xref: /netbsd-src/external/gpl3/binutils/dist/bfd/elf32-hppa.c (revision a5847cc334d9a7029f6352b847e9e8d71a0f9e0c)
1 /* BFD back-end for HP PA-RISC ELF files.
2    Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3    2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4    Free Software Foundation, Inc.
5 
6    Original code by
7 	Center for Software Science
8 	Department of Computer Science
9 	University of Utah
10    Largely rewritten by Alan Modra <alan@linuxcare.com.au>
11    Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
12    TLS support written by Randolph Chung <tausq@debian.org>
13 
14    This file is part of BFD, the Binary File Descriptor library.
15 
16    This program is free software; you can redistribute it and/or modify
17    it under the terms of the GNU General Public License as published by
18    the Free Software Foundation; either version 3 of the License, or
19    (at your option) any later version.
20 
21    This program is distributed in the hope that it will be useful,
22    but WITHOUT ANY WARRANTY; without even the implied warranty of
23    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
24    GNU General Public License for more details.
25 
26    You should have received a copy of the GNU General Public License
27    along with this program; if not, write to the Free Software
28    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
29    MA 02110-1301, USA.  */
30 
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "elf-bfd.h"
35 #include "elf/hppa.h"
36 #include "libhppa.h"
37 #include "elf32-hppa.h"
38 #define ARCH_SIZE		32
39 #include "elf32-hppa.h"
40 #include "elf-hppa.h"
41 
42 /* In order to gain some understanding of code in this file without
43    knowing all the intricate details of the linker, note the
44    following:
45 
46    Functions named elf32_hppa_* are called by external routines, other
47    functions are only called locally.  elf32_hppa_* functions appear
48    in this file more or less in the order in which they are called
49    from external routines.  eg. elf32_hppa_check_relocs is called
50    early in the link process, elf32_hppa_finish_dynamic_sections is
51    one of the last functions.  */
52 
53 /* We use two hash tables to hold information for linking PA ELF objects.
54 
55    The first is the elf32_hppa_link_hash_table which is derived
56    from the standard ELF linker hash table.  We use this as a place to
57    attach other hash tables and static information.
58 
59    The second is the stub hash table which is derived from the
60    base BFD hash table.  The stub hash table holds the information
61    necessary to build the linker stubs during a link.
62 
63    There are a number of different stubs generated by the linker.
64 
65    Long branch stub:
66    :		ldil LR'X,%r1
67    :		be,n RR'X(%sr4,%r1)
68 
69    PIC long branch stub:
70    :		b,l .+8,%r1
71    :		addil LR'X - ($PIC_pcrel$0 - 4),%r1
72    :		be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
73 
74    Import stub to call shared library routine from normal object file
75    (single sub-space version)
76    :		addil LR'lt_ptr+ltoff,%dp	; get procedure entry point
77    :		ldw RR'lt_ptr+ltoff(%r1),%r21
78    :		bv %r0(%r21)
79    :		ldw RR'lt_ptr+ltoff+4(%r1),%r19	; get new dlt value.
80 
81    Import stub to call shared library routine from shared library
82    (single sub-space version)
83    :		addil LR'ltoff,%r19		; get procedure entry point
84    :		ldw RR'ltoff(%r1),%r21
85    :		bv %r0(%r21)
86    :		ldw RR'ltoff+4(%r1),%r19	; get new dlt value.
87 
88    Import stub to call shared library routine from normal object file
89    (multiple sub-space support)
90    :		addil LR'lt_ptr+ltoff,%dp	; get procedure entry point
91    :		ldw RR'lt_ptr+ltoff(%r1),%r21
92    :		ldw RR'lt_ptr+ltoff+4(%r1),%r19	; get new dlt value.
93    :		ldsid (%r21),%r1
94    :		mtsp %r1,%sr0
95    :		be 0(%sr0,%r21)			; branch to target
96    :		stw %rp,-24(%sp)		; save rp
97 
98    Import stub to call shared library routine from shared library
99    (multiple sub-space support)
100    :		addil LR'ltoff,%r19		; get procedure entry point
101    :		ldw RR'ltoff(%r1),%r21
102    :		ldw RR'ltoff+4(%r1),%r19	; get new dlt value.
103    :		ldsid (%r21),%r1
104    :		mtsp %r1,%sr0
105    :		be 0(%sr0,%r21)			; branch to target
106    :		stw %rp,-24(%sp)		; save rp
107 
108    Export stub to return from shared lib routine (multiple sub-space support)
109    One of these is created for each exported procedure in a shared
110    library (and stored in the shared lib).  Shared lib routines are
111    called via the first instruction in the export stub so that we can
112    do an inter-space return.  Not required for single sub-space.
113    :		bl,n X,%rp			; trap the return
114    :		nop
115    :		ldw -24(%sp),%rp		; restore the original rp
116    :		ldsid (%rp),%r1
117    :		mtsp %r1,%sr0
118    :		be,n 0(%sr0,%rp)		; inter-space return.  */
119 
120 
121 /* Variable names follow a coding style.
122    Please follow this (Apps Hungarian) style:
123 
124    Structure/Variable         		Prefix
125    elf_link_hash_table			"etab"
126    elf_link_hash_entry			"eh"
127 
128    elf32_hppa_link_hash_table		"htab"
129    elf32_hppa_link_hash_entry		"hh"
130 
131    bfd_hash_table			"btab"
132    bfd_hash_entry			"bh"
133 
134    bfd_hash_table containing stubs	"bstab"
135    elf32_hppa_stub_hash_entry		"hsh"
136 
137    elf32_hppa_dyn_reloc_entry		"hdh"
138 
139    Always remember to use GNU Coding Style. */
140 
141 #define PLT_ENTRY_SIZE 8
142 #define GOT_ENTRY_SIZE 4
143 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
144 
145 static const bfd_byte plt_stub[] =
146 {
147   0x0e, 0x80, 0x10, 0x96,  /* 1: ldw	0(%r20),%r22		*/
148   0xea, 0xc0, 0xc0, 0x00,  /*    bv	%r0(%r22)		*/
149   0x0e, 0x88, 0x10, 0x95,  /*    ldw	4(%r20),%r21		*/
150 #define PLT_STUB_ENTRY (3*4)
151   0xea, 0x9f, 0x1f, 0xdd,  /*    b,l	1b,%r20			*/
152   0xd6, 0x80, 0x1c, 0x1e,  /*    depi	0,31,2,%r20		*/
153   0x00, 0xc0, 0xff, 0xee,  /* 9: .word	fixup_func		*/
154   0xde, 0xad, 0xbe, 0xef   /*    .word	fixup_ltp		*/
155 };
156 
157 /* Section name for stubs is the associated section name plus this
158    string.  */
159 #define STUB_SUFFIX ".stub"
160 
161 /* We don't need to copy certain PC- or GP-relative dynamic relocs
162    into a shared object's dynamic section.  All the relocs of the
163    limited class we are interested in, are absolute.  */
164 #ifndef RELATIVE_DYNRELOCS
165 #define RELATIVE_DYNRELOCS 0
166 #define IS_ABSOLUTE_RELOC(r_type) 1
167 #endif
168 
169 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
170    copying dynamic variables from a shared lib into an app's dynbss
171    section, and instead use a dynamic relocation to point into the
172    shared lib.  */
173 #define ELIMINATE_COPY_RELOCS 1
174 
175 enum elf32_hppa_stub_type
176 {
177   hppa_stub_long_branch,
178   hppa_stub_long_branch_shared,
179   hppa_stub_import,
180   hppa_stub_import_shared,
181   hppa_stub_export,
182   hppa_stub_none
183 };
184 
185 struct elf32_hppa_stub_hash_entry
186 {
187   /* Base hash table entry structure.  */
188   struct bfd_hash_entry bh_root;
189 
190   /* The stub section.  */
191   asection *stub_sec;
192 
193   /* Offset within stub_sec of the beginning of this stub.  */
194   bfd_vma stub_offset;
195 
196   /* Given the symbol's value and its section we can determine its final
197      value when building the stubs (so the stub knows where to jump.  */
198   bfd_vma target_value;
199   asection *target_section;
200 
201   enum elf32_hppa_stub_type stub_type;
202 
203   /* The symbol table entry, if any, that this was derived from.  */
204   struct elf32_hppa_link_hash_entry *hh;
205 
206   /* Where this stub is being called from, or, in the case of combined
207      stub sections, the first input section in the group.  */
208   asection *id_sec;
209 };
210 
211 struct elf32_hppa_link_hash_entry
212 {
213   struct elf_link_hash_entry eh;
214 
215   /* A pointer to the most recently used stub hash entry against this
216      symbol.  */
217   struct elf32_hppa_stub_hash_entry *hsh_cache;
218 
219   /* Used to count relocations for delayed sizing of relocation
220      sections.  */
221   struct elf32_hppa_dyn_reloc_entry
222   {
223     /* Next relocation in the chain.  */
224     struct elf32_hppa_dyn_reloc_entry *hdh_next;
225 
226     /* The input section of the reloc.  */
227     asection *sec;
228 
229     /* Number of relocs copied in this section.  */
230     bfd_size_type count;
231 
232 #if RELATIVE_DYNRELOCS
233   /* Number of relative relocs copied for the input section.  */
234     bfd_size_type relative_count;
235 #endif
236   } *dyn_relocs;
237 
238   enum
239   {
240     GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
241   } tls_type;
242 
243   /* Set if this symbol is used by a plabel reloc.  */
244   unsigned int plabel:1;
245 };
246 
247 struct elf32_hppa_link_hash_table
248 {
249   /* The main hash table.  */
250   struct elf_link_hash_table etab;
251 
252   /* The stub hash table.  */
253   struct bfd_hash_table bstab;
254 
255   /* Linker stub bfd.  */
256   bfd *stub_bfd;
257 
258   /* Linker call-backs.  */
259   asection * (*add_stub_section) (const char *, asection *);
260   void (*layout_sections_again) (void);
261 
262   /* Array to keep track of which stub sections have been created, and
263      information on stub grouping.  */
264   struct map_stub
265   {
266     /* This is the section to which stubs in the group will be
267        attached.  */
268     asection *link_sec;
269     /* The stub section.  */
270     asection *stub_sec;
271   } *stub_group;
272 
273   /* Assorted information used by elf32_hppa_size_stubs.  */
274   unsigned int bfd_count;
275   int top_index;
276   asection **input_list;
277   Elf_Internal_Sym **all_local_syms;
278 
279   /* Short-cuts to get to dynamic linker sections.  */
280   asection *sgot;
281   asection *srelgot;
282   asection *splt;
283   asection *srelplt;
284   asection *sdynbss;
285   asection *srelbss;
286 
287   /* Used during a final link to store the base of the text and data
288      segments so that we can perform SEGREL relocations.  */
289   bfd_vma text_segment_base;
290   bfd_vma data_segment_base;
291 
292   /* Whether we support multiple sub-spaces for shared libs.  */
293   unsigned int multi_subspace:1;
294 
295   /* Flags set when various size branches are detected.  Used to
296      select suitable defaults for the stub group size.  */
297   unsigned int has_12bit_branch:1;
298   unsigned int has_17bit_branch:1;
299   unsigned int has_22bit_branch:1;
300 
301   /* Set if we need a .plt stub to support lazy dynamic linking.  */
302   unsigned int need_plt_stub:1;
303 
304   /* Small local sym cache.  */
305   struct sym_cache sym_cache;
306 
307   /* Data for LDM relocations.  */
308   union
309   {
310     bfd_signed_vma refcount;
311     bfd_vma offset;
312   } tls_ldm_got;
313 };
314 
315 /* Various hash macros and functions.  */
316 #define hppa_link_hash_table(p) \
317   (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
318   == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
319 
320 #define hppa_elf_hash_entry(ent) \
321   ((struct elf32_hppa_link_hash_entry *)(ent))
322 
323 #define hppa_stub_hash_entry(ent) \
324   ((struct elf32_hppa_stub_hash_entry *)(ent))
325 
326 #define hppa_stub_hash_lookup(table, string, create, copy) \
327   ((struct elf32_hppa_stub_hash_entry *) \
328    bfd_hash_lookup ((table), (string), (create), (copy)))
329 
330 #define hppa_elf_local_got_tls_type(abfd) \
331   ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
332 
333 #define hh_name(hh) \
334   (hh ? hh->eh.root.root.string : "<undef>")
335 
336 #define eh_name(eh) \
337   (eh ? eh->root.root.string : "<undef>")
338 
339 /* Assorted hash table functions.  */
340 
341 /* Initialize an entry in the stub hash table.  */
342 
343 static struct bfd_hash_entry *
344 stub_hash_newfunc (struct bfd_hash_entry *entry,
345 		   struct bfd_hash_table *table,
346 		   const char *string)
347 {
348   /* Allocate the structure if it has not already been allocated by a
349      subclass.  */
350   if (entry == NULL)
351     {
352       entry = bfd_hash_allocate (table,
353 				 sizeof (struct elf32_hppa_stub_hash_entry));
354       if (entry == NULL)
355 	return entry;
356     }
357 
358   /* Call the allocation method of the superclass.  */
359   entry = bfd_hash_newfunc (entry, table, string);
360   if (entry != NULL)
361     {
362       struct elf32_hppa_stub_hash_entry *hsh;
363 
364       /* Initialize the local fields.  */
365       hsh = hppa_stub_hash_entry (entry);
366       hsh->stub_sec = NULL;
367       hsh->stub_offset = 0;
368       hsh->target_value = 0;
369       hsh->target_section = NULL;
370       hsh->stub_type = hppa_stub_long_branch;
371       hsh->hh = NULL;
372       hsh->id_sec = NULL;
373     }
374 
375   return entry;
376 }
377 
378 /* Initialize an entry in the link hash table.  */
379 
380 static struct bfd_hash_entry *
381 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
382 			struct bfd_hash_table *table,
383 			const char *string)
384 {
385   /* Allocate the structure if it has not already been allocated by a
386      subclass.  */
387   if (entry == NULL)
388     {
389       entry = bfd_hash_allocate (table,
390 				 sizeof (struct elf32_hppa_link_hash_entry));
391       if (entry == NULL)
392 	return entry;
393     }
394 
395   /* Call the allocation method of the superclass.  */
396   entry = _bfd_elf_link_hash_newfunc (entry, table, string);
397   if (entry != NULL)
398     {
399       struct elf32_hppa_link_hash_entry *hh;
400 
401       /* Initialize the local fields.  */
402       hh = hppa_elf_hash_entry (entry);
403       hh->hsh_cache = NULL;
404       hh->dyn_relocs = NULL;
405       hh->plabel = 0;
406       hh->tls_type = GOT_UNKNOWN;
407     }
408 
409   return entry;
410 }
411 
412 /* Create the derived linker hash table.  The PA ELF port uses the derived
413    hash table to keep information specific to the PA ELF linker (without
414    using static variables).  */
415 
416 static struct bfd_link_hash_table *
417 elf32_hppa_link_hash_table_create (bfd *abfd)
418 {
419   struct elf32_hppa_link_hash_table *htab;
420   bfd_size_type amt = sizeof (*htab);
421 
422   htab = bfd_malloc (amt);
423   if (htab == NULL)
424     return NULL;
425 
426   if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
427 				      sizeof (struct elf32_hppa_link_hash_entry),
428 				      HPPA32_ELF_DATA))
429     {
430       free (htab);
431       return NULL;
432     }
433 
434   /* Init the stub hash table too.  */
435   if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
436 			    sizeof (struct elf32_hppa_stub_hash_entry)))
437     return NULL;
438 
439   htab->stub_bfd = NULL;
440   htab->add_stub_section = NULL;
441   htab->layout_sections_again = NULL;
442   htab->stub_group = NULL;
443   htab->sgot = NULL;
444   htab->srelgot = NULL;
445   htab->splt = NULL;
446   htab->srelplt = NULL;
447   htab->sdynbss = NULL;
448   htab->srelbss = NULL;
449   htab->text_segment_base = (bfd_vma) -1;
450   htab->data_segment_base = (bfd_vma) -1;
451   htab->multi_subspace = 0;
452   htab->has_12bit_branch = 0;
453   htab->has_17bit_branch = 0;
454   htab->has_22bit_branch = 0;
455   htab->need_plt_stub = 0;
456   htab->sym_cache.abfd = NULL;
457   htab->tls_ldm_got.refcount = 0;
458 
459   return &htab->etab.root;
460 }
461 
462 /* Free the derived linker hash table.  */
463 
464 static void
465 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *btab)
466 {
467   struct elf32_hppa_link_hash_table *htab
468     = (struct elf32_hppa_link_hash_table *) btab;
469 
470   bfd_hash_table_free (&htab->bstab);
471   _bfd_generic_link_hash_table_free (btab);
472 }
473 
474 /* Build a name for an entry in the stub hash table.  */
475 
476 static char *
477 hppa_stub_name (const asection *input_section,
478 		const asection *sym_sec,
479 		const struct elf32_hppa_link_hash_entry *hh,
480 		const Elf_Internal_Rela *rela)
481 {
482   char *stub_name;
483   bfd_size_type len;
484 
485   if (hh)
486     {
487       len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
488       stub_name = bfd_malloc (len);
489       if (stub_name != NULL)
490 	sprintf (stub_name, "%08x_%s+%x",
491 		 input_section->id & 0xffffffff,
492 		 hh_name (hh),
493 		 (int) rela->r_addend & 0xffffffff);
494     }
495   else
496     {
497       len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
498       stub_name = bfd_malloc (len);
499       if (stub_name != NULL)
500 	sprintf (stub_name, "%08x_%x:%x+%x",
501 		 input_section->id & 0xffffffff,
502 		 sym_sec->id & 0xffffffff,
503 		 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
504 		 (int) rela->r_addend & 0xffffffff);
505     }
506   return stub_name;
507 }
508 
509 /* Look up an entry in the stub hash.  Stub entries are cached because
510    creating the stub name takes a bit of time.  */
511 
512 static struct elf32_hppa_stub_hash_entry *
513 hppa_get_stub_entry (const asection *input_section,
514 		     const asection *sym_sec,
515 		     struct elf32_hppa_link_hash_entry *hh,
516 		     const Elf_Internal_Rela *rela,
517 		     struct elf32_hppa_link_hash_table *htab)
518 {
519   struct elf32_hppa_stub_hash_entry *hsh_entry;
520   const asection *id_sec;
521 
522   /* If this input section is part of a group of sections sharing one
523      stub section, then use the id of the first section in the group.
