xref: /netbsd-src/external/gpl3/binutils.old/dist/gold/s390.cc (revision 8450a7c42673d65e3b1f6560d3b6ecd317a6cbe8)
1 // s390.cc -- s390 target support for gold.
2 
3 // Copyright (C) 2015 Free Software Foundation, Inc.
4 // Written by Marcin Kościelnicki <koriakin@0x04.net>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 #include "gold.h"
24 
25 #include <cstring>
26 
27 #include "elfcpp.h"
28 #include "dwarf.h"
29 #include "parameters.h"
30 #include "reloc.h"
31 #include "s390.h"
32 #include "object.h"
33 #include "symtab.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "copy-relocs.h"
37 #include "target.h"
38 #include "target-reloc.h"
39 #include "target-select.h"
40 #include "tls.h"
41 #include "gc.h"
42 #include "icf.h"
43 
44 namespace
45 {
46 
47 using namespace gold;
48 
49 // A class to handle the .got.plt section.
50 
51 template<int size>
52 class Output_data_got_plt_s390 : public Output_section_data_build
53 {
54  public:
55   Output_data_got_plt_s390(Layout* layout)
56     : Output_section_data_build(size/8),
57       layout_(layout)
58   { }
59 
60   Output_data_got_plt_s390(Layout* layout, off_t data_size)
61     : Output_section_data_build(data_size, size/8),
62       layout_(layout)
63   { }
64 
65  protected:
66   // Write out the PLT data.
67   void
68   do_write(Output_file*);
69 
70   // Write to a map file.
71   void
72   do_print_to_mapfile(Mapfile* mapfile) const
73   { mapfile->print_output_data(this, "** GOT PLT"); }
74 
75  private:
76   // A pointer to the Layout class, so that we can find the .dynamic
77   // section when we write out the GOT PLT section.
78   Layout* layout_;
79 };
80 
81 // A class to handle the PLT data.
82 
83 template<int size>
84 class Output_data_plt_s390 : public Output_section_data
85 {
86  public:
87   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, true>
88     Reloc_section;
89 
90   Output_data_plt_s390(Layout* layout,
91                          Output_data_got<size, true>* got,
92                          Output_data_got_plt_s390<size>* got_plt,
93                          Output_data_space* got_irelative)
94     : Output_section_data(4), layout_(layout),
95       irelative_rel_(NULL), got_(got), got_plt_(got_plt),
96       got_irelative_(got_irelative), count_(0),
97       irelative_count_(0), free_list_()
98   { this->init(layout); }
99 
100   Output_data_plt_s390(Layout* layout,
101                          Output_data_got<size, true>* got,
102                          Output_data_got_plt_s390<size>* got_plt,
103                          Output_data_space* got_irelative,
104                          unsigned int plt_count)
105     : Output_section_data((plt_count + 1) * plt_entry_size,
106                           4, false),
107       layout_(layout), irelative_rel_(NULL), got_(got),
108       got_plt_(got_plt), got_irelative_(got_irelative), count_(plt_count),
109       irelative_count_(0), free_list_()
110   {
111     this->init(layout);
112 
113     // Initialize the free list and reserve the first entry.
114     this->free_list_.init((plt_count + 1) * plt_entry_size, false);
115     this->free_list_.remove(0, plt_entry_size);
116   }
117 
118   // Initialize the PLT section.
119   void
120   init(Layout* layout);
121 
122   // Add an entry to the PLT.
123   void
124   add_entry(Symbol_table*, Layout*, Symbol* gsym);
125 
126   // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
127   unsigned int
128   add_local_ifunc_entry(Symbol_table*, Layout*,
129     Sized_relobj_file<size, true>*, unsigned int);
130 
131   // Add the relocation for a PLT entry.
132   void
133   add_relocation(Symbol_table*, Layout*, Symbol*, unsigned int);
134 
135   // Return the .rela.plt section data.
136   Reloc_section*
137   rela_plt()
138   { return this->rel_; }
139 
140   // Return where the IRELATIVE relocations should go in the PLT
141   // relocations.
142   Reloc_section*
143   rela_irelative(Symbol_table*, Layout*);
144 
145   // Return whether we created a section for IRELATIVE relocations.
146   bool
147   has_irelative_section() const
148   { return this->irelative_rel_ != NULL; }
149 
150   // Return the number of PLT entries.
151   unsigned int
152   entry_count() const
153   { return this->count_ + this->irelative_count_; }
154 
155   // Return the offset of the first non-reserved PLT entry.
156   unsigned int
157   first_plt_entry_offset()
158   { return plt_entry_size; }
159 
160   // Return the size of a PLT entry.
161   unsigned int
162   get_plt_entry_size() const
163   { return plt_entry_size; }
164 
165   // Reserve a slot in the PLT for an existing symbol in an incremental update.
166   void
167   reserve_slot(unsigned int plt_index)
168   {
169     this->free_list_.remove((plt_index + 1) * plt_entry_size,
170                             (plt_index + 2) * plt_entry_size);
171   }
172 
173   // Return the PLT address to use for a global symbol.
174   uint64_t
175   address_for_global(const Symbol*);
176 
177   // Return the PLT address to use for a local symbol.
178   uint64_t
179   address_for_local(const Relobj*, unsigned int symndx);
180 
181   // Add .eh_frame information for the PLT.
182   void
183   add_eh_frame(Layout* layout)
184   {
185 	  (void)layout;
186     layout->add_eh_frame_for_plt(this,
187 				 plt_eh_frame_cie,
188 				 plt_eh_frame_cie_size,
189 				 plt_eh_frame_fde,
190 				 plt_eh_frame_fde_size);
191   }
192 
193  protected:
194   // Fill in the first PLT entry.
195   void
196   fill_first_plt_entry(unsigned char* pov,
197 		       typename elfcpp::Elf_types<size>::Elf_Addr got_address,
198 		       typename elfcpp::Elf_types<size>::Elf_Addr plt_address);
199 
200   // Fill in a normal PLT entry.  Returns the offset into the entry that
201   // should be the initial GOT slot value.
202   unsigned int
203   fill_plt_entry(unsigned char* pov,
204 		 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
205 		 typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
206 		 unsigned int got_offset,
207 		 unsigned int plt_offset,
208 		 unsigned int plt_rel_offset);
209 
210   void
211   do_adjust_output_section(Output_section* os);
212 
213   // Write to a map file.
214   void
215   do_print_to_mapfile(Mapfile* mapfile) const
216   { mapfile->print_output_data(this, _("** PLT")); }
217 
218  private:
219   // Set the final size.
220   void
221   set_final_data_size();
222 
223   // Write out the PLT data.
224   void
225   do_write(Output_file*);
226 
227   // A pointer to the Layout class, so that we can find the .dynamic
228   // section when we write out the GOT PLT section.
229   Layout* layout_;
230   // The reloc section.
231   Reloc_section* rel_;
232   // The IRELATIVE relocs, if necessary.  These must follow the
233   // regular PLT relocations.
234   Reloc_section* irelative_rel_;
235   // The .got section.
236   Output_data_got<size, true>* got_;
237   // The .got.plt section.
238   Output_data_got_plt_s390<size>* got_plt_;
239   // The part of the .got.plt section used for IRELATIVE relocs.
240   Output_data_space* got_irelative_;
241   // The number of PLT entries.
242   unsigned int count_;
243   // Number of PLT entries with R_TILEGX_IRELATIVE relocs.  These
244   // follow the regular PLT entries.
245   unsigned int irelative_count_;
246   // List of available regions within the section, for incremental
247   // update links.
248   Free_list free_list_;
249 
250   // The size of an entry in the PLT.
251   static const int plt_entry_size = 0x20;
252   // The first entry in the PLT.
253   static const unsigned char first_plt_entry_32_abs[plt_entry_size];
254   static const unsigned char first_plt_entry_32_pic[plt_entry_size];
255   static const unsigned char first_plt_entry_64[plt_entry_size];
256   // Other entries in the PLT for an executable.
257   static const unsigned char plt_entry_32_abs[plt_entry_size];
258   static const unsigned char plt_entry_32_pic12[plt_entry_size];
259   static const unsigned char plt_entry_32_pic16[plt_entry_size];
260   static const unsigned char plt_entry_32_pic[plt_entry_size];
261   static const unsigned char plt_entry_64[plt_entry_size];
262 
263   // The .eh_frame unwind information for the PLT.
264   static const int plt_eh_frame_cie_size = 12;
265   static const unsigned char plt_eh_frame_cie[plt_eh_frame_cie_size];
266   static const int plt_eh_frame_fde_size = 12;
267   static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
268 };
269 
270 
271 template<int size>
272 class Target_s390 : public Sized_target<size, true>
273 {
274  public:
275   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, true> Reloc_section;
276 
277   Target_s390()
278     : Sized_target<size, true>(&s390_info),
279       got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
280       global_offset_table_(NULL), rela_dyn_(NULL),
281       rela_irelative_(NULL), copy_relocs_(elfcpp::R_390_COPY),
282       got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
283       layout_(NULL)
284   { }
285 
286   // Scan the relocations to look for symbol adjustments.
287   void
288   gc_process_relocs(Symbol_table* symtab,
289 		    Layout* layout,
290 		    Sized_relobj_file<size, true>* object,
291 		    unsigned int data_shndx,
292 		    unsigned int sh_type,
293 		    const unsigned char* prelocs,
294 		    size_t reloc_count,
295 		    Output_section* output_section,
296 		    bool needs_special_offset_handling,
297 		    size_t local_symbol_count,
298 		    const unsigned char* plocal_symbols);
299 
300   // Scan the relocations to look for symbol adjustments.
301   void
302   scan_relocs(Symbol_table* symtab,
303 	      Layout* layout,
304 	      Sized_relobj_file<size, true>* object,
305 	      unsigned int data_shndx,
306 	      unsigned int sh_type,
307 	      const unsigned char* prelocs,
308 	      size_t reloc_count,
309 	      Output_section* output_section,
310 	      bool needs_special_offset_handling,
311 	      size_t local_symbol_count,
312 	      const unsigned char* plocal_symbols);
313 
314   // Finalize the sections.
315   void
316   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
317 
318   // Return the value to use for a dynamic which requires special
319   // treatment.
320   uint64_t
321   do_dynsym_value(const Symbol*) const;
322 
323   // Relocate a section.
324   void
325   relocate_section(const Relocate_info<size, true>*,
326 		   unsigned int sh_type,
327 		   const unsigned char* prelocs,
328 		   size_t reloc_count,
329 		   Output_section* output_section,
330 		   bool needs_special_offset_handling,
331 		   unsigned char* view,
332 		   typename elfcpp::Elf_types<size>::Elf_Addr view_address,
333 		   section_size_type view_size,
334 		   const Reloc_symbol_changes*);
335 
336   // Scan the relocs during a relocatable link.
337   void
338   scan_relocatable_relocs(Symbol_table* symtab,
339 			  Layout* layout,
340 			  Sized_relobj_file<size, true>* object,
341 			  unsigned int data_shndx,
342 			  unsigned int sh_type,
343 			  const unsigned char* prelocs,
344 			  size_t reloc_count,
345 			  Output_section* output_section,
346 			  bool needs_special_offset_handling,
347 			  size_t local_symbol_count,
348 			  const unsigned char* plocal_symbols,
349 			  Relocatable_relocs*);
350 
351   // Return a string used to fill a code section with nops.
352   std::string
353   do_code_fill(section_size_type length) const;
354 
355   // Emit relocations for a section.
356   void
357   relocate_relocs(
358       const Relocate_info<size, true>*,
359       unsigned int sh_type,
360       const unsigned char* prelocs,
361       size_t reloc_count,
362       Output_section* output_section,
363       typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
364       const Relocatable_relocs*,
365       unsigned char* view,
366       typename elfcpp::Elf_types<size>::Elf_Addr view_address,
367       section_size_type view_size,
368       unsigned char* reloc_view,
369       section_size_type reloc_view_size);
370 
371   // Return whether SYM is defined by the ABI.
372   bool
373   do_is_defined_by_abi(const Symbol* sym) const
374   { return strcmp(sym->name(), "__tls_get_offset") == 0; }
375 
376   // Return the PLT address to use for a global symbol.
377   uint64_t
378   do_plt_address_for_global(const Symbol* gsym) const
379   { return this->plt_section()->address_for_global(gsym); }
380 
381   uint64_t
382   do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
383   { return this->plt_section()->address_for_local(relobj, symndx); }
384 
385   // Return the offset to use for the GOT_INDX'th got entry which is
386   // for a local tls symbol specified by OBJECT, SYMNDX.
387   int64_t
388   do_tls_offset_for_local(const Relobj* object,
389 			  unsigned int symndx,
390 			  unsigned int got_indx) const;
391 
392   // Return the offset to use for the GOT_INDX'th got entry which is
393   // for global tls symbol GSYM.
394   int64_t
395   do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
396 
397   // This function should be defined in targets that can use relocation
398   // types to determine (implemented in local_reloc_may_be_function_pointer
399   // and global_reloc_may_be_function_pointer)
400   // if a function's pointer is taken.  ICF uses this in safe mode to only
401   // fold those functions whose pointer is defintely not taken.
402   bool
403   do_can_check_for_function_pointers() const
404   { return true; }
405 
406   // Return the size of the GOT section.
407   section_size_type
408   got_size() const
409   {
410     gold_assert(this->got_ != NULL);
411     return this->got_->data_size();
412   }
413 
414   // Return the number of entries in the GOT.
415   unsigned int
416   got_entry_count() const
417   {
418     if (this->got_ == NULL)
419       return 0;
420     return this->got_size() / (size / 8);
421   }
422 
423   // Return the number of entries in the PLT.
424   unsigned int
425   plt_entry_count() const;
426 
427   // Return the offset of the first non-reserved PLT entry.
428   unsigned int
429   first_plt_entry_offset() const;
430 
431   // Return the size of each PLT entry.
432   unsigned int
433   plt_entry_size() const;
434 
435   // Create the GOT section for an incremental update.
436   Output_data_got_base*
437   init_got_plt_for_update(Symbol_table* symtab,
438 			  Layout* layout,
439 			  unsigned int got_count,
440 			  unsigned int plt_count);
441 
442   // Reserve a GOT entry for a local symbol, and regenerate any
443   // necessary dynamic relocations.
444   void
445   reserve_local_got_entry(unsigned int got_index,
446 			  Sized_relobj<size, true>* obj,
447 			  unsigned int r_sym,
448 			  unsigned int got_type);
449 
450   // Reserve a GOT entry for a global symbol, and regenerate any
451   // necessary dynamic relocations.
