xref: /netbsd-src/external/gpl3/binutils/dist/bfd/elf32-avr.c (revision 7f21db1c0118155e0dd40b75182e30c589d9f63e)
1 /* AVR-specific support for 32-bit ELF
2    Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2006, 2007, 2008
3    Free Software Foundation, Inc.
4    Contributed by Denis Chertykov <denisc@overta.ru>
5 
6    This file is part of BFD, the Binary File Descriptor library.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program; if not, write to the Free Software
20    Foundation, Inc., 51 Franklin Street - Fifth Floor,
21    Boston, MA 02110-1301, USA.  */
22 
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf/avr.h"
28 #include "elf32-avr.h"
29 
30 /* Enable debugging printout at stdout with this variable.  */
31 static bfd_boolean debug_relax = FALSE;
32 
33 /* Enable debugging printout at stdout with this variable.  */
34 static bfd_boolean debug_stubs = FALSE;
35 
36 /* Hash table initialization and handling.  Code is taken from the hppa port
37    and adapted to the needs of AVR.  */
38 
39 /* We use two hash tables to hold information for linking avr objects.
40 
41    The first is the elf32_avr_link_hash_tablse which is derived from the
42    stanard ELF linker hash table.  We use this as a place to attach the other
43    hash table and some static information.
44 
45    The second is the stub hash table which is derived from the base BFD
46    hash table.  The stub hash table holds the information on the linker
47    stubs.  */
48 
49 struct elf32_avr_stub_hash_entry
50 {
51   /* Base hash table entry structure.  */
52   struct bfd_hash_entry bh_root;
53 
54   /* Offset within stub_sec of the beginning of this stub.  */
55   bfd_vma stub_offset;
56 
57   /* Given the symbol's value and its section we can determine its final
58      value when building the stubs (so the stub knows where to jump).  */
59   bfd_vma target_value;
60 
61   /* This way we could mark stubs to be no longer necessary.  */
62   bfd_boolean is_actually_needed;
63 };
64 
65 struct elf32_avr_link_hash_table
66 {
67   /* The main hash table.  */
68   struct elf_link_hash_table etab;
69 
70   /* The stub hash table.  */
71   struct bfd_hash_table bstab;
72 
73   bfd_boolean no_stubs;
74 
75   /* Linker stub bfd.  */
76   bfd *stub_bfd;
77 
78   /* The stub section.  */
79   asection *stub_sec;
80 
81   /* Usually 0, unless we are generating code for a bootloader.  Will
82      be initialized by elf32_avr_size_stubs to the vma offset of the
83      output section associated with the stub section.  */
84   bfd_vma vector_base;
85 
86   /* Assorted information used by elf32_avr_size_stubs.  */
87   unsigned int        bfd_count;
88   int                 top_index;
89   asection **         input_list;
90   Elf_Internal_Sym ** all_local_syms;
91 
92   /* Tables for mapping vma beyond the 128k boundary to the address of the
93      corresponding stub.  (AMT)
94      "amt_max_entry_cnt" reflects the number of entries that memory is allocated
95      for in the "amt_stub_offsets" and "amt_destination_addr" arrays.
96      "amt_entry_cnt" informs how many of these entries actually contain
97      useful data.  */
98   unsigned int amt_entry_cnt;
99   unsigned int amt_max_entry_cnt;
100   bfd_vma *    amt_stub_offsets;
101   bfd_vma *    amt_destination_addr;
102 };
103 
104 /* Various hash macros and functions.  */
105 #define avr_link_hash_table(p) \
106   /* PR 3874: Check that we have an AVR style hash table before using it.  */\
107   ((p)->hash->table.newfunc != elf32_avr_link_hash_newfunc ? NULL : \
108    ((struct elf32_avr_link_hash_table *) ((p)->hash)))
109 
110 #define avr_stub_hash_entry(ent) \
111   ((struct elf32_avr_stub_hash_entry *)(ent))
112 
113 #define avr_stub_hash_lookup(table, string, create, copy) \
114   ((struct elf32_avr_stub_hash_entry *) \
115    bfd_hash_lookup ((table), (string), (create), (copy)))
116 
117 static reloc_howto_type elf_avr_howto_table[] =
118 {
119   HOWTO (R_AVR_NONE,		/* type */
120 	 0,			/* rightshift */
121 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
122 	 32,			/* bitsize */
123 	 FALSE,			/* pc_relative */
124 	 0,			/* bitpos */
125 	 complain_overflow_bitfield, /* complain_on_overflow */
126 	 bfd_elf_generic_reloc,	/* special_function */
127 	 "R_AVR_NONE",		/* name */
128 	 FALSE,			/* partial_inplace */
129 	 0,			/* src_mask */
130 	 0,			/* dst_mask */
131 	 FALSE),		/* pcrel_offset */
132 
133   HOWTO (R_AVR_32,		/* type */
134 	 0,			/* rightshift */
135 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
136 	 32,			/* bitsize */
137 	 FALSE,			/* pc_relative */
138 	 0,			/* bitpos */
139 	 complain_overflow_bitfield, /* complain_on_overflow */
140 	 bfd_elf_generic_reloc,	/* special_function */
141 	 "R_AVR_32",		/* name */
142 	 FALSE,			/* partial_inplace */
143 	 0xffffffff,		/* src_mask */
144 	 0xffffffff,		/* dst_mask */
145 	 FALSE),		/* pcrel_offset */
146 
147   /* A 7 bit PC relative relocation.  */
148   HOWTO (R_AVR_7_PCREL,		/* type */
149 	 1,			/* rightshift */
150 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
151 	 7,			/* bitsize */
152 	 TRUE,			/* pc_relative */
153 	 3,			/* bitpos */
154 	 complain_overflow_bitfield, /* complain_on_overflow */
155 	 bfd_elf_generic_reloc, /* special_function */
156 	 "R_AVR_7_PCREL",	/* name */
157 	 FALSE,			/* partial_inplace */
158 	 0xffff,		/* src_mask */
159 	 0xffff,		/* dst_mask */
160 	 TRUE),			/* pcrel_offset */
161 
162   /* A 13 bit PC relative relocation.  */
163   HOWTO (R_AVR_13_PCREL,	/* type */
164 	 1,			/* rightshift */
165 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
166 	 13,			/* bitsize */
167 	 TRUE,			/* pc_relative */
168 	 0,			/* bitpos */
169 	 complain_overflow_bitfield, /* complain_on_overflow */
170 	 bfd_elf_generic_reloc, /* special_function */
171 	 "R_AVR_13_PCREL",	/* name */
172 	 FALSE,			/* partial_inplace */
173 	 0xfff,			/* src_mask */
174 	 0xfff,			/* dst_mask */
175 	 TRUE),			/* pcrel_offset */
176 
177   /* A 16 bit absolute relocation.  */
178   HOWTO (R_AVR_16,		/* type */
179 	 0,			/* rightshift */
180 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
181 	 16,			/* bitsize */
182 	 FALSE,			/* pc_relative */
183 	 0,			/* bitpos */
184 	 complain_overflow_dont, /* complain_on_overflow */
185 	 bfd_elf_generic_reloc,	/* special_function */
186 	 "R_AVR_16",		/* name */
187 	 FALSE,			/* partial_inplace */
188 	 0xffff,		/* src_mask */
189 	 0xffff,		/* dst_mask */
190 	 FALSE),		/* pcrel_offset */
191 
192   /* A 16 bit absolute relocation for command address
193      Will be changed when linker stubs are needed.  */
194   HOWTO (R_AVR_16_PM,		/* type */
195 	 1,			/* rightshift */
196 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
197 	 16,			/* bitsize */
198 	 FALSE,			/* pc_relative */
199 	 0,			/* bitpos */
200 	 complain_overflow_bitfield, /* complain_on_overflow */
201 	 bfd_elf_generic_reloc,	/* special_function */
202 	 "R_AVR_16_PM",		/* name */
203 	 FALSE,			/* partial_inplace */
204 	 0xffff,		/* src_mask */
205 	 0xffff,		/* dst_mask */
206 	 FALSE),		/* pcrel_offset */
207   /* A low 8 bit absolute relocation of 16 bit address.
208      For LDI command.  */
209   HOWTO (R_AVR_LO8_LDI,		/* type */
210 	 0,			/* rightshift */
211 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
212 	 8,			/* bitsize */
213 	 FALSE,			/* pc_relative */
214 	 0,			/* bitpos */
215 	 complain_overflow_dont, /* complain_on_overflow */
216 	 bfd_elf_generic_reloc,	/* special_function */
217 	 "R_AVR_LO8_LDI",	/* name */
218 	 FALSE,			/* partial_inplace */
219 	 0xffff,		/* src_mask */
220 	 0xffff,		/* dst_mask */
221 	 FALSE),		/* pcrel_offset */
222   /* A high 8 bit absolute relocation of 16 bit address.
223      For LDI command.  */
224   HOWTO (R_AVR_HI8_LDI,		/* type */
225 	 8,			/* rightshift */
226 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
227 	 8,			/* bitsize */
228 	 FALSE,			/* pc_relative */
229 	 0,			/* bitpos */
230 	 complain_overflow_dont, /* complain_on_overflow */
231 	 bfd_elf_generic_reloc,	/* special_function */
232 	 "R_AVR_HI8_LDI",	/* name */
233 	 FALSE,			/* partial_inplace */
234 	 0xffff,		/* src_mask */
235 	 0xffff,		/* dst_mask */
236 	 FALSE),		/* pcrel_offset */
237   /* A high 6 bit absolute relocation of 22 bit address.
238      For LDI command.  As well second most significant 8 bit value of
239      a 32 bit link-time constant.  */
240   HOWTO (R_AVR_HH8_LDI,		/* type */
241 	 16,			/* rightshift */
242 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
243 	 8,			/* bitsize */
244 	 FALSE,			/* pc_relative */
245 	 0,			/* bitpos */
246 	 complain_overflow_dont, /* complain_on_overflow */
247 	 bfd_elf_generic_reloc,	/* special_function */
248 	 "R_AVR_HH8_LDI",	/* name */
249 	 FALSE,			/* partial_inplace */
250 	 0xffff,		/* src_mask */
251 	 0xffff,		/* dst_mask */
252 	 FALSE),		/* pcrel_offset */
253   /* A negative low 8 bit absolute relocation of 16 bit address.
254      For LDI command.  */
255   HOWTO (R_AVR_LO8_LDI_NEG,	/* type */
256 	 0,			/* rightshift */
257 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
258 	 8,			/* bitsize */
259 	 FALSE,			/* pc_relative */
260 	 0,			/* bitpos */
261 	 complain_overflow_dont, /* complain_on_overflow */
262 	 bfd_elf_generic_reloc,	/* special_function */
263 	 "R_AVR_LO8_LDI_NEG",	/* name */
264 	 FALSE,			/* partial_inplace */
265 	 0xffff,		/* src_mask */
266 	 0xffff,		/* dst_mask */
267 	 FALSE),		/* pcrel_offset */
268   /* A negative high 8 bit absolute relocation of 16 bit address.
269      For LDI command.  */
270   HOWTO (R_AVR_HI8_LDI_NEG,	/* type */
271 	 8,			/* rightshift */
272 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
273 	 8,			/* bitsize */
274 	 FALSE,			/* pc_relative */
275 	 0,			/* bitpos */
276 	 complain_overflow_dont, /* complain_on_overflow */
277 	 bfd_elf_generic_reloc,	/* special_function */
278 	 "R_AVR_HI8_LDI_NEG",	/* name */
279 	 FALSE,			/* partial_inplace */
280 	 0xffff,		/* src_mask */
281 	 0xffff,		/* dst_mask */
282 	 FALSE),		/* pcrel_offset */
283   /* A negative high 6 bit absolute relocation of 22 bit address.
284      For LDI command.  */
285   HOWTO (R_AVR_HH8_LDI_NEG,	/* type */
286 	 16,			/* rightshift */
287 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
288 	 8,			/* bitsize */
289 	 FALSE,			/* pc_relative */
290 	 0,			/* bitpos */
291 	 complain_overflow_dont, /* complain_on_overflow */
292 	 bfd_elf_generic_reloc,	/* special_function */
293 	 "R_AVR_HH8_LDI_NEG",	/* name */
294 	 FALSE,			/* partial_inplace */
295 	 0xffff,		/* src_mask */
296 	 0xffff,		/* dst_mask */
297 	 FALSE),		/* pcrel_offset */
298   /* A low 8 bit absolute relocation of 24 bit program memory address.
299      For LDI command.  Will not be changed when linker stubs are needed. */
300   HOWTO (R_AVR_LO8_LDI_PM,	/* type */
301 	 1,			/* rightshift */
302 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
303 	 8,			/* bitsize */
304 	 FALSE,			/* pc_relative */
305 	 0,			/* bitpos */
306 	 complain_overflow_dont, /* complain_on_overflow */
307 	 bfd_elf_generic_reloc,	/* special_function */
308 	 "R_AVR_LO8_LDI_PM",	/* name */
309 	 FALSE,			/* partial_inplace */
310 	 0xffff,		/* src_mask */
311 	 0xffff,		/* dst_mask */
312 	 FALSE),		/* pcrel_offset */
313   /* A low 8 bit absolute relocation of 24 bit program memory address.
314      For LDI command.  Will not be changed when linker stubs are needed. */
315   HOWTO (R_AVR_HI8_LDI_PM,	/* type */
316 	 9,			/* rightshift */
317 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
318 	 8,			/* bitsize */
319 	 FALSE,			/* pc_relative */
320 	 0,			/* bitpos */
321 	 complain_overflow_dont, /* complain_on_overflow */
322 	 bfd_elf_generic_reloc,	/* special_function */
323 	 "R_AVR_HI8_LDI_PM",	/* name */
324 	 FALSE,			/* partial_inplace */
325 	 0xffff,		/* src_mask */
326 	 0xffff,		/* dst_mask */
327 	 FALSE),		/* pcrel_offset */
328   /* A low 8 bit absolute relocation of 24 bit program memory address.
329      For LDI command.  Will not be changed when linker stubs are needed. */
330   HOWTO (R_AVR_HH8_LDI_PM,	/* type */
331 	 17,			/* rightshift */
332 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
333 	 8,			/* bitsize */
334 	 FALSE,			/* pc_relative */
335 	 0,			/* bitpos */
336 	 complain_overflow_dont, /* complain_on_overflow */
337 	 bfd_elf_generic_reloc,	/* special_function */
338 	 "R_AVR_HH8_LDI_PM",	/* name */
339 	 FALSE,			/* partial_inplace */
340 	 0xffff,		/* src_mask */
341 	 0xffff,		/* dst_mask */
342 	 FALSE),		/* pcrel_offset */
343   /* A low 8 bit absolute relocation of 24 bit program memory address.
