xref: /netbsd-src/external/gpl3/binutils/dist/bfd/elf-eh-frame.c (revision 7d62b00eb9ad855ffcd7da46b41e23feb5476fac)
1 /* .eh_frame section optimization.
2    Copyright (C) 2001-2022 Free Software Foundation, Inc.
3    Written by Jakub Jelinek <jakub@redhat.com>.
4 
5    This file is part of BFD, the Binary File Descriptor library.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program; if not, write to the Free Software
19    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20    MA 02110-1301, USA.  */
21 
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "dwarf2.h"
27 
28 #define EH_FRAME_HDR_SIZE 8
29 
30 struct cie
31 {
32   unsigned int length;
33   unsigned int hash;
34   unsigned char version;
35   unsigned char local_personality;
36   char augmentation[20];
37   bfd_vma code_align;
38   bfd_signed_vma data_align;
39   bfd_vma ra_column;
40   bfd_vma augmentation_size;
41   union {
42     struct elf_link_hash_entry *h;
43     struct {
44       unsigned int bfd_id;
45       unsigned int index;
46     } sym;
47     unsigned int reloc_index;
48   } personality;
49   struct eh_cie_fde *cie_inf;
50   unsigned char per_encoding;
51   unsigned char lsda_encoding;
52   unsigned char fde_encoding;
53   unsigned char initial_insn_length;
54   unsigned char can_make_lsda_relative;
55   unsigned char initial_instructions[50];
56 };
57 
58 
59 
60 /* If *ITER hasn't reached END yet, read the next byte into *RESULT and
61    move onto the next byte.  Return true on success.  */
62 
63 static inline bool
64 read_byte (bfd_byte **iter, bfd_byte *end, unsigned char *result)
65 {
66   if (*iter >= end)
67     return false;
68   *result = *((*iter)++);
69   return true;
70 }
71 
72 /* Move *ITER over LENGTH bytes, or up to END, whichever is closer.
73    Return true it was possible to move LENGTH bytes.  */
74 
75 static inline bool
76 skip_bytes (bfd_byte **iter, bfd_byte *end, bfd_size_type length)
77 {
78   if ((bfd_size_type) (end - *iter) < length)
79     {
80       *iter = end;
81       return false;
82     }
83   *iter += length;
84   return true;
85 }
86 
87 /* Move *ITER over an leb128, stopping at END.  Return true if the end
88    of the leb128 was found.  */
89 
90 static bool
91 skip_leb128 (bfd_byte **iter, bfd_byte *end)
92 {
93   unsigned char byte;
94   do
95     if (!read_byte (iter, end, &byte))
96       return false;
97   while (byte & 0x80);
98   return true;
99 }
100 
101 /* Like skip_leb128, but treat the leb128 as an unsigned value and
102    store it in *VALUE.  */
103 
104 static bool
105 read_uleb128 (bfd_byte **iter, bfd_byte *end, bfd_vma *value)
106 {
107   bfd_byte *start, *p;
108 
109   start = *iter;
110   if (!skip_leb128 (iter, end))
111     return false;
112 
113   p = *iter;
114   *value = *--p;
115   while (p > start)
116     *value = (*value << 7) | (*--p & 0x7f);
117 
118   return true;
119 }
120 
121 /* Like read_uleb128, but for signed values.  */
122 
123 static bool
124 read_sleb128 (bfd_byte **iter, bfd_byte *end, bfd_signed_vma *value)
125 {
126   bfd_byte *start, *p;
127 
128   start = *iter;
129   if (!skip_leb128 (iter, end))
130     return false;
131 
132   p = *iter;
133   *value = ((*--p & 0x7f) ^ 0x40) - 0x40;
134   while (p > start)
135     *value = (*value << 7) | (*--p & 0x7f);
136 
137   return true;
138 }
139 
140 /* Return 0 if either encoding is variable width, or not yet known to bfd.  */
141 
142 static
143 int get_DW_EH_PE_width (int encoding, int ptr_size)
144 {
145   /* DW_EH_PE_ values of 0x60 and 0x70 weren't defined at the time .eh_frame
146      was added to bfd.  */
147   if ((encoding & 0x60) == 0x60)
148     return 0;
149 
150   switch (encoding & 7)
151     {
152     case DW_EH_PE_udata2: return 2;
153     case DW_EH_PE_udata4: return 4;
154     case DW_EH_PE_udata8: return 8;
155     case DW_EH_PE_absptr: return ptr_size;
156     default:
157       break;
158     }
159 
160   return 0;
161 }
162 
163 #define get_DW_EH_PE_signed(encoding) (((encoding) & DW_EH_PE_signed) != 0)
164 
165 /* Read a width sized value from memory.  */
166 
167 static bfd_vma
168 read_value (bfd *abfd, bfd_byte *buf, int width, int is_signed)
169 {
170   bfd_vma value;
171 
172   switch (width)
173     {
174     case 2:
175       if (is_signed)
176 	value = bfd_get_signed_16 (abfd, buf);
177       else
178 	value = bfd_get_16 (abfd, buf);
179       break;
180     case 4:
181       if (is_signed)
182 	value = bfd_get_signed_32 (abfd, buf);
183       else
184 	value = bfd_get_32 (abfd, buf);
185       break;
186     case 8:
187       if (is_signed)
188 	value = bfd_get_signed_64 (abfd, buf);
189       else
190 	value = bfd_get_64 (abfd, buf);
191       break;
192     default:
193       BFD_FAIL ();
194       return 0;
195     }
196 
197   return value;
198 }
199 
200 /* Store a width sized value to memory.  */
201 
202 static void
203 write_value (bfd *abfd, bfd_byte *buf, bfd_vma value, int width)
204 {
205   switch (width)
206     {
207     case 2: bfd_put_16 (abfd, value, buf); break;
208     case 4: bfd_put_32 (abfd, value, buf); break;
209     case 8: bfd_put_64 (abfd, value, buf); break;
210     default: BFD_FAIL ();
211     }
212 }
213 
214 /* Return one if C1 and C2 CIEs can be merged.  */
215 
216 static int
217 cie_eq (const void *e1, const void *e2)
218 {
219   const struct cie *c1 = (const struct cie *) e1;
220   const struct cie *c2 = (const struct cie *) e2;
221 
222   if (c1->hash == c2->hash
223       && c1->length == c2->length
224       && c1->version == c2->version
225       && c1->local_personality == c2->local_personality
226       && strcmp (c1->augmentation, c2->augmentation) == 0
227       && strcmp (c1->augmentation, "eh") != 0
228       && c1->code_align == c2->code_align
229       && c1->data_align == c2->data_align
230       && c1->ra_column == c2->ra_column
231       && c1->augmentation_size == c2->augmentation_size
232       && memcmp (&c1->personality, &c2->personality,
233 		 sizeof (c1->personality)) == 0
234       && (c1->cie_inf->u.cie.u.sec->output_section
235 	  == c2->cie_inf->u.cie.u.sec->output_section)
236       && c1->per_encoding == c2->per_encoding
237       && c1->lsda_encoding == c2->lsda_encoding
238       && c1->fde_encoding == c2->fde_encoding
239       && c1->initial_insn_length == c2->initial_insn_length
240       && c1->initial_insn_length <= sizeof (c1->initial_instructions)
241       && memcmp (c1->initial_instructions,
242 		 c2->initial_instructions,
243 		 c1->initial_insn_length) == 0)
244     return 1;
245 
246   return 0;
247 }
248 
249 static hashval_t
250 cie_hash (const void *e)
251 {
252   const struct cie *c = (const struct cie *) e;
253   return c->hash;
254 }
255 
256 static hashval_t
257 cie_compute_hash (struct cie *c)
258 {
259   hashval_t h = 0;
260   size_t len;
261   h = iterative_hash_object (c->length, h);
262   h = iterative_hash_object (c->version, h);
263   h = iterative_hash (c->augmentation, strlen (c->augmentation) + 1, h);
264   h = iterative_hash_object (c->code_align, h);
265   h = iterative_hash_object (c->data_align, h);
266   h = iterative_hash_object (c->ra_column, h);
267   h = iterative_hash_object (c->augmentation_size, h);
268   h = iterative_hash_object (c->personality, h);
269   h = iterative_hash_object (c->cie_inf->u.cie.u.sec->output_section, h);
270   h = iterative_hash_object (c->per_encoding, h);
271   h = iterative_hash_object (c->lsda_encoding, h);
272   h = iterative_hash_object (c->fde_encoding, h);
273   h = iterative_hash_object (c->initial_insn_length, h);
274   len = c->initial_insn_length;
275   if (len > sizeof (c->initial_instructions))
276     len = sizeof (c->initial_instructions);
277   h = iterative_hash (c->initial_instructions, len, h);
278   c->hash = h;
279   return h;
280 }
281 
282 /* Return the number of extra bytes that we'll be inserting into
283    ENTRY's augmentation string.  */
284 
285 static inline unsigned int
286 extra_augmentation_string_bytes (struct eh_cie_fde *entry)
287 {
288   unsigned int size = 0;
289   if (entry->cie)
290     {
291       if (entry->add_augmentation_size)
292 	size++;
293       if (entry->u.cie.add_fde_encoding)
294 	size++;
295     }
296   return size;
297 }
298 
299 /* Likewise ENTRY's augmentation data.  */
300 
301 static inline unsigned int
302 extra_augmentation_data_bytes (struct eh_cie_fde *entry)
303 {
304   unsigned int size = 0;
305   if (entry->add_augmentation_size)
306     size++;
307   if (entry->cie && entry->u.cie.add_fde_encoding)
308     size++;
309   return size;
310 }
311 
312 /* Return the size that ENTRY will have in the output.  */
313 
314 static unsigned int
315 size_of_output_cie_fde (struct eh_cie_fde *entry)
316 {
317   if (entry->removed)
318     return 0;
319   if (entry->size == 4)
320     return 4;
321   return (entry->size
322 	  + extra_augmentation_string_bytes (entry)
323 	  + extra_augmentation_data_bytes (entry));
324 }
325 
326 /* Return the offset of the FDE or CIE after ENT.  */
327 
328 static unsigned int
329 next_cie_fde_offset (const struct eh_cie_fde *ent,
330 		     const struct eh_cie_fde *last,
331 		     const asection *sec)
332 {
333   while (++ent < last)
334     {
335       if (!ent->removed)
336 	return ent->new_offset;
337     }
338   return sec->size;
339 }
340 
341 /* Assume that the bytes between *ITER and END are CFA instructions.
342    Try to move *ITER past the first instruction and return true on
343    success.  ENCODED_PTR_WIDTH gives the width of pointer entries.  */
344 
345 static bool
346 skip_cfa_op (bfd_byte **iter, bfd_byte *end, unsigned int encoded_ptr_width)
347 {
348   bfd_byte op;
349   bfd_vma length;
350 
351   if (!read_byte (iter, end, &op))
352     return false;
353 
354   switch (op & 0xc0 ? op & 0xc0 : op)
355     {
356     case DW_CFA_nop:
357     case DW_CFA_advance_loc:
358     case DW_CFA_restore:
359     case DW_CFA_remember_state:
360     case DW_CFA_restore_state:
361     case DW_CFA_GNU_window_save:
362       /* No arguments.  */
363       return true;
364 
365     case DW_CFA_offset:
366     case DW_CFA_restore_extended:
367     case DW_CFA_undefined:
368     case DW_CFA_same_value:
369     case DW_CFA_def_cfa_register:
370     case DW_CFA_def_cfa_offset:
371     case DW_CFA_def_cfa_offset_sf:
372     case DW_CFA_GNU_args_size:
373       /* One leb128 argument.  */
374       return skip_leb128 (iter, end);
375 
376     case DW_CFA_val_offset:
377     case DW_CFA_val_offset_sf:
378     case DW_CFA_offset_extended:
379     case DW_CFA_register:
380     case DW_CFA_def_cfa:
381     case DW_CFA_offset_extended_sf:
382     case DW_CFA_GNU_negative_offset_extended:
383     case DW_CFA_def_cfa_sf:
384       /* Two leb128 arguments.  */
385       return (skip_leb128 (iter, end)
386 	      && skip_leb128 (iter, end));
387 
388     case DW_CFA_def_cfa_expression:
389       /* A variable-length argument.  */
390       return (read_uleb128 (iter, end, &length)
391 	      && skip_bytes (iter, end, length));
392 
393     case DW_CFA_expression:
394     case DW_CFA_val_expression:
395       /* A leb128 followed by a variable-length argument.  */
396       return (skip_leb128 (iter, end)
397 	      && read_uleb128 (iter, end, &length)
398 	      && skip_bytes (iter, end, length));
399 
400     case DW_CFA_set_loc:
401       return skip_bytes (iter, end, encoded_ptr_width);
402 
403     case DW_CFA_advance_loc1:
404       return skip_bytes (iter, end, 1);
405 
406     case DW_CFA_advance_loc2:
407       return skip_bytes (iter, end, 2);
408 
409     case DW_CFA_advance_loc4:
410       return skip_bytes (iter, end, 4);
411 
412     case DW_CFA_MIPS_advance_loc8:
413       return skip_bytes (iter, end, 8);
414 
415     default:
416       return false;
417     }
418 }
419 
420 /* Try to interpret the bytes between BUF and END as CFA instructions.
