xref: /netbsd-src/external/gpl3/binutils/dist/bfd/elf32-hppa.c (revision f89f6560d453f5e37386cc7938c072d2f528b9fa)
1 /* BFD back-end for HP PA-RISC ELF files.
2    Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3    2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4    Free Software Foundation, Inc.
5 
6    Original code by
7 	Center for Software Science
8 	Department of Computer Science
9 	University of Utah
10    Largely rewritten by Alan Modra <alan@linuxcare.com.au>
11    Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
12    TLS support written by Randolph Chung <tausq@debian.org>
13 
14    This file is part of BFD, the Binary File Descriptor library.
15 
16    This program is free software; you can redistribute it and/or modify
17    it under the terms of the GNU General Public License as published by
18    the Free Software Foundation; either version 3 of the License, or
19    (at your option) any later version.
20 
21    This program is distributed in the hope that it will be useful,
22    but WITHOUT ANY WARRANTY; without even the implied warranty of
23    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
24    GNU General Public License for more details.
25 
26    You should have received a copy of the GNU General Public License
27    along with this program; if not, write to the Free Software
28    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
29    MA 02110-1301, USA.  */
30 
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "elf-bfd.h"
35 #include "elf/hppa.h"
36 #include "libhppa.h"
37 #include "elf32-hppa.h"
38 #define ARCH_SIZE		32
39 #include "elf32-hppa.h"
40 #include "elf-hppa.h"
41 
42 /* In order to gain some understanding of code in this file without
43    knowing all the intricate details of the linker, note the
44    following:
45 
46    Functions named elf32_hppa_* are called by external routines, other
47    functions are only called locally.  elf32_hppa_* functions appear
48    in this file more or less in the order in which they are called
49    from external routines.  eg. elf32_hppa_check_relocs is called
50    early in the link process, elf32_hppa_finish_dynamic_sections is
51    one of the last functions.  */
52 
53 /* We use two hash tables to hold information for linking PA ELF objects.
54 
55    The first is the elf32_hppa_link_hash_table which is derived
56    from the standard ELF linker hash table.  We use this as a place to
57    attach other hash tables and static information.
58 
59    The second is the stub hash table which is derived from the
60    base BFD hash table.  The stub hash table holds the information
61    necessary to build the linker stubs during a link.
62 
63    There are a number of different stubs generated by the linker.
64 
65    Long branch stub:
66    :		ldil LR'X,%r1
67    :		be,n RR'X(%sr4,%r1)
68 
69    PIC long branch stub:
70    :		b,l .+8,%r1
71    :		addil LR'X - ($PIC_pcrel$0 - 4),%r1
72    :		be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
73 
74    Import stub to call shared library routine from normal object file
75    (single sub-space version)
76    :		addil LR'lt_ptr+ltoff,%dp	; get procedure entry point
77    :		ldw RR'lt_ptr+ltoff(%r1),%r21
78    :		bv %r0(%r21)
79    :		ldw RR'lt_ptr+ltoff+4(%r1),%r19	; get new dlt value.
80 
81    Import stub to call shared library routine from shared library
82    (single sub-space version)
83    :		addil LR'ltoff,%r19		; get procedure entry point
84    :		ldw RR'ltoff(%r1),%r21
85    :		bv %r0(%r21)
86    :		ldw RR'ltoff+4(%r1),%r19	; get new dlt value.
87 
88    Import stub to call shared library routine from normal object file
89    (multiple sub-space support)
90    :		addil LR'lt_ptr+ltoff,%dp	; get procedure entry point
91    :		ldw RR'lt_ptr+ltoff(%r1),%r21
92    :		ldw RR'lt_ptr+ltoff+4(%r1),%r19	; get new dlt value.
93    :		ldsid (%r21),%r1
94    :		mtsp %r1,%sr0
95    :		be 0(%sr0,%r21)			; branch to target
96    :		stw %rp,-24(%sp)		; save rp
97 
98    Import stub to call shared library routine from shared library
99    (multiple sub-space support)
100    :		addil LR'ltoff,%r19		; get procedure entry point
101    :		ldw RR'ltoff(%r1),%r21
102    :		ldw RR'ltoff+4(%r1),%r19	; get new dlt value.
103    :		ldsid (%r21),%r1
104    :		mtsp %r1,%sr0
105    :		be 0(%sr0,%r21)			; branch to target
106    :		stw %rp,-24(%sp)		; save rp
107 
108    Export stub to return from shared lib routine (multiple sub-space support)
109    One of these is created for each exported procedure in a shared
110    library (and stored in the shared lib).  Shared lib routines are
111    called via the first instruction in the export stub so that we can
112    do an inter-space return.  Not required for single sub-space.
113    :		bl,n X,%rp			; trap the return
114    :		nop
115    :		ldw -24(%sp),%rp		; restore the original rp
116    :		ldsid (%rp),%r1
117    :		mtsp %r1,%sr0
118    :		be,n 0(%sr0,%rp)		; inter-space return.  */
119 
120 
121 /* Variable names follow a coding style.
122    Please follow this (Apps Hungarian) style:
123 
124    Structure/Variable         		Prefix
125    elf_link_hash_table			"etab"
126    elf_link_hash_entry			"eh"
127 
128    elf32_hppa_link_hash_table		"htab"
129    elf32_hppa_link_hash_entry		"hh"
130 
131    bfd_hash_table			"btab"
132    bfd_hash_entry			"bh"
133 
134    bfd_hash_table containing stubs	"bstab"
135    elf32_hppa_stub_hash_entry		"hsh"
136 
137    elf32_hppa_dyn_reloc_entry		"hdh"
138 
139    Always remember to use GNU Coding Style. */
140 
141 #define PLT_ENTRY_SIZE 8
142 #define GOT_ENTRY_SIZE 4
143 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
144 
145 static const bfd_byte plt_stub[] =
146 {
147   0x0e, 0x80, 0x10, 0x96,  /* 1: ldw	0(%r20),%r22		*/
148   0xea, 0xc0, 0xc0, 0x00,  /*    bv	%r0(%r22)		*/
149   0x0e, 0x88, 0x10, 0x95,  /*    ldw	4(%r20),%r21		*/
150 #define PLT_STUB_ENTRY (3*4)
151   0xea, 0x9f, 0x1f, 0xdd,  /*    b,l	1b,%r20			*/
152   0xd6, 0x80, 0x1c, 0x1e,  /*    depi	0,31,2,%r20		*/
153   0x00, 0xc0, 0xff, 0xee,  /* 9: .word	fixup_func		*/
154   0xde, 0xad, 0xbe, 0xef   /*    .word	fixup_ltp		*/
155 };
156 
157 /* Section name for stubs is the associated section name plus this
158    string.  */
159 #define STUB_SUFFIX ".stub"
160 
161 /* We don't need to copy certain PC- or GP-relative dynamic relocs
162    into a shared object's dynamic section.  All the relocs of the
163    limited class we are interested in, are absolute.  */
164 #ifndef RELATIVE_DYNRELOCS
165 #define RELATIVE_DYNRELOCS 0
166 #define IS_ABSOLUTE_RELOC(r_type) 1
167 #endif
168 
169 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
170    copying dynamic variables from a shared lib into an app's dynbss
171    section, and instead use a dynamic relocation to point into the
172    shared lib.  */
173 #define ELIMINATE_COPY_RELOCS 1
174 
175 enum elf32_hppa_stub_type
176 {
177   hppa_stub_long_branch,
178   hppa_stub_long_branch_shared,
179   hppa_stub_import,
180   hppa_stub_import_shared,
181   hppa_stub_export,
182   hppa_stub_none
183 };
184 
185 struct elf32_hppa_stub_hash_entry
186 {
187   /* Base hash table entry structure.  */
188   struct bfd_hash_entry bh_root;
189 
190   /* The stub section.  */
191   asection *stub_sec;
192 
193   /* Offset within stub_sec of the beginning of this stub.  */
194   bfd_vma stub_offset;
195 
196   /* Given the symbol's value and its section we can determine its final
197      value when building the stubs (so the stub knows where to jump.  */
198   bfd_vma target_value;
199   asection *target_section;
200 
201   enum elf32_hppa_stub_type stub_type;
202 
203   /* The symbol table entry, if any, that this was derived from.  */
204   struct elf32_hppa_link_hash_entry *hh;
205 
206   /* Where this stub is being called from, or, in the case of combined
207      stub sections, the first input section in the group.  */
208   asection *id_sec;
209 };
210 
211 struct elf32_hppa_link_hash_entry
212 {
213   struct elf_link_hash_entry eh;
214 
215   /* A pointer to the most recently used stub hash entry against this
216      symbol.  */
217   struct elf32_hppa_stub_hash_entry *hsh_cache;
218 
219   /* Used to count relocations for delayed sizing of relocation
220      sections.  */
221   struct elf32_hppa_dyn_reloc_entry
222   {
223     /* Next relocation in the chain.  */
224     struct elf32_hppa_dyn_reloc_entry *hdh_next;
225 
226     /* The input section of the reloc.  */
227     asection *sec;
228 
229     /* Number of relocs copied in this section.  */
230     bfd_size_type count;
231 
232 #if RELATIVE_DYNRELOCS
233   /* Number of relative relocs copied for the input section.  */
234     bfd_size_type relative_count;
235 #endif
236   } *dyn_relocs;
237 
238   enum
239   {
240     GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
241   } tls_type;
242 
243   /* Set if this symbol is used by a plabel reloc.  */
244   unsigned int plabel:1;
245 };
246 
247 struct elf32_hppa_link_hash_table
248 {
249   /* The main hash table.  */
250   struct elf_link_hash_table etab;
251 
252   /* The stub hash table.  */
253   struct bfd_hash_table bstab;
254 
255   /* Linker stub bfd.  */
256   bfd *stub_bfd;
257 
258   /* Linker call-backs.  */
259   asection * (*add_stub_section) (const char *, asection *);
260   void (*layout_sections_again) (void);
261 
262   /* Array to keep track of which stub sections have been created, and
263      information on stub grouping.  */
264   struct map_stub
265   {
266     /* This is the section to which stubs in the group will be
267        attached.  */
268     asection *link_sec;
269     /* The stub section.  */
270     asection *stub_sec;
271   } *stub_group;
272 
273   /* Assorted information used by elf32_hppa_size_stubs.  */
274   unsigned int bfd_count;
275   int top_index;
276   asection **input_list;
277   Elf_Internal_Sym **all_local_syms;
278 
279   /* Short-cuts to get to dynamic linker sections.  */
280   asection *sgot;
281   asection *srelgot;
282   asection *splt;
283   asection *srelplt;
284   asection *sdynbss;
285   asection *srelbss;
286 
287   /* Used during a final link to store the base of the text and data
288      segments so that we can perform SEGREL relocations.  */
289   bfd_vma text_segment_base;
290   bfd_vma data_segment_base;
291 
292   /* Whether we support multiple sub-spaces for shared libs.  */
293   unsigned int multi_subspace:1;
294 
295   /* Flags set when various size branches are detected.  Used to
296      select suitable defaults for the stub group size.  */
297   unsigned int has_12bit_branch:1;
298   unsigned int has_17bit_branch:1;
299   unsigned int has_22bit_branch:1;
300 
301   /* Set if we need a .plt stub to support lazy dynamic linking.  */
302   unsigned int need_plt_stub:1;
303 
304   /* Small local sym cache.  */
305   struct sym_cache sym_cache;
306 
307   /* Data for LDM relocations.  */
308   union
309   {
310     bfd_signed_vma refcount;
311     bfd_vma offset;
312   } tls_ldm_got;
313 };
314 
315 /* Various hash macros and functions.  */
316 #define hppa_link_hash_table(p) \
317   (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
318   == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
319 
320 #define hppa_elf_hash_entry(ent) \
321   ((struct elf32_hppa_link_hash_entry *)(ent))
322 
323 #define hppa_stub_hash_entry(ent) \
324   ((struct elf32_hppa_stub_hash_entry *)(ent))
325 
326 #define hppa_stub_hash_lookup(table, string, create, copy) \
327   ((struct elf32_hppa_stub_hash_entry *) \
328    bfd_hash_lookup ((table), (string), (create), (copy)))
329 
330 #define hppa_elf_local_got_tls_type(abfd) \
331   ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
332 
333 #define hh_name(hh) \
334   (hh ? hh->eh.root.root.string : "<undef>")
335 
336 #define eh_name(eh) \
337   (eh ? eh->root.root.string : "<undef>")
338 
339 /* Assorted hash table functions.  */
340 
341 /* Initialize an entry in the stub hash table.  */
342 
343 static struct bfd_hash_entry *
344 stub_hash_newfunc (struct bfd_hash_entry *entry,
345 		   struct bfd_hash_table *table,
346 		   const char *string)
347 {
348   /* Allocate the structure if it has not already been allocated by a
349      subclass.  */
350   if (entry == NULL)
351     {
352       entry = bfd_hash_allocate (table,
353 				 sizeof (struct elf32_hppa_stub_hash_entry));
354       if (entry == NULL)
355 	return entry;
356     }
357 
358   /* Call the allocation method of the superclass.  */
359   entry = bfd_hash_newfunc (entry, table, string);
360   if (entry != NULL)
361     {
362       struct elf32_hppa_stub_hash_entry *hsh;
363 
364       /* Initialize the local fields.  */
365       hsh = hppa_stub_hash_entry (entry);
366       hsh->stub_sec = NULL;
367       hsh->stub_offset = 0;
368       hsh->target_value = 0;
369       hsh->target_section = NULL;
370       hsh->stub_type = hppa_stub_long_branch;
371       hsh->hh = NULL;
372       hsh->id_sec = NULL;
373     }
374 
375   return entry;
376 }
377 
378 /* Initialize an entry in the link hash table.  */
379 
380 static struct bfd_hash_entry *
381 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
382 			struct bfd_hash_table *table,
383 			const char *string)
384 {
385   /* Allocate the structure if it has not already been allocated by a
386      subclass.  */
387   if (entry == NULL)
388     {
389       entry = bfd_hash_allocate (table,
390 				 sizeof (struct elf32_hppa_link_hash_entry));
391       if (entry == NULL)
392 	return entry;
393     }
394 
395   /* Call the allocation method of the superclass.  */
396   entry = _bfd_elf_link_hash_newfunc (entry, table, string);
397   if (entry != NULL)
398     {
399       struct elf32_hppa_link_hash_entry *hh;
400 
401       /* Initialize the local fields.  */
402       hh = hppa_elf_hash_entry (entry);
403       hh->hsh_cache = NULL;
404       hh->dyn_relocs = NULL;
405       hh->plabel = 0;
406       hh->tls_type = GOT_UNKNOWN;
407     }
408 
409   return entry;
410 }
411 
412 /* Create the derived linker hash table.  The PA ELF port uses the derived
413    hash table to keep information specific to the PA ELF linker (without
414    using static variables).  */
415 
416 static struct bfd_link_hash_table *
417 elf32_hppa_link_hash_table_create (bfd *abfd)
418 {
419   struct elf32_hppa_link_hash_table *htab;
420   bfd_size_type amt = sizeof (*htab);
421 
422   htab = bfd_malloc (amt);
423   if (htab == NULL)
424     return NULL;
425 
426   if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
427 				      sizeof (struct elf32_hppa_link_hash_entry),
428 				      HPPA32_ELF_DATA))
429     {
430       free (htab);
431       return NULL;
432     }
433 
434   /* Init the stub hash table too.  */
435   if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
436 			    sizeof (struct elf32_hppa_stub_hash_entry)))
437     return NULL;
438 
439   htab->stub_bfd = NULL;
440   htab->add_stub_section = NULL;
441   htab->layout_sections_again = NULL;
442   htab->stub_group = NULL;
443   htab->sgot = NULL;
444   htab->srelgot = NULL;
445   htab->splt = NULL;
446   htab->srelplt = NULL;
447   htab->sdynbss = NULL;
448   htab->srelbss = NULL;
449   htab->text_segment_base = (bfd_vma) -1;
450   htab->data_segment_base = (bfd_vma) -1;
451   htab->multi_subspace = 0;
452   htab->has_12bit_branch = 0;
453   htab->has_17bit_branch = 0;
454   htab->has_22bit_branch = 0;
455   htab->need_plt_stub = 0;
456   htab->sym_cache.abfd = NULL;
457   htab->tls_ldm_got.refcount = 0;
458 
459   return &htab->etab.root;
460 }
461 
462 /* Free the derived linker hash table.  */
463 
464 static void
465 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *btab)
466 {
467   struct elf32_hppa_link_hash_table *htab
468     = (struct elf32_hppa_link_hash_table *) btab;
469 
470   bfd_hash_table_free (&htab->bstab);
471   _bfd_generic_link_hash_table_free (btab);
472 }
473 
474 /* Build a name for an entry in the stub hash table.  */
475 
476 static char *
477 hppa_stub_name (const asection *input_section,
478 		const asection *sym_sec,
479 		const struct elf32_hppa_link_hash_entry *hh,
480 		const Elf_Internal_Rela *rela)
481 {
482   char *stub_name;
483   bfd_size_type len;
484 
485   if (hh)
486     {
487       len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
488       stub_name = bfd_malloc (len);
489       if (stub_name != NULL)
490 	sprintf (stub_name, "%08x_%s+%x",
491 		 input_section->id & 0xffffffff,
492 		 hh_name (hh),
493 		 (int) rela->r_addend & 0xffffffff);
494     }
495   else
496     {
497       len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
498       stub_name = bfd_malloc (len);
499       if (stub_name != NULL)
500 	sprintf (stub_name, "%08x_%x:%x+%x",
501 		 input_section->id & 0xffffffff,
502 		 sym_sec->id & 0xffffffff,
503 		 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
504 		 (int) rela->r_addend & 0xffffffff);
505     }
506   return stub_name;
507 }
508 
509 /* Look up an entry in the stub hash.  Stub entries are cached because
510    creating the stub name takes a bit of time.  */
511 
512 static struct elf32_hppa_stub_hash_entry *
513 hppa_get_stub_entry (const asection *input_section,
514 		     const asection *sym_sec,
515 		     struct elf32_hppa_link_hash_entry *hh,
516 		     const Elf_Internal_Rela *rela,
517 		     struct elf32_hppa_link_hash_table *htab)
518 {
519   struct elf32_hppa_stub_hash_entry *hsh_entry;
520   const asection *id_sec;
521 
522   /* If this input section is part of a group of sections sharing one
523      stub section, then use the id of the first section in the group.
