1 /* .eh_frame section optimization. 2 Copyright (C) 2001-2022 Free Software Foundation, Inc. 3 Written by Jakub Jelinek <jakub@redhat.com>. 4 5 This file is part of BFD, the Binary File Descriptor library. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, write to the Free Software 19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 20 MA 02110-1301, USA. */ 21 22 #include "sysdep.h" 23 #include "bfd.h" 24 #include "libbfd.h" 25 #include "elf-bfd.h" 26 #include "dwarf2.h" 27 28 #define EH_FRAME_HDR_SIZE 8 29 30 struct cie 31 { 32 unsigned int length; 33 unsigned int hash; 34 unsigned char version; 35 unsigned char local_personality; 36 char augmentation[20]; 37 bfd_vma code_align; 38 bfd_signed_vma data_align; 39 bfd_vma ra_column; 40 bfd_vma augmentation_size; 41 union { 42 struct elf_link_hash_entry *h; 43 struct { 44 unsigned int bfd_id; 45 unsigned int index; 46 } sym; 47 unsigned int reloc_index; 48 } personality; 49 struct eh_cie_fde *cie_inf; 50 unsigned char per_encoding; 51 unsigned char lsda_encoding; 52 unsigned char fde_encoding; 53 unsigned char initial_insn_length; 54 unsigned char can_make_lsda_relative; 55 unsigned char initial_instructions[50]; 56 }; 57 58 59 60 /* If *ITER hasn't reached END yet, read the next byte into *RESULT and 61 move onto the next byte. Return true on success. */ 62 63 static inline bool 64 read_byte (bfd_byte **iter, bfd_byte *end, unsigned char *result) 65 { 66 if (*iter >= end) 67 return false; 68 *result = *((*iter)++); 69 return true; 70 } 71 72 /* Move *ITER over LENGTH bytes, or up to END, whichever is closer. 73 Return true it was possible to move LENGTH bytes. */ 74 75 static inline bool 76 skip_bytes (bfd_byte **iter, bfd_byte *end, bfd_size_type length) 77 { 78 if ((bfd_size_type) (end - *iter) < length) 79 { 80 *iter = end; 81 return false; 82 } 83 *iter += length; 84 return true; 85 } 86 87 /* Move *ITER over an leb128, stopping at END. Return true if the end 88 of the leb128 was found. */ 89 90 static bool 91 skip_leb128 (bfd_byte **iter, bfd_byte *end) 92 { 93 unsigned char byte; 94 do 95 if (!read_byte (iter, end, &byte)) 96 return false; 97 while (byte & 0x80); 98 return true; 99 } 100 101 /* Like skip_leb128, but treat the leb128 as an unsigned value and 102 store it in *VALUE. */ 103 104 static bool 105 read_uleb128 (bfd_byte **iter, bfd_byte *end, bfd_vma *value) 106 { 107 bfd_byte *start, *p; 108 109 start = *iter; 110 if (!skip_leb128 (iter, end)) 111 return false; 112 113 p = *iter; 114 *value = *--p; 115 while (p > start) 116 *value = (*value << 7) | (*--p & 0x7f); 117 118 return true; 119 } 120 121 /* Like read_uleb128, but for signed values. */ 122 123 static bool 124 read_sleb128 (bfd_byte **iter, bfd_byte *end, bfd_signed_vma *value) 125 { 126 bfd_byte *start, *p; 127 128 start = *iter; 129 if (!skip_leb128 (iter, end)) 130 return false; 131 132 p = *iter; 133 *value = ((*--p & 0x7f) ^ 0x40) - 0x40; 134 while (p > start) 135 *value = (*value << 7) | (*--p & 0x7f); 136 137 return true; 138 } 139 140 /* Return 0 if either encoding is variable width, or not yet known to bfd. */ 141 142 static 143 int get_DW_EH_PE_width (int encoding, int ptr_size) 144 { 145 /* DW_EH_PE_ values of 0x60 and 0x70 weren't defined at the time .eh_frame 146 was added to bfd. */ 147 if ((encoding & 0x60) == 0x60) 148 return 0; 149 150 switch (encoding & 7) 151 { 152 case DW_EH_PE_udata2: return 2; 153 case DW_EH_PE_udata4: return 4; 154 case DW_EH_PE_udata8: return 8; 155 case DW_EH_PE_absptr: return ptr_size; 156 default: 157 break; 158 } 159 160 return 0; 161 } 162 163 #define get_DW_EH_PE_signed(encoding) (((encoding) & DW_EH_PE_signed) != 0) 164 165 /* Read a width sized value from memory. */ 166 167 static bfd_vma 168 read_value (bfd *abfd, bfd_byte *buf, int width, int is_signed) 169 { 170 bfd_vma value; 171 172 switch (width) 173 { 174 case 2: 175 if (is_signed) 176 value = bfd_get_signed_16 (abfd, buf); 177 else 178 value = bfd_get_16 (abfd, buf); 179 break; 180 case 4: 181 if (is_signed) 182 value = bfd_get_signed_32 (abfd, buf); 183 else 184 value = bfd_get_32 (abfd, buf); 185 break; 186 case 8: 187 if (is_signed) 188 value = bfd_get_signed_64 (abfd, buf); 189 else 190 value = bfd_get_64 (abfd, buf); 191 break; 192 default: 193 BFD_FAIL (); 194 return 0; 195 } 196 197 return value; 198 } 199 200 /* Store a width sized value to memory. */ 201 202 static void 203 write_value (bfd *abfd, bfd_byte *buf, bfd_vma value, int width) 204 { 205 switch (width) 206 { 207 case 2: bfd_put_16 (abfd, value, buf); break; 208 case 4: bfd_put_32 (abfd, value, buf); break; 209 case 8: bfd_put_64 (abfd, value, buf); break; 210 default: BFD_FAIL (); 211 } 212 } 213 214 /* Return one if C1 and C2 CIEs can be merged. */ 215 216 static int 217 cie_eq (const void *e1, const void *e2) 218 { 219 const struct cie *c1 = (const struct cie *) e1; 220 const struct cie *c2 = (const struct cie *) e2; 221 222 if (c1->hash == c2->hash 223 && c1->length == c2->length 224 && c1->version == c2->version 225 && c1->local_personality == c2->local_personality 226 && strcmp (c1->augmentation, c2->augmentation) == 0 227 && strcmp (c1->augmentation, "eh") != 0 228 && c1->code_align == c2->code_align 229 && c1->data_align == c2->data_align 230 && c1->ra_column == c2->ra_column 231 && c1->augmentation_size == c2->augmentation_size 232 && memcmp (&c1->personality, &c2->personality, 233 sizeof (c1->personality)) == 0 234 && (c1->cie_inf->u.cie.u.sec->output_section 235 == c2->cie_inf->u.cie.u.sec->output_section) 236 && c1->per_encoding == c2->per_encoding 237 && c1->lsda_encoding == c2->lsda_encoding 238 && c1->fde_encoding == c2->fde_encoding 239 && c1->initial_insn_length == c2->initial_insn_length 240 && c1->initial_insn_length <= sizeof (c1->initial_instructions) 241 && memcmp (c1->initial_instructions, 242 c2->initial_instructions, 243 c1->initial_insn_length) == 0) 244 return 1; 245 246 return 0; 247 } 248 249 static hashval_t 250 cie_hash (const void *e) 251 { 252 const struct cie *c = (const struct cie *) e; 253 return c->hash; 254 } 255 256 static hashval_t 257 cie_compute_hash (struct cie *c) 258 { 259 hashval_t h = 0; 260 size_t len; 261 h = iterative_hash_object (c->length, h); 262 h = iterative_hash_object (c->version, h); 263 h = iterative_hash (c->augmentation, strlen (c->augmentation) + 1, h); 264 h = iterative_hash_object (c->code_align, h); 265 h = iterative_hash_object (c->data_align, h); 266 h = iterative_hash_object (c->ra_column, h); 267 h = iterative_hash_object (c->augmentation_size, h); 268 h = iterative_hash_object (c->personality, h); 269 h = iterative_hash_object (c->cie_inf->u.cie.u.sec->output_section, h); 270 h = iterative_hash_object (c->per_encoding, h); 271 h = iterative_hash_object (c->lsda_encoding, h); 272 h = iterative_hash_object (c->fde_encoding, h); 273 h = iterative_hash_object (c->initial_insn_length, h); 274 len = c->initial_insn_length; 275 if (len > sizeof (c->initial_instructions)) 276 len = sizeof (c->initial_instructions); 277 h = iterative_hash (c->initial_instructions, len, h); 278 c->hash = h; 279 return h; 280 } 281 282 /* Return the number of extra bytes that we'll be inserting into 283 ENTRY's augmentation string. */ 284 285 static inline unsigned int 286 extra_augmentation_string_bytes (struct eh_cie_fde *entry) 287 { 288 unsigned int size = 0; 289 if (entry->cie) 290 { 291 if (entry->add_augmentation_size) 292 size++; 293 if (entry->u.cie.add_fde_encoding) 294 size++; 295 } 296 return size; 297 } 298 299 /* Likewise ENTRY's augmentation data. */ 300 301 static inline unsigned int 302 extra_augmentation_data_bytes (struct eh_cie_fde *entry) 303 { 304 unsigned int size = 0; 305 if (entry->add_augmentation_size) 306 size++; 307 if (entry->cie && entry->u.cie.add_fde_encoding) 308 size++; 309 return size; 310 } 311 312 /* Return the size that ENTRY will have in the output. */ 313 314 static unsigned int 315 size_of_output_cie_fde (struct eh_cie_fde *entry) 316 { 317 if (entry->removed) 318 return 0; 319 if (entry->size == 4) 320 return 4; 321 return (entry->size 322 + extra_augmentation_string_bytes (entry) 323 + extra_augmentation_data_bytes (entry)); 324 } 325 326 /* Return the offset of the FDE or CIE after ENT. */ 327 328 static unsigned int 329 next_cie_fde_offset (const struct eh_cie_fde *ent, 330 const struct eh_cie_fde *last, 331 const asection *sec) 332 { 333 while (++ent < last) 334 { 335 if (!ent->removed) 336 return ent->new_offset; 337 } 338 return sec->size; 339 } 340 341 /* Assume that the bytes between *ITER and END are CFA instructions. 