421    If every byte makes sense, return a pointer to the first DW_CFA_nop
422    padding byte, or END if there is no padding.  Return null otherwise.
423    ENCODED_PTR_WIDTH is as for skip_cfa_op.  */
424 
425 static bfd_byte *
426 skip_non_nops (bfd_byte *buf, bfd_byte *end, unsigned int encoded_ptr_width,
427 	       unsigned int *set_loc_count)
428 {
429   bfd_byte *last;
430 
431   last = buf;
432   while (buf < end)
433     if (*buf == DW_CFA_nop)
434       buf++;
435     else
436       {
437 	if (*buf == DW_CFA_set_loc)
438 	  ++*set_loc_count;
439 	if (!skip_cfa_op (&buf, end, encoded_ptr_width))
440 	  return 0;
441 	last = buf;
442       }
443   return last;
444 }
445 
446 /* Convert absolute encoding ENCODING into PC-relative form.
447    SIZE is the size of a pointer.  */
448 
449 static unsigned char
450 make_pc_relative (unsigned char encoding, unsigned int ptr_size)
451 {
452   if ((encoding & 0x7f) == DW_EH_PE_absptr)
453     switch (ptr_size)
454       {
455       case 2:
456 	encoding |= DW_EH_PE_sdata2;
457 	break;
458       case 4:
459 	encoding |= DW_EH_PE_sdata4;
460 	break;
461       case 8:
462 	encoding |= DW_EH_PE_sdata8;
463 	break;
464       }
465   return encoding | DW_EH_PE_pcrel;
466 }
467 
468 /*  Examine each .eh_frame_entry section and discard those
469     those that are marked SEC_EXCLUDE.  */
470 
471 static void
472 bfd_elf_discard_eh_frame_entry (struct eh_frame_hdr_info *hdr_info)
473 {
474   unsigned int i;
475   for (i = 0; i < hdr_info->array_count; i++)
476     {
477       if (hdr_info->u.compact.entries[i]->flags & SEC_EXCLUDE)
478 	{
479 	  unsigned int j;
480 	  for (j = i + 1; j < hdr_info->array_count; j++)
481 	    hdr_info->u.compact.entries[j-1] = hdr_info->u.compact.entries[j];
482 
483 	  hdr_info->array_count--;
484 	  hdr_info->u.compact.entries[hdr_info->array_count] = NULL;
485 	  i--;
486 	}
487     }
488 }
489 
490 /* Add a .eh_frame_entry section.  */
491 
492 static void
493 bfd_elf_record_eh_frame_entry (struct eh_frame_hdr_info *hdr_info,
494 				 asection *sec)
495 {
496   if (hdr_info->array_count == hdr_info->u.compact.allocated_entries)
497     {
498       if (hdr_info->u.compact.allocated_entries == 0)
499 	{
500 	  hdr_info->frame_hdr_is_compact = true;
501 	  hdr_info->u.compact.allocated_entries = 2;
502 	  hdr_info->u.compact.entries =
503 	    bfd_malloc (hdr_info->u.compact.allocated_entries
504 			* sizeof (hdr_info->u.compact.entries[0]));
505 	}
506       else
507 	{
508 	  hdr_info->u.compact.allocated_entries *= 2;
509 	  hdr_info->u.compact.entries =
510 	    bfd_realloc (hdr_info->u.compact.entries,
511 			 hdr_info->u.compact.allocated_entries
512 			   * sizeof (hdr_info->u.compact.entries[0]));
513 	}
514 
515       BFD_ASSERT (hdr_info->u.compact.entries);
516     }
517 
518   hdr_info->u.compact.entries[hdr_info->array_count++] = sec;
519 }
520 
521 /* Parse a .eh_frame_entry section.  Figure out which text section it
522    references.  */
523 
524 bool
525 _bfd_elf_parse_eh_frame_entry (struct bfd_link_info *info,
526 			       asection *sec, struct elf_reloc_cookie *cookie)
527 {
528   struct elf_link_hash_table *htab;
529   struct eh_frame_hdr_info *hdr_info;
530   unsigned long r_symndx;
531   asection *text_sec;
532 
533   htab = elf_hash_table (info);
534   hdr_info = &htab->eh_info;
535 
536   if (sec->size == 0
537       || sec->sec_info_type != SEC_INFO_TYPE_NONE)
538     {
539       return true;
540     }
541 
542   if (sec->output_section && bfd_is_abs_section (sec->output_section))
543     {
544       /* At least one of the sections is being discarded from the
545 	 link, so we should just ignore them.  */
546       return true;
547     }
548 
549   if (cookie->rel == cookie->relend)
550     return false;
551 
552   /* The first relocation is the function start.  */
553   r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
554   if (r_symndx == STN_UNDEF)
555     return false;
556 
557   text_sec = _bfd_elf_section_for_symbol (cookie, r_symndx, false);
558 
559   if (text_sec == NULL)
560     return false;
561 
562   elf_section_eh_frame_entry (text_sec) = sec;
563   if (text_sec->output_section
564       && bfd_is_abs_section (text_sec->output_section))
565     sec->flags |= SEC_EXCLUDE;
566 
567   sec->sec_info_type = SEC_INFO_TYPE_EH_FRAME_ENTRY;
568   elf_section_data (sec)->sec_info = text_sec;
569   bfd_elf_record_eh_frame_entry (hdr_info, sec);
570   return true;
571 }
572 
573 /* Try to parse .eh_frame section SEC, which belongs to ABFD.  Store the
574    information in the section's sec_info field on success.  COOKIE
575    describes the relocations in SEC.  */
576 
577 void
578 _bfd_elf_parse_eh_frame (bfd *abfd, struct bfd_link_info *info,
579 			 asection *sec, struct elf_reloc_cookie *cookie)
580 {
581 #define REQUIRE(COND)					\
582   do							\
583     if (!(COND))					\
584       goto free_no_table;				\
585   while (0)
586 
587   bfd_byte *ehbuf = NULL, *buf, *end;
588   bfd_byte *last_fde;
589   struct eh_cie_fde *this_inf;
590   unsigned int hdr_length, hdr_id;
591   unsigned int cie_count;
592   struct cie *cie, *local_cies = NULL;
593   struct elf_link_hash_table *htab;
594   struct eh_frame_hdr_info *hdr_info;
595   struct eh_frame_sec_info *sec_info = NULL;
596   unsigned int ptr_size;
597   unsigned int num_cies;
598   unsigned int num_entries;
599   elf_gc_mark_hook_fn gc_mark_hook;
600 
601   htab = elf_hash_table (info);
602   hdr_info = &htab->eh_info;
603 
604   if (sec->size == 0
605       || sec->sec_info_type != SEC_INFO_TYPE_NONE)
606     {
607       /* This file does not contain .eh_frame information.  */
608       return;
609     }
610 
611   if (bfd_is_abs_section (sec->output_section))
612     {
613       /* At least one of the sections is being discarded from the
614 	 link, so we should just ignore them.  */
615       return;
616     }
617 
618   /* Read the frame unwind information from abfd.  */
619 
620   REQUIRE (bfd_malloc_and_get_section (abfd, sec, &ehbuf));
621 
622   /* If .eh_frame section size doesn't fit into int, we cannot handle
623      it (it would need to use 64-bit .eh_frame format anyway).  */
624   REQUIRE (sec->size == (unsigned int) sec->size);
625 
626   ptr_size = (get_elf_backend_data (abfd)
627 	      ->elf_backend_eh_frame_address_size (abfd, sec));
628   REQUIRE (ptr_size != 0);
629 
630   /* Go through the section contents and work out how many FDEs and
631      CIEs there are.  */
632   buf = ehbuf;
633   end = ehbuf + sec->size;
634   num_cies = 0;
635   num_entries = 0;
636   while (buf != end)
637     {
638       num_entries++;
639 
640       /* Read the length of the entry.  */
641       REQUIRE (skip_bytes (&buf, end, 4));
642       hdr_length = bfd_get_32 (abfd, buf - 4);
643 
644       /* 64-bit .eh_frame is not supported.  */
645       REQUIRE (hdr_length != 0xffffffff);
646       if (hdr_length == 0)
647 	break;
648 
649       REQUIRE (skip_bytes (&buf, end, 4));
650       hdr_id = bfd_get_32 (abfd, buf - 4);
651       if (hdr_id == 0)
652 	num_cies++;
653 
654       REQUIRE (skip_bytes (&buf, end, hdr_length - 4));
655     }
656 
657   sec_info = (struct eh_frame_sec_info *)
658       bfd_zmalloc (sizeof (struct eh_frame_sec_info)
659 		   + (num_entries - 1) * sizeof (struct eh_cie_fde));
660   REQUIRE (sec_info);
661 
662   /* We need to have a "struct cie" for each CIE in this section.  */
663   if (num_cies)
664     {
665       local_cies = (struct cie *) bfd_zmalloc (num_cies * sizeof (*local_cies));
666       REQUIRE (local_cies);
667     }
668 
669   /* FIXME: octets_per_byte.  */
670 #define ENSURE_NO_RELOCS(buf)				\
671   while (cookie->rel < cookie->relend			\
672 	 && (cookie->rel->r_offset			\
673 	     < (bfd_size_type) ((buf) - ehbuf)))	\
674     {							\
675       REQUIRE (cookie->rel->r_info == 0);		\
676       cookie->rel++;					\
677     }
678 
679   /* FIXME: octets_per_byte.  */
680 #define SKIP_RELOCS(buf)				\
681   while (cookie->rel < cookie->relend			\
682 	 && (cookie->rel->r_offset			\
683 	     < (bfd_size_type) ((buf) - ehbuf)))	\
684     cookie->rel++
685 
686   /* FIXME: octets_per_byte.  */
687 #define GET_RELOC(buf)					\
688   ((cookie->rel < cookie->relend			\
689     && (cookie->rel->r_offset				\
690 	== (bfd_size_type) ((buf) - ehbuf)))		\
691    ? cookie->rel : NULL)
692 
693   buf = ehbuf;
694   cie_count = 0;
695   gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
696   while ((bfd_size_type) (buf - ehbuf) != sec->size)
697     {
698       char *aug;
699       bfd_byte *start, *insns, *insns_end;
700       bfd_size_type length;
701       unsigned int set_loc_count;
702 
703       this_inf = sec_info->entry + sec_info->count;
704       last_fde = buf;
705 
706       /* Read the length of the entry.  */
707       REQUIRE (skip_bytes (&buf, ehbuf + sec->size, 4));
708       hdr_length = bfd_get_32 (abfd, buf - 4);
709 
710       /* The CIE/FDE must be fully contained in this input section.  */
711       REQUIRE ((bfd_size_type) (buf - ehbuf) + hdr_length <= sec->size);
712       end = buf + hdr_length;
713 
714       this_inf->offset = last_fde - ehbuf;
715       this_inf->size = 4 + hdr_length;
716       this_inf->reloc_index = cookie->rel - cookie->rels;
717 
718       if (hdr_length == 0)
719 	{
720 	  /* A zero-length CIE should only be found at the end of
721 	     the section, but allow multiple terminators.  */
722 	  while (skip_bytes (&buf, ehbuf + sec->size, 4))
723 	    REQUIRE (bfd_get_32 (abfd, buf - 4) == 0);
724 	  REQUIRE ((bfd_size_type) (buf - ehbuf) == sec->size);
725 	  ENSURE_NO_RELOCS (buf);
726 	  sec_info->count++;
727 	  break;
728 	}
729 
730       REQUIRE (skip_bytes (&buf, end, 4));
731       hdr_id = bfd_get_32 (abfd, buf - 4);
732 
733       if (hdr_id == 0)
734 	{
735 	  unsigned int initial_insn_length;
736 
737 	  /* CIE  */
738 	  this_inf->cie = 1;
739 
740 	  /* Point CIE to one of the section-local cie structures.  */
741 	  cie = local_cies + cie_count++;
742 
743 	  cie->cie_inf = this_inf;
744 	  cie->length = hdr_length;
745 	  start = buf;
746 	  REQUIRE (read_byte (&buf, end, &cie->version));
747 
748 	  /* Cannot handle unknown versions.  */
749 	  REQUIRE (cie->version == 1
750 		   || cie->version == 3
751 		   || cie->version == 4);
752 	  REQUIRE (strlen ((char *) buf) < sizeof (cie->augmentation));
753 
754 	  strcpy (cie->augmentation, (char *) buf);
755 	  buf = (bfd_byte *) strchr ((char *) buf, '\0') + 1;
756 	  this_inf->u.cie.aug_str_len = buf - start - 1;
757 	  ENSURE_NO_RELOCS (buf);
758 	  if (buf[0] == 'e' && buf[1] == 'h')
759 	    {
760 	      /* GCC < 3.0 .eh_frame CIE */
761 	      /* We cannot merge "eh" CIEs because __EXCEPTION_TABLE__
762 		 is private to each CIE, so we don't need it for anything.