524      Stub names need to include a section id, as there may well be
525      more than one stub used to reach say, printf, and we need to
526      distinguish between them.  */
527   id_sec = htab->stub_group[input_section->id].link_sec;
528 
529   if (hh != NULL && hh->hsh_cache != NULL
530       && hh->hsh_cache->hh == hh
531       && hh->hsh_cache->id_sec == id_sec)
532     {
533       hsh_entry = hh->hsh_cache;
534     }
535   else
536     {
537       char *stub_name;
538 
539       stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
540       if (stub_name == NULL)
541 	return NULL;
542 
543       hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
544 					  stub_name, FALSE, FALSE);
545       if (hh != NULL)
546 	hh->hsh_cache = hsh_entry;
547 
548       free (stub_name);
549     }
550 
551   return hsh_entry;
552 }
553 
554 /* Add a new stub entry to the stub hash.  Not all fields of the new
555    stub entry are initialised.  */
556 
557 static struct elf32_hppa_stub_hash_entry *
558 hppa_add_stub (const char *stub_name,
559 	       asection *section,
560 	       struct elf32_hppa_link_hash_table *htab)
561 {
562   asection *link_sec;
563   asection *stub_sec;
564   struct elf32_hppa_stub_hash_entry *hsh;
565 
566   link_sec = htab->stub_group[section->id].link_sec;
567   stub_sec = htab->stub_group[section->id].stub_sec;
568   if (stub_sec == NULL)
569     {
570       stub_sec = htab->stub_group[link_sec->id].stub_sec;
571       if (stub_sec == NULL)
572 	{
573 	  size_t namelen;
574 	  bfd_size_type len;
575 	  char *s_name;
576 
577 	  namelen = strlen (link_sec->name);
578 	  len = namelen + sizeof (STUB_SUFFIX);
579 	  s_name = bfd_alloc (htab->stub_bfd, len);
580 	  if (s_name == NULL)
581 	    return NULL;
582 
583 	  memcpy (s_name, link_sec->name, namelen);
584 	  memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
585 	  stub_sec = (*htab->add_stub_section) (s_name, link_sec);
586 	  if (stub_sec == NULL)
587 	    return NULL;
588 	  htab->stub_group[link_sec->id].stub_sec = stub_sec;
589 	}
590       htab->stub_group[section->id].stub_sec = stub_sec;
591     }
592 
593   /* Enter this entry into the linker stub hash table.  */
594   hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
595 				      TRUE, FALSE);
596   if (hsh == NULL)
597     {
598       (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
599 			     section->owner,
600 			     stub_name);
601       return NULL;
602     }
603 
604   hsh->stub_sec = stub_sec;
605   hsh->stub_offset = 0;
606   hsh->id_sec = link_sec;
607   return hsh;
608 }
609 
610 /* Determine the type of stub needed, if any, for a call.  */
611 
612 static enum elf32_hppa_stub_type
613 hppa_type_of_stub (asection *input_sec,
614 		   const Elf_Internal_Rela *rela,
615 		   struct elf32_hppa_link_hash_entry *hh,
616 		   bfd_vma destination,
617 		   struct bfd_link_info *info)
618 {
619   bfd_vma location;
620   bfd_vma branch_offset;
621   bfd_vma max_branch_offset;
622   unsigned int r_type;
623 
624   if (hh != NULL
625       && hh->eh.plt.offset != (bfd_vma) -1
626       && hh->eh.dynindx != -1
627       && !hh->plabel
628       && (info->shared
629 	  || !hh->eh.def_regular
630 	  || hh->eh.root.type == bfd_link_hash_defweak))
631     {
632       /* We need an import stub.  Decide between hppa_stub_import
633 	 and hppa_stub_import_shared later.  */
634       return hppa_stub_import;
635     }
636 
637   /* Determine where the call point is.  */
638   location = (input_sec->output_offset
639 	      + input_sec->output_section->vma
640 	      + rela->r_offset);
641 
642   branch_offset = destination - location - 8;
643   r_type = ELF32_R_TYPE (rela->r_info);
644 
645   /* Determine if a long branch stub is needed.  parisc branch offsets
646      are relative to the second instruction past the branch, ie. +8
647      bytes on from the branch instruction location.  The offset is
648      signed and counts in units of 4 bytes.  */
649   if (r_type == (unsigned int) R_PARISC_PCREL17F)
650     max_branch_offset = (1 << (17 - 1)) << 2;
651 
652   else if (r_type == (unsigned int) R_PARISC_PCREL12F)
653     max_branch_offset = (1 << (12 - 1)) << 2;
654 
655   else /* R_PARISC_PCREL22F.  */
656     max_branch_offset = (1 << (22 - 1)) << 2;
657 
658   if (branch_offset + max_branch_offset >= 2*max_branch_offset)
659     return hppa_stub_long_branch;
660 
661   return hppa_stub_none;
662 }
663 
664 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
665    IN_ARG contains the link info pointer.  */
666 
667 #define LDIL_R1		0x20200000	/* ldil  LR'XXX,%r1		*/
668 #define BE_SR4_R1	0xe0202002	/* be,n  RR'XXX(%sr4,%r1)	*/
669 
670 #define BL_R1		0xe8200000	/* b,l   .+8,%r1		*/
671 #define ADDIL_R1	0x28200000	/* addil LR'XXX,%r1,%r1		*/
672 #define DEPI_R1		0xd4201c1e	/* depi  0,31,2,%r1		*/
673 
674 #define ADDIL_DP	0x2b600000	/* addil LR'XXX,%dp,%r1		*/
675 #define LDW_R1_R21	0x48350000	/* ldw   RR'XXX(%sr0,%r1),%r21	*/
676 #define BV_R0_R21	0xeaa0c000	/* bv    %r0(%r21)		*/
677 #define LDW_R1_R19	0x48330000	/* ldw   RR'XXX(%sr0,%r1),%r19	*/
678 
679 #define ADDIL_R19	0x2a600000	/* addil LR'XXX,%r19,%r1	*/
680 #define LDW_R1_DP	0x483b0000	/* ldw   RR'XXX(%sr0,%r1),%dp	*/
681 
682 #define LDSID_R21_R1	0x02a010a1	/* ldsid (%sr0,%r21),%r1	*/
683 #define MTSP_R1		0x00011820	/* mtsp  %r1,%sr0		*/
684 #define BE_SR0_R21	0xe2a00000	/* be    0(%sr0,%r21)		*/
685 #define STW_RP		0x6bc23fd1	/* stw   %rp,-24(%sr0,%sp)	*/
686 
687 #define BL22_RP		0xe800a002	/* b,l,n XXX,%rp		*/
688 #define BL_RP		0xe8400002	/* b,l,n XXX,%rp		*/
689 #define NOP		0x08000240	/* nop				*/
690 #define LDW_RP		0x4bc23fd1	/* ldw   -24(%sr0,%sp),%rp	*/
691 #define LDSID_RP_R1	0x004010a1	/* ldsid (%sr0,%rp),%r1		*/
692 #define BE_SR0_RP	0xe0400002	/* be,n  0(%sr0,%rp)		*/
693 
694 #ifndef R19_STUBS
695 #define R19_STUBS 1
696 #endif
697 
698 #if R19_STUBS
699 #define LDW_R1_DLT	LDW_R1_R19
700 #else
701 #define LDW_R1_DLT	LDW_R1_DP
702 #endif
703 
704 static bfd_boolean
705 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
706 {
707   struct elf32_hppa_stub_hash_entry *hsh;
708   struct bfd_link_info *info;
709   struct elf32_hppa_link_hash_table *htab;
710   asection *stub_sec;
711   bfd *stub_bfd;
712   bfd_byte *loc;
713   bfd_vma sym_value;
714   bfd_vma insn;
715   bfd_vma off;
716   int val;
717   int size;
718 
719   /* Massage our args to the form they really have.  */
720   hsh = hppa_stub_hash_entry (bh);
721   info = (struct bfd_link_info *)in_arg;
722 
723   htab = hppa_link_hash_table (info);
724   if (htab == NULL)
725     return FALSE;
726 
727   stub_sec = hsh->stub_sec;
728 
729   /* Make a note of the offset within the stubs for this entry.  */
730   hsh->stub_offset = stub_sec->size;
731   loc = stub_sec->contents + hsh->stub_offset;
732 
733   stub_bfd = stub_sec->owner;
734 
735   switch (hsh->stub_type)
736     {
737     case hppa_stub_long_branch:
738       /* Create the long branch.  A long branch is formed with "ldil"
739 	 loading the upper bits of the target address into a register,
740 	 then branching with "be" which adds in the lower bits.
741 	 The "be" has its delay slot nullified.  */
742       sym_value = (hsh->target_value
743 		   + hsh->target_section->output_offset
744 		   + hsh->target_section->output_section->vma);
745 
746       val = hppa_field_adjust (sym_value, 0, e_lrsel);
747       insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
748       bfd_put_32 (stub_bfd, insn, loc);
749 
750       val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
751       insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
752       bfd_put_32 (stub_bfd, insn, loc + 4);
753 
754       size = 8;
755       break;
756 
757     case hppa_stub_long_branch_shared:
758       /* Branches are relative.  This is where we are going to.  */
759       sym_value = (hsh->target_value
760 		   + hsh->target_section->output_offset
761 		   + hsh->target_section->output_section->vma);
762 
763       /* And this is where we are coming from, more or less.  */
764       sym_value -= (hsh->stub_offset
765 		    + stub_sec->output_offset
766 		    + stub_sec->output_section->vma);
767 
768       bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
769       val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
770       insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
771       bfd_put_32 (stub_bfd, insn, loc + 4);
772 
773       val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
774       insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
775       bfd_put_32 (stub_bfd, insn, loc + 8);
776       size = 12;
777       break;
778 
779     case hppa_stub_import:
780     case hppa_stub_import_shared:
781       off = hsh->hh->eh.plt.offset;
782       if (off >= (bfd_vma) -2)
783 	abort ();
784 
785       off &= ~ (bfd_vma) 1;
786       sym_value = (off
787 		   + htab->splt->output_offset
788 		   + htab->splt->output_section->vma
789 		   - elf_gp (htab->splt->output_section->owner));
790 
791       insn = ADDIL_DP;
792 #if R19_STUBS
793       if (hsh->stub_type == hppa_stub_import_shared)
794 	insn = ADDIL_R19;
795 #endif
796       val = hppa_field_adjust (sym_value, 0, e_lrsel),
797       insn = hppa_rebuild_insn ((int) insn, val, 21);
798       bfd_put_32 (stub_bfd, insn, loc);
799 
800       /* It is critical to use lrsel/rrsel here because we are using
801 	 two different offsets (+0 and +4) from sym_value.  If we use
802 	 lsel/rsel then with unfortunate sym_values we will round
803 	 sym_value+4 up to the next 2k block leading to a mis-match
804 	 between the lsel and rsel value.  */
805       val = hppa_field_adjust (sym_value, 0, e_rrsel);
806       insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
807       bfd_put_32 (stub_bfd, insn, loc + 4);
808 
809       if (htab->multi_subspace)
810 	{
811 	  val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
812 	  insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
813 	  bfd_put_32 (stub_bfd, insn, loc + 8);
814 
815 	  bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
816 	  bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1,      loc + 16);
817 	  bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21,   loc + 20);
818 	  bfd_put_32 (stub_bfd, (bfd_vma) STW_RP,       loc + 24);
819 
820 	  size = 28;
821 	}
822       else
823 	{
824 	  bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
825 	  val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
826 	  insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
827 	  bfd_put_32 (stub_bfd, insn, loc + 12);
828 
829 	  size = 16;
830 	}
831 
832       break;
833 
834     case hppa_stub_export:
835       /* Branches are relative.  This is where we are going to.  */
836       sym_value = (hsh->target_value
837 		   + hsh->target_section->output_offset
838 		   + hsh->target_section->output_section->vma);
839 
840       /* And this is where we are coming from.  */
841       sym_value -= (hsh->stub_offset
842 		    + stub_sec->output_offset
843 		    + stub_sec->output_section->vma);
844 
845       if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
846 	  && (!htab->has_22bit_branch
847 	      || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
848 	{
849 	  (*_bfd_error_handler)
850 	    (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
851 	     hsh->target_section->owner,
852 	     stub_sec,
853 	     (long) hsh->stub_offset,
854 	     hsh->bh_root.string);
855 	  bfd_set_error (bfd_error_bad_value);
856 	  return FALSE;
857 	}
858 
859       val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
860       if (!htab->has_22bit_branch)
861 	insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
862       else
863 	insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
864       bfd_put_32 (stub_bfd, insn, loc);
865 
866       bfd_put_32 (stub_bfd, (bfd_vma) NOP,         loc + 4);
867       bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP,      loc + 8);
868       bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
869       bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1,     loc + 16);
870       bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP,   loc + 20);
871 
872       /* Point the function symbol at the stub.  */
873       hsh->hh->eh.root.u.def.section = stub_sec;
874       hsh->hh->eh.root.u.def.value = stub_sec->size;
875 
876       size = 24;
877       break;
878 
879     default:
880       BFD_FAIL ();
881       return FALSE;
882     }
883 
884   stub_sec->size += size;
885   return TRUE;
886 }
887 
888 #undef LDIL_R1
889 #undef BE_SR4_R1
890 #undef BL_R1
891 #undef ADDIL_R1
892 #undef DEPI_R1
893 #undef LDW_R1_R21
894 #undef LDW_R1_DLT
895 #undef LDW_R1_R19
896 #undef ADDIL_R19
897 #undef LDW_R1_DP
898 #undef LDSID_R21_R1
899 #undef MTSP_R1
900 #undef BE_SR0_R21
901 #undef STW_RP
902 #undef BV_R0_R21
903 #undef BL_RP
904 #undef NOP
905 #undef LDW_RP
906 #undef LDSID_RP_R1
907 #undef BE_SR0_RP
908 
909 /* As above, but don't actually build the stub.  Just bump offset so
910    we know stub section sizes.  */
911 
912 static bfd_boolean
913 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
914 {
915   struct elf32_hppa_stub_hash_entry *hsh;
916   struct elf32_hppa_link_hash_table *htab;
917   int size;
918 
919   /* Massage our args to the form they really have.  */
920   hsh = hppa_stub_hash_entry (bh);
921   htab = in_arg;
922 
923   if (hsh->stub_type == hppa_stub_long_branch)
924     size = 8;
925   else if (hsh->stub_type == hppa_stub_long_branch_shared)
926     size = 12;
927   else if (hsh->stub_type == hppa_stub_export)
928     size = 24;
929   else /* hppa_stub_import or hppa_stub_import_shared.  */
930     {
931       if (htab->multi_subspace)
932 	size = 28;
933       else
934 	size = 16;
935     }
936 
937   hsh->stub_sec->size += size;
938   return TRUE;
939 }
940 
941 /* Return nonzero if ABFD represents an HPPA ELF32 file.
942    Additionally we set the default architecture and machine.  */
943 
944 static bfd_boolean
945 elf32_hppa_object_p (bfd *abfd)
946 {
947   Elf_Internal_Ehdr * i_ehdrp;
948   unsigned int flags;
949 
950   i_ehdrp = elf_elfheader (abfd);
951   if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
952     {
953       /* GCC on hppa-linux produces binaries with OSABI=GNU,
954 	 but the kernel produces corefiles with OSABI=SysV.  */
955       if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
956 	  i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
957 	return FALSE;
958     }
959   else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
960     {
961       /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
962 	 but the kernel produces corefiles with OSABI=SysV.  */
963       if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
964 	  i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
965 	return FALSE;
966     }
967   else
968     {
969       if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
970 	return FALSE;
971     }
972 
973   flags = i_ehdrp->e_flags;
974   switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
975     {
976     case EFA_PARISC_1_0:
977       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
978     case EFA_PARISC_1_1:
979       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
980     case EFA_PARISC_2_0:
981       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
982     case EFA_PARISC_2_0 | EF_PARISC_WIDE:
983       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
984     }
985   return TRUE;
986 }
987 
988 /* Create the .plt and .got sections, and set up our hash table
989    short-cuts to various dynamic sections.  */
990 
991 static bfd_boolean
992 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
993 {
994   struct elf32_hppa_link_hash_table *htab;
995   struct elf_link_hash_entry *eh;
996 
997   /* Don't try to create the .plt and .got twice.  */
998   htab = hppa_link_hash_table (info);
999   if (htab == NULL)
1000     return FALSE;
1001   if (htab->splt != NULL)
1002     return TRUE;
1003 
1004   /* Call the generic code to do most of the work.  */
1005   if (! _bfd_elf_create_dynamic_sections (abfd, info))
1006     return FALSE;
1007 
1008   htab->splt = bfd_get_linker_section (abfd, ".plt");
1009   htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
1010 
1011   htab->sgot = bfd_get_linker_section (abfd, ".got");
1012   htab->srelgot = bfd_get_linker_section (abfd, ".rela.got");
1013 
1014   htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
1015   htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
1016 
1017   /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1018      application, because __canonicalize_funcptr_for_compare needs it.  */
1019   eh = elf_hash_table (info)->hgot;
1020   eh->forced_local = 0;
1021   eh->other = STV_DEFAULT;
1022   return bfd_elf_link_record_dynamic_symbol (info, eh);
1023 }
1024 
1025 /* Copy the extra info we tack onto an elf_link_hash_entry.  */
1026 
1027 static void
1028 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1029 				 struct elf_link_hash_entry *eh_dir,
1030 				 struct elf_link_hash_entry *eh_ind)
1031 {
1032   struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1033 
1034   hh_dir = hppa_elf_hash_entry (eh_dir);
1035   hh_ind = hppa_elf_hash_entry (eh_ind);
1036 
1037   if (hh_ind->dyn_relocs != NULL)
1038     {
1039       if (hh_dir->dyn_relocs != NULL)
1040 	{
1041 	  struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1042 	  struct elf32_hppa_dyn_reloc_entry *hdh_p;
1043 
1044 	  /* Add reloc counts against the indirect sym to the direct sym
1045 	     list.  Merge any entries against the same section.  */
1046 	  for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1047 	    {
1048 	      struct elf32_hppa_dyn_reloc_entry *hdh_q;
1049 
1050 	      for (hdh_q = hh_dir->dyn_relocs;
1051 		   hdh_q != NULL;
1052 		   hdh_q = hdh_q->hdh_next)
1053 		if (hdh_q->sec == hdh_p->sec)
1054 		  {
1055 #if RELATIVE_DYNRELOCS
1056 		    hdh_q->relative_count += hdh_p->relative_count;
1057 #endif
1058 		    hdh_q->count += hdh_p->count;
1059 		    *hdh_pp = hdh_p->hdh_next;
1060 		    break;
1061 		  }
1062 	      if (hdh_q == NULL)
1063 		hdh_pp = &hdh_p->hdh_next;
1064 	    }
1065 	  *hdh_pp = hh_dir->dyn_relocs;
1066 	}
1067 
1068       hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1069       hh_ind->dyn_relocs = NULL;
1070     }
1071 
1072   if (ELIMINATE_COPY_RELOCS
1073       && eh_ind->root.type != bfd_link_hash_indirect
1074       && eh_dir->dynamic_adjusted)
1075     {
1076       /* If called to transfer flags for a weakdef during processing
1077 	 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1078 	 We clear it ourselves for ELIMINATE_COPY_RELOCS.  */
1079       eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1080       eh_dir->ref_regular |= eh_ind->ref_regular;
1081       eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1082       eh_dir->needs_plt |= eh_ind->needs_plt;
1083     }
1084   else
1085     {
1086       if (eh_ind->root.type == bfd_link_hash_indirect
1087           && eh_dir->got.refcount <= 0)
1088         {
1089           hh_dir->tls_type = hh_ind->tls_type;
1090           hh_ind->tls_type = GOT_UNKNOWN;
1091         }
1092 
1093       _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1094     }
1095 }
1096 
1097 static int
1098 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1099 				int r_type, int is_local ATTRIBUTE_UNUSED)
1100 {
1101   /* For now we don't support linker optimizations.  */
1102   return r_type;
1103 }
1104 
1105 /* Return a pointer to the local GOT, PLT and TLS reference counts
1106    for ABFD.  Returns NULL if the storage allocation fails.  */
1107 
1108 static bfd_signed_vma *
1109 hppa32_elf_local_refcounts (bfd *abfd)
1110 {
1111   Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1112   bfd_signed_vma *local_refcounts;
1113 
1114   local_refcounts = elf_local_got_refcounts (abfd);
1115   if (local_refcounts == NULL)
1116     {
1117       bfd_size_type size;
1118 
1119       /* Allocate space for local GOT and PLT reference
1120 	 counts.  Done this way to save polluting elf_obj_tdata
1121 	 with another target specific pointer.  */
1122       size = symtab_hdr->sh_info;
1123       size *= 2 * sizeof (bfd_signed_vma);
1124       /* Add in space to store the local GOT TLS types.  */
1125       size += symtab_hdr->sh_info;
1126       local_refcounts = bfd_zalloc (abfd, size);
1127       if (local_refcounts == NULL)
1128 	return NULL;
1129       elf_local_got_refcounts (abfd) = local_refcounts;
1130       memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1131 	      symtab_hdr->sh_info);
1132     }
1133   return local_refcounts;
1134 }
1135 
1136 
1137 /* Look through the relocs for a section during the first phase, and
1138    calculate needed space in the global offset table, procedure linkage
1139    table, and dynamic reloc sections.  At this point we haven't
1140    necessarily read all the input files.  */
1141 
1142 static bfd_boolean
1143 elf32_hppa_check_relocs (bfd *abfd,
1144 			 struct bfd_link_info *info,
1145 			 asection *sec,
1146 			 const Elf_Internal_Rela *relocs)
1147 {
1148   Elf_Internal_Shdr *symtab_hdr;
1149   struct elf_link_hash_entry **eh_syms;
1150   const Elf_Internal_Rela *rela;
1151   const Elf_Internal_Rela *rela_end;
1152   struct elf32_hppa_link_hash_table *htab;
1153   asection *sreloc;
1154   int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
1155 
1156   if (info->relocatable)
1157     return TRUE;
1158 
1159   htab = hppa_link_hash_table (info);
1160   if (htab == NULL)
1161     return FALSE;
1162   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1163   eh_syms = elf_sym_hashes (abfd);
1164   sreloc = NULL;
1165 
1166   rela_end = relocs + sec->reloc_count;
1167   for (rela = relocs; rela < rela_end; rela++)
1168     {
1169       enum {
1170 	NEED_GOT = 1,
1171 	NEED_PLT = 2,
1172 	NEED_DYNREL = 4,
1173 	PLT_PLABEL = 8
1174       };
1175 
1176       unsigned int r_symndx, r_type;
1177       struct elf32_hppa_link_hash_entry *hh;
1178       int need_entry = 0;
1179 
1180       r_symndx = ELF32_R_SYM (rela->r_info);
1181 
1182       if (r_symndx < symtab_hdr->sh_info)
1183 	hh = NULL;
1184       else
1185 	{
1186 	  hh =  hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1187 	  while (hh->eh.root.type == bfd_link_hash_indirect
1188 		 || hh->eh.root.type == bfd_link_hash_warning)
1189 	    hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1190 	}
1191 
1192       r_type = ELF32_R_TYPE (rela->r_info);
1193       r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1194 
1195       switch (r_type)
1196 	{
1197 	case R_PARISC_DLTIND14F:
1198 	case R_PARISC_DLTIND14R:
1199 	case R_PARISC_DLTIND21L:
1200 	  /* This symbol requires a global offset table entry.  */
1201 	  need_entry = NEED_GOT;
1202 	  break;
1203 
1204 	case R_PARISC_PLABEL14R: /* "Official" procedure labels.  */
1205 	case R_PARISC_PLABEL21L:
1206 	case R_PARISC_PLABEL32:
1207 	  /* If the addend is non-zero, we break badly.  */
1208 	  if (rela->r_addend != 0)
1209 	    abort ();
1210 
1211 	  /* If we are creating a shared library, then we need to
1212 	     create a PLT entry for all PLABELs, because PLABELs with
1213 	     local symbols may be passed via a pointer to another
1214 	     object.  Additionally, output a dynamic relocation
1215 	     pointing to the PLT entry.