342 Try to move *ITER past the first instruction and return true on 343 success. ENCODED_PTR_WIDTH gives the width of pointer entries. */ 344 345 static bool 346 skip_cfa_op (bfd_byte **iter, bfd_byte *end, unsigned int encoded_ptr_width) 347 { 348 bfd_byte op; 349 bfd_vma length; 350 351 if (!read_byte (iter, end, &op)) 352 return false; 353 354 switch (op & 0xc0 ? op & 0xc0 : op) 355 { 356 case DW_CFA_nop: 357 case DW_CFA_advance_loc: 358 case DW_CFA_restore: 359 case DW_CFA_remember_state: 360 case DW_CFA_restore_state: 361 case DW_CFA_GNU_window_save: 362 /* No arguments. */ 363 return true; 364 365 case DW_CFA_offset: 366 case DW_CFA_restore_extended: 367 case DW_CFA_undefined: 368 case DW_CFA_same_value: 369 case DW_CFA_def_cfa_register: 370 case DW_CFA_def_cfa_offset: 371 case DW_CFA_def_cfa_offset_sf: 372 case DW_CFA_GNU_args_size: 373 /* One leb128 argument. */ 374 return skip_leb128 (iter, end); 375 376 case DW_CFA_val_offset: 377 case DW_CFA_val_offset_sf: 378 case DW_CFA_offset_extended: 379 case DW_CFA_register: 380 case DW_CFA_def_cfa: 381 case DW_CFA_offset_extended_sf: 382 case DW_CFA_GNU_negative_offset_extended: 383 case DW_CFA_def_cfa_sf: 384 /* Two leb128 arguments. */ 385 return (skip_leb128 (iter, end) 386 && skip_leb128 (iter, end)); 387 388 case DW_CFA_def_cfa_expression: 389 /* A variable-length argument. */ 390 return (read_uleb128 (iter, end, &length) 391 && skip_bytes (iter, end, length)); 392 393 case DW_CFA_expression: 394 case DW_CFA_val_expression: 395 /* A leb128 followed by a variable-length argument. */ 396 return (skip_leb128 (iter, end) 397 && read_uleb128 (iter, end, &length) 398 && skip_bytes (iter, end, length)); 399 400 case DW_CFA_set_loc: 401 return skip_bytes (iter, end, encoded_ptr_width); 402 403 case DW_CFA_advance_loc1: 404 return skip_bytes (iter, end, 1); 405 406 case DW_CFA_advance_loc2: 407 return skip_bytes (iter, end, 2); 408 409 case DW_CFA_advance_loc4: 410 return skip_bytes (iter, end, 4); 411 412 case DW_CFA_MIPS_advance_loc8: 413 return skip_bytes (iter, end, 8); 414 415 default: 416 return false; 417 } 418 } 419 420 /* Try to interpret the bytes between BUF and END as CFA instructions. 421 If every byte makes sense, return a pointer to the first DW_CFA_nop 422 padding byte, or END if there is no padding. Return null otherwise. 423 ENCODED_PTR_WIDTH is as for skip_cfa_op. */ 424 425 static bfd_byte * 426 skip_non_nops (bfd_byte *buf, bfd_byte *end, unsigned int encoded_ptr_width, 427 unsigned int *set_loc_count) 428 { 429 bfd_byte *last; 430 431 last = buf; 432 while (buf < end) 433 if (*buf == DW_CFA_nop) 434 buf++; 435 else 436 { 437 if (*buf == DW_CFA_set_loc) 438 ++*set_loc_count; 439 if (!skip_cfa_op (&buf, end, encoded_ptr_width)) 440 return 0; 441 last = buf; 442 } 443 return last; 444 } 445 446 /* Convert absolute encoding ENCODING into PC-relative form. 447 SIZE is the size of a pointer. */ 448 449 static unsigned char 450 make_pc_relative (unsigned char encoding, unsigned int ptr_size) 451 { 452 if ((encoding & 0x7f) == DW_EH_PE_absptr) 453 switch (ptr_size) 454 { 455 case 2: 456 encoding |= DW_EH_PE_sdata2; 457 break; 458 case 4: 459 encoding |= DW_EH_PE_sdata4; 460 break; 461 case 8: 462 encoding |= DW_EH_PE_sdata8; 463 break; 464 } 465 return encoding | DW_EH_PE_pcrel; 466 } 467 468 /* Examine each .eh_frame_entry section and discard those 469 those that are marked SEC_EXCLUDE. */ 470 471 static void 472 bfd_elf_discard_eh_frame_entry (struct eh_frame_hdr_info *hdr_info) 473 { 474 unsigned int i; 475 for (i = 0; i < hdr_info->array_count; i++) 476 { 477 if (hdr_info->u.compact.entries[i]->flags & SEC_EXCLUDE) 478 { 479 unsigned int j; 480 for (j = i + 1; j < hdr_info->array_count; j++) 481 hdr_info->u.compact.entries[j-1] = hdr_info->u.compact.entries[j]; 482 483 hdr_info->array_count--; 484 hdr_info->u.compact.entries[hdr_info->array_count] = NULL; 485 i--; 486 } 487 } 488 } 489 490 /* Add a .eh_frame_entry section. */ 491 492 static void 493 bfd_elf_record_eh_frame_entry (struct eh_frame_hdr_info *hdr_info, 494 asection *sec) 495 { 496 if (hdr_info->array_count == hdr_info->u.compact.allocated_entries) 497 { 498 if (hdr_info->u.compact.allocated_entries == 0) 499 { 500 hdr_info->frame_hdr_is_compact = true; 501 hdr_info->u.compact.allocated_entries = 2; 502 hdr_info->u.compact.entries = 503 bfd_malloc (hdr_info->u.compact.allocated_entries 504 * sizeof (hdr_info->u.compact.entries[0])); 505 } 506 else 507 { 508 hdr_info->u.compact.allocated_entries *= 2; 509 hdr_info->u.compact.entries = 510 bfd_realloc (hdr_info->u.compact.entries, 511 hdr_info->u.compact.allocated_entries 512 * sizeof (hdr_info->u.compact.entries[0])); 513 } 514 515 BFD_ASSERT (hdr_info->u.compact.entries); 516 } 517 518 hdr_info->u.compact.entries[hdr_info->array_count++] = sec; 519 } 520 521 /* Parse a .eh_frame_entry section. Figure out which text section it 522 references. */ 523 524 bool 525 _bfd_elf_parse_eh_frame_entry (struct bfd_link_info *info, 526 asection *sec, struct elf_reloc_cookie *cookie) 527 { 528 struct elf_link_hash_table *htab; 529 struct eh_frame_hdr_info *hdr_info; 530 unsigned long r_symndx; 531 asection *text_sec; 532 533 htab = elf_hash_table (info); 534 hdr_info = &htab->eh_info; 535 536 if (sec->size == 0 537 || sec->sec_info_type != SEC_INFO_TYPE_NONE) 538 { 539 return true; 540 } 541 542 if (sec->output_section && bfd_is_abs_section (sec->output_section)) 543 { 544 /* At least one of the sections is being discarded from the 545 link, so we should just ignore them. */ 546 return true; 547 } 548 549 if (cookie->rel == cookie->relend) 550 return false; 551 552 /* The first relocation is the function start. */ 553 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift; 554 if (r_symndx == STN_UNDEF) 555 return false; 556 557 text_sec = _bfd_elf_section_for_symbol (cookie, r_symndx, false); 558 559 if (text_sec == NULL) 560 return false; 561 562 elf_section_eh_frame_entry (text_sec) = sec; 563 if (text_sec->output_section 564 && bfd_is_abs_section (text_sec->output_section)) 565 sec->flags |= SEC_EXCLUDE; 566 567 sec->sec_info_type = SEC_INFO_TYPE_EH_FRAME_ENTRY; 568 elf_section_data (sec)->sec_info = text_sec; 569 bfd_elf_record_eh_frame_entry (hdr_info, sec); 570 return true; 571 } 572 573 /* Try to parse .eh_frame section SEC, which belongs to ABFD. Store the 574 information in the section's sec_info field on success. COOKIE 575 describes the relocations in SEC. */ 576 577 void 578 _bfd_elf_parse_eh_frame (bfd *abfd, struct bfd_link_info *info, 579 asection *sec, struct elf_reloc_cookie *cookie) 580 { 581 #define REQUIRE(COND) \ 582 do \ 583 if (!(COND)) \ 584 goto free_no_table; \ 585 while (0) 586 587 bfd_byte *ehbuf = NULL, *buf, *end; 588 bfd_byte *last_fde; 589 struct eh_cie_fde *this_inf; 590 unsigned int hdr_length, hdr_id; 591 unsigned int cie_count; 592 struct cie *cie, *local_cies = NULL; 593 struct elf_link_hash_table *htab; 594 struct eh_frame_hdr_info *hdr_info; 595 struct eh_frame_sec_info *sec_info = NULL; 596 unsigned int ptr_size; 597 unsigned int num_cies; 598 unsigned int num_entries; 599 elf_gc_mark_hook_fn gc_mark_hook; 600 601 htab = elf_hash_table (info); 602 hdr_info = &htab->eh_info; 603 604 if (sec->size == 0 605 || sec->sec_info_type != SEC_INFO_TYPE_NONE) 606 { 607 /* This file does not contain .eh_frame information. */ 608 return; 609 } 610 611 if (bfd_is_abs_section (sec->output_section)) 612 { 613 /* At least one of the sections is being discarded from the 614 link, so we should just ignore them. */ 615 return; 616 } 617 618 /* Read the frame unwind information from abfd. */ 619 620 REQUIRE (bfd_malloc_and_get_section (abfd, sec, &ehbuf)); 621 622 /* If .eh_frame section size doesn't fit into int, we cannot handle 623 it (it would need to use 64-bit .eh_frame format anyway). */ 624 REQUIRE (sec->size == (unsigned int) sec->size); 625 626 ptr_size = (get_elf_backend_data (abfd) 627 ->elf_backend_eh_frame_address_size (abfd, sec)); 628 REQUIRE (ptr_size != 0); 629 630 /* Go through the section contents and work out how many FDEs and 631 CIEs there are. */ 632 buf = ehbuf; 633 end = ehbuf + sec->size; 634 num_cies = 0; 635 num_entries = 0; 636 while (buf != end) 637 { 638 num_entries++; 639 640 /* Read the length of the entry. */ 641 REQUIRE (skip_bytes (&buf, end, 4)); 642 hdr_length = bfd_get_32 (abfd, buf - 4); 643 644 /* 64-bit .eh_frame is not supported. */ 645 REQUIRE (hdr_length != 0xffffffff); 646 if (hdr_length == 0) 647 break; 648 649 REQUIRE (skip_bytes (&buf, end, 4)); 650 hdr_id = bfd_get_32 (abfd, buf - 4); 651 if (hdr_id == 0) 652 num_cies++; 653 654 REQUIRE (skip_bytes (&buf, end, hdr_length - 4)); 655 } 656 657 sec_info = (struct eh_frame_sec_info *) 658 bfd_zmalloc (sizeof (struct eh_frame_sec_info) 659 + (num_entries - 1) * sizeof (struct eh_cie_fde)); 660 REQUIRE (sec_info); 661 662 /* We need to have a "struct cie" for each CIE in this section. */ 663 if (num_cies) 664 { 665 local_cies = (struct cie *) bfd_zmalloc (num_cies * sizeof (*local_cies)); 666 REQUIRE (local_cies); 667 } 668 669 /* FIXME: octets_per_byte. */ 670 #define ENSURE_NO_RELOCS(buf) \ 671 while (cookie->rel < cookie->relend \ 672 && (cookie->rel->r_offset \ 673 < (bfd_size_type) ((buf) - ehbuf))) \ 674 { \ 675 REQUIRE (cookie->rel->r_info == 0); \ 676 cookie->rel++; \ 677 } 678 679 /* FIXME: octets_per_byte. */ 680 #define SKIP_RELOCS(buf) \ 681 while (cookie->rel < cookie->relend \ 682 && (cookie->rel->r_offset \ 683 < (bfd_size_type) ((buf) - ehbuf))) \ 684 cookie->rel++ 685 686 /* FIXME: octets_per_byte. */ 687 #define GET_RELOC(buf) \ 688 ((cookie->rel < cookie->relend \ 689 && (cookie->rel->r_offset \ 690 == (bfd_size_type) ((buf) - ehbuf))) \ 691 ? cookie->rel : NULL) 692 693 buf = ehbuf; 694 cie_count = 0; 695 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook; 696 while ((bfd_size_type) (buf - ehbuf) != sec->size) 697 { 698 char *aug; 699 bfd_byte *start, *insns, *insns_end; 700 bfd_size_type length; 701 unsigned int set_loc_count; 702 703 this_inf = sec_info->entry + sec_info->count; 704 last_fde = buf; 705 706 /* Read the length of the entry. */ 707 REQUIRE (skip_bytes (&buf, ehbuf + sec->size, 4)); 708 hdr_length = bfd_get_32 (abfd, buf - 4); 709 710 /* The CIE/FDE must be fully contained in this input section. */ 711 REQUIRE ((bfd_size_type) (buf - ehbuf) + hdr_length <= sec->size); 712 end = buf + hdr_length; 713 714 this_inf->offset = last_fde - ehbuf; 715 this_inf->size = 4 + hdr_length; 716 this_inf->reloc_index = cookie->rel - cookie->rels; 717 718 if (hdr_length == 0) 719 { 720 /* A zero-length CIE should only be found at the end of 721 the section, but allow multiple terminators. */ 722 while (skip_bytes (&buf, ehbuf + sec->size, 4)) 723 REQUIRE (bfd_get_32 (abfd, buf - 4) == 0); 724 REQUIRE ((bfd_size_type) (buf - ehbuf) == sec->size); 725 ENSURE_NO_RELOCS (buf); 726 sec_info->count++; 727 break; 728 } 729 730 REQUIRE (skip_bytes (&buf, end, 4)); 731 hdr_id = bfd_get_32 (abfd, buf - 4); 732 733 if (hdr_id == 0) 734 { 735 unsigned int initial_insn_length; 736 737 /* CIE */ 738 this_inf->cie = 1; 739 740 /* Point CIE to one of the section-local cie structures. */ 741 cie = local_cies + cie_count++; 742 743 cie->cie_inf = this_inf; 744 cie->length = hdr_length; 745 start = buf; 746 REQUIRE (read_byte (&buf, end, &cie->version)); 747 748 /* Cannot handle unknown versions. */ 749 REQUIRE (cie->version == 1 750 || cie->version == 3 751 || cie->version == 4); 752 REQUIRE (strlen ((char *) buf) < sizeof (cie->augmentation)); 753 754 strcpy (cie->augmentation, (char *) buf); 755 buf = (bfd_byte *) strchr ((char *) buf, '\0') + 1; 756 this_inf->u.cie.aug_str_len = buf - start - 1; 757 ENSURE_NO_RELOCS (buf); 758 if (buf[0] == 'e' && buf[1] == 'h') 759 { 760 /* GCC < 3.0 .eh_frame CIE */ 761 /* We cannot merge "eh" CIEs because __EXCEPTION_TABLE__ 762 is private to each CIE, so we don't need it for anything. 