xref: /netbsd-src/external/gpl3/binutils/dist/bfd/coff-alpha.c (revision 8ecbf5f02b752fcb7debe1a8fab1dc82602bc760)
1 /* BFD back-end for ALPHA Extended-Coff files.
2    Copyright (C) 1993-2020 Free Software Foundation, Inc.
3    Modified from coff-mips.c by Steve Chamberlain <sac@cygnus.com> and
4    Ian Lance Taylor <ian@cygnus.com>.
5 
6    This file is part of BFD, the Binary File Descriptor library.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program; if not, write to the Free Software
20    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21    MA 02110-1301, USA.  */
22 
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #include "coff/internal.h"
28 #include "coff/sym.h"
29 #include "coff/symconst.h"
30 #include "coff/ecoff.h"
31 #include "coff/alpha.h"
32 #include "aout/ar.h"
33 #include "libcoff.h"
34 #include "libecoff.h"
35 
36 /* Prototypes for static functions.  */
37 
38 
39 
40 /* ECOFF has COFF sections, but the debugging information is stored in
41    a completely different format.  ECOFF targets use some of the
42    swapping routines from coffswap.h, and some of the generic COFF
43    routines in coffgen.c, but, unlike the real COFF targets, do not
44    use coffcode.h itself.
45 
46    Get the generic COFF swapping routines, except for the reloc,
47    symbol, and lineno ones.  Give them ecoff names.  Define some
48    accessor macros for the large sizes used for Alpha ECOFF.  */
49 
50 #define GET_FILEHDR_SYMPTR H_GET_64
51 #define PUT_FILEHDR_SYMPTR H_PUT_64
52 #define GET_AOUTHDR_TSIZE H_GET_64
53 #define PUT_AOUTHDR_TSIZE H_PUT_64
54 #define GET_AOUTHDR_DSIZE H_GET_64
55 #define PUT_AOUTHDR_DSIZE H_PUT_64
56 #define GET_AOUTHDR_BSIZE H_GET_64
57 #define PUT_AOUTHDR_BSIZE H_PUT_64
58 #define GET_AOUTHDR_ENTRY H_GET_64
59 #define PUT_AOUTHDR_ENTRY H_PUT_64
60 #define GET_AOUTHDR_TEXT_START H_GET_64
61 #define PUT_AOUTHDR_TEXT_START H_PUT_64
62 #define GET_AOUTHDR_DATA_START H_GET_64
63 #define PUT_AOUTHDR_DATA_START H_PUT_64
64 #define GET_SCNHDR_PADDR H_GET_64
65 #define PUT_SCNHDR_PADDR H_PUT_64
66 #define GET_SCNHDR_VADDR H_GET_64
67 #define PUT_SCNHDR_VADDR H_PUT_64
68 #define GET_SCNHDR_SIZE H_GET_64
69 #define PUT_SCNHDR_SIZE H_PUT_64
70 #define GET_SCNHDR_SCNPTR H_GET_64
71 #define PUT_SCNHDR_SCNPTR H_PUT_64
72 #define GET_SCNHDR_RELPTR H_GET_64
73 #define PUT_SCNHDR_RELPTR H_PUT_64
74 #define GET_SCNHDR_LNNOPTR H_GET_64
75 #define PUT_SCNHDR_LNNOPTR H_PUT_64
76 
77 #define ALPHAECOFF
78 
79 #define NO_COFF_RELOCS
80 #define NO_COFF_SYMBOLS
81 #define NO_COFF_LINENOS
82 #define coff_swap_filehdr_in alpha_ecoff_swap_filehdr_in
83 #define coff_swap_filehdr_out alpha_ecoff_swap_filehdr_out
84 #define coff_swap_aouthdr_in alpha_ecoff_swap_aouthdr_in
85 #define coff_swap_aouthdr_out alpha_ecoff_swap_aouthdr_out
86 #define coff_swap_scnhdr_in alpha_ecoff_swap_scnhdr_in
87 #define coff_swap_scnhdr_out alpha_ecoff_swap_scnhdr_out
88 #include "coffswap.h"
89 
90 /* Get the ECOFF swapping routines.  */
91 #define ECOFF_64
92 #include "ecoffswap.h"
93 
94 /* How to process the various reloc types.  */
95 
96 static bfd_reloc_status_type
97 reloc_nil (bfd *abfd ATTRIBUTE_UNUSED,
98 	   arelent *reloc ATTRIBUTE_UNUSED,
99 	   asymbol *sym ATTRIBUTE_UNUSED,
100 	   void * data ATTRIBUTE_UNUSED,
101 	   asection *sec ATTRIBUTE_UNUSED,
102 	   bfd *output_bfd ATTRIBUTE_UNUSED,
103 	   char **error_message ATTRIBUTE_UNUSED)
104 {
105   return bfd_reloc_ok;
106 }
107 
108 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
109    from smaller values.  Start with zero, widen, *then* decrement.  */
110 #define MINUS_ONE	(((bfd_vma)0) - 1)
111 
112 static reloc_howto_type alpha_howto_table[] =
113 {
114   /* Reloc type 0 is ignored by itself.  However, it appears after a
115      GPDISP reloc to identify the location where the low order 16 bits
116      of the gp register are loaded.  */
117   HOWTO (ALPHA_R_IGNORE,	/* type */
118 	 0,			/* rightshift */
119 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
120 	 8,			/* bitsize */
121 	 TRUE,			/* pc_relative */
122 	 0,			/* bitpos */
123 	 complain_overflow_dont, /* complain_on_overflow */
124 	 reloc_nil,		/* special_function */
125 	 "IGNORE",		/* name */
126 	 TRUE,			/* partial_inplace */
127 	 0,			/* src_mask */
128 	 0,			/* dst_mask */
129 	 TRUE),			/* pcrel_offset */
130 
131   /* A 32 bit reference to a symbol.  */
132   HOWTO (ALPHA_R_REFLONG,	/* type */
133 	 0,			/* rightshift */
134 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
135 	 32,			/* bitsize */
136 	 FALSE,			/* pc_relative */
137 	 0,			/* bitpos */
138 	 complain_overflow_bitfield, /* complain_on_overflow */
139 	 0,			/* special_function */
140 	 "REFLONG",		/* name */
141 	 TRUE,			/* partial_inplace */
142 	 0xffffffff,		/* src_mask */
143 	 0xffffffff,		/* dst_mask */
144 	 FALSE),		/* pcrel_offset */
145 
146   /* A 64 bit reference to a symbol.  */
147   HOWTO (ALPHA_R_REFQUAD,	/* type */
148 	 0,			/* rightshift */
149 	 4,			/* size (0 = byte, 1 = short, 2 = long) */
150 	 64,			/* bitsize */
151 	 FALSE,			/* pc_relative */
152 	 0,			/* bitpos */
153 	 complain_overflow_bitfield, /* complain_on_overflow */
154 	 0,			/* special_function */
155 	 "REFQUAD",		/* name */
156 	 TRUE,			/* partial_inplace */
157 	 MINUS_ONE,		/* src_mask */
158 	 MINUS_ONE,		/* dst_mask */
159 	 FALSE),		/* pcrel_offset */
160 
161   /* A 32 bit GP relative offset.  This is just like REFLONG except
162      that when the value is used the value of the gp register will be
163      added in.  */
164   HOWTO (ALPHA_R_GPREL32,	/* type */
165 	 0,			/* rightshift */
166 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
167 	 32,			/* bitsize */
168 	 FALSE,			/* pc_relative */
169 	 0,			/* bitpos */
170 	 complain_overflow_bitfield, /* complain_on_overflow */
171 	 0,			/* special_function */
172 	 "GPREL32",		/* name */
173 	 TRUE,			/* partial_inplace */
174 	 0xffffffff,		/* src_mask */
175 	 0xffffffff,		/* dst_mask */
176 	 FALSE),		/* pcrel_offset */
177 
178   /* Used for an instruction that refers to memory off the GP
179      register.  The offset is 16 bits of the 32 bit instruction.  This
180      reloc always seems to be against the .lita section.  */
181   HOWTO (ALPHA_R_LITERAL,	/* type */
182 	 0,			/* rightshift */
183 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
184 	 16,			/* bitsize */
185 	 FALSE,			/* pc_relative */
186 	 0,			/* bitpos */
187 	 complain_overflow_signed, /* complain_on_overflow */
188 	 0,			/* special_function */
189 	 "LITERAL",		/* name */
190 	 TRUE,			/* partial_inplace */
191 	 0xffff,		/* src_mask */
192 	 0xffff,		/* dst_mask */
193 	 FALSE),		/* pcrel_offset */
194 
195   /* This reloc only appears immediately following a LITERAL reloc.
196      It identifies a use of the literal.  It seems that the linker can
197      use this to eliminate a portion of the .lita section.  The symbol
198      index is special: 1 means the literal address is in the base
199      register of a memory format instruction; 2 means the literal
200      address is in the byte offset register of a byte-manipulation
201      instruction; 3 means the literal address is in the target
202      register of a jsr instruction.  This does not actually do any
203      relocation.  */
204   HOWTO (ALPHA_R_LITUSE,	/* type */
205 	 0,			/* rightshift */
206 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
207 	 32,			/* bitsize */
208 	 FALSE,			/* pc_relative */
209 	 0,			/* bitpos */
210 	 complain_overflow_dont, /* complain_on_overflow */
211 	 reloc_nil,		/* special_function */
212 	 "LITUSE",		/* name */
213 	 FALSE,			/* partial_inplace */
214 	 0,			/* src_mask */
215 	 0,			/* dst_mask */
216 	 FALSE),		/* pcrel_offset */
217 
218   /* Load the gp register.  This is always used for a ldah instruction
219      which loads the upper 16 bits of the gp register.  The next reloc
220      will be an IGNORE reloc which identifies the location of the lda
221      instruction which loads the lower 16 bits.  The symbol index of
222      the GPDISP instruction appears to actually be the number of bytes
223      between the ldah and lda instructions.  This gives two different
224      ways to determine where the lda instruction is; I don't know why
225      both are used.  The value to use for the relocation is the
226      difference between the GP value and the current location; the
227      load will always be done against a register holding the current
228      address.  */
229   HOWTO (ALPHA_R_GPDISP,	/* type */
230 	 16,			/* rightshift */
231 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
232 	 16,			/* bitsize */
233 	 TRUE,			/* pc_relative */
234 	 0,			/* bitpos */
235 	 complain_overflow_dont, /* complain_on_overflow */
236 	 reloc_nil,		/* special_function */
237 	 "GPDISP",		/* name */
238 	 TRUE,			/* partial_inplace */
239 	 0xffff,		/* src_mask */
240 	 0xffff,		/* dst_mask */
241 	 TRUE),			/* pcrel_offset */
242 
243   /* A 21 bit branch.  The native assembler generates these for
244      branches within the text segment, and also fills in the PC
245      relative offset in the instruction.  */
246   HOWTO (ALPHA_R_BRADDR,	/* type */
247 	 2,			/* rightshift */
248 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
249 	 21,			/* bitsize */
250 	 TRUE,			/* pc_relative */
251 	 0,			/* bitpos */
252 	 complain_overflow_signed, /* complain_on_overflow */
253 	 0,			/* special_function */
254 	 "BRADDR",		/* name */
255 	 TRUE,			/* partial_inplace */
256 	 0x1fffff,		/* src_mask */
257 	 0x1fffff,		/* dst_mask */
258 	 FALSE),		/* pcrel_offset */
259 
260   /* A hint for a jump to a register.  */
261   HOWTO (ALPHA_R_HINT,		/* type */
262 	 2,			/* rightshift */
263 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
264 	 14,			/* bitsize */
265 	 TRUE,			/* pc_relative */
266 	 0,			/* bitpos */
267 	 complain_overflow_dont, /* complain_on_overflow */
