1 /* MMIX-specific support for 64-bit ELF. 2 Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007 3 Free Software Foundation, Inc. 4 Contributed by Hans-Peter Nilsson <hp@bitrange.com> 5 6 This file is part of BFD, the Binary File Descriptor library. 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License as published by 10 the Free Software Foundation; either version 3 of the License, or 11 (at your option) any later version. 12 13 This program is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 GNU General Public License for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with this program; if not, write to the Free Software 20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 21 MA 02110-1301, USA. */ 22 23 24 /* No specific ABI or "processor-specific supplement" defined. */ 25 26 /* TODO: 27 - "Traditional" linker relaxation (shrinking whole sections). 28 - Merge reloc stubs jumping to same location. 29 - GETA stub relaxation (call a stub for out of range new 30 R_MMIX_GETA_STUBBABLE). */ 31 32 #include "sysdep.h" 33 #include "bfd.h" 34 #include "libbfd.h" 35 #include "elf-bfd.h" 36 #include "elf/mmix.h" 37 #include "opcode/mmix.h" 38 39 #define MINUS_ONE (((bfd_vma) 0) - 1) 40 41 #define MAX_PUSHJ_STUB_SIZE (5 * 4) 42 43 /* Put these everywhere in new code. */ 44 #define FATAL_DEBUG \ 45 _bfd_abort (__FILE__, __LINE__, \ 46 "Internal: Non-debugged code (test-case missing)") 47 48 #define BAD_CASE(x) \ 49 _bfd_abort (__FILE__, __LINE__, \ 50 "bad case for " #x) 51 52 struct _mmix_elf_section_data 53 { 54 struct bfd_elf_section_data elf; 55 union 56 { 57 struct bpo_reloc_section_info *reloc; 58 struct bpo_greg_section_info *greg; 59 } bpo; 60 61 struct pushj_stub_info 62 { 63 /* Maximum number of stubs needed for this section. */ 64 bfd_size_type n_pushj_relocs; 65 66 /* Size of stubs after a mmix_elf_relax_section round. */ 67 bfd_size_type stubs_size_sum; 68 69 /* Per-reloc stubs_size_sum information. The stubs_size_sum member is the sum 70 of these. Allocated in mmix_elf_check_common_relocs. */ 71 bfd_size_type *stub_size; 72 73 /* Offset of next stub during relocation. Somewhat redundant with the 74 above: error coverage is easier and we don't have to reset the 75 stubs_size_sum for relocation. */ 76 bfd_size_type stub_offset; 77 } pjs; 78 }; 79 80 #define mmix_elf_section_data(sec) \ 81 ((struct _mmix_elf_section_data *) elf_section_data (sec)) 82 83 /* For each section containing a base-plus-offset (BPO) reloc, we attach 84 this struct as mmix_elf_section_data (section)->bpo, which is otherwise 85 NULL. */ 86 struct bpo_reloc_section_info 87 { 88 /* The base is 1; this is the first number in this section. */ 89 size_t first_base_plus_offset_reloc; 90 91 /* Number of BPO-relocs in this section. */ 92 size_t n_bpo_relocs_this_section; 93 94 /* Running index, used at relocation time. */ 95 size_t bpo_index; 96 97 /* We don't have access to the bfd_link_info struct in 98 mmix_final_link_relocate. What we really want to get at is the 99 global single struct greg_relocation, so we stash it here. */ 100 asection *bpo_greg_section; 101 }; 102 103 /* Helper struct (in global context) for the one below. 104 There's one of these created for every BPO reloc. */ 105 struct bpo_reloc_request 106 { 107 bfd_vma value; 108 109 /* Valid after relaxation. The base is 0; the first register number 110 must be added. The offset is in range 0..255. */ 111 size_t regindex; 112 size_t offset; 113 114 /* The order number for this BPO reloc, corresponding to the order in 115 which BPO relocs were found. Used to create an index after reloc 116 requests are sorted. */ 117 size_t bpo_reloc_no; 118 119 /* Set when the value is computed. Better than coding "guard values" 120 into the other members. Is FALSE only for BPO relocs in a GC:ed 121 section. */ 122 bfd_boolean valid; 123 }; 124 125 /* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated 126 greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME), 127 which is linked into the register contents section 128 (MMIX_REG_CONTENTS_SECTION_NAME). This section is created by the 129 linker; using the same hook as for usual with BPO relocs does not 130 collide. */ 131 struct bpo_greg_section_info 132 { 133 /* After GC, this reflects the number of remaining, non-excluded 134 BPO-relocs. */ 135 size_t n_bpo_relocs; 136 137 /* This is the number of allocated bpo_reloc_requests; the size of 138 sorted_indexes. Valid after the check.*relocs functions are called 139 for all incoming sections. It includes the number of BPO relocs in 140 sections that were GC:ed. */ 141 size_t n_max_bpo_relocs; 142 143 /* A counter used to find out when to fold the BPO gregs, since we 144 don't have a single "after-relaxation" hook. */ 145 size_t n_remaining_bpo_relocs_this_relaxation_round; 146 147 /* The number of linker-allocated GREGs resulting from BPO relocs. 148 This is an approximation after _bfd_mmix_before_linker_allocation 149 and supposedly accurate after mmix_elf_relax_section is called for 150 all incoming non-collected sections. */ 151 size_t n_allocated_bpo_gregs; 152 153 /* Index into reloc_request[], sorted on increasing "value", secondary 154 by increasing index for strict sorting order. */ 155 size_t *bpo_reloc_indexes; 156 157 /* An array of all relocations, with the "value" member filled in by 158 the relaxation function. */ 159 struct bpo_reloc_request *reloc_request; 160 }; 161 162 static bfd_boolean mmix_elf_link_output_symbol_hook 163 PARAMS ((struct bfd_link_info *, const char *, Elf_Internal_Sym *, 164 asection *, struct elf_link_hash_entry *)); 165 166 static bfd_reloc_status_type mmix_elf_reloc 167 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **)); 168 169 static reloc_howto_type *bfd_elf64_bfd_reloc_type_lookup 170 PARAMS ((bfd *, bfd_reloc_code_real_type)); 171 172 static void mmix_info_to_howto_rela 173 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *)); 174 175 static int mmix_elf_sort_relocs PARAMS ((const PTR, const PTR)); 176 177 static bfd_boolean mmix_elf_new_section_hook 178 PARAMS ((bfd *, asection *)); 179 180 static bfd_boolean mmix_elf_check_relocs 181 PARAMS ((bfd *, struct bfd_link_info *, asection *, 182 const Elf_Internal_Rela *)); 183 184 static bfd_boolean mmix_elf_check_common_relocs 185 PARAMS ((bfd *, struct bfd_link_info *, asection *, 186 const Elf_Internal_Rela *)); 187 188 static bfd_boolean mmix_elf_relocate_section 189 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, 190 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **)); 191 192 static bfd_reloc_status_type mmix_final_link_relocate 193 PARAMS ((reloc_howto_type *, asection *, bfd_byte *, 194 bfd_vma, bfd_signed_vma, bfd_vma, const char *, asection *)); 195 196 static bfd_reloc_status_type mmix_elf_perform_relocation 197 PARAMS ((asection *, reloc_howto_type *, PTR, bfd_vma, bfd_vma)); 198 199 static bfd_boolean mmix_elf_section_from_bfd_section 200 PARAMS ((bfd *, asection *, int *)); 201 202 static bfd_boolean mmix_elf_add_symbol_hook 203 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Sym *, 204 const char **, flagword *, asection **, bfd_vma *)); 205 206 static bfd_boolean mmix_elf_is_local_label_name 207 PARAMS ((bfd *, const char *)); 208 209 static int bpo_reloc_request_sort_fn PARAMS ((const PTR, const PTR)); 210 211 static bfd_boolean mmix_elf_relax_section 212 PARAMS ((bfd *abfd, asection *sec, struct bfd_link_info *link_info, 213 bfd_boolean *again)); 214 215 extern bfd_boolean mmix_elf_final_link PARAMS ((bfd *, struct bfd_link_info *)); 216 217 extern void mmix_elf_symbol_processing PARAMS ((bfd *, asymbol *)); 218 219 /* Only intended to be called from a debugger. */ 220 extern void mmix_dump_bpo_gregs 221 PARAMS ((struct bfd_link_info *, bfd_error_handler_type)); 222 223 static void 224 mmix_set_relaxable_size 225 PARAMS ((bfd *, asection *, void *)); 226 227 228 /* Watch out: this currently needs to have elements with the same index as 229 their R_MMIX_ number. */ 230 static reloc_howto_type elf_mmix_howto_table[] = 231 { 232 /* This reloc does nothing. */ 233 HOWTO (R_MMIX_NONE, /* type */ 234 0, /* rightshift */ 235 2, /* size (0 = byte, 1 = short, 2 = long) */ 236 32, /* bitsize */ 237 FALSE, /* pc_relative */ 238 0, /* bitpos */ 239 complain_overflow_bitfield, /* complain_on_overflow */ 240 bfd_elf_generic_reloc, /* special_function */ 241 "R_MMIX_NONE", /* name */ 242 FALSE, /* partial_inplace */ 243 0, /* src_mask */ 244 0, /* dst_mask */ 245 FALSE), /* pcrel_offset */ 246 247 /* An 8 bit absolute relocation. */ 248 HOWTO (R_MMIX_8, /* type */ 249 0, /* rightshift */ 250 0, /* size (0 = byte, 1 = short, 2 = long) */ 251 8, /* bitsize */ 252 FALSE, /* pc_relative */ 253 0, /* bitpos */ 254 complain_overflow_bitfield, /* complain_on_overflow */ 255 bfd_elf_generic_reloc, /* special_function */ 256 "R_MMIX_8", /* name */ 257 FALSE, /* partial_inplace */ 258 0, /* src_mask */ 259 0xff, /* dst_mask */ 260 FALSE), /* pcrel_offset */ 261 262 /* An 16 bit absolute relocation. */ 263 HOWTO (R_MMIX_16, /* type */ 264 0, /* rightshift */ 265 1, /* size (0 = byte, 1 = short, 2 = long) */ 266 16, /* bitsize */ 267 FALSE, /* pc_relative */ 268 0, /* bitpos */ 269 complain_overflow_bitfield, /* complain_on_overflow */ 270 bfd_elf_generic_reloc, /* special_function */ 271 "R_MMIX_16", /* name */ 272 FALSE, /* partial_inplace */ 273 0, /* src_mask */ 274 0xffff, /* dst_mask */ 275 FALSE), /* pcrel_offset */ 276 277 /* An 24 bit absolute relocation. */ 278 HOWTO (R_MMIX_24, /* type */ 279 0, /* rightshift */ 280 2, /* size (0 = byte, 1 = short, 2 = long) */ 281 24, /* bitsize */ 282 FALSE, /* pc_relative */ 283 0, /* bitpos */ 284 complain_overflow_bitfield, /* complain_on_overflow */ 285 bfd_elf_generic_reloc, /* special_function */ 286 "R_MMIX_24", /* name */ 287 FALSE, /* partial_inplace */ 288 ~0xffffff, /* src_mask */ 289 0xffffff, /* dst_mask */ 290 FALSE), /* pcrel_offset */ 291 292 /* A 32 bit absolute relocation. */ 293 HOWTO (R_MMIX_32, /* type */ 294 0, /* rightshift */ 295 2, /* size (0 = byte, 1 = short, 2 = long) */ 296 32, /* bitsize */ 297 FALSE, /* pc_relative */ 298 0, /* bitpos */ 299 complain_overflow_bitfield, /* complain_on_overflow */ 300 bfd_elf_generic_reloc, /* special_function */ 301 "R_MMIX_32", /* name */ 302 FALSE, /* partial_inplace */ 303 0, /* src_mask */ 304 0xffffffff, /* dst_mask */ 305 FALSE), /* pcrel_offset */ 306 307 /* 64 bit relocation. */ 308 HOWTO (R_MMIX_64, /* type */ 309 0, /* rightshift */ 310 4, /* size (0 = byte, 1 = short, 2 = long) */ 311 64, /* bitsize */ 312 FALSE, /* pc_relative */ 313 0, /* bitpos */ 314 complain_overflow_bitfield, /* complain_on_overflow */ 315 bfd_elf_generic_reloc, /* special_function */ 316 "R_MMIX_64", /* name */ 317 FALSE, /* partial_inplace */ 318 0, /* src_mask */ 319 MINUS_ONE, /* dst_mask */ 320 FALSE), /* pcrel_offset */ 321 322 /* An 8 bit PC-relative relocation. */ 323 HOWTO (R_MMIX_PC_8, /* type */ 324 0, /* rightshift */ 325 0, /* size (0 = byte, 1 = short, 2 = long) */ 326 8, /* bitsize */ 327 TRUE, /* pc_relative */ 328 0, /* bitpos */ 329 complain_overflow_bitfield, /* complain_on_overflow */ 330 bfd_elf_generic_reloc, /* special_function */ 331 "R_MMIX_PC_8", /* name */ 332 FALSE, /* partial_inplace */ 333 0, /* src_mask */ 334 0xff, /* dst_mask */ 335 TRUE), /* pcrel_offset */ 336 337 /* An 16 bit PC-relative relocation. */ 338 HOWTO (R_MMIX_PC_16, /* type */ 339 0, /* rightshift */ 340 1, /* size (0 = byte, 1 = short, 2 = long) */ 341 16, /* bitsize */ 342 TRUE, /* pc_relative */ 343 0, /* bitpos */ 344 complain_overflow_bitfield, /* complain_on_overflow */ 345 bfd_elf_generic_reloc, /* special_function */ 346 "R_MMIX_PC_16", /* name */ 347 FALSE, /* partial_inplace */ 348 0, /* src_mask */ 349 0xffff, /* dst_mask */ 350 TRUE), /* pcrel_offset */ 351 352 /* An 24 bit PC-relative relocation. */ 353 HOWTO (R_MMIX_PC_24, /* type */ 354 0, /* rightshift */ 355 2, /* size (0 = byte, 1 = short, 2 = long) */ 356 24, /* bitsize */ 357 TRUE, /* pc_relative */ 358 0, /* bitpos */ 359 complain_overflow_bitfield, /* complain_on_overflow */ 360 