763 Just skip it. */ 764 REQUIRE (skip_bytes (&buf, end, ptr_size)); 765 SKIP_RELOCS (buf); 766 } 767 if (cie->version >= 4) 768 { 769 REQUIRE (buf + 1 < end); 770 REQUIRE (buf[0] == ptr_size); 771 REQUIRE (buf[1] == 0); 772 buf += 2; 773 } 774 REQUIRE (read_uleb128 (&buf, end, &cie->code_align)); 775 REQUIRE (read_sleb128 (&buf, end, &cie->data_align)); 776 if (cie->version == 1) 777 { 778 REQUIRE (buf < end); 779 cie->ra_column = *buf++; 780 } 781 else 782 REQUIRE (read_uleb128 (&buf, end, &cie->ra_column)); 783 ENSURE_NO_RELOCS (buf); 784 cie->lsda_encoding = DW_EH_PE_omit; 785 cie->fde_encoding = DW_EH_PE_omit; 786 cie->per_encoding = DW_EH_PE_omit; 787 aug = cie->augmentation; 788 if (aug[0] != 'e' || aug[1] != 'h') 789 { 790 if (*aug == 'z') 791 { 792 aug++; 793 REQUIRE (read_uleb128 (&buf, end, &cie->augmentation_size)); 794 ENSURE_NO_RELOCS (buf); 795 } 796 797 while (*aug != '\0') 798 switch (*aug++) 799 { 800 case 'B': 801 break; 802 case 'L': 803 REQUIRE (read_byte (&buf, end, &cie->lsda_encoding)); 804 ENSURE_NO_RELOCS (buf); 805 REQUIRE (get_DW_EH_PE_width (cie->lsda_encoding, ptr_size)); 806 break; 807 case 'R': 808 REQUIRE (read_byte (&buf, end, &cie->fde_encoding)); 809 ENSURE_NO_RELOCS (buf); 810 REQUIRE (get_DW_EH_PE_width (cie->fde_encoding, ptr_size)); 811 break; 812 case 'S': 813 break; 814 case 'P': 815 { 816 int per_width; 817 818 REQUIRE (read_byte (&buf, end, &cie->per_encoding)); 819 per_width = get_DW_EH_PE_width (cie->per_encoding, 820 ptr_size); 821 REQUIRE (per_width); 822 if ((cie->per_encoding & 0x70) == DW_EH_PE_aligned) 823 { 824 length = -(buf - ehbuf) & (per_width - 1); 825 REQUIRE (skip_bytes (&buf, end, length)); 826 if (per_width == 8) 827 this_inf->u.cie.per_encoding_aligned8 = 1; 828 } 829 this_inf->u.cie.personality_offset = buf - start; 830 ENSURE_NO_RELOCS (buf); 831 /* Ensure we have a reloc here. */ 832 REQUIRE (GET_RELOC (buf)); 833 cie->personality.reloc_index 834 = cookie->rel - cookie->rels; 835 /* Cope with MIPS-style composite relocations. */ 836 do 837 cookie->rel++; 838 while (GET_RELOC (buf) != NULL); 839 REQUIRE (skip_bytes (&buf, end, per_width)); 840 } 841 break; 842 default: 843 /* Unrecognized augmentation. Better bail out. */ 844 goto free_no_table; 845 } 846 } 847 this_inf->u.cie.aug_data_len 848 = buf - start - 1 - this_inf->u.cie.aug_str_len; 849 850 /* For shared libraries, try to get rid of as many RELATIVE relocs 851 as possible. */ 852 if (bfd_link_pic (info) 853 && (get_elf_backend_data (abfd) 854 ->elf_backend_can_make_relative_eh_frame 855 (abfd, info, sec))) 856 { 857 if ((cie->fde_encoding & 0x70) == DW_EH_PE_absptr) 858 this_inf->make_relative = 1; 859 /* If the CIE doesn't already have an 'R' entry, it's fairly 860 easy to add one, provided that there's no aligned data 861 after the augmentation string. */ 862 else if (cie->fde_encoding == DW_EH_PE_omit 863 && (cie->per_encoding & 0x70) != DW_EH_PE_aligned) 864 { 865 if (*cie->augmentation == 0) 866 this_inf->add_augmentation_size = 1; 867 this_inf->u.cie.add_fde_encoding = 1; 868 this_inf->make_relative = 1; 869 } 870 871 if ((cie->lsda_encoding & 0x70) == DW_EH_PE_absptr) 872 cie->can_make_lsda_relative = 1; 873 } 874 875 /* If FDE encoding was not specified, it defaults to 876 DW_EH_absptr. */ 877 if (cie->fde_encoding == DW_EH_PE_omit) 878 cie->fde_encoding = DW_EH_PE_absptr; 879 880 initial_insn_length = end - buf; 881 cie->initial_insn_length = initial_insn_length; 882 memcpy (cie->initial_instructions, buf, 883 initial_insn_length <= sizeof (cie->initial_instructions) 884 ? initial_insn_length : sizeof (cie->initial_instructions)); 885 insns = buf; 886 buf += initial_insn_length; 887 ENSURE_NO_RELOCS (buf); 888 889 if (!bfd_link_relocatable (info)) 890 { 891 /* Keep info for merging cies. */ 892 this_inf->u.cie.u.full_cie = cie; 893 this_inf->u.cie.per_encoding_relative 894 = (cie->per_encoding & 0x70) == DW_EH_PE_pcrel; 895 } 896 } 897 else 898 { 899 /* Find the corresponding CIE. */ 900 unsigned int cie_offset = this_inf->offset + 4 - hdr_id; 901 for (cie = local_cies; cie < local_cies + cie_count; cie++) 902 if (cie_offset == cie->cie_inf->offset) 903 break; 904 905 /* Ensure this FDE references one of the CIEs in this input 906 section. */ 907 REQUIRE (cie != local_cies + cie_count); 908 this_inf->u.fde.cie_inf = cie->cie_inf; 909 this_inf->make_relative = cie->cie_inf->make_relative; 910 this_inf->add_augmentation_size 911 = cie->cie_inf->add_augmentation_size; 912 913 ENSURE_NO_RELOCS (buf); 914 if ((sec->flags & SEC_LINKER_CREATED) == 0 || cookie->rels != NULL) 915 { 916 asection *rsec; 917 918 REQUIRE (GET_RELOC (buf)); 919 920 /* Chain together the FDEs for each section. */ 921 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, 922 cookie, NULL); 923 /* RSEC will be NULL if FDE was cleared out as it was belonging to 924 a discarded SHT_GROUP. */ 925 if (rsec) 926 { 927 REQUIRE (rsec->owner == abfd); 928 this_inf->u.fde.next_for_section = elf_fde_list (rsec); 929 elf_fde_list (rsec) = this_inf; 930 } 931 } 932 933 /* Skip the initial location and address range. */ 934 start = buf; 935 length = get_DW_EH_PE_width (cie->fde_encoding, ptr_size); 936 REQUIRE (skip_bytes (&buf, end, 2 * length)); 937 938 SKIP_RELOCS (buf - length); 939 if (!GET_RELOC (buf - length) 940 && read_value (abfd, buf - length, length, false) == 0) 941 { 942 (*info->callbacks->minfo) 943 /* xgettext:c-format */ 944 (_("discarding zero address range FDE in %pB(%pA).\n"), 945 abfd, sec); 946 this_inf->u.fde.cie_inf = NULL; 947 } 948 949 /* Skip the augmentation size, if present. */ 950 if (cie->augmentation[0] == 'z') 951 REQUIRE (read_uleb128 (&buf, end, &length)); 952 else 953 length = 0; 954 955 /* Of the supported augmentation characters above, only 'L' 956 adds augmentation data to the FDE. This code would need to 957 be adjusted if any future augmentations do the same thing. */ 958 if (cie->lsda_encoding != DW_EH_PE_omit) 959 { 960 SKIP_RELOCS (buf); 961 if (cie->can_make_lsda_relative && GET_RELOC (buf)) 962 cie->cie_inf->u.cie.make_lsda_relative = 1; 963 this_inf->lsda_offset = buf - start; 964 /* If there's no 'z' augmentation, we don't know where the 965 CFA insns begin. Assume no padding. */ 966 if (cie->augmentation[0] != 'z') 967 length = end - buf; 968 } 969 970 /* Skip over the augmentation data. */ 971 REQUIRE (skip_bytes (&buf, end, length)); 972 insns = buf; 973 974 buf = last_fde + 4 + hdr_length; 975 976 /* For NULL RSEC (cleared FDE belonging to a discarded section) 977 the relocations are commonly cleared. We do not sanity check if 978 all these relocations are cleared as (1) relocations to 979 .gcc_except_table will remain uncleared (they will get dropped 980 with the drop of this unused FDE) and (2) BFD already safely drops 981 relocations of any type to .eh_frame by 982 elf_section_ignore_discarded_relocs. 983 TODO: The .gcc_except_table entries should be also filtered as 984 .eh_frame entries; or GCC could rather use COMDAT for them. */ 985 SKIP_RELOCS (buf); 986 } 987 988 /* Try to interpret the CFA instructions and find the first 989 padding nop. Shrink this_inf's size so that it doesn't 990 include the padding. */ 991 length = get_DW_EH_PE_width (cie->fde_encoding, ptr_size); 992 set_loc_count = 0; 993 insns_end = skip_non_nops (insns, end, length, &set_loc_count); 994 /* If we don't understand the CFA instructions, we can't know 995 what needs to be adjusted there. */ 996 if (insns_end == NULL 997 /* For the time being we don't support DW_CFA_set_loc in 998 CIE instructions. */ 999 || (set_loc_count && this_inf->cie)) 1000 goto free_no_table; 1001 this_inf->size -= end - insns_end; 1002 if (insns_end != end && this_inf->cie) 1003 { 1004 cie->initial_insn_length -= end - insns_end; 1005 cie->length -= end - insns_end; 1006 } 1007 if (set_loc_count 1008 && ((cie->fde_encoding & 0x70) == DW_EH_PE_pcrel 1009 || this_inf->make_relative)) 1010 { 1011 unsigned int cnt; 1012 bfd_byte *p; 1013 1014 this_inf->set_loc = (unsigned int *) 1015 bfd_malloc ((set_loc_count + 1) * sizeof (unsigned int)); 1016 REQUIRE (this_inf->set_loc); 1017 this_inf->set_loc[0] = set_loc_count; 1018 p = insns; 1019 cnt = 0; 1020 while (p < end) 1021 { 1022 if (*p == DW_CFA_set_loc) 1023 this_inf->set_loc[++cnt] = p + 1 - start; 1024 REQUIRE (skip_cfa_op (&p, end, length)); 1025 } 1026 } 1027 1028 this_inf->removed = 1; 1029 this_inf->fde_encoding = cie->fde_encoding; 1030 this_inf->lsda_encoding = cie->lsda_encoding; 1031 sec_info->count++; 1032 } 1033 BFD_ASSERT (sec_info->count == num_entries); 1034 BFD_ASSERT (cie_count == num_cies); 1035 1036 elf_section_data (sec)->sec_info = sec_info; 1037 sec->sec_info_type = SEC_INFO_TYPE_EH_FRAME; 1038 if (!bfd_link_relocatable (info)) 1039 { 1040 /* Keep info for merging cies. */ 1041 sec_info->cies = local_cies; 1042 local_cies = NULL; 1043 } 1044 goto success; 1045 1046 free_no_table: 1047 _bfd_error_handler 1048 /* xgettext:c-format */ 1049 (_("error in %pB(%pA); no .eh_frame_hdr table will be created"), 1050 abfd, sec); 1051 hdr_info->u.dwarf.table = false; 1052 free (sec_info); 1053 success: 1054 free (ehbuf); 1055 free (local_cies); 1056 #undef REQUIRE 1057 } 1058 1059 /* Order eh_frame_hdr entries by the VMA of their text section. */ 1060 1061 static int 1062 cmp_eh_frame_hdr (const void *a, const void *b) 1063 { 1064 bfd_vma text_a; 1065 bfd_vma text_b; 1066 asection *sec; 1067 1068 sec = *(asection *const *)a; 1069 sec = (asection *) elf_section_data (sec)->sec_info; 1070 text_a = sec->output_section->vma + sec->output_offset; 1071 sec = *(asection *const *)b; 1072 sec = (asection *) elf_section_data (sec)->sec_info; 1073 text_b = sec->output_section->vma + sec->output_offset; 1074 1075 if (text_a < text_b) 1076 return -1; 1077 return text_a > text_b; 1078 1079 } 1080 1081 /* Add space for a CANTUNWIND terminator to SEC if the text sections 1082 referenced by it and NEXT are not contiguous, or NEXT is NULL. */ 1083 1084 static void 1085 add_eh_frame_hdr_terminator (asection *sec, 1086 asection *next) 1087 { 1088 bfd_vma end; 1089 bfd_vma next_start; 1090 asection *text_sec; 1091 1092 if (next) 1093 { 1094 /* See if there is a gap (presumably a text section without unwind info) 1095 between these two entries. */ 1096 text_sec = (asection *) elf_section_data (sec)->sec_info; 1097 end = text_sec->output_section->vma + text_sec->output_offset 1098 + text_sec->size; 1099 text_sec = (asection *) elf_section_data (next)->sec_info; 1100 next_start = text_sec->output_section->vma + text_sec->output_offset; 1101 if (end == next_start) 1102 return; 1103 } 1104 1105 /* Add space for a CANTUNWIND terminator. */ 1106 if (!sec->rawsize) 1107 sec->rawsize = sec->size; 1108 1109 bfd_set_section_size (sec, sec->size + 8); 1110 } 1111 1112 /* Finish a pass over all .eh_frame_entry sections. */ 1113 1114 bool 1115 _bfd_elf_end_eh_frame_parsing (struct bfd_link_info *info) 1116 { 1117 struct eh_frame_hdr_info *hdr_info; 1118 unsigned int i; 1119 1120 hdr_info = &elf_hash_table (info)->eh_info; 1121 1122 if (info->eh_frame_hdr_type != COMPACT_EH_HDR 1123 || hdr_info->array_count == 0) 1124 return false; 1125 1126 bfd_elf_discard_eh_frame_entry (hdr_info); 1127 1128 qsort (hdr_info->u.compact.entries, hdr_info->array_count, 1129 sizeof (asection *), cmp_eh_frame_hdr); 1130 1131 for (i = 0; i < hdr_info->array_count - 1; i++) 1132 { 1133 add_eh_frame_hdr_terminator (hdr_info->u.compact.entries[i], 1134 hdr_info->u.compact.entries[i + 1]); 1135 } 1136 1137 /* Add a CANTUNWIND terminator after the last entry. */ 1138 add_eh_frame_hdr_terminator (hdr_info->u.compact.entries[i], NULL); 1139 return true; 1140 } 1141 1142 /* Mark all relocations against CIE or FDE ENT, which occurs in 1143 .eh_frame section SEC. COOKIE describes the relocations in SEC; 1144 its "rel" field can be changed freely. */ 1145 1146 static bool 1147 mark_entry (struct bfd_link_info *info, asection *sec, 1148 struct eh_cie_fde *ent, elf_gc_mark_hook_fn gc_mark_hook, 1149 struct elf_reloc_cookie *cookie) 1150 { 1151 /* FIXME: octets_per_byte. */ 1152 for (cookie->rel = cookie->rels + ent->reloc_index; 1153 cookie->rel < cookie->relend 1154 && cookie->rel->r_offset < ent->offset + ent->size; 1155 cookie->rel++) 1156 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, cookie)) 1157 return false; 1158 1159 return true; 1160 } 1161 1162 /* Mark all the relocations against FDEs that relate to code in input 1163 section SEC. The FDEs belong to .eh_frame section EH_FRAME, whose 1164 relocations are described by COOKIE. */ 1165 1166 bool 1167 _bfd_elf_gc_mark_fdes (struct bfd_link_info *info, asection *sec, 1168 asection *eh_frame, elf_gc_mark_hook_fn gc_mark_hook, 1169 struct elf_reloc_cookie *cookie) 1170 { 1171 struct eh_cie_fde *fde, *cie; 1172 1173 for (fde = elf_fde_list (sec); fde; fde = fde->u.fde.next_for_section) 1174 { 1175 if (!mark_entry (info, eh_frame, fde, gc_mark_hook, cookie)) 1176 return false; 1177 1178 /* At this stage, all cie_inf fields point to local CIEs, so we 1179 can use the same cookie to refer to them. */ 1180 cie = fde->u.fde.cie_inf; 1181 if (cie != NULL && !cie->u.cie.gc_mark) 1182 { 1183 cie->u.cie.gc_mark = 1; 1184 if (!mark_entry (info, eh_frame, cie, gc_mark_hook, cookie)) 1185 return false; 1186 } 1187 } 1188 return true; 1189 } 1190 1191 /* Input section SEC of ABFD is an .eh_frame section that contains the 1192 CIE described by CIE_INF. Return a version of CIE_INF that is going 1193 to be kept in the output, adding CIE_INF to the output if necessary. 1194 1195 HDR_INFO is the .eh_frame_hdr information and COOKIE describes the 1196 relocations in REL. */ 1197 1198 static struct eh_cie_fde * 1199 find_merged_cie (bfd *abfd, struct bfd_link_info *info, asection *sec, 1200 struct eh_frame_hdr_info *hdr_info, 1201 struct elf_reloc_cookie *cookie, 1202 struct eh_cie_fde *cie_inf) 1203 { 1204 unsigned long r_symndx; 1205 struct cie *cie, *new_cie; 1206 Elf_Internal_Rela *rel; 1207 void **loc; 1208 1209 /* Use CIE_INF if we have already decided to keep it. */ 1210 if (!cie_inf->removed) 1211 return cie_inf; 1212 1213 /* If we have merged CIE_INF with another CIE, use that CIE instead. */ 1214 if (cie_inf->u.cie.merged) 1215 return cie_inf->u.cie.u.merged_with; 1216 1217 cie = cie_inf->u.cie.u.full_cie; 1218 1219 /* Assume we will need to keep CIE_INF. */ 1220 cie_inf->removed = 0; 1221 cie_inf->u.cie.u.sec = sec; 1222 1223 /* If we are not merging CIEs, use CIE_INF. */ 1224 if (cie == NULL) 1225 return cie_inf; 1226 1227 if (cie->per_encoding != DW_EH_PE_omit) 1228 { 1229 bool per_binds_local; 1230 1231 /* Work out the address of personality routine, or at least 1232 enough info that we could calculate the address had we made a 1233 final section layout. The symbol on the reloc is enough, 1234 either the hash for a global, or (bfd id, index) pair for a 1235 local. The assumption here is that no one uses addends on 1236 the reloc. */ 1237 rel = cookie->rels + cie->personality.reloc_index; 1238 memset (&cie->personality, 0, sizeof (cie->personality)); 1239 #ifdef BFD64 1240 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) 1241 r_symndx = ELF64_R_SYM (rel->r_info); 1242 else 1243 #endif 1244 r_symndx = ELF32_R_SYM (rel->r_info); 1245 if (r_symndx >= cookie->locsymcount 1246 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL) 1247 { 1248 struct elf_link_hash_entry *h; 1249 1250 r_symndx -= cookie->extsymoff; 1251 h = cookie->sym_hashes[r_symndx]; 1252 1253 while (h->root.type == bfd_link_hash_indirect 1254 || h->root.type == bfd_link_hash_warning) 1255 h = (struct elf_link_hash_entry *) h->root.u.i.link; 1256 1257 cie->personality.h = h; 1258 per_binds_local = SYMBOL_REFERENCES_LOCAL (info, h); 1259 } 1260 else 1261 { 1262 Elf_Internal_Sym *sym; 1263 asection *sym_sec; 1264 1265 sym = &cookie->locsyms[r_symndx]; 1266 sym_sec = bfd_section_from_elf_index (abfd, sym->st_shndx); 1267 if (sym_sec == NULL) 1268 return cie_inf; 1269 1270 if (sym_sec->kept_section != NULL) 1271 sym_sec = sym_sec->kept_section; 1272 if (sym_sec->output_section == NULL) 1273 return cie_inf; 1274 1275 cie->local_personality = 1; 1276 cie->personality.sym.bfd_id = abfd->id; 1277 cie->personality.sym.index = r_symndx; 1278 per_binds_local = true; 1279 } 1280 1281 if (per_binds_local 1282 && bfd_link_pic (info) 1283 && (cie->per_encoding & 0x70) == DW_EH_PE_absptr 1284 && (get_elf_backend_data (abfd) 1285 ->elf_backend_can_make_relative_eh_frame (abfd, info, sec))) 1286 { 1287 cie_inf->u.cie.make_per_encoding_relative = 1; 1288 cie_inf->u.cie.per_encoding_relative = 1; 1289 } 1290 } 1291 1292 /* See if we can merge this CIE with an earlier one. */ 1293 cie_compute_hash (cie); 1294 if (hdr_info->u.dwarf.cies == NULL) 1295 { 1296 hdr_info->u.dwarf.cies = htab_try_create (1, cie_hash, cie_eq, free); 1297 if (hdr_info->u.dwarf.cies == NULL) 1298 return cie_inf; 1299 } 1300 loc = htab_find_slot_with_hash (hdr_info->u.dwarf.cies, cie, 1301 cie->hash, INSERT); 1302 if (loc == NULL) 1303 return cie_inf; 1304 1305 new_cie = (struct cie *) *loc; 1306 if (new_cie == NULL) 1307 { 1308 /* Keep CIE_INF and record it in the hash table. */ 1309 new_cie = (struct cie *) malloc (sizeof (struct cie)); 1310 if (new_cie == NULL) 1311 return cie_inf; 1312 1313 memcpy (new_cie, cie, sizeof (struct cie)); 1314 *loc = new_cie; 1315 } 1316 else 1317 { 1318 /* Merge CIE_INF with NEW_CIE->CIE_INF. */ 1319 cie_inf->removed = 1; 1320 cie_inf->u.cie.merged = 1; 1321 cie_inf->u.cie.u.merged_with = new_cie->cie_inf; 1322 if (cie_inf->u.cie.make_lsda_relative) 1323 new_cie->cie_inf->u.cie.make_lsda_relative = 1; 1324 } 1325 return new_cie->cie_inf; 1326 } 1327 1328 /* For a given OFFSET in SEC, return the delta to the new location 1329 after .eh_frame editing. */ 1330 1331 static bfd_signed_vma 1332 offset_adjust (bfd_vma offset, const asection *sec) 1333 { 1334 struct eh_frame_sec_info *sec_info 1335 = (struct eh_frame_sec_info *) elf_section_data (sec)->sec_info; 1336 unsigned int lo, hi, mid; 1337 struct eh_cie_fde *ent = NULL; 1338 bfd_signed_vma delta; 1339 1340 lo = 0; 1341 hi = sec_info->count; 1342 if (hi == 0) 1343 return 0; 1344 1345 while (lo < hi) 1346 { 1347 mid = (lo + hi) / 2; 1348 ent = &sec_info->entry[mid]; 1349 if (offset < ent->offset) 1350 hi = mid; 1351 else if (mid + 1 >= hi) 1352 break; 1353 else if (offset >= ent[1].offset) 1354 lo = mid + 1; 1355 else 1356 break; 1357 } 1358 1359 if (!ent->removed) 1360 delta = (bfd_vma) ent->new_offset - (bfd_vma) ent->offset; 1361 else if (ent->cie && ent->u.cie.merged) 1362 { 1363 struct eh_cie_fde *cie = ent->u.cie.u.merged_with; 1364 delta = ((bfd_vma) cie->new_offset + cie->u.cie.u.sec->output_offset 1365 - (bfd_vma) ent->offset - sec->output_offset); 1366 } 1367 else 1368 { 1369 /* Is putting the symbol on the next entry best for a deleted 1370 CIE/FDE? */ 1371 struct eh_cie_fde *last = sec_info->entry + sec_info->count; 1372 delta = ((bfd_vma) next_cie_fde_offset (ent, last, sec) 1373 - (bfd_vma) ent->offset); 1374 return delta; 1375 } 1376 1377 /* Account for editing within this CIE/FDE. */ 1378 offset -= ent->offset; 1379 if (ent->cie) 1380 { 1381 unsigned int extra 1382 = ent->add_augmentation_size + ent->u.cie.add_fde_encoding; 1383 if (extra == 0 1384 || offset <= 9u + ent->u.cie.aug_str_len) 1385 return delta; 1386 delta += extra; 1387 if (offset <= 9u + ent->u.cie.aug_str_len + ent->u.cie.aug_data_len) 1388 return delta; 1389 delta += extra; 1390 } 1391 else 1392 { 1393 unsigned int ptr_size, width, extra = ent->add_augmentation_size; 1394 if (offset <= 12 || extra == 0) 1395 return delta; 1396 ptr_size = (get_elf_backend_data (sec->owner) 1397 ->elf_backend_eh_frame_address_size (sec->owner, sec)); 1398 width = get_DW_EH_PE_width (ent->fde_encoding, ptr_size); 1399 if (offset <= 8 + 2 * width) 1400 return delta; 1401 delta += extra; 1402 } 1403 1404 return delta; 1405 } 1406 1407 /* Adjust a global symbol defined in .eh_frame, so that it stays 1408 relative to its original CIE/FDE. It is assumed that a symbol 1409 defined at the beginning of a CIE/FDE belongs to that CIE/FDE 1410 rather than marking the end of the previous CIE/FDE. This matters 1411 when a CIE is merged with a previous CIE, since the symbol is 1412 moved to the merged CIE. */ 1413 1414 bool 1415 _bfd_elf_adjust_eh_frame_global_symbol (struct elf_link_hash_entry *h, 1416 void *arg ATTRIBUTE_UNUSED) 1417 { 1418 asection *sym_sec; 1419 bfd_signed_vma delta; 1420 1421 if (h->root.type != bfd_link_hash_defined 1422 && h->root.type != bfd_link_hash_defweak) 1423 return true; 1424 1425 sym_sec = h->root.u.def.section; 1426 if (sym_sec->sec_info_type != SEC_INFO_TYPE_EH_FRAME 1427 || elf_section_data (sym_sec)->sec_info == NULL) 1428 return true; 1429 1430 delta = offset_adjust (h->root.u.def.value, sym_sec); 1431 h->root.u.def.value += delta; 1432 1433 return true; 1434 } 1435 1436 /* The same for all local symbols defined in .eh_frame. Returns true 1437 if any symbol was changed. */ 1438 1439 static int 1440 adjust_eh_frame_local_symbols (const asection *sec, 1441 struct elf_reloc_cookie *cookie) 1442 { 1443 int adjusted = 0; 1444 1445 if (cookie->locsymcount > 1) 1446 { 1447 unsigned int shndx = elf_section_data (sec)->this_idx; 1448 Elf_Internal_Sym *end_sym = cookie->locsyms + cookie->locsymcount; 1449 Elf_Internal_Sym *sym; 1450 1451 for (sym = cookie->locsyms + 1; sym < end_sym; ++sym) 1452 if (sym->st_info <= ELF_ST_INFO (STB_LOCAL, STT_OBJECT) 1453 && sym->st_shndx == shndx) 1454 { 1455 bfd_signed_vma delta = offset_adjust (sym->st_value, sec); 1456 1457 if (delta != 0) 1458 { 1459 adjusted = 1; 1460 sym->st_value += delta; 1461 } 1462 } 1463 } 1464 return adjusted; 1465 } 1466 1467 /* This function is called for each input file before the .eh_frame 1468 section is relocated. It discards duplicate CIEs and FDEs for discarded 1469 functions. The function returns TRUE iff any entries have been 1470 deleted. */ 1471 1472 bool 1473 _bfd_elf_discard_section_eh_frame 1474 (bfd *abfd, struct bfd_link_info *info, asection *sec, 1475 bool (*reloc_symbol_deleted_p) (bfd_vma, void *), 1476 struct elf_reloc_cookie *cookie) 1477 { 1478 struct eh_cie_fde *ent; 1479 struct eh_frame_sec_info *sec_info; 1480 struct eh_frame_hdr_info *hdr_info; 1481 unsigned int ptr_size, offset, eh_alignment; 1482 int changed; 1483 1484 if (sec->sec_info_type != SEC_INFO_TYPE_EH_FRAME) 1485 return false; 1486 1487 sec_info = (struct eh_frame_sec_info *) elf_section_data (sec)->sec_info; 1488 if (sec_info == NULL) 1489 return false; 1490 1491 ptr_size = (get_elf_backend_data (sec->owner) 1492 ->elf_backend_eh_frame_address_size (sec->owner, sec)); 1493 1494 hdr_info = &elf_hash_table (info)->eh_info; 1495 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent) 1496 if (ent->size == 4) 1497 /* There should only be one zero terminator, on the last input 1498 file supplying .eh_frame (crtend.o). Remove any others. */ 1499 ent->removed = sec->map_head.s != NULL; 1500 else if (!ent->cie && ent->u.fde.cie_inf != NULL) 1501 { 1502 bool keep; 1503 if ((sec->flags & SEC_LINKER_CREATED) != 0 && cookie->rels == NULL) 1504 { 1505 unsigned int width 1506 = get_DW_EH_PE_width (ent->fde_encoding, ptr_size); 1507 bfd_vma value 1508 = read_value (abfd, sec->contents + ent->offset + 8 + width, 1509 width, get_DW_EH_PE_signed (ent->fde_encoding)); 1510 keep = value != 0; 1511 } 1512 else 1513 { 1514 cookie->rel = cookie->rels + ent->reloc_index; 1515 /* FIXME: octets_per_byte. */ 1516 BFD_ASSERT (cookie->rel < cookie->relend 1517 && cookie->rel->r_offset == ent->offset + 8); 1518 keep = !(*reloc_symbol_deleted_p) (ent->offset + 8, cookie); 1519 } 1520 if (keep) 1521 { 1522 if (bfd_link_pic (info) 1523 && (((ent->fde_encoding & 0x70) == DW_EH_PE_absptr 1524 && ent->make_relative == 0) 1525 || (ent->fde_encoding & 0x70) == DW_EH_PE_aligned)) 1526 { 1527 static int num_warnings_issued = 0; 1528 1529 /* If a shared library uses absolute pointers 1530 which we cannot turn into PC relative, 1531 don't create the binary search table, 1532 since it is affected by runtime relocations. */ 1533 hdr_info->u.dwarf.table = false; 1534 /* Only warn if --eh-frame-hdr was specified. */ 1535 if (info->eh_frame_hdr_type != 0) 1536 { 1537 if (num_warnings_issued < 10) 1538 { 1539 _bfd_error_handler 1540 /* xgettext:c-format */ 1541 (_("FDE encoding in %pB(%pA) prevents .eh_frame_hdr" 1542 " table being created"), abfd, sec); 1543 num_warnings_issued ++; 1544 } 1545 else if (num_warnings_issued == 10) 1546 { 1547 _bfd_error_handler 1548 (_("further warnings about FDE encoding preventing .eh_frame_hdr generation dropped")); 1549 num_warnings_issued ++; 1550 } 1551 } 1552 } 1553 ent->removed = 0; 1554 hdr_info->u.dwarf.fde_count++; 1555 ent->u.fde.cie_inf = find_merged_cie (abfd, info, sec, hdr_info, 1556 cookie, ent->u.fde.cie_inf); 1557 } 1558 } 1559 1560 free (sec_info->cies); 1561 sec_info->cies = NULL; 1562 1563 /* It may be that some .eh_frame input section has greater alignment 1564 than other .eh_frame sections. In that case we run the risk of 1565 padding with zeros before that section, which would be seen as a 1566 zero terminator. Alignment padding must be added *inside* the 1567 last FDE instead. For other FDEs we align according to their 1568 encoding, in order to align FDE address range entries naturally. */ 1569 offset = 0; 1570 changed = 0; 1571 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent) 1572 if (!ent->removed) 1573 { 1574 eh_alignment = 4; 1575 if (ent->size == 4) 1576 ; 1577 else if (ent->cie) 1578 { 1579 if (ent->u.cie.per_encoding_aligned8) 1580 eh_alignment = 8; 1581 } 1582 else 1583 { 1584 eh_alignment = get_DW_EH_PE_width (ent->fde_encoding, ptr_size); 1585 if (eh_alignment < 4) 1586 eh_alignment = 4; 1587 } 1588 offset = (offset + eh_alignment - 1) & -eh_alignment; 1589 ent->new_offset = offset; 1590 if (ent->new_offset != ent->offset) 1591 changed = 1; 1592 offset += size_of_output_cie_fde (ent); 1593 } 1594 1595 eh_alignment = 4; 1596 offset = (offset + eh_alignment - 1) & -eh_alignment; 1597 sec->rawsize = sec->size; 1598 sec->size = offset; 1599 if (sec->size != sec->rawsize) 1600 changed = 1; 1601 1602 if (changed && adjust_eh_frame_local_symbols (sec, cookie)) 1603 { 1604 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 1605 symtab_hdr->contents = (unsigned char *) cookie->locsyms; 1606 } 1607 return changed; 1608 } 1609 1610 /* This function is called for .eh_frame_hdr section after 1611 _bfd_elf_discard_section_eh_frame has been called on all .eh_frame 1612 input sections. It finalizes the size of .eh_frame_hdr section. */ 1613 1614 bool 1615 _bfd_elf_discard_section_eh_frame_hdr (struct bfd_link_info *info) 1616 { 1617 struct elf_link_hash_table *htab; 1618 struct eh_frame_hdr_info *hdr_info; 1619 asection *sec; 1620 1621 htab = elf_hash_table (info); 1622 hdr_info = &htab->eh_info; 1623 1624 if (!hdr_info->frame_hdr_is_compact && hdr_info->u.dwarf.cies != NULL) 1625 { 1626 htab_delete (hdr_info->u.dwarf.cies); 1627 hdr_info->u.dwarf.cies = NULL; 1628 } 1629 1630 sec = hdr_info->hdr_sec; 1631 if (sec == NULL) 1632 return false; 1633 1634 if (info->eh_frame_hdr_type == COMPACT_EH_HDR) 1635 { 1636 /* For compact frames we only add the header. The actual table comes 1637 from the .eh_frame_entry sections. */ 1638 sec->size = 8; 1639 } 1640 else 1641 { 1642 sec->size = EH_FRAME_HDR_SIZE; 1643 if (hdr_info->u.dwarf.table) 1644 sec->size += 4 + hdr_info->u.dwarf.fde_count * 8; 1645 } 1646 1647 return true; 1648 } 1649 1650 /* Return true if there is at least one non-empty .eh_frame section in 1651 input files. Can only be called after ld has mapped input to 1652 output sections, and before sections are stripped. */ 1653 1654 bool 1655 _bfd_elf_eh_frame_present (struct bfd_link_info *info) 1656 { 1657 asection *eh = bfd_get_section_by_name (info->output_bfd, ".eh_frame"); 1658 1659 if (eh == NULL) 1660 return false; 1661 1662 /* Count only sections which have at least a single CIE or FDE. 1663 There cannot be any CIE or FDE <= 8 bytes. */ 1664 for (eh = eh->map_head.s; eh != NULL; eh = eh->map_head.s) 1665 if (eh->size > 8) 1666 return true; 1667 1668 return false; 1669 } 1670 1671 /* Return true if there is at least one .eh_frame_entry section in 1672 input files. */ 1673 1674 bool 1675 _bfd_elf_eh_frame_entry_present (struct bfd_link_info *info) 1676 { 1677 asection *o; 1678 bfd *abfd; 1679 1680 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next) 1681 { 1682 for (o = abfd->sections; o; o = o->next) 1683 { 1684 const char *name = bfd_section_name (o); 1685 1686 if (strcmp (name, ".eh_frame_entry") 1687 && !bfd_is_abs_section (o->output_section)) 1688 return true; 1689 } 1690 } 1691 return false; 1692 } 1693 1694 /* This function is called from size_dynamic_sections. 