344      For LDI command.  Will not be changed when linker stubs are needed. */
345   HOWTO (R_AVR_LO8_LDI_PM_NEG,	/* type */
346 	 1,			/* rightshift */
347 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
348 	 8,			/* bitsize */
349 	 FALSE,			/* pc_relative */
350 	 0,			/* bitpos */
351 	 complain_overflow_dont, /* complain_on_overflow */
352 	 bfd_elf_generic_reloc,	/* special_function */
353 	 "R_AVR_LO8_LDI_PM_NEG", /* name */
354 	 FALSE,			/* partial_inplace */
355 	 0xffff,		/* src_mask */
356 	 0xffff,		/* dst_mask */
357 	 FALSE),		/* pcrel_offset */
358   /* A low 8 bit absolute relocation of 24 bit program memory address.
359      For LDI command.  Will not be changed when linker stubs are needed. */
360   HOWTO (R_AVR_HI8_LDI_PM_NEG,	/* type */
361 	 9,			/* rightshift */
362 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
363 	 8,			/* bitsize */
364 	 FALSE,			/* pc_relative */
365 	 0,			/* bitpos */
366 	 complain_overflow_dont, /* complain_on_overflow */
367 	 bfd_elf_generic_reloc,	/* special_function */
368 	 "R_AVR_HI8_LDI_PM_NEG", /* name */
369 	 FALSE,			/* partial_inplace */
370 	 0xffff,		/* src_mask */
371 	 0xffff,		/* dst_mask */
372 	 FALSE),		/* pcrel_offset */
373   /* A low 8 bit absolute relocation of 24 bit program memory address.
374      For LDI command.  Will not be changed when linker stubs are needed. */
375   HOWTO (R_AVR_HH8_LDI_PM_NEG,	/* type */
376 	 17,			/* rightshift */
377 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
378 	 8,			/* bitsize */
379 	 FALSE,			/* pc_relative */
380 	 0,			/* bitpos */
381 	 complain_overflow_dont, /* complain_on_overflow */
382 	 bfd_elf_generic_reloc,	/* special_function */
383 	 "R_AVR_HH8_LDI_PM_NEG", /* name */
384 	 FALSE,			/* partial_inplace */
385 	 0xffff,		/* src_mask */
386 	 0xffff,		/* dst_mask */
387 	 FALSE),		/* pcrel_offset */
388   /* Relocation for CALL command in ATmega.  */
389   HOWTO (R_AVR_CALL,		/* type */
390 	 1,			/* rightshift */
391 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
392 	 23,			/* bitsize */
393 	 FALSE,			/* pc_relative */
394 	 0,			/* bitpos */
395 	 complain_overflow_dont,/* complain_on_overflow */
396 	 bfd_elf_generic_reloc,	/* special_function */
397 	 "R_AVR_CALL",		/* name */
398 	 FALSE,			/* partial_inplace */
399 	 0xffffffff,		/* src_mask */
400 	 0xffffffff,		/* dst_mask */
401 	 FALSE),			/* pcrel_offset */
402   /* A 16 bit absolute relocation of 16 bit address.
403      For LDI command.  */
404   HOWTO (R_AVR_LDI,		/* type */
405 	 0,			/* rightshift */
406 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
407 	 16,			/* bitsize */
408 	 FALSE,			/* pc_relative */
409 	 0,			/* bitpos */
410 	 complain_overflow_dont,/* complain_on_overflow */
411 	 bfd_elf_generic_reloc,	/* special_function */
412 	 "R_AVR_LDI",		/* name */
413 	 FALSE,			/* partial_inplace */
414 	 0xffff,		/* src_mask */
415 	 0xffff,		/* dst_mask */
416 	 FALSE),		/* pcrel_offset */
417   /* A 6 bit absolute relocation of 6 bit offset.
418      For ldd/sdd command.  */
419   HOWTO (R_AVR_6,		/* type */
420 	 0,			/* rightshift */
421 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
422 	 6,			/* bitsize */
423 	 FALSE,			/* pc_relative */
424 	 0,			/* bitpos */
425 	 complain_overflow_dont,/* complain_on_overflow */
426 	 bfd_elf_generic_reloc,	/* special_function */
427 	 "R_AVR_6",		/* name */
428 	 FALSE,			/* partial_inplace */
429 	 0xffff,		/* src_mask */
430 	 0xffff,		/* dst_mask */
431 	 FALSE),		/* pcrel_offset */
432   /* A 6 bit absolute relocation of 6 bit offset.
433      For sbiw/adiw command.  */
434   HOWTO (R_AVR_6_ADIW,		/* type */
435 	 0,			/* rightshift */
436 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
437 	 6,			/* bitsize */
438 	 FALSE,			/* pc_relative */
439 	 0,			/* bitpos */
440 	 complain_overflow_dont,/* complain_on_overflow */
441 	 bfd_elf_generic_reloc,	/* special_function */
442 	 "R_AVR_6_ADIW",	/* name */
443 	 FALSE,			/* partial_inplace */
444 	 0xffff,		/* src_mask */
445 	 0xffff,		/* dst_mask */
446 	 FALSE),		/* pcrel_offset */
447   /* Most significant 8 bit value of a 32 bit link-time constant.  */
448   HOWTO (R_AVR_MS8_LDI,		/* type */
449 	 24,			/* rightshift */
450 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
451 	 8,			/* bitsize */
452 	 FALSE,			/* pc_relative */
453 	 0,			/* bitpos */
454 	 complain_overflow_dont, /* complain_on_overflow */
455 	 bfd_elf_generic_reloc,	/* special_function */
456 	 "R_AVR_MS8_LDI",	/* name */
457 	 FALSE,			/* partial_inplace */
458 	 0xffff,		/* src_mask */
459 	 0xffff,		/* dst_mask */
460 	 FALSE),		/* pcrel_offset */
461   /* Negative most significant 8 bit value of a 32 bit link-time constant.  */
462   HOWTO (R_AVR_MS8_LDI_NEG,	/* type */
463 	 24,			/* rightshift */
464 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
465 	 8,			/* bitsize */
466 	 FALSE,			/* pc_relative */
467 	 0,			/* bitpos */
468 	 complain_overflow_dont, /* complain_on_overflow */
469 	 bfd_elf_generic_reloc,	/* special_function */
470 	 "R_AVR_MS8_LDI_NEG",	/* name */
471 	 FALSE,			/* partial_inplace */
472 	 0xffff,		/* src_mask */
473 	 0xffff,		/* dst_mask */
474 	 FALSE), 		/* pcrel_offset */
475   /* A low 8 bit absolute relocation of 24 bit program memory address.
476      For LDI command.  Will be changed when linker stubs are needed. */
477   HOWTO (R_AVR_LO8_LDI_GS,      /* type */
478          1,                     /* rightshift */
479          1,                     /* size (0 = byte, 1 = short, 2 = long) */
480          8,                     /* bitsize */
481          FALSE,                 /* pc_relative */
482          0,                     /* bitpos */
483          complain_overflow_dont, /* complain_on_overflow */
484          bfd_elf_generic_reloc, /* special_function */
485          "R_AVR_LO8_LDI_GS",    /* name */
486          FALSE,                 /* partial_inplace */
487          0xffff,                /* src_mask */
488          0xffff,                /* dst_mask */
489          FALSE),                /* pcrel_offset */
490   /* A low 8 bit absolute relocation of 24 bit program memory address.
491      For LDI command.  Will be changed when linker stubs are needed. */
492   HOWTO (R_AVR_HI8_LDI_GS,      /* type */
493          9,                     /* rightshift */
494          1,                     /* size (0 = byte, 1 = short, 2 = long) */
495          8,                     /* bitsize */
496          FALSE,                 /* pc_relative */
497          0,                     /* bitpos */
498          complain_overflow_dont, /* complain_on_overflow */
499          bfd_elf_generic_reloc, /* special_function */
500          "R_AVR_HI8_LDI_GS",    /* name */
501          FALSE,                 /* partial_inplace */
502          0xffff,                /* src_mask */
503          0xffff,                /* dst_mask */
504          FALSE)                 /* pcrel_offset */
505 };
506 
507 /* Map BFD reloc types to AVR ELF reloc types.  */
508 
509 struct avr_reloc_map
510 {
511   bfd_reloc_code_real_type bfd_reloc_val;
512   unsigned int elf_reloc_val;
513 };
514 
515 static const struct avr_reloc_map avr_reloc_map[] =
516 {
517   { BFD_RELOC_NONE,                 R_AVR_NONE },
518   { BFD_RELOC_32,                   R_AVR_32 },
519   { BFD_RELOC_AVR_7_PCREL,          R_AVR_7_PCREL },
520   { BFD_RELOC_AVR_13_PCREL,         R_AVR_13_PCREL },
521   { BFD_RELOC_16,                   R_AVR_16 },
522   { BFD_RELOC_AVR_16_PM,            R_AVR_16_PM },
523   { BFD_RELOC_AVR_LO8_LDI,          R_AVR_LO8_LDI},
524   { BFD_RELOC_AVR_HI8_LDI,          R_AVR_HI8_LDI },
525   { BFD_RELOC_AVR_HH8_LDI,          R_AVR_HH8_LDI },
526   { BFD_RELOC_AVR_MS8_LDI,          R_AVR_MS8_LDI },
527   { BFD_RELOC_AVR_LO8_LDI_NEG,      R_AVR_LO8_LDI_NEG },
528   { BFD_RELOC_AVR_HI8_LDI_NEG,      R_AVR_HI8_LDI_NEG },
529   { BFD_RELOC_AVR_HH8_LDI_NEG,      R_AVR_HH8_LDI_NEG },
530   { BFD_RELOC_AVR_MS8_LDI_NEG,      R_AVR_MS8_LDI_NEG },
531   { BFD_RELOC_AVR_LO8_LDI_PM,       R_AVR_LO8_LDI_PM },
532   { BFD_RELOC_AVR_LO8_LDI_GS,       R_AVR_LO8_LDI_GS },
533   { BFD_RELOC_AVR_HI8_LDI_PM,       R_AVR_HI8_LDI_PM },
534   { BFD_RELOC_AVR_HI8_LDI_GS,       R_AVR_HI8_LDI_GS },
535   { BFD_RELOC_AVR_HH8_LDI_PM,       R_AVR_HH8_LDI_PM },
536   { BFD_RELOC_AVR_LO8_LDI_PM_NEG,   R_AVR_LO8_LDI_PM_NEG },
537   { BFD_RELOC_AVR_HI8_LDI_PM_NEG,   R_AVR_HI8_LDI_PM_NEG },
538   { BFD_RELOC_AVR_HH8_LDI_PM_NEG,   R_AVR_HH8_LDI_PM_NEG },
539   { BFD_RELOC_AVR_CALL,             R_AVR_CALL },
540   { BFD_RELOC_AVR_LDI,              R_AVR_LDI  },
541   { BFD_RELOC_AVR_6,                R_AVR_6    },
542   { BFD_RELOC_AVR_6_ADIW,           R_AVR_6_ADIW }
543 };
544 
545 /* Meant to be filled one day with the wrap around address for the
546    specific device.  I.e. should get the value 0x4000 for 16k devices,
547    0x8000 for 32k devices and so on.
548 
549    We initialize it here with a value of 0x1000000 resulting in
550    that we will never suggest a wrap-around jump during relaxation.
551    The logic of the source code later on assumes that in
552    avr_pc_wrap_around one single bit is set.  */
553 static bfd_vma avr_pc_wrap_around = 0x10000000;
554 
555 /* If this variable holds a value different from zero, the linker relaxation
556    machine will try to optimize call/ret sequences by a single jump
557    instruction. This option could be switched off by a linker switch.  */
558 static int avr_replace_call_ret_sequences = 1;
559 
560 /* Initialize an entry in the stub hash table.  */
561 
562 static struct bfd_hash_entry *
563 stub_hash_newfunc (struct bfd_hash_entry *entry,
564                    struct bfd_hash_table *table,
565                    const char *string)
566 {
567   /* Allocate the structure if it has not already been allocated by a
568      subclass.  */
569   if (entry == NULL)
570     {
571       entry = bfd_hash_allocate (table,
572                                  sizeof (struct elf32_avr_stub_hash_entry));
573       if (entry == NULL)
574         return entry;
575     }
576 
577   /* Call the allocation method of the superclass.  */
578   entry = bfd_hash_newfunc (entry, table, string);
579   if (entry != NULL)
580     {
581       struct elf32_avr_stub_hash_entry *hsh;
582 
583       /* Initialize the local fields.  */
584       hsh = avr_stub_hash_entry (entry);
585       hsh->stub_offset = 0;
586       hsh->target_value = 0;
587     }
588 
589   return entry;
590 }
591 
592 /* This function is just a straight passthrough to the real
593    function in linker.c.  Its prupose is so that its address
594    can be compared inside the avr_link_hash_table macro.  */
595 
596 static struct bfd_hash_entry *
597 elf32_avr_link_hash_newfunc (struct bfd_hash_entry * entry,
598 			     struct bfd_hash_table * table,
599 			     const char * string)
600 {
601   return _bfd_elf_link_hash_newfunc (entry, table, string);
602 }
603 
604 /* Create the derived linker hash table.  The AVR ELF port uses the derived
605    hash table to keep information specific to the AVR ELF linker (without
606    using static variables).  */
607 
608 static struct bfd_link_hash_table *
609 elf32_avr_link_hash_table_create (bfd *abfd)
610 {
611   struct elf32_avr_link_hash_table *htab;
612   bfd_size_type amt = sizeof (*htab);
613 
614   htab = bfd_malloc (amt);
615   if (htab == NULL)
616     return NULL;
617 
618   if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd,
619                                       elf32_avr_link_hash_newfunc,
620                                       sizeof (struct elf_link_hash_entry)))
621     {
622       free (htab);
623       return NULL;
624     }
625 
626   /* Init the stub hash table too.  */
627   if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
628                             sizeof (struct elf32_avr_stub_hash_entry)))
629     return NULL;
630 
631   htab->stub_bfd = NULL;
632   htab->stub_sec = NULL;
633 
634   /* Initialize the address mapping table.  */
635   htab->amt_stub_offsets = NULL;
636   htab->amt_destination_addr = NULL;
637   htab->amt_entry_cnt = 0;
638   htab->amt_max_entry_cnt = 0;
639 
640   return &htab->etab.root;
641 }
642 
643 /* Free the derived linker hash table.  */
644 
645 static void
646 elf32_avr_link_hash_table_free (struct bfd_link_hash_table *btab)
647 {
648   struct elf32_avr_link_hash_table *htab
649     = (struct elf32_avr_link_hash_table *) btab;
650 
651   /* Free the address mapping table.  */
652   if (htab->amt_stub_offsets != NULL)
653     free (htab->amt_stub_offsets);
654   if (htab->amt_destination_addr != NULL)
655     free (htab->amt_destination_addr);
656 
657   bfd_hash_table_free (&htab->bstab);
658   _bfd_generic_link_hash_table_free (btab);
659 }
660 
661 /* Calculates the effective distance of a pc relative jump/call.  */
662 
663 static int
664 avr_relative_distance_considering_wrap_around (unsigned int distance)
665 {
666   unsigned int wrap_around_mask = avr_pc_wrap_around - 1;
667   int dist_with_wrap_around = distance & wrap_around_mask;
668 
669   if (dist_with_wrap_around > ((int) (avr_pc_wrap_around >> 1)))
670     dist_with_wrap_around -= avr_pc_wrap_around;
671 
672   return dist_with_wrap_around;
673 }
674 
675 
676 static reloc_howto_type *
677 bfd_elf32_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
678 				 bfd_reloc_code_real_type code)
679 {
680   unsigned int i;
681 
682   for (i = 0;
683        i < sizeof (avr_reloc_map) / sizeof (struct avr_reloc_map);
684        i++)
685     if (avr_reloc_map[i].bfd_reloc_val == code)
686       return &elf_avr_howto_table[avr_reloc_map[i].elf_reloc_val];
687 
688   return NULL;
689 }
690 
691 static reloc_howto_type *
692 bfd_elf32_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
693 				 const char *r_name)
694 {
695   unsigned int i;
696 
697   for (i = 0;
698        i < sizeof (elf_avr_howto_table) / sizeof (elf_avr_howto_table[0]);
699        i++)
700     if (elf_avr_howto_table[i].name != NULL
701 	&& strcasecmp (elf_avr_howto_table[i].name, r_name) == 0)
702       return &elf_avr_howto_table[i];
703 
704   return NULL;
705 }
706 
707 /* Set the howto pointer for an AVR ELF reloc.  */
708 
709 static void
710 avr_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
711 			arelent *cache_ptr,
712 			Elf_Internal_Rela *dst)
713 {
714   unsigned int r_type;
715 
716   r_type = ELF32_R_TYPE (dst->r_info);
717   BFD_ASSERT (r_type < (unsigned int) R_AVR_max);
718   cache_ptr->howto = &elf_avr_howto_table[r_type];
719 }
720 
721 /* Look through the relocs for a section during the first phase.
