GOT_TLSGD16_HA: 6028 tls_type = TLS_TLS | TLS_GD; 6029 goto dogot; 6030 6031 case R_PPC64_GOT_TPREL16_DS: 6032 case R_PPC64_GOT_TPREL16_LO_DS: 6033 case R_PPC64_GOT_TPREL16_HI: 6034 case R_PPC64_GOT_TPREL16_HA: 6035 tls_type = TLS_TLS | TLS_TPREL; 6036 goto dogot; 6037 6038 case R_PPC64_GOT_DTPREL16_DS: 6039 case R_PPC64_GOT_DTPREL16_LO_DS: 6040 case R_PPC64_GOT_DTPREL16_HI: 6041 case R_PPC64_GOT_DTPREL16_HA: 6042 tls_type = TLS_TLS | TLS_DTPREL; 6043 goto dogot; 6044 6045 case R_PPC64_GOT16: 6046 case R_PPC64_GOT16_DS: 6047 case R_PPC64_GOT16_HA: 6048 case R_PPC64_GOT16_HI: 6049 case R_PPC64_GOT16_LO: 6050 case R_PPC64_GOT16_LO_DS: 6051 dogot: 6052 { 6053 struct got_entry *ent; 6054 6055 if (h != NULL) 6056 ent = h->got.glist; 6057 else 6058 ent = local_got_ents[r_symndx]; 6059 6060 for (; ent != NULL; ent = ent->next) 6061 if (ent->addend == rel->r_addend 6062 && ent->owner == abfd 6063 && ent->tls_type == tls_type) 6064 break; 6065 if (ent == NULL) 6066 abort (); 6067 if (ent->got.refcount > 0) 6068 ent->got.refcount -= 1; 6069 } 6070 break; 6071 6072 case R_PPC64_PLT16_HA: 6073 case R_PPC64_PLT16_HI: 6074 case R_PPC64_PLT16_LO: 6075 case R_PPC64_PLT32: 6076 case R_PPC64_PLT64: 6077 case R_PPC64_REL14: 6078 case R_PPC64_REL14_BRNTAKEN: 6079 case R_PPC64_REL14_BRTAKEN: 6080 case R_PPC64_REL24: 6081 if (h != NULL) 6082 { 6083 struct plt_entry *ent; 6084 6085 for (ent = h->plt.plist; ent != NULL; ent = ent->next) 6086 if (ent->addend == rel->r_addend) 6087 break; 6088 if (ent != NULL && ent->plt.refcount > 0) 6089 ent->plt.refcount -= 1; 6090 } 6091 break; 6092 6093 default: 6094 break; 6095 } 6096 } 6097 return TRUE; 6098 } 6099 6100 /* The maximum size of .sfpr. */ 6101 #define SFPR_MAX (218*4) 6102 6103 struct sfpr_def_parms 6104 { 6105 const char name[12]; 6106 unsigned char lo, hi; 6107 bfd_byte * (*write_ent) (bfd *, bfd_byte *, int); 6108 bfd_byte * (*write_tail) (bfd *, bfd_byte *, int); 6109 }; 6110 6111 /* Auto-generate _save*, _rest* functions in .sfpr. */ 6112 6113 static bfd_boolean 6114 sfpr_define (struct bfd_link_info *info, const struct sfpr_def_parms *parm) 6115 { 6116 struct ppc_link_hash_table *htab = ppc_hash_table (info); 6117 unsigned int i; 6118 size_t len = strlen (parm->name); 6119 bfd_boolean writing = FALSE; 6120 char sym[16]; 6121 6122 if (htab == NULL) 6123 return FALSE; 6124 6125 memcpy (sym, parm->name, len); 6126 sym[len + 2] = 0; 6127 6128 for (i = parm->lo; i <= parm->hi; i++) 6129 { 6130 struct elf_link_hash_entry *h; 6131 6132 sym[len + 0] = i / 10 + '0'; 6133 sym[len + 1] = i % 10 + '0'; 6134 h = elf_link_hash_lookup (&htab->elf, sym, FALSE, FALSE, TRUE); 6135 if (h != NULL 6136 && !h->def_regular) 6137 { 6138 h->root.type = bfd_link_hash_defined; 6139 h->root.u.def.section = htab->sfpr; 6140 h->root.u.def.value = htab->sfpr->size; 6141 h->type = STT_FUNC; 6142 h->def_regular = 1; 6143 _bfd_elf_link_hash_hide_symbol (info, h, TRUE); 6144 writing = TRUE; 6145 if (htab->sfpr->contents == NULL) 6146 { 6147 htab->sfpr->contents = bfd_alloc (htab->elf.dynobj, SFPR_MAX); 6148 if (htab->sfpr->contents == NULL) 6149 return FALSE; 6150 } 6151 } 6152 if (writing) 6153 { 6154 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size; 6155 if (i != parm->hi) 6156 p = (*parm->write_ent) (htab->elf.dynobj, p, i); 6157 else 6158 p = (*parm->write_tail) (htab->elf.dynobj, p, i); 6159 htab->sfpr->size = p - htab->sfpr->contents; 6160 } 6161 } 6162 6163 return TRUE; 6164 } 6165 6166 static bfd_byte * 6167 savegpr0 (bfd *abfd, bfd_byte *p, int r) 6168 { 6169 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p); 6170 return p + 4; 6171 } 6172 6173 static bfd_byte * 6174 savegpr0_tail (bfd *abfd, bfd_byte *p, int r) 6175 { 6176 p = savegpr0 (abfd, p, r); 6177 bfd_put_32 (abfd, STD_R0_0R1 + 16, p); 6178 p = p + 4; 6179 bfd_put_32 (abfd, BLR, p); 6180 return p + 4; 6181 } 6182 6183 static bfd_byte * 6184 restgpr0 (bfd *abfd, bfd_byte *p, int r) 6185 { 6186 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p); 6187 return p + 4; 6188 } 6189 6190 static bfd_byte * 6191 restgpr0_tail (bfd *abfd, bfd_byte *p, int r) 6192 { 6193 bfd_put_32 (abfd, LD_R0_0R1 + 16, p); 6194 p = p + 4; 6195 p = restgpr0 (abfd, p, r); 6196 bfd_put_32 (abfd, MTLR_R0, p); 6197 p = p + 4; 6198 if (r == 29) 6199 { 6200 p = restgpr0 (abfd, p, 30); 6201 p = restgpr0 (abfd, p, 31); 6202 } 6203 bfd_put_32 (abfd, BLR, p); 6204 return p + 4; 6205 } 6206 6207 static bfd_byte * 6208 savegpr1 (bfd *abfd, bfd_byte *p, int r) 6209 { 6210 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p); 6211 return p + 4; 6212 } 6213 6214 static bfd_byte * 6215 savegpr1_tail (bfd *abfd, bfd_byte *p, int r) 6216 { 6217 p = savegpr1 (abfd, p, r); 6218 bfd_put_32 (abfd, BLR, p); 6219 return p + 4; 6220 } 6221 6222 static bfd_byte * 6223 restgpr1 (bfd *abfd, bfd_byte *p, int r) 6224 { 6225 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p); 6226 return p + 4; 6227 } 6228 6229 static bfd_byte * 6230 restgpr1_tail (bfd *abfd, bfd_byte *p, int r) 6231 { 6232 p = restgpr1 (abfd, p, r); 6233 bfd_put_32 (abfd, BLR, p); 6234 return p + 4; 6235 } 6236 6237 static bfd_byte * 6238 savefpr (bfd *abfd, bfd_byte *p, int r) 6239 { 6240 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p); 6241 return p + 4; 6242 } 6243 6244 static bfd_byte * 6245 savefpr0_tail (bfd *abfd, bfd_byte *p, int r) 6246 { 6247 p = savefpr (abfd, p, r); 6248 bfd_put_32 (abfd, STD_R0_0R1 + 16, p); 6249 p = p + 4; 6250 bfd_put_32 (abfd, BLR, p); 6251 return p + 4; 6252 } 6253 6254 static bfd_byte * 6255 restfpr (bfd *abfd, bfd_byte *p, int r) 6256 { 6257 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p); 6258 return p + 4; 6259 } 6260 6261 static bfd_byte * 6262 restfpr0_tail (bfd *abfd, bfd_byte *p, int r) 6263 { 6264 bfd_put_32 (abfd, LD_R0_0R1 + 16, p); 6265 p = p + 4; 6266 p = restfpr (abfd, p, r); 6267 bfd_put_32 (abfd, MTLR_R0, p); 6268 p = p + 4; 6269 if (r == 29) 6270 { 6271 p = restfpr (abfd, p, 30); 6272 p = restfpr (abfd, p, 31); 6273 } 6274 bfd_put_32 (abfd, BLR, p); 6275 return p + 4; 6276 } 6277 6278 static bfd_byte * 6279 savefpr1_tail (bfd *abfd, bfd_byte *p, int r) 6280 { 6281 p = savefpr (abfd, p, r); 6282 bfd_put_32 (abfd, BLR, p); 6283 return p + 4; 6284 } 6285 6286 static bfd_byte * 6287 restfpr1_tail (bfd *abfd, bfd_byte *p, int r) 6288 { 6289 p = restfpr (abfd, p, r); 6290 bfd_put_32 (abfd, BLR, p); 6291 return p + 4; 6292 } 6293 6294 static bfd_byte * 6295 savevr (bfd *abfd, bfd_byte *p, int r) 6296 { 6297 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p); 6298 p = p + 4; 6299 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p); 6300 return p + 4; 6301 } 6302 6303 static bfd_byte * 6304 savevr_tail (bfd *abfd, bfd_byte *p, int r) 6305 { 6306 p = savevr (abfd, p, r); 6307 bfd_put_32 (abfd, BLR, p); 6308 return p + 4; 6309 } 6310 6311 static bfd_byte * 6312 restvr (bfd *abfd, bfd_byte *p, int r) 6313 { 6314 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p); 6315 p = p + 4; 6316 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p); 6317 return p + 4; 6318 } 6319 6320 static bfd_byte * 6321 restvr_tail (bfd *abfd, bfd_byte *p, int r) 6322 { 6323 p = restvr (abfd, p, r); 6324 bfd_put_32 (abfd, BLR, p); 6325 return p + 4; 6326 } 6327 6328 /* Called via elf_link_hash_traverse to transfer dynamic linking 6329 information on function code symbol entries to their corresponding 6330 function descriptor symbol entries. */ 6331 6332 static bfd_boolean 6333 func_desc_adjust (struct elf_link_hash_entry *h, void *inf) 6334 { 6335 struct bfd_link_info *info; 6336 struct ppc_link_hash_table *htab; 6337 struct plt_entry *ent; 6338 struct ppc_link_hash_entry *fh; 6339 struct ppc_link_hash_entry *fdh; 6340 bfd_boolean force_local; 6341 6342 fh = (struct ppc_link_hash_entry *) h; 6343 if (fh->elf.root.type == bfd_link_hash_indirect) 6344 return TRUE; 6345 6346 info = inf; 6347 htab = ppc_hash_table (info); 6348 if (htab == NULL) 6349 return FALSE; 6350 6351 /* Resolve undefined references to dot-symbols as the value 6352 in the function descriptor, if we have one in a regular object. 6353 This is to satisfy cases like ".quad .foo". Calls to functions 6354 in dynamic objects are handled elsewhere. */ 6355 if (fh->elf.root.type == bfd_link_hash_undefweak 6356 && fh->was_undefined 6357 && (fdh = defined_func_desc (fh)) != NULL 6358 && get_opd_info (fdh->elf.root.u.def.section) != NULL 6359 && opd_entry_value (fdh->elf.root.u.def.section, 6360 fdh->elf.root.u.def.value, 6361 &fh->elf.root.u.def.section, 6362 &fh->elf.root.u.def.value, FALSE) != (bfd_vma) -1) 6363 { 6364 fh->elf.root.type = fdh->elf.root.type; 6365 fh->elf.forced_local = 1; 6366 fh->elf.def_regular = fdh->elf.def_regular; 6367 fh->elf.def_dynamic = fdh->elf.def_dynamic; 6368 } 6369 6370 /* If this is a function code symbol, transfer dynamic linking 6371 information to the function descriptor symbol. */ 6372 if (!fh->is_func) 6373 return TRUE; 6374 6375 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next) 6376 if (ent->plt.refcount > 0) 6377 break; 6378 if (ent == NULL 6379 || fh->elf.root.root.string[0] != '.' 6380 || fh->elf.root.root.string[1] == '\0') 6381 return TRUE; 6382 6383 /* Find the corresponding function descriptor symbol. Create it 6384 as undefined if necessary. */ 6385 6386 fdh = lookup_fdh (fh, htab); 6387 if (fdh == NULL 6388 && !info->executable 6389 && (fh->elf.root.type == bfd_link_hash_undefined 6390 || fh->elf.root.type == bfd_link_hash_undefweak)) 6391 { 6392 fdh = make_fdh (info, fh); 6393 if (fdh == NULL) 6394 return FALSE; 6395 } 6396 6397 /* Fake function descriptors are made undefweak. If the function 6398 code symbol is strong undefined, make the fake sym the same. 6399 If the function code symbol is defined, then force the fake 6400 descriptor local; We can't support overriding of symbols in a 6401 shared library on a fake descriptor. */ 6402 6403 if (fdh != NULL 6404 && fdh->fake 6405 && fdh->elf.root.type == bfd_link_hash_undefweak) 6406 { 6407 if (fh->elf.root.type == bfd_link_hash_undefined) 6408 { 6409 fdh->elf.root.type = bfd_link_hash_undefined; 6410 bfd_link_add_undef (&htab->elf.root, &fdh->elf.root); 6411 } 6412 else if (fh->elf.root.type == bfd_link_hash_defined 6413 || fh->elf.root.type == bfd_link_hash_defweak) 6414 { 6415 _bfd_elf_link_hash_hide_symbol (info, &fdh->elf, TRUE); 6416 } 6417 } 6418 6419 if (fdh != NULL 6420 && !fdh->elf.forced_local 6421 && (!info->executable 6422 || fdh->elf.def_dynamic 6423 || fdh->elf.ref_dynamic 6424 || (fdh->elf.root.type == bfd_link_hash_undefweak 6425 && ELF_ST_VISIBILITY (fdh->elf.other) == STV_DEFAULT))) 6426 { 6427 if (fdh->elf.dynindx == -1) 6428 if (! bfd_elf_link_record_dynamic_symbol (info, &fdh->elf)) 6429 return FALSE; 6430 fdh->elf.ref_regular |= fh->elf.ref_regular; 6431 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic; 6432 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak; 6433 fdh->elf.non_got_ref |= fh->elf.non_got_ref; 6434 if (ELF_ST_VISIBILITY (fh->elf.other) == STV_DEFAULT) 6435 { 6436 move_plt_plist (fh, fdh); 6437 fdh->elf.needs_plt = 1; 6438 } 6439 fdh->is_func_descriptor = 1; 6440 fdh->oh = fh; 6441 fh->oh = fdh; 6442 } 6443 6444 /* Now that the info is on the function descriptor, clear the 6445 function code sym info. Any function code syms for which we 6446 don't have a definition in a regular file, we force local. 6447 This prevents a shared library from exporting syms that have 6448 been imported from another library. Function code syms that 6449 are really in the library we must leave global to prevent the 6450 linker dragging in a definition from a static library. */ 6451 force_local = (!fh->elf.def_regular 6452 || fdh == NULL 6453 || !fdh->elf.def_regular 6454 || fdh->elf.forced_local); 6455 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local); 6456 6457 return TRUE; 6458 } 6459 6460 /* Called near the start of bfd_elf_size_dynamic_sections. We use 6461 this hook to a) provide some gcc support functions, and b) transfer 6462 dynamic linking information gathered so far on function code symbol 6463 entries, to their corresponding function descriptor symbol entries. */ 6464 6465 static bfd_boolean 6466 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED, 6467 struct bfd_link_info *info) 6468 { 6469 struct ppc_link_hash_table *htab; 6470 unsigned int i; 6471 static const struct sfpr_def_parms funcs[] = 6472 { 6473 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail }, 6474 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail }, 6475 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail }, 6476 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail }, 6477 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail }, 6478 { "_savefpr_", 14, 31, savefpr, savefpr0_tail }, 6479 { "_restfpr_", 14, 29, restfpr, restfpr0_tail }, 6480 { "_restfpr_", 30, 31, restfpr, restfpr0_tail }, 6481 { "._savef", 14, 31, savefpr, savefpr1_tail }, 6482 { "._restf", 14, 31, restfpr, restfpr1_tail }, 6483 { "_savevr_", 20, 31, savevr, savevr_tail }, 6484 { "_restvr_", 20, 31, restvr, restvr_tail } 6485 }; 6486 6487 htab = ppc_hash_table (info); 6488 if (htab == NULL) 6489 return FALSE; 6490 6491 if (htab->sfpr == NULL) 6492 /* We don't have any relocs. */ 6493 return TRUE; 6494 6495 /* Provide any missing _save* and _rest* functions. */ 6496 htab->sfpr->size = 0; 6497 if (!info->relocatable) 6498 for (i = 0; i < sizeof (funcs) / sizeof (funcs[0]); i++) 6499 if (!sfpr_define (info, &funcs[i])) 6500 return FALSE; 6501 6502 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info); 6503 6504 if (htab->sfpr->size == 0) 6505 htab->sfpr->flags |= SEC_EXCLUDE; 6506 6507 return TRUE; 6508 } 6509 6510 /* Adjust a symbol defined by a dynamic object and referenced by a 6511 regular object. The current definition is in some section of the 6512 dynamic object, but we're not including those sections. We have to 6513 change the definition to something the rest of the link can 6514 understand. */ 6515 6516 static bfd_boolean 6517 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info, 6518 struct elf_link_hash_entry *h) 6519 { 6520 struct ppc_link_hash_table *htab; 6521 asection *s; 6522 6523 htab = ppc_hash_table (info); 6524 if (htab == NULL) 6525 return FALSE; 6526 6527 /* Deal with function syms. */ 6528 if (h->type == STT_FUNC 6529 || h->type == STT_GNU_IFUNC 6530 || h->needs_plt) 6531 { 6532 /* Clear procedure linkage table information for any symbol that 6533 won't need a .plt entry. */ 6534 struct plt_entry *ent; 6535 for (ent = h->plt.plist; ent != NULL; ent = ent->next) 6536 if (ent->plt.refcount > 0) 6537 break; 6538 if (ent == NULL 6539 || (h->type != STT_GNU_IFUNC 6540 && (SYMBOL_CALLS_LOCAL (info, h) 6541 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT 6542 && h->root.type == bfd_link_hash_undefweak)))) 6543 { 6544 h->plt.plist = NULL; 6545 h->needs_plt = 0; 6546 } 6547 } 6548 else 6549 h->plt.plist = NULL; 6550 6551 /* If this is a weak symbol, and there is a real definition, the 6552 processor independent code will have arranged for us to see the 6553 real definition first, and we can just use the same value. */ 6554 if (h->u.weakdef != NULL) 6555 { 6556 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined 6557 || h->u.weakdef->root.type == bfd_link_hash_defweak); 6558 h->root.u.def.section = h->u.weakdef->root.u.def.section; 6559 h->root.u.def.value = h->u.weakdef->root.u.def.value; 6560 if (ELIMINATE_COPY_RELOCS) 6561 h->non_got_ref = h->u.weakdef->non_got_ref; 6562 return TRUE; 6563 } 6564 6565 /* If we are creating a shared library, we must presume that the 6566 only references to the symbol are via the global offset table. 6567 For such cases we need not do anything here; the relocations will 6568 be handled correctly by relocate_section. */ 6569 if (info->shared) 6570 return TRUE; 6571 6572 /* If there are no references to this symbol that do not use the 6573 GOT, we don't need to generate a copy reloc. */ 6574 if (!h->non_got_ref) 6575 return TRUE; 6576 6577 /* Don't generate a copy reloc for symbols defined in the executable. */ 6578 if (!h->def_dynamic || !h->ref_regular || h->def_regular) 6579 return TRUE; 6580 6581 if (ELIMINATE_COPY_RELOCS) 6582 { 6583 struct ppc_link_hash_entry * eh; 6584 struct elf_dyn_relocs *p; 6585 6586 eh = (struct ppc_link_hash_entry *) h; 6587 for (p = eh->dyn_relocs; p != NULL; p = p->next) 6588 { 6589 s = p->sec->output_section; 6590 if (s != NULL && (s->flags & SEC_READONLY) != 0) 6591 break; 6592 } 6593 6594 /* If we didn't find any dynamic relocs in read-only sections, then 6595 we'll be keeping the dynamic relocs and avoiding the copy reloc. */ 6596 if (p == NULL) 6597 { 6598 h->non_got_ref = 0; 6599 return TRUE; 6600 } 6601 } 6602 6603 if (h->plt.plist != NULL) 6604 { 6605 /* We should never get here, but unfortunately there are versions 6606 of gcc out there that improperly (for this ABI) put initialized 6607 function pointers, vtable refs and suchlike in read-only 6608 sections. Allow them to proceed, but warn that this might 6609 break at runtime. */ 6610 info->callbacks->einfo 6611 (_("%P: copy reloc against `%T' requires lazy plt linking; " 6612 "avoid setting LD_BIND_NOW=1 or upgrade gcc\n"), 6613 h->root.root.string); 6614 } 6615 6616 /* This is a reference to a symbol defined by a dynamic object which 6617 is not a function. */ 6618 6619 /* We must allocate the symbol in our .dynbss section, which will 6620 become part of the .bss section of the executable. There will be 6621 an entry for this symbol in the .dynsym section. The dynamic 6622 object will contain position independent code, so all references 6623 from the dynamic object to this symbol will go through the global 6624 offset table. The dynamic linker will use the .dynsym entry to 6625 determine the address it must put in the global offset table, so 6626 both the dynamic object and the regular object will refer to the 6627 same memory location for the variable. */ 6628 6629 /* We must generate a R_PPC64_COPY reloc to tell the dynamic linker 6630 to copy the initial value out of the dynamic object and into the 6631 runtime process image. We need to remember the offset into the 6632 .rela.bss section we are going to use. */ 6633 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0) 6634 { 6635 htab->relbss->size += sizeof (Elf64_External_Rela); 6636 h->needs_copy = 1; 6637 } 6638 6639 s = htab->dynbss; 6640 6641 return _bfd_elf_adjust_dynamic_copy (h, s); 6642 } 6643 6644 /* If given a function descriptor symbol, hide both the function code 6645 sym and the descriptor. */ 6646 static void 6647 ppc64_elf_hide_symbol (struct bfd_link_info *info, 6648 struct elf_link_hash_entry *h, 6649 bfd_boolean force_local) 6650 { 6651 struct ppc_link_hash_entry *eh; 6652 _bfd_elf_link_hash_hide_symbol (info, h, force_local); 6653 6654 eh = (struct ppc_link_hash_entry *) h; 6655 if (eh->is_func_descriptor) 6656 { 6657 struct ppc_link_hash_entry *fh = eh->oh; 6658 6659 if (fh == NULL) 6660 { 6661 const char *p, *q; 6662 struct ppc_link_hash_table *htab; 6663 char save; 6664 6665 /* We aren't supposed to use alloca in BFD because on 6666 systems which do not have alloca the version in libiberty 6667 calls xmalloc, which might cause the program to crash 6668 when it runs out of memory. This function doesn't have a 6669 return status, so there's no way to gracefully return an 6670 error. So cheat. We know that string[-1] can be safely 6671 accessed; It's either a string in an ELF string table, 6672 or allocated in an objalloc structure. */ 6673 6674 p = eh->elf.root.root.string - 1; 6675 save = *p; 6676 *(char *) p = '.'; 6677 htab = ppc_hash_table (info); 6678 if (htab == NULL) 6679 return; 6680 6681 fh = (struct ppc_link_hash_entry *) 6682 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE); 6683 *(char *) p = save; 6684 6685 /* Unfortunately, if it so happens that the string we were 6686 looking for was allocated immediately before this string, 6687 then we overwrote the string terminator. That's the only 6688 reason the lookup should fail. */ 6689 if (fh == NULL) 6690 { 6691 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string); 6692 while (q >= eh->elf.root.root.string && *q == *p) 6693 --q, --p; 6694 if (q < eh->elf.root.root.string && *p == '.') 6695 fh = (struct ppc_link_hash_entry *) 6696 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE); 6697 } 6698 if (fh != NULL) 6699 { 6700 eh->oh = fh; 6701 fh->oh = eh; 6702 } 6703 } 6704 if (fh != NULL) 6705 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local); 6706 } 6707 } 6708 6709 static bfd_boolean 6710 get_sym_h (struct elf_link_hash_entry **hp, 6711 Elf_Internal_Sym **symp, 6712 asection **symsecp, 6713 unsigned char **tls_maskp, 6714 Elf_Internal_Sym **locsymsp, 6715 unsigned long r_symndx, 6716 bfd *ibfd) 6717 { 6718 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd); 6719 6720 if (r_symndx >= symtab_hdr->sh_info) 6721 { 6722 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd); 6723 struct elf_link_hash_entry *h; 6724 6725 h = sym_hashes[r_symndx - symtab_hdr->sh_info]; 6726 h = elf_follow_link (h); 6727 6728 if (hp != NULL) 6729 *hp = h; 6730 6731 if (symp != NULL) 6732 *symp = NULL; 6733 6734 if (symsecp != NULL) 6735 { 6736 asection *symsec = NULL; 6737 if (h->root.type == bfd_link_hash_defined 6738 || h->root.type == bfd_link_hash_defweak) 6739 symsec = h->root.u.def.section; 6740 *symsecp = symsec; 6741 } 6742 6743 if (tls_maskp != NULL) 6744 { 6745 struct ppc_link_hash_entry *eh; 6746 6747 eh = (struct ppc_link_hash_entry *) h; 6748 *tls_maskp = &eh->tls_mask; 6749 } 6750 } 6751 else 6752 { 6753 Elf_Internal_Sym *sym; 6754 Elf_Internal_Sym *locsyms = *locsymsp; 6755 6756 if (locsyms == NULL) 6757 { 6758 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents; 6759 if (locsyms == NULL) 6760 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr, 6761 symtab_hdr->sh_info, 6762 0, NULL, NULL, NULL); 6763 if (locsyms == NULL) 6764 return FALSE; 6765 *locsymsp = locsyms; 6766 } 6767 sym = locsyms + r_symndx; 6768 6769 if (hp != NULL) 6770 *hp = NULL; 6771 6772 if (symp != NULL) 6773 *symp = sym; 6774 6775 if (symsecp != NULL) 6776 *symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx); 6777 6778 if (tls_maskp != NULL) 6779 { 6780 struct got_entry **lgot_ents; 6781 unsigned char *tls_mask; 6782 6783 tls_mask = NULL; 6784 lgot_ents = elf_local_got_ents (ibfd); 6785 if (lgot_ents != NULL) 6786 { 6787 struct plt_entry **local_plt = (struct plt_entry **) 6788 (lgot_ents + symtab_hdr->sh_info); 6789 unsigned char *lgot_masks = (unsigned char *) 6790 (local_plt + symtab_hdr->sh_info); 6791 tls_mask = &lgot_masks[r_symndx]; 6792 } 6793 *tls_maskp = tls_mask; 6794 } 6795 } 6796 return TRUE; 6797 } 6798 6799 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on 6800 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD 6801 type suitable for optimization, and 1 otherwise. */ 6802 6803 static int 6804 get_tls_mask (unsigned char **tls_maskp, 6805 unsigned long *toc_symndx, 6806 bfd_vma *toc_addend, 6807 Elf_Internal_Sym **locsymsp, 6808 const Elf_Internal_Rela *rel, 6809 bfd *ibfd) 6810 { 6811 unsigned long r_symndx; 6812 int next_r; 6813 struct elf_link_hash_entry *h; 6814 Elf_Internal_Sym *sym; 6815 asection *sec; 6816 bfd_vma off; 6817 6818 r_symndx = ELF64_R_SYM (rel->r_info); 6819 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd)) 6820 return 0; 6821 6822 if ((*tls_maskp != NULL && **tls_maskp != 0) 6823 || sec == NULL 6824 || ppc64_elf_section_data (sec) == NULL 6825 || ppc64_elf_section_data (sec)->sec_type != sec_toc) 6826 return 1; 6827 6828 /* Look inside a TOC section too. */ 6829 if (h != NULL) 6830 { 6831 BFD_ASSERT (h->root.type == bfd_link_hash_defined); 6832 off = h->root.u.def.value; 6833 } 6834 else 6835 off = sym->st_value; 6836 off += rel->r_addend; 6837 BFD_ASSERT (off % 8 == 0); 6838 r_symndx = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8]; 6839 next_r = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8 + 1]; 6840 if (toc_symndx != NULL) 6841 *toc_symndx = r_symndx; 6842 if (toc_addend != NULL) 6843 *toc_addend = ppc64_elf_section_data (sec)->u.toc.add[off / 8]; 6844 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd)) 6845 return 0; 6846 if ((h == NULL || is_static_defined (h)) 6847 && (next_r == -1 || next_r == -2)) 6848 return 1 - next_r; 6849 return 1; 6850 } 6851 6852 /* Find (or create) an entry in the tocsave hash table. */ 6853 6854 static struct tocsave_entry * 6855 tocsave_find (struct ppc_link_hash_table *htab, 6856 enum insert_option insert, 6857 Elf_Internal_Sym **local_syms, 6858 const Elf_Internal_Rela *irela, 6859 bfd *ibfd) 6860 { 6861 unsigned long r_indx; 6862 struct elf_link_hash_entry *h; 6863 Elf_Internal_Sym *sym; 6864 struct tocsave_entry ent, *p; 6865 hashval_t hash; 6866 struct tocsave_entry **slot; 6867 6868 r_indx = ELF64_R_SYM (irela->r_info); 6869 if (!get_sym_h (&h, &sym, &ent.sec, NULL, local_syms, r_indx, ibfd)) 6870 return NULL; 6871 if (ent.sec == NULL || ent.sec->output_section == NULL) 6872 { 6873 (*_bfd_error_handler) 6874 (_("%B: undefined symbol on R_PPC64_TOCSAVE relocation")); 6875 return NULL; 6876 } 6877 6878 if (h != NULL) 6879 ent.offset = h->root.u.def.value; 6880 else 6881 ent.offset = sym->st_value; 6882 ent.offset += irela->r_addend; 6883 6884 hash = tocsave_htab_hash (&ent); 6885 slot = ((struct tocsave_entry **) 6886 htab_find_slot_with_hash (htab->tocsave_htab, &ent, hash, insert)); 6887 if (slot == NULL) 6888 return NULL; 6889 6890 if (*slot == NULL) 6891 { 6892 p = (struct tocsave_entry *) bfd_alloc (ibfd, sizeof (*p)); 6893 if (p == NULL) 6894 return NULL; 6895 *p = ent; 6896 *slot = p; 6897 } 6898 return *slot; 6899 } 6900 6901 /* Adjust all global syms defined in opd sections. In gcc generated 6902 code for the old ABI, these will already have been done. */ 6903 6904 static bfd_boolean 6905 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED) 6906 { 6907 struct ppc_link_hash_entry *eh; 6908 asection *sym_sec; 6909 struct _opd_sec_data *opd; 6910 6911 if (h->root.type == bfd_link_hash_indirect) 6912 return TRUE; 6913 6914 if (h->root.type != bfd_link_hash_defined 6915 && h->root.type != bfd_link_hash_defweak) 6916 return TRUE; 6917 6918 eh = (struct ppc_link_hash_entry *) h; 6919 if (eh->adjust_done) 6920 return TRUE; 6921 6922 sym_sec = eh->elf.root.u.def.section; 6923 opd = get_opd_info (sym_sec); 6924 if (opd != NULL && opd->adjust != NULL) 6925 { 6926 long adjust = opd->adjust[eh->elf.root.u.def.value / 8]; 6927 if (adjust == -1) 6928 { 6929 /* This entry has been deleted. */ 6930 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section; 6931 if (dsec == NULL) 6932 { 6933 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next) 6934 if (discarded_section (dsec)) 6935 { 6936 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec; 6937 break; 6938 } 6939 } 6940 eh->elf.root.u.def.value = 0; 6941 eh->elf.root.u.def.section = dsec; 6942 } 6943 else 6944 eh->elf.root.u.def.value += adjust; 6945 eh->adjust_done = 1; 6946 } 6947 return TRUE; 6948 } 6949 6950 /* Handles decrementing dynamic reloc counts for the reloc specified by 6951 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM_SEC 6952 have already been determined. */ 6953 6954 static bfd_boolean 6955 dec_dynrel_count (bfd_vma r_info, 6956 asection *sec, 6957 struct bfd_link_info *info, 6958 Elf_Internal_Sym **local_syms, 6959 struct elf_link_hash_entry *h, 6960 asection *sym_sec) 6961 { 6962 enum elf_ppc64_reloc_type r_type; 6963 struct elf_dyn_relocs *p; 6964 struct elf_dyn_relocs **pp; 6965 6966 /* Can this reloc be dynamic? This switch, and later tests here 6967 should be kept in sync with the code in check_relocs. */ 6968 r_type = ELF64_R_TYPE (r_info); 6969 switch (r_type) 6970 { 6971 default: 6972 return TRUE; 6973 6974 case R_PPC64_TPREL16: 6975 case R_PPC64_TPREL16_LO: 6976 case R_PPC64_TPREL16_HI: 6977 case R_PPC64_TPREL16_HA: 6978 case R_PPC64_TPREL16_DS: 6979 case R_PPC64_TPREL16_LO_DS: 6980 case R_PPC64_TPREL16_HIGHER: 6981 case R_PPC64_TPREL16_HIGHERA: 6982 case R_PPC64_TPREL16_HIGHEST: 6983 case R_PPC64_TPREL16_HIGHESTA: 6984 if (!info->shared) 6985 return TRUE; 6986 6987 case R_PPC64_TPREL64: 6988 case R_PPC64_DTPMOD64: 6989 case R_PPC64_DTPREL64: 6990 case R_PPC64_ADDR64: 6991 case R_PPC64_REL30: 6992 case R_PPC64_REL32: 6993 case R_PPC64_REL64: 6994 case R_PPC64_ADDR14: 6995 case R_PPC64_ADDR14_BRNTAKEN: 6996 case R_PPC64_ADDR14_BRTAKEN: 6997 case R_PPC64_ADDR16: 6998 case R_PPC64_ADDR16_DS: 6999 case R_PPC64_ADDR16_HA: 7000 case R_PPC64_ADDR16_HI: 7001 case R_PPC64_ADDR16_HIGHER: 7002 case R_PPC64_ADDR16_HIGHERA: 7003 case R_PPC64_ADDR16_HIGHEST: 7004 case R_PPC64_ADDR16_HIGHESTA: 7005 case R_PPC64_ADDR16_LO: 7006 case R_PPC64_ADDR16_LO_DS: 7007 case R_PPC64_ADDR24: 7008 case R_PPC64_ADDR32: 7009 case R_PPC64_UADDR16: 7010 case R_PPC64_UADDR32: 7011 case R_PPC64_UADDR64: 7012 case R_PPC64_TOC: 7013 break; 7014 } 7015 7016 if (local_syms != NULL) 7017 { 7018 unsigned long r_symndx; 7019 Elf_Internal_Sym *sym; 7020 bfd *ibfd = sec->owner; 7021 7022 r_symndx = ELF64_R_SYM (r_info); 7023 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd)) 7024 return FALSE; 7025 } 7026 7027 if ((info->shared 7028 && (must_be_dyn_reloc (info, r_type) 7029 || (h != NULL 7030 && (!info->symbolic 7031 || h->root.type == bfd_link_hash_defweak 7032 || !h->def_regular)))) 7033 || (ELIMINATE_COPY_RELOCS 7034 && !info->shared 7035 && h != NULL 7036 && (h->root.type == bfd_link_hash_defweak 7037 || !h->def_regular))) 7038 ; 7039 else 7040 return TRUE; 7041 7042 if (h != NULL) 7043 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs; 7044 else 7045 { 7046 if (sym_sec != NULL) 7047 { 7048 void *vpp = &elf_section_data (sym_sec)->local_dynrel; 7049 pp = (struct elf_dyn_relocs **) vpp; 7050 } 7051 else 7052 { 7053 void *vpp = &elf_section_data (sec)->local_dynrel; 7054 pp = (struct elf_dyn_relocs **) vpp; 7055 } 7056 } 7057 7058 /* elf_gc_sweep may have already removed all dyn relocs associated 7059 with local syms for a given section. Also, symbol flags are 7060 changed by elf_gc_sweep_symbol, confusing the test above. Don't 7061 report a dynreloc miscount. */ 7062 if (*pp == NULL && info->gc_sections) 7063 return TRUE; 7064 7065 while ((p = *pp) != NULL) 7066 { 7067 if (p->sec == sec) 7068 { 7069 if (!must_be_dyn_reloc (info, r_type)) 7070 p->pc_count -= 1; 7071 p->count -= 1; 7072 if (p->count == 0) 7073 *pp = p->next; 7074 return TRUE; 7075 } 7076 pp = &p->next; 7077 } 7078 7079 info->callbacks->einfo (_("%P: dynreloc miscount for %B, section %A\n"), 7080 sec->owner, sec); 7081 bfd_set_error (bfd_error_bad_value); 7082 return FALSE; 7083 } 7084 7085 /* Remove unused Official Procedure Descriptor entries. Currently we 7086 