xref: /netbsd-src/external/gpl3/binutils/dist/bfd/coff-alpha.c (revision 9616dacfef448e70e3fbbd865bddf60d54b656c5)
1 /* BFD back-end for ALPHA Extended-Coff files.
2    Copyright (C) 1993-2016 Free Software Foundation, Inc.
3    Modified from coff-mips.c by Steve Chamberlain <sac@cygnus.com> and
4    Ian Lance Taylor <ian@cygnus.com>.
5 
6    This file is part of BFD, the Binary File Descriptor library.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program; if not, write to the Free Software
20    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21    MA 02110-1301, USA.  */
22 
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #include "coff/internal.h"
28 #include "coff/sym.h"
29 #include "coff/symconst.h"
30 #include "coff/ecoff.h"
31 #include "coff/alpha.h"
32 #include "aout/ar.h"
33 #include "libcoff.h"
34 #include "libecoff.h"
35 
36 /* Prototypes for static functions.  */
37 
38 
39 
40 /* ECOFF has COFF sections, but the debugging information is stored in
41    a completely different format.  ECOFF targets use some of the
42    swapping routines from coffswap.h, and some of the generic COFF
43    routines in coffgen.c, but, unlike the real COFF targets, do not
44    use coffcode.h itself.
45 
46    Get the generic COFF swapping routines, except for the reloc,
47    symbol, and lineno ones.  Give them ecoff names.  Define some
48    accessor macros for the large sizes used for Alpha ECOFF.  */
49 
50 #define GET_FILEHDR_SYMPTR H_GET_64
51 #define PUT_FILEHDR_SYMPTR H_PUT_64
52 #define GET_AOUTHDR_TSIZE H_GET_64
53 #define PUT_AOUTHDR_TSIZE H_PUT_64
54 #define GET_AOUTHDR_DSIZE H_GET_64
55 #define PUT_AOUTHDR_DSIZE H_PUT_64
56 #define GET_AOUTHDR_BSIZE H_GET_64
57 #define PUT_AOUTHDR_BSIZE H_PUT_64
58 #define GET_AOUTHDR_ENTRY H_GET_64
59 #define PUT_AOUTHDR_ENTRY H_PUT_64
60 #define GET_AOUTHDR_TEXT_START H_GET_64
61 #define PUT_AOUTHDR_TEXT_START H_PUT_64
62 #define GET_AOUTHDR_DATA_START H_GET_64
63 #define PUT_AOUTHDR_DATA_START H_PUT_64
64 #define GET_SCNHDR_PADDR H_GET_64
65 #define PUT_SCNHDR_PADDR H_PUT_64
66 #define GET_SCNHDR_VADDR H_GET_64
67 #define PUT_SCNHDR_VADDR H_PUT_64
68 #define GET_SCNHDR_SIZE H_GET_64
69 #define PUT_SCNHDR_SIZE H_PUT_64
70 #define GET_SCNHDR_SCNPTR H_GET_64
71 #define PUT_SCNHDR_SCNPTR H_PUT_64
72 #define GET_SCNHDR_RELPTR H_GET_64
73 #define PUT_SCNHDR_RELPTR H_PUT_64
74 #define GET_SCNHDR_LNNOPTR H_GET_64
75 #define PUT_SCNHDR_LNNOPTR H_PUT_64
76 
77 #define ALPHAECOFF
78 
79 #define NO_COFF_RELOCS
80 #define NO_COFF_SYMBOLS
81 #define NO_COFF_LINENOS
82 #define coff_swap_filehdr_in alpha_ecoff_swap_filehdr_in
83 #define coff_swap_filehdr_out alpha_ecoff_swap_filehdr_out
84 #define coff_swap_aouthdr_in alpha_ecoff_swap_aouthdr_in
85 #define coff_swap_aouthdr_out alpha_ecoff_swap_aouthdr_out
86 #define coff_swap_scnhdr_in alpha_ecoff_swap_scnhdr_in
87 #define coff_swap_scnhdr_out alpha_ecoff_swap_scnhdr_out
88 #include "coffswap.h"
89 
90 /* Get the ECOFF swapping routines.  */
91 #define ECOFF_64
92 #include "ecoffswap.h"
93 
94 /* How to process the various reloc types.  */
95 
96 static bfd_reloc_status_type
97 reloc_nil (bfd *abfd ATTRIBUTE_UNUSED,
98 	   arelent *reloc ATTRIBUTE_UNUSED,
99 	   asymbol *sym ATTRIBUTE_UNUSED,
100 	   void * data ATTRIBUTE_UNUSED,
101 	   asection *sec ATTRIBUTE_UNUSED,
102 	   bfd *output_bfd ATTRIBUTE_UNUSED,
103 	   char **error_message ATTRIBUTE_UNUSED)
104 {
105   return bfd_reloc_ok;
106 }
107 
108 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
109    from smaller values.  Start with zero, widen, *then* decrement.  */
110 #define MINUS_ONE	(((bfd_vma)0) - 1)
111 
112 static reloc_howto_type alpha_howto_table[] =
113 {
114   /* Reloc type 0 is ignored by itself.  However, it appears after a
115      GPDISP reloc to identify the location where the low order 16 bits
116      of the gp register are loaded.  */
117   HOWTO (ALPHA_R_IGNORE,	/* type */
118 	 0,			/* rightshift */
119 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
120 	 8,			/* bitsize */
121 	 TRUE,			/* pc_relative */
122 	 0,			/* bitpos */
123 	 complain_overflow_dont, /* complain_on_overflow */
124 	 reloc_nil,		/* special_function */
125 	 "IGNORE",		/* name */
126 	 TRUE,			/* partial_inplace */
127 	 0,			/* src_mask */
128 	 0,			/* dst_mask */
129 	 TRUE),			/* pcrel_offset */
130 
131   /* A 32 bit reference to a symbol.  */
132   HOWTO (ALPHA_R_REFLONG,	/* type */
133 	 0,			/* rightshift */
134 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
135 	 32,			/* bitsize */
136 	 FALSE,			/* pc_relative */
137 	 0,			/* bitpos */
138 	 complain_overflow_bitfield, /* complain_on_overflow */
139 	 0,			/* special_function */
140 	 "REFLONG",		/* name */
141 	 TRUE,			/* partial_inplace */
142 	 0xffffffff,		/* src_mask */
143 	 0xffffffff,		/* dst_mask */
144 	 FALSE),		/* pcrel_offset */
145 
146   /* A 64 bit reference to a symbol.  */
147   HOWTO (ALPHA_R_REFQUAD,	/* type */
148 	 0,			/* rightshift */
149 	 4,			/* size (0 = byte, 1 = short, 2 = long) */
150 	 64,			/* bitsize */
151 	 FALSE,			/* pc_relative */
152 	 0,			/* bitpos */
153 	 complain_overflow_bitfield, /* complain_on_overflow */
154 	 0,			/* special_function */
155 	 "REFQUAD",		/* name */
156 	 TRUE,			/* partial_inplace */
157 	 MINUS_ONE,		/* src_mask */
158 	 MINUS_ONE,		/* dst_mask */
159 	 FALSE),		/* pcrel_offset */
160 
161   /* A 32 bit GP relative offset.  This is just like REFLONG except
162      that when the value is used the value of the gp register will be
163      added in.  */
164   HOWTO (ALPHA_R_GPREL32,	/* type */
165 	 0,			/* rightshift */
166 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
167 	 32,			/* bitsize */
168 	 FALSE,			/* pc_relative */
169 	 0,			/* bitpos */
170 	 complain_overflow_bitfield, /* complain_on_overflow */
171 	 0,			/* special_function */
172 	 "GPREL32",		/* name */
173 	 TRUE,			/* partial_inplace */
174 	 0xffffffff,		/* src_mask */
175 	 0xffffffff,		/* dst_mask */
176 	 FALSE),		/* pcrel_offset */
177 
178   /* Used for an instruction that refers to memory off the GP
179      register.  The offset is 16 bits of the 32 bit instruction.  This
180      reloc always seems to be against the .lita section.  */
181   HOWTO (ALPHA_R_LITERAL,	/* type */
182 	 0,			/* rightshift */
183 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
184 	 16,			/* bitsize */
185 	 FALSE,			/* pc_relative */
186 	 0,			/* bitpos */
187 	 complain_overflow_signed, /* complain_on_overflow */
188 	 0,			/* special_function */
189 	 "LITERAL",		/* name */
190 	 TRUE,			/* partial_inplace */
191 	 0xffff,		/* src_mask */
192 	 0xffff,		/* dst_mask */
193 	 FALSE),		/* pcrel_offset */
194 
195   /* This reloc only appears immediately following a LITERAL reloc.