722    Since we don't do .gots or .plts, we just need to consider the
723    virtual table relocs for gc.  */
724 
725 static bfd_boolean
726 elf32_avr_check_relocs (bfd *abfd,
727 			struct bfd_link_info *info,
728 			asection *sec,
729 			const Elf_Internal_Rela *relocs)
730 {
731   Elf_Internal_Shdr *symtab_hdr;
732   struct elf_link_hash_entry **sym_hashes;
733   const Elf_Internal_Rela *rel;
734   const Elf_Internal_Rela *rel_end;
735 
736   if (info->relocatable)
737     return TRUE;
738 
739   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
740   sym_hashes = elf_sym_hashes (abfd);
741 
742   rel_end = relocs + sec->reloc_count;
743   for (rel = relocs; rel < rel_end; rel++)
744     {
745       struct elf_link_hash_entry *h;
746       unsigned long r_symndx;
747 
748       r_symndx = ELF32_R_SYM (rel->r_info);
749       if (r_symndx < symtab_hdr->sh_info)
750         h = NULL;
751       else
752 	{
753 	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
754 	  while (h->root.type == bfd_link_hash_indirect
755 		 || h->root.type == bfd_link_hash_warning)
756 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
757 	}
758     }
759 
760   return TRUE;
761 }
762 
763 static bfd_boolean
764 avr_stub_is_required_for_16_bit_reloc (bfd_vma relocation)
765 {
766   return (relocation >= 0x020000);
767 }
768 
769 /* Returns the address of the corresponding stub if there is one.
770    Returns otherwise an address above 0x020000.  This function
771    could also be used, if there is no knowledge on the section where
772    the destination is found.  */
773 
774 static bfd_vma
775 avr_get_stub_addr (bfd_vma srel,
776                    struct elf32_avr_link_hash_table *htab)
777 {
778   unsigned int index;
779   bfd_vma stub_sec_addr =
780               (htab->stub_sec->output_section->vma +
781 	       htab->stub_sec->output_offset);
782 
783   for (index = 0; index < htab->amt_max_entry_cnt; index ++)
784     if (htab->amt_destination_addr[index] == srel)
785       return htab->amt_stub_offsets[index] + stub_sec_addr;
786 
787   /* Return an address that could not be reached by 16 bit relocs.  */
788   return 0x020000;
789 }
790 
791 /* Perform a single relocation.  By default we use the standard BFD
792    routines, but a few relocs, we have to do them ourselves.  */
793 
794 static bfd_reloc_status_type
795 avr_final_link_relocate (reloc_howto_type *                 howto,
796 			 bfd *                              input_bfd,
797 			 asection *                         input_section,
798 			 bfd_byte *                         contents,
799 			 Elf_Internal_Rela *                rel,
800                          bfd_vma                            relocation,
801                          struct elf32_avr_link_hash_table * htab)
802 {
803   bfd_reloc_status_type r = bfd_reloc_ok;
804   bfd_vma               x;
805   bfd_signed_vma	srel;
806   bfd_signed_vma	reloc_addr;
807   bfd_boolean           use_stubs = FALSE;
808   /* Usually is 0, unless we are generating code for a bootloader.  */
809   bfd_signed_vma        base_addr = htab->vector_base;
810 
811   /* Absolute addr of the reloc in the final excecutable.  */
812   reloc_addr = rel->r_offset + input_section->output_section->vma
813 	       + input_section->output_offset;
814 
815   switch (howto->type)
816     {
817     case R_AVR_7_PCREL:
818       contents += rel->r_offset;
819       srel = (bfd_signed_vma) relocation;
820       srel += rel->r_addend;
821       srel -= rel->r_offset;
822       srel -= 2;	/* Branch instructions add 2 to the PC...  */
823       srel -= (input_section->output_section->vma +
824 	       input_section->output_offset);
825 
826       if (srel & 1)
827 	return bfd_reloc_outofrange;
828       if (srel > ((1 << 7) - 1) || (srel < - (1 << 7)))
829 	return bfd_reloc_overflow;
830       x = bfd_get_16 (input_bfd, contents);
831       x = (x & 0xfc07) | (((srel >> 1) << 3) & 0x3f8);
832       bfd_put_16 (input_bfd, x, contents);
833       break;
834 
835     case R_AVR_13_PCREL:
836       contents   += rel->r_offset;
837       srel = (bfd_signed_vma) relocation;
838       srel += rel->r_addend;
839       srel -= rel->r_offset;
840       srel -= 2;	/* Branch instructions add 2 to the PC...  */
841       srel -= (input_section->output_section->vma +
842 	       input_section->output_offset);
843 
844       if (srel & 1)
845 	return bfd_reloc_outofrange;
846 
847       srel = avr_relative_distance_considering_wrap_around (srel);
848 
849       /* AVR addresses commands as words.  */
850       srel >>= 1;
851 
852       /* Check for overflow.  */
853       if (srel < -2048 || srel > 2047)
854 	{
855           /* Relative distance is too large.  */
856 
857 	  /* Always apply WRAPAROUND for avr2, avr25, and avr4.  */
858 	  switch (bfd_get_mach (input_bfd))
859 	    {
860 	    case bfd_mach_avr2:
861 	    case bfd_mach_avr25:
862 	    case bfd_mach_avr4:
863 	      break;
864 
865 	    default:
866 	      return bfd_reloc_overflow;
867 	    }
868 	}
869 
870       x = bfd_get_16 (input_bfd, contents);
871       x = (x & 0xf000) | (srel & 0xfff);
872       bfd_put_16 (input_bfd, x, contents);
873       break;
874 
875     case R_AVR_LO8_LDI:
876       contents += rel->r_offset;
877       srel = (bfd_signed_vma) relocation + rel->r_addend;
878       x = bfd_get_16 (input_bfd, contents);
879       x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
880       bfd_put_16 (input_bfd, x, contents);
881       break;
882 
883     case R_AVR_LDI:
884       contents += rel->r_offset;
885       srel = (bfd_signed_vma) relocation + rel->r_addend;
886       if (((srel > 0) && (srel & 0xffff) > 255)
887 	  || ((srel < 0) && ((-srel) & 0xffff) > 128))
888         /* Remove offset for data/eeprom section.  */
889         return bfd_reloc_overflow;
890 
891       x = bfd_get_16 (input_bfd, contents);
892       x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
893       bfd_put_16 (input_bfd, x, contents);
894       break;
895 
896     case R_AVR_6:
897       contents += rel->r_offset;
898       srel = (bfd_signed_vma) relocation + rel->r_addend;
899       if (((srel & 0xffff) > 63) || (srel < 0))
900 	/* Remove offset for data/eeprom section.  */
901 	return bfd_reloc_overflow;
902       x = bfd_get_16 (input_bfd, contents);
903       x = (x & 0xd3f8) | ((srel & 7) | ((srel & (3 << 3)) << 7)
904                        | ((srel & (1 << 5)) << 8));
905       bfd_put_16 (input_bfd, x, contents);
906       break;
907 
908     case R_AVR_6_ADIW:
909       contents += rel->r_offset;
910       srel = (bfd_signed_vma) relocation + rel->r_addend;
911       if (((srel & 0xffff) > 63) || (srel < 0))
912 	/* Remove offset for data/eeprom section.  */
913 	return bfd_reloc_overflow;
914       x = bfd_get_16 (input_bfd, contents);
915       x = (x & 0xff30) | (srel & 0xf) | ((srel & 0x30) << 2);
916       bfd_put_16 (input_bfd, x, contents);
917       break;
918 
919     case R_AVR_HI8_LDI:
920       contents += rel->r_offset;
921       srel = (bfd_signed_vma) relocation + rel->r_addend;
922       srel = (srel >> 8) & 0xff;
923       x = bfd_get_16 (input_bfd, contents);
924       x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
925       bfd_put_16 (input_bfd, x, contents);
926       break;
927 
928     case R_AVR_HH8_LDI:
929       contents += rel->r_offset;
930       srel = (bfd_signed_vma) relocation + rel->r_addend;
931       srel = (srel >> 16) & 0xff;
932       x = bfd_get_16 (input_bfd, contents);
933       x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
934       bfd_put_16 (input_bfd, x, contents);
935       break;
936 
937     case R_AVR_MS8_LDI:
938       contents += rel->r_offset;
939       srel = (bfd_signed_vma) relocation + rel->r_addend;
940       srel = (srel >> 24) & 0xff;
941       x = bfd_get_16 (input_bfd, contents);
942       x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
943       bfd_put_16 (input_bfd, x, contents);
944       break;
945 
946     case R_AVR_LO8_LDI_NEG:
947       contents += rel->r_offset;
948       srel = (bfd_signed_vma) relocation + rel->r_addend;
949       srel = -srel;
950       x = bfd_get_16 (input_bfd, contents);
951       x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
952       bfd_put_16 (input_bfd, x, contents);
953       break;
954 
955     case R_AVR_HI8_LDI_NEG:
956       contents += rel->r_offset;
957       srel = (bfd_signed_vma) relocation + rel->r_addend;
958       srel = -srel;
959       srel = (srel >> 8) & 0xff;
960       x = bfd_get_16 (input_bfd, contents);
961       x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
962       bfd_put_16 (input_bfd, x, contents);
963       break;
964 
965     case R_AVR_HH8_LDI_NEG:
966       contents += rel->r_offset;
967       srel = (bfd_signed_vma) relocation + rel->r_addend;
968       srel = -srel;
969       srel = (srel >> 16) & 0xff;
970       x = bfd_get_16 (input_bfd, contents);
971       x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
972       bfd_put_16 (input_bfd, x, contents);
973       break;
974 
975     case R_AVR_MS8_LDI_NEG:
976       contents += rel->r_offset;
977       srel = (bfd_signed_vma) relocation + rel->r_addend;
978       srel = -srel;
979       srel = (srel >> 24) & 0xff;
980       x = bfd_get_16 (input_bfd, contents);
981       x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
982       bfd_put_16 (input_bfd, x, contents);
983       break;
984 
985     case R_AVR_LO8_LDI_GS:
986       use_stubs = (!htab->no_stubs);
987       /* Fall through.  */
988     case R_AVR_LO8_LDI_PM:
989       contents += rel->r_offset;
990       srel = (bfd_signed_vma) relocation + rel->r_addend;
991 
992       if (use_stubs
993           && avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
994         {
995           bfd_vma old_srel = srel;
996 
997           /* We need to use the address of the stub instead.  */
998           srel = avr_get_stub_addr (srel, htab);
999           if (debug_stubs)
1000             printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
1001                     "reloc at address 0x%x.\n",
1002                     (unsigned int) srel,
1003                     (unsigned int) old_srel,
1004                     (unsigned int) reloc_addr);
1005 
1006 	  if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1007 	    return bfd_reloc_outofrange;
1008         }
1009 
1010       if (srel & 1)
1011 	return bfd_reloc_outofrange;
1012       srel = srel >> 1;
1013       x = bfd_get_16 (input_bfd, contents);
1014       x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1015       bfd_put_16 (input_bfd, x, contents);
1016       break;
1017 
1018     case R_AVR_HI8_LDI_GS:
1019       use_stubs = (!htab->no_stubs);
1020       /* Fall through.  */
1021     case R_AVR_HI8_LDI_PM:
1022       contents += rel->r_offset;
1023       srel = (bfd_signed_vma) relocation + rel->r_addend;
1024 
1025       if (use_stubs
1026           && avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1027         {
1028           bfd_vma old_srel = srel;
1029 
1030           /* We need to use the address of the stub instead.  */
1031           srel = avr_get_stub_addr (srel, htab);
1032           if (debug_stubs)
1033             printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
1034                     "reloc at address 0x%x.\n",
1035                     (unsigned int) srel,
1036                     (unsigned int) old_srel,
1037                     (unsigned int) reloc_addr);
1038 
1039 	  if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1040 	    return bfd_reloc_outofrange;
1041         }
1042 
1043       if (srel & 1)
1044 	return bfd_reloc_outofrange;
1045       srel = srel >> 1;
1046       srel = (srel >> 8) & 0xff;
1047       x = bfd_get_16 (input_bfd, contents);
1048       x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1049       bfd_put_16 (input_bfd, x, contents);
1050       break;
1051 
1052     case R_AVR_HH8_LDI_PM:
1053       contents += rel->r_offset;
1054       srel = (bfd_signed_vma) relocation + rel->r_addend;
1055       if (srel & 1)
1056 	return bfd_reloc_outofrange;
1057       srel = srel >> 1;
1058       srel = (srel >> 16) & 0xff;
1059       x = bfd_get_16 (input_bfd, contents);
1060       x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1061       bfd_put_16 (input_bfd, x, contents);
1062       break;
1063 
1064     case R_AVR_LO8_LDI_PM_NEG:
1065       contents += rel->r_offset;
1066       srel = (bfd_signed_vma) relocation + rel->r_addend;
1067       srel = -srel;
1068       if (srel & 1)
1069 	return bfd_reloc_outofrange;
1070       srel = srel >> 1;
1071       x = bfd_get_16 (input_bfd, contents);
1072       x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1073       bfd_put_16 (input_bfd, x, contents);
1074       break;