only remove those associated with functions in discarded link-once 7087 sections, or weakly defined functions that have been overridden. It 7088 would be possible to remove many more entries for statically linked 7089 applications. */ 7090 7091 bfd_boolean 7092 ppc64_elf_edit_opd (struct bfd_link_info *info, bfd_boolean non_overlapping) 7093 { 7094 bfd *ibfd; 7095 bfd_boolean some_edited = FALSE; 7096 asection *need_pad = NULL; 7097 7098 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) 7099 { 7100 asection *sec; 7101 Elf_Internal_Rela *relstart, *rel, *relend; 7102 Elf_Internal_Shdr *symtab_hdr; 7103 Elf_Internal_Sym *local_syms; 7104 bfd_vma offset; 7105 struct _opd_sec_data *opd; 7106 bfd_boolean need_edit, add_aux_fields; 7107 bfd_size_type cnt_16b = 0; 7108 7109 if (!is_ppc64_elf (ibfd)) 7110 continue; 7111 7112 sec = bfd_get_section_by_name (ibfd, ".opd"); 7113 if (sec == NULL || sec->size == 0) 7114 continue; 7115 7116 if (sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) 7117 continue; 7118 7119 if (sec->output_section == bfd_abs_section_ptr) 7120 continue; 7121 7122 /* Look through the section relocs. */ 7123 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0) 7124 continue; 7125 7126 local_syms = NULL; 7127 symtab_hdr = &elf_symtab_hdr (ibfd); 7128 7129 /* Read the relocations. */ 7130 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, 7131 info->keep_memory); 7132 if (relstart == NULL) 7133 return FALSE; 7134 7135 /* First run through the relocs to check they are sane, and to 7136 determine whether we need to edit this opd section. */ 7137 need_edit = FALSE; 7138 need_pad = sec; 7139 offset = 0; 7140 relend = relstart + sec->reloc_count; 7141 for (rel = relstart; rel < relend; ) 7142 { 7143 enum elf_ppc64_reloc_type r_type; 7144 unsigned long r_symndx; 7145 asection *sym_sec; 7146 struct elf_link_hash_entry *h; 7147 Elf_Internal_Sym *sym; 7148 7149 /* .opd contains a regular array of 16 or 24 byte entries. We're 7150 only interested in the reloc pointing to a function entry 7151 point. */ 7152 if (rel->r_offset != offset 7153 || rel + 1 >= relend 7154 || (rel + 1)->r_offset != offset + 8) 7155 { 7156 /* If someone messes with .opd alignment then after a 7157 "ld -r" we might have padding in the middle of .opd. 7158 Also, there's nothing to prevent someone putting 7159 something silly in .opd with the assembler. No .opd 7160 optimization for them! */ 7161 broken_opd: 7162 (*_bfd_error_handler) 7163 (_("%B: .opd is not a regular array of opd entries"), ibfd); 7164 need_edit = FALSE; 7165 break; 7166 } 7167 7168 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64 7169 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC) 7170 { 7171 (*_bfd_error_handler) 7172 (_("%B: unexpected reloc type %u in .opd section"), 7173 ibfd, r_type); 7174 need_edit = FALSE; 7175 break; 7176 } 7177 7178 r_symndx = ELF64_R_SYM (rel->r_info); 7179 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, 7180 r_symndx, ibfd)) 7181 goto error_ret; 7182 7183 if (sym_sec == NULL || sym_sec->owner == NULL) 7184 { 7185 const char *sym_name; 7186 if (h != NULL) 7187 sym_name = h->root.root.string; 7188 else 7189 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym, 7190 sym_sec); 7191 7192 (*_bfd_error_handler) 7193 (_("%B: undefined sym `%s' in .opd section"), 7194 ibfd, sym_name); 7195 need_edit = FALSE; 7196 break; 7197 } 7198 7199 /* opd entries are always for functions defined in the 7200 current input bfd. If the symbol isn't defined in the 7201 input bfd, then we won't be using the function in this 7202 bfd; It must be defined in a linkonce section in another 7203 bfd, or is weak. It's also possible that we are 7204 discarding the function due to a linker script /DISCARD/, 7205 which we test for via the output_section. */ 7206 if (sym_sec->owner != ibfd 7207 || sym_sec->output_section == bfd_abs_section_ptr) 7208 need_edit = TRUE; 7209 7210 rel += 2; 7211 if (rel == relend 7212 || (rel + 1 == relend && rel->r_offset == offset + 16)) 7213 { 7214 if (sec->size == offset + 24) 7215 { 7216 need_pad = NULL; 7217 break; 7218 } 7219 if (rel == relend && sec->size == offset + 16) 7220 { 7221 cnt_16b++; 7222 break; 7223 } 7224 goto broken_opd; 7225 } 7226 7227 if (rel->r_offset == offset + 24) 7228 offset += 24; 7229 else if (rel->r_offset != offset + 16) 7230 goto broken_opd; 7231 else if (rel + 1 < relend 7232 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64 7233 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC) 7234 { 7235 offset += 16; 7236 cnt_16b++; 7237 } 7238 else if (rel + 2 < relend 7239 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_ADDR64 7240 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC) 7241 { 7242 offset += 24; 7243 rel += 1; 7244 } 7245 else 7246 goto broken_opd; 7247 } 7248 7249 add_aux_fields = non_overlapping && cnt_16b > 0; 7250 7251 if (need_edit || add_aux_fields) 7252 { 7253 Elf_Internal_Rela *write_rel; 7254 Elf_Internal_Shdr *rel_hdr; 7255 bfd_byte *rptr, *wptr; 7256 bfd_byte *new_contents; 7257 bfd_boolean skip; 7258 long opd_ent_size; 7259 bfd_size_type amt; 7260 7261 new_contents = NULL; 7262 amt = sec->size * sizeof (long) / 8; 7263 opd = &ppc64_elf_section_data (sec)->u.opd; 7264 opd->adjust = bfd_zalloc (sec->owner, amt); 7265 if (opd->adjust == NULL) 7266 return FALSE; 7267 ppc64_elf_section_data (sec)->sec_type = sec_opd; 7268 7269 /* This seems a waste of time as input .opd sections are all 7270 zeros as generated by gcc, but I suppose there's no reason 7271 this will always be so. We might start putting something in 7272 the third word of .opd entries. */ 7273 if ((sec->flags & SEC_IN_MEMORY) == 0) 7274 { 7275 bfd_byte *loc; 7276 if (!bfd_malloc_and_get_section (ibfd, sec, &loc)) 7277 { 7278 if (loc != NULL) 7279 free (loc); 7280 error_ret: 7281 if (local_syms != NULL 7282 && symtab_hdr->contents != (unsigned char *) local_syms) 7283 free (local_syms); 7284 if (elf_section_data (sec)->relocs != relstart) 7285 free (relstart); 7286 return FALSE; 7287 } 7288 sec->contents = loc; 7289 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS); 7290 } 7291 7292 elf_section_data (sec)->relocs = relstart; 7293 7294 new_contents = sec->contents; 7295 if (add_aux_fields) 7296 { 7297 new_contents = bfd_malloc (sec->size + cnt_16b * 8); 7298 if (new_contents == NULL) 7299 return FALSE; 7300 need_pad = FALSE; 7301 } 7302 wptr = new_contents; 7303 rptr = sec->contents; 7304 7305 write_rel = relstart; 7306 skip = FALSE; 7307 offset = 0; 7308 opd_ent_size = 0; 7309 for (rel = relstart; rel < relend; rel++) 7310 { 7311 unsigned long r_symndx; 7312 asection *sym_sec; 7313 struct elf_link_hash_entry *h; 7314 Elf_Internal_Sym *sym; 7315 7316 r_symndx = ELF64_R_SYM (rel->r_info); 7317 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, 7318 r_symndx, ibfd)) 7319 goto error_ret; 7320 7321 if (rel->r_offset == offset) 7322 { 7323 struct ppc_link_hash_entry *fdh = NULL; 7324 7325 /* See if the .opd entry is full 24 byte or 7326 16 byte (with fd_aux entry overlapped with next 7327 fd_func). */ 7328 opd_ent_size = 24; 7329 if ((rel + 2 == relend && sec->size == offset + 16) 7330 || (rel + 3 < relend 7331 && rel[2].r_offset == offset + 16 7332 && rel[3].r_offset == offset + 24 7333 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_ADDR64 7334 && ELF64_R_TYPE (rel[3].r_info) == R_PPC64_TOC)) 7335 opd_ent_size = 16; 7336 7337 if (h != NULL 7338 && h->root.root.string[0] == '.') 7339 { 7340 struct ppc_link_hash_table *htab; 7341 7342 htab = ppc_hash_table (info); 7343 if (htab != NULL) 7344 fdh = lookup_fdh ((struct ppc_link_hash_entry *) h, 7345 htab); 7346 if (fdh != NULL 7347 && fdh->elf.root.type != bfd_link_hash_defined 7348 && fdh->elf.root.type != bfd_link_hash_defweak) 7349 fdh = NULL; 7350 } 7351 7352 skip = (sym_sec->owner != ibfd 7353 || sym_sec->output_section == bfd_abs_section_ptr); 7354 if (skip) 7355 { 7356 if (fdh != NULL && sym_sec->owner == ibfd) 7357 { 7358 /* Arrange for the function descriptor sym 7359 to be dropped. */ 7360 fdh->elf.root.u.def.value = 0; 7361 fdh->elf.root.u.def.section = sym_sec; 7362 } 7363 opd->adjust[rel->r_offset / 8] = -1; 7364 } 7365 else 7366 { 7367 /* We'll be keeping this opd entry. */ 7368 7369 if (fdh != NULL) 7370 { 7371 /* Redefine the function descriptor symbol to 7372 this location in the opd section. It is 7373 necessary to update the value here rather 7374 than using an array of adjustments as we do 7375 for local symbols, because various places 7376 in the generic ELF code use the value 7377 stored in u.def.value. */ 7378 fdh->elf.root.u.def.value = wptr - new_contents; 7379 fdh->adjust_done = 1; 7380 } 7381 7382 /* Local syms are a bit tricky. We could 7383 tweak them as they can be cached, but 7384 we'd need to look through the local syms 7385 for the function descriptor sym which we 7386 don't have at the moment. So keep an 7387 array of adjustments. */ 7388 opd->adjust[rel->r_offset / 8] 7389 = (wptr - new_contents) - (rptr - sec->contents); 7390 7391 if (wptr != rptr) 7392 memcpy (wptr, rptr, opd_ent_size); 7393 wptr += opd_ent_size; 7394 if (add_aux_fields && opd_ent_size == 16) 7395 { 7396 memset (wptr, '\0', 8); 7397 wptr += 8; 7398 } 7399 } 7400 rptr += opd_ent_size; 7401 offset += opd_ent_size; 7402 } 7403 7404 if (skip) 7405 { 7406 if (!NO_OPD_RELOCS 7407 && !info->relocatable 7408 && !dec_dynrel_count (rel->r_info, sec, info, 7409 NULL, h, sym_sec)) 7410 goto error_ret; 7411 } 7412 else 7413 { 7414 /* We need to adjust any reloc offsets to point to the 7415 new opd entries. While we're at it, we may as well 7416 remove redundant relocs. */ 7417 rel->r_offset += opd->adjust[(offset - opd_ent_size) / 8]; 7418 if (write_rel != rel) 7419 memcpy (write_rel, rel, sizeof (*rel)); 7420 ++write_rel; 7421 } 7422 } 7423 7424 sec->size = wptr - new_contents; 7425 sec->reloc_count = write_rel - relstart; 7426 if (add_aux_fields) 7427 { 7428 free (sec->contents); 7429 sec->contents = new_contents; 7430 } 7431 7432 /* Fudge the header size too, as this is used later in 7433 elf_bfd_final_link if we are emitting relocs. */ 7434 rel_hdr = _bfd_elf_single_rel_hdr (sec); 7435 rel_hdr->sh_size = sec->reloc_count * rel_hdr->sh_entsize; 7436 some_edited = TRUE; 7437 } 7438 else if (elf_section_data (sec)->relocs != relstart) 7439 free (relstart); 7440 7441 if (local_syms != NULL 7442 && symtab_hdr->contents != (unsigned char *) local_syms) 7443 { 7444 if (!info->keep_memory) 7445 free (local_syms); 7446 else 7447 symtab_hdr->contents = (unsigned char *) local_syms; 7448 } 7449 } 7450 7451 if (some_edited) 7452 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL); 7453 7454 /* If we are doing a final link and the last .opd entry is just 16 byte 7455 long, add a 8 byte padding after it. */ 7456 if (need_pad != NULL && !info->relocatable) 7457 { 7458 bfd_byte *p; 7459 7460 if ((need_pad->flags & SEC_IN_MEMORY) == 0) 7461 { 7462 BFD_ASSERT (need_pad->size > 0); 7463 7464 p = bfd_malloc (need_pad->size + 8); 7465 if (p == NULL) 7466 return FALSE; 7467 7468 if (! bfd_get_section_contents (need_pad->owner, need_pad, 7469 p, 0, need_pad->size)) 7470 return FALSE; 7471 7472 need_pad->contents = p; 7473 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS); 7474 } 7475 else 7476 { 7477 p = bfd_realloc (need_pad->contents, need_pad->size + 8); 7478 if (p == NULL) 7479 return FALSE; 7480 7481 need_pad->contents = p; 7482 } 7483 7484 memset (need_pad->contents + need_pad->size, 0, 8); 7485 need_pad->size += 8; 7486 } 7487 7488 return TRUE; 7489 } 7490 7491 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */ 7492 7493 asection * 7494 ppc64_elf_tls_setup (struct bfd_link_info *info, 7495 int no_tls_get_addr_opt, 7496 int *no_multi_toc) 7497 { 7498 struct ppc_link_hash_table *htab; 7499 7500 htab = ppc_hash_table (info); 7501 if (htab == NULL) 7502 return NULL; 7503 7504 if (*no_multi_toc) 7505 htab->do_multi_toc = 0; 7506 else if (!htab->do_multi_toc) 7507 *no_multi_toc = 1; 7508 7509 htab->tls_get_addr = ((struct ppc_link_hash_entry *) 7510 elf_link_hash_lookup (&htab->elf, ".__tls_get_addr", 7511 FALSE, FALSE, TRUE)); 7512 /* Move dynamic linking info to the function descriptor sym. */ 7513 if (htab->tls_get_addr != NULL) 7514 func_desc_adjust (&htab->tls_get_addr->elf, info); 7515 htab->tls_get_addr_fd = ((struct ppc_link_hash_entry *) 7516 elf_link_hash_lookup (&htab->elf, "__tls_get_addr", 7517 FALSE, FALSE, TRUE)); 7518 if (!no_tls_get_addr_opt) 7519 { 7520 struct elf_link_hash_entry *opt, *opt_fd, *tga, *tga_fd; 7521 7522 opt = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr_opt", 7523 FALSE, FALSE, TRUE); 7524 if (opt != NULL) 7525 func_desc_adjust (opt, info); 7526 opt_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr_opt", 7527 FALSE, FALSE, TRUE); 7528 if (opt_fd != NULL 7529 && (opt_fd->root.type == bfd_link_hash_defined 7530 || opt_fd->root.type == bfd_link_hash_defweak)) 7531 { 7532 /* If glibc supports an optimized __tls_get_addr call stub, 7533 signalled by the presence of __tls_get_addr_opt, and we'll 7534 be calling __tls_get_addr via a plt call stub, then 7535 make __tls_get_addr point to __tls_get_addr_opt. */ 7536 tga_fd = &htab->tls_get_addr_fd->elf; 7537 if (htab->elf.dynamic_sections_created 7538 && tga_fd != NULL 7539 && (tga_fd->type == STT_FUNC 7540 || tga_fd->needs_plt) 7541 && !(SYMBOL_CALLS_LOCAL (info, tga_fd) 7542 || (ELF_ST_VISIBILITY (tga_fd->other) != STV_DEFAULT 7543 && tga_fd->root.type == bfd_link_hash_undefweak))) 7544 { 7545 struct plt_entry *ent; 7546 7547 for (ent = tga_fd->plt.plist; ent != NULL; ent = ent->next) 7548 if (ent->plt.refcount > 0) 7549 break; 7550 if (ent != NULL) 7551 { 7552 tga_fd->root.type = bfd_link_hash_indirect; 7553 tga_fd->root.u.i.link = &opt_fd->root; 7554 ppc64_elf_copy_indirect_symbol (info, opt_fd, tga_fd); 7555 if (opt_fd->dynindx != -1) 7556 { 7557 /* Use __tls_get_addr_opt in dynamic relocations. */ 7558 opt_fd->dynindx = -1; 7559 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr, 7560 opt_fd->dynstr_index); 7561 if (!bfd_elf_link_record_dynamic_symbol (info, opt_fd)) 7562 return NULL; 7563 } 7564 htab->tls_get_addr_fd = (struct ppc_link_hash_entry *) opt_fd; 7565 tga = &htab->tls_get_addr->elf; 7566 if (opt != NULL && tga != NULL) 7567 { 7568 tga->root.type = bfd_link_hash_indirect; 7569 tga->root.u.i.link = &opt->root; 7570 ppc64_elf_copy_indirect_symbol (info, opt, tga); 7571 _bfd_elf_link_hash_hide_symbol (info, opt, 7572 tga->forced_local); 7573 htab->tls_get_addr = (struct ppc_link_hash_entry *) opt; 7574 } 7575 htab->tls_get_addr_fd->oh = htab->tls_get_addr; 7576 htab->tls_get_addr_fd->is_func_descriptor = 1; 7577 if (htab->tls_get_addr != NULL) 7578 { 7579 htab->tls_get_addr->oh = htab->tls_get_addr_fd; 7580 htab->tls_get_addr->is_func = 1; 7581 } 7582 } 7583 } 7584 } 7585 else 7586 no_tls_get_addr_opt = TRUE; 7587 } 7588 htab->no_tls_get_addr_opt = no_tls_get_addr_opt; 7589 return _bfd_elf_tls_setup (info->output_bfd, info); 7590 } 7591 7592 /* Return TRUE iff REL is a branch reloc with a global symbol matching 7593 HASH1 or HASH2. */ 7594 7595 static bfd_boolean 7596 branch_reloc_hash_match (const bfd *ibfd, 7597 const Elf_Internal_Rela *rel, 7598 const struct ppc_link_hash_entry *hash1, 7599 const struct ppc_link_hash_entry *hash2) 7600 { 7601 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd); 7602 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info); 7603 unsigned int r_symndx = ELF64_R_SYM (rel->r_info); 7604 7605 if (r_symndx >= symtab_hdr->sh_info && is_branch_reloc (r_type)) 7606 { 7607 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd); 7608 struct elf_link_hash_entry *h; 7609 7610 h = sym_hashes[r_symndx - symtab_hdr->sh_info]; 7611 h = elf_follow_link (h); 7612 if (h == &hash1->elf || h == &hash2->elf) 7613 return TRUE; 7614 } 7615 return FALSE; 7616 } 7617 7618 /* Run through all the TLS relocs looking for optimization 7619 opportunities. The linker has been hacked (see ppc64elf.em) to do 7620 a preliminary section layout so that we know the TLS segment 7621 offsets. We can't optimize earlier because some optimizations need 7622 to know the tp offset, and we need to optimize before allocating 7623 dynamic relocations. */ 7624 7625 bfd_boolean 7626 ppc64_elf_tls_optimize (struct bfd_link_info *info) 7627 { 7628 bfd *ibfd; 7629 asection *sec; 7630 struct ppc_link_hash_table *htab; 7631 unsigned char *toc_ref; 7632 int pass; 7633 7634 if (info->relocatable || !info->executable) 7635 return TRUE; 7636 7637 htab = ppc_hash_table (info); 7638 if (htab == NULL) 7639 return FALSE; 7640 7641 /* Make two passes over the relocs. On the first pass, mark toc 7642 entries involved with tls relocs, and check that tls relocs 7643 involved in setting up a tls_get_addr call are indeed followed by 7644 such a call. If they are not, we can't do any tls optimization. 7645 On the second pass twiddle tls_mask flags to notify 7646 relocate_section that optimization can be done, and adjust got 7647 and plt refcounts. */ 7648 toc_ref = NULL; 7649 for (pass = 0; pass < 2; ++pass) 7650 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) 7651 { 7652 Elf_Internal_Sym *locsyms = NULL; 7653 asection *toc = bfd_get_section_by_name (ibfd, ".toc"); 7654 7655 for (sec = ibfd->sections; sec != NULL; sec = sec->next) 7656 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section)) 7657 { 7658 Elf_Internal_Rela *relstart, *rel, *relend; 7659 bfd_boolean found_tls_get_addr_arg = 0; 7660 7661 /* Read the relocations. */ 7662 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, 7663 info->keep_memory); 7664 if (relstart == NULL) 7665 return FALSE; 7666 7667 relend = relstart + sec->reloc_count; 7668 for (rel = relstart; rel < relend; rel++) 7669 { 7670 enum elf_ppc64_reloc_type r_type; 7671 unsigned long r_symndx; 7672 struct elf_link_hash_entry *h; 7673 Elf_Internal_Sym *sym; 7674 asection *sym_sec; 7675 unsigned char *tls_mask; 7676 unsigned char tls_set, tls_clear, tls_type = 0; 7677 bfd_vma value; 7678 bfd_boolean ok_tprel, is_local; 7679 long toc_ref_index = 0; 7680 int expecting_tls_get_addr = 0; 7681 bfd_boolean ret = FALSE; 7682 7683 r_symndx = ELF64_R_SYM (rel->r_info); 7684 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms, 7685 r_symndx, ibfd)) 7686 { 7687 err_free_rel: 7688 if (elf_section_data (sec)->relocs != relstart) 7689 free (relstart); 7690 if (toc_ref != NULL) 7691 free (toc_ref); 7692 if (locsyms != NULL 7693 && (elf_symtab_hdr (ibfd).contents 7694 != (unsigned char *) locsyms)) 7695 free (locsyms); 7696 return ret; 7697 } 7698 7699 if (h != NULL) 7700 { 7701 if (h->root.type == bfd_link_hash_defined 7702 || h->root.type == bfd_link_hash_defweak) 7703 value = h->root.u.def.value; 7704 else if (h->root.type == bfd_link_hash_undefweak) 7705 value = 0; 7706 else 7707 { 7708 found_tls_get_addr_arg = 0; 7709 continue; 7710 } 7711 } 7712 else 7713 /* Symbols referenced by TLS relocs must be of type 7714 STT_TLS. So no need for .opd local sym adjust. */ 7715 value = sym->st_value; 7716 7717 ok_tprel = FALSE; 7718 is_local = FALSE; 7719 if (h == NULL 7720 || !h->def_dynamic) 7721 { 7722 is_local = TRUE; 7723 if (h != NULL 7724 && h->root.type == bfd_link_hash_undefweak) 7725 ok_tprel = TRUE; 7726 else 7727 { 7728 value += sym_sec->output_offset; 7729 value += sym_sec->output_section->vma; 7730 value -= htab->elf.tls_sec->vma; 7731 ok_tprel = (value + TP_OFFSET + ((bfd_vma) 1 << 31) 7732 < (bfd_vma) 1 << 32); 7733 } 7734 } 7735 7736 r_type = ELF64_R_TYPE (rel->r_info); 7737 /* If this section has old-style __tls_get_addr calls 7738 without marker relocs, then check that each 7739 __tls_get_addr call reloc is preceded by a reloc 7740 that conceivably belongs to the __tls_get_addr arg 7741 setup insn. If we don't find matching arg setup 7742 relocs, don't do any tls optimization. */ 7743 if (pass == 0 7744 && sec->has_tls_get_addr_call 7745 && h != NULL 7746 && (h == &htab->tls_get_addr->elf 7747 || h == &htab->tls_get_addr_fd->elf) 7748 && !found_tls_get_addr_arg 7749 && is_branch_reloc (r_type)) 7750 { 7751 info->callbacks->minfo (_("%H __tls_get_addr lost arg, " 7752 "TLS optimization disabled\n"), 7753 ibfd, sec, rel->r_offset); 7754 ret = TRUE; 7755 goto err_free_rel; 7756 } 7757 7758 found_tls_get_addr_arg = 0; 7759 switch (r_type) 7760 { 7761 case R_PPC64_GOT_TLSLD16: 7762 case R_PPC64_GOT_TLSLD16_LO: 7763 expecting_tls_get_addr = 1; 7764 found_tls_get_addr_arg = 1; 7765 /* Fall thru */ 7766 7767 case R_PPC64_GOT_TLSLD16_HI: 7768 case R_PPC64_GOT_TLSLD16_HA: 7769 /* These relocs should never be against a symbol 7770 defined in a shared lib. Leave them alone if 7771 that turns out to be the case. */ 7772 if (!is_local) 7773 continue; 7774 7775 /* LD -> LE */ 7776 tls_set = 0; 7777 tls_clear = TLS_LD; 7778 tls_type = TLS_TLS | TLS_LD; 7779 break; 7780 7781 case R_PPC64_GOT_TLSGD16: 7782 case R_PPC64_GOT_TLSGD16_LO: 7783 expecting_tls_get_addr = 1; 7784 found_tls_get_addr_arg = 1; 7785 /* Fall thru */ 7786 7787 case R_PPC64_GOT_TLSGD16_HI: 7788 case R_PPC64_GOT_TLSGD16_HA: 7789 if (ok_tprel) 7790 /* GD -> LE */ 7791 tls_set = 0; 7792 else 7793 /* GD -> IE */ 7794 tls_set = TLS_TLS | TLS_TPRELGD; 7795 tls_clear = TLS_GD; 7796 tls_type = TLS_TLS | TLS_GD; 7797 break; 7798 7799 case R_PPC64_GOT_TPREL16_DS: 7800 case R_PPC64_GOT_TPREL16_LO_DS: 7801 case R_PPC64_GOT_TPREL16_HI: 7802 case R_PPC64_GOT_TPREL16_HA: 7803 if (ok_tprel) 7804 { 7805 /* IE -> LE */ 7806 tls_set = 0; 7807 tls_clear = TLS_TPREL; 7808 tls_type = TLS_TLS | TLS_TPREL; 7809 break; 7810 } 7811 continue; 7812 7813 case R_PPC64_TLSGD: 7814 case R_PPC64_TLSLD: 7815 found_tls_get_addr_arg = 1; 7816 /* Fall thru */ 7817 7818 case R_PPC64_TLS: 7819 case R_PPC64_TOC16: 7820 case R_PPC64_TOC16_LO: 7821 if (sym_sec == NULL || sym_sec != toc) 7822 continue; 7823 7824 /* Mark this toc entry as referenced by a TLS 7825 code sequence. We can do that now in the 7826 case of R_PPC64_TLS, and after checking for 7827 tls_get_addr for the TOC16 relocs. */ 7828 if (toc_ref == NULL) 7829 toc_ref = bfd_zmalloc (toc->output_section->rawsize / 8); 7830 if (toc_ref == NULL) 7831 goto err_free_rel; 7832 7833 if (h != NULL) 7834 value = h->root.u.def.value; 7835 else 7836 value = sym->st_value; 7837 value += rel->r_addend; 7838 BFD_ASSERT (value < toc->size && value % 8 == 0); 7839 toc_ref_index = (value + toc->output_offset) / 8; 7840 if (r_type == R_PPC64_TLS 7841 || r_type == R_PPC64_TLSGD 7842 || r_type == R_PPC64_TLSLD) 7843 { 7844 toc_ref[toc_ref_index] = 1; 7845 continue; 7846 } 7847 7848 if (pass != 0 && toc_ref[toc_ref_index] == 0) 7849 continue; 7850 7851 tls_set = 0; 7852 tls_clear = 0; 7853 expecting_tls_get_addr = 2; 7854 break; 7855 7856 case R_PPC64_TPREL64: 7857 if (pass == 0 7858 || sec != toc 7859 || toc_ref == NULL 7860 || !toc_ref[(rel->r_offset + toc->output_offset) / 8]) 7861 continue; 7862 if (ok_tprel) 7863 { 7864 /* IE -> LE */ 7865 tls_set = TLS_EXPLICIT; 7866 tls_clear = TLS_TPREL; 7867 break; 7868 } 7869 continue; 7870 7871 case R_PPC64_DTPMOD64: 7872 if (pass == 0 7873 || sec != toc 7874 || toc_ref == NULL 7875 || !toc_ref[(rel->r_offset + toc->output_offset) / 8]) 7876 continue; 7877 if (rel + 1 < relend 7878 && (rel[1].r_info 7879 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)) 7880 && rel[1].r_offset == rel->r_offset + 8) 7881 { 7882 if (ok_tprel) 7883 /* GD -> LE */ 7884 tls_set = TLS_EXPLICIT | TLS_GD; 7885 else 7886 /* GD -> IE */ 7887 tls_set = TLS_EXPLICIT | TLS_GD | TLS_TPRELGD; 7888 tls_clear = TLS_GD; 7889 } 7890 else 7891 { 7892 if (!is_local) 7893 continue; 7894 7895 /* LD -> LE */ 7896 tls_set = TLS_EXPLICIT; 7897 tls_clear = TLS_LD; 7898 } 7899 break; 7900 7901 default: 7902 continue; 7903 } 7904 7905 if (pass == 0) 7906 { 7907 if (!expecting_tls_get_addr 7908 || !sec->has_tls_get_addr_call) 7909 continue; 7910 7911 if (rel + 1 < relend 7912 && branch_reloc_hash_match (ibfd, rel + 1, 7913 htab->tls_get_addr, 7914 htab->tls_get_addr_fd)) 7915 { 7916 if (expecting_tls_get_addr == 2) 7917 { 7918 /* Check for toc tls entries. */ 7919 unsigned char *toc_tls; 7920 int retval; 7921 7922 retval = get_tls_mask (&toc_tls, NULL, NULL, 7923 &locsyms, 7924 rel, ibfd); 7925 if (retval == 0) 7926 goto err_free_rel; 7927 if (toc_tls != NULL) 7928 { 7929 if ((*toc_tls & (TLS_GD | TLS_LD)) != 0) 7930 found_tls_get_addr_arg = 1; 7931 if (retval > 1) 7932 toc_ref[toc_ref_index] = 1; 7933 } 7934 } 7935 continue; 7936 } 7937 7938 if (expecting_tls_get_addr != 1) 7939 continue; 7940 7941 /* Uh oh, we didn't find the expected call. We 7942 could just mark this symbol to exclude it 7943 from tls optimization but it's safer to skip 7944 the entire optimization. */ 7945 info->callbacks->minfo (_("%H arg lost __tls_get_addr, " 7946 "TLS optimization disabled\n"), 7947 ibfd, sec, rel->r_offset); 7948 ret = TRUE; 7949 goto err_free_rel; 7950 } 7951 7952 if (expecting_tls_get_addr && htab->tls_get_addr != NULL) 7953 { 7954 struct plt_entry *ent; 7955 for (ent = htab->tls_get_addr->elf.plt.plist; 7956 ent != NULL; 7957 ent = ent->next) 7958 if (ent->addend == 0) 7959 { 7960 if (ent->plt.refcount > 0) 7961 { 7962 ent->plt.refcount -= 1; 7963 expecting_tls_get_addr = 0; 7964 } 7965 break; 7966 } 7967 } 7968 7969 if (expecting_tls_get_addr && htab->tls_get_addr_fd != NULL) 7970 { 7971 struct plt_entry *ent; 7972 for (ent = htab->tls_get_addr_fd->elf.plt.plist; 7973 ent != NULL; 7974 ent = ent->next) 7975 if (ent->addend == 0) 7976 { 7977 if (ent->plt.refcount > 0) 7978 ent->plt.refcount -= 1; 7979 break; 7980 } 7981 } 7982 7983 if (tls_clear == 0) 7984 continue; 7985 7986 if ((tls_set & TLS_EXPLICIT) == 0) 7987 { 7988 struct got_entry *ent; 7989 7990 /* Adjust got entry for this reloc. */ 7991 if (h != NULL) 7992 ent = h->got.glist; 7993 else 7994 ent = elf_local_got_ents (ibfd)[r_symndx]; 7995 7996 for (; ent != NULL; ent = ent->next) 7997 if (ent->addend == rel->r_addend 7998 && ent->owner == ibfd 7999 && ent->tls_type == tls_type) 8000 break; 8001 if (ent == NULL) 8002 abort (); 8003 8004 if (tls_set == 0) 8005 { 8006 /* We managed to get rid of a got entry. */ 8007 if (ent->got.refcount > 0) 8008 ent->got.refcount -= 1; 8009 } 8010 } 8011 else 8012 { 8013 /* If we got rid of a DTPMOD/DTPREL reloc pair then 8014 we'll lose one or two dyn relocs. */ 8015 if (!dec_dynrel_count (rel->r_info, sec, info, 8016 NULL, h, sym_sec)) 8017 return FALSE; 8018 8019 if (tls_set == (TLS_EXPLICIT | TLS_GD)) 8020 { 8021 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info, 8022 NULL, h, sym_sec)) 8023 return FALSE; 8024 } 8025 } 8026 8027 *tls_mask |= tls_set; 8028 *tls_mask &= ~tls_clear; 8029 } 8030 8031 if (elf_section_data (sec)->relocs != relstart) 8032 free (relstart); 8033 } 8034 8035 if (locsyms != NULL 8036 && (elf_symtab_hdr (ibfd).contents != (unsigned char *) locsyms)) 8037 { 8038 if (!info->keep_memory) 8039 free (locsyms); 8040 else 8041 elf_symtab_hdr (ibfd).contents = (unsigned char *) locsyms; 8042 } 8043 } 8044 8045 if (toc_ref != NULL) 8046 free (toc_ref); 8047 return TRUE; 8048 } 8049 8050 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust 8051 the values of any global symbols in a toc section that has been 8052 edited. Globals in toc sections should be a rarity, so this function 8053 sets a flag if any are found in toc sections other than the one just 8054 edited, so that futher hash table traversals can be avoided. */ 8055 8056 struct adjust_toc_info 8057 { 8058 asection *toc; 8059 unsigned long *skip; 8060 bfd_boolean global_toc_syms; 8061 }; 8062 8063 enum toc_skip_enum { ref_from_discarded = 1, can_optimize = 2 }; 8064 8065 static bfd_boolean 8066 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf) 8067 { 8068 struct ppc_link_hash_entry *eh; 8069 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf; 8070 unsigned long i; 8071 8072 if (h->root.type != bfd_link_hash_defined 8073 && h->root.type != bfd_link_hash_defweak) 8074 return TRUE; 8075 8076 eh = (struct ppc_link_hash_entry *) h; 8077 if (eh->adjust_done) 8078 return TRUE; 8079 8080 if (eh->elf.root.u.def.section == toc_inf->toc) 8081 { 8082 if (eh->elf.root.u.def.value > toc_inf->toc->rawsize) 8083 i = toc_inf->toc->rawsize >> 3; 8084 else 8085 i = eh->elf.root.u.def.value >> 3; 8086 8087 if ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0) 8088 { 8089 (*_bfd_error_handler) 8090 (_("%s defined on removed toc entry"), eh->elf.root.root.string); 8091 do 8092 ++i; 8093 while ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0); 8094 eh->elf.root.u.def.value = (bfd_vma) i << 3; 8095 } 8096 8097 eh->elf.root.u.def.value -= toc_inf->skip[i]; 8098 eh->adjust_done = 1; 8099 } 8100 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0) 8101 toc_inf->global_toc_syms = TRUE; 8102 8103 return TRUE; 8104 } 8105 8106 /* Return TRUE iff INSN is one we expect on a _LO variety toc/got reloc. */ 8107 8108 static bfd_boolean 8109 ok_lo_toc_insn (unsigned int insn) 8110 { 8111 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */ 8112 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */ 8113 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */ 8114 || (insn & (0x3f << 26)) == 36u << 26 /* stw */ 8115 || (insn & (0x3f << 26)) == 38u << 26 /* stb */ 8116 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */ 8117 || (insn & (0x3f << 26)) == 42u << 26 /* lha */ 8118 || (insn & (0x3f << 26)) == 44u << 26 /* sth */ 8119 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */ 8120 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */ 8121 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */ 8122 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */ 8123 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */ 8124 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */ 8125 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */ 8126 && (insn & 3) != 1) 8127 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */ 8128 && ((insn & 3) == 0 || (insn & 3) == 3)) 8129 || (insn & (0x3f << 26)) == 12u << 26 /* addic */); 8130 } 8131 8132 /* Examine all relocs referencing .toc sections in order to remove 8133 unused .toc entries. */ 8134 8135 bfd_boolean 8136 ppc64_elf_edit_toc (struct bfd_link_info *info) 8137 { 8138 bfd *ibfd; 8139 struct adjust_toc_info toc_inf; 8140 struct ppc_link_hash_table *htab = ppc_hash_table (info); 8141 8142 htab->do_toc_opt = 1; 8143 toc_inf.global_toc_syms = TRUE; 8144 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) 8145 { 8146 asection *toc, *sec; 8147 Elf_Internal_Shdr *symtab_hdr; 8148 Elf_Internal_Sym *local_syms; 8149 Elf_Internal_Rela *relstart, *rel, *toc_relocs; 8150 unsigned long *skip, *drop; 8151 unsigned char *used; 8152 unsigned char *keep, last, some_unused; 8153 8154 if (!is_ppc64_elf (ibfd)) 8155 continue; 8156 8157 toc = bfd_get_section_by_name (ibfd, ".toc"); 8158 if (toc == NULL 8159 || toc->size == 0 8160 || toc->sec_info_type == SEC_INFO_TYPE_JUST_SYMS 8161 || discarded_section (toc)) 8162 continue; 8163 8164 toc_relocs = NULL; 8165 local_syms = NULL; 8166 symtab_hdr = &elf_symtab_hdr (ibfd); 8167 8168 /* Look at sections dropped from the final link. */ 8169 skip = NULL; 8170 relstart = NULL; 8171 for (sec = ibfd->sections; sec != NULL; sec = sec->next) 8172 { 8173 if (sec->reloc_count == 0 8174 || !discarded_section (sec) 8175 || get_opd_info (sec) 8176 || (sec->flags & SEC_ALLOC) == 0 8177 || (sec->flags & SEC_DEBUGGING) != 0) 8178 continue; 8179 8180 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE); 8181 if (relstart == NULL) 8182 goto error_ret; 8183 8184 /* Run through the relocs to see which toc entries might be 8185 unused. */ 8186 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel) 8187 { 8188 enum elf_ppc64_reloc_type r_type; 8189 unsigned long r_symndx; 8190 asection *sym_sec; 8191 struct elf_link_hash_entry *h; 8192 Elf_Internal_Sym *sym; 8193 bfd_vma val; 8194 8195 r_type = ELF64_R_TYPE (rel->r_info); 8196 switch (r_type) 8197 { 8198 default: 8199 continue; 8200 8201 case R_PPC64_TOC16: 8202 case R_PPC64_TOC16_LO: 8203 case R_PPC64_TOC16_HI: 8204 case R_PPC64_TOC16_HA: 8205 case R_PPC64_TOC16_DS: 8206 case R_PPC64_TOC16_LO_DS: 8207 break; 8208 } 8209 8210 r_symndx = ELF64_R_SYM (rel->r_info); 8211 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, 8212 r_symndx, ibfd)) 8213 goto error_ret; 8214 8215 if (sym_sec != toc) 8216 continue; 8217 8218 if (h != NULL) 8219 val = h->root.u.def.value; 8220 else 8221 val = sym->st_value; 8222 val += rel->r_addend; 8223 8224 if (val >= toc->size) 8225 continue; 8226 8227 /* Anything in the toc ought to be aligned to 8 bytes. 