452   void
453   reserve_global_got_entry(unsigned int got_index, Symbol* gsym,
454 			   unsigned int got_type);
455 
456   // Register an existing PLT entry for a global symbol.
457   void
458   register_global_plt_entry(Symbol_table*, Layout*, unsigned int plt_index,
459 			    Symbol* gsym);
460 
461   // Force a COPY relocation for a given symbol.
462   void
463   emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t);
464 
465   // Apply an incremental relocation.
466   void
467   apply_relocation(const Relocate_info<size, true>* relinfo,
468 		   typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
469 		   unsigned int r_type,
470 		   typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
471 		   const Symbol* gsym,
472 		   unsigned char* view,
473 		   typename elfcpp::Elf_types<size>::Elf_Addr address,
474 		   section_size_type view_size);
475 
476  private:
477 
478   // The class which scans relocations.
479   class Scan
480   {
481   public:
482     Scan()
483       : issued_non_pic_error_(false)
484     { }
485 
486     static inline int
487     get_reference_flags(unsigned int r_type);
488 
489     inline void
490     local(Symbol_table* symtab, Layout* layout, Target_s390* target,
491 	  Sized_relobj_file<size, true>* object,
492 	  unsigned int data_shndx,
493 	  Output_section* output_section,
494 	  const elfcpp::Rela<size, true>& reloc, unsigned int r_type,
495 	  const elfcpp::Sym<size, true>& lsym,
496 	  bool is_discarded);
497 
498     inline void
499     global(Symbol_table* symtab, Layout* layout, Target_s390* target,
500 	   Sized_relobj_file<size, true>* object,
501 	   unsigned int data_shndx,
502 	   Output_section* output_section,
503 	   const elfcpp::Rela<size, true>& reloc, unsigned int r_type,
504 	   Symbol* gsym);
505 
506     inline bool
507     local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
508 					Target_s390* target,
509 					Sized_relobj_file<size, true>* object,
510 					unsigned int data_shndx,
511 					Output_section* output_section,
512 					const elfcpp::Rela<size, true>& reloc,
513 					unsigned int r_type,
514 					const elfcpp::Sym<size, true>& lsym);
515 
516     inline bool
517     global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
518 					 Target_s390* target,
519 					 Sized_relobj_file<size, true>* object,
520 					 unsigned int data_shndx,
521 					 Output_section* output_section,
522 					 const elfcpp::Rela<size, true>& reloc,
523 					 unsigned int r_type,
524 					 Symbol* gsym);
525 
526   private:
527     static void
528     unsupported_reloc_local(Sized_relobj_file<size, true>*,
529 			    unsigned int r_type);
530 
531     static void
532     unsupported_reloc_global(Sized_relobj_file<size, true>*,
533 			     unsigned int r_type, Symbol*);
534 
535     void
536     check_non_pic(Relobj*, unsigned int r_type);
537 
538     inline bool
539     possible_function_pointer_reloc(unsigned int r_type);
540 
541     bool
542     reloc_needs_plt_for_ifunc(Sized_relobj_file<size, true>*,
543 			      unsigned int r_type);
544 
545     // Whether we have issued an error about a non-PIC compilation.
546     bool issued_non_pic_error_;
547   };
548 
549   // The class which implements relocation.
550   class Relocate
551   {
552    public:
553     // Do a relocation.  Return false if the caller should not issue
554     // any warnings about this relocation.
555     inline bool
556     relocate(const Relocate_info<size, true>*, Target_s390*,
557 	     Output_section*,
558 	     size_t relnum, const elfcpp::Rela<size, true>&,
559 	     unsigned int r_type, const Sized_symbol<size>*,
560 	     const Symbol_value<size>*,
561 	     unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
562 	     section_size_type);
563 
564    private:
565     // Do a TLS relocation.
566     inline typename elfcpp::Elf_types<size>::Elf_Addr
567     relocate_tls(const Relocate_info<size, true>*, Target_s390*,
568 		 size_t relnum, const elfcpp::Rela<size, true>&,
569 		 unsigned int r_type, const Sized_symbol<size>*,
570 		 const Symbol_value<size>*,
571 		 unsigned char*, section_size_type);
572 
573     // Do a TLS General-Dynamic to Initial-Exec transition.
574     inline void
575     tls_gd_to_ie(const Relocate_info<size, true>*, size_t relnum,
576 		 const elfcpp::Rela<size, true>&,
577 		 unsigned char* view,
578 		 section_size_type view_size);
579 
580     // Do a TLS General-Dynamic to Local-Exec transition.
581     inline void
582     tls_gd_to_le(const Relocate_info<size, true>*, size_t relnum,
583 		 const elfcpp::Rela<size, true>&,
584 		 unsigned char* view,
585 		 section_size_type view_size);
586 
587     // Do a TLS Local-Dynamic to Local-Exec transition.
588     inline void
589     tls_ld_to_le(const Relocate_info<size, true>*, size_t relnum,
590 		 const elfcpp::Rela<size, true>&,
591 		 unsigned char* view,
592 		 section_size_type view_size);
593 
594     // Do a TLS Initial-Exec to Local-Exec transition.
595     static inline void
596     tls_ie_to_le(const Relocate_info<size, true>*, size_t relnum,
597 		 const elfcpp::Rela<size, true>&,
598 		 unsigned char* view,
599 		 section_size_type view_size);
600   };
601 
602   // A class which returns the size required for a relocation type,
603   // used while scanning relocs during a relocatable link.
604   class Relocatable_size_for_reloc
605   {
606    public:
607     unsigned int
608     get_size_for_reloc(unsigned int, Relobj*);
609   };
610 
611   // Adjust TLS relocation type based on the options and whether this
612   // is a local symbol.
613   static tls::Tls_optimization
614   optimize_tls_reloc(bool is_final, int r_type);
615 
616   // Get the GOT section.
617   const Output_data_got<size, true>*
618   got_section() const
619   {
620     gold_assert(this->got_ != NULL);
621     return this->got_;
622   }
623 
624   // Get the GOT section, creating it if necessary.
625   Output_data_got<size, true>*
626   got_section(Symbol_table*, Layout*);
627 
628   typename elfcpp::Elf_types<size>::Elf_Addr
629   got_address() const
630   {
631     gold_assert(this->got_ != NULL);
632     return this->got_plt_->address();
633   }
634 
635   typename elfcpp::Elf_types<size>::Elf_Addr
636   got_main_offset() const
637   {
638     gold_assert(this->got_ != NULL);
639     return this->got_->address() - this->got_address();
640   }
641 
642   // Create the PLT section.
643   void
644   make_plt_section(Symbol_table* symtab, Layout* layout);
645 
646   // Create a PLT entry for a global symbol.
647   void
648   make_plt_entry(Symbol_table*, Layout*, Symbol*);
649 
650   // Create a PLT entry for a local STT_GNU_IFUNC symbol.
651   void
652   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
653 			     Sized_relobj_file<size, true>* relobj,
654 			     unsigned int local_sym_index);
655 
656   // Create a GOT entry for the TLS module index.
657   unsigned int
658   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
659 		      Sized_relobj_file<size, true>* object);
660 
661   // Get the PLT section.
662   Output_data_plt_s390<size>*
663   plt_section() const
664   {
665     gold_assert(this->plt_ != NULL);
666     return this->plt_;
667   }
668 
669   // Get the dynamic reloc section, creating it if necessary.
670   Reloc_section*
671   rela_dyn_section(Layout*);
672 
673   // Get the section to use for IRELATIVE relocations.
674   Reloc_section*
675   rela_irelative_section(Layout*);
676 
677   // Add a potential copy relocation.
678   void
679   copy_reloc(Symbol_table* symtab, Layout* layout,
680 	     Sized_relobj_file<size, true>* object,
681 	     unsigned int shndx, Output_section* output_section,
682 	     Symbol* sym, const elfcpp::Rela<size, true>& reloc)
683   {
684     unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
685     this->copy_relocs_.copy_reloc(symtab, layout,
686 				  symtab->get_sized_symbol<size>(sym),
687 				  object, shndx, output_section,
688 				  r_type, reloc.get_r_offset(),
689 				  reloc.get_r_addend(),
690 				  this->rela_dyn_section(layout));
691   }
692 
693   // Information about this specific target which we pass to the
694   // general Target structure.
695   static Target::Target_info s390_info;
696 
697   // The types of GOT entries needed for this platform.
698   // These values are exposed to the ABI in an incremental link.
699   // Do not renumber existing values without changing the version
700   // number of the .gnu_incremental_inputs section.
701   enum Got_type
702   {
703     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
704     GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
705     GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
706   };
707 
708   // The GOT section.
709   Output_data_got<size, true>* got_;
710   // The PLT section.
711   Output_data_plt_s390<size>* plt_;
712   // The GOT PLT section.
713   Output_data_got_plt_s390<size>* got_plt_;
714   // The GOT section for IRELATIVE relocations.
715   Output_data_space* got_irelative_;
716   // The _GLOBAL_OFFSET_TABLE_ symbol.
717   Symbol* global_offset_table_;
718   // The dynamic reloc section.
719   Reloc_section* rela_dyn_;
720   // The section to use for IRELATIVE relocs.
721   Reloc_section* rela_irelative_;
722   // Relocs saved to avoid a COPY reloc.
723   Copy_relocs<elfcpp::SHT_RELA, size, true> copy_relocs_;
724   // Offset of the GOT entry for the TLS module index.
725   unsigned int got_mod_index_offset_;
726   // True if the _TLS_MODULE_BASE_ symbol has been defined.
727   bool tls_base_symbol_defined_;
728   // For use in do_tls_offset_for_*
729   Layout *layout_;
730 };
731 
732 template<>
733 Target::Target_info Target_s390<32>::s390_info =
734 {
735   32,			// size
736   true,			// is_big_endian
737   elfcpp::EM_S390,	// machine_code
738   false,		// has_make_symbol
739   false,		// has_resolve
740   true,			// has_code_fill
741   true,			// is_default_stack_executable
742   true,			// can_icf_inline_merge_sections
743   '\0',			// wrap_char
744   "/lib/ld.so.1",	// dynamic_linker
745   0x00400000,		// default_text_segment_address
746   4 * 1024,		// abi_pagesize (overridable by -z max-page-size)
747   4 * 1024,		// common_pagesize (overridable by -z common-page-size)
748   false,                // isolate_execinstr
749   0,                    // rosegment_gap
750   elfcpp::SHN_UNDEF,	// small_common_shndx
751   elfcpp::SHN_UNDEF,	// large_common_shndx
752   0,			// small_common_section_flags
753   0,			// large_common_section_flags
754   NULL,			// attributes_section
755   NULL,			// attributes_vendor
756   "_start",		// entry_symbol_name
757   32,			// hash_entry_size
758 };
759 
760 template<>
761 Target::Target_info Target_s390<64>::s390_info =
762 {
763   64,			// size
764   true,			// is_big_endian
765   elfcpp::EM_S390,	// machine_code
766   false,		// has_make_symbol
767   false,		// has_resolve
768   true,			// has_code_fill
769   true,			// is_default_stack_executable
770   true,			// can_icf_inline_merge_sections
771   '\0',			// wrap_char
772   "/lib/ld64.so.1",	// dynamic_linker
773   0x80000000ll,		// default_text_segment_address
774   4 * 1024,		// abi_pagesize (overridable by -z max-page-size)
775   4 * 1024,		// common_pagesize (overridable by -z common-page-size)
776   false,                // isolate_execinstr
777   0,                    // rosegment_gap
778   elfcpp::SHN_UNDEF,	// small_common_shndx
779   elfcpp::SHN_UNDEF,	// large_common_shndx
780   0,			// small_common_section_flags
781   0,			// large_common_section_flags
782   NULL,			// attributes_section
783   NULL,			// attributes_vendor
784   "_start",		// entry_symbol_name
785   64,			// hash_entry_size
786 };
787 
788 template<int size>
789 class S390_relocate_functions
790 {
791 public:
792   enum Overflow_check
793   {
794     CHECK_NONE,
795     CHECK_SIGNED,
796     CHECK_UNSIGNED,
797     CHECK_BITFIELD,
798     CHECK_LOW_INSN,
799     CHECK_HIGH_INSN
800   };
801 
802   enum Status
803   {
804     STATUS_OK,
805     STATUS_OVERFLOW
806   };
807 
808 private:
809   typedef S390_relocate_functions<size> This;
810   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
811 
812   template<int valsize>
813   static inline bool
814   has_overflow_signed(Address value)
815   {
816     // limit = 1 << (valsize - 1) without shift count exceeding size of type
817     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
818     limit <<= ((valsize - 1) >> 1);
819     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
820     return value + limit > (limit << 1) - 1;
821   }
822 
823   template<int valsize>
824   static inline bool
825   has_overflow_unsigned(Address value)
826   {
827     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
828     limit <<= ((valsize - 1) >> 1);
829     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
830     return value > (limit << 1) - 1;
831   }
832 
833   template<int fieldsize>
834   static inline void
835   rela(unsigned char* view, Address mask, Address value)
836   {
837     typedef typename elfcpp::Swap<fieldsize, true>::Valtype Valtype;
838     Valtype* wv = reinterpret_cast<Valtype*>(view);
839     Valtype val = elfcpp::Swap<fieldsize, true>::readval(view);
840     val &= ~mask;
841     value &= mask;
842     elfcpp::Swap<fieldsize, true>::writeval(wv, val | value);
843   }
844 
845 public:
846   // R_390_12, R_390_GOT12, R_390_GOTPLT12, R_390_GOTIE12
847   static inline Status
848   rela12(unsigned char* view, Address value)
849   {
850     if (This::template has_overflow_unsigned<12>(value))
851       return STATUS_OVERFLOW;
852     This::template rela<16>(view, 0x0fff, value);
853     return STATUS_OK;
854   }
855 
856   // R_390_16, R_390_GOT16, R_390_GOTPLT16, R_390_GOTOFF16, R_390_PLTOFF16
857   static inline Status
858   rela16(unsigned char* view, Address value)
859   {
860     if (This::template has_overflow_signed<16>(value))
861       return STATUS_OVERFLOW;
862     This::template rela<16>(view, 0xffff, value);
863     return STATUS_OK;
864   }
865 
866   // R_390_20, R_390_GOT20, R_390_GOTPLT20, R_390_GOTIE20
867   static inline Status
868   rela20(unsigned char* view, Address value)
869   {
870     if (This::template has_overflow_signed<20>(value))
871       return STATUS_OVERFLOW;
872     This::template rela<16>(view, 0x0fff, value);
873     This::template rela<16>(view + 2, 0xff00, value >> (12 - 8));
874     return STATUS_OK;
875   }
876 
877   // R_390_PC12DBL, R_390_PLT12DBL
878   static inline Status
879   pcrela12dbl(unsigned char* view, Address value, Address address)
880   {
881     value -= address;
882     if ((value & 1) != 0)
883       return STATUS_OVERFLOW;
884     if (This::template has_overflow_signed<13>(value))
885       return STATUS_OVERFLOW;
886     value >>= 1;
887     This::template rela<16>(view, 0x0fff, value);
888     return STATUS_OK;
889   }
890 
891   // R_390_PC16DBL, R_390_PLT16DBL
892   static inline Status
893   pcrela16dbl(unsigned char* view, Address value, Address address)
894   {
895     value -= address;
896     if ((value & 1) != 0)
897       return STATUS_OVERFLOW;
898     if (This::template has_overflow_signed<17>(value))
899       return STATUS_OVERFLOW;
900     value >>= 1;
901     This::template rela<16>(view, 0xffff, value);
902     return STATUS_OK;
903   }
904 
905   // R_390_PC24DBL, R_390_PLT24DBL
906   static inline Status
907   pcrela24dbl(unsigned char* view, Address value, Address address)
908   {
909     value -= address;
910     if ((value & 1) != 0)
911       return STATUS_OVERFLOW;
912     if (This::template has_overflow_signed<25>(value))
913       return STATUS_OVERFLOW;
914     value >>= 1;
915     // Swap doesn't take 24-bit fields well...