1216 
1217 	     For executables, the original 32-bit ABI allowed two
1218 	     different styles of PLABELs (function pointers):  For
1219 	     global functions, the PLABEL word points into the .plt
1220 	     two bytes past a (function address, gp) pair, and for
1221 	     local functions the PLABEL points directly at the
1222 	     function.  The magic +2 for the first type allows us to
1223 	     differentiate between the two.  As you can imagine, this
1224 	     is a real pain when it comes to generating code to call
1225 	     functions indirectly or to compare function pointers.
1226 	     We avoid the mess by always pointing a PLABEL into the
1227 	     .plt, even for local functions.  */
1228 	  need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1229 	  break;
1230 
1231 	case R_PARISC_PCREL12F:
1232 	  htab->has_12bit_branch = 1;
1233 	  goto branch_common;
1234 
1235 	case R_PARISC_PCREL17C:
1236 	case R_PARISC_PCREL17F:
1237 	  htab->has_17bit_branch = 1;
1238 	  goto branch_common;
1239 
1240 	case R_PARISC_PCREL22F:
1241 	  htab->has_22bit_branch = 1;
1242 	branch_common:
1243 	  /* Function calls might need to go through the .plt, and
1244 	     might require long branch stubs.  */
1245 	  if (hh == NULL)
1246 	    {
1247 	      /* We know local syms won't need a .plt entry, and if
1248 		 they need a long branch stub we can't guarantee that
1249 		 we can reach the stub.  So just flag an error later
1250 		 if we're doing a shared link and find we need a long
1251 		 branch stub.  */
1252 	      continue;
1253 	    }
1254 	  else
1255 	    {
1256 	      /* Global symbols will need a .plt entry if they remain
1257 		 global, and in most cases won't need a long branch
1258 		 stub.  Unfortunately, we have to cater for the case
1259 		 where a symbol is forced local by versioning, or due
1260 		 to symbolic linking, and we lose the .plt entry.  */
1261 	      need_entry = NEED_PLT;
1262 	      if (hh->eh.type == STT_PARISC_MILLI)
1263 		need_entry = 0;
1264 	    }
1265 	  break;
1266 
1267 	case R_PARISC_SEGBASE:  /* Used to set segment base.  */
1268 	case R_PARISC_SEGREL32: /* Relative reloc, used for unwind.  */
1269 	case R_PARISC_PCREL14F: /* PC relative load/store.  */
1270 	case R_PARISC_PCREL14R:
1271 	case R_PARISC_PCREL17R: /* External branches.  */
1272 	case R_PARISC_PCREL21L: /* As above, and for load/store too.  */
1273 	case R_PARISC_PCREL32:
1274 	  /* We don't need to propagate the relocation if linking a
1275 	     shared object since these are section relative.  */
1276 	  continue;
1277 
1278 	case R_PARISC_DPREL14F: /* Used for gp rel data load/store.  */
1279 	case R_PARISC_DPREL14R:
1280 	case R_PARISC_DPREL21L:
1281 	  if (info->shared)
1282 	    {
1283 	      (*_bfd_error_handler)
1284 		(_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1285 		 abfd,
1286 		 elf_hppa_howto_table[r_type].name);
1287 	      bfd_set_error (bfd_error_bad_value);
1288 	      return FALSE;
1289 	    }
1290 	  /* Fall through.  */
1291 
1292 	case R_PARISC_DIR17F: /* Used for external branches.  */
1293 	case R_PARISC_DIR17R:
1294 	case R_PARISC_DIR14F: /* Used for load/store from absolute locn.  */
1295 	case R_PARISC_DIR14R:
1296 	case R_PARISC_DIR21L: /* As above, and for ext branches too.  */
1297 	case R_PARISC_DIR32: /* .word relocs.  */
1298 	  /* We may want to output a dynamic relocation later.  */
1299 	  need_entry = NEED_DYNREL;
1300 	  break;
1301 
1302 	  /* This relocation describes the C++ object vtable hierarchy.
1303 	     Reconstruct it for later use during GC.  */
1304 	case R_PARISC_GNU_VTINHERIT:
1305 	  if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1306 	    return FALSE;
1307 	  continue;
1308 
1309 	  /* This relocation describes which C++ vtable entries are actually
1310 	     used.  Record for later use during GC.  */
1311 	case R_PARISC_GNU_VTENTRY:
1312 	  BFD_ASSERT (hh != NULL);
1313 	  if (hh != NULL
1314 	      && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1315 	    return FALSE;
1316 	  continue;
1317 
1318 	case R_PARISC_TLS_GD21L:
1319 	case R_PARISC_TLS_GD14R:
1320 	case R_PARISC_TLS_LDM21L:
1321 	case R_PARISC_TLS_LDM14R:
1322 	  need_entry = NEED_GOT;
1323 	  break;
1324 
1325 	case R_PARISC_TLS_IE21L:
1326 	case R_PARISC_TLS_IE14R:
1327 	  if (info->shared)
1328             info->flags |= DF_STATIC_TLS;
1329 	  need_entry = NEED_GOT;
1330 	  break;
1331 
1332 	default:
1333 	  continue;
1334 	}
1335 
1336       /* Now carry out our orders.  */
1337       if (need_entry & NEED_GOT)
1338 	{
1339 	  switch (r_type)
1340 	    {
1341 	    default:
1342 	      tls_type = GOT_NORMAL;
1343 	      break;
1344 	    case R_PARISC_TLS_GD21L:
1345 	    case R_PARISC_TLS_GD14R:
1346 	      tls_type |= GOT_TLS_GD;
1347 	      break;
1348 	    case R_PARISC_TLS_LDM21L:
1349 	    case R_PARISC_TLS_LDM14R:
1350 	      tls_type |= GOT_TLS_LDM;
1351 	      break;
1352 	    case R_PARISC_TLS_IE21L:
1353 	    case R_PARISC_TLS_IE14R:
1354 	      tls_type |= GOT_TLS_IE;
1355 	      break;
1356 	    }
1357 
1358 	  /* Allocate space for a GOT entry, as well as a dynamic
1359 	     relocation for this entry.  */
1360 	  if (htab->sgot == NULL)
1361 	    {
1362 	      if (htab->etab.dynobj == NULL)
1363 		htab->etab.dynobj = abfd;
1364 	      if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1365 		return FALSE;
1366 	    }
1367 
1368 	  if (r_type == R_PARISC_TLS_LDM21L
1369 	      || r_type == R_PARISC_TLS_LDM14R)
1370 	    htab->tls_ldm_got.refcount += 1;
1371 	  else
1372 	    {
1373 	      if (hh != NULL)
1374 	        {
1375 	          hh->eh.got.refcount += 1;
1376 	          old_tls_type = hh->tls_type;
1377 	        }
1378 	      else
1379 	        {
1380 	          bfd_signed_vma *local_got_refcounts;
1381 
1382 	          /* This is a global offset table entry for a local symbol.  */
1383 	          local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1384 	          if (local_got_refcounts == NULL)
1385 		    return FALSE;
1386 	          local_got_refcounts[r_symndx] += 1;
1387 
1388 	          old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
1389 	        }
1390 
1391 	      tls_type |= old_tls_type;
1392 
1393 	      if (old_tls_type != tls_type)
1394 	        {
1395 	          if (hh != NULL)
1396 		    hh->tls_type = tls_type;
1397 	          else
1398 		    hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
1399 	        }
1400 
1401 	    }
1402 	}
1403 
1404       if (need_entry & NEED_PLT)
1405 	{
1406 	  /* If we are creating a shared library, and this is a reloc
1407 	     against a weak symbol or a global symbol in a dynamic
1408 	     object, then we will be creating an import stub and a
1409 	     .plt entry for the symbol.  Similarly, on a normal link
1410 	     to symbols defined in a dynamic object we'll need the
1411 	     import stub and a .plt entry.  We don't know yet whether
1412 	     the symbol is defined or not, so make an entry anyway and
1413 	     clean up later in adjust_dynamic_symbol.  */
1414 	  if ((sec->flags & SEC_ALLOC) != 0)
1415 	    {
1416 	      if (hh != NULL)
1417 		{
1418 		  hh->eh.needs_plt = 1;
1419 		  hh->eh.plt.refcount += 1;
1420 
1421 		  /* If this .plt entry is for a plabel, mark it so
1422 		     that adjust_dynamic_symbol will keep the entry
1423 		     even if it appears to be local.  */
1424 		  if (need_entry & PLT_PLABEL)
1425 		    hh->plabel = 1;
1426 		}
1427 	      else if (need_entry & PLT_PLABEL)
1428 		{
1429 		  bfd_signed_vma *local_got_refcounts;
1430 		  bfd_signed_vma *local_plt_refcounts;
1431 
1432 		  local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1433 		  if (local_got_refcounts == NULL)
1434 		    return FALSE;
1435 		  local_plt_refcounts = (local_got_refcounts
1436 					 + symtab_hdr->sh_info);
1437 		  local_plt_refcounts[r_symndx] += 1;
1438 		}
1439 	    }
1440 	}
1441 
1442       if (need_entry & NEED_DYNREL)
1443 	{
1444 	  /* Flag this symbol as having a non-got, non-plt reference
1445 	     so that we generate copy relocs if it turns out to be
1446 	     dynamic.  */
1447 	  if (hh != NULL && !info->shared)
1448 	    hh->eh.non_got_ref = 1;
1449 
1450 	  /* If we are creating a shared library then we need to copy
1451 	     the reloc into the shared library.  However, if we are
1452 	     linking with -Bsymbolic, we need only copy absolute
1453 	     relocs or relocs against symbols that are not defined in
1454 	     an object we are including in the link.  PC- or DP- or
1455 	     DLT-relative relocs against any local sym or global sym
1456 	     with DEF_REGULAR set, can be discarded.  At this point we
1457 	     have not seen all the input files, so it is possible that
1458 	     DEF_REGULAR is not set now but will be set later (it is
1459 	     never cleared).  We account for that possibility below by
1460 	     storing information in the dyn_relocs field of the
1461 	     hash table entry.
1462 
1463 	     A similar situation to the -Bsymbolic case occurs when
1464 	     creating shared libraries and symbol visibility changes
1465 	     render the symbol local.
1466 
1467 	     As it turns out, all the relocs we will be creating here
1468 	     are absolute, so we cannot remove them on -Bsymbolic
1469 	     links or visibility changes anyway.  A STUB_REL reloc
1470 	     is absolute too, as in that case it is the reloc in the
1471 	     stub we will be creating, rather than copying the PCREL
1472 	     reloc in the branch.
1473 
1474 	     If on the other hand, we are creating an executable, we
1475 	     may need to keep relocations for symbols satisfied by a
1476 	     dynamic library if we manage to avoid copy relocs for the
1477 	     symbol.  */
1478 	  if ((info->shared
1479 	       && (sec->flags & SEC_ALLOC) != 0
1480 	       && (IS_ABSOLUTE_RELOC (r_type)
1481 		   || (hh != NULL
1482 		       && (!info->symbolic
1483 			   || hh->eh.root.type == bfd_link_hash_defweak
1484 			   || !hh->eh.def_regular))))
1485 	      || (ELIMINATE_COPY_RELOCS
1486 		  && !info->shared
1487 		  && (sec->flags & SEC_ALLOC) != 0
1488 		  && hh != NULL
1489 		  && (hh->eh.root.type == bfd_link_hash_defweak
1490 		      || !hh->eh.def_regular)))
1491 	    {
1492 	      struct elf32_hppa_dyn_reloc_entry *hdh_p;
1493 	      struct elf32_hppa_dyn_reloc_entry **hdh_head;
1494 
1495 	      /* Create a reloc section in dynobj and make room for
1496 		 this reloc.  */
1497 	      if (sreloc == NULL)
1498 		{
1499 		  if (htab->etab.dynobj == NULL)
1500 		    htab->etab.dynobj = abfd;
1501 
1502 		  sreloc = _bfd_elf_make_dynamic_reloc_section
1503 		    (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1504 
1505 		  if (sreloc == NULL)
1506 		    {
1507 		      bfd_set_error (bfd_error_bad_value);
1508 		      return FALSE;
1509 		    }
1510 		}
1511 
1512 	      /* If this is a global symbol, we count the number of
1513 		 relocations we need for this symbol.  */
1514 	      if (hh != NULL)
1515 		{
1516 		  hdh_head = &hh->dyn_relocs;
1517 		}
1518 	      else
1519 		{
1520 		  /* Track dynamic relocs needed for local syms too.
1521 		     We really need local syms available to do this
1522 		     easily.  Oh well.  */
1523 		  asection *sr;
1524 		  void *vpp;
1525 		  Elf_Internal_Sym *isym;
1526 
1527 		  isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1528 						abfd, r_symndx);
1529 		  if (isym == NULL)
1530 		    return FALSE;
1531 
1532 		  sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1533 		  if (sr == NULL)
1534 		    sr = sec;
1535 
1536 		  vpp = &elf_section_data (sr)->local_dynrel;
1537 		  hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1538 		}
1539 
1540 	      hdh_p = *hdh_head;
1541 	      if (hdh_p == NULL || hdh_p->sec != sec)
1542 		{
1543 		  hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1544 		  if (hdh_p == NULL)
1545 		    return FALSE;
1546 		  hdh_p->hdh_next = *hdh_head;
1547 		  *hdh_head = hdh_p;
1548 		  hdh_p->sec = sec;
1549 		  hdh_p->count = 0;
1550 #if RELATIVE_DYNRELOCS
1551 		  hdh_p->relative_count = 0;
1552 #endif
1553 		}
1554 
1555 	      hdh_p->count += 1;
1556 #if RELATIVE_DYNRELOCS
1557 	      if (!IS_ABSOLUTE_RELOC (rtype))
1558 		hdh_p->relative_count += 1;
1559 #endif
1560 	    }
1561 	}
1562     }
1563 
1564   return TRUE;
1565 }
1566 
1567 /* Return the section that should be marked against garbage collection
1568    for a given relocation.  */
1569 
1570 static asection *
1571 elf32_hppa_gc_mark_hook (asection *sec,
1572 			 struct bfd_link_info *info,
1573 			 Elf_Internal_Rela *rela,
1574 			 struct elf_link_hash_entry *hh,
1575 			 Elf_Internal_Sym *sym)
1576 {
1577   if (hh != NULL)
1578     switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1579       {
1580       case R_PARISC_GNU_VTINHERIT:
1581       case R_PARISC_GNU_VTENTRY:
1582 	return NULL;
1583       }
1584 
1585   return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1586 }
1587 
1588 /* Update the got and plt entry reference counts for the section being
1589    removed.  */
1590 
1591 static bfd_boolean
1592 elf32_hppa_gc_sweep_hook (bfd *abfd,
1593 			  struct bfd_link_info *info ATTRIBUTE_UNUSED,
1594 			  asection *sec,
1595 			  const Elf_Internal_Rela *relocs)
1596 {
1597   Elf_Internal_Shdr *symtab_hdr;
1598   struct elf_link_hash_entry **eh_syms;
1599   bfd_signed_vma *local_got_refcounts;
1600   bfd_signed_vma *local_plt_refcounts;
1601   const Elf_Internal_Rela *rela, *relend;
1602   struct elf32_hppa_link_hash_table *htab;
1603 
1604   if (info->relocatable)
1605     return TRUE;
1606 
1607   htab = hppa_link_hash_table (info);
1608   if (htab == NULL)
1609     return FALSE;
1610 
1611   elf_section_data (sec)->local_dynrel = NULL;
1612 
1613   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1614   eh_syms = elf_sym_hashes (abfd);
1615   local_got_refcounts = elf_local_got_refcounts (abfd);
1616   local_plt_refcounts = local_got_refcounts;
1617   if (local_plt_refcounts != NULL)
1618     local_plt_refcounts += symtab_hdr->sh_info;
1619 
1620   relend = relocs + sec->reloc_count;
1621   for (rela = relocs; rela < relend; rela++)
1622     {
1623       unsigned long r_symndx;
1624       unsigned int r_type;
1625       struct elf_link_hash_entry *eh = NULL;
1626 
1627       r_symndx = ELF32_R_SYM (rela->r_info);
1628       if (r_symndx >= symtab_hdr->sh_info)
1629 	{
1630 	  struct elf32_hppa_link_hash_entry *hh;
1631 	  struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1632 	  struct elf32_hppa_dyn_reloc_entry *hdh_p;
1633 
1634 	  eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1635 	  while (eh->root.type == bfd_link_hash_indirect
1636 		 || eh->root.type == bfd_link_hash_warning)
1637 	    eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1638 	  hh = hppa_elf_hash_entry (eh);
1639 
1640 	  for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1641 	    if (hdh_p->sec == sec)
1642 	      {
1643 		/* Everything must go for SEC.  */
1644 		*hdh_pp = hdh_p->hdh_next;
1645 		break;
1646 	      }
1647 	}
1648 
1649       r_type = ELF32_R_TYPE (rela->r_info);
1650       r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL);
1651 
1652       switch (r_type)
1653 	{
1654 	case R_PARISC_DLTIND14F:
1655 	case R_PARISC_DLTIND14R:
1656 	case R_PARISC_DLTIND21L:
1657 	case R_PARISC_TLS_GD21L:
1658 	case R_PARISC_TLS_GD14R:
1659 	case R_PARISC_TLS_IE21L:
1660 	case R_PARISC_TLS_IE14R:
1661 	  if (eh != NULL)
1662 	    {
1663 	      if (eh->got.refcount > 0)
1664 		eh->got.refcount -= 1;
1665 	    }
1666 	  else if (local_got_refcounts != NULL)
1667 	    {
1668 	      if (local_got_refcounts[r_symndx] > 0)
1669 		local_got_refcounts[r_symndx] -= 1;
1670 	    }
1671 	  break;
1672 
1673 	case R_PARISC_TLS_LDM21L:
1674 	case R_PARISC_TLS_LDM14R:
1675 	  htab->tls_ldm_got.refcount -= 1;
1676 	  break;
1677 
1678 	case R_PARISC_PCREL12F:
1679 	case R_PARISC_PCREL17C:
1680 	case R_PARISC_PCREL17F:
1681 	case R_PARISC_PCREL22F:
1682 	  if (eh != NULL)
1683 	    {
1684 	      if (eh->plt.refcount > 0)
1685 		eh->plt.refcount -= 1;
1686 	    }
1687 	  break;
1688 
1689 	case R_PARISC_PLABEL14R:
1690 	case R_PARISC_PLABEL21L:
1691 	case R_PARISC_PLABEL32:
1692 	  if (eh != NULL)
1693 	    {
1694 	      if (eh->plt.refcount > 0)
1695 		eh->plt.refcount -= 1;
1696 	    }
1697 	  else if (local_plt_refcounts != NULL)
1698 	    {
1699 	      if (local_plt_refcounts[r_symndx] > 0)
1700 		local_plt_refcounts[r_symndx] -= 1;
1701 	    }
1702 	  break;
1703 
1704 	default:
1705 	  break;
1706 	}
1707     }
1708 
1709   return TRUE;
1710 }
1711 
1712 /* Support for core dump NOTE sections.  */
1713 
1714 static bfd_boolean
1715 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1716 {
1717   int offset;
1718   size_t size;
1719 
1720   switch (note->descsz)
1721     {
1722       default:
1723 	return FALSE;
1724 
1725       case 396:		/* Linux/hppa */
1726 	/* pr_cursig */
1727 	elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1728 
1729 	/* pr_pid */
1730 	elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 24);
1731 
1732 	/* pr_reg */
1733 	offset = 72;
1734 	size = 320;
1735 
1736 	break;
1737     }
1738 
1739   /* Make a ".reg/999" section.  */
1740   return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1741 					  size, note->descpos + offset);
1742 }
1743 
1744 static bfd_boolean
1745 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1746 {
1747   switch (note->descsz)
1748     {
1749       default:
1750 	return FALSE;
1751 
1752       case 124:		/* Linux/hppa elf_prpsinfo.  */
1753 	elf_tdata (abfd)->core_program
1754 	  = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1755 	elf_tdata (abfd)->core_command
1756 	  = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1757     }
1758 
1759   /* Note that for some reason, a spurious space is tacked
1760      onto the end of the args in some (at least one anyway)
1761      implementations, so strip it off if it exists.  */
1762   {
1763     char *command = elf_tdata (abfd)->core_command;
1764     int n = strlen (command);
1765 
1766     if (0 < n && command[n - 1] == ' ')
1767       command[n - 1] = '\0';
1768   }
1769 
1770   return TRUE;
1771 }
1772 
1773 /* Our own version of hide_symbol, so that we can keep plt entries for
1774    plabels.  */
1775 
1776 static void
1777 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1778 			struct elf_link_hash_entry *eh,
1779 			bfd_boolean force_local)
1780 {
1781   if (force_local)
1782     {
1783       eh->forced_local = 1;
1784       if (eh->dynindx != -1)
1785 	{
1786 	  eh->dynindx = -1;
1787 	  _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1788 				  eh->dynstr_index);
1789 	}
1790     }
1791 
1792   /* STT_GNU_IFUNC symbol must go through PLT.  */
1793   if (! hppa_elf_hash_entry (eh)->plabel
1794       && eh->type != STT_GNU_IFUNC)
1795     {
1796       eh->needs_plt = 0;
1797       eh->plt = elf_hash_table (info)->init_plt_offset;
1798     }
1799 }
1800 
1801 /* Adjust a symbol defined by a dynamic object and referenced by a
1802    regular object.  The current definition is in some section of the
1803    dynamic object, but we're not including those sections.  We have to
1804    change the definition to something the rest of the link can
1805    understand.  */
1806 
1807 static bfd_boolean
1808 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1809 				  struct elf_link_hash_entry *eh)
1810 {
1811   struct elf32_hppa_link_hash_table *htab;
1812   asection *sec;
1813 
1814   /* If this is a function, put it in the procedure linkage table.  We
1815      will fill in the contents of the procedure linkage table later.  */
1816   if (eh->type == STT_FUNC
1817       || eh->needs_plt)
1818     {
1819       /* If the symbol is used by a plabel, we must allocate a PLT slot.