268 	 0,			/* special_function */
269 	 "HINT",		/* name */
270 	 TRUE,			/* partial_inplace */
271 	 0x3fff,		/* src_mask */
272 	 0x3fff,		/* dst_mask */
273 	 FALSE),		/* pcrel_offset */
274 
275   /* 16 bit PC relative offset.  */
276   HOWTO (ALPHA_R_SREL16,	/* type */
277 	 0,			/* rightshift */
278 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
279 	 16,			/* bitsize */
280 	 TRUE,			/* pc_relative */
281 	 0,			/* bitpos */
282 	 complain_overflow_signed, /* complain_on_overflow */
283 	 0,			/* special_function */
284 	 "SREL16",		/* name */
285 	 TRUE,			/* partial_inplace */
286 	 0xffff,		/* src_mask */
287 	 0xffff,		/* dst_mask */
288 	 FALSE),		/* pcrel_offset */
289 
290   /* 32 bit PC relative offset.  */
291   HOWTO (ALPHA_R_SREL32,	/* type */
292 	 0,			/* rightshift */
293 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
294 	 32,			/* bitsize */
295 	 TRUE,			/* pc_relative */
296 	 0,			/* bitpos */
297 	 complain_overflow_signed, /* complain_on_overflow */
298 	 0,			/* special_function */
299 	 "SREL32",		/* name */
300 	 TRUE,			/* partial_inplace */
301 	 0xffffffff,		/* src_mask */
302 	 0xffffffff,		/* dst_mask */
303 	 FALSE),		/* pcrel_offset */
304 
305   /* A 64 bit PC relative offset.  */
306   HOWTO (ALPHA_R_SREL64,	/* type */
307 	 0,			/* rightshift */
308 	 4,			/* size (0 = byte, 1 = short, 2 = long) */
309 	 64,			/* bitsize */
310 	 TRUE,			/* pc_relative */
311 	 0,			/* bitpos */
312 	 complain_overflow_signed, /* complain_on_overflow */
313 	 0,			/* special_function */
314 	 "SREL64",		/* name */
315 	 TRUE,			/* partial_inplace */
316 	 MINUS_ONE,		/* src_mask */
317 	 MINUS_ONE,		/* dst_mask */
318 	 FALSE),		/* pcrel_offset */
319 
320   /* Push a value on the reloc evaluation stack.  */
321   HOWTO (ALPHA_R_OP_PUSH,	/* type */
322 	 0,			/* rightshift */
323 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
324 	 0,			/* bitsize */
325 	 FALSE,			/* pc_relative */
326 	 0,			/* bitpos */
327 	 complain_overflow_dont, /* complain_on_overflow */
328 	 0,			/* special_function */
329 	 "OP_PUSH",		/* name */
330 	 FALSE,			/* partial_inplace */
331 	 0,			/* src_mask */
332 	 0,			/* dst_mask */
333 	 FALSE),		/* pcrel_offset */
334 
335   /* Store the value from the stack at the given address.  Store it in
336      a bitfield of size r_size starting at bit position r_offset.  */
337   HOWTO (ALPHA_R_OP_STORE,	/* type */
338 	 0,			/* rightshift */
339 	 4,			/* size (0 = byte, 1 = short, 2 = long) */
340 	 64,			/* bitsize */
341 	 FALSE,			/* pc_relative */
342 	 0,			/* bitpos */
343 	 complain_overflow_dont, /* complain_on_overflow */
344 	 0,			/* special_function */
345 	 "OP_STORE",		/* name */
346 	 FALSE,			/* partial_inplace */
347 	 0,			/* src_mask */
348 	 MINUS_ONE,		/* dst_mask */
349 	 FALSE),		/* pcrel_offset */
350 
351   /* Subtract the reloc address from the value on the top of the
352      relocation stack.  */
353   HOWTO (ALPHA_R_OP_PSUB,	/* type */
354 	 0,			/* rightshift */
355 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
356 	 0,			/* bitsize */
357 	 FALSE,			/* pc_relative */
358 	 0,			/* bitpos */
359 	 complain_overflow_dont, /* complain_on_overflow */
360 	 0,			/* special_function */
361 	 "OP_PSUB",		/* name */
362 	 FALSE,			/* partial_inplace */
363 	 0,			/* src_mask */
364 	 0,			/* dst_mask */
365 	 FALSE),		/* pcrel_offset */
366 
367   /* Shift the value on the top of the relocation stack right by the
368      given value.  */
369   HOWTO (ALPHA_R_OP_PRSHIFT,	/* type */
370 	 0,			/* rightshift */
371 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
372 	 0,			/* bitsize */
373 	 FALSE,			/* pc_relative */
374 	 0,			/* bitpos */
375 	 complain_overflow_dont, /* complain_on_overflow */
376 	 0,			/* special_function */
377 	 "OP_PRSHIFT",		/* name */
378 	 FALSE,			/* partial_inplace */
379 	 0,			/* src_mask */
380 	 0,			/* dst_mask */
381 	 FALSE),		/* pcrel_offset */
382 
383   /* Adjust the GP value for a new range in the object file.  */
384   HOWTO (ALPHA_R_GPVALUE,	/* type */
385 	 0,			/* rightshift */
386 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
387 	 0,			/* bitsize */
388 	 FALSE,			/* pc_relative */
389 	 0,			/* bitpos */
390 	 complain_overflow_dont, /* complain_on_overflow */
391 	 0,			/* special_function */
392 	 "GPVALUE",		/* name */
393 	 FALSE,			/* partial_inplace */
394 	 0,			/* src_mask */
395 	 0,			/* dst_mask */
396 	 FALSE)			/* pcrel_offset */
397 };
398 
399 /* Recognize an Alpha ECOFF file.  */
400 
401 static const bfd_target *
402 alpha_ecoff_object_p (bfd *abfd)
403 {
404   static const bfd_target *ret;
405 
406   ret = coff_object_p (abfd);
407 
408   if (ret != NULL)
409     {
410       asection *sec;
411 
412       /* Alpha ECOFF has a .pdata section.  The lnnoptr field of the
413 	 .pdata section is the number of entries it contains.  Each
414 	 entry takes up 8 bytes.  The number of entries is required
415 	 since the section is aligned to a 16 byte boundary.  When we
416 	 link .pdata sections together, we do not want to include the
417 	 alignment bytes.  We handle this on input by faking the size
418 	 of the .pdata section to remove the unwanted alignment bytes.
419 	 On output we will set the lnnoptr field and force the
420 	 alignment.  */
421       sec = bfd_get_section_by_name (abfd, _PDATA);
422       if (sec != (asection *) NULL)
423 	{
424 	  bfd_size_type size;
425 
426 	  size = (bfd_size_type) sec->line_filepos * 8;
427 	  BFD_ASSERT (size == sec->size
428 		      || size + 8 == sec->size);
429 	  if (!bfd_set_section_size (sec, size))
430 	    return NULL;
431 	}
432     }
433 
434   return ret;
435 }
436 
437 /* See whether the magic number matches.  */
438 
439 static bfd_boolean
440 alpha_ecoff_bad_format_hook (bfd *abfd ATTRIBUTE_UNUSED,
441 			     void * filehdr)
442 {
443   struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
444 
445   if (! ALPHA_ECOFF_BADMAG (*internal_f))
446     return TRUE;
447 
448   if (ALPHA_ECOFF_COMPRESSEDMAG (*internal_f))
449     _bfd_error_handler
450       (_("%pB: cannot handle compressed Alpha binaries; "
451 	 "use compiler flags, or objZ, to generate uncompressed binaries"),
452        abfd);
453 
454   return FALSE;
455 }
456 
457 /* This is a hook called by coff_real_object_p to create any backend
458    specific information.  */
459 
460 static void *
461 alpha_ecoff_mkobject_hook (bfd *abfd, void * filehdr, void * aouthdr)
462 {
463   void * ecoff;
464 
465   ecoff = _bfd_ecoff_mkobject_hook (abfd, filehdr, aouthdr);
466 
467   if (ecoff != NULL)
468     {
469       struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
470 
471       /* Set additional BFD flags according to the object type from the
472 	 machine specific file header flags.  */
473       switch (internal_f->f_flags & F_ALPHA_OBJECT_TYPE_MASK)
474 	{
475 	case F_ALPHA_SHARABLE:
476 	  abfd->flags |= DYNAMIC;
477 	  break;
478 	case F_ALPHA_CALL_SHARED:
479 	  /* Always executable if using shared libraries as the run time
480 	     loader might resolve undefined references.  */
481 	  abfd->flags |= (DYNAMIC | EXEC_P);
482 	  break;
483 	}
484     }
485   return ecoff;
486 }
487 
488 /* Reloc handling.  */
489 
490 /* Swap a reloc in.  */
491 
492 static void
493 alpha_ecoff_swap_reloc_in (bfd *abfd,
494 			   void * ext_ptr,
495 			   struct internal_reloc *intern)
496 {
497   const RELOC *ext = (RELOC *) ext_ptr;
498 
499   intern->r_vaddr = H_GET_64 (abfd, ext->r_vaddr);
500   intern->r_symndx = H_GET_32 (abfd, ext->r_symndx);
501 
502   BFD_ASSERT (bfd_header_little_endian (abfd));
503 
504   intern->r_type = ((ext->r_bits[0] & RELOC_BITS0_TYPE_LITTLE)
505 		    >> RELOC_BITS0_TYPE_SH_LITTLE);
506   intern->r_extern = (ext->r_bits[1] & RELOC_BITS1_EXTERN_LITTLE) != 0;
507   intern->r_offset = ((ext->r_bits[1] & RELOC_BITS1_OFFSET_LITTLE)
508 		      >> RELOC_BITS1_OFFSET_SH_LITTLE);
509   /* Ignored the reserved bits.  */
510   intern->r_size = ((ext->r_bits[3] & RELOC_BITS3_SIZE_LITTLE)
511 		    >> RELOC_BITS3_SIZE_SH_LITTLE);
512 
513   if (intern->r_type == ALPHA_R_LITUSE
514       || intern->r_type == ALPHA_R_GPDISP)
515     {
516       /* Handle the LITUSE and GPDISP relocs specially.  Its symndx
517 	 value is not actually a symbol index, but is instead a
518 	 special code.  We put the code in the r_size field, and
519 	 clobber the symndx.  */
520       if (intern->r_size != 0)
521 	abort ();
522       intern->r_size = intern->r_symndx;
523       intern->r_symndx = RELOC_SECTION_NONE;
524     }
525   else if (intern->r_type == ALPHA_R_IGNORE)
526     {
527       /* The IGNORE reloc generally follows a GPDISP reloc, and is
528 	 against the .lita section.  The section is irrelevant.  */
529       if (! intern->r_extern &&
530 	  intern->r_symndx == RELOC_SECTION_ABS)
531 	abort ();
532       if (! intern->r_extern && intern->r_symndx == RELOC_SECTION_LITA)
533 	intern->r_symndx = RELOC_SECTION_ABS;
534     }
535 }
536 
537 /* Swap a reloc out.  */
538 
539 static void
540 alpha_ecoff_swap_reloc_out (bfd *abfd,
541 			    const struct internal_reloc *intern,
542 			    void * dst)
543 {
544   RELOC *ext = (RELOC *) dst;
545   long symndx;
546   unsigned char size;
547 
548   /* Undo the hackery done in swap_reloc_in.  */
549   if (intern->r_type == ALPHA_R_LITUSE
550       || intern->r_type == ALPHA_R_GPDISP)
551     {
552       symndx = intern->r_size;
553       size = 0;
554     }
555   else if (intern->r_type == ALPHA_R_IGNORE
556 	   && ! intern->r_extern
557 	   && intern->r_symndx == RELOC_SECTION_ABS)
558     {
559       symndx = RELOC_SECTION_LITA;
560       size = intern->r_size;
561     }
562   else
563     {
564       symndx = intern->r_symndx;
565       size = intern->r_size;
566     }
567 
568   /* XXX FIXME:  The maximum symndx value used to be 14 but this
569      fails with object files produced by DEC's C++ compiler.