524      Stub names need to include a section id, as there may well be
525      more than one stub used to reach say, printf, and we need to
526      distinguish between them.  */
527   id_sec = htab->stub_group[input_section->id].link_sec;
528 
529   if (hh != NULL && hh->hsh_cache != NULL
530       && hh->hsh_cache->hh == hh
531       && hh->hsh_cache->id_sec == id_sec)
532     {
533       hsh_entry = hh->hsh_cache;
534     }
535   else
536     {
537       char *stub_name;
538 
539       stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
540       if (stub_name == NULL)
541 	return NULL;
542 
543       hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
544 					  stub_name, FALSE, FALSE);
545       if (hh != NULL)
546 	hh->hsh_cache = hsh_entry;
547 
548       free (stub_name);
549     }
550 
551   return hsh_entry;
552 }
553 
554 /* Add a new stub entry to the stub hash.  Not all fields of the new
555    stub entry are initialised.  */
556 
557 static struct elf32_hppa_stub_hash_entry *
558 hppa_add_stub (const char *stub_name,
559 	       asection *section,
560 	       struct elf32_hppa_link_hash_table *htab)
561 {
562   asection *link_sec;
563   asection *stub_sec;
564   struct elf32_hppa_stub_hash_entry *hsh;
565 
566   link_sec = htab->stub_group[section->id].link_sec;
567   stub_sec = htab->stub_group[section->id].stub_sec;
568   if (stub_sec == NULL)
569     {
570       stub_sec = htab->stub_group[link_sec->id].stub_sec;
571       if (stub_sec == NULL)
572 	{
573 	  size_t namelen;
574 	  bfd_size_type len;
575 	  char *s_name;
576 
577 	  namelen = strlen (link_sec->name);
578 	  len = namelen + sizeof (STUB_SUFFIX);
579 	  s_name = bfd_alloc (htab->stub_bfd, len);
580 	  if (s_name == NULL)
581 	    return NULL;
582 
583 	  memcpy (s_name, link_sec->name, namelen);
584 	  memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
585 	  stub_sec = (*htab->add_stub_section) (s_name, link_sec);
586 	  if (stub_sec == NULL)
587 	    return NULL;
588 	  htab->stub_group[link_sec->id].stub_sec = stub_sec;
589 	}
590       htab->stub_group[section->id].stub_sec = stub_sec;
591     }
592 
593   /* Enter this entry into the linker stub hash table.  */
594   hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
595 				      TRUE, FALSE);
596   if (hsh == NULL)
597     {
598       (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
599 			     section->owner,
600 			     stub_name);
601       return NULL;
602     }
603 
604   hsh->stub_sec = stub_sec;
605   hsh->stub_offset = 0;
606   hsh->id_sec = link_sec;
607   return hsh;
608 }
609 
610 /* Determine the type of stub needed, if any, for a call.  */
611 
612 static enum elf32_hppa_stub_type
613 hppa_type_of_stub (asection *input_sec,
614 		   const Elf_Internal_Rela *rela,
615 		   struct elf32_hppa_link_hash_entry *hh,
616 		   bfd_vma destination,
617 		   struct bfd_link_info *info)
618 {
619   bfd_vma location;
620   bfd_vma branch_offset;
621   bfd_vma max_branch_offset;
622   unsigned int r_type;
623 
624   if (hh != NULL
625       && hh->eh.plt.offset != (bfd_vma) -1
626       && hh->eh.dynindx != -1
627       && !hh->plabel
628       && (info->shared
629 	  || !hh->eh.def_regular
630 	  || hh->eh.root.type == bfd_link_hash_defweak))
631     {
632       /* We need an import stub.  Decide between hppa_stub_import
633 	 and hppa_stub_import_shared later.  */
634       return hppa_stub_import;
635     }
636 
637   /* Determine where the call point is.  */
638   location = (input_sec->output_offset
639 	      + input_sec->output_section->vma
640 	      + rela->r_offset);
641 
642   branch_offset = destination - location - 8;
643   r_type = ELF32_R_TYPE (rela->r_info);
644 
645   /* Determine if a long branch stub is needed.  parisc branch offsets
646      are relative to the second instruction past the branch, ie. +8
647      bytes on from the branch instruction location.  The offset is
648      signed and counts in units of 4 bytes.  */
649   if (r_type == (unsigned int) R_PARISC_PCREL17F)
650     max_branch_offset = (1 << (17 - 1)) << 2;
651 
652   else if (r_type == (unsigned int) R_PARISC_PCREL12F)
653     max_branch_offset = (1 << (12 - 1)) << 2;
654 
655   else /* R_PARISC_PCREL22F.  */
656     max_branch_offset = (1 << (22 - 1)) << 2;
657 
658   if (branch_offset + max_branch_offset >= 2*max_branch_offset)
659     return hppa_stub_long_branch;
660 
661   return hppa_stub_none;
662 }
663 
664 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
665    IN_ARG contains the link info pointer.  */
666 
667 #define LDIL_R1		0x20200000	/* ldil  LR'XXX,%r1		*/
668 #define BE_SR4_R1	0xe0202002	/* be,n  RR'XXX(%sr4,%r1)	*/
669 
670 #define BL_R1		0xe8200000	/* b,l   .+8,%r1		*/
671 #define ADDIL_R1	0x28200000	/* addil LR'XXX,%r1,%r1		*/
672 #define DEPI_R1		0xd4201c1e	/* depi  0,31,2,%r1		*/
673 
674 #define ADDIL_DP	0x2b600000	/* addil LR'XXX,%dp,%r1		*/
675 #define LDW_R1_R21	0x48350000	/* ldw   RR'XXX(%sr0,%r1),%r21	*/
676 #define BV_R0_R21	0xeaa0c000	/* bv    %r0(%r21)		*/
677 #define LDW_R1_R19	0x48330000	/* ldw   RR'XXX(%sr0,%r1),%r19	*/
678 
679 #define ADDIL_R19	0x2a600000	/* addil LR'XXX,%r19,%r1	*/
680 #define LDW_R1_DP	0x483b0000	/* ldw   RR'XXX(%sr0,%r1),%dp	*/
681 
682 #define LDSID_R21_R1	0x02a010a1	/* ldsid (%sr0,%r21),%r1	*/
683 #define MTSP_R1		0x00011820	/* mtsp  %r1,%sr0		*/
684 #define BE_SR0_R21	0xe2a00000	/* be    0(%sr0,%r21)		*/
685 #define STW_RP		0x6bc23fd1	/* stw   %rp,-24(%sr0,%sp)	*/
686 
687 #define BL22_RP		0xe800a002	/* b,l,n XXX,%rp		*/
688 #define BL_RP		0xe8400002	/* b,l,n XXX,%rp		*/
689 #define NOP		0x08000240	/* nop				*/
690 #define LDW_RP		0x4bc23fd1	/* ldw   -24(%sr0,%sp),%rp	*/
691 #define LDSID_RP_R1	0x004010a1	/* ldsid (%sr0,%rp),%r1		*/
692 #define BE_SR0_RP	0xe0400002	/* be,n  0(%sr0,%rp)		*/
693 
694 #ifndef R19_STUBS
695 #define R19_STUBS 1
696 #endif
697 
698 #if R19_STUBS
699 #define LDW_R1_DLT	LDW_R1_R19
700 #else
701 #define LDW_R1_DLT	LDW_R1_DP
702 #endif
703 
704 static bfd_boolean
705 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
706 {
707   struct elf32_hppa_stub_hash_entry *hsh;
708   struct bfd_link_info *info;
709   struct elf32_hppa_link_hash_table *htab;
710   asection *stub_sec;
711   bfd *stub_bfd;
712   bfd_byte *loc;
713   bfd_vma sym_value;
714   bfd_vma insn;
715   bfd_vma off;
716   int val;
717   int size;
718 
719   /* Massage our args to the form they really have.  */
720   hsh = hppa_stub_hash_entry (bh);
721   info = (struct bfd_link_info *)in_arg;
722 
723   htab = hppa_link_hash_table (info);
724   if (htab == NULL)
725     return FALSE;
726 
727   stub_sec = hsh->stub_sec;
728 
729   /* Make a note of the offset within the stubs for this entry.  */
730   hsh->stub_offset = stub_sec->size;
731   loc = stub_sec->contents + hsh->stub_offset;
732 
733   stub_bfd = stub_sec->owner;
734 
735   switch (hsh->stub_type)
736     {
737     case hppa_stub_long_branch:
738       /* Create the long branch.  A long branch is formed with "ldil"
739 	 loading the upper bits of the target address into a register,
740 	 then branching with "be" which adds in the lower bits.
741 	 The "be" has its delay slot nullified.  */
742       sym_value = (hsh->target_value
743 		   + hsh->target_section->output_offset
744 		   + hsh->target_section->output_section->vma);
745 
746       val = hppa_field_adjust (sym_value, 0, e_lrsel);
747       insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
748       bfd_put_32 (stub_bfd, insn, loc);
749 
750       val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
751       insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
752       bfd_put_32 (stub_bfd, insn, loc + 4);
753 
754       size = 8;
755       break;
756 
757     case hppa_stub_long_branch_shared:
758       /* Branches are relative.  This is where we are going to.  */
759       sym_value = (hsh->target_value
760 		   + hsh->target_section->output_offset
761 		   + hsh->target_section->output_section->vma);
762 
763       /* And this is where we are coming from, more or less.  */
764       sym_value -= (hsh->stub_offset
765 		    + stub_sec->output_offset
766 		    + stub_sec->output_section->vma);
767 
768       bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
769       val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
770       insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
771       bfd_put_32 (stub_bfd, insn, loc + 4);
772 
773       val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
774       insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
775       bfd_put_32 (stub_bfd, insn, loc + 8);
776       size = 12;
777       break;
778 
779     case hppa_stub_import:
780     case hppa_stub_import_shared:
781       off = hsh->hh->eh.plt.offset;
782       if (off >= (bfd_vma) -2)
783 	abort ();
784 
785       off &= ~ (bfd_vma) 1;
786       sym_value = (off
787 		   + htab->splt->output_offset
788 		   + htab->splt->output_section->vma
789 		   - elf_gp (htab->splt->output_section->owner));
790 
791       insn = ADDIL_DP;
792 #if R19_STUBS
793       if (hsh->stub_type == hppa_stub_import_shared)
794 	insn = ADDIL_R19;
795 #endif
796       val = hppa_field_adjust (sym_value, 0, e_lrsel),
797       insn = hppa_rebuild_insn ((int) insn, val, 21);
798       bfd_put_32 (stub_bfd, insn, loc);
799 
800       /* It is critical to use lrsel/rrsel here because we are using
801 	 two different offsets (+0 and +4) from sym_value.  If we use
802 	 lsel/rsel then with unfortunate sym_values we will round
803 	 sym_value+4 up to the next 2k block leading to a mis-match
804 	 between the lsel and rsel value.  */
805       val = hppa_field_adjust (sym_value, 0, e_rrsel);
806       insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
807       bfd_put_32 (stub_bfd, insn, loc + 4);
808 
809       if (htab->multi_subspace)
810 	{
811 	  val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
812 	  insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
813 	  bfd_put_32 (stub_bfd, insn, loc + 8);
814 
815 	  bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
816 	  bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1,      loc + 16);
817 	  bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21,   loc + 20);
818 	  bfd_put_32 (stub_bfd, (bfd_vma) STW_RP,       loc + 24);
819 
820 	  size = 28;
821 	}
822       else
823 	{
824 	  bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
825 	  val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
826 	  insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
827 	  bfd_put_32 (stub_bfd, insn, loc + 12);
828 
829 	  size = 16;
830 	}
831 
832       break;
833 
834     case hppa_stub_export:
835       /* Branches are relative.  This is where we are going to.  */
836       sym_value = (hsh->target_value
837 		   + hsh->target_section->output_offset
838 		   + hsh->target_section->output_section->vma);
839 
840       /* And this is where we are coming from.  */
841       sym_value -= (hsh->stub_offset
842 		    + stub_sec->output_offset
843 		    + stub_sec->output_section->vma);
844 
845       if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
846 	  && (!htab->has_22bit_branch
847 	      || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
848 	{
849 	  (*_bfd_error_handler)
850 	    (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
851 	     hsh->target_section->owner,
852 	     stub_sec,
853 	     (long) hsh->stub_offset,
854 	     hsh->bh_root.string);
855 	  bfd_set_error (bfd_error_bad_value);
856 	  return FALSE;
857 	}
858 
859       val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
860       if (!htab->has_22bit_branch)
861 	insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
862       else
863 	insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
864       bfd_put_32 (stub_bfd, insn, loc);
865 
866       bfd_put_32 (stub_bfd, (bfd_vma) NOP,         loc + 4);
867       bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP,      loc + 8);
868       bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
869       bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1,     loc + 16);
870       bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP,   loc + 20);
871 
872       /* Point the function symbol at the stub.  */
873       hsh->hh->eh.root.u.def.section = stub_sec;
874       hsh->hh->eh.root.u.def.value = stub_sec->size;
875 
876       size = 24;
877       break;
878 
879     default:
880       BFD_FAIL ();
881       return FALSE;
882     }
883 
884   stub_sec->size += size;
885   return TRUE;
886 }
887 
888 #undef LDIL_R1
889 #undef BE_SR4_R1
890 #undef BL_R1
891 #undef ADDIL_R1
892 #undef DEPI_R1
893 #undef LDW_R1_R21
894 #undef LDW_R1_DLT
895 #undef LDW_R1_R19
896 #undef ADDIL_R19
897 #undef LDW_R1_DP
898 #undef LDSID_R21_R1
899 #undef MTSP_R1
900 #undef BE_SR0_R21
901 #undef STW_RP
902 #undef BV_R0_R21
903 #undef BL_RP
904 #undef NOP
905 #undef LDW_RP
906 #undef LDSID_RP_R1
907 #undef BE_SR0_RP
908 
909 /* As above, but don't actually build the stub.  Just bump offset so
910    we know stub section sizes.  */
911 
912 static bfd_boolean
913 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
914 {
915   struct elf32_hppa_stub_hash_entry *hsh;
916   struct elf32_hppa_link_hash_table *htab;
917   int size;
918 
919   /* Massage our args to the form they really have.  */
920   hsh = hppa_stub_hash_entry (bh);
921   htab = in_arg;
922 
923   if (hsh->stub_type == hppa_stub_long_branch)
924     size = 8;
925   else if (hsh->stub_type == hppa_stub_long_branch_shared)
926     size = 12;
927   else if (hsh->stub_type == hppa_stub_export)
928     size = 24;
929   else /* hppa_stub_import or hppa_stub_import_shared.  */
930     {
931       if (htab->multi_subspace)
932 	size = 28;
933       else
934 	size = 16;
935     }
936 
937   hsh->stub_sec->size += size;
938   return TRUE;
939 }
940 
941 /* Return nonzero if ABFD represents an HPPA ELF32 file.
942    Additionally we set the default architecture and machine.  */
943 
944 static bfd_boolean
945 elf32_hppa_object_p (bfd *abfd)
946 {
947   Elf_Internal_Ehdr * i_ehdrp;
948   unsigned int flags;
949 
950   i_ehdrp = elf_elfheader (abfd);
951   if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
952     {
953       /* GCC on hppa-linux produces binaries with OSABI=Linux,
954 	 but the kernel produces corefiles with OSABI=SysV.  */
955       if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
956 	  i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
957 	return FALSE;
958     }
959   else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
960     {
961       /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
962 	 but the kernel produces corefiles with OSABI=SysV.  */
963       if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
964 	  i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
965 	return FALSE;
966     }
967   else
968     {
969       if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
970 	return FALSE;
971     }
972 
973   flags = i_ehdrp->e_flags;
974   switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
975     {
976     case EFA_PARISC_1_0:
977       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
978     case EFA_PARISC_1_1:
979       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
980     case EFA_PARISC_2_0:
981       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
982     case EFA_PARISC_2_0 | EF_PARISC_WIDE:
983       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
984     }
985   return TRUE;
986 }
987 
988 /* Create the .plt and .got sections, and set up our hash table
989    short-cuts to various dynamic sections.  */
990 
991 static bfd_boolean
992 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
993 {
994   struct elf32_hppa_link_hash_table *htab;
995   struct elf_link_hash_entry *eh;
996 
997   /* Don't try to create the .plt and .got twice.  */
998   htab = hppa_link_hash_table (info);
999   if (htab == NULL)
1000     return FALSE;
1001   if (htab->splt != NULL)
1002     return TRUE;
1003 
1004   /* Call the generic code to do most of the work.  */
1005   if (! _bfd_elf_create_dynamic_sections (abfd, info))
1006     return FALSE;
1007 
1008   htab->splt = bfd_get_section_by_name (abfd, ".plt");
1009   htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1010 
1011   htab->sgot = bfd_get_section_by_name (abfd, ".got");
1012   htab->srelgot = bfd_get_section_by_name (abfd, ".rela.got");
1013 
1014   htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1015   htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1016 
1017   /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1018      application, because __canonicalize_funcptr_for_compare needs it.  */
1019   eh = elf_hash_table (info)->hgot;
1020   eh->forced_local = 0;
1021   eh->other = STV_DEFAULT;
1022   return bfd_elf_link_record_dynamic_symbol (info, eh);
1023 }
1024 
1025 /* Copy the extra info we tack onto an elf_link_hash_entry.  */
1026 
1027 static void
1028 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1029 				 struct elf_link_hash_entry *eh_dir,
1030 				 struct elf_link_hash_entry *eh_ind)
1031 {
1032   struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1033 
1034   hh_dir = hppa_elf_hash_entry (eh_dir);
1035   hh_ind = hppa_elf_hash_entry (eh_ind);
1036 
1037   if (hh_ind->dyn_relocs != NULL)
1038     {
1039       if (hh_dir->dyn_relocs != NULL)
1040 	{
1041 	  struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1042 	  struct elf32_hppa_dyn_reloc_entry *hdh_p;
1043 
1044 	  /* Add reloc counts against the indirect sym to the direct sym
1045 	     list.  Merge any entries against the same section.  */
1046 	  for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1047 	    {
1048 	      struct elf32_hppa_dyn_reloc_entry *hdh_q;
1049 
1050 	      for (hdh_q = hh_dir->dyn_relocs;
1051 		   hdh_q != NULL;
1052 		   hdh_q = hdh_q->hdh_next)
1053 		if (hdh_q->sec == hdh_p->sec)
1054 		  {
1055 #if RELATIVE_DYNRELOCS
1056 		    hdh_q->relative_count += hdh_p->relative_count;
1057 #endif
1058 		    hdh_q->count += hdh_p->count;
1059 		    *hdh_pp = hdh_p->hdh_next;
1060 		    break;
1061 		  }
1062 	      if (hdh_q == NULL)
1063 		hdh_pp = &hdh_p->hdh_next;
1064 	    }
1065 	  *hdh_pp = hh_dir->dyn_relocs;
1066 	}
1067 
1068       hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1069       hh_ind->dyn_relocs = NULL;
1070     }
1071 
1072   if (ELIMINATE_COPY_RELOCS
1073       && eh_ind->root.type != bfd_link_hash_indirect
1074       && eh_dir->dynamic_adjusted)
1075     {
1076       /* If called to transfer flags for a weakdef during processing
1077 	 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1078 	 We clear it ourselves for ELIMINATE_COPY_RELOCS.  */
1079       eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1080       eh_dir->ref_regular |= eh_ind->ref_regular;
1081       eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1082       eh_dir->needs_plt |= eh_ind->needs_plt;
1083     }
1084   else
1085     {
1086       if (eh_ind->root.type == bfd_link_hash_indirect
1087           && eh_dir->got.refcount <= 0)
1088         {
1089           hh_dir->tls_type = hh_ind->tls_type;
1090           hh_ind->tls_type = GOT_UNKNOWN;
1091         }
1092 
1093       _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1094     }
1095 }
1096 
1097 static int
1098 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1099 				int r_type, int is_local ATTRIBUTE_UNUSED)
1100 {
1101   /* For now we don't support linker optimizations.  */
1102   return r_type;
1103 }
1104 
1105 /* Return a pointer to the local GOT, PLT and TLS reference counts
1106    for ABFD.  Returns NULL if the storage allocation fails.  */
1107 
1108 static bfd_signed_vma *
1109 hppa32_elf_local_refcounts (bfd *abfd)
1110 {
1111   Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1112   bfd_signed_vma *local_refcounts;
1113 
1114   local_refcounts = elf_local_got_refcounts (abfd);
1115   if (local_refcounts == NULL)
1116     {
1117       bfd_size_type size;
1118 
1119       /* Allocate space for local GOT and PLT reference
1120 	 counts.  Done this way to save polluting elf_obj_tdata
1121 	 with another target specific pointer.  */
1122       size = symtab_hdr->sh_info;
1123       size *= 2 * sizeof (bfd_signed_vma);
1124       /* Add in space to store the local GOT TLS types.  */
1125       size += symtab_hdr->sh_info;
1126       local_refcounts = bfd_zalloc (abfd, size);
1127       if (local_refcounts == NULL)
1128 	return NULL;
1129       elf_local_got_refcounts (abfd) = local_refcounts;
1130       memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1131 	      symtab_hdr->sh_info);
1132     }
1133   return local_refcounts;
1134 }
1135 
1136 
1137 /* Look through the relocs for a section during the first phase, and
1138    calculate needed space in the global offset table, procedure linkage
1139    table, and dynamic reloc sections.  At this point we haven't
1140    necessarily read all the input files.  */
1141 
1142 static bfd_boolean
1143 elf32_hppa_check_relocs (bfd *abfd,
1144 			 struct bfd_link_info *info,
1145 			 asection *sec,
1146 			 const Elf_Internal_Rela *relocs)
1147 {
1148   Elf_Internal_Shdr *symtab_hdr;
1149   struct elf_link_hash_entry **eh_syms;
1150   const Elf_Internal_Rela *rela;
1151   const Elf_Internal_Rela *rela_end;
1152   struct elf32_hppa_link_hash_table *htab;
1153   asection *sreloc;
1154   int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
1155 
1156   if (info->relocatable)
1157     return TRUE;
1158 
1159   htab = hppa_link_hash_table (info);
1160   if (htab == NULL)
1161     return FALSE;
1162   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1163   eh_syms = elf_sym_hashes (abfd);
1164   sreloc = NULL;
1165 
1166   rela_end = relocs + sec->reloc_count;
1167   for (rela = relocs; rela < rela_end; rela++)
1168     {
1169       enum {
1170 	NEED_GOT = 1,
1171 	NEED_PLT = 2,
1172 	NEED_DYNREL = 4,
1173 	PLT_PLABEL = 8
1174       };
1175 
1176       unsigned int r_symndx, r_type;
1177       struct elf32_hppa_link_hash_entry *hh;
1178       int need_entry = 0;
1179 
1180       r_symndx = ELF32_R_SYM (rela->r_info);
1181 
1182       if (r_symndx < symtab_hdr->sh_info)
1183 	hh = NULL;
1184       else
1185 	{
1186 	  hh =  hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1187 	  while (hh->eh.root.type == bfd_link_hash_indirect
1188 		 || hh->eh.root.type == bfd_link_hash_warning)
1189 	    hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1190 	}
1191 
1192       r_type = ELF32_R_TYPE (rela->r_info);
1193       r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1194 
1195       switch (r_type)
1196 	{
1197 	case R_PARISC_DLTIND14F:
1198 	case R_PARISC_DLTIND14R:
1199 	case R_PARISC_DLTIND21L:
1200 	  /* This symbol requires a global offset table entry.  */
1201 	  need_entry = NEED_GOT;
1202 	  break;
1203 
1204 	case R_PARISC_PLABEL14R: /* "Official" procedure labels.  */
1205 	case R_PARISC_PLABEL21L:
1206 	case R_PARISC_PLABEL32:
1207 	  /* If the addend is non-zero, we break badly.  */
1208 	  if (rela->r_addend != 0)
1209 	    abort ();
1210 
1211 	  /* If we are creating a shared library, then we need to
1212 	     create a PLT entry for all PLABELs, because PLABELs with
1213 	     local symbols may be passed via a pointer to another
1214 	     object.  Additionally, output a dynamic relocation
1215 	     pointing to the PLT entry.