916     This::template rela<8>(view, 0xff, value >> 16);
917     This::template rela<16>(view + 1, 0xffff, value);
918     return STATUS_OK;
919   }
920 
921   // R_390_PC32DBL, R_390_PLT32DBL, R_390_GOTPCDBL, R_390_GOTENT, R_390_GOTPLTENT
922   static inline Status
923   pcrela32dbl(unsigned char* view, Address value, Address address)
924   {
925     Address reloc = value - address;
926     if ((reloc & 1) != 0)
927       {
928 	gold_warning(_("R_390_PC32DBL target misaligned at %llx"), (long long)address);
929 	// Wait for a fix for https://sourceware.org/bugzilla/show_bug.cgi?id=18960
930 	// return STATUS_OVERFLOW;
931       }
932     if (This::template has_overflow_signed<33>(reloc))
933       return STATUS_OVERFLOW;
934     reloc >>= 1;
935     if (value < address && size == 32)
936       reloc |= 0x80000000;
937     This::template rela<32>(view, 0xffffffff, reloc);
938     return STATUS_OK;
939   }
940 
941 };
942 
943 // Initialize the PLT section.
944 
945 template<int size>
946 void
947 Output_data_plt_s390<size>::init(Layout* layout)
948 {
949   this->rel_ = new Reloc_section(false);
950   layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
951 				  elfcpp::SHF_ALLOC, this->rel_,
952 				  ORDER_DYNAMIC_PLT_RELOCS, false);
953 }
954 
955 template<int size>
956 void
957 Output_data_plt_s390<size>::do_adjust_output_section(Output_section* os)
958 {
959   os->set_entsize(plt_entry_size);
960 }
961 
962 // Add an entry to the PLT.
963 
964 template<int size>
965 void
966 Output_data_plt_s390<size>::add_entry(Symbol_table* symtab, Layout* layout,
967 					Symbol* gsym)
968 {
969   gold_assert(!gsym->has_plt_offset());
970 
971   unsigned int plt_index;
972   off_t plt_offset;
973   section_offset_type got_offset;
974 
975   unsigned int* pcount;
976   unsigned int offset;
977   unsigned int reserved;
978   Output_section_data_build* got;
979   if (gsym->type() == elfcpp::STT_GNU_IFUNC
980       && gsym->can_use_relative_reloc(false))
981     {
982       pcount = &this->irelative_count_;
983       offset = 0;
984       reserved = 0;
985       got = this->got_irelative_;
986     }
987   else
988     {
989       pcount = &this->count_;
990       offset = 1;
991       reserved = 3;
992       got = this->got_plt_;
993     }
994 
995   if (!this->is_data_size_valid())
996     {
997       // Note that when setting the PLT offset for a non-IRELATIVE
998       // entry we skip the initial reserved PLT entry.
999       plt_index = *pcount + offset;
1000       plt_offset = plt_index * plt_entry_size;
1001 
1002       ++*pcount;
1003 
1004       got_offset = (plt_index - offset + reserved) * size / 8;
1005       gold_assert(got_offset == got->current_data_size());
1006 
1007       // Every PLT entry needs a GOT entry which points back to the PLT
1008       // entry (this will be changed by the dynamic linker, normally
1009       // lazily when the function is called).
1010       got->set_current_data_size(got_offset + size / 8);
1011     }
1012   else
1013     {
1014       // FIXME: This is probably not correct for IRELATIVE relocs.
1015 
1016       // For incremental updates, find an available slot.
1017       plt_offset = this->free_list_.allocate(plt_entry_size,
1018 					     plt_entry_size, 0);
1019       if (plt_offset == -1)
1020 	gold_fallback(_("out of patch space (PLT);"
1021 			" relink with --incremental-full"));
1022 
1023       // The GOT and PLT entries have a 1-1 correspondance, so the GOT offset
1024       // can be calculated from the PLT index, adjusting for the three
1025       // reserved entries at the beginning of the GOT.
1026       plt_index = plt_offset / plt_entry_size - 1;
1027       got_offset = (plt_index - offset + reserved) * size / 8;
1028     }
1029 
1030   gsym->set_plt_offset(plt_offset);
1031 
1032   // Every PLT entry needs a reloc.
1033   this->add_relocation(symtab, layout, gsym, got_offset);
1034 
1035   // Note that we don't need to save the symbol.  The contents of the
1036   // PLT are independent of which symbols are used.  The symbols only
1037   // appear in the relocations.
1038 }
1039 
1040 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
1041 // the PLT offset.
1042 
1043 template<int size>
1044 unsigned int
1045 Output_data_plt_s390<size>::add_local_ifunc_entry(
1046     Symbol_table* symtab,
1047     Layout* layout,
1048     Sized_relobj_file<size, true>* relobj,
1049     unsigned int local_sym_index)
1050 {
1051   unsigned int plt_offset = this->irelative_count_ * plt_entry_size;
1052   ++this->irelative_count_;
1053 
1054   section_offset_type got_offset = this->got_irelative_->current_data_size();
1055 
1056   // Every PLT entry needs a GOT entry which points back to the PLT
1057   // entry.
1058   this->got_irelative_->set_current_data_size(got_offset + size / 8);
1059 
1060   // Every PLT entry needs a reloc.
1061   Reloc_section* rela = this->rela_irelative(symtab, layout);
1062   rela->add_symbolless_local_addend(relobj, local_sym_index,
1063 				    elfcpp::R_390_IRELATIVE,
1064 				    this->got_irelative_, got_offset, 0);
1065 
1066   return plt_offset;
1067 }
1068 
1069 // Add the relocation for a PLT entry.
1070 
1071 template<int size>
1072 void
1073 Output_data_plt_s390<size>::add_relocation(Symbol_table* symtab,
1074 					     Layout* layout,
1075 					     Symbol* gsym,
1076 					     unsigned int got_offset)
1077 {
1078   if (gsym->type() == elfcpp::STT_GNU_IFUNC
1079       && gsym->can_use_relative_reloc(false))
1080     {
1081       Reloc_section* rela = this->rela_irelative(symtab, layout);
1082       rela->add_symbolless_global_addend(gsym, elfcpp::R_390_IRELATIVE,
1083 					 this->got_irelative_, got_offset, 0);
1084     }
1085   else
1086     {
1087       gsym->set_needs_dynsym_entry();
1088       this->rel_->add_global(gsym, elfcpp::R_390_JMP_SLOT, this->got_plt_,
1089 			     got_offset, 0);
1090     }
1091 }
1092 
1093 // Return where the IRELATIVE relocations should go in the PLT.  These
1094 // follow the JUMP_SLOT and the TLSDESC relocations.
1095 
1096 template<int size>
1097 typename Output_data_plt_s390<size>::Reloc_section*
1098 Output_data_plt_s390<size>::rela_irelative(Symbol_table* symtab,
1099 					     Layout* layout)
1100 {
1101   if (this->irelative_rel_ == NULL)
1102     {
1103       this->irelative_rel_ = new Reloc_section(false);
1104       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1105 				      elfcpp::SHF_ALLOC, this->irelative_rel_,
1106 				      ORDER_DYNAMIC_PLT_RELOCS, false);
1107       gold_assert(this->irelative_rel_->output_section()
1108 		  == this->rel_->output_section());
1109 
1110       if (parameters->doing_static_link())
1111 	{
1112 	  // A statically linked executable will only have a .rela.plt
1113 	  // section to hold R_390_IRELATIVE relocs for
1114 	  // STT_GNU_IFUNC symbols.  The library will use these
1115 	  // symbols to locate the IRELATIVE relocs at program startup
1116 	  // time.
1117 	  symtab->define_in_output_data("__rela_iplt_start", NULL,
1118 					Symbol_table::PREDEFINED,
1119 					this->irelative_rel_, 0, 0,
1120 					elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1121 					elfcpp::STV_HIDDEN, 0, false, true);
1122 	  symtab->define_in_output_data("__rela_iplt_end", NULL,
1123 					Symbol_table::PREDEFINED,
1124 					this->irelative_rel_, 0, 0,
1125 					elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1126 					elfcpp::STV_HIDDEN, 0, true, true);
1127 	}
1128     }
1129   return this->irelative_rel_;
1130 }
1131 
1132 // Return the PLT address to use for a global symbol.
1133 
1134 template<int size>
1135 uint64_t
1136 Output_data_plt_s390<size>::address_for_global(const Symbol* gsym)
1137 {
1138   uint64_t offset = 0;
1139   if (gsym->type() == elfcpp::STT_GNU_IFUNC
1140       && gsym->can_use_relative_reloc(false))
1141     offset = (this->count_ + 1) * plt_entry_size;
1142   return this->address() + offset + gsym->plt_offset();
1143 }
1144 
1145 // Return the PLT address to use for a local symbol.  These are always
1146 // IRELATIVE relocs.
1147 
1148 template<int size>
1149 uint64_t
1150 Output_data_plt_s390<size>::address_for_local(const Relobj* object,
1151 						unsigned int r_sym)
1152 {
1153   return (this->address()
1154 	  + (this->count_ + 1) * plt_entry_size
1155 	  + object->local_plt_offset(r_sym));
1156 }
1157 
1158 // Set the final size.