1820 	 The refcounts are not reliable when it has been hidden since
1821 	 hide_symbol can be called before the plabel flag is set.  */
1822       if (hppa_elf_hash_entry (eh)->plabel
1823 	  && eh->plt.refcount <= 0)
1824 	eh->plt.refcount = 1;
1825 
1826       if (eh->plt.refcount <= 0
1827 	  || (eh->def_regular
1828 	      && eh->root.type != bfd_link_hash_defweak
1829 	      && ! hppa_elf_hash_entry (eh)->plabel
1830 	      && (!info->shared || info->symbolic)))
1831 	{
1832 	  /* The .plt entry is not needed when:
1833 	     a) Garbage collection has removed all references to the
1834 	     symbol, or
1835 	     b) We know for certain the symbol is defined in this
1836 	     object, and it's not a weak definition, nor is the symbol
1837 	     used by a plabel relocation.  Either this object is the
1838 	     application or we are doing a shared symbolic link.  */
1839 
1840 	  eh->plt.offset = (bfd_vma) -1;
1841 	  eh->needs_plt = 0;
1842 	}
1843 
1844       return TRUE;
1845     }
1846   else
1847     eh->plt.offset = (bfd_vma) -1;
1848 
1849   /* If this is a weak symbol, and there is a real definition, the
1850      processor independent code will have arranged for us to see the
1851      real definition first, and we can just use the same value.  */
1852   if (eh->u.weakdef != NULL)
1853     {
1854       if (eh->u.weakdef->root.type != bfd_link_hash_defined
1855 	  && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1856 	abort ();
1857       eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1858       eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1859       if (ELIMINATE_COPY_RELOCS)
1860 	eh->non_got_ref = eh->u.weakdef->non_got_ref;
1861       return TRUE;
1862     }
1863 
1864   /* This is a reference to a symbol defined by a dynamic object which
1865      is not a function.  */
1866 
1867   /* If we are creating a shared library, we must presume that the
1868      only references to the symbol are via the global offset table.
1869      For such cases we need not do anything here; the relocations will
1870      be handled correctly by relocate_section.  */
1871   if (info->shared)
1872     return TRUE;
1873 
1874   /* If there are no references to this symbol that do not use the
1875      GOT, we don't need to generate a copy reloc.  */
1876   if (!eh->non_got_ref)
1877     return TRUE;
1878 
1879   if (ELIMINATE_COPY_RELOCS)
1880     {
1881       struct elf32_hppa_link_hash_entry *hh;
1882       struct elf32_hppa_dyn_reloc_entry *hdh_p;
1883 
1884       hh = hppa_elf_hash_entry (eh);
1885       for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1886 	{
1887 	  sec = hdh_p->sec->output_section;
1888 	  if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1889 	    break;
1890 	}
1891 
1892       /* If we didn't find any dynamic relocs in read-only sections, then
1893 	 we'll be keeping the dynamic relocs and avoiding the copy reloc.  */
1894       if (hdh_p == NULL)
1895 	{
1896 	  eh->non_got_ref = 0;
1897 	  return TRUE;
1898 	}
1899     }
1900 
1901   /* We must allocate the symbol in our .dynbss section, which will
1902      become part of the .bss section of the executable.  There will be
1903      an entry for this symbol in the .dynsym section.  The dynamic
1904      object will contain position independent code, so all references
1905      from the dynamic object to this symbol will go through the global
1906      offset table.  The dynamic linker will use the .dynsym entry to
1907      determine the address it must put in the global offset table, so
1908      both the dynamic object and the regular object will refer to the
1909      same memory location for the variable.  */
1910 
1911   htab = hppa_link_hash_table (info);
1912   if (htab == NULL)
1913     return FALSE;
1914 
1915   /* We must generate a COPY reloc to tell the dynamic linker to
1916      copy the initial value out of the dynamic object and into the
1917      runtime process image.  */
1918   if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0)
1919     {
1920       htab->srelbss->size += sizeof (Elf32_External_Rela);
1921       eh->needs_copy = 1;
1922     }
1923 
1924   sec = htab->sdynbss;
1925 
1926   return _bfd_elf_adjust_dynamic_copy (eh, sec);
1927 }
1928 
1929 /* Allocate space in the .plt for entries that won't have relocations.
1930    ie. plabel entries.  */
1931 
1932 static bfd_boolean
1933 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1934 {
1935   struct bfd_link_info *info;
1936   struct elf32_hppa_link_hash_table *htab;
1937   struct elf32_hppa_link_hash_entry *hh;
1938   asection *sec;
1939 
1940   if (eh->root.type == bfd_link_hash_indirect)
1941     return TRUE;
1942 
1943   info = (struct bfd_link_info *) inf;
1944   hh = hppa_elf_hash_entry (eh);
1945   htab = hppa_link_hash_table (info);
1946   if (htab == NULL)
1947     return FALSE;
1948 
1949   if (htab->etab.dynamic_sections_created
1950       && eh->plt.refcount > 0)
1951     {
1952       /* Make sure this symbol is output as a dynamic symbol.
1953 	 Undefined weak syms won't yet be marked as dynamic.  */
1954       if (eh->dynindx == -1
1955 	  && !eh->forced_local
1956 	  && eh->type != STT_PARISC_MILLI)
1957 	{
1958 	  if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1959 	    return FALSE;
1960 	}
1961 
1962       if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh))
1963 	{
1964 	  /* Allocate these later.  From this point on, h->plabel
1965 	     means that the plt entry is only used by a plabel.
1966 	     We'll be using a normal plt entry for this symbol, so
1967 	     clear the plabel indicator.  */
1968 
1969 	  hh->plabel = 0;
1970 	}
1971       else if (hh->plabel)
1972 	{
1973 	  /* Make an entry in the .plt section for plabel references
1974 	     that won't have a .plt entry for other reasons.  */
1975 	  sec = htab->splt;
1976 	  eh->plt.offset = sec->size;
1977 	  sec->size += PLT_ENTRY_SIZE;
1978 	}
1979       else
1980 	{
1981 	  /* No .plt entry needed.  */
1982 	  eh->plt.offset = (bfd_vma) -1;
1983 	  eh->needs_plt = 0;
1984 	}
1985     }
1986   else
1987     {
1988       eh->plt.offset = (bfd_vma) -1;
1989       eh->needs_plt = 0;
1990     }
1991 
1992   return TRUE;
1993 }
1994 
1995 /* Allocate space in .plt, .got and associated reloc sections for
1996    global syms.  */
1997 
1998 static bfd_boolean
1999 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2000 {
2001   struct bfd_link_info *info;
2002   struct elf32_hppa_link_hash_table *htab;
2003   asection *sec;
2004   struct elf32_hppa_link_hash_entry *hh;
2005   struct elf32_hppa_dyn_reloc_entry *hdh_p;
2006 
2007   if (eh->root.type == bfd_link_hash_indirect)
2008     return TRUE;
2009 
2010   info = inf;
2011   htab = hppa_link_hash_table (info);
2012   if (htab == NULL)
2013     return FALSE;
2014 
2015   hh = hppa_elf_hash_entry (eh);
2016 
2017   if (htab->etab.dynamic_sections_created
2018       && eh->plt.offset != (bfd_vma) -1
2019       && !hh->plabel
2020       && eh->plt.refcount > 0)
2021     {
2022       /* Make an entry in the .plt section.  */
2023       sec = htab->splt;
2024       eh->plt.offset = sec->size;
2025       sec->size += PLT_ENTRY_SIZE;
2026 
2027       /* We also need to make an entry in the .rela.plt section.  */
2028       htab->srelplt->size += sizeof (Elf32_External_Rela);
2029       htab->need_plt_stub = 1;
2030     }
2031 
2032   if (eh->got.refcount > 0)
2033     {
2034       /* Make sure this symbol is output as a dynamic symbol.
2035 	 Undefined weak syms won't yet be marked as dynamic.  */
2036       if (eh->dynindx == -1
2037 	  && !eh->forced_local
2038 	  && eh->type != STT_PARISC_MILLI)
2039 	{
2040 	  if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2041 	    return FALSE;
2042 	}
2043 
2044       sec = htab->sgot;
2045       eh->got.offset = sec->size;
2046       sec->size += GOT_ENTRY_SIZE;
2047       /* R_PARISC_TLS_GD* needs two GOT entries */
2048       if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2049       	sec->size += GOT_ENTRY_SIZE * 2;
2050       else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2051       	sec->size += GOT_ENTRY_SIZE;
2052       if (htab->etab.dynamic_sections_created
2053 	  && (info->shared
2054 	      || (eh->dynindx != -1
2055 		  && !eh->forced_local)))
2056 	{
2057 	  htab->srelgot->size += sizeof (Elf32_External_Rela);
2058 	  if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2059 	    htab->srelgot->size += 2 * sizeof (Elf32_External_Rela);
2060 	  else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2061 	    htab->srelgot->size += sizeof (Elf32_External_Rela);
2062 	}
2063     }
2064   else
2065     eh->got.offset = (bfd_vma) -1;
2066 
2067   if (hh->dyn_relocs == NULL)
2068     return TRUE;
2069 
2070   /* If this is a -Bsymbolic shared link, then we need to discard all
2071      space allocated for dynamic pc-relative relocs against symbols
2072      defined in a regular object.  For the normal shared case, discard
2073      space for relocs that have become local due to symbol visibility
2074      changes.  */
2075   if (info->shared)
2076     {
2077 #if RELATIVE_DYNRELOCS
2078       if (SYMBOL_CALLS_LOCAL (info, eh))
2079 	{
2080 	  struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2081 
2082 	  for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2083 	    {
2084 	      hdh_p->count -= hdh_p->relative_count;
2085 	      hdh_p->relative_count = 0;
2086 	      if (hdh_p->count == 0)
2087 		*hdh_pp = hdh_p->hdh_next;
2088 	      else
2089 		hdh_pp = &hdh_p->hdh_next;
2090 	    }
2091 	}
2092 #endif
2093 
2094       /* Also discard relocs on undefined weak syms with non-default
2095 	 visibility.  */
2096       if (hh->dyn_relocs != NULL
2097 	  && eh->root.type == bfd_link_hash_undefweak)
2098 	{
2099 	  if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2100 	    hh->dyn_relocs = NULL;
2101 
2102 	  /* Make sure undefined weak symbols are output as a dynamic
2103 	     symbol in PIEs.  */
2104 	  else if (eh->dynindx == -1
2105 		   && !eh->forced_local)
2106 	    {
2107 	      if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2108 		return FALSE;
2109 	    }
2110 	}
2111     }
2112   else
2113     {
2114       /* For the non-shared case, discard space for relocs against
2115 	 symbols which turn out to need copy relocs or are not
2116 	 dynamic.  */
2117 
2118       if (!eh->non_got_ref
2119 	  && ((ELIMINATE_COPY_RELOCS
2120 	       && eh->def_dynamic
2121 	       && !eh->def_regular)
2122 	       || (htab->etab.dynamic_sections_created
2123 		   && (eh->root.type == bfd_link_hash_undefweak
2124 		       || eh->root.type == bfd_link_hash_undefined))))
2125 	{
2126 	  /* Make sure this symbol is output as a dynamic symbol.
2127 	     Undefined weak syms won't yet be marked as dynamic.  */
2128 	  if (eh->dynindx == -1
2129 	      && !eh->forced_local
2130 	      && eh->type != STT_PARISC_MILLI)
2131 	    {
2132 	      if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2133 		return FALSE;
2134 	    }
2135 
2136 	  /* If that succeeded, we know we'll be keeping all the
2137 	     relocs.  */
2138 	  if (eh->dynindx != -1)
2139 	    goto keep;
2140 	}
2141 
2142       hh->dyn_relocs = NULL;
2143       return TRUE;
2144 
2145     keep: ;
2146     }
2147 
2148   /* Finally, allocate space.  */
2149   for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2150     {
2151       asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2152       sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2153     }
2154 
2155   return TRUE;
2156 }
2157 
2158 /* This function is called via elf_link_hash_traverse to force
2159    millicode symbols local so they do not end up as globals in the
2160    dynamic symbol table.  We ought to be able to do this in
2161    adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2162    for all dynamic symbols.  Arguably, this is a bug in
2163    elf_adjust_dynamic_symbol.  */
2164 
2165 static bfd_boolean
2166 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2167 			   struct bfd_link_info *info)
2168 {
2169   if (eh->type == STT_PARISC_MILLI
2170       && !eh->forced_local)
2171     {
2172       elf32_hppa_hide_symbol (info, eh, TRUE);
2173     }
2174   return TRUE;
2175 }
2176 
2177 /* Find any dynamic relocs that apply to read-only sections.  */
2178 
2179 static bfd_boolean
2180 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2181 {
2182   struct elf32_hppa_link_hash_entry *hh;
2183   struct elf32_hppa_dyn_reloc_entry *hdh_p;
2184 
2185   hh = hppa_elf_hash_entry (eh);
2186   for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2187     {
2188       asection *sec = hdh_p->sec->output_section;
2189 
2190       if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2191 	{
2192 	  struct bfd_link_info *info = inf;
2193 
2194           if (info->warn_shared_textrel)
2195             (*_bfd_error_handler)
2196               (_("warning: dynamic relocation in readonly section `%s'"),
2197               eh->root.root.string);
2198 	  info->flags |= DF_TEXTREL;
2199 
2200 	  /* Not an error, just cut short the traversal.  */
2201 	  return FALSE;
2202 	}
2203     }
2204   return TRUE;
2205 }
2206 
2207 /* Set the sizes of the dynamic sections.  */
2208 
2209 static bfd_boolean
2210 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2211 				  struct bfd_link_info *info)
2212 {
2213   struct elf32_hppa_link_hash_table *htab;
2214   bfd *dynobj;
2215   bfd *ibfd;
2216   asection *sec;
2217   bfd_boolean relocs;
2218 
2219   htab = hppa_link_hash_table (info);
2220   if (htab == NULL)
2221     return FALSE;
2222 
2223   dynobj = htab->etab.dynobj;
2224   if (dynobj == NULL)
2225     abort ();
2226 
2227   if (htab->etab.dynamic_sections_created)
2228     {
2229       /* Set the contents of the .interp section to the interpreter.  */
2230       if (info->executable)
2231 	{
2232 	  sec = bfd_get_linker_section (dynobj, ".interp");
2233 	  if (sec == NULL)
2234 	    abort ();
2235 	  sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2236 	  sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2237 	}
2238 
2239       /* Force millicode symbols local.  */
2240       elf_link_hash_traverse (&htab->etab,
2241 			      clobber_millicode_symbols,
2242 			      info);
2243     }
2244 
2245   /* Set up .got and .plt offsets for local syms, and space for local
2246      dynamic relocs.  */
2247   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2248     {
2249       bfd_signed_vma *local_got;
2250       bfd_signed_vma *end_local_got;
2251       bfd_signed_vma *local_plt;
2252       bfd_signed_vma *end_local_plt;
2253       bfd_size_type locsymcount;
2254       Elf_Internal_Shdr *symtab_hdr;
2255       asection *srel;
2256       char *local_tls_type;
2257 
2258       if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2259 	continue;
2260 
2261       for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2262 	{
2263 	  struct elf32_hppa_dyn_reloc_entry *hdh_p;
2264 
2265 	  for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2266 		    elf_section_data (sec)->local_dynrel);
2267 	       hdh_p != NULL;
2268 	       hdh_p = hdh_p->hdh_next)
2269 	    {
2270 	      if (!bfd_is_abs_section (hdh_p->sec)
2271 		  && bfd_is_abs_section (hdh_p->sec->output_section))
2272 		{
2273 		  /* Input section has been discarded, either because
2274 		     it is a copy of a linkonce section or due to
2275 		     linker script /DISCARD/, so we'll be discarding
2276 		     the relocs too.  */
2277 		}
2278 	      else if (hdh_p->count != 0)
2279 		{
2280 		  srel = elf_section_data (hdh_p->sec)->sreloc;
2281 		  srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2282 		  if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2283 		    info->flags |= DF_TEXTREL;
2284 		}
2285 	    }
2286 	}
2287 
2288       local_got = elf_local_got_refcounts (ibfd);
2289       if (!local_got)
2290 	continue;
2291 
2292       symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2293       locsymcount = symtab_hdr->sh_info;
2294       end_local_got = local_got + locsymcount;
2295       local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2296       sec = htab->sgot;
2297       srel = htab->srelgot;
2298       for (; local_got < end_local_got; ++local_got)
2299 	{
2300 	  if (*local_got > 0)
2301 	    {
2302 	      *local_got = sec->size;
2303 	      sec->size += GOT_ENTRY_SIZE;
2304 	      if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2305 		sec->size += 2 * GOT_ENTRY_SIZE;
2306 	      else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2307 		sec->size += GOT_ENTRY_SIZE;
2308 	      if (info->shared)
2309 	        {
2310 		  srel->size += sizeof (Elf32_External_Rela);
2311 		  if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2312 		    srel->size += 2 * sizeof (Elf32_External_Rela);
2313 		  else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2314 		    srel->size += sizeof (Elf32_External_Rela);
2315 	        }
2316 	    }
2317 	  else
2318 	    *local_got = (bfd_vma) -1;
2319 
2320 	  ++local_tls_type;
2321 	}
2322 
2323       local_plt = end_local_got;
2324       end_local_plt = local_plt + locsymcount;