196      It identifies a use of the literal.  It seems that the linker can
197      use this to eliminate a portion of the .lita section.  The symbol
198      index is special: 1 means the literal address is in the base
199      register of a memory format instruction; 2 means the literal
200      address is in the byte offset register of a byte-manipulation
201      instruction; 3 means the literal address is in the target
202      register of a jsr instruction.  This does not actually do any
203      relocation.  */
204   HOWTO (ALPHA_R_LITUSE,	/* type */
205 	 0,			/* rightshift */
206 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
207 	 32,			/* bitsize */
208 	 FALSE,			/* pc_relative */
209 	 0,			/* bitpos */
210 	 complain_overflow_dont, /* complain_on_overflow */
211 	 reloc_nil,		/* special_function */
212 	 "LITUSE",		/* name */
213 	 FALSE,			/* partial_inplace */
214 	 0,			/* src_mask */
215 	 0,			/* dst_mask */
216 	 FALSE),		/* pcrel_offset */
217 
218   /* Load the gp register.  This is always used for a ldah instruction
219      which loads the upper 16 bits of the gp register.  The next reloc
220      will be an IGNORE reloc which identifies the location of the lda
221      instruction which loads the lower 16 bits.  The symbol index of
222      the GPDISP instruction appears to actually be the number of bytes
223      between the ldah and lda instructions.  This gives two different
224      ways to determine where the lda instruction is; I don't know why
225      both are used.  The value to use for the relocation is the
226      difference between the GP value and the current location; the
227      load will always be done against a register holding the current
228      address.  */
229   HOWTO (ALPHA_R_GPDISP,	/* type */
230 	 16,			/* rightshift */
231 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
232 	 16,			/* bitsize */
233 	 TRUE,			/* pc_relative */
234 	 0,			/* bitpos */
235 	 complain_overflow_dont, /* complain_on_overflow */
236 	 reloc_nil,		/* special_function */
237 	 "GPDISP",		/* name */
238 	 TRUE,			/* partial_inplace */
239 	 0xffff,		/* src_mask */
240 	 0xffff,		/* dst_mask */
241 	 TRUE),			/* pcrel_offset */
242 
243   /* A 21 bit branch.  The native assembler generates these for
244      branches within the text segment, and also fills in the PC
245      relative offset in the instruction.  */
246   HOWTO (ALPHA_R_BRADDR,	/* type */
247 	 2,			/* rightshift */
248 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
249 	 21,			/* bitsize */
250 	 TRUE,			/* pc_relative */
251 	 0,			/* bitpos */
252 	 complain_overflow_signed, /* complain_on_overflow */
253 	 0,			/* special_function */
254 	 "BRADDR",		/* name */
255 	 TRUE,			/* partial_inplace */
256 	 0x1fffff,		/* src_mask */
257 	 0x1fffff,		/* dst_mask */
258 	 FALSE),		/* pcrel_offset */
259 
260   /* A hint for a jump to a register.  */
261   HOWTO (ALPHA_R_HINT,		/* type */
262 	 2,			/* rightshift */
263 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
264 	 14,			/* bitsize */
265 	 TRUE,			/* pc_relative */
266 	 0,			/* bitpos */
267 	 complain_overflow_dont, /* complain_on_overflow */
268 	 0,			/* special_function */
269 	 "HINT",		/* name */
270 	 TRUE,			/* partial_inplace */
271 	 0x3fff,		/* src_mask */
272 	 0x3fff,		/* dst_mask */
273 	 FALSE),		/* pcrel_offset */
274 
275   /* 16 bit PC relative offset.  */
276   HOWTO (ALPHA_R_SREL16,	/* type */
277 	 0,			/* rightshift */
278 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
279 	 16,			/* bitsize */
280 	 TRUE,			/* pc_relative */
281 	 0,			/* bitpos */
282 	 complain_overflow_signed, /* complain_on_overflow */
283 	 0,			/* special_function */
284 	 "SREL16",		/* name */
285 	 TRUE,			/* partial_inplace */
286 	 0xffff,		/* src_mask */
287 	 0xffff,		/* dst_mask */
288 	 FALSE),		/* pcrel_offset */
289 
290   /* 32 bit PC relative offset.  */
291   HOWTO (ALPHA_R_SREL32,	/* type */
292 	 0,			/* rightshift */
293 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
294 	 32,			/* bitsize */
295 	 TRUE,			/* pc_relative */
296 	 0,			/* bitpos */
297 	 complain_overflow_signed, /* complain_on_overflow */
298 	 0,			/* special_function */
299 	 "SREL32",		/* name */
300 	 TRUE,			/* partial_inplace */
301 	 0xffffffff,		/* src_mask */
302 	 0xffffffff,		/* dst_mask */
303 	 FALSE),		/* pcrel_offset */
304 
305   /* A 64 bit PC relative offset.  */
306   HOWTO (ALPHA_R_SREL64,	/* type */
307 	 0,			/* rightshift */
308 	 4,			/* size (0 = byte, 1 = short, 2 = long) */
309 	 64,			/* bitsize */
310 	 TRUE,			/* pc_relative */
311 	 0,			/* bitpos */
312 	 complain_overflow_signed, /* complain_on_overflow */
313 	 0,			/* special_function */
314 	 "SREL64",		/* name */
315 	 TRUE,			/* partial_inplace */
316 	 MINUS_ONE,		/* src_mask */
317 	 MINUS_ONE,		/* dst_mask */
318 	 FALSE),		/* pcrel_offset */
319 
320   /* Push a value on the reloc evaluation stack.  */
321   HOWTO (ALPHA_R_OP_PUSH,	/* type */
322 	 0,			/* rightshift */
323 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
324 	 0,			/* bitsize */
325 	 FALSE,			/* pc_relative */
326 	 0,			/* bitpos */
327 	 complain_overflow_dont, /* complain_on_overflow */
328 	 0,			/* special_function */
329 	 "OP_PUSH",		/* name */
330 	 FALSE,			/* partial_inplace */
331 	 0,			/* src_mask */
332 	 0,			/* dst_mask */
333 	 FALSE),		/* pcrel_offset */
334 
335   /* Store the value from the stack at the given address.  Store it in
336      a bitfield of size r_size starting at bit position r_offset.  */
337   HOWTO (ALPHA_R_OP_STORE,	/* type */
338 	 0,			/* rightshift */
339 	 4,			/* size (0 = byte, 1 = short, 2 = long) */
340 	 64,			/* bitsize */
341 	 FALSE,			/* pc_relative */
342 	 0,			/* bitpos */
343 	 complain_overflow_dont, /* complain_on_overflow */
344 	 0,			/* special_function */
345 	 "OP_STORE",		/* name */
346 	 FALSE,			/* partial_inplace */
347 	 0,			/* src_mask */
348 	 MINUS_ONE,		/* dst_mask */
349 	 FALSE),		/* pcrel_offset */
350 
351   /* Subtract the reloc address from the value on the top of the
352      relocation stack.  */
353   HOWTO (ALPHA_R_OP_PSUB,	/* type */
354 	 0,			/* rightshift */
355 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
356 	 0,			/* bitsize */
357 	 FALSE,			/* pc_relative */
358 	 0,			/* bitpos */
359 	 complain_overflow_dont, /* complain_on_overflow */
360 	 0,			/* special_function */
361 	 "OP_PSUB",		/* name */
362 	 FALSE,			/* partial_inplace */
363 	 0,			/* src_mask */
364 	 0,			/* dst_mask */
365 	 FALSE),		/* pcrel_offset */
366 
367   /* Shift the value on the top of the relocation stack right by the
368      given value.  */
369   HOWTO (ALPHA_R_OP_PRSHIFT,	/* type */
370 	 0,			/* rightshift */
371 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
372 	 0,			/* bitsize */
373 	 FALSE,			/* pc_relative */
374 	 0,			/* bitpos */
375 	 complain_overflow_dont, /* complain_on_overflow */
376 	 0,			/* special_function */
377 	 "OP_PRSHIFT",		/* name */
378 	 FALSE,			/* partial_inplace */
379 	 0,			/* src_mask */
380 	 0,			/* dst_mask */
381 	 FALSE),		/* pcrel_offset */
382 
383   /* Adjust the GP value for a new range in the object file.  */
384   HOWTO (ALPHA_R_GPVALUE,	/* type */
385 	 0,			/* rightshift */
386 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
387 	 0,			/* bitsize */
388 	 FALSE,			/* pc_relative */
389 	 0,			/* bitpos */
390 	 complain_overflow_dont, /* complain_on_overflow */
391 	 0,			/* special_function */
392 	 "GPVALUE",		/* name */
393 	 FALSE,			/* partial_inplace */
394 	 0,			/* src_mask */
395 	 0,			/* dst_mask */
396 	 FALSE)			/* pcrel_offset */
397 };
398 
399 /* Recognize an Alpha ECOFF file.  */
400 
401 static const bfd_target *
402 alpha_ecoff_object_p (bfd *abfd)
403 {
404   static const bfd_target *ret;
405 
406   ret = coff_object_p (abfd);
407 
408   if (ret != NULL)
409     {
410       asection *sec;
411 
412       /* Alpha ECOFF has a .pdata section.  The lnnoptr field of the
413 	 .pdata section is the number of entries it contains.  Each
414 	 entry takes up 8 bytes.  The number of entries is required
415 	 since the section is aligned to a 16 byte boundary.  When we
416 	 link .pdata sections together, we do not want to include the
417 	 alignment bytes.  We handle this on input by faking the size
418 	 of the .pdata section to remove the unwanted alignment bytes.
419 	 On output we will set the lnnoptr field and force the
420 	 alignment.  */
421       sec = bfd_get_section_by_name (abfd, _PDATA);
422       if (sec != (asection *) NULL)
423 	{
424 	  bfd_size_type size;
425 
426 	  size = sec->line_filepos * 8;
427 	  BFD_ASSERT (size == sec->size
428 		      || size + 8 == sec->size);
429 	  if (! bfd_set_section_size (abfd, sec, size))
430 	    return NULL;
431 	}
432     }
433 
434   return ret;
435 }
436 
437 /* See whether the magic number matches.  */
438 
439 static bfd_boolean
440 alpha_ecoff_bad_format_hook (bfd *abfd ATTRIBUTE_UNUSED,
441 			     void * filehdr)
442 {
443   struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
444 
445   if (! ALPHA_ECOFF_BADMAG (*internal_f))
446     return TRUE;
447 
448   if (ALPHA_ECOFF_COMPRESSEDMAG (*internal_f))
449     (*_bfd_error_handler)
450       (_("%B: Cannot handle compressed Alpha binaries.\n"
451 	 "   Use compiler flags, or objZ, to generate uncompressed binaries."),
452        abfd);
453 
454   return FALSE;
455 }
456 
457 /* This is a hook called by coff_real_object_p to create any backend
458    specific information.  */
459 
460 static void *
461 alpha_ecoff_mkobject_hook (bfd *abfd, void * filehdr, void * aouthdr)
462 {
463   void * ecoff;
464 
465   ecoff = _bfd_ecoff_mkobject_hook (abfd, filehdr, aouthdr);
466 
467   if (ecoff != NULL)
468     {
469       struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
470 
471       /* Set additional BFD flags according to the object type from the
472 	 machine specific file header flags.  */
473       switch (internal_f->f_flags & F_ALPHA_OBJECT_TYPE_MASK)
474 	{
475 	case F_ALPHA_SHARABLE:
476 	  abfd->flags |= DYNAMIC;
477 	  break;
478 	case F_ALPHA_CALL_SHARED:
479 	  /* Always executable if using shared libraries as the run time
480 	     loader might resolve undefined references.  */
481 	  abfd->flags |= (DYNAMIC | EXEC_P);
482 	  break;
483 	}
484     }
485   return ecoff;
486 }
487 
488 /* Reloc handling.  */
489 
490 /* Swap a reloc in.  */
491 
492 static void
493 alpha_ecoff_swap_reloc_in (bfd *abfd,
494 			   void * ext_ptr,
495 			   struct internal_reloc *intern)
496 {
497   const RELOC *ext = (RELOC *) ext_ptr;
498 
499   intern->r_vaddr = H_GET_64 (abfd, ext->r_vaddr);
500   intern->r_symndx = H_GET_32 (abfd, ext->r_symndx);
501 
502   BFD_ASSERT (bfd_header_little_endian (abfd));
503 
504   intern->r_type = ((ext->r_bits[0] & RELOC_BITS0_TYPE_LITTLE)
505 		    >> RELOC_BITS0_TYPE_SH_LITTLE);
506   intern->r_extern = (ext->r_bits[1] & RELOC_BITS1_EXTERN_LITTLE) != 0;
507   intern->r_offset = ((ext->r_bits[1] & RELOC_BITS1_OFFSET_LITTLE)
508 		      >> RELOC_BITS1_OFFSET_SH_LITTLE);
509   /* Ignored the reserved bits.  */
510   intern->r_size = ((ext->r_bits[3] & RELOC_BITS3_SIZE_LITTLE)
511 		    >> RELOC_BITS3_SIZE_SH_LITTLE);
512 
513   if (intern->r_type == ALPHA_R_LITUSE
514       || intern->r_type == ALPHA_R_GPDISP)
515     {
516       /* Handle the LITUSE and GPDISP relocs specially.  Its symndx
517 	 value is not actually a symbol index, but is instead a
518 	 special code.  We put the code in the r_size field, and
519 	 clobber the symndx.  */
520       if (intern->r_size != 0)
521 	abort ();
522       intern->r_size = intern->r_symndx;
523       intern->r_symndx = RELOC_SECTION_NONE;
524     }
525   else if (intern->r_type == ALPHA_R_IGNORE)
526     {
527       /* The IGNORE reloc generally follows a GPDISP reloc, and is
528 	 against the .lita section.  The section is irrelevant.  */
529       if (! intern->r_extern &&
530 	  intern->r_symndx == RELOC_SECTION_ABS)
531 	abort ();
532       if (! intern->r_extern && intern->r_symndx == RELOC_SECTION_LITA)
533 	intern->r_symndx = RELOC_SECTION_ABS;
534     }
535 }
536 
537 /* Swap a reloc out.  */
538 
539 static void
540 alpha_ecoff_swap_reloc_out (bfd *abfd,
541 			    const struct internal_reloc *intern,
542 			    void * dst)
543 {
544   RELOC *ext = (RELOC *) dst;
545   long symndx;
546   unsigned char size;
547 
548   /* Undo the hackery done in swap_reloc_in.  */
549   if (intern->r_type == ALPHA_R_LITUSE
550       || intern->r_type == ALPHA_R_GPDISP)
551     {
552       symndx = intern->r_size;
553       size = 0;
554     }
555   else if (intern->r_type == ALPHA_R_IGNORE
556 	   && ! intern->r_extern
557 	   && intern->r_symndx == RELOC_SECTION_ABS)
558     {
559       symndx = RELOC_SECTION_LITA;
560       size = intern->r_size;
561     }
562   else
563     {
564       symndx = intern->r_symndx;
565       size = intern->r_size;
566     }
567 
568   /* XXX FIXME:  The maximum symndx value used to be 14 but this
569      fails with object files produced by DEC's C++ compiler.