763 		 Just skip it.  */
764 	      REQUIRE (skip_bytes (&buf, end, ptr_size));
765 	      SKIP_RELOCS (buf);
766 	    }
767 	  if (cie->version >= 4)
768 	    {
769 	      REQUIRE (buf + 1 < end);
770 	      REQUIRE (buf[0] == ptr_size);
771 	      REQUIRE (buf[1] == 0);
772 	      buf += 2;
773 	    }
774 	  REQUIRE (read_uleb128 (&buf, end, &cie->code_align));
775 	  REQUIRE (read_sleb128 (&buf, end, &cie->data_align));
776 	  if (cie->version == 1)
777 	    {
778 	      REQUIRE (buf < end);
779 	      cie->ra_column = *buf++;
780 	    }
781 	  else
782 	    REQUIRE (read_uleb128 (&buf, end, &cie->ra_column));
783 	  ENSURE_NO_RELOCS (buf);
784 	  cie->lsda_encoding = DW_EH_PE_omit;
785 	  cie->fde_encoding = DW_EH_PE_omit;
786 	  cie->per_encoding = DW_EH_PE_omit;
787 	  aug = cie->augmentation;
788 	  if (aug[0] != 'e' || aug[1] != 'h')
789 	    {
790 	      if (*aug == 'z')
791 		{
792 		  aug++;
793 		  REQUIRE (read_uleb128 (&buf, end, &cie->augmentation_size));
794 		  ENSURE_NO_RELOCS (buf);
795 		}
796 
797 	      while (*aug != '\0')
798 		switch (*aug++)
799 		  {
800 		  case 'B':
801 		    break;
802 		  case 'L':
803 		    REQUIRE (read_byte (&buf, end, &cie->lsda_encoding));
804 		    ENSURE_NO_RELOCS (buf);
805 		    REQUIRE (get_DW_EH_PE_width (cie->lsda_encoding, ptr_size));
806 		    break;
807 		  case 'R':
808 		    REQUIRE (read_byte (&buf, end, &cie->fde_encoding));
809 		    ENSURE_NO_RELOCS (buf);
810 		    REQUIRE (get_DW_EH_PE_width (cie->fde_encoding, ptr_size));
811 		    break;
812 		  case 'S':
813 		    break;
814 		  case 'P':
815 		    {
816 		      int per_width;
817 
818 		      REQUIRE (read_byte (&buf, end, &cie->per_encoding));
819 		      per_width = get_DW_EH_PE_width (cie->per_encoding,
820 						      ptr_size);
821 		      REQUIRE (per_width);
822 		      if ((cie->per_encoding & 0x70) == DW_EH_PE_aligned)
823 			{
824 			  length = -(buf - ehbuf) & (per_width - 1);
825 			  REQUIRE (skip_bytes (&buf, end, length));
826 			  if (per_width == 8)
827 			    this_inf->u.cie.per_encoding_aligned8 = 1;
828 			}
829 		      this_inf->u.cie.personality_offset = buf - start;
830 		      ENSURE_NO_RELOCS (buf);
831 		      /* Ensure we have a reloc here.  */
832 		      REQUIRE (GET_RELOC (buf));
833 		      cie->personality.reloc_index
834 			= cookie->rel - cookie->rels;
835 		      /* Cope with MIPS-style composite relocations.  */
836 		      do
837 			cookie->rel++;
838 		      while (GET_RELOC (buf) != NULL);
839 		      REQUIRE (skip_bytes (&buf, end, per_width));
840 		    }
841 		    break;
842 		  default:
843 		    /* Unrecognized augmentation. Better bail out.  */
844 		    goto free_no_table;
845 		  }
846 	    }
847 	  this_inf->u.cie.aug_data_len
848 	    = buf - start - 1 - this_inf->u.cie.aug_str_len;
849 
850 	  /* For shared libraries, try to get rid of as many RELATIVE relocs
851 	     as possible.  */
852 	  if (bfd_link_pic (info)
853 	      && (get_elf_backend_data (abfd)
854 		  ->elf_backend_can_make_relative_eh_frame
855 		  (abfd, info, sec)))
856 	    {
857 	      if ((cie->fde_encoding & 0x70) == DW_EH_PE_absptr)
858 		this_inf->make_relative = 1;
859 	      /* If the CIE doesn't already have an 'R' entry, it's fairly
860 		 easy to add one, provided that there's no aligned data
861 		 after the augmentation string.  */
862 	      else if (cie->fde_encoding == DW_EH_PE_omit
863 		       && (cie->per_encoding & 0x70) != DW_EH_PE_aligned)
864 		{
865 		  if (*cie->augmentation == 0)
866 		    this_inf->add_augmentation_size = 1;
867 		  this_inf->u.cie.add_fde_encoding = 1;
868 		  this_inf->make_relative = 1;
869 		}
870 
871 	      if ((cie->lsda_encoding & 0x70) == DW_EH_PE_absptr)
872 		cie->can_make_lsda_relative = 1;
873 	    }
874 
875 	  /* If FDE encoding was not specified, it defaults to
876 	     DW_EH_absptr.  */
877 	  if (cie->fde_encoding == DW_EH_PE_omit)
878 	    cie->fde_encoding = DW_EH_PE_absptr;
879 
880 	  initial_insn_length = end - buf;
881 	  cie->initial_insn_length = initial_insn_length;
882 	  memcpy (cie->initial_instructions, buf,
883 		  initial_insn_length <= sizeof (cie->initial_instructions)
884 		  ? initial_insn_length : sizeof (cie->initial_instructions));
885 	  insns = buf;
886 	  buf += initial_insn_length;
887 	  ENSURE_NO_RELOCS (buf);
888 
889 	  if (!bfd_link_relocatable (info))
890 	    {
891 	      /* Keep info for merging cies.  */
892 	      this_inf->u.cie.u.full_cie = cie;
893 	      this_inf->u.cie.per_encoding_relative
894 		= (cie->per_encoding & 0x70) == DW_EH_PE_pcrel;
895 	    }
896 	}
897       else
898 	{
899 	  /* Find the corresponding CIE.  */
900 	  unsigned int cie_offset = this_inf->offset + 4 - hdr_id;
901 	  for (cie = local_cies; cie < local_cies + cie_count; cie++)
902 	    if (cie_offset == cie->cie_inf->offset)
903 	      break;
904 
905 	  /* Ensure this FDE references one of the CIEs in this input
906 	     section.  */
907 	  REQUIRE (cie != local_cies + cie_count);
908 	  this_inf->u.fde.cie_inf = cie->cie_inf;
909 	  this_inf->make_relative = cie->cie_inf->make_relative;
910 	  this_inf->add_augmentation_size
911 	    = cie->cie_inf->add_augmentation_size;
912 
913 	  ENSURE_NO_RELOCS (buf);
914 	  if ((sec->flags & SEC_LINKER_CREATED) == 0 || cookie->rels != NULL)
915 	    {
916 	      asection *rsec;
917 
918 	      REQUIRE (GET_RELOC (buf));
919 
920 	      /* Chain together the FDEs for each section.  */
921 	      rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook,
922 					    cookie, NULL);
923 	      /* RSEC will be NULL if FDE was cleared out as it was belonging to
924 		 a discarded SHT_GROUP.  */
925 	      if (rsec)
926 		{
927 		  REQUIRE (rsec->owner == abfd);
928 		  this_inf->u.fde.next_for_section = elf_fde_list (rsec);
929 		  elf_fde_list (rsec) = this_inf;
930 		}
931 	    }
932 
933 	  /* Skip the initial location and address range.  */
934 	  start = buf;
935 	  length = get_DW_EH_PE_width (cie->fde_encoding, ptr_size);
936 	  REQUIRE (skip_bytes (&buf, end, 2 * length));
937 
938 	  SKIP_RELOCS (buf - length);
939 	  if (!GET_RELOC (buf - length)
940 	      && read_value (abfd, buf - length, length, false) == 0)
941 	    {
942 	      (*info->callbacks->minfo)
943 		/* xgettext:c-format */
944 		(_("discarding zero address range FDE in %pB(%pA).\n"),
945 		 abfd, sec);
946 	      this_inf->u.fde.cie_inf = NULL;
947 	    }
948 
949 	  /* Skip the augmentation size, if present.  */
950 	  if (cie->augmentation[0] == 'z')
951 	    REQUIRE (read_uleb128 (&buf, end, &length));
952 	  else
953 	    length = 0;
954 
955 	  /* Of the supported augmentation characters above, only 'L'
956 	     adds augmentation data to the FDE.  This code would need to
957 	     be adjusted if any future augmentations do the same thing.  */
958 	  if (cie->lsda_encoding != DW_EH_PE_omit)
959 	    {
960 	      SKIP_RELOCS (buf);
961 	      if (cie->can_make_lsda_relative && GET_RELOC (buf))
962 		cie->cie_inf->u.cie.make_lsda_relative = 1;
963 	      this_inf->lsda_offset = buf - start;
964 	      /* If there's no 'z' augmentation, we don't know where the
965 		 CFA insns begin.  Assume no padding.  */
966 	      if (cie->augmentation[0] != 'z')
967 		length = end - buf;
968 	    }
969 
970 	  /* Skip over the augmentation data.  */
971 	  REQUIRE (skip_bytes (&buf, end, length));
972 	  insns = buf;
973 
974 	  buf = last_fde + 4 + hdr_length;
975 
976 	  /* For NULL RSEC (cleared FDE belonging to a discarded section)
977 	     the relocations are commonly cleared.  We do not sanity check if
978 	     all these relocations are cleared as (1) relocations to
979 	     .gcc_except_table will remain uncleared (they will get dropped
980 	     with the drop of this unused FDE) and (2) BFD already safely drops
981 	     relocations of any type to .eh_frame by
982 	     elf_section_ignore_discarded_relocs.