bfd_elf_generic_reloc, /* special_function */ 361 "R_MMIX_PC_24", /* name */ 362 FALSE, /* partial_inplace */ 363 ~0xffffff, /* src_mask */ 364 0xffffff, /* dst_mask */ 365 TRUE), /* pcrel_offset */ 366 367 /* A 32 bit absolute PC-relative relocation. */ 368 HOWTO (R_MMIX_PC_32, /* type */ 369 0, /* rightshift */ 370 2, /* size (0 = byte, 1 = short, 2 = long) */ 371 32, /* bitsize */ 372 TRUE, /* pc_relative */ 373 0, /* bitpos */ 374 complain_overflow_bitfield, /* complain_on_overflow */ 375 bfd_elf_generic_reloc, /* special_function */ 376 "R_MMIX_PC_32", /* name */ 377 FALSE, /* partial_inplace */ 378 0, /* src_mask */ 379 0xffffffff, /* dst_mask */ 380 TRUE), /* pcrel_offset */ 381 382 /* 64 bit PC-relative relocation. */ 383 HOWTO (R_MMIX_PC_64, /* type */ 384 0, /* rightshift */ 385 4, /* size (0 = byte, 1 = short, 2 = long) */ 386 64, /* bitsize */ 387 TRUE, /* pc_relative */ 388 0, /* bitpos */ 389 complain_overflow_bitfield, /* complain_on_overflow */ 390 bfd_elf_generic_reloc, /* special_function */ 391 "R_MMIX_PC_64", /* name */ 392 FALSE, /* partial_inplace */ 393 0, /* src_mask */ 394 MINUS_ONE, /* dst_mask */ 395 TRUE), /* pcrel_offset */ 396 397 /* GNU extension to record C++ vtable hierarchy. */ 398 HOWTO (R_MMIX_GNU_VTINHERIT, /* type */ 399 0, /* rightshift */ 400 0, /* size (0 = byte, 1 = short, 2 = long) */ 401 0, /* bitsize */ 402 FALSE, /* pc_relative */ 403 0, /* bitpos */ 404 complain_overflow_dont, /* complain_on_overflow */ 405 NULL, /* special_function */ 406 "R_MMIX_GNU_VTINHERIT", /* name */ 407 FALSE, /* partial_inplace */ 408 0, /* src_mask */ 409 0, /* dst_mask */ 410 TRUE), /* pcrel_offset */ 411 412 /* GNU extension to record C++ vtable member usage. */ 413 HOWTO (R_MMIX_GNU_VTENTRY, /* type */ 414 0, /* rightshift */ 415 0, /* size (0 = byte, 1 = short, 2 = long) */ 416 0, /* bitsize */ 417 FALSE, /* pc_relative */ 418 0, /* bitpos */ 419 complain_overflow_dont, /* complain_on_overflow */ 420 _bfd_elf_rel_vtable_reloc_fn, /* special_function */ 421 "R_MMIX_GNU_VTENTRY", /* name */ 422 FALSE, /* partial_inplace */ 423 0, /* src_mask */ 424 0, /* dst_mask */ 425 FALSE), /* pcrel_offset */ 426 427 /* The GETA relocation is supposed to get any address that could 428 possibly be reached by the GETA instruction. It can silently expand 429 to get a 64-bit operand, but will complain if any of the two least 430 significant bits are set. The howto members reflect a simple GETA. */ 431 HOWTO (R_MMIX_GETA, /* type */ 432 2, /* rightshift */ 433 2, /* size (0 = byte, 1 = short, 2 = long) */ 434 19, /* bitsize */ 435 TRUE, /* pc_relative */ 436 0, /* bitpos */ 437 complain_overflow_signed, /* complain_on_overflow */ 438 mmix_elf_reloc, /* special_function */ 439 "R_MMIX_GETA", /* name */ 440 FALSE, /* partial_inplace */ 441 ~0x0100ffff, /* src_mask */ 442 0x0100ffff, /* dst_mask */ 443 TRUE), /* pcrel_offset */ 444 445 HOWTO (R_MMIX_GETA_1, /* type */ 446 2, /* rightshift */ 447 2, /* size (0 = byte, 1 = short, 2 = long) */ 448 19, /* bitsize */ 449 TRUE, /* pc_relative */ 450 0, /* bitpos */ 451 complain_overflow_signed, /* complain_on_overflow */ 452 mmix_elf_reloc, /* special_function */ 453 "R_MMIX_GETA_1", /* name */ 454 FALSE, /* partial_inplace */ 455 ~0x0100ffff, /* src_mask */ 456 0x0100ffff, /* dst_mask */ 457 TRUE), /* pcrel_offset */ 458 459 HOWTO (R_MMIX_GETA_2, /* type */ 460 2, /* rightshift */ 461 2, /* size (0 = byte, 1 = short, 2 = long) */ 462 19, /* bitsize */ 463 TRUE, /* pc_relative */ 464 0, /* bitpos */ 465 complain_overflow_signed, /* complain_on_overflow */ 466 mmix_elf_reloc, /* special_function */ 467 "R_MMIX_GETA_2", /* name */ 468 FALSE, /* partial_inplace */ 469 ~0x0100ffff, /* src_mask */ 470 0x0100ffff, /* dst_mask */ 471 TRUE), /* pcrel_offset */ 472 473 HOWTO (R_MMIX_GETA_3, /* type */ 474 2, /* rightshift */ 475 2, /* size (0 = byte, 1 = short, 2 = long) */ 476 19, /* bitsize */ 477 TRUE, /* pc_relative */ 478 0, /* bitpos */ 479 complain_overflow_signed, /* complain_on_overflow */ 480 mmix_elf_reloc, /* special_function */ 481 "R_MMIX_GETA_3", /* name */ 482 FALSE, /* partial_inplace */ 483 ~0x0100ffff, /* src_mask */ 484 0x0100ffff, /* dst_mask */ 485 TRUE), /* pcrel_offset */ 486 487 /* The conditional branches are supposed to reach any (code) address. 488 It can silently expand to a 64-bit operand, but will emit an error if 489 any of the two least significant bits are set. The howto members 490 reflect a simple branch. */ 491 HOWTO (R_MMIX_CBRANCH, /* type */ 492 2, /* rightshift */ 493 2, /* size (0 = byte, 1 = short, 2 = long) */ 494 19, /* bitsize */ 495 TRUE, /* pc_relative */ 496 0, /* bitpos */ 497 complain_overflow_signed, /* complain_on_overflow */ 498 mmix_elf_reloc, /* special_function */ 499 "R_MMIX_CBRANCH", /* name */ 500 FALSE, /* partial_inplace */ 501 ~0x0100ffff, /* src_mask */ 502 0x0100ffff, /* dst_mask */ 503 TRUE), /* pcrel_offset */ 504 505 HOWTO (R_MMIX_CBRANCH_J, /* type */ 506 2, /* rightshift */ 507 2, /* size (0 = byte, 1 = short, 2 = long) */ 508 19, /* bitsize */ 509 TRUE, /* pc_relative */ 510 0, /* bitpos */ 511 complain_overflow_signed, /* complain_on_overflow */ 512 mmix_elf_reloc, /* special_function */ 513 "R_MMIX_CBRANCH_J", /* name */ 514 FALSE, /* partial_inplace */ 515 ~0x0100ffff, /* src_mask */ 516 0x0100ffff, /* dst_mask */ 517 TRUE), /* pcrel_offset */ 518 519 HOWTO (R_MMIX_CBRANCH_1, /* type */ 520 2, /* rightshift */ 521 2, /* size (0 = byte, 1 = short, 2 = long) */ 522 19, /* bitsize */ 523 TRUE, /* pc_relative */ 524 0, /* bitpos */ 525 complain_overflow_signed, /* complain_on_overflow */ 526 mmix_elf_reloc, /* special_function */ 527 "R_MMIX_CBRANCH_1", /* name */ 528 FALSE, /* partial_inplace */ 529 ~0x0100ffff, /* src_mask */ 530 0x0100ffff, /* dst_mask */ 531 TRUE), /* pcrel_offset */ 532 533 HOWTO (R_MMIX_CBRANCH_2, /* type */ 534 2, /* rightshift */ 535 2, /* size (0 = byte, 1 = short, 2 = long) */ 536 19, /* bitsize */ 537 TRUE, /* pc_relative */ 538 0, /* bitpos */ 539 complain_overflow_signed, /* complain_on_overflow */ 540 mmix_elf_reloc, /* special_function */ 541 "R_MMIX_CBRANCH_2", /* name */ 542 FALSE, /* partial_inplace */ 543 ~0x0100ffff, /* src_mask */ 544 0x0100ffff, /* dst_mask */ 545 TRUE), /* pcrel_offset */ 546 547 HOWTO (R_MMIX_CBRANCH_3, /* type */ 548 2, /* rightshift */ 549 2, /* size (0 = byte, 1 = short, 2 = long) */ 550 19, /* bitsize */ 551 TRUE, /* pc_relative */ 552 0, /* bitpos */ 553 complain_overflow_signed, /* complain_on_overflow */ 554 mmix_elf_reloc, /* special_function */ 555 "R_MMIX_CBRANCH_3", /* name */ 556 FALSE, /* partial_inplace */ 557 ~0x0100ffff, /* src_mask */ 558 0x0100ffff, /* dst_mask */ 559 TRUE), /* pcrel_offset */ 560 561 /* The PUSHJ instruction can reach any (code) address, as long as it's 562 the beginning of a function (no usable restriction). It can silently 563 expand to a 64-bit operand, but will emit an error if any of the two 564 least significant bits are set. It can also expand into a call to a 565 stub; see R_MMIX_PUSHJ_STUBBABLE. The howto members reflect a simple 566 PUSHJ. */ 567 HOWTO (R_MMIX_PUSHJ, /* type */ 568 2, /* rightshift */ 569 2, /* size (0 = byte, 1 = short, 2 = long) */ 570 19, /* bitsize */ 571 TRUE, /* pc_relative */ 572 0, /* bitpos */ 573 complain_overflow_signed, /* complain_on_overflow */ 574 mmix_elf_reloc, /* special_function */ 575 "R_MMIX_PUSHJ", /* name */ 576 FALSE, /* partial_inplace */ 577 ~0x0100ffff, /* src_mask */ 578 0x0100ffff, /* dst_mask */ 579 TRUE), /* pcrel_offset */ 580 581 HOWTO (R_MMIX_PUSHJ_1, /* type */ 582 2, /* rightshift */ 583 2, /* size (0 = byte, 1 = short, 2 = long) */ 584 19, /* bitsize */ 585 TRUE, /* pc_relative */ 586 0, /* bitpos */ 587 complain_overflow_signed, /* complain_on_overflow */ 588 mmix_elf_reloc, /* special_function */ 589 "R_MMIX_PUSHJ_1", /* name */ 590 FALSE, /* partial_inplace */ 591 ~0x0100ffff, /* src_mask */ 592 0x0100ffff, /* dst_mask */ 593 TRUE), /* pcrel_offset */ 594 595 HOWTO (R_MMIX_PUSHJ_2, /* type */ 596 2, /* rightshift */ 597 2, /* size (0 = byte, 1 = short, 2 = long) */ 598 19, /* bitsize */ 599 TRUE, /* pc_relative */ 600 0, /* bitpos */ 601 complain_overflow_signed, /* complain_on_overflow */ 602 mmix_elf_reloc, /* special_function */ 603 "R_MMIX_PUSHJ_2", /* name */ 604 FALSE, /* partial_inplace */ 605 ~0x0100ffff, /* src_mask */ 606 0x0100ffff, /* dst_mask */ 607 TRUE), /* pcrel_offset */ 608 609 HOWTO (R_MMIX_PUSHJ_3, /* type */ 610 2, /* rightshift */ 611 2, /* size (0 = byte, 1 = short, 2 = long) */ 612 19, /* bitsize */ 613 TRUE, /* pc_relative */ 614 0, /* bitpos */ 615 complain_overflow_signed, /* complain_on_overflow */ 616 mmix_elf_reloc, /* special_function */ 617 "R_MMIX_PUSHJ_3", /* name */ 618 FALSE, /* partial_inplace */ 619 ~0x0100ffff, /* src_mask */ 620 0x0100ffff, /* dst_mask */ 621 TRUE), /* pcrel_offset */ 622 623 /* A JMP is supposed to reach any (code) address. By itself, it can 624 reach +-64M; the expansion can reach all 64 bits. Note that the 64M 625 limit is soon reached if you link the program in wildly different 626 memory segments. The howto members reflect a trivial JMP. */ 627 HOWTO (R_MMIX_JMP, /* type */ 628 2, /* rightshift */ 629 2, /* size (0 = byte, 1 = short, 2 = long) */ 630 27, /* bitsize */ 631 TRUE, /* pc_relative */ 632 0, /* bitpos */ 633 complain_overflow_signed, /* complain_on_overflow */ 634 mmix_elf_reloc, /* special_function */ 635 "R_MMIX_JMP", /* name */ 636 FALSE, /* partial_inplace */ 637 ~0x1ffffff, /* src_mask */ 638 0x1ffffff, /* dst_mask */ 639 TRUE), /* pcrel_offset */ 640 641 HOWTO (R_MMIX_JMP_1, /* type */ 642 2, /* rightshift */ 643 2, /* size (0 = byte, 1 = short, 2 = long) */ 644 27, /* bitsize */ 645 TRUE, /* pc_relative */ 646 0, /* bitpos */ 647 complain_overflow_signed, /* complain_on_overflow */ 648 mmix_elf_reloc, /* special_function */ 649 "R_MMIX_JMP_1", /* name */ 650 FALSE, /* partial_inplace */ 651 ~0x1ffffff, /* src_mask */ 652 0x1ffffff, /* dst_mask */ 653 TRUE), /* pcrel_offset */ 654 655 HOWTO (R_MMIX_JMP_2, /* type */ 656 2, /* rightshift */ 657 2, /* size (0 = byte, 1 = short, 2 = long) */ 658 27, /* bitsize */ 659 TRUE, /* pc_relative */ 660 0, /* bitpos */ 661 complain_overflow_signed, /* complain_on_overflow */ 662 mmix_elf_reloc, /* special_function */ 663 "R_MMIX_JMP_2", /* name */ 664 FALSE, /* partial_inplace */ 665 ~0x1ffffff, /* src_mask */ 666 0x1ffffff, /* dst_mask */ 667 TRUE), /* pcrel_offset */ 668 669 HOWTO (R_MMIX_JMP_3, /* type */ 670 2, /* rightshift */ 671 2, /* size (0 = byte, 1 = short, 2 = long) */ 672 27, /* bitsize */ 673 TRUE, /* pc_relative */ 674 0, /* bitpos */ 675 complain_overflow_signed, /* complain_on_overflow */ 676 mmix_elf_reloc, /* special_function */ 677 "R_MMIX_JMP_3", /* name */ 678 FALSE, /* partial_inplace */ 679 ~0x1ffffff, /* src_mask */ 680 0x1ffffff, /* dst_mask */ 681 TRUE), /* pcrel_offset */ 682 683 /* When we don't emit link-time-relaxable code from the assembler, or 684 when relaxation has done all it can do, these relocs are used. For 685 GETA/PUSHJ/branches. */ 686 HOWTO (R_MMIX_ADDR19, /* type */ 687 2, /* rightshift */ 688 2, /* size (0 = byte, 1 = short, 2 = long) */ 689 19, /* bitsize */ 690 TRUE, /* pc_relative */ 691 0, /* bitpos */ 692 complain_overflow_signed, /* complain_on_overflow */ 693 mmix_elf_reloc, /* special_function */ 694 "R_MMIX_ADDR19", /* name */ 695 FALSE, /* partial_inplace */ 696 ~0x0100ffff, /* src_mask */ 697 0x0100ffff, /* dst_mask */ 698 TRUE), /* pcrel_offset */ 699 700 /* For JMP. */ 701 HOWTO (R_MMIX_ADDR27, /* type */ 702 2, /* rightshift */ 703 2, /* size (0 = byte, 1 = short, 2 = long) */ 704 27, /* bitsize */ 705 TRUE, /* pc_relative */ 706 0, /* bitpos */ 707 complain_overflow_signed, /* complain_on_overflow */ 708 mmix_elf_reloc, /* special_function */ 709 "R_MMIX_ADDR27", /* name */ 710 FALSE, /* partial_inplace */ 711 ~0x1ffffff, /* src_mask */ 712 0x1ffffff, /* dst_mask */ 713 TRUE), /* pcrel_offset */ 714 715 /* A general register or the value 0..255. If a value, then the 716 instruction (offset -3) needs adjusting. */ 717 HOWTO (R_MMIX_REG_OR_BYTE, /* type */ 718 0, /* rightshift */ 719 1, /* size (0 = byte, 1 = short, 2 = long) */ 720 8, /* bitsize */ 721 FALSE, /* pc_relative */ 722 0, /* bitpos */ 723 complain_overflow_bitfield, /* complain_on_overflow */ 724 mmix_elf_reloc, /* special_function */ 725 "R_MMIX_REG_OR_BYTE", /* name */ 726 FALSE, /* partial_inplace */ 727 0, /* src_mask */ 728 0xff, /* dst_mask */ 729 FALSE), /* pcrel_offset */ 730 731 /* A general register. */ 732 HOWTO (R_MMIX_REG, /* type */ 733 0, /* rightshift */ 734 1, /* size (0 = byte, 1 = short, 2 = long) */ 735 8, /* bitsize */ 736 FALSE, /* pc_relative */ 737 0, /* bitpos */ 738 complain_overflow_bitfield, /* complain_on_overflow */ 739 mmix_elf_reloc, /* special_function */ 740 "R_MMIX_REG", /* name */ 741 FALSE, /* partial_inplace */ 742 0, /* src_mask */ 743 0xff, /* dst_mask */ 744 FALSE), /* pcrel_offset */ 745 746 /* A register plus an index, corresponding to the relocation expression. 