570      Where does the value 14 (or 15) come from anyway ?  */
571   BFD_ASSERT (intern->r_extern
572 	      || (intern->r_symndx >= 0 && intern->r_symndx <= 15));
573 
574   H_PUT_64 (abfd, intern->r_vaddr, ext->r_vaddr);
575   H_PUT_32 (abfd, symndx, ext->r_symndx);
576 
577   BFD_ASSERT (bfd_header_little_endian (abfd));
578 
579   ext->r_bits[0] = ((intern->r_type << RELOC_BITS0_TYPE_SH_LITTLE)
580 		    & RELOC_BITS0_TYPE_LITTLE);
581   ext->r_bits[1] = ((intern->r_extern ? RELOC_BITS1_EXTERN_LITTLE : 0)
582 		    | ((intern->r_offset << RELOC_BITS1_OFFSET_SH_LITTLE)
583 		       & RELOC_BITS1_OFFSET_LITTLE));
584   ext->r_bits[2] = 0;
585   ext->r_bits[3] = ((size << RELOC_BITS3_SIZE_SH_LITTLE)
586 		    & RELOC_BITS3_SIZE_LITTLE);
587 }
588 
589 /* Finish canonicalizing a reloc.  Part of this is generic to all
590    ECOFF targets, and that part is in ecoff.c.  The rest is done in
591    this backend routine.  It must fill in the howto field.  */
592 
593 static void
594 alpha_adjust_reloc_in (bfd *abfd,
595 		       const struct internal_reloc *intern,
596 		       arelent *rptr)
597 {
598   if (intern->r_type > ALPHA_R_GPVALUE)
599     {
600       (*_bfd_error_handler)
601 	(_("%B: unknown/unsupported relocation type %d"),
602 	 abfd, intern->r_type);
603       bfd_set_error (bfd_error_bad_value);
604       rptr->addend = 0;
605       rptr->howto  = NULL;
606       return;
607     }
608 
609   switch (intern->r_type)
610     {
611     case ALPHA_R_BRADDR:
612     case ALPHA_R_SREL16:
613     case ALPHA_R_SREL32:
614     case ALPHA_R_SREL64:
615       /* This relocs appear to be fully resolved when they are against
616          internal symbols.  Against external symbols, BRADDR at least
617          appears to be resolved against the next instruction.  */
618       if (! intern->r_extern)
619 	rptr->addend = 0;
620       else
621 	rptr->addend = - (intern->r_vaddr + 4);
622       break;
623 
624     case ALPHA_R_GPREL32:
625     case ALPHA_R_LITERAL:
626       /* Copy the gp value for this object file into the addend, to
627 	 ensure that we are not confused by the linker.  */
628       if (! intern->r_extern)
629 	rptr->addend += ecoff_data (abfd)->gp;
630       break;
631 
632     case ALPHA_R_LITUSE:
633     case ALPHA_R_GPDISP:
634       /* The LITUSE and GPDISP relocs do not use a symbol, or an
635 	 addend, but they do use a special code.  Put this code in the
636 	 addend field.  */
637       rptr->addend = intern->r_size;
638       break;
639 
640     case ALPHA_R_OP_STORE:
641       /* The STORE reloc needs the size and offset fields.  We store
642 	 them in the addend.  */
643 #if 0
644       BFD_ASSERT (intern->r_offset <= 256);
645 #endif
646       rptr->addend = (intern->r_offset << 8) + intern->r_size;
647       break;
648 
649     case ALPHA_R_OP_PUSH:
650     case ALPHA_R_OP_PSUB:
651     case ALPHA_R_OP_PRSHIFT:
652       /* The PUSH, PSUB and PRSHIFT relocs do not actually use an
653 	 address.  I believe that the address supplied is really an
654 	 addend.  */
655       rptr->addend = intern->r_vaddr;
656       break;
657 
658     case ALPHA_R_GPVALUE:
659       /* Set the addend field to the new GP value.  */
660       rptr->addend = intern->r_symndx + ecoff_data (abfd)->gp;
661       break;
662 
663     case ALPHA_R_IGNORE:
664       /* If the type is ALPHA_R_IGNORE, make sure this is a reference
665 	 to the absolute section so that the reloc is ignored.  For
666 	 some reason the address of this reloc type is not adjusted by
667 	 the section vma.  We record the gp value for this object file
668 	 here, for convenience when doing the GPDISP relocation.  */
669       rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
670       rptr->address = intern->r_vaddr;
671       rptr->addend = ecoff_data (abfd)->gp;
672       break;
673 
674     default:
675       break;
676     }
677 
678   rptr->howto = &alpha_howto_table[intern->r_type];
679 }
680 
681 /* When writing out a reloc we need to pull some values back out of
682    the addend field into the reloc.  This is roughly the reverse of
683    alpha_adjust_reloc_in, except that there are several changes we do
684    not need to undo.  */
685 
686 static void
687 alpha_adjust_reloc_out (bfd *abfd ATTRIBUTE_UNUSED,
688 			const arelent *rel,
689 			struct internal_reloc *intern)
690 {
691   switch (intern->r_type)
692     {
693     case ALPHA_R_LITUSE:
694     case ALPHA_R_GPDISP:
695       intern->r_size = rel->addend;
696       break;
697 
698     case ALPHA_R_OP_STORE:
699       intern->r_size = rel->addend & 0xff;
700       intern->r_offset = (rel->addend >> 8) & 0xff;
701       break;
702 
703     case ALPHA_R_OP_PUSH:
704     case ALPHA_R_OP_PSUB:
705     case ALPHA_R_OP_PRSHIFT:
706       intern->r_vaddr = rel->addend;
707       break;
708 
709     case ALPHA_R_IGNORE:
710       intern->r_vaddr = rel->address;
711       break;
712 
713     default:
714       break;
715     }
716 }
717 
718 /* The size of the stack for the relocation evaluator.  */
719 #define RELOC_STACKSIZE (10)
720 
721 /* Alpha ECOFF relocs have a built in expression evaluator as well as
722    other interdependencies.  Rather than use a bunch of special
723    functions and global variables, we use a single routine to do all
724    the relocation for a section.  I haven't yet worked out how the
725    assembler is going to handle this.  */
726 
727 static bfd_byte *
728 alpha_ecoff_get_relocated_section_contents (bfd *abfd,
729 					    struct bfd_link_info *link_info,
730 					    struct bfd_link_order *link_order,
731 					    bfd_byte *data,
732 					    bfd_boolean relocatable,
733 					    asymbol **symbols)
734 {
735   bfd *input_bfd = link_order->u.indirect.section->owner;
736   asection *input_section = link_order->u.indirect.section;
737   long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
738   arelent **reloc_vector = NULL;
739   long reloc_count;
740   bfd *output_bfd = relocatable ? abfd : (bfd *) NULL;
741   bfd_vma gp;
742   bfd_size_type sz;
743   bfd_boolean gp_undefined;
744   bfd_vma stack[RELOC_STACKSIZE];
745   int tos = 0;
746 
747   if (reloc_size < 0)
748     goto error_return;
749   reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
750   if (reloc_vector == NULL && reloc_size != 0)
751     goto error_return;
752 
753   sz = input_section->rawsize ? input_section->rawsize : input_section->size;
754   if (! bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
755     goto error_return;
756 
757   reloc_count = bfd_canonicalize_reloc (input_bfd, input_section,
758 					reloc_vector, symbols);
759   if (reloc_count < 0)
760     goto error_return;
761   if (reloc_count == 0)
762     goto successful_return;
763 
764   /* Get the GP value for the output BFD.  */
765   gp_undefined = FALSE;
766   gp = _bfd_get_gp_value (abfd);
767   if (gp == 0)
768     {
769       if (relocatable)
770 	{
771 	  asection *sec;
772 	  bfd_vma lo;
773 
774 	  /* Make up a value.  */
775 	  lo = (bfd_vma) -1;
776 	  for (sec = abfd->sections; sec != NULL; sec = sec->next)
777 	    {
778 	      if (sec->vma < lo
779 		  && (strcmp (sec->name, ".sbss") == 0
780 		      || strcmp (sec->name, ".sdata") == 0
781 		      || strcmp (sec->name, ".lit4") == 0
782 		      || strcmp (sec->name, ".lit8") == 0
783 		      || strcmp (sec->name, ".lita") == 0))
784 		lo = sec->vma;
785 	    }
786 	  gp = lo + 0x8000;
787 	  _bfd_set_gp_value (abfd, gp);
788 	}
789       else
790 	{
791 	  struct bfd_link_hash_entry *h;
792 
793 	  h = bfd_link_hash_lookup (link_info->hash, "_gp", FALSE, FALSE,
794 				    TRUE);
795 	  if (h == (struct bfd_link_hash_entry *) NULL
796 	      || h->type != bfd_link_hash_defined)
797 	    gp_undefined = TRUE;
798 	  else
799 	    {
800 	      gp = (h->u.def.value
801 		    + h->u.def.section->output_section->vma
802 		    + h->u.def.section->output_offset);
803 	      _bfd_set_gp_value (abfd, gp);
804 	    }
805 	}
806     }
807 
808   for (; *reloc_vector != (arelent *) NULL; reloc_vector++)
809     {
810       arelent *rel;
811       bfd_reloc_status_type r;
812       char *err;
813 
814       rel = *reloc_vector;
815       r = bfd_reloc_ok;
816       switch (rel->howto->type)
817 	{
818 	case ALPHA_R_IGNORE:
819 	  rel->address += input_section->output_offset;
820 	  break;
821 
822 	case ALPHA_R_REFLONG:
823 	case ALPHA_R_REFQUAD:
824 	case ALPHA_R_BRADDR:
825 	case ALPHA_R_HINT:
826 	case ALPHA_R_SREL16:
827 	case ALPHA_R_SREL32:
828 	case ALPHA_R_SREL64:
829 	  if (relocatable
830 	      && ((*rel->sym_ptr_ptr)->flags & BSF_SECTION_SYM) == 0)
831 	    {
832 	      rel->address += input_section->output_offset;
833 	      break;
834 	    }
835 	  r = bfd_perform_relocation (input_bfd, rel, data, input_section,
836 				      output_bfd, &err);
837 	  break;
838 
839 	case ALPHA_R_GPREL32:
840 	  /* This relocation is used in a switch table.  It is a 32
841 	     bit offset from the current GP value.  We must adjust it
842 	     by the different between the original GP value and the
843 	     current GP value.  The original GP value is stored in the
844 	     addend.  We adjust the addend and let
845 	     bfd_perform_relocation finish the job.  */
846 	  rel->addend -= gp;
847 	  r = bfd_perform_relocation (input_bfd, rel, data, input_section,
848 				      output_bfd, &err);
849 	  if (r == bfd_reloc_ok && gp_undefined)
850 	    {
851 	      r = bfd_reloc_dangerous;
852 	      err = (char *) _("GP relative relocation used when GP not defined");
853 	    }
854 	  break;
855 
856 	case ALPHA_R_LITERAL:
857 	  /* This is a reference to a literal value, generally
858 	     (always?) in the .lita section.  This is a 16 bit GP
859 	     relative relocation.  Sometimes the subsequent reloc is a
860 	     LITUSE reloc, which indicates how this reloc is used.
861 	     This sometimes permits rewriting the two instructions
862 	     referred to by the LITERAL and the LITUSE into different
863 	     instructions which do not refer to .lita.  This can save
864 	     a memory reference, and permits removing a value from
865 	     .lita thus saving GP relative space.