1159 template<int size>
1160 void
1161 Output_data_plt_s390<size>::set_final_data_size()
1162 {
1163   unsigned int count = this->count_ + this->irelative_count_;
1164   this->set_data_size((count + 1) * plt_entry_size);
1165 }
1166 
1167 template<int size>
1168 const unsigned char
1169 Output_data_plt_s390<size>::first_plt_entry_32_abs[plt_entry_size] =
1170 {
1171   0x50, 0x10, 0xf0, 0x1c, // st %r1, 28(%r15)
1172   0x0d, 0x10, // basr %r1, %r0
1173   0x58, 0x10, 0x10, 0x12, // l %r1, 18(%r1)
1174   0xd2, 0x03, 0xf0, 0x18, 0x10, 0x04, // mvc 24(4,%r15), 4(%r1)
1175   0x58, 0x10, 0x10, 0x08, // l %r1, 8(%r1)
1176   0x07, 0xf1, // br %r1
1177   0x00, 0x00, // padding
1178   0x00, 0x00, 0x00, 0x00, // _GLOBAL_OFFSET_TABLE_ (to fill)
1179   0x00, 0x00, 0x00, 0x00, // padding
1180 };
1181 
1182 template<int size>
1183 const unsigned char
1184 Output_data_plt_s390<size>::first_plt_entry_32_pic[plt_entry_size] =
1185 {
1186   0x50, 0x10, 0xf0, 0x1c, // st %r1, 28(%r15)
1187   0x58, 0x10, 0xc0, 0x04, // l %r1, 4(%r12)
1188   0x50, 0x10, 0xf0, 0x18, // st %r1, 24(%r15)
1189   0x58, 0x10, 0xc0, 0x08, // l %r1, 8(%r12)
1190   0x07, 0xf1, // br %r1
1191   0x00, 0x00, // padding
1192   0x00, 0x00, 0x00, 0x00, // padding
1193   0x00, 0x00, 0x00, 0x00, // padding
1194   0x00, 0x00, 0x00, 0x00, // padding
1195 };
1196 
1197 template<int size>
1198 const unsigned char
1199 Output_data_plt_s390<size>::first_plt_entry_64[plt_entry_size] =
1200 {
1201   0xe3, 0x10, 0xf0, 0x38, 0x00, 0x24, // stg %r1, 56(%r15)
1202   0xc0, 0x10, 0x00, 0x00, 0x00, 0x00, // larl %r1, _GLOBAL_OFFSET_TABLE_ (to fill)
1203   0xd2, 0x07, 0xf0, 0x30, 0x10, 0x08, // mvc 48(8,%r15), 8(%r1)
1204   0xe3, 0x10, 0x10, 0x10, 0x00, 0x04, // lg %r1, 16(%r1)
1205   0x07, 0xf1, // br %r1
1206   0x07, 0x00, // nopr
1207   0x07, 0x00, // nopr
1208   0x07, 0x00, // nopr
1209 };
1210 
1211 template<int size>
1212 void
1213 Output_data_plt_s390<size>::fill_first_plt_entry(
1214     unsigned char* pov,
1215     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1216     typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
1217 {
1218   if (size == 64)
1219     {
1220       memcpy(pov, first_plt_entry_64, plt_entry_size);
1221       S390_relocate_functions<size>::pcrela32dbl(pov + 8, got_address, (plt_address + 6));
1222     }
1223   else if (!parameters->options().output_is_position_independent())
1224     {
1225       memcpy(pov, first_plt_entry_32_abs, plt_entry_size);
1226       elfcpp::Swap<32, true>::writeval(pov + 24, got_address);
1227     }
1228   else
1229     {
1230       memcpy(pov, first_plt_entry_32_pic, plt_entry_size);
1231     }
1232 }
1233 
1234 template<int size>
1235 const unsigned char
1236 Output_data_plt_s390<size>::plt_entry_32_abs[plt_entry_size] =
1237 {
1238   // first part
1239   0x0d, 0x10, // basr %r1, %r0
1240   0x58, 0x10, 0x10, 0x16, // l %r1, 22(%r1)
1241   0x58, 0x10, 0x10, 0x00, // l %r1, 0(%r1)
1242   0x07, 0xf1, // br %r1
1243   // second part
1244   0x0d, 0x10, // basr %r1, %r0
1245   0x58, 0x10, 0x10, 0x0e, // l %r1, 14(%r1)
1246   0xa7, 0xf4, 0x00, 0x00, // j first_plt_entry (to fill)
1247   0x00, 0x00, // padding
1248   0x00, 0x00, 0x00, 0x00, // _GLOBAL_OFFSET_TABLE_+sym@gotplt (to fill)
1249   0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill)
1250 };
1251 
1252 template<int size>
1253 const unsigned char
1254 Output_data_plt_s390<size>::plt_entry_32_pic12[plt_entry_size] =
1255 {
1256   // first part
1257   0x58, 0x10, 0xc0, 0x00, // l %r1, sym@gotplt(%r12) (to fill)
1258   0x07, 0xf1, // br %r1
1259   0x00, 0x00, // padding
1260   0x00, 0x00, 0x00, 0x00, // padding
1261   // second part
1262   0x0d, 0x10, // basr %r1, %r0
1263   0x58, 0x10, 0x10, 0x0e, // l %r1, 14(%r1)
1264   0xa7, 0xf4, 0x00, 0x00, // j first_plt_entry (to fill)
1265   0x00, 0x00, // padding
1266   0x00, 0x00, 0x00, 0x00, // padding
1267   0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill)
1268 };
1269 
1270 template<int size>
1271 const unsigned char
1272 Output_data_plt_s390<size>::plt_entry_32_pic16[plt_entry_size] =
1273 {
1274   // first part
1275   0xa7, 0x18, 0x00, 0x00, // lhi %r1, sym@gotplt (to fill)
1276   0x58, 0x11, 0xc0, 0x00, // l %r1, 0(%r1, %r12)
1277   0x07, 0xf1, // br %r1
1278   0x00, 0x00, // padding
1279   // second part
1280   0x0d, 0x10, // basr %r1, %r0
1281   0x58, 0x10, 0x10, 0x0e, // l %r1, 14(%r1)
1282   0xa7, 0xf4, 0x00, 0x00, // j first_plt_entry (to fill)
1283   0x00, 0x00, // padding
1284   0x00, 0x00, 0x00, 0x00, // padding
1285   0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill)
1286 };
1287 
1288 template<int size>
1289 const unsigned char
1290 Output_data_plt_s390<size>::plt_entry_32_pic[plt_entry_size] =
1291 {
1292   // first part
1293   0x0d, 0x10, // basr %r1, %r0
1294   0x58, 0x10, 0x10, 0x16, // l %r1, 22(%r1)
1295   0x58, 0x11, 0xc0, 0x00, // l %r1, 0(%r1, %r12)
1296   0x07, 0xf1, // br %r1
1297   // second part
1298   0x0d, 0x10, // basr %r1, %r0
1299   0x58, 0x10, 0x10, 0x0e, // l %r1, 14(%r1)
1300   0xa7, 0xf4, 0x00, 0x00, // j first_plt_entry (to fill)
1301   0x00, 0x00, // padding
1302   0x00, 0x00, 0x00, 0x00, // sym@gotplt (to fill)
1303   0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill)
1304 };
1305 
1306 template<int size>
1307 const unsigned char
1308 Output_data_plt_s390<size>::plt_entry_64[plt_entry_size] =
1309 {
1310   // first part
1311   0xc0, 0x10, 0x00, 0x00, 0x00, 0x00, // larl %r1, _GLOBAL_OFFSET_TABLE_+off (to fill)
1312   0xe3, 0x10, 0x10, 0x00, 0x00, 0x04, // lg %r1, 0(%r1)
1313   0x07, 0xf1, // br %r1
1314   // second part
1315   0x0d, 0x10, // basr %r1, %r0
1316   0xe3, 0x10, 0x10, 0x0c, 0x00, 0x14, // lgf %r1, 12(%r1)
1317   0xc0, 0xf4, 0x00, 0x00, 0x00, 0x00, // jg first_plt_entry (to fill)
1318   0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill)
1319 };
1320 
1321 template<int size>
1322 unsigned int
1323 Output_data_plt_s390<size>::fill_plt_entry(
1324     unsigned char* pov,
1325     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1326     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
1327     unsigned int got_offset,
1328     unsigned int plt_offset,
1329     unsigned int plt_rel_offset)
1330 {
1331   if (size == 64)
1332   {
1333     memcpy(pov, plt_entry_64, plt_entry_size);
1334     S390_relocate_functions<size>::pcrela32dbl(pov + 2, got_address + got_offset, plt_address + plt_offset);
1335     S390_relocate_functions<size>::pcrela32dbl(pov + 24, plt_address, plt_address + plt_offset + 22);
1336   }
1337   else
1338   {
1339     if (!parameters->options().output_is_position_independent())
1340       {
1341 	memcpy(pov, plt_entry_32_abs, plt_entry_size);
1342 	elfcpp::Swap<32, true>::writeval(pov + 24, got_address + got_offset);
1343       }
1344     else
1345       {
1346 	if (got_offset < 0x1000)
1347 	  {
1348 	    memcpy(pov, plt_entry_32_pic12, plt_entry_size);
1349 	    S390_relocate_functions<size>::rela12(pov + 2, got_offset);
1350 	  }
1351 	else if (got_offset < 0x8000)
1352 	  {
1353 	    memcpy(pov, plt_entry_32_pic16, plt_entry_size);
1354 	    S390_relocate_functions<size>::rela16(pov + 2, got_offset);
1355 	  }
1356 	else
1357 	  {
1358 	    memcpy(pov, plt_entry_32_pic, plt_entry_size);
1359 	    elfcpp::Swap<32, true>::writeval(pov + 24, got_offset);
1360 	  }
1361       }
1362     typename elfcpp::Elf_types<size>::Elf_Addr target = plt_address;
1363     if (plt_offset >= 0x10000)
1364       {
1365 	// Would overflow pcrela16dbl - aim at the farthest previous jump
1366 	// we can reach.
1367 	if (plt_offset > 0x10000)
1368 	  {
1369 	    // Use the full range of pcrel16dbl.
1370 	    target = plt_address + plt_offset - 0x10000 + 18;
1371 	  }
1372 	else
1373 	  {
1374 	    // if plt_offset is exactly 0x10000, the above would aim at 18th byte
1375 	    // of first_plt_entry, which doesn't have the jump back like the others.
1376 	    // Aim at the next entry instead.
1377 	    target = plt_address + plt_offset - 0xffe0 + 18;
1378 	  }
1379       }
1380     S390_relocate_functions<size>::pcrela16dbl(pov + 20, target, plt_address + plt_offset + 18);
1381   }
1382   elfcpp::Swap<32, true>::writeval(pov + 28, plt_rel_offset);
1383   if (size == 64)
1384     return 14;
1385   else
1386     return 12;
1387 }
1388 
1389 // The .eh_frame unwind information for the PLT.
1390 
1391 template<>
1392 const unsigned char
1393 Output_data_plt_s390<32>::plt_eh_frame_cie[plt_eh_frame_cie_size] =
1394 {
1395   1,				// CIE version.
1396   'z',				// Augmentation: augmentation size included.
1397   'R',				// Augmentation: FDE encoding included.
1398   '\0',				// End of augmentation string.
1399   1,				// Code alignment factor.
1400   0x7c,				// Data alignment factor.
1401   14,				// Return address column.
1402   1,				// Augmentation size.
1403   (elfcpp::DW_EH_PE_pcrel	// FDE encoding.
1404    | elfcpp::DW_EH_PE_sdata4),
1405   elfcpp::DW_CFA_def_cfa, 15, 0x60,	// DW_CFA_def_cfa: r15 ofs 0x60.
1406 };
1407 
1408 template<>
1409 const unsigned char
1410 Output_data_plt_s390<64>::plt_eh_frame_cie[plt_eh_frame_cie_size] =
1411 {
1412   1,				// CIE version.
1413   'z',				// Augmentation: augmentation size included.
1414   'R',				// Augmentation: FDE encoding included.
1415   '\0',				// End of augmentation string.
1416   1,				// Code alignment factor.
1417   0x78,				// Data alignment factor.
1418   14,				// Return address column.
1419   1,				// Augmentation size.
1420   (elfcpp::DW_EH_PE_pcrel	// FDE encoding.
1421    | elfcpp::DW_EH_PE_sdata4),
1422   elfcpp::DW_CFA_def_cfa, 15, 0xa0,	// DW_CFA_def_cfa: r15 ofs 0xa0.
1423 };
1424 
1425 template<int size>
1426 const unsigned char
1427 Output_data_plt_s390<size>::plt_eh_frame_fde[plt_eh_frame_fde_size] =
1428 {
1429   0, 0, 0, 0,				// Replaced with offset to .plt.
1430   0, 0, 0, 0,				// Replaced with size of .plt.
1431   0,					// Augmentation size.
1432   elfcpp::DW_CFA_nop,
1433   elfcpp::DW_CFA_nop,
1434   elfcpp::DW_CFA_nop
1435 };
1436 
1437 // Write out the PLT.  This uses the hand-coded instructions above,
1438 // and adjusts them as needed.
1439 
1440 template<int size>
1441 void
1442 Output_data_plt_s390<size>::do_write(Output_file* of)
1443 {
1444   const off_t offset = this->offset();
1445   const section_size_type oview_size =
1446     convert_to_section_size_type(this->data_size());
1447   unsigned char* const oview = of->get_output_view(offset, oview_size);
1448 
1449   const off_t got_file_offset = this->got_plt_->offset();
1450   gold_assert(parameters->incremental_update()
1451 	      || (got_file_offset + this->got_plt_->data_size()
1452 		  == this->got_irelative_->offset()));
1453   const section_size_type got_size =
1454     convert_to_section_size_type(this->got_plt_->data_size()
1455 				 + this->got_irelative_->data_size());
1456   unsigned char* const got_view = of->get_output_view(got_file_offset,
1457 						      got_size);
1458 
1459   unsigned char* pov = oview;
1460 
1461   // The base address of the .plt section.
1462   typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
1463   // The base address of the PLT portion of the .got section,
1464   // which is where the GOT pointer will point, and where the
1465   // three reserved GOT entries are located.
1466   typename elfcpp::Elf_types<size>::Elf_Addr got_address
1467     = this->got_plt_->address();
1468 
1469   this->fill_first_plt_entry(pov, got_address, plt_address);
1470   pov += this->get_plt_entry_size();
1471 
1472   unsigned char* got_pov = got_view;
1473 
1474   const int rel_size = elfcpp::Elf_sizes<size>::rela_size;
1475 
1476   unsigned int plt_offset = this->get_plt_entry_size();
1477   unsigned int plt_rel_offset = 0;
1478   unsigned int got_offset = 3 * size / 8;
1479   const unsigned int count = this->count_ + this->irelative_count_;
1480   // The first three entries in the GOT are reserved, and are written
1481   // by Output_data_got_plt_s390::do_write.
1482   got_pov += 3 * size / 8;
1483 
1484   for (unsigned int plt_index = 0;
1485        plt_index < count;
1486        ++plt_index,
1487 	 pov += plt_entry_size,
1488 	 got_pov += size / 8,
1489 	 plt_offset += plt_entry_size,
1490 	 plt_rel_offset += rel_size,
1491 	 got_offset += size / 8)
1492     {
1493       // Set and adjust the PLT entry itself.
1494       unsigned int lazy_offset = this->fill_plt_entry(pov,
1495 						      got_address, plt_address,
1496 						      got_offset, plt_offset,
1497 						      plt_rel_offset);
1498 
1499       // Set the entry in the GOT.
1500       elfcpp::Swap<size, true>::writeval(got_pov,
1501 					plt_address + plt_offset + lazy_offset);
1502     }
1503 
1504   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
1505   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
1506 
1507   of->write_output_view(offset, oview_size, oview);
1508   of->write_output_view(got_file_offset, got_size, got_view);
1509 }
1510 
1511 // Get the GOT section, creating it if necessary.
1512 
1513 template<int size>
1514 Output_data_got<size, true>*
1515 Target_s390<size>::got_section(Symbol_table* symtab, Layout* layout)
1516 {
1517   if (this->got_ == NULL)
1518     {
1519       gold_assert(symtab != NULL && layout != NULL);
1520 
1521       // When using -z now, we can treat .got as a relro section.
1522       // Without -z now, it is modified after program startup by lazy
1523       // PLT relocations.
1524       bool is_got_relro = parameters->options().now();
1525       Output_section_order got_order = (is_got_relro
1526 					? ORDER_RELRO_LAST
1527 					: ORDER_DATA);
1528 
1529       // The old GNU linker creates a .got.plt section.  We just
1530       // create another set of data in the .got section.  Note that we
1531       // always create a PLT if we create a GOT, although the PLT
1532       // might be empty.
1533       this->got_plt_ = new Output_data_got_plt_s390<size>(layout);
1534       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1535 				      (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
1536 				      this->got_plt_, got_order, is_got_relro);
1537 
1538       // The first three entries are reserved.
1539       this->got_plt_->set_current_data_size(3 * size / 8);
1540 
1541       // If there are any IRELATIVE relocations, they get GOT entries
1542       // in .got.plt after the jump slot entries.
1543       this->got_irelative_ = new Output_data_space(size / 8, "** GOT IRELATIVE PLT");
1544       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1545 				      (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
1546 				      this->got_irelative_,
1547 				      got_order, is_got_relro);
1548 
1549       // Unlike some targets (.e.g x86), S/390 does not use separate .got and
1550       // .got.plt sections in output.  The output .got section contains both
1551       // PLT and non-PLT GOT entries.
1552       this->got_ = new Output_data_got<size, true>();
1553 
1554       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1555 				      (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
1556 				      this->got_, got_order, is_got_relro);
1557 
1558       // Define _GLOBAL_OFFSET_TABLE_ at the start of the GOT.
1559       this->global_offset_table_ =
1560         symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1561 				      Symbol_table::PREDEFINED,
1562 				      this->got_plt_,
1563 				      0, 0, elfcpp::STT_OBJECT,
1564 				      elfcpp::STB_LOCAL,
1565 				      elfcpp::STV_HIDDEN, 0,
1566 				      false, false);
1567 
1568     }
1569   return this->got_;
1570 }
1571 
1572 // Get the dynamic reloc section, creating it if necessary.
1573 
1574 template<int size>
1575 typename Target_s390<size>::Reloc_section*
1576 Target_s390<size>::rela_dyn_section(Layout* layout)
1577 {
1578   if (this->rela_dyn_ == NULL)
1579     {
1580       gold_assert(layout != NULL);
1581       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
1582       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1583 				      elfcpp::SHF_ALLOC, this->rela_dyn_,
1584 				      ORDER_DYNAMIC_RELOCS, false);
1585     }
1586   return this->rela_dyn_;
1587 }
1588 
1589 // Get the section to use for IRELATIVE relocs, creating it if
1590 // necessary.  These go in .rela.dyn, but only after all other dynamic
1591 // relocations.  They need to follow the other dynamic relocations so
1592 // that they can refer to global variables initialized by those
1593 // relocs.