2325       if (! htab->etab.dynamic_sections_created)
2326 	{
2327 	  /* Won't be used, but be safe.  */
2328 	  for (; local_plt < end_local_plt; ++local_plt)
2329 	    *local_plt = (bfd_vma) -1;
2330 	}
2331       else
2332 	{
2333 	  sec = htab->splt;
2334 	  srel = htab->srelplt;
2335 	  for (; local_plt < end_local_plt; ++local_plt)
2336 	    {
2337 	      if (*local_plt > 0)
2338 		{
2339 		  *local_plt = sec->size;
2340 		  sec->size += PLT_ENTRY_SIZE;
2341 		  if (info->shared)
2342 		    srel->size += sizeof (Elf32_External_Rela);
2343 		}
2344 	      else
2345 		*local_plt = (bfd_vma) -1;
2346 	    }
2347 	}
2348     }
2349 
2350   if (htab->tls_ldm_got.refcount > 0)
2351     {
2352       /* Allocate 2 got entries and 1 dynamic reloc for
2353          R_PARISC_TLS_DTPMOD32 relocs.  */
2354       htab->tls_ldm_got.offset = htab->sgot->size;
2355       htab->sgot->size += (GOT_ENTRY_SIZE * 2);
2356       htab->srelgot->size += sizeof (Elf32_External_Rela);
2357     }
2358   else
2359     htab->tls_ldm_got.offset = -1;
2360 
2361   /* Do all the .plt entries without relocs first.  The dynamic linker
2362      uses the last .plt reloc to find the end of the .plt (and hence
2363      the start of the .got) for lazy linking.  */
2364   elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2365 
2366   /* Allocate global sym .plt and .got entries, and space for global
2367      sym dynamic relocs.  */
2368   elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2369 
2370   /* The check_relocs and adjust_dynamic_symbol entry points have
2371      determined the sizes of the various dynamic sections.  Allocate
2372      memory for them.  */
2373   relocs = FALSE;
2374   for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2375     {
2376       if ((sec->flags & SEC_LINKER_CREATED) == 0)
2377 	continue;
2378 
2379       if (sec == htab->splt)
2380 	{
2381 	  if (htab->need_plt_stub)
2382 	    {
2383 	      /* Make space for the plt stub at the end of the .plt
2384 		 section.  We want this stub right at the end, up
2385 		 against the .got section.  */
2386 	      int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2387 	      int pltalign = bfd_section_alignment (dynobj, sec);
2388 	      bfd_size_type mask;
2389 
2390 	      if (gotalign > pltalign)
2391 		bfd_set_section_alignment (dynobj, sec, gotalign);
2392 	      mask = ((bfd_size_type) 1 << gotalign) - 1;
2393 	      sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2394 	    }
2395 	}
2396       else if (sec == htab->sgot
2397 	       || sec == htab->sdynbss)
2398 	;
2399       else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2400 	{
2401 	  if (sec->size != 0)
2402 	    {
2403 	      /* Remember whether there are any reloc sections other
2404 		 than .rela.plt.  */
2405 	      if (sec != htab->srelplt)
2406 		relocs = TRUE;
2407 
2408 	      /* We use the reloc_count field as a counter if we need
2409 		 to copy relocs into the output file.  */
2410 	      sec->reloc_count = 0;
2411 	    }
2412 	}
2413       else
2414 	{
2415 	  /* It's not one of our sections, so don't allocate space.  */
2416 	  continue;
2417 	}
2418 
2419       if (sec->size == 0)
2420 	{
2421 	  /* If we don't need this section, strip it from the
2422 	     output file.  This is mostly to handle .rela.bss and
2423 	     .rela.plt.  We must create both sections in
2424 	     create_dynamic_sections, because they must be created
2425 	     before the linker maps input sections to output
2426 	     sections.  The linker does that before
2427 	     adjust_dynamic_symbol is called, and it is that
2428 	     function which decides whether anything needs to go
2429 	     into these sections.  */
2430 	  sec->flags |= SEC_EXCLUDE;
2431 	  continue;
2432 	}
2433 
2434       if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2435 	continue;
2436 
2437       /* Allocate memory for the section contents.  Zero it, because
2438 	 we may not fill in all the reloc sections.  */
2439       sec->contents = bfd_zalloc (dynobj, sec->size);
2440       if (sec->contents == NULL)
2441 	return FALSE;
2442     }
2443 
2444   if (htab->etab.dynamic_sections_created)
2445     {
2446       /* Like IA-64 and HPPA64, always create a DT_PLTGOT.  It
2447 	 actually has nothing to do with the PLT, it is how we
2448 	 communicate the LTP value of a load module to the dynamic
2449 	 linker.  */
2450 #define add_dynamic_entry(TAG, VAL) \
2451   _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2452 
2453       if (!add_dynamic_entry (DT_PLTGOT, 0))
2454 	return FALSE;
2455 
2456       /* Add some entries to the .dynamic section.  We fill in the
2457 	 values later, in elf32_hppa_finish_dynamic_sections, but we
2458 	 must add the entries now so that we get the correct size for
2459 	 the .dynamic section.  The DT_DEBUG entry is filled in by the
2460 	 dynamic linker and used by the debugger.  */
2461       if (info->executable)
2462 	{
2463 	  if (!add_dynamic_entry (DT_DEBUG, 0))
2464 	    return FALSE;
2465 	}
2466 
2467       if (htab->srelplt->size != 0)
2468 	{
2469 	  if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2470 	      || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2471 	      || !add_dynamic_entry (DT_JMPREL, 0))
2472 	    return FALSE;
2473 	}
2474 
2475       if (relocs)
2476 	{
2477 	  if (!add_dynamic_entry (DT_RELA, 0)
2478 	      || !add_dynamic_entry (DT_RELASZ, 0)
2479 	      || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2480 	    return FALSE;
2481 
2482 	  /* If any dynamic relocs apply to a read-only section,
2483 	     then we need a DT_TEXTREL entry.  */
2484 	  if ((info->flags & DF_TEXTREL) == 0)
2485 	    elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2486 
2487 	  if ((info->flags & DF_TEXTREL) != 0)
2488 	    {
2489 	      if (!add_dynamic_entry (DT_TEXTREL, 0))
2490 		return FALSE;
2491 	    }
2492 	}
2493     }
2494 #undef add_dynamic_entry
2495 
2496   return TRUE;
2497 }
2498 
2499 /* External entry points for sizing and building linker stubs.  */
2500 
2501 /* Set up various things so that we can make a list of input sections
2502    for each output section included in the link.  Returns -1 on error,
2503    0 when no stubs will be needed, and 1 on success.  */
2504 
2505 int
2506 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2507 {
2508   bfd *input_bfd;
2509   unsigned int bfd_count;
2510   int top_id, top_index;
2511   asection *section;
2512   asection **input_list, **list;
2513   bfd_size_type amt;
2514   struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2515 
2516   if (htab == NULL)
2517     return -1;
2518 
2519   /* Count the number of input BFDs and find the top input section id.  */
2520   for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2521        input_bfd != NULL;
2522        input_bfd = input_bfd->link_next)
2523     {
2524       bfd_count += 1;
2525       for (section = input_bfd->sections;
2526 	   section != NULL;
2527 	   section = section->next)
2528 	{
2529 	  if (top_id < section->id)
2530 	    top_id = section->id;
2531 	}
2532     }
2533   htab->bfd_count = bfd_count;
2534 
2535   amt = sizeof (struct map_stub) * (top_id + 1);
2536   htab->stub_group = bfd_zmalloc (amt);
2537   if (htab->stub_group == NULL)
2538     return -1;
2539 
2540   /* We can't use output_bfd->section_count here to find the top output
2541      section index as some sections may have been removed, and
2542      strip_excluded_output_sections doesn't renumber the indices.  */
2543   for (section = output_bfd->sections, top_index = 0;
2544        section != NULL;
2545        section = section->next)
2546     {
2547       if (top_index < section->index)
2548 	top_index = section->index;
2549     }
2550 
2551   htab->top_index = top_index;
2552   amt = sizeof (asection *) * (top_index + 1);
2553   input_list = bfd_malloc (amt);
2554   htab->input_list = input_list;
2555   if (input_list == NULL)
2556     return -1;
2557 
2558   /* For sections we aren't interested in, mark their entries with a
2559      value we can check later.  */
2560   list = input_list + top_index;
2561   do
2562     *list = bfd_abs_section_ptr;
2563   while (list-- != input_list);
2564 
2565   for (section = output_bfd->sections;
2566        section != NULL;
2567        section = section->next)
2568     {
2569       if ((section->flags & SEC_CODE) != 0)
2570 	input_list[section->index] = NULL;
2571     }
2572 
2573   return 1;
2574 }
2575 
2576 /* The linker repeatedly calls this function for each input section,
2577    in the order that input sections are linked into output sections.
2578    Build lists of input sections to determine groupings between which
2579    we may insert linker stubs.  */
2580 
2581 void
2582 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2583 {
2584   struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2585 
2586   if (htab == NULL)
2587     return;
2588 
2589   if (isec->output_section->index <= htab->top_index)
2590     {
2591       asection **list = htab->input_list + isec->output_section->index;
2592       if (*list != bfd_abs_section_ptr)
2593 	{
2594 	  /* Steal the link_sec pointer for our list.  */
2595 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2596 	  /* This happens to make the list in reverse order,
2597 	     which is what we want.  */
2598 	  PREV_SEC (isec) = *list;
2599 	  *list = isec;
2600 	}
2601     }
2602 }
2603 
2604 /* See whether we can group stub sections together.  Grouping stub
2605    sections may result in fewer stubs.  More importantly, we need to
2606    put all .init* and .fini* stubs at the beginning of the .init or
2607    .fini output sections respectively, because glibc splits the
2608    _init and _fini functions into multiple parts.  Putting a stub in
2609    the middle of a function is not a good idea.  */
2610 
2611 static void
2612 group_sections (struct elf32_hppa_link_hash_table *htab,
2613 		bfd_size_type stub_group_size,
2614 		bfd_boolean stubs_always_before_branch)
2615 {
2616   asection **list = htab->input_list + htab->top_index;
2617   do
2618     {
2619       asection *tail = *list;
2620       if (tail == bfd_abs_section_ptr)
2621 	continue;
2622       while (tail != NULL)
2623 	{
2624 	  asection *curr;
2625 	  asection *prev;
2626 	  bfd_size_type total;
2627 	  bfd_boolean big_sec;
2628 
2629 	  curr = tail;
2630 	  total = tail->size;
2631 	  big_sec = total >= stub_group_size;
2632 
2633 	  while ((prev = PREV_SEC (curr)) != NULL
2634 		 && ((total += curr->output_offset - prev->output_offset)
2635 		     < stub_group_size))
2636 	    curr = prev;
2637 
2638 	  /* OK, the size from the start of CURR to the end is less
2639 	     than 240000 bytes and thus can be handled by one stub
2640 	     section.  (or the tail section is itself larger than
2641 	     240000 bytes, in which case we may be toast.)
2642 	     We should really be keeping track of the total size of
2643 	     stubs added here, as stubs contribute to the final output
2644 	     section size.  That's a little tricky, and this way will
2645 	     only break if stubs added total more than 22144 bytes, or
2646 	     2768 long branch stubs.  It seems unlikely for more than
2647 	     2768 different functions to be called, especially from
2648 	     code only 240000 bytes long.  This limit used to be
2649 	     250000, but c++ code tends to generate lots of little
2650 	     functions, and sometimes violated the assumption.  */
2651 	  do
2652 	    {
2653 	      prev = PREV_SEC (tail);
2654 	      /* Set up this stub group.  */
2655 	      htab->stub_group[tail->id].link_sec = curr;
2656 	    }
2657 	  while (tail != curr && (tail = prev) != NULL);
2658 
2659 	  /* But wait, there's more!  Input sections up to 240000
2660 	     bytes before the stub section can be handled by it too.
2661 	     Don't do this if we have a really large section after the
2662 	     stubs, as adding more stubs increases the chance that
2663 	     branches may not reach into the stub section.  */
2664 	  if (!stubs_always_before_branch && !big_sec)
2665 	    {
2666 	      total = 0;
2667 	      while (prev != NULL
2668 		     && ((total += tail->output_offset - prev->output_offset)
2669 			 < stub_group_size))
2670 		{
2671 		  tail = prev;
2672 		  prev = PREV_SEC (tail);
2673 		  htab->stub_group[tail->id].link_sec = curr;
2674 		}
2675 	    }
2676 	  tail = prev;
2677 	}
2678     }
2679   while (list-- != htab->input_list);
2680   free (htab->input_list);
2681 #undef PREV_SEC
2682 }
2683 
2684 /* Read in all local syms for all input bfds, and create hash entries
2685    for export stubs if we are building a multi-subspace shared lib.
2686    Returns -1 on error, 1 if export stubs created, 0 otherwise.  */
2687 
2688 static int
2689 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2690 {
2691   unsigned int bfd_indx;
2692   Elf_Internal_Sym *local_syms, **all_local_syms;
2693   int stub_changed = 0;
2694   struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2695 
2696   if (htab == NULL)
2697     return -1;
2698 
2699   /* We want to read in symbol extension records only once.  To do this
2700      we need to read in the local symbols in parallel and save them for
2701      later use; so hold pointers to the local symbols in an array.  */
2702   bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2703   all_local_syms = bfd_zmalloc (amt);
2704   htab->all_local_syms = all_local_syms;
2705   if (all_local_syms == NULL)
2706     return -1;
2707 
2708   /* Walk over all the input BFDs, swapping in local symbols.
2709      If we are creating a shared library, create hash entries for the
2710      export stubs.  */
2711   for (bfd_indx = 0;
2712        input_bfd != NULL;
2713        input_bfd = input_bfd->link_next, bfd_indx++)
2714     {
2715       Elf_Internal_Shdr *symtab_hdr;
2716 
2717       /* We'll need the symbol table in a second.  */
2718       symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2719       if (symtab_hdr->sh_info == 0)
2720 	continue;
2721 
2722       /* We need an array of the local symbols attached to the input bfd.  */
2723       local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2724       if (local_syms == NULL)
2725 	{
2726 	  local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2727 					     symtab_hdr->sh_info, 0,
2728 					     NULL, NULL, NULL);
2729 	  /* Cache them for elf_link_input_bfd.  */
2730 	  symtab_hdr->contents = (unsigned char *) local_syms;
2731 	}
2732       if (local_syms == NULL)
2733 	return -1;
2734 
2735       all_local_syms[bfd_indx] = local_syms;
2736 
2737       if (info->shared && htab->multi_subspace)
2738 	{
2739 	  struct elf_link_hash_entry **eh_syms;
2740 	  struct elf_link_hash_entry **eh_symend;
2741 	  unsigned int symcount;
2742 
2743 	  symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2744 		      - symtab_hdr->sh_info);
2745 	  eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2746 	  eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2747 
2748 	  /* Look through the global syms for functions;  We need to
2749 	     build export stubs for all globally visible functions.  */
2750 	  for (; eh_syms < eh_symend; eh_syms++)
2751 	    {
2752 	      struct elf32_hppa_link_hash_entry *hh;
2753 
2754 	      hh = hppa_elf_hash_entry (*eh_syms);
2755 
2756 	      while (hh->eh.root.type == bfd_link_hash_indirect
2757 		     || hh->eh.root.type == bfd_link_hash_warning)
2758 		   hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2759 
2760 	      /* At this point in the link, undefined syms have been
2761 		 resolved, so we need to check that the symbol was
2762 		 defined in this BFD.  */
2763 	      if ((hh->eh.root.type == bfd_link_hash_defined
2764 		   || hh->eh.root.type == bfd_link_hash_defweak)
2765 		  && hh->eh.type == STT_FUNC
2766 		  && hh->eh.root.u.def.section->output_section != NULL
2767 		  && (hh->eh.root.u.def.section->output_section->owner
2768 		      == output_bfd)
2769 		  && hh->eh.root.u.def.section->owner == input_bfd
2770 		  && hh->eh.def_regular
2771 		  && !hh->eh.forced_local
2772 		  && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2773 		{
2774 		  asection *sec;
2775 		  const char *stub_name;
2776 		  struct elf32_hppa_stub_hash_entry *hsh;
2777 
2778 		  sec = hh->eh.root.u.def.section;
2779 		  stub_name = hh_name (hh);
2780 		  hsh = hppa_stub_hash_lookup (&htab->bstab,
2781 						      stub_name,
2782 						      FALSE, FALSE);
2783 		  if (hsh == NULL)
2784 		    {
2785 		      hsh = hppa_add_stub (stub_name, sec, htab);
2786 		      if (!hsh)
2787 			return -1;
2788 
2789 		      hsh->target_value = hh->eh.root.u.def.value;
2790 		      hsh->target_section = hh->eh.root.u.def.section;
2791 		      hsh->stub_type = hppa_stub_export;
2792 		      hsh->hh = hh;
2793 		      stub_changed = 1;
2794 		    }
2795 		  else
2796 		    {
2797 		      (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
2798 					     input_bfd,
2799 					     stub_name);
2800 		    }
2801 		}
2802 	    }
2803 	}
2804     }
2805 
2806   return stub_changed;
2807 }
2808 
2809 /* Determine and set the size of the stub section for a final link.