866 
867 	     We do not these optimizations.  To do them we would need
868 	     to arrange to link the .lita section first, so that by
869 	     the time we got here we would know the final values to
870 	     use.  This would not be particularly difficult, but it is
871 	     not currently implemented.  */
872 
873 	  {
874 	    unsigned long insn;
875 
876 	    /* I believe that the LITERAL reloc will only apply to a
877 	       ldq or ldl instruction, so check my assumption.  */
878 	    insn = bfd_get_32 (input_bfd, data + rel->address);
879 	    BFD_ASSERT (((insn >> 26) & 0x3f) == 0x29
880 			|| ((insn >> 26) & 0x3f) == 0x28);
881 
882 	    rel->addend -= gp;
883 	    r = bfd_perform_relocation (input_bfd, rel, data, input_section,
884 					output_bfd, &err);
885 	    if (r == bfd_reloc_ok && gp_undefined)
886 	      {
887 		r = bfd_reloc_dangerous;
888 		err =
889 		  (char *) _("GP relative relocation used when GP not defined");
890 	      }
891 	  }
892 	  break;
893 
894 	case ALPHA_R_LITUSE:
895 	  /* See ALPHA_R_LITERAL above for the uses of this reloc.  It
896 	     does not cause anything to happen, itself.  */
897 	  rel->address += input_section->output_offset;
898 	  break;
899 
900 	case ALPHA_R_GPDISP:
901 	  /* This marks the ldah of an ldah/lda pair which loads the
902 	     gp register with the difference of the gp value and the
903 	     current location.  The second of the pair is r_size bytes
904 	     ahead; it used to be marked with an ALPHA_R_IGNORE reloc,
905 	     but that no longer happens in OSF/1 3.2.  */
906 	  {
907 	    unsigned long insn1, insn2;
908 	    bfd_vma addend;
909 
910 	    /* Get the two instructions.  */
911 	    insn1 = bfd_get_32 (input_bfd, data + rel->address);
912 	    insn2 = bfd_get_32 (input_bfd, data + rel->address + rel->addend);
913 
914 	    BFD_ASSERT (((insn1 >> 26) & 0x3f) == 0x09); /* ldah */
915 	    BFD_ASSERT (((insn2 >> 26) & 0x3f) == 0x08); /* lda */
916 
917 	    /* Get the existing addend.  We must account for the sign
918 	       extension done by lda and ldah.  */
919 	    addend = ((insn1 & 0xffff) << 16) + (insn2 & 0xffff);
920 	    if (insn1 & 0x8000)
921 	      {
922 		addend -= 0x80000000;
923 		addend -= 0x80000000;
924 	      }
925 	    if (insn2 & 0x8000)
926 	      addend -= 0x10000;
927 
928 	    /* The existing addend includes the different between the
929 	       gp of the input BFD and the address in the input BFD.
930 	       Subtract this out.  */
931 	    addend -= (ecoff_data (input_bfd)->gp
932 		       - (input_section->vma + rel->address));
933 
934 	    /* Now add in the final gp value, and subtract out the
935 	       final address.  */
936 	    addend += (gp
937 		       - (input_section->output_section->vma
938 			  + input_section->output_offset
939 			  + rel->address));
940 
941 	    /* Change the instructions, accounting for the sign
942 	       extension, and write them out.  */
943 	    if (addend & 0x8000)
944 	      addend += 0x10000;
945 	    insn1 = (insn1 & 0xffff0000) | ((addend >> 16) & 0xffff);
946 	    insn2 = (insn2 & 0xffff0000) | (addend & 0xffff);
947 
948 	    bfd_put_32 (input_bfd, (bfd_vma) insn1, data + rel->address);
949 	    bfd_put_32 (input_bfd, (bfd_vma) insn2,
950 			data + rel->address + rel->addend);
951 
952 	    rel->address += input_section->output_offset;
953 	  }
954 	  break;
955 
956 	case ALPHA_R_OP_PUSH:
957 	  /* Push a value on the reloc evaluation stack.  */
958 	  {
959 	    asymbol *symbol;
960 	    bfd_vma relocation;
961 
962 	    if (relocatable)
963 	      {
964 		rel->address += input_section->output_offset;
965 		break;
966 	      }
967 
968 	    /* Figure out the relocation of this symbol.  */
969 	    symbol = *rel->sym_ptr_ptr;
970 
971 	    if (bfd_is_und_section (symbol->section))
972 	      r = bfd_reloc_undefined;
973 
974 	    if (bfd_is_com_section (symbol->section))
975 	      relocation = 0;
976 	    else
977 	      relocation = symbol->value;
978 	    relocation += symbol->section->output_section->vma;
979 	    relocation += symbol->section->output_offset;
980 	    relocation += rel->addend;
981 
982 	    if (tos >= RELOC_STACKSIZE)
983 	      abort ();
984 
985 	    stack[tos++] = relocation;
986 	  }
987 	  break;
988 
989 	case ALPHA_R_OP_STORE:
990 	  /* Store a value from the reloc stack into a bitfield.  */
991 	  {
992 	    bfd_vma val;
993 	    int offset, size;
994 
995 	    if (relocatable)
996 	      {
997 		rel->address += input_section->output_offset;
998 		break;
999 	      }
1000 
1001 	    if (tos == 0)
1002 	      abort ();
1003 
1004 	    /* The offset and size for this reloc are encoded into the
1005 	       addend field by alpha_adjust_reloc_in.  */
1006 	    offset = (rel->addend >> 8) & 0xff;
1007 	    size = rel->addend & 0xff;
1008 
1009 	    val = bfd_get_64 (abfd, data + rel->address);
1010 	    val &=~ (((1 << size) - 1) << offset);
1011 	    val |= (stack[--tos] & ((1 << size) - 1)) << offset;
1012 	    bfd_put_64 (abfd, val, data + rel->address);
1013 	  }
1014 	  break;
1015 
1016 	case ALPHA_R_OP_PSUB:
1017 	  /* Subtract a value from the top of the stack.  */
1018 	  {
1019 	    asymbol *symbol;
1020 	    bfd_vma relocation;
1021 
1022 	    if (relocatable)
1023 	      {
1024 		rel->address += input_section->output_offset;
1025 		break;
1026 	      }
1027 
1028 	    /* Figure out the relocation of this symbol.  */
1029 	    symbol = *rel->sym_ptr_ptr;
1030 
1031 	    if (bfd_is_und_section (symbol->section))
1032 	      r = bfd_reloc_undefined;
1033 
1034 	    if (bfd_is_com_section (symbol->section))
1035 	      relocation = 0;
1036 	    else
1037 	      relocation = symbol->value;
1038 	    relocation += symbol->section->output_section->vma;
1039 	    relocation += symbol->section->output_offset;
1040 	    relocation += rel->addend;
1041 
1042 	    if (tos == 0)
1043 	      abort ();
1044 
1045 	    stack[tos - 1] -= relocation;
1046 	  }
1047 	  break;
1048 
1049 	case ALPHA_R_OP_PRSHIFT:
1050 	  /* Shift the value on the top of the stack.  */
1051 	  {
1052 	    asymbol *symbol;
1053 	    bfd_vma relocation;
1054 
1055 	    if (relocatable)
1056 	      {
1057 		rel->address += input_section->output_offset;
1058 		break;
1059 	      }
1060 
1061 	    /* Figure out the relocation of this symbol.  */
1062 	    symbol = *rel->sym_ptr_ptr;
1063 
1064 	    if (bfd_is_und_section (symbol->section))
1065 	      r = bfd_reloc_undefined;
1066 
1067 	    if (bfd_is_com_section (symbol->section))
1068 	      relocation = 0;
1069 	    else
1070 	      relocation = symbol->value;
1071 	    relocation += symbol->section->output_section->vma;
1072 	    relocation += symbol->section->output_offset;
1073 	    relocation += rel->addend;
1074 
1075 	    if (tos == 0)
1076 	      abort ();
1077 
1078 	    stack[tos - 1] >>= relocation;
1079 	  }
1080 	  break;
1081 
1082 	case ALPHA_R_GPVALUE:
1083 	  /* I really don't know if this does the right thing.  */
1084 	  gp = rel->addend;
1085 	  gp_undefined = FALSE;
1086 	  break;
1087 
1088 	default:
1089 	  abort ();
1090 	}
1091 
1092       if (relocatable)
1093 	{
1094 	  asection *os = input_section->output_section;
1095 
1096 	  /* A partial link, so keep the relocs.  */
1097 	  os->orelocation[os->reloc_count] = rel;
1098 	  os->reloc_count++;
1099 	}
1100 
1101       if (r != bfd_reloc_ok)
1102 	{
1103 	  switch (r)
1104 	    {
1105 	    case bfd_reloc_undefined:
1106 	      (*link_info->callbacks->undefined_symbol)
1107 		(link_info, bfd_asymbol_name (*rel->sym_ptr_ptr),
1108 		 input_bfd, input_section, rel->address, TRUE);
1109 	      break;
1110 	    case bfd_reloc_dangerous:
1111 	      (*link_info->callbacks->reloc_dangerous)
1112 		(link_info, err, input_bfd, input_section, rel->address);
1113 	      break;
1114 	    case bfd_reloc_overflow:
1115 	      (*link_info->callbacks->reloc_overflow)
1116 		(link_info, NULL, bfd_asymbol_name (*rel->sym_ptr_ptr),
1117 		 rel->howto->name, rel->addend, input_bfd,
1118 		 input_section, rel->address);
1119 	      break;
1120 	    case bfd_reloc_outofrange:
1121 	    default:
1122 	      abort ();
1123 	      break;
1124 	    }
1125 	}
1126     }
1127 
1128   if (tos != 0)
1129     abort ();
1130 
1131  successful_return:
1132   if (reloc_vector != NULL)
1133     free (reloc_vector);
1134   return data;
1135 
1136  error_return:
1137   if (reloc_vector != NULL)
1138     free (reloc_vector);
1139   return NULL;
1140 }
1141 
1142 /* Get the howto structure for a generic reloc type.  */
1143 
1144 static reloc_howto_type *
1145 alpha_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1146 			     bfd_reloc_code_real_type code)
1147 {
1148   int alpha_type;
1149 
1150   switch (code)
1151     {
1152     case BFD_RELOC_32:
1153       alpha_type = ALPHA_R_REFLONG;
1154       break;
1155     case BFD_RELOC_64:
1156     case BFD_RELOC_CTOR:
1157       alpha_type = ALPHA_R_REFQUAD;
1158       break;
1159     case BFD_RELOC_GPREL32:
1160       alpha_type = ALPHA_R_GPREL32;
1161       break;
1162     case BFD_RELOC_ALPHA_LITERAL:
1163       alpha_type = ALPHA_R_LITERAL;
1164       break;
1165     case BFD_RELOC_ALPHA_LITUSE:
1166       alpha_type = ALPHA_R_LITUSE;
1167       break;
1168     case BFD_RELOC_ALPHA_GPDISP_HI16:
1169       alpha_type = ALPHA_R_GPDISP;
1170       break;
1171     case BFD_RELOC_ALPHA_GPDISP_LO16:
1172       alpha_type = ALPHA_R_IGNORE;
1173       break;
1174     case BFD_RELOC_23_PCREL_S2:
1175       alpha_type = ALPHA_R_BRADDR;
1176       break;
1177     case BFD_RELOC_ALPHA_HINT:
1178       alpha_type = ALPHA_R_HINT;
1179       break;
1180     case BFD_RELOC_16_PCREL:
1181       alpha_type = ALPHA_R_SREL16;
1182       break;
1183     case BFD_RELOC_32_PCREL:
1184       alpha_type = ALPHA_R_SREL32;
1185       break;
1186     case BFD_RELOC_64_PCREL:
1187       alpha_type = ALPHA_R_SREL64;
1188       break;
1189     default:
1190       return (reloc_howto_type *) NULL;
1191     }
1192 
1193   return &alpha_howto_table[alpha_type];
1194 }
1195 
1196 static reloc_howto_type *
1197 alpha_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1198 			     const char *r_name)
1199 {
1200   unsigned int i;
1201 
1202   for (i = 0;
1203        i < sizeof (alpha_howto_table) / sizeof (alpha_howto_table[0]);
1204        i++)
1205     if (alpha_howto_table[i].name != NULL
1206 	&& strcasecmp (alpha_howto_table[i].name, r_name) == 0)
1207       return &alpha_howto_table[i];
1208 
1209   return NULL;
1210 }
1211 
1212 /* A helper routine for alpha_relocate_section which converts an
1213    external reloc when generating relocatable output.  Returns the
1214    relocation amount.  */
1215 
1216 static bfd_vma
1217 alpha_convert_external_reloc (bfd *output_bfd ATTRIBUTE_UNUSED,
1218 			      struct bfd_link_info *info,
1219 			      bfd *input_bfd,
1220 			      struct external_reloc *ext_rel,
1221 			      struct ecoff_link_hash_entry *h)
1222 {
1223   unsigned long r_symndx;
1224   bfd_vma relocation;
1225 
1226   BFD_ASSERT (bfd_link_relocatable (info));
1227 
1228   if (h->root.type == bfd_link_hash_defined
1229       || h->root.type == bfd_link_hash_defweak)
1230     {
1231       asection *hsec;
1232       const char *name;
1233 
1234       /* This symbol is defined in the output.  Convert the reloc from
1235 	 being against the symbol to being against the section.  */
1236 
1237       /* Clear the r_extern bit.  */