1216 
1217 	     For executables, the original 32-bit ABI allowed two
1218 	     different styles of PLABELs (function pointers):  For
1219 	     global functions, the PLABEL word points into the .plt
1220 	     two bytes past a (function address, gp) pair, and for
1221 	     local functions the PLABEL points directly at the
1222 	     function.  The magic +2 for the first type allows us to
1223 	     differentiate between the two.  As you can imagine, this
1224 	     is a real pain when it comes to generating code to call
1225 	     functions indirectly or to compare function pointers.
1226 	     We avoid the mess by always pointing a PLABEL into the
1227 	     .plt, even for local functions.  */
1228 	  need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1229 	  break;
1230 
1231 	case R_PARISC_PCREL12F:
1232 	  htab->has_12bit_branch = 1;
1233 	  goto branch_common;
1234 
1235 	case R_PARISC_PCREL17C:
1236 	case R_PARISC_PCREL17F:
1237 	  htab->has_17bit_branch = 1;
1238 	  goto branch_common;
1239 
1240 	case R_PARISC_PCREL22F:
1241 	  htab->has_22bit_branch = 1;
1242 	branch_common:
1243 	  /* Function calls might need to go through the .plt, and
1244 	     might require long branch stubs.  */
1245 	  if (hh == NULL)
1246 	    {
1247 	      /* We know local syms won't need a .plt entry, and if
1248 		 they need a long branch stub we can't guarantee that
1249 		 we can reach the stub.  So just flag an error later
1250 		 if we're doing a shared link and find we need a long
1251 		 branch stub.  */
1252 	      continue;
1253 	    }
1254 	  else
1255 	    {
1256 	      /* Global symbols will need a .plt entry if they remain
1257 		 global, and in most cases won't need a long branch
1258 		 stub.  Unfortunately, we have to cater for the case
1259 		 where a symbol is forced local by versioning, or due
1260 		 to symbolic linking, and we lose the .plt entry.  */
1261 	      need_entry = NEED_PLT;
1262 	      if (hh->eh.type == STT_PARISC_MILLI)
1263 		need_entry = 0;
1264 	    }
1265 	  break;
1266 
1267 	case R_PARISC_SEGBASE:  /* Used to set segment base.  */
1268 	case R_PARISC_SEGREL32: /* Relative reloc, used for unwind.  */
1269 	case R_PARISC_PCREL14F: /* PC relative load/store.  */
1270 	case R_PARISC_PCREL14R:
1271 	case R_PARISC_PCREL17R: /* External branches.  */
1272 	case R_PARISC_PCREL21L: /* As above, and for load/store too.  */
1273 	case R_PARISC_PCREL32:
1274 	  /* We don't need to propagate the relocation if linking a
1275 	     shared object since these are section relative.  */
1276 	  continue;
1277 
1278 	case R_PARISC_DPREL14F: /* Used for gp rel data load/store.  */
1279 	case R_PARISC_DPREL14R:
1280 	case R_PARISC_DPREL21L:
1281 	  if (info->shared)
1282 	    {
1283 	      (*_bfd_error_handler)
1284 		(_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1285 		 abfd,
1286 		 elf_hppa_howto_table[r_type].name);
1287 	      bfd_set_error (bfd_error_bad_value);
1288 	      return FALSE;
1289 	    }
1290 	  /* Fall through.  */
1291 
1292 	case R_PARISC_DIR17F: /* Used for external branches.  */
1293 	case R_PARISC_DIR17R:
1294 	case R_PARISC_DIR14F: /* Used for load/store from absolute locn.  */
1295 	case R_PARISC_DIR14R:
1296 	case R_PARISC_DIR21L: /* As above, and for ext branches too.  */
1297 	case R_PARISC_DIR32: /* .word relocs.  */
1298 	  /* We may want to output a dynamic relocation later.  */
1299 	  need_entry = NEED_DYNREL;
1300 	  break;
1301 
1302 	  /* This relocation describes the C++ object vtable hierarchy.
1303 	     Reconstruct it for later use during GC.  */
1304 	case R_PARISC_GNU_VTINHERIT:
1305 	  if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1306 	    return FALSE;
1307 	  continue;
1308 
1309 	  /* This relocation describes which C++ vtable entries are actually
1310 	     used.  Record for later use during GC.  */
1311 	case R_PARISC_GNU_VTENTRY:
1312 	  BFD_ASSERT (hh != NULL);
1313 	  if (hh != NULL
1314 	      && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1315 	    return FALSE;
1316 	  continue;
1317 
1318 	case R_PARISC_TLS_GD21L:
1319 	case R_PARISC_TLS_GD14R:
1320 	case R_PARISC_TLS_LDM21L:
1321 	case R_PARISC_TLS_LDM14R:
1322 	  need_entry = NEED_GOT;
1323 	  break;
1324 
1325 	case R_PARISC_TLS_IE21L:
1326 	case R_PARISC_TLS_IE14R:
1327 	  if (info->shared)
1328             info->flags |= DF_STATIC_TLS;
1329 	  need_entry = NEED_GOT;
1330 	  break;
1331 
1332 	default:
1333 	  continue;
1334 	}
1335 
1336       /* Now carry out our orders.  */
1337       if (need_entry & NEED_GOT)
1338 	{
1339 	  switch (r_type)
1340 	    {
1341 	    default:
1342 	      tls_type = GOT_NORMAL;
1343 	      break;
1344 	    case R_PARISC_TLS_GD21L:
1345 	    case R_PARISC_TLS_GD14R:
1346 	      tls_type |= GOT_TLS_GD;
1347 	      break;
1348 	    case R_PARISC_TLS_LDM21L:
1349 	    case R_PARISC_TLS_LDM14R:
1350 	      tls_type |= GOT_TLS_LDM;
1351 	      break;
1352 	    case R_PARISC_TLS_IE21L:
1353 	    case R_PARISC_TLS_IE14R:
1354 	      tls_type |= GOT_TLS_IE;
1355 	      break;
1356 	    }
1357 
1358 	  /* Allocate space for a GOT entry, as well as a dynamic
1359 	     relocation for this entry.  */
1360 	  if (htab->sgot == NULL)
1361 	    {
1362 	      if (htab->etab.dynobj == NULL)
1363 		htab->etab.dynobj = abfd;
1364 	      if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1365 		return FALSE;
1366 	    }
1367 
1368 	  if (r_type == R_PARISC_TLS_LDM21L
1369 	      || r_type == R_PARISC_TLS_LDM14R)
1370 	    htab->tls_ldm_got.refcount += 1;
1371 	  else
1372 	    {
1373 	      if (hh != NULL)
1374 	        {
1375 	          hh->eh.got.refcount += 1;
1376 	          old_tls_type = hh->tls_type;
1377 	        }
1378 	      else
1379 	        {
1380 	          bfd_signed_vma *local_got_refcounts;
1381 
1382 	          /* This is a global offset table entry for a local symbol.  */
1383 	          local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1384 	          if (local_got_refcounts == NULL)
1385 		    return FALSE;
1386 	          local_got_refcounts[r_symndx] += 1;
1387 
1388 	          old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
1389 	        }
1390 
1391 	      tls_type |= old_tls_type;
1392 
1393 	      if (old_tls_type != tls_type)
1394 	        {
1395 	          if (hh != NULL)
1396 		    hh->tls_type = tls_type;
1397 	          else
1398 		    hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
1399 	        }
1400 
1401 	    }
1402 	}
1403 
1404       if (need_entry & NEED_PLT)
1405 	{
1406 	  /* If we are creating a shared library, and this is a reloc
1407 	     against a weak symbol or a global symbol in a dynamic
1408 	     object, then we will be creating an import stub and a
1409 	     .plt entry for the symbol.  Similarly, on a normal link
1410 	     to symbols defined in a dynamic object we'll need the
1411 	     import stub and a .plt entry.  We don't know yet whether
1412 	     the symbol is defined or not, so make an entry anyway and
1413 	     clean up later in adjust_dynamic_symbol.  */
1414 	  if ((sec->flags & SEC_ALLOC) != 0)
1415 	    {
1416 	      if (hh != NULL)
1417 		{
1418 		  hh->eh.needs_plt = 1;
1419 		  hh->eh.plt.refcount += 1;
1420 
1421 		  /* If this .plt entry is for a plabel, mark it so
1422 		     that adjust_dynamic_symbol will keep the entry
1423 		     even if it appears to be local.  */
1424 		  if (need_entry & PLT_PLABEL)
1425 		    hh->plabel = 1;
1426 		}
1427 	      else if (need_entry & PLT_PLABEL)
1428 		{
1429 		  bfd_signed_vma *local_got_refcounts;
1430 		  bfd_signed_vma *local_plt_refcounts;
1431 
1432 		  local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1433 		  if (local_got_refcounts == NULL)
1434 		    return FALSE;
1435 		  local_plt_refcounts = (local_got_refcounts
1436 					 + symtab_hdr->sh_info);
1437 		  local_plt_refcounts[r_symndx] += 1;
1438 		}
1439 	    }
1440 	}
1441 
1442       if (need_entry & NEED_DYNREL)
1443 	{
1444 	  /* Flag this symbol as having a non-got, non-plt reference
1445 	     so that we generate copy relocs if it turns out to be
1446 	     dynamic.  */
1447 	  if (hh != NULL && !info->shared)
1448 	    hh->eh.non_got_ref = 1;
1449 
1450 	  /* If we are creating a shared library then we need to copy
1451 	     the reloc into the shared library.  However, if we are
1452 	     linking with -Bsymbolic, we need only copy absolute
1453 	     relocs or relocs against symbols that are not defined in
1454 	     an object we are including in the link.  PC- or DP- or
1455 	     DLT-relative relocs against any local sym or global sym
1456 	     with DEF_REGULAR set, can be discarded.  At this point we
1457 	     have not seen all the input files, so it is possible that
1458 	     DEF_REGULAR is not set now but will be set later (it is
1459 	     never cleared).  We account for that possibility below by
1460 	     storing information in the dyn_relocs field of the
1461 	     hash table entry.
1462 
1463 	     A similar situation to the -Bsymbolic case occurs when
1464 	     creating shared libraries and symbol visibility changes
1465 	     render the symbol local.
1466 
1467 	     As it turns out, all the relocs we will be creating here
1468 	     are absolute, so we cannot remove them on -Bsymbolic
1469 	     links or visibility changes anyway.  A STUB_REL reloc
1470 	     is absolute too, as in that case it is the reloc in the
1471 	     stub we will be creating, rather than copying the PCREL
1472 	     reloc in the branch.
1473 
1474 	     If on the other hand, we are creating an executable, we
1475 	     may need to keep relocations for symbols satisfied by a
1476 	     dynamic library if we manage to avoid copy relocs for the
1477 	     symbol.  */
1478 	  if ((info->shared
1479 	       && (sec->flags & SEC_ALLOC) != 0
1480 	       && (IS_ABSOLUTE_RELOC (r_type)
1481 		   || (hh != NULL
1482 		       && (!info->symbolic
1483 			   || hh->eh.root.type == bfd_link_hash_defweak
1484 			   || !hh->eh.def_regular))))
1485 	      || (ELIMINATE_COPY_RELOCS
1486 		  && !info->shared
1487 		  && (sec->flags & SEC_ALLOC) != 0
1488 		  && hh != NULL
1489 		  && (hh->eh.root.type == bfd_link_hash_defweak
1490 		      || !hh->eh.def_regular)))
1491 	    {
1492 	      struct elf32_hppa_dyn_reloc_entry *hdh_p;
1493 	      struct elf32_hppa_dyn_reloc_entry **hdh_head;
1494 
1495 	      /* Create a reloc section in dynobj and make room for
1496 		 this reloc.  */
1497 	      if (sreloc == NULL)
1498 		{
1499 		  if (htab->etab.dynobj == NULL)
1500 		    htab->etab.dynobj = abfd;
1501 
1502 		  sreloc = _bfd_elf_make_dynamic_reloc_section
1503 		    (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1504 
1505 		  if (sreloc == NULL)
1506 		    {
1507 		      bfd_set_error (bfd_error_bad_value);
1508 		      return FALSE;
1509 		    }
1510 		}
1511 
1512 	      /* If this is a global symbol, we count the number of
1513 		 relocations we need for this symbol.  */
1514 	      if (hh != NULL)
1515 		{
1516 		  hdh_head = &hh->dyn_relocs;
1517 		}
1518 	      else
1519 		{
1520 		  /* Track dynamic relocs needed for local syms too.
1521 		     We really need local syms available to do this
1522 		     easily.  Oh well.  */
1523 		  asection *sr;
1524 		  void *vpp;
1525 		  Elf_Internal_Sym *isym;
1526 
1527 		  isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1528 						abfd, r_symndx);
1529 		  if (isym == NULL)
1530 		    return FALSE;
1531 
1532 		  sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1533 		  if (sr == NULL)
1534 		    sr = sec;
1535 
1536 		  vpp = &elf_section_data (sr)->local_dynrel;
1537 		  hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1538 		}
1539 
1540 	      hdh_p = *hdh_head;
1541 	      if (hdh_p == NULL || hdh_p->sec != sec)
1542 		{
1543 		  hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1544 		  if (hdh_p == NULL)
1545 		    return FALSE;
1546 		  hdh_p->hdh_next = *hdh_head;
1547 		  *hdh_head = hdh_p;
1548 		  hdh_p->sec = sec;
1549 		  hdh_p->count = 0;
1550 #if RELATIVE_DYNRELOCS
1551 		  hdh_p->relative_count = 0;
1552 #endif
1553 		}
1554 
1555 	      hdh_p->count += 1;
1556 #if RELATIVE_DYNRELOCS
1557 	      if (!IS_ABSOLUTE_RELOC (rtype))
1558 		hdh_p->relative_count += 1;
1559 #endif
1560 	    }
1561 	}
1562     }
1563 
1564   return TRUE;
1565 }
1566 
1567 /* Return the section that should be marked against garbage collection
1568    for a given relocation.  */
1569 
1570 static asection *
1571 elf32_hppa_gc_mark_hook (asection *sec,
1572 			 struct bfd_link_info *info,
1573 			 Elf_Internal_Rela *rela,
1574 			 struct elf_link_hash_entry *hh,
1575 			 Elf_Internal_Sym *sym)
1576 {
1577   if (hh != NULL)
1578     switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1579       {
1580       case R_PARISC_GNU_VTINHERIT:
1581       case R_PARISC_GNU_VTENTRY:
1582 	return NULL;
1583       }
1584 
1585   return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1586 }
1587 
1588 /* Update the got and plt entry reference counts for the section being
1589    removed.  */
1590 
1591 static bfd_boolean
1592 elf32_hppa_gc_sweep_hook (bfd *abfd,
1593 			  struct bfd_link_info *info ATTRIBUTE_UNUSED,
1594 			  asection *sec,
1595 			  const Elf_Internal_Rela *relocs)
1596 {
1597   Elf_Internal_Shdr *symtab_hdr;
1598   struct elf_link_hash_entry **eh_syms;
1599   bfd_signed_vma *local_got_refcounts;
1600   bfd_signed_vma *local_plt_refcounts;
1601   const Elf_Internal_Rela *rela, *relend;
1602   struct elf32_hppa_link_hash_table *htab;
1603 
1604   if (info->relocatable)
1605     return TRUE;
1606 
1607   htab = hppa_link_hash_table (info);
1608   if (htab == NULL)
1609     return FALSE;
1610 
1611   elf_section_data (sec)->local_dynrel = NULL;
1612 
1613   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1614   eh_syms = elf_sym_hashes (abfd);
1615   local_got_refcounts = elf_local_got_refcounts (abfd);
1616   local_plt_refcounts = local_got_refcounts;
1617   if (local_plt_refcounts != NULL)
1618     local_plt_refcounts += symtab_hdr->sh_info;
1619 
1620   relend = relocs + sec->reloc_count;
1621   for (rela = relocs; rela < relend; rela++)
1622     {
1623       unsigned long r_symndx;
1624       unsigned int r_type;
1625       struct elf_link_hash_entry *eh = NULL;
1626 
1627       r_symndx = ELF32_R_SYM (rela->r_info);
1628       if (r_symndx >= symtab_hdr->sh_info)
1629 	{
1630 	  struct elf32_hppa_link_hash_entry *hh;
1631 	  struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1632 	  struct elf32_hppa_dyn_reloc_entry *hdh_p;
1633 
1634 	  eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1635 	  while (eh->root.type == bfd_link_hash_indirect
1636 		 || eh->root.type == bfd_link_hash_warning)
1637 	    eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1638 	  hh = hppa_elf_hash_entry (eh);
1639 
1640 	  for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1641 	    if (hdh_p->sec == sec)
1642 	      {
1643 		/* Everything must go for SEC.  */
1644 		*hdh_pp = hdh_p->hdh_next;
1645 		break;
1646 	      }
1647 	}
1648 
1649       r_type = ELF32_R_TYPE (rela->r_info);
1650       r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL);
1651 
1652       switch (r_type)
1653 	{
1654 	case R_PARISC_DLTIND14F:
1655 	case R_PARISC_DLTIND14R:
1656 	case R_PARISC_DLTIND21L:
1657 	case R_PARISC_TLS_GD21L:
1658 	case R_PARISC_TLS_GD14R:
1659 	case R_PARISC_TLS_IE21L:
1660 	case R_PARISC_TLS_IE14R:
1661 	  if (eh != NULL)
1662 	    {
1663 	      if (eh->got.refcount > 0)
1664 		eh->got.refcount -= 1;
1665 	    }
1666 	  else if (local_got_refcounts != NULL)
1667 	    {
1668 	      if (local_got_refcounts[r_symndx] > 0)
1669 		local_got_refcounts[r_symndx] -= 1;
1670 	    }
1671 	  break;
1672 
1673 	case R_PARISC_TLS_LDM21L:
1674 	case R_PARISC_TLS_LDM14R:
1675 	  htab->tls_ldm_got.refcount -= 1;
1676 	  break;
1677 
1678 	case R_PARISC_PCREL12F:
1679 	case R_PARISC_PCREL17C:
1680 	case R_PARISC_PCREL17F:
1681 	case R_PARISC_PCREL22F:
1682 	  if (eh != NULL)
1683 	    {
1684 	      if (eh->plt.refcount > 0)
1685 		eh->plt.refcount -= 1;
1686 	    }
1687 	  break;
1688 
1689 	case R_PARISC_PLABEL14R:
1690 	case R_PARISC_PLABEL21L:
1691 	case R_PARISC_PLABEL32:
1692 	  if (eh != NULL)
1693 	    {
1694 	      if (eh->plt.refcount > 0)
1695 		eh->plt.refcount -= 1;
1696 	    }
1697 	  else if (local_plt_refcounts != NULL)
1698 	    {
1699 	      if (local_plt_refcounts[r_symndx] > 0)
1700 		local_plt_refcounts[r_symndx] -= 1;
1701 	    }
1702 	  break;
1703 
1704 	default:
1705 	  break;
1706 	}
1707     }
1708 
1709   return TRUE;
1710 }
1711 
1712 /* Support for core dump NOTE sections.  */
1713 
1714 static bfd_boolean
1715 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1716 {
1717   int offset;
1718   size_t size;
1719 
1720   switch (note->descsz)
1721     {
1722       default:
1723 	return FALSE;
1724 
1725       case 396:		/* Linux/hppa */
1726 	/* pr_cursig */
1727 	elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1728 
1729 	/* pr_pid */
1730 	elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 24);
1731 
1732 	/* pr_reg */
1733 	offset = 72;
1734 	size = 320;
1735 
1736 	break;
1737     }
1738 
1739   /* Make a ".reg/999" section.  */
1740   return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1741 					  size, note->descpos + offset);
1742 }
1743 
1744 static bfd_boolean
1745 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1746 {
1747   switch (note->descsz)
1748     {
1749       default:
1750 	return FALSE;
1751 
1752       case 124:		/* Linux/hppa elf_prpsinfo.  */
1753 	elf_tdata (abfd)->core_program
1754 	  = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1755 	elf_tdata (abfd)->core_command
1756 	  = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1757     }
1758 
1759   /* Note that for some reason, a spurious space is tacked
1760      onto the end of the args in some (at least one anyway)
1761      implementations, so strip it off if it exists.  */
1762   {
1763     char *command = elf_tdata (abfd)->core_command;
1764     int n = strlen (command);
1765 
1766     if (0 < n && command[n - 1] == ' ')
1767       command[n - 1] = '\0';
1768   }
1769 
1770   return TRUE;
1771 }
1772 
1773 /* Our own version of hide_symbol, so that we can keep plt entries for
1774    plabels.  */
1775 
1776 static void
1777 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1778 			struct elf_link_hash_entry *eh,
1779 			bfd_boolean force_local)
1780 {
1781   if (force_local)
1782     {
1783       eh->forced_local = 1;
1784       if (eh->dynindx != -1)
1785 	{
1786 	  eh->dynindx = -1;
1787 	  _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1788 				  eh->dynstr_index);
1789 	}
1790     }
1791 
1792   if (! hppa_elf_hash_entry (eh)->plabel)
1793     {
1794       eh->needs_plt = 0;
1795       eh->plt = elf_hash_table (info)->init_plt_refcount;
1796     }
1797 }
1798 
1799 /* Adjust a symbol defined by a dynamic object and referenced by a
1800    regular object.  The current definition is in some section of the
1801    dynamic object, but we're not including those sections.  We have to
1802    change the definition to something the rest of the link can
1803    understand.  */
1804 
1805 static bfd_boolean
1806 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1807 				  struct elf_link_hash_entry *eh)
1808 {
1809   struct elf32_hppa_link_hash_table *htab;
1810   asection *sec;
1811 
1812   /* If this is a function, put it in the procedure linkage table.  We
1813      will fill in the contents of the procedure linkage table later.  */
1814   if (eh->type == STT_FUNC
1815       || eh->needs_plt)
1816     {
1817       if (eh->plt.refcount <= 0
1818 	  || (eh->def_regular
1819 	      && eh->root.type != bfd_link_hash_defweak
1820 	      && ! hppa_elf_hash_entry (eh)->plabel
1821 	      && (!info->shared || info->symbolic)))
1822 	{
1823 	  /* The .plt entry is not needed when:
1824 	     a) Garbage collection has removed all references to the
1825 	     symbol, or
1826 	     b) We know for certain the symbol is defined in this
1827 	     object, and it's not a weak definition, nor is the symbol
1828 	     used by a plabel relocation.  Either this object is the
1829 	     application or we are doing a shared symbolic link.  */
1830 
1831 	  eh->plt.offset = (bfd_vma) -1;
1832 	  eh->needs_plt = 0;
1833 	}
1834 
1835       return TRUE;
1836     }
1837   else
1838     eh->plt.offset = (bfd_vma) -1;
1839 
1840   /* If this is a weak symbol, and there is a real definition, the
1841      processor independent code will have arranged for us to see the
1842      real definition first, and we can just use the same value.  */
1843   if (eh->u.weakdef != NULL)
1844     {
1845       if (eh->u.weakdef->root.type != bfd_link_hash_defined
1846 	  && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1847 	abort ();
1848       eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1849       eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1850       if (ELIMINATE_COPY_RELOCS)
1851 	eh->non_got_ref = eh->u.weakdef->non_got_ref;
1852       return TRUE;
1853     }
1854 
1855   /* This is a reference to a symbol defined by a dynamic object which
1856      is not a function.  */
1857 
1858   /* If we are creating a shared library, we must presume that the
1859      only references to the symbol are via the global offset table.