747 The sizes must correspond to the valid range of the expression, while 748 the bitmasks correspond to what we store in the image. */ 749 HOWTO (R_MMIX_BASE_PLUS_OFFSET, /* type */ 750 0, /* rightshift */ 751 4, /* size (0 = byte, 1 = short, 2 = long) */ 752 64, /* bitsize */ 753 FALSE, /* pc_relative */ 754 0, /* bitpos */ 755 complain_overflow_bitfield, /* complain_on_overflow */ 756 mmix_elf_reloc, /* special_function */ 757 "R_MMIX_BASE_PLUS_OFFSET", /* name */ 758 FALSE, /* partial_inplace */ 759 0, /* src_mask */ 760 0xffff, /* dst_mask */ 761 FALSE), /* pcrel_offset */ 762 763 /* A "magic" relocation for a LOCAL expression, asserting that the 764 expression is less than the number of global registers. No actual 765 modification of the contents is done. Implementing this as a 766 relocation was less intrusive than e.g. putting such expressions in a 767 section to discard *after* relocation. */ 768 HOWTO (R_MMIX_LOCAL, /* type */ 769 0, /* rightshift */ 770 0, /* size (0 = byte, 1 = short, 2 = long) */ 771 0, /* bitsize */ 772 FALSE, /* pc_relative */ 773 0, /* bitpos */ 774 complain_overflow_dont, /* complain_on_overflow */ 775 mmix_elf_reloc, /* special_function */ 776 "R_MMIX_LOCAL", /* name */ 777 FALSE, /* partial_inplace */ 778 0, /* src_mask */ 779 0, /* dst_mask */ 780 FALSE), /* pcrel_offset */ 781 782 HOWTO (R_MMIX_PUSHJ_STUBBABLE, /* type */ 783 2, /* rightshift */ 784 2, /* size (0 = byte, 1 = short, 2 = long) */ 785 19, /* bitsize */ 786 TRUE, /* pc_relative */ 787 0, /* bitpos */ 788 complain_overflow_signed, /* complain_on_overflow */ 789 mmix_elf_reloc, /* special_function */ 790 "R_MMIX_PUSHJ_STUBBABLE", /* name */ 791 FALSE, /* partial_inplace */ 792 ~0x0100ffff, /* src_mask */ 793 0x0100ffff, /* dst_mask */ 794 TRUE) /* pcrel_offset */ 795 }; 796 797 798 /* Map BFD reloc types to MMIX ELF reloc types. */ 799 800 struct mmix_reloc_map 801 { 802 bfd_reloc_code_real_type bfd_reloc_val; 803 enum elf_mmix_reloc_type elf_reloc_val; 804 }; 805 806 807 static const struct mmix_reloc_map mmix_reloc_map[] = 808 { 809 {BFD_RELOC_NONE, R_MMIX_NONE}, 810 {BFD_RELOC_8, R_MMIX_8}, 811 {BFD_RELOC_16, R_MMIX_16}, 812 {BFD_RELOC_24, R_MMIX_24}, 813 {BFD_RELOC_32, R_MMIX_32}, 814 {BFD_RELOC_64, R_MMIX_64}, 815 {BFD_RELOC_8_PCREL, R_MMIX_PC_8}, 816 {BFD_RELOC_16_PCREL, R_MMIX_PC_16}, 817 {BFD_RELOC_24_PCREL, R_MMIX_PC_24}, 818 {BFD_RELOC_32_PCREL, R_MMIX_PC_32}, 819 {BFD_RELOC_64_PCREL, R_MMIX_PC_64}, 820 {BFD_RELOC_VTABLE_INHERIT, R_MMIX_GNU_VTINHERIT}, 821 {BFD_RELOC_VTABLE_ENTRY, R_MMIX_GNU_VTENTRY}, 822 {BFD_RELOC_MMIX_GETA, R_MMIX_GETA}, 823 {BFD_RELOC_MMIX_CBRANCH, R_MMIX_CBRANCH}, 824 {BFD_RELOC_MMIX_PUSHJ, R_MMIX_PUSHJ}, 825 {BFD_RELOC_MMIX_JMP, R_MMIX_JMP}, 826 {BFD_RELOC_MMIX_ADDR19, R_MMIX_ADDR19}, 827 {BFD_RELOC_MMIX_ADDR27, R_MMIX_ADDR27}, 828 {BFD_RELOC_MMIX_REG_OR_BYTE, R_MMIX_REG_OR_BYTE}, 829 {BFD_RELOC_MMIX_REG, R_MMIX_REG}, 830 {BFD_RELOC_MMIX_BASE_PLUS_OFFSET, R_MMIX_BASE_PLUS_OFFSET}, 831 {BFD_RELOC_MMIX_LOCAL, R_MMIX_LOCAL}, 832 {BFD_RELOC_MMIX_PUSHJ_STUBBABLE, R_MMIX_PUSHJ_STUBBABLE} 833 }; 834 835 static reloc_howto_type * 836 bfd_elf64_bfd_reloc_type_lookup (abfd, code) 837 bfd *abfd ATTRIBUTE_UNUSED; 838 bfd_reloc_code_real_type code; 839 { 840 unsigned int i; 841 842 for (i = 0; 843 i < sizeof (mmix_reloc_map) / sizeof (mmix_reloc_map[0]); 844 i++) 845 { 846 if (mmix_reloc_map[i].bfd_reloc_val == code) 847 return &elf_mmix_howto_table[mmix_reloc_map[i].elf_reloc_val]; 848 } 849 850 return NULL; 851 } 852 853 static reloc_howto_type * 854 bfd_elf64_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, 855 const char *r_name) 856 { 857 unsigned int i; 858 859 for (i = 0; 860 i < sizeof (elf_mmix_howto_table) / sizeof (elf_mmix_howto_table[0]); 861 i++) 862 if (elf_mmix_howto_table[i].name != NULL 863 && strcasecmp (elf_mmix_howto_table[i].name, r_name) == 0) 864 return &elf_mmix_howto_table[i]; 865 866 return NULL; 867 } 868 869 static bfd_boolean 870 mmix_elf_new_section_hook (abfd, sec) 871 bfd *abfd; 872 asection *sec; 873 { 874 if (!sec->used_by_bfd) 875 { 876 struct _mmix_elf_section_data *sdata; 877 bfd_size_type amt = sizeof (*sdata); 878 879 sdata = bfd_zalloc (abfd, amt); 880 if (sdata == NULL) 881 return FALSE; 882 sec->used_by_bfd = sdata; 883 } 884 885 return _bfd_elf_new_section_hook (abfd, sec); 886 } 887 888 889 /* This function performs the actual bitfiddling and sanity check for a 890 final relocation. Each relocation gets its *worst*-case expansion 891 in size when it arrives here; any reduction in size should have been 892 caught in linker relaxation earlier. When we get here, the relocation 893 looks like the smallest instruction with SWYM:s (nop:s) appended to the 894 max size. We fill in those nop:s. 895 896 R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra) 897 GETA $N,foo 898 -> 899 SETL $N,foo & 0xffff 900 INCML $N,(foo >> 16) & 0xffff 901 INCMH $N,(foo >> 32) & 0xffff 902 INCH $N,(foo >> 48) & 0xffff 903 904 R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but 905 condbranches needing relaxation might be rare enough to not be 906 worthwhile.) 907 [P]Bcc $N,foo 908 -> 909 [~P]B~cc $N,.+20 910 SETL $255,foo & ... 911 INCML ... 912 INCMH ... 913 INCH ... 914 GO $255,$255,0 915 916 R_MMIX_PUSHJ: (FIXME: Relaxation...) 917 PUSHJ $N,foo 918 -> 919 SETL $255,foo & ... 920 INCML ... 921 INCMH ... 922 INCH ... 923 PUSHGO $N,$255,0 924 925 R_MMIX_JMP: (FIXME: Relaxation...) 926 JMP foo 927 -> 928 SETL $255,foo & ... 929 INCML ... 930 INCMH ... 931 INCH ... 932 GO $255,$255,0 933 934 R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in. */ 935 936 static bfd_reloc_status_type 937 mmix_elf_perform_relocation (isec, howto, datap, addr, value) 938 asection *isec; 939 reloc_howto_type *howto; 940 PTR datap; 941 bfd_vma addr; 942 bfd_vma value; 943 { 944 bfd *abfd = isec->owner; 945 bfd_reloc_status_type flag = bfd_reloc_ok; 946 bfd_reloc_status_type r; 947 int offs = 0; 948 int reg = 255; 949 950 /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences. 951 We handle the differences here and the common sequence later. */ 952 switch (howto->type) 953 { 954 case R_MMIX_GETA: 955 offs = 0; 956 reg = bfd_get_8 (abfd, (bfd_byte *) datap + 1); 957 958 /* We change to an absolute value. */ 959 value += addr; 960 break; 961 962 case R_MMIX_CBRANCH: 963 { 964 int in1 = bfd_get_16 (abfd, (bfd_byte *) datap) << 16; 965 966 /* Invert the condition and prediction bit, and set the offset 967 to five instructions ahead. 968 969 We *can* do better if we want to. If the branch is found to be 970 within limits, we could leave the branch as is; there'll just 971 be a bunch of NOP:s after it. But we shouldn't see this 972 sequence often enough that it's worth doing it. */ 973 974 bfd_put_32 (abfd, 975 (((in1 ^ ((PRED_INV_BIT | COND_INV_BIT) << 24)) & ~0xffff) 976 | (24/4)), 977 (bfd_byte *) datap); 978 979 /* Put a "GO $255,$255,0" after the common sequence. */ 980 bfd_put_32 (abfd, 981 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) | 0xffff00, 982 (bfd_byte *) datap + 20); 983 984 /* Common sequence starts at offset 4. */ 985 offs = 4; 986 987 /* We change to an absolute value. */ 988 value += addr; 989 } 990 break; 991 992 case R_MMIX_PUSHJ_STUBBABLE: 993 /* If the address fits, we're fine. */ 994 if ((value & 3) == 0 995 /* Note rightshift 0; see R_MMIX_JMP case below. */ 996 && (r = bfd_check_overflow (complain_overflow_signed, 997 howto->bitsize, 998 0, 999 bfd_arch_bits_per_address (abfd), 1000 value)) == bfd_reloc_ok) 1001 goto pcrel_mmix_reloc_fits; 1002 else 1003 { 1004 bfd_size_type size = isec->rawsize ? isec->rawsize : isec->size; 1005 1006 /* We have the bytes at the PUSHJ insn and need to get the 1007 position for the stub. There's supposed to be room allocated 1008 for the stub. */ 1009 bfd_byte *stubcontents 1010 = ((bfd_byte *) datap 1011 - (addr - (isec->output_section->vma + isec->output_offset)) 1012 + size 1013 + mmix_elf_section_data (isec)->pjs.stub_offset); 1014 bfd_vma stubaddr; 1015 1016 /* The address doesn't fit, so redirect the PUSHJ to the 1017 location of the stub. */ 1018 r = mmix_elf_perform_relocation (isec, 1019 &elf_mmix_howto_table 1020 [R_MMIX_ADDR19], 1021 datap, 1022 addr, 1023 isec->output_section->vma 1024 + isec->output_offset 1025 + size 1026 + (mmix_elf_section_data (isec) 1027 ->pjs.stub_offset) 1028 - addr); 1029 if (r != bfd_reloc_ok) 1030 return r; 1031 1032 stubaddr 1033 = (isec->output_section->vma 1034 + isec->output_offset 1035 + size 1036 + mmix_elf_section_data (isec)->pjs.stub_offset); 1037 1038 /* We generate a simple JMP if that suffices, else the whole 5 1039 insn stub. */ 1040 if (bfd_check_overflow (complain_overflow_signed, 1041 elf_mmix_howto_table[R_MMIX_ADDR27].bitsize, 1042 0, 1043 bfd_arch_bits_per_address (abfd), 1044 addr + value - stubaddr) == bfd_reloc_ok) 1045 { 1046 bfd_put_32 (abfd, JMP_INSN_BYTE << 24, stubcontents); 1047 r = mmix_elf_perform_relocation (isec, 1048 &elf_mmix_howto_table 1049 [R_MMIX_ADDR27], 1050 stubcontents, 1051 stubaddr, 1052 value + addr - stubaddr); 1053 mmix_elf_section_data (isec)->pjs.stub_offset += 4; 1054 1055 if (size + mmix_elf_section_data (isec)->pjs.stub_offset 1056 > isec->size) 1057 abort (); 1058 1059 return r; 1060 } 1061 else 1062 { 1063 /* Put a "GO $255,0" after the common sequence. */ 1064 bfd_put_32 (abfd, 1065 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) 1066 | 0xff00, (bfd_byte *) stubcontents + 16); 1067 1068 /* Prepare for the general code to set the first part of the 1069 linker stub, and */ 1070 value += addr; 1071 datap = stubcontents; 1072 mmix_elf_section_data (isec)->pjs.stub_offset 1073 += MAX_PUSHJ_STUB_SIZE; 1074 } 1075 } 1076 break; 1077 1078 case R_MMIX_PUSHJ: 1079 { 1080 int inreg = bfd_get_8 (abfd, (bfd_byte *) datap + 1); 1081 1082 /* Put a "PUSHGO $N,$255,0" after the common sequence. */ 1083 bfd_put_32 (abfd, 1084 ((PUSHGO_INSN_BYTE | IMM_OFFSET_BIT) << 24) 1085 | (inreg << 16) 1086 | 0xff00, 1087 (bfd_byte *) datap + 16); 1088 1089 /* We change to an absolute value. */ 1090 value += addr; 1091 } 1092 break; 1093 1094 case R_MMIX_JMP: 1095 /* This one is a little special. If we get here on a non-relaxing 1096 link, and the destination is actually in range, we don't need to 1097 execute the nops. 1098 If so, we fall through to the bit-fiddling relocs. 