2810 
2811    The basic idea here is to examine all the relocations looking for
2812    PC-relative calls to a target that is unreachable with a "bl"
2813    instruction.  */
2814 
2815 bfd_boolean
2816 elf32_hppa_size_stubs
2817   (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2818    bfd_boolean multi_subspace, bfd_signed_vma group_size,
2819    asection * (*add_stub_section) (const char *, asection *),
2820    void (*layout_sections_again) (void))
2821 {
2822   bfd_size_type stub_group_size;
2823   bfd_boolean stubs_always_before_branch;
2824   bfd_boolean stub_changed;
2825   struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2826 
2827   if (htab == NULL)
2828     return FALSE;
2829 
2830   /* Stash our params away.  */
2831   htab->stub_bfd = stub_bfd;
2832   htab->multi_subspace = multi_subspace;
2833   htab->add_stub_section = add_stub_section;
2834   htab->layout_sections_again = layout_sections_again;
2835   stubs_always_before_branch = group_size < 0;
2836   if (group_size < 0)
2837     stub_group_size = -group_size;
2838   else
2839     stub_group_size = group_size;
2840   if (stub_group_size == 1)
2841     {
2842       /* Default values.  */
2843       if (stubs_always_before_branch)
2844 	{
2845 	  stub_group_size = 7680000;
2846 	  if (htab->has_17bit_branch || htab->multi_subspace)
2847 	    stub_group_size = 240000;
2848 	  if (htab->has_12bit_branch)
2849 	    stub_group_size = 7500;
2850 	}
2851       else
2852 	{
2853 	  stub_group_size = 6971392;
2854 	  if (htab->has_17bit_branch || htab->multi_subspace)
2855 	    stub_group_size = 217856;
2856 	  if (htab->has_12bit_branch)
2857 	    stub_group_size = 6808;
2858 	}
2859     }
2860 
2861   group_sections (htab, stub_group_size, stubs_always_before_branch);
2862 
2863   switch (get_local_syms (output_bfd, info->input_bfds, info))
2864     {
2865     default:
2866       if (htab->all_local_syms)
2867 	goto error_ret_free_local;
2868       return FALSE;
2869 
2870     case 0:
2871       stub_changed = FALSE;
2872       break;
2873 
2874     case 1:
2875       stub_changed = TRUE;
2876       break;
2877     }
2878 
2879   while (1)
2880     {
2881       bfd *input_bfd;
2882       unsigned int bfd_indx;
2883       asection *stub_sec;
2884 
2885       for (input_bfd = info->input_bfds, bfd_indx = 0;
2886 	   input_bfd != NULL;
2887 	   input_bfd = input_bfd->link_next, bfd_indx++)
2888 	{
2889 	  Elf_Internal_Shdr *symtab_hdr;
2890 	  asection *section;
2891 	  Elf_Internal_Sym *local_syms;
2892 
2893 	  /* We'll need the symbol table in a second.  */
2894 	  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2895 	  if (symtab_hdr->sh_info == 0)
2896 	    continue;
2897 
2898 	  local_syms = htab->all_local_syms[bfd_indx];
2899 
2900 	  /* Walk over each section attached to the input bfd.  */
2901 	  for (section = input_bfd->sections;
2902 	       section != NULL;
2903 	       section = section->next)
2904 	    {
2905 	      Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2906 
2907 	      /* If there aren't any relocs, then there's nothing more
2908 		 to do.  */
2909 	      if ((section->flags & SEC_RELOC) == 0
2910 		  || section->reloc_count == 0)
2911 		continue;
2912 
2913 	      /* If this section is a link-once section that will be
2914 		 discarded, then don't create any stubs.  */
2915 	      if (section->output_section == NULL
2916 		  || section->output_section->owner != output_bfd)
2917 		continue;
2918 
2919 	      /* Get the relocs.  */
2920 	      internal_relocs
2921 		= _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2922 					     info->keep_memory);
2923 	      if (internal_relocs == NULL)
2924 		goto error_ret_free_local;
2925 
2926 	      /* Now examine each relocation.  */
2927 	      irela = internal_relocs;
2928 	      irelaend = irela + section->reloc_count;
2929 	      for (; irela < irelaend; irela++)
2930 		{
2931 		  unsigned int r_type, r_indx;
2932 		  enum elf32_hppa_stub_type stub_type;
2933 		  struct elf32_hppa_stub_hash_entry *hsh;
2934 		  asection *sym_sec;
2935 		  bfd_vma sym_value;
2936 		  bfd_vma destination;
2937 		  struct elf32_hppa_link_hash_entry *hh;
2938 		  char *stub_name;
2939 		  const asection *id_sec;
2940 
2941 		  r_type = ELF32_R_TYPE (irela->r_info);
2942 		  r_indx = ELF32_R_SYM (irela->r_info);
2943 
2944 		  if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2945 		    {
2946 		      bfd_set_error (bfd_error_bad_value);
2947 		    error_ret_free_internal:
2948 		      if (elf_section_data (section)->relocs == NULL)
2949 			free (internal_relocs);
2950 		      goto error_ret_free_local;
2951 		    }
2952 
2953 		  /* Only look for stubs on call instructions.  */
2954 		  if (r_type != (unsigned int) R_PARISC_PCREL12F
2955 		      && r_type != (unsigned int) R_PARISC_PCREL17F
2956 		      && r_type != (unsigned int) R_PARISC_PCREL22F)
2957 		    continue;
2958 
2959 		  /* Now determine the call target, its name, value,
2960 		     section.  */
2961 		  sym_sec = NULL;
2962 		  sym_value = 0;
2963 		  destination = 0;
2964 		  hh = NULL;
2965 		  if (r_indx < symtab_hdr->sh_info)
2966 		    {
2967 		      /* It's a local symbol.  */
2968 		      Elf_Internal_Sym *sym;
2969 		      Elf_Internal_Shdr *hdr;
2970 		      unsigned int shndx;
2971 
2972 		      sym = local_syms + r_indx;
2973 		      if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2974 			sym_value = sym->st_value;
2975 		      shndx = sym->st_shndx;
2976 		      if (shndx < elf_numsections (input_bfd))
2977 			{
2978 			  hdr = elf_elfsections (input_bfd)[shndx];
2979 			  sym_sec = hdr->bfd_section;
2980 			  destination = (sym_value + irela->r_addend
2981 					 + sym_sec->output_offset
2982 					 + sym_sec->output_section->vma);
2983 			}
2984 		    }
2985 		  else
2986 		    {
2987 		      /* It's an external symbol.  */
2988 		      int e_indx;
2989 
2990 		      e_indx = r_indx - symtab_hdr->sh_info;
2991 		      hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2992 
2993 		      while (hh->eh.root.type == bfd_link_hash_indirect
2994 			     || hh->eh.root.type == bfd_link_hash_warning)
2995 			hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2996 
2997 		      if (hh->eh.root.type == bfd_link_hash_defined
2998 			  || hh->eh.root.type == bfd_link_hash_defweak)
2999 			{
3000 			  sym_sec = hh->eh.root.u.def.section;
3001 			  sym_value = hh->eh.root.u.def.value;
3002 			  if (sym_sec->output_section != NULL)
3003 			    destination = (sym_value + irela->r_addend
3004 					   + sym_sec->output_offset
3005 					   + sym_sec->output_section->vma);
3006 			}
3007 		      else if (hh->eh.root.type == bfd_link_hash_undefweak)
3008 			{
3009 			  if (! info->shared)
3010 			    continue;
3011 			}
3012 		      else if (hh->eh.root.type == bfd_link_hash_undefined)
3013 			{
3014 			  if (! (info->unresolved_syms_in_objects == RM_IGNORE
3015 				 && (ELF_ST_VISIBILITY (hh->eh.other)
3016 				     == STV_DEFAULT)
3017 				 && hh->eh.type != STT_PARISC_MILLI))
3018 			    continue;
3019 			}
3020 		      else
3021 			{
3022 			  bfd_set_error (bfd_error_bad_value);
3023 			  goto error_ret_free_internal;
3024 			}
3025 		    }
3026 
3027 		  /* Determine what (if any) linker stub is needed.  */
3028 		  stub_type = hppa_type_of_stub (section, irela, hh,
3029 						 destination, info);
3030 		  if (stub_type == hppa_stub_none)
3031 		    continue;
3032 
3033 		  /* Support for grouping stub sections.  */
3034 		  id_sec = htab->stub_group[section->id].link_sec;
3035 
3036 		  /* Get the name of this stub.  */
3037 		  stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
3038 		  if (!stub_name)
3039 		    goto error_ret_free_internal;
3040 
3041 		  hsh = hppa_stub_hash_lookup (&htab->bstab,
3042 						      stub_name,
3043 						      FALSE, FALSE);
3044 		  if (hsh != NULL)
3045 		    {
3046 		      /* The proper stub has already been created.  */
3047 		      free (stub_name);
3048 		      continue;
3049 		    }
3050 
3051 		  hsh = hppa_add_stub (stub_name, section, htab);
3052 		  if (hsh == NULL)
3053 		    {
3054 		      free (stub_name);
3055 		      goto error_ret_free_internal;
3056 		    }
3057 
3058 		  hsh->target_value = sym_value;
3059 		  hsh->target_section = sym_sec;
3060 		  hsh->stub_type = stub_type;
3061 		  if (info->shared)
3062 		    {
3063 		      if (stub_type == hppa_stub_import)
3064 			hsh->stub_type = hppa_stub_import_shared;
3065 		      else if (stub_type == hppa_stub_long_branch)
3066 			hsh->stub_type = hppa_stub_long_branch_shared;
3067 		    }
3068 		  hsh->hh = hh;
3069 		  stub_changed = TRUE;
3070 		}
3071 
3072 	      /* We're done with the internal relocs, free them.  */
3073 	      if (elf_section_data (section)->relocs == NULL)
3074 		free (internal_relocs);
3075 	    }
3076 	}
3077 
3078       if (!stub_changed)
3079 	break;
3080 
3081       /* OK, we've added some stubs.  Find out the new size of the
3082 	 stub sections.  */
3083       for (stub_sec = htab->stub_bfd->sections;
3084 	   stub_sec != NULL;
3085 	   stub_sec = stub_sec->next)
3086 	stub_sec->size = 0;
3087 
3088       bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
3089 
3090       /* Ask the linker to do its stuff.  */
3091       (*htab->layout_sections_again) ();
3092       stub_changed = FALSE;
3093     }
3094 
3095   free (htab->all_local_syms);
3096   return TRUE;
3097 
3098  error_ret_free_local:
3099   free (htab->all_local_syms);
3100   return FALSE;
3101 }
3102 
3103 /* For a final link, this function is called after we have sized the
3104    stubs to provide a value for __gp.  */
3105 
3106 bfd_boolean
3107 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3108 {
3109   struct bfd_link_hash_entry *h;
3110   asection *sec = NULL;
3111   bfd_vma gp_val = 0;
3112   struct elf32_hppa_link_hash_table *htab;
3113 
3114   htab = hppa_link_hash_table (info);
3115   if (htab == NULL)
3116     return FALSE;
3117 
3118   h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
3119 
3120   if (h != NULL
3121       && (h->type == bfd_link_hash_defined
3122 	  || h->type == bfd_link_hash_defweak))
3123     {
3124       gp_val = h->u.def.value;
3125       sec = h->u.def.section;
3126     }
3127   else
3128     {
3129       asection *splt = bfd_get_section_by_name (abfd, ".plt");
3130       asection *sgot = bfd_get_section_by_name (abfd, ".got");
3131 
3132       /* Choose to point our LTP at, in this order, one of .plt, .got,
3133 	 or .data, if these sections exist.  In the case of choosing
3134 	 .plt try to make the LTP ideal for addressing anywhere in the
3135 	 .plt or .got with a 14 bit signed offset.  Typically, the end
3136 	 of the .plt is the start of the .got, so choose .plt + 0x2000
3137 	 if either the .plt or .got is larger than 0x2000.  If both
3138 	 the .plt and .got are smaller than 0x2000, choose the end of
3139 	 the .plt section.  */
3140       sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3141 	  ? NULL : splt;
3142       if (sec != NULL)
3143 	{
3144 	  gp_val = sec->size;
3145 	  if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3146 	    {
3147 	      gp_val = 0x2000;
3148 	    }
3149 	}
3150       else
3151 	{
3152 	  sec = sgot;
3153 	  if (sec != NULL)
3154 	    {
3155 	      if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3156 		{
3157 	          /* We know we don't have a .plt.  If .got is large,
3158 		     offset our LTP.  */
3159 	          if (sec->size > 0x2000)
3160 		    gp_val = 0x2000;
3161 		}
3162 	    }
3163 	  else
3164 	    {
3165 	      /* No .plt or .got.  Who cares what the LTP is?  */
3166 	      sec = bfd_get_section_by_name (abfd, ".data");
3167 	    }
3168 	}
3169 
3170       if (h != NULL)
3171 	{
3172 	  h->type = bfd_link_hash_defined;
3173 	  h->u.def.value = gp_val;
3174 	  if (sec != NULL)
3175 	    h->u.def.section = sec;
3176 	  else
3177 	    h->u.def.section = bfd_abs_section_ptr;
3178 	}
3179     }
3180 
3181   if (sec != NULL && sec->output_section != NULL)
3182     gp_val += sec->output_section->vma + sec->output_offset;
3183 
3184   elf_gp (abfd) = gp_val;
3185   return TRUE;
3186 }
3187 
3188 /* Build all the stubs associated with the current output file.  The
3189    stubs are kept in a hash table attached to the main linker hash
3190    table.  We also set up the .plt entries for statically linked PIC
3191    functions here.  This function is called via hppaelf_finish in the
3192    linker.  */
3193 
3194 bfd_boolean
3195 elf32_hppa_build_stubs (struct bfd_link_info *info)
3196 {
3197   asection *stub_sec;
3198   struct bfd_hash_table *table;
3199   struct elf32_hppa_link_hash_table *htab;
3200 
3201   htab = hppa_link_hash_table (info);
3202   if (htab == NULL)
3203     return FALSE;
3204 
3205   for (stub_sec = htab->stub_bfd->sections;
3206        stub_sec != NULL;
3207        stub_sec = stub_sec->next)
3208     {
3209       bfd_size_type size;
3210 
3211       /* Allocate memory to hold the linker stubs.  */
3212       size = stub_sec->size;
3213       stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3214       if (stub_sec->contents == NULL && size != 0)
3215 	return FALSE;
3216       stub_sec->size = 0;
3217     }
3218 
3219   /* Build the stubs as directed by the stub hash table.  */
3220   table = &htab->bstab;
3221   bfd_hash_traverse (table, hppa_build_one_stub, info);
3222 
3223   return TRUE;
3224 }
3225 
3226 /* Return the base vma address which should be subtracted from the real
3227    address when resolving a dtpoff relocation.
3228    This is PT_TLS segment p_vaddr.  */
3229 
3230 static bfd_vma
3231 dtpoff_base (struct bfd_link_info *info)
3232 {
3233   /* If tls_sec is NULL, we should have signalled an error already.  */
3234   if (elf_hash_table (info)->tls_sec == NULL)
3235     return 0;
3236   return elf_hash_table (info)->tls_sec->vma;
3237 }
3238 
3239 /* Return the relocation value for R_PARISC_TLS_TPOFF*..  */
3240 
3241 static bfd_vma
3242 tpoff (struct bfd_link_info *info, bfd_vma address)
3243 {
3244   struct elf_link_hash_table *htab = elf_hash_table (info);
3245 
3246   /* If tls_sec is NULL, we should have signalled an error already.  */
3247   if (htab->tls_sec == NULL)
3248     return 0;
3249   /* hppa TLS ABI is variant I and static TLS block start just after
3250      tcbhead structure which has 2 pointer fields.  */
3251   return (address - htab->tls_sec->vma
3252 	  + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3253 }
3254 
3255 /* Perform a final link.  */
3256 
3257 static bfd_boolean
3258 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3259 {
3260   /* Invoke the regular ELF linker to do all the work.  */
3261   if (!bfd_elf_final_link (abfd, info))
3262     return FALSE;
3263 
3264   /* If we're producing a final executable, sort the contents of the
3265      unwind section.  */
3266   if (info->relocatable)
3267     return TRUE;
3268 
3269   return elf_hppa_sort_unwind (abfd);
3270 }
3271 
3272 /* Record the lowest address for the data and text segments.  */
3273 
3274 static void
3275 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3276 {
3277   struct elf32_hppa_link_hash_table *htab;
3278 
3279   htab = (struct elf32_hppa_link_hash_table*) data;
3280   if (htab == NULL)
3281     return;
3282 
3283   if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3284     {
3285       bfd_vma value;
3286       Elf_Internal_Phdr *p;
3287 
3288       p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3289       BFD_ASSERT (p != NULL);
3290       value = p->p_vaddr;
3291 
3292       if ((section->flags & SEC_READONLY) != 0)
3293 	{
3294 	  if (value < htab->text_segment_base)
3295 	    htab->text_segment_base = value;
3296 	}
3297       else
3298 	{
3299 	  if (value < htab->data_segment_base)
3300 	    htab->data_segment_base = value;
3301 	}
3302     }
3303 }
3304 
3305 /* Perform a relocation as part of a final link.  */
3306 
3307 static bfd_reloc_status_type
3308 final_link_relocate (asection *input_section,
3309 		     bfd_byte *contents,
3310 		     const Elf_Internal_Rela *rela,
3311 		     bfd_vma value,
3312 		     struct elf32_hppa_link_hash_table *htab,
3313 		     asection *sym_sec,
3314 		     struct elf32_hppa_link_hash_entry *hh,
3315 		     struct bfd_link_info *info)
3316 {
3317   int insn;
3318   unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3319   unsigned int orig_r_type = r_type;
3320   reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3321   int r_format = howto->bitsize;
3322   enum hppa_reloc_field_selector_type_alt r_field;
3323   bfd *input_bfd = input_section->owner;
3324   bfd_vma offset = rela->r_offset;
3325   bfd_vma max_branch_offset = 0;
3326   bfd_byte *hit_data = contents + offset;
3327   bfd_signed_vma addend = rela->r_addend;
3328   bfd_vma location;
3329   struct elf32_hppa_stub_hash_entry *hsh = NULL;
3330   int val;
3331 
3332   if (r_type == R_PARISC_NONE)
3333     return bfd_reloc_ok;
3334 
3335   insn = bfd_get_32 (input_bfd, hit_data);
3336 
3337   /* Find out where we are and where we're going.  */
3338   location = (offset +
3339 	      input_section->output_offset +
3340 	      input_section->output_section->vma);
3341 
3342   /* If we are not building a shared library, convert DLTIND relocs to
3343      DPREL relocs.  */
3344   if (!info->shared)
3345     {
3346       switch (r_type)
3347 	{
3348 	  case R_PARISC_DLTIND21L:
3349 	  case R_PARISC_TLS_GD21L:
3350 	  case R_PARISC_TLS_LDM21L:
3351 	  case R_PARISC_TLS_IE21L:
3352 	    r_type = R_PARISC_DPREL21L;
3353 	    break;
3354 
3355 	  case R_PARISC_DLTIND14R:
3356 	  case R_PARISC_TLS_GD14R:
3357 	  case R_PARISC_TLS_LDM14R:
3358 	  case R_PARISC_TLS_IE14R:
3359 	    r_type = R_PARISC_DPREL14R;
3360 	    break;
3361 
3362 	  case R_PARISC_DLTIND14F:
3363 	    r_type = R_PARISC_DPREL14F;
3364 	    break;
3365 	}
3366     }
3367 
3368   switch (r_type)
3369     {
3370     case R_PARISC_PCREL12F:
3371     case R_PARISC_PCREL17F:
3372     case R_PARISC_PCREL22F:
3373       /* If this call should go via the plt, find the import stub in
3374 	 the stub hash.  */
3375       if (sym_sec == NULL
3376 	  || sym_sec->output_section == NULL
3377 	  || (hh != NULL
3378 	      && hh->eh.plt.offset != (bfd_vma) -1
3379 	      && hh->eh.dynindx != -1
3380 	      && !hh->plabel
3381 	      && (info->shared
3382 		  || !hh->eh.def_regular
3383 		  || hh->eh.root.type == bfd_link_hash_defweak)))
3384 	{
3385 	  hsh = hppa_get_stub_entry (input_section, sym_sec,
3386 					    hh, rela, htab);
3387 	  if (hsh != NULL)
3388 	    {
3389 	      value = (hsh->stub_offset
3390 		       + hsh->stub_sec->output_offset
3391 		       + hsh->stub_sec->output_section->vma);
3392 	      addend = 0;
3393 	    }
3394 	  else if (sym_sec == NULL && hh != NULL
3395 		   && hh->eh.root.type == bfd_link_hash_undefweak)
3396 	    {
3397 	      /* It's OK if undefined weak.  Calls to undefined weak
3398 		 symbols behave as if the "called" function
3399 		 immediately returns.  We can thus call to a weak
3400 		 function without first checking whether the function
3401 		 is defined.  */
3402 	      value = location;
3403 	      addend = 8;
3404 	    }
3405 	  else
3406 	    return bfd_reloc_undefined;
3407 	}
3408       /* Fall thru.  */
3409 
3410     case R_PARISC_PCREL21L:
3411     case R_PARISC_PCREL17C:
3412     case R_PARISC_PCREL17R:
3413     case R_PARISC_PCREL14R:
3414     case R_PARISC_PCREL14F:
3415     case R_PARISC_PCREL32:
3416       /* Make it a pc relative offset.  */
3417       value -= location;
3418       addend -= 8;
3419       break;
3420 
3421     case R_PARISC_DPREL21L:
3422     case R_PARISC_DPREL14R:
3423     case R_PARISC_DPREL14F:
3424       /* Convert instructions that use the linkage table pointer (r19) to
3425 	 instructions that use the global data pointer (dp).  This is the
3426 	 most efficient way of using PIC code in an incomplete executable,
3427 	 but the user must follow the standard runtime conventions for
3428 	 accessing data for this to work.  */
3429       if (orig_r_type != r_type)
3430 	{
3431 	  if (r_type == R_PARISC_DPREL21L)
3432 	    {
3433 	      /* GCC sometimes uses a register other than r19 for the
3434 		 operation, so we must convert any addil instruction
3435 		 that uses this relocation.  */
3436 	      if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3437 		insn = ADDIL_DP;
3438 	      else
3439 		/* We must have a ldil instruction.  It's too hard to find
3440 		   and convert the associated add instruction, so issue an
3441 		   error.  */
3442 		(*_bfd_error_handler)
3443 		  (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3444 		   input_bfd,
3445 		   input_section,
3446 		   (long) offset,
3447 		   howto->name,
3448 		   insn);
3449 	    }
3450 	  else if (r_type == R_PARISC_DPREL14F)
3451 	    {
3452 	      /* This must be a format 1 load/store.  Change the base
3453 		 register to dp.  */
3454 	      insn = (insn & 0xfc1ffff) | (27 << 21);
3455 	    }
3456 	}
3457 
3458       /* For all the DP relative relocations, we need to examine the symbol's
3459 	 section.  If it has no section or if it's a code section, then
3460 	 "data pointer relative" makes no sense.  In that case we don't
3461 	 adjust the "value", and for 21 bit addil instructions, we change the
3462 	 source addend register from %dp to %r0.  This situation commonly
3463 	 arises for undefined weak symbols and when a variable's "constness"
3464 	 is declared differently from the way the variable is defined.  For
3465 	 instance: "extern int foo" with foo defined as "const int foo".  */
3466       if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3467 	{
3468 	  if ((insn & ((0x3f << 26) | (0x1f << 21)))
3469 	      == (((int) OP_ADDIL << 26) | (27 << 21)))
3470 	    {
3471 	      insn &= ~ (0x1f << 21);
3472 	    }
3473 	  /* Now try to make things easy for the dynamic linker.  */
3474 
3475 	  break;
3476 	}
3477       /* Fall thru.  */
3478 
3479     case R_PARISC_DLTIND21L:
3480     case R_PARISC_DLTIND14R:
3481     case R_PARISC_DLTIND14F:
3482     case R_PARISC_TLS_GD21L:
3483     case R_PARISC_TLS_LDM21L:
3484     case R_PARISC_TLS_IE21L:
3485     case R_PARISC_TLS_GD14R:
3486     case R_PARISC_TLS_LDM14R:
3487     case R_PARISC_TLS_IE14R:
3488       value -= elf_gp (input_section->output_section->owner);
3489       break;
3490 
3491     case R_PARISC_SEGREL32:
3492       if ((sym_sec->flags & SEC_CODE) != 0)
3493 	value -= htab->text_segment_base;
3494       else
3495 	value -= htab->data_segment_base;
3496       break;
3497 
3498     default:
3499       break;
3500     }
3501 
3502   switch (r_type)
3503     {
3504     case R_PARISC_DIR32:
3505     case R_PARISC_DIR14F:
3506     case R_PARISC_DIR17F:
3507     case R_PARISC_PCREL17C:
3508     case R_PARISC_PCREL14F:
3509     case R_PARISC_PCREL32:
3510     case R_PARISC_DPREL14F:
3511     case R_PARISC_PLABEL32:
3512     case R_PARISC_DLTIND14F:
3513     case R_PARISC_SEGBASE:
3514     case R_PARISC_SEGREL32:
3515     case R_PARISC_TLS_DTPMOD32:
3516     case R_PARISC_TLS_DTPOFF32:
3517     case R_PARISC_TLS_TPREL32:
3518       r_field = e_fsel;
3519       break;
3520 
3521     case R_PARISC_DLTIND21L:
3522     case R_PARISC_PCREL21L:
3523     case R_PARISC_PLABEL21L:
3524       r_field = e_lsel;
3525       break;
3526 
3527     case R_PARISC_DIR21L:
3528     case R_PARISC_DPREL21L:
3529     case R_PARISC_TLS_GD21L:
3530     case R_PARISC_TLS_LDM21L:
3531     case R_PARISC_TLS_LDO21L:
3532     case R_PARISC_TLS_IE21L:
3533     case R_PARISC_TLS_LE21L:
3534       r_field = e_lrsel;
3535       break;
3536 
3537     case R_PARISC_PCREL17R:
3538     case R_PARISC_PCREL14R:
3539     case R_PARISC_PLABEL14R:
3540     case R_PARISC_DLTIND14R:
3541       r_field = e_rsel;
3542       break;
3543 
3544     case R_PARISC_DIR17R:
3545     case R_PARISC_DIR14R:
3546     case R_PARISC_DPREL14R:
3547     case R_PARISC_TLS_GD14R:
3548     case R_PARISC_TLS_LDM14R:
3549     case R_PARISC_TLS_LDO14R:
3550     case R_PARISC_TLS_IE14R:
3551     case R_PARISC_TLS_LE14R:
3552       r_field = e_rrsel;
3553       break;
3554 
3555     case R_PARISC_PCREL12F:
3556     case R_PARISC_PCREL17F:
3557     case R_PARISC_PCREL22F:
3558       r_field = e_fsel;
3559 
3560       if (r_type == (unsigned int) R_PARISC_PCREL17F)
3561 	{
3562 	  max_branch_offset = (1 << (17-1)) << 2;
3563 	}
3564       else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3565 	{
3566 	  max_branch_offset = (1 << (12-1)) << 2;
3567 	}
3568       else
3569 	{
3570 	  max_branch_offset = (1 << (22-1)) << 2;
3571 	}
3572 
3573       /* sym_sec is NULL on undefined weak syms or when shared on
3574 	 undefined syms.  We've already checked for a stub for the
3575 	 shared undefined case.  */
3576       if (sym_sec == NULL)
3577 	break;
3578 
3579       /* If the branch is out of reach, then redirect the
3580 	 call to the local stub for this function.  */
3581       if (value + addend + max_branch_offset >= 2*max_branch_offset)
3582 	{
3583 	  hsh = hppa_get_stub_entry (input_section, sym_sec,
3584 					    hh, rela, htab);
3585 	  if (hsh == NULL)
3586 	    return bfd_reloc_undefined;
3587 
3588 	  /* Munge up the value and addend so that we call the stub
3589 	     rather than the procedure directly.  */
3590 	  value = (hsh->stub_offset
3591 		   + hsh->stub_sec->output_offset
3592 		   + hsh->stub_sec->output_section->vma
3593 		   - location);
3594 	  addend = -8;
3595 	}
3596       break;
3597 
3598     /* Something we don't know how to handle.  */
3599     default:
3600       return bfd_reloc_notsupported;
3601     }
3602 
3603   /* Make sure we can reach the stub.  */
3604   if (max_branch_offset != 0
3605       && value + addend + max_branch_offset >= 2*max_branch_offset)
3606     {
3607       (*_bfd_error_handler)
3608 	(_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3609 	 input_bfd,
3610 	 input_section,
3611 	 (long) offset,
3612 	 hsh->bh_root.string);
3613       bfd_set_error (bfd_error_bad_value);
3614       return bfd_reloc_notsupported;
3615     }
3616 
3617   val = hppa_field_adjust (value, addend, r_field);
3618 
3619   switch (r_type)
3620     {
3621     case R_PARISC_PCREL12F:
3622     case R_PARISC_PCREL17C:
3623     case R_PARISC_PCREL17F:
3624     case R_PARISC_PCREL17R:
3625     case R_PARISC_PCREL22F:
3626     case R_PARISC_DIR17F:
3627     case R_PARISC_DIR17R:
3628       /* This is a branch.  Divide the offset by four.