1860      For such cases we need not do anything here; the relocations will
1861      be handled correctly by relocate_section.  */
1862   if (info->shared)
1863     return TRUE;
1864 
1865   /* If there are no references to this symbol that do not use the
1866      GOT, we don't need to generate a copy reloc.  */
1867   if (!eh->non_got_ref)
1868     return TRUE;
1869 
1870   if (ELIMINATE_COPY_RELOCS)
1871     {
1872       struct elf32_hppa_link_hash_entry *hh;
1873       struct elf32_hppa_dyn_reloc_entry *hdh_p;
1874 
1875       hh = hppa_elf_hash_entry (eh);
1876       for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1877 	{
1878 	  sec = hdh_p->sec->output_section;
1879 	  if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1880 	    break;
1881 	}
1882 
1883       /* If we didn't find any dynamic relocs in read-only sections, then
1884 	 we'll be keeping the dynamic relocs and avoiding the copy reloc.  */
1885       if (hdh_p == NULL)
1886 	{
1887 	  eh->non_got_ref = 0;
1888 	  return TRUE;
1889 	}
1890     }
1891 
1892   if (eh->size == 0)
1893     {
1894       (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1895 			     eh->root.root.string);
1896       return TRUE;
1897     }
1898 
1899   /* We must allocate the symbol in our .dynbss section, which will
1900      become part of the .bss section of the executable.  There will be
1901      an entry for this symbol in the .dynsym section.  The dynamic
1902      object will contain position independent code, so all references
1903      from the dynamic object to this symbol will go through the global
1904      offset table.  The dynamic linker will use the .dynsym entry to
1905      determine the address it must put in the global offset table, so
1906      both the dynamic object and the regular object will refer to the
1907      same memory location for the variable.  */
1908 
1909   htab = hppa_link_hash_table (info);
1910   if (htab == NULL)
1911     return FALSE;
1912 
1913   /* We must generate a COPY reloc to tell the dynamic linker to
1914      copy the initial value out of the dynamic object and into the
1915      runtime process image.  */
1916   if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0)
1917     {
1918       htab->srelbss->size += sizeof (Elf32_External_Rela);
1919       eh->needs_copy = 1;
1920     }
1921 
1922   sec = htab->sdynbss;
1923 
1924   return _bfd_elf_adjust_dynamic_copy (eh, sec);
1925 }
1926 
1927 /* Allocate space in the .plt for entries that won't have relocations.
1928    ie. plabel entries.  */
1929 
1930 static bfd_boolean
1931 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1932 {
1933   struct bfd_link_info *info;
1934   struct elf32_hppa_link_hash_table *htab;
1935   struct elf32_hppa_link_hash_entry *hh;
1936   asection *sec;
1937 
1938   if (eh->root.type == bfd_link_hash_indirect)
1939     return TRUE;
1940 
1941   if (eh->root.type == bfd_link_hash_warning)
1942     eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1943 
1944   info = (struct bfd_link_info *) inf;
1945   hh = hppa_elf_hash_entry (eh);
1946   htab = hppa_link_hash_table (info);
1947   if (htab == NULL)
1948     return FALSE;
1949 
1950   if (htab->etab.dynamic_sections_created
1951       && eh->plt.refcount > 0)
1952     {
1953       /* Make sure this symbol is output as a dynamic symbol.
1954 	 Undefined weak syms won't yet be marked as dynamic.  */
1955       if (eh->dynindx == -1
1956 	  && !eh->forced_local
1957 	  && eh->type != STT_PARISC_MILLI)
1958 	{
1959 	  if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1960 	    return FALSE;
1961 	}
1962 
1963       if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh))
1964 	{
1965 	  /* Allocate these later.  From this point on, h->plabel
1966 	     means that the plt entry is only used by a plabel.
1967 	     We'll be using a normal plt entry for this symbol, so
1968 	     clear the plabel indicator.  */
1969 
1970 	  hh->plabel = 0;
1971 	}
1972       else if (hh->plabel)
1973 	{
1974 	  /* Make an entry in the .plt section for plabel references
1975 	     that won't have a .plt entry for other reasons.  */
1976 	  sec = htab->splt;
1977 	  eh->plt.offset = sec->size;
1978 	  sec->size += PLT_ENTRY_SIZE;
1979 	}
1980       else
1981 	{
1982 	  /* No .plt entry needed.  */
1983 	  eh->plt.offset = (bfd_vma) -1;
1984 	  eh->needs_plt = 0;
1985 	}
1986     }
1987   else
1988     {
1989       eh->plt.offset = (bfd_vma) -1;
1990       eh->needs_plt = 0;
1991     }
1992 
1993   return TRUE;
1994 }
1995 
1996 /* Allocate space in .plt, .got and associated reloc sections for
1997    global syms.  */
1998 
1999 static bfd_boolean
2000 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2001 {
2002   struct bfd_link_info *info;
2003   struct elf32_hppa_link_hash_table *htab;
2004   asection *sec;
2005   struct elf32_hppa_link_hash_entry *hh;
2006   struct elf32_hppa_dyn_reloc_entry *hdh_p;
2007 
2008   if (eh->root.type == bfd_link_hash_indirect)
2009     return TRUE;
2010 
2011   if (eh->root.type == bfd_link_hash_warning)
2012     eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2013 
2014   info = inf;
2015   htab = hppa_link_hash_table (info);
2016   if (htab == NULL)
2017     return FALSE;
2018 
2019   hh = hppa_elf_hash_entry (eh);
2020 
2021   if (htab->etab.dynamic_sections_created
2022       && eh->plt.offset != (bfd_vma) -1
2023       && !hh->plabel
2024       && eh->plt.refcount > 0)
2025     {
2026       /* Make an entry in the .plt section.  */
2027       sec = htab->splt;
2028       eh->plt.offset = sec->size;
2029       sec->size += PLT_ENTRY_SIZE;
2030 
2031       /* We also need to make an entry in the .rela.plt section.  */
2032       htab->srelplt->size += sizeof (Elf32_External_Rela);
2033       htab->need_plt_stub = 1;
2034     }
2035 
2036   if (eh->got.refcount > 0)
2037     {
2038       /* Make sure this symbol is output as a dynamic symbol.
2039 	 Undefined weak syms won't yet be marked as dynamic.  */
2040       if (eh->dynindx == -1
2041 	  && !eh->forced_local
2042 	  && eh->type != STT_PARISC_MILLI)
2043 	{
2044 	  if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2045 	    return FALSE;
2046 	}
2047 
2048       sec = htab->sgot;
2049       eh->got.offset = sec->size;
2050       sec->size += GOT_ENTRY_SIZE;
2051       /* R_PARISC_TLS_GD* needs two GOT entries */
2052       if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2053       	sec->size += GOT_ENTRY_SIZE * 2;
2054       else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2055       	sec->size += GOT_ENTRY_SIZE;
2056       if (htab->etab.dynamic_sections_created
2057 	  && (info->shared
2058 	      || (eh->dynindx != -1
2059 		  && !eh->forced_local)))
2060 	{
2061 	  htab->srelgot->size += sizeof (Elf32_External_Rela);
2062 	  if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2063 	    htab->srelgot->size += 2 * sizeof (Elf32_External_Rela);
2064 	  else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2065 	    htab->srelgot->size += sizeof (Elf32_External_Rela);
2066 	}
2067     }
2068   else
2069     eh->got.offset = (bfd_vma) -1;
2070 
2071   if (hh->dyn_relocs == NULL)
2072     return TRUE;
2073 
2074   /* If this is a -Bsymbolic shared link, then we need to discard all
2075      space allocated for dynamic pc-relative relocs against symbols
2076      defined in a regular object.  For the normal shared case, discard
2077      space for relocs that have become local due to symbol visibility
2078      changes.  */
2079   if (info->shared)
2080     {
2081 #if RELATIVE_DYNRELOCS
2082       if (SYMBOL_CALLS_LOCAL (info, eh))
2083 	{
2084 	  struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2085 
2086 	  for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2087 	    {
2088 	      hdh_p->count -= hdh_p->relative_count;
2089 	      hdh_p->relative_count = 0;
2090 	      if (hdh_p->count == 0)
2091 		*hdh_pp = hdh_p->hdh_next;
2092 	      else
2093 		hdh_pp = &hdh_p->hdh_next;
2094 	    }
2095 	}
2096 #endif
2097 
2098       /* Also discard relocs on undefined weak syms with non-default
2099 	 visibility.  */
2100       if (hh->dyn_relocs != NULL
2101 	  && eh->root.type == bfd_link_hash_undefweak)
2102 	{
2103 	  if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2104 	    hh->dyn_relocs = NULL;
2105 
2106 	  /* Make sure undefined weak symbols are output as a dynamic
2107 	     symbol in PIEs.  */
2108 	  else if (eh->dynindx == -1
2109 		   && !eh->forced_local)
2110 	    {
2111 	      if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2112 		return FALSE;
2113 	    }
2114 	}
2115     }
2116   else
2117     {
2118       /* For the non-shared case, discard space for relocs against
2119 	 symbols which turn out to need copy relocs or are not
2120 	 dynamic.  */
2121 
2122       if (!eh->non_got_ref
2123 	  && ((ELIMINATE_COPY_RELOCS
2124 	       && eh->def_dynamic
2125 	       && !eh->def_regular)
2126 	       || (htab->etab.dynamic_sections_created
2127 		   && (eh->root.type == bfd_link_hash_undefweak
2128 		       || eh->root.type == bfd_link_hash_undefined))))
2129 	{
2130 	  /* Make sure this symbol is output as a dynamic symbol.
2131 	     Undefined weak syms won't yet be marked as dynamic.  */
2132 	  if (eh->dynindx == -1
2133 	      && !eh->forced_local
2134 	      && eh->type != STT_PARISC_MILLI)
2135 	    {
2136 	      if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2137 		return FALSE;
2138 	    }
2139 
2140 	  /* If that succeeded, we know we'll be keeping all the
2141 	     relocs.  */
2142 	  if (eh->dynindx != -1)
2143 	    goto keep;
2144 	}
2145 
2146       hh->dyn_relocs = NULL;
2147       return TRUE;
2148 
2149     keep: ;
2150     }
2151 
2152   /* Finally, allocate space.  */
2153   for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2154     {
2155       asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2156       sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2157     }
2158 
2159   return TRUE;
2160 }
2161 
2162 /* This function is called via elf_link_hash_traverse to force
2163    millicode symbols local so they do not end up as globals in the
2164    dynamic symbol table.  We ought to be able to do this in
2165    adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2166    for all dynamic symbols.  Arguably, this is a bug in
2167    elf_adjust_dynamic_symbol.  */
2168 
2169 static bfd_boolean
2170 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2171 			   struct bfd_link_info *info)
2172 {
2173   if (eh->root.type == bfd_link_hash_warning)
2174     eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2175 
2176   if (eh->type == STT_PARISC_MILLI
2177       && !eh->forced_local)
2178     {
2179       elf32_hppa_hide_symbol (info, eh, TRUE);
2180     }
2181   return TRUE;
2182 }
2183 
2184 /* Find any dynamic relocs that apply to read-only sections.  */
2185 
2186 static bfd_boolean
2187 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2188 {
2189   struct elf32_hppa_link_hash_entry *hh;
2190   struct elf32_hppa_dyn_reloc_entry *hdh_p;
2191 
2192   if (eh->root.type == bfd_link_hash_warning)
2193     eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2194 
2195   hh = hppa_elf_hash_entry (eh);
2196   for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2197     {
2198       asection *sec = hdh_p->sec->output_section;
2199 
2200       if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2201 	{
2202 	  struct bfd_link_info *info = inf;
2203 
2204           if (info->warn_shared_textrel)
2205             (*_bfd_error_handler)
2206               (_("warning: dynamic relocation in readonly section `%s'"),
2207               eh->root.root.string);
2208 	  info->flags |= DF_TEXTREL;
2209 
2210 	  /* Not an error, just cut short the traversal.  */
2211 	  return FALSE;
2212 	}
2213     }
2214   return TRUE;
2215 }
2216 
2217 /* Set the sizes of the dynamic sections.  */
2218 
2219 static bfd_boolean
2220 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2221 				  struct bfd_link_info *info)
2222 {
2223   struct elf32_hppa_link_hash_table *htab;
2224   bfd *dynobj;
2225   bfd *ibfd;
2226   asection *sec;
2227   bfd_boolean relocs;
2228 
2229   htab = hppa_link_hash_table (info);
2230   if (htab == NULL)
2231     return FALSE;
2232 
2233   dynobj = htab->etab.dynobj;
2234   if (dynobj == NULL)
2235     abort ();
2236 
2237   if (htab->etab.dynamic_sections_created)
2238     {
2239       /* Set the contents of the .interp section to the interpreter.  */
2240       if (info->executable)
2241 	{
2242 	  sec = bfd_get_section_by_name (dynobj, ".interp");
2243 	  if (sec == NULL)
2244 	    abort ();
2245 	  sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2246 	  sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2247 	}
2248 
2249       /* Force millicode symbols local.  */
2250       elf_link_hash_traverse (&htab->etab,
2251 			      clobber_millicode_symbols,
2252 			      info);
2253     }
2254 
2255   /* Set up .got and .plt offsets for local syms, and space for local
2256      dynamic relocs.  */
2257   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2258     {
2259       bfd_signed_vma *local_got;
2260       bfd_signed_vma *end_local_got;
2261       bfd_signed_vma *local_plt;
2262       bfd_signed_vma *end_local_plt;
2263       bfd_size_type locsymcount;
2264       Elf_Internal_Shdr *symtab_hdr;
2265       asection *srel;
2266       char *local_tls_type;
2267 
2268       if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2269 	continue;
2270 
2271       for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2272 	{
2273 	  struct elf32_hppa_dyn_reloc_entry *hdh_p;
2274 
2275 	  for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2276 		    elf_section_data (sec)->local_dynrel);
2277 	       hdh_p != NULL;
2278 	       hdh_p = hdh_p->hdh_next)
2279 	    {
2280 	      if (!bfd_is_abs_section (hdh_p->sec)
2281 		  && bfd_is_abs_section (hdh_p->sec->output_section))
2282 		{
2283 		  /* Input section has been discarded, either because
2284 		     it is a copy of a linkonce section or due to
2285 		     linker script /DISCARD/, so we'll be discarding
2286 		     the relocs too.  */
2287 		}
2288 	      else if (hdh_p->count != 0)
2289 		{
2290 		  srel = elf_section_data (hdh_p->sec)->sreloc;
2291 		  srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2292 		  if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2293 		    info->flags |= DF_TEXTREL;
2294 		}
2295 	    }
2296 	}
2297 
2298       local_got = elf_local_got_refcounts (ibfd);
2299       if (!local_got)
2300 	continue;
2301 
2302       symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2303       locsymcount = symtab_hdr->sh_info;
2304       end_local_got = local_got + locsymcount;
2305       local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2306       sec = htab->sgot;
2307       srel = htab->srelgot;
2308       for (; local_got < end_local_got; ++local_got)
2309 	{
2310 	  if (*local_got > 0)
2311 	    {
2312 	      *local_got = sec->size;
2313 	      sec->size += GOT_ENTRY_SIZE;
2314 	      if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2315 		sec->size += 2 * GOT_ENTRY_SIZE;
2316 	      else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2317 		sec->size += GOT_ENTRY_SIZE;
2318 	      if (info->shared)
2319 	        {
2320 		  srel->size += sizeof (Elf32_External_Rela);
2321 		  if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2322 		    srel->size += 2 * sizeof (Elf32_External_Rela);
2323 		  else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2324 		    srel->size += sizeof (Elf32_External_Rela);
2325 	        }
2326 	    }
2327 	  else
2328 	    *local_got = (bfd_vma) -1;
2329 
2330 	  ++local_tls_type;
2331 	}
2332 
2333       local_plt = end_local_got;
2334       end_local_plt = local_plt + locsymcount;
2335       if (! htab->etab.dynamic_sections_created)
2336 	{
2337 	  /* Won't be used, but be safe.  */
2338 	  for (; local_plt < end_local_plt; ++local_plt)
2339 	    *local_plt = (bfd_vma) -1;
2340 	}
2341       else
2342 	{
2343 	  sec = htab->splt;
2344 	  srel = htab->srelplt;
2345 	  for (; local_plt < end_local_plt; ++local_plt)
2346 	    {
2347 	      if (*local_plt > 0)
2348 		{
2349 		  *local_plt = sec->size;
2350 		  sec->size += PLT_ENTRY_SIZE;
2351 		  if (info->shared)
2352 		    srel->size += sizeof (Elf32_External_Rela);
2353 		}
2354 	      else
2355 		*local_plt = (bfd_vma) -1;
2356 	    }
2357 	}
2358     }
2359 
2360   if (htab->tls_ldm_got.refcount > 0)