8228 If not, don't mark as unused. */ 8229 if (val & 7) 8230 continue; 8231 8232 if (skip == NULL) 8233 { 8234 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8); 8235 if (skip == NULL) 8236 goto error_ret; 8237 } 8238 8239 skip[val >> 3] = ref_from_discarded; 8240 } 8241 8242 if (elf_section_data (sec)->relocs != relstart) 8243 free (relstart); 8244 } 8245 8246 /* For largetoc loads of address constants, we can convert 8247 . addis rx,2,addr@got@ha 8248 . ld ry,addr@got@l(rx) 8249 to 8250 . addis rx,2,addr@toc@ha 8251 . addi ry,rx,addr@toc@l 8252 when addr is within 2G of the toc pointer. This then means 8253 that the word storing "addr" in the toc is no longer needed. */ 8254 8255 if (!ppc64_elf_tdata (ibfd)->has_small_toc_reloc 8256 && toc->output_section->rawsize < (bfd_vma) 1 << 31 8257 && toc->reloc_count != 0) 8258 { 8259 /* Read toc relocs. */ 8260 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL, 8261 info->keep_memory); 8262 if (toc_relocs == NULL) 8263 goto error_ret; 8264 8265 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel) 8266 { 8267 enum elf_ppc64_reloc_type r_type; 8268 unsigned long r_symndx; 8269 asection *sym_sec; 8270 struct elf_link_hash_entry *h; 8271 Elf_Internal_Sym *sym; 8272 bfd_vma val, addr; 8273 8274 r_type = ELF64_R_TYPE (rel->r_info); 8275 if (r_type != R_PPC64_ADDR64) 8276 continue; 8277 8278 r_symndx = ELF64_R_SYM (rel->r_info); 8279 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, 8280 r_symndx, ibfd)) 8281 goto error_ret; 8282 8283 if (sym_sec == NULL 8284 || discarded_section (sym_sec)) 8285 continue; 8286 8287 if (!SYMBOL_CALLS_LOCAL (info, h)) 8288 continue; 8289 8290 if (h != NULL) 8291 { 8292 if (h->type == STT_GNU_IFUNC) 8293 continue; 8294 val = h->root.u.def.value; 8295 } 8296 else 8297 { 8298 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC) 8299 continue; 8300 val = sym->st_value; 8301 } 8302 val += rel->r_addend; 8303 val += sym_sec->output_section->vma + sym_sec->output_offset; 8304 8305 /* We don't yet know the exact toc pointer value, but we 8306 know it will be somewhere in the toc section. Don't 8307 optimize if the difference from any possible toc 8308 pointer is outside [ff..f80008000, 7fff7fff]. */ 8309 addr = toc->output_section->vma + TOC_BASE_OFF; 8310 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32) 8311 continue; 8312 8313 addr = toc->output_section->vma + toc->output_section->rawsize; 8314 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32) 8315 continue; 8316 8317 if (skip == NULL) 8318 { 8319 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8); 8320 if (skip == NULL) 8321 goto error_ret; 8322 } 8323 8324 skip[rel->r_offset >> 3] 8325 |= can_optimize | ((rel - toc_relocs) << 2); 8326 } 8327 } 8328 8329 if (skip == NULL) 8330 continue; 8331 8332 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8); 8333 if (used == NULL) 8334 { 8335 error_ret: 8336 if (local_syms != NULL 8337 && symtab_hdr->contents != (unsigned char *) local_syms) 8338 free (local_syms); 8339 if (sec != NULL 8340 && relstart != NULL 8341 && elf_section_data (sec)->relocs != relstart) 8342 free (relstart); 8343 if (toc_relocs != NULL 8344 && elf_section_data (toc)->relocs != toc_relocs) 8345 free (toc_relocs); 8346 if (skip != NULL) 8347 free (skip); 8348 return FALSE; 8349 } 8350 8351 /* Now check all kept sections that might reference the toc. 8352 Check the toc itself last. */ 8353 for (sec = (ibfd->sections == toc && toc->next ? toc->next 8354 : ibfd->sections); 8355 sec != NULL; 8356 sec = (sec == toc ? NULL 8357 : sec->next == NULL ? toc 8358 : sec->next == toc && toc->next ? toc->next 8359 : sec->next)) 8360 { 8361 int repeat; 8362 8363 if (sec->reloc_count == 0 8364 || discarded_section (sec) 8365 || get_opd_info (sec) 8366 || (sec->flags & SEC_ALLOC) == 0 8367 || (sec->flags & SEC_DEBUGGING) != 0) 8368 continue; 8369 8370 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, 8371 info->keep_memory); 8372 if (relstart == NULL) 8373 goto error_ret; 8374 8375 /* Mark toc entries referenced as used. */ 8376 do 8377 { 8378 repeat = 0; 8379 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel) 8380 { 8381 enum elf_ppc64_reloc_type r_type; 8382 unsigned long r_symndx; 8383 asection *sym_sec; 8384 struct elf_link_hash_entry *h; 8385 Elf_Internal_Sym *sym; 8386 bfd_vma val; 8387 enum {no_check, check_lo, check_ha} insn_check; 8388 8389 r_type = ELF64_R_TYPE (rel->r_info); 8390 switch (r_type) 8391 { 8392 default: 8393 insn_check = no_check; 8394 break; 8395 8396 case R_PPC64_GOT_TLSLD16_HA: 8397 case R_PPC64_GOT_TLSGD16_HA: 8398 case R_PPC64_GOT_TPREL16_HA: 8399 case R_PPC64_GOT_DTPREL16_HA: 8400 case R_PPC64_GOT16_HA: 8401 case R_PPC64_TOC16_HA: 8402 insn_check = check_ha; 8403 break; 8404 8405 case R_PPC64_GOT_TLSLD16_LO: 8406 case R_PPC64_GOT_TLSGD16_LO: 8407 case R_PPC64_GOT_TPREL16_LO_DS: 8408 case R_PPC64_GOT_DTPREL16_LO_DS: 8409 case R_PPC64_GOT16_LO: 8410 case R_PPC64_GOT16_LO_DS: 8411 case R_PPC64_TOC16_LO: 8412 case R_PPC64_TOC16_LO_DS: 8413 insn_check = check_lo; 8414 break; 8415 } 8416 8417 if (insn_check != no_check) 8418 { 8419 bfd_vma off = rel->r_offset & ~3; 8420 unsigned char buf[4]; 8421 unsigned int insn; 8422 8423 if (!bfd_get_section_contents (ibfd, sec, buf, off, 4)) 8424 { 8425 free (used); 8426 goto error_ret; 8427 } 8428 insn = bfd_get_32 (ibfd, buf); 8429 if (insn_check == check_lo 8430 ? !ok_lo_toc_insn (insn) 8431 : ((insn & ((0x3f << 26) | 0x1f << 16)) 8432 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)) 8433 { 8434 char str[12]; 8435 8436 ppc64_elf_tdata (ibfd)->unexpected_toc_insn = 1; 8437 sprintf (str, "%#08x", insn); 8438 info->callbacks->einfo 8439 (_("%P: %H: toc optimization is not supported for" 8440 " %s instruction.\n"), 8441 ibfd, sec, rel->r_offset & ~3, str); 8442 } 8443 } 8444 8445 switch (r_type) 8446 { 8447 case R_PPC64_TOC16: 8448 case R_PPC64_TOC16_LO: 8449 case R_PPC64_TOC16_HI: 8450 case R_PPC64_TOC16_HA: 8451 case R_PPC64_TOC16_DS: 8452 case R_PPC64_TOC16_LO_DS: 8453 /* In case we're taking addresses of toc entries. */ 8454 case R_PPC64_ADDR64: 8455 break; 8456 8457 default: 8458 continue; 8459 } 8460 8461 r_symndx = ELF64_R_SYM (rel->r_info); 8462 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, 8463 r_symndx, ibfd)) 8464 { 8465 free (used); 8466 goto error_ret; 8467 } 8468 8469 if (sym_sec != toc) 8470 continue; 8471 8472 if (h != NULL) 8473 val = h->root.u.def.value; 8474 else 8475 val = sym->st_value; 8476 val += rel->r_addend; 8477 8478 if (val >= toc->size) 8479 continue; 8480 8481 if ((skip[val >> 3] & can_optimize) != 0) 8482 { 8483 bfd_vma off; 8484 unsigned char opc; 8485 8486 switch (r_type) 8487 { 8488 case R_PPC64_TOC16_HA: 8489 break; 8490 8491 case R_PPC64_TOC16_LO_DS: 8492 off = rel->r_offset; 8493 off += (bfd_big_endian (ibfd) ? -2 : 3); 8494 if (!bfd_get_section_contents (ibfd, sec, &opc, 8495 off, 1)) 8496 { 8497 free (used); 8498 goto error_ret; 8499 } 8500 if ((opc & (0x3f << 2)) == (58u << 2)) 8501 break; 8502 /* Fall thru */ 8503 8504 default: 8505 /* Wrong sort of reloc, or not a ld. We may 8506 as well clear ref_from_discarded too. */ 8507 skip[val >> 3] = 0; 8508 } 8509 } 8510 8511 if (sec != toc) 8512 used[val >> 3] = 1; 8513 /* For the toc section, we only mark as used if this 8514 entry itself isn't unused. */ 8515 else if ((used[rel->r_offset >> 3] 8516 || !(skip[rel->r_offset >> 3] & ref_from_discarded)) 8517 && !used[val >> 3]) 8518 { 8519 /* Do all the relocs again, to catch reference 8520 chains. */ 8521 repeat = 1; 8522 used[val >> 3] = 1; 8523 } 8524 } 8525 } 8526 while (repeat); 8527 8528 if (elf_section_data (sec)->relocs != relstart) 8529 free (relstart); 8530 } 8531 8532 /* Merge the used and skip arrays. Assume that TOC 8533 doublewords not appearing as either used or unused belong 8534 to to an entry more than one doubleword in size. */ 8535 for (drop = skip, keep = used, last = 0, some_unused = 0; 8536 drop < skip + (toc->size + 7) / 8; 8537 ++drop, ++keep) 8538 { 8539 if (*keep) 8540 { 8541 *drop &= ~ref_from_discarded; 8542 if ((*drop & can_optimize) != 0) 8543 some_unused = 1; 8544 last = 0; 8545 } 8546 else if ((*drop & ref_from_discarded) != 0) 8547 { 8548 some_unused = 1; 8549 last = ref_from_discarded; 8550 } 8551 else 8552 *drop = last; 8553 } 8554 8555 free (used); 8556 8557 if (some_unused) 8558 { 8559 bfd_byte *contents, *src; 8560 unsigned long off; 8561 Elf_Internal_Sym *sym; 8562 bfd_boolean local_toc_syms = FALSE; 8563 8564 /* Shuffle the toc contents, and at the same time convert the 8565 skip array from booleans into offsets. */ 8566 if (!bfd_malloc_and_get_section (ibfd, toc, &contents)) 8567 goto error_ret; 8568 8569 elf_section_data (toc)->this_hdr.contents = contents; 8570 8571 for (src = contents, off = 0, drop = skip; 8572 src < contents + toc->size; 8573 src += 8, ++drop) 8574 { 8575 if ((*drop & (can_optimize | ref_from_discarded)) != 0) 8576 off += 8; 8577 else if (off != 0) 8578 { 8579 *drop = off; 8580 memcpy (src - off, src, 8); 8581 } 8582 } 8583 *drop = off; 8584 toc->rawsize = toc->size; 8585 toc->size = src - contents - off; 8586 8587 /* Adjust addends for relocs against the toc section sym, 8588 and optimize any accesses we can. */ 8589 for (sec = ibfd->sections; sec != NULL; sec = sec->next) 8590 { 8591 if (sec->reloc_count == 0 8592 || discarded_section (sec)) 8593 continue; 8594 8595 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, 8596 info->keep_memory); 8597 if (relstart == NULL) 8598 goto error_ret; 8599 8600 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel) 8601 { 8602 enum elf_ppc64_reloc_type r_type; 8603 unsigned long r_symndx; 8604 asection *sym_sec; 8605 struct elf_link_hash_entry *h; 8606 bfd_vma val; 8607 8608 r_type = ELF64_R_TYPE (rel->r_info); 8609 switch (r_type) 8610 { 8611 default: 8612 continue; 8613 8614 case R_PPC64_TOC16: 8615 case R_PPC64_TOC16_LO: 8616 case R_PPC64_TOC16_HI: 8617 case R_PPC64_TOC16_HA: 8618 case R_PPC64_TOC16_DS: 8619 case R_PPC64_TOC16_LO_DS: 8620 case R_PPC64_ADDR64: 8621 break; 8622 } 8623 8624 r_symndx = ELF64_R_SYM (rel->r_info); 8625 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, 8626 r_symndx, ibfd)) 8627 goto error_ret; 8628 8629 if (sym_sec != toc) 8630 continue; 8631 8632 if (h != NULL) 8633 val = h->root.u.def.value; 8634 else 8635 { 8636 val = sym->st_value; 8637 if (val != 0) 8638 local_toc_syms = TRUE; 8639 } 8640 8641 val += rel->r_addend; 8642 8643 if (val > toc->rawsize) 8644 val = toc->rawsize; 8645 else if ((skip[val >> 3] & ref_from_discarded) != 0) 8646 continue; 8647 else if ((skip[val >> 3] & can_optimize) != 0) 8648 { 8649 Elf_Internal_Rela *tocrel 8650 = toc_relocs + (skip[val >> 3] >> 2); 8651 unsigned long tsym = ELF64_R_SYM (tocrel->r_info); 8652 8653 switch (r_type) 8654 { 8655 case R_PPC64_TOC16_HA: 8656 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_TOC16_HA); 8657 break; 8658 8659 case R_PPC64_TOC16_LO_DS: 8660 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_LO_DS_OPT); 8661 break; 8662 8663 default: 8664 if (!ppc64_elf_howto_table[R_PPC64_ADDR32]) 8665 ppc_howto_init (); 8666 info->callbacks->einfo 8667 (_("%P: %H: %s references " 8668 "optimized away TOC entry\n"), 8669 ibfd, sec, rel->r_offset, 8670 ppc64_elf_howto_table[r_type]->name); 8671 bfd_set_error (bfd_error_bad_value); 8672 goto error_ret; 8673 } 8674 rel->r_addend = tocrel->r_addend; 8675 elf_section_data (sec)->relocs = relstart; 8676 continue; 8677 } 8678 8679 if (h != NULL || sym->st_value != 0) 8680 continue; 8681 8682 rel->r_addend -= skip[val >> 3]; 8683 elf_section_data (sec)->relocs = relstart; 8684 } 8685 8686 if (elf_section_data (sec)->relocs != relstart) 8687 free (relstart); 8688 } 8689 8690 /* We shouldn't have local or global symbols defined in the TOC, 8691 but handle them anyway. */ 8692 if (local_syms != NULL) 8693 for (sym = local_syms; 8694 sym < local_syms + symtab_hdr->sh_info; 8695 ++sym) 8696 if (sym->st_value != 0 8697 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc) 8698 { 8699 unsigned long i; 8700 8701 if (sym->st_value > toc->rawsize) 8702 i = toc->rawsize >> 3; 8703 else 8704 i = sym->st_value >> 3; 8705 8706 if ((skip[i] & (ref_from_discarded | can_optimize)) != 0) 8707 { 8708 if (local_toc_syms) 8709 (*_bfd_error_handler) 8710 (_("%s defined on removed toc entry"), 8711 bfd_elf_sym_name (ibfd, symtab_hdr, sym, NULL)); 8712 do 8713 ++i; 8714 while ((skip[i] & (ref_from_discarded | can_optimize))); 8715 sym->st_value = (bfd_vma) i << 3; 8716 } 8717 8718 sym->st_value -= skip[i]; 8719 symtab_hdr->contents = (unsigned char *) local_syms; 8720 } 8721 8722 /* Adjust any global syms defined in this toc input section. */ 8723 if (toc_inf.global_toc_syms) 8724 { 8725 toc_inf.toc = toc; 8726 toc_inf.skip = skip; 8727 toc_inf.global_toc_syms = FALSE; 8728 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms, 8729 &toc_inf); 8730 } 8731 8732 if (toc->reloc_count != 0) 8733 { 8734 Elf_Internal_Shdr *rel_hdr; 8735 Elf_Internal_Rela *wrel; 8736 bfd_size_type sz; 8737 8738 /* Remove unused toc relocs, and adjust those we keep. */ 8739 if (toc_relocs == NULL) 8740 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL, 8741 info->keep_memory); 8742 if (toc_relocs == NULL) 8743 goto error_ret; 8744 8745 wrel = toc_relocs; 8746 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel) 8747 if ((skip[rel->r_offset >> 3] 8748 & (ref_from_discarded | can_optimize)) == 0) 8749 { 8750 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3]; 8751 wrel->r_info = rel->r_info; 8752 wrel->r_addend = rel->r_addend; 8753 ++wrel; 8754 } 8755 else if (!dec_dynrel_count (rel->r_info, toc, info, 8756 &local_syms, NULL, NULL)) 8757 goto error_ret; 8758 8759 elf_section_data (toc)->relocs = toc_relocs; 8760 toc->reloc_count = wrel - toc_relocs; 8761 rel_hdr = _bfd_elf_single_rel_hdr (toc); 8762 sz = rel_hdr->sh_entsize; 8763 rel_hdr->sh_size = toc->reloc_count * sz; 8764 } 8765 } 8766 else if (toc_relocs != NULL 8767 && elf_section_data (toc)->relocs != toc_relocs) 8768 free (toc_relocs); 8769 8770 if (local_syms != NULL 8771 && symtab_hdr->contents != (unsigned char *) local_syms) 8772 { 8773 if (!info->keep_memory) 8774 free (local_syms); 8775 else 8776 symtab_hdr->contents = (unsigned char *) local_syms; 8777 } 8778 free (skip); 8779 } 8780 8781 return TRUE; 8782 } 8783 8784 /* Return true iff input section I references the TOC using 8785 instructions limited to +/-32k offsets. */ 8786 8787 bfd_boolean 8788 ppc64_elf_has_small_toc_reloc (asection *i) 8789 { 8790 return (is_ppc64_elf (i->owner) 8791 && ppc64_elf_tdata (i->owner)->has_small_toc_reloc); 8792 } 8793 8794 /* Allocate space for one GOT entry. */ 8795 8796 static void 8797 allocate_got (struct elf_link_hash_entry *h, 8798 struct bfd_link_info *info, 8799 struct got_entry *gent) 8800 { 8801 struct ppc_link_hash_table *htab = ppc_hash_table (info); 8802 bfd_boolean dyn; 8803 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h; 8804 int entsize = (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD) 8805 ? 16 : 8); 8806 int rentsize = (gent->tls_type & eh->tls_mask & TLS_GD 8807 ? 2 : 1) * sizeof (Elf64_External_Rela); 8808 asection *got = ppc64_elf_tdata (gent->owner)->got; 8809 8810 gent->got.offset = got->size; 8811 got->size += entsize; 8812 8813 dyn = htab->elf.dynamic_sections_created; 8814 if ((info->shared 8815 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)) 8816 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 8817 || h->root.type != bfd_link_hash_undefweak)) 8818 { 8819 asection *relgot = ppc64_elf_tdata (gent->owner)->relgot; 8820 relgot->size += rentsize; 8821 } 8822 else if (h->type == STT_GNU_IFUNC) 8823 { 8824 asection *relgot = htab->reliplt; 8825 relgot->size += rentsize; 8826 htab->got_reli_size += rentsize; 8827 } 8828 } 8829 8830 /* This function merges got entries in the same toc group. */ 8831 8832 static void 8833 merge_got_entries (struct got_entry **pent) 8834 { 8835 struct got_entry *ent, *ent2; 8836 8837 for (ent = *pent; ent != NULL; ent = ent->next) 8838 if (!ent->is_indirect) 8839 for (ent2 = ent->next; ent2 != NULL; ent2 = ent2->next) 8840 if (!ent2->is_indirect 8841 && ent2->addend == ent->addend 8842 && ent2->tls_type == ent->tls_type 8843 && elf_gp (ent2->owner) == elf_gp (ent->owner)) 8844 { 8845 ent2->is_indirect = TRUE; 8846 ent2->got.ent = ent; 8847 } 8848 } 8849 8850 /* Allocate space in .plt, .got and associated reloc sections for 8851 dynamic relocs. */ 8852 8853 static bfd_boolean 8854 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf) 8855 { 8856 struct bfd_link_info *info; 8857 struct ppc_link_hash_table *htab; 8858 asection *s; 8859 struct ppc_link_hash_entry *eh; 8860 struct elf_dyn_relocs *p; 8861 struct got_entry **pgent, *gent; 8862 8863 if (h->root.type == bfd_link_hash_indirect) 8864 return TRUE; 8865 8866 info = (struct bfd_link_info *) inf; 8867 htab = ppc_hash_table (info); 8868 if (htab == NULL) 8869 return FALSE; 8870 8871 if ((htab->elf.dynamic_sections_created 8872 && h->dynindx != -1 8873 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h)) 8874 || h->type == STT_GNU_IFUNC) 8875 { 8876 struct plt_entry *pent; 8877 bfd_boolean doneone = FALSE; 8878 for (pent = h->plt.plist; pent != NULL; pent = pent->next) 8879 if (pent->plt.refcount > 0) 8880 { 8881 if (!htab->elf.dynamic_sections_created 8882 || h->dynindx == -1) 8883 { 8884 s = htab->iplt; 8885 pent->plt.offset = s->size; 8886 s->size += PLT_ENTRY_SIZE; 8887 s = htab->reliplt; 8888 } 8889 else 8890 { 8891 /* If this is the first .plt entry, make room for the special 8892 first entry. */ 8893 s = htab->plt; 8894 if (s->size == 0) 8895 s->size += PLT_INITIAL_ENTRY_SIZE; 8896 8897 pent->plt.offset = s->size; 8898 8899 /* Make room for this entry. */ 8900 s->size += PLT_ENTRY_SIZE; 8901 8902 /* Make room for the .glink code. */ 8903 s = htab->glink; 8904 if (s->size == 0) 8905 s->size += GLINK_CALL_STUB_SIZE; 8906 /* We need bigger stubs past index 32767. */ 8907 if (s->size >= GLINK_CALL_STUB_SIZE + 32768*2*4) 8908 s->size += 4; 8909 s->size += 2*4; 8910 8911 /* We also need to make an entry in the .rela.plt section. */ 8912 s = htab->relplt; 8913 } 8914 s->size += sizeof (Elf64_External_Rela); 8915 doneone = TRUE; 8916 } 8917 else 8918 pent->plt.offset = (bfd_vma) -1; 8919 if (!doneone) 8920 { 8921 h->plt.plist = NULL; 8922 h->needs_plt = 0; 8923 } 8924 } 8925 else 8926 { 8927 h->plt.plist = NULL; 8928 h->needs_plt = 0; 8929 } 8930 8931 eh = (struct ppc_link_hash_entry *) h; 8932 /* Run through the TLS GD got entries first if we're changing them 8933 to TPREL. */ 8934 if ((eh->tls_mask & TLS_TPRELGD) != 0) 8935 for (gent = h->got.glist; gent != NULL; gent = gent->next) 8936 if (gent->got.refcount > 0 8937 && (gent->tls_type & TLS_GD) != 0) 8938 { 8939 /* This was a GD entry that has been converted to TPREL. If 8940 there happens to be a TPREL entry we can use that one. */ 8941 struct got_entry *ent; 8942 for (ent = h->got.glist; ent != NULL; ent = ent->next) 8943 if (ent->got.refcount > 0 8944 && (ent->tls_type & TLS_TPREL) != 0 8945 && ent->addend == gent->addend 8946 && ent->owner == gent->owner) 8947 { 8948 gent->got.refcount = 0; 8949 break; 8950 } 8951 8952 /* If not, then we'll be using our own TPREL entry. */ 8953 if (gent->got.refcount != 0) 8954 gent->tls_type = TLS_TLS | TLS_TPREL; 8955 } 8956 8957 /* Remove any list entry that won't generate a word in the GOT before 8958 we call merge_got_entries. Otherwise we risk merging to empty 8959 entries. */ 8960 pgent = &h->got.glist; 8961 while ((gent = *pgent) != NULL) 8962 if (gent->got.refcount > 0) 8963 { 8964 if ((gent->tls_type & TLS_LD) != 0 8965 && !h->def_dynamic) 8966 { 8967 ppc64_tlsld_got (gent->owner)->got.refcount += 1; 8968 *pgent = gent->next; 8969 } 8970 else 8971 pgent = &gent->next; 8972 } 8973 else 8974 *pgent = gent->next; 8975 8976 if (!htab->do_multi_toc) 8977 merge_got_entries (&h->got.glist); 8978 8979 for (gent = h->got.glist; gent != NULL; gent = gent->next) 8980 if (!gent->is_indirect) 8981 { 8982 /* Make sure this symbol is output as a dynamic symbol. 8983 Undefined weak syms won't yet be marked as dynamic, 8984 nor will all TLS symbols. */ 8985 if (h->dynindx == -1 8986 && !h->forced_local 8987 && h->type != STT_GNU_IFUNC 8988 && htab->elf.dynamic_sections_created) 8989 { 8990 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 8991 return FALSE; 8992 } 8993 8994 if (!is_ppc64_elf (gent->owner)) 8995 abort (); 8996 8997 allocate_got (h, info, gent); 8998 } 8999 9000 if (eh->dyn_relocs == NULL 9001 || (!htab->elf.dynamic_sections_created 9002 && h->type != STT_GNU_IFUNC)) 9003 return TRUE; 9004 9005 /* In the shared -Bsymbolic case, discard space allocated for 9006 dynamic pc-relative relocs against symbols which turn out to be 9007 defined in regular objects. For the normal shared case, discard 9008 space for relocs that have become local due to symbol visibility 9009 changes. */ 9010 9011 if (info->shared) 9012 { 9013 /* Relocs that use pc_count are those that appear on a call insn, 9014 or certain REL relocs (see must_be_dyn_reloc) that can be 9015 generated via assembly. We want calls to protected symbols to 9016 resolve directly to the function rather than going via the plt. 9017 If people want function pointer comparisons to work as expected 9018 then they should avoid writing weird assembly. */ 9019 if (SYMBOL_CALLS_LOCAL (info, h)) 9020 { 9021 struct elf_dyn_relocs **pp; 9022 9023 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; ) 9024 { 9025 p->count -= p->pc_count; 9026 p->pc_count = 0; 9027 if (p->count == 0) 9028 *pp = p->next; 9029 else 9030 pp = &p->next; 9031 } 9032 } 9033 9034 /* Also discard relocs on undefined weak syms with non-default 9035 visibility. */ 9036 if (eh->dyn_relocs != NULL 9037 && h->root.type == bfd_link_hash_undefweak) 9038 { 9039 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) 9040 eh->dyn_relocs = NULL; 9041 9042 /* Make sure this symbol is output as a dynamic symbol. 9043 Undefined weak syms won't yet be marked as dynamic. */ 9044 else if (h->dynindx == -1 9045 && !h->forced_local) 9046 { 9047 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 9048 return FALSE; 9049 } 9050 } 9051 } 9052 else if (h->type == STT_GNU_IFUNC) 9053 { 9054 if (!h->non_got_ref) 9055 eh->dyn_relocs = NULL; 9056 } 9057 else if (ELIMINATE_COPY_RELOCS) 9058 { 9059 /* For the non-shared case, discard space for relocs against 9060 symbols which turn out to need copy relocs or are not 9061 dynamic. */ 9062 9063 if (!h->non_got_ref 9064 && !h->def_regular) 9065 { 9066 /* Make sure this symbol is output as a dynamic symbol. 9067 Undefined weak syms won't yet be marked as dynamic. */ 9068 if (h->dynindx == -1 9069 && !h->forced_local) 9070 { 9071 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 9072 return FALSE; 9073 } 9074 9075 /* If that succeeded, we know we'll be keeping all the 9076 relocs. */ 9077 if (h->dynindx != -1) 9078 goto keep; 9079 } 9080 9081 eh->dyn_relocs = NULL; 9082 9083 keep: ; 9084 } 9085 9086 /* Finally, allocate space. */ 9087 for (p = eh->dyn_relocs; p != NULL; p = p->next) 9088 { 9089 asection *sreloc = elf_section_data (p->sec)->sreloc; 9090 if (!htab->elf.dynamic_sections_created) 9091 sreloc = htab->reliplt; 9092 sreloc->size += p->count * sizeof (Elf64_External_Rela); 9093 } 9094 9095 return TRUE; 9096 } 9097 9098 /* Find any dynamic relocs that apply to read-only sections. */ 9099 9100 static bfd_boolean 9101 readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf) 9102 { 9103 struct ppc_link_hash_entry *eh; 9104 struct elf_dyn_relocs *p; 9105 9106 eh = (struct ppc_link_hash_entry *) h; 9107 for (p = eh->dyn_relocs; p != NULL; p = p->next) 9108 { 9109 asection *s = p->sec->output_section; 9110 9111 if (s != NULL && (s->flags & SEC_READONLY) != 0) 9112 { 9113 struct bfd_link_info *info = inf; 9114 9115 if (info->warn_shared_textrel) 9116 (*_bfd_error_handler) 9117 (_("warning: dynamic relocation in readonly section `%s'"), 9118 h->root.root.string); 9119 info->flags |= DF_TEXTREL; 9120 9121 /* Not an error, just cut short the traversal. */ 9122 return FALSE; 9123 } 9124 } 9125 return TRUE; 9126 } 9127 9128 /* Set the sizes of the dynamic sections. */ 9129 9130 static bfd_boolean 9131 ppc64_elf_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED, 9132 struct bfd_link_info *info) 9133 { 9134 struct ppc_link_hash_table *htab; 9135 bfd *dynobj; 9136 asection *s; 9137 bfd_boolean relocs; 9138 bfd *ibfd; 9139 struct got_entry *first_tlsld; 9140 9141 htab = ppc_hash_table (info); 9142 if (htab == NULL) 9143 return FALSE; 9144 9145 dynobj = htab->elf.dynobj; 9146 if (dynobj == NULL) 9147 abort (); 9148 9149 if (htab->elf.dynamic_sections_created) 9150 { 9151 /* Set the contents of the .interp section to the interpreter. */ 9152 if (info->executable) 9153 { 9154 s = bfd_get_linker_section (dynobj, ".interp"); 9155 if (s == NULL) 9156 abort (); 9157 s->size = sizeof ELF_DYNAMIC_INTERPRETER; 9158 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; 9159 } 9160 } 9161 9162 /* Set up .got offsets for local syms, and space for local dynamic 9163 relocs. */ 9164 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) 9165 { 9166 struct got_entry **lgot_ents; 9167 struct got_entry **end_lgot_ents; 9168 struct plt_entry **local_plt; 9169 struct plt_entry **end_local_plt; 9170 unsigned char *lgot_masks; 9171 bfd_size_type locsymcount; 9172 Elf_Internal_Shdr *symtab_hdr; 9173 asection *srel; 9174 9175 if (!is_ppc64_elf (ibfd)) 9176 continue; 9177 9178 for (s = ibfd->sections; s != NULL; s = s->next) 9179 { 9180 struct elf_dyn_relocs *p; 9181 9182 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next) 9183 { 9184 if (!bfd_is_abs_section (p->sec) 9185 && bfd_is_abs_section (p->sec->output_section)) 9186 { 9187 /* Input section has been discarded, either because 9188 it is a copy of a linkonce section or due to 9189 linker script /DISCARD/, so we'll be discarding 9190 the relocs too. */ 9191 } 9192 else if (p->count != 0) 9193 { 9194 srel = elf_section_data (p->sec)->sreloc; 9195 if (!htab->elf.dynamic_sections_created) 9196 srel = htab->reliplt; 9197 srel->size += p->count * sizeof (Elf64_External_Rela); 9198 if ((p->sec->output_section->flags & SEC_READONLY) != 0) 9199 { 9200 if (info->warn_shared_textrel) 9201 (*_bfd_error_handler) 9202 (_("warning: dynamic relocation in readonly section `%s'"), 9203 p->sec->output_section->name); 9204 info->flags |= DF_TEXTREL; 9205 } 9206 } 9207 } 9208 } 9209 9210 lgot_ents = elf_local_got_ents (ibfd); 9211 if (!lgot_ents) 9212 continue; 9213 9214 symtab_hdr = &elf_symtab_hdr (ibfd); 9215 locsymcount = symtab_hdr->sh_info; 9216 end_lgot_ents = lgot_ents + locsymcount; 9217 local_plt = (struct plt_entry **) end_lgot_ents; 9218 end_local_plt = local_plt + locsymcount; 9219 lgot_masks = (unsigned char *) end_local_plt; 9220 s = ppc64_elf_tdata (ibfd)->got; 9221 srel = ppc64_elf_tdata (ibfd)->relgot; 9222 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks) 9223 { 9224 struct got_entry **pent, *ent; 9225 9226 pent = lgot_ents; 9227 while ((ent = *pent) != NULL) 9228 if (ent->got.refcount > 0) 9229 { 9230 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0) 9231 { 9232 ppc64_tlsld_got (ibfd)->got.refcount += 1; 9233 *pent = ent->next; 9234 } 9235 else 9236 { 9237 unsigned int num = 1; 9238 ent->got.offset = s->size; 9239 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0) 9240 num = 2; 9241 s->size += num * 8; 9242 if (info->shared) 9243 srel->size += num * sizeof (Elf64_External_Rela); 9244 else if ((*lgot_masks & PLT_IFUNC) != 0) 9245 { 9246 htab->reliplt->size 9247 += num * sizeof (Elf64_External_Rela); 9248 htab->got_reli_size 9249 += num * sizeof (Elf64_External_Rela); 9250 } 9251 pent = &ent->next; 9252 } 9253 } 9254 else 9255 *pent = ent->next; 9256 } 9257 9258 /* Allocate space for calls to local STT_GNU_IFUNC syms in .iplt. */ 9259 for (; local_plt < end_local_plt; ++local_plt) 9260 { 9261 struct plt_entry *ent; 9262 9263 for (ent = *local_plt; ent != NULL; ent = ent->next) 9264 if (ent->plt.refcount > 0) 9265 { 9266 s = htab->iplt; 9267 ent->plt.offset = s->size; 9268 s->size += PLT_ENTRY_SIZE; 9269 9270 htab->reliplt->size += sizeof (Elf64_External_Rela); 9271 } 9272 else 9273 ent->plt.offset = (bfd_vma) -1; 9274 } 9275 } 9276 9277 /* Allocate global sym .plt and .got entries, and space for global 9278 sym dynamic relocs. */ 9279 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info); 9280 9281 first_tlsld = NULL; 9282 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) 9283 { 9284 struct got_entry *ent; 9285 9286 if (!is_ppc64_elf (ibfd)) 9287 continue; 9288 9289 ent = ppc64_tlsld_got (ibfd); 9290 if (ent->got.refcount > 0) 9291 { 9292 if (!htab->do_multi_toc && first_tlsld != NULL) 9293 { 9294 ent->is_indirect = TRUE; 9295 ent->got.ent = first_tlsld; 9296 } 9297 else 9298 { 9299 if (first_tlsld == NULL) 9300 first_tlsld = ent; 9301 s = ppc64_elf_tdata (ibfd)->got; 9302 ent->got.offset = s->size; 9303 ent->owner = ibfd; 9304 s->size += 16; 9305 if (info->shared) 9306 { 9307 asection *srel = ppc64_elf_tdata (ibfd)->relgot; 9308 srel->size += sizeof (Elf64_External_Rela); 9309 } 9310 } 9311 } 9312 else 9313 ent->got.offset = (bfd_vma) -1; 9314 } 9315 9316 /* We now have determined the sizes of the various dynamic sections. 