983 	     TODO: The .gcc_except_table entries should be also filtered as
984 	     .eh_frame entries; or GCC could rather use COMDAT for them.  */
985 	  SKIP_RELOCS (buf);
986 	}
987 
988       /* Try to interpret the CFA instructions and find the first
989 	 padding nop.  Shrink this_inf's size so that it doesn't
990 	 include the padding.  */
991       length = get_DW_EH_PE_width (cie->fde_encoding, ptr_size);
992       set_loc_count = 0;
993       insns_end = skip_non_nops (insns, end, length, &set_loc_count);
994       /* If we don't understand the CFA instructions, we can't know
995 	 what needs to be adjusted there.  */
996       if (insns_end == NULL
997 	  /* For the time being we don't support DW_CFA_set_loc in
998 	     CIE instructions.  */
999 	  || (set_loc_count && this_inf->cie))
1000 	goto free_no_table;
1001       this_inf->size -= end - insns_end;
1002       if (insns_end != end && this_inf->cie)
1003 	{
1004 	  cie->initial_insn_length -= end - insns_end;
1005 	  cie->length -= end - insns_end;
1006 	}
1007       if (set_loc_count
1008 	  && ((cie->fde_encoding & 0x70) == DW_EH_PE_pcrel
1009 	      || this_inf->make_relative))
1010 	{
1011 	  unsigned int cnt;
1012 	  bfd_byte *p;
1013 
1014 	  this_inf->set_loc = (unsigned int *)
1015 	      bfd_malloc ((set_loc_count + 1) * sizeof (unsigned int));
1016 	  REQUIRE (this_inf->set_loc);
1017 	  this_inf->set_loc[0] = set_loc_count;
1018 	  p = insns;
1019 	  cnt = 0;
1020 	  while (p < end)
1021 	    {
1022 	      if (*p == DW_CFA_set_loc)
1023 		this_inf->set_loc[++cnt] = p + 1 - start;
1024 	      REQUIRE (skip_cfa_op (&p, end, length));
1025 	    }
1026 	}
1027 
1028       this_inf->removed = 1;
1029       this_inf->fde_encoding = cie->fde_encoding;
1030       this_inf->lsda_encoding = cie->lsda_encoding;
1031       sec_info->count++;
1032     }
1033   BFD_ASSERT (sec_info->count == num_entries);
1034   BFD_ASSERT (cie_count == num_cies);
1035 
1036   elf_section_data (sec)->sec_info = sec_info;
1037   sec->sec_info_type = SEC_INFO_TYPE_EH_FRAME;
1038   if (!bfd_link_relocatable (info))
1039     {
1040       /* Keep info for merging cies.  */
1041       sec_info->cies = local_cies;
1042       local_cies = NULL;
1043     }
1044   goto success;
1045 
1046  free_no_table:
1047   _bfd_error_handler
1048     /* xgettext:c-format */
1049     (_("error in %pB(%pA); no .eh_frame_hdr table will be created"),
1050      abfd, sec);
1051   hdr_info->u.dwarf.table = false;
1052   free (sec_info);
1053  success:
1054   free (ehbuf);
1055   free (local_cies);
1056 #undef REQUIRE
1057 }
1058 
1059 /* Order eh_frame_hdr entries by the VMA of their text section.  */
1060 
1061 static int
1062 cmp_eh_frame_hdr (const void *a, const void *b)
1063 {
1064   bfd_vma text_a;
1065   bfd_vma text_b;
1066   asection *sec;
1067 
1068   sec = *(asection *const *)a;
1069   sec = (asection *) elf_section_data (sec)->sec_info;
1070   text_a = sec->output_section->vma + sec->output_offset;
1071   sec = *(asection *const *)b;
1072   sec = (asection *) elf_section_data (sec)->sec_info;
1073   text_b = sec->output_section->vma + sec->output_offset;
1074 
1075   if (text_a < text_b)
1076     return -1;
1077   return text_a > text_b;
1078 
1079 }
1080 
1081 /* Add space for a CANTUNWIND terminator to SEC if the text sections
1082    referenced by it and NEXT are not contiguous, or NEXT is NULL.  */
1083 
1084 static void
1085 add_eh_frame_hdr_terminator (asection *sec,
1086 			     asection *next)
1087 {
1088   bfd_vma end;
1089   bfd_vma next_start;
1090   asection *text_sec;
1091 
1092   if (next)
1093     {
1094       /* See if there is a gap (presumably a text section without unwind info)
1095 	 between these two entries.  */
1096       text_sec = (asection *) elf_section_data (sec)->sec_info;
1097       end = text_sec->output_section->vma + text_sec->output_offset
1098 	    + text_sec->size;
1099       text_sec = (asection *) elf_section_data (next)->sec_info;
1100       next_start = text_sec->output_section->vma + text_sec->output_offset;
1101       if (end == next_start)
1102 	return;
1103     }
1104 
1105   /* Add space for a CANTUNWIND terminator.  */
1106   if (!sec->rawsize)
1107     sec->rawsize = sec->size;
1108 
1109   bfd_set_section_size (sec, sec->size + 8);
1110 }
1111 
1112 /* Finish a pass over all .eh_frame_entry sections.  */
1113 
1114 bool
1115 _bfd_elf_end_eh_frame_parsing (struct bfd_link_info *info)
1116 {
1117   struct eh_frame_hdr_info *hdr_info;
1118   unsigned int i;
1119 
1120   hdr_info = &elf_hash_table (info)->eh_info;
1121 
1122   if (info->eh_frame_hdr_type != COMPACT_EH_HDR
1123       || hdr_info->array_count == 0)
1124     return false;
1125 
1126   bfd_elf_discard_eh_frame_entry (hdr_info);
1127 
1128   qsort (hdr_info->u.compact.entries, hdr_info->array_count,
1129 	 sizeof (asection *), cmp_eh_frame_hdr);
1130 
1131   for (i = 0; i < hdr_info->array_count - 1; i++)
1132     {
1133       add_eh_frame_hdr_terminator (hdr_info->u.compact.entries[i],
1134 				   hdr_info->u.compact.entries[i + 1]);
1135     }
1136 
1137   /* Add a CANTUNWIND terminator after the last entry.  */
1138   add_eh_frame_hdr_terminator (hdr_info->u.compact.entries[i], NULL);
1139   return true;
1140 }
1141 
1142 /* Mark all relocations against CIE or FDE ENT, which occurs in
1143    .eh_frame section SEC.  COOKIE describes the relocations in SEC;
1144    its "rel" field can be changed freely.  */
1145 
1146 static bool
1147 mark_entry (struct bfd_link_info *info, asection *sec,
1148 	    struct eh_cie_fde *ent, elf_gc_mark_hook_fn gc_mark_hook,
1149 	    struct elf_reloc_cookie *cookie)
1150 {
1151   /* FIXME: octets_per_byte.  */
1152   for (cookie->rel = cookie->rels + ent->reloc_index;
1153        cookie->rel < cookie->relend
1154 	 && cookie->rel->r_offset < ent->offset + ent->size;
1155        cookie->rel++)
1156     if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, cookie))
1157       return false;
1158 
1159   return true;
1160 }
1161 
1162 /* Mark all the relocations against FDEs that relate to code in input
1163    section SEC.  The FDEs belong to .eh_frame section EH_FRAME, whose
1164    relocations are described by COOKIE.  */
1165 
1166 bool
1167 _bfd_elf_gc_mark_fdes (struct bfd_link_info *info, asection *sec,
1168 		       asection *eh_frame, elf_gc_mark_hook_fn gc_mark_hook,
1169 		       struct elf_reloc_cookie *cookie)
1170 {
1171   struct eh_cie_fde *fde, *cie;
1172 
1173   for (fde = elf_fde_list (sec); fde; fde = fde->u.fde.next_for_section)
1174     {
1175       if (!mark_entry (info, eh_frame, fde, gc_mark_hook, cookie))
1176 	return false;
1177 
1178       /* At this stage, all cie_inf fields point to local CIEs, so we
1179 	 can use the same cookie to refer to them.  */
1180       cie = fde->u.fde.cie_inf;
1181       if (cie != NULL && !cie->u.cie.gc_mark)
1182 	{
1183 	  cie->u.cie.gc_mark = 1;
1184 	  if (!mark_entry (info, eh_frame, cie, gc_mark_hook, cookie))
1185 	    return false;
1186 	}
1187     }
1188   return true;
1189 }
1190 
1191 /* Input section SEC of ABFD is an .eh_frame section that contains the
1192    CIE described by CIE_INF.  Return a version of CIE_INF that is going
1193    to be kept in the output, adding CIE_INF to the output if necessary.
1194 
1195    HDR_INFO is the .eh_frame_hdr information and COOKIE describes the
1196    relocations in REL.  */
1197 
1198 static struct eh_cie_fde *
1199 find_merged_cie (bfd *abfd, struct bfd_link_info *info, asection *sec,
1200 		 struct eh_frame_hdr_info *hdr_info,
1201 		 struct elf_reloc_cookie *cookie,
1202 		 struct eh_cie_fde *cie_inf)
1203 {
1204   unsigned long r_symndx;
1205   struct cie *cie, *new_cie;
1206   Elf_Internal_Rela *rel;
1207   void **loc;
1208 
1209   /* Use CIE_INF if we have already decided to keep it.  */
1210   if (!cie_inf->removed)
1211     return cie_inf;
1212 
1213   /* If we have merged CIE_INF with another CIE, use that CIE instead.  */
1214   if (cie_inf->u.cie.merged)
1215     return cie_inf->u.cie.u.merged_with;
1216 
1217   cie = cie_inf->u.cie.u.full_cie;
1218 
1219   /* Assume we will need to keep CIE_INF.  */
1220   cie_inf->removed = 0;
1221   cie_inf->u.cie.u.sec = sec;
1222 
1223   /* If we are not merging CIEs, use CIE_INF.  */
1224   if (cie == NULL)
1225     return cie_inf;
1226 
1227   if (cie->per_encoding != DW_EH_PE_omit)
1228     {
1229       bool per_binds_local;
1230 
1231       /* Work out the address of personality routine, or at least
1232 	 enough info that we could calculate the address had we made a
1233 	 final section layout.  The symbol on the reloc is enough,
1234 	 either the hash for a global, or (bfd id, index) pair for a
1235 	 local.  The assumption here is that no one uses addends on
1236 	 the reloc.  */
1237       rel = cookie->rels + cie->personality.reloc_index;
1238       memset (&cie->personality, 0, sizeof (cie->personality));
1239 #ifdef BFD64
1240       if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
1241 	r_symndx = ELF64_R_SYM (rel->r_info);
1242       else
1243 #endif
1244 	r_symndx = ELF32_R_SYM (rel->r_info);
1245       if (r_symndx >= cookie->locsymcount
1246 	  || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
1247 	{
1248 	  struct elf_link_hash_entry *h;
1249 
1250 	  r_symndx -= cookie->extsymoff;
1251 	  h = cookie->sym_hashes[r_symndx];
1252 
1253 	  while (h->root.type == bfd_link_hash_indirect
1254 		 || h->root.type == bfd_link_hash_warning)
1255 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
1256 
1257 	  cie->personality.h = h;
1258 	  per_binds_local = SYMBOL_REFERENCES_LOCAL (info, h);
1259 	}
1260       else
1261 	{
1262 	  Elf_Internal_Sym *sym;
1263 	  asection *sym_sec;
1264 
1265 	  sym = &cookie->locsyms[r_symndx];
1266 	  sym_sec = bfd_section_from_elf_index (abfd, sym->st_shndx);
1267 	  if (sym_sec == NULL)
1268 	    return cie_inf;
1269 
1270 	  if (sym_sec->kept_section != NULL)
1271 	    sym_sec = sym_sec->kept_section;
1272 	  if (sym_sec->output_section == NULL)
1273 	    return cie_inf;
1274 
1275 	  cie->local_personality = 1;
1276 	  cie->personality.sym.bfd_id = abfd->id;
1277 	  cie->personality.sym.index = r_symndx;
1278 	  per_binds_local = true;
1279 	}
1280 
1281       if (per_binds_local
1282 	  && bfd_link_pic (info)
1283 	  && (cie->per_encoding & 0x70) == DW_EH_PE_absptr
1284 	  && (get_elf_backend_data (abfd)
1285 	      ->elf_backend_can_make_relative_eh_frame (abfd, info, sec)))
1286 	{
1287 	  cie_inf->u.cie.make_per_encoding_relative = 1;
1288 	  cie_inf->u.cie.per_encoding_relative = 1;
1289 	}
1290     }
1291 
1292   /* See if we can merge this CIE with an earlier one.  */
1293   cie_compute_hash (cie);
1294   if (hdr_info->u.dwarf.cies == NULL)
1295     {
1296       hdr_info->u.dwarf.cies = htab_try_create (1, cie_hash, cie_eq, free);
1297       if (hdr_info->u.dwarf.cies == NULL)
1298 	return cie_inf;
1299     }
1300   loc = htab_find_slot_with_hash (hdr_info->u.dwarf.cies, cie,
1301 				  cie->hash, INSERT);
1302   if (loc == NULL)
1303     return cie_inf;
1304 
1305   new_cie = (struct cie *) *loc;
1306   if (new_cie == NULL)
1307     {
1308       /* Keep CIE_INF and record it in the hash table.  */
1309       new_cie = (struct cie *) malloc (sizeof (struct cie));
1310       if (new_cie == NULL)
1311 	return cie_inf;
1312 
1313       memcpy (new_cie, cie, sizeof (struct cie));
1314       *loc = new_cie;
1315     }
1316   else
1317     {
1318       /* Merge CIE_INF with NEW_CIE->CIE_INF.  */
1319       cie_inf->removed = 1;
1320       cie_inf->u.cie.merged = 1;
1321       cie_inf->u.cie.u.merged_with = new_cie->cie_inf;