2361     {
2362       /* Allocate 2 got entries and 1 dynamic reloc for
2363          R_PARISC_TLS_DTPMOD32 relocs.  */
2364       htab->tls_ldm_got.offset = htab->sgot->size;
2365       htab->sgot->size += (GOT_ENTRY_SIZE * 2);
2366       htab->srelgot->size += sizeof (Elf32_External_Rela);
2367     }
2368   else
2369     htab->tls_ldm_got.offset = -1;
2370 
2371   /* Do all the .plt entries without relocs first.  The dynamic linker
2372      uses the last .plt reloc to find the end of the .plt (and hence
2373      the start of the .got) for lazy linking.  */
2374   elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2375 
2376   /* Allocate global sym .plt and .got entries, and space for global
2377      sym dynamic relocs.  */
2378   elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2379 
2380   /* The check_relocs and adjust_dynamic_symbol entry points have
2381      determined the sizes of the various dynamic sections.  Allocate
2382      memory for them.  */
2383   relocs = FALSE;
2384   for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2385     {
2386       if ((sec->flags & SEC_LINKER_CREATED) == 0)
2387 	continue;
2388 
2389       if (sec == htab->splt)
2390 	{
2391 	  if (htab->need_plt_stub)
2392 	    {
2393 	      /* Make space for the plt stub at the end of the .plt
2394 		 section.  We want this stub right at the end, up
2395 		 against the .got section.  */
2396 	      int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2397 	      int pltalign = bfd_section_alignment (dynobj, sec);
2398 	      bfd_size_type mask;
2399 
2400 	      if (gotalign > pltalign)
2401 		bfd_set_section_alignment (dynobj, sec, gotalign);
2402 	      mask = ((bfd_size_type) 1 << gotalign) - 1;
2403 	      sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2404 	    }
2405 	}
2406       else if (sec == htab->sgot
2407 	       || sec == htab->sdynbss)
2408 	;
2409       else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2410 	{
2411 	  if (sec->size != 0)
2412 	    {
2413 	      /* Remember whether there are any reloc sections other
2414 		 than .rela.plt.  */
2415 	      if (sec != htab->srelplt)
2416 		relocs = TRUE;
2417 
2418 	      /* We use the reloc_count field as a counter if we need
2419 		 to copy relocs into the output file.  */
2420 	      sec->reloc_count = 0;
2421 	    }
2422 	}
2423       else
2424 	{
2425 	  /* It's not one of our sections, so don't allocate space.  */
2426 	  continue;
2427 	}
2428 
2429       if (sec->size == 0)
2430 	{
2431 	  /* If we don't need this section, strip it from the
2432 	     output file.  This is mostly to handle .rela.bss and
2433 	     .rela.plt.  We must create both sections in
2434 	     create_dynamic_sections, because they must be created
2435 	     before the linker maps input sections to output
2436 	     sections.  The linker does that before
2437 	     adjust_dynamic_symbol is called, and it is that
2438 	     function which decides whether anything needs to go
2439 	     into these sections.  */
2440 	  sec->flags |= SEC_EXCLUDE;
2441 	  continue;
2442 	}
2443 
2444       if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2445 	continue;
2446 
2447       /* Allocate memory for the section contents.  Zero it, because
2448 	 we may not fill in all the reloc sections.  */
2449       sec->contents = bfd_zalloc (dynobj, sec->size);
2450       if (sec->contents == NULL)
2451 	return FALSE;
2452     }
2453 
2454   if (htab->etab.dynamic_sections_created)
2455     {
2456       /* Like IA-64 and HPPA64, always create a DT_PLTGOT.  It
2457 	 actually has nothing to do with the PLT, it is how we
2458 	 communicate the LTP value of a load module to the dynamic
2459 	 linker.  */
2460 #define add_dynamic_entry(TAG, VAL) \
2461   _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2462 
2463       if (!add_dynamic_entry (DT_PLTGOT, 0))
2464 	return FALSE;
2465 
2466       /* Add some entries to the .dynamic section.  We fill in the
2467 	 values later, in elf32_hppa_finish_dynamic_sections, but we
2468 	 must add the entries now so that we get the correct size for
2469 	 the .dynamic section.  The DT_DEBUG entry is filled in by the
2470 	 dynamic linker and used by the debugger.  */
2471       if (info->executable)
2472 	{
2473 	  if (!add_dynamic_entry (DT_DEBUG, 0))
2474 	    return FALSE;
2475 	}
2476 
2477       if (htab->srelplt->size != 0)
2478 	{
2479 	  if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2480 	      || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2481 	      || !add_dynamic_entry (DT_JMPREL, 0))
2482 	    return FALSE;
2483 	}
2484 
2485       if (relocs)
2486 	{
2487 	  if (!add_dynamic_entry (DT_RELA, 0)
2488 	      || !add_dynamic_entry (DT_RELASZ, 0)
2489 	      || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2490 	    return FALSE;
2491 
2492 	  /* If any dynamic relocs apply to a read-only section,
2493 	     then we need a DT_TEXTREL entry.  */
2494 	  if ((info->flags & DF_TEXTREL) == 0)
2495 	    elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2496 
2497 	  if ((info->flags & DF_TEXTREL) != 0)
2498 	    {
2499 	      if (!add_dynamic_entry (DT_TEXTREL, 0))
2500 		return FALSE;
2501 	    }
2502 	}
2503     }
2504 #undef add_dynamic_entry
2505 
2506   return TRUE;
2507 }
2508 
2509 /* External entry points for sizing and building linker stubs.  */
2510 
2511 /* Set up various things so that we can make a list of input sections
2512    for each output section included in the link.  Returns -1 on error,
2513    0 when no stubs will be needed, and 1 on success.  */
2514 
2515 int
2516 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2517 {
2518   bfd *input_bfd;
2519   unsigned int bfd_count;
2520   int top_id, top_index;
2521   asection *section;
2522   asection **input_list, **list;
2523   bfd_size_type amt;
2524   struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2525 
2526   if (htab == NULL)
2527     return -1;
2528 
2529   /* Count the number of input BFDs and find the top input section id.  */
2530   for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2531        input_bfd != NULL;
2532        input_bfd = input_bfd->link_next)
2533     {
2534       bfd_count += 1;
2535       for (section = input_bfd->sections;
2536 	   section != NULL;
2537 	   section = section->next)
2538 	{
2539 	  if (top_id < section->id)
2540 	    top_id = section->id;
2541 	}
2542     }
2543   htab->bfd_count = bfd_count;
2544 
2545   amt = sizeof (struct map_stub) * (top_id + 1);
2546   htab->stub_group = bfd_zmalloc (amt);
2547   if (htab->stub_group == NULL)
2548     return -1;
2549 
2550   /* We can't use output_bfd->section_count here to find the top output
2551      section index as some sections may have been removed, and
2552      strip_excluded_output_sections doesn't renumber the indices.  */
2553   for (section = output_bfd->sections, top_index = 0;
2554        section != NULL;
2555        section = section->next)
2556     {
2557       if (top_index < section->index)
2558 	top_index = section->index;
2559     }
2560 
2561   htab->top_index = top_index;
2562   amt = sizeof (asection *) * (top_index + 1);
2563   input_list = bfd_malloc (amt);
2564   htab->input_list = input_list;
2565   if (input_list == NULL)
2566     return -1;
2567 
2568   /* For sections we aren't interested in, mark their entries with a
2569      value we can check later.  */
2570   list = input_list + top_index;
2571   do
2572     *list = bfd_abs_section_ptr;
2573   while (list-- != input_list);
2574 
2575   for (section = output_bfd->sections;
2576        section != NULL;
2577        section = section->next)
2578     {
2579       if ((section->flags & SEC_CODE) != 0)
2580 	input_list[section->index] = NULL;
2581     }
2582 
2583   return 1;
2584 }
2585 
2586 /* The linker repeatedly calls this function for each input section,
2587    in the order that input sections are linked into output sections.
2588    Build lists of input sections to determine groupings between which
2589    we may insert linker stubs.  */
2590 
2591 void
2592 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2593 {
2594   struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2595 
2596   if (htab == NULL)
2597     return;
2598 
2599   if (isec->output_section->index <= htab->top_index)
2600     {
2601       asection **list = htab->input_list + isec->output_section->index;
2602       if (*list != bfd_abs_section_ptr)
2603 	{
2604 	  /* Steal the link_sec pointer for our list.  */
2605 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2606 	  /* This happens to make the list in reverse order,
2607 	     which is what we want.  */
2608 	  PREV_SEC (isec) = *list;
2609 	  *list = isec;
2610 	}
2611     }
2612 }
2613 
2614 /* See whether we can group stub sections together.  Grouping stub
2615    sections may result in fewer stubs.  More importantly, we need to
2616    put all .init* and .fini* stubs at the beginning of the .init or
2617    .fini output sections respectively, because glibc splits the
2618    _init and _fini functions into multiple parts.  Putting a stub in
2619    the middle of a function is not a good idea.  */
2620 
2621 static void
2622 group_sections (struct elf32_hppa_link_hash_table *htab,
2623 		bfd_size_type stub_group_size,
2624 		bfd_boolean stubs_always_before_branch)
2625 {
2626   asection **list = htab->input_list + htab->top_index;
2627   do
2628     {
2629       asection *tail = *list;
2630       if (tail == bfd_abs_section_ptr)
2631 	continue;
2632       while (tail != NULL)
2633 	{
2634 	  asection *curr;
2635 	  asection *prev;
2636 	  bfd_size_type total;
2637 	  bfd_boolean big_sec;
2638 
2639 	  curr = tail;
2640 	  total = tail->size;
2641 	  big_sec = total >= stub_group_size;
2642 
2643 	  while ((prev = PREV_SEC (curr)) != NULL
2644 		 && ((total += curr->output_offset - prev->output_offset)
2645 		     < stub_group_size))
2646 	    curr = prev;
2647 
2648 	  /* OK, the size from the start of CURR to the end is less
2649 	     than 240000 bytes and thus can be handled by one stub
2650 	     section.  (or the tail section is itself larger than
2651 	     240000 bytes, in which case we may be toast.)
2652 	     We should really be keeping track of the total size of
2653 	     stubs added here, as stubs contribute to the final output
2654 	     section size.  That's a little tricky, and this way will
2655 	     only break if stubs added total more than 22144 bytes, or
2656 	     2768 long branch stubs.  It seems unlikely for more than
2657 	     2768 different functions to be called, especially from
2658 	     code only 240000 bytes long.  This limit used to be
2659 	     250000, but c++ code tends to generate lots of little
2660 	     functions, and sometimes violated the assumption.  */
2661 	  do
2662 	    {
2663 	      prev = PREV_SEC (tail);
2664 	      /* Set up this stub group.  */
2665 	      htab->stub_group[tail->id].link_sec = curr;
2666 	    }
2667 	  while (tail != curr && (tail = prev) != NULL);
2668 
2669 	  /* But wait, there's more!  Input sections up to 240000
2670 	     bytes before the stub section can be handled by it too.
2671 	     Don't do this if we have a really large section after the
2672 	     stubs, as adding more stubs increases the chance that
2673 	     branches may not reach into the stub section.  */
2674 	  if (!stubs_always_before_branch && !big_sec)
2675 	    {
2676 	      total = 0;
2677 	      while (prev != NULL
2678 		     && ((total += tail->output_offset - prev->output_offset)
2679 			 < stub_group_size))
2680 		{
2681 		  tail = prev;
2682 		  prev = PREV_SEC (tail);
2683 		  htab->stub_group[tail->id].link_sec = curr;
2684 		}
2685 	    }
2686 	  tail = prev;
2687 	}
2688     }
2689   while (list-- != htab->input_list);
2690   free (htab->input_list);
2691 #undef PREV_SEC
2692 }
2693 
2694 /* Read in all local syms for all input bfds, and create hash entries
2695    for export stubs if we are building a multi-subspace shared lib.
2696    Returns -1 on error, 1 if export stubs created, 0 otherwise.  */
2697 
2698 static int
2699 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2700 {
2701   unsigned int bfd_indx;
2702   Elf_Internal_Sym *local_syms, **all_local_syms;
2703   int stub_changed = 0;
2704   struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2705 
2706   if (htab == NULL)
2707     return -1;
2708 
2709   /* We want to read in symbol extension records only once.  To do this
2710      we need to read in the local symbols in parallel and save them for
2711      later use; so hold pointers to the local symbols in an array.  */
2712   bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2713   all_local_syms = bfd_zmalloc (amt);
2714   htab->all_local_syms = all_local_syms;
2715   if (all_local_syms == NULL)
2716     return -1;
2717 
2718   /* Walk over all the input BFDs, swapping in local symbols.
2719      If we are creating a shared library, create hash entries for the
2720      export stubs.  */
2721   for (bfd_indx = 0;
2722        input_bfd != NULL;
2723        input_bfd = input_bfd->link_next, bfd_indx++)
2724     {
2725       Elf_Internal_Shdr *symtab_hdr;
2726 
2727       /* We'll need the symbol table in a second.  */
2728       symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2729       if (symtab_hdr->sh_info == 0)
2730 	continue;
2731 
2732       /* We need an array of the local symbols attached to the input bfd.  */
2733       local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2734       if (local_syms == NULL)
2735 	{
2736 	  local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2737 					     symtab_hdr->sh_info, 0,
2738 					     NULL, NULL, NULL);
2739 	  /* Cache them for elf_link_input_bfd.  */
2740 	  symtab_hdr->contents = (unsigned char *) local_syms;
2741 	}
2742       if (local_syms == NULL)
2743 	return -1;
2744 
2745       all_local_syms[bfd_indx] = local_syms;
2746 
2747       if (info->shared && htab->multi_subspace)
2748 	{
2749 	  struct elf_link_hash_entry **eh_syms;
2750 	  struct elf_link_hash_entry **eh_symend;
2751 	  unsigned int symcount;
2752 
2753 	  symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2754 		      - symtab_hdr->sh_info);
2755 	  eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2756 	  eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2757 
2758 	  /* Look through the global syms for functions;  We need to
2759 	     build export stubs for all globally visible functions.  */
2760 	  for (; eh_syms < eh_symend; eh_syms++)
2761 	    {
2762 	      struct elf32_hppa_link_hash_entry *hh;
2763 
2764 	      hh = hppa_elf_hash_entry (*eh_syms);
2765 
2766 	      while (hh->eh.root.type == bfd_link_hash_indirect
2767 		     || hh->eh.root.type == bfd_link_hash_warning)
2768 		   hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2769 
2770 	      /* At this point in the link, undefined syms have been
2771 		 resolved, so we need to check that the symbol was
2772 		 defined in this BFD.  */
2773 	      if ((hh->eh.root.type == bfd_link_hash_defined
2774 		   || hh->eh.root.type == bfd_link_hash_defweak)
2775 		  && hh->eh.type == STT_FUNC
2776 		  && hh->eh.root.u.def.section->output_section != NULL
2777 		  && (hh->eh.root.u.def.section->output_section->owner
2778 		      == output_bfd)
2779 		  && hh->eh.root.u.def.section->owner == input_bfd
2780 		  && hh->eh.def_regular
2781 		  && !hh->eh.forced_local
2782 		  && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2783 		{
2784 		  asection *sec;
2785 		  const char *stub_name;
2786 		  struct elf32_hppa_stub_hash_entry *hsh;
2787 
2788 		  sec = hh->eh.root.u.def.section;
2789 		  stub_name = hh_name (hh);
2790 		  hsh = hppa_stub_hash_lookup (&htab->bstab,
2791 						      stub_name,
2792 						      FALSE, FALSE);
2793 		  if (hsh == NULL)
2794 		    {
2795 		      hsh = hppa_add_stub (stub_name, sec, htab);
2796 		      if (!hsh)
2797 			return -1;
2798 
2799 		      hsh->target_value = hh->eh.root.u.def.value;
2800 		      hsh->target_section = hh->eh.root.u.def.section;
2801 		      hsh->stub_type = hppa_stub_export;
2802 		      hsh->hh = hh;
2803 		      stub_changed = 1;
2804 		    }
2805 		  else
2806 		    {
2807 		      (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
2808 					     input_bfd,
2809 					     stub_name);
2810 		    }
2811 		}
2812 	    }
2813 	}
2814     }
2815 
2816   return stub_changed;
2817 }
2818 
2819 /* Determine and set the size of the stub section for a final link.