9317 Allocate memory for them. */ 9318 relocs = FALSE; 9319 for (s = dynobj->sections; s != NULL; s = s->next) 9320 { 9321 if ((s->flags & SEC_LINKER_CREATED) == 0) 9322 continue; 9323 9324 if (s == htab->brlt || s == htab->relbrlt) 9325 /* These haven't been allocated yet; don't strip. */ 9326 continue; 9327 else if (s == htab->got 9328 || s == htab->plt 9329 || s == htab->iplt 9330 || s == htab->glink 9331 || s == htab->dynbss) 9332 { 9333 /* Strip this section if we don't need it; see the 9334 comment below. */ 9335 } 9336 else if (s == htab->glink_eh_frame) 9337 { 9338 if (!bfd_is_abs_section (s->output_section)) 9339 /* Not sized yet. */ 9340 continue; 9341 } 9342 else if (CONST_STRNEQ (s->name, ".rela")) 9343 { 9344 if (s->size != 0) 9345 { 9346 if (s != htab->relplt) 9347 relocs = TRUE; 9348 9349 /* We use the reloc_count field as a counter if we need 9350 to copy relocs into the output file. */ 9351 s->reloc_count = 0; 9352 } 9353 } 9354 else 9355 { 9356 /* It's not one of our sections, so don't allocate space. */ 9357 continue; 9358 } 9359 9360 if (s->size == 0) 9361 { 9362 /* If we don't need this section, strip it from the 9363 output file. This is mostly to handle .rela.bss and 9364 .rela.plt. We must create both sections in 9365 create_dynamic_sections, because they must be created 9366 before the linker maps input sections to output 9367 sections. The linker does that before 9368 adjust_dynamic_symbol is called, and it is that 9369 function which decides whether anything needs to go 9370 into these sections. */ 9371 s->flags |= SEC_EXCLUDE; 9372 continue; 9373 } 9374 9375 if ((s->flags & SEC_HAS_CONTENTS) == 0) 9376 continue; 9377 9378 /* Allocate memory for the section contents. We use bfd_zalloc 9379 here in case unused entries are not reclaimed before the 9380 section's contents are written out. This should not happen, 9381 but this way if it does we get a R_PPC64_NONE reloc in .rela 9382 sections instead of garbage. 9383 We also rely on the section contents being zero when writing 9384 the GOT. */ 9385 s->contents = bfd_zalloc (dynobj, s->size); 9386 if (s->contents == NULL) 9387 return FALSE; 9388 } 9389 9390 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) 9391 { 9392 if (!is_ppc64_elf (ibfd)) 9393 continue; 9394 9395 s = ppc64_elf_tdata (ibfd)->got; 9396 if (s != NULL && s != htab->got) 9397 { 9398 if (s->size == 0) 9399 s->flags |= SEC_EXCLUDE; 9400 else 9401 { 9402 s->contents = bfd_zalloc (ibfd, s->size); 9403 if (s->contents == NULL) 9404 return FALSE; 9405 } 9406 } 9407 s = ppc64_elf_tdata (ibfd)->relgot; 9408 if (s != NULL) 9409 { 9410 if (s->size == 0) 9411 s->flags |= SEC_EXCLUDE; 9412 else 9413 { 9414 s->contents = bfd_zalloc (ibfd, s->size); 9415 if (s->contents == NULL) 9416 return FALSE; 9417 relocs = TRUE; 9418 s->reloc_count = 0; 9419 } 9420 } 9421 } 9422 9423 if (htab->elf.dynamic_sections_created) 9424 { 9425 /* Add some entries to the .dynamic section. We fill in the 9426 values later, in ppc64_elf_finish_dynamic_sections, but we 9427 must add the entries now so that we get the correct size for 9428 the .dynamic section. The DT_DEBUG entry is filled in by the 9429 dynamic linker and used by the debugger. */ 9430 #define add_dynamic_entry(TAG, VAL) \ 9431 _bfd_elf_add_dynamic_entry (info, TAG, VAL) 9432 9433 if (info->executable) 9434 { 9435 if (!add_dynamic_entry (DT_DEBUG, 0)) 9436 return FALSE; 9437 } 9438 9439 if (htab->plt != NULL && htab->plt->size != 0) 9440 { 9441 if (!add_dynamic_entry (DT_PLTGOT, 0) 9442 || !add_dynamic_entry (DT_PLTRELSZ, 0) 9443 || !add_dynamic_entry (DT_PLTREL, DT_RELA) 9444 || !add_dynamic_entry (DT_JMPREL, 0) 9445 || !add_dynamic_entry (DT_PPC64_GLINK, 0)) 9446 return FALSE; 9447 } 9448 9449 if (NO_OPD_RELOCS) 9450 { 9451 if (!add_dynamic_entry (DT_PPC64_OPD, 0) 9452 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0)) 9453 return FALSE; 9454 } 9455 9456 if (!htab->no_tls_get_addr_opt 9457 && htab->tls_get_addr_fd != NULL 9458 && htab->tls_get_addr_fd->elf.plt.plist != NULL 9459 && !add_dynamic_entry (DT_PPC64_TLSOPT, 0)) 9460 return FALSE; 9461 9462 if (relocs) 9463 { 9464 if (!add_dynamic_entry (DT_RELA, 0) 9465 || !add_dynamic_entry (DT_RELASZ, 0) 9466 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela))) 9467 return FALSE; 9468 9469 /* If any dynamic relocs apply to a read-only section, 9470 then we need a DT_TEXTREL entry. */ 9471 if ((info->flags & DF_TEXTREL) == 0) 9472 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info); 9473 9474 if ((info->flags & DF_TEXTREL) != 0) 9475 { 9476 if (!add_dynamic_entry (DT_TEXTREL, 0)) 9477 return FALSE; 9478 } 9479 } 9480 } 9481 #undef add_dynamic_entry 9482 9483 return TRUE; 9484 } 9485 9486 /* Determine the type of stub needed, if any, for a call. */ 9487 9488 static inline enum ppc_stub_type 9489 ppc_type_of_stub (asection *input_sec, 9490 const Elf_Internal_Rela *rel, 9491 struct ppc_link_hash_entry **hash, 9492 struct plt_entry **plt_ent, 9493 bfd_vma destination) 9494 { 9495 struct ppc_link_hash_entry *h = *hash; 9496 bfd_vma location; 9497 bfd_vma branch_offset; 9498 bfd_vma max_branch_offset; 9499 enum elf_ppc64_reloc_type r_type; 9500 9501 if (h != NULL) 9502 { 9503 struct plt_entry *ent; 9504 struct ppc_link_hash_entry *fdh = h; 9505 if (h->oh != NULL 9506 && h->oh->is_func_descriptor) 9507 { 9508 fdh = ppc_follow_link (h->oh); 9509 *hash = fdh; 9510 } 9511 9512 for (ent = fdh->elf.plt.plist; ent != NULL; ent = ent->next) 9513 if (ent->addend == rel->r_addend 9514 && ent->plt.offset != (bfd_vma) -1) 9515 { 9516 *plt_ent = ent; 9517 return ppc_stub_plt_call; 9518 } 9519 9520 /* Here, we know we don't have a plt entry. If we don't have a 9521 either a defined function descriptor or a defined entry symbol 9522 in a regular object file, then it is pointless trying to make 9523 any other type of stub. */ 9524 if (!is_static_defined (&fdh->elf) 9525 && !is_static_defined (&h->elf)) 9526 return ppc_stub_none; 9527 } 9528 else if (elf_local_got_ents (input_sec->owner) != NULL) 9529 { 9530 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_sec->owner); 9531 struct plt_entry **local_plt = (struct plt_entry **) 9532 elf_local_got_ents (input_sec->owner) + symtab_hdr->sh_info; 9533 unsigned long r_symndx = ELF64_R_SYM (rel->r_info); 9534 9535 if (local_plt[r_symndx] != NULL) 9536 { 9537 struct plt_entry *ent; 9538 9539 for (ent = local_plt[r_symndx]; ent != NULL; ent = ent->next) 9540 if (ent->addend == rel->r_addend 9541 && ent->plt.offset != (bfd_vma) -1) 9542 { 9543 *plt_ent = ent; 9544 return ppc_stub_plt_call; 9545 } 9546 } 9547 } 9548 9549 /* Determine where the call point is. */ 9550 location = (input_sec->output_offset 9551 + input_sec->output_section->vma 9552 + rel->r_offset); 9553 9554 branch_offset = destination - location; 9555 r_type = ELF64_R_TYPE (rel->r_info); 9556 9557 /* Determine if a long branch stub is needed. */ 9558 max_branch_offset = 1 << 25; 9559 if (r_type != R_PPC64_REL24) 9560 max_branch_offset = 1 << 15; 9561 9562 if (branch_offset + max_branch_offset >= 2 * max_branch_offset) 9563 /* We need a stub. Figure out whether a long_branch or plt_branch 9564 is needed later. */ 9565 return ppc_stub_long_branch; 9566 9567 return ppc_stub_none; 9568 } 9569 9570 /* With power7 weakly ordered memory model, it is possible for ld.so 9571 to update a plt entry in one thread and have another thread see a 9572 stale zero toc entry. To avoid this we need some sort of acquire 9573 barrier in the call stub. One solution is to make the load of the 9574 toc word seem to appear to depend on the load of the function entry 9575 word. Another solution is to test for r2 being zero, and branch to 9576 the appropriate glink entry if so. 9577 9578 . fake dep barrier compare 9579 . ld 11,xxx(2) ld 11,xxx(2) 9580 . mtctr 11 mtctr 11 9581 . xor 11,11,11 ld 2,xxx+8(2) 9582 . add 2,2,11 cmpldi 2,0 9583 . ld 2,xxx+8(2) bnectr+ 9584 . bctr b <glink_entry> 9585 9586 The solution involving the compare turns out to be faster, so 9587 that's what we use unless the branch won't reach. */ 9588 9589 #define ALWAYS_USE_FAKE_DEP 0 9590 #define ALWAYS_EMIT_R2SAVE 0 9591 9592 #define PPC_LO(v) ((v) & 0xffff) 9593 #define PPC_HI(v) (((v) >> 16) & 0xffff) 9594 #define PPC_HA(v) PPC_HI ((v) + 0x8000) 9595 9596 static inline unsigned int 9597 plt_stub_size (struct ppc_link_hash_table *htab, 9598 struct ppc_stub_hash_entry *stub_entry, 9599 bfd_vma off) 9600 { 9601 unsigned size = PLT_CALL_STUB_SIZE; 9602 9603 if (!(ALWAYS_EMIT_R2SAVE 9604 || stub_entry->stub_type == ppc_stub_plt_call_r2save)) 9605 size -= 4; 9606 if (!htab->plt_static_chain) 9607 size -= 4; 9608 if (htab->plt_thread_safe) 9609 size += 8; 9610 if (PPC_HA (off) == 0) 9611 size -= 4; 9612 if (PPC_HA (off + 8 + 8 * htab->plt_static_chain) != PPC_HA (off)) 9613 size += 4; 9614 if (stub_entry->h != NULL 9615 && (stub_entry->h == htab->tls_get_addr_fd 9616 || stub_entry->h == htab->tls_get_addr) 9617 && !htab->no_tls_get_addr_opt) 9618 size += 13 * 4; 9619 return size; 9620 } 9621 9622 /* If this stub would cross fewer 2**plt_stub_align boundaries if we align, 9623 then return the padding needed to do so. */ 9624 static inline unsigned int 9625 plt_stub_pad (struct ppc_link_hash_table *htab, 9626 struct ppc_stub_hash_entry *stub_entry, 9627 bfd_vma plt_off) 9628 { 9629 int stub_align = 1 << htab->plt_stub_align; 9630 unsigned stub_size = plt_stub_size (htab, stub_entry, plt_off); 9631 bfd_vma stub_off = stub_entry->stub_sec->size; 9632 9633 if (((stub_off + stub_size - 1) & -stub_align) - (stub_off & -stub_align) 9634 > (stub_size & -stub_align)) 9635 return stub_align - (stub_off & (stub_align - 1)); 9636 return 0; 9637 } 9638 9639 /* Build a .plt call stub. */ 9640 9641 static inline bfd_byte * 9642 build_plt_stub (struct ppc_link_hash_table *htab, 9643 struct ppc_stub_hash_entry *stub_entry, 9644 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r) 9645 { 9646 bfd *obfd = htab->stub_bfd; 9647 bfd_boolean plt_static_chain = htab->plt_static_chain; 9648 bfd_boolean plt_thread_safe = htab->plt_thread_safe; 9649 bfd_boolean use_fake_dep = plt_thread_safe; 9650 bfd_vma cmp_branch_off = 0; 9651 9652 if (!ALWAYS_USE_FAKE_DEP 9653 && plt_thread_safe 9654 && !(stub_entry->h != NULL 9655 && (stub_entry->h == htab->tls_get_addr_fd 9656 || stub_entry->h == htab->tls_get_addr) 9657 && !htab->no_tls_get_addr_opt)) 9658 { 9659 bfd_vma pltoff = stub_entry->plt_ent->plt.offset & ~1; 9660 bfd_vma pltindex = (pltoff - PLT_INITIAL_ENTRY_SIZE) / PLT_ENTRY_SIZE; 9661 bfd_vma glinkoff = GLINK_CALL_STUB_SIZE + pltindex * 8; 9662 bfd_vma to, from; 9663 9664 if (pltindex > 32768) 9665 glinkoff += (pltindex - 32768) * 4; 9666 to = (glinkoff 9667 + htab->glink->output_offset 9668 + htab->glink->output_section->vma); 9669 from = (p - stub_entry->stub_sec->contents 9670 + 4 * (ALWAYS_EMIT_R2SAVE 9671 || stub_entry->stub_type == ppc_stub_plt_call_r2save) 9672 + 4 * (PPC_HA (offset) != 0) 9673 + 4 * (PPC_HA (offset + 8 + 8 * plt_static_chain) 9674 != PPC_HA (offset)) 9675 + 4 * (plt_static_chain != 0) 9676 + 20 9677 + stub_entry->stub_sec->output_offset 9678 + stub_entry->stub_sec->output_section->vma); 9679 cmp_branch_off = to - from; 9680 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26); 9681 } 9682 9683 if (PPC_HA (offset) != 0) 9684 { 9685 if (r != NULL) 9686 { 9687 if (ALWAYS_EMIT_R2SAVE 9688 || stub_entry->stub_type == ppc_stub_plt_call_r2save) 9689 r[0].r_offset += 4; 9690 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA); 9691 r[1].r_offset = r[0].r_offset + 4; 9692 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS); 9693 r[1].r_addend = r[0].r_addend; 9694 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset)) 9695 { 9696 r[2].r_offset = r[1].r_offset + 4; 9697 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO); 9698 r[2].r_addend = r[0].r_addend; 9699 } 9700 else 9701 { 9702 r[2].r_offset = r[1].r_offset + 8 + 8 * use_fake_dep; 9703 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS); 9704 r[2].r_addend = r[0].r_addend + 8; 9705 if (plt_static_chain) 9706 { 9707 r[3].r_offset = r[2].r_offset + 4; 9708 r[3].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS); 9709 r[3].r_addend = r[0].r_addend + 16; 9710 } 9711 } 9712 } 9713 if (ALWAYS_EMIT_R2SAVE 9714 || stub_entry->stub_type == ppc_stub_plt_call_r2save) 9715 bfd_put_32 (obfd, STD_R2_40R1, p), p += 4; 9716 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4; 9717 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset), p), p += 4; 9718 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset)) 9719 { 9720 bfd_put_32 (obfd, ADDI_R12_R12 | PPC_LO (offset), p), p += 4; 9721 offset = 0; 9722 } 9723 bfd_put_32 (obfd, MTCTR_R11, p), p += 4; 9724 if (use_fake_dep) 9725 { 9726 bfd_put_32 (obfd, XOR_R11_R11_R11, p), p += 4; 9727 bfd_put_32 (obfd, ADD_R12_R12_R11, p), p += 4; 9728 } 9729 bfd_put_32 (obfd, LD_R2_0R12 | PPC_LO (offset + 8), p), p += 4; 9730 if (plt_static_chain) 9731 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset + 16), p), p += 4; 9732 } 9733 else 9734 { 9735 if (r != NULL) 9736 { 9737 if (ALWAYS_EMIT_R2SAVE 9738 || stub_entry->stub_type == ppc_stub_plt_call_r2save) 9739 r[0].r_offset += 4; 9740 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS); 9741 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset)) 9742 { 9743 r[1].r_offset = r[0].r_offset + 4; 9744 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16); 9745 r[1].r_addend = r[0].r_addend; 9746 } 9747 else 9748 { 9749 r[1].r_offset = r[0].r_offset + 8 + 8 * use_fake_dep; 9750 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS); 9751 r[1].r_addend = r[0].r_addend + 8 + 8 * plt_static_chain; 9752 if (plt_static_chain) 9753 { 9754 r[2].r_offset = r[1].r_offset + 4; 9755 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS); 9756 r[2].r_addend = r[0].r_addend + 8; 9757 } 9758 } 9759 } 9760 if (ALWAYS_EMIT_R2SAVE 9761 || stub_entry->stub_type == ppc_stub_plt_call_r2save) 9762 bfd_put_32 (obfd, STD_R2_40R1, p), p += 4; 9763 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset), p), p += 4; 9764 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset)) 9765 { 9766 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (offset), p), p += 4; 9767 offset = 0; 9768 } 9769 bfd_put_32 (obfd, MTCTR_R11, p), p += 4; 9770 if (use_fake_dep) 9771 { 9772 bfd_put_32 (obfd, XOR_R11_R11_R11, p), p += 4; 9773 bfd_put_32 (obfd, ADD_R2_R2_R11, p), p += 4; 9774 } 9775 if (plt_static_chain) 9776 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset + 16), p), p += 4; 9777 bfd_put_32 (obfd, LD_R2_0R2 | PPC_LO (offset + 8), p), p += 4; 9778 } 9779 if (plt_thread_safe && !use_fake_dep) 9780 { 9781 bfd_put_32 (obfd, CMPLDI_R2_0, p), p += 4; 9782 bfd_put_32 (obfd, BNECTR_P4, p), p += 4; 9783 bfd_put_32 (obfd, B_DOT | (cmp_branch_off & 0x3fffffc), p), p += 4; 9784 } 9785 else 9786 bfd_put_32 (obfd, BCTR, p), p += 4; 9787 return p; 9788 } 9789 9790 /* Build a special .plt call stub for __tls_get_addr. */ 9791 9792 #define LD_R11_0R3 0xe9630000 9793 #define LD_R12_0R3 0xe9830000 9794 #define MR_R0_R3 0x7c601b78 9795 #define CMPDI_R11_0 0x2c2b0000 9796 #define ADD_R3_R12_R13 0x7c6c6a14 9797 #define BEQLR 0x4d820020 9798 #define MR_R3_R0 0x7c030378 9799 #define MFLR_R11 0x7d6802a6 9800 #define STD_R11_0R1 0xf9610000 9801 #define BCTRL 0x4e800421 9802 #define LD_R11_0R1 0xe9610000 9803 #define LD_R2_0R1 0xe8410000 9804 #define MTLR_R11 0x7d6803a6 9805 9806 static inline bfd_byte * 9807 build_tls_get_addr_stub (struct ppc_link_hash_table *htab, 9808 struct ppc_stub_hash_entry *stub_entry, 9809 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r) 9810 { 9811 bfd *obfd = htab->stub_bfd; 9812 9813 bfd_put_32 (obfd, LD_R11_0R3 + 0, p), p += 4; 9814 bfd_put_32 (obfd, LD_R12_0R3 + 8, p), p += 4; 9815 bfd_put_32 (obfd, MR_R0_R3, p), p += 4; 9816 bfd_put_32 (obfd, CMPDI_R11_0, p), p += 4; 9817 bfd_put_32 (obfd, ADD_R3_R12_R13, p), p += 4; 9818 bfd_put_32 (obfd, BEQLR, p), p += 4; 9819 bfd_put_32 (obfd, MR_R3_R0, p), p += 4; 9820 bfd_put_32 (obfd, MFLR_R11, p), p += 4; 9821 bfd_put_32 (obfd, STD_R11_0R1 + 32, p), p += 4; 9822 9823 if (r != NULL) 9824 r[0].r_offset += 9 * 4; 9825 p = build_plt_stub (htab, stub_entry, p, offset, r); 9826 bfd_put_32 (obfd, BCTRL, p - 4); 9827 9828 bfd_put_32 (obfd, LD_R11_0R1 + 32, p), p += 4; 9829 bfd_put_32 (obfd, LD_R2_0R1 + 40, p), p += 4; 9830 bfd_put_32 (obfd, MTLR_R11, p), p += 4; 9831 bfd_put_32 (obfd, BLR, p), p += 4; 9832 9833 return p; 9834 } 9835 9836 static Elf_Internal_Rela * 9837 get_relocs (asection *sec, int count) 9838 { 9839 Elf_Internal_Rela *relocs; 9840 struct bfd_elf_section_data *elfsec_data; 9841 9842 elfsec_data = elf_section_data (sec); 9843 relocs = elfsec_data->relocs; 9844 if (relocs == NULL) 9845 { 9846 bfd_size_type relsize; 9847 relsize = sec->reloc_count * sizeof (*relocs); 9848 relocs = bfd_alloc (sec->owner, relsize); 9849 if (relocs == NULL) 9850 return NULL; 9851 elfsec_data->relocs = relocs; 9852 elfsec_data->rela.hdr = bfd_zalloc (sec->owner, 9853 sizeof (Elf_Internal_Shdr)); 9854 if (elfsec_data->rela.hdr == NULL) 9855 return NULL; 9856 elfsec_data->rela.hdr->sh_size = (sec->reloc_count 9857 * sizeof (Elf64_External_Rela)); 9858 elfsec_data->rela.hdr->sh_entsize = sizeof (Elf64_External_Rela); 9859 sec->reloc_count = 0; 9860 } 9861 relocs += sec->reloc_count; 9862 sec->reloc_count += count; 9863 return relocs; 9864 } 9865 9866 static bfd_vma 9867 get_r2off (struct bfd_link_info *info, 9868 struct ppc_stub_hash_entry *stub_entry) 9869 { 9870 struct ppc_link_hash_table *htab = ppc_hash_table (info); 9871 bfd_vma r2off = htab->stub_group[stub_entry->target_section->id].toc_off; 9872 9873 if (r2off == 0) 9874 { 9875 /* Support linking -R objects. Get the toc pointer from the 9876 opd entry. */ 9877 char buf[8]; 9878 asection *opd = stub_entry->h->elf.root.u.def.section; 9879 bfd_vma opd_off = stub_entry->h->elf.root.u.def.value; 9880 9881 if (strcmp (opd->name, ".opd") != 0 9882 || opd->reloc_count != 0) 9883 { 9884 info->callbacks->einfo (_("%P: cannot find opd entry toc for `%T'\n"), 9885 stub_entry->h->elf.root.root.string); 9886 bfd_set_error (bfd_error_bad_value); 9887 return 0; 9888 } 9889 if (!bfd_get_section_contents (opd->owner, opd, buf, opd_off + 8, 8)) 9890 return 0; 9891 r2off = bfd_get_64 (opd->owner, buf); 9892 r2off -= elf_gp (info->output_bfd); 9893 } 9894 r2off -= htab->stub_group[stub_entry->id_sec->id].toc_off; 9895 return r2off; 9896 } 9897 9898 static bfd_boolean 9899 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg) 9900 { 9901 struct ppc_stub_hash_entry *stub_entry; 9902 struct ppc_branch_hash_entry *br_entry; 9903 struct bfd_link_info *info; 9904 struct ppc_link_hash_table *htab; 9905 bfd_byte *loc; 9906 bfd_byte *p; 9907 bfd_vma dest, off; 9908 int size; 9909 Elf_Internal_Rela *r; 9910 asection *plt; 9911 9912 /* Massage our args to the form they really have. */ 9913 stub_entry = (struct ppc_stub_hash_entry *) gen_entry; 9914 info = in_arg; 9915 9916 htab = ppc_hash_table (info); 9917 if (htab == NULL) 9918 return FALSE; 9919 9920 /* Make a note of the offset within the stubs for this entry. */ 9921 stub_entry->stub_offset = stub_entry->stub_sec->size; 9922 loc = stub_entry->stub_sec->contents + stub_entry->stub_offset; 9923 9924 htab->stub_count[stub_entry->stub_type - 1] += 1; 9925 switch (stub_entry->stub_type) 9926 { 9927 case ppc_stub_long_branch: 9928 case ppc_stub_long_branch_r2off: 9929 /* Branches are relative. This is where we are going to. */ 9930 off = dest = (stub_entry->target_value 9931 + stub_entry->target_section->output_offset 9932 + stub_entry->target_section->output_section->vma); 9933 9934 /* And this is where we are coming from. */ 9935 off -= (stub_entry->stub_offset 9936 + stub_entry->stub_sec->output_offset 9937 + stub_entry->stub_sec->output_section->vma); 9938 9939 size = 4; 9940 if (stub_entry->stub_type == ppc_stub_long_branch_r2off) 9941 { 9942 bfd_vma r2off = get_r2off (info, stub_entry); 9943 9944 if (r2off == 0) 9945 { 9946 htab->stub_error = TRUE; 9947 return FALSE; 9948 } 9949 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc); 9950 loc += 4; 9951 size = 12; 9952 if (PPC_HA (r2off) != 0) 9953 { 9954 size = 16; 9955 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc); 9956 loc += 4; 9957 } 9958 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc); 9959 loc += 4; 9960 off -= size - 4; 9961 } 9962 bfd_put_32 (htab->stub_bfd, B_DOT | (off & 0x3fffffc), loc); 9963 9964 if (off + (1 << 25) >= (bfd_vma) (1 << 26)) 9965 { 9966 info->callbacks->einfo 9967 (_("%P: long branch stub `%s' offset overflow\n"), 9968 stub_entry->root.string); 9969 htab->stub_error = TRUE; 9970 return FALSE; 9971 } 9972 9973 if (info->emitrelocations) 9974 { 9975 r = get_relocs (stub_entry->stub_sec, 1); 9976 if (r == NULL) 9977 return FALSE; 9978 r->r_offset = loc - stub_entry->stub_sec->contents; 9979 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24); 9980 r->r_addend = dest; 9981 if (stub_entry->h != NULL) 9982 { 9983 struct elf_link_hash_entry **hashes; 9984 unsigned long symndx; 9985 struct ppc_link_hash_entry *h; 9986 9987 hashes = elf_sym_hashes (htab->stub_bfd); 9988 if (hashes == NULL) 9989 { 9990 bfd_size_type hsize; 9991 9992 hsize = (htab->stub_globals + 1) * sizeof (*hashes); 9993 hashes = bfd_zalloc (htab->stub_bfd, hsize); 9994 if (hashes == NULL) 9995 return FALSE; 9996 elf_sym_hashes (htab->stub_bfd) = hashes; 9997 htab->stub_globals = 1; 9998 } 9999 symndx = htab->stub_globals++; 10000 h = stub_entry->h; 10001 hashes[symndx] = &h->elf; 10002 r->r_info = ELF64_R_INFO (symndx, R_PPC64_REL24); 10003 if (h->oh != NULL && h->oh->is_func) 10004 h = ppc_follow_link (h->oh); 10005 if (h->elf.root.u.def.section != stub_entry->target_section) 10006 /* H is an opd symbol. The addend must be zero. */ 10007 r->r_addend = 0; 10008 else 10009 { 10010 off = (h->elf.root.u.def.value 10011 + h->elf.root.u.def.section->output_offset 10012 + h->elf.root.u.def.section->output_section->vma); 10013 r->r_addend -= off; 10014 } 10015 } 10016 } 10017 break; 10018 10019 case ppc_stub_plt_branch: 10020 case ppc_stub_plt_branch_r2off: 10021 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table, 10022 stub_entry->root.string + 9, 10023 FALSE, FALSE); 10024 if (br_entry == NULL) 10025 { 10026 info->callbacks->einfo (_("%P: can't find branch stub `%s'\n"), 10027 stub_entry->root.string); 10028 htab->stub_error = TRUE; 10029 return FALSE; 10030 } 10031 10032 dest = (stub_entry->target_value 10033 + stub_entry->target_section->output_offset 10034 + stub_entry->target_section->output_section->vma); 10035 10036 bfd_put_64 (htab->brlt->owner, dest, 10037 htab->brlt->contents + br_entry->offset); 10038 10039 if (br_entry->iter == htab->stub_iteration) 10040 { 10041 br_entry->iter = 0; 10042 10043 if (htab->relbrlt != NULL) 10044 { 10045 /* Create a reloc for the branch lookup table entry. */ 10046 Elf_Internal_Rela rela; 10047 bfd_byte *rl; 10048 10049 rela.r_offset = (br_entry->offset 10050 + htab->brlt->output_offset 10051 + htab->brlt->output_section->vma); 10052 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE); 10053 rela.r_addend = dest; 10054 10055 rl = htab->relbrlt->contents; 10056 rl += (htab->relbrlt->reloc_count++ 10057 * sizeof (Elf64_External_Rela)); 10058 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl); 10059 } 10060 else if (info->emitrelocations) 10061 { 10062 r = get_relocs (htab->brlt, 1); 10063 if (r == NULL) 10064 return FALSE; 10065 /* brlt, being SEC_LINKER_CREATED does not go through the 10066 normal reloc processing. Symbols and offsets are not 10067 translated from input file to output file form, so 10068 set up the offset per the output file. */ 10069 r->r_offset = (br_entry->offset 10070 + htab->brlt->output_offset 10071 + htab->brlt->output_section->vma); 10072 r->r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE); 10073 r->r_addend = dest; 10074 } 10075 } 10076 10077 dest = (br_entry->offset 10078 + htab->brlt->output_offset 10079 + htab->brlt->output_section->vma); 10080 10081 off = (dest 10082 - elf_gp (htab->brlt->output_section->owner) 10083 - htab->stub_group[stub_entry->id_sec->id].toc_off); 10084 10085 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0) 10086 { 10087 info->callbacks->einfo 10088 (_("%P: linkage table error against `%T'\n"), 10089 stub_entry->root.string); 10090 bfd_set_error (bfd_error_bad_value); 10091 htab->stub_error = TRUE; 10092 return FALSE; 10093 } 10094 10095 if (info->emitrelocations) 10096 { 10097 r = get_relocs (stub_entry->stub_sec, 1 + (PPC_HA (off) != 0)); 10098 if (r == NULL) 10099 return FALSE; 10100 r[0].r_offset = loc - stub_entry->stub_sec->contents; 10101 if (bfd_big_endian (info->output_bfd)) 10102 r[0].r_offset += 2; 10103 if (stub_entry->stub_type == ppc_stub_plt_branch_r2off) 10104 r[0].r_offset += 4; 10105 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS); 10106 r[0].r_addend = dest; 10107 if (PPC_HA (off) != 0) 10108 { 10109 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA); 10110 r[1].r_offset = r[0].r_offset + 4; 10111 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS); 10112 r[1].r_addend = r[0].r_addend; 10113 } 10114 } 10115 10116 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off) 10117 { 10118 if (PPC_HA (off) != 0) 10119 { 10120 size = 16; 10121 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (off), loc); 10122 loc += 4; 10123 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (off), loc); 10124 } 10125 else 10126 { 10127 size = 12; 10128 bfd_put_32 (htab->stub_bfd, LD_R11_0R2 | PPC_LO (off), loc); 10129 } 10130 } 10131 else 10132 { 10133 bfd_vma r2off = get_r2off (info, stub_entry); 10134 10135 if (r2off == 0) 10136 { 10137 htab->stub_error = TRUE; 10138 return FALSE; 10139 } 10140 10141 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc); 10142 loc += 4; 10143 size = 20; 10144 if (PPC_HA (off) != 0) 10145 { 10146 size += 4; 10147 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (off), loc); 10148 loc += 4; 10149 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (off), loc); 10150 loc += 4; 10151 } 10152 else 10153 { 10154 bfd_put_32 (htab->stub_bfd, LD_R11_0R2 | PPC_LO (off), loc); 10155 loc += 4; 10156 } 10157 10158 if (PPC_HA (r2off) != 0) 10159 { 10160 size += 4; 10161 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc); 10162 loc += 4; 10163 } 10164 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc); 10165 } 10166 loc += 4; 10167 bfd_put_32 (htab->stub_bfd, MTCTR_R11, loc); 10168 loc += 4; 10169 bfd_put_32 (htab->stub_bfd, BCTR, loc); 10170 break; 10171 10172 case ppc_stub_plt_call: 10173 case ppc_stub_plt_call_r2save: 10174 if (stub_entry->h != NULL 10175 && stub_entry->h->is_func_descriptor 10176 && stub_entry->h->oh != NULL) 10177 { 10178 struct ppc_link_hash_entry *fh = ppc_follow_link (stub_entry->h->oh); 10179 10180 /* If the old-ABI "dot-symbol" is undefined make it weak so 10181 we don't get a link error from RELOC_FOR_GLOBAL_SYMBOL. 