3629 	 Note that we need to decide whether it's a branch or
3630 	 otherwise by inspecting the reloc.  Inspecting insn won't
3631 	 work as insn might be from a .word directive.  */
3632       val >>= 2;
3633       break;
3634 
3635     default:
3636       break;
3637     }
3638 
3639   insn = hppa_rebuild_insn (insn, val, r_format);
3640 
3641   /* Update the instruction word.  */
3642   bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3643   return bfd_reloc_ok;
3644 }
3645 
3646 /* Relocate an HPPA ELF section.  */
3647 
3648 static bfd_boolean
3649 elf32_hppa_relocate_section (bfd *output_bfd,
3650 			     struct bfd_link_info *info,
3651 			     bfd *input_bfd,
3652 			     asection *input_section,
3653 			     bfd_byte *contents,
3654 			     Elf_Internal_Rela *relocs,
3655 			     Elf_Internal_Sym *local_syms,
3656 			     asection **local_sections)
3657 {
3658   bfd_vma *local_got_offsets;
3659   struct elf32_hppa_link_hash_table *htab;
3660   Elf_Internal_Shdr *symtab_hdr;
3661   Elf_Internal_Rela *rela;
3662   Elf_Internal_Rela *relend;
3663 
3664   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3665 
3666   htab = hppa_link_hash_table (info);
3667   if (htab == NULL)
3668     return FALSE;
3669 
3670   local_got_offsets = elf_local_got_offsets (input_bfd);
3671 
3672   rela = relocs;
3673   relend = relocs + input_section->reloc_count;
3674   for (; rela < relend; rela++)
3675     {
3676       unsigned int r_type;
3677       reloc_howto_type *howto;
3678       unsigned int r_symndx;
3679       struct elf32_hppa_link_hash_entry *hh;
3680       Elf_Internal_Sym *sym;
3681       asection *sym_sec;
3682       bfd_vma relocation;
3683       bfd_reloc_status_type rstatus;
3684       const char *sym_name;
3685       bfd_boolean plabel;
3686       bfd_boolean warned_undef;
3687 
3688       r_type = ELF32_R_TYPE (rela->r_info);
3689       if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3690 	{
3691 	  bfd_set_error (bfd_error_bad_value);
3692 	  return FALSE;
3693 	}
3694       if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3695 	  || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3696 	continue;
3697 
3698       r_symndx = ELF32_R_SYM (rela->r_info);
3699       hh = NULL;
3700       sym = NULL;
3701       sym_sec = NULL;
3702       warned_undef = FALSE;
3703       if (r_symndx < symtab_hdr->sh_info)
3704 	{
3705 	  /* This is a local symbol, h defaults to NULL.  */
3706 	  sym = local_syms + r_symndx;
3707 	  sym_sec = local_sections[r_symndx];
3708 	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3709 	}
3710       else
3711 	{
3712 	  struct elf_link_hash_entry *eh;
3713 	  bfd_boolean unresolved_reloc;
3714 	  struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3715 
3716 	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3717 				   r_symndx, symtab_hdr, sym_hashes,
3718 				   eh, sym_sec, relocation,
3719 				   unresolved_reloc, warned_undef);
3720 
3721 	  if (!info->relocatable
3722 	      && relocation == 0
3723 	      && eh->root.type != bfd_link_hash_defined
3724 	      && eh->root.type != bfd_link_hash_defweak
3725 	      && eh->root.type != bfd_link_hash_undefweak)
3726 	    {
3727 	      if (info->unresolved_syms_in_objects == RM_IGNORE
3728 		  && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3729 		  && eh->type == STT_PARISC_MILLI)
3730 		{
3731 		  if (! info->callbacks->undefined_symbol
3732 		      (info, eh_name (eh), input_bfd,
3733 		       input_section, rela->r_offset, FALSE))
3734 		    return FALSE;
3735 		  warned_undef = TRUE;
3736 		}
3737 	    }
3738 	  hh = hppa_elf_hash_entry (eh);
3739 	}
3740 
3741       if (sym_sec != NULL && discarded_section (sym_sec))
3742 	RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3743 					 rela, 1, relend,
3744 					 elf_hppa_howto_table + r_type, 0,
3745 					 contents);
3746 
3747       if (info->relocatable)
3748 	continue;
3749 
3750       /* Do any required modifications to the relocation value, and
3751 	 determine what types of dynamic info we need to output, if
3752 	 any.  */
3753       plabel = 0;
3754       switch (r_type)
3755 	{
3756 	case R_PARISC_DLTIND14F:
3757 	case R_PARISC_DLTIND14R:
3758 	case R_PARISC_DLTIND21L:
3759 	  {
3760 	    bfd_vma off;
3761 	    bfd_boolean do_got = 0;
3762 
3763 	    /* Relocation is to the entry for this symbol in the
3764 	       global offset table.  */
3765 	    if (hh != NULL)
3766 	      {
3767 		bfd_boolean dyn;
3768 
3769 		off = hh->eh.got.offset;
3770 		dyn = htab->etab.dynamic_sections_created;
3771 		if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
3772 						       &hh->eh))
3773 		  {
3774 		    /* If we aren't going to call finish_dynamic_symbol,
3775 		       then we need to handle initialisation of the .got
3776 		       entry and create needed relocs here.  Since the
3777 		       offset must always be a multiple of 4, we use the
3778 		       least significant bit to record whether we have
3779 		       initialised it already.  */
3780 		    if ((off & 1) != 0)
3781 		      off &= ~1;
3782 		    else
3783 		      {
3784 			hh->eh.got.offset |= 1;
3785 			do_got = 1;
3786 		      }
3787 		  }
3788 	      }
3789 	    else
3790 	      {
3791 		/* Local symbol case.  */
3792 		if (local_got_offsets == NULL)
3793 		  abort ();
3794 
3795 		off = local_got_offsets[r_symndx];
3796 
3797 		/* The offset must always be a multiple of 4.  We use
3798 		   the least significant bit to record whether we have
3799 		   already generated the necessary reloc.  */
3800 		if ((off & 1) != 0)
3801 		  off &= ~1;
3802 		else
3803 		  {
3804 		    local_got_offsets[r_symndx] |= 1;
3805 		    do_got = 1;
3806 		  }
3807 	      }
3808 
3809 	    if (do_got)
3810 	      {
3811 		if (info->shared)
3812 		  {
3813 		    /* Output a dynamic relocation for this GOT entry.
3814 		       In this case it is relative to the base of the
3815 		       object because the symbol index is zero.  */
3816 		    Elf_Internal_Rela outrel;
3817 		    bfd_byte *loc;
3818 		    asection *sec = htab->srelgot;
3819 
3820 		    outrel.r_offset = (off
3821 				       + htab->sgot->output_offset
3822 				       + htab->sgot->output_section->vma);
3823 		    outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3824 		    outrel.r_addend = relocation;
3825 		    loc = sec->contents;
3826 		    loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3827 		    bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3828 		  }
3829 		else
3830 		  bfd_put_32 (output_bfd, relocation,
3831 			      htab->sgot->contents + off);
3832 	      }
3833 
3834 	    if (off >= (bfd_vma) -2)
3835 	      abort ();
3836 
3837 	    /* Add the base of the GOT to the relocation value.  */
3838 	    relocation = (off
3839 			  + htab->sgot->output_offset
3840 			  + htab->sgot->output_section->vma);
3841 	  }
3842 	  break;
3843 
3844 	case R_PARISC_SEGREL32:
3845 	  /* If this is the first SEGREL relocation, then initialize
3846 	     the segment base values.  */
3847 	  if (htab->text_segment_base == (bfd_vma) -1)
3848 	    bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3849 	  break;
3850 
3851 	case R_PARISC_PLABEL14R:
3852 	case R_PARISC_PLABEL21L:
3853 	case R_PARISC_PLABEL32:
3854 	  if (htab->etab.dynamic_sections_created)
3855 	    {
3856 	      bfd_vma off;
3857 	      bfd_boolean do_plt = 0;
3858 	      /* If we have a global symbol with a PLT slot, then
3859 		 redirect this relocation to it.  */
3860 	      if (hh != NULL)
3861 		{
3862 		  off = hh->eh.plt.offset;
3863 		  if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
3864 							 &hh->eh))
3865 		    {
3866 		      /* In a non-shared link, adjust_dynamic_symbols
3867 			 isn't called for symbols forced local.  We
3868 			 need to write out the plt entry here.  */
3869 		      if ((off & 1) != 0)
3870 			off &= ~1;
3871 		      else
3872 			{
3873 			  hh->eh.plt.offset |= 1;
3874 			  do_plt = 1;
3875 			}
3876 		    }
3877 		}
3878 	      else
3879 		{
3880 		  bfd_vma *local_plt_offsets;
3881 
3882 		  if (local_got_offsets == NULL)
3883 		    abort ();
3884 
3885 		  local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3886 		  off = local_plt_offsets[r_symndx];
3887 
3888 		  /* As for the local .got entry case, we use the last
3889 		     bit to record whether we've already initialised
3890 		     this local .plt entry.  */
3891 		  if ((off & 1) != 0)
3892 		    off &= ~1;
3893 		  else
3894 		    {
3895 		      local_plt_offsets[r_symndx] |= 1;
3896 		      do_plt = 1;
3897 		    }
3898 		}
3899 
3900 	      if (do_plt)
3901 		{
3902 		  if (info->shared)
3903 		    {
3904 		      /* Output a dynamic IPLT relocation for this
3905 			 PLT entry.  */
3906 		      Elf_Internal_Rela outrel;
3907 		      bfd_byte *loc;
3908 		      asection *s = htab->srelplt;
3909 
3910 		      outrel.r_offset = (off
3911 					 + htab->splt->output_offset
3912 					 + htab->splt->output_section->vma);
3913 		      outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3914 		      outrel.r_addend = relocation;
3915 		      loc = s->contents;
3916 		      loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3917 		      bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3918 		    }
3919 		  else
3920 		    {
3921 		      bfd_put_32 (output_bfd,
3922 				  relocation,
3923 				  htab->splt->contents + off);
3924 		      bfd_put_32 (output_bfd,
3925 				  elf_gp (htab->splt->output_section->owner),
3926 				  htab->splt->contents + off + 4);
3927 		    }
3928 		}
3929 
3930 	      if (off >= (bfd_vma) -2)
3931 		abort ();
3932 
3933 	      /* PLABELs contain function pointers.  Relocation is to
3934 		 the entry for the function in the .plt.  The magic +2
3935 		 offset signals to $$dyncall that the function pointer
3936 		 is in the .plt and thus has a gp pointer too.
3937 		 Exception:  Undefined PLABELs should have a value of
3938 		 zero.  */
3939 	      if (hh == NULL
3940 		  || (hh->eh.root.type != bfd_link_hash_undefweak
3941 		      && hh->eh.root.type != bfd_link_hash_undefined))
3942 		{
3943 		  relocation = (off
3944 				+ htab->splt->output_offset
3945 				+ htab->splt->output_section->vma
3946 				+ 2);
3947 		}
3948 	      plabel = 1;
3949 	    }
3950 	  /* Fall through and possibly emit a dynamic relocation.  */
3951 
3952 	case R_PARISC_DIR17F:
3953 	case R_PARISC_DIR17R:
3954 	case R_PARISC_DIR14F:
3955 	case R_PARISC_DIR14R:
3956 	case R_PARISC_DIR21L:
3957 	case R_PARISC_DPREL14F:
3958 	case R_PARISC_DPREL14R:
3959 	case R_PARISC_DPREL21L:
3960 	case R_PARISC_DIR32:
3961 	  if ((input_section->flags & SEC_ALLOC) == 0)
3962 	    break;
3963 
3964 	  /* The reloc types handled here and this conditional
3965 	     expression must match the code in ..check_relocs and
3966 	     allocate_dynrelocs.  ie. We need exactly the same condition
3967 	     as in ..check_relocs, with some extra conditions (dynindx
3968 	     test in this case) to cater for relocs removed by
3969 	     allocate_dynrelocs.  If you squint, the non-shared test
3970 	     here does indeed match the one in ..check_relocs, the
3971 	     difference being that here we test DEF_DYNAMIC as well as
3972 	     !DEF_REGULAR.  All common syms end up with !DEF_REGULAR,
3973 	     which is why we can't use just that test here.