2820 
2821    The basic idea here is to examine all the relocations looking for
2822    PC-relative calls to a target that is unreachable with a "bl"
2823    instruction.  */
2824 
2825 bfd_boolean
2826 elf32_hppa_size_stubs
2827   (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2828    bfd_boolean multi_subspace, bfd_signed_vma group_size,
2829    asection * (*add_stub_section) (const char *, asection *),
2830    void (*layout_sections_again) (void))
2831 {
2832   bfd_size_type stub_group_size;
2833   bfd_boolean stubs_always_before_branch;
2834   bfd_boolean stub_changed;
2835   struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2836 
2837   if (htab == NULL)
2838     return FALSE;
2839 
2840   /* Stash our params away.  */
2841   htab->stub_bfd = stub_bfd;
2842   htab->multi_subspace = multi_subspace;
2843   htab->add_stub_section = add_stub_section;
2844   htab->layout_sections_again = layout_sections_again;
2845   stubs_always_before_branch = group_size < 0;
2846   if (group_size < 0)
2847     stub_group_size = -group_size;
2848   else
2849     stub_group_size = group_size;
2850   if (stub_group_size == 1)
2851     {
2852       /* Default values.  */
2853       if (stubs_always_before_branch)
2854 	{
2855 	  stub_group_size = 7680000;
2856 	  if (htab->has_17bit_branch || htab->multi_subspace)
2857 	    stub_group_size = 240000;
2858 	  if (htab->has_12bit_branch)
2859 	    stub_group_size = 7500;
2860 	}
2861       else
2862 	{
2863 	  stub_group_size = 6971392;
2864 	  if (htab->has_17bit_branch || htab->multi_subspace)
2865 	    stub_group_size = 217856;
2866 	  if (htab->has_12bit_branch)
2867 	    stub_group_size = 6808;
2868 	}
2869     }
2870 
2871   group_sections (htab, stub_group_size, stubs_always_before_branch);
2872 
2873   switch (get_local_syms (output_bfd, info->input_bfds, info))
2874     {
2875     default:
2876       if (htab->all_local_syms)
2877 	goto error_ret_free_local;
2878       return FALSE;
2879 
2880     case 0:
2881       stub_changed = FALSE;
2882       break;
2883 
2884     case 1:
2885       stub_changed = TRUE;
2886       break;
2887     }
2888 
2889   while (1)
2890     {
2891       bfd *input_bfd;
2892       unsigned int bfd_indx;
2893       asection *stub_sec;
2894 
2895       for (input_bfd = info->input_bfds, bfd_indx = 0;
2896 	   input_bfd != NULL;
2897 	   input_bfd = input_bfd->link_next, bfd_indx++)
2898 	{
2899 	  Elf_Internal_Shdr *symtab_hdr;
2900 	  asection *section;
2901 	  Elf_Internal_Sym *local_syms;
2902 
2903 	  /* We'll need the symbol table in a second.  */
2904 	  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2905 	  if (symtab_hdr->sh_info == 0)
2906 	    continue;
2907 
2908 	  local_syms = htab->all_local_syms[bfd_indx];
2909 
2910 	  /* Walk over each section attached to the input bfd.  */
2911 	  for (section = input_bfd->sections;
2912 	       section != NULL;
2913 	       section = section->next)
2914 	    {
2915 	      Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2916 
2917 	      /* If there aren't any relocs, then there's nothing more
2918 		 to do.  */
2919 	      if ((section->flags & SEC_RELOC) == 0
2920 		  || section->reloc_count == 0)
2921 		continue;
2922 
2923 	      /* If this section is a link-once section that will be
2924 		 discarded, then don't create any stubs.  */
2925 	      if (section->output_section == NULL
2926 		  || section->output_section->owner != output_bfd)
2927 		continue;
2928 
2929 	      /* Get the relocs.  */
2930 	      internal_relocs
2931 		= _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2932 					     info->keep_memory);
2933 	      if (internal_relocs == NULL)
2934 		goto error_ret_free_local;
2935 
2936 	      /* Now examine each relocation.  */
2937 	      irela = internal_relocs;
2938 	      irelaend = irela + section->reloc_count;
2939 	      for (; irela < irelaend; irela++)
2940 		{
2941 		  unsigned int r_type, r_indx;
2942 		  enum elf32_hppa_stub_type stub_type;
2943 		  struct elf32_hppa_stub_hash_entry *hsh;
2944 		  asection *sym_sec;
2945 		  bfd_vma sym_value;
2946 		  bfd_vma destination;
2947 		  struct elf32_hppa_link_hash_entry *hh;
2948 		  char *stub_name;
2949 		  const asection *id_sec;
2950 
2951 		  r_type = ELF32_R_TYPE (irela->r_info);
2952 		  r_indx = ELF32_R_SYM (irela->r_info);
2953 
2954 		  if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2955 		    {
2956 		      bfd_set_error (bfd_error_bad_value);
2957 		    error_ret_free_internal:
2958 		      if (elf_section_data (section)->relocs == NULL)
2959 			free (internal_relocs);
2960 		      goto error_ret_free_local;
2961 		    }
2962 
2963 		  /* Only look for stubs on call instructions.  */
2964 		  if (r_type != (unsigned int) R_PARISC_PCREL12F
2965 		      && r_type != (unsigned int) R_PARISC_PCREL17F
2966 		      && r_type != (unsigned int) R_PARISC_PCREL22F)
2967 		    continue;
2968 
2969 		  /* Now determine the call target, its name, value,
2970 		     section.  */
2971 		  sym_sec = NULL;
2972 		  sym_value = 0;
2973 		  destination = 0;
2974 		  hh = NULL;
2975 		  if (r_indx < symtab_hdr->sh_info)
2976 		    {
2977 		      /* It's a local symbol.  */
2978 		      Elf_Internal_Sym *sym;
2979 		      Elf_Internal_Shdr *hdr;
2980 		      unsigned int shndx;
2981 
2982 		      sym = local_syms + r_indx;
2983 		      if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2984 			sym_value = sym->st_value;
2985 		      shndx = sym->st_shndx;
2986 		      if (shndx < elf_numsections (input_bfd))
2987 			{
2988 			  hdr = elf_elfsections (input_bfd)[shndx];
2989 			  sym_sec = hdr->bfd_section;
2990 			  destination = (sym_value + irela->r_addend
2991 					 + sym_sec->output_offset
2992 					 + sym_sec->output_section->vma);
2993 			}
2994 		    }
2995 		  else
2996 		    {
2997 		      /* It's an external symbol.  */
2998 		      int e_indx;
2999 
3000 		      e_indx = r_indx - symtab_hdr->sh_info;
3001 		      hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
3002 
3003 		      while (hh->eh.root.type == bfd_link_hash_indirect
3004 			     || hh->eh.root.type == bfd_link_hash_warning)
3005 			hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
3006 
3007 		      if (hh->eh.root.type == bfd_link_hash_defined
3008 			  || hh->eh.root.type == bfd_link_hash_defweak)
3009 			{
3010 			  sym_sec = hh->eh.root.u.def.section;
3011 			  sym_value = hh->eh.root.u.def.value;
3012 			  if (sym_sec->output_section != NULL)
3013 			    destination = (sym_value + irela->r_addend
3014 					   + sym_sec->output_offset
3015 					   + sym_sec->output_section->vma);
3016 			}
3017 		      else if (hh->eh.root.type == bfd_link_hash_undefweak)
3018 			{
3019 			  if (! info->shared)
3020 			    continue;
3021 			}
3022 		      else if (hh->eh.root.type == bfd_link_hash_undefined)
3023 			{
3024 			  if (! (info->unresolved_syms_in_objects == RM_IGNORE
3025 				 && (ELF_ST_VISIBILITY (hh->eh.other)
3026 				     == STV_DEFAULT)
3027 				 && hh->eh.type != STT_PARISC_MILLI))
3028 			    continue;
3029 			}
3030 		      else
3031 			{
3032 			  bfd_set_error (bfd_error_bad_value);
3033 			  goto error_ret_free_internal;
3034 			}
3035 		    }
3036 
3037 		  /* Determine what (if any) linker stub is needed.  */
3038 		  stub_type = hppa_type_of_stub (section, irela, hh,
3039 						 destination, info);
3040 		  if (stub_type == hppa_stub_none)
3041 		    continue;
3042 
3043 		  /* Support for grouping stub sections.  */
3044 		  id_sec = htab->stub_group[section->id].link_sec;
3045 
3046 		  /* Get the name of this stub.  */
3047 		  stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
3048 		  if (!stub_name)
3049 		    goto error_ret_free_internal;
3050 
3051 		  hsh = hppa_stub_hash_lookup (&htab->bstab,
3052 						      stub_name,
3053 						      FALSE, FALSE);
3054 		  if (hsh != NULL)
3055 		    {
3056 		      /* The proper stub has already been created.  */
3057 		      free (stub_name);
3058 		      continue;
3059 		    }
3060 
3061 		  hsh = hppa_add_stub (stub_name, section, htab);
3062 		  if (hsh == NULL)
3063 		    {
3064 		      free (stub_name);
3065 		      goto error_ret_free_internal;
3066 		    }
3067 
3068 		  hsh->target_value = sym_value;
3069 		  hsh->target_section = sym_sec;
3070 		  hsh->stub_type = stub_type;
3071 		  if (info->shared)
3072 		    {
3073 		      if (stub_type == hppa_stub_import)
3074 			hsh->stub_type = hppa_stub_import_shared;
3075 		      else if (stub_type == hppa_stub_long_branch)
3076 			hsh->stub_type = hppa_stub_long_branch_shared;
3077 		    }
3078 		  hsh->hh = hh;
3079 		  stub_changed = TRUE;
3080 		}
3081 
3082 	      /* We're done with the internal relocs, free them.  */
3083 	      if (elf_section_data (section)->relocs == NULL)
3084 		free (internal_relocs);
3085 	    }
3086 	}
3087 
3088       if (!stub_changed)
3089 	break;
3090 
3091       /* OK, we've added some stubs.  Find out the new size of the
3092 	 stub sections.  */
3093       for (stub_sec = htab->stub_bfd->sections;
3094 	   stub_sec != NULL;
3095 	   stub_sec = stub_sec->next)
3096 	stub_sec->size = 0;
3097 
3098       bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
3099 
3100       /* Ask the linker to do its stuff.  */
3101       (*htab->layout_sections_again) ();
3102       stub_changed = FALSE;
3103     }
3104 
3105   free (htab->all_local_syms);
3106   return TRUE;
3107 
3108  error_ret_free_local:
3109   free (htab->all_local_syms);
3110   return FALSE;
3111 }
3112 
3113 /* For a final link, this function is called after we have sized the
3114    stubs to provide a value for __gp.  */
3115 
3116 bfd_boolean
3117 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3118 {
3119   struct bfd_link_hash_entry *h;
3120   asection *sec = NULL;
3121   bfd_vma gp_val = 0;
3122   struct elf32_hppa_link_hash_table *htab;
3123 
3124   htab = hppa_link_hash_table (info);
3125   if (htab == NULL)
3126     return FALSE;
3127 
3128   h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
3129 
3130   if (h != NULL
3131       && (h->type == bfd_link_hash_defined
3132 	  || h->type == bfd_link_hash_defweak))
3133     {
3134       gp_val = h->u.def.value;
3135       sec = h->u.def.section;
3136     }
3137   else
3138     {
3139       asection *splt = bfd_get_section_by_name (abfd, ".plt");
3140       asection *sgot = bfd_get_section_by_name (abfd, ".got");
3141 
3142       /* Choose to point our LTP at, in this order, one of .plt, .got,
3143 	 or .data, if these sections exist.  In the case of choosing
3144 	 .plt try to make the LTP ideal for addressing anywhere in the
3145 	 .plt or .got with a 14 bit signed offset.  Typically, the end
3146 	 of the .plt is the start of the .got, so choose .plt + 0x2000
3147 	 if either the .plt or .got is larger than 0x2000.  If both
3148 	 the .plt and .got are smaller than 0x2000, choose the end of
3149 	 the .plt section.  */
3150       sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3151 	  ? NULL : splt;
3152       if (sec != NULL)
3153 	{
3154 	  gp_val = sec->size;
3155 	  if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3156 	    {
3157 	      gp_val = 0x2000;
3158 	    }
3159 	}
3160       else
3161 	{
3162 	  sec = sgot;
3163 	  if (sec != NULL)
3164 	    {
3165 	      if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3166 		{
3167 	          /* We know we don't have a .plt.  If .got is large,
3168 		     offset our LTP.  */
3169 	          if (sec->size > 0x2000)
3170 		    gp_val = 0x2000;
3171 		}
3172 	    }
3173 	  else
3174 	    {
3175 	      /* No .plt or .got.  Who cares what the LTP is?  */
3176 	      sec = bfd_get_section_by_name (abfd, ".data");
3177 	    }
3178 	}
3179 
3180       if (h != NULL)
3181 	{
3182 	  h->type = bfd_link_hash_defined;
3183 	  h->u.def.value = gp_val;
3184 	  if (sec != NULL)
3185 	    h->u.def.section = sec;
3186 	  else
3187 	    h->u.def.section = bfd_abs_section_ptr;
3188 	}
3189     }
3190 
3191   if (sec != NULL && sec->output_section != NULL)
3192     gp_val += sec->output_section->vma + sec->output_offset;
3193 
3194   elf_gp (abfd) = gp_val;
3195   return TRUE;
3196 }
3197 
3198 /* Build all the stubs associated with the current output file.  The
3199    stubs are kept in a hash table attached to the main linker hash
3200    table.  We also set up the .plt entries for statically linked PIC
3201    functions here.  This function is called via hppaelf_finish in the
3202    linker.  */
3203 
3204 bfd_boolean
3205 elf32_hppa_build_stubs (struct bfd_link_info *info)
3206 {
3207   asection *stub_sec;
3208   struct bfd_hash_table *table;
3209   struct elf32_hppa_link_hash_table *htab;
3210 
3211   htab = hppa_link_hash_table (info);
3212   if (htab == NULL)
3213     return FALSE;
3214 
3215   for (stub_sec = htab->stub_bfd->sections;
3216        stub_sec != NULL;
3217        stub_sec = stub_sec->next)
3218     {
3219       bfd_size_type size;
3220 
3221       /* Allocate memory to hold the linker stubs.  */
3222       size = stub_sec->size;
3223       stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3224       if (stub_sec->contents == NULL && size != 0)
3225 	return FALSE;
3226       stub_sec->size = 0;
3227     }
3228 
3229   /* Build the stubs as directed by the stub hash table.  */
3230   table = &htab->bstab;
3231   bfd_hash_traverse (table, hppa_build_one_stub, info);
3232 
3233   return TRUE;
3234 }
3235 
3236 /* Return the base vma address which should be subtracted from the real
3237    address when resolving a dtpoff relocation.
3238    This is PT_TLS segment p_vaddr.  */
3239 
3240 static bfd_vma
3241 dtpoff_base (struct bfd_link_info *info)
3242 {
3243   /* If tls_sec is NULL, we should have signalled an error already.  */
3244   if (elf_hash_table (info)->tls_sec == NULL)
3245     return 0;
3246   return elf_hash_table (info)->tls_sec->vma;
3247 }
3248 
3249 /* Return the relocation value for R_PARISC_TLS_TPOFF*..  */
3250 
3251 static bfd_vma
3252 tpoff (struct bfd_link_info *info, bfd_vma address)
3253 {
3254   struct elf_link_hash_table *htab = elf_hash_table (info);
3255 
3256   /* If tls_sec is NULL, we should have signalled an error already.  */
3257   if (htab->tls_sec == NULL)
3258     return 0;
3259   /* hppa TLS ABI is variant I and static TLS block start just after
3260      tcbhead structure which has 2 pointer fields.  */
3261   return (address - htab->tls_sec->vma
3262 	  + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3263 }
3264 
3265 /* Perform a final link.  */
3266 
3267 static bfd_boolean
3268 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3269 {
3270   /* Invoke the regular ELF linker to do all the work.  */
3271   if (!bfd_elf_final_link (abfd, info))
3272     return FALSE;
3273 
3274   /* If we're producing a final executable, sort the contents of the
3275      unwind section.  */
3276   if (info->relocatable)
3277     return TRUE;
3278 
3279   return elf_hppa_sort_unwind (abfd);
3280 }
3281 
3282 /* Record the lowest address for the data and text segments.  */
3283 
3284 static void
3285 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3286 {
3287   struct elf32_hppa_link_hash_table *htab;
3288 
3289   htab = (struct elf32_hppa_link_hash_table*) data;
3290   if (htab == NULL)
3291     return;
3292 
3293   if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3294     {
3295       bfd_vma value;
3296       Elf_Internal_Phdr *p;
3297 
3298       p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3299       BFD_ASSERT (p != NULL);
3300       value = p->p_vaddr;
3301 
3302       if ((section->flags & SEC_READONLY) != 0)
3303 	{
3304 	  if (value < htab->text_segment_base)
3305 	    htab->text_segment_base = value;
3306 	}
3307       else
3308 	{
3309 	  if (value < htab->data_segment_base)
3310 	    htab->data_segment_base = value;
3311 	}
3312     }
3313 }
3314 
3315 /* Perform a relocation as part of a final link.  */
3316 
3317 static bfd_reloc_status_type
3318 final_link_relocate (asection *input_section,
3319 		     bfd_byte *contents,
3320 		     const Elf_Internal_Rela *rela,
3321 		     bfd_vma value,
3322 		     struct elf32_hppa_link_hash_table *htab,
3323 		     asection *sym_sec,
3324 		     struct elf32_hppa_link_hash_entry *hh,
3325 		     struct bfd_link_info *info)
3326 {
3327   int insn;
3328   unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3329   unsigned int orig_r_type = r_type;
3330   reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3331   int r_format = howto->bitsize;
3332   enum hppa_reloc_field_selector_type_alt r_field;
3333   bfd *input_bfd = input_section->owner;
3334   bfd_vma offset = rela->r_offset;
3335   bfd_vma max_branch_offset = 0;
3336   bfd_byte *hit_data = contents + offset;
3337   bfd_signed_vma addend = rela->r_addend;
3338   bfd_vma location;
3339   struct elf32_hppa_stub_hash_entry *hsh = NULL;
3340   int val;
3341 
3342   if (r_type == R_PARISC_NONE)
3343     return bfd_reloc_ok;
3344 
3345   insn = bfd_get_32 (input_bfd, hit_data);
3346 
3347   /* Find out where we are and where we're going.  */
3348   location = (offset +
3349 	      input_section->output_offset +
3350 	      input_section->output_section->vma);
3351 
3352   /* If we are not building a shared library, convert DLTIND relocs to
3353      DPREL relocs.  */
3354   if (!info->shared)
3355     {
3356       switch (r_type)
3357 	{
3358 	  case R_PARISC_DLTIND21L:
3359 	    r_type = R_PARISC_DPREL21L;
3360 	    break;
3361 
3362 	  case R_PARISC_DLTIND14R:
3363 	    r_type = R_PARISC_DPREL14R;
3364 	    break;
3365 
3366 	  case R_PARISC_DLTIND14F:
3367 	    r_type = R_PARISC_DPREL14F;
3368 	    break;
3369 	}
3370     }
3371 
3372   switch (r_type)
3373     {
3374     case R_PARISC_PCREL12F:
3375     case R_PARISC_PCREL17F:
3376     case R_PARISC_PCREL22F:
3377       /* If this call should go via the plt, find the import stub in
3378 	 the stub hash.  */
3379       if (sym_sec == NULL
3380 	  || sym_sec->output_section == NULL
3381 	  || (hh != NULL
3382 	      && hh->eh.plt.offset != (bfd_vma) -1
3383 	      && hh->eh.dynindx != -1
3384 	      && !hh->plabel
3385 	      && (info->shared
3386 		  || !hh->eh.def_regular
3387 		  || hh->eh.root.type == bfd_link_hash_defweak)))
3388 	{
3389 	  hsh = hppa_get_stub_entry (input_section, sym_sec,
3390 					    hh, rela, htab);
3391 	  if (hsh != NULL)
3392 	    {
3393 	      value = (hsh->stub_offset
3394 		       + hsh->stub_sec->output_offset
3395 		       + hsh->stub_sec->output_section->vma);
3396 	      addend = 0;
3397 	    }
3398 	  else if (sym_sec == NULL && hh != NULL
3399 		   && hh->eh.root.type == bfd_link_hash_undefweak)
3400 	    {
3401 	      /* It's OK if undefined weak.  Calls to undefined weak
3402 		 symbols behave as if the "called" function
3403 		 immediately returns.  We can thus call to a weak
3404 		 function without first checking whether the function
3405 		 is defined.  */
3406 	      value = location;
3407 	      addend = 8;
3408 	    }
3409 	  else
3410 	    return bfd_reloc_undefined;
3411 	}
3412       /* Fall thru.  */
3413 
3414     case R_PARISC_PCREL21L:
3415     case R_PARISC_PCREL17C:
3416     case R_PARISC_PCREL17R:
3417     case R_PARISC_PCREL14R:
3418     case R_PARISC_PCREL14F:
3419     case R_PARISC_PCREL32:
3420       /* Make it a pc relative offset.  */
3421       value -= location;
3422       addend -= 8;
3423       break;
3424 
3425     case R_PARISC_DPREL21L:
3426     case R_PARISC_DPREL14R:
3427     case R_PARISC_DPREL14F:
3428     case R_PARISC_TLS_GD21L:
3429     case R_PARISC_TLS_LDM21L:
3430     case R_PARISC_TLS_IE21L:
3431       /* Convert instructions that use the linkage table pointer (r19) to
3432 	 instructions that use the global data pointer (dp).  This is the
3433 	 most efficient way of using PIC code in an incomplete executable,
3434 	 but the user must follow the standard runtime conventions for
3435 	 accessing data for this to work.  */
3436       if (orig_r_type == R_PARISC_DLTIND21L
3437 	  || (!info->shared
3438 	      && (r_type == R_PARISC_TLS_GD21L
3439 		  || r_type == R_PARISC_TLS_LDM21L
3440 		  || r_type == R_PARISC_TLS_IE21L)))
3441 	{
3442 	  /* Convert addil instructions if the original reloc was a
3443 	     DLTIND21L.  GCC sometimes uses a register other than r19 for
3444 	     the operation, so we must convert any addil instruction
3445 	     that uses this relocation.  */
3446 	  if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3447 	    insn = ADDIL_DP;
3448 	  else
3449 	    /* We must have a ldil instruction.  It's too hard to find
3450 	       and convert the associated add instruction, so issue an
3451 	       error.  */
3452 	    (*_bfd_error_handler)
3453 	      (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3454 	       input_bfd,
3455 	       input_section,
3456 	       (long) offset,
3457 	       howto->name,
3458 	       insn);
3459 	}
3460       else if (orig_r_type == R_PARISC_DLTIND14F)
3461 	{
3462 	  /* This must be a format 1 load/store.  Change the base
3463 	     register to dp.  */
3464 	  insn = (insn & 0xfc1ffff) | (27 << 21);
3465 	}
3466 
3467     /* For all the DP relative relocations, we need to examine the symbol's
3468        section.  If it has no section or if it's a code section, then
3469        "data pointer relative" makes no sense.  In that case we don't
3470        adjust the "value", and for 21 bit addil instructions, we change the
3471        source addend register from %dp to %r0.  This situation commonly
3472        arises for undefined weak symbols and when a variable's "constness"
3473        is declared differently from the way the variable is defined.  For
3474        instance: "extern int foo" with foo defined as "const int foo".  */
3475       if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3476 	{
3477 	  if ((insn & ((0x3f << 26) | (0x1f << 21)))
3478 	      == (((int) OP_ADDIL << 26) | (27 << 21)))
3479 	    {
3480 	      insn &= ~ (0x1f << 21);
3481 	    }
3482 	  /* Now try to make things easy for the dynamic linker.  */
3483 
3484 	  break;
3485 	}
3486       /* Fall thru.  */
3487 
3488     case R_PARISC_DLTIND21L:
3489     case R_PARISC_DLTIND14R:
3490     case R_PARISC_DLTIND14F:
3491     case R_PARISC_TLS_GD14R:
3492     case R_PARISC_TLS_LDM14R:
3493     case R_PARISC_TLS_IE14R:
3494       value -= elf_gp (input_section->output_section->owner);
3495       break;
3496 
3497     case R_PARISC_SEGREL32:
3498       if ((sym_sec->flags & SEC_CODE) != 0)
3499 	value -= htab->text_segment_base;
3500       else
3501 	value -= htab->data_segment_base;
3502       break;
3503 
3504     default:
3505       break;
3506     }
3507 
3508   switch (r_type)
3509     {
3510     case R_PARISC_DIR32:
3511     case R_PARISC_DIR14F:
3512     case R_PARISC_DIR17F:
3513     case R_PARISC_PCREL17C:
3514     case R_PARISC_PCREL14F:
3515     case R_PARISC_PCREL32:
3516     case R_PARISC_DPREL14F:
3517     case R_PARISC_PLABEL32:
3518     case R_PARISC_DLTIND14F:
3519     case R_PARISC_SEGBASE:
3520     case R_PARISC_SEGREL32:
3521     case R_PARISC_TLS_DTPMOD32:
3522     case R_PARISC_TLS_DTPOFF32:
3523     case R_PARISC_TLS_TPREL32:
3524       r_field = e_fsel;
3525       break;
3526 
3527     case R_PARISC_DLTIND21L:
3528     case R_PARISC_PCREL21L:
3529     case R_PARISC_PLABEL21L:
3530       r_field = e_lsel;
3531       break;
3532 
3533     case R_PARISC_DIR21L:
3534     case R_PARISC_DPREL21L:
3535     case R_PARISC_TLS_GD21L:
3536     case R_PARISC_TLS_LDM21L:
3537     case R_PARISC_TLS_LDO21L:
3538     case R_PARISC_TLS_IE21L:
3539     case R_PARISC_TLS_LE21L:
3540       r_field = e_lrsel;
3541       break;
3542 
3543     case R_PARISC_PCREL17R:
3544     case R_PARISC_PCREL14R:
3545     case R_PARISC_PLABEL14R:
3546     case R_PARISC_DLTIND14R:
3547       r_field = e_rsel;
3548       break;
3549 
3550     case R_PARISC_DIR17R:
3551     case R_PARISC_DIR14R:
3552     case R_PARISC_DPREL14R:
3553     case R_PARISC_TLS_GD14R:
3554     case R_PARISC_TLS_LDM14R:
3555     case R_PARISC_TLS_LDO14R:
3556     case R_PARISC_TLS_IE14R:
3557     case R_PARISC_TLS_LE14R:
3558       r_field = e_rrsel;
3559       break;
3560 
3561     case R_PARISC_PCREL12F:
3562     case R_PARISC_PCREL17F:
3563     case R_PARISC_PCREL22F:
3564       r_field = e_fsel;
3565 
3566       if (r_type == (unsigned int) R_PARISC_PCREL17F)
3567 	{
3568 	  max_branch_offset = (1 << (17-1)) << 2;
3569 	}
3570       else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3571 	{
3572 	  max_branch_offset = (1 << (12-1)) << 2;
3573 	}
3574       else
3575 	{
3576 	  max_branch_offset = (1 << (22-1)) << 2;
3577 	}
3578 
3579       /* sym_sec is NULL on undefined weak syms or when shared on
3580 	 undefined syms.  We've already checked for a stub for the
3581 	 shared undefined case.  */
3582       if (sym_sec == NULL)
3583 	break;
3584 
3585       /* If the branch is out of reach, then redirect the
3586 	 call to the local stub for this function.  */
3587       if (value + addend + max_branch_offset >= 2*max_branch_offset)
3588 	{
3589 	  hsh = hppa_get_stub_entry (input_section, sym_sec,
3590 					    hh, rela, htab);
3591 	  if (hsh == NULL)
3592 	    return bfd_reloc_undefined;
3593 
3594 	  /* Munge up the value and addend so that we call the stub
3595 	     rather than the procedure directly.  */
3596 	  value = (hsh->stub_offset
3597 		   + hsh->stub_sec->output_offset
3598 		   + hsh->stub_sec->output_section->vma
3599 		   - location);
3600 	  addend = -8;
3601 	}
3602       break;
3603 
3604     /* Something we don't know how to handle.  */
3605     default:
3606       return bfd_reloc_notsupported;
3607     }
3608 
3609   /* Make sure we can reach the stub.  */
3610   if (max_branch_offset != 0
3611       && value + addend + max_branch_offset >= 2*max_branch_offset)
3612     {
3613       (*_bfd_error_handler)
3614 	(_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3615 	 input_bfd,
3616 	 input_section,
3617 	 (long) offset,
3618 	 hsh->bh_root.string);
3619       bfd_set_error (bfd_error_bad_value);
3620       return bfd_reloc_notsupported;
3621     }
3622 
3623   val = hppa_field_adjust (value, addend, r_field);
3624 
3625   switch (r_type)
3626     {
3627     case R_PARISC_PCREL12F:
3628     case R_PARISC_PCREL17C:
3629     case R_PARISC_PCREL17F:
3630     case R_PARISC_PCREL17R:
3631     case R_PARISC_PCREL22F:
3632     case R_PARISC_DIR17F:
3633     case R_PARISC_DIR17R:
3634       /* This is a branch.  Divide the offset by four.