10182 FIXME: We used to define the symbol on one of the call 10183 stubs instead, which is why we test symbol section id 10184 against htab->top_id in various places. Likely all 10185 these checks could now disappear. */ 10186 if (fh->elf.root.type == bfd_link_hash_undefined) 10187 fh->elf.root.type = bfd_link_hash_undefweak; 10188 /* Stop undo_symbol_twiddle changing it back to undefined. */ 10189 fh->was_undefined = 0; 10190 } 10191 10192 /* Now build the stub. */ 10193 dest = stub_entry->plt_ent->plt.offset & ~1; 10194 if (dest >= (bfd_vma) -2) 10195 abort (); 10196 10197 plt = htab->plt; 10198 if (!htab->elf.dynamic_sections_created 10199 || stub_entry->h == NULL 10200 || stub_entry->h->elf.dynindx == -1) 10201 plt = htab->iplt; 10202 10203 dest += plt->output_offset + plt->output_section->vma; 10204 10205 if (stub_entry->h == NULL 10206 && (stub_entry->plt_ent->plt.offset & 1) == 0) 10207 { 10208 Elf_Internal_Rela rela; 10209 bfd_byte *rl; 10210 10211 rela.r_offset = dest; 10212 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL); 10213 rela.r_addend = (stub_entry->target_value 10214 + stub_entry->target_section->output_offset 10215 + stub_entry->target_section->output_section->vma); 10216 10217 rl = (htab->reliplt->contents 10218 + (htab->reliplt->reloc_count++ 10219 * sizeof (Elf64_External_Rela))); 10220 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, rl); 10221 stub_entry->plt_ent->plt.offset |= 1; 10222 } 10223 10224 off = (dest 10225 - elf_gp (plt->output_section->owner) 10226 - htab->stub_group[stub_entry->id_sec->id].toc_off); 10227 10228 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0) 10229 { 10230 info->callbacks->einfo 10231 (_("%P: linkage table error against `%T'\n"), 10232 stub_entry->h != NULL 10233 ? stub_entry->h->elf.root.root.string 10234 : "<local sym>"); 10235 bfd_set_error (bfd_error_bad_value); 10236 htab->stub_error = TRUE; 10237 return FALSE; 10238 } 10239 10240 if (htab->plt_stub_align != 0) 10241 { 10242 unsigned pad = plt_stub_pad (htab, stub_entry, off); 10243 10244 stub_entry->stub_sec->size += pad; 10245 stub_entry->stub_offset = stub_entry->stub_sec->size; 10246 loc += pad; 10247 } 10248 10249 r = NULL; 10250 if (info->emitrelocations) 10251 { 10252 r = get_relocs (stub_entry->stub_sec, 10253 (2 10254 + (PPC_HA (off) != 0) 10255 + (htab->plt_static_chain 10256 && PPC_HA (off + 16) == PPC_HA (off)))); 10257 if (r == NULL) 10258 return FALSE; 10259 r[0].r_offset = loc - stub_entry->stub_sec->contents; 10260 if (bfd_big_endian (info->output_bfd)) 10261 r[0].r_offset += 2; 10262 r[0].r_addend = dest; 10263 } 10264 if (stub_entry->h != NULL 10265 && (stub_entry->h == htab->tls_get_addr_fd 10266 || stub_entry->h == htab->tls_get_addr) 10267 && !htab->no_tls_get_addr_opt) 10268 p = build_tls_get_addr_stub (htab, stub_entry, loc, off, r); 10269 else 10270 p = build_plt_stub (htab, stub_entry, loc, off, r); 10271 size = p - loc; 10272 break; 10273 10274 default: 10275 BFD_FAIL (); 10276 return FALSE; 10277 } 10278 10279 stub_entry->stub_sec->size += size; 10280 10281 if (htab->emit_stub_syms) 10282 { 10283 struct elf_link_hash_entry *h; 10284 size_t len1, len2; 10285 char *name; 10286 const char *const stub_str[] = { "long_branch", 10287 "long_branch_r2off", 10288 "plt_branch", 10289 "plt_branch_r2off", 10290 "plt_call", 10291 "plt_call" }; 10292 10293 len1 = strlen (stub_str[stub_entry->stub_type - 1]); 10294 len2 = strlen (stub_entry->root.string); 10295 name = bfd_malloc (len1 + len2 + 2); 10296 if (name == NULL) 10297 return FALSE; 10298 memcpy (name, stub_entry->root.string, 9); 10299 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1); 10300 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1); 10301 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE); 10302 if (h == NULL) 10303 return FALSE; 10304 if (h->root.type == bfd_link_hash_new) 10305 { 10306 h->root.type = bfd_link_hash_defined; 10307 h->root.u.def.section = stub_entry->stub_sec; 10308 h->root.u.def.value = stub_entry->stub_offset; 10309 h->ref_regular = 1; 10310 h->def_regular = 1; 10311 h->ref_regular_nonweak = 1; 10312 h->forced_local = 1; 10313 h->non_elf = 0; 10314 } 10315 } 10316 10317 return TRUE; 10318 } 10319 10320 /* As above, but don't actually build the stub. Just bump offset so 10321 we know stub section sizes, and select plt_branch stubs where 10322 long_branch stubs won't do. */ 10323 10324 static bfd_boolean 10325 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg) 10326 { 10327 struct ppc_stub_hash_entry *stub_entry; 10328 struct bfd_link_info *info; 10329 struct ppc_link_hash_table *htab; 10330 bfd_vma off; 10331 int size; 10332 10333 /* Massage our args to the form they really have. */ 10334 stub_entry = (struct ppc_stub_hash_entry *) gen_entry; 10335 info = in_arg; 10336 10337 htab = ppc_hash_table (info); 10338 if (htab == NULL) 10339 return FALSE; 10340 10341 if (stub_entry->stub_type == ppc_stub_plt_call 10342 || stub_entry->stub_type == ppc_stub_plt_call_r2save) 10343 { 10344 asection *plt; 10345 off = stub_entry->plt_ent->plt.offset & ~(bfd_vma) 1; 10346 if (off >= (bfd_vma) -2) 10347 abort (); 10348 plt = htab->plt; 10349 if (!htab->elf.dynamic_sections_created 10350 || stub_entry->h == NULL 10351 || stub_entry->h->elf.dynindx == -1) 10352 plt = htab->iplt; 10353 off += (plt->output_offset 10354 + plt->output_section->vma 10355 - elf_gp (plt->output_section->owner) 10356 - htab->stub_group[stub_entry->id_sec->id].toc_off); 10357 10358 size = plt_stub_size (htab, stub_entry, off); 10359 if (htab->plt_stub_align) 10360 size += plt_stub_pad (htab, stub_entry, off); 10361 if (info->emitrelocations) 10362 { 10363 stub_entry->stub_sec->reloc_count 10364 += (2 10365 + (PPC_HA (off) != 0) 10366 + (htab->plt_static_chain 10367 && PPC_HA (off + 16) == PPC_HA (off))); 10368 stub_entry->stub_sec->flags |= SEC_RELOC; 10369 } 10370 } 10371 else 10372 { 10373 /* ppc_stub_long_branch or ppc_stub_plt_branch, or their r2off 10374 variants. */ 10375 bfd_vma r2off = 0; 10376 10377 off = (stub_entry->target_value 10378 + stub_entry->target_section->output_offset 10379 + stub_entry->target_section->output_section->vma); 10380 off -= (stub_entry->stub_sec->size 10381 + stub_entry->stub_sec->output_offset 10382 + stub_entry->stub_sec->output_section->vma); 10383 10384 /* Reset the stub type from the plt variant in case we now 10385 can reach with a shorter stub. */ 10386 if (stub_entry->stub_type >= ppc_stub_plt_branch) 10387 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch; 10388 10389 size = 4; 10390 if (stub_entry->stub_type == ppc_stub_long_branch_r2off) 10391 { 10392 r2off = get_r2off (info, stub_entry); 10393 if (r2off == 0) 10394 { 10395 htab->stub_error = TRUE; 10396 return FALSE; 10397 } 10398 size = 12; 10399 if (PPC_HA (r2off) != 0) 10400 size = 16; 10401 off -= size - 4; 10402 } 10403 10404 /* If the branch offset if too big, use a ppc_stub_plt_branch. */ 10405 if (off + (1 << 25) >= (bfd_vma) (1 << 26)) 10406 { 10407 struct ppc_branch_hash_entry *br_entry; 10408 10409 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table, 10410 stub_entry->root.string + 9, 10411 TRUE, FALSE); 10412 if (br_entry == NULL) 10413 { 10414 info->callbacks->einfo (_("%P: can't build branch stub `%s'\n"), 10415 stub_entry->root.string); 10416 htab->stub_error = TRUE; 10417 return FALSE; 10418 } 10419 10420 if (br_entry->iter != htab->stub_iteration) 10421 { 10422 br_entry->iter = htab->stub_iteration; 10423 br_entry->offset = htab->brlt->size; 10424 htab->brlt->size += 8; 10425 10426 if (htab->relbrlt != NULL) 10427 htab->relbrlt->size += sizeof (Elf64_External_Rela); 10428 else if (info->emitrelocations) 10429 { 10430 htab->brlt->reloc_count += 1; 10431 htab->brlt->flags |= SEC_RELOC; 10432 } 10433 } 10434 10435 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch; 10436 off = (br_entry->offset 10437 + htab->brlt->output_offset 10438 + htab->brlt->output_section->vma 10439 - elf_gp (htab->brlt->output_section->owner) 10440 - htab->stub_group[stub_entry->id_sec->id].toc_off); 10441 10442 if (info->emitrelocations) 10443 { 10444 stub_entry->stub_sec->reloc_count += 1 + (PPC_HA (off) != 0); 10445 stub_entry->stub_sec->flags |= SEC_RELOC; 10446 } 10447 10448 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off) 10449 { 10450 size = 12; 10451 if (PPC_HA (off) != 0) 10452 size = 16; 10453 } 10454 else 10455 { 10456 size = 20; 10457 if (PPC_HA (off) != 0) 10458 size += 4; 10459 10460 if (PPC_HA (r2off) != 0) 10461 size += 4; 10462 } 10463 } 10464 else if (info->emitrelocations) 10465 { 10466 stub_entry->stub_sec->reloc_count += 1; 10467 stub_entry->stub_sec->flags |= SEC_RELOC; 10468 } 10469 } 10470 10471 stub_entry->stub_sec->size += size; 10472 return TRUE; 10473 } 10474 10475 /* Set up various things so that we can make a list of input sections 10476 for each output section included in the link. Returns -1 on error, 10477 0 when no stubs will be needed, and 1 on success. */ 10478 10479 int 10480 ppc64_elf_setup_section_lists 10481 (struct bfd_link_info *info, 10482 asection *(*add_stub_section) (const char *, asection *), 10483 void (*layout_sections_again) (void)) 10484 { 10485 bfd *input_bfd; 10486 int top_id, top_index, id; 10487 asection *section; 10488 asection **input_list; 10489 bfd_size_type amt; 10490 struct ppc_link_hash_table *htab = ppc_hash_table (info); 10491 10492 if (htab == NULL) 10493 return -1; 10494 /* Stash our params away. */ 10495 htab->add_stub_section = add_stub_section; 10496 htab->layout_sections_again = layout_sections_again; 10497 10498 if (htab->brlt == NULL) 10499 return 0; 10500 10501 /* Find the top input section id. */ 10502 for (input_bfd = info->input_bfds, top_id = 3; 10503 input_bfd != NULL; 10504 input_bfd = input_bfd->link_next) 10505 { 10506 for (section = input_bfd->sections; 10507 section != NULL; 10508 section = section->next) 10509 { 10510 if (top_id < section->id) 10511 top_id = section->id; 10512 } 10513 } 10514 10515 htab->top_id = top_id; 10516 amt = sizeof (struct map_stub) * (top_id + 1); 10517 htab->stub_group = bfd_zmalloc (amt); 10518 if (htab->stub_group == NULL) 10519 return -1; 10520 10521 /* Set toc_off for com, und, abs and ind sections. */ 10522 for (id = 0; id < 3; id++) 10523 htab->stub_group[id].toc_off = TOC_BASE_OFF; 10524 10525 /* We can't use output_bfd->section_count here to find the top output 10526 section index as some sections may have been removed, and 10527 strip_excluded_output_sections doesn't renumber the indices. */ 10528 for (section = info->output_bfd->sections, top_index = 0; 10529 section != NULL; 10530 section = section->next) 10531 { 10532 if (top_index < section->index) 10533 top_index = section->index; 10534 } 10535 10536 htab->top_index = top_index; 10537 amt = sizeof (asection *) * (top_index + 1); 10538 input_list = bfd_zmalloc (amt); 10539 htab->input_list = input_list; 10540 if (input_list == NULL) 10541 return -1; 10542 10543 return 1; 10544 } 10545 10546 /* Set up for first pass at multitoc partitioning. */ 10547 10548 void 10549 ppc64_elf_start_multitoc_partition (struct bfd_link_info *info) 10550 { 10551 struct ppc_link_hash_table *htab = ppc_hash_table (info); 10552 10553 elf_gp (info->output_bfd) = ppc64_elf_toc (info->output_bfd); 10554 htab->toc_curr = elf_gp (info->output_bfd); 10555 htab->toc_bfd = NULL; 10556 htab->toc_first_sec = NULL; 10557 } 10558 10559 /* The linker repeatedly calls this function for each TOC input section 10560 and linker generated GOT section. Group input bfds such that the toc 10561 within a group is less than 64k in size. */ 10562 10563 bfd_boolean 10564 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec) 10565 { 10566 struct ppc_link_hash_table *htab = ppc_hash_table (info); 10567 bfd_vma addr, off, limit; 10568 10569 if (htab == NULL) 10570 return FALSE; 10571 10572 if (!htab->second_toc_pass) 10573 { 10574 /* Keep track of the first .toc or .got section for this input bfd. */ 10575 bfd_boolean new_bfd = htab->toc_bfd != isec->owner; 10576 10577 if (new_bfd) 10578 { 10579 htab->toc_bfd = isec->owner; 10580 htab->toc_first_sec = isec; 10581 } 10582 10583 addr = isec->output_offset + isec->output_section->vma; 10584 off = addr - htab->toc_curr; 10585 limit = 0x80008000; 10586 if (ppc64_elf_tdata (isec->owner)->has_small_toc_reloc) 10587 limit = 0x10000; 10588 if (off + isec->size > limit) 10589 { 10590 addr = (htab->toc_first_sec->output_offset 10591 + htab->toc_first_sec->output_section->vma); 10592 htab->toc_curr = addr; 10593 } 10594 10595 /* toc_curr is the base address of this toc group. Set elf_gp 10596 for the input section to be the offset relative to the 10597 output toc base plus 0x8000. Making the input elf_gp an 10598 offset allows us to move the toc as a whole without 10599 recalculating input elf_gp. */ 10600 off = htab->toc_curr - elf_gp (isec->output_section->owner); 10601 off += TOC_BASE_OFF; 10602 10603 /* Die if someone uses a linker script that doesn't keep input 10604 file .toc and .got together. */ 10605 if (new_bfd 10606 && elf_gp (isec->owner) != 0 10607 && elf_gp (isec->owner) != off) 10608 return FALSE; 10609 10610 elf_gp (isec->owner) = off; 10611 return TRUE; 10612 } 10613 10614 /* During the second pass toc_first_sec points to the start of 10615 a toc group, and toc_curr is used to track the old elf_gp. 10616 We use toc_bfd to ensure we only look at each bfd once. */ 10617 if (htab->toc_bfd == isec->owner) 10618 return TRUE; 10619 htab->toc_bfd = isec->owner; 10620 10621 if (htab->toc_first_sec == NULL 10622 || htab->toc_curr != elf_gp (isec->owner)) 10623 { 10624 htab->toc_curr = elf_gp (isec->owner); 10625 htab->toc_first_sec = isec; 10626 } 10627 addr = (htab->toc_first_sec->output_offset 10628 + htab->toc_first_sec->output_section->vma); 10629 off = addr - elf_gp (isec->output_section->owner) + TOC_BASE_OFF; 10630 elf_gp (isec->owner) = off; 10631 10632 return TRUE; 10633 } 10634 10635 /* Called via elf_link_hash_traverse to merge GOT entries for global 10636 symbol H. */ 10637 10638 static bfd_boolean 10639 merge_global_got (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED) 10640 { 10641 if (h->root.type == bfd_link_hash_indirect) 10642 return TRUE; 10643 10644 merge_got_entries (&h->got.glist); 10645 10646 return TRUE; 10647 } 10648 10649 /* Called via elf_link_hash_traverse to allocate GOT entries for global 10650 symbol H. */ 10651 10652 static bfd_boolean 10653 reallocate_got (struct elf_link_hash_entry *h, void *inf) 10654 { 10655 struct got_entry *gent; 10656 10657 if (h->root.type == bfd_link_hash_indirect) 10658 return TRUE; 10659 10660 for (gent = h->got.glist; gent != NULL; gent = gent->next) 10661 if (!gent->is_indirect) 10662 allocate_got (h, (struct bfd_link_info *) inf, gent); 10663 return TRUE; 10664 } 10665 10666 /* Called on the first multitoc pass after the last call to 10667 ppc64_elf_next_toc_section. This function removes duplicate GOT 10668 entries. */ 10669 10670 bfd_boolean 10671 ppc64_elf_layout_multitoc (struct bfd_link_info *info) 10672 { 10673 struct ppc_link_hash_table *htab = ppc_hash_table (info); 10674 struct bfd *ibfd, *ibfd2; 10675 bfd_boolean done_something; 10676 10677 htab->multi_toc_needed = htab->toc_curr != elf_gp (info->output_bfd); 10678 10679 if (!htab->do_multi_toc) 10680 return FALSE; 10681 10682 /* Merge global sym got entries within a toc group. */ 10683 elf_link_hash_traverse (&htab->elf, merge_global_got, info); 10684 10685 /* And tlsld_got. */ 10686 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) 10687 { 10688 struct got_entry *ent, *ent2; 10689 10690 if (!is_ppc64_elf (ibfd)) 10691 continue; 10692 10693 ent = ppc64_tlsld_got (ibfd); 10694 if (!ent->is_indirect 10695 && ent->got.offset != (bfd_vma) -1) 10696 { 10697 for (ibfd2 = ibfd->link_next; ibfd2 != NULL; ibfd2 = ibfd2->link_next) 10698 { 10699 if (!is_ppc64_elf (ibfd2)) 10700 continue; 10701 10702 ent2 = ppc64_tlsld_got (ibfd2); 10703 if (!ent2->is_indirect 10704 && ent2->got.offset != (bfd_vma) -1 10705 && elf_gp (ibfd2) == elf_gp (ibfd)) 10706 { 10707 ent2->is_indirect = TRUE; 10708 ent2->got.ent = ent; 10709 } 10710 } 10711 } 10712 } 10713 10714 /* Zap sizes of got sections. */ 10715 htab->reliplt->rawsize = htab->reliplt->size; 10716 htab->reliplt->size -= htab->got_reli_size; 10717 htab->got_reli_size = 0; 10718 10719 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) 10720 { 10721 asection *got, *relgot; 10722 10723 if (!is_ppc64_elf (ibfd)) 10724 continue; 10725 10726 got = ppc64_elf_tdata (ibfd)->got; 10727 if (got != NULL) 10728 { 10729 got->rawsize = got->size; 10730 got->size = 0; 10731 relgot = ppc64_elf_tdata (ibfd)->relgot; 10732 relgot->rawsize = relgot->size; 10733 relgot->size = 0; 10734 } 10735 } 10736 10737 /* Now reallocate the got, local syms first. We don't need to 10738 allocate section contents again since we never increase size. */ 10739 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) 10740 { 10741 struct got_entry **lgot_ents; 10742 struct got_entry **end_lgot_ents; 10743 struct plt_entry **local_plt; 10744 struct plt_entry **end_local_plt; 10745 unsigned char *lgot_masks; 10746 bfd_size_type locsymcount; 10747 Elf_Internal_Shdr *symtab_hdr; 10748 asection *s, *srel; 10749 10750 if (!is_ppc64_elf (ibfd)) 10751 continue; 10752 10753 lgot_ents = elf_local_got_ents (ibfd); 10754 if (!lgot_ents) 10755 continue; 10756 10757 symtab_hdr = &elf_symtab_hdr (ibfd); 10758 locsymcount = symtab_hdr->sh_info; 10759 end_lgot_ents = lgot_ents + locsymcount; 10760 local_plt = (struct plt_entry **) end_lgot_ents; 10761 end_local_plt = local_plt + locsymcount; 10762 lgot_masks = (unsigned char *) end_local_plt; 10763 s = ppc64_elf_tdata (ibfd)->got; 10764 srel = ppc64_elf_tdata (ibfd)->relgot; 10765 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks) 10766 { 10767 struct got_entry *ent; 10768 10769 for (ent = *lgot_ents; ent != NULL; ent = ent->next) 10770 { 10771 unsigned int num = 1; 10772 ent->got.offset = s->size; 10773 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0) 10774 num = 2; 10775 s->size += num * 8; 10776 if (info->shared) 10777 srel->size += num * sizeof (Elf64_External_Rela); 10778 else if ((*lgot_masks & PLT_IFUNC) != 0) 10779 { 10780 htab->reliplt->size 10781 += num * sizeof (Elf64_External_Rela); 10782 htab->got_reli_size 10783 += num * sizeof (Elf64_External_Rela); 10784 } 10785 } 10786 } 10787 } 10788 10789 elf_link_hash_traverse (&htab->elf, reallocate_got, info); 10790 10791 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) 10792 { 10793 struct got_entry *ent; 10794 10795 if (!is_ppc64_elf (ibfd)) 10796 continue; 10797 10798 ent = ppc64_tlsld_got (ibfd); 10799 if (!ent->is_indirect 10800 && ent->got.offset != (bfd_vma) -1) 10801 { 10802 asection *s = ppc64_elf_tdata (ibfd)->got; 10803 ent->got.offset = s->size; 10804 s->size += 16; 10805 if (info->shared) 10806 { 10807 asection *srel = ppc64_elf_tdata (ibfd)->relgot; 10808 srel->size += sizeof (Elf64_External_Rela); 10809 } 10810 } 10811 } 10812 10813 done_something = htab->reliplt->rawsize != htab->reliplt->size; 10814 if (!done_something) 10815 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) 10816 { 10817 asection *got; 10818 10819 if (!is_ppc64_elf (ibfd)) 10820 continue; 10821 10822 got = ppc64_elf_tdata (ibfd)->got; 10823 if (got != NULL) 10824 { 10825 done_something = got->rawsize != got->size; 10826 if (done_something) 10827 break; 10828 } 10829 } 10830 10831 if (done_something) 10832 (*htab->layout_sections_again) (); 10833 10834 /* Set up for second pass over toc sections to recalculate elf_gp 10835 on input sections. */ 10836 htab->toc_bfd = NULL; 10837 htab->toc_first_sec = NULL; 10838 htab->second_toc_pass = TRUE; 10839 return done_something; 10840 } 10841 10842 /* Called after second pass of multitoc partitioning. */ 10843 10844 void 10845 ppc64_elf_finish_multitoc_partition (struct bfd_link_info *info) 10846 { 10847 struct ppc_link_hash_table *htab = ppc_hash_table (info); 10848 10849 /* After the second pass, toc_curr tracks the TOC offset used 10850 for code sections below in ppc64_elf_next_input_section. */ 10851 htab->toc_curr = TOC_BASE_OFF; 10852 } 10853 10854 /* No toc references were found in ISEC. If the code in ISEC makes no 10855 calls, then there's no need to use toc adjusting stubs when branching 10856 into ISEC. Actually, indirect calls from ISEC are OK as they will 10857 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub 10858 needed, and 2 if a cyclical call-graph was found but no other reason 10859 for a stub was detected. If called from the top level, a return of 10860 2 means the same as a return of 0. */ 10861 10862 static int 10863 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec) 10864 { 10865 int ret; 10866 10867 /* Mark this section as checked. */ 10868 isec->call_check_done = 1; 10869 10870 /* We know none of our code bearing sections will need toc stubs. */ 10871 if ((isec->flags & SEC_LINKER_CREATED) != 0) 10872 return 0; 10873 10874 if (isec->size == 0) 10875 return 0; 10876 10877 if (isec->output_section == NULL) 10878 return 0; 10879 10880 ret = 0; 10881 if (isec->reloc_count != 0) 10882 { 10883 Elf_Internal_Rela *relstart, *rel; 10884 Elf_Internal_Sym *local_syms; 10885 struct ppc_link_hash_table *htab; 10886 10887 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL, 10888 info->keep_memory); 10889 if (relstart == NULL) 10890 return -1; 10891 10892 /* Look for branches to outside of this section. */ 10893 local_syms = NULL; 10894 htab = ppc_hash_table (info); 10895 if (htab == NULL) 10896 return -1; 10897 10898 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel) 10899 { 10900 enum elf_ppc64_reloc_type r_type; 10901 unsigned long r_symndx; 10902 struct elf_link_hash_entry *h; 10903 struct ppc_link_hash_entry *eh; 10904 Elf_Internal_Sym *sym; 10905 asection *sym_sec; 10906 struct _opd_sec_data *opd; 10907 bfd_vma sym_value; 10908 bfd_vma dest; 10909 10910 r_type = ELF64_R_TYPE (rel->r_info); 10911 if (r_type != R_PPC64_REL24 10912 && r_type != R_PPC64_REL14 10913 && r_type != R_PPC64_REL14_BRTAKEN 10914 && r_type != R_PPC64_REL14_BRNTAKEN) 10915 continue; 10916 10917 r_symndx = ELF64_R_SYM (rel->r_info); 10918 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx, 10919 isec->owner)) 10920 { 10921 ret = -1; 10922 break; 10923 } 10924 10925 /* Calls to dynamic lib functions go through a plt call stub 10926 that uses r2. */ 10927 eh = (struct ppc_link_hash_entry *) h; 10928 if (eh != NULL 10929 && (eh->elf.plt.plist != NULL 10930 || (eh->oh != NULL 10931 && ppc_follow_link (eh->oh)->elf.plt.plist != NULL))) 10932 { 10933 ret = 1; 10934 break; 10935 } 10936 10937 if (sym_sec == NULL) 10938 /* Ignore other undefined symbols. */ 10939 continue; 10940 10941 /* Assume branches to other sections not included in the 10942 link need stubs too, to cover -R and absolute syms. */ 10943 if (sym_sec->output_section == NULL) 10944 { 10945 ret = 1; 10946 break; 10947 } 10948 10949 if (h == NULL) 10950 sym_value = sym->st_value; 10951 else 10952 { 10953 if (h->root.type != bfd_link_hash_defined 10954 && h->root.type != bfd_link_hash_defweak) 10955 abort (); 10956 sym_value = h->root.u.def.value; 10957 } 10958 sym_value += rel->r_addend; 10959 10960 /* If this branch reloc uses an opd sym, find the code section. */ 10961 opd = get_opd_info (sym_sec); 10962 if (opd != NULL) 10963 { 10964 if (h == NULL && opd->adjust != NULL) 10965 { 10966 long adjust; 10967 10968 adjust = opd->adjust[sym->st_value / 8]; 10969 if (adjust == -1) 10970 /* Assume deleted functions won't ever be called. */ 10971 continue; 10972 sym_value += adjust; 10973 } 10974 10975 dest = opd_entry_value (sym_sec, sym_value, 10976 &sym_sec, NULL, FALSE); 10977 if (dest == (bfd_vma) -1) 10978 continue; 10979 } 10980 else 10981 dest = (sym_value 10982 + sym_sec->output_offset 10983 + sym_sec->output_section->vma); 10984 10985 /* Ignore branch to self. */ 10986 if (sym_sec == isec) 10987 continue; 10988 10989 /* If the called function uses the toc, we need a stub. */ 10990 if (sym_sec->has_toc_reloc 10991 || sym_sec->makes_toc_func_call) 10992 { 10993 ret = 1; 10994 break; 10995 } 10996 10997 /* Assume any branch that needs a long branch stub might in fact 10998 need a plt_branch stub. A plt_branch stub uses r2. */ 10999 else if (dest - (isec->output_offset 11000 + isec->output_section->vma 11001 + rel->r_offset) + (1 << 25) >= (2 << 25)) 11002 { 11003 ret = 1; 11004 break; 11005 } 11006 11007 /* If calling back to a section in the process of being 11008 tested, we can't say for sure that no toc adjusting stubs 11009 are needed, so don't return zero. */ 11010 else if (sym_sec->call_check_in_progress) 11011 ret = 2; 11012 11013 /* Branches to another section that itself doesn't have any TOC 11014 references are OK. Recursively call ourselves to check. */ 11015 else if (!sym_sec->call_check_done) 11016 { 11017 int recur; 11018 11019 /* Mark current section as indeterminate, so that other 11020 sections that call back to current won't be marked as 11021 known. */ 11022 isec->call_check_in_progress = 1; 11023 recur = toc_adjusting_stub_needed (info, sym_sec); 11024 isec->call_check_in_progress = 0; 11025 11026 if (recur != 0) 11027 { 11028 ret = recur; 11029 if (recur != 2) 11030 break; 11031 } 11032 } 11033 } 11034 11035 if (local_syms != NULL 11036 && (elf_symtab_hdr (isec->owner).contents 11037 != (unsigned char *) local_syms)) 11038 free (local_syms); 11039 if (elf_section_data (isec)->relocs != relstart) 11040 free (relstart); 11041 } 11042 11043 if ((ret & 1) == 0 11044 && isec->map_head.s != NULL 11045 && (strcmp (isec->output_section->name, ".init") == 0 11046 || strcmp (isec->output_section->name, ".fini") == 0)) 11047 { 11048 if (isec->map_head.s->has_toc_reloc 11049 || isec->map_head.s->makes_toc_func_call) 11050 ret = 1; 11051 else if (!isec->map_head.s->call_check_done) 11052 { 11053 int recur; 11054 isec->call_check_in_progress = 1; 11055 recur = toc_adjusting_stub_needed (info, isec->map_head.s); 11056 isec->call_check_in_progress = 0; 11057 if (recur != 0) 11058 ret = recur; 11059 } 11060 } 11061 11062 if (ret == 1) 11063 isec->makes_toc_func_call = 1; 11064 11065 return ret; 11066 } 11067 11068 /* The linker repeatedly calls this function for each input section, 11069 in the order that input sections are linked into output sections. 11070 Build lists of input sections to determine groupings between which 11071 we may insert linker stubs. */ 11072 11073 bfd_boolean 11074 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec) 11075 { 11076 struct ppc_link_hash_table *htab = ppc_hash_table (info); 11077 11078 if (htab == NULL) 11079 return FALSE; 11080 11081 if ((isec->output_section->flags & SEC_CODE) != 0 11082 && isec->output_section->index <= htab->top_index) 11083 { 11084 asection **list = htab->input_list + isec->output_section->index; 11085 /* Steal the link_sec pointer for our list. */ 11086 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec) 11087 /* This happens to make the list in reverse order, 11088 which is what we want. */ 11089 PREV_SEC (isec) = *list; 11090 *list = isec; 11091 } 11092 11093 if (htab->multi_toc_needed) 11094 { 11095 /* If a code section has a function that uses the TOC then we need 11096 to use the right TOC (obviously). Also, make sure that .opd gets 11097 the correct TOC value for R_PPC64_TOC relocs that don't have or 11098 can't find their function symbol (shouldn't ever happen now). 11099 Also specially treat .fixup for the linux kernel. .fixup 11100 contains branches, but only back to the function that hit an 11101 exception. */ 11102 if (isec->has_toc_reloc 11103 || (isec->flags & SEC_CODE) == 0 11104 || strcmp (isec->name, ".fixup") == 0) 11105 { 11106 if (elf_gp (isec->owner) != 0) 11107 htab->toc_curr = elf_gp (isec->owner); 11108 } 11109 else 11110 { 11111 if (!isec->call_check_done 11112 && toc_adjusting_stub_needed (info, isec) < 0) 11113 return FALSE; 11114 /* If we make a local call from this section, ie. a branch 11115 without a following nop, then we have no place to put a 11116 toc restoring insn. We must use the same toc group as 11117 the callee. 11118 Testing makes_toc_func_call actually tests for *any* 11119 calls to functions that need a good toc pointer. A more 11120 precise test would be better, as this one will set 11121 incorrect values for pasted .init/.fini fragments. 11122 (Fixed later in check_pasted_section.) */ 11123 if (isec->makes_toc_func_call 11124 && elf_gp (isec->owner) != 0) 11125 htab->toc_curr = elf_gp (isec->owner); 11126 } 11127 } 11128 11129 /* Functions that don't use the TOC can belong in any TOC group. 11130 Use the last TOC base. */ 11131 htab->stub_group[isec->id].toc_off = htab->toc_curr; 11132 return TRUE; 11133 } 11134 11135 /* Check that all .init and .fini sections use the same toc, if they 11136 have toc relocs. */ 11137 11138 static bfd_boolean 11139 check_pasted_section (struct bfd_link_info *info, const char *name) 11140 { 11141 asection *o = bfd_get_section_by_name (info->output_bfd, name); 11142 11143 if (o != NULL) 11144 { 11145 struct ppc_link_hash_table *htab = ppc_hash_table (info); 11146 bfd_vma toc_off = 0; 11147 asection *i; 11148 11149 for (i = o->map_head.s; i != NULL; i = i->map_head.s) 11150 if (i->has_toc_reloc) 11151 { 11152 if (toc_off == 0) 11153 toc_off = htab->stub_group[i->id].toc_off; 11154 else if (toc_off != htab->stub_group[i->id].toc_off) 11155 return FALSE; 11156 } 11157 11158 if (toc_off == 0) 11159 for (i = o->map_head.s; i != NULL; i = i->map_head.s) 11160 if (i->makes_toc_func_call) 11161 { 11162 toc_off = htab->stub_group[i->id].toc_off; 11163 break; 11164 } 11165 11166 /* Make sure the whole pasted function uses the same toc offset. */ 11167 if (toc_off != 0) 11168 for (i = o->map_head.s; i != NULL; i = i->map_head.s) 11169 htab->stub_group[i->id].toc_off = toc_off; 11170 } 11171 return TRUE; 11172 } 11173 11174 bfd_boolean 11175 ppc64_elf_check_init_fini (struct bfd_link_info *info) 11176 { 11177 return (check_pasted_section (info, ".init") 11178 & check_pasted_section (info, ".fini")); 11179 } 11180 11181 /* See whether we can group stub sections together. Grouping stub 11182 sections may result in fewer stubs. More importantly, we need to 11183 put all .init* and .fini* stubs at the beginning of the .init or 11184 .fini output sections respectively, because glibc splits the 11185 _init and _fini functions into multiple parts. Putting a stub in 11186 the middle of a function is not a good idea. */ 11187 11188 static void 11189 group_sections (struct ppc_link_hash_table *htab, 11190 bfd_size_type stub_group_size, 11191 bfd_boolean stubs_always_before_branch) 11192 { 11193 asection **list; 11194 bfd_size_type stub14_group_size; 11195 bfd_boolean suppress_size_errors; 11196 11197 suppress_size_errors = FALSE; 11198 stub14_group_size = stub_group_size; 11199 if (stub_group_size == 1) 11200 { 11201 /* Default values. */ 11202 if (stubs_always_before_branch) 11203 { 11204 stub_group_size = 0x1e00000; 11205 stub14_group_size = 0x7800; 11206 } 11207 else 11208 { 11209 stub_group_size = 0x1c00000; 11210 stub14_group_size = 0x7000; 11211 } 11212 suppress_size_errors = TRUE; 11213 } 11214 11215 list = htab->input_list + htab->top_index; 11216 do 11217 { 11218 asection *tail = *list; 11219 while (tail != NULL) 11220 { 11221 asection *curr; 11222 asection *prev; 11223 bfd_size_type total; 11224 bfd_boolean big_sec; 11225 bfd_vma curr_toc; 11226 11227 curr = tail; 11228 total = tail->size; 11229 big_sec = total > (ppc64_elf_section_data (tail) != NULL 11230 && ppc64_elf_section_data (tail)->has_14bit_branch 11231 ? stub14_group_size : stub_group_size); 11232 if (big_sec && !suppress_size_errors) 11233 (*_bfd_error_handler) (_("%B section %A exceeds stub group size"), 11234 tail->owner, tail); 11235 curr_toc = htab->stub_group[tail->id].toc_off; 11236 11237 while ((prev = PREV_SEC (curr)) != NULL 11238 && ((total += curr->output_offset - prev->output_offset) 11239 < (ppc64_elf_section_data (prev) != NULL 11240 && ppc64_elf_section_data (prev)->has_14bit_branch 11241 ? stub14_group_size : stub_group_size)) 11242 && htab->stub_group[prev->id].toc_off == curr_toc) 11243 curr = prev; 11244 11245 /* OK, the size from the start of CURR to the end is less 11246 than stub_group_size and thus can be handled by one stub 11247 section. (or the tail section is itself larger than 11248 stub_group_size, in which case we may be toast.) We 11249 should really be keeping track of the total size of stubs 11250 added here, as stubs contribute to the final output 11251 section size. That's a little tricky, and this way will 11252 only break if stubs added make the total size more than 11253 2^25, ie. for the default stub_group_size, if stubs total 11254 more than 2097152 bytes, or nearly 75000 plt call stubs. */ 11255 do 11256 { 11257 prev = PREV_SEC (tail); 11258 /* Set up this stub group. */ 11259 htab->stub_group[tail->id].link_sec = curr; 11260 } 11261 while (tail != curr && (tail = prev) != NULL); 11262 11263 /* But wait, there's more! Input sections up to stub_group_size 11264 bytes before the stub section can be handled by it too. 11265 Don't do this if we have a really large section after the 11266 stubs, as adding more stubs increases the chance that 11267 branches may not reach into the stub section. */ 11268 if (!stubs_always_before_branch && !big_sec) 11269 { 11270 total = 0; 11271 while (prev != NULL 11272 && ((total += tail->output_offset - prev->output_offset) 11273 < (ppc64_elf_section_data (prev) != NULL 11274 && ppc64_elf_section_data (prev)->has_14bit_branch 11275 ? stub14_group_size : stub_group_size)) 11276 && htab->stub_group[prev->id].toc_off == curr_toc) 11277 { 11278 tail = prev; 11279 prev = PREV_SEC (tail); 11280 htab->stub_group[tail->id].link_sec = curr; 11281 } 11282 } 11283 tail = prev; 11284 } 11285 } 11286 while (list-- != htab->input_list); 11287 free (htab->input_list); 11288 #undef PREV_SEC 11289 } 11290 11291 static const unsigned char glink_eh_frame_cie[] = 11292 { 11293 0, 0, 0, 16, /* length. */ 11294 0, 0, 0, 0, /* id. */ 11295 1, /* CIE version. */ 11296 'z', 'R', 0, /* Augmentation string. */ 11297 4, /* Code alignment. */ 11298 0x78, /* Data alignment. */ 11299 65, /* RA reg. */ 11300 1, /* Augmentation size. */ 11301 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding. */ 11302 DW_CFA_def_cfa, 1, 0 /* def_cfa: r1 offset 0. */ 11303 }; 11304 11305 /* Stripping output sections is normally done before dynamic section 11306 symbols have been allocated. This function is called later, and 11307 handles cases like htab->brlt which is mapped to its own output 11308 section. */ 11309 11310 static void 11311 maybe_strip_output (struct bfd_link_info *info, asection *isec) 11312 { 11313 if (isec->size == 0 11314 && isec->output_section->size == 0 11315 && !