570      Where does the value 14 (or 15) come from anyway ?  */
571   BFD_ASSERT (intern->r_extern
572 	      || (intern->r_symndx >= 0 && intern->r_symndx <= 15));
573 
574   H_PUT_64 (abfd, intern->r_vaddr, ext->r_vaddr);
575   H_PUT_32 (abfd, symndx, ext->r_symndx);
576 
577   BFD_ASSERT (bfd_header_little_endian (abfd));
578 
579   ext->r_bits[0] = ((intern->r_type << RELOC_BITS0_TYPE_SH_LITTLE)
580 		    & RELOC_BITS0_TYPE_LITTLE);
581   ext->r_bits[1] = ((intern->r_extern ? RELOC_BITS1_EXTERN_LITTLE : 0)
582 		    | ((intern->r_offset << RELOC_BITS1_OFFSET_SH_LITTLE)
583 		       & RELOC_BITS1_OFFSET_LITTLE));
584   ext->r_bits[2] = 0;
585   ext->r_bits[3] = ((size << RELOC_BITS3_SIZE_SH_LITTLE)
586 		    & RELOC_BITS3_SIZE_LITTLE);
587 }
588 
589 /* Finish canonicalizing a reloc.  Part of this is generic to all
590    ECOFF targets, and that part is in ecoff.c.  The rest is done in
591    this backend routine.  It must fill in the howto field.  */
592 
593 static void
594 alpha_adjust_reloc_in (bfd *abfd,
595 		       const struct internal_reloc *intern,
596 		       arelent *rptr)
597 {
598   if (intern->r_type > ALPHA_R_GPVALUE)
599     {
600       /* xgettext:c-format */
601       _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
602 			  abfd, intern->r_type);
603       bfd_set_error (bfd_error_bad_value);
604       rptr->addend = 0;
605       rptr->howto  = NULL;
606       return;
607     }
608 
609   switch (intern->r_type)
610     {
611     case ALPHA_R_BRADDR:
612     case ALPHA_R_SREL16:
613     case ALPHA_R_SREL32:
614     case ALPHA_R_SREL64:
615       /* This relocs appear to be fully resolved when they are against
616 	 internal symbols.  Against external symbols, BRADDR at least
617 	 appears to be resolved against the next instruction.  */
618       if (! intern->r_extern)
619 	rptr->addend = 0;
620       else
621 	rptr->addend = - (intern->r_vaddr + 4);
622       break;
623 
624     case ALPHA_R_GPREL32:
625     case ALPHA_R_LITERAL:
626       /* Copy the gp value for this object file into the addend, to
627 	 ensure that we are not confused by the linker.  */
628       if (! intern->r_extern)
629 	rptr->addend += ecoff_data (abfd)->gp;
630       break;
631 
632     case ALPHA_R_LITUSE:
633     case ALPHA_R_GPDISP:
634       /* The LITUSE and GPDISP relocs do not use a symbol, or an
635 	 addend, but they do use a special code.  Put this code in the
636 	 addend field.  */
637       rptr->addend = intern->r_size;
638       break;
639 
640     case ALPHA_R_OP_STORE:
641       /* The STORE reloc needs the size and offset fields.  We store
642 	 them in the addend.  */
643 #if 0
644       BFD_ASSERT (intern->r_offset <= 256);
645 #endif
646       rptr->addend = (intern->r_offset << 8) + intern->r_size;
647       break;
648 
649     case ALPHA_R_OP_PUSH:
650     case ALPHA_R_OP_PSUB:
651     case ALPHA_R_OP_PRSHIFT:
652       /* The PUSH, PSUB and PRSHIFT relocs do not actually use an
653 	 address.  I believe that the address supplied is really an
654 	 addend.  */
655       rptr->addend = intern->r_vaddr;
656       break;
657 
658     case ALPHA_R_GPVALUE:
659       /* Set the addend field to the new GP value.  */
660       rptr->addend = intern->r_symndx + ecoff_data (abfd)->gp;
661       break;
662 
663     case ALPHA_R_IGNORE:
664       /* If the type is ALPHA_R_IGNORE, make sure this is a reference
665 	 to the absolute section so that the reloc is ignored.  For
666 	 some reason the address of this reloc type is not adjusted by
667 	 the section vma.  We record the gp value for this object file
668 	 here, for convenience when doing the GPDISP relocation.  */
669       rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
670       rptr->address = intern->r_vaddr;
671       rptr->addend = ecoff_data (abfd)->gp;
672       break;
673 
674     default:
675       break;
676     }
677 
678   rptr->howto = &alpha_howto_table[intern->r_type];
679 }
680 
681 /* When writing out a reloc we need to pull some values back out of
682    the addend field into the reloc.  This is roughly the reverse of
683    alpha_adjust_reloc_in, except that there are several changes we do
684    not need to undo.  */
685 
686 static void
687 alpha_adjust_reloc_out (bfd *abfd ATTRIBUTE_UNUSED,
688 			const arelent *rel,
689 			struct internal_reloc *intern)
690 {
691   switch (intern->r_type)
692     {
693     case ALPHA_R_LITUSE:
694     case ALPHA_R_GPDISP:
695       intern->r_size = rel->addend;
696       break;
697 
698     case ALPHA_R_OP_STORE:
699       intern->r_size = rel->addend & 0xff;
700       intern->r_offset = (rel->addend >> 8) & 0xff;
701       break;
702 
703     case ALPHA_R_OP_PUSH:
704     case ALPHA_R_OP_PSUB:
705     case ALPHA_R_OP_PRSHIFT:
706       intern->r_vaddr = rel->addend;
707       break;
708 
709     case ALPHA_R_IGNORE:
710       intern->r_vaddr = rel->address;
711       break;
712 
713     default:
714       break;
715     }
716 }
717 
718 /* The size of the stack for the relocation evaluator.  */
719 #define RELOC_STACKSIZE (10)
720 
721 /* Alpha ECOFF relocs have a built in expression evaluator as well as
722    other interdependencies.  Rather than use a bunch of special
723    functions and global variables, we use a single routine to do all
724    the relocation for a section.  I haven't yet worked out how the
725    assembler is going to handle this.  */
726 
727 static bfd_byte *
728 alpha_ecoff_get_relocated_section_contents (bfd *abfd,
729 					    struct bfd_link_info *link_info,
730 					    struct bfd_link_order *link_order,
731 					    bfd_byte *data,
732 					    bfd_boolean relocatable,
733 					    asymbol **symbols)
734 {
735   bfd *input_bfd = link_order->u.indirect.section->owner;
736   asection *input_section = link_order->u.indirect.section;
737   long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
738   arelent **reloc_vector = NULL;
739   long reloc_count;
740   bfd *output_bfd = relocatable ? abfd : (bfd *) NULL;
741   bfd_vma gp;
742   bfd_size_type sz;
743   bfd_boolean gp_undefined;
744   bfd_vma stack[RELOC_STACKSIZE];
745   int tos = 0;
746 
747   if (reloc_size < 0)
748     goto error_return;
749   reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
750   if (reloc_vector == NULL && reloc_size != 0)
751     goto error_return;
752 
753   sz = input_section->rawsize ? input_section->rawsize : input_section->size;
754   if (! bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
755     goto error_return;
756 
757   reloc_count = bfd_canonicalize_reloc (input_bfd, input_section,
758 					reloc_vector, symbols);
759   if (reloc_count < 0)
760     goto error_return;
761   if (reloc_count == 0)
762     goto successful_return;
763 
764   /* Get the GP value for the output BFD.  */
765   gp_undefined = FALSE;
766   gp = _bfd_get_gp_value (abfd);
767   if (gp == 0)
768     {
769       if (relocatable)
770 	{
771 	  asection *sec;
772 	  bfd_vma lo;
773 
774 	  /* Make up a value.  */
775 	  lo = (bfd_vma) -1;
776 	  for (sec = abfd->sections; sec != NULL; sec = sec->next)
777 	    {
778 	      if (sec->vma < lo
779 		  && (strcmp (sec->name, ".sbss") == 0
780 		      || strcmp (sec->name, ".sdata") == 0
781 		      || strcmp (sec->name, ".lit4") == 0
782 		      || strcmp (sec->name, ".lit8") == 0
783 		      || strcmp (sec->name, ".lita") == 0))
784 		lo = sec->vma;
785 	    }
786 	  gp = lo + 0x8000;
787 	  _bfd_set_gp_value (abfd, gp);
788 	}
789       else
790 	{
791 	  struct bfd_link_hash_entry *h;
792 
793 	  h = bfd_link_hash_lookup (link_info->hash, "_gp", FALSE, FALSE,
794 				    TRUE);
795 	  if (h == (struct bfd_link_hash_entry *) NULL
796 	      || h->type != bfd_link_hash_defined)
797 	    gp_undefined = TRUE;
798 	  else
799 	    {
800 	      gp = (h->u.def.value
801 		    + h->u.def.section->output_section->vma
802 		    + h->u.def.section->output_offset);
803 	      _bfd_set_gp_value (abfd, gp);
804 	    }
805 	}
806     }
807 
808   for (; *reloc_vector != (arelent *) NULL; reloc_vector++)
809     {
810       arelent *rel;
811       bfd_reloc_status_type r;
812       char *err;
813 
814       rel = *reloc_vector;
815       r = bfd_reloc_ok;
816       switch (rel->howto->type)
817 	{
818 	case ALPHA_R_IGNORE:
819 	  rel->address += input_section->output_offset;
820 	  break;
821 
822 	case ALPHA_R_REFLONG:
823 	case ALPHA_R_REFQUAD:
824 	case ALPHA_R_BRADDR:
825 	case ALPHA_R_HINT:
826 	case ALPHA_R_SREL16:
827 	case ALPHA_R_SREL32:
828 	case ALPHA_R_SREL64:
829 	  if (relocatable
830 	      && ((*rel->sym_ptr_ptr)->flags & BSF_SECTION_SYM) == 0)
831 	    {
832 	      rel->address += input_section->output_offset;
833 	      break;
834 	    }
835 	  r = bfd_perform_relocation (input_bfd, rel, data, input_section,
836 				      output_bfd, &err);
837 	  break;
838 
839 	case ALPHA_R_GPREL32:
840 	  /* This relocation is used in a switch table.  It is a 32
841 	     bit offset from the current GP value.  We must adjust it
842 	     by the different between the original GP value and the
843 	     current GP value.  The original GP value is stored in the
844 	     addend.  We adjust the addend and let
845 	     bfd_perform_relocation finish the job.  */
846 	  rel->addend -= gp;
847 	  r = bfd_perform_relocation (input_bfd, rel, data, input_section,
848 				      output_bfd, &err);
849 	  if (r == bfd_reloc_ok && gp_undefined)
850 	    {
851 	      r = bfd_reloc_dangerous;
852 	      err = (char *) _("GP relative relocation used when GP not defined");
853 	    }
854 	  break;
855 
856 	case ALPHA_R_LITERAL:
857 	  /* This is a reference to a literal value, generally
858 	     (always?) in the .lita section.  This is a 16 bit GP
859 	     relative relocation.  Sometimes the subsequent reloc is a
860 	     LITUSE reloc, which indicates how this reloc is used.
861 	     This sometimes permits rewriting the two instructions
862 	     referred to by the LITERAL and the LITUSE into different
863 	     instructions which do not refer to .lita.  This can save
864 	     a memory reference, and permits removing a value from
865 	     .lita thus saving GP relative space.
866 
867 	     We do not these optimizations.  To do them we would need
868 	     to arrange to link the .lita section first, so that by
869 	     the time we got here we would know the final values to
870 	     use.  This would not be particularly difficult, but it is
871 	     not currently implemented.  */
872 
873 	  {
874 	    unsigned long insn;
875 
876 	    /* I believe that the LITERAL reloc will only apply to a
877 	       ldq or ldl instruction, so check my assumption.  */
878 	    insn = bfd_get_32 (input_bfd, data + rel->address);
879 	    BFD_ASSERT (((insn >> 26) & 0x3f) == 0x29
880 			|| ((insn >> 26) & 0x3f) == 0x28);
881 
882 	    rel->addend -= gp;
883 	    r = bfd_perform_relocation (input_bfd, rel, data, input_section,
884 					output_bfd, &err);
885 	    if (r == bfd_reloc_ok && gp_undefined)
886 	      {
887 		r = bfd_reloc_dangerous;
888 		err =
889 		  (char *) _("GP relative relocation used when GP not defined");
890 	      }
891 	  }
892 	  break;
893 
894 	case ALPHA_R_LITUSE:
895 	  /* See ALPHA_R_LITERAL above for the uses of this reloc.  It
896 	     does not cause anything to happen, itself.  */
897 	  rel->address += input_section->output_offset;
898 	  break;
899 
900 	case ALPHA_R_GPDISP:
901 	  /* This marks the ldah of an ldah/lda pair which loads the
902 	     gp register with the difference of the gp value and the
903 	     current location.  The second of the pair is r_size bytes
904 	     ahead; it used to be marked with an ALPHA_R_IGNORE reloc,
905 	     but that no longer happens in OSF/1 3.2.  */
906 	  {
907 	    unsigned long insn1, insn2;
908 	    bfd_vma addend;
909 
910 	    /* Get the two instructions.  */
911 	    insn1 = bfd_get_32 (input_bfd, data + rel->address);
912 	    insn2 = bfd_get_32 (input_bfd, data + rel->address + rel->addend);
913 
914 	    BFD_ASSERT (((insn1 >> 26) & 0x3f) == 0x09); /* ldah */
915 	    BFD_ASSERT (((insn2 >> 26) & 0x3f) == 0x08); /* lda */
916 
917 	    /* Get the existing addend.  We must account for the sign
918 	       extension done by lda and ldah.  */
919 	    addend = ((insn1 & 0xffff) << 16) + (insn2 & 0xffff);
920 	    if (insn1 & 0x8000)
921 	      {
922 		addend -= 0x80000000;
923 		addend -= 0x80000000;
924 	      }
925 	    if (insn2 & 0x8000)
926 	      addend -= 0x10000;
927 
928 	    /* The existing addend includes the different between the
929 	       gp of the input BFD and the address in the input BFD.