1594 
1595 template<int size>
1596 typename Target_s390<size>::Reloc_section*
1597 Target_s390<size>::rela_irelative_section(Layout* layout)
1598 {
1599   if (this->rela_irelative_ == NULL)
1600     {
1601       // Make sure we have already created the dynamic reloc section.
1602       this->rela_dyn_section(layout);
1603       this->rela_irelative_ = new Reloc_section(false);
1604       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1605 				      elfcpp::SHF_ALLOC, this->rela_irelative_,
1606 				      ORDER_DYNAMIC_RELOCS, false);
1607       gold_assert(this->rela_dyn_->output_section()
1608 		  == this->rela_irelative_->output_section());
1609     }
1610   return this->rela_irelative_;
1611 }
1612 
1613 // Write the first three reserved words of the .got.plt section.
1614 // The remainder of the section is written while writing the PLT
1615 // in Output_data_plt_s390::do_write.
1616 
1617 template<int size>
1618 void
1619 Output_data_got_plt_s390<size>::do_write(Output_file* of)
1620 {
1621   // The first entry in the GOT is the address of the .dynamic section
1622   // aka the PT_DYNAMIC segment.  The next two entries are reserved.
1623   // We saved space for them when we created the section in
1624   // Target_x86_64::got_section.
1625   const off_t got_file_offset = this->offset();
1626   gold_assert(this->data_size() >= 3 * size / 8);
1627   unsigned char* const got_view =
1628       of->get_output_view(got_file_offset, 3 * size / 8);
1629   Output_section* dynamic = this->layout_->dynamic_section();
1630   uint64_t dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
1631   elfcpp::Swap<size, true>::writeval(got_view, dynamic_addr);
1632   memset(got_view + size / 8, 0, 2 * size / 8);
1633   of->write_output_view(got_file_offset, 3 * size / 8, got_view);
1634 }
1635 
1636 // Create the PLT section.
1637 
1638 template<int size>
1639 void
1640 Target_s390<size>::make_plt_section(Symbol_table* symtab, Layout* layout)
1641 {
1642   if (this->plt_ == NULL)
1643     {
1644       // Create the GOT sections first.
1645       this->got_section(symtab, layout);
1646 
1647       // Ensure that .rela.dyn always appears before .rela.plt  This is
1648       // necessary due to how, on 32-bit S/390 and some other targets,
1649       // .rela.dyn needs to include .rela.plt in it's range.
1650       this->rela_dyn_section(layout);
1651 
1652       this->plt_ = new Output_data_plt_s390<size>(layout,
1653 		      this->got_, this->got_plt_, this->got_irelative_);
1654 
1655       // Add unwind information if requested.
1656       if (parameters->options().ld_generated_unwind_info())
1657 	this->plt_->add_eh_frame(layout);
1658 
1659       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1660 				      (elfcpp::SHF_ALLOC
1661 				       | elfcpp::SHF_EXECINSTR),
1662 				      this->plt_, ORDER_PLT, false);
1663 
1664       // Make the sh_info field of .rela.plt point to .plt.
1665       Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1666       rela_plt_os->set_info_section(this->plt_->output_section());
1667     }
1668 }
1669 
1670 // Create a PLT entry for a global symbol.
1671 
1672 template<int size>
1673 void
1674 Target_s390<size>::make_plt_entry(Symbol_table* symtab, Layout* layout,
1675 				    Symbol* gsym)
1676 {
1677   if (gsym->has_plt_offset())
1678     return;
1679 
1680   if (this->plt_ == NULL)
1681     this->make_plt_section(symtab, layout);
1682 
1683   this->plt_->add_entry(symtab, layout, gsym);
1684 }
1685 
1686 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
1687 
1688 template<int size>
1689 void
1690 Target_s390<size>::make_local_ifunc_plt_entry(
1691     Symbol_table* symtab, Layout* layout,
1692     Sized_relobj_file<size, true>* relobj,
1693     unsigned int local_sym_index)
1694 {
1695   if (relobj->local_has_plt_offset(local_sym_index))
1696     return;
1697   if (this->plt_ == NULL)
1698     this->make_plt_section(symtab, layout);
1699   unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
1700 							      relobj,
1701 							      local_sym_index);
1702   relobj->set_local_plt_offset(local_sym_index, plt_offset);
1703 }
1704 
1705 // Return the number of entries in the PLT.
1706 
1707 template<int size>
1708 unsigned int
1709 Target_s390<size>::plt_entry_count() const
1710 {
1711   if (this->plt_ == NULL)
1712     return 0;
1713   return this->plt_->entry_count();
1714 }
1715 
1716 // Return the offset of the first non-reserved PLT entry.
1717 
1718 template<int size>
1719 unsigned int
1720 Target_s390<size>::first_plt_entry_offset() const
1721 {
1722   return this->plt_->first_plt_entry_offset();
1723 }
1724 
1725 // Return the size of each PLT entry.
1726 
1727 template<int size>
1728 unsigned int
1729 Target_s390<size>::plt_entry_size() const
1730 {
1731   return this->plt_->get_plt_entry_size();
1732 }
1733 
1734 // Create the GOT and PLT sections for an incremental update.
1735 
1736 template<int size>
1737 Output_data_got_base*
1738 Target_s390<size>::init_got_plt_for_update(Symbol_table* symtab,
1739 				       Layout* layout,
1740 				       unsigned int got_count,
1741 				       unsigned int plt_count)
1742 {
1743   gold_assert(this->got_ == NULL);
1744 
1745   // Add the three reserved entries.
1746   this->got_plt_ = new Output_data_got_plt_s390<size>(layout, (plt_count + 3) * size / 8);
1747   layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1748 				  (elfcpp::SHF_ALLOC
1749 				   | elfcpp::SHF_WRITE),
1750 				  this->got_plt_, ORDER_NON_RELRO_FIRST,
1751 				  false);
1752 
1753   // If there are any IRELATIVE relocations, they get GOT entries in
1754   // .got.plt after the jump slot entries.
1755   this->got_irelative_ = new Output_data_space(0, size / 8, "** GOT IRELATIVE PLT");
1756   layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1757 				  elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1758 				  this->got_irelative_,
1759 				  ORDER_NON_RELRO_FIRST, false);
1760 
1761   this->got_ = new Output_data_got<size, true>(got_count * size / 8);
1762   layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1763 				  (elfcpp::SHF_ALLOC
1764 				   | elfcpp::SHF_WRITE),
1765 				  this->got_, ORDER_RELRO_LAST,
1766 				  true);
1767 
1768   // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
1769   this->global_offset_table_ =
1770     symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1771 				  Symbol_table::PREDEFINED,
1772 				  this->got_plt_,
1773 				  0, 0, elfcpp::STT_OBJECT,
1774 				  elfcpp::STB_LOCAL,
1775 				  elfcpp::STV_HIDDEN, 0,
1776 				  false, false);
1777 
1778   // Create the PLT section.
1779   this->plt_ = new Output_data_plt_s390<size>(layout,
1780 		  this->got_, this->got_plt_, this->got_irelative_, plt_count);
1781 
1782   // Add unwind information if requested.
1783   if (parameters->options().ld_generated_unwind_info())
1784     this->plt_->add_eh_frame(layout);
1785 
1786   layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1787 				  elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
1788 				  this->plt_, ORDER_PLT, false);
1789 
1790   // Make the sh_info field of .rela.plt point to .plt.
1791   Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1792   rela_plt_os->set_info_section(this->plt_->output_section());
1793 
1794   // Create the rela_dyn section.
1795   this->rela_dyn_section(layout);
1796 
1797   return this->got_;
1798 }
1799 
1800 // Reserve a GOT entry for a local symbol, and regenerate any
1801 // necessary dynamic relocations.
1802 
1803 template<int size>
1804 void
1805 Target_s390<size>::reserve_local_got_entry(
1806     unsigned int got_index,
1807     Sized_relobj<size, true>* obj,
1808     unsigned int r_sym,
1809     unsigned int got_type)
1810 {
1811   unsigned int got_offset = got_index * size / 8;
1812   Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
1813 
1814   this->got_->reserve_local(got_index, obj, r_sym, got_type);
1815   switch (got_type)
1816     {
1817     case GOT_TYPE_STANDARD:
1818       if (parameters->options().output_is_position_independent())
1819 	rela_dyn->add_local_relative(obj, r_sym, elfcpp::R_390_RELATIVE,
1820 				     this->got_, got_offset, 0, false);
1821       break;
1822     case GOT_TYPE_TLS_OFFSET:
1823       rela_dyn->add_local(obj, r_sym, elfcpp::R_390_TLS_TPOFF,
1824 			  this->got_, got_offset, 0);
1825       break;
1826     case GOT_TYPE_TLS_PAIR:
1827       this->got_->reserve_slot(got_index + 1);
1828       rela_dyn->add_local(obj, r_sym, elfcpp::R_390_TLS_DTPMOD,
1829 			  this->got_, got_offset, 0);
1830       break;
1831     default:
1832       gold_unreachable();
1833     }
1834 }
1835 
1836 // Reserve a GOT entry for a global symbol, and regenerate any
1837 // necessary dynamic relocations.
1838 
1839 template<int size>
1840 void
1841 Target_s390<size>::reserve_global_got_entry(unsigned int got_index,
1842 					      Symbol* gsym,
1843 					      unsigned int got_type)
1844 {
1845   unsigned int got_offset = got_index * size / 8;
1846   Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
1847 
1848   this->got_->reserve_global(got_index, gsym, got_type);
1849   switch (got_type)
1850     {
1851     case GOT_TYPE_STANDARD:
1852       if (!gsym->final_value_is_known())
1853 	{
1854 	  if (gsym->is_from_dynobj()
1855 	      || gsym->is_undefined()
1856 	      || gsym->is_preemptible()
1857 	      || gsym->type() == elfcpp::STT_GNU_IFUNC)
1858 	    rela_dyn->add_global(gsym, elfcpp::R_390_GLOB_DAT,
1859 				 this->got_, got_offset, 0);
1860 	  else
1861 	    rela_dyn->add_global_relative(gsym, elfcpp::R_390_RELATIVE,
1862 					  this->got_, got_offset, 0, false);
1863 	}
1864       break;
1865     case GOT_TYPE_TLS_OFFSET:
1866       rela_dyn->add_global_relative(gsym, elfcpp::R_390_TLS_TPOFF,
1867 				    this->got_, got_offset, 0, false);
1868       break;
1869     case GOT_TYPE_TLS_PAIR:
1870       this->got_->reserve_slot(got_index + 1);
1871       rela_dyn->add_global_relative(gsym, elfcpp::R_390_TLS_DTPMOD,
1872 				    this->got_, got_offset, 0, false);
1873       rela_dyn->add_global_relative(gsym, elfcpp::R_390_TLS_DTPOFF,
1874 				    this->got_, got_offset + size / 8, 0, false);
1875       break;
1876     default:
1877       gold_unreachable();
1878     }
1879 }
1880 
1881 // Register an existing PLT entry for a global symbol.
1882 
1883 template<int size>
1884 void
1885 Target_s390<size>::register_global_plt_entry(Symbol_table* symtab,
1886 					       Layout* layout,
1887 					       unsigned int plt_index,
1888 					       Symbol* gsym)
1889 {
1890   gold_assert(this->plt_ != NULL);
1891   gold_assert(!gsym->has_plt_offset());
1892 
1893   this->plt_->reserve_slot(plt_index);
1894 
1895   gsym->set_plt_offset((plt_index + 1) * this->plt_entry_size());
1896 
1897   unsigned int got_offset = (plt_index + 3) * size / 8;
1898   this->plt_->add_relocation(symtab, layout, gsym, got_offset);
1899 }
1900 
1901 // Force a COPY relocation for a given symbol.
1902 
1903 template<int size>
1904 void
1905 Target_s390<size>::emit_copy_reloc(
1906     Symbol_table* symtab, Symbol* sym, Output_section* os, off_t offset)
1907 {
1908   this->copy_relocs_.emit_copy_reloc(symtab,
1909 				     symtab->get_sized_symbol<size>(sym),
1910 				     os,
1911 				     offset,
1912 				     this->rela_dyn_section(NULL));
1913 }
1914 
1915 // Create a GOT entry for the TLS module index.
1916 
1917 template<int size>
1918 unsigned int
1919 Target_s390<size>::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
1920 					 Sized_relobj_file<size, true>* object)
1921 {
1922   if (this->got_mod_index_offset_ == -1U)
1923     {
1924       gold_assert(symtab != NULL && layout != NULL && object != NULL);
1925       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
1926       Output_data_got<size, true>* got = this->got_section(symtab, layout);
1927       unsigned int got_offset = got->add_constant(0);
1928       rela_dyn->add_local(object, 0, elfcpp::R_390_TLS_DTPMOD, got,
1929 			  got_offset, 0);
1930       got->add_constant(0);
1931       this->got_mod_index_offset_ = got_offset;
1932     }
1933   return this->got_mod_index_offset_;
1934 }
1935 
1936 // Optimize the TLS relocation type based on what we know about the
1937 // symbol.  IS_FINAL is true if the final address of this symbol is
1938 // known at link time.
1939 
1940 template<int size>
1941 tls::Tls_optimization
1942 Target_s390<size>::optimize_tls_reloc(bool is_final, int r_type)
1943 {
1944   // If we are generating a shared library, then we can't do anything
1945   // in the linker.
1946   if (parameters->options().shared())
1947     return tls::TLSOPT_NONE;
1948 
1949   switch (r_type)
1950     {
1951     case elfcpp::R_390_TLS_GD32:
1952     case elfcpp::R_390_TLS_GD64:
1953     case elfcpp::R_390_TLS_GDCALL:
1954       // These are General-Dynamic which permits fully general TLS
1955       // access.  Since we know that we are generating an executable,
1956       // we can convert this to Initial-Exec.  If we also know that
1957       // this is a local symbol, we can further switch to Local-Exec.
1958       if (is_final)
1959 	return tls::TLSOPT_TO_LE;
1960       return tls::TLSOPT_TO_IE;
1961 
1962     case elfcpp::R_390_TLS_LDM32:
1963     case elfcpp::R_390_TLS_LDM64:
1964     case elfcpp::R_390_TLS_LDO32:
1965     case elfcpp::R_390_TLS_LDO64:
1966     case elfcpp::R_390_TLS_LDCALL:
1967       // This is Local-Dynamic, which refers to a local symbol in the
1968       // dynamic TLS block.  Since we know that we generating an
1969       // executable, we can switch to Local-Exec.