(isec->output_section->flags & SEC_KEEP) 11316 && !bfd_section_removed_from_list (info->output_bfd, 11317 isec->output_section) 11318 && elf_section_data (isec->output_section)->dynindx == 0) 11319 { 11320 isec->output_section->flags |= SEC_EXCLUDE; 11321 bfd_section_list_remove (info->output_bfd, isec->output_section); 11322 info->output_bfd->section_count--; 11323 } 11324 } 11325 11326 /* Determine and set the size of the stub section for a final link. 11327 11328 The basic idea here is to examine all the relocations looking for 11329 PC-relative calls to a target that is unreachable with a "bl" 11330 instruction. */ 11331 11332 bfd_boolean 11333 ppc64_elf_size_stubs (struct bfd_link_info *info, bfd_signed_vma group_size, 11334 bfd_boolean plt_static_chain, int plt_thread_safe, 11335 int plt_stub_align) 11336 { 11337 bfd_size_type stub_group_size; 11338 bfd_boolean stubs_always_before_branch; 11339 struct ppc_link_hash_table *htab = ppc_hash_table (info); 11340 11341 if (htab == NULL) 11342 return FALSE; 11343 11344 htab->plt_static_chain = plt_static_chain; 11345 htab->plt_stub_align = plt_stub_align; 11346 if (plt_thread_safe == -1 && !info->executable) 11347 plt_thread_safe = 1; 11348 if (plt_thread_safe == -1) 11349 { 11350 static const char *const thread_starter[] = 11351 { 11352 "pthread_create", 11353 /* libstdc++ */ 11354 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE", 11355 /* librt */ 11356 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio", 11357 "mq_notify", "create_timer", 11358 /* libanl */ 11359 "getaddrinfo_a", 11360 /* libgomp */ 11361 "GOMP_parallel_start", 11362 "GOMP_parallel_loop_static_start", 11363 "GOMP_parallel_loop_dynamic_start", 11364 "GOMP_parallel_loop_guided_start", 11365 "GOMP_parallel_loop_runtime_start", 11366 "GOMP_parallel_sections_start", 11367 }; 11368 unsigned i; 11369 11370 for (i = 0; i < sizeof (thread_starter)/ sizeof (thread_starter[0]); i++) 11371 { 11372 struct elf_link_hash_entry *h; 11373 h = elf_link_hash_lookup (&htab->elf, thread_starter[i], 11374 FALSE, FALSE, TRUE); 11375 plt_thread_safe = h != NULL && h->ref_regular; 11376 if (plt_thread_safe) 11377 break; 11378 } 11379 } 11380 htab->plt_thread_safe = plt_thread_safe; 11381 stubs_always_before_branch = group_size < 0; 11382 if (group_size < 0) 11383 stub_group_size = -group_size; 11384 else 11385 stub_group_size = group_size; 11386 11387 group_sections (htab, stub_group_size, stubs_always_before_branch); 11388 11389 while (1) 11390 { 11391 bfd *input_bfd; 11392 unsigned int bfd_indx; 11393 asection *stub_sec; 11394 11395 htab->stub_iteration += 1; 11396 11397 for (input_bfd = info->input_bfds, bfd_indx = 0; 11398 input_bfd != NULL; 11399 input_bfd = input_bfd->link_next, bfd_indx++) 11400 { 11401 Elf_Internal_Shdr *symtab_hdr; 11402 asection *section; 11403 Elf_Internal_Sym *local_syms = NULL; 11404 11405 if (!is_ppc64_elf (input_bfd)) 11406 continue; 11407 11408 /* We'll need the symbol table in a second. */ 11409 symtab_hdr = &elf_symtab_hdr (input_bfd); 11410 if (symtab_hdr->sh_info == 0) 11411 continue; 11412 11413 /* Walk over each section attached to the input bfd. */ 11414 for (section = input_bfd->sections; 11415 section != NULL; 11416 section = section->next) 11417 { 11418 Elf_Internal_Rela *internal_relocs, *irelaend, *irela; 11419 11420 /* If there aren't any relocs, then there's nothing more 11421 to do. */ 11422 if ((section->flags & SEC_RELOC) == 0 11423 || (section->flags & SEC_ALLOC) == 0 11424 || (section->flags & SEC_LOAD) == 0 11425 || (section->flags & SEC_CODE) == 0 11426 || section->reloc_count == 0) 11427 continue; 11428 11429 /* If this section is a link-once section that will be 11430 discarded, then don't create any stubs. */ 11431 if (section->output_section == NULL 11432 || section->output_section->owner != info->output_bfd) 11433 continue; 11434 11435 /* Get the relocs. */ 11436 internal_relocs 11437 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL, 11438 info->keep_memory); 11439 if (internal_relocs == NULL) 11440 goto error_ret_free_local; 11441 11442 /* Now examine each relocation. */ 11443 irela = internal_relocs; 11444 irelaend = irela + section->reloc_count; 11445 for (; irela < irelaend; irela++) 11446 { 11447 enum elf_ppc64_reloc_type r_type; 11448 unsigned int r_indx; 11449 enum ppc_stub_type stub_type; 11450 struct ppc_stub_hash_entry *stub_entry; 11451 asection *sym_sec, *code_sec; 11452 bfd_vma sym_value, code_value; 11453 bfd_vma destination; 11454 bfd_boolean ok_dest; 11455 struct ppc_link_hash_entry *hash; 11456 struct ppc_link_hash_entry *fdh; 11457 struct elf_link_hash_entry *h; 11458 Elf_Internal_Sym *sym; 11459 char *stub_name; 11460 const asection *id_sec; 11461 struct _opd_sec_data *opd; 11462 struct plt_entry *plt_ent; 11463 11464 r_type = ELF64_R_TYPE (irela->r_info); 11465 r_indx = ELF64_R_SYM (irela->r_info); 11466 11467 if (r_type >= R_PPC64_max) 11468 { 11469 bfd_set_error (bfd_error_bad_value); 11470 goto error_ret_free_internal; 11471 } 11472 11473 /* Only look for stubs on branch instructions. */ 11474 if (r_type != R_PPC64_REL24 11475 && r_type != R_PPC64_REL14 11476 && r_type != R_PPC64_REL14_BRTAKEN 11477 && r_type != R_PPC64_REL14_BRNTAKEN) 11478 continue; 11479 11480 /* Now determine the call target, its name, value, 11481 section. */ 11482 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, 11483 r_indx, input_bfd)) 11484 goto error_ret_free_internal; 11485 hash = (struct ppc_link_hash_entry *) h; 11486 11487 ok_dest = FALSE; 11488 fdh = NULL; 11489 sym_value = 0; 11490 if (hash == NULL) 11491 { 11492 sym_value = sym->st_value; 11493 ok_dest = TRUE; 11494 } 11495 else if (hash->elf.root.type == bfd_link_hash_defined 11496 || hash->elf.root.type == bfd_link_hash_defweak) 11497 { 11498 sym_value = hash->elf.root.u.def.value; 11499 if (sym_sec->output_section != NULL) 11500 ok_dest = TRUE; 11501 } 11502 else if (hash->elf.root.type == bfd_link_hash_undefweak 11503 || hash->elf.root.type == bfd_link_hash_undefined) 11504 { 11505 /* Recognise an old ABI func code entry sym, and 11506 use the func descriptor sym instead if it is 11507 defined. */ 11508 if (hash->elf.root.root.string[0] == '.' 11509 && (fdh = lookup_fdh (hash, htab)) != NULL) 11510 { 11511 if (fdh->elf.root.type == bfd_link_hash_defined 11512 || fdh->elf.root.type == bfd_link_hash_defweak) 11513 { 11514 sym_sec = fdh->elf.root.u.def.section; 11515 sym_value = fdh->elf.root.u.def.value; 11516 if (sym_sec->output_section != NULL) 11517 ok_dest = TRUE; 11518 } 11519 else 11520 fdh = NULL; 11521 } 11522 } 11523 else 11524 { 11525 bfd_set_error (bfd_error_bad_value); 11526 goto error_ret_free_internal; 11527 } 11528 11529 destination = 0; 11530 if (ok_dest) 11531 { 11532 sym_value += irela->r_addend; 11533 destination = (sym_value 11534 + sym_sec->output_offset 11535 + sym_sec->output_section->vma); 11536 } 11537 11538 code_sec = sym_sec; 11539 code_value = sym_value; 11540 opd = get_opd_info (sym_sec); 11541 if (opd != NULL) 11542 { 11543 bfd_vma dest; 11544 11545 if (hash == NULL && opd->adjust != NULL) 11546 { 11547 long adjust = opd->adjust[sym_value / 8]; 11548 if (adjust == -1) 11549 continue; 11550 code_value += adjust; 11551 sym_value += adjust; 11552 } 11553 dest = opd_entry_value (sym_sec, sym_value, 11554 &code_sec, &code_value, FALSE); 11555 if (dest != (bfd_vma) -1) 11556 { 11557 destination = dest; 11558 if (fdh != NULL) 11559 { 11560 /* Fixup old ABI sym to point at code 11561 entry. */ 11562 hash->elf.root.type = bfd_link_hash_defweak; 11563 hash->elf.root.u.def.section = code_sec; 11564 hash->elf.root.u.def.value = code_value; 11565 } 11566 } 11567 } 11568 11569 /* Determine what (if any) linker stub is needed. */ 11570 plt_ent = NULL; 11571 stub_type = ppc_type_of_stub (section, irela, &hash, 11572 &plt_ent, destination); 11573 11574 if (stub_type != ppc_stub_plt_call) 11575 { 11576 /* Check whether we need a TOC adjusting stub. 11577 Since the linker pastes together pieces from 11578 different object files when creating the 11579 _init and _fini functions, it may be that a 11580 call to what looks like a local sym is in 11581 fact a call needing a TOC adjustment. */ 11582 if (code_sec != NULL 11583 && code_sec->output_section != NULL 11584 && (htab->stub_group[code_sec->id].toc_off 11585 != htab->stub_group[section->id].toc_off) 11586 && (code_sec->has_toc_reloc 11587 || code_sec->makes_toc_func_call)) 11588 stub_type = ppc_stub_long_branch_r2off; 11589 } 11590 11591 if (stub_type == ppc_stub_none) 11592 continue; 11593 11594 /* __tls_get_addr calls might be eliminated. */ 11595 if (stub_type != ppc_stub_plt_call 11596 && hash != NULL 11597 && (hash == htab->tls_get_addr 11598 || hash == htab->tls_get_addr_fd) 11599 && section->has_tls_reloc 11600 && irela != internal_relocs) 11601 { 11602 /* Get tls info. */ 11603 unsigned char *tls_mask; 11604 11605 if (!get_tls_mask (&tls_mask, NULL, NULL, &local_syms, 11606 irela - 1, input_bfd)) 11607 goto error_ret_free_internal; 11608 if (*tls_mask != 0) 11609 continue; 11610 } 11611 11612 if (stub_type == ppc_stub_plt_call 11613 && irela + 1 < irelaend 11614 && irela[1].r_offset == irela->r_offset + 4 11615 && ELF64_R_TYPE (irela[1].r_info) == R_PPC64_TOCSAVE) 11616 { 11617 if (!tocsave_find (htab, INSERT, 11618 &local_syms, irela + 1, input_bfd)) 11619 goto error_ret_free_internal; 11620 } 11621 else if (stub_type == ppc_stub_plt_call) 11622 stub_type = ppc_stub_plt_call_r2save; 11623 11624 /* Support for grouping stub sections. */ 11625 id_sec = htab->stub_group[section->id].link_sec; 11626 11627 /* Get the name of this stub. */ 11628 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela); 11629 if (!stub_name) 11630 goto error_ret_free_internal; 11631 11632 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, 11633 stub_name, FALSE, FALSE); 11634 if (stub_entry != NULL) 11635 { 11636 /* The proper stub has already been created. */ 11637 free (stub_name); 11638 if (stub_type == ppc_stub_plt_call_r2save) 11639 stub_entry->stub_type = stub_type; 11640 continue; 11641 } 11642 11643 stub_entry = ppc_add_stub (stub_name, section, info); 11644 if (stub_entry == NULL) 11645 { 11646 free (stub_name); 11647 error_ret_free_internal: 11648 if (elf_section_data (section)->relocs == NULL) 11649 free (internal_relocs); 11650 error_ret_free_local: 11651 if (local_syms != NULL 11652 && (symtab_hdr->contents 11653 != (unsigned char *) local_syms)) 11654 free (local_syms); 11655 return FALSE; 11656 } 11657 11658 stub_entry->stub_type = stub_type; 11659 if (stub_type != ppc_stub_plt_call 11660 && stub_type != ppc_stub_plt_call_r2save) 11661 { 11662 stub_entry->target_value = code_value; 11663 stub_entry->target_section = code_sec; 11664 } 11665 else 11666 { 11667 stub_entry->target_value = sym_value; 11668 stub_entry->target_section = sym_sec; 11669 } 11670 stub_entry->h = hash; 11671 stub_entry->plt_ent = plt_ent; 11672 stub_entry->addend = irela->r_addend; 11673 11674 if (stub_entry->h != NULL) 11675 htab->stub_globals += 1; 11676 } 11677 11678 /* We're done with the internal relocs, free them. */ 11679 if (elf_section_data (section)->relocs != internal_relocs) 11680 free (internal_relocs); 11681 } 11682 11683 if (local_syms != NULL 11684 && symtab_hdr->contents != (unsigned char *) local_syms) 11685 { 11686 if (!info->keep_memory) 11687 free (local_syms); 11688 else 11689 symtab_hdr->contents = (unsigned char *) local_syms; 11690 } 11691 } 11692 11693 /* We may have added some stubs. Find out the new size of the 11694 stub sections. */ 11695 for (stub_sec = htab->stub_bfd->sections; 11696 stub_sec != NULL; 11697 stub_sec = stub_sec->next) 11698 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0) 11699 { 11700 stub_sec->rawsize = stub_sec->size; 11701 stub_sec->size = 0; 11702 stub_sec->reloc_count = 0; 11703 stub_sec->flags &= ~SEC_RELOC; 11704 } 11705 11706 htab->brlt->size = 0; 11707 htab->brlt->reloc_count = 0; 11708 htab->brlt->flags &= ~SEC_RELOC; 11709 if (htab->relbrlt != NULL) 11710 htab->relbrlt->size = 0; 11711 11712 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info); 11713 11714 if (info->emitrelocations 11715 && htab->glink != NULL && htab->glink->size != 0) 11716 { 11717 htab->glink->reloc_count = 1; 11718 htab->glink->flags |= SEC_RELOC; 11719 } 11720 11721 if (htab->glink_eh_frame != NULL 11722 && !bfd_is_abs_section (htab->glink_eh_frame->output_section) 11723 && htab->glink_eh_frame->output_section->size != 0) 11724 { 11725 size_t size = 0, align; 11726 11727 for (stub_sec = htab->stub_bfd->sections; 11728 stub_sec != NULL; 11729 stub_sec = stub_sec->next) 11730 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0) 11731 size += 20; 11732 if (htab->glink != NULL && htab->glink->size != 0) 11733 size += 24; 11734 if (size != 0) 11735 size += sizeof (glink_eh_frame_cie); 11736 align = 1; 11737 align <<= htab->glink_eh_frame->output_section->alignment_power; 11738 align -= 1; 11739 size = (size + align) & ~align; 11740 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size; 11741 htab->glink_eh_frame->size = size; 11742 } 11743 11744 if (htab->plt_stub_align != 0) 11745 for (stub_sec = htab->stub_bfd->sections; 11746 stub_sec != NULL; 11747 stub_sec = stub_sec->next) 11748 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0) 11749 stub_sec->size = ((stub_sec->size + (1 << htab->plt_stub_align) - 1) 11750 & (-1 << htab->plt_stub_align)); 11751 11752 for (stub_sec = htab->stub_bfd->sections; 11753 stub_sec != NULL; 11754 stub_sec = stub_sec->next) 11755 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0 11756 && stub_sec->rawsize != stub_sec->size) 11757 break; 11758 11759 /* Exit from this loop when no stubs have been added, and no stubs 11760 have changed size. */ 11761 if (stub_sec == NULL 11762 && (htab->glink_eh_frame == NULL 11763 || htab->glink_eh_frame->rawsize == htab->glink_eh_frame->size)) 11764 break; 11765 11766 /* Ask the linker to do its stuff. */ 11767 (*htab->layout_sections_again) (); 11768 } 11769 11770 maybe_strip_output (info, htab->brlt); 11771 if (htab->glink_eh_frame != NULL) 11772 maybe_strip_output (info, htab->glink_eh_frame); 11773 11774 return TRUE; 11775 } 11776 11777 /* Called after we have determined section placement. If sections 11778 move, we'll be called again. Provide a value for TOCstart. */ 11779 11780 bfd_vma 11781 ppc64_elf_toc (bfd *obfd) 11782 { 11783 asection *s; 11784 bfd_vma TOCstart; 11785 11786 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that 11787 order. The TOC starts where the first of these sections starts. */ 11788 s = bfd_get_section_by_name (obfd, ".got"); 11789 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0) 11790 s = bfd_get_section_by_name (obfd, ".toc"); 11791 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0) 11792 s = bfd_get_section_by_name (obfd, ".tocbss"); 11793 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0) 11794 s = bfd_get_section_by_name (obfd, ".plt"); 11795 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0) 11796 { 11797 /* This may happen for 11798 o references to TOC base (SYM@toc / TOC[tc0]) without a 11799 .toc directive 11800 o bad linker script 11801 o --gc-sections and empty TOC sections 11802 11803 FIXME: Warn user? */ 11804 11805 /* Look for a likely section. We probably won't even be 11806 using TOCstart. */ 11807 for (s = obfd->sections; s != NULL; s = s->next) 11808 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY 11809 | SEC_EXCLUDE)) 11810 == (SEC_ALLOC | SEC_SMALL_DATA)) 11811 break; 11812 if (s == NULL) 11813 for (s = obfd->sections; s != NULL; s = s->next) 11814 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_EXCLUDE)) 11815 == (SEC_ALLOC | SEC_SMALL_DATA)) 11816 break; 11817 if (s == NULL) 11818 for (s = obfd->sections; s != NULL; s = s->next) 11819 if ((s->flags & (SEC_ALLOC | SEC_READONLY | SEC_EXCLUDE)) 11820 == SEC_ALLOC) 11821 break; 11822 if (s == NULL) 11823 for (s = obfd->sections; s != NULL; s = s->next) 11824 if ((s->flags & (SEC_ALLOC | SEC_EXCLUDE)) == SEC_ALLOC) 11825 break; 11826 } 11827 11828 TOCstart = 0; 11829 if (s != NULL) 11830 TOCstart = s->output_section->vma + s->output_offset; 11831 11832 return TOCstart; 11833 } 11834 11835 /* Build all the stubs associated with the current output file. 11836 The stubs are kept in a hash table attached to the main linker 11837 hash table. This function is called via gldelf64ppc_finish. */ 11838 11839 bfd_boolean 11840 ppc64_elf_build_stubs (bfd_boolean emit_stub_syms, 11841 struct bfd_link_info *info, 11842 char **stats) 11843 { 11844 struct ppc_link_hash_table *htab = ppc_hash_table (info); 11845 asection *stub_sec; 11846 bfd_byte *p; 11847 int stub_sec_count = 0; 11848 11849 if (htab == NULL) 11850 return FALSE; 11851 11852 htab->emit_stub_syms = emit_stub_syms; 11853 11854 /* Allocate memory to hold the linker stubs. */ 11855 for (stub_sec = htab->stub_bfd->sections; 11856 stub_sec != NULL; 11857 stub_sec = stub_sec->next) 11858 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0 11859 && stub_sec->size != 0) 11860 { 11861 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size); 11862 if (stub_sec->contents == NULL) 11863 return FALSE; 11864 /* We want to check that built size is the same as calculated 11865 size. rawsize is a convenient location to use. */ 11866 stub_sec->rawsize = stub_sec->size; 11867 stub_sec->size = 0; 11868 } 11869 11870 if (htab->glink != NULL && htab->glink->size != 0) 11871 { 11872 unsigned int indx; 11873 bfd_vma plt0; 11874 11875 /* Build the .glink plt call stub. */ 11876 if (htab->emit_stub_syms) 11877 { 11878 struct elf_link_hash_entry *h; 11879 h = elf_link_hash_lookup (&htab->elf, "__glink_PLTresolve", 11880 TRUE, FALSE, FALSE); 11881 if (h == NULL) 11882 return FALSE; 11883 if (h->root.type == bfd_link_hash_new) 11884 { 11885 h->root.type = bfd_link_hash_defined; 11886 h->root.u.def.section = htab->glink; 11887 h->root.u.def.value = 8; 11888 h->ref_regular = 1; 11889 h->def_regular = 1; 11890 h->ref_regular_nonweak = 1; 11891 h->forced_local = 1; 11892 h->non_elf = 0; 11893 } 11894 } 11895 plt0 = htab->plt->output_section->vma + htab->plt->output_offset - 16; 11896 if (info->emitrelocations) 11897 { 11898 Elf_Internal_Rela *r = get_relocs (htab->glink, 1); 11899 if (r == NULL) 11900 return FALSE; 11901 r->r_offset = (htab->glink->output_offset 11902 + htab->glink->output_section->vma); 11903 r->r_info = ELF64_R_INFO (0, R_PPC64_REL64); 11904 r->r_addend = plt0; 11905 } 11906 p = htab->glink->contents; 11907 plt0 -= htab->glink->output_section->vma + htab->glink->output_offset; 11908 bfd_put_64 (htab->glink->owner, plt0, p); 11909 p += 8; 11910 bfd_put_32 (htab->glink->owner, MFLR_R12, p); 11911 p += 4; 11912 bfd_put_32 (htab->glink->owner, BCL_20_31, p); 11913 p += 4; 11914 bfd_put_32 (htab->glink->owner, MFLR_R11, p); 11915 p += 4; 11916 bfd_put_32 (htab->glink->owner, LD_R2_M16R11, p); 11917 p += 4; 11918 bfd_put_32 (htab->glink->owner, MTLR_R12, p); 11919 p += 4; 11920 bfd_put_32 (htab->glink->owner, ADD_R12_R2_R11, p); 11921 p += 4; 11922 bfd_put_32 (htab->glink->owner, LD_R11_0R12, p); 11923 p += 4; 11924 bfd_put_32 (htab->glink->owner, LD_R2_0R12 | 8, p); 11925 p += 4; 11926 bfd_put_32 (htab->glink->owner, MTCTR_R11, p); 11927 p += 4; 11928 bfd_put_32 (htab->glink->owner, LD_R11_0R12 | 16, p); 11929 p += 4; 11930 bfd_put_32 (htab->glink->owner, BCTR, p); 11931 p += 4; 11932 while (p - htab->glink->contents < GLINK_CALL_STUB_SIZE) 11933 { 11934 bfd_put_32 (htab->glink->owner, NOP, p); 11935 p += 4; 11936 } 11937 11938 /* Build the .glink lazy link call stubs. */ 11939 indx = 0; 11940 while (p < htab->glink->contents + htab->glink->size) 11941 { 11942 if (indx < 0x8000) 11943 { 11944 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p); 11945 p += 4; 11946 } 11947 else 11948 { 11949 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p); 11950 p += 4; 11951 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx), p); 11952 p += 4; 11953 } 11954 bfd_put_32 (htab->glink->owner, 11955 B_DOT | ((htab->glink->contents - p + 8) & 0x3fffffc), p); 11956 indx++; 11957 p += 4; 11958 } 11959 htab->glink->rawsize = p - htab->glink->contents; 11960 } 11961 11962 if (htab->brlt->size != 0) 11963 { 11964 htab->brlt->contents = bfd_zalloc (htab->brlt->owner, 11965 htab->brlt->size); 11966 if (htab->brlt->contents == NULL) 11967 return FALSE; 11968 } 11969 if (htab->relbrlt != NULL && htab->relbrlt->size != 0) 11970 { 11971 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner, 11972 htab->relbrlt->size); 11973 if (htab->relbrlt->contents == NULL) 11974 return FALSE; 11975 } 11976 11977 if (htab->glink_eh_frame != NULL 11978 && htab->glink_eh_frame->size != 0) 11979 { 11980 bfd_vma val; 11981 bfd_byte *last_fde; 11982 size_t last_fde_len, size, align, pad; 11983 11984 p = bfd_zalloc (htab->glink_eh_frame->owner, htab->glink_eh_frame->size); 11985 if (p == NULL) 11986 return FALSE; 11987 htab->glink_eh_frame->contents = p; 11988 last_fde = p; 11989 11990 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size; 11991 11992 memcpy (p, glink_eh_frame_cie, sizeof (glink_eh_frame_cie)); 11993 /* CIE length (rewrite in case little-endian). */ 11994 last_fde_len = sizeof (glink_eh_frame_cie) - 4; 11995 bfd_put_32 (htab->elf.dynobj, last_fde_len, p); 11996 p += sizeof (glink_eh_frame_cie); 11997 11998 for (stub_sec = htab->stub_bfd->sections; 11999 stub_sec != NULL; 12000 stub_sec = stub_sec->next) 12001 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0) 12002 { 12003 last_fde = p; 12004 last_fde_len = 16; 12005 /* FDE length. */ 12006 bfd_put_32 (htab->elf.dynobj, 16, p); 12007 p += 4; 12008 /* CIE pointer. */ 12009 val = p - htab->glink_eh_frame->contents; 12010 bfd_put_32 (htab->elf.dynobj, val, p); 12011 p += 4; 12012 /* Offset to stub section. */ 12013 val = (stub_sec->output_section->vma 12014 + stub_sec->output_offset); 12015 val -= (htab->glink_eh_frame->output_section->vma 12016 + htab->glink_eh_frame->output_offset); 12017 val -= p - htab->glink_eh_frame->contents; 12018 if (val + 0x80000000 > 0xffffffff) 12019 { 12020 info->callbacks->einfo 12021 (_("%P: %s offset too large for .eh_frame sdata4 encoding"), 12022 stub_sec->name); 12023 return FALSE; 12024 } 12025 bfd_put_32 (htab->elf.dynobj, val, p); 12026 p += 4; 12027 /* stub section size. */ 12028 bfd_put_32 (htab->elf.dynobj, stub_sec->rawsize, p); 12029 p += 4; 12030 /* Augmentation. */ 12031 p += 1; 12032 /* Pad. */ 12033 p += 3; 12034 } 12035 if (htab->glink != NULL && htab->glink->size != 0) 12036 { 12037 last_fde = p; 12038 last_fde_len = 20; 12039 /* FDE length. */ 12040 bfd_put_32 (htab->elf.dynobj, 20, p); 12041 p += 4; 12042 /* CIE pointer. */ 12043 val = p - htab->glink_eh_frame->contents; 12044 bfd_put_32 (htab->elf.dynobj, val, p); 12045 p += 4; 12046 /* Offset to .glink. */ 12047 val = (htab->glink->output_section->vma 12048 + htab->glink->output_offset 12049 + 8); 12050 val -= (htab->glink_eh_frame->output_section->vma 12051 + htab->glink_eh_frame->output_offset); 12052 val -= p - htab->glink_eh_frame->contents; 12053 if (val + 0x80000000 > 0xffffffff) 12054 { 12055 info->callbacks->einfo 12056 (_("%P: %s offset too large for .eh_frame sdata4 encoding"), 12057 htab->glink->name); 12058 return FALSE; 12059 } 12060 bfd_put_32 (htab->elf.dynobj, val, p); 12061 p += 4; 12062 /* .glink size. */ 12063 bfd_put_32 (htab->elf.dynobj, htab->glink->rawsize - 8, p); 12064 p += 4; 12065 /* Augmentation. */ 12066 p += 1; 12067 12068 *p++ = DW_CFA_advance_loc + 1; 12069 *p++ = DW_CFA_register; 12070 *p++ = 65; 12071 *p++ = 12; 12072 *p++ = DW_CFA_advance_loc + 4; 12073 *p++ = DW_CFA_restore_extended; 12074 *p++ = 65; 12075 } 12076 /* Subsume any padding into the last FDE if user .eh_frame 12077 sections are aligned more than glink_eh_frame. Otherwise any 12078 zero padding will be seen as a terminator. */ 12079 size = p - htab->glink_eh_frame->contents; 12080 align = 1; 12081 align <<= htab->glink_eh_frame->output_section->alignment_power; 12082 align -= 1; 12083 pad = ((size + align) & ~align) - size; 12084 htab->glink_eh_frame->size = size + pad; 12085 bfd_put_32 (htab->elf.dynobj, last_fde_len + pad, last_fde); 12086 } 12087 12088 /* Build the stubs as directed by the stub hash table. */ 12089 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info); 12090 12091 if (htab->relbrlt != NULL) 12092 htab->relbrlt->reloc_count = 0; 12093 12094 if (htab->plt_stub_align != 0) 12095 for (stub_sec = htab->stub_bfd->sections; 12096 stub_sec != NULL; 12097 stub_sec = stub_sec->next) 12098 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0) 12099 stub_sec->size = ((stub_sec->size + (1 << htab->plt_stub_align) - 1) 12100 & (-1 << htab->plt_stub_align)); 12101 12102 for (stub_sec = htab->stub_bfd->sections; 12103 stub_sec != NULL; 12104 stub_sec = stub_sec->next) 12105 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0) 12106 { 12107 stub_sec_count += 1; 12108 if (stub_sec->rawsize != stub_sec->size) 12109 break; 12110 } 12111 12112 if (stub_sec != NULL 12113 || htab->glink->rawsize != htab->glink->size 12114 || (htab->glink_eh_frame != NULL 12115 && htab->glink_eh_frame->rawsize != htab->glink_eh_frame->size)) 12116 { 12117 htab->stub_error = TRUE; 12118 info->callbacks->einfo (_("%P: stubs don't match calculated size\n")); 12119 } 12120 12121 if (htab->stub_error) 12122 return FALSE; 12123 12124 if (stats != NULL) 12125 { 12126 *stats = bfd_malloc (500); 12127 if (*stats == NULL) 12128 return FALSE; 12129 12130 sprintf (*stats, _("linker stubs in %u group%s\n" 12131 " branch %lu\n" 12132 " toc adjust %lu\n" 12133 " long branch %lu\n" 12134 " long toc adj %lu\n" 12135 " plt call %lu\n" 12136 " plt call toc %lu"), 12137 stub_sec_count, 12138 stub_sec_count == 1 ? "" : "s", 12139 htab->stub_count[ppc_stub_long_branch - 1], 12140 htab->stub_count[ppc_stub_long_branch_r2off - 1], 12141 htab->stub_count[ppc_stub_plt_branch - 1], 12142 htab->stub_count[ppc_stub_plt_branch_r2off - 1], 12143 htab->stub_count[ppc_stub_plt_call - 1], 12144 htab->stub_count[ppc_stub_plt_call_r2save - 1]); 12145 } 12146 return TRUE; 12147 } 12148 12149 /* This function undoes the changes made by add_symbol_adjust. */ 12150 12151 static bfd_boolean 12152 undo_symbol_twiddle (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED) 12153 { 12154 struct ppc_link_hash_entry *eh; 12155 12156 if (h->root.type == bfd_link_hash_indirect) 12157 return TRUE; 12158 12159 eh = (struct ppc_link_hash_entry *) h; 12160 if (eh->elf.root.type != bfd_link_hash_undefweak || !eh->was_undefined) 12161 return TRUE; 12162 12163 eh->elf.root.type = bfd_link_hash_undefined; 12164 return TRUE; 12165 } 12166 12167 void 12168 ppc64_elf_restore_symbols (struct bfd_link_info *info) 12169 { 12170 struct ppc_link_hash_table *htab = ppc_hash_table (info); 12171 12172 if (htab != NULL) 12173 elf_link_hash_traverse (&htab->elf, undo_symbol_twiddle, info); 12174 } 12175 12176 /* What to do when ld finds relocations against symbols defined in 12177 discarded sections. */ 12178 12179 static unsigned int 12180 ppc64_elf_action_discarded (asection *sec) 12181 { 12182 if (strcmp (".opd", sec->name) == 0) 12183 return 0; 12184 12185 if (strcmp (".toc", sec->name) == 0) 12186 return 0; 12187 12188 if (strcmp (".toc1", sec->name) == 0) 12189 return 0; 12190 12191 return _bfd_elf_default_action_discarded (sec); 12192 } 12193 12194 /* The RELOCATE_SECTION function is called by the ELF backend linker 12195 to handle the relocations for a section. 12196 12197 The relocs are always passed as Rela structures; if the section 12198 actually uses Rel structures, the r_addend field will always be 12199 zero. 12200 12201 This function is responsible for adjust the section contents as 12202 necessary, and (if using Rela relocs and generating a 12203 relocatable output file) adjusting the reloc addend as 12204 necessary. 12205 12206 This function does not have to worry about setting the reloc 12207 address or the reloc symbol index. 12208 12209 LOCAL_SYMS is a pointer to the swapped in local symbols. 12210 12211 LOCAL_SECTIONS is an array giving the section in the input file 12212 corresponding to the st_shndx field of each local symbol. 12213 12214 The global hash table entry for the global symbols can be found 12215 via elf_sym_hashes (input_bfd). 12216 12217 When generating relocatable output, this function must handle 12218 STB_LOCAL/STT_SECTION symbols specially. The output symbol is 12219 going to be the section symbol corresponding to the output 12220 section, which means that the addend must be adjusted 12221 accordingly. */ 12222 12223 static bfd_boolean 12224 ppc64_elf_relocate_section (bfd *output_bfd, 12225 struct bfd_link_info *info, 12226 bfd *input_bfd, 12227 asection *input_section, 12228 bfd_byte *contents, 12229 Elf_Internal_Rela *relocs, 12230 Elf_Internal_Sym *local_syms, 12231 asection **local_sections) 12232 { 12233 struct ppc_link_hash_table *htab; 12234 Elf_Internal_Shdr *symtab_hdr; 12235 struct elf_link_hash_entry **sym_hashes; 12236 Elf_Internal_Rela *rel; 12237 Elf_Internal_Rela *relend; 12238 Elf_Internal_Rela outrel; 12239 bfd_byte *loc; 12240 struct got_entry **local_got_ents; 12241 bfd_vma TOCstart; 12242 bfd_boolean ret = TRUE; 12243 bfd_boolean is_opd; 12244 /* Assume 'at' branch hints. */ 12245 bfd_boolean is_isa_v2 = TRUE; 12246 bfd_vma d_offset = (bfd_big_endian (output_bfd) ? 