1075 
1076     case R_AVR_HI8_LDI_PM_NEG:
1077       contents += rel->r_offset;
1078       srel = (bfd_signed_vma) relocation + rel->r_addend;
1079       srel = -srel;
1080       if (srel & 1)
1081 	return bfd_reloc_outofrange;
1082       srel = srel >> 1;
1083       srel = (srel >> 8) & 0xff;
1084       x = bfd_get_16 (input_bfd, contents);
1085       x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1086       bfd_put_16 (input_bfd, x, contents);
1087       break;
1088 
1089     case R_AVR_HH8_LDI_PM_NEG:
1090       contents += rel->r_offset;
1091       srel = (bfd_signed_vma) relocation + rel->r_addend;
1092       srel = -srel;
1093       if (srel & 1)
1094 	return bfd_reloc_outofrange;
1095       srel = srel >> 1;
1096       srel = (srel >> 16) & 0xff;
1097       x = bfd_get_16 (input_bfd, contents);
1098       x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1099       bfd_put_16 (input_bfd, x, contents);
1100       break;
1101 
1102     case R_AVR_CALL:
1103       contents += rel->r_offset;
1104       srel = (bfd_signed_vma) relocation + rel->r_addend;
1105       if (srel & 1)
1106 	return bfd_reloc_outofrange;
1107       srel = srel >> 1;
1108       x = bfd_get_16 (input_bfd, contents);
1109       x |= ((srel & 0x10000) | ((srel << 3) & 0x1f00000)) >> 16;
1110       bfd_put_16 (input_bfd, x, contents);
1111       bfd_put_16 (input_bfd, (bfd_vma) srel & 0xffff, contents+2);
1112       break;
1113 
1114     case R_AVR_16_PM:
1115       use_stubs = (!htab->no_stubs);
1116       contents += rel->r_offset;
1117       srel = (bfd_signed_vma) relocation + rel->r_addend;
1118 
1119       if (use_stubs
1120           && avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1121         {
1122           bfd_vma old_srel = srel;
1123 
1124           /* We need to use the address of the stub instead.  */
1125           srel = avr_get_stub_addr (srel,htab);
1126           if (debug_stubs)
1127             printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
1128                     "reloc at address 0x%x.\n",
1129                     (unsigned int) srel,
1130                     (unsigned int) old_srel,
1131                     (unsigned int) reloc_addr);
1132 
1133 	  if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1134 	    return bfd_reloc_outofrange;
1135         }
1136 
1137       if (srel & 1)
1138 	return bfd_reloc_outofrange;
1139       srel = srel >> 1;
1140       bfd_put_16 (input_bfd, (bfd_vma) srel &0x00ffff, contents);
1141       break;
1142 
1143     default:
1144       r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1145 				    contents, rel->r_offset,
1146 				    relocation, rel->r_addend);
1147     }
1148 
1149   return r;
1150 }
1151 
1152 /* Relocate an AVR ELF section.  */
1153 
1154 static bfd_boolean
1155 elf32_avr_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
1156 			    struct bfd_link_info *info,
1157 			    bfd *input_bfd,
1158 			    asection *input_section,
1159 			    bfd_byte *contents,
1160 			    Elf_Internal_Rela *relocs,
1161 			    Elf_Internal_Sym *local_syms,
1162 			    asection **local_sections)
1163 {
1164   Elf_Internal_Shdr *           symtab_hdr;
1165   struct elf_link_hash_entry ** sym_hashes;
1166   Elf_Internal_Rela *           rel;
1167   Elf_Internal_Rela *           relend;
1168   struct elf32_avr_link_hash_table * htab = avr_link_hash_table (info);
1169 
1170   symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1171   sym_hashes = elf_sym_hashes (input_bfd);
1172   relend     = relocs + input_section->reloc_count;
1173 
1174   for (rel = relocs; rel < relend; rel ++)
1175     {
1176       reloc_howto_type *           howto;
1177       unsigned long                r_symndx;
1178       Elf_Internal_Sym *           sym;
1179       asection *                   sec;
1180       struct elf_link_hash_entry * h;
1181       bfd_vma                      relocation;
1182       bfd_reloc_status_type        r;
1183       const char *                 name;
1184       int                          r_type;
1185 
1186       r_type = ELF32_R_TYPE (rel->r_info);
1187       r_symndx = ELF32_R_SYM (rel->r_info);
1188       howto  = elf_avr_howto_table + ELF32_R_TYPE (rel->r_info);
1189       h      = NULL;
1190       sym    = NULL;
1191       sec    = NULL;
1192 
1193       if (r_symndx < symtab_hdr->sh_info)
1194 	{
1195 	  sym = local_syms + r_symndx;
1196 	  sec = local_sections [r_symndx];
1197 	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1198 
1199 	  name = bfd_elf_string_from_elf_section
1200 	    (input_bfd, symtab_hdr->sh_link, sym->st_name);
1201 	  name = (name == NULL) ? bfd_section_name (input_bfd, sec) : name;
1202 	}
1203       else
1204 	{
1205 	  bfd_boolean unresolved_reloc, warned;
1206 
1207 	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1208 				   r_symndx, symtab_hdr, sym_hashes,
1209 				   h, sec, relocation,
1210 				   unresolved_reloc, warned);
1211 
1212 	  name = h->root.root.string;
1213 	}
1214 
1215       if (sec != NULL && elf_discarded_section (sec))
1216 	{
1217 	  /* For relocs against symbols from removed linkonce sections,
1218 	     or sections discarded by a linker script, we just want the
1219 	     section contents zeroed.  Avoid any special processing.  */
1220 	  _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
1221 	  rel->r_info = 0;
1222 	  rel->r_addend = 0;
1223 	  continue;
1224 	}
1225 
1226       if (info->relocatable)
1227 	continue;
1228 
1229       r = avr_final_link_relocate (howto, input_bfd, input_section,
1230 				   contents, rel, relocation, htab);
1231 
1232       if (r != bfd_reloc_ok)
1233 	{
1234 	  const char * msg = (const char *) NULL;
1235 
1236 	  switch (r)
1237 	    {
1238 	    case bfd_reloc_overflow:
1239 	      r = info->callbacks->reloc_overflow
1240 		(info, (h ? &h->root : NULL),
1241 		 name, howto->name, (bfd_vma) 0,
1242 		 input_bfd, input_section, rel->r_offset);
1243 	      break;
1244 
1245 	    case bfd_reloc_undefined:
1246 	      r = info->callbacks->undefined_symbol
1247 		(info, name, input_bfd, input_section, rel->r_offset, TRUE);
1248 	      break;
1249 
1250 	    case bfd_reloc_outofrange:
1251 	      msg = _("internal error: out of range error");
1252 	      break;
1253 
1254 	    case bfd_reloc_notsupported:
1255 	      msg = _("internal error: unsupported relocation error");
1256 	      break;
1257 
1258 	    case bfd_reloc_dangerous:
1259 	      msg = _("internal error: dangerous relocation");
1260 	      break;
1261 
1262 	    default:
1263 	      msg = _("internal error: unknown error");
1264 	      break;
1265 	    }
1266 
1267 	  if (msg)
1268 	    r = info->callbacks->warning
1269 	      (info, msg, name, input_bfd, input_section, rel->r_offset);
1270 
1271 	  if (! r)
1272 	    return FALSE;
1273 	}
1274     }
1275 
1276   return TRUE;
1277 }
1278 
1279 /* The final processing done just before writing out a AVR ELF object
1280    file.  This gets the AVR architecture right based on the machine
1281    number.  */
1282 
1283 static void
1284 bfd_elf_avr_final_write_processing (bfd *abfd,
1285 				    bfd_boolean linker ATTRIBUTE_UNUSED)
1286 {
1287   unsigned long val;
1288 
1289   switch (bfd_get_mach (abfd))
1290     {
1291     default:
1292     case bfd_mach_avr2:
1293       val = E_AVR_MACH_AVR2;
1294       break;
1295 
1296     case bfd_mach_avr1:
1297       val = E_AVR_MACH_AVR1;
1298       break;
1299 
1300     case bfd_mach_avr25:
1301       val = E_AVR_MACH_AVR25;
1302       break;
1303 
1304     case bfd_mach_avr3:
1305       val = E_AVR_MACH_AVR3;
1306       break;
1307 
1308     case bfd_mach_avr31:
1309       val = E_AVR_MACH_AVR31;
1310       break;
1311 
1312     case bfd_mach_avr35:
1313       val = E_AVR_MACH_AVR35;
1314       break;
1315 
1316     case bfd_mach_avr4:
1317       val = E_AVR_MACH_AVR4;
1318       break;
1319 
1320     case bfd_mach_avr5:
1321       val = E_AVR_MACH_AVR5;
1322       break;
1323 
1324     case bfd_mach_avr51:
1325       val = E_AVR_MACH_AVR51;
1326       break;
1327 
1328     case bfd_mach_avr6:
1329       val = E_AVR_MACH_AVR6;
1330       break;
1331     }
1332 
1333   elf_elfheader (abfd)->e_machine = EM_AVR;
1334   elf_elfheader (abfd)->e_flags &= ~ EF_AVR_MACH;
1335   elf_elfheader (abfd)->e_flags |= val;
1336   elf_elfheader (abfd)->e_flags |= EF_AVR_LINKRELAX_PREPARED;
1337 }
1338 
1339 /* Set the right machine number.  */
1340 
1341 static bfd_boolean
1342 elf32_avr_object_p (bfd *abfd)
1343 {
1344   unsigned int e_set = bfd_mach_avr2;
1345 
1346   if (elf_elfheader (abfd)->e_machine == EM_AVR
1347       || elf_elfheader (abfd)->e_machine == EM_AVR_OLD)
1348     {
1349       int e_mach = elf_elfheader (abfd)->e_flags & EF_AVR_MACH;
1350 
1351       switch (e_mach)
1352 	{
1353 	default:
1354 	case E_AVR_MACH_AVR2:
1355 	  e_set = bfd_mach_avr2;
1356 	  break;
1357 
1358 	case E_AVR_MACH_AVR1:
1359 	  e_set = bfd_mach_avr1;
1360 	  break;
1361 
1362 	case E_AVR_MACH_AVR25:
1363 	  e_set = bfd_mach_avr25;
1364 	  break;
1365 
1366 	case E_AVR_MACH_AVR3:
1367 	  e_set = bfd_mach_avr3;
1368 	  break;
1369 
1370 	case E_AVR_MACH_AVR31:
1371 	  e_set = bfd_mach_avr31;
1372 	  break;
1373 
1374 	case E_AVR_MACH_AVR35:
1375 	  e_set = bfd_mach_avr35;
1376 	  break;
1377 
1378 	case E_AVR_MACH_AVR4:
1379 	  e_set = bfd_mach_avr4;
1380 	  break;
1381 
1382 	case E_AVR_MACH_AVR5:
1383 	  e_set = bfd_mach_avr5;
1384 	  break;
1385 
1386 	case E_AVR_MACH_AVR51:
1387 	  e_set = bfd_mach_avr51;
1388 	  break;
1389 
1390 	case E_AVR_MACH_AVR6:
1391 	  e_set = bfd_mach_avr6;
1392 	  break;
1393 	}
1394     }
1395   return bfd_default_set_arch_mach (abfd, bfd_arch_avr,
1396 				    e_set);
1397 }
1398 
1399 
1400 /* Delete some bytes from a section while changing the size of an instruction.
1401    The parameter "addr" denotes the section-relative offset pointing just
1402    behind the shrinked instruction. "addr+count" point at the first
1403    byte just behind the original unshrinked instruction.  */
1404 
1405 static bfd_boolean
1406 elf32_avr_relax_delete_bytes (bfd *abfd,
1407                               asection *sec,
1408                               bfd_vma addr,
1409                               int count)
1410 {
1411   Elf_Internal_Shdr *symtab_hdr;
1412   unsigned int sec_shndx;
1413   bfd_byte *contents;
1414   Elf_Internal_Rela *irel, *irelend;
1415   Elf_Internal_Rela *irelalign;
1416   Elf_Internal_Sym *isym;
1417   Elf_Internal_Sym *isymbuf = NULL;
1418   Elf_Internal_Sym *isymend;
1419   bfd_vma toaddr;
1420   struct elf_link_hash_entry **sym_hashes;
1421   struct elf_link_hash_entry **end_hashes;
1422   unsigned int symcount;
1423 
1424   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1425   sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
1426   contents = elf_section_data (sec)->this_hdr.contents;
1427 
1428   /* The deletion must stop at the next ALIGN reloc for an aligment
1429      power larger than the number of bytes we are deleting.  */
1430 
1431   irelalign = NULL;
1432   toaddr = sec->size;
1433 
1434   irel = elf_section_data (sec)->relocs;
1435   irelend = irel + sec->reloc_count;
1436 
1437   /* Actually delete the bytes.  */
1438   if (toaddr - addr - count > 0)
1439     memmove (contents + addr, contents + addr + count,
1440              (size_t) (toaddr - addr - count));
1441   sec->size -= count;
1442 
1443   /* Adjust all the reloc addresses.  */
1444   for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
1445     {
1446       bfd_vma old_reloc_address;
1447       bfd_vma shrinked_insn_address;
1448 
1449       old_reloc_address = (sec->output_section->vma
1450                            + sec->output_offset + irel->r_offset);
1451       shrinked_insn_address = (sec->output_section->vma
1452                               + sec->output_offset + addr - count);
1453 
1454       /* Get the new reloc address.  */
1455       if ((irel->r_offset > addr
1456            && irel->r_offset < toaddr))
1457         {
1458           if (debug_relax)
1459             printf ("Relocation at address 0x%x needs to be moved.\n"
1460                     "Old section offset: 0x%x, New section offset: 0x%x \n",
1461                     (unsigned int) old_reloc_address,
1462                     (unsigned int) irel->r_offset,
1463                     (unsigned int) ((irel->r_offset) - count));
1464 
1465           irel->r_offset -= count;
1466         }
1467 
1468     }
1469 
1470    /* The reloc's own addresses are now ok. However, we need to readjust
1471       the reloc's addend, i.e. the reloc's value if two conditions are met:
1472       1.) the reloc is relative to a symbol in this section that
1473           is located in front of the shrinked instruction
1474       2.) symbol plus addend end up behind the shrinked instruction.