1322       if (cie_inf->u.cie.make_lsda_relative)
1323 	new_cie->cie_inf->u.cie.make_lsda_relative = 1;
1324     }
1325   return new_cie->cie_inf;
1326 }
1327 
1328 /* For a given OFFSET in SEC, return the delta to the new location
1329    after .eh_frame editing.  */
1330 
1331 static bfd_signed_vma
1332 offset_adjust (bfd_vma offset, const asection *sec)
1333 {
1334   struct eh_frame_sec_info *sec_info
1335     = (struct eh_frame_sec_info *) elf_section_data (sec)->sec_info;
1336   unsigned int lo, hi, mid;
1337   struct eh_cie_fde *ent = NULL;
1338   bfd_signed_vma delta;
1339 
1340   lo = 0;
1341   hi = sec_info->count;
1342   if (hi == 0)
1343     return 0;
1344 
1345   while (lo < hi)
1346     {
1347       mid = (lo + hi) / 2;
1348       ent = &sec_info->entry[mid];
1349       if (offset < ent->offset)
1350 	hi = mid;
1351       else if (mid + 1 >= hi)
1352 	break;
1353       else if (offset >= ent[1].offset)
1354 	lo = mid + 1;
1355       else
1356 	break;
1357     }
1358 
1359   if (!ent->removed)
1360     delta = (bfd_vma) ent->new_offset - (bfd_vma) ent->offset;
1361   else if (ent->cie && ent->u.cie.merged)
1362     {
1363       struct eh_cie_fde *cie = ent->u.cie.u.merged_with;
1364       delta = ((bfd_vma) cie->new_offset + cie->u.cie.u.sec->output_offset
1365 	       - (bfd_vma) ent->offset - sec->output_offset);
1366     }
1367   else
1368     {
1369       /* Is putting the symbol on the next entry best for a deleted
1370 	 CIE/FDE?  */
1371       struct eh_cie_fde *last = sec_info->entry + sec_info->count;
1372       delta = ((bfd_vma) next_cie_fde_offset (ent, last, sec)
1373 	       - (bfd_vma) ent->offset);
1374       return delta;
1375     }
1376 
1377   /* Account for editing within this CIE/FDE.  */
1378   offset -= ent->offset;
1379   if (ent->cie)
1380     {
1381       unsigned int extra
1382 	= ent->add_augmentation_size + ent->u.cie.add_fde_encoding;
1383       if (extra == 0
1384 	  || offset <= 9u + ent->u.cie.aug_str_len)
1385 	return delta;
1386       delta += extra;
1387       if (offset <= 9u + ent->u.cie.aug_str_len + ent->u.cie.aug_data_len)
1388 	return delta;
1389       delta += extra;
1390     }
1391   else
1392     {
1393       unsigned int ptr_size, width, extra = ent->add_augmentation_size;
1394       if (offset <= 12 || extra == 0)
1395 	return delta;
1396       ptr_size = (get_elf_backend_data (sec->owner)
1397 		  ->elf_backend_eh_frame_address_size (sec->owner, sec));
1398       width = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
1399       if (offset <= 8 + 2 * width)
1400 	return delta;
1401       delta += extra;
1402     }
1403 
1404   return delta;
1405 }
1406 
1407 /* Adjust a global symbol defined in .eh_frame, so that it stays
1408    relative to its original CIE/FDE.  It is assumed that a symbol
1409    defined at the beginning of a CIE/FDE belongs to that CIE/FDE
1410    rather than marking the end of the previous CIE/FDE.  This matters
1411    when a CIE is merged with a previous CIE, since the symbol is
1412    moved to the merged CIE.  */
1413 
1414 bool
1415 _bfd_elf_adjust_eh_frame_global_symbol (struct elf_link_hash_entry *h,
1416 					void *arg ATTRIBUTE_UNUSED)
1417 {
1418   asection *sym_sec;
1419   bfd_signed_vma delta;
1420 
1421   if (h->root.type != bfd_link_hash_defined
1422       && h->root.type != bfd_link_hash_defweak)
1423     return true;
1424 
1425   sym_sec = h->root.u.def.section;
1426   if (sym_sec->sec_info_type != SEC_INFO_TYPE_EH_FRAME
1427       || elf_section_data (sym_sec)->sec_info == NULL)
1428     return true;
1429 
1430   delta = offset_adjust (h->root.u.def.value, sym_sec);
1431   h->root.u.def.value += delta;
1432 
1433   return true;
1434 }
1435 
1436 /* The same for all local symbols defined in .eh_frame.  Returns true
1437    if any symbol was changed.  */
1438 
1439 static int
1440 adjust_eh_frame_local_symbols (const asection *sec,
1441 			       struct elf_reloc_cookie *cookie)
1442 {
1443   int adjusted = 0;
1444 
1445   if (cookie->locsymcount > 1)
1446     {
1447       unsigned int shndx = elf_section_data (sec)->this_idx;
1448       Elf_Internal_Sym *end_sym = cookie->locsyms + cookie->locsymcount;
1449       Elf_Internal_Sym *sym;
1450 
1451       for (sym = cookie->locsyms + 1; sym < end_sym; ++sym)
1452 	if (sym->st_info <= ELF_ST_INFO (STB_LOCAL, STT_OBJECT)
1453 	    && sym->st_shndx == shndx)
1454 	  {
1455 	    bfd_signed_vma delta = offset_adjust (sym->st_value, sec);
1456 
1457 	    if (delta != 0)
1458 	      {
1459 		adjusted = 1;
1460 		sym->st_value += delta;
1461 	      }
1462 	  }
1463     }
1464   return adjusted;
1465 }
1466 
1467 /* This function is called for each input file before the .eh_frame
1468    section is relocated.  It discards duplicate CIEs and FDEs for discarded
1469    functions.  The function returns TRUE iff any entries have been
1470    deleted.  */
1471 
1472 bool
1473 _bfd_elf_discard_section_eh_frame
1474    (bfd *abfd, struct bfd_link_info *info, asection *sec,
1475     bool (*reloc_symbol_deleted_p) (bfd_vma, void *),
1476     struct elf_reloc_cookie *cookie)
1477 {
1478   struct eh_cie_fde *ent;
1479   struct eh_frame_sec_info *sec_info;
1480   struct eh_frame_hdr_info *hdr_info;
1481   unsigned int ptr_size, offset, eh_alignment;
1482   int changed;
1483 
1484   if (sec->sec_info_type != SEC_INFO_TYPE_EH_FRAME)
1485     return false;
1486 
1487   sec_info = (struct eh_frame_sec_info *) elf_section_data (sec)->sec_info;
1488   if (sec_info == NULL)
1489     return false;
1490 
1491   ptr_size = (get_elf_backend_data (sec->owner)
1492 	      ->elf_backend_eh_frame_address_size (sec->owner, sec));
1493 
1494   hdr_info = &elf_hash_table (info)->eh_info;
1495   for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1496     if (ent->size == 4)
1497       /* There should only be one zero terminator, on the last input
1498 	 file supplying .eh_frame (crtend.o).  Remove any others.  */
1499       ent->removed = sec->map_head.s != NULL;
1500     else if (!ent->cie && ent->u.fde.cie_inf != NULL)
1501       {
1502 	bool keep;
1503 	if ((sec->flags & SEC_LINKER_CREATED) != 0 && cookie->rels == NULL)
1504 	  {
1505 	    unsigned int width
1506 	      = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
1507 	    bfd_vma value
1508 	      = read_value (abfd, sec->contents + ent->offset + 8 + width,
1509 			    width, get_DW_EH_PE_signed (ent->fde_encoding));
1510 	    keep = value != 0;
1511 	  }
1512 	else
1513 	  {
1514 	    cookie->rel = cookie->rels + ent->reloc_index;
1515 	    /* FIXME: octets_per_byte.  */
1516 	    BFD_ASSERT (cookie->rel < cookie->relend
1517 			&& cookie->rel->r_offset == ent->offset + 8);
1518 	    keep = !(*reloc_symbol_deleted_p) (ent->offset + 8, cookie);
1519 	  }
1520 	if (keep)
1521 	  {
1522 	    if (bfd_link_pic (info)
1523 		&& (((ent->fde_encoding & 0x70) == DW_EH_PE_absptr
1524 		     && ent->make_relative == 0)
1525 		    || (ent->fde_encoding & 0x70) == DW_EH_PE_aligned))
1526 	      {
1527 		static int num_warnings_issued = 0;
1528 
1529 		/* If a shared library uses absolute pointers
1530 		   which we cannot turn into PC relative,
1531 		   don't create the binary search table,
1532 		   since it is affected by runtime relocations.  */
1533 		hdr_info->u.dwarf.table = false;
1534 		/* Only warn if --eh-frame-hdr was specified.  */
1535 		if (info->eh_frame_hdr_type != 0)
1536 		  {
1537 		    if (num_warnings_issued < 10)
1538 		      {
1539 			_bfd_error_handler
1540 			  /* xgettext:c-format */
1541 			  (_("FDE encoding in %pB(%pA) prevents .eh_frame_hdr"
1542 			     " table being created"), abfd, sec);
1543 			num_warnings_issued ++;
1544 		      }
1545 		    else if (num_warnings_issued == 10)
1546 		      {
1547 			_bfd_error_handler
1548 			  (_("further warnings about FDE encoding preventing .eh_frame_hdr generation dropped"));
1549 			num_warnings_issued ++;
1550 		      }
1551 		  }
1552 	      }
1553 	    ent->removed = 0;
1554 	    hdr_info->u.dwarf.fde_count++;
1555 	    ent->u.fde.cie_inf = find_merged_cie (abfd, info, sec, hdr_info,
1556 						  cookie, ent->u.fde.cie_inf);
1557 	  }
1558       }
1559 
1560   free (sec_info->cies);
1561   sec_info->cies = NULL;
1562 
1563   /* It may be that some .eh_frame input section has greater alignment
1564      than other .eh_frame sections.  In that case we run the risk of
1565      padding with zeros before that section, which would be seen as a
1566      zero terminator.  Alignment padding must be added *inside* the
1567      last FDE instead.  For other FDEs we align according to their
1568      encoding, in order to align FDE address range entries naturally.  */
1569   offset = 0;
1570   changed = 0;
1571   for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1572     if (!ent->removed)
1573       {
1574 	eh_alignment = 4;
1575 	if (ent->size == 4)
1576 	  ;
1577 	else if (ent->cie)
1578 	  {
1579 	    if (ent->u.cie.per_encoding_aligned8)
1580 	      eh_alignment = 8;
1581 	  }
1582 	else
1583 	  {
1584 	    eh_alignment = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
1585 	    if (eh_alignment < 4)
1586 	      eh_alignment = 4;
1587 	  }
1588 	offset = (offset + eh_alignment - 1) & -eh_alignment;
1589 	ent->new_offset = offset;
1590 	if (ent->new_offset != ent->offset)
1591 	  changed = 1;
1592 	offset += size_of_output_cie_fde (ent);
1593       }
1594 
1595   eh_alignment = 4;
1596   offset = (offset + eh_alignment - 1) & -eh_alignment;
1597   sec->rawsize = sec->size;
1598   sec->size = offset;
1599   if (sec->size != sec->rawsize)
1600     changed = 1;
1601 
1602   if (changed && adjust_eh_frame_local_symbols (sec, cookie))
1603     {
1604       Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1605       symtab_hdr->contents = (unsigned char *) cookie->locsyms;
1606     }
1607   return changed;
1608 }
1609 
1610 /* This function is called for .eh_frame_hdr section after
1611    _bfd_elf_discard_section_eh_frame has been called on all .eh_frame
1612    input sections.  It finalizes the size of .eh_frame_hdr section.  */
1613 
1614 bool
1615 _bfd_elf_discard_section_eh_frame_hdr (struct bfd_link_info *info)
1616 {
1617   struct elf_link_hash_table *htab;
1618   struct eh_frame_hdr_info *hdr_info;
1619   asection *sec;
1620 
1621   htab = elf_hash_table (info);
1622   hdr_info = &htab->eh_info;
1623 
1624   if (!hdr_info->frame_hdr_is_compact && hdr_info->u.dwarf.cies != NULL)
1625     {
1626       htab_delete (hdr_info->u.dwarf.cies);
1627       hdr_info->u.dwarf.cies = NULL;
1628     }
1629 
1630   sec = hdr_info->hdr_sec;
1631   if (sec == NULL)
1632     return false;
1633 
1634   if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
1635     {
1636       /* For compact frames we only add the header.  The actual table comes
1637 	 from the .eh_frame_entry sections.  */
1638       sec->size = 8;
1639     }
1640   else
1641     {
1642       sec->size = EH_FRAME_HDR_SIZE;
1643       if (hdr_info->u.dwarf.table)
1644 	sec->size += 4 + hdr_info->u.dwarf.fde_count * 8;
1645     }
1646 
1647   return true;
1648 }
1649 
1650 /* Return true if there is at least one non-empty .eh_frame section in
1651    input files.  Can only be called after ld has mapped input to
1652    output sections, and before sections are stripped.  */
1653 
1654 bool
1655 _bfd_elf_eh_frame_present (struct bfd_link_info *info)
1656 {
1657   asection *eh = bfd_get_section_by_name (info->output_bfd, ".eh_frame");
1658 
1659   if (eh == NULL)
1660     return false;
1661 
1662   /* Count only sections which have at least a single CIE or FDE.