930 	       Subtract this out.  */
931 	    addend -= (ecoff_data (input_bfd)->gp
932 		       - (input_section->vma + rel->address));
933 
934 	    /* Now add in the final gp value, and subtract out the
935 	       final address.  */
936 	    addend += (gp
937 		       - (input_section->output_section->vma
938 			  + input_section->output_offset
939 			  + rel->address));
940 
941 	    /* Change the instructions, accounting for the sign
942 	       extension, and write them out.  */
943 	    if (addend & 0x8000)
944 	      addend += 0x10000;
945 	    insn1 = (insn1 & 0xffff0000) | ((addend >> 16) & 0xffff);
946 	    insn2 = (insn2 & 0xffff0000) | (addend & 0xffff);
947 
948 	    bfd_put_32 (input_bfd, (bfd_vma) insn1, data + rel->address);
949 	    bfd_put_32 (input_bfd, (bfd_vma) insn2,
950 			data + rel->address + rel->addend);
951 
952 	    rel->address += input_section->output_offset;
953 	  }
954 	  break;
955 
956 	case ALPHA_R_OP_PUSH:
957 	  /* Push a value on the reloc evaluation stack.  */
958 	  {
959 	    asymbol *symbol;
960 	    bfd_vma relocation;
961 
962 	    if (relocatable)
963 	      {
964 		rel->address += input_section->output_offset;
965 		break;
966 	      }
967 
968 	    /* Figure out the relocation of this symbol.  */
969 	    symbol = *rel->sym_ptr_ptr;
970 
971 	    if (bfd_is_und_section (symbol->section))
972 	      r = bfd_reloc_undefined;
973 
974 	    if (bfd_is_com_section (symbol->section))
975 	      relocation = 0;
976 	    else
977 	      relocation = symbol->value;
978 	    relocation += symbol->section->output_section->vma;
979 	    relocation += symbol->section->output_offset;
980 	    relocation += rel->addend;
981 
982 	    if (tos >= RELOC_STACKSIZE)
983 	      abort ();
984 
985 	    stack[tos++] = relocation;
986 	  }
987 	  break;
988 
989 	case ALPHA_R_OP_STORE:
990 	  /* Store a value from the reloc stack into a bitfield.  */
991 	  {
992 	    bfd_vma val;
993 	    int offset, size;
994 
995 	    if (relocatable)
996 	      {
997 		rel->address += input_section->output_offset;
998 		break;
999 	      }
1000 
1001 	    if (tos == 0)
1002 	      abort ();
1003 
1004 	    /* The offset and size for this reloc are encoded into the
1005 	       addend field by alpha_adjust_reloc_in.  */
1006 	    offset = (rel->addend >> 8) & 0xff;
1007 	    size = rel->addend & 0xff;
1008 
1009 	    val = bfd_get_64 (abfd, data + rel->address);
1010 	    val &=~ (((1 << size) - 1) << offset);
1011 	    val |= (stack[--tos] & ((1 << size) - 1)) << offset;
1012 	    bfd_put_64 (abfd, val, data + rel->address);
1013 	  }
1014 	  break;
1015 
1016 	case ALPHA_R_OP_PSUB:
1017 	  /* Subtract a value from the top of the stack.  */
1018 	  {
1019 	    asymbol *symbol;
1020 	    bfd_vma relocation;
1021 
1022 	    if (relocatable)
1023 	      {
1024 		rel->address += input_section->output_offset;
1025 		break;
1026 	      }
1027 
1028 	    /* Figure out the relocation of this symbol.  */
1029 	    symbol = *rel->sym_ptr_ptr;
1030 
1031 	    if (bfd_is_und_section (symbol->section))
1032 	      r = bfd_reloc_undefined;
1033 
1034 	    if (bfd_is_com_section (symbol->section))
1035 	      relocation = 0;
1036 	    else
1037 	      relocation = symbol->value;
1038 	    relocation += symbol->section->output_section->vma;
1039 	    relocation += symbol->section->output_offset;
1040 	    relocation += rel->addend;
1041 
1042 	    if (tos == 0)
1043 	      abort ();
1044 
1045 	    stack[tos - 1] -= relocation;
1046 	  }
1047 	  break;
1048 
1049 	case ALPHA_R_OP_PRSHIFT:
1050 	  /* Shift the value on the top of the stack.  */
1051 	  {
1052 	    asymbol *symbol;
1053 	    bfd_vma relocation;
1054 
1055 	    if (relocatable)
1056 	      {
1057 		rel->address += input_section->output_offset;
1058 		break;
1059 	      }
1060 
1061 	    /* Figure out the relocation of this symbol.  */
1062 	    symbol = *rel->sym_ptr_ptr;
1063 
1064 	    if (bfd_is_und_section (symbol->section))
1065 	      r = bfd_reloc_undefined;
1066 
1067 	    if (bfd_is_com_section (symbol->section))
1068 	      relocation = 0;
1069 	    else
1070 	      relocation = symbol->value;
1071 	    relocation += symbol->section->output_section->vma;
1072 	    relocation += symbol->section->output_offset;
1073 	    relocation += rel->addend;
1074 
1075 	    if (tos == 0)
1076 	      abort ();
1077 
1078 	    stack[tos - 1] >>= relocation;
1079 	  }
1080 	  break;
1081 
1082 	case ALPHA_R_GPVALUE:
1083 	  /* I really don't know if this does the right thing.  */
1084 	  gp = rel->addend;
1085 	  gp_undefined = FALSE;
1086 	  break;
1087 
1088 	default:
1089 	  abort ();
1090 	}
1091 
1092       if (relocatable)
1093 	{
1094 	  asection *os = input_section->output_section;
1095 
1096 	  /* A partial link, so keep the relocs.  */
1097 	  os->orelocation[os->reloc_count] = rel;
1098 	  os->reloc_count++;
1099 	}
1100 
1101       if (r != bfd_reloc_ok)
1102 	{
1103 	  switch (r)
1104 	    {
1105 	    case bfd_reloc_undefined:
1106 	      (*link_info->callbacks->undefined_symbol)
1107 		(link_info, bfd_asymbol_name (*rel->sym_ptr_ptr),
1108 		 input_bfd, input_section, rel->address, TRUE);
1109 	      break;
1110 	    case bfd_reloc_dangerous:
1111 	      (*link_info->callbacks->reloc_dangerous)
1112 		(link_info, err, input_bfd, input_section, rel->address);
1113 	      break;
1114 	    case bfd_reloc_overflow:
1115 	      (*link_info->callbacks->reloc_overflow)
1116 		(link_info, NULL, bfd_asymbol_name (*rel->sym_ptr_ptr),
1117 		 rel->howto->name, rel->addend, input_bfd,
1118 		 input_section, rel->address);
1119 	      break;
1120 	    case bfd_reloc_outofrange:
1121 	    default:
1122 	      abort ();
1123 	      break;
1124 	    }
1125 	}
1126     }
1127 
1128   if (tos != 0)
1129     abort ();
1130 
1131  successful_return:
1132   if (reloc_vector != NULL)
1133     free (reloc_vector);
1134   return data;
1135 
1136  error_return:
1137   if (reloc_vector != NULL)
1138     free (reloc_vector);
1139   return NULL;
1140 }
1141 
1142 /* Get the howto structure for a generic reloc type.  */
1143 
1144 static reloc_howto_type *
1145 alpha_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1146 			     bfd_reloc_code_real_type code)
1147 {
1148   int alpha_type;
1149 
1150   switch (code)
1151     {
1152     case BFD_RELOC_32:
1153       alpha_type = ALPHA_R_REFLONG;
1154       break;
1155     case BFD_RELOC_64:
1156     case BFD_RELOC_CTOR:
1157       alpha_type = ALPHA_R_REFQUAD;
1158       break;
1159     case BFD_RELOC_GPREL32:
1160       alpha_type = ALPHA_R_GPREL32;
1161       break;
1162     case BFD_RELOC_ALPHA_LITERAL:
1163       alpha_type = ALPHA_R_LITERAL;
1164       break;
1165     case BFD_RELOC_ALPHA_LITUSE:
1166       alpha_type = ALPHA_R_LITUSE;
1167       break;
1168     case BFD_RELOC_ALPHA_GPDISP_HI16:
1169       alpha_type = ALPHA_R_GPDISP;
1170       break;
1171     case BFD_RELOC_ALPHA_GPDISP_LO16:
1172       alpha_type = ALPHA_R_IGNORE;
1173       break;
1174     case BFD_RELOC_23_PCREL_S2:
1175       alpha_type = ALPHA_R_BRADDR;
1176       break;
1177     case BFD_RELOC_ALPHA_HINT:
1178       alpha_type = ALPHA_R_HINT;
1179       break;
1180     case BFD_RELOC_16_PCREL:
1181       alpha_type = ALPHA_R_SREL16;
1182       break;
1183     case BFD_RELOC_32_PCREL:
1184       alpha_type = ALPHA_R_SREL32;
1185       break;
1186     case BFD_RELOC_64_PCREL:
1187       alpha_type = ALPHA_R_SREL64;
1188       break;
1189     default:
1190       return (reloc_howto_type *) NULL;
1191     }
1192 
1193   return &alpha_howto_table[alpha_type];
1194 }
1195 
1196 static reloc_howto_type *
1197 alpha_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1198 			     const char *r_name)
1199 {
1200   unsigned int i;
1201 
1202   for (i = 0;
1203        i < sizeof (alpha_howto_table) / sizeof (alpha_howto_table[0]);
1204        i++)
1205     if (alpha_howto_table[i].name != NULL
1206 	&& strcasecmp (alpha_howto_table[i].name, r_name) == 0)
1207       return &alpha_howto_table[i];
1208 
1209   return NULL;
1210 }
1211 
1212 /* A helper routine for alpha_relocate_section which converts an
1213    external reloc when generating relocatable output.  Returns the
1214    relocation amount.  */
1215 
1216 static bfd_vma
1217 alpha_convert_external_reloc (bfd *output_bfd ATTRIBUTE_UNUSED,
1218 			      struct bfd_link_info *info,
1219 			      bfd *input_bfd,
1220 			      struct external_reloc *ext_rel,
1221 			      struct ecoff_link_hash_entry *h)
1222 {
1223   unsigned long r_symndx;
1224   bfd_vma relocation;
1225 
1226   BFD_ASSERT (bfd_link_relocatable (info));
1227 
1228   if (h->root.type == bfd_link_hash_defined
1229       || h->root.type == bfd_link_hash_defweak)
1230     {
1231       asection *hsec;
1232       const char *name;
1233 
1234       /* This symbol is defined in the output.  Convert the reloc from
1235 	 being against the symbol to being against the section.  */
1236 
1237       /* Clear the r_extern bit.  */
1238       ext_rel->r_bits[1] &=~ RELOC_BITS1_EXTERN_LITTLE;
1239 
1240       /* Compute a new r_symndx value.  */
1241       hsec = h->root.u.def.section;
1242       name = bfd_section_name (hsec->output_section);
1243 
1244       r_symndx = (unsigned long) -1;
1245       switch (name[1])
1246 	{
1247 	case 'A':
1248 	  if (strcmp (name, "*ABS*") == 0)
1249 	    r_symndx = RELOC_SECTION_ABS;
1250 	  break;
1251 	case 'b':
1252 	  if (strcmp (name, ".bss") == 0)
1253 	    r_symndx = RELOC_SECTION_BSS;
1254 	  break;
1255 	case 'd':
1256 	  if (strcmp (name, ".data") == 0)
1257 	    r_symndx = RELOC_SECTION_DATA;
1258 	  break;
1259 	case 'f':
1260 	  if (strcmp (name, ".fini") == 0)
1261 	    r_symndx = RELOC_SECTION_FINI;
1262 	  break;
1263 	case 'i':
1264 	  if (strcmp (name, ".init") == 0)
1265 	    r_symndx = RELOC_SECTION_INIT;
1266 	  break;
1267 	case 'l':
1268 	  if (strcmp (name, ".lita") == 0)
1269 	    r_symndx = RELOC_SECTION_LITA;
1270 	  else if (strcmp (name, ".lit8") == 0)
1271 	    r_symndx = RELOC_SECTION_LIT8;
1272 	  else if (strcmp (name, ".lit4") == 0)
1273 	    r_symndx = RELOC_SECTION_LIT4;
1274 	  break;
1275 	case 'p':
1276 	  if (strcmp (name, ".pdata") == 0)
1277 	    r_symndx = RELOC_SECTION_PDATA;
1278 	  break;
1279 	case 'r':
1280 	  if (strcmp (name, ".rdata") == 0)
1281 	    r_symndx = RELOC_SECTION_RDATA;
1282 	  else if (strcmp (name, ".rconst") == 0)
1283 	    r_symndx = RELOC_SECTION_RCONST;
1284 	  break;
1285 	case 's':