1475 
1476       The most common case where this happens are relocs relative to
1477       the section-start symbol.
1478 
1479       This step needs to be done for all of the sections of the bfd.  */
1480 
1481   {
1482     struct bfd_section *isec;
1483 
1484     for (isec = abfd->sections; isec; isec = isec->next)
1485      {
1486        bfd_vma symval;
1487        bfd_vma shrinked_insn_address;
1488 
1489        shrinked_insn_address = (sec->output_section->vma
1490                                 + sec->output_offset + addr - count);
1491 
1492        irelend = elf_section_data (isec)->relocs + isec->reloc_count;
1493        for (irel = elf_section_data (isec)->relocs;
1494             irel < irelend;
1495             irel++)
1496          {
1497            /* Read this BFD's local symbols if we haven't done
1498               so already.  */
1499            if (isymbuf == NULL && symtab_hdr->sh_info != 0)
1500              {
1501                isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
1502                if (isymbuf == NULL)
1503                  isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
1504                                                  symtab_hdr->sh_info, 0,
1505                                                  NULL, NULL, NULL);
1506                if (isymbuf == NULL)
1507                  return FALSE;
1508              }
1509 
1510            /* Get the value of the symbol referred to by the reloc.  */
1511            if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
1512              {
1513                /* A local symbol.  */
1514                Elf_Internal_Sym *isym;
1515                asection *sym_sec;
1516 
1517                isym = isymbuf + ELF32_R_SYM (irel->r_info);
1518                sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
1519                symval = isym->st_value;
1520                /* If the reloc is absolute, it will not have
1521                   a symbol or section associated with it.  */
1522                if (sym_sec == sec)
1523                  {
1524                    symval += sym_sec->output_section->vma
1525                              + sym_sec->output_offset;
1526 
1527                    if (debug_relax)
1528                      printf ("Checking if the relocation's "
1529                              "addend needs corrections.\n"
1530                              "Address of anchor symbol: 0x%x \n"
1531                              "Address of relocation target: 0x%x \n"
1532                              "Address of relaxed insn: 0x%x \n",
1533                              (unsigned int) symval,
1534                              (unsigned int) (symval + irel->r_addend),
1535                              (unsigned int) shrinked_insn_address);
1536 
1537                    if (symval <= shrinked_insn_address
1538                        && (symval + irel->r_addend) > shrinked_insn_address)
1539                      {
1540                        irel->r_addend -= count;
1541 
1542                        if (debug_relax)
1543                          printf ("Relocation's addend needed to be fixed \n");
1544                      }
1545                  }
1546 	       /* else...Reference symbol is absolute.  No adjustment needed.  */
1547 	     }
1548 	   /* else...Reference symbol is extern.  No need for adjusting
1549 	      the addend.  */
1550 	 }
1551      }
1552   }
1553 
1554   /* Adjust the local symbols defined in this section.  */
1555   isym = (Elf_Internal_Sym *) symtab_hdr->contents;
1556   isymend = isym + symtab_hdr->sh_info;
1557   /* Fix PR 9841, there may be no local symbols.  */
1558   for (; isym != NULL && isym < isymend; isym++)
1559     {
1560       if (isym->st_shndx == sec_shndx
1561           && isym->st_value > addr
1562           && isym->st_value < toaddr)
1563         isym->st_value -= count;
1564     }
1565 
1566   /* Now adjust the global symbols defined in this section.  */
1567   symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
1568               - symtab_hdr->sh_info);
1569   sym_hashes = elf_sym_hashes (abfd);
1570   end_hashes = sym_hashes + symcount;
1571   for (; sym_hashes < end_hashes; sym_hashes++)
1572     {
1573       struct elf_link_hash_entry *sym_hash = *sym_hashes;
1574       if ((sym_hash->root.type == bfd_link_hash_defined
1575            || sym_hash->root.type == bfd_link_hash_defweak)
1576           && sym_hash->root.u.def.section == sec
1577           && sym_hash->root.u.def.value > addr
1578           && sym_hash->root.u.def.value < toaddr)
1579         {
1580           sym_hash->root.u.def.value -= count;
1581         }
1582     }
1583 
1584   return TRUE;
1585 }
1586 
1587 /* This function handles relaxing for the avr.
1588    Many important relaxing opportunities within functions are already
1589    realized by the compiler itself.
1590    Here we try to replace  call (4 bytes) ->  rcall (2 bytes)
1591    and jump -> rjmp (safes also 2 bytes).
1592    As well we now optimize seqences of
1593      - call/rcall function
1594      - ret
1595    to yield
1596      - jmp/rjmp function
1597      - ret
1598    . In case that within a sequence
1599      - jmp/rjmp label
1600      - ret
1601    the ret could no longer be reached it is optimized away. In order
1602    to check if the ret is no longer needed, it is checked that the ret's address
1603    is not the target of a branch or jump within the same section, it is checked
1604    that there is no skip instruction before the jmp/rjmp and that there
1605    is no local or global label place at the address of the ret.
1606 
1607    We refrain from relaxing within sections ".vectors" and
1608    ".jumptables" in order to maintain the position of the instructions.
1609    There, however, we substitute jmp/call by a sequence rjmp,nop/rcall,nop
1610    if possible. (In future one could possibly use the space of the nop
1611    for the first instruction of the irq service function.
1612 
1613    The .jumptables sections is meant to be used for a future tablejump variant
1614    for the devices with 3-byte program counter where the table itself
1615    contains 4-byte jump instructions whose relative offset must not
1616    be changed.  */
1617 
1618 static bfd_boolean
1619 elf32_avr_relax_section (bfd *abfd,
1620 			 asection *sec,
1621                          struct bfd_link_info *link_info,
1622                          bfd_boolean *again)
1623 {
1624   Elf_Internal_Shdr *symtab_hdr;
1625   Elf_Internal_Rela *internal_relocs;
1626   Elf_Internal_Rela *irel, *irelend;
1627   bfd_byte *contents = NULL;
1628   Elf_Internal_Sym *isymbuf = NULL;
1629   static asection *last_input_section = NULL;
1630   static Elf_Internal_Rela *last_reloc = NULL;
1631   struct elf32_avr_link_hash_table *htab;
1632 
1633   htab = avr_link_hash_table (link_info);
1634   if (htab == NULL)
1635     return FALSE;
1636 
1637   /* Assume nothing changes.  */
1638   *again = FALSE;
1639 
1640   if ((!htab->no_stubs) && (sec == htab->stub_sec))
1641     {
1642       /* We are just relaxing the stub section.
1643 	 Let's calculate the size needed again.  */
1644       bfd_size_type last_estimated_stub_section_size = htab->stub_sec->size;
1645 
1646       if (debug_relax)
1647         printf ("Relaxing the stub section. Size prior to this pass: %i\n",
1648                 (int) last_estimated_stub_section_size);
1649 
1650       elf32_avr_size_stubs (htab->stub_sec->output_section->owner,
1651                             link_info, FALSE);
1652 
1653       /* Check if the number of trampolines changed.  */
1654       if (last_estimated_stub_section_size != htab->stub_sec->size)
1655         *again = TRUE;
1656 
1657       if (debug_relax)
1658         printf ("Size of stub section after this pass: %i\n",
1659                 (int) htab->stub_sec->size);
1660 
1661       return TRUE;
1662     }
1663 
1664   /* We don't have to do anything for a relocatable link, if
1665      this section does not have relocs, or if this is not a
1666      code section.  */
1667   if (link_info->relocatable
1668       || (sec->flags & SEC_RELOC) == 0
1669       || sec->reloc_count == 0
1670       || (sec->flags & SEC_CODE) == 0)
1671     return TRUE;
1672 
1673   /* Check if the object file to relax uses internal symbols so that we
1674      could fix up the relocations.  */
1675   if (!(elf_elfheader (abfd)->e_flags & EF_AVR_LINKRELAX_PREPARED))
1676     return TRUE;
1677 
1678   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1679 
1680   /* Get a copy of the native relocations.  */
1681   internal_relocs = (_bfd_elf_link_read_relocs
1682                      (abfd, sec, NULL, NULL, link_info->keep_memory));
1683   if (internal_relocs == NULL)
1684     goto error_return;
1685 
1686   if (sec != last_input_section)
1687     last_reloc = NULL;
1688 
1689   last_input_section = sec;
1690 
1691   /* Walk through the relocs looking for relaxing opportunities.  */
1692   irelend = internal_relocs + sec->reloc_count;
1693   for (irel = internal_relocs; irel < irelend; irel++)
1694     {
1695       bfd_vma symval;
1696 
1697       if (   ELF32_R_TYPE (irel->r_info) != R_AVR_13_PCREL
1698           && ELF32_R_TYPE (irel->r_info) != R_AVR_7_PCREL
1699           && ELF32_R_TYPE (irel->r_info) != R_AVR_CALL)
1700         continue;
1701 
1702       /* Get the section contents if we haven't done so already.  */
1703       if (contents == NULL)
1704         {
1705           /* Get cached copy if it exists.  */
1706           if (elf_section_data (sec)->this_hdr.contents != NULL)
1707             contents = elf_section_data (sec)->this_hdr.contents;
1708           else
1709             {
1710               /* Go get them off disk.  */
1711               if (! bfd_malloc_and_get_section (abfd, sec, &contents))
1712                 goto error_return;
1713             }
1714         }
1715 
1716      /* Read this BFD's local symbols if we haven't done so already.  */
1717       if (isymbuf == NULL && symtab_hdr->sh_info != 0)
1718         {
1719           isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
1720           if (isymbuf == NULL)
1721             isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
1722                                             symtab_hdr->sh_info, 0,
1723                                             NULL, NULL, NULL);
1724           if (isymbuf == NULL)
1725             goto error_return;
1726         }
1727 
1728 
1729       /* Get the value of the symbol referred to by the reloc.  */
1730       if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
1731         {
1732           /* A local symbol.  */
1733           Elf_Internal_Sym *isym;
1734           asection *sym_sec;
1735 
1736           isym = isymbuf + ELF32_R_SYM (irel->r_info);
1737           sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
1738           symval = isym->st_value;
1739           /* If the reloc is absolute, it will not have
1740              a symbol or section associated with it.  */
1741           if (sym_sec)
1742             symval += sym_sec->output_section->vma
1743               + sym_sec->output_offset;
1744         }
1745       else
1746         {
1747           unsigned long indx;
1748           struct elf_link_hash_entry *h;
1749 
1750           /* An external symbol.  */
1751           indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
1752           h = elf_sym_hashes (abfd)[indx];
1753           BFD_ASSERT (h != NULL);
1754           if (h->root.type != bfd_link_hash_defined
1755               && h->root.type != bfd_link_hash_defweak)
1756 	    /* This appears to be a reference to an undefined
1757 	       symbol.  Just ignore it--it will be caught by the
1758 	       regular reloc processing.  */
1759 	    continue;
1760 
1761           symval = (h->root.u.def.value
1762                     + h->root.u.def.section->output_section->vma
1763                     + h->root.u.def.section->output_offset);
1764         }
1765 
1766       /* For simplicity of coding, we are going to modify the section
1767          contents, the section relocs, and the BFD symbol table.  We
1768          must tell the rest of the code not to free up this
1769          information.  It would be possible to instead create a table
1770          of changes which have to be made, as is done in coff-mips.c;
1771          that would be more work, but would require less memory when
1772          the linker is run.  */
1773       switch (ELF32_R_TYPE (irel->r_info))
1774         {
1775          /* Try to turn a 22-bit absolute call/jump into an 13-bit
1776             pc-relative rcall/rjmp.  */
1777          case R_AVR_CALL:
1778           {
1779             bfd_vma value = symval + irel->r_addend;
1780             bfd_vma dot, gap;
1781             int distance_short_enough = 0;
1782 
1783             /* Get the address of this instruction.  */
1784             dot = (sec->output_section->vma
1785                    + sec->output_offset + irel->r_offset);
1786 
1787             /* Compute the distance from this insn to the branch target.  */
1788             gap = value - dot;
1789 
1790             /* If the distance is within -4094..+4098 inclusive, then we can
1791                relax this jump/call.  +4098 because the call/jump target
1792                will be closer after the relaxation.  */
1793             if ((int) gap >= -4094 && (int) gap <= 4098)
1794               distance_short_enough = 1;
1795 
1796             /* Here we handle the wrap-around case.  E.g. for a 16k device
1797                we could use a rjmp to jump from address 0x100 to 0x3d00!
1798                In order to make this work properly, we need to fill the
1799                vaiable avr_pc_wrap_around with the appropriate value.