1663      There cannot be any CIE or FDE <= 8 bytes.  */
1664   for (eh = eh->map_head.s; eh != NULL; eh = eh->map_head.s)
1665     if (eh->size > 8)
1666       return true;
1667 
1668   return false;
1669 }
1670 
1671 /* Return true if there is at least one .eh_frame_entry section in
1672    input files.  */
1673 
1674 bool
1675 _bfd_elf_eh_frame_entry_present (struct bfd_link_info *info)
1676 {
1677   asection *o;
1678   bfd *abfd;
1679 
1680   for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
1681     {
1682       for (o = abfd->sections; o; o = o->next)
1683 	{
1684 	  const char *name = bfd_section_name (o);
1685 
1686 	  if (strcmp (name, ".eh_frame_entry")
1687 	      && !bfd_is_abs_section (o->output_section))
1688 	    return true;
1689 	}
1690     }
1691   return false;
1692 }
1693 
1694 /* This function is called from size_dynamic_sections.
1695    It needs to decide whether .eh_frame_hdr should be output or not,
1696    because when the dynamic symbol table has been sized it is too late
1697    to strip sections.  */
1698 
1699 bool
1700 _bfd_elf_maybe_strip_eh_frame_hdr (struct bfd_link_info *info)
1701 {
1702   struct elf_link_hash_table *htab;
1703   struct eh_frame_hdr_info *hdr_info;
1704   struct bfd_link_hash_entry *bh = NULL;
1705   struct elf_link_hash_entry *h;
1706 
1707   htab = elf_hash_table (info);
1708   hdr_info = &htab->eh_info;
1709   if (hdr_info->hdr_sec == NULL)
1710     return true;
1711 
1712   if (bfd_is_abs_section (hdr_info->hdr_sec->output_section)
1713       || info->eh_frame_hdr_type == 0
1714       || (info->eh_frame_hdr_type == DWARF2_EH_HDR
1715 	  && !_bfd_elf_eh_frame_present (info))
1716       || (info->eh_frame_hdr_type == COMPACT_EH_HDR
1717 	  && !_bfd_elf_eh_frame_entry_present (info)))
1718     {
1719       hdr_info->hdr_sec->flags |= SEC_EXCLUDE;
1720       hdr_info->hdr_sec = NULL;
1721       return true;
1722     }
1723 
1724   /* Add a hidden symbol so that systems without access to PHDRs can
1725      find the table.  */
1726   if (! (_bfd_generic_link_add_one_symbol
1727 	 (info, info->output_bfd, "__GNU_EH_FRAME_HDR", BSF_LOCAL,
1728 	  hdr_info->hdr_sec, 0, NULL, false, false, &bh)))
1729     return false;
1730 
1731   h = (struct elf_link_hash_entry *) bh;
1732   h->def_regular = 1;
1733   h->other = STV_HIDDEN;
1734   get_elf_backend_data
1735     (info->output_bfd)->elf_backend_hide_symbol (info, h, true);
1736 
1737   if (!hdr_info->frame_hdr_is_compact)
1738     hdr_info->u.dwarf.table = true;
1739   return true;
1740 }
1741 
1742 /* Adjust an address in the .eh_frame section.  Given OFFSET within
1743    SEC, this returns the new offset in the adjusted .eh_frame section,
1744    or -1 if the address refers to a CIE/FDE which has been removed
1745    or to offset with dynamic relocation which is no longer needed.  */
1746 
1747 bfd_vma
1748 _bfd_elf_eh_frame_section_offset (bfd *output_bfd ATTRIBUTE_UNUSED,
1749 				  struct bfd_link_info *info ATTRIBUTE_UNUSED,
1750 				  asection *sec,
1751 				  bfd_vma offset)
1752 {
1753   struct eh_frame_sec_info *sec_info;
1754   unsigned int lo, hi, mid;
1755 
1756   if (sec->sec_info_type != SEC_INFO_TYPE_EH_FRAME)
1757     return offset;
1758   sec_info = (struct eh_frame_sec_info *) elf_section_data (sec)->sec_info;
1759 
1760   if (offset >= sec->rawsize)
1761     return offset - sec->rawsize + sec->size;
1762 
1763   lo = 0;
1764   hi = sec_info->count;
1765   mid = 0;
1766   while (lo < hi)
1767     {
1768       mid = (lo + hi) / 2;
1769       if (offset < sec_info->entry[mid].offset)
1770 	hi = mid;
1771       else if (offset
1772 	       >= sec_info->entry[mid].offset + sec_info->entry[mid].size)
1773 	lo = mid + 1;
1774       else
1775 	break;
1776     }
1777 
1778   BFD_ASSERT (lo < hi);
1779 
1780   /* FDE or CIE was removed.  */
1781   if (sec_info->entry[mid].removed)
1782     return (bfd_vma) -1;
1783 
1784   /* If converting personality pointers to DW_EH_PE_pcrel, there will be
1785      no need for run-time relocation against the personality field.  */
1786   if (sec_info->entry[mid].cie
1787       && sec_info->entry[mid].u.cie.make_per_encoding_relative
1788       && offset == (sec_info->entry[mid].offset + 8
1789 		    + sec_info->entry[mid].u.cie.personality_offset))
1790     return (bfd_vma) -2;
1791 
1792   /* If converting to DW_EH_PE_pcrel, there will be no need for run-time
1793      relocation against FDE's initial_location field.  */
1794   if (!sec_info->entry[mid].cie
1795       && sec_info->entry[mid].make_relative
1796       && offset == sec_info->entry[mid].offset + 8)
1797     return (bfd_vma) -2;
1798 
1799   /* If converting LSDA pointers to DW_EH_PE_pcrel, there will be no need
1800      for run-time relocation against LSDA field.  */
1801   if (!sec_info->entry[mid].cie
1802       && sec_info->entry[mid].u.fde.cie_inf->u.cie.make_lsda_relative
1803       && offset == (sec_info->entry[mid].offset + 8
1804 		    + sec_info->entry[mid].lsda_offset))
1805     return (bfd_vma) -2;
1806 
1807   /* If converting to DW_EH_PE_pcrel, there will be no need for run-time
1808      relocation against DW_CFA_set_loc's arguments.  */
1809   if (sec_info->entry[mid].set_loc
1810       && sec_info->entry[mid].make_relative
1811       && (offset >= sec_info->entry[mid].offset + 8
1812 		    + sec_info->entry[mid].set_loc[1]))
1813     {
1814       unsigned int cnt;
1815 
1816       for (cnt = 1; cnt <= sec_info->entry[mid].set_loc[0]; cnt++)
1817 	if (offset == sec_info->entry[mid].offset + 8
1818 		      + sec_info->entry[mid].set_loc[cnt])
1819 	  return (bfd_vma) -2;
1820     }
1821 
1822   /* Any new augmentation bytes go before the first relocation.  */
1823   return (offset + sec_info->entry[mid].new_offset
1824 	  - sec_info->entry[mid].offset
1825 	  + extra_augmentation_string_bytes (sec_info->entry + mid)
1826 	  + extra_augmentation_data_bytes (sec_info->entry + mid));
1827 }
1828 
1829 /* Write out .eh_frame_entry section.  Add CANTUNWIND terminator if needed.
1830    Also check that the contents look sane.  */
1831 
1832 bool
1833 _bfd_elf_write_section_eh_frame_entry (bfd *abfd, struct bfd_link_info *info,
1834 				       asection *sec, bfd_byte *contents)
1835 {
1836   const struct elf_backend_data *bed;
1837   bfd_byte cantunwind[8];
1838   bfd_vma addr;
1839   bfd_vma last_addr;
1840   bfd_vma offset;
1841   asection *text_sec = (asection *) elf_section_data (sec)->sec_info;
1842 
1843   if (!sec->rawsize)
1844     sec->rawsize = sec->size;
1845 
1846   BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_EH_FRAME_ENTRY);
1847 
1848   /* Check to make sure that the text section corresponding to this eh_frame_entry
1849      section has not been excluded.  In particular, mips16 stub entries will be
1850      excluded outside of the normal process.  */
1851   if (sec->flags & SEC_EXCLUDE
1852       || text_sec->flags & SEC_EXCLUDE)
1853     return true;
1854 
1855   if (!bfd_set_section_contents (abfd, sec->output_section, contents,
1856 				 sec->output_offset, sec->rawsize))
1857       return false;
1858 
1859   last_addr = bfd_get_signed_32 (abfd, contents);
1860   /* Check that all the entries are in order.  */
1861   for (offset = 8; offset < sec->rawsize; offset += 8)
1862     {
1863       addr = bfd_get_signed_32 (abfd, contents + offset) + offset;
1864       if (addr <= last_addr)
1865 	{
1866 	  /* xgettext:c-format */
1867 	  _bfd_error_handler (_("%pB: %pA not in order"), sec->owner, sec);
1868 	  return false;
1869 	}
1870 
1871       last_addr = addr;
1872     }
1873 
1874   addr = text_sec->output_section->vma + text_sec->output_offset
1875 	 + text_sec->size;
1876   addr &= ~1;
1877   addr -= (sec->output_section->vma + sec->output_offset + sec->rawsize);
1878   if (addr & 1)
1879     {
1880       /* xgettext:c-format */
1881       _bfd_error_handler (_("%pB: %pA invalid input section size"),
1882 			  sec->owner, sec);
1883       bfd_set_error (bfd_error_bad_value);
1884       return false;
1885     }
1886   if (last_addr >= addr + sec->rawsize)
1887     {
1888       /* xgettext:c-format */
1889       _bfd_error_handler (_("%pB: %pA points past end of text section"),
1890 			  sec->owner, sec);
1891       bfd_set_error (bfd_error_bad_value);
1892       return false;
1893     }
1894 
1895   if (sec->size == sec->rawsize)
1896     return true;
1897 
1898   bed = get_elf_backend_data (abfd);
1899   BFD_ASSERT (sec->size == sec->rawsize + 8);
1900   BFD_ASSERT ((addr & 1) == 0);
1901   BFD_ASSERT (bed->cant_unwind_opcode);
1902 
1903   bfd_put_32 (abfd, addr, cantunwind);
1904   bfd_put_32 (abfd, (*bed->cant_unwind_opcode) (info), cantunwind + 4);
1905   return bfd_set_section_contents (abfd, sec->output_section, cantunwind,
1906 				   sec->output_offset + sec->rawsize, 8);
1907 }
1908 
1909 /* Write out .eh_frame section.  This is called with the relocated
1910    contents.  */
1911 
1912 bool
1913 _bfd_elf_write_section_eh_frame (bfd *abfd,
1914 				 struct bfd_link_info *info,
1915 				 asection *sec,
1916 				 bfd_byte *contents)
1917 {
1918   struct eh_frame_sec_info *sec_info;
1919   struct elf_link_hash_table *htab;
1920   struct eh_frame_hdr_info *hdr_info;
1921   unsigned int ptr_size;
1922   struct eh_cie_fde *ent, *last_ent;
1923 
1924   if (sec->sec_info_type != SEC_INFO_TYPE_EH_FRAME)
1925     /* FIXME: octets_per_byte.  */
1926     return bfd_set_section_contents (abfd, sec->output_section, contents,
1927 				     sec->output_offset, sec->size);
1928 
1929   ptr_size = (get_elf_backend_data (abfd)
1930 	      ->elf_backend_eh_frame_address_size (abfd, sec));
1931   BFD_ASSERT (ptr_size != 0);
1932 
1933   sec_info = (struct eh_frame_sec_info *) elf_section_data (sec)->sec_info;
1934   htab = elf_hash_table (info);
1935   hdr_info = &htab->eh_info;
1936 
1937   if (hdr_info->u.dwarf.table && hdr_info->u.dwarf.array == NULL)
1938     {
1939       hdr_info->frame_hdr_is_compact = false;
1940       hdr_info->u.dwarf.array = (struct eh_frame_array_ent *)
1941 	bfd_malloc (hdr_info->u.dwarf.fde_count
1942 		    * sizeof (*hdr_info->u.dwarf.array));
1943     }
1944   if (hdr_info->u.dwarf.array == NULL)
1945     hdr_info = NULL;
1946 
1947   /* The new offsets can be bigger or smaller than the original offsets.