1286 	  if (strcmp (name, ".sdata") == 0)
1287 	    r_symndx = RELOC_SECTION_SDATA;
1288 	  else if (strcmp (name, ".sbss") == 0)
1289 	    r_symndx = RELOC_SECTION_SBSS;
1290 	  break;
1291 	case 't':
1292 	  if (strcmp (name, ".text") == 0)
1293 	    r_symndx = RELOC_SECTION_TEXT;
1294 	  break;
1295 	case 'x':
1296 	  if (strcmp (name, ".xdata") == 0)
1297 	    r_symndx = RELOC_SECTION_XDATA;
1298 	  break;
1299 	}
1300 
1301       if (r_symndx == (unsigned long) -1)
1302 	abort ();
1303 
1304       /* Add the section VMA and the symbol value.  */
1305       relocation = (h->root.u.def.value
1306 		    + hsec->output_section->vma
1307 		    + hsec->output_offset);
1308     }
1309   else
1310     {
1311       /* Change the symndx value to the right one for
1312 	 the output BFD.  */
1313       r_symndx = h->indx;
1314       if (r_symndx == (unsigned long) -1)
1315 	{
1316 	  /* Caller must give an error.  */
1317 	  r_symndx = 0;
1318 	}
1319       relocation = 0;
1320     }
1321 
1322   /* Write out the new r_symndx value.  */
1323   H_PUT_32 (input_bfd, r_symndx, ext_rel->r_symndx);
1324 
1325   return relocation;
1326 }
1327 
1328 /* Relocate a section while linking an Alpha ECOFF file.  This is
1329    quite similar to get_relocated_section_contents.  Perhaps they
1330    could be combined somehow.  */
1331 
1332 static bfd_boolean
1333 alpha_relocate_section (bfd *output_bfd,
1334 			struct bfd_link_info *info,
1335 			bfd *input_bfd,
1336 			asection *input_section,
1337 			bfd_byte *contents,
1338 			void * external_relocs)
1339 {
1340   asection **symndx_to_section, *lita_sec;
1341   struct ecoff_link_hash_entry **sym_hashes;
1342   bfd_vma gp;
1343   bfd_boolean gp_undefined;
1344   bfd_vma stack[RELOC_STACKSIZE];
1345   int tos = 0;
1346   struct external_reloc *ext_rel;
1347   struct external_reloc *ext_rel_end;
1348   bfd_size_type amt;
1349 
1350   /* We keep a table mapping the symndx found in an internal reloc to
1351      the appropriate section.  This is faster than looking up the
1352      section by name each time.  */
1353   symndx_to_section = ecoff_data (input_bfd)->symndx_to_section;
1354   if (symndx_to_section == (asection **) NULL)
1355     {
1356       amt = NUM_RELOC_SECTIONS * sizeof (asection *);
1357       symndx_to_section = (asection **) bfd_alloc (input_bfd, amt);
1358       if (!symndx_to_section)
1359 	return FALSE;
1360 
1361       symndx_to_section[RELOC_SECTION_NONE] = NULL;
1362       symndx_to_section[RELOC_SECTION_TEXT] =
1363 	bfd_get_section_by_name (input_bfd, ".text");
1364       symndx_to_section[RELOC_SECTION_RDATA] =
1365 	bfd_get_section_by_name (input_bfd, ".rdata");
1366       symndx_to_section[RELOC_SECTION_DATA] =
1367 	bfd_get_section_by_name (input_bfd, ".data");
1368       symndx_to_section[RELOC_SECTION_SDATA] =
1369 	bfd_get_section_by_name (input_bfd, ".sdata");
1370       symndx_to_section[RELOC_SECTION_SBSS] =
1371 	bfd_get_section_by_name (input_bfd, ".sbss");
1372       symndx_to_section[RELOC_SECTION_BSS] =
1373 	bfd_get_section_by_name (input_bfd, ".bss");
1374       symndx_to_section[RELOC_SECTION_INIT] =
1375 	bfd_get_section_by_name (input_bfd, ".init");
1376       symndx_to_section[RELOC_SECTION_LIT8] =
1377 	bfd_get_section_by_name (input_bfd, ".lit8");
1378       symndx_to_section[RELOC_SECTION_LIT4] =
1379 	bfd_get_section_by_name (input_bfd, ".lit4");
1380       symndx_to_section[RELOC_SECTION_XDATA] =
1381 	bfd_get_section_by_name (input_bfd, ".xdata");
1382       symndx_to_section[RELOC_SECTION_PDATA] =
1383 	bfd_get_section_by_name (input_bfd, ".pdata");
1384       symndx_to_section[RELOC_SECTION_FINI] =
1385 	bfd_get_section_by_name (input_bfd, ".fini");
1386       symndx_to_section[RELOC_SECTION_LITA] =
1387 	bfd_get_section_by_name (input_bfd, ".lita");
1388       symndx_to_section[RELOC_SECTION_ABS] = bfd_abs_section_ptr;
1389       symndx_to_section[RELOC_SECTION_RCONST] =
1390 	bfd_get_section_by_name (input_bfd, ".rconst");
1391 
1392       ecoff_data (input_bfd)->symndx_to_section = symndx_to_section;
1393     }
1394 
1395   sym_hashes = ecoff_data (input_bfd)->sym_hashes;
1396 
1397   /* On the Alpha, the .lita section must be addressable by the global
1398      pointer.  To support large programs, we need to allow multiple
1399      global pointers.  This works as long as each input .lita section
1400      is <64KB big.  This implies that when producing relocatable
1401      output, the .lita section is limited to 64KB. .  */
1402 
1403   lita_sec = symndx_to_section[RELOC_SECTION_LITA];
1404   gp = _bfd_get_gp_value (output_bfd);
1405   if (! bfd_link_relocatable (info) && lita_sec != NULL)
1406     {
1407       struct ecoff_section_tdata *lita_sec_data;
1408 
1409       /* Make sure we have a section data structure to which we can
1410 	 hang on to the gp value we pick for the section.  */
1411       lita_sec_data = ecoff_section_data (input_bfd, lita_sec);
1412       if (lita_sec_data == NULL)
1413 	{
1414 	  amt = sizeof (struct ecoff_section_tdata);
1415 	  lita_sec_data = ((struct ecoff_section_tdata *)
1416 			   bfd_zalloc (input_bfd, amt));
1417 	  lita_sec->used_by_bfd = lita_sec_data;
1418 	}
1419 
1420       if (lita_sec_data->gp != 0)
1421 	{
1422 	  /* If we already assigned a gp to this section, we better
1423 	     stick with that value.  */
1424 	  gp = lita_sec_data->gp;
1425 	}
1426       else
1427 	{
1428 	  bfd_vma lita_vma;
1429 	  bfd_size_type lita_size;
1430 
1431 	  lita_vma = lita_sec->output_offset + lita_sec->output_section->vma;
1432 	  lita_size = lita_sec->size;
1433 
1434 	  if (gp == 0
1435 	      || lita_vma <  gp - 0x8000
1436 	      || lita_vma + lita_size >= gp + 0x8000)
1437 	    {
1438 	      /* Either gp hasn't been set at all or the current gp
1439 		 cannot address this .lita section.  In both cases we
1440 		 reset the gp to point into the "middle" of the
1441 		 current input .lita section.  */
1442 	      if (gp && !ecoff_data (output_bfd)->issued_multiple_gp_warning)
1443 		{
1444 		  (*info->callbacks->warning) (info,
1445 					       _("using multiple gp values"),
1446 					       (char *) NULL, output_bfd,
1447 					       (asection *) NULL, (bfd_vma) 0);
1448 		  ecoff_data (output_bfd)->issued_multiple_gp_warning = TRUE;
1449 		}
1450 	      if (lita_vma < gp - 0x8000)
1451 		gp = lita_vma + lita_size - 0x8000;
1452 	      else
1453 		gp = lita_vma + 0x8000;
1454 
1455 	    }
1456 
1457 	  lita_sec_data->gp = gp;
1458 	}
1459 
1460       _bfd_set_gp_value (output_bfd, gp);
1461     }
1462 
1463   gp_undefined = (gp == 0);
1464 
1465   BFD_ASSERT (bfd_header_little_endian (output_bfd));
1466   BFD_ASSERT (bfd_header_little_endian (input_bfd));
1467 
1468   ext_rel = (struct external_reloc *) external_relocs;
1469   ext_rel_end = ext_rel + input_section->reloc_count;
1470   for (; ext_rel < ext_rel_end; ext_rel++)
1471     {
1472       bfd_vma r_vaddr;
1473       unsigned long r_symndx;
1474       int r_type;
1475       int r_extern;
1476       int r_offset;
1477       int r_size;
1478       bfd_boolean relocatep;
1479       bfd_boolean adjust_addrp;
1480       bfd_boolean gp_usedp;
1481       bfd_vma addend;
1482 
1483       r_vaddr = H_GET_64 (input_bfd, ext_rel->r_vaddr);
1484       r_symndx = H_GET_32 (input_bfd, ext_rel->r_symndx);
1485 
1486       r_type = ((ext_rel->r_bits[0] & RELOC_BITS0_TYPE_LITTLE)
1487 		>> RELOC_BITS0_TYPE_SH_LITTLE);
1488       r_extern = (ext_rel->r_bits[1] & RELOC_BITS1_EXTERN_LITTLE) != 0;
1489       r_offset = ((ext_rel->r_bits[1] & RELOC_BITS1_OFFSET_LITTLE)
1490 		  >> RELOC_BITS1_OFFSET_SH_LITTLE);
1491       /* Ignored the reserved bits.  */
1492       r_size = ((ext_rel->r_bits[3] & RELOC_BITS3_SIZE_LITTLE)
1493 		>> RELOC_BITS3_SIZE_SH_LITTLE);
1494 
1495       relocatep = FALSE;
1496       adjust_addrp = TRUE;
1497       gp_usedp = FALSE;
1498       addend = 0;
1499 
1500       switch (r_type)
1501 	{
1502 	case ALPHA_R_GPRELHIGH:
1503 	  _bfd_error_handler (_("%pB: %s unsupported"),
1504 			      input_bfd, "ALPHA_R_GPRELHIGH");
1505 	  bfd_set_error (bfd_error_bad_value);
1506 	  continue;
1507 
1508 	case ALPHA_R_GPRELLOW:
1509 	  _bfd_error_handler (_("%pB: %s unsupported"),
1510 			      input_bfd, "ALPHA_R_GPRELLOW");
1511 	  bfd_set_error (bfd_error_bad_value);
1512 	  continue;
1513 
1514 	default:
1515 	  /* xgettext:c-format */
1516 	  _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1517 			      input_bfd, (int) r_type);
1518 	  bfd_set_error (bfd_error_bad_value);
1519 	  continue;
1520 
1521 	case ALPHA_R_IGNORE:
1522 	  /* This reloc appears after a GPDISP reloc.  On earlier
1523 	     versions of OSF/1, It marked the position of the second
1524 	     instruction to be altered by the GPDISP reloc, but it is
1525 	     not otherwise used for anything.  For some reason, the
1526 	     address of the relocation does not appear to include the
1527 	     section VMA, unlike the other relocation types.  */
1528 	  if (bfd_link_relocatable (info))
1529 	    H_PUT_64 (input_bfd, input_section->output_offset + r_vaddr,
1530 		      ext_rel->r_vaddr);
1531 	  adjust_addrp = FALSE;
1532 	  break;
1533 
1534 	case ALPHA_R_REFLONG:
1535 	case ALPHA_R_REFQUAD:
1536 	case ALPHA_R_HINT:
1537 	  relocatep = TRUE;
1538 	  break;
1539 
1540 	case ALPHA_R_BRADDR:
1541 	case ALPHA_R_SREL16:
1542 	case ALPHA_R_SREL32:
1543 	case ALPHA_R_SREL64:
1544 	  if (r_extern)
1545 	    addend += - (r_vaddr + 4);
1546 	  relocatep = TRUE;
1547 	  break;
1548 
1549 	case ALPHA_R_GPREL32:
1550 	  /* This relocation is used in a switch table.  It is a 32
1551 	     bit offset from the current GP value.  We must adjust it
1552 	     by the different between the original GP value and the
1553 	     current GP value.  */
1554 	  relocatep = TRUE;
1555 	  addend = ecoff_data (input_bfd)->gp - gp;
1556 	  gp_usedp = TRUE;
1557 	  break;
1558 
1559 	case ALPHA_R_LITERAL:
1560 	  /* This is a reference to a literal value, generally
1561 	     (always?) in the .lita section.  This is a 16 bit GP
1562 	     relative relocation.  Sometimes the subsequent reloc is a
1563 	     LITUSE reloc, which indicates how this reloc is used.
1564 	     This sometimes permits rewriting the two instructions
1565 	     referred to by the LITERAL and the LITUSE into different
1566 	     instructions which do not refer to .lita.  This can save
1567 	     a memory reference, and permits removing a value from
1568 	     .lita thus saving GP relative space.