1238       ext_rel->r_bits[1] &=~ RELOC_BITS1_EXTERN_LITTLE;
1239 
1240       /* Compute a new r_symndx value.  */
1241       hsec = h->root.u.def.section;
1242       name = bfd_get_section_name (output_bfd, hsec->output_section);
1243 
1244       r_symndx = (unsigned long) -1;
1245       switch (name[1])
1246 	{
1247 	case 'A':
1248 	  if (strcmp (name, "*ABS*") == 0)
1249 	    r_symndx = RELOC_SECTION_ABS;
1250 	  break;
1251 	case 'b':
1252 	  if (strcmp (name, ".bss") == 0)
1253 	    r_symndx = RELOC_SECTION_BSS;
1254 	  break;
1255 	case 'd':
1256 	  if (strcmp (name, ".data") == 0)
1257 	    r_symndx = RELOC_SECTION_DATA;
1258 	  break;
1259 	case 'f':
1260 	  if (strcmp (name, ".fini") == 0)
1261 	    r_symndx = RELOC_SECTION_FINI;
1262 	  break;
1263 	case 'i':
1264 	  if (strcmp (name, ".init") == 0)
1265 	    r_symndx = RELOC_SECTION_INIT;
1266 	  break;
1267 	case 'l':
1268 	  if (strcmp (name, ".lita") == 0)
1269 	    r_symndx = RELOC_SECTION_LITA;
1270 	  else if (strcmp (name, ".lit8") == 0)
1271 	    r_symndx = RELOC_SECTION_LIT8;
1272 	  else if (strcmp (name, ".lit4") == 0)
1273 	    r_symndx = RELOC_SECTION_LIT4;
1274 	  break;
1275 	case 'p':
1276 	  if (strcmp (name, ".pdata") == 0)
1277 	    r_symndx = RELOC_SECTION_PDATA;
1278 	  break;
1279 	case 'r':
1280 	  if (strcmp (name, ".rdata") == 0)
1281 	    r_symndx = RELOC_SECTION_RDATA;
1282 	  else if (strcmp (name, ".rconst") == 0)
1283 	    r_symndx = RELOC_SECTION_RCONST;
1284 	  break;
1285 	case 's':
1286 	  if (strcmp (name, ".sdata") == 0)
1287 	    r_symndx = RELOC_SECTION_SDATA;
1288 	  else if (strcmp (name, ".sbss") == 0)
1289 	    r_symndx = RELOC_SECTION_SBSS;
1290 	  break;
1291 	case 't':
1292 	  if (strcmp (name, ".text") == 0)
1293 	    r_symndx = RELOC_SECTION_TEXT;
1294 	  break;
1295 	case 'x':
1296 	  if (strcmp (name, ".xdata") == 0)
1297 	    r_symndx = RELOC_SECTION_XDATA;
1298 	  break;
1299 	}
1300 
1301       if (r_symndx == (unsigned long) -1)
1302 	abort ();
1303 
1304       /* Add the section VMA and the symbol value.  */
1305       relocation = (h->root.u.def.value
1306 		    + hsec->output_section->vma
1307 		    + hsec->output_offset);
1308     }
1309   else
1310     {
1311       /* Change the symndx value to the right one for
1312 	 the output BFD.  */
1313       r_symndx = h->indx;
1314       if (r_symndx == (unsigned long) -1)
1315 	{
1316 	  /* Caller must give an error.  */
1317 	  r_symndx = 0;
1318 	}
1319       relocation = 0;
1320     }
1321 
1322   /* Write out the new r_symndx value.  */
1323   H_PUT_32 (input_bfd, r_symndx, ext_rel->r_symndx);
1324 
1325   return relocation;
1326 }
1327 
1328 /* Relocate a section while linking an Alpha ECOFF file.  This is
1329    quite similar to get_relocated_section_contents.  Perhaps they
1330    could be combined somehow.  */
1331 
1332 static bfd_boolean
1333 alpha_relocate_section (bfd *output_bfd,
1334 			struct bfd_link_info *info,
1335 			bfd *input_bfd,
1336 			asection *input_section,
1337 			bfd_byte *contents,
1338 			void * external_relocs)
1339 {
1340   asection **symndx_to_section, *lita_sec;
1341   struct ecoff_link_hash_entry **sym_hashes;
1342   bfd_vma gp;
1343   bfd_boolean gp_undefined;
1344   bfd_vma stack[RELOC_STACKSIZE];
1345   int tos = 0;
1346   struct external_reloc *ext_rel;
1347   struct external_reloc *ext_rel_end;
1348   bfd_size_type amt;
1349 
1350   /* We keep a table mapping the symndx found in an internal reloc to
1351      the appropriate section.  This is faster than looking up the
1352      section by name each time.  */
1353   symndx_to_section = ecoff_data (input_bfd)->symndx_to_section;
1354   if (symndx_to_section == (asection **) NULL)
1355     {
1356       amt = NUM_RELOC_SECTIONS * sizeof (asection *);
1357       symndx_to_section = (asection **) bfd_alloc (input_bfd, amt);
1358       if (!symndx_to_section)
1359 	return FALSE;
1360 
1361       symndx_to_section[RELOC_SECTION_NONE] = NULL;
1362       symndx_to_section[RELOC_SECTION_TEXT] =
1363 	bfd_get_section_by_name (input_bfd, ".text");
1364       symndx_to_section[RELOC_SECTION_RDATA] =
1365 	bfd_get_section_by_name (input_bfd, ".rdata");
1366       symndx_to_section[RELOC_SECTION_DATA] =
1367 	bfd_get_section_by_name (input_bfd, ".data");
1368       symndx_to_section[RELOC_SECTION_SDATA] =
1369 	bfd_get_section_by_name (input_bfd, ".sdata");
1370       symndx_to_section[RELOC_SECTION_SBSS] =
1371 	bfd_get_section_by_name (input_bfd, ".sbss");
1372       symndx_to_section[RELOC_SECTION_BSS] =
1373 	bfd_get_section_by_name (input_bfd, ".bss");
1374       symndx_to_section[RELOC_SECTION_INIT] =
1375 	bfd_get_section_by_name (input_bfd, ".init");
1376       symndx_to_section[RELOC_SECTION_LIT8] =
1377 	bfd_get_section_by_name (input_bfd, ".lit8");
1378       symndx_to_section[RELOC_SECTION_LIT4] =
1379 	bfd_get_section_by_name (input_bfd, ".lit4");
1380       symndx_to_section[RELOC_SECTION_XDATA] =
1381 	bfd_get_section_by_name (input_bfd, ".xdata");
1382       symndx_to_section[RELOC_SECTION_PDATA] =
1383 	bfd_get_section_by_name (input_bfd, ".pdata");
1384       symndx_to_section[RELOC_SECTION_FINI] =
1385 	bfd_get_section_by_name (input_bfd, ".fini");
1386       symndx_to_section[RELOC_SECTION_LITA] =
1387 	bfd_get_section_by_name (input_bfd, ".lita");
1388       symndx_to_section[RELOC_SECTION_ABS] = bfd_abs_section_ptr;
1389       symndx_to_section[RELOC_SECTION_RCONST] =
1390 	bfd_get_section_by_name (input_bfd, ".rconst");
1391 
1392       ecoff_data (input_bfd)->symndx_to_section = symndx_to_section;
1393     }
1394 
1395   sym_hashes = ecoff_data (input_bfd)->sym_hashes;
1396 
1397   /* On the Alpha, the .lita section must be addressable by the global
1398      pointer.  To support large programs, we need to allow multiple
1399      global pointers.  This works as long as each input .lita section
1400      is <64KB big.  This implies that when producing relocatable
1401      output, the .lita section is limited to 64KB. .  */
1402 
1403   lita_sec = symndx_to_section[RELOC_SECTION_LITA];
1404   gp = _bfd_get_gp_value (output_bfd);
1405   if (! bfd_link_relocatable (info) && lita_sec != NULL)
1406     {
1407       struct ecoff_section_tdata *lita_sec_data;
1408 
1409       /* Make sure we have a section data structure to which we can
1410 	 hang on to the gp value we pick for the section.  */
1411       lita_sec_data = ecoff_section_data (input_bfd, lita_sec);
1412       if (lita_sec_data == NULL)
1413 	{
1414 	  amt = sizeof (struct ecoff_section_tdata);
1415 	  lita_sec_data = ((struct ecoff_section_tdata *)
1416 			   bfd_zalloc (input_bfd, amt));
1417 	  lita_sec->used_by_bfd = lita_sec_data;
1418 	}
1419 
1420       if (lita_sec_data->gp != 0)
1421 	{
1422 	  /* If we already assigned a gp to this section, we better
1423 	     stick with that value.  */
1424 	  gp = lita_sec_data->gp;
1425 	}
1426       else
1427 	{
1428 	  bfd_vma lita_vma;
1429 	  bfd_size_type lita_size;
1430 
1431 	  lita_vma = lita_sec->output_offset + lita_sec->output_section->vma;
1432 	  lita_size = lita_sec->size;
1433 
1434 	  if (gp == 0
1435 	      || lita_vma <  gp - 0x8000
1436 	      || lita_vma + lita_size >= gp + 0x8000)
1437 	    {
1438 	      /* Either gp hasn't been set at all or the current gp
1439 		 cannot address this .lita section.  In both cases we
1440 		 reset the gp to point into the "middle" of the
1441 		 current input .lita section.  */
1442 	      if (gp && !ecoff_data (output_bfd)->issued_multiple_gp_warning)
1443 		{
1444 		  (*info->callbacks->warning) (info,
1445 					       _("using multiple gp values"),
1446 					       (char *) NULL, output_bfd,
1447 					       (asection *) NULL, (bfd_vma) 0);
1448 		  ecoff_data (output_bfd)->issued_multiple_gp_warning = TRUE;
1449 		}
1450 	      if (lita_vma < gp - 0x8000)
1451 		gp = lita_vma + lita_size - 0x8000;
1452 	      else
1453 		gp = lita_vma + 0x8000;
1454 
1455 	    }
1456 
1457 	  lita_sec_data->gp = gp;
1458 	}
1459 
1460       _bfd_set_gp_value (output_bfd, gp);
1461     }
1462 
1463   gp_undefined = (gp == 0);
1464 
1465   BFD_ASSERT (bfd_header_little_endian (output_bfd));
1466   BFD_ASSERT (bfd_header_little_endian (input_bfd));
1467 
1468   ext_rel = (struct external_reloc *) external_relocs;
1469   ext_rel_end = ext_rel + input_section->reloc_count;
1470   for (; ext_rel < ext_rel_end; ext_rel++)
1471     {
1472       bfd_vma r_vaddr;
1473       unsigned long r_symndx;
1474       int r_type;
1475       int r_extern;
1476       int r_offset;
1477       int r_size;
1478       bfd_boolean relocatep;
1479       bfd_boolean adjust_addrp;
1480       bfd_boolean gp_usedp;
1481       bfd_vma addend;
1482 
1483       r_vaddr = H_GET_64 (input_bfd, ext_rel->r_vaddr);
1484       r_symndx = H_GET_32 (input_bfd, ext_rel->r_symndx);
1485 
1486       r_type = ((ext_rel->r_bits[0] & RELOC_BITS0_TYPE_LITTLE)
1487 		>> RELOC_BITS0_TYPE_SH_LITTLE);
1488       r_extern = (ext_rel->r_bits[1] & RELOC_BITS1_EXTERN_LITTLE) != 0;
1489       r_offset = ((ext_rel->r_bits[1] & RELOC_BITS1_OFFSET_LITTLE)
1490 		  >> RELOC_BITS1_OFFSET_SH_LITTLE);
1491       /* Ignored the reserved bits.  */
1492       r_size = ((ext_rel->r_bits[3] & RELOC_BITS3_SIZE_LITTLE)
1493 		>> RELOC_BITS3_SIZE_SH_LITTLE);
1494 
1495       relocatep = FALSE;
1496       adjust_addrp = TRUE;
1497       gp_usedp = FALSE;
1498       addend = 0;
1499 
1500       switch (r_type)
1501 	{
1502 	case ALPHA_R_GPRELHIGH:
1503 	  (*_bfd_error_handler)
1504 	    (_("%B: unsupported relocation: ALPHA_R_GPRELHIGH"),
1505 	     input_bfd);
1506 	  bfd_set_error (bfd_error_bad_value);
1507 	  continue;
1508 
1509 	case ALPHA_R_GPRELLOW:
1510 	  (*_bfd_error_handler)
1511 	    (_("%B: unsupported relocation: ALPHA_R_GPRELLOW"),
1512 	     input_bfd);
1513 	  bfd_set_error (bfd_error_bad_value);
1514 	  continue;
1515 
1516 	default:
1517 	  (*_bfd_error_handler)
1518 	    (_("%B: unknown relocation type %d"),
1519 	     input_bfd, (int) r_type);
1520 	  bfd_set_error (bfd_error_bad_value);
1521 	  continue;
1522 
1523 	case ALPHA_R_IGNORE:
1524 	  /* This reloc appears after a GPDISP reloc.  On earlier
1525 	     versions of OSF/1, It marked the position of the second
1526 	     instruction to be altered by the GPDISP reloc, but it is
1527 	     not otherwise used for anything.  For some reason, the
1528 	     address of the relocation does not appear to include the
1529 	     section VMA, unlike the other relocation types.  */
1530 	  if (bfd_link_relocatable (info))
1531 	    H_PUT_64 (input_bfd, input_section->output_offset + r_vaddr,
1532 		      ext_rel->r_vaddr);
1533 	  adjust_addrp = FALSE;
1534 	  break;
1535 
1536 	case ALPHA_R_REFLONG:
1537 	case ALPHA_R_REFQUAD:
1538 	case ALPHA_R_HINT:
1539 	  relocatep = TRUE;
1540 	  break;
1541 
1542 	case ALPHA_R_BRADDR:
1543 	case ALPHA_R_SREL16:
1544 	case ALPHA_R_SREL32:
1545 	case ALPHA_R_SREL64:
1546 	  if (r_extern)
1547 	    addend += - (r_vaddr + 4);
1548 	  relocatep = TRUE;
1549 	  break;
1550 
1551 	case ALPHA_R_GPREL32:
1552 	  /* This relocation is used in a switch table.  It is a 32
1553 	     bit offset from the current GP value.  We must adjust it
1554 	     by the different between the original GP value and the
1555 	     current GP value.  */
1556 	  relocatep = TRUE;
1557 	  addend = ecoff_data (input_bfd)->gp - gp;
1558 	  gp_usedp = TRUE;
1559 	  break;
1560 
1561 	case ALPHA_R_LITERAL:
1562 	  /* This is a reference to a literal value, generally
1563 	     (always?) in the .lita section.  This is a 16 bit GP
1564 	     relative relocation.  Sometimes the subsequent reloc is a
1565 	     LITUSE reloc, which indicates how this reloc is used.
1566 	     This sometimes permits rewriting the two instructions
1567 	     referred to by the LITERAL and the LITUSE into different
1568 	     instructions which do not refer to .lita.  This can save
1569 	     a memory reference, and permits removing a value from
1570 	     .lita thus saving GP relative space.
1571 
1572 	     We do not these optimizations.  To do them we would need
1573 	     to arrange to link the .lita section first, so that by
1574 	     the time we got here we would know the final values to
1575 	     use.  This would not be particularly difficult, but it is
1576 	     not currently implemented.  */
1577 
1578 	  /* I believe that the LITERAL reloc will only apply to a ldq
1579 	     or ldl instruction, so check my assumption.  */
1580 	  {
1581 	    unsigned long insn;
1582 
1583 	    insn = bfd_get_32 (input_bfd,
1584 			       contents + r_vaddr - input_section->vma);
1585 	    BFD_ASSERT (((insn >> 26) & 0x3f) == 0x29
1586 			|| ((insn >> 26) & 0x3f) == 0x28);
1587 	  }
1588 
1589 	  relocatep = TRUE;
1590 	  addend = ecoff_data (input_bfd)->gp - gp;
1591 	  gp_usedp = TRUE;
1592 	  break;
1593 
1594 	case ALPHA_R_LITUSE:
1595 	  /* See ALPHA_R_LITERAL above for the uses of this reloc.  It
1596 	     does not cause anything to happen, itself.  */
1597 	  break;
1598 
1599 	case ALPHA_R_GPDISP:
1600 	  /* This marks the ldah of an ldah/lda pair which loads the
1601 	     gp register with the difference of the gp value and the
1602 	     current location.  The second of the pair is r_symndx
1603 	     bytes ahead.  It used to be marked with an ALPHA_R_IGNORE
1604 	     reloc, but OSF/1 3.2 no longer does that.  */
1605 	  {
1606 	    unsigned long insn1, insn2;
1607 
1608 	    /* Get the two instructions.  */
1609 	    insn1 = bfd_get_32 (input_bfd,
1610 				contents + r_vaddr - input_section->vma);
1611 	    insn2 = bfd_get_32 (input_bfd,
1612 				(contents
1613 				 + r_vaddr
1614 				 - input_section->vma
1615 				 + r_symndx));
1616 
1617 	    BFD_ASSERT (((insn1 >> 26) & 0x3f) == 0x09); /* ldah */
1618 	    BFD_ASSERT (((insn2 >> 26) & 0x3f) == 0x08); /* lda */
1619 
1620 	    /* Get the existing addend.  We must account for the sign
1621 	       extension done by lda and ldah.  */
1622 	    addend = ((insn1 & 0xffff) << 16) + (insn2 & 0xffff);
1623 	    if (insn1 & 0x8000)
1624 	      {
1625 		/* This is addend -= 0x100000000 without causing an
1626 		   integer overflow on a 32 bit host.  */
1627 		addend -= 0x80000000;
1628 		addend -= 0x80000000;
1629 	      }
1630 	    if (insn2 & 0x8000)
1631 	      addend -= 0x10000;
1632 
1633 	    /* The existing addend includes the difference between the
1634 	       gp of the input BFD and the address in the input BFD.
1635 	       We want to change this to the difference between the
1636 	       final GP and the final address.  */
1637 	    addend += (gp
1638 		       - ecoff_data (input_bfd)->gp
1639 		       + input_section->vma
1640 		       - (input_section->output_section->vma
1641 			  + input_section->output_offset));
1642 
1643 	    /* Change the instructions, accounting for the sign
1644 	       extension, and write them out.  */
1645 	    if (addend & 0x8000)
1646 	      addend += 0x10000;
1647 	    insn1 = (insn1 & 0xffff0000) | ((addend >> 16) & 0xffff);
1648 	    insn2 = (insn2 & 0xffff0000) | (addend & 0xffff);
1649 
1650 	    bfd_put_32 (input_bfd, (bfd_vma) insn1,
1651 			contents + r_vaddr - input_section->vma);
1652 	    bfd_put_32 (input_bfd, (bfd_vma) insn2,
1653 			contents + r_vaddr - input_section->vma + r_symndx);
1654 
1655 	    gp_usedp = TRUE;
1656 	  }
1657 	  break;
1658 
1659 	case ALPHA_R_OP_PUSH:
1660 	case ALPHA_R_OP_PSUB:
1661 	case ALPHA_R_OP_PRSHIFT:
1662 	  /* Manipulate values on the reloc evaluation stack.  The
1663 	     r_vaddr field is not an address in input_section, it is
1664 	     the current value (including any addend) of the object
1665 	     being used.  */
1666 	  if (! r_extern)
1667 	    {
1668 	      asection *s;
1669 
1670 	      s = symndx_to_section[r_symndx];
1671 	      if (s == (asection *) NULL)
1672 		abort ();
1673 	      addend = s->output_section->vma + s->output_offset - s->vma;
1674 	    }
1675 	  else
1676 	    {
1677 	      struct ecoff_link_hash_entry *h;
1678 
1679 	      h = sym_hashes[r_symndx];
1680 	      if (h == (struct ecoff_link_hash_entry *) NULL)
1681 		abort ();
1682 
1683 	      if (! bfd_link_relocatable (info))
1684 		{
1685 		  if (h->root.type == bfd_link_hash_defined
1686 		      || h->root.type == bfd_link_hash_defweak)
1687 		    addend = (h->root.u.def.value
1688 			      + h->root.u.def.section->output_section->vma
1689 			      + h->root.u.def.section->output_offset);
1690 		  else
1691 		    {
1692 		      /* Note that we pass the address as 0, since we
1693 			 do not have a meaningful number for the
1694 			 location within the section that is being
1695 			 relocated.  */
1696 		      (*info->callbacks->undefined_symbol)
1697 			(info, h->root.root.string, input_bfd,
1698 			 input_section, (bfd_vma) 0, TRUE);
1699 		      addend = 0;
1700 		    }
1701 		}
1702 	      else
1703 		{
1704 		  if (h->root.type != bfd_link_hash_defined
1705 		      && h->root.type != bfd_link_hash_defweak
1706 		      && h->indx == -1)
1707 		    {
1708 		      /* This symbol is not being written out.  Pass
1709 			 the address as 0, as with undefined_symbol,
1710 			 above.  */
1711 		      (*info->callbacks->unattached_reloc)
1712 			(info, h->root.root.string,
1713 			 input_bfd, input_section, (bfd_vma) 0);
1714 		    }
1715 
1716 		  addend = alpha_convert_external_reloc (output_bfd, info,
1717 							 input_bfd,
1718 							 ext_rel, h);
1719 		}
1720 	    }
1721 
1722 	  addend += r_vaddr;
1723 
1724 	  if (bfd_link_relocatable (info))
1725 	    {
1726 	      /* Adjust r_vaddr by the addend.  */
1727 	      H_PUT_64 (input_bfd, addend, ext_rel->r_vaddr);
1728 	    }
1729 	  else
1730 	    {
1731 	      switch (r_type)
1732 		{
1733 		case ALPHA_R_OP_PUSH:
1734 		  if (tos >= RELOC_STACKSIZE)
1735 		    abort ();
1736 		  stack[tos++] = addend;
1737 		  break;
1738 
1739 		case ALPHA_R_OP_PSUB:
1740 		  if (tos == 0)
1741 		    abort ();
1742 		  stack[tos - 1] -= addend;
1743 		  break;
1744 
1745 		case ALPHA_R_OP_PRSHIFT:
1746 		  if (tos == 0)
1747 		    abort ();
1748 		  stack[tos - 1] >>= addend;
1749 		  break;
1750 		}
1751 	    }
1752 
1753 	  adjust_addrp = FALSE;
1754 	  break;
1755 
1756 	case ALPHA_R_OP_STORE:
1757 	  /* Store a value from the reloc stack into a bitfield.  If
1758 	     we are generating relocatable output, all we do is
1759 	     adjust the address of the reloc.  */
1760 	  if (! bfd_link_relocatable (info))
1761 	    {
1762 	      bfd_vma mask;
1763 	      bfd_vma val;
1764 
1765 	      if (tos == 0)
1766 		abort ();
1767 
1768 	      /* Get the relocation mask.  The separate steps and the
1769 		 casts to bfd_vma are attempts to avoid a bug in the
1770 		 Alpha OSF 1.3 C compiler.  See reloc.c for more
1771 		 details.  */
1772 	      mask = 1;
1773 	      mask <<= (bfd_vma) r_size;
1774 	      mask -= 1;
1775 
1776 	      /* FIXME: I don't know what kind of overflow checking,
1777 		 if any, should be done here.  */
1778 	      val = bfd_get_64 (input_bfd,
1779 				contents + r_vaddr - input_section->vma);
1780 	      val &=~ mask << (bfd_vma) r_offset;
1781 	      val |= (stack[--tos] & mask) << (bfd_vma) r_offset;
1782 	      bfd_put_64 (input_bfd, val,
1783 			  contents + r_vaddr - input_section->vma);
1784 	    }
1785 	  break;
1786 
1787 	case ALPHA_R_GPVALUE:
1788 	  /* I really don't know if this does the right thing.  */
1789 	  gp = ecoff_data (input_bfd)->gp + r_symndx;
1790 	  gp_undefined = FALSE;
1791 	  break;
1792 	}
1793 
1794       if (relocatep)
1795 	{
1796 	  reloc_howto_type *howto;
1797 	  struct ecoff_link_hash_entry *h = NULL;
1798 	  asection *s = NULL;
1799 	  bfd_vma relocation;
1800 	  bfd_reloc_status_type r;
1801 
1802 	  /* Perform a relocation.  */
1803 
1804 	  howto = &alpha_howto_table[r_type];
1805 
1806 	  if (r_extern)
1807 	    {
1808 	      h = sym_hashes[r_symndx];
1809 	      /* If h is NULL, that means that there is a reloc
1810 		 against an external symbol which we thought was just