1948      We therefore need to make two passes over the section: one backward
1949      pass to move entries up and one forward pass to move entries down.
1950      The two passes won't interfere with each other because entries are
1951      not reordered  */
1952   for (ent = sec_info->entry + sec_info->count; ent-- != sec_info->entry;)
1953     if (!ent->removed && ent->new_offset > ent->offset)
1954       memmove (contents + ent->new_offset, contents + ent->offset, ent->size);
1955 
1956   for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1957     if (!ent->removed && ent->new_offset < ent->offset)
1958       memmove (contents + ent->new_offset, contents + ent->offset, ent->size);
1959 
1960   last_ent = sec_info->entry + sec_info->count;
1961   for (ent = sec_info->entry; ent < last_ent; ++ent)
1962     {
1963       unsigned char *buf, *end;
1964       unsigned int new_size;
1965 
1966       if (ent->removed)
1967 	continue;
1968 
1969       if (ent->size == 4)
1970 	{
1971 	  /* Any terminating FDE must be at the end of the section.  */
1972 	  BFD_ASSERT (ent == last_ent - 1);
1973 	  continue;
1974 	}
1975 
1976       buf = contents + ent->new_offset;
1977       end = buf + ent->size;
1978       new_size = next_cie_fde_offset (ent, last_ent, sec) - ent->new_offset;
1979 
1980       /* Update the size.  It may be shrinked.  */
1981       bfd_put_32 (abfd, new_size - 4, buf);
1982 
1983       /* Filling the extra bytes with DW_CFA_nops.  */
1984       if (new_size != ent->size)
1985 	memset (end, 0, new_size - ent->size);
1986 
1987       if (ent->cie)
1988 	{
1989 	  /* CIE */
1990 	  if (ent->make_relative
1991 	      || ent->u.cie.make_lsda_relative
1992 	      || ent->u.cie.per_encoding_relative)
1993 	    {
1994 	      char *aug;
1995 	      unsigned int version, action, extra_string, extra_data;
1996 	      unsigned int per_width, per_encoding;
1997 
1998 	      /* Need to find 'R' or 'L' augmentation's argument and modify
1999 		 DW_EH_PE_* value.  */
2000 	      action = ((ent->make_relative ? 1 : 0)
2001 			| (ent->u.cie.make_lsda_relative ? 2 : 0)
2002 			| (ent->u.cie.per_encoding_relative ? 4 : 0));
2003 	      extra_string = extra_augmentation_string_bytes (ent);
2004 	      extra_data = extra_augmentation_data_bytes (ent);
2005 
2006 	      /* Skip length, id.  */
2007 	      buf += 8;
2008 	      version = *buf++;
2009 	      aug = (char *) buf;
2010 	      buf += strlen (aug) + 1;
2011 	      skip_leb128 (&buf, end);
2012 	      skip_leb128 (&buf, end);
2013 	      if (version == 1)
2014 		skip_bytes (&buf, end, 1);
2015 	      else
2016 		skip_leb128 (&buf, end);
2017 	      if (*aug == 'z')
2018 		{
2019 		  /* The uleb128 will always be a single byte for the kind
2020 		     of augmentation strings that we're prepared to handle.  */
2021 		  *buf++ += extra_data;
2022 		  aug++;
2023 		}
2024 
2025 	      /* Make room for the new augmentation string and data bytes.  */
2026 	      memmove (buf + extra_string + extra_data, buf, end - buf);
2027 	      memmove (aug + extra_string, aug, buf - (bfd_byte *) aug);
2028 	      buf += extra_string;
2029 	      end += extra_string + extra_data;
2030 
2031 	      if (ent->add_augmentation_size)
2032 		{
2033 		  *aug++ = 'z';
2034 		  *buf++ = extra_data - 1;
2035 		}
2036 	      if (ent->u.cie.add_fde_encoding)
2037 		{
2038 		  BFD_ASSERT (action & 1);
2039 		  *aug++ = 'R';
2040 		  *buf++ = make_pc_relative (DW_EH_PE_absptr, ptr_size);
2041 		  action &= ~1;
2042 		}
2043 
2044 	      while (action)
2045 		switch (*aug++)
2046 		  {
2047 		  case 'L':
2048 		    if (action & 2)
2049 		      {
2050 			BFD_ASSERT (*buf == ent->lsda_encoding);
2051 			*buf = make_pc_relative (*buf, ptr_size);
2052 			action &= ~2;
2053 		      }
2054 		    buf++;
2055 		    break;
2056 		  case 'P':
2057 		    if (ent->u.cie.make_per_encoding_relative)
2058 		      *buf = make_pc_relative (*buf, ptr_size);
2059 		    per_encoding = *buf++;
2060 		    per_width = get_DW_EH_PE_width (per_encoding, ptr_size);
2061 		    BFD_ASSERT (per_width != 0);
2062 		    BFD_ASSERT (((per_encoding & 0x70) == DW_EH_PE_pcrel)
2063 				== ent->u.cie.per_encoding_relative);
2064 		    if ((per_encoding & 0x70) == DW_EH_PE_aligned)
2065 		      buf = (contents
2066 			     + ((buf - contents + per_width - 1)
2067 				& ~((bfd_size_type) per_width - 1)));
2068 		    if (action & 4)
2069 		      {
2070 			bfd_vma val;
2071 
2072 			val = read_value (abfd, buf, per_width,
2073 					  get_DW_EH_PE_signed (per_encoding));
2074 			if (ent->u.cie.make_per_encoding_relative)
2075 			  val -= (sec->output_section->vma
2076 				  + sec->output_offset
2077 				  + (buf - contents));
2078 			else
2079 			  {
2080 			    val += (bfd_vma) ent->offset - ent->new_offset;
2081 			    val -= extra_string + extra_data;
2082 			  }
2083 			write_value (abfd, buf, val, per_width);
2084 			action &= ~4;
2085 		      }
2086 		    buf += per_width;
2087 		    break;
2088 		  case 'R':
2089 		    if (action & 1)
2090 		      {
2091 			BFD_ASSERT (*buf == ent->fde_encoding);
2092 			*buf = make_pc_relative (*buf, ptr_size);
2093 			action &= ~1;
2094 		      }
2095 		    buf++;
2096 		    break;
2097 		  case 'S':
2098 		    break;
2099 		  default:
2100 		    BFD_FAIL ();
2101 		  }
2102 	    }
2103 	}
2104       else
2105 	{
2106 	  /* FDE */
2107 	  bfd_vma value, address;
2108 	  unsigned int width;
2109 	  bfd_byte *start;
2110 	  struct eh_cie_fde *cie;
2111 
2112 	  /* Skip length.  */
2113 	  cie = ent->u.fde.cie_inf;
2114 	  buf += 4;
2115 	  value = ((ent->new_offset + sec->output_offset + 4)
2116 		   - (cie->new_offset + cie->u.cie.u.sec->output_offset));
2117 	  bfd_put_32 (abfd, value, buf);
2118 	  if (bfd_link_relocatable (info))
2119 	    continue;
2120 	  buf += 4;
2121 	  width = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
2122 	  value = read_value (abfd, buf, width,
2123 			      get_DW_EH_PE_signed (ent->fde_encoding));
2124 	  address = value;
2125 	  if (value)
2126 	    {
2127 	      switch (ent->fde_encoding & 0x70)
2128 		{
2129 		case DW_EH_PE_textrel:
2130 		  BFD_ASSERT (hdr_info == NULL);
2131 		  break;
2132 		case DW_EH_PE_datarel:
2133 		  {
2134 		    switch (abfd->arch_info->arch)
2135 		      {
2136 		      case bfd_arch_ia64:
2137 			BFD_ASSERT (elf_gp (abfd) != 0);
2138 			address += elf_gp (abfd);
2139 			break;
2140 		      default:
2141 			_bfd_error_handler
2142 			  (_("DW_EH_PE_datarel unspecified"
2143 			     " for this architecture"));
2144 			/* Fall thru */
2145 		      case bfd_arch_frv:
2146 		      case bfd_arch_i386:
2147 		      case bfd_arch_nios2:
2148 			BFD_ASSERT (htab->hgot != NULL
2149 				    && ((htab->hgot->root.type
2150 					 == bfd_link_hash_defined)
2151 					|| (htab->hgot->root.type
2152 					    == bfd_link_hash_defweak)));
2153 			address
2154 			  += (htab->hgot->root.u.def.value
2155 			      + htab->hgot->root.u.def.section->output_offset
2156 			      + (htab->hgot->root.u.def.section->output_section
2157 				 ->vma));
2158 			break;
2159 		      }
2160 		  }
2161 		  break;
2162 		case DW_EH_PE_pcrel:
2163 		  value += (bfd_vma) ent->offset - ent->new_offset;
2164 		  address += (sec->output_section->vma
2165 			      + sec->output_offset
2166 			      + ent->offset + 8);
2167 		  break;
2168 		}
2169 	      if (ent->make_relative)
2170 		value -= (sec->output_section->vma
2171 			  + sec->output_offset
2172 			  + ent->new_offset + 8);
2173 	      write_value (abfd, buf, value, width);
2174 	    }
2175 
2176 	  start = buf;
2177 
2178 	  if (hdr_info)
2179 	    {
2180 	      /* The address calculation may overflow, giving us a
2181 		 value greater than 4G on a 32-bit target when
2182 		 dwarf_vma is 64-bit.  */
2183 	      if (sizeof (address) > 4 && ptr_size == 4)
2184 		address &= 0xffffffff;
2185 	      hdr_info->u.dwarf.array[hdr_info->array_count].initial_loc
2186 		= address;
2187 	      hdr_info->u.dwarf.array[hdr_info->array_count].range
2188 		= read_value (abfd, buf + width, width, false);
2189 	      hdr_info->u.dwarf.array[hdr_info->array_count++].fde
2190 		= (sec->output_section->vma
2191 		   + sec->output_offset
2192 		   + ent->new_offset);
2193 	    }
2194 
2195 	  if ((ent->lsda_encoding & 0x70) == DW_EH_PE_pcrel
2196 	      || cie->u.cie.make_lsda_relative)
2197 	    {
2198 	      buf += ent->lsda_offset;
2199 	      width = get_DW_EH_PE_width (ent->lsda_encoding, ptr_size);
2200 	      value = read_value (abfd, buf, width,
2201 				  get_DW_EH_PE_signed (ent->lsda_encoding));
2202 	      if (value)
2203 		{
2204 		  if ((ent->lsda_encoding & 0x70) == DW_EH_PE_pcrel)
2205 		    value += (bfd_vma) ent->offset - ent->new_offset;
2206 		  else if (cie->u.cie.make_lsda_relative)
2207 		    value -= (sec->output_section->vma
2208 			      + sec->output_offset
2209 			      + ent->new_offset + 8 + ent->lsda_offset);
2210 		  write_value (abfd, buf, value, width);
2211 		}
2212 	    }
2213 	  else if (ent->add_augmentation_size)
2214 	    {
2215 	      /* Skip the PC and length and insert a zero byte for the
2216 		 augmentation size.  */
2217 	      buf += width * 2;
2218 	      memmove (buf + 1, buf, end - buf);
2219 	      *buf = 0;
2220 	    }
2221 
2222 	  if (ent->set_loc)
2223 	    {
2224 	      /* Adjust DW_CFA_set_loc.  */
2225 	      unsigned int cnt;
2226 	      bfd_vma new_offset;
2227 
2228 	      width = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
2229 	      new_offset = ent->new_offset + 8
2230 			   + extra_augmentation_string_bytes (ent)
2231 			   + extra_augmentation_data_bytes (ent);
2232 
2233 	      for (cnt = 1; cnt <= ent->set_loc[0]; cnt++)
2234 		{
2235 		  buf = start + ent->set_loc[cnt];
2236 
2237 		  value = read_value (abfd, buf, width,
2238 				      get_DW_EH_PE_signed (ent->fde_encoding));
2239 		  if (!value)
2240 		    continue;
2241 
2242 		  if ((ent->fde_encoding & 0x70) == DW_EH_PE_pcrel)
2243 		    value += (bfd_vma) ent->offset + 8 - new_offset;
2244 		  if (ent->make_relative)
2245 		    value -= (sec->output_section->vma
2246 			      + sec->output_offset
2247 			      + new_offset + ent->set_loc[cnt]);
2248 		  write_value (abfd, buf, value, width);
2249 		}
2250 	    }
2251 	}
2252     }
2253 
2254   /* FIXME: octets_per_byte.  */
2255   return bfd_set_section_contents (abfd, sec->output_section,
2256 				   contents, (file_ptr) sec->output_offset,
2257 				   sec->size);
2258 }
2259 
2260 /* Helper function used to sort .eh_frame_hdr search table by increasing
2261    VMA of FDE initial location.  */
2262 
2263 static int
2264 vma_compare (const void *a, const void *b)
2265 {
2266   const struct eh_frame_array_ent *p = (const struct eh_frame_array_ent *) a;
2267   const struct eh_frame_array_ent *q = (const struct eh_frame_array_ent *) b;
2268   if (p->initial_loc > q->initial_loc)
2269     return 1;
2270   if (p->initial_loc < q->initial_loc)
2271     return -1;
2272   if (p->range > q->range)
2273     return 1;
2274   if (p->range < q->range)
2275     return -1;
2276   return 0;
2277 }
2278 
2279 /* Reorder .eh_frame_entry sections to match the associated text sections.