1800                I.e. 0x4000 for a 16k device.  */
1801             {
1802                /* Shrinking the code size makes the gaps larger in the
1803                   case of wrap-arounds.  So we use a heuristical safety
1804                   margin to avoid that during relax the distance gets
1805                   again too large for the short jumps.  Let's assume
1806                   a typical code-size reduction due to relax for a
1807                   16k device of 600 bytes.  So let's use twice the
1808                   typical value as safety margin.  */
1809                int rgap;
1810                int safety_margin;
1811 
1812                int assumed_shrink = 600;
1813                if (avr_pc_wrap_around > 0x4000)
1814                  assumed_shrink = 900;
1815 
1816                safety_margin = 2 * assumed_shrink;
1817 
1818                rgap = avr_relative_distance_considering_wrap_around (gap);
1819 
1820                if (rgap >= (-4092 + safety_margin)
1821                    && rgap <= (4094 - safety_margin))
1822 		 distance_short_enough = 1;
1823             }
1824 
1825             if (distance_short_enough)
1826               {
1827                 unsigned char code_msb;
1828                 unsigned char code_lsb;
1829 
1830                 if (debug_relax)
1831                   printf ("shrinking jump/call instruction at address 0x%x"
1832                           " in section %s\n\n",
1833                           (int) dot, sec->name);
1834 
1835                 /* Note that we've changed the relocs, section contents,
1836                    etc.  */
1837                 elf_section_data (sec)->relocs = internal_relocs;
1838                 elf_section_data (sec)->this_hdr.contents = contents;
1839                 symtab_hdr->contents = (unsigned char *) isymbuf;
1840 
1841                 /* Get the instruction code for relaxing.  */
1842                 code_lsb = bfd_get_8 (abfd, contents + irel->r_offset);
1843                 code_msb = bfd_get_8 (abfd, contents + irel->r_offset + 1);
1844 
1845                 /* Mask out the relocation bits.  */
1846                 code_msb &= 0x94;
1847                 code_lsb &= 0x0E;
1848                 if (code_msb == 0x94 && code_lsb == 0x0E)
1849                   {
1850                     /* we are changing call -> rcall .  */
1851                     bfd_put_8 (abfd, 0x00, contents + irel->r_offset);
1852                     bfd_put_8 (abfd, 0xD0, contents + irel->r_offset + 1);
1853                   }
1854                 else if (code_msb == 0x94 && code_lsb == 0x0C)
1855                   {
1856                     /* we are changeing jump -> rjmp.  */
1857                     bfd_put_8 (abfd, 0x00, contents + irel->r_offset);
1858                     bfd_put_8 (abfd, 0xC0, contents + irel->r_offset + 1);
1859                   }
1860                 else
1861                   abort ();
1862 
1863                 /* Fix the relocation's type.  */
1864                 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
1865                                              R_AVR_13_PCREL);
1866 
1867                 /* Check for the vector section. There we don't want to
1868                    modify the ordering!  */
1869 
1870                 if (!strcmp (sec->name,".vectors")
1871                     || !strcmp (sec->name,".jumptables"))
1872                   {
1873                     /* Let's insert a nop.  */
1874                     bfd_put_8 (abfd, 0x00, contents + irel->r_offset + 2);
1875                     bfd_put_8 (abfd, 0x00, contents + irel->r_offset + 3);
1876                   }
1877                 else
1878                   {
1879                     /* Delete two bytes of data.  */
1880                     if (!elf32_avr_relax_delete_bytes (abfd, sec,
1881                                                        irel->r_offset + 2, 2))
1882                       goto error_return;
1883 
1884                     /* That will change things, so, we should relax again.
1885                        Note that this is not required, and it may be slow.  */
1886                     *again = TRUE;
1887                   }
1888               }
1889           }
1890 
1891         default:
1892           {
1893             unsigned char code_msb;
1894             unsigned char code_lsb;
1895             bfd_vma dot;
1896 
1897             code_msb = bfd_get_8 (abfd, contents + irel->r_offset + 1);
1898             code_lsb = bfd_get_8 (abfd, contents + irel->r_offset + 0);
1899 
1900             /* Get the address of this instruction.  */
1901             dot = (sec->output_section->vma
1902                    + sec->output_offset + irel->r_offset);
1903 
1904             /* Here we look for rcall/ret or call/ret sequences that could be
1905                safely replaced by rjmp/ret or jmp/ret.  */
1906             if (((code_msb & 0xf0) == 0xd0)
1907                 && avr_replace_call_ret_sequences)
1908               {
1909                 /* This insn is a rcall.  */
1910                 unsigned char next_insn_msb = 0;
1911                 unsigned char next_insn_lsb = 0;
1912 
1913                 if (irel->r_offset + 3 < sec->size)
1914                   {
1915                     next_insn_msb =
1916                         bfd_get_8 (abfd, contents + irel->r_offset + 3);
1917                     next_insn_lsb =
1918                         bfd_get_8 (abfd, contents + irel->r_offset + 2);
1919                   }
1920 
1921 		if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
1922                   {
1923                     /* The next insn is a ret. We now convert the rcall insn
1924                        into a rjmp instruction.  */
1925                     code_msb &= 0xef;
1926                     bfd_put_8 (abfd, code_msb, contents + irel->r_offset + 1);
1927                     if (debug_relax)
1928                       printf ("converted rcall/ret sequence at address 0x%x"
1929                               " into rjmp/ret sequence. Section is %s\n\n",
1930                               (int) dot, sec->name);
1931                     *again = TRUE;
1932                     break;
1933                   }
1934               }
1935             else if ((0x94 == (code_msb & 0xfe))
1936 		     && (0x0e == (code_lsb & 0x0e))
1937 		     && avr_replace_call_ret_sequences)
1938               {
1939                 /* This insn is a call.  */
1940                 unsigned char next_insn_msb = 0;
1941                 unsigned char next_insn_lsb = 0;
1942 
1943                 if (irel->r_offset + 5 < sec->size)
1944                   {
1945                     next_insn_msb =
1946                         bfd_get_8 (abfd, contents + irel->r_offset + 5);
1947                     next_insn_lsb =
1948                         bfd_get_8 (abfd, contents + irel->r_offset + 4);
1949                   }
1950 
1951                 if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
1952                   {
1953                     /* The next insn is a ret. We now convert the call insn
1954                        into a jmp instruction.  */
1955 
1956                     code_lsb &= 0xfd;
1957                     bfd_put_8 (abfd, code_lsb, contents + irel->r_offset);
1958                     if (debug_relax)
1959                       printf ("converted call/ret sequence at address 0x%x"
1960                               " into jmp/ret sequence. Section is %s\n\n",
1961                               (int) dot, sec->name);
1962                     *again = TRUE;
1963                     break;
1964                   }
1965               }
1966             else if ((0xc0 == (code_msb & 0xf0))
1967                      || ((0x94 == (code_msb & 0xfe))
1968                          && (0x0c == (code_lsb & 0x0e))))
1969               {
1970                 /* This insn is a rjmp or a jmp.  */
1971                 unsigned char next_insn_msb = 0;
1972                 unsigned char next_insn_lsb = 0;
1973                 int insn_size;
1974 
1975                 if (0xc0 == (code_msb & 0xf0))
1976                   insn_size = 2; /* rjmp insn */
1977                 else
1978                   insn_size = 4; /* jmp insn */
1979 
1980                 if (irel->r_offset + insn_size + 1 < sec->size)
1981                   {
1982                     next_insn_msb =
1983                         bfd_get_8 (abfd, contents + irel->r_offset
1984                                          + insn_size + 1);
1985                     next_insn_lsb =
1986                         bfd_get_8 (abfd, contents + irel->r_offset
1987                                          + insn_size);
1988                   }
1989 
1990                 if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
1991                   {
1992                     /* The next insn is a ret. We possibly could delete
1993                        this ret. First we need to check for preceeding
1994                        sbis/sbic/sbrs or cpse "skip" instructions.  */
1995 
1996                     int there_is_preceeding_non_skip_insn = 1;
1997                     bfd_vma address_of_ret;
1998 
1999                     address_of_ret = dot + insn_size;
2000 
2001                     if (debug_relax && (insn_size == 2))
2002                       printf ("found rjmp / ret sequence at address 0x%x\n",
2003                               (int) dot);
2004                     if (debug_relax && (insn_size == 4))
2005                       printf ("found jmp / ret sequence at address 0x%x\n",
2006                               (int) dot);
2007 
2008                     /* We have to make sure that there is a preceeding insn.  */
2009                     if (irel->r_offset >= 2)
2010                       {
2011                         unsigned char preceeding_msb;
2012                         unsigned char preceeding_lsb;
2013                         preceeding_msb =
2014                             bfd_get_8 (abfd, contents + irel->r_offset - 1);
2015                         preceeding_lsb =
2016                             bfd_get_8 (abfd, contents + irel->r_offset - 2);
2017 
2018                         /* sbic.  */
2019                         if (0x99 == preceeding_msb)
2020                           there_is_preceeding_non_skip_insn = 0;
2021 
2022                         /* sbis.  */
2023                         if (0x9b == preceeding_msb)
2024                           there_is_preceeding_non_skip_insn = 0;
2025 
2026                         /* sbrc */
2027                         if ((0xfc == (preceeding_msb & 0xfe)
2028                             && (0x00 == (preceeding_lsb & 0x08))))
2029                           there_is_preceeding_non_skip_insn = 0;
2030 
2031                         /* sbrs */
2032                         if ((0xfe == (preceeding_msb & 0xfe)
2033                             && (0x00 == (preceeding_lsb & 0x08))))
2034                           there_is_preceeding_non_skip_insn = 0;
2035 
2036                         /* cpse */
2037                         if (0x10 == (preceeding_msb & 0xfc))
2038                           there_is_preceeding_non_skip_insn = 0;
2039 
2040                         if (there_is_preceeding_non_skip_insn == 0)
2041                           if (debug_relax)
2042                             printf ("preceeding skip insn prevents deletion of"
2043                                     " ret insn at addr 0x%x in section %s\n",
2044                                     (int) dot + 2, sec->name);
2045                       }
2046                     else
2047                       {
2048                         /* There is no previous instruction.  */
2049                         there_is_preceeding_non_skip_insn = 0;
2050                       }
2051 
2052                     if (there_is_preceeding_non_skip_insn)
2053                       {
2054                         /* We now only have to make sure that there is no
2055                            local label defined at the address of the ret
2056                            instruction and that there is no local relocation
2057                            in this section pointing to the ret.  */
2058 
2059                         int deleting_ret_is_safe = 1;
2060                         unsigned int section_offset_of_ret_insn =
2061                                           irel->r_offset + insn_size;
2062                         Elf_Internal_Sym *isym, *isymend;
2063                         unsigned int sec_shndx;
2064 
2065                         sec_shndx =
2066 			  _bfd_elf_section_from_bfd_section (abfd, sec);
2067 
2068                         /* Check for local symbols.  */
2069                         isym = (Elf_Internal_Sym *) symtab_hdr->contents;
2070                         isymend = isym + symtab_hdr->sh_info;
2071 			/* PR 6019: There may not be any local symbols.  */
2072                         for (; isym != NULL && isym < isymend; isym++)
2073                          {
2074                            if (isym->st_value == section_offset_of_ret_insn
2075                                && isym->st_shndx == sec_shndx)
2076                              {
2077                                deleting_ret_is_safe = 0;
2078                                if (debug_relax)
2079                                  printf ("local label prevents deletion of ret "
2080                                          "insn at address 0x%x\n",
2081                                          (int) dot + insn_size);
2082                              }
2083                          }
2084 
2085                          /* Now check for global symbols.  */
2086                          {
2087                            int symcount;
2088                            struct elf_link_hash_entry **sym_hashes;
2089                            struct elf_link_hash_entry **end_hashes;
2090 
2091                            symcount = (symtab_hdr->sh_size
2092                                        / sizeof (Elf32_External_Sym)
2093                                        - symtab_hdr->sh_info);
2094                            sym_hashes = elf_sym_hashes (abfd);
2095                            end_hashes = sym_hashes + symcount;
2096                            for (; sym_hashes < end_hashes; sym_hashes++)
2097                             {
2098                               struct elf_link_hash_entry *sym_hash =
2099                                                                  *sym_hashes;
2100                               if ((sym_hash->root.type == bfd_link_hash_defined
2101                                   || sym_hash->root.type ==
2102 				   bfd_link_hash_defweak)
2103                                   && sym_hash->root.u.def.section == sec
2104                                   && sym_hash->root.u.def.value == section_offset_of_ret_insn)
2105                                 {
2106                                   deleting_ret_is_safe = 0;
2107                                   if (debug_relax)
2108                                     printf ("global label prevents deletion of "
2109                                             "ret insn at address 0x%x\n",
2110                                             (int) dot + insn_size);
2111                                 }
2112                             }
2113                          }
2114                          /* Now we check for relocations pointing to ret.  */
2115                          {
2116                            Elf_Internal_Rela *irel;
2117                            Elf_Internal_Rela *relend;
2118                            Elf_Internal_Shdr *symtab_hdr;
2119 
2120                            symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2121                            relend = elf_section_data (sec)->relocs
2122                                     + sec->reloc_count;
2123 
2124                            for (irel = elf_section_data (sec)->relocs;
2125                                 irel < relend; irel++)
2126                              {
2127                                bfd_vma reloc_target = 0;
2128                                bfd_vma symval;
2129                                Elf_Internal_Sym *isymbuf = NULL;
2130 
2131                                /* Read this BFD's local symbols if we haven't
2132                                   done so already.  */
2133                                if (isymbuf == NULL && symtab_hdr->sh_info != 0)
2134                                  {
2135                                    isymbuf = (Elf_Internal_Sym *)
2136                                              symtab_hdr->contents;
2137                                    if (isymbuf == NULL)
2138                                      isymbuf = bfd_elf_get_elf_syms
2139 				       (abfd,
2140 					symtab_hdr,
2141 					symtab_hdr->sh_info, 0,
2142 					NULL, NULL, NULL);
2143                                    if (isymbuf == NULL)
2144                                      break;
2145                                   }
2146 
2147                                /* Get the value of the symbol referred to
2148                                   by the reloc.  */
2149                                if (ELF32_R_SYM (irel->r_info)
2150                                    < symtab_hdr->sh_info)
2151                                  {
2152                                    /* A local symbol.  */
2153                                    Elf_Internal_Sym *isym;
2154                                    asection *sym_sec;
2155 
2156                                    isym = isymbuf
2157                                           + ELF32_R_SYM (irel->r_info);
2158                                    sym_sec = bfd_section_from_elf_index
2159 				     (abfd, isym->st_shndx);
2160                                    symval = isym->st_value;
2161 
2162                                    /* If the reloc is absolute, it will not
2163                                       have a symbol or section associated
2164                                       with it.  */
2165 
2166                                    if (sym_sec)
2167                                      {
2168                                        symval +=
2169                                            sym_sec->output_section->vma
2170                                            + sym_sec->output_offset;
2171                                        reloc_target = symval + irel->r_addend;
2172                                      }
2173                                    else
2174                                      {
2175                                        reloc_target = symval + irel->r_addend;
2176                                        /* Reference symbol is absolute.  */
2177                                      }
2178                                  }
2179 			       /* else ... reference symbol is extern.  */
2180 
2181                                if (address_of_ret == reloc_target)
2182                                  {
2183                                    deleting_ret_is_safe = 0;
2184                                    if (debug_relax)
2185                                      printf ("ret from "
2186                                              "rjmp/jmp ret sequence at address"
2187                                              " 0x%x could not be deleted. ret"
2188                                              " is target of a relocation.\n",
2189                                              (int) address_of_ret);
2190                                  }
2191                              }
2192                          }
2193 
2194                          if (deleting_ret_is_safe)
2195                            {
2196                              if (debug_relax)
2197                                printf ("unreachable ret instruction "
2198                                        "at address 0x%x deleted.\n",
2199                                        (int) dot + insn_size);
2200 
2201                              /* Delete two bytes of data.  */
2202                              if (!elf32_avr_relax_delete_bytes (abfd, sec,
2203                                         irel->r_offset + insn_size, 2))
2204                                goto error_return;
2205 
2206                              /* That will change things, so, we should relax
2207                                 again. Note that this is not required, and it
2208                                 may be slow.  */
2209                              *again = TRUE;
2210                              break;
2211                            }
2212                       }
2213 
2214                   }
2215               }
2216             break;
2217           }
2218         }
2219     }
2220 
2221   if (contents != NULL
2222       && elf_section_data (sec)->this_hdr.contents != contents)
2223     {
2224       if (! link_info->keep_memory)
2225         free (contents);
2226       else
2227         {
2228           /* Cache the section contents for elf_link_input_bfd.  */
2229           elf_section_data (sec)->this_hdr.contents = contents;
2230         }
2231     }
2232 
2233   if (internal_relocs != NULL
2234       && elf_section_data (sec)->relocs != internal_relocs)
2235     free (internal_relocs);
2236 
2237   return TRUE;
2238 
2239  error_return:
2240   if (isymbuf != NULL
2241       && symtab_hdr->contents != (unsigned char *) isymbuf)
2242     free (isymbuf);
2243   if (contents != NULL
2244       && elf_section_data (sec)->this_hdr.contents != contents)
2245     free (contents);
2246   if (internal_relocs != NULL
2247       && elf_section_data (sec)->relocs != internal_relocs)
2248     free (internal_relocs);
2249 
2250   return FALSE;
2251 }
2252 
2253 /* This is a version of bfd_generic_get_relocated_section_contents
2254    which uses elf32_avr_relocate_section.