1811 		 a debugging symbol.  This should not happen.  */
1812 	      if (h == (struct ecoff_link_hash_entry *) NULL)
1813 		abort ();
1814 	    }
1815 	  else
1816 	    {
1817 	      if (r_symndx >= NUM_RELOC_SECTIONS)
1818 		s = NULL;
1819 	      else
1820 		s = symndx_to_section[r_symndx];
1821 
1822 	      if (s == (asection *) NULL)
1823 		abort ();
1824 	    }
1825 
1826 	  if (bfd_link_relocatable (info))
1827 	    {
1828 	      /* We are generating relocatable output, and must
1829 		 convert the existing reloc.  */
1830 	      if (r_extern)
1831 		{
1832 		  if (h->root.type != bfd_link_hash_defined
1833 		      && h->root.type != bfd_link_hash_defweak
1834 		      && h->indx == -1)
1835 		    {
1836 		      /* This symbol is not being written out.  */
1837 		      (*info->callbacks->unattached_reloc)
1838 			(info, h->root.root.string, input_bfd,
1839 			 input_section, r_vaddr - input_section->vma);
1840 		    }
1841 
1842 		  relocation = alpha_convert_external_reloc (output_bfd,
1843 							     info,
1844 							     input_bfd,
1845 							     ext_rel,
1846 							     h);
1847 		}
1848 	      else
1849 		{
1850 		  /* This is a relocation against a section.  Adjust
1851 		     the value by the amount the section moved.  */
1852 		  relocation = (s->output_section->vma
1853 				+ s->output_offset
1854 				- s->vma);
1855 		}
1856 
1857 	      /* If this is PC relative, the existing object file
1858 		 appears to already have the reloc worked out.  We
1859 		 must subtract out the old value and add in the new
1860 		 one.  */
1861 	      if (howto->pc_relative)
1862 		relocation -= (input_section->output_section->vma
1863 			       + input_section->output_offset
1864 			       - input_section->vma);
1865 
1866 	      /* Put in any addend.  */
1867 	      relocation += addend;
1868 
1869 	      /* Adjust the contents.  */
1870 	      r = _bfd_relocate_contents (howto, input_bfd, relocation,
1871 					  (contents
1872 					   + r_vaddr
1873 					   - input_section->vma));
1874 	    }
1875 	  else
1876 	    {
1877 	      /* We are producing a final executable.  */
1878 	      if (r_extern)
1879 		{
1880 		  /* This is a reloc against a symbol.  */
1881 		  if (h->root.type == bfd_link_hash_defined
1882 		      || h->root.type == bfd_link_hash_defweak)
1883 		    {
1884 		      asection *hsec;
1885 
1886 		      hsec = h->root.u.def.section;
1887 		      relocation = (h->root.u.def.value
1888 				    + hsec->output_section->vma
1889 				    + hsec->output_offset);
1890 		    }
1891 		  else
1892 		    {
1893 		      (*info->callbacks->undefined_symbol)
1894 			(info, h->root.root.string, input_bfd, input_section,
1895 			 r_vaddr - input_section->vma, TRUE);
1896 		      relocation = 0;
1897 		    }
1898 		}
1899 	      else
1900 		{
1901 		  /* This is a reloc against a section.  */
1902 		  relocation = (s->output_section->vma
1903 				+ s->output_offset
1904 				- s->vma);
1905 
1906 		  /* Adjust a PC relative relocation by removing the
1907 		     reference to the original source section.  */
1908 		  if (howto->pc_relative)
1909 		    relocation += input_section->vma;
1910 		}
1911 
1912 	      r = _bfd_final_link_relocate (howto,
1913 					    input_bfd,
1914 					    input_section,
1915 					    contents,
1916 					    r_vaddr - input_section->vma,
1917 					    relocation,
1918 					    addend);
1919 	    }
1920 
1921 	  if (r != bfd_reloc_ok)
1922 	    {
1923 	      switch (r)
1924 		{
1925 		default:
1926 		case bfd_reloc_outofrange:
1927 		  abort ();
1928 		case bfd_reloc_overflow:
1929 		  {
1930 		    const char *name;
1931 
1932 		    if (r_extern)
1933 		      name = sym_hashes[r_symndx]->root.root.string;
1934 		    else
1935 		      name = bfd_section_name (input_bfd,
1936 					       symndx_to_section[r_symndx]);
1937 		    (*info->callbacks->reloc_overflow)
1938 		      (info, NULL, name, alpha_howto_table[r_type].name,
1939 		       (bfd_vma) 0, input_bfd, input_section,
1940 		       r_vaddr - input_section->vma);
1941 		  }
1942 		  break;
1943 		}
1944 	    }
1945 	}
1946 
1947       if (bfd_link_relocatable (info) && adjust_addrp)
1948 	{
1949 	  /* Change the address of the relocation.  */
1950 	  H_PUT_64 (input_bfd,
1951 		    (input_section->output_section->vma
1952 		     + input_section->output_offset
1953 		     - input_section->vma
1954 		     + r_vaddr),
1955 		    ext_rel->r_vaddr);
1956 	}
1957 
1958       if (gp_usedp && gp_undefined)
1959 	{
1960 	  (*info->callbacks->reloc_dangerous)
1961 	    (info, _("GP relative relocation used when GP not defined"),
1962 	     input_bfd, input_section, r_vaddr - input_section->vma);
1963 	  /* Only give the error once per link.  */
1964 	  gp = 4;
1965 	  _bfd_set_gp_value (output_bfd, gp);
1966 	  gp_undefined = FALSE;
1967 	}
1968     }
1969 
1970   if (tos != 0)
1971     abort ();
1972 
1973   return TRUE;
1974 }
1975 
1976 /* Do final adjustments to the filehdr and the aouthdr.  This routine
1977    sets the dynamic bits in the file header.  */
1978 
1979 static bfd_boolean
1980 alpha_adjust_headers (bfd *abfd,
1981 		      struct internal_filehdr *fhdr,
1982 		      struct internal_aouthdr *ahdr ATTRIBUTE_UNUSED)
1983 {
1984   if ((abfd->flags & (DYNAMIC | EXEC_P)) == (DYNAMIC | EXEC_P))
1985     fhdr->f_flags |= F_ALPHA_CALL_SHARED;
1986   else if ((abfd->flags & DYNAMIC) != 0)
1987     fhdr->f_flags |= F_ALPHA_SHARABLE;
1988   return TRUE;
1989 }
1990 
1991 /* Archive handling.  In OSF/1 (or Digital Unix) v3.2, Digital
1992    introduced archive packing, in which the elements in an archive are
1993    optionally compressed using a simple dictionary scheme.  We know
1994    how to read such archives, but we don't write them.  */
1995 
1996 #define alpha_ecoff_slurp_armap _bfd_ecoff_slurp_armap
1997 #define alpha_ecoff_slurp_extended_name_table \
1998   _bfd_ecoff_slurp_extended_name_table
1999 #define alpha_ecoff_construct_extended_name_table \
2000   _bfd_ecoff_construct_extended_name_table
2001 #define alpha_ecoff_truncate_arname _bfd_ecoff_truncate_arname
2002 #define alpha_ecoff_write_armap _bfd_ecoff_write_armap
2003 #define alpha_ecoff_write_ar_hdr _bfd_generic_write_ar_hdr
2004 #define alpha_ecoff_generic_stat_arch_elt _bfd_ecoff_generic_stat_arch_elt
2005 #define alpha_ecoff_update_armap_timestamp _bfd_ecoff_update_armap_timestamp
2006 
2007 /* A compressed file uses this instead of ARFMAG.  */
2008 
2009 #define ARFZMAG "Z\012"
2010 
2011 /* Read an archive header.  This is like the standard routine, but it
2012    also accepts ARFZMAG.  */
2013 
2014 static void *
2015 alpha_ecoff_read_ar_hdr (bfd *abfd)
2016 {
2017   struct areltdata *ret;
2018   struct ar_hdr *h;
2019 
2020   ret = (struct areltdata *) _bfd_generic_read_ar_hdr_mag (abfd, ARFZMAG);
2021   if (ret == NULL)
2022     return NULL;
2023 
2024   h = (struct ar_hdr *) ret->arch_header;
2025   if (strncmp (h->ar_fmag, ARFZMAG, 2) == 0)
2026     {
2027       bfd_byte ab[8];
2028 
2029       /* This is a compressed file.  We must set the size correctly.
2030          The size is the eight bytes after the dummy file header.  */
2031       if (bfd_seek (abfd, (file_ptr) FILHSZ, SEEK_CUR) != 0
2032 	  || bfd_bread (ab, (bfd_size_type) 8, abfd) != 8
2033 	  || bfd_seek (abfd, (file_ptr) (- (FILHSZ + 8)), SEEK_CUR) != 0)
2034 	return NULL;
2035 
2036       ret->parsed_size = H_GET_64 (abfd, ab);
2037     }
2038 
2039   return ret;
2040 }
2041 
2042 /* Get an archive element at a specified file position.  This is where
2043    we uncompress the archive element if necessary.  */
2044 
2045 static bfd *
2046 alpha_ecoff_get_elt_at_filepos (bfd *archive, file_ptr filepos)
2047 {
2048   bfd *nbfd = NULL;
2049   struct areltdata *tdata;
2050   struct ar_hdr *hdr;
2051   bfd_byte ab[8];
2052   bfd_size_type size;
2053   bfd_byte *buf, *p;
2054   struct bfd_in_memory *bim;
2055 
2056   buf = NULL;
2057   nbfd = _bfd_get_elt_at_filepos (archive, filepos);
2058   if (nbfd == NULL)
2059     goto error_return;
2060 
2061   if ((nbfd->flags & BFD_IN_MEMORY) != 0)
2062     {
2063       /* We have already expanded this BFD.  */
2064       return nbfd;
2065     }
2066 
2067   tdata = (struct areltdata *) nbfd->arelt_data;
2068   hdr = (struct ar_hdr *) tdata->arch_header;
2069   if (strncmp (hdr->ar_fmag, ARFZMAG, 2) != 0)
2070     return nbfd;
2071 
2072   /* We must uncompress this element.  We do this by copying it into a
2073      memory buffer, and making bfd_bread and bfd_seek use that buffer.