3974 	     Conversely, DEF_DYNAMIC can't be used in check_relocs as
3975 	     there all files have not been loaded.  */
3976 	  if ((info->shared
3977 	       && (hh == NULL
3978 		   || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3979 		   || hh->eh.root.type != bfd_link_hash_undefweak)
3980 	       && (IS_ABSOLUTE_RELOC (r_type)
3981 		   || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3982 	      || (!info->shared
3983 		  && hh != NULL
3984 		  && hh->eh.dynindx != -1
3985 		  && !hh->eh.non_got_ref
3986 		  && ((ELIMINATE_COPY_RELOCS
3987 		       && hh->eh.def_dynamic
3988 		       && !hh->eh.def_regular)
3989 		      || hh->eh.root.type == bfd_link_hash_undefweak
3990 		      || hh->eh.root.type == bfd_link_hash_undefined)))
3991 	    {
3992 	      Elf_Internal_Rela outrel;
3993 	      bfd_boolean skip;
3994 	      asection *sreloc;
3995 	      bfd_byte *loc;
3996 
3997 	      /* When generating a shared object, these relocations
3998 		 are copied into the output file to be resolved at run
3999 		 time.  */
4000 
4001 	      outrel.r_addend = rela->r_addend;
4002 	      outrel.r_offset =
4003 		_bfd_elf_section_offset (output_bfd, info, input_section,
4004 					 rela->r_offset);
4005 	      skip = (outrel.r_offset == (bfd_vma) -1
4006 		      || outrel.r_offset == (bfd_vma) -2);
4007 	      outrel.r_offset += (input_section->output_offset
4008 				  + input_section->output_section->vma);
4009 
4010 	      if (skip)
4011 		{
4012 		  memset (&outrel, 0, sizeof (outrel));
4013 		}
4014 	      else if (hh != NULL
4015 		       && hh->eh.dynindx != -1
4016 		       && (plabel
4017 			   || !IS_ABSOLUTE_RELOC (r_type)
4018 			   || !info->shared
4019 			   || !info->symbolic
4020 			   || !hh->eh.def_regular))
4021 		{
4022 		  outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
4023 		}
4024 	      else /* It's a local symbol, or one marked to become local.  */
4025 		{
4026 		  int indx = 0;
4027 
4028 		  /* Add the absolute offset of the symbol.  */
4029 		  outrel.r_addend += relocation;
4030 
4031 		  /* Global plabels need to be processed by the
4032 		     dynamic linker so that functions have at most one
4033 		     fptr.  For this reason, we need to differentiate
4034 		     between global and local plabels, which we do by
4035 		     providing the function symbol for a global plabel
4036 		     reloc, and no symbol for local plabels.  */
4037 		  if (! plabel
4038 		      && sym_sec != NULL
4039 		      && sym_sec->output_section != NULL
4040 		      && ! bfd_is_abs_section (sym_sec))
4041 		    {
4042 		      asection *osec;
4043 
4044 		      osec = sym_sec->output_section;
4045 		      indx = elf_section_data (osec)->dynindx;
4046 		      if (indx == 0)
4047 			{
4048 			  osec = htab->etab.text_index_section;
4049 			  indx = elf_section_data (osec)->dynindx;
4050 			}
4051 		      BFD_ASSERT (indx != 0);
4052 
4053 		      /* We are turning this relocation into one
4054 			 against a section symbol, so subtract out the
4055 			 output section's address but not the offset
4056 			 of the input section in the output section.  */
4057 		      outrel.r_addend -= osec->vma;
4058 		    }
4059 
4060 		  outrel.r_info = ELF32_R_INFO (indx, r_type);
4061 		}
4062 	      sreloc = elf_section_data (input_section)->sreloc;
4063 	      if (sreloc == NULL)
4064 		abort ();
4065 
4066 	      loc = sreloc->contents;
4067 	      loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4068 	      bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4069 	    }
4070 	  break;
4071 
4072 	case R_PARISC_TLS_LDM21L:
4073 	case R_PARISC_TLS_LDM14R:
4074 	  {
4075 	    bfd_vma off;
4076 
4077 	    off = htab->tls_ldm_got.offset;
4078 	    if (off & 1)
4079 	      off &= ~1;
4080 	    else
4081 	      {
4082 		Elf_Internal_Rela outrel;
4083 		bfd_byte *loc;
4084 
4085 		outrel.r_offset = (off
4086 				   + htab->sgot->output_section->vma
4087 				   + htab->sgot->output_offset);
4088 		outrel.r_addend = 0;
4089 		outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
4090 		loc = htab->srelgot->contents;
4091 		loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4092 
4093 		bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4094 		htab->tls_ldm_got.offset |= 1;
4095 	      }
4096 
4097 	    /* Add the base of the GOT to the relocation value.  */
4098 	    relocation = (off
4099 			  + htab->sgot->output_offset
4100 			  + htab->sgot->output_section->vma);
4101 
4102 	    break;
4103 	  }
4104 
4105 	case R_PARISC_TLS_LDO21L:
4106 	case R_PARISC_TLS_LDO14R:
4107 	  relocation -= dtpoff_base (info);
4108 	  break;
4109 
4110 	case R_PARISC_TLS_GD21L:
4111 	case R_PARISC_TLS_GD14R:
4112 	case R_PARISC_TLS_IE21L:
4113 	case R_PARISC_TLS_IE14R:
4114 	  {
4115 	    bfd_vma off;
4116 	    int indx;
4117 	    char tls_type;
4118 
4119 	    indx = 0;
4120 	    if (hh != NULL)
4121 	      {
4122 	        bfd_boolean dyn;
4123 	        dyn = htab->etab.dynamic_sections_created;
4124 
4125 		if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &hh->eh)
4126 		    && (!info->shared
4127 			|| !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4128 		  {
4129 		    indx = hh->eh.dynindx;
4130 		  }
4131 		off = hh->eh.got.offset;
4132 		tls_type = hh->tls_type;
4133 	      }
4134 	    else
4135 	      {
4136 		off = local_got_offsets[r_symndx];
4137 		tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4138 	      }
4139 
4140 	    if (tls_type == GOT_UNKNOWN)
4141 	      abort ();
4142 
4143 	    if ((off & 1) != 0)
4144 	      off &= ~1;
4145 	    else
4146 	      {
4147 		bfd_boolean need_relocs = FALSE;
4148 		Elf_Internal_Rela outrel;
4149 		bfd_byte *loc = NULL;
4150 		int cur_off = off;
4151 
4152 	        /* The GOT entries have not been initialized yet.  Do it
4153 	           now, and emit any relocations.  If both an IE GOT and a
4154 	           GD GOT are necessary, we emit the GD first.  */
4155 
4156 		if ((info->shared || indx != 0)
4157 		    && (hh == NULL
4158 			|| ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
4159 			|| hh->eh.root.type != bfd_link_hash_undefweak))
4160 		  {
4161 		    need_relocs = TRUE;
4162 		    loc = htab->srelgot->contents;
4163 		    /* FIXME (CAO): Should this be reloc_count++ ? */
4164 		    loc += htab->srelgot->reloc_count * sizeof (Elf32_External_Rela);
4165 		  }
4166 
4167 		if (tls_type & GOT_TLS_GD)
4168 		  {
4169 		    if (need_relocs)
4170 		      {
4171 			outrel.r_offset = (cur_off
4172 					   + htab->sgot->output_section->vma
4173 					   + htab->sgot->output_offset);
4174 			outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
4175 			outrel.r_addend = 0;
4176 			bfd_put_32 (output_bfd, 0, htab->sgot->contents + cur_off);
4177 			bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4178 			htab->srelgot->reloc_count++;
4179 			loc += sizeof (Elf32_External_Rela);
4180 
4181 			if (indx == 0)
4182 			  bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4183 				      htab->sgot->contents + cur_off + 4);
4184 			else
4185 			  {
4186 			    bfd_put_32 (output_bfd, 0,
4187 					htab->sgot->contents + cur_off + 4);
4188 			    outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4189 			    outrel.r_offset += 4;
4190 			    bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
4191 			    htab->srelgot->reloc_count++;
4192 			    loc += sizeof (Elf32_External_Rela);
4193 			  }
4194 		      }
4195 		    else
4196 		      {
4197 		        /* If we are not emitting relocations for a
4198 		           general dynamic reference, then we must be in a
4199 		           static link or an executable link with the
4200 		           symbol binding locally.  Mark it as belonging
4201 		           to module 1, the executable.  */
4202 		        bfd_put_32 (output_bfd, 1,
4203 				    htab->sgot->contents + cur_off);
4204 		        bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4205 				    htab->sgot->contents + cur_off + 4);
4206 		      }
4207 
4208 
4209 		    cur_off += 8;
4210 		  }
4211 
4212 		if (tls_type & GOT_TLS_IE)
4213 		  {
4214 		    if (need_relocs)
4215 		      {
4216 			outrel.r_offset = (cur_off
4217 					   + htab->sgot->output_section->vma
4218 					   + htab->sgot->output_offset);
4219 			outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
4220 
4221 			if (indx == 0)
4222 			  outrel.r_addend = relocation - dtpoff_base (info);
4223 			else
4224 			  outrel.r_addend = 0;
4225 
4226 			bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4227 			htab->srelgot->reloc_count++;
4228 			loc += sizeof (Elf32_External_Rela);
4229 		      }
4230 		    else
4231 		      bfd_put_32 (output_bfd, tpoff (info, relocation),
4232 				  htab->sgot->contents + cur_off);
4233 
4234 		    cur_off += 4;
4235 		  }
4236 
4237 		if (hh != NULL)
4238 		  hh->eh.got.offset |= 1;
4239 		else
4240 		  local_got_offsets[r_symndx] |= 1;
4241 	      }
4242 
4243 	    if ((tls_type & GOT_TLS_GD)
4244 	  	&& r_type != R_PARISC_TLS_GD21L
4245 	  	&& r_type != R_PARISC_TLS_GD14R)
4246 	      off += 2 * GOT_ENTRY_SIZE;
4247 
4248 	    /* Add the base of the GOT to the relocation value.  */
4249 	    relocation = (off
4250 			  + htab->sgot->output_offset
4251 			  + htab->sgot->output_section->vma);
4252 
4253 	    break;
4254 	  }
4255 
4256 	case R_PARISC_TLS_LE21L:
4257 	case R_PARISC_TLS_LE14R:
4258 	  {
4259 	    relocation = tpoff (info, relocation);
4260 	    break;
4261 	  }
4262 	  break;
4263 
4264 	default:
4265 	  break;
4266 	}
4267 
4268       rstatus = final_link_relocate (input_section, contents, rela, relocation,
4269 			       htab, sym_sec, hh, info);
4270 
4271       if (rstatus == bfd_reloc_ok)
4272 	continue;
4273 
4274       if (hh != NULL)
4275 	sym_name = hh_name (hh);
4276       else
4277 	{
4278 	  sym_name = bfd_elf_string_from_elf_section (input_bfd,
4279 						      symtab_hdr->sh_link,
4280 						      sym->st_name);
4281 	  if (sym_name == NULL)
4282 	    return FALSE;
4283 	  if (*sym_name == '\0')
4284 	    sym_name = bfd_section_name (input_bfd, sym_sec);
4285 	}
4286 
4287       howto = elf_hppa_howto_table + r_type;
4288 
4289       if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4290 	{
4291 	  if (rstatus == bfd_reloc_notsupported || !warned_undef)
4292 	    {
4293 	      (*_bfd_error_handler)
4294 		(_("%B(%A+0x%lx): cannot handle %s for %s"),
4295 		 input_bfd,
4296 		 input_section,
4297 		 (long) rela->r_offset,
4298 		 howto->name,
4299 		 sym_name);
4300 	      bfd_set_error (bfd_error_bad_value);
4301 	      return FALSE;
4302 	    }
4303 	}
4304       else
4305 	{
4306 	  if (!((*info->callbacks->reloc_overflow)
4307 		(info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4308 		 (bfd_vma) 0, input_bfd, input_section, rela->r_offset)))
4309 	    return FALSE;
4310 	}
4311     }
4312 
4313   return TRUE;
4314 }
4315 
4316 /* Finish up dynamic symbol handling.  We set the contents of various
4317    dynamic sections here.  */
4318 
4319 static bfd_boolean
4320 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4321 				  struct bfd_link_info *info,
4322 				  struct elf_link_hash_entry *eh,
4323 				  Elf_Internal_Sym *sym)
4324 {
4325   struct elf32_hppa_link_hash_table *htab;
4326   Elf_Internal_Rela rela;
4327   bfd_byte *loc;
4328 
4329   htab = hppa_link_hash_table (info);
4330   if (htab == NULL)
4331     return FALSE;
4332 
4333   if (eh->plt.offset != (bfd_vma) -1)
4334     {
4335       bfd_vma value;
4336 
4337       if (eh->plt.offset & 1)
4338 	abort ();
4339 
4340       /* This symbol has an entry in the procedure linkage table.  Set
4341 	 it up.
4342 
4343 	 The format of a plt entry is
4344 	 <funcaddr>
4345 	 <__gp>
4346       */
4347       value = 0;
4348       if (eh->root.type == bfd_link_hash_defined
4349 	  || eh->root.type == bfd_link_hash_defweak)
4350 	{
4351 	  value = eh->root.u.def.value;
4352 	  if (eh->root.u.def.section->output_section != NULL)
4353 	    value += (eh->root.u.def.section->output_offset
4354 		      + eh->root.u.def.section->output_section->vma);
4355 	}
4356 
4357       /* Create a dynamic IPLT relocation for this entry.  */
4358       rela.r_offset = (eh->plt.offset
4359 		      + htab->splt->output_offset
4360 		      + htab->splt->output_section->vma);
4361       if (eh->dynindx != -1)
4362 	{
4363 	  rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4364 	  rela.r_addend = 0;
4365 	}
4366       else
4367 	{
4368 	  /* This symbol has been marked to become local, and is
4369 	     used by a plabel so must be kept in the .plt.  */
4370 	  rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4371 	  rela.r_addend = value;
4372 	}
4373 
4374       loc = htab->srelplt->contents;
4375       loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4376       bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
4377 
4378       if (!eh->def_regular)
4379 	{
4380 	  /* Mark the symbol as undefined, rather than as defined in
4381 	     the .plt section.  Leave the value alone.  */
4382 	  sym->st_shndx = SHN_UNDEF;
4383 	}
4384     }
4385 
4386   if (eh->got.offset != (bfd_vma) -1
4387       && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
4388       && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
4389     {
4390       /* This symbol has an entry in the global offset table.  Set it
4391 	 up.  */
4392 
4393       rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4394 		      + htab->sgot->output_offset
4395 		      + htab->sgot->output_section->vma);
4396 
4397       /* If this is a -Bsymbolic link and the symbol is defined
4398 	 locally or was forced to be local because of a version file,
4399 	 we just want to emit a RELATIVE reloc.  The entry in the
4400 	 global offset table will already have been initialized in the
4401 	 relocate_section function.  */
4402       if (info->shared
4403 	  && (info->symbolic || eh->dynindx == -1)
4404 	  && eh->def_regular)
4405 	{
4406 	  rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4407 	  rela.r_addend = (eh->root.u.def.value
4408 			  + eh->root.u.def.section->output_offset
4409 			  + eh->root.u.def.section->output_section->vma);
4410 	}
4411       else
4412 	{
4413 	  if ((eh->got.offset & 1) != 0)
4414 	    abort ();
4415 
4416 	  bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
4417 	  rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4418 	  rela.r_addend = 0;
4419 	}
4420 
4421       loc = htab->srelgot->contents;
4422       loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4423       bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4424     }
4425 
4426   if (eh->needs_copy)
4427     {
4428       asection *sec;
4429 
4430       /* This symbol needs a copy reloc.  Set it up.  */
4431 
4432       if (! (eh->dynindx != -1
4433 	     && (eh->root.type == bfd_link_hash_defined
4434 		 || eh->root.type == bfd_link_hash_defweak)))
4435 	abort ();
4436 
4437       sec = htab->srelbss;
4438 
4439       rela.r_offset = (eh->root.u.def.value
4440 		      + eh->root.u.def.section->output_offset
4441 		      + eh->root.u.def.section->output_section->vma);
4442       rela.r_addend = 0;
4443       rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4444       loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4445       bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4446     }
4447 
4448   /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  */
4449   if (eh_name (eh)[0] == '_'
4450       && (strcmp (eh_name (eh), "_DYNAMIC") == 0
4451 	  || eh == htab->etab.hgot))
4452     {
4453       sym->st_shndx = SHN_ABS;
4454     }
4455 
4456   return TRUE;
4457 }
4458 
4459 /* Used to decide how to sort relocs in an optimal manner for the
4460    dynamic linker, before writing them out.  */
4461 
4462 static enum elf_reloc_type_class
4463 elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
4464 {
4465   /* Handle TLS relocs first; we don't want them to be marked
4466      relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4467      check below.  */
4468   switch ((int) ELF32_R_TYPE (rela->r_info))
4469     {
4470       case R_PARISC_TLS_DTPMOD32:
4471       case R_PARISC_TLS_DTPOFF32:
4472       case R_PARISC_TLS_TPREL32:
4473         return reloc_class_normal;
4474     }
4475 
4476   if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
4477     return reloc_class_relative;
4478 
4479   switch ((int) ELF32_R_TYPE (rela->r_info))
4480     {
4481     case R_PARISC_IPLT:
4482       return reloc_class_plt;
4483     case R_PARISC_COPY:
4484       return reloc_class_copy;
4485     default:
4486       return reloc_class_normal;
4487     }
4488 }
4489 
4490 /* Finish up the dynamic sections.  */
4491 
4492 static bfd_boolean
4493 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4494 				    struct bfd_link_info *info)
4495 {
4496   bfd *dynobj;
4497   struct elf32_hppa_link_hash_table *htab;
4498   asection *sdyn;
4499   asection * sgot;
4500 
4501   htab = hppa_link_hash_table (info);
4502   if (htab == NULL)
4503     return FALSE;
4504 
4505   dynobj = htab->etab.dynobj;
4506 
4507   sgot = htab->sgot;
4508   /* A broken linker script might have discarded the dynamic sections.
4509      Catch this here so that we do not seg-fault later on.  */
4510   if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
4511     return FALSE;
4512 
4513   sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4514 
4515   if (htab->etab.dynamic_sections_created)
4516     {
4517       Elf32_External_Dyn *dyncon, *dynconend;
4518 
4519       if (sdyn == NULL)
4520 	abort ();
4521 
4522       dyncon = (Elf32_External_Dyn *) sdyn->contents;
4523       dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4524       for (; dyncon < dynconend; dyncon++)
4525 	{
4526 	  Elf_Internal_Dyn dyn;
4527 	  asection *s;
4528 
4529 	  bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4530 
4531 	  switch (dyn.d_tag)
4532 	    {
4533 	    default:
4534 	      continue;
4535 
4536 	    case DT_PLTGOT:
4537 	      /* Use PLTGOT to set the GOT register.  */
4538 	      dyn.d_un.d_ptr = elf_gp (output_bfd);
4539 	      break;
4540 
4541 	    case DT_JMPREL:
4542 	      s = htab->srelplt;
4543 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4544 	      break;
4545 
4546 	    case DT_PLTRELSZ:
4547 	      s = htab->srelplt;
4548 	      dyn.d_un.d_val = s->size;
4549 	      break;
4550 
4551 	    case DT_RELASZ:
4552 	      /* Don't count procedure linkage table relocs in the
4553 		 overall reloc count.  */
4554 	      s = htab->srelplt;
4555 	      if (s == NULL)
4556 		continue;
4557 	      dyn.d_un.d_val -= s->size;
4558 	      break;
4559 
4560 	    case DT_RELA:
4561 	      /* We may not be using the standard ELF linker script.
4562 		 If .rela.plt is the first .rela section, we adjust
4563 		 DT_RELA to not include it.  */
4564 	      s = htab->srelplt;
4565 	      if (s == NULL)
4566 		continue;
4567 	      if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4568 		continue;
4569 	      dyn.d_un.d_ptr += s->size;
4570 	      break;
4571 	    }
4572 
4573 	  bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4574 	}
4575     }
4576 
4577   if (sgot != NULL && sgot->size != 0)
4578     {
4579       /* Fill in the first entry in the global offset table.
4580 	 We use it to point to our dynamic section, if we have one.  */
4581       bfd_put_32 (output_bfd,
4582 		  sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4583 		  sgot->contents);
4584 
4585       /* The second entry is reserved for use by the dynamic linker.  */
4586       memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4587 
4588       /* Set .got entry size.  */
4589       elf_section_data (sgot->output_section)
4590 	->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4591     }
4592 
4593   if (htab->splt != NULL && htab->splt->size != 0)
4594     {
4595       /* Set plt entry size.  */
4596       elf_section_data (htab->splt->output_section)
4597 	->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4598 
4599       if (htab->need_plt_stub)
4600 	{
4601 	  /* Set up the .plt stub.  */
4602 	  memcpy (htab->splt->contents
4603 		  + htab->splt->size - sizeof (plt_stub),
4604 		  plt_stub, sizeof (plt_stub));
4605 
4606 	  if ((htab->splt->output_offset
4607 	       + htab->splt->output_section->vma
4608 	       + htab->splt->size)
4609 	      != (sgot->output_offset
4610 		  + sgot->output_section->vma))
4611 	    {
4612 	      (*_bfd_error_handler)
4613 		(_(".got section not immediately after .plt section"));
4614 	      return FALSE;
4615 	    }
4616 	}
4617     }
4618 
4619   return TRUE;
4620 }
4621 
4622 /* Called when writing out an object file to decide the type of a
4623    symbol.  */
4624 static int
4625 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4626 {
4627   if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4628     return STT_PARISC_MILLI;
4629   else
4630     return type;
4631 }
4632 
4633 /* Misc BFD support code.  */
4634 #define bfd_elf32_bfd_is_local_label_name    elf_hppa_is_local_label_name
4635 #define bfd_elf32_bfd_reloc_type_lookup	     elf_hppa_reloc_type_lookup
4636 #define bfd_elf32_bfd_reloc_name_lookup      elf_hppa_reloc_name_lookup
4637 #define elf_info_to_howto		     elf_hppa_info_to_howto
4638 #define elf_info_to_howto_rel		     elf_hppa_info_to_howto_rel
4639 
4640 /* Stuff for the BFD linker.  */
4641 #define bfd_elf32_bfd_final_link	     elf32_hppa_final_link
4642 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4643 #define bfd_elf32_bfd_link_hash_table_free   elf32_hppa_link_hash_table_free
4644 #define elf_backend_adjust_dynamic_symbol    elf32_hppa_adjust_dynamic_symbol
4645 #define elf_backend_copy_indirect_symbol     elf32_hppa_copy_indirect_symbol
4646 #define elf_backend_check_relocs	     elf32_hppa_check_relocs
4647 #define elf_backend_create_dynamic_sections  elf32_hppa_create_dynamic_sections
4648 #define elf_backend_fake_sections	     elf_hppa_fake_sections
4649 #define elf_backend_relocate_section	     elf32_hppa_relocate_section
4650 #define elf_backend_hide_symbol		     elf32_hppa_hide_symbol
4651 #define elf_backend_finish_dynamic_symbol    elf32_hppa_finish_dynamic_symbol
4652 #define elf_backend_finish_dynamic_sections  elf32_hppa_finish_dynamic_sections
4653 #define elf_backend_size_dynamic_sections    elf32_hppa_size_dynamic_sections
4654 #define elf_backend_init_index_section	     _bfd_elf_init_1_index_section
4655 #define elf_backend_gc_mark_hook	     elf32_hppa_gc_mark_hook
4656 #define elf_backend_gc_sweep_hook	     elf32_hppa_gc_sweep_hook
4657 #define elf_backend_grok_prstatus	     elf32_hppa_grok_prstatus
4658 #define elf_backend_grok_psinfo		     elf32_hppa_grok_psinfo
4659 #define elf_backend_object_p		     elf32_hppa_object_p
4660 #define elf_backend_final_write_processing   elf_hppa_final_write_processing
4661 #define elf_backend_post_process_headers     _bfd_elf_set_osabi
4662 #define elf_backend_get_symbol_type	     elf32_hppa_elf_get_symbol_type
4663 #define elf_backend_reloc_type_class	     elf32_hppa_reloc_type_class
4664 #define elf_backend_action_discarded	     elf_hppa_action_discarded
4665 
4666 #define elf_backend_can_gc_sections	     1
4667 #define elf_backend_can_refcount	     1
4668 #define elf_backend_plt_alignment	     2
4669 #define elf_backend_want_got_plt	     0
4670 #define elf_backend_plt_readonly	     0
4671 #define elf_backend_want_plt_sym	     0
4672 #define elf_backend_got_header_size	     8
4673 #define elf_backend_rela_normal		     1
4674 
4675 #define TARGET_BIG_SYM		bfd_elf32_hppa_vec
4676 #define TARGET_BIG_NAME		"elf32-hppa"
4677 #define ELF_ARCH		bfd_arch_hppa
4678 #define ELF_TARGET_ID		HPPA32_ELF_DATA
4679 #define ELF_MACHINE_CODE	EM_PARISC
4680 #define ELF_MAXPAGESIZE		0x1000
4681 #define ELF_OSABI		ELFOSABI_HPUX
4682 #define elf32_bed		elf32_hppa_hpux_bed
4683 
4684 #include "elf32-target.h"
4685 
4686 #undef TARGET_BIG_SYM
4687 #define TARGET_BIG_SYM		bfd_elf32_hppa_linux_vec
4688 #undef TARGET_BIG_NAME
4689 #define TARGET_BIG_NAME		"elf32-hppa-linux"
4690 #undef ELF_OSABI
4691 #define ELF_OSABI		ELFOSABI_GNU
4692 #undef elf32_bed
4693 #define elf32_bed		elf32_hppa_linux_bed
4694 
4695 #include "elf32-target.h"
4696 
4697 #undef TARGET_BIG_SYM
4698 #define TARGET_BIG_SYM		bfd_elf32_hppa_nbsd_vec
4699 #undef TARGET_BIG_NAME
4700 #define TARGET_BIG_NAME		"elf32-hppa-netbsd"
4701 #undef ELF_OSABI
4702 #define ELF_OSABI		ELFOSABI_NETBSD
4703 #undef elf32_bed
4704 #define elf32_bed		elf32_hppa_netbsd_bed
4705 
4706 #include "elf32-target.h"
4707