1099 1100 FIXME: bfd_check_overflow seems broken; the relocation is 1101 rightshifted before testing, so supply a zero rightshift. */ 1102 1103 if (! ((value & 3) == 0 1104 && (r = bfd_check_overflow (complain_overflow_signed, 1105 howto->bitsize, 1106 0, 1107 bfd_arch_bits_per_address (abfd), 1108 value)) == bfd_reloc_ok)) 1109 { 1110 /* If the relocation doesn't fit in a JMP, we let the NOP:s be 1111 modified below, and put a "GO $255,$255,0" after the 1112 address-loading sequence. */ 1113 bfd_put_32 (abfd, 1114 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) 1115 | 0xffff00, 1116 (bfd_byte *) datap + 16); 1117 1118 /* We change to an absolute value. */ 1119 value += addr; 1120 break; 1121 } 1122 /* FALLTHROUGH. */ 1123 case R_MMIX_ADDR19: 1124 case R_MMIX_ADDR27: 1125 pcrel_mmix_reloc_fits: 1126 /* These must be in range, or else we emit an error. */ 1127 if ((value & 3) == 0 1128 /* Note rightshift 0; see above. */ 1129 && (r = bfd_check_overflow (complain_overflow_signed, 1130 howto->bitsize, 1131 0, 1132 bfd_arch_bits_per_address (abfd), 1133 value)) == bfd_reloc_ok) 1134 { 1135 bfd_vma in1 1136 = bfd_get_32 (abfd, (bfd_byte *) datap); 1137 bfd_vma highbit; 1138 1139 if ((bfd_signed_vma) value < 0) 1140 { 1141 highbit = 1 << 24; 1142 value += (1 << (howto->bitsize - 1)); 1143 } 1144 else 1145 highbit = 0; 1146 1147 value >>= 2; 1148 1149 bfd_put_32 (abfd, 1150 (in1 & howto->src_mask) 1151 | highbit 1152 | (value & howto->dst_mask), 1153 (bfd_byte *) datap); 1154 1155 return bfd_reloc_ok; 1156 } 1157 else 1158 return bfd_reloc_overflow; 1159 1160 case R_MMIX_BASE_PLUS_OFFSET: 1161 { 1162 struct bpo_reloc_section_info *bpodata 1163 = mmix_elf_section_data (isec)->bpo.reloc; 1164 asection *bpo_greg_section 1165 = bpodata->bpo_greg_section; 1166 struct bpo_greg_section_info *gregdata 1167 = mmix_elf_section_data (bpo_greg_section)->bpo.greg; 1168 size_t bpo_index 1169 = gregdata->bpo_reloc_indexes[bpodata->bpo_index++]; 1170 1171 /* A consistency check: The value we now have in "relocation" must 1172 be the same as the value we stored for that relocation. It 1173 doesn't cost much, so can be left in at all times. */ 1174 if (value != gregdata->reloc_request[bpo_index].value) 1175 { 1176 (*_bfd_error_handler) 1177 (_("%s: Internal inconsistency error for value for\n\ 1178 linker-allocated global register: linked: 0x%lx%08lx != relaxed: 0x%lx%08lx\n"), 1179 bfd_get_filename (isec->owner), 1180 (unsigned long) (value >> 32), (unsigned long) value, 1181 (unsigned long) (gregdata->reloc_request[bpo_index].value 1182 >> 32), 1183 (unsigned long) gregdata->reloc_request[bpo_index].value); 1184 bfd_set_error (bfd_error_bad_value); 1185 return bfd_reloc_overflow; 1186 } 1187 1188 /* Then store the register number and offset for that register 1189 into datap and datap + 1 respectively. */ 1190 bfd_put_8 (abfd, 1191 gregdata->reloc_request[bpo_index].regindex 1192 + bpo_greg_section->output_section->vma / 8, 1193 datap); 1194 bfd_put_8 (abfd, 1195 gregdata->reloc_request[bpo_index].offset, 1196 ((unsigned char *) datap) + 1); 1197 return bfd_reloc_ok; 1198 } 1199 1200 case R_MMIX_REG_OR_BYTE: 1201 case R_MMIX_REG: 1202 if (value > 255) 1203 return bfd_reloc_overflow; 1204 bfd_put_8 (abfd, value, datap); 1205 return bfd_reloc_ok; 1206 1207 default: 1208 BAD_CASE (howto->type); 1209 } 1210 1211 /* This code adds the common SETL/INCML/INCMH/INCH worst-case 1212 sequence. */ 1213 1214 /* Lowest two bits must be 0. We return bfd_reloc_overflow for 1215 everything that looks strange. */ 1216 if (value & 3) 1217 flag = bfd_reloc_overflow; 1218 1219 bfd_put_32 (abfd, 1220 (SETL_INSN_BYTE << 24) | (value & 0xffff) | (reg << 16), 1221 (bfd_byte *) datap + offs); 1222 bfd_put_32 (abfd, 1223 (INCML_INSN_BYTE << 24) | ((value >> 16) & 0xffff) | (reg << 16), 1224 (bfd_byte *) datap + offs + 4); 1225 bfd_put_32 (abfd, 1226 (INCMH_INSN_BYTE << 24) | ((value >> 32) & 0xffff) | (reg << 16), 1227 (bfd_byte *) datap + offs + 8); 1228 bfd_put_32 (abfd, 1229 (INCH_INSN_BYTE << 24) | ((value >> 48) & 0xffff) | (reg << 16), 1230 (bfd_byte *) datap + offs + 12); 1231 1232 return flag; 1233 } 1234 1235 /* Set the howto pointer for an MMIX ELF reloc (type RELA). */ 1236 1237 static void 1238 mmix_info_to_howto_rela (abfd, cache_ptr, dst) 1239 bfd *abfd ATTRIBUTE_UNUSED; 1240 arelent *cache_ptr; 1241 Elf_Internal_Rela *dst; 1242 { 1243 unsigned int r_type; 1244 1245 r_type = ELF64_R_TYPE (dst->r_info); 1246 BFD_ASSERT (r_type < (unsigned int) R_MMIX_max); 1247 cache_ptr->howto = &elf_mmix_howto_table[r_type]; 1248 } 1249 1250 /* Any MMIX-specific relocation gets here at assembly time or when linking 1251 to other formats (such as mmo); this is the relocation function from 1252 the reloc_table. We don't get here for final pure ELF linking. */ 1253 1254 static bfd_reloc_status_type 1255 mmix_elf_reloc (abfd, reloc_entry, symbol, data, input_section, 1256 output_bfd, error_message) 1257 bfd *abfd; 1258 arelent *reloc_entry; 1259 asymbol *symbol; 1260 PTR data; 1261 asection *input_section; 1262 bfd *output_bfd; 1263 char **error_message ATTRIBUTE_UNUSED; 1264 { 1265 bfd_vma relocation; 1266 bfd_reloc_status_type r; 1267 asection *reloc_target_output_section; 1268 bfd_reloc_status_type flag = bfd_reloc_ok; 1269 bfd_vma output_base = 0; 1270 bfd_vma addr; 1271 1272 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data, 1273 input_section, output_bfd, error_message); 1274 1275 /* If that was all that was needed (i.e. this isn't a final link, only 1276 some segment adjustments), we're done. */ 1277 if (r != bfd_reloc_continue) 1278 return r; 1279 1280 if (bfd_is_und_section (symbol->section) 1281 && (symbol->flags & BSF_WEAK) == 0 1282 && output_bfd == (bfd *) NULL) 1283 return bfd_reloc_undefined; 1284 1285 /* Is the address of the relocation really within the section? */ 1286 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) 1287 return bfd_reloc_outofrange; 1288 1289 /* Work out which section the relocation is targeted at and the 1290 initial relocation command value. */ 1291 1292 /* Get symbol value. (Common symbols are special.) */ 1293 if (bfd_is_com_section (symbol->section)) 1294 relocation = 0; 1295 else 1296 relocation = symbol->value; 1297 1298 reloc_target_output_section = bfd_get_output_section (symbol); 1299 1300 /* Here the variable relocation holds the final address of the symbol we 1301 are relocating against, plus any addend. */ 1302 if (output_bfd) 1303 output_base = 0; 1304 else 1305 output_base = reloc_target_output_section->vma; 1306 1307 relocation += output_base + symbol->section->output_offset; 1308 1309 /* Get position of relocation. */ 1310 addr = (reloc_entry->address + input_section->output_section->vma 1311 + input_section->output_offset); 1312 if (output_bfd != (bfd *) NULL) 1313 { 1314 /* Add in supplied addend. */ 1315 relocation += reloc_entry->addend; 1316 1317 /* This is a partial relocation, and we want to apply the 1318 relocation to the reloc entry rather than the raw data. 1319 Modify the reloc inplace to reflect what we now know. */ 1320 reloc_entry->addend = relocation; 1321 reloc_entry->address += input_section->output_offset; 1322 return flag; 1323 } 1324 1325 return mmix_final_link_relocate (reloc_entry->howto, input_section, 1326 data, reloc_entry->address, 1327 reloc_entry->addend, relocation, 1328 bfd_asymbol_name (symbol), 1329 reloc_target_output_section); 1330 } 1331 1332 /* Relocate an MMIX ELF section. Modified from elf32-fr30.c; look to it 1333 for guidance if you're thinking of copying this. */ 1334 1335 static bfd_boolean 1336 mmix_elf_relocate_section (output_bfd, info, input_bfd, input_section, 1337 contents, relocs, local_syms, local_sections) 1338 bfd *output_bfd ATTRIBUTE_UNUSED; 1339 struct bfd_link_info *info; 1340 bfd *input_bfd; 1341 asection *input_section; 1342 bfd_byte *contents; 1343 Elf_Internal_Rela *relocs; 1344 Elf_Internal_Sym *local_syms; 1345 asection **local_sections; 1346 { 1347 Elf_Internal_Shdr *symtab_hdr; 1348 struct elf_link_hash_entry **sym_hashes; 1349 Elf_Internal_Rela *rel; 1350 Elf_Internal_Rela *relend; 1351 bfd_size_type size; 1352 size_t pjsno = 0; 1353 1354 size = input_section->rawsize ? input_section->rawsize : input_section->size; 1355 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 1356 sym_hashes = elf_sym_hashes (input_bfd); 1357 relend = relocs + input_section->reloc_count; 1358 1359 /* Zero the stub area before we start. */ 1360 if (input_section->rawsize != 0 1361 && input_section->size > input_section->rawsize) 1362 memset (contents + input_section->rawsize, 0, 1363 input_section->size - input_section->rawsize); 1364 1365 for (rel = relocs; rel < relend; rel ++) 1366 { 1367 reloc_howto_type *howto; 1368 unsigned long r_symndx; 1369 Elf_Internal_Sym *sym; 1370 asection *sec; 1371 struct elf_link_hash_entry *h; 1372 bfd_vma relocation; 1373 bfd_reloc_status_type r; 1374 const char *name = NULL; 1375 int r_type; 1376 bfd_boolean undefined_signalled = FALSE; 1377 1378 r_type = ELF64_R_TYPE (rel->r_info); 1379 1380 if (r_type == R_MMIX_GNU_VTINHERIT 1381 || r_type == R_MMIX_GNU_VTENTRY) 1382 continue; 1383 1384 r_symndx = ELF64_R_SYM (rel->r_info); 1385 1386 howto = elf_mmix_howto_table + ELF64_R_TYPE (rel->r_info); 1387 h = NULL; 1388 sym = NULL; 1389 sec = NULL; 1390 1391 if (r_symndx < symtab_hdr->sh_info) 1392 { 1393 sym = local_syms + r_symndx; 1394 sec = local_sections [r_symndx]; 1395 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); 1396 1397 name = bfd_elf_string_from_elf_section (input_bfd, 1398 symtab_hdr->sh_link, 1399 sym->st_name); 1400 if (name == NULL) 1401 name = bfd_section_name (input_bfd, sec); 1402 } 1403 else 1404 { 1405 bfd_boolean unresolved_reloc; 1406 1407 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, 1408 r_symndx, symtab_hdr, sym_hashes, 1409 h, sec, relocation, 1410 unresolved_reloc, undefined_signalled); 1411 name = h->root.root.string; 1412 } 1413 1414 if (sec != NULL && elf_discarded_section (sec)) 1415 { 1416 /* For relocs against symbols from removed linkonce sections, 1417 or sections discarded by a linker script, we just want the 1418 section contents zeroed. Avoid any special processing. */ 1419 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset); 1420 rel->r_info = 0; 1421 rel->r_addend = 0; 1422 continue; 1423 } 1424 1425 if (info->relocatable) 1426 { 1427 /* This is a relocatable link. For most relocs we don't have to 1428 change anything, unless the reloc is against a section 1429 symbol, in which case we have to adjust according to where 1430 the section symbol winds up in the output section. */ 1431 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION) 1432 rel->r_addend += sec->output_offset; 1433 1434 /* For PUSHJ stub relocs however, we may need to change the 1435 reloc and the section contents, if the reloc doesn't reach 1436 beyond the end of the output section and previous stubs. 1437 Then we change the section contents to be a PUSHJ to the end 1438 of the input section plus stubs (we can do that without using 1439 a reloc), and then we change the reloc to be a R_MMIX_PUSHJ 1440 at the stub location. */ 1441 if (r_type == R_MMIX_PUSHJ_STUBBABLE) 1442 { 1443 /* We've already checked whether we need a stub; use that 1444 knowledge. */ 1445 if (mmix_elf_section_data (input_section)->pjs.stub_size[pjsno] 1446 != 0) 1447 { 1448 Elf_Internal_Rela relcpy; 1449 1450 if (mmix_elf_section_data (input_section) 1451 ->pjs.stub_size[pjsno] != MAX_PUSHJ_STUB_SIZE) 1452 abort (); 1453 1454 /* There's already a PUSHJ insn there, so just fill in 1455 the offset bits to the stub. */ 1456 if (mmix_final_link_relocate (elf_mmix_howto_table 1457 + R_MMIX_ADDR19, 1458 input_section, 1459 contents, 1460 rel->r_offset, 1461 0, 1462 input_section 1463 ->output_section->vma 1464 + input_section->output_offset 1465 + size 1466 + mmix_elf_section_data (input_section) 1467 ->pjs.stub_offset, 1468 NULL, NULL) != bfd_reloc_ok) 1469 return FALSE; 1470 1471 /* Put a JMP insn at the stub; it goes with the 1472 R_MMIX_JMP reloc. */ 1473 bfd_put_32 (output_bfd, JMP_INSN_BYTE << 24, 1474 contents 1475 + size 1476 + mmix_elf_section_data (input_section) 1477 ->pjs.stub_offset); 1478 1479 /* Change the reloc to be at the stub, and to a full 1480 R_MMIX_JMP reloc. */ 1481 rel->r_info = ELF64_R_INFO (r_symndx, R_MMIX_JMP); 1482 rel->r_offset 1483 = (size 1484 + mmix_elf_section_data (input_section) 1485 ->pjs.stub_offset); 1486 1487 mmix_elf_section_data (input_section)->pjs.stub_offset 1488 += MAX_PUSHJ_STUB_SIZE; 1489 1490 /* Shift this reloc to the end of the relocs to maintain 1491 the r_offset sorted reloc order. */ 1492 relcpy = *rel; 1493 memmove (rel, rel + 1, (char *) relend - (char *) rel); 1494 relend[-1] = relcpy; 1495 1496 /* Back up one reloc, or else we'd skip the next reloc 1497 in turn. */ 1498 rel--; 1499 } 1500 1501 pjsno++; 1502 } 1503 continue; 1504 } 1505 1506 r = mmix_final_link_relocate (howto, input_section, 1507 contents, rel->r_offset, 