1695 It needs to decide whether .eh_frame_hdr should be output or not, 1696 because when the dynamic symbol table has been sized it is too late 1697 to strip sections. */ 1698 1699 bool 1700 _bfd_elf_maybe_strip_eh_frame_hdr (struct bfd_link_info *info) 1701 { 1702 struct elf_link_hash_table *htab; 1703 struct eh_frame_hdr_info *hdr_info; 1704 struct bfd_link_hash_entry *bh = NULL; 1705 struct elf_link_hash_entry *h; 1706 1707 htab = elf_hash_table (info); 1708 hdr_info = &htab->eh_info; 1709 if (hdr_info->hdr_sec == NULL) 1710 return true; 1711 1712 if (bfd_is_abs_section (hdr_info->hdr_sec->output_section) 1713 || info->eh_frame_hdr_type == 0 1714 || (info->eh_frame_hdr_type == DWARF2_EH_HDR 1715 && !_bfd_elf_eh_frame_present (info)) 1716 || (info->eh_frame_hdr_type == COMPACT_EH_HDR 1717 && !_bfd_elf_eh_frame_entry_present (info))) 1718 { 1719 hdr_info->hdr_sec->flags |= SEC_EXCLUDE; 1720 hdr_info->hdr_sec = NULL; 1721 return true; 1722 } 1723 1724 /* Add a hidden symbol so that systems without access to PHDRs can 1725 find the table. */ 1726 if (! (_bfd_generic_link_add_one_symbol 1727 (info, info->output_bfd, "__GNU_EH_FRAME_HDR", BSF_LOCAL, 1728 hdr_info->hdr_sec, 0, NULL, false, false, &bh))) 1729 return false; 1730 1731 h = (struct elf_link_hash_entry *) bh; 1732 h->def_regular = 1; 1733 h->other = STV_HIDDEN; 1734 get_elf_backend_data 1735 (info->output_bfd)->elf_backend_hide_symbol (info, h, true); 1736 1737 if (!hdr_info->frame_hdr_is_compact) 1738 hdr_info->u.dwarf.table = true; 1739 return true; 1740 } 1741 1742 /* Adjust an address in the .eh_frame section. Given OFFSET within 1743 SEC, this returns the new offset in the adjusted .eh_frame section, 1744 or -1 if the address refers to a CIE/FDE which has been removed 1745 or to offset with dynamic relocation which is no longer needed. */ 1746 1747 bfd_vma 1748 _bfd_elf_eh_frame_section_offset (bfd *output_bfd ATTRIBUTE_UNUSED, 1749 struct bfd_link_info *info ATTRIBUTE_UNUSED, 1750 asection *sec, 1751 bfd_vma offset) 1752 { 1753 struct eh_frame_sec_info *sec_info; 1754 unsigned int lo, hi, mid; 1755 1756 if (sec->sec_info_type != SEC_INFO_TYPE_EH_FRAME) 1757 return offset; 1758 sec_info = (struct eh_frame_sec_info *) elf_section_data (sec)->sec_info; 1759 1760 if (offset >= sec->rawsize) 1761 return offset - sec->rawsize + sec->size; 1762 1763 lo = 0; 1764 hi = sec_info->count; 1765 mid = 0; 1766 while (lo < hi) 1767 { 1768 mid = (lo + hi) / 2; 1769 if (offset < sec_info->entry[mid].offset) 1770 hi = mid; 1771 else if (offset 1772 >= sec_info->entry[mid].offset + sec_info->entry[mid].size) 1773 lo = mid + 1; 1774 else 1775 break; 1776 } 1777 1778 BFD_ASSERT (lo < hi); 1779 1780 /* FDE or CIE was removed. */ 1781 if (sec_info->entry[mid].removed) 1782 return (bfd_vma) -1; 1783 1784 /* If converting personality pointers to DW_EH_PE_pcrel, there will be 1785 no need for run-time relocation against the personality field. */ 1786 if (sec_info->entry[mid].cie 1787 && sec_info->entry[mid].u.cie.make_per_encoding_relative 1788 && offset == (sec_info->entry[mid].offset + 8 1789 + sec_info->entry[mid].u.cie.personality_offset)) 1790 return (bfd_vma) -2; 1791 1792 /* If converting to DW_EH_PE_pcrel, there will be no need for run-time 1793 relocation against FDE's initial_location field. */ 1794 if (!sec_info->entry[mid].cie 1795 && sec_info->entry[mid].make_relative 1796 && offset == sec_info->entry[mid].offset + 8) 1797 return (bfd_vma) -2; 1798 1799 /* If converting LSDA pointers to DW_EH_PE_pcrel, there will be no need 1800 for run-time relocation against LSDA field. */ 1801 if (!sec_info->entry[mid].cie 1802 && sec_info->entry[mid].u.fde.cie_inf->u.cie.make_lsda_relative 1803 && offset == (sec_info->entry[mid].offset + 8 1804 + sec_info->entry[mid].lsda_offset)) 1805 return (bfd_vma) -2; 1806 1807 /* If converting to DW_EH_PE_pcrel, there will be no need for run-time 1808 relocation against DW_CFA_set_loc's arguments. */ 1809 if (sec_info->entry[mid].set_loc 1810 && sec_info->entry[mid].make_relative 1811 && (offset >= sec_info->entry[mid].offset + 8 1812 + sec_info->entry[mid].set_loc[1])) 1813 { 1814 unsigned int cnt; 1815 1816 for (cnt = 1; cnt <= sec_info->entry[mid].set_loc[0]; cnt++) 1817 if (offset == sec_info->entry[mid].offset + 8 1818 + sec_info->entry[mid].set_loc[cnt]) 1819 return (bfd_vma) -2; 1820 } 1821 1822 /* Any new augmentation bytes go before the first relocation. */ 1823 return (offset + sec_info->entry[mid].new_offset 1824 - sec_info->entry[mid].offset 1825 + extra_augmentation_string_bytes (sec_info->entry + mid) 1826 + extra_augmentation_data_bytes (sec_info->entry + mid)); 1827 } 1828 1829 /* Write out .eh_frame_entry section. Add CANTUNWIND terminator if needed. 1830 Also check that the contents look sane. */ 1831 1832 bool 1833 _bfd_elf_write_section_eh_frame_entry (bfd *abfd, struct bfd_link_info *info, 1834 asection *sec, bfd_byte *contents) 1835 { 1836 const struct elf_backend_data *bed; 1837 bfd_byte cantunwind[8]; 1838 bfd_vma addr; 1839 bfd_vma last_addr; 1840 bfd_vma offset; 1841 asection *text_sec = (asection *) elf_section_data (sec)->sec_info; 1842 1843 if (!sec->rawsize) 1844 sec->rawsize = sec->size; 1845 1846 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_EH_FRAME_ENTRY); 1847 1848 /* Check to make sure that the text section corresponding to this eh_frame_entry 1849 section has not been excluded. In particular, mips16 stub entries will be 1850 excluded outside of the normal process. */ 1851 if (sec->flags & SEC_EXCLUDE 1852 || text_sec->flags & SEC_EXCLUDE) 1853 return true; 1854 1855 if (!bfd_set_section_contents (abfd, sec->output_section, contents, 1856 sec->output_offset, sec->rawsize)) 1857 return false; 1858 1859 last_addr = bfd_get_signed_32 (abfd, contents); 1860 /* Check that all the entries are in order. */ 1861 for (offset = 8; offset < sec->rawsize; offset += 8) 1862 { 1863 addr = bfd_get_signed_32 (abfd, contents + offset) + offset; 1864 if (addr <= last_addr) 1865 { 1866 /* xgettext:c-format */ 1867 _bfd_error_handler (_("%pB: %pA not in order"), sec->owner, sec); 1868 return false; 1869 } 1870 1871 last_addr = addr; 1872 } 1873 1874 addr = text_sec->output_section->vma + text_sec->output_offset 1875 + text_sec->size; 1876 addr &= ~1; 1877 addr -= (sec->output_section->vma + sec->output_offset + sec->rawsize); 1878 if (addr & 1) 1879 { 1880 /* xgettext:c-format */ 1881 _bfd_error_handler (_("%pB: %pA invalid input section size"), 1882 sec->owner, sec); 1883 bfd_set_error (bfd_error_bad_value); 1884 return false; 1885 } 1886 if (last_addr >= addr + sec->rawsize) 1887 { 1888 /* xgettext:c-format */ 1889 _bfd_error_handler (_("%pB: %pA points past end of text section"), 1890 sec->owner, sec); 1891 bfd_set_error (bfd_error_bad_value); 1892 return false; 1893 } 1894 1895 if (sec->size == sec->rawsize) 1896 return true; 1897 1898 bed = get_elf_backend_data (abfd); 1899 BFD_ASSERT (sec->size == sec->rawsize + 8); 1900 BFD_ASSERT ((addr & 1) == 0); 1901 BFD_ASSERT (bed->cant_unwind_opcode); 1902 1903 bfd_put_32 (abfd, addr, cantunwind); 1904 bfd_put_32 (abfd, (*bed->cant_unwind_opcode) (info), cantunwind + 4); 1905 return bfd_set_section_contents (abfd, sec->output_section, cantunwind, 1906 sec->output_offset + sec->rawsize, 8); 1907 } 1908 1909 /* Write out .eh_frame section. This is called with the relocated 1910 contents. */ 1911 1912 bool 1913 _bfd_elf_write_section_eh_frame (bfd *abfd, 1914 struct bfd_link_info *info, 1915 asection *sec, 1916 bfd_byte *contents) 1917 { 1918 struct eh_frame_sec_info *sec_info; 1919 struct elf_link_hash_table *htab; 1920 struct eh_frame_hdr_info *hdr_info; 1921 unsigned int ptr_size; 1922 struct eh_cie_fde *ent, *last_ent; 1923 1924 if (sec->sec_info_type != SEC_INFO_TYPE_EH_FRAME) 1925 /* FIXME: octets_per_byte. */ 1926 return bfd_set_section_contents (abfd, sec->output_section, contents, 1927 sec->output_offset, sec->size); 1928 1929 ptr_size = (get_elf_backend_data (abfd) 1930 ->elf_backend_eh_frame_address_size (abfd, sec)); 1931 BFD_ASSERT (ptr_size != 0); 1932 1933 sec_info = (struct eh_frame_sec_info *) elf_section_data (sec)->sec_info; 1934 htab = elf_hash_table (info); 1935 hdr_info = &htab->eh_info; 1936 1937 if (hdr_info->u.dwarf.table && hdr_info->u.dwarf.array == NULL) 1938 { 1939 hdr_info->frame_hdr_is_compact = false; 1940 hdr_info->u.dwarf.array = (struct eh_frame_array_ent *) 1941 bfd_malloc (hdr_info->u.dwarf.fde_count 1942 * sizeof (*hdr_info->u.dwarf.array)); 1943 } 1944 if (hdr_info->u.dwarf.array == NULL) 1945 hdr_info = NULL; 1946 1947 /* The new offsets can be bigger or smaller than the original offsets. 