1569 
1570 	     We do not these optimizations.  To do them we would need
1571 	     to arrange to link the .lita section first, so that by
1572 	     the time we got here we would know the final values to
1573 	     use.  This would not be particularly difficult, but it is
1574 	     not currently implemented.  */
1575 
1576 	  /* I believe that the LITERAL reloc will only apply to a ldq
1577 	     or ldl instruction, so check my assumption.  */
1578 	  {
1579 	    unsigned long insn;
1580 
1581 	    insn = bfd_get_32 (input_bfd,
1582 			       contents + r_vaddr - input_section->vma);
1583 	    BFD_ASSERT (((insn >> 26) & 0x3f) == 0x29
1584 			|| ((insn >> 26) & 0x3f) == 0x28);
1585 	  }
1586 
1587 	  relocatep = TRUE;
1588 	  addend = ecoff_data (input_bfd)->gp - gp;
1589 	  gp_usedp = TRUE;
1590 	  break;
1591 
1592 	case ALPHA_R_LITUSE:
1593 	  /* See ALPHA_R_LITERAL above for the uses of this reloc.  It
1594 	     does not cause anything to happen, itself.  */
1595 	  break;
1596 
1597 	case ALPHA_R_GPDISP:
1598 	  /* This marks the ldah of an ldah/lda pair which loads the
1599 	     gp register with the difference of the gp value and the
1600 	     current location.  The second of the pair is r_symndx
1601 	     bytes ahead.  It used to be marked with an ALPHA_R_IGNORE
1602 	     reloc, but OSF/1 3.2 no longer does that.  */
1603 	  {
1604 	    unsigned long insn1, insn2;
1605 
1606 	    /* Get the two instructions.  */
1607 	    insn1 = bfd_get_32 (input_bfd,
1608 				contents + r_vaddr - input_section->vma);
1609 	    insn2 = bfd_get_32 (input_bfd,
1610 				(contents
1611 				 + r_vaddr
1612 				 - input_section->vma
1613 				 + r_symndx));
1614 
1615 	    BFD_ASSERT (((insn1 >> 26) & 0x3f) == 0x09); /* ldah */
1616 	    BFD_ASSERT (((insn2 >> 26) & 0x3f) == 0x08); /* lda */
1617 
1618 	    /* Get the existing addend.  We must account for the sign
1619 	       extension done by lda and ldah.  */
1620 	    addend = ((insn1 & 0xffff) << 16) + (insn2 & 0xffff);
1621 	    if (insn1 & 0x8000)
1622 	      {
1623 		/* This is addend -= 0x100000000 without causing an
1624 		   integer overflow on a 32 bit host.  */
1625 		addend -= 0x80000000;
1626 		addend -= 0x80000000;
1627 	      }
1628 	    if (insn2 & 0x8000)
1629 	      addend -= 0x10000;
1630 
1631 	    /* The existing addend includes the difference between the
1632 	       gp of the input BFD and the address in the input BFD.
1633 	       We want to change this to the difference between the
1634 	       final GP and the final address.  */
1635 	    addend += (gp
1636 		       - ecoff_data (input_bfd)->gp
1637 		       + input_section->vma
1638 		       - (input_section->output_section->vma
1639 			  + input_section->output_offset));
1640 
1641 	    /* Change the instructions, accounting for the sign
1642 	       extension, and write them out.  */
1643 	    if (addend & 0x8000)
1644 	      addend += 0x10000;
1645 	    insn1 = (insn1 & 0xffff0000) | ((addend >> 16) & 0xffff);
1646 	    insn2 = (insn2 & 0xffff0000) | (addend & 0xffff);
1647 
1648 	    bfd_put_32 (input_bfd, (bfd_vma) insn1,
1649 			contents + r_vaddr - input_section->vma);
1650 	    bfd_put_32 (input_bfd, (bfd_vma) insn2,
1651 			contents + r_vaddr - input_section->vma + r_symndx);
1652 
1653 	    gp_usedp = TRUE;
1654 	  }
1655 	  break;
1656 
1657 	case ALPHA_R_OP_PUSH:
1658 	case ALPHA_R_OP_PSUB:
1659 	case ALPHA_R_OP_PRSHIFT:
1660 	  /* Manipulate values on the reloc evaluation stack.  The
1661 	     r_vaddr field is not an address in input_section, it is
1662 	     the current value (including any addend) of the object
1663 	     being used.  */
1664 	  if (! r_extern)
1665 	    {
1666 	      asection *s;
1667 
1668 	      s = symndx_to_section[r_symndx];
1669 	      if (s == (asection *) NULL)
1670 		abort ();
1671 	      addend = s->output_section->vma + s->output_offset - s->vma;
1672 	    }
1673 	  else
1674 	    {
1675 	      struct ecoff_link_hash_entry *h;
1676 
1677 	      h = sym_hashes[r_symndx];
1678 	      if (h == (struct ecoff_link_hash_entry *) NULL)
1679 		abort ();
1680 
1681 	      if (! bfd_link_relocatable (info))
1682 		{
1683 		  if (h->root.type == bfd_link_hash_defined
1684 		      || h->root.type == bfd_link_hash_defweak)
1685 		    addend = (h->root.u.def.value
1686 			      + h->root.u.def.section->output_section->vma
1687 			      + h->root.u.def.section->output_offset);
1688 		  else
1689 		    {
1690 		      /* Note that we pass the address as 0, since we
1691 			 do not have a meaningful number for the
1692 			 location within the section that is being
1693 			 relocated.  */
1694 		      (*info->callbacks->undefined_symbol)
1695 			(info, h->root.root.string, input_bfd,
1696 			 input_section, (bfd_vma) 0, TRUE);
1697 		      addend = 0;
1698 		    }
1699 		}
1700 	      else
1701 		{
1702 		  if (h->root.type != bfd_link_hash_defined
1703 		      && h->root.type != bfd_link_hash_defweak
1704 		      && h->indx == -1)
1705 		    {
1706 		      /* This symbol is not being written out.  Pass
1707 			 the address as 0, as with undefined_symbol,
1708 			 above.  */
1709 		      (*info->callbacks->unattached_reloc)
1710 			(info, h->root.root.string,
1711 			 input_bfd, input_section, (bfd_vma) 0);
1712 		    }
1713 
1714 		  addend = alpha_convert_external_reloc (output_bfd, info,
1715 							 input_bfd,
1716 							 ext_rel, h);
1717 		}
1718 	    }
1719 
1720 	  addend += r_vaddr;
1721 
1722 	  if (bfd_link_relocatable (info))
1723 	    {
1724 	      /* Adjust r_vaddr by the addend.  */
1725 	      H_PUT_64 (input_bfd, addend, ext_rel->r_vaddr);
1726 	    }
1727 	  else
1728 	    {
1729 	      switch (r_type)
1730 		{
1731 		case ALPHA_R_OP_PUSH:
1732 		  if (tos >= RELOC_STACKSIZE)
1733 		    abort ();
1734 		  stack[tos++] = addend;
1735 		  break;
1736 
1737 		case ALPHA_R_OP_PSUB:
1738 		  if (tos == 0)
1739 		    abort ();
1740 		  stack[tos - 1] -= addend;
1741 		  break;
1742 
1743 		case ALPHA_R_OP_PRSHIFT:
1744 		  if (tos == 0)
1745 		    abort ();
1746 		  stack[tos - 1] >>= addend;
1747 		  break;
1748 		}
1749 	    }
1750 
1751 	  adjust_addrp = FALSE;
1752 	  break;
1753 
1754 	case ALPHA_R_OP_STORE:
1755 	  /* Store a value from the reloc stack into a bitfield.  If
1756 	     we are generating relocatable output, all we do is
1757 	     adjust the address of the reloc.  */
1758 	  if (! bfd_link_relocatable (info))
1759 	    {
1760 	      bfd_vma mask;
1761 	      bfd_vma val;
1762 
1763 	      if (tos == 0)
1764 		abort ();
1765 
1766 	      /* Get the relocation mask.  The separate steps and the
1767 		 casts to bfd_vma are attempts to avoid a bug in the
1768 		 Alpha OSF 1.3 C compiler.  See reloc.c for more
1769 		 details.  */
1770 	      mask = 1;
1771 	      mask <<= (bfd_vma) r_size;
1772 	      mask -= 1;
1773 
1774 	      /* FIXME: I don't know what kind of overflow checking,
1775 		 if any, should be done here.  */
1776 	      val = bfd_get_64 (input_bfd,
1777 				contents + r_vaddr - input_section->vma);
1778 	      val &=~ mask << (bfd_vma) r_offset;
1779 	      val |= (stack[--tos] & mask) << (bfd_vma) r_offset;
1780 	      bfd_put_64 (input_bfd, val,
1781 			  contents + r_vaddr - input_section->vma);
1782 	    }
1783 	  break;
1784 
1785 	case ALPHA_R_GPVALUE:
1786 	  /* I really don't know if this does the right thing.  */
1787 	  gp = ecoff_data (input_bfd)->gp + r_symndx;
1788 	  gp_undefined = FALSE;
1789 	  break;
1790 	}
1791 
1792       if (relocatep)
1793 	{
1794 	  reloc_howto_type *howto;
1795 	  struct ecoff_link_hash_entry *h = NULL;
1796 	  asection *s = NULL;
1797 	  bfd_vma relocation;
1798 	  bfd_reloc_status_type r;
1799 
1800 	  /* Perform a relocation.  */
1801 
1802 	  howto = &alpha_howto_table[r_type];
1803 
1804 	  if (r_extern)
1805 	    {
1806 	      h = sym_hashes[r_symndx];
1807 	      /* If h is NULL, that means that there is a reloc
1808 		 against an external symbol which we thought was just
1809 		 a debugging symbol.  This should not happen.  */
1810 	      if (h == (struct ecoff_link_hash_entry *) NULL)
1811 		abort ();
1812 	    }
1813 	  else
1814 	    {
1815 	      if (r_symndx >= NUM_RELOC_SECTIONS)
1816 		s = NULL;
1817 	      else
1818 		s = symndx_to_section[r_symndx];
1819 
1820 	      if (s == (asection *) NULL)
1821 		abort ();
1822 	    }
1823 
1824 	  if (bfd_link_relocatable (info))
1825 	    {
1826 	      /* We are generating relocatable output, and must
1827 		 convert the existing reloc.  */
1828 	      if (r_extern)
1829 		{
1830 		  if (h->root.type != bfd_link_hash_defined
1831 		      && h->root.type != bfd_link_hash_defweak
1832 		      && h->indx == -1)
1833 		    {
1834 		      /* This symbol is not being written out.  */
1835 		      (*info->callbacks->unattached_reloc)
1836 			(info, h->root.root.string, input_bfd,
1837 			 input_section, r_vaddr - input_section->vma);
1838 		    }
1839 
1840 		  relocation = alpha_convert_external_reloc (output_bfd,
1841 							     info,
1842 							     input_bfd,
1843 							     ext_rel,
1844 							     h);
1845 		}
1846 	      else
1847 		{
1848 		  /* This is a relocation against a section.  Adjust
1849 		     the value by the amount the section moved.  */
1850 		  relocation = (s->output_section->vma
1851 				+ s->output_offset
1852 				- s->vma);
1853 		}
1854 
1855 	      /* If this is PC relative, the existing object file
1856 		 appears to already have the reloc worked out.  We
1857 		 must subtract out the old value and add in the new
1858 		 one.  */
1859 	      if (howto->pc_relative)
1860 		relocation -= (input_section->output_section->vma
1861 			       + input_section->output_offset
1862 			       - input_section->vma);
1863 
1864 	      /* Put in any addend.  */
1865 	      relocation += addend;
1866 
1867 	      /* Adjust the contents.  */
1868 	      r = _bfd_relocate_contents (howto, input_bfd, relocation,
1869 					  (contents
1870 					   + r_vaddr
1871 					   - input_section->vma));
1872 	    }
1873 	  else
1874 	    {
1875 	      /* We are producing a final executable.  */