1508 rel->r_addend, relocation, name, sec); 1509 1510 if (r != bfd_reloc_ok) 1511 { 1512 bfd_boolean check_ok = TRUE; 1513 const char * msg = (const char *) NULL; 1514 1515 switch (r) 1516 { 1517 case bfd_reloc_overflow: 1518 check_ok = info->callbacks->reloc_overflow 1519 (info, (h ? &h->root : NULL), name, howto->name, 1520 (bfd_vma) 0, input_bfd, input_section, rel->r_offset); 1521 break; 1522 1523 case bfd_reloc_undefined: 1524 /* We may have sent this message above. */ 1525 if (! undefined_signalled) 1526 check_ok = info->callbacks->undefined_symbol 1527 (info, name, input_bfd, input_section, rel->r_offset, 1528 TRUE); 1529 undefined_signalled = TRUE; 1530 break; 1531 1532 case bfd_reloc_outofrange: 1533 msg = _("internal error: out of range error"); 1534 break; 1535 1536 case bfd_reloc_notsupported: 1537 msg = _("internal error: unsupported relocation error"); 1538 break; 1539 1540 case bfd_reloc_dangerous: 1541 msg = _("internal error: dangerous relocation"); 1542 break; 1543 1544 default: 1545 msg = _("internal error: unknown error"); 1546 break; 1547 } 1548 1549 if (msg) 1550 check_ok = info->callbacks->warning 1551 (info, msg, name, input_bfd, input_section, rel->r_offset); 1552 1553 if (! check_ok) 1554 return FALSE; 1555 } 1556 } 1557 1558 return TRUE; 1559 } 1560 1561 /* Perform a single relocation. By default we use the standard BFD 1562 routines. A few relocs we have to do ourselves. */ 1563 1564 static bfd_reloc_status_type 1565 mmix_final_link_relocate (howto, input_section, contents, 1566 r_offset, r_addend, relocation, symname, symsec) 1567 reloc_howto_type *howto; 1568 asection *input_section; 1569 bfd_byte *contents; 1570 bfd_vma r_offset; 1571 bfd_signed_vma r_addend; 1572 bfd_vma relocation; 1573 const char *symname; 1574 asection *symsec; 1575 { 1576 bfd_reloc_status_type r = bfd_reloc_ok; 1577 bfd_vma addr 1578 = (input_section->output_section->vma 1579 + input_section->output_offset 1580 + r_offset); 1581 bfd_signed_vma srel 1582 = (bfd_signed_vma) relocation + r_addend; 1583 1584 switch (howto->type) 1585 { 1586 /* All these are PC-relative. */ 1587 case R_MMIX_PUSHJ_STUBBABLE: 1588 case R_MMIX_PUSHJ: 1589 case R_MMIX_CBRANCH: 1590 case R_MMIX_ADDR19: 1591 case R_MMIX_GETA: 1592 case R_MMIX_ADDR27: 1593 case R_MMIX_JMP: 1594 contents += r_offset; 1595 1596 srel -= (input_section->output_section->vma 1597 + input_section->output_offset 1598 + r_offset); 1599 1600 r = mmix_elf_perform_relocation (input_section, howto, contents, 1601 addr, srel); 1602 break; 1603 1604 case R_MMIX_BASE_PLUS_OFFSET: 1605 if (symsec == NULL) 1606 return bfd_reloc_undefined; 1607 1608 /* Check that we're not relocating against a register symbol. */ 1609 if (strcmp (bfd_get_section_name (symsec->owner, symsec), 1610 MMIX_REG_CONTENTS_SECTION_NAME) == 0 1611 || strcmp (bfd_get_section_name (symsec->owner, symsec), 1612 MMIX_REG_SECTION_NAME) == 0) 1613 { 1614 /* Note: This is separated out into two messages in order 1615 to ease the translation into other languages. */ 1616 if (symname == NULL || *symname == 0) 1617 (*_bfd_error_handler) 1618 (_("%s: base-plus-offset relocation against register symbol: (unknown) in %s"), 1619 bfd_get_filename (input_section->owner), 1620 bfd_get_section_name (symsec->owner, symsec)); 1621 else 1622 (*_bfd_error_handler) 1623 (_("%s: base-plus-offset relocation against register symbol: %s in %s"), 1624 bfd_get_filename (input_section->owner), symname, 1625 bfd_get_section_name (symsec->owner, symsec)); 1626 return bfd_reloc_overflow; 1627 } 1628 goto do_mmix_reloc; 1629 1630 case R_MMIX_REG_OR_BYTE: 1631 case R_MMIX_REG: 1632 /* For now, we handle these alike. They must refer to an register 1633 symbol, which is either relative to the register section and in 1634 the range 0..255, or is in the register contents section with vma 1635 regno * 8. */ 1636 1637 /* FIXME: A better way to check for reg contents section? 1638 FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */ 1639 if (symsec == NULL) 1640 return bfd_reloc_undefined; 1641 1642 if (strcmp (bfd_get_section_name (symsec->owner, symsec), 1643 MMIX_REG_CONTENTS_SECTION_NAME) == 0) 1644 { 1645 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8) 1646 { 1647 /* The bfd_reloc_outofrange return value, though intuitively 1648 a better value, will not get us an error. */ 1649 return bfd_reloc_overflow; 1650 } 1651 srel /= 8; 1652 } 1653 else if (strcmp (bfd_get_section_name (symsec->owner, symsec), 1654 MMIX_REG_SECTION_NAME) == 0) 1655 { 1656 if (srel < 0 || srel > 255) 1657 /* The bfd_reloc_outofrange return value, though intuitively a 1658 better value, will not get us an error. */ 1659 return bfd_reloc_overflow; 1660 } 1661 else 1662 { 1663 /* Note: This is separated out into two messages in order 1664 to ease the translation into other languages. */ 1665 if (symname == NULL || *symname == 0) 1666 (*_bfd_error_handler) 1667 (_("%s: register relocation against non-register symbol: (unknown) in %s"), 1668 bfd_get_filename (input_section->owner), 1669 bfd_get_section_name (symsec->owner, symsec)); 1670 else 1671 (*_bfd_error_handler) 1672 (_("%s: register relocation against non-register symbol: %s in %s"), 1673 bfd_get_filename (input_section->owner), symname, 1674 bfd_get_section_name (symsec->owner, symsec)); 1675 1676 /* The bfd_reloc_outofrange return value, though intuitively a 1677 better value, will not get us an error. */ 1678 return bfd_reloc_overflow; 1679 } 1680 do_mmix_reloc: 1681 contents += r_offset; 1682 r = mmix_elf_perform_relocation (input_section, howto, contents, 1683 addr, srel); 1684 break; 1685 1686 case R_MMIX_LOCAL: 1687 /* This isn't a real relocation, it's just an assertion that the 1688 final relocation value corresponds to a local register. We 1689 ignore the actual relocation; nothing is changed. */ 1690 { 1691 asection *regsec 1692 = bfd_get_section_by_name (input_section->output_section->owner, 1693 MMIX_REG_CONTENTS_SECTION_NAME); 1694 bfd_vma first_global; 1695 1696 /* Check that this is an absolute value, or a reference to the 1697 register contents section or the register (symbol) section. 1698 Absolute numbers can get here as undefined section. Undefined 1699 symbols are signalled elsewhere, so there's no conflict in us 1700 accidentally handling it. */ 1701 if (!bfd_is_abs_section (symsec) 1702 && !bfd_is_und_section (symsec) 1703 && strcmp (bfd_get_section_name (symsec->owner, symsec), 1704 MMIX_REG_CONTENTS_SECTION_NAME) != 0 1705 && strcmp (bfd_get_section_name (symsec->owner, symsec), 1706 MMIX_REG_SECTION_NAME) != 0) 1707 { 1708 (*_bfd_error_handler) 1709 (_("%s: directive LOCAL valid only with a register or absolute value"), 1710 bfd_get_filename (input_section->owner)); 1711 1712 return bfd_reloc_overflow; 1713 } 1714 1715 /* If we don't have a register contents section, then $255 is the 1716 first global register. */ 1717 if (regsec == NULL) 1718 first_global = 255; 1719 else 1720 { 1721 first_global = bfd_get_section_vma (abfd, regsec) / 8; 1722 if (strcmp (bfd_get_section_name (symsec->owner, symsec), 1723 MMIX_REG_CONTENTS_SECTION_NAME) == 0) 1724 { 1725 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8) 1726 /* The bfd_reloc_outofrange return value, though 1727 intuitively a better value, will not get us an error. */ 1728 return bfd_reloc_overflow; 1729 srel /= 8; 1730 } 1731 } 1732 1733 if ((bfd_vma) srel >= first_global) 1734 { 1735 /* FIXME: Better error message. */ 1736 (*_bfd_error_handler) 1737 (_("%s: LOCAL directive: Register $%ld is not a local register. First global register is $%ld."), 1738 bfd_get_filename (input_section->owner), (long) srel, (long) first_global); 1739 1740 return bfd_reloc_overflow; 1741 } 1742 } 1743 r = bfd_reloc_ok; 1744 break; 1745 1746 default: 1747 r = _bfd_final_link_relocate (howto, input_section->owner, input_section, 1748 contents, r_offset, 1749 relocation, r_addend); 1750 } 1751 1752 return r; 1753 } 1754 1755 /* Return the section that should be marked against GC for a given 1756 relocation. */ 1757 1758 static asection * 1759 mmix_elf_gc_mark_hook (asection *sec, 1760 struct bfd_link_info *info, 1761 Elf_Internal_Rela *rel, 1762 struct elf_link_hash_entry *h, 1763 Elf_Internal_Sym *sym) 1764 { 1765 if (h != NULL) 1766 switch (ELF64_R_TYPE (rel->r_info)) 1767 { 1768 case R_MMIX_GNU_VTINHERIT: 1769 case R_MMIX_GNU_VTENTRY: 1770 return NULL; 1771 } 1772 1773 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); 1774 } 1775 1776 /* Update relocation info for a GC-excluded section. We could supposedly 1777 perform the allocation after GC, but there's no suitable hook between 1778 GC (or section merge) and the point when all input sections must be 1779 present. Better to waste some memory and (perhaps) a little time. */ 1780 1781 static bfd_boolean 1782 mmix_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED, 1783 struct bfd_link_info *info ATTRIBUTE_UNUSED, 1784 asection *sec, 1785 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED) 1786 { 1787 struct bpo_reloc_section_info *bpodata 1788 = mmix_elf_section_data (sec)->bpo.reloc; 1789 asection *allocated_gregs_section; 1790 1791 /* If no bpodata here, we have nothing to do. */ 1792 if (bpodata == NULL) 1793 return TRUE; 1794 1795 allocated_gregs_section = bpodata->bpo_greg_section; 1796 1797 mmix_elf_section_data (allocated_gregs_section)->bpo.greg->n_bpo_relocs 1798 -= bpodata->n_bpo_relocs_this_section; 1799 1800 return TRUE; 1801 } 1802 1803 /* Sort register relocs to come before expanding relocs. */ 1804 1805 static int 1806 mmix_elf_sort_relocs (p1, p2) 1807 const PTR p1; 1808 const PTR p2; 1809 { 1810 const Elf_Internal_Rela *r1 = (const Elf_Internal_Rela *) p1; 1811 const Elf_Internal_Rela *r2 = (const Elf_Internal_Rela *) p2; 1812 int r1_is_reg, r2_is_reg; 1813 1814 /* Sort primarily on r_offset & ~3, so relocs are done to consecutive 1815 insns. */ 1816 if ((r1->r_offset & ~(bfd_vma) 3) > (r2->r_offset & ~(bfd_vma) 3)) 1817 return 1; 1818 else if ((r1->r_offset & ~(bfd_vma) 3) < (r2->r_offset & ~(bfd_vma) 3)) 1819 return -1; 1820 1821 r1_is_reg 1822 = (ELF64_R_TYPE (r1->r_info) == R_MMIX_REG_OR_BYTE 1823 || ELF64_R_TYPE (r1->r_info) == R_MMIX_REG); 1824 r2_is_reg 1825 = (ELF64_R_TYPE (r2->r_info) == R_MMIX_REG_OR_BYTE 1826 || ELF64_R_TYPE (r2->r_info) == R_MMIX_REG); 1827 if (r1_is_reg != r2_is_reg) 1828 return r2_is_reg - r1_is_reg; 1829 1830 /* Neither or both are register relocs. Then sort on full offset. */ 1831 if (r1->r_offset > r2->r_offset) 1832 return 1; 1833 else if (r1->r_offset < r2->r_offset) 1834 return -1; 1835 return 0; 1836 } 1837 1838 /* Subset of mmix_elf_check_relocs, common to ELF and mmo linking. */ 1839 1840 static bfd_boolean 1841 mmix_elf_check_common_relocs (abfd, info, sec, relocs) 1842 bfd *abfd; 1843 struct bfd_link_info *info; 1844 asection *sec; 1845 const Elf_Internal_Rela *relocs; 1846 { 1847 bfd *bpo_greg_owner = NULL; 1848 asection *allocated_gregs_section = NULL; 1849 struct bpo_greg_section_info *gregdata = NULL; 1850 struct bpo_reloc_section_info *bpodata = NULL; 1851 const Elf_Internal_Rela *rel; 1852 const Elf_Internal_Rela *rel_end; 1853 1854 /* We currently have to abuse this COFF-specific member, since there's 1855 no target-machine-dedicated member. There's no alternative outside 1856 the bfd_link_info struct; we can't specialize a hash-table since 1857 they're different between ELF and mmo. */ 1858 bpo_greg_owner = (bfd *) info->base_file; 1859 1860 rel_end = relocs + sec->reloc_count; 1861 for (rel = relocs; rel < rel_end; rel++) 1862 { 1863 switch (ELF64_R_TYPE (rel->r_info)) 1864 { 1865 /* This relocation causes a GREG allocation. We need to count 1866 them, and we need to create a section for them, so we need an 1867 object to fake as the owner of that section. We can't use 1868 the ELF dynobj for this, since the ELF bits assume lots of 1869 DSO-related stuff if that member is non-NULL. */ 1870 case R_MMIX_BASE_PLUS_OFFSET: 1871 /* We don't do anything with this reloc for a relocatable link. */ 1872 if (info->relocatable) 1873 break; 1874 1875 if (bpo_greg_owner == NULL) 1876 { 1877 bpo_greg_owner = abfd; 1878 info->base_file = (PTR) bpo_greg_owner; 1879 } 1880 1881 if (allocated_gregs_section == NULL) 1882 allocated_gregs_section 1883 = bfd_get_section_by_name (bpo_greg_owner, 1884 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); 1885 1886 if (allocated_gregs_section == NULL) 1887 { 1888 allocated_gregs_section 1889 = bfd_make_section_with_flags (bpo_greg_owner, 1890 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME, 1891 (SEC_HAS_CONTENTS 1892 | SEC_IN_MEMORY 1893 | SEC_LINKER_CREATED)); 1894 /* Setting both SEC_ALLOC and SEC_LOAD means the section is 1895 treated like any other section, and we'd get errors for 1896 address overlap with the text section. Let's set none of 1897 those flags, as that is what currently happens for usual 1898 GREG allocations, and that works. */ 1899 if (allocated_gregs_section == NULL 1900 || !bfd_set_section_alignment (bpo_greg_owner, 1901 allocated_gregs_section, 1902 3)) 1903 return FALSE; 1904 1905 gregdata = (struct bpo_greg_section_info *) 1906 bfd_zalloc (bpo_greg_owner, sizeof (struct bpo_greg_section_info)); 1907 if (gregdata == NULL) 1908 return FALSE; 1909 mmix_elf_section_data (allocated_gregs_section)->bpo.greg 1910 = gregdata; 1911 } 1912 else if (gregdata == NULL) 1913 gregdata 1914 = mmix_elf_section_data (allocated_gregs_section)->bpo.greg; 1915 1916 /* Get ourselves some auxiliary info for the BPO-relocs. */ 1917 if (bpodata == NULL) 1918 { 1919 /* No use doing a separate iteration pass to find the upper 1920 limit - just use the number of relocs. */ 1921 bpodata = (struct bpo_reloc_section_info *) 1922 bfd_alloc (bpo_greg_owner, 1923 sizeof (struct bpo_reloc_section_info) 1924 * (sec->reloc_count + 1)); 1925 if (bpodata == NULL) 1926 return FALSE; 1927 mmix_elf_section_data (sec)->bpo.reloc = bpodata; 1928 bpodata->first_base_plus_offset_reloc 1929 = bpodata->bpo_index 1930 = gregdata->n_max_bpo_relocs; 1931 bpodata->bpo_greg_section 1932 = allocated_gregs_section; 1933 bpodata->n_bpo_relocs_this_section = 0; 1934 } 1935 1936 bpodata->n_bpo_relocs_this_section++; 1937 gregdata->n_max_bpo_relocs++; 1938 1939 /* We don't get another chance to set this before GC; we've not 1940 set up any hook that runs before GC. */ 1941 gregdata->n_bpo_relocs 1942 = gregdata->n_max_bpo_relocs; 1943 break; 1944 1945 case R_MMIX_PUSHJ_STUBBABLE: 1946 mmix_elf_section_data (sec)->pjs.n_pushj_relocs++; 1947 break; 1948 } 1949 } 1950 1951 /* Allocate per-reloc stub storage and initialize it to the max stub 1952 size. */ 1953 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs != 0) 1954 { 1955 size_t i; 1956 1957 mmix_elf_section_data (sec)->pjs.stub_size 1958 = bfd_alloc (abfd, mmix_elf_section_data (sec)->pjs.n_pushj_relocs 1959 * sizeof (mmix_elf_section_data (sec) 1960 ->pjs.stub_size[0])); 1961 if (mmix_elf_section_data (sec)->pjs.stub_size == NULL) 1962 return FALSE; 1963 1964 for (i = 0; i < mmix_elf_section_data (sec)->pjs.n_pushj_relocs; i++) 1965 mmix_elf_section_data (sec)->pjs.stub_size[i] = MAX_PUSHJ_STUB_SIZE; 1966 } 1967 1968 return TRUE; 1969 } 1970 1971 /* Look through the relocs for a section during the first phase. */ 1972 1973 static bfd_boolean 1974 mmix_elf_check_relocs (abfd, info, sec, relocs) 1975 bfd *abfd; 1976 struct bfd_link_info *info; 1977 asection *sec; 1978 const Elf_Internal_Rela *relocs; 1979 { 1980 Elf_Internal_Shdr *symtab_hdr; 1981 struct elf_link_hash_entry **sym_hashes; 1982 const Elf_Internal_Rela *rel; 1983 const Elf_Internal_Rela *rel_end; 1984 1985 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 1986 sym_hashes = elf_sym_hashes (abfd); 1987 1988 /* First we sort the relocs so that any register relocs come before 1989 expansion-relocs to the same insn. FIXME: Not done for mmo. */ 1990 qsort ((PTR) relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), 1991 mmix_elf_sort_relocs); 1992 1993 /* Do the common part. */ 1994 if (!mmix_elf_check_common_relocs (abfd, info, sec, relocs)) 1995 return FALSE; 1996 1997 if (info->relocatable) 1998 return TRUE; 1999 2000 rel_end = relocs + sec->reloc_count; 2001 for (rel = relocs; rel < rel_end; rel++) 2002 { 2003 struct elf_link_hash_entry *h; 2004 unsigned long r_symndx; 2005 2006 r_symndx = ELF64_R_SYM (rel->r_info); 2007 if (r_symndx < symtab_hdr->sh_info) 2008 h = NULL; 2009 else 2010 { 2011 h = sym_hashes[r_symndx - symtab_hdr->sh_info]; 2012 while (h->root.type == bfd_link_hash_indirect 2013 || h->root.type == bfd_link_hash_warning) 2014 h = (struct elf_link_hash_entry *) h->root.u.i.link; 2015 } 2016 2017 switch (ELF64_R_TYPE (rel->r_info)) 2018 { 2019 /* This relocation describes the C++ object vtable hierarchy. 2020 Reconstruct it for later use during GC. */ 2021 case R_MMIX_GNU_VTINHERIT: 2022 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) 2023 return FALSE; 2024 break; 2025 2026 /* This relocation describes which C++ vtable entries are actually 2027 used. Record for later use during GC. */ 2028 case R_MMIX_GNU_VTENTRY: 2029 BFD_ASSERT (h != NULL); 2030 if (h != NULL 2031 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) 2032 return FALSE; 2033 break; 2034 } 2035 } 2036 2037 return TRUE; 2038 } 2039 2040 /* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo. 2041 Copied from elf_link_add_object_symbols. */ 2042 2043 bfd_boolean 2044 _bfd_mmix_check_all_relocs (abfd, info) 2045 bfd *abfd; 2046 struct bfd_link_info *info; 2047 { 2048 asection *o; 2049 2050 for (o = abfd->sections; o != NULL; o = o->next) 2051 { 2052 Elf_Internal_Rela *internal_relocs; 2053 bfd_boolean ok; 2054 2055 if ((o->flags & SEC_RELOC) == 0 2056 || o->reloc_count == 0 2057 || ((info->strip == strip_all || info->strip == strip_debugger) 2058 && (o->flags & SEC_DEBUGGING) != 0) 2059 || bfd_is_abs_section (o->output_section)) 2060 continue; 2061 2062 internal_relocs 2063 = _bfd_elf_link_read_relocs (abfd, o, (PTR) NULL, 2064 (Elf_Internal_Rela *) NULL, 2065 info->keep_memory); 2066 if (internal_relocs == NULL) 2067 return FALSE; 2068 2069 ok = mmix_elf_check_common_relocs (abfd, info, o, internal_relocs); 2070 2071 if (! info->keep_memory) 2072 free (internal_relocs); 2073 2074 if (! ok) 2075 return FALSE; 2076 } 2077 2078 return TRUE; 2079 } 2080 2081 /* Change symbols relative to the reg contents section to instead be to 2082 the register section, and scale them down to correspond to the register 2083 number. */ 2084 2085 static bfd_boolean 2086 mmix_elf_link_output_symbol_hook (info, name, sym, input_sec, h) 2087 struct bfd_link_info *info ATTRIBUTE_UNUSED; 2088 const char *name ATTRIBUTE_UNUSED; 2089 Elf_Internal_Sym *sym; 2090 asection *input_sec; 2091 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED; 2092 { 2093 if (input_sec != NULL 2094 && input_sec->name != NULL 2095 && ELF_ST_TYPE (sym->st_info) != STT_SECTION 2096 && strcmp (input_sec->name, MMIX_REG_CONTENTS_SECTION_NAME) == 0) 2097 { 2098 sym->st_value /= 8; 2099 sym->st_shndx = SHN_REGISTER; 2100 } 2101 2102 return TRUE; 2103 } 2104 2105 /* We fake a register section that holds values that are register numbers. 2106 Having a SHN_REGISTER and register section translates better to other 2107 formats (e.g. mmo) than for example a STT_REGISTER attribute. 2108 This section faking is based on a construct in elf32-mips.c. */ 2109 static asection mmix_elf_reg_section; 2110 static asymbol mmix_elf_reg_section_symbol; 2111 static asymbol *mmix_elf_reg_section_symbol_ptr; 2112 2113 /* Handle the special section numbers that a symbol may use. */ 2114 2115 void 2116 mmix_elf_symbol_processing (abfd, asym) 2117 bfd *abfd ATTRIBUTE_UNUSED; 2118 asymbol *asym; 2119 { 2120 elf_symbol_type *elfsym; 2121 2122 elfsym = (elf_symbol_type *) asym; 2123 switch (elfsym->internal_elf_sym.st_shndx) 2124 { 2125 case SHN_REGISTER: 2126 if (mmix_elf_reg_section.name == NULL) 2127 { 2128 /* Initialize the register section. */ 2129 mmix_elf_reg_section.name = MMIX_REG_SECTION_NAME; 2130 mmix_elf_reg_section.flags = SEC_NO_FLAGS; 2131 mmix_elf_reg_section.output_section = &mmix_elf_reg_section; 2132 mmix_elf_reg_section.symbol = &mmix_elf_reg_section_symbol; 2133 mmix_elf_reg_section.symbol_ptr_ptr = &mmix_elf_reg_section_symbol_ptr; 2134 mmix_elf_reg_section_symbol.name = MMIX_REG_SECTION_NAME; 2135 mmix_elf_reg_section_symbol.flags = BSF_SECTION_SYM; 2136 mmix_elf_reg_section_symbol.section = &mmix_elf_reg_section; 2137 mmix_elf_reg_section_symbol_ptr = &mmix_elf_reg_section_symbol; 2138 } 2139 asym->section = &mmix_elf_reg_section; 2140 break; 2141 2142 default: 2143 break; 2144 } 2145 } 2146 2147 /* Given a BFD section, try to locate the corresponding ELF section 2148 index. */ 2149 2150 static bfd_boolean 2151 mmix_elf_section_from_bfd_section (abfd, sec, retval) 2152 bfd * abfd ATTRIBUTE_UNUSED; 2153 asection * sec; 2154 int * retval; 2155 { 2156 if (strcmp (bfd_get_section_name (abfd, sec), MMIX_REG_SECTION_NAME) == 0) 2157 *retval = SHN_REGISTER; 2158 else 2159 return FALSE; 2160 2161 return TRUE; 2162 } 2163 2164 /* Hook called by the linker routine which adds symbols from an object 2165 file. We must handle the special SHN_REGISTER section number here. 2166 2167 We also check that we only have *one* each of the section-start 2168 symbols, since otherwise having two with the same value would cause 2169 them to be "merged", but with the contents serialized. */ 2170 2171 bfd_boolean 2172 mmix_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp) 2173 bfd *abfd; 2174 struct bfd_link_info *info ATTRIBUTE_UNUSED; 2175 Elf_Internal_Sym *sym; 2176 const char **namep ATTRIBUTE_UNUSED; 2177 flagword *flagsp ATTRIBUTE_UNUSED; 2178 asection **secp; 2179 bfd_vma *valp ATTRIBUTE_UNUSED; 2180 { 2181 if (sym->st_shndx == SHN_REGISTER) 2182 { 2183 *secp = bfd_make_section_old_way (abfd, MMIX_REG_SECTION_NAME); 2184 (*secp)->flags |= SEC_LINKER_CREATED; 2185 } 2186 else if ((*namep)[0] == '_' && (*namep)[1] == '_' && (*namep)[2] == '.' 2187 && CONST_STRNEQ (*namep, MMIX_LOC_SECTION_START_SYMBOL_PREFIX)) 2188 { 2189 /* See if we have another one. */ 2190 struct bfd_link_hash_entry *h = bfd_link_hash_lookup (info->hash, 2191 *namep, 2192 FALSE, 2193 FALSE, 2194 FALSE); 2195 2196 if (h != NULL && h->type != bfd_link_hash_undefined) 2197 { 2198 /* How do we get the asymbol (or really: the filename) from h? 2199 h->u.def.section->owner is NULL. */ 2200 ((*_bfd_error_handler) 2201 (_("%s: Error: multiple definition of `%s'; start of %s is set in a earlier linked file\n"), 2202 bfd_get_filename (abfd), *namep, 2203 *namep + strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX))); 2204 bfd_set_error (bfd_error_bad_value); 2205 return FALSE; 2206 } 2207 } 2208 2209 return TRUE; 2210 } 2211 2212 /* We consider symbols matching "L.