2 : 0); 12247 12248 /* Initialize howto table if needed. */ 12249 if (!ppc64_elf_howto_table[R_PPC64_ADDR32]) 12250 ppc_howto_init (); 12251 12252 htab = ppc_hash_table (info); 12253 if (htab == NULL) 12254 return FALSE; 12255 12256 /* Don't relocate stub sections. */ 12257 if (input_section->owner == htab->stub_bfd) 12258 return TRUE; 12259 12260 BFD_ASSERT (is_ppc64_elf (input_bfd)); 12261 12262 local_got_ents = elf_local_got_ents (input_bfd); 12263 TOCstart = elf_gp (output_bfd); 12264 symtab_hdr = &elf_symtab_hdr (input_bfd); 12265 sym_hashes = elf_sym_hashes (input_bfd); 12266 is_opd = ppc64_elf_section_data (input_section)->sec_type == sec_opd; 12267 12268 rel = relocs; 12269 relend = relocs + input_section->reloc_count; 12270 for (; rel < relend; rel++) 12271 { 12272 enum elf_ppc64_reloc_type r_type; 12273 bfd_vma addend; 12274 bfd_reloc_status_type r; 12275 Elf_Internal_Sym *sym; 12276 asection *sec; 12277 struct elf_link_hash_entry *h_elf; 12278 struct ppc_link_hash_entry *h; 12279 struct ppc_link_hash_entry *fdh; 12280 const char *sym_name; 12281 unsigned long r_symndx, toc_symndx; 12282 bfd_vma toc_addend; 12283 unsigned char tls_mask, tls_gd, tls_type; 12284 unsigned char sym_type; 12285 bfd_vma relocation; 12286 bfd_boolean unresolved_reloc; 12287 bfd_boolean warned; 12288 enum { DEST_NORMAL, DEST_OPD, DEST_STUB } reloc_dest; 12289 unsigned int insn; 12290 unsigned int mask; 12291 struct ppc_stub_hash_entry *stub_entry; 12292 bfd_vma max_br_offset; 12293 bfd_vma from; 12294 const Elf_Internal_Rela orig_rel = *rel; 12295 12296 r_type = ELF64_R_TYPE (rel->r_info); 12297 r_symndx = ELF64_R_SYM (rel->r_info); 12298 12299 /* For old style R_PPC64_TOC relocs with a zero symbol, use the 12300 symbol of the previous ADDR64 reloc. The symbol gives us the 12301 proper TOC base to use. */ 12302 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC) 12303 && rel != relocs 12304 && ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_ADDR64 12305 && is_opd) 12306 r_symndx = ELF64_R_SYM (rel[-1].r_info); 12307 12308 sym = NULL; 12309 sec = NULL; 12310 h_elf = NULL; 12311 sym_name = NULL; 12312 unresolved_reloc = FALSE; 12313 warned = FALSE; 12314 12315 if (r_symndx < symtab_hdr->sh_info) 12316 { 12317 /* It's a local symbol. */ 12318 struct _opd_sec_data *opd; 12319 12320 sym = local_syms + r_symndx; 12321 sec = local_sections[r_symndx]; 12322 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec); 12323 sym_type = ELF64_ST_TYPE (sym->st_info); 12324 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); 12325 opd = get_opd_info (sec); 12326 if (opd != NULL && opd->adjust != NULL) 12327 { 12328 long adjust = opd->adjust[(sym->st_value + rel->r_addend) / 8]; 12329 if (adjust == -1) 12330 relocation = 0; 12331 else 12332 { 12333 /* If this is a relocation against the opd section sym 12334 and we have edited .opd, adjust the reloc addend so 12335 that ld -r and ld --emit-relocs output is correct. 12336 If it is a reloc against some other .opd symbol, 12337 then the symbol value will be adjusted later. */ 12338 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) 12339 rel->r_addend += adjust; 12340 else 12341 relocation += adjust; 12342 } 12343 } 12344 } 12345 else 12346 { 12347 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, 12348 r_symndx, symtab_hdr, sym_hashes, 12349 h_elf, sec, relocation, 12350 unresolved_reloc, warned); 12351 sym_name = h_elf->root.root.string; 12352 sym_type = h_elf->type; 12353 if (sec != NULL 12354 && sec->owner == output_bfd 12355 && strcmp (sec->name, ".opd") == 0) 12356 { 12357 /* This is a symbol defined in a linker script. All 12358 such are defined in output sections, even those 12359 defined by simple assignment from a symbol defined in 12360 an input section. Transfer the symbol to an 12361 appropriate input .opd section, so that a branch to 12362 this symbol will be mapped to the location specified 12363 by the opd entry. */ 12364 struct bfd_link_order *lo; 12365 for (lo = sec->map_head.link_order; lo != NULL; lo = lo->next) 12366 if (lo->type == bfd_indirect_link_order) 12367 { 12368 asection *isec = lo->u.indirect.section; 12369 if (h_elf->root.u.def.value >= isec->output_offset 12370 && h_elf->root.u.def.value < (isec->output_offset 12371 + isec->size)) 12372 { 12373 h_elf->root.u.def.value -= isec->output_offset; 12374 h_elf->root.u.def.section = isec; 12375 sec = isec; 12376 break; 12377 } 12378 } 12379 } 12380 } 12381 h = (struct ppc_link_hash_entry *) h_elf; 12382 12383 if (sec != NULL && discarded_section (sec)) 12384 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, 12385 rel, 1, relend, 12386 ppc64_elf_howto_table[r_type], 0, 12387 contents); 12388 12389 if (info->relocatable) 12390 continue; 12391 12392 /* TLS optimizations. Replace instruction sequences and relocs 12393 based on information we collected in tls_optimize. We edit 12394 RELOCS so that --emit-relocs will output something sensible 12395 for the final instruction stream. */ 12396 tls_mask = 0; 12397 tls_gd = 0; 12398 toc_symndx = 0; 12399 if (h != NULL) 12400 tls_mask = h->tls_mask; 12401 else if (local_got_ents != NULL) 12402 { 12403 struct plt_entry **local_plt = (struct plt_entry **) 12404 (local_got_ents + symtab_hdr->sh_info); 12405 unsigned char *lgot_masks = (unsigned char *) 12406 (local_plt + symtab_hdr->sh_info); 12407 tls_mask = lgot_masks[r_symndx]; 12408 } 12409 if (tls_mask == 0 12410 && (r_type == R_PPC64_TLS 12411 || r_type == R_PPC64_TLSGD 12412 || r_type == R_PPC64_TLSLD)) 12413 { 12414 /* Check for toc tls entries. */ 12415 unsigned char *toc_tls; 12416 12417 if (!get_tls_mask (&toc_tls, &toc_symndx, &toc_addend, 12418 &local_syms, rel, input_bfd)) 12419 return FALSE; 12420 12421 if (toc_tls) 12422 tls_mask = *toc_tls; 12423 } 12424 12425 /* Check that tls relocs are used with tls syms, and non-tls 12426 relocs are used with non-tls syms. */ 12427 if (r_symndx != STN_UNDEF 12428 && r_type != R_PPC64_NONE 12429 && (h == NULL 12430 || h->elf.root.type == bfd_link_hash_defined 12431 || h->elf.root.type == bfd_link_hash_defweak) 12432 && (IS_PPC64_TLS_RELOC (r_type) 12433 != (sym_type == STT_TLS 12434 || (sym_type == STT_SECTION 12435 && (sec->flags & SEC_THREAD_LOCAL) != 0)))) 12436 { 12437 if (tls_mask != 0 12438 && (r_type == R_PPC64_TLS 12439 || r_type == R_PPC64_TLSGD 12440 || r_type == R_PPC64_TLSLD)) 12441 /* R_PPC64_TLS is OK against a symbol in the TOC. */ 12442 ; 12443 else 12444 info->callbacks->einfo 12445 (!IS_PPC64_TLS_RELOC (r_type) 12446 ? _("%P: %H: %s used with TLS symbol `%T'\n") 12447 : _("%P: %H: %s used with non-TLS symbol `%T'\n"), 12448 input_bfd, input_section, rel->r_offset, 12449 ppc64_elf_howto_table[r_type]->name, 12450 sym_name); 12451 } 12452 12453 /* Ensure reloc mapping code below stays sane. */ 12454 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1 12455 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1 12456 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3) 12457 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3) 12458 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3) 12459 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3) 12460 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3) 12461 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3) 12462 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3) 12463 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3)) 12464 abort (); 12465 12466 switch (r_type) 12467 { 12468 default: 12469 break; 12470 12471 case R_PPC64_LO_DS_OPT: 12472 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset); 12473 if ((insn & (0x3f << 26)) != 58u << 26) 12474 abort (); 12475 insn += (14u << 26) - (58u << 26); 12476 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset); 12477 r_type = R_PPC64_TOC16_LO; 12478 rel->r_info = ELF64_R_INFO (r_symndx, r_type); 12479 break; 12480 12481 case R_PPC64_TOC16: 12482 case R_PPC64_TOC16_LO: 12483 case R_PPC64_TOC16_DS: 12484 case R_PPC64_TOC16_LO_DS: 12485 { 12486 /* Check for toc tls entries. */ 12487 unsigned char *toc_tls; 12488 int retval; 12489 12490 retval = get_tls_mask (&toc_tls, &toc_symndx, &toc_addend, 12491 &local_syms, rel, input_bfd); 12492 if (retval == 0) 12493 return FALSE; 12494 12495 if (toc_tls) 12496 { 12497 tls_mask = *toc_tls; 12498 if (r_type == R_PPC64_TOC16_DS 12499 || r_type == R_PPC64_TOC16_LO_DS) 12500 { 12501 if (tls_mask != 0 12502 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0) 12503 goto toctprel; 12504 } 12505 else 12506 { 12507 /* If we found a GD reloc pair, then we might be 12508 doing a GD->IE transition. */ 12509 if (retval == 2) 12510 { 12511 tls_gd = TLS_TPRELGD; 12512 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0) 12513 goto tls_ldgd_opt; 12514 } 12515 else if (retval == 3) 12516 { 12517 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0) 12518 goto tls_ldgd_opt; 12519 } 12520 } 12521 } 12522 } 12523 break; 12524 12525 case R_PPC64_GOT_TPREL16_HI: 12526 case R_PPC64_GOT_TPREL16_HA: 12527 if (tls_mask != 0 12528 && (tls_mask & TLS_TPREL) == 0) 12529 { 12530 rel->r_offset -= d_offset; 12531 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset); 12532 r_type = R_PPC64_NONE; 12533 rel->r_info = ELF64_R_INFO (r_symndx, r_type); 12534 } 12535 break; 12536 12537 case R_PPC64_GOT_TPREL16_DS: 12538 case R_PPC64_GOT_TPREL16_LO_DS: 12539 if (tls_mask != 0 12540 && (tls_mask & TLS_TPREL) == 0) 12541 { 12542 toctprel: 12543 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset); 12544 insn &= 31 << 21; 12545 insn |= 0x3c0d0000; /* addis 0,13,0 */ 12546 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset); 12547 r_type = R_PPC64_TPREL16_HA; 12548 if (toc_symndx != 0) 12549 { 12550 rel->r_info = ELF64_R_INFO (toc_symndx, r_type); 12551 rel->r_addend = toc_addend; 12552 /* We changed the symbol. Start over in order to 12553 get h, sym, sec etc. right. */ 12554 rel--; 12555 continue; 12556 } 12557 else 12558 rel->r_info = ELF64_R_INFO (r_symndx, r_type); 12559 } 12560 break; 12561 12562 case R_PPC64_TLS: 12563 if (tls_mask != 0 12564 && (tls_mask & TLS_TPREL) == 0) 12565 { 12566 insn = bfd_get_32 (output_bfd, contents + rel->r_offset); 12567 insn = _bfd_elf_ppc_at_tls_transform (insn, 13); 12568 if (insn == 0) 12569 abort (); 12570 bfd_put_32 (output_bfd, insn, contents + rel->r_offset); 12571 /* Was PPC64_TLS which sits on insn boundary, now 12572 PPC64_TPREL16_LO which is at low-order half-word. */ 12573 rel->r_offset += d_offset; 12574 r_type = R_PPC64_TPREL16_LO; 12575 if (toc_symndx != 0) 12576 { 12577 rel->r_info = ELF64_R_INFO (toc_symndx, r_type); 12578 rel->r_addend = toc_addend; 12579 /* We changed the symbol. Start over in order to 12580 get h, sym, sec etc. right. */ 12581 rel--; 12582 continue; 12583 } 12584 else 12585 rel->r_info = ELF64_R_INFO (r_symndx, r_type); 12586 } 12587 break; 12588 12589 case R_PPC64_GOT_TLSGD16_HI: 12590 case R_PPC64_GOT_TLSGD16_HA: 12591 tls_gd = TLS_TPRELGD; 12592 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0) 12593 goto tls_gdld_hi; 12594 break; 12595 12596 case R_PPC64_GOT_TLSLD16_HI: 12597 case R_PPC64_GOT_TLSLD16_HA: 12598 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0) 12599 { 12600 tls_gdld_hi: 12601 if ((tls_mask & tls_gd) != 0) 12602 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3) 12603 + R_PPC64_GOT_TPREL16_DS); 12604 else 12605 { 12606 rel->r_offset -= d_offset; 12607 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset); 12608 r_type = R_PPC64_NONE; 12609 } 12610 rel->r_info = ELF64_R_INFO (r_symndx, r_type); 12611 } 12612 break; 12613 12614 case R_PPC64_GOT_TLSGD16: 12615 case R_PPC64_GOT_TLSGD16_LO: 12616 tls_gd = TLS_TPRELGD; 12617 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0) 12618 goto tls_ldgd_opt; 12619 break; 12620 12621 case R_PPC64_GOT_TLSLD16: 12622 case R_PPC64_GOT_TLSLD16_LO: 12623 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0) 12624 { 12625 unsigned int insn1, insn2, insn3; 12626 bfd_vma offset; 12627 12628 tls_ldgd_opt: 12629 offset = (bfd_vma) -1; 12630 /* If not using the newer R_PPC64_TLSGD/LD to mark 12631 __tls_get_addr calls, we must trust that the call 12632 stays with its arg setup insns, ie. that the next 12633 reloc is the __tls_get_addr call associated with 12634 the current reloc. Edit both insns. */ 12635 if (input_section->has_tls_get_addr_call 12636 && rel + 1 < relend 12637 && branch_reloc_hash_match (input_bfd, rel + 1, 12638 htab->tls_get_addr, 12639 htab->tls_get_addr_fd)) 12640 offset = rel[1].r_offset; 12641 if ((tls_mask & tls_gd) != 0) 12642 { 12643 /* IE */ 12644 insn1 = bfd_get_32 (output_bfd, 12645 contents + rel->r_offset - d_offset); 12646 insn1 &= (1 << 26) - (1 << 2); 12647 insn1 |= 58 << 26; /* ld */ 12648 insn2 = 0x7c636a14; /* add 3,3,13 */ 12649 if (offset != (bfd_vma) -1) 12650 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE); 12651 if ((tls_mask & TLS_EXPLICIT) == 0) 12652 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3) 12653 + R_PPC64_GOT_TPREL16_DS); 12654 else 12655 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16; 12656 rel->r_info = ELF64_R_INFO (r_symndx, r_type); 12657 } 12658 else 12659 { 12660 /* LE */ 12661 insn1 = 0x3c6d0000; /* addis 3,13,0 */ 12662 insn2 = 0x38630000; /* addi 3,3,0 */ 12663 if (tls_gd == 0) 12664 { 12665 /* Was an LD reloc. */ 12666 if (toc_symndx) 12667 sec = local_sections[toc_symndx]; 12668 for (r_symndx = 0; 12669 r_symndx < symtab_hdr->sh_info; 12670 r_symndx++) 12671 if (local_sections[r_symndx] == sec) 12672 break; 12673 if (r_symndx >= symtab_hdr->sh_info) 12674 r_symndx = STN_UNDEF; 12675 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET; 12676 if (r_symndx != STN_UNDEF) 12677 rel->r_addend -= (local_syms[r_symndx].st_value 12678 + sec->output_offset 12679 + sec->output_section->vma); 12680 } 12681 else if (toc_symndx != 0) 12682 { 12683 r_symndx = toc_symndx; 12684 rel->r_addend = toc_addend; 12685 } 12686 r_type = R_PPC64_TPREL16_HA; 12687 rel->r_info = ELF64_R_INFO (r_symndx, r_type); 12688 if (offset != (bfd_vma) -1) 12689 { 12690 rel[1].r_info = ELF64_R_INFO (r_symndx, 12691 R_PPC64_TPREL16_LO); 12692 rel[1].r_offset = offset + d_offset; 12693 rel[1].r_addend = rel->r_addend; 12694 } 12695 } 12696 bfd_put_32 (output_bfd, insn1, 12697 contents + rel->r_offset - d_offset); 12698 if (offset != (bfd_vma) -1) 12699 { 12700 insn3 = bfd_get_32 (output_bfd, 12701 contents + offset + 4); 12702 if (insn3 == NOP 12703 || insn3 == CROR_151515 || insn3 == CROR_313131) 12704 { 12705 rel[1].r_offset += 4; 12706 bfd_put_32 (output_bfd, insn2, contents + offset + 4); 12707 insn2 = NOP; 12708 } 12709 bfd_put_32 (output_bfd, insn2, contents + offset); 12710 } 12711 if ((tls_mask & tls_gd) == 0 12712 && (tls_gd == 0 || toc_symndx != 0)) 12713 { 12714 /* We changed the symbol. Start over in order 12715 to get h, sym, sec etc. right. */ 12716 rel--; 12717 continue; 12718 } 12719 } 12720 break; 12721 12722 case R_PPC64_TLSGD: 12723 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0) 12724 { 12725 unsigned int insn2, insn3; 12726 bfd_vma offset = rel->r_offset; 12727 12728 if ((tls_mask & TLS_TPRELGD) != 0) 12729 { 12730 /* IE */ 12731 r_type = R_PPC64_NONE; 12732 insn2 = 0x7c636a14; /* add 3,3,13 */ 12733 } 12734 else 12735 { 12736 /* LE */ 12737 if (toc_symndx != 0) 12738 { 12739 r_symndx = toc_symndx; 12740 rel->r_addend = toc_addend; 12741 } 12742 r_type = R_PPC64_TPREL16_LO; 12743 rel->r_offset = offset + d_offset; 12744 insn2 = 0x38630000; /* addi 3,3,0 */ 12745 } 12746 rel->r_info = ELF64_R_INFO (r_symndx, r_type); 12747 /* Zap the reloc on the _tls_get_addr call too. */ 12748 BFD_ASSERT (offset == rel[1].r_offset); 12749 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE); 12750 insn3 = bfd_get_32 (output_bfd, 12751 contents + offset + 4); 12752 if (insn3 == NOP 12753 || insn3 == CROR_151515 || insn3 == CROR_313131) 12754 { 12755 rel->r_offset += 4; 12756 bfd_put_32 (output_bfd, insn2, contents + offset + 4); 12757 insn2 = NOP; 12758 } 12759 bfd_put_32 (output_bfd, insn2, contents + offset); 12760 if ((tls_mask & TLS_TPRELGD) == 0 && toc_symndx != 0) 12761 { 12762 rel--; 12763 continue; 12764 } 12765 } 12766 break; 12767 12768 case R_PPC64_TLSLD: 12769 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0) 12770 { 12771 unsigned int insn2, insn3; 12772 bfd_vma offset = rel->r_offset; 12773 12774 if (toc_symndx) 12775 sec = local_sections[toc_symndx]; 12776 for (r_symndx = 0; 12777 r_symndx < symtab_hdr->sh_info; 12778 r_symndx++) 12779 if (local_sections[r_symndx] == sec) 12780 break; 12781 if (r_symndx >= symtab_hdr->sh_info) 12782 r_symndx = STN_UNDEF; 12783 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET; 12784 if (r_symndx != STN_UNDEF) 12785 rel->r_addend -= (local_syms[r_symndx].st_value 12786 + sec->output_offset 12787 + sec->output_section->vma); 12788 12789 r_type = R_PPC64_TPREL16_LO; 12790 rel->r_info = ELF64_R_INFO (r_symndx, r_type); 12791 rel->r_offset = offset + d_offset; 12792 /* Zap the reloc on the _tls_get_addr call too. */ 12793 BFD_ASSERT (offset == rel[1].r_offset); 12794 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE); 12795 insn2 = 0x38630000; /* addi 3,3,0 */ 12796 insn3 = bfd_get_32 (output_bfd, 12797 contents + offset + 4); 12798 if (insn3 == NOP 12799 || insn3 == CROR_151515 || insn3 == CROR_313131) 12800 { 12801 rel->r_offset += 4; 12802 bfd_put_32 (output_bfd, insn2, contents + offset + 4); 12803 insn2 = NOP; 12804 } 12805 bfd_put_32 (output_bfd, insn2, contents + offset); 12806 rel--; 12807 continue; 12808 } 12809 break; 12810 12811 case R_PPC64_DTPMOD64: 12812 if (rel + 1 < relend 12813 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64) 12814 && rel[1].r_offset == rel->r_offset + 8) 12815 { 12816 if ((tls_mask & TLS_GD) == 0) 12817 { 12818 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE); 12819 if ((tls_mask & TLS_TPRELGD) != 0) 12820 r_type = R_PPC64_TPREL64; 12821 else 12822 { 12823 bfd_put_64 (output_bfd, 1, contents + rel->r_offset); 12824 r_type = R_PPC64_NONE; 12825 } 12826 rel->r_info = ELF64_R_INFO (r_symndx, r_type); 12827 } 12828 } 12829 else 12830 { 12831 if ((tls_mask & TLS_LD) == 0) 12832 { 12833 bfd_put_64 (output_bfd, 1, contents + rel->r_offset); 12834 r_type = R_PPC64_NONE; 12835 rel->r_info = ELF64_R_INFO (r_symndx, r_type); 12836 } 12837 } 12838 break; 12839 12840 case R_PPC64_TPREL64: 12841 if ((tls_mask & TLS_TPREL) == 0) 12842 { 12843 r_type = R_PPC64_NONE; 12844 rel->r_info = ELF64_R_INFO (r_symndx, r_type); 12845 } 12846 break; 12847 } 12848 12849 /* Handle other relocations that tweak non-addend part of insn. */ 12850 insn = 0; 12851 max_br_offset = 1 << 25; 12852 addend = rel->r_addend; 12853 reloc_dest = DEST_NORMAL; 12854 switch (r_type) 12855 { 12856 default: 12857 break; 12858 12859 case R_PPC64_TOCSAVE: 12860 if (relocation + addend == (rel->r_offset 12861 + input_section->output_offset 12862 + input_section->output_section->vma) 12863 && tocsave_find (htab, NO_INSERT, 12864 &local_syms, rel, input_bfd)) 12865 { 12866 insn = bfd_get_32 (input_bfd, contents + rel->r_offset); 12867 if (insn == NOP 12868 || insn == CROR_151515 || insn == CROR_313131) 12869 bfd_put_32 (input_bfd, STD_R2_40R1, 12870 contents + rel->r_offset); 12871 } 12872 break; 12873 12874 /* Branch taken prediction relocations. */ 12875 case R_PPC64_ADDR14_BRTAKEN: 12876 case R_PPC64_REL14_BRTAKEN: 12877 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */ 12878 /* Fall thru. */ 12879 12880 /* Branch not taken prediction relocations. */ 12881 case R_PPC64_ADDR14_BRNTAKEN: 12882 case R_PPC64_REL14_BRNTAKEN: 12883 insn |= bfd_get_32 (output_bfd, 12884 contents + rel->r_offset) & ~(0x01 << 21); 12885 /* Fall thru. */ 12886 12887 case R_PPC64_REL14: 12888 max_br_offset = 1 << 15; 12889 /* Fall thru. */ 12890 12891 case R_PPC64_REL24: 12892 /* Calls to functions with a different TOC, such as calls to 12893 shared objects, need to alter the TOC pointer. This is 12894 done using a linkage stub. A REL24 branching to these 12895 linkage stubs needs to be followed by a nop, as the nop 12896 will be replaced with an instruction to restore the TOC 12897 base pointer. */ 12898 fdh = h; 12899 if (h != NULL 12900 && h->oh != NULL 12901 && h->oh->is_func_descriptor) 12902 fdh = ppc_follow_link (h->oh); 12903 stub_entry = ppc_get_stub_entry (input_section, sec, fdh, &orig_rel, 12904 htab); 12905 if (stub_entry != NULL 12906 && (stub_entry->stub_type == ppc_stub_plt_call 12907 || stub_entry->stub_type == ppc_stub_plt_call_r2save 12908 || stub_entry->stub_type == ppc_stub_plt_branch_r2off 12909 || stub_entry->stub_type == ppc_stub_long_branch_r2off)) 12910 { 12911 bfd_boolean can_plt_call = FALSE; 12912 12913 if (rel->r_offset + 8 <= input_section->size) 12914 { 12915 unsigned long nop; 12916 nop = bfd_get_32 (input_bfd, contents + rel->r_offset + 4); 12917 if (nop == NOP 12918 || nop == CROR_151515 || nop == CROR_313131) 12919 { 12920 if (h != NULL 12921 && (h == htab->tls_get_addr_fd 12922 || h == htab->tls_get_addr) 12923 && !htab->no_tls_get_addr_opt) 12924 { 12925 /* Special stub used, leave nop alone. */ 12926 } 12927 else 12928 bfd_put_32 (input_bfd, LD_R2_40R1, 12929 contents + rel->r_offset + 4); 12930 can_plt_call = TRUE; 12931 } 12932 } 12933 12934 if (!can_plt_call) 12935 { 12936 if (stub_entry->stub_type == ppc_stub_plt_call 12937 || stub_entry->stub_type == ppc_stub_plt_call_r2save) 12938 { 12939 /* If this is a plain branch rather than a branch 12940 and link, don't require a nop. However, don't 12941 allow tail calls in a shared library as they 12942 will result in r2 being corrupted. */ 12943 unsigned long br; 12944 br = bfd_get_32 (input_bfd, contents + rel->r_offset); 12945 if (info->executable && (br & 1) == 0) 12946 can_plt_call = TRUE; 12947 else 12948 stub_entry = NULL; 12949 } 12950 else if (h != NULL 12951 && strcmp (h->elf.root.root.string, 12952 ".__libc_start_main") == 0) 12953 { 12954 /* Allow crt1 branch to go via a toc adjusting stub. */ 12955 can_plt_call = TRUE; 12956 } 12957 else 12958 { 12959 info->callbacks->einfo 12960 (_("%P: %H: call to `%T' lacks nop, can't restore toc; " 12961 "recompile with -fPIC"), 12962 input_bfd, input_section, rel->r_offset, sym_name); 12963 12964 bfd_set_error (bfd_error_bad_value); 12965 ret = FALSE; 12966 } 12967 } 12968 12969 if (can_plt_call 12970 && (stub_entry->stub_type == ppc_stub_plt_call 12971 || stub_entry->stub_type == ppc_stub_plt_call_r2save)) 12972 unresolved_reloc = FALSE; 12973 } 12974 12975 if ((stub_entry == NULL 12976 || stub_entry->stub_type == ppc_stub_long_branch 12977 || stub_entry->stub_type == ppc_stub_plt_branch) 12978 && get_opd_info (sec) != NULL) 12979 { 12980 /* The branch destination is the value of the opd entry. */ 12981 bfd_vma off = (relocation + addend 12982 - sec->output_section->vma 12983 - sec->output_offset); 12984 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL, FALSE); 12985 if (dest != (bfd_vma) -1) 12986 { 12987 relocation = dest; 12988 addend = 0; 12989 reloc_dest = DEST_OPD; 12990 } 12991 } 12992 12993 /* If the branch is out of reach we ought to have a long 12994 branch stub. */ 12995 from = (rel->r_offset 12996 + input_section->output_offset 12997 + input_section->output_section->vma); 12998 12999 if (stub_entry != NULL 13000 && (stub_entry->stub_type == ppc_stub_long_branch 13001 || stub_entry->stub_type == ppc_stub_plt_branch) 13002 && (r_type == R_PPC64_ADDR14_BRTAKEN 13003 || r_type == R_PPC64_ADDR14_BRNTAKEN 13004 || (relocation + addend - from + max_br_offset 13005 < 2 * max_br_offset))) 13006 /* Don't use the stub if this branch is in range. */ 13007 stub_entry = NULL; 13008 13009 if (stub_entry != NULL) 13010 { 13011 /* Munge up the value and addend so that we call the stub 13012 rather than the procedure directly. */ 13013 relocation = (stub_entry->stub_offset 13014 + stub_entry->stub_sec->output_offset 13015 + stub_entry->stub_sec->output_section->vma); 13016 addend = 0; 13017 reloc_dest = DEST_STUB; 13018 13019 if ((stub_entry->stub_type == ppc_stub_plt_call 13020 || stub_entry->stub_type == ppc_stub_plt_call_r2save) 13021 && (ALWAYS_EMIT_R2SAVE 13022 || stub_entry->stub_type == ppc_stub_plt_call_r2save) 13023 && rel + 1 < relend 13024 && rel[1].r_offset == rel->r_offset + 4 13025 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOCSAVE) 13026 relocation += 4; 13027 } 13028 13029 if (insn != 0) 13030 { 13031 if (is_isa_v2) 13032 { 13033 /* Set 'a' bit. This is 0b00010 in BO field for branch 13034 on CR(BI) insns (BO == 001at or 011at), and 0b01000 13035 for branch on CTR insns (BO == 1a00t or 1a01t). */ 13036 if ((insn & (0x14 << 21)) == (0x04 << 21)) 13037 insn |= 0x02 << 21; 13038 else if ((insn & (0x14 << 21)) == (0x10 << 21)) 13039 insn |= 0x08 << 21; 13040 else 13041 break; 13042 } 13043 else 13044 { 13045 /* Invert 'y' bit if not the default. */ 13046 if ((bfd_signed_vma) (relocation + addend - from) < 0) 13047 insn ^= 0x01 << 21; 13048 } 13049 13050 bfd_put_32 (output_bfd, insn, contents + rel->r_offset); 13051 } 13052 13053 /* NOP out calls to undefined weak functions. 13054 We can thus call a weak function without first 13055 checking whether the function is defined. */ 13056 else if (h != NULL 13057 && h->elf.root.type == bfd_link_hash_undefweak 13058 && h->elf.dynindx == -1 13059 && r_type == R_PPC64_REL24 13060 && relocation == 0 13061 && addend == 0) 13062 { 13063 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset); 13064 continue; 13065 } 13066 break; 13067 } 13068 13069 /* Set `addend'. */ 13070 tls_type = 0; 13071 switch (r_type) 13072 { 13073 default: 13074 info->callbacks->einfo 13075 (_("%P: %B: unknown relocation type %d for `%T'\n"), 13076 input_bfd, (int) r_type, sym_name); 13077 13078 bfd_set_error (bfd_error_bad_value); 13079 ret = FALSE; 13080 continue; 13081 13082 case R_PPC64_NONE: 13083 case R_PPC64_TLS: 13084 case R_PPC64_TLSGD: 13085 case R_PPC64_TLSLD: 13086 case R_PPC64_TOCSAVE: 13087 case R_PPC64_GNU_VTINHERIT: 13088 case R_PPC64_GNU_VTENTRY: 13089 continue; 13090 13091 /* GOT16 relocations. Like an ADDR16 using the symbol's 13092 address in the GOT as relocation value instead of the 13093 symbol's value itself. Also, create a GOT entry for the 13094 symbol and put the symbol value there. */ 13095 case R_PPC64_GOT_TLSGD16: 13096 case R_PPC64_GOT_TLSGD16_LO: 13097 case R_PPC64_GOT_TLSGD16_HI: 13098 case R_PPC64_GOT_TLSGD16_HA: 13099 tls_type = TLS_TLS | TLS_GD; 13100 goto dogot; 13101 13102 case R_PPC64_GOT_TLSLD16: 13103 case R_PPC64_GOT_TLSLD16_LO: 13104 case R_PPC64_GOT_TLSLD16_HI: 13105 case R_PPC64_GOT_TLSLD16_HA: 13106 tls_type = TLS_TLS | TLS_LD; 13107 goto dogot; 13108 13109 case R_PPC64_GOT_TPREL16_DS: 13110 case R_PPC64_GOT_TPREL16_LO_DS: 13111 case R_PPC64_GOT_TPREL16_HI: 13112 case R_PPC64_GOT_TPREL16_HA: 13113 tls_type = TLS_TLS | TLS_TPREL; 13114 goto dogot; 13115 13116 case R_PPC64_GOT_DTPREL16_DS: 13117 case R_PPC64_GOT_DTPREL16_LO_DS: 13118 case R_PPC64_GOT_DTPREL16_HI: 13119 case R_PPC64_GOT_DTPREL16_HA: 13120 tls_type = TLS_TLS | TLS_DTPREL; 13121 goto dogot; 13122 13123 case R_PPC64_GOT16: 13124 case R_PPC64_GOT16_LO: 13125 case R_PPC64_GOT16_HI: 13126 case R_PPC64_GOT16_HA: 13127 case R_PPC64_GOT16_DS: 13128 case R_PPC64_GOT16_LO_DS: 13129 dogot: 13130 { 13131 /* Relocation is to the entry for this symbol in the global 13132 offset table. */ 13133 asection *got; 13134 bfd_vma *offp; 13135 bfd_vma off; 13136 unsigned long indx = 0; 13137 struct got_entry *ent; 13138 13139 if (tls_type == (TLS_TLS | TLS_LD) 13140 && (h == NULL 13141 || !h->elf.def_dynamic)) 13142 ent = ppc64_tlsld_got (input_bfd); 13143 else 13144 { 13145 13146 if (h != NULL) 13147 { 13148 bfd_boolean dyn = htab->elf.dynamic_sections_created; 13149 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, 13150 &h->elf) 13151 || (info->shared 13152 && SYMBOL_CALLS_LOCAL (info, &h->elf))) 13153 /* This is actually a static link, or it is a 13154 -Bsymbolic link and the symbol is defined 13155 locally, or the symbol was forced to be local 13156 because of a version file. */ 13157 ; 13158 else 13159 { 13160 BFD_ASSERT (h->elf.dynindx != -1); 13161 indx = h->elf.dynindx; 13162 unresolved_reloc = FALSE; 13163 } 13164 ent = h->elf.got.glist; 13165 } 13166 else 13167 { 13168 if (local_got_ents == NULL) 13169 abort (); 13170 ent = local_got_ents[r_symndx]; 13171 } 13172 13173 for (; ent != NULL; ent = ent->next) 13174 if (ent->addend == orig_rel.r_addend 13175 && ent->owner == input_bfd 13176 && ent->tls_type == tls_type) 13177 break; 13178 } 13179 13180 if (ent == NULL) 13181 abort (); 13182 if (ent->is_indirect) 13183 ent = ent->got.ent; 13184 offp = &ent->got.offset; 13185 got = ppc64_elf_tdata (ent->owner)->got; 13186 if (got == NULL) 13187 abort (); 13188 13189 /* The offset must always be a multiple of 8. We use the 13190 least significant bit to record whether we have already 13191 processed this entry. */ 13192 off = *offp; 13193 if ((off & 1) != 0) 13194 off &= ~1; 13195 else 13196 { 13197 /* Generate relocs for the dynamic linker, except in 13198 the case of TLSLD where we'll use one entry per 13199 module. */ 13200 asection *relgot; 13201 bfd_boolean ifunc; 13202 13203 *offp = off | 1; 13204 relgot = NULL; 13205 ifunc = (h != NULL 13206 ? h->elf.type == STT_GNU_IFUNC 13207 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC); 13208 if ((info->shared || indx != 0) 13209 && (h == NULL 13210 || (tls_type == (TLS_TLS | TLS_LD) 13211 && !h->elf.def_dynamic) 13212 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT 13213 || h->elf.root.type != bfd_link_hash_undefweak)) 13214 relgot = ppc64_elf_tdata (ent->owner)->relgot; 13215 else if (ifunc) 13216 relgot = htab->reliplt; 13217 if (relgot != NULL) 13218 { 13219 outrel.r_offset = (got->output_section->vma 13220 + got->output_offset 13221 + off); 13222 outrel.r_addend = addend; 13223 if (tls_type & (TLS_LD | TLS_GD)) 13224 { 13225 outrel.r_addend = 0; 13226 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64); 13227 if (tls_type == (TLS_TLS | TLS_GD)) 13228 { 13229 loc = relgot->contents; 13230 loc += (relgot->reloc_count++ 13231 * sizeof (Elf64_External_Rela)); 13232 bfd_elf64_swap_reloca_out (output_bfd, 13233 &outrel, loc); 13234 outrel.r_offset += 8; 13235 outrel.r_addend = addend; 13236 outrel.r_info 13237 = ELF64_R_INFO (indx, R_PPC64_DTPREL64); 13238 } 13239 } 13240 else if (tls_type == (TLS_TLS | TLS_DTPREL)) 13241 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64); 13242 else if (tls_type == (TLS_TLS | TLS_TPREL)) 13243 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64); 13244 else if (indx != 0) 13245 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT); 13246 else 13247 { 13248 if (ifunc) 13249 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE); 13250 else 13251 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE); 13252 13253 /* Write the .got section contents for the sake 13254 of prelink. */ 13255 loc = got->contents + off; 13256 bfd_put_64 (output_bfd, outrel.r_addend + relocation, 13257 loc); 13258 } 13259 13260 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD)) 13261 { 13262 outrel.r_addend += relocation; 13263 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL)) 13264 outrel.r_addend -= htab->elf.tls_sec->vma; 13265 } 13266 loc = relgot->contents; 13267 loc += (relgot->reloc_count++ 13268 * sizeof (Elf64_External_Rela)); 13269 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc); 13270 } 13271 13272 /* Init the .got section contents here if we're not 13273 emitting a reloc. */ 13274 else 13275 { 13276 relocation += addend; 13277 if (tls_type == (TLS_TLS | TLS_LD)) 13278 relocation = 1; 13279 else if (tls_type != 0) 13280 { 13281 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET; 13282 if (tls_type == (TLS_TLS | TLS_TPREL)) 13283 relocation += DTP_OFFSET - TP_OFFSET; 13284 13285 if (tls_type == (TLS_TLS | TLS_GD)) 13286 { 13287 bfd_put_64 (output_bfd, relocation, 13288 got->contents + off + 8); 13289 relocation = 1; 13290 } 13291 } 13292 13293 bfd_put_64 (output_bfd, relocation, 13294 got->contents + off); 13295 } 13296 } 13297 13298 if (off >= (bfd_vma) -2) 13299 abort (); 13300 13301 relocation = got->output_section->vma + got->output_offset + off; 13302 addend = -(TOCstart + htab->stub_group[input_section->id].toc_off); 13303 } 13304 break; 13305 13306 case R_PPC64_PLT16_HA: 13307 case R_PPC64_PLT16_HI: 13308 case R_PPC64_PLT16_LO: 13309 case R_PPC64_PLT32: 13310 case R_PPC64_PLT64: 13311 /* Relocation is to the entry for this symbol in the 13312 procedure linkage table. */ 13313 13314 /* Resolve a PLT reloc against a local symbol directly, 13315 without using the procedure linkage table. */ 13316 if (h == NULL) 13317 break; 13318 13319 /* It's possible that we didn't make a PLT entry for this 13320 symbol. This happens when statically linking PIC code, 13321 or when using -Bsymbolic. Go find a match if there is a 13322 PLT entry. */ 13323 if (htab->plt != NULL) 13324 { 13325 struct plt_entry *ent; 13326 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next) 13327 if (ent->addend == orig_rel.r_addend 13328 && ent->plt.offset != (bfd_vma) -1) 13329 { 13330 relocation = (htab->plt->output_section->vma 13331 + htab->plt->output_offset 13332 + ent->plt.offset); 13333 unresolved_reloc = FALSE; 13334 } 13335 } 13336 break; 13337 13338 case R_PPC64_TOC: 13339 /* Relocation value is TOC base. */ 13340 relocation = TOCstart; 13341 if (r_symndx == STN_UNDEF) 13342 relocation += htab->stub_group[input_section->id].toc_off; 13343 else if (unresolved_reloc) 13344 ; 13345 else if (sec != NULL && sec->id <= htab->top_id) 13346 relocation += htab->stub_group[sec->id].toc_off; 13347 else 13348 unresolved_reloc = TRUE; 13349 goto dodyn; 13350 13351 /* TOC16 relocs. We want the offset relative to the TOC base, 13352 which is the address of the start of the TOC plus 0x8000. 