2280    This routine is called during the final linking step, just before writing
2281    the contents.  At this stage, sections in the eh_frame_hdr_info are already
2282    sorted in order of increasing text section address and so we simply need
2283    to make the .eh_frame_entrys follow that same order.  Note that it is
2284    invalid for a linker script to try to force a particular order of
2285    .eh_frame_entry sections.  */
2286 
2287 bool
2288 _bfd_elf_fixup_eh_frame_hdr (struct bfd_link_info *info)
2289 {
2290   asection *sec = NULL;
2291   asection *osec;
2292   struct eh_frame_hdr_info *hdr_info;
2293   unsigned int i;
2294   bfd_vma offset;
2295   struct bfd_link_order *p;
2296 
2297   hdr_info = &elf_hash_table (info)->eh_info;
2298 
2299   if (hdr_info->hdr_sec == NULL
2300       || info->eh_frame_hdr_type != COMPACT_EH_HDR
2301       || hdr_info->array_count == 0)
2302     return true;
2303 
2304   /* Change section output offsets to be in text section order.  */
2305   offset = 8;
2306   osec = hdr_info->u.compact.entries[0]->output_section;
2307   for (i = 0; i < hdr_info->array_count; i++)
2308     {
2309       sec = hdr_info->u.compact.entries[i];
2310       if (sec->output_section != osec)
2311 	{
2312 	  _bfd_error_handler
2313 	    (_("invalid output section for .eh_frame_entry: %pA"),
2314 	     sec->output_section);
2315 	  return false;
2316 	}
2317       sec->output_offset = offset;
2318       offset += sec->size;
2319     }
2320 
2321 
2322   /* Fix the link_order to match.  */
2323   for (p = sec->output_section->map_head.link_order; p != NULL; p = p->next)
2324     {
2325       if (p->type != bfd_indirect_link_order)
2326 	abort();
2327 
2328       p->offset = p->u.indirect.section->output_offset;
2329       if (p->next != NULL)
2330 	i--;
2331     }
2332 
2333   if (i != 0)
2334     {
2335       _bfd_error_handler
2336 	(_("invalid contents in %pA section"), osec);
2337       return false;
2338     }
2339 
2340   return true;
2341 }
2342 
2343 /* The .eh_frame_hdr format for Compact EH frames:
2344    ubyte version		(2)
2345    ubyte eh_ref_enc		(DW_EH_PE_* encoding of typinfo references)
2346    uint32_t count		(Number of entries in table)
2347    [array from .eh_frame_entry sections]  */
2348 
2349 static bool
2350 write_compact_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
2351 {
2352   struct elf_link_hash_table *htab;
2353   struct eh_frame_hdr_info *hdr_info;
2354   asection *sec;
2355   const struct elf_backend_data *bed;
2356   bfd_vma count;
2357   bfd_byte contents[8];
2358   unsigned int i;
2359 
2360   htab = elf_hash_table (info);
2361   hdr_info = &htab->eh_info;
2362   sec = hdr_info->hdr_sec;
2363 
2364   if (sec->size != 8)
2365     abort();
2366 
2367   for (i = 0; i < sizeof (contents); i++)
2368     contents[i] = 0;
2369 
2370   contents[0] = COMPACT_EH_HDR;
2371   bed = get_elf_backend_data (abfd);
2372 
2373   BFD_ASSERT (bed->compact_eh_encoding);
2374   contents[1] = (*bed->compact_eh_encoding) (info);
2375 
2376   count = (sec->output_section->size - 8) / 8;
2377   bfd_put_32 (abfd, count, contents + 4);
2378   return bfd_set_section_contents (abfd, sec->output_section, contents,
2379 				   (file_ptr) sec->output_offset, sec->size);
2380 }
2381 
2382 /* The .eh_frame_hdr format for DWARF frames:
2383 
2384    ubyte version		(currently 1)
2385    ubyte eh_frame_ptr_enc	(DW_EH_PE_* encoding of pointer to start of
2386 				 .eh_frame section)
2387    ubyte fde_count_enc		(DW_EH_PE_* encoding of total FDE count
2388 				 number (or DW_EH_PE_omit if there is no
2389 				 binary search table computed))
2390    ubyte table_enc		(DW_EH_PE_* encoding of binary search table,
2391 				 or DW_EH_PE_omit if not present.
2392 				 DW_EH_PE_datarel is using address of
2393 				 .eh_frame_hdr section start as base)
2394    [encoded] eh_frame_ptr	(pointer to start of .eh_frame section)
2395    optionally followed by:
2396    [encoded] fde_count		(total number of FDEs in .eh_frame section)
2397    fde_count x [encoded] initial_loc, fde
2398 				(array of encoded pairs containing
2399 				 FDE initial_location field and FDE address,
2400 				 sorted by increasing initial_loc).  */
2401 
2402 static bool
2403 write_dwarf_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
2404 {
2405   struct elf_link_hash_table *htab;
2406   struct eh_frame_hdr_info *hdr_info;
2407   asection *sec;
2408   bool retval = true;
2409 
2410   htab = elf_hash_table (info);
2411   hdr_info = &htab->eh_info;
2412   sec = hdr_info->hdr_sec;
2413   bfd_byte *contents;
2414   asection *eh_frame_sec;
2415   bfd_size_type size;
2416   bfd_vma encoded_eh_frame;
2417 
2418   size = EH_FRAME_HDR_SIZE;
2419   if (hdr_info->u.dwarf.array
2420       && hdr_info->array_count == hdr_info->u.dwarf.fde_count)
2421     size += 4 + hdr_info->u.dwarf.fde_count * 8;
2422   contents = (bfd_byte *) bfd_malloc (size);
2423   if (contents == NULL)
2424     return false;
2425 
2426   eh_frame_sec = bfd_get_section_by_name (abfd, ".eh_frame");
2427   if (eh_frame_sec == NULL)
2428     {
2429       free (contents);
2430       return false;
2431     }
2432 
2433   memset (contents, 0, EH_FRAME_HDR_SIZE);
2434   /* Version.  */
2435   contents[0] = 1;
2436   /* .eh_frame offset.  */
2437   contents[1] = get_elf_backend_data (abfd)->elf_backend_encode_eh_address
2438     (abfd, info, eh_frame_sec, 0, sec, 4, &encoded_eh_frame);
2439 
2440   if (hdr_info->u.dwarf.array
2441       && hdr_info->array_count == hdr_info->u.dwarf.fde_count)
2442     {
2443       /* FDE count encoding.  */
2444       contents[2] = DW_EH_PE_udata4;
2445       /* Search table encoding.  */
2446       contents[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4;
2447     }
2448   else
2449     {
2450       contents[2] = DW_EH_PE_omit;
2451       contents[3] = DW_EH_PE_omit;
2452     }
2453   bfd_put_32 (abfd, encoded_eh_frame, contents + 4);
2454 
2455   if (contents[2] != DW_EH_PE_omit)
2456     {
2457       unsigned int i;
2458       bool overlap, overflow;
2459 
2460       bfd_put_32 (abfd, hdr_info->u.dwarf.fde_count,
2461 		  contents + EH_FRAME_HDR_SIZE);
2462       qsort (hdr_info->u.dwarf.array, hdr_info->u.dwarf.fde_count,
2463 	     sizeof (*hdr_info->u.dwarf.array), vma_compare);
2464       overlap = false;
2465       overflow = false;
2466       for (i = 0; i < hdr_info->u.dwarf.fde_count; i++)
2467 	{
2468 	  bfd_vma val;
2469 
2470 	  val = hdr_info->u.dwarf.array[i].initial_loc
2471 	    - sec->output_section->vma;
2472 	  val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
2473 	  if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64
2474 	      && (hdr_info->u.dwarf.array[i].initial_loc
2475 		  != sec->output_section->vma + val))
2476 	    overflow = true;
2477 	  bfd_put_32 (abfd, val, contents + EH_FRAME_HDR_SIZE + i * 8 + 4);
2478 	  val = hdr_info->u.dwarf.array[i].fde - sec->output_section->vma;
2479 	  val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
2480 	  if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64
2481 	      && (hdr_info->u.dwarf.array[i].fde
2482 		  != sec->output_section->vma + val))
2483 	    overflow = true;
2484 	  bfd_put_32 (abfd, val, contents + EH_FRAME_HDR_SIZE + i * 8 + 8);
2485 	  if (i != 0
2486 	      && (hdr_info->u.dwarf.array[i].initial_loc
2487 		  < (hdr_info->u.dwarf.array[i - 1].initial_loc
2488 		     + hdr_info->u.dwarf.array[i - 1].range)))
2489 	    overlap = true;
2490 	}
2491       if (overflow)
2492 	_bfd_error_handler (_(".eh_frame_hdr entry overflow"));
2493       if (overlap)
2494 	_bfd_error_handler (_(".eh_frame_hdr refers to overlapping FDEs"));
2495       if (overflow || overlap)
2496 	{
2497 	  bfd_set_error (bfd_error_bad_value);
2498 	  retval = false;
2499 	}
2500     }
2501 
2502   /* FIXME: octets_per_byte.  */
2503   if (!bfd_set_section_contents (abfd, sec->output_section, contents,
2504 				 (file_ptr) sec->output_offset,
2505 				 sec->size))
2506     retval = false;
2507   free (contents);
2508 
2509   free (hdr_info->u.dwarf.array);
2510   return retval;
2511 }
2512 
2513 /* Write out .eh_frame_hdr section.  This must be called after
2514    _bfd_elf_write_section_eh_frame has been called on all input
2515    .eh_frame sections.  */
2516 
2517 bool
2518 _bfd_elf_write_section_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
2519 {
2520   struct elf_link_hash_table *htab;
2521   struct eh_frame_hdr_info *hdr_info;
2522   asection *sec;
2523 
2524   htab = elf_hash_table (info);
2525   hdr_info = &htab->eh_info;
2526   sec = hdr_info->hdr_sec;
2527 
2528   if (info->eh_frame_hdr_type == 0 || sec == NULL)
2529     return true;
2530 
2531   if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
2532     return write_compact_eh_frame_hdr (abfd, info);
2533   else
2534     return write_dwarf_eh_frame_hdr (abfd, info);
2535 }
2536 
2537 /* Return the width of FDE addresses.  This is the default implementation.  */
2538 
2539 unsigned int
2540 _bfd_elf_eh_frame_address_size (bfd *abfd, const asection *sec ATTRIBUTE_UNUSED)
2541 {
2542   return elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64 ? 8 : 4;
2543 }
2544 
2545 /* Decide whether we can use a PC-relative encoding within the given
2546    EH frame section.  This is the default implementation.  */
2547 
2548 bool
2549 _bfd_elf_can_make_relative (bfd *input_bfd ATTRIBUTE_UNUSED,
2550 			    struct bfd_link_info *info ATTRIBUTE_UNUSED,
2551 			    asection *eh_frame_section ATTRIBUTE_UNUSED)
2552 {
2553   return true;
2554 }
2555 
2556 /* Select an encoding for the given address.  Preference is given to
2557    PC-relative addressing modes.  */
2558 
2559 bfd_byte
2560 _bfd_elf_encode_eh_address (bfd *abfd ATTRIBUTE_UNUSED,
2561 			    struct bfd_link_info *info ATTRIBUTE_UNUSED,
2562 			    asection *osec, bfd_vma offset,
2563 			    asection *loc_sec, bfd_vma loc_offset,
2564 			    bfd_vma *encoded)
2565 {
2566   *encoded = osec->vma + offset -
2567     (loc_sec->output_section->vma + loc_sec->output_offset + loc_offset);
2568   return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
2569 }
2570