*:[0-9]+" to be local symbols. */ 2213 2214 bfd_boolean 2215 mmix_elf_is_local_label_name (abfd, name) 2216 bfd *abfd; 2217 const char *name; 2218 { 2219 const char *colpos; 2220 int digits; 2221 2222 /* Also include the default local-label definition. */ 2223 if (_bfd_elf_is_local_label_name (abfd, name)) 2224 return TRUE; 2225 2226 if (*name != 'L') 2227 return FALSE; 2228 2229 /* If there's no ":", or more than one, it's not a local symbol. */ 2230 colpos = strchr (name, ':'); 2231 if (colpos == NULL || strchr (colpos + 1, ':') != NULL) 2232 return FALSE; 2233 2234 /* Check that there are remaining characters and that they are digits. */ 2235 if (colpos[1] == 0) 2236 return FALSE; 2237 2238 digits = strspn (colpos + 1, "0123456789"); 2239 return digits != 0 && colpos[1 + digits] == 0; 2240 } 2241 2242 /* We get rid of the register section here. */ 2243 2244 bfd_boolean 2245 mmix_elf_final_link (abfd, info) 2246 bfd *abfd; 2247 struct bfd_link_info *info; 2248 { 2249 /* We never output a register section, though we create one for 2250 temporary measures. Check that nobody entered contents into it. */ 2251 asection *reg_section; 2252 2253 reg_section = bfd_get_section_by_name (abfd, MMIX_REG_SECTION_NAME); 2254 2255 if (reg_section != NULL) 2256 { 2257 /* FIXME: Pass error state gracefully. */ 2258 if (bfd_get_section_flags (abfd, reg_section) & SEC_HAS_CONTENTS) 2259 _bfd_abort (__FILE__, __LINE__, _("Register section has contents\n")); 2260 2261 /* Really remove the section, if it hasn't already been done. */ 2262 if (!bfd_section_removed_from_list (abfd, reg_section)) 2263 { 2264 bfd_section_list_remove (abfd, reg_section); 2265 --abfd->section_count; 2266 } 2267 } 2268 2269 if (! bfd_elf_final_link (abfd, info)) 2270 return FALSE; 2271 2272 /* Since this section is marked SEC_LINKER_CREATED, it isn't output by 2273 the regular linker machinery. We do it here, like other targets with 2274 special sections. */ 2275 if (info->base_file != NULL) 2276 { 2277 asection *greg_section 2278 = bfd_get_section_by_name ((bfd *) info->base_file, 2279 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); 2280 if (!bfd_set_section_contents (abfd, 2281 greg_section->output_section, 2282 greg_section->contents, 2283 (file_ptr) greg_section->output_offset, 2284 greg_section->size)) 2285 return FALSE; 2286 } 2287 return TRUE; 2288 } 2289 2290 /* We need to include the maximum size of PUSHJ-stubs in the initial 2291 section size. This is expected to shrink during linker relaxation. */ 2292 2293 static void 2294 mmix_set_relaxable_size (abfd, sec, ptr) 2295 bfd *abfd ATTRIBUTE_UNUSED; 2296 asection *sec; 2297 void *ptr; 2298 { 2299 struct bfd_link_info *info = ptr; 2300 2301 /* Make sure we only do this for section where we know we want this, 2302 otherwise we might end up resetting the size of COMMONs. */ 2303 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0) 2304 return; 2305 2306 sec->rawsize = sec->size; 2307 sec->size += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs 2308 * MAX_PUSHJ_STUB_SIZE); 2309 2310 /* For use in relocatable link, we start with a max stubs size. See 2311 mmix_elf_relax_section. */ 2312 if (info->relocatable && sec->output_section) 2313 mmix_elf_section_data (sec->output_section)->pjs.stubs_size_sum 2314 += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs 2315 * MAX_PUSHJ_STUB_SIZE); 2316 } 2317 2318 /* Initialize stuff for the linker-generated GREGs to match 2319 R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker. */ 2320 2321 bfd_boolean 2322 _bfd_mmix_before_linker_allocation (abfd, info) 2323 bfd *abfd ATTRIBUTE_UNUSED; 2324 struct bfd_link_info *info; 2325 { 2326 asection *bpo_gregs_section; 2327 bfd *bpo_greg_owner; 2328 struct bpo_greg_section_info *gregdata; 2329 size_t n_gregs; 2330 bfd_vma gregs_size; 2331 size_t i; 2332 size_t *bpo_reloc_indexes; 2333 bfd *ibfd; 2334 2335 /* Set the initial size of sections. */ 2336 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) 2337 bfd_map_over_sections (ibfd, mmix_set_relaxable_size, info); 2338 2339 /* The bpo_greg_owner bfd is supposed to have been set by 2340 mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen. 2341 If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET. */ 2342 bpo_greg_owner = (bfd *) info->base_file; 2343 if (bpo_greg_owner == NULL) 2344 return TRUE; 2345 2346 bpo_gregs_section 2347 = bfd_get_section_by_name (bpo_greg_owner, 2348 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); 2349 2350 if (bpo_gregs_section == NULL) 2351 return TRUE; 2352 2353 /* We use the target-data handle in the ELF section data. */ 2354 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg; 2355 if (gregdata == NULL) 2356 return FALSE; 2357 2358 n_gregs = gregdata->n_bpo_relocs; 2359 gregdata->n_allocated_bpo_gregs = n_gregs; 2360 2361 /* When this reaches zero during relaxation, all entries have been 2362 filled in and the size of the linker gregs can be calculated. */ 2363 gregdata->n_remaining_bpo_relocs_this_relaxation_round = n_gregs; 2364 2365 /* Set the zeroth-order estimate for the GREGs size. */ 2366 gregs_size = n_gregs * 8; 2367 2368 if (!bfd_set_section_size (bpo_greg_owner, bpo_gregs_section, gregs_size)) 2369 return FALSE; 2370 2371 /* Allocate and set up the GREG arrays. They're filled in at relaxation 2372 time. Note that we must use the max number ever noted for the array, 2373 since the index numbers were created before GC. */ 2374 gregdata->reloc_request 2375 = bfd_zalloc (bpo_greg_owner, 2376 sizeof (struct bpo_reloc_request) 2377 * gregdata->n_max_bpo_relocs); 2378 2379 gregdata->bpo_reloc_indexes 2380 = bpo_reloc_indexes 2381 = bfd_alloc (bpo_greg_owner, 2382 gregdata->n_max_bpo_relocs 2383 * sizeof (size_t)); 2384 if (bpo_reloc_indexes == NULL) 2385 return FALSE; 2386 2387 /* The default order is an identity mapping. */ 2388 for (i = 0; i < gregdata->n_max_bpo_relocs; i++) 2389 { 2390 bpo_reloc_indexes[i] = i; 2391 gregdata->reloc_request[i].bpo_reloc_no = i; 2392 } 2393 2394 return TRUE; 2395 } 2396 2397 /* Fill in contents in the linker allocated gregs. Everything is 2398 calculated at this point; we just move the contents into place here. */ 2399 2400 bfd_boolean 2401 _bfd_mmix_after_linker_allocation (abfd, link_info) 2402 bfd *abfd ATTRIBUTE_UNUSED; 2403 struct bfd_link_info *link_info; 2404 { 2405 asection *bpo_gregs_section; 2406 bfd *bpo_greg_owner; 2407 struct bpo_greg_section_info *gregdata; 2408 size_t n_gregs; 2409 size_t i, j; 2410 size_t lastreg; 2411 bfd_byte *contents; 2412 2413 /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs 2414 when the first R_MMIX_BASE_PLUS_OFFSET is seen. If there is no such 2415 object, there was no R_MMIX_BASE_PLUS_OFFSET. */ 2416 bpo_greg_owner = (bfd *) link_info->base_file; 2417 if (bpo_greg_owner == NULL) 2418 return TRUE; 2419 2420 bpo_gregs_section 2421 = bfd_get_section_by_name (bpo_greg_owner, 2422 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); 2423 2424 /* This can't happen without DSO handling. When DSOs are handled 2425 without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such 2426 section. */ 2427 if (bpo_gregs_section == NULL) 2428 return TRUE; 2429 2430 /* We use the target-data handle in the ELF section data. */ 2431 2432 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg; 2433 if (gregdata == NULL) 2434 return FALSE; 2435 2436 n_gregs = gregdata->n_allocated_bpo_gregs; 2437 2438 bpo_gregs_section->contents 2439 = contents = bfd_alloc (bpo_greg_owner, bpo_gregs_section->size); 2440 if (contents == NULL) 2441 return FALSE; 2442 2443 /* Sanity check: If these numbers mismatch, some relocation has not been 2444 accounted for and the rest of gregdata is probably inconsistent. 2445 It's a bug, but it's more helpful to identify it than segfaulting 2446 below. */ 2447 if (gregdata->n_remaining_bpo_relocs_this_relaxation_round 2448 != gregdata->n_bpo_relocs) 2449 { 2450 (*_bfd_error_handler) 2451 (_("Internal inconsistency: remaining %u != max %u.\n\ 2452 Please report this bug."), 2453 gregdata->n_remaining_bpo_relocs_this_relaxation_round, 2454 gregdata->n_bpo_relocs); 2455 return FALSE; 2456 } 2457 2458 for (lastreg = 255, i = 0, j = 0; j < n_gregs; i++) 2459 if (gregdata->reloc_request[i].regindex != lastreg) 2460 { 2461 bfd_put_64 (bpo_greg_owner, gregdata->reloc_request[i].value, 2462 contents + j * 8); 2463 lastreg = gregdata->reloc_request[i].regindex; 2464 j++; 2465 } 2466 2467 return TRUE; 2468 } 2469 2470 /* Sort valid relocs to come before non-valid relocs, then on increasing 2471 value. */ 2472 2473 static int 2474 bpo_reloc_request_sort_fn (p1, p2) 2475 const PTR p1; 2476 const PTR p2; 2477 { 2478 const struct bpo_reloc_request *r1 = (const struct bpo_reloc_request *) p1; 2479 const struct bpo_reloc_request *r2 = (const struct bpo_reloc_request *) p2; 2480 2481 /* Primary function is validity; non-valid relocs sorted after valid 2482 ones. */ 2483 if (r1->valid != r2->valid) 2484 return r2->valid - r1->valid; 2485 2486 /* Then sort on value. Don't simplify and return just the difference of 2487 the values: the upper bits of the 64-bit value would be truncated on 2488 a host with 32-bit ints. */ 2489 if (r1->value != r2->value) 2490 return r1->value > r2->value ? 1 : -1; 2491 2492 /* As a last re-sort, use the relocation number, so we get a stable 2493 sort. The *addresses* aren't stable since items are swapped during 2494 sorting. It depends on the qsort implementation if this actually 2495 happens. */ 2496 return r1->bpo_reloc_no > r2->bpo_reloc_no 2497 ? 1 : (r1->bpo_reloc_no < r2->bpo_reloc_no ? -1 : 0); 2498 } 2499 2500 /* For debug use only. Dumps the global register allocations resulting 2501 from base-plus-offset relocs. */ 2502 2503 void 2504 mmix_dump_bpo_gregs (link_info, pf) 2505 struct bfd_link_info *link_info; 2506 bfd_error_handler_type pf; 2507 { 2508 bfd *bpo_greg_owner; 2509 asection *bpo_gregs_section; 2510 struct bpo_greg_section_info *gregdata; 2511 unsigned int i; 2512 2513 if (link_info == NULL || link_info->base_file == NULL) 2514 return; 2515 2516 bpo_greg_owner = (bfd *) link_info->base_file; 2517 2518 bpo_gregs_section 2519 = bfd_get_section_by_name (bpo_greg_owner, 2520 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); 2521 2522 if (bpo_gregs_section == NULL) 2523 return; 2524 2525 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg; 2526 if (gregdata == NULL) 2527 return; 2528 2529 if (pf == NULL) 2530 pf = _bfd_error_handler; 2531 2532 /* These format strings are not translated. They are for debug purposes 2533 only and never displayed to an end user. Should they escape, we 2534 surely want them in original. */ 2535 (*pf) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\ 2536 n_allocated_bpo_gregs: %u\n", gregdata->n_bpo_relocs, 2537 gregdata->n_max_bpo_relocs, 2538 gregdata->n_remaining_bpo_relocs_this_relaxation_round, 2539 gregdata->n_allocated_bpo_gregs); 2540 2541 if (gregdata->reloc_request) 2542 for (i = 0; i < gregdata->n_max_bpo_relocs; i++) 2543 (*pf) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx r: %3u o: %3u\n", 2544 i, 2545 (gregdata->bpo_reloc_indexes != NULL 2546 ? gregdata->bpo_reloc_indexes[i] : (size_t) -1), 2547 gregdata->reloc_request[i].bpo_reloc_no, 2548 gregdata->reloc_request[i].valid, 2549 2550 (unsigned long) (gregdata->reloc_request[i].value >> 32), 2551 (unsigned long) gregdata->reloc_request[i].value, 2552 gregdata->reloc_request[i].regindex, 2553 gregdata->reloc_request[i].offset); 2554 } 2555 2556 /* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and 2557 when the last such reloc is done, an index-array is sorted according to 2558 the values and iterated over to produce register numbers (indexed by 0 2559 from the first allocated register number) and offsets for use in real 2560 relocation. 