3635 	 Note that we need to decide whether it's a branch or
3636 	 otherwise by inspecting the reloc.  Inspecting insn won't
3637 	 work as insn might be from a .word directive.  */
3638       val >>= 2;
3639       break;
3640 
3641     default:
3642       break;
3643     }
3644 
3645   insn = hppa_rebuild_insn (insn, val, r_format);
3646 
3647   /* Update the instruction word.  */
3648   bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3649   return bfd_reloc_ok;
3650 }
3651 
3652 /* Relocate an HPPA ELF section.  */
3653 
3654 static bfd_boolean
3655 elf32_hppa_relocate_section (bfd *output_bfd,
3656 			     struct bfd_link_info *info,
3657 			     bfd *input_bfd,
3658 			     asection *input_section,
3659 			     bfd_byte *contents,
3660 			     Elf_Internal_Rela *relocs,
3661 			     Elf_Internal_Sym *local_syms,
3662 			     asection **local_sections)
3663 {
3664   bfd_vma *local_got_offsets;
3665   struct elf32_hppa_link_hash_table *htab;
3666   Elf_Internal_Shdr *symtab_hdr;
3667   Elf_Internal_Rela *rela;
3668   Elf_Internal_Rela *relend;
3669 
3670   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3671 
3672   htab = hppa_link_hash_table (info);
3673   if (htab == NULL)
3674     return FALSE;
3675 
3676   local_got_offsets = elf_local_got_offsets (input_bfd);
3677 
3678   rela = relocs;
3679   relend = relocs + input_section->reloc_count;
3680   for (; rela < relend; rela++)
3681     {
3682       unsigned int r_type;
3683       reloc_howto_type *howto;
3684       unsigned int r_symndx;
3685       struct elf32_hppa_link_hash_entry *hh;
3686       Elf_Internal_Sym *sym;
3687       asection *sym_sec;
3688       bfd_vma relocation;
3689       bfd_reloc_status_type rstatus;
3690       const char *sym_name;
3691       bfd_boolean plabel;
3692       bfd_boolean warned_undef;
3693 
3694       r_type = ELF32_R_TYPE (rela->r_info);
3695       if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3696 	{
3697 	  bfd_set_error (bfd_error_bad_value);
3698 	  return FALSE;
3699 	}
3700       if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3701 	  || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3702 	continue;
3703 
3704       r_symndx = ELF32_R_SYM (rela->r_info);
3705       hh = NULL;
3706       sym = NULL;
3707       sym_sec = NULL;
3708       warned_undef = FALSE;
3709       if (r_symndx < symtab_hdr->sh_info)
3710 	{
3711 	  /* This is a local symbol, h defaults to NULL.  */
3712 	  sym = local_syms + r_symndx;
3713 	  sym_sec = local_sections[r_symndx];
3714 	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3715 	}
3716       else
3717 	{
3718 	  struct elf_link_hash_entry *eh;
3719 	  bfd_boolean unresolved_reloc;
3720 	  struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3721 
3722 	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3723 				   r_symndx, symtab_hdr, sym_hashes,
3724 				   eh, sym_sec, relocation,
3725 				   unresolved_reloc, warned_undef);
3726 
3727 	  if (!info->relocatable
3728 	      && relocation == 0
3729 	      && eh->root.type != bfd_link_hash_defined
3730 	      && eh->root.type != bfd_link_hash_defweak
3731 	      && eh->root.type != bfd_link_hash_undefweak)
3732 	    {
3733 	      if (info->unresolved_syms_in_objects == RM_IGNORE
3734 		  && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3735 		  && eh->type == STT_PARISC_MILLI)
3736 		{
3737 		  if (! info->callbacks->undefined_symbol
3738 		      (info, eh_name (eh), input_bfd,
3739 		       input_section, rela->r_offset, FALSE))
3740 		    return FALSE;
3741 		  warned_undef = TRUE;
3742 		}
3743 	    }
3744 	  hh = hppa_elf_hash_entry (eh);
3745 	}
3746 
3747       if (sym_sec != NULL && elf_discarded_section (sym_sec))
3748 	RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3749 					 rela, relend,
3750 					 elf_hppa_howto_table + r_type,
3751 					 contents);
3752 
3753       if (info->relocatable)
3754 	continue;
3755 
3756       /* Do any required modifications to the relocation value, and
3757 	 determine what types of dynamic info we need to output, if
3758 	 any.  */
3759       plabel = 0;
3760       switch (r_type)
3761 	{
3762 	case R_PARISC_DLTIND14F:
3763 	case R_PARISC_DLTIND14R:
3764 	case R_PARISC_DLTIND21L:
3765 	  {
3766 	    bfd_vma off;
3767 	    bfd_boolean do_got = 0;
3768 
3769 	    /* Relocation is to the entry for this symbol in the
3770 	       global offset table.  */
3771 	    if (hh != NULL)
3772 	      {
3773 		bfd_boolean dyn;
3774 
3775 		off = hh->eh.got.offset;
3776 		dyn = htab->etab.dynamic_sections_created;
3777 		if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
3778 						       &hh->eh))
3779 		  {
3780 		    /* If we aren't going to call finish_dynamic_symbol,
3781 		       then we need to handle initialisation of the .got
3782 		       entry and create needed relocs here.  Since the
3783 		       offset must always be a multiple of 4, we use the
3784 		       least significant bit to record whether we have
3785 		       initialised it already.  */
3786 		    if ((off & 1) != 0)
3787 		      off &= ~1;
3788 		    else
3789 		      {
3790 			hh->eh.got.offset |= 1;
3791 			do_got = 1;
3792 		      }
3793 		  }
3794 	      }
3795 	    else
3796 	      {
3797 		/* Local symbol case.  */
3798 		if (local_got_offsets == NULL)
3799 		  abort ();
3800 
3801 		off = local_got_offsets[r_symndx];
3802 
3803 		/* The offset must always be a multiple of 4.  We use
3804 		   the least significant bit to record whether we have
3805 		   already generated the necessary reloc.  */
3806 		if ((off & 1) != 0)
3807 		  off &= ~1;
3808 		else
3809 		  {
3810 		    local_got_offsets[r_symndx] |= 1;
3811 		    do_got = 1;
3812 		  }
3813 	      }
3814 
3815 	    if (do_got)
3816 	      {
3817 		if (info->shared)
3818 		  {
3819 		    /* Output a dynamic relocation for this GOT entry.
3820 		       In this case it is relative to the base of the
3821 		       object because the symbol index is zero.  */
3822 		    Elf_Internal_Rela outrel;
3823 		    bfd_byte *loc;
3824 		    asection *sec = htab->srelgot;
3825 
3826 		    outrel.r_offset = (off
3827 				       + htab->sgot->output_offset
3828 				       + htab->sgot->output_section->vma);
3829 		    outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3830 		    outrel.r_addend = relocation;
3831 		    loc = sec->contents;
3832 		    loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3833 		    bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3834 		  }
3835 		else
3836 		  bfd_put_32 (output_bfd, relocation,
3837 			      htab->sgot->contents + off);
3838 	      }
3839 
3840 	    if (off >= (bfd_vma) -2)
3841 	      abort ();
3842 
3843 	    /* Add the base of the GOT to the relocation value.  */
3844 	    relocation = (off
3845 			  + htab->sgot->output_offset
3846 			  + htab->sgot->output_section->vma);
3847 	  }
3848 	  break;
3849 
3850 	case R_PARISC_SEGREL32:
3851 	  /* If this is the first SEGREL relocation, then initialize
3852 	     the segment base values.  */
3853 	  if (htab->text_segment_base == (bfd_vma) -1)
3854 	    bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3855 	  break;
3856 
3857 	case R_PARISC_PLABEL14R:
3858 	case R_PARISC_PLABEL21L:
3859 	case R_PARISC_PLABEL32:
3860 	  if (htab->etab.dynamic_sections_created)
3861 	    {
3862 	      bfd_vma off;
3863 	      bfd_boolean do_plt = 0;
3864 	      /* If we have a global symbol with a PLT slot, then
3865 		 redirect this relocation to it.  */
3866 	      if (hh != NULL)
3867 		{
3868 		  off = hh->eh.plt.offset;
3869 		  if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
3870 							 &hh->eh))
3871 		    {
3872 		      /* In a non-shared link, adjust_dynamic_symbols
3873 			 isn't called for symbols forced local.  We
3874 			 need to write out the plt entry here.  */
3875 		      if ((off & 1) != 0)
3876 			off &= ~1;
3877 		      else
3878 			{
3879 			  hh->eh.plt.offset |= 1;
3880 			  do_plt = 1;
3881 			}
3882 		    }
3883 		}
3884 	      else
3885 		{
3886 		  bfd_vma *local_plt_offsets;
3887 
3888 		  if (local_got_offsets == NULL)
3889 		    abort ();
3890 
3891 		  local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3892 		  off = local_plt_offsets[r_symndx];
3893 
3894 		  /* As for the local .got entry case, we use the last
3895 		     bit to record whether we've already initialised
3896 		     this local .plt entry.  */
3897 		  if ((off & 1) != 0)
3898 		    off &= ~1;
3899 		  else
3900 		    {
3901 		      local_plt_offsets[r_symndx] |= 1;
3902 		      do_plt = 1;
3903 		    }
3904 		}
3905 
3906 	      if (do_plt)
3907 		{
3908 		  if (info->shared)
3909 		    {
3910 		      /* Output a dynamic IPLT relocation for this
3911 			 PLT entry.  */
3912 		      Elf_Internal_Rela outrel;
3913 		      bfd_byte *loc;
3914 		      asection *s = htab->srelplt;
3915 
3916 		      outrel.r_offset = (off
3917 					 + htab->splt->output_offset
3918 					 + htab->splt->output_section->vma);
3919 		      outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3920 		      outrel.r_addend = relocation;
3921 		      loc = s->contents;
3922 		      loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3923 		      bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3924 		    }
3925 		  else
3926 		    {
3927 		      bfd_put_32 (output_bfd,
3928 				  relocation,
3929 				  htab->splt->contents + off);
3930 		      bfd_put_32 (output_bfd,
3931 				  elf_gp (htab->splt->output_section->owner),
3932 				  htab->splt->contents + off + 4);
3933 		    }
3934 		}
3935 
3936 	      if (off >= (bfd_vma) -2)
3937 		abort ();
3938 
3939 	      /* PLABELs contain function pointers.  Relocation is to
3940 		 the entry for the function in the .plt.  The magic +2
3941 		 offset signals to $$dyncall that the function pointer
3942 		 is in the .plt and thus has a gp pointer too.
3943 		 Exception:  Undefined PLABELs should have a value of
3944 		 zero.  */
3945 	      if (hh == NULL
3946 		  || (hh->eh.root.type != bfd_link_hash_undefweak
3947 		      && hh->eh.root.type != bfd_link_hash_undefined))
3948 		{
3949 		  relocation = (off
3950 				+ htab->splt->output_offset
3951 				+ htab->splt->output_section->vma
3952 				+ 2);
3953 		}
3954 	      plabel = 1;
3955 	    }
3956 	  /* Fall through and possibly emit a dynamic relocation.  */
3957 
3958 	case R_PARISC_DIR17F:
3959 	case R_PARISC_DIR17R:
3960 	case R_PARISC_DIR14F:
3961 	case R_PARISC_DIR14R:
3962 	case R_PARISC_DIR21L:
3963 	case R_PARISC_DPREL14F:
3964 	case R_PARISC_DPREL14R:
3965 	case R_PARISC_DPREL21L:
3966 	case R_PARISC_DIR32:
3967 	  if ((input_section->flags & SEC_ALLOC) == 0)
3968 	    break;
3969 
3970 	  /* The reloc types handled here and this conditional
3971 	     expression must match the code in ..check_relocs and
3972 	     allocate_dynrelocs.  ie. We need exactly the same condition
3973 	     as in ..check_relocs, with some extra conditions (dynindx
3974 	     test in this case) to cater for relocs removed by
3975 	     allocate_dynrelocs.  If you squint, the non-shared test
3976 	     here does indeed match the one in ..check_relocs, the
3977 	     difference being that here we test DEF_DYNAMIC as well as
3978 	     !DEF_REGULAR.  All common syms end up with !DEF_REGULAR,
3979 	     which is why we can't use just that test here.