1876 	      if (r_extern)
1877 		{
1878 		  /* This is a reloc against a symbol.  */
1879 		  if (h->root.type == bfd_link_hash_defined
1880 		      || h->root.type == bfd_link_hash_defweak)
1881 		    {
1882 		      asection *hsec;
1883 
1884 		      hsec = h->root.u.def.section;
1885 		      relocation = (h->root.u.def.value
1886 				    + hsec->output_section->vma
1887 				    + hsec->output_offset);
1888 		    }
1889 		  else
1890 		    {
1891 		      (*info->callbacks->undefined_symbol)
1892 			(info, h->root.root.string, input_bfd, input_section,
1893 			 r_vaddr - input_section->vma, TRUE);
1894 		      relocation = 0;
1895 		    }
1896 		}
1897 	      else
1898 		{
1899 		  /* This is a reloc against a section.  */
1900 		  relocation = (s->output_section->vma
1901 				+ s->output_offset
1902 				- s->vma);
1903 
1904 		  /* Adjust a PC relative relocation by removing the
1905 		     reference to the original source section.  */
1906 		  if (howto->pc_relative)
1907 		    relocation += input_section->vma;
1908 		}
1909 
1910 	      r = _bfd_final_link_relocate (howto,
1911 					    input_bfd,
1912 					    input_section,
1913 					    contents,
1914 					    r_vaddr - input_section->vma,
1915 					    relocation,
1916 					    addend);
1917 	    }
1918 
1919 	  if (r != bfd_reloc_ok)
1920 	    {
1921 	      switch (r)
1922 		{
1923 		default:
1924 		case bfd_reloc_outofrange:
1925 		  abort ();
1926 		case bfd_reloc_overflow:
1927 		  {
1928 		    const char *name;
1929 
1930 		    if (r_extern)
1931 		      name = sym_hashes[r_symndx]->root.root.string;
1932 		    else
1933 		      name = bfd_section_name (symndx_to_section[r_symndx]);
1934 		    (*info->callbacks->reloc_overflow)
1935 		      (info, NULL, name, alpha_howto_table[r_type].name,
1936 		       (bfd_vma) 0, input_bfd, input_section,
1937 		       r_vaddr - input_section->vma);
1938 		  }
1939 		  break;
1940 		}
1941 	    }
1942 	}
1943 
1944       if (bfd_link_relocatable (info) && adjust_addrp)
1945 	{
1946 	  /* Change the address of the relocation.  */
1947 	  H_PUT_64 (input_bfd,
1948 		    (input_section->output_section->vma
1949 		     + input_section->output_offset
1950 		     - input_section->vma
1951 		     + r_vaddr),
1952 		    ext_rel->r_vaddr);
1953 	}
1954 
1955       if (gp_usedp && gp_undefined)
1956 	{
1957 	  (*info->callbacks->reloc_dangerous)
1958 	    (info, _("GP relative relocation used when GP not defined"),
1959 	     input_bfd, input_section, r_vaddr - input_section->vma);
1960 	  /* Only give the error once per link.  */
1961 	  gp = 4;
1962 	  _bfd_set_gp_value (output_bfd, gp);
1963 	  gp_undefined = FALSE;
1964 	}
1965     }
1966 
1967   if (tos != 0)
1968     abort ();
1969 
1970   return TRUE;
1971 }
1972 
1973 /* Do final adjustments to the filehdr and the aouthdr.  This routine
1974    sets the dynamic bits in the file header.  */
1975 
1976 static bfd_boolean
1977 alpha_adjust_headers (bfd *abfd,
1978 		      struct internal_filehdr *fhdr,
1979 		      struct internal_aouthdr *ahdr ATTRIBUTE_UNUSED)
1980 {
1981   if ((abfd->flags & (DYNAMIC | EXEC_P)) == (DYNAMIC | EXEC_P))
1982     fhdr->f_flags |= F_ALPHA_CALL_SHARED;
1983   else if ((abfd->flags & DYNAMIC) != 0)
1984     fhdr->f_flags |= F_ALPHA_SHARABLE;
1985   return TRUE;
1986 }
1987 
1988 /* Archive handling.  In OSF/1 (or Digital Unix) v3.2, Digital
1989    introduced archive packing, in which the elements in an archive are
1990    optionally compressed using a simple dictionary scheme.  We know
1991    how to read such archives, but we don't write them.  */
1992 
1993 #define alpha_ecoff_slurp_armap _bfd_ecoff_slurp_armap
1994 #define alpha_ecoff_slurp_extended_name_table \
1995   _bfd_ecoff_slurp_extended_name_table
1996 #define alpha_ecoff_construct_extended_name_table \
1997   _bfd_ecoff_construct_extended_name_table
1998 #define alpha_ecoff_truncate_arname _bfd_ecoff_truncate_arname
1999 #define alpha_ecoff_write_armap _bfd_ecoff_write_armap
2000 #define alpha_ecoff_write_ar_hdr _bfd_generic_write_ar_hdr
2001 #define alpha_ecoff_generic_stat_arch_elt _bfd_ecoff_generic_stat_arch_elt
2002 #define alpha_ecoff_update_armap_timestamp _bfd_ecoff_update_armap_timestamp
2003 
2004 /* A compressed file uses this instead of ARFMAG.  */
2005 
2006 #define ARFZMAG "Z\012"
2007 
2008 /* Read an archive header.  This is like the standard routine, but it
2009    also accepts ARFZMAG.  */
2010 
2011 static void *
2012 alpha_ecoff_read_ar_hdr (bfd *abfd)
2013 {
2014   struct areltdata *ret;
2015   struct ar_hdr *h;
2016 
2017   ret = (struct areltdata *) _bfd_generic_read_ar_hdr_mag (abfd, ARFZMAG);
2018   if (ret == NULL)
2019     return NULL;
2020 
2021   h = (struct ar_hdr *) ret->arch_header;
2022   if (strncmp (h->ar_fmag, ARFZMAG, 2) == 0)
2023     {
2024       bfd_byte ab[8];
2025 
2026       /* This is a compressed file.  We must set the size correctly.
2027 	 The size is the eight bytes after the dummy file header.  */
2028       if (bfd_seek (abfd, (file_ptr) FILHSZ, SEEK_CUR) != 0
2029 	  || bfd_bread (ab, (bfd_size_type) 8, abfd) != 8
2030 	  || bfd_seek (abfd, (file_ptr) (- (FILHSZ + 8)), SEEK_CUR) != 0)
2031 	{
2032 	  free (ret);
2033 	  return NULL;
2034 	}
2035 
2036       ret->parsed_size = H_GET_64 (abfd, ab);
2037     }
2038 
2039   return ret;
2040 }
2041 
2042 /* Get an archive element at a specified file position.  This is where
2043    we uncompress the archive element if necessary.  */
2044 
2045 static bfd *
2046 alpha_ecoff_get_elt_at_filepos (bfd *archive, file_ptr filepos)
2047 {
2048   bfd *nbfd = NULL;
2049   struct areltdata *tdata;
2050   struct ar_hdr *hdr;
2051   bfd_byte ab[8];
2052   bfd_size_type size;
2053   bfd_byte *buf, *p;
2054   struct bfd_in_memory *bim;
2055 
2056   buf = NULL;
2057   nbfd = _bfd_get_elt_at_filepos (archive, filepos);
2058   if (nbfd == NULL)
2059     goto error_return;
2060 
2061   if ((nbfd->flags & BFD_IN_MEMORY) != 0)
2062     {
2063       /* We have already expanded this BFD.  */
2064       return nbfd;
2065     }
2066 
2067   tdata = (struct areltdata *) nbfd->arelt_data;
2068   hdr = (struct ar_hdr *) tdata->arch_header;
2069   if (strncmp (hdr->ar_fmag, ARFZMAG, 2) != 0)
2070     return nbfd;
2071 
2072   /* We must uncompress this element.  We do this by copying it into a
2073      memory buffer, and making bfd_bread and bfd_seek use that buffer.
2074      This can use a lot of memory, but it's simpler than getting a
2075      temporary file, making that work with the file descriptor caching
2076      code, and making sure that it is deleted at all appropriate
2077      times.  It can be changed if it ever becomes important.  */
2078 
2079   /* The compressed file starts with a dummy ECOFF file header.  */
2080   if (bfd_seek (nbfd, (file_ptr) FILHSZ, SEEK_SET) != 0)
2081     goto error_return;
2082 
2083   /* The next eight bytes are the real file size.  */
2084   if (bfd_bread (ab, (bfd_size_type) 8, nbfd) != 8)
2085     goto error_return;
2086   size = H_GET_64 (nbfd, ab);
2087 
2088   if (size != 0)
2089     {
2090       bfd_size_type left;
2091       bfd_byte dict[4096];
2092       unsigned int h;
2093       bfd_byte b;
2094 
2095       buf = (bfd_byte *) bfd_malloc (size);
2096       if (buf == NULL)
2097 	goto error_return;
2098       p = buf;
2099 
2100       left = size;
2101 
2102       /* I don't know what the next eight bytes are for.  */
2103       if (bfd_bread (ab, (bfd_size_type) 8, nbfd) != 8)
2104 	goto error_return;
2105 
2106       /* This is the uncompression algorithm.  It's a simple
2107 	 dictionary based scheme in which each character is predicted
2108 	 by a hash of the previous three characters.  A control byte
2109 	 indicates whether the character is predicted or whether it
2110 	 appears in the input stream; each control byte manages the
2111 	 next eight bytes in the output stream.  */
2112       memset (dict, 0, sizeof dict);
2113       h = 0;
2114       while (bfd_bread (&b, (bfd_size_type) 1, nbfd) == 1)
2115 	{
2116 	  unsigned int i;
2117 
2118 	  for (i = 0; i < 8; i++, b >>= 1)
2119 	    {
2120 	      bfd_byte n;
2121 
2122 	      if ((b & 1) == 0)
2123 		n = dict[h];
2124 	      else
2125 		{
2126 		  if (! bfd_bread (&n, (bfd_size_type) 1, nbfd))
2127 		    goto error_return;
2128 		  dict[h] = n;
2129 		}
2130 
2131 	      *p++ = n;
2132 
2133 	      --left;
2134 	      if (left == 0)
2135 		break;
2136 
2137 	      h <<= 4;
2138 	      h ^= n;
2139 	      h &= sizeof dict - 1;
2140 	    }
2141 
2142 	  if (left == 0)
2143 	    break;
2144 	}
2145     }
2146 
2147   /* Now the uncompressed file contents are in buf.  */
2148   bim = ((struct bfd_in_memory *)
2149 	 bfd_malloc ((bfd_size_type) sizeof (struct bfd_in_memory)));
2150   if (bim == NULL)
2151     goto error_return;
2152   bim->size = size;
2153   bim->buffer = buf;
2154 
2155   nbfd->mtime_set = TRUE;
2156   nbfd->mtime = strtol (hdr->ar_date, (char **) NULL, 10);
2157 
2158   nbfd->flags |= BFD_IN_MEMORY;
2159   nbfd->iostream = bim;
2160   nbfd->iovec = &_bfd_memory_iovec;
2161   nbfd->origin = 0;
2162   BFD_ASSERT (! nbfd->cacheable);
2163 
2164   return nbfd;
2165 
2166  error_return:
2167   if (buf != NULL)
2168     free (buf);
2169   if (nbfd != NULL)
2170     bfd_close (nbfd);
2171   return NULL;
2172 }
2173 
2174 /* Open the next archived file.  */
2175 
2176 static bfd *
2177 alpha_ecoff_openr_next_archived_file (bfd *archive, bfd *last_file)
2178 {
2179   ufile_ptr filestart;
2180 
2181   if (last_file == NULL)
2182     filestart = bfd_ardata (archive)->first_file_filepos;
2183   else
2184     {
2185       struct areltdata *t;
2186       struct ar_hdr *h;
2187       bfd_size_type size;
2188 
2189       /* We can't use arelt_size here, because that uses parsed_size,
2190 	 which is the uncompressed size.  We need the compressed size.  */
2191       t = (struct areltdata *) last_file->arelt_data;
2192       h = (struct ar_hdr *) t->arch_header;
2193       size = strtol (h->ar_size, (char **) NULL, 10);
2194 
2195       /* Pad to an even boundary...