2255 
2256    For avr it's essentially a cut and paste taken from the H8300 port.
2257    The author of the relaxation support patch for avr had absolutely no
2258    clue what is happening here but found out that this part of the code
2259    seems to be important.  */
2260 
2261 static bfd_byte *
2262 elf32_avr_get_relocated_section_contents (bfd *output_bfd,
2263                                           struct bfd_link_info *link_info,
2264                                           struct bfd_link_order *link_order,
2265                                           bfd_byte *data,
2266                                           bfd_boolean relocatable,
2267                                           asymbol **symbols)
2268 {
2269   Elf_Internal_Shdr *symtab_hdr;
2270   asection *input_section = link_order->u.indirect.section;
2271   bfd *input_bfd = input_section->owner;
2272   asection **sections = NULL;
2273   Elf_Internal_Rela *internal_relocs = NULL;
2274   Elf_Internal_Sym *isymbuf = NULL;
2275 
2276   /* We only need to handle the case of relaxing, or of having a
2277      particular set of section contents, specially.  */
2278   if (relocatable
2279       || elf_section_data (input_section)->this_hdr.contents == NULL)
2280     return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
2281                                                        link_order, data,
2282                                                        relocatable,
2283                                                        symbols);
2284   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2285 
2286   memcpy (data, elf_section_data (input_section)->this_hdr.contents,
2287           (size_t) input_section->size);
2288 
2289   if ((input_section->flags & SEC_RELOC) != 0
2290       && input_section->reloc_count > 0)
2291     {
2292       asection **secpp;
2293       Elf_Internal_Sym *isym, *isymend;
2294       bfd_size_type amt;
2295 
2296       internal_relocs = (_bfd_elf_link_read_relocs
2297                          (input_bfd, input_section, NULL, NULL, FALSE));
2298       if (internal_relocs == NULL)
2299         goto error_return;
2300 
2301       if (symtab_hdr->sh_info != 0)
2302         {
2303           isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2304           if (isymbuf == NULL)
2305             isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2306                                             symtab_hdr->sh_info, 0,
2307                                             NULL, NULL, NULL);
2308           if (isymbuf == NULL)
2309             goto error_return;
2310         }
2311 
2312       amt = symtab_hdr->sh_info;
2313       amt *= sizeof (asection *);
2314       sections = bfd_malloc (amt);
2315       if (sections == NULL && amt != 0)
2316         goto error_return;
2317 
2318       isymend = isymbuf + symtab_hdr->sh_info;
2319       for (isym = isymbuf, secpp = sections; isym < isymend; ++isym, ++secpp)
2320         {
2321           asection *isec;
2322 
2323           if (isym->st_shndx == SHN_UNDEF)
2324             isec = bfd_und_section_ptr;
2325           else if (isym->st_shndx == SHN_ABS)
2326             isec = bfd_abs_section_ptr;
2327           else if (isym->st_shndx == SHN_COMMON)
2328             isec = bfd_com_section_ptr;
2329           else
2330             isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
2331 
2332           *secpp = isec;
2333         }
2334 
2335       if (! elf32_avr_relocate_section (output_bfd, link_info, input_bfd,
2336                                         input_section, data, internal_relocs,
2337                                         isymbuf, sections))
2338         goto error_return;
2339 
2340       if (sections != NULL)
2341         free (sections);
2342       if (isymbuf != NULL
2343           && symtab_hdr->contents != (unsigned char *) isymbuf)
2344         free (isymbuf);
2345       if (elf_section_data (input_section)->relocs != internal_relocs)
2346         free (internal_relocs);
2347     }
2348 
2349   return data;
2350 
2351  error_return:
2352   if (sections != NULL)
2353     free (sections);
2354   if (isymbuf != NULL
2355       && symtab_hdr->contents != (unsigned char *) isymbuf)
2356     free (isymbuf);
2357   if (internal_relocs != NULL
2358       && elf_section_data (input_section)->relocs != internal_relocs)
2359     free (internal_relocs);
2360   return NULL;
2361 }
2362 
2363 
2364 /* Determines the hash entry name for a particular reloc. It consists of
2365    the identifier of the symbol section and the added reloc addend and
2366    symbol offset relative to the section the symbol is attached to.  */
2367 
2368 static char *
2369 avr_stub_name (const asection *symbol_section,
2370                const bfd_vma symbol_offset,
2371                const Elf_Internal_Rela *rela)
2372 {
2373   char *stub_name;
2374   bfd_size_type len;
2375 
2376   len = 8 + 1 + 8 + 1 + 1;
2377   stub_name = bfd_malloc (len);
2378 
2379   sprintf (stub_name, "%08x+%08x",
2380            symbol_section->id & 0xffffffff,
2381            (unsigned int) ((rela->r_addend & 0xffffffff) + symbol_offset));
2382 
2383   return stub_name;
2384 }
2385 
2386 
2387 /* Add a new stub entry to the stub hash.  Not all fields of the new
2388    stub entry are initialised.  */
2389 
2390 static struct elf32_avr_stub_hash_entry *
2391 avr_add_stub (const char *stub_name,
2392               struct elf32_avr_link_hash_table *htab)
2393 {
2394   struct elf32_avr_stub_hash_entry *hsh;
2395 
2396   /* Enter this entry into the linker stub hash table.  */
2397   hsh = avr_stub_hash_lookup (&htab->bstab, stub_name, TRUE, FALSE);
2398 
2399   if (hsh == NULL)
2400     {
2401       (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
2402                              NULL, stub_name);
2403       return NULL;
2404     }
2405 
2406   hsh->stub_offset = 0;
2407   return hsh;
2408 }
2409 
2410 /* We assume that there is already space allocated for the stub section
2411    contents and that before building the stubs the section size is
2412    initialized to 0.  We assume that within the stub hash table entry,
2413    the absolute position of the jmp target has been written in the
2414    target_value field.  We write here the offset of the generated jmp insn
2415    relative to the trampoline section start to the stub_offset entry in
2416    the stub hash table entry.  */
2417 
2418 static  bfd_boolean
2419 avr_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
2420 {
2421   struct elf32_avr_stub_hash_entry *hsh;
2422   struct bfd_link_info *info;
2423   struct elf32_avr_link_hash_table *htab;
2424   bfd *stub_bfd;
2425   bfd_byte *loc;
2426   bfd_vma target;
2427   bfd_vma starget;
2428 
2429   /* Basic opcode */
2430   bfd_vma jmp_insn = 0x0000940c;
2431 
2432   /* Massage our args to the form they really have.  */
2433   hsh = avr_stub_hash_entry (bh);
2434 
2435   if (!hsh->is_actually_needed)
2436     return TRUE;
2437 
2438   info = (struct bfd_link_info *) in_arg;
2439 
2440   htab = avr_link_hash_table (info);
2441   if (htab == NULL)
2442     return FALSE;
2443 
2444   target = hsh->target_value;
2445 
2446   /* Make a note of the offset within the stubs for this entry.  */
2447   hsh->stub_offset = htab->stub_sec->size;
2448   loc = htab->stub_sec->contents + hsh->stub_offset;
2449 
2450   stub_bfd = htab->stub_sec->owner;
2451 
2452   if (debug_stubs)
2453     printf ("Building one Stub. Address: 0x%x, Offset: 0x%x\n",
2454              (unsigned int) target,
2455              (unsigned int) hsh->stub_offset);
2456 
2457   /* We now have to add the information on the jump target to the bare
2458      opcode bits already set in jmp_insn.  */
2459 
2460   /* Check for the alignment of the address.  */
2461   if (target & 1)
2462      return FALSE;
2463 
2464   starget = target >> 1;
2465   jmp_insn |= ((starget & 0x10000) | ((starget << 3) & 0x1f00000)) >> 16;
2466   bfd_put_16 (stub_bfd, jmp_insn, loc);
2467   bfd_put_16 (stub_bfd, (bfd_vma) starget & 0xffff, loc + 2);
2468 
2469   htab->stub_sec->size += 4;
2470 
2471   /* Now add the entries in the address mapping table if there is still
2472      space left.  */
2473   {
2474     unsigned int nr;
2475 
2476     nr = htab->amt_entry_cnt + 1;
2477     if (nr <= htab->amt_max_entry_cnt)
2478       {
2479         htab->amt_entry_cnt = nr;
2480 
2481         htab->amt_stub_offsets[nr - 1] = hsh->stub_offset;
2482         htab->amt_destination_addr[nr - 1] = target;
2483       }
2484   }
2485 
2486   return TRUE;
2487 }
2488 
2489 static bfd_boolean
2490 avr_mark_stub_not_to_be_necessary (struct bfd_hash_entry *bh,
2491                                    void *in_arg)
2492 {
2493   struct elf32_avr_stub_hash_entry *hsh;
2494   struct elf32_avr_link_hash_table *htab;
2495 
2496   htab = in_arg;
2497   hsh = avr_stub_hash_entry (bh);
2498   hsh->is_actually_needed = FALSE;
2499 
2500   return TRUE;
2501 }
2502 
2503 static bfd_boolean
2504 avr_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
2505 {
2506   struct elf32_avr_stub_hash_entry *hsh;
2507   struct elf32_avr_link_hash_table *htab;
2508   int size;
2509 
2510   /* Massage our args to the form they really have.  */
2511   hsh = avr_stub_hash_entry (bh);
2512   htab = in_arg;
2513 
2514   if (hsh->is_actually_needed)
2515     size = 4;
2516   else
2517     size = 0;
2518 
2519   htab->stub_sec->size += size;
2520   return TRUE;
2521 }
2522 
2523 void
2524 elf32_avr_setup_params (struct bfd_link_info *info,
2525                         bfd *avr_stub_bfd,
2526                         asection *avr_stub_section,
2527                         bfd_boolean no_stubs,
2528                         bfd_boolean deb_stubs,
2529                         bfd_boolean deb_relax,
2530                         bfd_vma pc_wrap_around,
2531                         bfd_boolean call_ret_replacement)
2532 {
2533   struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info);
2534 
2535   if (htab == NULL)
2536     return;
2537   htab->stub_sec = avr_stub_section;
2538   htab->stub_bfd = avr_stub_bfd;
2539   htab->no_stubs = no_stubs;
2540 
2541   debug_relax = deb_relax;
2542   debug_stubs = deb_stubs;
2543   avr_pc_wrap_around = pc_wrap_around;
2544   avr_replace_call_ret_sequences = call_ret_replacement;
2545 }
2546 
2547 
2548 /* Set up various things so that we can make a list of input sections
2549    for each output section included in the link.  Returns -1 on error,
2550    0 when no stubs will be needed, and 1 on success.  It also sets
2551    information on the stubs bfd and the stub section in the info
2552    struct.  */
2553 
2554 int
2555 elf32_avr_setup_section_lists (bfd *output_bfd,
2556                                struct bfd_link_info *info)
2557 {
2558   bfd *input_bfd;
2559   unsigned int bfd_count;
2560   int top_id, top_index;
2561   asection *section;
2562   asection **input_list, **list;
2563   bfd_size_type amt;
2564   struct elf32_avr_link_hash_table *htab = avr_link_hash_table(info);
2565 
2566   if (htab == NULL || htab->no_stubs)
2567     return 0;
2568 
2569   /* Count the number of input BFDs and find the top input section id.  */
2570   for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2571        input_bfd != NULL;
2572        input_bfd = input_bfd->link_next)
2573     {
2574       bfd_count += 1;
2575       for (section = input_bfd->sections;
2576            section != NULL;
2577            section = section->next)
2578 	if (top_id < section->id)
2579 	  top_id = section->id;
2580     }
2581 
2582   htab->bfd_count = bfd_count;
2583 
2584   /* We can't use output_bfd->section_count here to find the top output
2585      section index as some sections may have been removed, and
2586      strip_excluded_output_sections doesn't renumber the indices.  */
2587   for (section = output_bfd->sections, top_index = 0;
2588        section != NULL;
2589        section = section->next)
2590     if (top_index < section->index)
2591       top_index = section->index;
2592 
2593   htab->top_index = top_index;
2594   amt = sizeof (asection *) * (top_index + 1);
2595   input_list = bfd_malloc (amt);
2596   htab->input_list = input_list;
2597   if (input_list == NULL)
2598     return -1;
2599 
2600   /* For sections we aren't interested in, mark their entries with a
2601      value we can check later.  */
2602   list = input_list + top_index;
2603   do
2604     *list = bfd_abs_section_ptr;
2605   while (list-- != input_list);
2606 
2607   for (section = output_bfd->sections;
2608        section != NULL;
2609        section = section->next)
2610     if ((section->flags & SEC_CODE) != 0)
2611       input_list[section->index] = NULL;
2612 
2613   return 1;
2614 }
2615 
2616 
2617 /* Read in all local syms for all input bfds, and create hash entries
2618    for export stubs if we are building a multi-subspace shared lib.