1970       return tls::TLSOPT_TO_LE;
1971 
1972     case elfcpp::R_390_TLS_IE32:
1973     case elfcpp::R_390_TLS_IE64:
1974     case elfcpp::R_390_TLS_GOTIE32:
1975     case elfcpp::R_390_TLS_GOTIE64:
1976     case elfcpp::R_390_TLS_LOAD:
1977       // These are Initial-Exec relocs which get the thread offset
1978       // from the GOT.  If we know that we are linking against the
1979       // local symbol, we can switch to Local-Exec, which links the
1980       // thread offset into the instruction.
1981       if (is_final)
1982 	return tls::TLSOPT_TO_LE;
1983       return tls::TLSOPT_NONE;
1984 
1985     case elfcpp::R_390_TLS_GOTIE12:
1986     case elfcpp::R_390_TLS_IEENT:
1987     case elfcpp::R_390_TLS_GOTIE20:
1988       // These are Initial-Exec, but cannot be optimized.
1989       return tls::TLSOPT_NONE;
1990 
1991     case elfcpp::R_390_TLS_LE32:
1992     case elfcpp::R_390_TLS_LE64:
1993       // When we already have Local-Exec, there is nothing further we
1994       // can do.
1995       return tls::TLSOPT_NONE;
1996 
1997     default:
1998       gold_unreachable();
1999     }
2000 }
2001 
2002 // Get the Reference_flags for a particular relocation.
2003 
2004 template<int size>
2005 int
2006 Target_s390<size>::Scan::get_reference_flags(unsigned int r_type)
2007 {
2008   switch (r_type)
2009     {
2010     case elfcpp::R_390_NONE:
2011     case elfcpp::R_390_GNU_VTINHERIT:
2012     case elfcpp::R_390_GNU_VTENTRY:
2013     case elfcpp::R_390_GOTPC:
2014     case elfcpp::R_390_GOTPCDBL:
2015       // No symbol reference.
2016       return 0;
2017 
2018     case elfcpp::R_390_64:
2019     case elfcpp::R_390_32:
2020     case elfcpp::R_390_20:
2021     case elfcpp::R_390_16:
2022     case elfcpp::R_390_12:
2023     case elfcpp::R_390_8:
2024       return Symbol::ABSOLUTE_REF;
2025 
2026     case elfcpp::R_390_PC12DBL:
2027     case elfcpp::R_390_PC16:
2028     case elfcpp::R_390_PC16DBL:
2029     case elfcpp::R_390_PC24DBL:
2030     case elfcpp::R_390_PC32:
2031     case elfcpp::R_390_PC32DBL:
2032     case elfcpp::R_390_PC64:
2033     case elfcpp::R_390_GOTOFF16:
2034     case elfcpp::R_390_GOTOFF32:
2035     case elfcpp::R_390_GOTOFF64:
2036       return Symbol::RELATIVE_REF;
2037 
2038     case elfcpp::R_390_PLT12DBL:
2039     case elfcpp::R_390_PLT16DBL:
2040     case elfcpp::R_390_PLT24DBL:
2041     case elfcpp::R_390_PLT32:
2042     case elfcpp::R_390_PLT32DBL:
2043     case elfcpp::R_390_PLT64:
2044     case elfcpp::R_390_PLTOFF16:
2045     case elfcpp::R_390_PLTOFF32:
2046     case elfcpp::R_390_PLTOFF64:
2047       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
2048 
2049     case elfcpp::R_390_GOT12:
2050     case elfcpp::R_390_GOT16:
2051     case elfcpp::R_390_GOT20:
2052     case elfcpp::R_390_GOT32:
2053     case elfcpp::R_390_GOT64:
2054     case elfcpp::R_390_GOTENT:
2055     case elfcpp::R_390_GOTPLT12:
2056     case elfcpp::R_390_GOTPLT16:
2057     case elfcpp::R_390_GOTPLT20:
2058     case elfcpp::R_390_GOTPLT32:
2059     case elfcpp::R_390_GOTPLT64:
2060     case elfcpp::R_390_GOTPLTENT:
2061       // Absolute in GOT.
2062       return Symbol::ABSOLUTE_REF;
2063 
2064     case elfcpp::R_390_TLS_GD32:          // Global-dynamic
2065     case elfcpp::R_390_TLS_GD64:
2066     case elfcpp::R_390_TLS_GDCALL:
2067     case elfcpp::R_390_TLS_LDM32:         // Local-dynamic
2068     case elfcpp::R_390_TLS_LDM64:
2069     case elfcpp::R_390_TLS_LDO32:
2070     case elfcpp::R_390_TLS_LDO64:
2071     case elfcpp::R_390_TLS_LDCALL:
2072     case elfcpp::R_390_TLS_IE32:          // Initial-exec
2073     case elfcpp::R_390_TLS_IE64:
2074     case elfcpp::R_390_TLS_IEENT:
2075     case elfcpp::R_390_TLS_GOTIE12:
2076     case elfcpp::R_390_TLS_GOTIE20:
2077     case elfcpp::R_390_TLS_GOTIE32:
2078     case elfcpp::R_390_TLS_GOTIE64:
2079     case elfcpp::R_390_TLS_LOAD:
2080     case elfcpp::R_390_TLS_LE32:          // Local-exec
2081     case elfcpp::R_390_TLS_LE64:
2082       return Symbol::TLS_REF;
2083 
2084     case elfcpp::R_390_COPY:
2085     case elfcpp::R_390_GLOB_DAT:
2086     case elfcpp::R_390_JMP_SLOT:
2087     case elfcpp::R_390_RELATIVE:
2088     case elfcpp::R_390_IRELATIVE:
2089     case elfcpp::R_390_TLS_TPOFF:
2090     case elfcpp::R_390_TLS_DTPOFF:
2091     case elfcpp::R_390_TLS_DTPMOD:
2092     default:
2093       // Not expected.  We will give an error later.
2094       return 0;
2095     }
2096 }
2097 
2098 // Report an unsupported relocation against a local symbol.
2099 
2100 template<int size>
2101 void
2102 Target_s390<size>::Scan::unsupported_reloc_local(
2103      Sized_relobj_file<size, true>* object,
2104      unsigned int r_type)
2105 {
2106   gold_error(_("%s: unsupported reloc %u against local symbol"),
2107 	     object->name().c_str(), r_type);
2108 }
2109 
2110 // We are about to emit a dynamic relocation of type R_TYPE.  If the
2111 // dynamic linker does not support it, issue an error.
2112 
2113 template<int size>
2114 void
2115 Target_s390<size>::Scan::check_non_pic(Relobj* object, unsigned int r_type)
2116 {
2117   gold_assert(r_type != elfcpp::R_390_NONE);
2118 
2119   if (size == 64)
2120     {
2121       switch (r_type)
2122 	{
2123 	  // These are the relocation types supported by glibc for s390 64-bit.
2124 	case elfcpp::R_390_RELATIVE:
2125 	case elfcpp::R_390_IRELATIVE:
2126 	case elfcpp::R_390_COPY:
2127 	case elfcpp::R_390_GLOB_DAT:
2128 	case elfcpp::R_390_JMP_SLOT:
2129 	case elfcpp::R_390_TLS_DTPMOD:
2130 	case elfcpp::R_390_TLS_DTPOFF:
2131 	case elfcpp::R_390_TLS_TPOFF:
2132 	case elfcpp::R_390_8:
2133 	case elfcpp::R_390_16:
2134 	case elfcpp::R_390_32:
2135 	case elfcpp::R_390_64:
2136 	case elfcpp::R_390_PC16:
2137 	case elfcpp::R_390_PC16DBL:
2138 	case elfcpp::R_390_PC32:
2139 	case elfcpp::R_390_PC32DBL:
2140 	case elfcpp::R_390_PC64:
2141 	  return;
2142 
2143 	default:
2144 	  break;
2145 	}
2146     }
2147   else
2148     {
2149       switch (r_type)
2150 	{
2151 	  // These are the relocation types supported by glibc for s390 32-bit.
2152 	case elfcpp::R_390_RELATIVE:
2153 	case elfcpp::R_390_IRELATIVE:
2154 	case elfcpp::R_390_COPY:
2155 	case elfcpp::R_390_GLOB_DAT:
2156 	case elfcpp::R_390_JMP_SLOT:
2157 	case elfcpp::R_390_TLS_DTPMOD:
2158 	case elfcpp::R_390_TLS_DTPOFF:
2159 	case elfcpp::R_390_TLS_TPOFF:
2160 	case elfcpp::R_390_8:
2161 	case elfcpp::R_390_16:
2162 	case elfcpp::R_390_32:
2163 	case elfcpp::R_390_PC16:
2164 	case elfcpp::R_390_PC16DBL:
2165 	case elfcpp::R_390_PC32:
2166 	case elfcpp::R_390_PC32DBL:
2167 	  return;
2168 
2169 	default:
2170 	  break;
2171 	}
2172     }
2173 
2174   // This prevents us from issuing more than one error per reloc
2175   // section.  But we can still wind up issuing more than one
2176   // error per object file.
2177   if (this->issued_non_pic_error_)
2178     return;
2179   gold_assert(parameters->options().output_is_position_independent());
2180   object->error(_("requires unsupported dynamic reloc; "
2181 		  "recompile with -fPIC"));
2182   this->issued_non_pic_error_ = true;
2183   return;
2184 }
2185 
2186 // Return whether we need to make a PLT entry for a relocation of the
2187 // given type against a STT_GNU_IFUNC symbol.
2188 
2189 template<int size>
2190 bool
2191 Target_s390<size>::Scan::reloc_needs_plt_for_ifunc(
2192      Sized_relobj_file<size, true>* object,
2193      unsigned int r_type)
2194 {
2195   int flags = Scan::get_reference_flags(r_type);
2196   if (flags & Symbol::TLS_REF)
2197     gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
2198 	       object->name().c_str(), r_type);
2199   return flags != 0;
2200 }
2201 
2202 // Scan a relocation for a local symbol.
2203 
2204 template<int size>
2205 inline void
2206 Target_s390<size>::Scan::local(Symbol_table* symtab,
2207 				 Layout* layout,
2208 				 Target_s390<size>* target,
2209 				 Sized_relobj_file<size, true>* object,
2210 				 unsigned int data_shndx,
2211 				 Output_section* output_section,
2212 				 const elfcpp::Rela<size, true>& reloc,
2213 				 unsigned int r_type,
2214 				 const elfcpp::Sym<size, true>& lsym,
2215 				 bool is_discarded)
2216 {
2217   if (is_discarded)
2218     return;
2219 
2220   // A local STT_GNU_IFUNC symbol may require a PLT entry.
2221   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
2222 
2223   if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
2224     {
2225       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2226       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
2227     }
2228 
2229   switch (r_type)
2230     {
2231     case elfcpp::R_390_NONE:
2232     case elfcpp::R_390_GNU_VTINHERIT:
2233     case elfcpp::R_390_GNU_VTENTRY:
2234       break;
2235 
2236     case elfcpp::R_390_64:
2237       // If building a shared library (or a position-independent
2238       // executable), we need to create a dynamic relocation for this
2239       // location.  The relocation applied at link time will apply the
2240       // link-time value, so we flag the location with an
2241       // R_390_RELATIVE relocation so the dynamic loader can
2242       // relocate it easily.
2243       if (parameters->options().output_is_position_independent() && size == 64)
2244 	{
2245 	  unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2246 	  Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2247 	  rela_dyn->add_local_relative(object, r_sym,
2248 				       elfcpp::R_390_RELATIVE,
2249 				       output_section, data_shndx,
2250 				       reloc.get_r_offset(),
2251 				       reloc.get_r_addend(), is_ifunc);
2252 	}
2253       break;
2254 
2255     case elfcpp::R_390_32:
2256     case elfcpp::R_390_20:
2257     case elfcpp::R_390_16:
2258     case elfcpp::R_390_12:
2259     case elfcpp::R_390_8:
2260       if (parameters->options().output_is_position_independent())
2261 	{
2262 	  if (size == 32 && r_type == elfcpp::R_390_32)
2263 	    {
2264 	      unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2265 	      Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2266 	      rela_dyn->add_local_relative(object, r_sym,
2267 					   elfcpp::R_390_RELATIVE,
2268 					   output_section, data_shndx,
2269 					   reloc.get_r_offset(),
2270 					   reloc.get_r_addend(), is_ifunc);
2271 	      break;
2272 	    }
2273 
2274 	  check_non_pic(object, r_type);
2275 
2276 	  Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2277 	  unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2278 	  if (lsym.get_st_type() != elfcpp::STT_SECTION)
2279 	    rela_dyn->add_local(object, r_sym, r_type, output_section,
2280 				data_shndx, reloc.get_r_offset(),
2281 				reloc.get_r_addend());
2282 	  else
2283 	    {
2284 	      gold_assert(lsym.get_st_value() == 0);
2285 	      unsigned int shndx = lsym.get_st_shndx();
2286 	      bool is_ordinary;
2287 	      shndx = object->adjust_sym_shndx(r_sym, shndx,
2288 					       &is_ordinary);
2289 	      if (!is_ordinary)
2290 		object->error(_("section symbol %u has bad shndx %u"),
2291 			      r_sym, shndx);
2292 	      else
2293 		rela_dyn->add_local_section(object, shndx,
2294 					    r_type, output_section,
2295 					    data_shndx, reloc.get_r_offset(),
2296 					    reloc.get_r_addend());
2297 	    }
2298 	}
2299       break;
2300 
2301     case elfcpp::R_390_PC12DBL:
2302     case elfcpp::R_390_PC16:
2303     case elfcpp::R_390_PC16DBL:
2304     case elfcpp::R_390_PC24DBL:
2305     case elfcpp::R_390_PC32:
2306     case elfcpp::R_390_PC32DBL:
2307     case elfcpp::R_390_PC64:
2308       break;
2309 
2310     case elfcpp::R_390_PLT12DBL:
2311     case elfcpp::R_390_PLT16DBL:
2312     case elfcpp::R_390_PLT24DBL:
2313     case elfcpp::R_390_PLT32:
2314     case elfcpp::R_390_PLT32DBL:
2315     case elfcpp::R_390_PLT64:
2316       // Since we know this is a local symbol, we can handle this as a
2317       // PC32 reloc.
2318       break;
2319 
2320     case elfcpp::R_390_GOTPC:
2321     case elfcpp::R_390_GOTPCDBL:
2322     case elfcpp::R_390_GOTOFF16:
2323     case elfcpp::R_390_GOTOFF32:
2324     case elfcpp::R_390_GOTOFF64:
2325     case elfcpp::R_390_PLTOFF16:
2326     case elfcpp::R_390_PLTOFF32:
2327     case elfcpp::R_390_PLTOFF64:
2328       // We need a GOT section.