2196 	 Note that last_file->origin can be odd in the case of
2197 	 BSD-4.4-style element with a long odd size.  */
2198       filestart = last_file->proxy_origin + size;
2199       filestart += filestart % 2;
2200       if (filestart < last_file->proxy_origin)
2201 	{
2202 	  /* Prevent looping.  See PR19256.  */
2203 	  bfd_set_error (bfd_error_malformed_archive);
2204 	  return NULL;
2205 	}
2206     }
2207 
2208   return alpha_ecoff_get_elt_at_filepos (archive, filestart);
2209 }
2210 
2211 /* Open the archive file given an index into the armap.  */
2212 
2213 static bfd *
2214 alpha_ecoff_get_elt_at_index (bfd *abfd, symindex sym_index)
2215 {
2216   carsym *entry;
2217 
2218   entry = bfd_ardata (abfd)->symdefs + sym_index;
2219   return alpha_ecoff_get_elt_at_filepos (abfd, entry->file_offset);
2220 }
2221 
2222 static void
2223 alpha_ecoff_swap_coff_aux_in (bfd *abfd ATTRIBUTE_UNUSED,
2224 			      void *ext1 ATTRIBUTE_UNUSED,
2225 			      int type ATTRIBUTE_UNUSED,
2226 			      int in_class ATTRIBUTE_UNUSED,
2227 			      int indx ATTRIBUTE_UNUSED,
2228 			      int numaux ATTRIBUTE_UNUSED,
2229 			      void *in1 ATTRIBUTE_UNUSED)
2230 {
2231 }
2232 
2233 static void
2234 alpha_ecoff_swap_coff_sym_in (bfd *abfd ATTRIBUTE_UNUSED,
2235 			      void *ext1 ATTRIBUTE_UNUSED,
2236 			      void *in1 ATTRIBUTE_UNUSED)
2237 {
2238 }
2239 
2240 static void
2241 alpha_ecoff_swap_coff_lineno_in (bfd *abfd ATTRIBUTE_UNUSED,
2242 				 void *ext1 ATTRIBUTE_UNUSED,
2243 				 void *in1 ATTRIBUTE_UNUSED)
2244 {
2245 }
2246 
2247 static unsigned int
2248 alpha_ecoff_swap_coff_aux_out (bfd *abfd ATTRIBUTE_UNUSED,
2249 			       void *inp ATTRIBUTE_UNUSED,
2250 			       int type ATTRIBUTE_UNUSED,
2251 			       int in_class ATTRIBUTE_UNUSED,
2252 			       int indx ATTRIBUTE_UNUSED,
2253 			       int numaux ATTRIBUTE_UNUSED,
2254 			       void *extp ATTRIBUTE_UNUSED)
2255 {
2256   return 0;
2257 }
2258 
2259 static unsigned int
2260 alpha_ecoff_swap_coff_sym_out (bfd *abfd ATTRIBUTE_UNUSED,
2261 			       void *inp ATTRIBUTE_UNUSED,
2262 			       void *extp ATTRIBUTE_UNUSED)
2263 {
2264   return 0;
2265 }
2266 
2267 static unsigned int
2268 alpha_ecoff_swap_coff_lineno_out (bfd *abfd ATTRIBUTE_UNUSED,
2269 				  void *inp ATTRIBUTE_UNUSED,
2270 				  void *extp ATTRIBUTE_UNUSED)
2271 {
2272   return 0;
2273 }
2274 
2275 static unsigned int
2276 alpha_ecoff_swap_coff_reloc_out (bfd *abfd ATTRIBUTE_UNUSED,
2277 				 void *inp ATTRIBUTE_UNUSED,
2278 				 void *extp ATTRIBUTE_UNUSED)
2279 {
2280   return 0;
2281 }
2282 
2283 /* This is the ECOFF backend structure.  The backend field of the
2284    target vector points to this.  */
2285 
2286 static const struct ecoff_backend_data alpha_ecoff_backend_data =
2287 {
2288   /* COFF backend structure.  */
2289   {
2290     alpha_ecoff_swap_coff_aux_in, alpha_ecoff_swap_coff_sym_in,
2291     alpha_ecoff_swap_coff_lineno_in, alpha_ecoff_swap_coff_aux_out,
2292     alpha_ecoff_swap_coff_sym_out, alpha_ecoff_swap_coff_lineno_out,
2293     alpha_ecoff_swap_coff_reloc_out,
2294     alpha_ecoff_swap_filehdr_out, alpha_ecoff_swap_aouthdr_out,
2295     alpha_ecoff_swap_scnhdr_out,
2296     FILHSZ, AOUTSZ, SCNHSZ, 0, 0, 0, 0, FILNMLEN, TRUE,
2297     ECOFF_NO_LONG_SECTION_NAMES, 4, FALSE, 2, 32768,
2298     alpha_ecoff_swap_filehdr_in, alpha_ecoff_swap_aouthdr_in,
2299     alpha_ecoff_swap_scnhdr_in, NULL,
2300     alpha_ecoff_bad_format_hook, _bfd_ecoff_set_arch_mach_hook,
2301     alpha_ecoff_mkobject_hook, _bfd_ecoff_styp_to_sec_flags,
2302     _bfd_ecoff_set_alignment_hook, _bfd_ecoff_slurp_symbol_table,
2303     NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2304     NULL, NULL, NULL, NULL
2305   },
2306   /* Supported architecture.  */
2307   bfd_arch_alpha,
2308   /* Initial portion of armap string.  */
2309   "________64",
2310   /* The page boundary used to align sections in a demand-paged
2311      executable file.  E.g., 0x1000.  */
2312   0x2000,
2313   /* TRUE if the .rdata section is part of the text segment, as on the
2314      Alpha.  FALSE if .rdata is part of the data segment, as on the
2315      MIPS.  */
2316   TRUE,
2317   /* Bitsize of constructor entries.  */
2318   64,
2319   /* Reloc to use for constructor entries.  */
2320   &alpha_howto_table[ALPHA_R_REFQUAD],
2321   {
2322     /* Symbol table magic number.  */
2323     magicSym2,
2324     /* Alignment of debugging information.  E.g., 4.  */
2325     8,
2326     /* Sizes of external symbolic information.  */
2327     sizeof (struct hdr_ext),
2328     sizeof (struct dnr_ext),
2329     sizeof (struct pdr_ext),
2330     sizeof (struct sym_ext),
2331     sizeof (struct opt_ext),
2332     sizeof (struct fdr_ext),
2333     sizeof (struct rfd_ext),
2334     sizeof (struct ext_ext),
2335     /* Functions to swap in external symbolic data.  */
2336     ecoff_swap_hdr_in,
2337     ecoff_swap_dnr_in,
2338     ecoff_swap_pdr_in,
2339     ecoff_swap_sym_in,
2340     ecoff_swap_opt_in,
2341     ecoff_swap_fdr_in,
2342     ecoff_swap_rfd_in,
2343     ecoff_swap_ext_in,
2344     _bfd_ecoff_swap_tir_in,
2345     _bfd_ecoff_swap_rndx_in,
2346     /* Functions to swap out external symbolic data.  */
2347     ecoff_swap_hdr_out,
2348     ecoff_swap_dnr_out,
2349     ecoff_swap_pdr_out,
2350     ecoff_swap_sym_out,
2351     ecoff_swap_opt_out,
2352     ecoff_swap_fdr_out,
2353     ecoff_swap_rfd_out,
2354     ecoff_swap_ext_out,
2355     _bfd_ecoff_swap_tir_out,
2356     _bfd_ecoff_swap_rndx_out,
2357     /* Function to read in symbolic data.  */
2358     _bfd_ecoff_slurp_symbolic_info
2359   },
2360   /* External reloc size.  */
2361   RELSZ,
2362   /* Reloc swapping functions.  */
2363   alpha_ecoff_swap_reloc_in,
2364   alpha_ecoff_swap_reloc_out,
2365   /* Backend reloc tweaking.  */
2366   alpha_adjust_reloc_in,
2367   alpha_adjust_reloc_out,
2368   /* Relocate section contents while linking.  */
2369   alpha_relocate_section,
2370   /* Do final adjustments to filehdr and aouthdr.  */
2371   alpha_adjust_headers,
2372   /* Read an element from an archive at a given file position.  */
2373   alpha_ecoff_get_elt_at_filepos
2374 };
2375 
2376 /* Looking up a reloc type is Alpha specific.  */
2377 #define _bfd_ecoff_bfd_reloc_type_lookup alpha_bfd_reloc_type_lookup
2378 #define _bfd_ecoff_bfd_reloc_name_lookup \
2379   alpha_bfd_reloc_name_lookup
2380 
2381 /* So is getting relocated section contents.  */
2382 #define _bfd_ecoff_bfd_get_relocated_section_contents \
2383   alpha_ecoff_get_relocated_section_contents
2384 
2385 /* Handling file windows is generic.  */
2386 #define _bfd_ecoff_get_section_contents_in_window \
2387   _bfd_generic_get_section_contents_in_window
2388 
2389 /* Input section flag lookup is generic.  */
2390 #define _bfd_ecoff_bfd_lookup_section_flags bfd_generic_lookup_section_flags
2391 
2392 /* Relaxing sections is generic.  */
2393 #define _bfd_ecoff_bfd_relax_section bfd_generic_relax_section
2394 #define _bfd_ecoff_bfd_gc_sections bfd_generic_gc_sections
2395 #define _bfd_ecoff_bfd_merge_sections bfd_generic_merge_sections
2396 #define _bfd_ecoff_bfd_is_group_section bfd_generic_is_group_section
2397 #define _bfd_ecoff_bfd_group_name bfd_generic_group_name
2398 #define _bfd_ecoff_bfd_discard_group bfd_generic_discard_group
2399 #define _bfd_ecoff_section_already_linked \
2400   _bfd_coff_section_already_linked
2401 #define _bfd_ecoff_bfd_define_common_symbol bfd_generic_define_common_symbol
2402 #define _bfd_ecoff_bfd_link_hide_symbol _bfd_generic_link_hide_symbol
2403 #define _bfd_ecoff_bfd_define_start_stop    bfd_generic_define_start_stop
2404 #define _bfd_ecoff_bfd_link_check_relocs    _bfd_generic_link_check_relocs
2405 
2406 /* Installing internal relocations in a section is also generic.  */
2407 #define _bfd_ecoff_set_reloc _bfd_generic_set_reloc
2408 
2409 const bfd_target alpha_ecoff_le_vec =
2410 {
2411   "ecoff-littlealpha",		/* name */
2412   bfd_target_ecoff_flavour,
2413   BFD_ENDIAN_LITTLE,		/* data byte order is little */
2414   BFD_ENDIAN_LITTLE,		/* header byte order is little */
2415 
2416   (HAS_RELOC | EXEC_P		/* object flags */
2417    | HAS_LINENO | HAS_DEBUG
2418    | HAS_SYMS | HAS_LOCALS | DYNAMIC | WP_TEXT | D_PAGED),
2419 
2420   (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_CODE | SEC_DATA),
2421   0,				/* leading underscore */
2422   ' ',				/* ar_pad_char */
2423   15,				/* ar_max_namelen */
2424   0,				/* match priority.  */
2425   bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2426      bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2427      bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
2428   bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2429      bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2430      bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */
2431 
2432   {				/* bfd_check_format */
2433     _bfd_dummy_target,
2434     alpha_ecoff_object_p,
2435     bfd_generic_archive_p,
2436     _bfd_dummy_target
2437   },
2438   {				/* bfd_set_format */
2439     _bfd_bool_bfd_false_error,
2440     _bfd_ecoff_mkobject,
2441     _bfd_generic_mkarchive,
2442     _bfd_bool_bfd_false_error
2443   },
2444   {				/* bfd_write_contents */
2445     _bfd_bool_bfd_false_error,
2446     _bfd_ecoff_write_object_contents,
2447     _bfd_write_archive_contents,
2448     _bfd_bool_bfd_false_error
2449   },
2450 
2451   BFD_JUMP_TABLE_GENERIC (_bfd_ecoff),
2452   BFD_JUMP_TABLE_COPY (_bfd_ecoff),
2453   BFD_JUMP_TABLE_CORE (_bfd_nocore),
2454   BFD_JUMP_TABLE_ARCHIVE (alpha_ecoff),
2455   BFD_JUMP_TABLE_SYMBOLS (_bfd_ecoff),
2456   BFD_JUMP_TABLE_RELOCS (_bfd_ecoff),
2457   BFD_JUMP_TABLE_WRITE (_bfd_ecoff),
2458   BFD_JUMP_TABLE_LINK (_bfd_ecoff),
2459   BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
2460 
2461   NULL,
2462 
2463   &alpha_ecoff_backend_data
2464 };
2465