2561 2562 PUSHJ stub accounting is also done here. 2563 2564 Symbol- and reloc-reading infrastructure copied from elf-m10200.c. */ 2565 2566 static bfd_boolean 2567 mmix_elf_relax_section (abfd, sec, link_info, again) 2568 bfd *abfd; 2569 asection *sec; 2570 struct bfd_link_info *link_info; 2571 bfd_boolean *again; 2572 { 2573 Elf_Internal_Shdr *symtab_hdr; 2574 Elf_Internal_Rela *internal_relocs; 2575 Elf_Internal_Rela *irel, *irelend; 2576 asection *bpo_gregs_section = NULL; 2577 struct bpo_greg_section_info *gregdata; 2578 struct bpo_reloc_section_info *bpodata 2579 = mmix_elf_section_data (sec)->bpo.reloc; 2580 /* The initialization is to quiet compiler warnings. The value is to 2581 spot a missing actual initialization. */ 2582 size_t bpono = (size_t) -1; 2583 size_t pjsno = 0; 2584 bfd *bpo_greg_owner; 2585 Elf_Internal_Sym *isymbuf = NULL; 2586 bfd_size_type size = sec->rawsize ? sec->rawsize : sec->size; 2587 2588 mmix_elf_section_data (sec)->pjs.stubs_size_sum = 0; 2589 2590 /* Assume nothing changes. */ 2591 *again = FALSE; 2592 2593 /* We don't have to do anything if this section does not have relocs, or 2594 if this is not a code section. */ 2595 if ((sec->flags & SEC_RELOC) == 0 2596 || sec->reloc_count == 0 2597 || (sec->flags & SEC_CODE) == 0 2598 || (sec->flags & SEC_LINKER_CREATED) != 0 2599 /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs, 2600 then nothing to do. */ 2601 || (bpodata == NULL 2602 && mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0)) 2603 return TRUE; 2604 2605 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 2606 2607 bpo_greg_owner = (bfd *) link_info->base_file; 2608 2609 if (bpodata != NULL) 2610 { 2611 bpo_gregs_section = bpodata->bpo_greg_section; 2612 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg; 2613 bpono = bpodata->first_base_plus_offset_reloc; 2614 } 2615 else 2616 gregdata = NULL; 2617 2618 /* Get a copy of the native relocations. */ 2619 internal_relocs 2620 = _bfd_elf_link_read_relocs (abfd, sec, (PTR) NULL, 2621 (Elf_Internal_Rela *) NULL, 2622 link_info->keep_memory); 2623 if (internal_relocs == NULL) 2624 goto error_return; 2625 2626 /* Walk through them looking for relaxing opportunities. */ 2627 irelend = internal_relocs + sec->reloc_count; 2628 for (irel = internal_relocs; irel < irelend; irel++) 2629 { 2630 bfd_vma symval; 2631 struct elf_link_hash_entry *h = NULL; 2632 2633 /* We only process two relocs. */ 2634 if (ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_BASE_PLUS_OFFSET 2635 && ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_PUSHJ_STUBBABLE) 2636 continue; 2637 2638 /* We process relocs in a distinctly different way when this is a 2639 relocatable link (for one, we don't look at symbols), so we avoid 2640 mixing its code with that for the "normal" relaxation. */ 2641 if (link_info->relocatable) 2642 { 2643 /* The only transformation in a relocatable link is to generate 2644 a full stub at the location of the stub calculated for the 2645 input section, if the relocated stub location, the end of the 2646 output section plus earlier stubs, cannot be reached. Thus 2647 relocatable linking can only lead to worse code, but it still 2648 works. */ 2649 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_PUSHJ_STUBBABLE) 2650 { 2651 /* If we can reach the end of the output-section and beyond 2652 any current stubs, then we don't need a stub for this 2653 reloc. The relaxed order of output stub allocation may 2654 not exactly match the straightforward order, so we always 2655 assume presence of output stubs, which will allow 2656 relaxation only on relocations indifferent to the 2657 presence of output stub allocations for other relocations 2658 and thus the order of output stub allocation. */ 2659 if (bfd_check_overflow (complain_overflow_signed, 2660 19, 2661 0, 2662 bfd_arch_bits_per_address (abfd), 2663 /* Output-stub location. */ 2664 sec->output_section->rawsize 2665 + (mmix_elf_section_data (sec 2666 ->output_section) 2667 ->pjs.stubs_size_sum) 2668 /* Location of this PUSHJ reloc. */ 2669 - (sec->output_offset + irel->r_offset) 2670 /* Don't count *this* stub twice. */ 2671 - (mmix_elf_section_data (sec) 2672 ->pjs.stub_size[pjsno] 2673 + MAX_PUSHJ_STUB_SIZE)) 2674 == bfd_reloc_ok) 2675 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0; 2676 2677 mmix_elf_section_data (sec)->pjs.stubs_size_sum 2678 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno]; 2679 2680 pjsno++; 2681 } 2682 2683 continue; 2684 } 2685 2686 /* Get the value of the symbol referred to by the reloc. */ 2687 if (ELF64_R_SYM (irel->r_info) < symtab_hdr->sh_info) 2688 { 2689 /* A local symbol. */ 2690 Elf_Internal_Sym *isym; 2691 asection *sym_sec; 2692 2693 /* Read this BFD's local symbols if we haven't already. */ 2694 if (isymbuf == NULL) 2695 { 2696 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; 2697 if (isymbuf == NULL) 2698 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, 2699 symtab_hdr->sh_info, 0, 2700 NULL, NULL, NULL); 2701 if (isymbuf == 0) 2702 goto error_return; 2703 } 2704 2705 isym = isymbuf + ELF64_R_SYM (irel->r_info); 2706 if (isym->st_shndx == SHN_UNDEF) 2707 sym_sec = bfd_und_section_ptr; 2708 else if (isym->st_shndx == SHN_ABS) 2709 sym_sec = bfd_abs_section_ptr; 2710 else if (isym->st_shndx == SHN_COMMON) 2711 sym_sec = bfd_com_section_ptr; 2712 else 2713 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx); 2714 symval = (isym->st_value 2715 + sym_sec->output_section->vma 2716 + sym_sec->output_offset); 2717 } 2718 else 2719 { 2720 unsigned long indx; 2721 2722 /* An external symbol. */ 2723 indx = ELF64_R_SYM (irel->r_info) - symtab_hdr->sh_info; 2724 h = elf_sym_hashes (abfd)[indx]; 2725 BFD_ASSERT (h != NULL); 2726 if (h->root.type != bfd_link_hash_defined 2727 && h->root.type != bfd_link_hash_defweak) 2728 { 2729 /* This appears to be a reference to an undefined symbol. Just 2730 ignore it--it will be caught by the regular reloc processing. 2731 We need to keep BPO reloc accounting consistent, though 2732 else we'll abort instead of emitting an error message. */ 2733 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_BASE_PLUS_OFFSET 2734 && gregdata != NULL) 2735 { 2736 gregdata->n_remaining_bpo_relocs_this_relaxation_round--; 2737 bpono++; 2738 } 2739 continue; 2740 } 2741 2742 symval = (h->root.u.def.value 2743 + h->root.u.def.section->output_section->vma 2744 + h->root.u.def.section->output_offset); 2745 } 2746 2747 if (ELF64_R_TYPE (irel->r_info) == (int) R_MMIX_PUSHJ_STUBBABLE) 2748 { 2749 bfd_vma value = symval + irel->r_addend; 2750 bfd_vma dot 2751 = (sec->output_section->vma 2752 + sec->output_offset 2753 + irel->r_offset); 2754 bfd_vma stubaddr 2755 = (sec->output_section->vma 2756 + sec->output_offset 2757 + size 2758 + mmix_elf_section_data (sec)->pjs.stubs_size_sum); 2759 2760 if ((value & 3) == 0 2761 && bfd_check_overflow (complain_overflow_signed, 2762 19, 2763 0, 2764 bfd_arch_bits_per_address (abfd), 2765 value - dot 2766 - (value > dot 2767 ? mmix_elf_section_data (sec) 2768 ->pjs.stub_size[pjsno] 2769 : 0)) 2770 == bfd_reloc_ok) 2771 /* If the reloc fits, no stub is needed. */ 2772 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0; 2773 else 2774 /* Maybe we can get away with just a JMP insn? */ 2775 if ((value & 3) == 0 2776 && bfd_check_overflow (complain_overflow_signed, 2777 27, 2778 0, 2779 bfd_arch_bits_per_address (abfd), 2780 value - stubaddr 2781 - (value > dot 2782 ? mmix_elf_section_data (sec) 2783 ->pjs.stub_size[pjsno] - 4 2784 : 0)) 2785 == bfd_reloc_ok) 2786 /* Yep, account for a stub consisting of a single JMP insn. */ 2787 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 4; 2788 else 2789 /* Nope, go for the full insn stub. It doesn't seem useful to 2790 emit the intermediate sizes; those will only be useful for 2791 a >64M program assuming contiguous code. */ 2792 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] 2793 = MAX_PUSHJ_STUB_SIZE; 2794 2795 mmix_elf_section_data (sec)->pjs.stubs_size_sum 2796 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno]; 2797 pjsno++; 2798 continue; 2799 } 2800 2801 /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc. */ 2802 2803 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono]].value 2804 = symval + irel->r_addend; 2805 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono++]].valid = TRUE; 2806 gregdata->n_remaining_bpo_relocs_this_relaxation_round--; 2807 } 2808 2809 /* Check if that was the last BPO-reloc. If so, sort the values and 2810 calculate how many registers we need to cover them. Set the size of 2811 the linker gregs, and if the number of registers changed, indicate 2812 that we need to relax some more because we have more work to do. */ 2813 if (gregdata != NULL 2814 && gregdata->n_remaining_bpo_relocs_this_relaxation_round == 0) 2815 { 2816 size_t i; 2817 bfd_vma prev_base; 2818 size_t regindex; 2819 2820 /* First, reset the remaining relocs for the next round. */ 2821 gregdata->n_remaining_bpo_relocs_this_relaxation_round 2822 = gregdata->n_bpo_relocs; 2823 2824 qsort ((PTR) gregdata->reloc_request, 2825 gregdata->n_max_bpo_relocs, 2826 sizeof (struct bpo_reloc_request), 2827 bpo_reloc_request_sort_fn); 2828 2829 /* Recalculate indexes. When we find a change (however unlikely 2830 after the initial iteration), we know we need to relax again, 2831 since items in the GREG-array are sorted by increasing value and 2832 stored in the relaxation phase. */ 2833 for (i = 0; i < gregdata->n_max_bpo_relocs; i++) 2834 if (gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no] 2835 != i) 2836 { 2837 gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no] 2838 = i; 2839 *again = TRUE; 2840 } 2841 2842 /* Allocate register numbers (indexing from 0). Stop at the first 2843 non-valid reloc. */ 2844 for (i = 0, regindex = 0, prev_base = gregdata->reloc_request[0].value; 2845 i < gregdata->n_bpo_relocs; 2846 i++) 2847 { 2848 if (gregdata->reloc_request[i].value > prev_base + 255) 2849 { 2850 regindex++; 2851 prev_base = gregdata->reloc_request[i].value; 2852 } 2853 gregdata->reloc_request[i].regindex = regindex; 2854 gregdata->reloc_request[i].offset 2855 = gregdata->reloc_request[i].value - prev_base; 2856 } 2857 2858 /* If it's not the same as the last time, we need to relax again, 2859 because the size of the section has changed. I'm not sure we 2860 actually need to do any adjustments since the shrinking happens 2861 at the start of this section, but better safe than sorry. */ 2862 if (gregdata->n_allocated_bpo_gregs != regindex + 1) 2863 { 2864 gregdata->n_allocated_bpo_gregs = regindex + 1; 2865 *again = TRUE; 2866 } 2867 2868 bpo_gregs_section->size = (regindex + 1) * 8; 2869 } 2870 2871 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents) 2872 { 2873 if (! link_info->keep_memory) 2874 free (isymbuf); 2875 else 2876 { 2877 /* Cache the symbols for elf_link_input_bfd. */ 2878 symtab_hdr->contents = (unsigned char *) isymbuf; 2879 } 2880 } 2881 2882 if (internal_relocs != NULL 2883 && elf_section_data (sec)->relocs != internal_relocs) 2884 free (internal_relocs); 2885 2886 if (sec->size < size + mmix_elf_section_data (sec)->pjs.stubs_size_sum) 2887 abort (); 2888 2889 if (sec->size > size + mmix_elf_section_data (sec)->pjs.stubs_size_sum) 2890 { 2891 sec->size = size + mmix_elf_section_data (sec)->pjs.stubs_size_sum; 2892 *again = TRUE; 2893 } 2894 2895 return TRUE; 2896 2897 error_return: 2898 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents) 2899 free (isymbuf); 2900 if (internal_relocs != NULL 2901 && elf_section_data (sec)->relocs != internal_relocs) 2902 free (internal_relocs); 2903 return FALSE; 2904 } 2905 2906 #define ELF_ARCH bfd_arch_mmix 2907 #define ELF_MACHINE_CODE EM_MMIX 2908 2909 /* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL). 2910 However, that's too much for something somewhere in the linker part of 2911 BFD; perhaps the start-address has to be a non-zero multiple of this 2912 number, or larger than this number. The symptom is that the linker 2913 complains: "warning: allocated section `.text' not in segment". We 2914 settle for 64k; the page-size used in examples is 8k. 2915 #define ELF_MAXPAGESIZE 0x10000 2916 2917 Unfortunately, this causes excessive padding in the supposedly small 2918 for-education programs that are the expected usage (where people would 2919 inspect output). We stick to 256 bytes just to have *some* default 2920 alignment. */ 2921 #define ELF_MAXPAGESIZE 0x100 2922 2923 #define TARGET_BIG_SYM bfd_elf64_mmix_vec 2924 #define TARGET_BIG_NAME "elf64-mmix" 2925 2926 #define elf_info_to_howto_rel NULL 2927 #define elf_info_to_howto mmix_info_to_howto_rela 2928 #define elf_backend_relocate_section mmix_elf_relocate_section 2929 #define elf_backend_gc_mark_hook mmix_elf_gc_mark_hook 2930 #define elf_backend_gc_sweep_hook mmix_elf_gc_sweep_hook 2931 2932 #define elf_backend_link_output_symbol_hook \ 2933 mmix_elf_link_output_symbol_hook 2934 #define elf_backend_add_symbol_hook mmix_elf_add_symbol_hook 2935 2936 #define elf_backend_check_relocs mmix_elf_check_relocs 2937 #define elf_backend_symbol_processing mmix_elf_symbol_processing 2938 #define elf_backend_omit_section_dynsym \ 2939 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true) 2940 2941 #define bfd_elf64_bfd_is_local_label_name \ 2942 mmix_elf_is_local_label_name 2943 2944 #define elf_backend_may_use_rel_p 0 2945 #define elf_backend_may_use_rela_p 1 2946 #define elf_backend_default_use_rela_p 1 2947 2948 #define elf_backend_can_gc_sections 1 2949 #define elf_backend_section_from_bfd_section \ 2950 mmix_elf_section_from_bfd_section 2951 2952 #define bfd_elf64_new_section_hook mmix_elf_new_section_hook 2953 #define bfd_elf64_bfd_final_link mmix_elf_final_link 2954 #define bfd_elf64_bfd_relax_section mmix_elf_relax_section 2955 2956 #include "elf64-target.h" 2957