2329       target->got_section(symtab, layout);
2330       // For PLTOFF*, we'd normally want a PLT section, but since we
2331       // know this is a local symbol, no PLT is needed.
2332       break;
2333 
2334     case elfcpp::R_390_GOT12:
2335     case elfcpp::R_390_GOT16:
2336     case elfcpp::R_390_GOT20:
2337     case elfcpp::R_390_GOT32:
2338     case elfcpp::R_390_GOT64:
2339     case elfcpp::R_390_GOTENT:
2340     case elfcpp::R_390_GOTPLT12:
2341     case elfcpp::R_390_GOTPLT16:
2342     case elfcpp::R_390_GOTPLT20:
2343     case elfcpp::R_390_GOTPLT32:
2344     case elfcpp::R_390_GOTPLT64:
2345     case elfcpp::R_390_GOTPLTENT:
2346       {
2347 	// The symbol requires a GOT section.
2348 	Output_data_got<size, true>* got = target->got_section(symtab, layout);
2349 
2350 	// The symbol requires a GOT entry.
2351 	unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2352 
2353 	// For a STT_GNU_IFUNC symbol we want the PLT offset.  That
2354 	// lets function pointers compare correctly with shared
2355 	// libraries.  Otherwise we would need an IRELATIVE reloc.
2356 	bool is_new;
2357 	if (is_ifunc)
2358 	  is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
2359 	else
2360 	  is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
2361 	if (is_new)
2362 	  {
2363 	    // If we are generating a shared object, we need to add a
2364 	    // dynamic relocation for this symbol's GOT entry.
2365 	    if (parameters->options().output_is_position_independent())
2366 	      {
2367 		Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2368 		unsigned int got_offset =
2369 		  object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
2370 		rela_dyn->add_local_relative(object, r_sym,
2371 					     elfcpp::R_390_RELATIVE,
2372 					     got, got_offset, 0, is_ifunc);
2373 	      }
2374 	  }
2375 	// For GOTPLT*, we'd normally want a PLT section, but since
2376 	// we know this is a local symbol, no PLT is needed.
2377       }
2378       break;
2379 
2380     case elfcpp::R_390_COPY:
2381     case elfcpp::R_390_GLOB_DAT:
2382     case elfcpp::R_390_JMP_SLOT:
2383     case elfcpp::R_390_RELATIVE:
2384     case elfcpp::R_390_IRELATIVE:
2385       // These are outstanding tls relocs, which are unexpected when linking
2386     case elfcpp::R_390_TLS_TPOFF:
2387     case elfcpp::R_390_TLS_DTPOFF:
2388     case elfcpp::R_390_TLS_DTPMOD:
2389       gold_error(_("%s: unexpected reloc %u in object file"),
2390 		 object->name().c_str(), r_type);
2391       break;
2392 
2393       // These are initial tls relocs, which are expected when linking
2394     case elfcpp::R_390_TLS_GD32:          // Global-dynamic
2395     case elfcpp::R_390_TLS_GD64:
2396     case elfcpp::R_390_TLS_GDCALL:
2397     case elfcpp::R_390_TLS_LDM32:         // Local-dynamic
2398     case elfcpp::R_390_TLS_LDM64:
2399     case elfcpp::R_390_TLS_LDO32:
2400     case elfcpp::R_390_TLS_LDO64:
2401     case elfcpp::R_390_TLS_LDCALL:
2402     case elfcpp::R_390_TLS_IE32:          // Initial-exec
2403     case elfcpp::R_390_TLS_IE64:
2404     case elfcpp::R_390_TLS_IEENT:
2405     case elfcpp::R_390_TLS_GOTIE12:
2406     case elfcpp::R_390_TLS_GOTIE20:
2407     case elfcpp::R_390_TLS_GOTIE32:
2408     case elfcpp::R_390_TLS_GOTIE64:
2409     case elfcpp::R_390_TLS_LOAD:
2410     case elfcpp::R_390_TLS_LE32:          // Local-exec
2411     case elfcpp::R_390_TLS_LE64:
2412       {
2413 	bool output_is_shared = parameters->options().shared();
2414 	const tls::Tls_optimization optimized_type
2415 	    = Target_s390<size>::optimize_tls_reloc(!output_is_shared,
2416 						      r_type);
2417 	switch (r_type)
2418 	  {
2419 	  case elfcpp::R_390_TLS_GD32:       // General-dynamic
2420 	  case elfcpp::R_390_TLS_GD64:
2421 	  case elfcpp::R_390_TLS_GDCALL:
2422 	    if (optimized_type == tls::TLSOPT_NONE)
2423 	      {
2424 		// Create a pair of GOT entries for the module index and
2425 		// dtv-relative offset.
2426 		Output_data_got<size, true>* got
2427 		    = target->got_section(symtab, layout);
2428 		unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2429 		unsigned int shndx = lsym.get_st_shndx();
2430 		bool is_ordinary;
2431 		shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
2432 		if (!is_ordinary)
2433 		  object->error(_("local symbol %u has bad shndx %u"),
2434 			      r_sym, shndx);
2435 		else
2436 		  got->add_local_pair_with_rel(object, r_sym,
2437 					       shndx,
2438 					       GOT_TYPE_TLS_PAIR,
2439 					       target->rela_dyn_section(layout),
2440 					       elfcpp::R_390_TLS_DTPMOD);
2441 	      }
2442 	    else if (optimized_type != tls::TLSOPT_TO_LE)
2443 	      unsupported_reloc_local(object, r_type);
2444 	    break;
2445 
2446 	  case elfcpp::R_390_TLS_LDM32:       // Local-dynamic
2447 	  case elfcpp::R_390_TLS_LDM64:
2448 	  case elfcpp::R_390_TLS_LDCALL:
2449 	    if (optimized_type == tls::TLSOPT_NONE)
2450 	      {
2451 		// Create a GOT entry for the module index.
2452 		target->got_mod_index_entry(symtab, layout, object);
2453 	      }
2454 	    else if (optimized_type != tls::TLSOPT_TO_LE)
2455 	      unsupported_reloc_local(object, r_type);
2456 	    break;
2457 
2458 	  case elfcpp::R_390_TLS_LDO32:
2459 	  case elfcpp::R_390_TLS_LDO64:
2460 	    break;
2461 
2462 	  case elfcpp::R_390_TLS_IE32:    // Initial-exec
2463 	  case elfcpp::R_390_TLS_IE64:
2464 	    // These two involve an absolute address
2465 	    if (parameters->options().shared()
2466 		&& optimized_type == tls::TLSOPT_NONE)
2467 	      {
2468 		if ((size == 32 && r_type == elfcpp::R_390_TLS_IE32) ||
2469 		    (size == 64 && r_type == elfcpp::R_390_TLS_IE64))
2470 		  {
2471 		    // We need to create a dynamic relocation.
2472 		    Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2473 		    unsigned int r_sym =
2474 			elfcpp::elf_r_sym<size>(reloc.get_r_info());
2475 		    rela_dyn->add_local_relative(object, r_sym,
2476 						elfcpp::R_390_RELATIVE,
2477 						output_section, data_shndx,
2478 						reloc.get_r_offset(),
2479 						reloc.get_r_addend(), false);
2480 		  }
2481 		else
2482 		  {
2483 		    unsupported_reloc_local(object, r_type);
2484 		  }
2485 	      }
2486 	    // fall through
2487 	  case elfcpp::R_390_TLS_IEENT:
2488 	  case elfcpp::R_390_TLS_GOTIE12:
2489 	  case elfcpp::R_390_TLS_GOTIE20:
2490 	  case elfcpp::R_390_TLS_GOTIE32:
2491 	  case elfcpp::R_390_TLS_GOTIE64:
2492 	  case elfcpp::R_390_TLS_LOAD:
2493 	    layout->set_has_static_tls();
2494 	    if (optimized_type == tls::TLSOPT_NONE)
2495 	      {
2496 		if (!output_is_shared)
2497 		  {
2498 		    // We're making an executable, and the symbol is local, but
2499 		    // we cannot optimize to LE.  Make a const GOT entry instead.
2500 		    Output_data_got<size, true>* got
2501 			= target->got_section(symtab, layout);
2502 		    unsigned int r_sym
2503 			= elfcpp::elf_r_sym<size>(reloc.get_r_info());
2504 		    got->add_local_plt(object, r_sym, GOT_TYPE_TLS_OFFSET);
2505 		  }
2506 		else
2507 		{
2508 		  // Create a GOT entry for the tp-relative offset.
2509 		  Output_data_got<size, true>* got
2510 		      = target->got_section(symtab, layout);
2511 		  unsigned int r_sym
2512 		      = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2513 		  got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
2514 					  target->rela_dyn_section(layout),
2515 					  elfcpp::R_390_TLS_TPOFF);
2516 		}
2517 	      }
2518 	    else if (optimized_type != tls::TLSOPT_TO_LE)
2519 	      unsupported_reloc_local(object, r_type);
2520 	    break;
2521 
2522 	  case elfcpp::R_390_TLS_LE32:     // Local-exec
2523 	  case elfcpp::R_390_TLS_LE64:
2524 	    layout->set_has_static_tls();
2525 	    if (output_is_shared)
2526 	    {
2527 	      // We need to create a dynamic relocation.
2528 	      if ((size == 32 && r_type == elfcpp::R_390_TLS_LE32) ||
2529 	          (size == 64 && r_type == elfcpp::R_390_TLS_LE64))
2530 		{
2531 		  Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2532 		  unsigned int r_sym
2533 		      = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2534 		  gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
2535 		  rela_dyn->add_local(object, r_sym, elfcpp::R_390_TLS_TPOFF,
2536 				      output_section, data_shndx,
2537 				      reloc.get_r_offset(),
2538 				      reloc.get_r_addend());
2539 		}
2540 	      else
2541 		{
2542 		  unsupported_reloc_local(object, r_type);
2543 		}
2544 	    }
2545 	    break;
2546 
2547 	  default:
2548 	    gold_unreachable();
2549 	  }
2550       }
2551       break;
2552 
2553     default:
2554       gold_error(_("%s: unsupported reloc %u against local symbol"),
2555 		 object->name().c_str(), r_type);
2556       break;
2557     }
2558 }
2559 
2560 // Scan a relocation for a global symbol.
2561 
2562 template<int size>
2563 inline void
2564 Target_s390<size>::Scan::global(Symbol_table* symtab,
2565 			    Layout* layout,
2566 			    Target_s390<size>* target,
2567 			    Sized_relobj_file<size, true>* object,
2568 			    unsigned int data_shndx,
2569 			    Output_section* output_section,
2570 			    const elfcpp::Rela<size, true>& reloc,
2571 			    unsigned int r_type,
2572 			    Symbol* gsym)
2573 {
2574   // A STT_GNU_IFUNC symbol may require a PLT entry.
2575   if (gsym->type() == elfcpp::STT_GNU_IFUNC
2576       && this->reloc_needs_plt_for_ifunc(object, r_type))
2577     target->make_plt_entry(symtab, layout, gsym);
2578 
2579   switch (r_type)
2580     {
2581     case elfcpp::R_390_NONE:
2582     case elfcpp::R_390_GNU_VTINHERIT:
2583     case elfcpp::R_390_GNU_VTENTRY:
2584       break;
2585 
2586     case elfcpp::R_390_64:
2587     case elfcpp::R_390_32:
2588     case elfcpp::R_390_20:
2589     case elfcpp::R_390_16:
2590     case elfcpp::R_390_12:
2591     case elfcpp::R_390_8:
2592       {
2593 	// Make a PLT entry if necessary.
2594 	if (gsym->needs_plt_entry())
2595 	  {
2596 	    target->make_plt_entry(symtab, layout, gsym);
2597 	    // Since this is not a PC-relative relocation, we may be
2598 	    // taking the address of a function. In that case we need to
2599 	    // set the entry in the dynamic symbol table to the address of
2600 	    // the PLT entry.
2601 	    if (gsym->is_from_dynobj() && !parameters->options().shared())
2602 	      gsym->set_needs_dynsym_value();
2603 	  }
2604 	// Make a dynamic relocation if necessary.
2605 	if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2606 	  {
2607 	    if (!parameters->options().output_is_position_independent()
2608 		&& gsym->may_need_copy_reloc())
2609 	      {
2610 		target->copy_reloc(symtab, layout, object,
2611 				   data_shndx, output_section, gsym, reloc);
2612 	      }
2613 	    else if (((size == 64 && r_type == elfcpp::R_390_64)
2614 		      || (size == 32 && r_type == elfcpp::R_390_32))
2615 		     && gsym->type() == elfcpp::STT_GNU_IFUNC
2616 		     && gsym->can_use_relative_reloc(false)
2617 		     && !gsym->is_from_dynobj()
2618 		     && !gsym->is_undefined()
2619 		     && !gsym->is_preemptible())
2620 	      {
2621 		// Use an IRELATIVE reloc for a locally defined
2622 		// STT_GNU_IFUNC symbol.  This makes a function
2623 		// address in a PIE executable match the address in a
2624 		// shared library that it links against.
2625 		Reloc_section* rela_dyn =
2626 		  target->rela_irelative_section(layout);
2627 		unsigned int r_type = elfcpp::R_390_IRELATIVE;
2628 		rela_dyn->add_symbolless_global_addend(gsym, r_type,
2629 						       output_section, object,
2630 						       data_shndx,
2631 						       reloc.get_r_offset(),
2632 						       reloc.get_r_addend());
2633 	      }
2634 	    else if (((size == 64 && r_type == elfcpp::R_390_64)
2635 		      || (size == 32 && r_type == elfcpp::R_390_32))
2636 		     && gsym->can_use_relative_reloc(false))
2637 	      {
2638 		Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2639 		rela_dyn->add_global_relative(gsym, elfcpp::R_390_RELATIVE,
2640 					      output_section, object,
2641 					      data_shndx,
2642 					      reloc.get_r_offset(),
2643 					      reloc.get_r_addend(), false);
2644 	      }
2645 	    else
2646 	      {
2647 		check_non_pic(object, r_type);
2648 		Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2649 		rela_dyn->add_global(gsym, r_type, output_section, object,
2650 				     data_shndx, reloc.get_r_offset(),
2651 				     reloc.get_r_addend());
2652 	      }
2653 	  }
2654       }
2655       break;
2656 
2657     case elfcpp::R_390_PC12DBL:
2658     case elfcpp::R_390_PC16:
2659     case elfcpp::R_390_PC16DBL:
2660     case elfcpp::R_390_PC24DBL:
2661     case elfcpp::R_390_PC32:
2662     case elfcpp::R_390_PC32DBL:
2663     case elfcpp::R_390_PC64:
2664       {
2665 	// Make a PLT entry if necessary.