2074      This can use a lot of memory, but it's simpler than getting a
2075      temporary file, making that work with the file descriptor caching
2076      code, and making sure that it is deleted at all appropriate
2077      times.  It can be changed if it ever becomes important.  */
2078 
2079   /* The compressed file starts with a dummy ECOFF file header.  */
2080   if (bfd_seek (nbfd, (file_ptr) FILHSZ, SEEK_SET) != 0)
2081     goto error_return;
2082 
2083   /* The next eight bytes are the real file size.  */
2084   if (bfd_bread (ab, (bfd_size_type) 8, nbfd) != 8)
2085     goto error_return;
2086   size = H_GET_64 (nbfd, ab);
2087 
2088   if (size != 0)
2089     {
2090       bfd_size_type left;
2091       bfd_byte dict[4096];
2092       unsigned int h;
2093       bfd_byte b;
2094 
2095       buf = (bfd_byte *) bfd_malloc (size);
2096       if (buf == NULL)
2097 	goto error_return;
2098       p = buf;
2099 
2100       left = size;
2101 
2102       /* I don't know what the next eight bytes are for.  */
2103       if (bfd_bread (ab, (bfd_size_type) 8, nbfd) != 8)
2104 	goto error_return;
2105 
2106       /* This is the uncompression algorithm.  It's a simple
2107 	 dictionary based scheme in which each character is predicted
2108 	 by a hash of the previous three characters.  A control byte
2109 	 indicates whether the character is predicted or whether it
2110 	 appears in the input stream; each control byte manages the
2111 	 next eight bytes in the output stream.  */
2112       memset (dict, 0, sizeof dict);
2113       h = 0;
2114       while (bfd_bread (&b, (bfd_size_type) 1, nbfd) == 1)
2115 	{
2116 	  unsigned int i;
2117 
2118 	  for (i = 0; i < 8; i++, b >>= 1)
2119 	    {
2120 	      bfd_byte n;
2121 
2122 	      if ((b & 1) == 0)
2123 		n = dict[h];
2124 	      else
2125 		{
2126 		  if (! bfd_bread (&n, (bfd_size_type) 1, nbfd))
2127 		    goto error_return;
2128 		  dict[h] = n;
2129 		}
2130 
2131 	      *p++ = n;
2132 
2133 	      --left;
2134 	      if (left == 0)
2135 		break;
2136 
2137 	      h <<= 4;
2138 	      h ^= n;
2139 	      h &= sizeof dict - 1;
2140 	    }
2141 
2142 	  if (left == 0)
2143 	    break;
2144 	}
2145     }
2146 
2147   /* Now the uncompressed file contents are in buf.  */
2148   bim = ((struct bfd_in_memory *)
2149 	 bfd_malloc ((bfd_size_type) sizeof (struct bfd_in_memory)));
2150   if (bim == NULL)
2151     goto error_return;
2152   bim->size = size;
2153   bim->buffer = buf;
2154 
2155   nbfd->mtime_set = TRUE;
2156   nbfd->mtime = strtol (hdr->ar_date, (char **) NULL, 10);
2157 
2158   nbfd->flags |= BFD_IN_MEMORY;
2159   nbfd->iostream = bim;
2160   nbfd->iovec = &_bfd_memory_iovec;
2161   nbfd->origin = 0;
2162   BFD_ASSERT (! nbfd->cacheable);
2163 
2164   return nbfd;
2165 
2166  error_return:
2167   if (buf != NULL)
2168     free (buf);
2169   if (nbfd != NULL)
2170     bfd_close (nbfd);
2171   return NULL;
2172 }
2173 
2174 /* Open the next archived file.  */
2175 
2176 static bfd *
2177 alpha_ecoff_openr_next_archived_file (bfd *archive, bfd *last_file)
2178 {
2179   ufile_ptr filestart;
2180 
2181   if (last_file == NULL)
2182     filestart = bfd_ardata (archive)->first_file_filepos;
2183   else
2184     {
2185       struct areltdata *t;
2186       struct ar_hdr *h;
2187       bfd_size_type size;
2188 
2189       /* We can't use arelt_size here, because that uses parsed_size,
2190          which is the uncompressed size.  We need the compressed size.  */
2191       t = (struct areltdata *) last_file->arelt_data;
2192       h = (struct ar_hdr *) t->arch_header;
2193       size = strtol (h->ar_size, (char **) NULL, 10);
2194 
2195       /* Pad to an even boundary...
2196 	 Note that last_file->origin can be odd in the case of
2197 	 BSD-4.4-style element with a long odd size.  */
2198       filestart = last_file->proxy_origin + size;
2199       filestart += filestart % 2;
2200       if (filestart < last_file->proxy_origin)
2201 	{
2202 	  /* Prevent looping.  See PR19256.  */
2203 	  bfd_set_error (bfd_error_malformed_archive);
2204 	  return NULL;
2205 	}
2206     }
2207 
2208   return alpha_ecoff_get_elt_at_filepos (archive, filestart);
2209 }
2210 
2211 /* Open the archive file given an index into the armap.  */
2212 
2213 static bfd *
2214 alpha_ecoff_get_elt_at_index (bfd *abfd, symindex sym_index)
2215 {
2216   carsym *entry;
2217 
2218   entry = bfd_ardata (abfd)->symdefs + sym_index;
2219   return alpha_ecoff_get_elt_at_filepos (abfd, entry->file_offset);
2220 }
2221 
2222 /* This is the ECOFF backend structure.  The backend field of the
2223    target vector points to this.  */
2224 
2225 static const struct ecoff_backend_data alpha_ecoff_backend_data =
2226 {
2227   /* COFF backend structure.  */
2228   {
2229     (void (*) (bfd *,void *,int,int,int,int,void *)) bfd_void, /* aux_in */
2230     (void (*) (bfd *,void *,void *)) bfd_void, /* sym_in */
2231     (void (*) (bfd *,void *,void *)) bfd_void, /* lineno_in */
2232     (unsigned (*) (bfd *,void *,int,int,int,int,void *)) bfd_void,/*aux_out*/
2233     (unsigned (*) (bfd *,void *,void *)) bfd_void, /* sym_out */
2234     (unsigned (*) (bfd *,void *,void *)) bfd_void, /* lineno_out */
2235     (unsigned (*) (bfd *,void *,void *)) bfd_void, /* reloc_out */
2236     alpha_ecoff_swap_filehdr_out, alpha_ecoff_swap_aouthdr_out,
2237     alpha_ecoff_swap_scnhdr_out,
2238     FILHSZ, AOUTSZ, SCNHSZ, 0, 0, 0, 0, FILNMLEN, TRUE,
2239     ECOFF_NO_LONG_SECTION_NAMES, 4, FALSE, 2, 32768,
2240     alpha_ecoff_swap_filehdr_in, alpha_ecoff_swap_aouthdr_in,
2241     alpha_ecoff_swap_scnhdr_in, NULL,
2242     alpha_ecoff_bad_format_hook, _bfd_ecoff_set_arch_mach_hook,
2243     alpha_ecoff_mkobject_hook, _bfd_ecoff_styp_to_sec_flags,
2244     _bfd_ecoff_set_alignment_hook, _bfd_ecoff_slurp_symbol_table,
2245     NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2246     NULL, NULL, NULL, NULL
2247   },
2248   /* Supported architecture.  */
2249   bfd_arch_alpha,
2250   /* Initial portion of armap string.  */
2251   "________64",
2252   /* The page boundary used to align sections in a demand-paged
2253      executable file.  E.g., 0x1000.  */
2254   0x2000,
2255   /* TRUE if the .rdata section is part of the text segment, as on the
2256      Alpha.  FALSE if .rdata is part of the data segment, as on the
2257      MIPS.  */
2258   TRUE,
2259   /* Bitsize of constructor entries.  */
2260   64,
2261   /* Reloc to use for constructor entries.  */
2262   &alpha_howto_table[ALPHA_R_REFQUAD],
2263   {
2264     /* Symbol table magic number.  */
2265     magicSym2,
2266     /* Alignment of debugging information.  E.g., 4.  */
2267     8,
2268     /* Sizes of external symbolic information.  */
2269     sizeof (struct hdr_ext),
2270     sizeof (struct dnr_ext),
2271     sizeof (struct pdr_ext),
2272     sizeof (struct sym_ext),
2273     sizeof (struct opt_ext),
2274     sizeof (struct fdr_ext),
2275     sizeof (struct rfd_ext),
2276     sizeof (struct ext_ext),
2277     /* Functions to swap in external symbolic data.  */
2278     ecoff_swap_hdr_in,
2279     ecoff_swap_dnr_in,
2280     ecoff_swap_pdr_in,
2281     ecoff_swap_sym_in,
2282     ecoff_swap_opt_in,
2283     ecoff_swap_fdr_in,
2284     ecoff_swap_rfd_in,
2285     ecoff_swap_ext_in,
2286     _bfd_ecoff_swap_tir_in,
2287     _bfd_ecoff_swap_rndx_in,
2288     /* Functions to swap out external symbolic data.  */
2289     ecoff_swap_hdr_out,
2290     ecoff_swap_dnr_out,
2291     ecoff_swap_pdr_out,
2292     ecoff_swap_sym_out,
2293     ecoff_swap_opt_out,
2294     ecoff_swap_fdr_out,
2295     ecoff_swap_rfd_out,
2296     ecoff_swap_ext_out,
2297     _bfd_ecoff_swap_tir_out,
2298     _bfd_ecoff_swap_rndx_out,
2299     /* Function to read in symbolic data.  */
2300     _bfd_ecoff_slurp_symbolic_info
2301   },
2302   /* External reloc size.  */
2303   RELSZ,
2304   /* Reloc swapping functions.  */
2305   alpha_ecoff_swap_reloc_in,
2306   alpha_ecoff_swap_reloc_out,
2307   /* Backend reloc tweaking.  */
2308   alpha_adjust_reloc_in,
2309   alpha_adjust_reloc_out,
2310   /* Relocate section contents while linking.  */
2311   alpha_relocate_section,
2312   /* Do final adjustments to filehdr and aouthdr.  */
2313   alpha_adjust_headers,
2314   /* Read an element from an archive at a given file position.  */
2315   alpha_ecoff_get_elt_at_filepos
2316 };
2317 
2318 /* Looking up a reloc type is Alpha specific.  */
2319 #define _bfd_ecoff_bfd_reloc_type_lookup alpha_bfd_reloc_type_lookup
2320 #define _bfd_ecoff_bfd_reloc_name_lookup \
2321   alpha_bfd_reloc_name_lookup
2322 
2323 /* So is getting relocated section contents.  */
2324 #define _bfd_ecoff_bfd_get_relocated_section_contents \
2325   alpha_ecoff_get_relocated_section_contents
2326 
2327 /* Handling file windows is generic.  */
2328 #define _bfd_ecoff_get_section_contents_in_window \
2329   _bfd_generic_get_section_contents_in_window
2330 
2331 /* Input section flag lookup is generic.  */
2332 #define _bfd_ecoff_bfd_lookup_section_flags bfd_generic_lookup_section_flags
2333 
2334 /* Relaxing sections is generic.  */
2335 #define _bfd_ecoff_bfd_relax_section bfd_generic_relax_section
2336 #define _bfd_ecoff_bfd_gc_sections bfd_generic_gc_sections
2337 #define _bfd_ecoff_bfd_merge_sections bfd_generic_merge_sections
2338 #define _bfd_ecoff_bfd_is_group_section bfd_generic_is_group_section
2339 #define _bfd_ecoff_bfd_discard_group bfd_generic_discard_group
2340 #define _bfd_ecoff_section_already_linked \
2341   _bfd_coff_section_already_linked
2342 #define _bfd_ecoff_bfd_define_common_symbol bfd_generic_define_common_symbol
2343 #define _bfd_ecoff_bfd_link_check_relocs    _bfd_generic_link_check_relocs
2344 
2345 const bfd_target alpha_ecoff_le_vec =
2346 {
2347   "ecoff-littlealpha",		/* name */
2348   bfd_target_ecoff_flavour,
2349   BFD_ENDIAN_LITTLE,		/* data byte order is little */
2350   BFD_ENDIAN_LITTLE,		/* header byte order is little */
2351 
2352   (HAS_RELOC | EXEC_P |		/* object flags */
2353    HAS_LINENO | HAS_DEBUG |
2354    HAS_SYMS | HAS_LOCALS | DYNAMIC | WP_TEXT | D_PAGED),
2355 
2356   (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_CODE | SEC_DATA),
2357   0,				/* leading underscore */
2358   ' ',				/* ar_pad_char */
2359   15,				/* ar_max_namelen */
2360   0,				/* match priority.  */
2361   bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2362      bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2363      bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
2364   bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2365      bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2366      bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */
2367 
2368   {_bfd_dummy_target, alpha_ecoff_object_p, /* bfd_check_format */
2369      bfd_generic_archive_p, _bfd_dummy_target},
2370   {bfd_false, _bfd_ecoff_mkobject,  /* bfd_set_format */
2371      _bfd_generic_mkarchive, bfd_false},
2372   {bfd_false, _bfd_ecoff_write_object_contents, /* bfd_write_contents */
2373      _bfd_write_archive_contents, bfd_false},
2374 
2375      BFD_JUMP_TABLE_GENERIC (_bfd_ecoff),
2376      BFD_JUMP_TABLE_COPY (_bfd_ecoff),
2377      BFD_JUMP_TABLE_CORE (_bfd_nocore),
2378      BFD_JUMP_TABLE_ARCHIVE (alpha_ecoff),
2379      BFD_JUMP_TABLE_SYMBOLS (_bfd_ecoff),
2380      BFD_JUMP_TABLE_RELOCS (_bfd_ecoff),
2381      BFD_JUMP_TABLE_WRITE (_bfd_ecoff),
2382      BFD_JUMP_TABLE_LINK (_bfd_ecoff),
2383      BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
2384 
2385   NULL,
2386 
2387   & alpha_ecoff_backend_data
2388 };
2389