13353 The TOC consists of sections .got, .toc, .tocbss, and .plt, 13354 in this order. */ 13355 case R_PPC64_TOC16: 13356 case R_PPC64_TOC16_LO: 13357 case R_PPC64_TOC16_HI: 13358 case R_PPC64_TOC16_DS: 13359 case R_PPC64_TOC16_LO_DS: 13360 case R_PPC64_TOC16_HA: 13361 addend -= TOCstart + htab->stub_group[input_section->id].toc_off; 13362 break; 13363 13364 /* Relocate against the beginning of the section. */ 13365 case R_PPC64_SECTOFF: 13366 case R_PPC64_SECTOFF_LO: 13367 case R_PPC64_SECTOFF_HI: 13368 case R_PPC64_SECTOFF_DS: 13369 case R_PPC64_SECTOFF_LO_DS: 13370 case R_PPC64_SECTOFF_HA: 13371 if (sec != NULL) 13372 addend -= sec->output_section->vma; 13373 break; 13374 13375 case R_PPC64_REL16: 13376 case R_PPC64_REL16_LO: 13377 case R_PPC64_REL16_HI: 13378 case R_PPC64_REL16_HA: 13379 break; 13380 13381 case R_PPC64_REL14: 13382 case R_PPC64_REL14_BRNTAKEN: 13383 case R_PPC64_REL14_BRTAKEN: 13384 case R_PPC64_REL24: 13385 break; 13386 13387 case R_PPC64_TPREL16: 13388 case R_PPC64_TPREL16_LO: 13389 case R_PPC64_TPREL16_HI: 13390 case R_PPC64_TPREL16_HA: 13391 case R_PPC64_TPREL16_DS: 13392 case R_PPC64_TPREL16_LO_DS: 13393 case R_PPC64_TPREL16_HIGHER: 13394 case R_PPC64_TPREL16_HIGHERA: 13395 case R_PPC64_TPREL16_HIGHEST: 13396 case R_PPC64_TPREL16_HIGHESTA: 13397 if (h != NULL 13398 && h->elf.root.type == bfd_link_hash_undefweak 13399 && h->elf.dynindx == -1) 13400 { 13401 /* Make this relocation against an undefined weak symbol 13402 resolve to zero. This is really just a tweak, since 13403 code using weak externs ought to check that they are 13404 defined before using them. */ 13405 bfd_byte *p = contents + rel->r_offset - d_offset; 13406 13407 insn = bfd_get_32 (output_bfd, p); 13408 insn = _bfd_elf_ppc_at_tprel_transform (insn, 13); 13409 if (insn != 0) 13410 bfd_put_32 (output_bfd, insn, p); 13411 break; 13412 } 13413 addend -= htab->elf.tls_sec->vma + TP_OFFSET; 13414 if (info->shared) 13415 /* The TPREL16 relocs shouldn't really be used in shared 13416 libs as they will result in DT_TEXTREL being set, but 13417 support them anyway. */ 13418 goto dodyn; 13419 break; 13420 13421 case R_PPC64_DTPREL16: 13422 case R_PPC64_DTPREL16_LO: 13423 case R_PPC64_DTPREL16_HI: 13424 case R_PPC64_DTPREL16_HA: 13425 case R_PPC64_DTPREL16_DS: 13426 case R_PPC64_DTPREL16_LO_DS: 13427 case R_PPC64_DTPREL16_HIGHER: 13428 case R_PPC64_DTPREL16_HIGHERA: 13429 case R_PPC64_DTPREL16_HIGHEST: 13430 case R_PPC64_DTPREL16_HIGHESTA: 13431 addend -= htab->elf.tls_sec->vma + DTP_OFFSET; 13432 break; 13433 13434 case R_PPC64_DTPMOD64: 13435 relocation = 1; 13436 addend = 0; 13437 goto dodyn; 13438 13439 case R_PPC64_TPREL64: 13440 addend -= htab->elf.tls_sec->vma + TP_OFFSET; 13441 goto dodyn; 13442 13443 case R_PPC64_DTPREL64: 13444 addend -= htab->elf.tls_sec->vma + DTP_OFFSET; 13445 /* Fall thru */ 13446 13447 /* Relocations that may need to be propagated if this is a 13448 dynamic object. */ 13449 case R_PPC64_REL30: 13450 case R_PPC64_REL32: 13451 case R_PPC64_REL64: 13452 case R_PPC64_ADDR14: 13453 case R_PPC64_ADDR14_BRNTAKEN: 13454 case R_PPC64_ADDR14_BRTAKEN: 13455 case R_PPC64_ADDR16: 13456 case R_PPC64_ADDR16_DS: 13457 case R_PPC64_ADDR16_HA: 13458 case R_PPC64_ADDR16_HI: 13459 case R_PPC64_ADDR16_HIGHER: 13460 case R_PPC64_ADDR16_HIGHERA: 13461 case R_PPC64_ADDR16_HIGHEST: 13462 case R_PPC64_ADDR16_HIGHESTA: 13463 case R_PPC64_ADDR16_LO: 13464 case R_PPC64_ADDR16_LO_DS: 13465 case R_PPC64_ADDR24: 13466 case R_PPC64_ADDR32: 13467 case R_PPC64_ADDR64: 13468 case R_PPC64_UADDR16: 13469 case R_PPC64_UADDR32: 13470 case R_PPC64_UADDR64: 13471 dodyn: 13472 if ((input_section->flags & SEC_ALLOC) == 0) 13473 break; 13474 13475 if (NO_OPD_RELOCS && is_opd) 13476 break; 13477 13478 if ((info->shared 13479 && (h == NULL 13480 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT 13481 || h->elf.root.type != bfd_link_hash_undefweak) 13482 && (must_be_dyn_reloc (info, r_type) 13483 || !SYMBOL_CALLS_LOCAL (info, &h->elf))) 13484 || (ELIMINATE_COPY_RELOCS 13485 && !info->shared 13486 && h != NULL 13487 && h->elf.dynindx != -1 13488 && !h->elf.non_got_ref 13489 && !h->elf.def_regular) 13490 || (!info->shared 13491 && (h != NULL 13492 ? h->elf.type == STT_GNU_IFUNC 13493 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))) 13494 { 13495 bfd_boolean skip, relocate; 13496 asection *sreloc; 13497 bfd_vma out_off; 13498 13499 /* When generating a dynamic object, these relocations 13500 are copied into the output file to be resolved at run 13501 time. */ 13502 13503 skip = FALSE; 13504 relocate = FALSE; 13505 13506 out_off = _bfd_elf_section_offset (output_bfd, info, 13507 input_section, rel->r_offset); 13508 if (out_off == (bfd_vma) -1) 13509 skip = TRUE; 13510 else if (out_off == (bfd_vma) -2) 13511 skip = TRUE, relocate = TRUE; 13512 out_off += (input_section->output_section->vma 13513 + input_section->output_offset); 13514 outrel.r_offset = out_off; 13515 outrel.r_addend = rel->r_addend; 13516 13517 /* Optimize unaligned reloc use. */ 13518 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0) 13519 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0)) 13520 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64; 13521 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0) 13522 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0)) 13523 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32; 13524 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0) 13525 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0)) 13526 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16; 13527 13528 if (skip) 13529 memset (&outrel, 0, sizeof outrel); 13530 else if (!SYMBOL_CALLS_LOCAL (info, &h->elf) 13531 && !is_opd 13532 && r_type != R_PPC64_TOC) 13533 { 13534 BFD_ASSERT (h->elf.dynindx != -1); 13535 outrel.r_info = ELF64_R_INFO (h->elf.dynindx, r_type); 13536 } 13537 else 13538 { 13539 /* This symbol is local, or marked to become local, 13540 or this is an opd section reloc which must point 13541 at a local function. */ 13542 outrel.r_addend += relocation; 13543 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC) 13544 { 13545 if (is_opd && h != NULL) 13546 { 13547 /* Lie about opd entries. This case occurs 13548 when building shared libraries and we 13549 reference a function in another shared 13550 lib. The same thing happens for a weak 13551 definition in an application that's 13552 overridden by a strong definition in a 13553 shared lib. (I believe this is a generic 13554 bug in binutils handling of weak syms.) 13555 In these cases we won't use the opd 13556 entry in this lib. */ 13557 unresolved_reloc = FALSE; 13558 } 13559 if (!is_opd 13560 && r_type == R_PPC64_ADDR64 13561 && (h != NULL 13562 ? h->elf.type == STT_GNU_IFUNC 13563 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)) 13564 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE); 13565 else 13566 { 13567 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE); 13568 13569 /* We need to relocate .opd contents for ld.so. 13570 Prelink also wants simple and consistent rules 13571 for relocs. This make all RELATIVE relocs have 13572 *r_offset equal to r_addend. */ 13573 relocate = TRUE; 13574 } 13575 } 13576 else 13577 { 13578 long indx = 0; 13579 13580 if (h != NULL 13581 ? h->elf.type == STT_GNU_IFUNC 13582 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC) 13583 { 13584 info->callbacks->einfo 13585 (_("%P: %H: %s for indirect " 13586 "function `%T' unsupported\n"), 13587 input_bfd, input_section, rel->r_offset, 13588 ppc64_elf_howto_table[r_type]->name, 13589 sym_name); 13590 ret = FALSE; 13591 } 13592 else if (r_symndx == STN_UNDEF || bfd_is_abs_section (sec)) 13593 ; 13594 else if (sec == NULL || sec->owner == NULL) 13595 { 13596 bfd_set_error (bfd_error_bad_value); 13597 return FALSE; 13598 } 13599 else 13600 { 13601 asection *osec; 13602 13603 osec = sec->output_section; 13604 indx = elf_section_data (osec)->dynindx; 13605 13606 if (indx == 0) 13607 { 13608 if ((osec->flags & SEC_READONLY) == 0 13609 && htab->elf.data_index_section != NULL) 13610 osec = htab->elf.data_index_section; 13611 else 13612 osec = htab->elf.text_index_section; 13613 indx = elf_section_data (osec)->dynindx; 13614 } 13615 BFD_ASSERT (indx != 0); 13616 13617 /* We are turning this relocation into one 13618 against a section symbol, so subtract out 13619 the output section's address but not the 13620 offset of the input section in the output 13621 section. */ 13622 outrel.r_addend -= osec->vma; 13623 } 13624 13625 outrel.r_info = ELF64_R_INFO (indx, r_type); 13626 } 13627 } 13628 13629 sreloc = elf_section_data (input_section)->sreloc; 13630 if (!htab->elf.dynamic_sections_created) 13631 sreloc = htab->reliplt; 13632 if (sreloc == NULL) 13633 abort (); 13634 13635 if (sreloc->reloc_count * sizeof (Elf64_External_Rela) 13636 >= sreloc->size) 13637 abort (); 13638 loc = sreloc->contents; 13639 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela); 13640 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc); 13641 13642 /* If this reloc is against an external symbol, it will 13643 be computed at runtime, so there's no need to do 13644 anything now. However, for the sake of prelink ensure 13645 that the section contents are a known value. */ 13646 if (! relocate) 13647 { 13648 unresolved_reloc = FALSE; 13649 /* The value chosen here is quite arbitrary as ld.so 13650 ignores section contents except for the special 13651 case of .opd where the contents might be accessed 13652 before relocation. Choose zero, as that won't 13653 cause reloc overflow. */ 13654 relocation = 0; 13655 addend = 0; 13656 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs 13657 to improve backward compatibility with older 13658 versions of ld. */ 13659 if (r_type == R_PPC64_ADDR64) 13660 addend = outrel.r_addend; 13661 /* Adjust pc_relative relocs to have zero in *r_offset. */ 13662 else if (ppc64_elf_howto_table[r_type]->pc_relative) 13663 addend = (input_section->output_section->vma 13664 + input_section->output_offset 13665 + rel->r_offset); 13666 } 13667 } 13668 break; 13669 13670 case R_PPC64_COPY: 13671 case R_PPC64_GLOB_DAT: 13672 case R_PPC64_JMP_SLOT: 13673 case R_PPC64_JMP_IREL: 13674 case R_PPC64_RELATIVE: 13675 /* We shouldn't ever see these dynamic relocs in relocatable 13676 files. */ 13677 /* Fall through. */ 13678 13679 case R_PPC64_PLTGOT16: 13680 case R_PPC64_PLTGOT16_DS: 13681 case R_PPC64_PLTGOT16_HA: 13682 case R_PPC64_PLTGOT16_HI: 13683 case R_PPC64_PLTGOT16_LO: 13684 case R_PPC64_PLTGOT16_LO_DS: 13685 case R_PPC64_PLTREL32: 13686 case R_PPC64_PLTREL64: 13687 /* These ones haven't been implemented yet. */ 13688 13689 info->callbacks->einfo 13690 (_("%P: %B: %s is not supported for `%T'\n"), 13691 input_bfd, 13692 ppc64_elf_howto_table[r_type]->name, sym_name); 13693 13694 bfd_set_error (bfd_error_invalid_operation); 13695 ret = FALSE; 13696 continue; 13697 } 13698 13699 /* Multi-instruction sequences that access the TOC can be 13700 optimized, eg. addis ra,r2,0; addi rb,ra,x; 13701 to nop; addi rb,r2,x; */ 13702 switch (r_type) 13703 { 13704 default: 13705 break; 13706 13707 case R_PPC64_GOT_TLSLD16_HI: 13708 case R_PPC64_GOT_TLSGD16_HI: 13709 case R_PPC64_GOT_TPREL16_HI: 13710 case R_PPC64_GOT_DTPREL16_HI: 13711 case R_PPC64_GOT16_HI: 13712 case R_PPC64_TOC16_HI: 13713 /* These relocs would only be useful if building up an 13714 offset to later add to r2, perhaps in an indexed 13715 addressing mode instruction. Don't try to optimize. 13716 Unfortunately, the possibility of someone building up an 13717 offset like this or even with the HA relocs, means that 13718 we need to check the high insn when optimizing the low 13719 insn. */ 13720 break; 13721 13722 case R_PPC64_GOT_TLSLD16_HA: 13723 case R_PPC64_GOT_TLSGD16_HA: 13724 case R_PPC64_GOT_TPREL16_HA: 13725 case R_PPC64_GOT_DTPREL16_HA: 13726 case R_PPC64_GOT16_HA: 13727 case R_PPC64_TOC16_HA: 13728 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000 13729 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn) 13730 { 13731 bfd_byte *p = contents + (rel->r_offset & ~3); 13732 bfd_put_32 (input_bfd, NOP, p); 13733 } 13734 break; 13735 13736 case R_PPC64_GOT_TLSLD16_LO: 13737 case R_PPC64_GOT_TLSGD16_LO: 13738 case R_PPC64_GOT_TPREL16_LO_DS: 13739 case R_PPC64_GOT_DTPREL16_LO_DS: 13740 case R_PPC64_GOT16_LO: 13741 case R_PPC64_GOT16_LO_DS: 13742 case R_PPC64_TOC16_LO: 13743 case R_PPC64_TOC16_LO_DS: 13744 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000 13745 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn) 13746 { 13747 bfd_byte *p = contents + (rel->r_offset & ~3); 13748 insn = bfd_get_32 (input_bfd, p); 13749 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */) 13750 { 13751 /* Transform addic to addi when we change reg. */ 13752 insn &= ~((0x3f << 26) | (0x1f << 16)); 13753 insn |= (14u << 26) | (2 << 16); 13754 } 13755 else 13756 { 13757 insn &= ~(0x1f << 16); 13758 insn |= 2 << 16; 13759 } 13760 bfd_put_32 (input_bfd, insn, p); 13761 } 13762 break; 13763 } 13764 13765 /* Do any further special processing. */ 13766 switch (r_type) 13767 { 13768 default: 13769 break; 13770 13771 case R_PPC64_ADDR16_HA: 13772 case R_PPC64_REL16_HA: 13773 case R_PPC64_ADDR16_HIGHERA: 13774 case R_PPC64_ADDR16_HIGHESTA: 13775 case R_PPC64_TOC16_HA: 13776 case R_PPC64_SECTOFF_HA: 13777 case R_PPC64_TPREL16_HA: 13778 case R_PPC64_DTPREL16_HA: 13779 case R_PPC64_TPREL16_HIGHER: 13780 case R_PPC64_TPREL16_HIGHERA: 13781 case R_PPC64_TPREL16_HIGHEST: 13782 case R_PPC64_TPREL16_HIGHESTA: 13783 case R_PPC64_DTPREL16_HIGHER: 13784 case R_PPC64_DTPREL16_HIGHERA: 13785 case R_PPC64_DTPREL16_HIGHEST: 13786 case R_PPC64_DTPREL16_HIGHESTA: 13787 /* It's just possible that this symbol is a weak symbol 13788 that's not actually defined anywhere. In that case, 13789 'sec' would be NULL, and we should leave the symbol 13790 alone (it will be set to zero elsewhere in the link). */ 13791 if (sec == NULL) 13792 break; 13793 /* Fall thru */ 13794 13795 case R_PPC64_GOT16_HA: 13796 case R_PPC64_PLTGOT16_HA: 13797 case R_PPC64_PLT16_HA: 13798 case R_PPC64_GOT_TLSGD16_HA: 13799 case R_PPC64_GOT_TLSLD16_HA: 13800 case R_PPC64_GOT_TPREL16_HA: 13801 case R_PPC64_GOT_DTPREL16_HA: 13802 /* Add 0x10000 if sign bit in 0:15 is set. 13803 Bits 0:15 are not used. */ 13804 addend += 0x8000; 13805 break; 13806 13807 case R_PPC64_ADDR16_DS: 13808 case R_PPC64_ADDR16_LO_DS: 13809 case R_PPC64_GOT16_DS: 13810 case R_PPC64_GOT16_LO_DS: 13811 case R_PPC64_PLT16_LO_DS: 13812 case R_PPC64_SECTOFF_DS: 13813 case R_PPC64_SECTOFF_LO_DS: 13814 case R_PPC64_TOC16_DS: 13815 case R_PPC64_TOC16_LO_DS: 13816 case R_PPC64_PLTGOT16_DS: 13817 case R_PPC64_PLTGOT16_LO_DS: 13818 case R_PPC64_GOT_TPREL16_DS: 13819 case R_PPC64_GOT_TPREL16_LO_DS: 13820 case R_PPC64_GOT_DTPREL16_DS: 13821 case R_PPC64_GOT_DTPREL16_LO_DS: 13822 case R_PPC64_TPREL16_DS: 13823 case R_PPC64_TPREL16_LO_DS: 13824 case R_PPC64_DTPREL16_DS: 13825 case R_PPC64_DTPREL16_LO_DS: 13826 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3)); 13827 mask = 3; 13828 /* If this reloc is against an lq insn, then the value must be 13829 a multiple of 16. This is somewhat of a hack, but the 13830 "correct" way to do this by defining _DQ forms of all the 13831 _DS relocs bloats all reloc switches in this file. It 13832 doesn't seem to make much sense to use any of these relocs 13833 in data, so testing the insn should be safe. */ 13834 if ((insn & (0x3f << 26)) == (56u << 26)) 13835 mask = 15; 13836 if (((relocation + addend) & mask) != 0) 13837 { 13838 info->callbacks->einfo 13839 (_("%P: %H: error: %s not a multiple of %u\n"), 13840 input_bfd, input_section, rel->r_offset, 13841 ppc64_elf_howto_table[r_type]->name, 13842 mask + 1); 13843 bfd_set_error (bfd_error_bad_value); 13844 ret = FALSE; 13845 continue; 13846 } 13847 break; 13848 } 13849 13850 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections 13851 because such sections are not SEC_ALLOC and thus ld.so will 13852 not process them. */ 13853 if (unresolved_reloc 13854 && !((input_section->flags & SEC_DEBUGGING) != 0 13855 && h->elf.def_dynamic) 13856 && _bfd_elf_section_offset (output_bfd, info, input_section, 13857 rel->r_offset) != (bfd_vma) -1) 13858 { 13859 info->callbacks->einfo 13860 (_("%P: %H: unresolvable %s against `%T'\n"), 13861 input_bfd, input_section, rel->r_offset, 13862 ppc64_elf_howto_table[(int) r_type]->name, 13863 h->elf.root.root.string); 13864 ret = FALSE; 13865 } 13866 13867 r = _bfd_final_link_relocate (ppc64_elf_howto_table[(int) r_type], 13868 input_bfd, 13869 input_section, 13870 contents, 13871 rel->r_offset, 13872 relocation, 13873 addend); 13874 13875 if (r != bfd_reloc_ok) 13876 { 13877 char *more_info = NULL; 13878 const char *reloc_name = ppc64_elf_howto_table[r_type]->name; 13879 13880 if (reloc_dest != DEST_NORMAL) 13881 { 13882 more_info = bfd_malloc (strlen (reloc_name) + 8); 13883 if (more_info != NULL) 13884 { 13885 strcpy (more_info, reloc_name); 13886 strcat (more_info, (reloc_dest == DEST_OPD 13887 ? " (OPD)" : " (stub)")); 13888 reloc_name = more_info; 13889 } 13890 } 13891 13892 if (r == bfd_reloc_overflow) 13893 { 13894 if (warned) 13895 continue; 13896 if (h != NULL 13897 && h->elf.root.type == bfd_link_hash_undefweak 13898 && ppc64_elf_howto_table[r_type]->pc_relative) 13899 { 13900 /* Assume this is a call protected by other code that 13901 detects the symbol is undefined. If this is the case, 13902 we can safely ignore the overflow. If not, the 13903 program is hosed anyway, and a little warning isn't 13904 going to help. */ 13905 13906 continue; 13907 } 13908 13909 if (!((*info->callbacks->reloc_overflow) 13910 (info, &h->elf.root, sym_name, 13911 reloc_name, orig_rel.r_addend, 13912 input_bfd, input_section, rel->r_offset))) 13913 return FALSE; 13914 } 13915 else 13916 { 13917 info->callbacks->einfo 13918 (_("%P: %H: %s against `%T': error %d\n"), 13919 input_bfd, input_section, rel->r_offset, 13920 reloc_name, sym_name, (int) r); 13921 ret = FALSE; 13922 } 13923 if (more_info != NULL) 13924 free (more_info); 13925 } 13926 } 13927 13928 /* If we're emitting relocations, then shortly after this function 13929 returns, reloc offsets and addends for this section will be 13930 adjusted. Worse, reloc symbol indices will be for the output 13931 file rather than the input. Save a copy of the relocs for 13932 opd_entry_value. */ 13933 if (is_opd && (info->emitrelocations || info->relocatable)) 13934 { 13935 bfd_size_type amt; 13936 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela); 13937 rel = bfd_alloc (input_bfd, amt); 13938 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd_relocs == NULL); 13939 ppc64_elf_tdata (input_bfd)->opd_relocs = rel; 13940 if (rel == NULL) 13941 return FALSE; 13942 memcpy (rel, relocs, amt); 13943 } 13944 return ret; 13945 } 13946 13947 /* Adjust the value of any local symbols in opd sections. */ 13948 13949 static int 13950 ppc64_elf_output_symbol_hook (struct bfd_link_info *info, 13951 const char *name ATTRIBUTE_UNUSED, 13952 Elf_Internal_Sym *elfsym, 13953 asection *input_sec, 13954 struct elf_link_hash_entry *h) 13955 { 13956 struct _opd_sec_data *opd; 13957 long adjust; 13958 bfd_vma value; 13959 13960 if (h != NULL) 13961 return 1; 13962 13963 opd = get_opd_info (input_sec); 13964 if (opd == NULL || opd->adjust == NULL) 13965 return 1; 13966 13967 value = elfsym->st_value - input_sec->output_offset; 13968 if (!info->relocatable) 13969 value -= input_sec->output_section->vma; 13970 13971 adjust = opd->adjust[value / 8]; 13972 if (adjust == -1) 13973 return 2; 13974 13975 elfsym->st_value += adjust; 13976 return 1; 13977 } 13978 13979 /* Finish up dynamic symbol handling. We set the contents of various 13980 dynamic sections here. */ 13981 13982 static bfd_boolean 13983 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd, 13984 struct bfd_link_info *info, 13985 struct elf_link_hash_entry *h, 13986 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED) 13987 { 13988 struct ppc_link_hash_table *htab; 13989 struct plt_entry *ent; 13990 Elf_Internal_Rela rela; 13991 bfd_byte *loc; 13992 13993 htab = ppc_hash_table (info); 13994 if (htab == NULL) 13995 return FALSE; 13996 13997 for (ent = h->plt.plist; ent != NULL; ent = ent->next) 13998 if (ent->plt.offset != (bfd_vma) -1) 13999 { 14000 /* This symbol has an entry in the procedure linkage 14001 table. Set it up. */ 14002 if (!htab->elf.dynamic_sections_created 14003 || h->dynindx == -1) 14004 { 14005 BFD_ASSERT (h->type == STT_GNU_IFUNC 14006 && h->def_regular 14007 && (h->root.type == bfd_link_hash_defined 14008 || h->root.type == bfd_link_hash_defweak)); 14009 rela.r_offset = (htab->iplt->output_section->vma 14010 + htab->iplt->output_offset 14011 + ent->plt.offset); 14012 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL); 14013 rela.r_addend = (h->root.u.def.value 14014 + h->root.u.def.section->output_offset 14015 + h->root.u.def.section->output_section->vma 14016 + ent->addend); 14017 loc = (htab->reliplt->contents 14018 + (htab->reliplt->reloc_count++ 14019 * sizeof (Elf64_External_Rela))); 14020 } 14021 else 14022 { 14023 rela.r_offset = (htab->plt->output_section->vma 14024 + htab->plt->output_offset 14025 + ent->plt.offset); 14026 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT); 14027 rela.r_addend = ent->addend; 14028 loc = (htab->relplt->contents 14029 + ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE) 14030 / (PLT_ENTRY_SIZE / sizeof (Elf64_External_Rela)))); 14031 } 14032 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc); 14033 } 14034 14035 if (h->needs_copy) 14036 { 14037 /* This symbol needs a copy reloc. Set it up. */ 14038 14039 if (h->dynindx == -1 14040 || (h->root.type != bfd_link_hash_defined 14041 && h->root.type != bfd_link_hash_defweak) 14042 || htab->relbss == NULL) 14043 abort (); 14044 14045 rela.r_offset = (h->root.u.def.value 14046 + h->root.u.def.section->output_section->vma 14047 + h->root.u.def.section->output_offset); 14048 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY); 14049 rela.r_addend = 0; 14050 loc = htab->relbss->contents; 14051 loc += htab->relbss->reloc_count++ * sizeof (Elf64_External_Rela); 14052 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc); 14053 } 14054 14055 return TRUE; 14056 } 14057 14058 /* Used to decide how to sort relocs in an optimal manner for the 14059 dynamic linker, before writing them out. */ 14060 14061 static enum elf_reloc_type_class 14062 ppc64_elf_reloc_type_class (const Elf_Internal_Rela *rela) 14063 { 14064 enum elf_ppc64_reloc_type r_type; 14065 14066 r_type = ELF64_R_TYPE (rela->r_info); 14067 switch (r_type) 14068 { 14069 case R_PPC64_RELATIVE: 14070 return reloc_class_relative; 14071 case R_PPC64_JMP_SLOT: 14072 return reloc_class_plt; 14073 case R_PPC64_COPY: 14074 return reloc_class_copy; 14075 default: 14076 return reloc_class_normal; 14077 } 14078 } 14079 14080 /* Finish up the dynamic sections. */ 14081 14082 static bfd_boolean 14083 ppc64_elf_finish_dynamic_sections (bfd *output_bfd, 14084 struct bfd_link_info *info) 14085 { 14086 struct ppc_link_hash_table *htab; 14087 bfd *dynobj; 14088 asection *sdyn; 14089 14090 htab = ppc_hash_table (info); 14091 if (htab == NULL) 14092 return FALSE; 14093 14094 dynobj = htab->elf.dynobj; 14095 sdyn = bfd_get_linker_section (dynobj, ".dynamic"); 14096 14097 if (htab->elf.dynamic_sections_created) 14098 { 14099 Elf64_External_Dyn *dyncon, *dynconend; 14100 14101 if (sdyn == NULL || htab->got == NULL) 14102 abort (); 14103 14104 dyncon = (Elf64_External_Dyn *) sdyn->contents; 14105 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size); 14106 for (; dyncon < dynconend; dyncon++) 14107 { 14108 Elf_Internal_Dyn dyn; 14109 asection *s; 14110 14111 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn); 14112 14113 switch (dyn.d_tag) 14114 { 14115 default: 14116 continue; 14117 14118 case DT_PPC64_GLINK: 14119 s = htab->glink; 14120 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; 14121 /* We stupidly defined DT_PPC64_GLINK to be the start 14122 of glink rather than the first entry point, which is 14123 what ld.so needs, and now have a bigger stub to 14124 support automatic multiple TOCs. */ 14125 dyn.d_un.d_ptr += GLINK_CALL_STUB_SIZE - 32; 14126 break; 14127 14128 case DT_PPC64_OPD: 14129 s = bfd_get_section_by_name (output_bfd, ".opd"); 14130 if (s == NULL) 14131 continue; 14132 dyn.d_un.d_ptr = s->vma; 14133 break; 14134 14135 case DT_PPC64_OPDSZ: 14136 s = bfd_get_section_by_name (output_bfd, ".opd"); 14137 if (s == NULL) 14138 continue; 14139 dyn.d_un.d_val = s->size; 14140 break; 14141 14142 case DT_PLTGOT: 14143 s = htab->plt; 14144 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; 14145 break; 14146 14147 case DT_JMPREL: 14148 s = htab->relplt; 14149 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; 14150 break; 14151 14152 case DT_PLTRELSZ: 14153 dyn.d_un.d_val = htab->relplt->size; 14154 break; 14155 14156 case DT_RELASZ: 14157 /* Don't count procedure linkage table relocs in the 14158 overall reloc count. */ 14159 s = htab->relplt; 14160 if (s == NULL) 14161 continue; 14162 dyn.d_un.d_val -= s->size; 14163 break; 14164 14165 case DT_RELA: 14166 /* We may not be using the standard ELF linker script. 14167 If .rela.plt is the first .rela section, we adjust 14168 DT_RELA to not include it. */ 14169 s = htab->relplt; 14170 if (s == NULL) 14171 continue; 14172 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset) 14173 continue; 14174 dyn.d_un.d_ptr += s->size; 14175 break; 14176 } 14177 14178 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); 14179 } 14180 } 14181 14182 if (htab->got != NULL && htab->got->size != 0) 14183 { 14184 /* Fill in the first entry in the global offset table. 14185 We use it to hold the link-time TOCbase. */ 14186 bfd_put_64 (output_bfd, 14187 elf_gp (output_bfd) + TOC_BASE_OFF, 14188 htab->got->contents); 14189 14190 /* Set .got entry size. */ 14191 elf_section_data (htab->got->output_section)->this_hdr.sh_entsize = 8; 14192 } 14193 14194 if (htab->plt != NULL && htab->plt->size != 0) 14195 { 14196 /* Set .plt entry size. */ 14197 elf_section_data (htab->plt->output_section)->this_hdr.sh_entsize 14198 = PLT_ENTRY_SIZE; 14199 } 14200 14201 /* brlt is SEC_LINKER_CREATED, so we need to write out relocs for 14202 brlt ourselves if emitrelocations. */ 14203 if (htab->brlt != NULL 14204 && htab->brlt->reloc_count != 0 14205 && !_bfd_elf_link_output_relocs (output_bfd, 14206 htab->brlt, 14207 elf_section_data (htab->brlt)->rela.hdr, 14208 elf_section_data (htab->brlt)->relocs, 14209 NULL)) 14210 return FALSE; 14211 14212 if (htab->glink != NULL 14213 && htab->glink->reloc_count != 0 14214 && !_bfd_elf_link_output_relocs (output_bfd, 14215 htab->glink, 14216 elf_section_data (htab->glink)->rela.hdr, 14217 elf_section_data (htab->glink)->relocs, 14218 NULL)) 14219 return FALSE; 14220 14221 14222 if (htab->glink_eh_frame != NULL 14223 && htab->glink_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME 14224 && !_bfd_elf_write_section_eh_frame (output_bfd, info, 14225 htab->glink_eh_frame, 14226 htab->glink_eh_frame->contents)) 14227 return FALSE; 14228 14229 /* We need to handle writing out multiple GOT sections ourselves, 14230 since we didn't add them to DYNOBJ. We know dynobj is the first 14231 bfd. */ 14232 while ((dynobj = dynobj->link_next) != NULL) 14233 { 14234 asection *s; 14235 14236 if (!is_ppc64_elf (dynobj)) 14237 continue; 14238 14239 s = ppc64_elf_tdata (dynobj)->got; 14240 if (s != NULL 14241 && s->size != 0 14242 && s->output_section != bfd_abs_section_ptr 14243 && !bfd_set_section_contents (output_bfd, s->output_section, 14244 s->contents, s->output_offset, 14245 s->size)) 14246 return FALSE; 14247 s = ppc64_elf_tdata (dynobj)->relgot; 14248 if (s != NULL 14249 && s->size != 0 14250 && s->output_section != bfd_abs_section_ptr 14251 && !bfd_set_section_contents (output_bfd, s->output_section, 14252 s->contents, s->output_offset, 14253 s->size)) 14254 return FALSE; 14255 } 14256 14257 return TRUE; 14258 } 14259 14260 #include "elf64-target.h" 14261 14262 /* FreeBSD support */ 14263 14264 #undef TARGET_LITTLE_SYM 14265 #undef TARGET_LITTLE_NAME 14266 14267 #undef TARGET_BIG_SYM 14268 #define TARGET_BIG_SYM bfd_elf64_powerpc_freebsd_vec 14269 #undef TARGET_BIG_NAME 14270 #define TARGET_BIG_NAME "elf64-powerpc-freebsd" 14271 14272 #undef ELF_OSABI 14273 #define ELF_OSABI ELFOSABI_FREEBSD 14274 14275 #undef elf64_bed 14276 #define elf64_bed elf64_powerpc_fbsd_bed 14277 14278 #include "elf64-target.h" 14279 14280