1948 We therefore need to make two passes over the section: one backward 1949 pass to move entries up and one forward pass to move entries down. 1950 The two passes won't interfere with each other because entries are 1951 not reordered */ 1952 for (ent = sec_info->entry + sec_info->count; ent-- != sec_info->entry;) 1953 if (!ent->removed && ent->new_offset > ent->offset) 1954 memmove (contents + ent->new_offset, contents + ent->offset, ent->size); 1955 1956 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent) 1957 if (!ent->removed && ent->new_offset < ent->offset) 1958 memmove (contents + ent->new_offset, contents + ent->offset, ent->size); 1959 1960 last_ent = sec_info->entry + sec_info->count; 1961 for (ent = sec_info->entry; ent < last_ent; ++ent) 1962 { 1963 unsigned char *buf, *end; 1964 unsigned int new_size; 1965 1966 if (ent->removed) 1967 continue; 1968 1969 if (ent->size == 4) 1970 { 1971 /* Any terminating FDE must be at the end of the section. */ 1972 BFD_ASSERT (ent == last_ent - 1); 1973 continue; 1974 } 1975 1976 buf = contents + ent->new_offset; 1977 end = buf + ent->size; 1978 new_size = next_cie_fde_offset (ent, last_ent, sec) - ent->new_offset; 1979 1980 /* Update the size. It may be shrinked. */ 1981 bfd_put_32 (abfd, new_size - 4, buf); 1982 1983 /* Filling the extra bytes with DW_CFA_nops. */ 1984 if (new_size != ent->size) 1985 memset (end, 0, new_size - ent->size); 1986 1987 if (ent->cie) 1988 { 1989 /* CIE */ 1990 if (ent->make_relative 1991 || ent->u.cie.make_lsda_relative 1992 || ent->u.cie.per_encoding_relative) 1993 { 1994 char *aug; 1995 unsigned int version, action, extra_string, extra_data; 1996 unsigned int per_width, per_encoding; 1997 1998 /* Need to find 'R' or 'L' augmentation's argument and modify 1999 DW_EH_PE_* value. */ 2000 action = ((ent->make_relative ? 1 : 0) 2001 | (ent->u.cie.make_lsda_relative ? 2 : 0) 2002 | (ent->u.cie.per_encoding_relative ? 4 : 0)); 2003 extra_string = extra_augmentation_string_bytes (ent); 2004 extra_data = extra_augmentation_data_bytes (ent); 2005 2006 /* Skip length, id. */ 2007 buf += 8; 2008 version = *buf++; 2009 aug = (char *) buf; 2010 buf += strlen (aug) + 1; 2011 skip_leb128 (&buf, end); 2012 skip_leb128 (&buf, end); 2013 if (version == 1) 2014 skip_bytes (&buf, end, 1); 2015 else 2016 skip_leb128 (&buf, end); 2017 if (*aug == 'z') 2018 { 2019 /* The uleb128 will always be a single byte for the kind 2020 of augmentation strings that we're prepared to handle. */ 2021 *buf++ += extra_data; 2022 aug++; 2023 } 2024 2025 /* Make room for the new augmentation string and data bytes. */ 2026 memmove (buf + extra_string + extra_data, buf, end - buf); 2027 memmove (aug + extra_string, aug, buf - (bfd_byte *) aug); 2028 buf += extra_string; 2029 end += extra_string + extra_data; 2030 2031 if (ent->add_augmentation_size) 2032 { 2033 *aug++ = 'z'; 2034 *buf++ = extra_data - 1; 2035 } 2036 if (ent->u.cie.add_fde_encoding) 2037 { 2038 BFD_ASSERT (action & 1); 2039 *aug++ = 'R'; 2040 *buf++ = make_pc_relative (DW_EH_PE_absptr, ptr_size); 2041 action &= ~1; 2042 } 2043 2044 while (action) 2045 switch (*aug++) 2046 { 2047 case 'L': 2048 if (action & 2) 2049 { 2050 BFD_ASSERT (*buf == ent->lsda_encoding); 2051 *buf = make_pc_relative (*buf, ptr_size); 2052 action &= ~2; 2053 } 2054 buf++; 2055 break; 2056 case 'P': 2057 if (ent->u.cie.make_per_encoding_relative) 2058 *buf = make_pc_relative (*buf, ptr_size); 2059 per_encoding = *buf++; 2060 per_width = get_DW_EH_PE_width (per_encoding, ptr_size); 2061 BFD_ASSERT (per_width != 0); 2062 BFD_ASSERT (((per_encoding & 0x70) == DW_EH_PE_pcrel) 2063 == ent->u.cie.per_encoding_relative); 2064 if ((per_encoding & 0x70) == DW_EH_PE_aligned) 2065 buf = (contents 2066 + ((buf - contents + per_width - 1) 2067 & ~((bfd_size_type) per_width - 1))); 2068 if (action & 4) 2069 { 2070 bfd_vma val; 2071 2072 val = read_value (abfd, buf, per_width, 2073 get_DW_EH_PE_signed (per_encoding)); 2074 if (ent->u.cie.make_per_encoding_relative) 2075 val -= (sec->output_section->vma 2076 + sec->output_offset 2077 + (buf - contents)); 2078 else 2079 { 2080 val += (bfd_vma) ent->offset - ent->new_offset; 2081 val -= extra_string + extra_data; 2082 } 2083 write_value (abfd, buf, val, per_width); 2084 action &= ~4; 2085 } 2086 buf += per_width; 2087 break; 2088 case 'R': 2089 if (action & 1) 2090 { 2091 BFD_ASSERT (*buf == ent->fde_encoding); 2092 *buf = make_pc_relative (*buf, ptr_size); 2093 action &= ~1; 2094 } 2095 buf++; 2096 break; 2097 case 'S': 2098 break; 2099 default: 2100 BFD_FAIL (); 2101 } 2102 } 2103 } 2104 else 2105 { 2106 /* FDE */ 2107 bfd_vma value, address; 2108 unsigned int width; 2109 bfd_byte *start; 2110 struct eh_cie_fde *cie; 2111 2112 /* Skip length. */ 2113 cie = ent->u.fde.cie_inf; 2114 buf += 4; 2115 value = ((ent->new_offset + sec->output_offset + 4) 2116 - (cie->new_offset + cie->u.cie.u.sec->output_offset)); 2117 bfd_put_32 (abfd, value, buf); 2118 if (bfd_link_relocatable (info)) 2119 continue; 2120 buf += 4; 2121 width = get_DW_EH_PE_width (ent->fde_encoding, ptr_size); 2122 value = read_value (abfd, buf, width, 2123 get_DW_EH_PE_signed (ent->fde_encoding)); 2124 address = value; 2125 if (value) 2126 { 2127 switch (ent->fde_encoding & 0x70) 2128 { 2129 case DW_EH_PE_textrel: 2130 BFD_ASSERT (hdr_info == NULL); 2131 break; 2132 case DW_EH_PE_datarel: 2133 { 2134 switch (abfd->arch_info->arch) 2135 { 2136 case bfd_arch_ia64: 2137 BFD_ASSERT (elf_gp (abfd) != 0); 2138 address += elf_gp (abfd); 2139 break; 2140 default: 2141 _bfd_error_handler 2142 (_("DW_EH_PE_datarel unspecified" 2143 " for this architecture")); 2144 /* Fall thru */ 2145 case bfd_arch_frv: 2146 case bfd_arch_i386: 2147 case bfd_arch_nios2: 2148 BFD_ASSERT (htab->hgot != NULL 2149 && ((htab->hgot->root.type 2150 == bfd_link_hash_defined) 2151 || (htab->hgot->root.type 2152 == bfd_link_hash_defweak))); 2153 address 2154 += (htab->hgot->root.u.def.value 2155 + htab->hgot->root.u.def.section->output_offset 2156 + (htab->hgot->root.u.def.section->output_section 2157 ->vma)); 2158 break; 2159 } 2160 } 2161 break; 2162 case DW_EH_PE_pcrel: 2163 value += (bfd_vma) ent->offset - ent->new_offset; 2164 address += (sec->output_section->vma 2165 + sec->output_offset 2166 + ent->offset + 8); 2167 break; 2168 } 2169 if (ent->make_relative) 2170 value -= (sec->output_section->vma 2171 + sec->output_offset 2172 + ent->new_offset + 8); 2173 write_value (abfd, buf, value, width); 2174 } 2175 2176 start = buf; 2177 2178 if (hdr_info) 2179 { 2180 /* The address calculation may overflow, giving us a 2181 value greater than 4G on a 32-bit target when 2182 dwarf_vma is 64-bit. */ 2183 if (sizeof (address) > 4 && ptr_size == 4) 2184 address &= 0xffffffff; 2185 hdr_info->u.dwarf.array[hdr_info->array_count].initial_loc 2186 = address; 2187 hdr_info->u.dwarf.array[hdr_info->array_count].range 2188 = read_value (abfd, buf + width, width, false); 2189 hdr_info->u.dwarf.array[hdr_info->array_count++].fde 2190 = (sec->output_section->vma 2191 + sec->output_offset 2192 + ent->new_offset); 2193 } 2194 2195 if ((ent->lsda_encoding & 0x70) == DW_EH_PE_pcrel 2196 || cie->u.cie.make_lsda_relative) 2197 { 2198 buf += ent->lsda_offset; 2199 width = get_DW_EH_PE_width (ent->lsda_encoding, ptr_size); 2200 value = read_value (abfd, buf, width, 2201 get_DW_EH_PE_signed (ent->lsda_encoding)); 2202 if (value) 2203 { 2204 if ((ent->lsda_encoding & 0x70) == DW_EH_PE_pcrel) 2205 value += (bfd_vma) ent->offset - ent->new_offset; 2206 else if (cie->u.cie.make_lsda_relative) 2207 value -= (sec->output_section->vma 2208 + sec->output_offset 2209 + ent->new_offset + 8 + ent->lsda_offset); 2210 write_value (abfd, buf, value, width); 2211 } 2212 } 2213 else if (ent->add_augmentation_size) 2214 { 2215 /* Skip the PC and length and insert a zero byte for the 2216 augmentation size. */ 2217 buf += width * 2; 2218 memmove (buf + 1, buf, end - buf); 2219 *buf = 0; 2220 } 2221 2222 if (ent->set_loc) 2223 { 2224 /* Adjust DW_CFA_set_loc. */ 2225 unsigned int cnt; 2226 bfd_vma new_offset; 2227 2228 width = get_DW_EH_PE_width (ent->fde_encoding, ptr_size); 2229 new_offset = ent->new_offset + 8 2230 + extra_augmentation_string_bytes (ent) 2231 + extra_augmentation_data_bytes (ent); 2232 2233 for (cnt = 1; cnt <= ent->set_loc[0]; cnt++) 2234 { 2235 buf = start + ent->set_loc[cnt]; 2236 2237 value = read_value (abfd, buf, width, 2238 get_DW_EH_PE_signed (ent->fde_encoding)); 2239 if (!value) 2240 continue; 2241 2242 if ((ent->fde_encoding & 0x70) == DW_EH_PE_pcrel) 2243 value += (bfd_vma) ent->offset + 8 - new_offset; 2244 if (ent->make_relative) 2245 value -= (sec->output_section->vma 2246 + sec->output_offset 2247 + new_offset + ent->set_loc[cnt]); 2248 write_value (abfd, buf, value, width); 2249 } 2250 } 2251 } 2252 } 2253 2254 /* FIXME: octets_per_byte. */ 2255 return bfd_set_section_contents (abfd, sec->output_section, 2256 contents, (file_ptr) sec->output_offset, 2257 sec->size); 2258 } 2259 2260 /* Helper function used to sort .eh_frame_hdr search table by increasing 2261 VMA of FDE initial location. */ 2262 2263 static int 2264 vma_compare (const void *a, const void *b) 2265 { 2266 const struct eh_frame_array_ent *p = (const struct eh_frame_array_ent *) a; 2267 const struct eh_frame_array_ent *q = (const struct eh_frame_array_ent *) b; 2268 if (p->initial_loc > q->initial_loc) 2269 return 1; 2270 if (p->initial_loc < q->initial_loc) 2271 return -1; 2272 if (p->range > q->range) 2273 return 1; 2274 if (p->range < q->range) 2275 return -1; 2276 return 0; 2277 } 2278 2279 /* Reorder .eh_frame_entry sections to match the associated text sections. 