3980 	     Conversely, DEF_DYNAMIC can't be used in check_relocs as
3981 	     there all files have not been loaded.  */
3982 	  if ((info->shared
3983 	       && (hh == NULL
3984 		   || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3985 		   || hh->eh.root.type != bfd_link_hash_undefweak)
3986 	       && (IS_ABSOLUTE_RELOC (r_type)
3987 		   || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3988 	      || (!info->shared
3989 		  && hh != NULL
3990 		  && hh->eh.dynindx != -1
3991 		  && !hh->eh.non_got_ref
3992 		  && ((ELIMINATE_COPY_RELOCS
3993 		       && hh->eh.def_dynamic
3994 		       && !hh->eh.def_regular)
3995 		      || hh->eh.root.type == bfd_link_hash_undefweak
3996 		      || hh->eh.root.type == bfd_link_hash_undefined)))
3997 	    {
3998 	      Elf_Internal_Rela outrel;
3999 	      bfd_boolean skip;
4000 	      asection *sreloc;
4001 	      bfd_byte *loc;
4002 
4003 	      /* When generating a shared object, these relocations
4004 		 are copied into the output file to be resolved at run
4005 		 time.  */
4006 
4007 	      outrel.r_addend = rela->r_addend;
4008 	      outrel.r_offset =
4009 		_bfd_elf_section_offset (output_bfd, info, input_section,
4010 					 rela->r_offset);
4011 	      skip = (outrel.r_offset == (bfd_vma) -1
4012 		      || outrel.r_offset == (bfd_vma) -2);
4013 	      outrel.r_offset += (input_section->output_offset
4014 				  + input_section->output_section->vma);
4015 
4016 	      if (skip)
4017 		{
4018 		  memset (&outrel, 0, sizeof (outrel));
4019 		}
4020 	      else if (hh != NULL
4021 		       && hh->eh.dynindx != -1
4022 		       && (plabel
4023 			   || !IS_ABSOLUTE_RELOC (r_type)
4024 			   || !info->shared
4025 			   || !info->symbolic
4026 			   || !hh->eh.def_regular))
4027 		{
4028 		  outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
4029 		}
4030 	      else /* It's a local symbol, or one marked to become local.  */
4031 		{
4032 		  int indx = 0;
4033 
4034 		  /* Add the absolute offset of the symbol.  */
4035 		  outrel.r_addend += relocation;
4036 
4037 		  /* Global plabels need to be processed by the
4038 		     dynamic linker so that functions have at most one
4039 		     fptr.  For this reason, we need to differentiate
4040 		     between global and local plabels, which we do by
4041 		     providing the function symbol for a global plabel
4042 		     reloc, and no symbol for local plabels.  */
4043 		  if (! plabel
4044 		      && sym_sec != NULL
4045 		      && sym_sec->output_section != NULL
4046 		      && ! bfd_is_abs_section (sym_sec))
4047 		    {
4048 		      asection *osec;
4049 
4050 		      osec = sym_sec->output_section;
4051 		      indx = elf_section_data (osec)->dynindx;
4052 		      if (indx == 0)
4053 			{
4054 			  osec = htab->etab.text_index_section;
4055 			  indx = elf_section_data (osec)->dynindx;
4056 			}
4057 		      BFD_ASSERT (indx != 0);
4058 
4059 		      /* We are turning this relocation into one
4060 			 against a section symbol, so subtract out the
4061 			 output section's address but not the offset
4062 			 of the input section in the output section.  */
4063 		      outrel.r_addend -= osec->vma;
4064 		    }
4065 
4066 		  outrel.r_info = ELF32_R_INFO (indx, r_type);
4067 		}
4068 	      sreloc = elf_section_data (input_section)->sreloc;
4069 	      if (sreloc == NULL)
4070 		abort ();
4071 
4072 	      loc = sreloc->contents;
4073 	      loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4074 	      bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4075 	    }
4076 	  break;
4077 
4078 	case R_PARISC_TLS_LDM21L:
4079 	case R_PARISC_TLS_LDM14R:
4080 	  {
4081 	    bfd_vma off;
4082 
4083 	    off = htab->tls_ldm_got.offset;
4084 	    if (off & 1)
4085 	      off &= ~1;
4086 	    else
4087 	      {
4088 		Elf_Internal_Rela outrel;
4089 		bfd_byte *loc;
4090 
4091 		outrel.r_offset = (off
4092 				   + htab->sgot->output_section->vma
4093 				   + htab->sgot->output_offset);
4094 		outrel.r_addend = 0;
4095 		outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
4096 		loc = htab->srelgot->contents;
4097 		loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4098 
4099 		bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4100 		htab->tls_ldm_got.offset |= 1;
4101 	      }
4102 
4103 	    /* Add the base of the GOT to the relocation value.  */
4104 	    relocation = (off
4105 			  + htab->sgot->output_offset
4106 			  + htab->sgot->output_section->vma);
4107 
4108 	    break;
4109 	  }
4110 
4111 	case R_PARISC_TLS_LDO21L:
4112 	case R_PARISC_TLS_LDO14R:
4113 	  relocation -= dtpoff_base (info);
4114 	  break;
4115 
4116 	case R_PARISC_TLS_GD21L:
4117 	case R_PARISC_TLS_GD14R:
4118 	case R_PARISC_TLS_IE21L:
4119 	case R_PARISC_TLS_IE14R:
4120 	  {
4121 	    bfd_vma off;
4122 	    int indx;
4123 	    char tls_type;
4124 
4125 	    indx = 0;
4126 	    if (hh != NULL)
4127 	      {
4128 	        bfd_boolean dyn;
4129 	        dyn = htab->etab.dynamic_sections_created;
4130 
4131 		if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &hh->eh)
4132 		    && (!info->shared
4133 			|| !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4134 		  {
4135 		    indx = hh->eh.dynindx;
4136 		  }
4137 		off = hh->eh.got.offset;
4138 		tls_type = hh->tls_type;
4139 	      }
4140 	    else
4141 	      {
4142 		off = local_got_offsets[r_symndx];
4143 		tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4144 	      }
4145 
4146 	    if (tls_type == GOT_UNKNOWN)
4147 	      abort ();
4148 
4149 	    if ((off & 1) != 0)
4150 	      off &= ~1;
4151 	    else
4152 	      {
4153 		bfd_boolean need_relocs = FALSE;
4154 		Elf_Internal_Rela outrel;
4155 		bfd_byte *loc = NULL;
4156 		int cur_off = off;
4157 
4158 	        /* The GOT entries have not been initialized yet.  Do it
4159 	           now, and emit any relocations.  If both an IE GOT and a
4160 	           GD GOT are necessary, we emit the GD first.  */
4161 
4162 		if ((info->shared || indx != 0)
4163 		    && (hh == NULL
4164 			|| ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
4165 			|| hh->eh.root.type != bfd_link_hash_undefweak))
4166 		  {
4167 		    need_relocs = TRUE;
4168 		    loc = htab->srelgot->contents;
4169 		    /* FIXME (CAO): Should this be reloc_count++ ? */
4170 		    loc += htab->srelgot->reloc_count * sizeof (Elf32_External_Rela);
4171 		  }
4172 
4173 		if (tls_type & GOT_TLS_GD)
4174 		  {
4175 		    if (need_relocs)
4176 		      {
4177 			outrel.r_offset = (cur_off
4178 					   + htab->sgot->output_section->vma
4179 					   + htab->sgot->output_offset);
4180 			outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
4181 			outrel.r_addend = 0;
4182 			bfd_put_32 (output_bfd, 0, htab->sgot->contents + cur_off);
4183 			bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4184 			htab->srelgot->reloc_count++;
4185 			loc += sizeof (Elf32_External_Rela);
4186 
4187 			if (indx == 0)
4188 			  bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4189 				      htab->sgot->contents + cur_off + 4);
4190 			else
4191 			  {
4192 			    bfd_put_32 (output_bfd, 0,
4193 					htab->sgot->contents + cur_off + 4);
4194 			    outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4195 			    outrel.r_offset += 4;
4196 			    bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
4197 			    htab->srelgot->reloc_count++;
4198 			    loc += sizeof (Elf32_External_Rela);
4199 			  }
4200 		      }
4201 		    else
4202 		      {
4203 		        /* If we are not emitting relocations for a
4204 		           general dynamic reference, then we must be in a
4205 		           static link or an executable link with the
4206 		           symbol binding locally.  Mark it as belonging
4207 		           to module 1, the executable.  */
4208 		        bfd_put_32 (output_bfd, 1,
4209 				    htab->sgot->contents + cur_off);
4210 		        bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4211 				    htab->sgot->contents + cur_off + 4);
4212 		      }
4213 
4214 
4215 		    cur_off += 8;
4216 		  }
4217 
4218 		if (tls_type & GOT_TLS_IE)
4219 		  {
4220 		    if (need_relocs)
4221 		      {
4222 			outrel.r_offset = (cur_off
4223 					   + htab->sgot->output_section->vma
4224 					   + htab->sgot->output_offset);
4225 			outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
4226 
4227 			if (indx == 0)
4228 			  outrel.r_addend = relocation - dtpoff_base (info);
4229 			else
4230 			  outrel.r_addend = 0;
4231 
4232 			bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4233 			htab->srelgot->reloc_count++;
4234 			loc += sizeof (Elf32_External_Rela);
4235 		      }
4236 		    else
4237 		      bfd_put_32 (output_bfd, tpoff (info, relocation),
4238 				  htab->sgot->contents + cur_off);
4239 
4240 		    cur_off += 4;
4241 		  }
4242 
4243 		if (hh != NULL)
4244 		  hh->eh.got.offset |= 1;
4245 		else
4246 		  local_got_offsets[r_symndx] |= 1;
4247 	      }
4248 
4249 	    if ((tls_type & GOT_TLS_GD)
4250 	  	&& r_type != R_PARISC_TLS_GD21L
4251 	  	&& r_type != R_PARISC_TLS_GD14R)
4252 	      off += 2 * GOT_ENTRY_SIZE;
4253 
4254 	    /* Add the base of the GOT to the relocation value.  */
4255 	    relocation = (off
4256 			  + htab->sgot->output_offset
4257 			  + htab->sgot->output_section->vma);
4258 
4259 	    break;
4260 	  }
4261 
4262 	case R_PARISC_TLS_LE21L:
4263 	case R_PARISC_TLS_LE14R:
4264 	  {
4265 	    relocation = tpoff (info, relocation);
4266 	    break;
4267 	  }
4268 	  break;
4269 
4270 	default:
4271 	  break;
4272 	}
4273 
4274       rstatus = final_link_relocate (input_section, contents, rela, relocation,
4275 			       htab, sym_sec, hh, info);
4276 
4277       if (rstatus == bfd_reloc_ok)
4278 	continue;
4279 
4280       if (hh != NULL)
4281 	sym_name = hh_name (hh);
4282       else
4283 	{
4284 	  sym_name = bfd_elf_string_from_elf_section (input_bfd,
4285 						      symtab_hdr->sh_link,
4286 						      sym->st_name);
4287 	  if (sym_name == NULL)
4288 	    return FALSE;
4289 	  if (*sym_name == '\0')
4290 	    sym_name = bfd_section_name (input_bfd, sym_sec);
4291 	}
4292 
4293       howto = elf_hppa_howto_table + r_type;
4294 
4295       if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4296 	{
4297 	  if (rstatus == bfd_reloc_notsupported || !warned_undef)
4298 	    {
4299 	      (*_bfd_error_handler)
4300 		(_("%B(%A+0x%lx): cannot handle %s for %s"),
4301 		 input_bfd,
4302 		 input_section,
4303 		 (long) rela->r_offset,
4304 		 howto->name,
4305 		 sym_name);
4306 	      bfd_set_error (bfd_error_bad_value);
4307 	      return FALSE;
4308 	    }
4309 	}
4310       else
4311 	{
4312 	  if (!((*info->callbacks->reloc_overflow)
4313 		(info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4314 		 (bfd_vma) 0, input_bfd, input_section, rela->r_offset)))
4315 	    return FALSE;
4316 	}
4317     }
4318 
4319   return TRUE;
4320 }
4321 
4322 /* Finish up dynamic symbol handling.  We set the contents of various
4323    dynamic sections here.  */
4324 
4325 static bfd_boolean
4326 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4327 				  struct bfd_link_info *info,
4328 				  struct elf_link_hash_entry *eh,
4329 				  Elf_Internal_Sym *sym)
4330 {
4331   struct elf32_hppa_link_hash_table *htab;
4332   Elf_Internal_Rela rela;
4333   bfd_byte *loc;
4334 
4335   htab = hppa_link_hash_table (info);
4336   if (htab == NULL)
4337     return FALSE;
4338 
4339   if (eh->plt.offset != (bfd_vma) -1)
4340     {
4341       bfd_vma value;
4342 
4343       if (eh->plt.offset & 1)
4344 	abort ();
4345 
4346       /* This symbol has an entry in the procedure linkage table.  Set
4347 	 it up.
4348 
4349 	 The format of a plt entry is
4350 	 <funcaddr>
4351 	 <__gp>
4352       */
4353       value = 0;
4354       if (eh->root.type == bfd_link_hash_defined
4355 	  || eh->root.type == bfd_link_hash_defweak)
4356 	{
4357 	  value = eh->root.u.def.value;
4358 	  if (eh->root.u.def.section->output_section != NULL)
4359 	    value += (eh->root.u.def.section->output_offset
4360 		      + eh->root.u.def.section->output_section->vma);
4361 	}
4362 
4363       /* Create a dynamic IPLT relocation for this entry.  */
4364       rela.r_offset = (eh->plt.offset
4365 		      + htab->splt->output_offset
4366 		      + htab->splt->output_section->vma);
4367       if (eh->dynindx != -1)
4368 	{
4369 	  rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4370 	  rela.r_addend = 0;
4371 	}
4372       else
4373 	{
4374 	  /* This symbol has been marked to become local, and is
4375 	     used by a plabel so must be kept in the .plt.  */
4376 	  rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4377 	  rela.r_addend = value;
4378 	}
4379 
4380       loc = htab->srelplt->contents;
4381       loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4382       bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
4383 
4384       if (!eh->def_regular)
4385 	{
4386 	  /* Mark the symbol as undefined, rather than as defined in
4387 	     the .plt section.  Leave the value alone.  */
4388 	  sym->st_shndx = SHN_UNDEF;
4389 	}
4390     }
4391 
4392   if (eh->got.offset != (bfd_vma) -1
4393       && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
4394       && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
4395     {
4396       /* This symbol has an entry in the global offset table.  Set it
4397 	 up.  */
4398 
4399       rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4400 		      + htab->sgot->output_offset
4401 		      + htab->sgot->output_section->vma);
4402 
4403       /* If this is a -Bsymbolic link and the symbol is defined
4404 	 locally or was forced to be local because of a version file,
4405 	 we just want to emit a RELATIVE reloc.  The entry in the
4406 	 global offset table will already have been initialized in the
4407 	 relocate_section function.  */
4408       if (info->shared
4409 	  && (info->symbolic || eh->dynindx == -1)
4410 	  && eh->def_regular)
4411 	{
4412 	  rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4413 	  rela.r_addend = (eh->root.u.def.value
4414 			  + eh->root.u.def.section->output_offset
4415 			  + eh->root.u.def.section->output_section->vma);
4416 	}
4417       else
4418 	{
4419 	  if ((eh->got.offset & 1) != 0)
4420 	    abort ();
4421 
4422 	  bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
4423 	  rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4424 	  rela.r_addend = 0;
4425 	}
4426 
4427       loc = htab->srelgot->contents;
4428       loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4429       bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4430     }
4431 
4432   if (eh->needs_copy)
4433     {
4434       asection *sec;
4435 
4436       /* This symbol needs a copy reloc.  Set it up.  */
4437 
4438       if (! (eh->dynindx != -1
4439 	     && (eh->root.type == bfd_link_hash_defined
4440 		 || eh->root.type == bfd_link_hash_defweak)))
4441 	abort ();
4442 
4443       sec = htab->srelbss;
4444 
4445       rela.r_offset = (eh->root.u.def.value
4446 		      + eh->root.u.def.section->output_offset
4447 		      + eh->root.u.def.section->output_section->vma);
4448       rela.r_addend = 0;
4449       rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4450       loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4451       bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4452     }
4453 
4454   /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  */
4455   if (eh_name (eh)[0] == '_'
4456       && (strcmp (eh_name (eh), "_DYNAMIC") == 0
4457 	  || eh == htab->etab.hgot))
4458     {
4459       sym->st_shndx = SHN_ABS;
4460     }
4461 
4462   return TRUE;
4463 }
4464 
4465 /* Used to decide how to sort relocs in an optimal manner for the
4466    dynamic linker, before writing them out.  */
4467 
4468 static enum elf_reloc_type_class
4469 elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
4470 {
4471   /* Handle TLS relocs first; we don't want them to be marked
4472      relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4473      check below.  */
4474   switch ((int) ELF32_R_TYPE (rela->r_info))
4475     {
4476       case R_PARISC_TLS_DTPMOD32:
4477       case R_PARISC_TLS_DTPOFF32:
4478       case R_PARISC_TLS_TPREL32:
4479         return reloc_class_normal;
4480     }
4481 
4482   if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
4483     return reloc_class_relative;
4484 
4485   switch ((int) ELF32_R_TYPE (rela->r_info))
4486     {
4487     case R_PARISC_IPLT:
4488       return reloc_class_plt;
4489     case R_PARISC_COPY:
4490       return reloc_class_copy;
4491     default:
4492       return reloc_class_normal;
4493     }
4494 }
4495 
4496 /* Finish up the dynamic sections.  */
4497 
4498 static bfd_boolean
4499 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4500 				    struct bfd_link_info *info)
4501 {
4502   bfd *dynobj;
4503   struct elf32_hppa_link_hash_table *htab;
4504   asection *sdyn;
4505 
4506   htab = hppa_link_hash_table (info);
4507   if (htab == NULL)
4508     return FALSE;
4509 
4510   dynobj = htab->etab.dynobj;
4511 
4512   sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4513 
4514   if (htab->etab.dynamic_sections_created)
4515     {
4516       Elf32_External_Dyn *dyncon, *dynconend;
4517 
4518       if (sdyn == NULL)
4519 	abort ();
4520 
4521       dyncon = (Elf32_External_Dyn *) sdyn->contents;
4522       dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4523       for (; dyncon < dynconend; dyncon++)
4524 	{
4525 	  Elf_Internal_Dyn dyn;
4526 	  asection *s;
4527 
4528 	  bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4529 
4530 	  switch (dyn.d_tag)
4531 	    {
4532 	    default:
4533 	      continue;
4534 
4535 	    case DT_PLTGOT:
4536 	      /* Use PLTGOT to set the GOT register.  */
4537 	      dyn.d_un.d_ptr = elf_gp (output_bfd);
4538 	      break;
4539 
4540 	    case DT_JMPREL:
4541 	      s = htab->srelplt;
4542 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4543 	      break;
4544 
4545 	    case DT_PLTRELSZ:
4546 	      s = htab->srelplt;
4547 	      dyn.d_un.d_val = s->size;
4548 	      break;
4549 
4550 	    case DT_RELASZ:
4551 	      /* Don't count procedure linkage table relocs in the
4552 		 overall reloc count.  */
4553 	      s = htab->srelplt;
4554 	      if (s == NULL)
4555 		continue;
4556 	      dyn.d_un.d_val -= s->size;
4557 	      break;
4558 
4559 	    case DT_RELA:
4560 	      /* We may not be using the standard ELF linker script.
4561 		 If .rela.plt is the first .rela section, we adjust
4562 		 DT_RELA to not include it.  */
4563 	      s = htab->srelplt;
4564 	      if (s == NULL)
4565 		continue;
4566 	      if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4567 		continue;
4568 	      dyn.d_un.d_ptr += s->size;
4569 	      break;
4570 	    }
4571 
4572 	  bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4573 	}
4574     }
4575 
4576   if (htab->sgot != NULL && htab->sgot->size != 0)
4577     {
4578       /* Fill in the first entry in the global offset table.
4579 	 We use it to point to our dynamic section, if we have one.  */
4580       bfd_put_32 (output_bfd,
4581 		  sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4582 		  htab->sgot->contents);
4583 
4584       /* The second entry is reserved for use by the dynamic linker.  */
4585       memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4586 
4587       /* Set .got entry size.  */
4588       elf_section_data (htab->sgot->output_section)
4589 	->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4590     }
4591 
4592   if (htab->splt != NULL && htab->splt->size != 0)
4593     {
4594       /* Set plt entry size.  */
4595       elf_section_data (htab->splt->output_section)
4596 	->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4597 
4598       if (htab->need_plt_stub)
4599 	{
4600 	  /* Set up the .plt stub.  */
4601 	  memcpy (htab->splt->contents
4602 		  + htab->splt->size - sizeof (plt_stub),
4603 		  plt_stub, sizeof (plt_stub));
4604 
4605 	  if ((htab->splt->output_offset
4606 	       + htab->splt->output_section->vma
4607 	       + htab->splt->size)
4608 	      != (htab->sgot->output_offset
4609 		  + htab->sgot->output_section->vma))
4610 	    {
4611 	      (*_bfd_error_handler)
4612 		(_(".got section not immediately after .plt section"));
4613 	      return FALSE;
4614 	    }
4615 	}
4616     }
4617 
4618   return TRUE;
4619 }
4620 
4621 /* Called when writing out an object file to decide the type of a
4622    symbol.  */
4623 static int
4624 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4625 {
4626   if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4627     return STT_PARISC_MILLI;
4628   else
4629     return type;
4630 }
4631 
4632 /* Misc BFD support code.  */
4633 #define bfd_elf32_bfd_is_local_label_name    elf_hppa_is_local_label_name
4634 #define bfd_elf32_bfd_reloc_type_lookup	     elf_hppa_reloc_type_lookup
4635 #define bfd_elf32_bfd_reloc_name_lookup      elf_hppa_reloc_name_lookup
4636 #define elf_info_to_howto		     elf_hppa_info_to_howto
4637 #define elf_info_to_howto_rel		     elf_hppa_info_to_howto_rel
4638 
4639 /* Stuff for the BFD linker.  */
4640 #define bfd_elf32_bfd_final_link	     elf32_hppa_final_link
4641 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4642 #define bfd_elf32_bfd_link_hash_table_free   elf32_hppa_link_hash_table_free
4643 #define elf_backend_adjust_dynamic_symbol    elf32_hppa_adjust_dynamic_symbol
4644 #define elf_backend_copy_indirect_symbol     elf32_hppa_copy_indirect_symbol
4645 #define elf_backend_check_relocs	     elf32_hppa_check_relocs
4646 #define elf_backend_create_dynamic_sections  elf32_hppa_create_dynamic_sections
4647 #define elf_backend_fake_sections	     elf_hppa_fake_sections
4648 #define elf_backend_relocate_section	     elf32_hppa_relocate_section
4649 #define elf_backend_hide_symbol		     elf32_hppa_hide_symbol
4650 #define elf_backend_finish_dynamic_symbol    elf32_hppa_finish_dynamic_symbol
4651 #define elf_backend_finish_dynamic_sections  elf32_hppa_finish_dynamic_sections
4652 #define elf_backend_size_dynamic_sections    elf32_hppa_size_dynamic_sections
4653 #define elf_backend_init_index_section	     _bfd_elf_init_1_index_section
4654 #define elf_backend_gc_mark_hook	     elf32_hppa_gc_mark_hook
4655 #define elf_backend_gc_sweep_hook	     elf32_hppa_gc_sweep_hook
4656 #define elf_backend_grok_prstatus	     elf32_hppa_grok_prstatus
4657 #define elf_backend_grok_psinfo		     elf32_hppa_grok_psinfo
4658 #define elf_backend_object_p		     elf32_hppa_object_p
4659 #define elf_backend_final_write_processing   elf_hppa_final_write_processing
4660 #define elf_backend_post_process_headers     _bfd_elf_set_osabi
4661 #define elf_backend_get_symbol_type	     elf32_hppa_elf_get_symbol_type
4662 #define elf_backend_reloc_type_class	     elf32_hppa_reloc_type_class
4663 #define elf_backend_action_discarded	     elf_hppa_action_discarded
4664 
4665 #define elf_backend_can_gc_sections	     1
4666 #define elf_backend_can_refcount	     1
4667 #define elf_backend_plt_alignment	     2
4668 #define elf_backend_want_got_plt	     0
4669 #define elf_backend_plt_readonly	     0
4670 #define elf_backend_want_plt_sym	     0
4671 #define elf_backend_got_header_size	     8
4672 #define elf_backend_rela_normal		     1
4673 
4674 #define TARGET_BIG_SYM		bfd_elf32_hppa_vec
4675 #define TARGET_BIG_NAME		"elf32-hppa"
4676 #define ELF_ARCH		bfd_arch_hppa
4677 #define ELF_TARGET_ID		HPPA32_ELF_DATA
4678 #define ELF_MACHINE_CODE	EM_PARISC
4679 #define ELF_MAXPAGESIZE		0x1000
4680 #define ELF_OSABI		ELFOSABI_HPUX
4681 #define elf32_bed		elf32_hppa_hpux_bed
4682 
4683 #include "elf32-target.h"
4684 
4685 #undef TARGET_BIG_SYM
4686 #define TARGET_BIG_SYM		bfd_elf32_hppa_linux_vec
4687 #undef TARGET_BIG_NAME
4688 #define TARGET_BIG_NAME		"elf32-hppa-linux"
4689 #undef ELF_OSABI
4690 #define ELF_OSABI		ELFOSABI_LINUX
4691 #undef elf32_bed
4692 #define elf32_bed		elf32_hppa_linux_bed
4693 
4694 #include "elf32-target.h"
4695 
4696 #undef TARGET_BIG_SYM
4697 #define TARGET_BIG_SYM		bfd_elf32_hppa_nbsd_vec
4698 #undef TARGET_BIG_NAME
4699 #define TARGET_BIG_NAME		"elf32-hppa-netbsd"
4700 #undef ELF_OSABI
4701 #define ELF_OSABI		ELFOSABI_NETBSD
4702 #undef elf32_bed
4703 #define elf32_bed		elf32_hppa_netbsd_bed
4704 
4705 #include "elf32-target.h"
4706