2619    Returns -1 on error, 0 otherwise.  */
2620 
2621 static int
2622 get_local_syms (bfd *input_bfd, struct bfd_link_info *info)
2623 {
2624   unsigned int bfd_indx;
2625   Elf_Internal_Sym *local_syms, **all_local_syms;
2626   struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info);
2627   bfd_size_type amt;
2628 
2629   if (htab == NULL)
2630     return -1;
2631 
2632   /* We want to read in symbol extension records only once.  To do this
2633      we need to read in the local symbols in parallel and save them for
2634      later use; so hold pointers to the local symbols in an array.  */
2635   amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2636   all_local_syms = bfd_zmalloc (amt);
2637   htab->all_local_syms = all_local_syms;
2638   if (all_local_syms == NULL)
2639     return -1;
2640 
2641   /* Walk over all the input BFDs, swapping in local symbols.
2642      If we are creating a shared library, create hash entries for the
2643      export stubs.  */
2644   for (bfd_indx = 0;
2645        input_bfd != NULL;
2646        input_bfd = input_bfd->link_next, bfd_indx++)
2647     {
2648       Elf_Internal_Shdr *symtab_hdr;
2649 
2650       /* We'll need the symbol table in a second.  */
2651       symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2652       if (symtab_hdr->sh_info == 0)
2653 	continue;
2654 
2655       /* We need an array of the local symbols attached to the input bfd.  */
2656       local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2657       if (local_syms == NULL)
2658 	{
2659 	  local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2660 					     symtab_hdr->sh_info, 0,
2661 					     NULL, NULL, NULL);
2662 	  /* Cache them for elf_link_input_bfd.  */
2663 	  symtab_hdr->contents = (unsigned char *) local_syms;
2664 	}
2665       if (local_syms == NULL)
2666 	return -1;
2667 
2668       all_local_syms[bfd_indx] = local_syms;
2669     }
2670 
2671   return 0;
2672 }
2673 
2674 #define ADD_DUMMY_STUBS_FOR_DEBUGGING 0
2675 
2676 bfd_boolean
2677 elf32_avr_size_stubs (bfd *output_bfd,
2678                       struct bfd_link_info *info,
2679                       bfd_boolean is_prealloc_run)
2680 {
2681   struct elf32_avr_link_hash_table *htab;
2682   int stub_changed = 0;
2683 
2684   htab = avr_link_hash_table (info);
2685   if (htab == NULL)
2686     return FALSE;
2687 
2688   /* At this point we initialize htab->vector_base
2689      To the start of the text output section.  */
2690   htab->vector_base = htab->stub_sec->output_section->vma;
2691 
2692   if (get_local_syms (info->input_bfds, info))
2693     {
2694       if (htab->all_local_syms)
2695 	goto error_ret_free_local;
2696       return FALSE;
2697     }
2698 
2699   if (ADD_DUMMY_STUBS_FOR_DEBUGGING)
2700     {
2701       struct elf32_avr_stub_hash_entry *test;
2702 
2703       test = avr_add_stub ("Hugo",htab);
2704       test->target_value = 0x123456;
2705       test->stub_offset = 13;
2706 
2707       test = avr_add_stub ("Hugo2",htab);
2708       test->target_value = 0x84210;
2709       test->stub_offset = 14;
2710     }
2711 
2712   while (1)
2713     {
2714       bfd *input_bfd;
2715       unsigned int bfd_indx;
2716 
2717       /* We will have to re-generate the stub hash table each time anything
2718          in memory has changed.  */
2719 
2720       bfd_hash_traverse (&htab->bstab, avr_mark_stub_not_to_be_necessary, htab);
2721       for (input_bfd = info->input_bfds, bfd_indx = 0;
2722            input_bfd != NULL;
2723            input_bfd = input_bfd->link_next, bfd_indx++)
2724         {
2725           Elf_Internal_Shdr *symtab_hdr;
2726           asection *section;
2727           Elf_Internal_Sym *local_syms;
2728 
2729           /* We'll need the symbol table in a second.  */
2730           symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2731           if (symtab_hdr->sh_info == 0)
2732             continue;
2733 
2734           local_syms = htab->all_local_syms[bfd_indx];
2735 
2736           /* Walk over each section attached to the input bfd.  */
2737           for (section = input_bfd->sections;
2738                section != NULL;
2739                section = section->next)
2740             {
2741               Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2742 
2743               /* If there aren't any relocs, then there's nothing more
2744                  to do.  */
2745               if ((section->flags & SEC_RELOC) == 0
2746                   || section->reloc_count == 0)
2747                 continue;
2748 
2749               /* If this section is a link-once section that will be
2750                  discarded, then don't create any stubs.  */
2751               if (section->output_section == NULL
2752                   || section->output_section->owner != output_bfd)
2753                 continue;
2754 
2755               /* Get the relocs.  */
2756               internal_relocs
2757                 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2758                                              info->keep_memory);
2759               if (internal_relocs == NULL)
2760                 goto error_ret_free_local;
2761 
2762               /* Now examine each relocation.  */
2763               irela = internal_relocs;
2764               irelaend = irela + section->reloc_count;
2765               for (; irela < irelaend; irela++)
2766                 {
2767                   unsigned int r_type, r_indx;
2768                   struct elf32_avr_stub_hash_entry *hsh;
2769                   asection *sym_sec;
2770                   bfd_vma sym_value;
2771                   bfd_vma destination;
2772                   struct elf_link_hash_entry *hh;
2773                   char *stub_name;
2774 
2775                   r_type = ELF32_R_TYPE (irela->r_info);
2776                   r_indx = ELF32_R_SYM (irela->r_info);
2777 
2778                   /* Only look for 16 bit GS relocs. No other reloc will need a
2779                      stub.  */
2780                   if (!((r_type == R_AVR_16_PM)
2781                         || (r_type == R_AVR_LO8_LDI_GS)
2782                         || (r_type == R_AVR_HI8_LDI_GS)))
2783                     continue;
2784 
2785                   /* Now determine the call target, its name, value,
2786                      section.  */
2787                   sym_sec = NULL;
2788                   sym_value = 0;
2789                   destination = 0;
2790                   hh = NULL;
2791                   if (r_indx < symtab_hdr->sh_info)
2792                     {
2793                       /* It's a local symbol.  */
2794                       Elf_Internal_Sym *sym;
2795                       Elf_Internal_Shdr *hdr;
2796 		      unsigned int shndx;
2797 
2798                       sym = local_syms + r_indx;
2799                       if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2800                         sym_value = sym->st_value;
2801 		      shndx = sym->st_shndx;
2802 		      if (shndx < elf_numsections (input_bfd))
2803 			{
2804 			  hdr = elf_elfsections (input_bfd)[shndx];
2805 			  sym_sec = hdr->bfd_section;
2806 			  destination = (sym_value + irela->r_addend
2807 					 + sym_sec->output_offset
2808 					 + sym_sec->output_section->vma);
2809 			}
2810                     }
2811                   else
2812                     {
2813                       /* It's an external symbol.  */
2814                       int e_indx;
2815 
2816                       e_indx = r_indx - symtab_hdr->sh_info;
2817                       hh = elf_sym_hashes (input_bfd)[e_indx];
2818 
2819                       while (hh->root.type == bfd_link_hash_indirect
2820                              || hh->root.type == bfd_link_hash_warning)
2821                         hh = (struct elf_link_hash_entry *)
2822                               (hh->root.u.i.link);
2823 
2824                       if (hh->root.type == bfd_link_hash_defined
2825                           || hh->root.type == bfd_link_hash_defweak)
2826                         {
2827                           sym_sec = hh->root.u.def.section;
2828                           sym_value = hh->root.u.def.value;
2829                           if (sym_sec->output_section != NULL)
2830                           destination = (sym_value + irela->r_addend
2831                                          + sym_sec->output_offset
2832                                          + sym_sec->output_section->vma);
2833                         }
2834                       else if (hh->root.type == bfd_link_hash_undefweak)
2835                         {
2836                           if (! info->shared)
2837                             continue;
2838                         }
2839                       else if (hh->root.type == bfd_link_hash_undefined)
2840                         {
2841                           if (! (info->unresolved_syms_in_objects == RM_IGNORE
2842                                  && (ELF_ST_VISIBILITY (hh->other)
2843                                      == STV_DEFAULT)))
2844                              continue;
2845                         }
2846                       else
2847                         {
2848                           bfd_set_error (bfd_error_bad_value);
2849 
2850                           error_ret_free_internal:
2851                           if (elf_section_data (section)->relocs == NULL)
2852                             free (internal_relocs);
2853                           goto error_ret_free_local;
2854                         }
2855                     }
2856 
2857                   if (! avr_stub_is_required_for_16_bit_reloc
2858 		      (destination - htab->vector_base))
2859                     {
2860                       if (!is_prealloc_run)
2861 			/* We are having a reloc that does't need a stub.  */
2862 			continue;
2863 
2864 		      /* We don't right now know if a stub will be needed.
2865 			 Let's rather be on the safe side.  */
2866                     }
2867 
2868                   /* Get the name of this stub.  */
2869                   stub_name = avr_stub_name (sym_sec, sym_value, irela);
2870 
2871                   if (!stub_name)
2872                     goto error_ret_free_internal;
2873 
2874 
2875                   hsh = avr_stub_hash_lookup (&htab->bstab,
2876                                               stub_name,
2877                                               FALSE, FALSE);
2878                   if (hsh != NULL)
2879                     {
2880                       /* The proper stub has already been created.  Mark it
2881                          to be used and write the possibly changed destination
2882                          value.  */
2883                       hsh->is_actually_needed = TRUE;
2884                       hsh->target_value = destination;
2885                       free (stub_name);
2886                       continue;
2887                     }
2888 
2889                   hsh = avr_add_stub (stub_name, htab);
2890                   if (hsh == NULL)
2891                     {
2892                       free (stub_name);
2893                       goto error_ret_free_internal;
2894                     }
2895 
2896                   hsh->is_actually_needed = TRUE;
2897                   hsh->target_value = destination;
2898 
2899                   if (debug_stubs)
2900                     printf ("Adding stub with destination 0x%x to the"
2901                             " hash table.\n", (unsigned int) destination);
2902                   if (debug_stubs)
2903                     printf ("(Pre-Alloc run: %i)\n", is_prealloc_run);
2904 
2905                   stub_changed = TRUE;
2906                 }
2907 
2908               /* We're done with the internal relocs, free them.  */
2909               if (elf_section_data (section)->relocs == NULL)
2910                 free (internal_relocs);
2911             }
2912         }
2913 
2914       /* Re-Calculate the number of needed stubs.  */
2915       htab->stub_sec->size = 0;
2916       bfd_hash_traverse (&htab->bstab, avr_size_one_stub, htab);
2917 
2918       if (!stub_changed)
2919         break;
2920 
2921       stub_changed = FALSE;
2922     }
2923 
2924   free (htab->all_local_syms);
2925   return TRUE;
2926 
2927  error_ret_free_local:
2928   free (htab->all_local_syms);
2929   return FALSE;
2930 }
2931 
2932 
2933 /* Build all the stubs associated with the current output file.  The
2934    stubs are kept in a hash table attached to the main linker hash
2935    table.  We also set up the .plt entries for statically linked PIC
2936    functions here.  This function is called via hppaelf_finish in the
2937    linker.  */
2938 
2939 bfd_boolean
2940 elf32_avr_build_stubs (struct bfd_link_info *info)
2941 {
2942   asection *stub_sec;
2943   struct bfd_hash_table *table;
2944   struct elf32_avr_link_hash_table *htab;
2945   bfd_size_type total_size = 0;
2946 
2947   htab = avr_link_hash_table (info);
2948   if (htab == NULL)
2949     return FALSE;
2950 
2951   /* In case that there were several stub sections:  */
2952   for (stub_sec = htab->stub_bfd->sections;
2953        stub_sec != NULL;
2954        stub_sec = stub_sec->next)
2955     {
2956       bfd_size_type size;
2957 
2958       /* Allocate memory to hold the linker stubs.  */
2959       size = stub_sec->size;
2960       total_size += size;
2961 
2962       stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
2963       if (stub_sec->contents == NULL && size != 0)
2964 	return FALSE;
2965       stub_sec->size = 0;
2966     }
2967 
2968   /* Allocate memory for the adress mapping table.  */
2969   htab->amt_entry_cnt = 0;
2970   htab->amt_max_entry_cnt = total_size / 4;
2971   htab->amt_stub_offsets = bfd_malloc (sizeof (bfd_vma)
2972                                        * htab->amt_max_entry_cnt);
2973   htab->amt_destination_addr = bfd_malloc (sizeof (bfd_vma)
2974 					   * htab->amt_max_entry_cnt );
2975 
2976   if (debug_stubs)
2977     printf ("Allocating %i entries in the AMT\n", htab->amt_max_entry_cnt);
2978 
2979   /* Build the stubs as directed by the stub hash table.  */
2980   table = &htab->bstab;
2981   bfd_hash_traverse (table, avr_build_one_stub, info);
2982 
2983   if (debug_stubs)
2984     printf ("Final Stub section Size: %i\n", (int) htab->stub_sec->size);
2985 
2986   return TRUE;
2987 }
2988 
2989 #define ELF_ARCH		bfd_arch_avr
2990 #define ELF_MACHINE_CODE	EM_AVR
2991 #define ELF_MACHINE_ALT1	EM_AVR_OLD
2992 #define ELF_MAXPAGESIZE		1
2993 
2994 #define TARGET_LITTLE_SYM       bfd_elf32_avr_vec
2995 #define TARGET_LITTLE_NAME	"elf32-avr"
2996 
2997 #define bfd_elf32_bfd_link_hash_table_create elf32_avr_link_hash_table_create
2998 #define bfd_elf32_bfd_link_hash_table_free   elf32_avr_link_hash_table_free
2999 
3000 #define elf_info_to_howto	             avr_info_to_howto_rela
3001 #define elf_info_to_howto_rel	             NULL
3002 #define elf_backend_relocate_section         elf32_avr_relocate_section
3003 #define elf_backend_check_relocs             elf32_avr_check_relocs
3004 #define elf_backend_can_gc_sections          1
3005 #define elf_backend_rela_normal		     1
3006 #define elf_backend_final_write_processing \
3007 					bfd_elf_avr_final_write_processing
3008 #define elf_backend_object_p		elf32_avr_object_p
3009 
3010 #define bfd_elf32_bfd_relax_section elf32_avr_relax_section
3011 #define bfd_elf32_bfd_get_relocated_section_contents \
3012                                         elf32_avr_get_relocated_section_contents
3013 
3014 #include "elf32-target.h"
3015