2280 This routine is called during the final linking step, just before writing 2281 the contents. At this stage, sections in the eh_frame_hdr_info are already 2282 sorted in order of increasing text section address and so we simply need 2283 to make the .eh_frame_entrys follow that same order. Note that it is 2284 invalid for a linker script to try to force a particular order of 2285 .eh_frame_entry sections. */ 2286 2287 bool 2288 _bfd_elf_fixup_eh_frame_hdr (struct bfd_link_info *info) 2289 { 2290 asection *sec = NULL; 2291 asection *osec; 2292 struct eh_frame_hdr_info *hdr_info; 2293 unsigned int i; 2294 bfd_vma offset; 2295 struct bfd_link_order *p; 2296 2297 hdr_info = &elf_hash_table (info)->eh_info; 2298 2299 if (hdr_info->hdr_sec == NULL 2300 || info->eh_frame_hdr_type != COMPACT_EH_HDR 2301 || hdr_info->array_count == 0) 2302 return true; 2303 2304 /* Change section output offsets to be in text section order. */ 2305 offset = 8; 2306 osec = hdr_info->u.compact.entries[0]->output_section; 2307 for (i = 0; i < hdr_info->array_count; i++) 2308 { 2309 sec = hdr_info->u.compact.entries[i]; 2310 if (sec->output_section != osec) 2311 { 2312 _bfd_error_handler 2313 (_("invalid output section for .eh_frame_entry: %pA"), 2314 sec->output_section); 2315 return false; 2316 } 2317 sec->output_offset = offset; 2318 offset += sec->size; 2319 } 2320 2321 2322 /* Fix the link_order to match. */ 2323 for (p = sec->output_section->map_head.link_order; p != NULL; p = p->next) 2324 { 2325 if (p->type != bfd_indirect_link_order) 2326 abort(); 2327 2328 p->offset = p->u.indirect.section->output_offset; 2329 if (p->next != NULL) 2330 i--; 2331 } 2332 2333 if (i != 0) 2334 { 2335 _bfd_error_handler 2336 (_("invalid contents in %pA section"), osec); 2337 return false; 2338 } 2339 2340 return true; 2341 } 2342 2343 /* The .eh_frame_hdr format for Compact EH frames: 2344 ubyte version (2) 2345 ubyte eh_ref_enc (DW_EH_PE_* encoding of typinfo references) 2346 uint32_t count (Number of entries in table) 2347 [array from .eh_frame_entry sections] */ 2348 2349 static bool 2350 write_compact_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info) 2351 { 2352 struct elf_link_hash_table *htab; 2353 struct eh_frame_hdr_info *hdr_info; 2354 asection *sec; 2355 const struct elf_backend_data *bed; 2356 bfd_vma count; 2357 bfd_byte contents[8]; 2358 unsigned int i; 2359 2360 htab = elf_hash_table (info); 2361 hdr_info = &htab->eh_info; 2362 sec = hdr_info->hdr_sec; 2363 2364 if (sec->size != 8) 2365 abort(); 2366 2367 for (i = 0; i < sizeof (contents); i++) 2368 contents[i] = 0; 2369 2370 contents[0] = COMPACT_EH_HDR; 2371 bed = get_elf_backend_data (abfd); 2372 2373 BFD_ASSERT (bed->compact_eh_encoding); 2374 contents[1] = (*bed->compact_eh_encoding) (info); 2375 2376 count = (sec->output_section->size - 8) / 8; 2377 bfd_put_32 (abfd, count, contents + 4); 2378 return bfd_set_section_contents (abfd, sec->output_section, contents, 2379 (file_ptr) sec->output_offset, sec->size); 2380 } 2381 2382 /* The .eh_frame_hdr format for DWARF frames: 2383 2384 ubyte version (currently 1) 2385 ubyte eh_frame_ptr_enc (DW_EH_PE_* encoding of pointer to start of 2386 .eh_frame section) 2387 ubyte fde_count_enc (DW_EH_PE_* encoding of total FDE count 2388 number (or DW_EH_PE_omit if there is no 2389 binary search table computed)) 2390 ubyte table_enc (DW_EH_PE_* encoding of binary search table, 2391 or DW_EH_PE_omit if not present. 2392 DW_EH_PE_datarel is using address of 2393 .eh_frame_hdr section start as base) 2394 [encoded] eh_frame_ptr (pointer to start of .eh_frame section) 2395 optionally followed by: 2396 [encoded] fde_count (total number of FDEs in .eh_frame section) 2397 fde_count x [encoded] initial_loc, fde 2398 (array of encoded pairs containing 2399 FDE initial_location field and FDE address, 2400 sorted by increasing initial_loc). */ 2401 2402 static bool 2403 write_dwarf_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info) 2404 { 2405 struct elf_link_hash_table *htab; 2406 struct eh_frame_hdr_info *hdr_info; 2407 asection *sec; 2408 bool retval = true; 2409 2410 htab = elf_hash_table (info); 2411 hdr_info = &htab->eh_info; 2412 sec = hdr_info->hdr_sec; 2413 bfd_byte *contents; 2414 asection *eh_frame_sec; 2415 bfd_size_type size; 2416 bfd_vma encoded_eh_frame; 2417 2418 size = EH_FRAME_HDR_SIZE; 2419 if (hdr_info->u.dwarf.array 2420 && hdr_info->array_count == hdr_info->u.dwarf.fde_count) 2421 size += 4 + hdr_info->u.dwarf.fde_count * 8; 2422 contents = (bfd_byte *) bfd_malloc (size); 2423 if (contents == NULL) 2424 return false; 2425 2426 eh_frame_sec = bfd_get_section_by_name (abfd, ".eh_frame"); 2427 if (eh_frame_sec == NULL) 2428 { 2429 free (contents); 2430 return false; 2431 } 2432 2433 memset (contents, 0, EH_FRAME_HDR_SIZE); 2434 /* Version. */ 2435 contents[0] = 1; 2436 /* .eh_frame offset. */ 2437 contents[1] = get_elf_backend_data (abfd)->elf_backend_encode_eh_address 2438 (abfd, info, eh_frame_sec, 0, sec, 4, &encoded_eh_frame); 2439 2440 if (hdr_info->u.dwarf.array 2441 && hdr_info->array_count == hdr_info->u.dwarf.fde_count) 2442 { 2443 /* FDE count encoding. */ 2444 contents[2] = DW_EH_PE_udata4; 2445 /* Search table encoding. */ 2446 contents[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; 2447 } 2448 else 2449 { 2450 contents[2] = DW_EH_PE_omit; 2451 contents[3] = DW_EH_PE_omit; 2452 } 2453 bfd_put_32 (abfd, encoded_eh_frame, contents + 4); 2454 2455 if (contents[2] != DW_EH_PE_omit) 2456 { 2457 unsigned int i; 2458 bool overlap, overflow; 2459 2460 bfd_put_32 (abfd, hdr_info->u.dwarf.fde_count, 2461 contents + EH_FRAME_HDR_SIZE); 2462 qsort (hdr_info->u.dwarf.array, hdr_info->u.dwarf.fde_count, 2463 sizeof (*hdr_info->u.dwarf.array), vma_compare); 2464 overlap = false; 2465 overflow = false; 2466 for (i = 0; i < hdr_info->u.dwarf.fde_count; i++) 2467 { 2468 bfd_vma val; 2469 2470 val = hdr_info->u.dwarf.array[i].initial_loc 2471 - sec->output_section->vma; 2472 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000; 2473 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64 2474 && (hdr_info->u.dwarf.array[i].initial_loc 2475 != sec->output_section->vma + val)) 2476 overflow = true; 2477 bfd_put_32 (abfd, val, contents + EH_FRAME_HDR_SIZE + i * 8 + 4); 2478 val = hdr_info->u.dwarf.array[i].fde - sec->output_section->vma; 2479 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000; 2480 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64 2481 && (hdr_info->u.dwarf.array[i].fde 2482 != sec->output_section->vma + val)) 2483 overflow = true; 2484 bfd_put_32 (abfd, val, contents + EH_FRAME_HDR_SIZE + i * 8 + 8); 2485 if (i != 0 2486 && (hdr_info->u.dwarf.array[i].initial_loc 2487 < (hdr_info->u.dwarf.array[i - 1].initial_loc 2488 + hdr_info->u.dwarf.array[i - 1].range))) 2489 overlap = true; 2490 } 2491 if (overflow) 2492 _bfd_error_handler (_(".eh_frame_hdr entry overflow")); 2493 if (overlap) 2494 _bfd_error_handler (_(".eh_frame_hdr refers to overlapping FDEs")); 2495 if (overflow || overlap) 2496 { 2497 bfd_set_error (bfd_error_bad_value); 2498 retval = false; 2499 } 2500 } 2501 2502 /* FIXME: octets_per_byte. */ 2503 if (!bfd_set_section_contents (abfd, sec->output_section, contents, 2504 (file_ptr) sec->output_offset, 2505 sec->size)) 2506 retval = false; 2507 free (contents); 2508 2509 free (hdr_info->u.dwarf.array); 2510 return retval; 2511 } 2512 2513 /* Write out .eh_frame_hdr section. This must be called after 2514 _bfd_elf_write_section_eh_frame has been called on all input 2515 .eh_frame sections. */ 2516 2517 bool 2518 _bfd_elf_write_section_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info) 2519 { 2520 struct elf_link_hash_table *htab; 2521 struct eh_frame_hdr_info *hdr_info; 2522 asection *sec; 2523 2524 htab = elf_hash_table (info); 2525 hdr_info = &htab->eh_info; 2526 sec = hdr_info->hdr_sec; 2527 2528 if (info->eh_frame_hdr_type == 0 || sec == NULL) 2529 return true; 2530 2531 if (info->eh_frame_hdr_type == COMPACT_EH_HDR) 2532 return write_compact_eh_frame_hdr (abfd, info); 2533 else 2534 return write_dwarf_eh_frame_hdr (abfd, info); 2535 } 2536 2537 /* Return the width of FDE addresses. This is the default implementation. */ 2538 2539 unsigned int 2540 _bfd_elf_eh_frame_address_size (bfd *abfd, const asection *sec ATTRIBUTE_UNUSED) 2541 { 2542 return elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64 ? 8 : 4; 2543 } 2544 2545 /* Decide whether we can use a PC-relative encoding within the given 2546 EH frame section. This is the default implementation. */ 2547 2548 bool 2549 _bfd_elf_can_make_relative (bfd *input_bfd ATTRIBUTE_UNUSED, 2550 struct bfd_link_info *info ATTRIBUTE_UNUSED, 2551 asection *eh_frame_section ATTRIBUTE_UNUSED) 2552 { 2553 return true; 2554 } 2555 2556 /* Select an encoding for the given address. Preference is given to 2557 PC-relative addressing modes. */ 2558 2559 bfd_byte 2560 _bfd_elf_encode_eh_address (bfd *abfd ATTRIBUTE_UNUSED, 2561 struct bfd_link_info *info ATTRIBUTE_UNUSED, 2562 asection *osec, bfd_vma offset, 2563 asection *loc_sec, bfd_vma loc_offset, 2564 bfd_vma *encoded) 2565 { 2566 *encoded = osec->vma + offset - 2567 (loc_sec->output_section->vma + loc_sec->output_offset + loc_offset); 2568 return DW_EH_PE_pcrel | DW_EH_PE_sdata4; 2569 } 2570