2666 	if (gsym->needs_plt_entry())
2667 	  {
2668 	    target->make_plt_entry(symtab, layout, gsym);
2669 	    // larl is often used to take address of a function.  Aim the
2670 	    // symbol at the PLT entry.
2671 	    if (gsym->is_from_dynobj() && !parameters->options().shared())
2672 	      gsym->set_needs_dynsym_value();
2673 	  }
2674 	// Make a dynamic relocation if necessary.
2675 	if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2676 	  {
2677 	    if (parameters->options().output_is_executable()
2678 		&& gsym->may_need_copy_reloc())
2679 	      {
2680 		target->copy_reloc(symtab, layout, object,
2681 				   data_shndx, output_section, gsym, reloc);
2682 	      }
2683 	    else
2684 	      {
2685 		check_non_pic(object, r_type);
2686 		Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2687 		rela_dyn->add_global(gsym, r_type, output_section, object,
2688 				     data_shndx, reloc.get_r_offset(),
2689 				     reloc.get_r_addend());
2690 	      }
2691 	  }
2692       }
2693       break;
2694 
2695     case elfcpp::R_390_PLT12DBL:
2696     case elfcpp::R_390_PLT16DBL:
2697     case elfcpp::R_390_PLT24DBL:
2698     case elfcpp::R_390_PLT32:
2699     case elfcpp::R_390_PLT32DBL:
2700     case elfcpp::R_390_PLT64:
2701       // If the symbol is fully resolved, this is just a PC32 reloc.
2702       // Otherwise we need a PLT entry.
2703       if (gsym->final_value_is_known())
2704 	break;
2705       // If building a shared library, we can also skip the PLT entry
2706       // if the symbol is defined in the output file and is protected
2707       // or hidden.
2708       if (gsym->is_defined()
2709 	  && !gsym->is_from_dynobj()
2710 	  && !gsym->is_preemptible())
2711 	break;
2712       target->make_plt_entry(symtab, layout, gsym);
2713       break;
2714 
2715     case elfcpp::R_390_GOTPC:
2716     case elfcpp::R_390_GOTPCDBL:
2717     case elfcpp::R_390_GOTOFF16:
2718     case elfcpp::R_390_GOTOFF32:
2719     case elfcpp::R_390_GOTOFF64:
2720     case elfcpp::R_390_PLTOFF16:
2721     case elfcpp::R_390_PLTOFF32:
2722     case elfcpp::R_390_PLTOFF64:
2723       // We need a GOT section.
2724       target->got_section(symtab, layout);
2725       // For PLTOFF*, we also need a PLT entry (but only if the
2726       // symbol is not fully resolved).
2727       if ((r_type == elfcpp::R_390_PLTOFF16
2728            || r_type == elfcpp::R_390_PLTOFF32
2729 	   || r_type == elfcpp::R_390_PLTOFF64)
2730 	  && !gsym->final_value_is_known())
2731 	target->make_plt_entry(symtab, layout, gsym);
2732       break;
2733 
2734     case elfcpp::R_390_GOT12:
2735     case elfcpp::R_390_GOT16:
2736     case elfcpp::R_390_GOT20:
2737     case elfcpp::R_390_GOT32:
2738     case elfcpp::R_390_GOT64:
2739     case elfcpp::R_390_GOTENT:
2740     case elfcpp::R_390_GOTPLT12:
2741     case elfcpp::R_390_GOTPLT16:
2742     case elfcpp::R_390_GOTPLT20:
2743     case elfcpp::R_390_GOTPLT32:
2744     case elfcpp::R_390_GOTPLT64:
2745     case elfcpp::R_390_GOTPLTENT:
2746       {
2747 	// The symbol requires a GOT entry.
2748 	Output_data_got<size, true>* got = target->got_section(symtab, layout);
2749 
2750 	if (gsym->final_value_is_known())
2751 	  {
2752 	    // For a STT_GNU_IFUNC symbol we want the PLT address.
2753 	    if (gsym->type() == elfcpp::STT_GNU_IFUNC)
2754 	      got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2755 	    else
2756 	      got->add_global(gsym, GOT_TYPE_STANDARD);
2757 	  }
2758 	else
2759 	  {
2760 	    // If this symbol is not fully resolved, we need to add a
2761 	    // dynamic relocation for it.
2762 	    Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2763 
2764 	    // Use a GLOB_DAT rather than a RELATIVE reloc if:
2765 	    //
2766 	    // 1) The symbol may be defined in some other module.
2767 	    //
2768 	    // 2) We are building a shared library and this is a
2769 	    // protected symbol; using GLOB_DAT means that the dynamic
2770 	    // linker can use the address of the PLT in the main
2771 	    // executable when appropriate so that function address
2772 	    // comparisons work.
2773 	    //
2774 	    // 3) This is a STT_GNU_IFUNC symbol in position dependent
2775 	    // code, again so that function address comparisons work.
2776 	    if (gsym->is_from_dynobj()
2777 		|| gsym->is_undefined()
2778 		|| gsym->is_preemptible()
2779 		|| (gsym->visibility() == elfcpp::STV_PROTECTED
2780 		    && parameters->options().shared())
2781 		|| (gsym->type() == elfcpp::STT_GNU_IFUNC
2782 		    && parameters->options().output_is_position_independent()))
2783 	      got->add_global_with_rel(gsym, GOT_TYPE_STANDARD, rela_dyn,
2784 				       elfcpp::R_390_GLOB_DAT);
2785 	    else
2786 	      {
2787 		// For a STT_GNU_IFUNC symbol we want to write the PLT
2788 		// offset into the GOT, so that function pointer
2789 		// comparisons work correctly.
2790 		bool is_new;
2791 		if (gsym->type() != elfcpp::STT_GNU_IFUNC)
2792 		  is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
2793 		else
2794 		  {
2795 		    is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2796 		    // Tell the dynamic linker to use the PLT address
2797 		    // when resolving relocations.
2798 		    if (gsym->is_from_dynobj()
2799 			&& !parameters->options().shared())
2800 		      gsym->set_needs_dynsym_value();
2801 		  }
2802 		if (is_new)
2803 		  {
2804 		    unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
2805 		    rela_dyn->add_global_relative(gsym,
2806 						  elfcpp::R_390_RELATIVE,
2807 						  got, got_off, 0, false);
2808 		  }
2809 	      }
2810 	  }
2811       }
2812       break;
2813 
2814     case elfcpp::R_390_COPY:
2815     case elfcpp::R_390_GLOB_DAT:
2816     case elfcpp::R_390_JMP_SLOT:
2817     case elfcpp::R_390_RELATIVE:
2818     case elfcpp::R_390_IRELATIVE:
2819       // These are outstanding tls relocs, which are unexpected when linking
2820     case elfcpp::R_390_TLS_TPOFF:
2821     case elfcpp::R_390_TLS_DTPOFF:
2822     case elfcpp::R_390_TLS_DTPMOD:
2823       gold_error(_("%s: unexpected reloc %u in object file"),
2824 		 object->name().c_str(), r_type);
2825       break;
2826 
2827       // These are initial tls relocs, which are expected for global()
2828     case elfcpp::R_390_TLS_GD32:          // Global-dynamic
2829     case elfcpp::R_390_TLS_GD64:
2830     case elfcpp::R_390_TLS_GDCALL:
2831     case elfcpp::R_390_TLS_LDM32:         // Local-dynamic
2832     case elfcpp::R_390_TLS_LDM64:
2833     case elfcpp::R_390_TLS_LDO32:
2834     case elfcpp::R_390_TLS_LDO64:
2835     case elfcpp::R_390_TLS_LDCALL:
2836     case elfcpp::R_390_TLS_IE32:          // Initial-exec
2837     case elfcpp::R_390_TLS_IE64:
2838     case elfcpp::R_390_TLS_IEENT:
2839     case elfcpp::R_390_TLS_GOTIE12:
2840     case elfcpp::R_390_TLS_GOTIE20:
2841     case elfcpp::R_390_TLS_GOTIE32:
2842     case elfcpp::R_390_TLS_GOTIE64:
2843     case elfcpp::R_390_TLS_LOAD:
2844     case elfcpp::R_390_TLS_LE32:          // Local-exec
2845     case elfcpp::R_390_TLS_LE64:
2846       {
2847 	// For the optimizable Initial-Exec model, we can treat undef symbols
2848 	// as final when building an executable.
2849 	const bool is_final = (gsym->final_value_is_known() ||
2850 			       ((r_type == elfcpp::R_390_TLS_IE32 ||
2851 			         r_type == elfcpp::R_390_TLS_IE64 ||
2852 			         r_type == elfcpp::R_390_TLS_GOTIE32 ||
2853 			         r_type == elfcpp::R_390_TLS_GOTIE64) &&
2854 			        gsym->is_undefined() &&
2855 				parameters->options().output_is_executable()));
2856 	const tls::Tls_optimization optimized_type
2857 	    = Target_s390<size>::optimize_tls_reloc(is_final, r_type);
2858 	switch (r_type)
2859 	  {
2860 	  case elfcpp::R_390_TLS_GD32:       // General-dynamic
2861 	  case elfcpp::R_390_TLS_GD64:
2862 	  case elfcpp::R_390_TLS_GDCALL:
2863 	    if (optimized_type == tls::TLSOPT_NONE)
2864 	      {
2865 		// Create a pair of GOT entries for the module index and
2866 		// dtv-relative offset.
2867 		Output_data_got<size, true>* got
2868 		    = target->got_section(symtab, layout);
2869 		got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
2870 					      target->rela_dyn_section(layout),
2871 					      elfcpp::R_390_TLS_DTPMOD,
2872 					      elfcpp::R_390_TLS_DTPOFF);
2873 	      }
2874 	    else if (optimized_type == tls::TLSOPT_TO_IE)
2875 	      {
2876 		// Create a GOT entry for the tp-relative offset.
2877 		Output_data_got<size, true>* got
2878 		    = target->got_section(symtab, layout);
2879 		got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
2880 					 target->rela_dyn_section(layout),
2881 					 elfcpp::R_390_TLS_TPOFF);
2882 	      }
2883 	    else if (optimized_type != tls::TLSOPT_TO_LE)
2884 	      unsupported_reloc_global(object, r_type, gsym);
2885 	    break;
2886 
2887 	  case elfcpp::R_390_TLS_LDM32:       // Local-dynamic
2888 	  case elfcpp::R_390_TLS_LDM64:
2889 	  case elfcpp::R_390_TLS_LDCALL:
2890 	    if (optimized_type == tls::TLSOPT_NONE)
2891 	      {
2892 		// Create a GOT entry for the module index.
2893 		target->got_mod_index_entry(symtab, layout, object);
2894 	      }
2895 	    else if (optimized_type != tls::TLSOPT_TO_LE)
2896 	      unsupported_reloc_global(object, r_type, gsym);
2897 	    break;
2898 
2899 	  case elfcpp::R_390_TLS_LDO32:
2900 	  case elfcpp::R_390_TLS_LDO64:
2901 	    break;
2902 
2903 	  case elfcpp::R_390_TLS_IE32:    // Initial-exec
2904 	  case elfcpp::R_390_TLS_IE64:
2905 	    // These two involve an absolute address
2906 	    if (parameters->options().shared())
2907 	      {
2908 		if ((size == 32 && r_type == elfcpp::R_390_TLS_IE32) ||
2909 		    (size == 64 && r_type == elfcpp::R_390_TLS_IE64))
2910 		  {
2911 		    // We need to create a dynamic relocation.
2912 		    Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2913 		    rela_dyn->add_global_relative(gsym, elfcpp::R_390_RELATIVE,
2914 						  output_section, object,
2915 						  data_shndx,
2916 						  reloc.get_r_offset(),
2917 						  reloc.get_r_addend(), false);
2918 		  }
2919 		else
2920 		  {
2921 		    unsupported_reloc_global(object, r_type, gsym);
2922 		  }
2923 	      }
2924 	    // fall through
2925 	  case elfcpp::R_390_TLS_IEENT:
2926 	  case elfcpp::R_390_TLS_GOTIE12:
2927 	  case elfcpp::R_390_TLS_GOTIE20:
2928 	  case elfcpp::R_390_TLS_GOTIE32:
2929 	  case elfcpp::R_390_TLS_GOTIE64:
2930 	  case elfcpp::R_390_TLS_LOAD:
2931 	    layout->set_has_static_tls();
2932 	    if (optimized_type == tls::TLSOPT_NONE)
2933 	      {
2934 		if (is_final && !parameters->options().shared())
2935 		  {
2936 		    // We're making an executable, and the symbol is local, but
2937 		    // we cannot optimize to LE.  Make a const GOT entry instead.
2938 		    Output_data_got<size, true>* got
2939 			= target->got_section(symtab, layout);
2940 		    got->add_global_plt(gsym, GOT_TYPE_TLS_OFFSET);
2941 		  }
2942 		else
2943 		  {
2944 		    // Create a GOT entry for the tp-relative offset.
2945 		    Output_data_got<size, true>* got
2946 			= target->got_section(symtab, layout);
2947 		    got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
2948 					     target->rela_dyn_section(layout),
2949 					     elfcpp::R_390_TLS_TPOFF);
2950 		  }
2951 	      }
2952 	    else if (optimized_type != tls::TLSOPT_TO_LE)
2953 	      unsupported_reloc_global(object, r_type, gsym);
2954 	    break;
2955 
2956 	  case elfcpp::R_390_TLS_LE32:     // Local-exec
2957 	  case elfcpp::R_390_TLS_LE64:
2958 	    layout->set_has_static_tls();
2959 	    if (parameters->options().shared())
2960 	      {
2961 		// We need to create a dynamic relocation.
2962 		if ((size == 32 && r_type == elfcpp::R_390_TLS_LE32) ||
2963 		    (size == 64 && r_type == elfcpp::R_390_TLS_LE64))
2964 		  {
2965 		    Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2966 		    rela_dyn->add_global(gsym, elfcpp::R_390_TLS_TPOFF,
2967 					 output_section, object,
2968 					 data_shndx, reloc.get_r_offset(),
2969 					 reloc.get_r_addend());
2970 		  }
2971 		else
2972 		  {
2973 		    unsupported_reloc_global(object, r_type, gsym);
2974 		  }
2975 	      }
2976 	    break;
2977 
2978 	  default:
2979 	    gold_unreachable();
2980 	  }
2981       }
2982       break;
2983 
2984     default:
2985       gold_error(_("%s: unsupported reloc %u against global symbol %s"),
2986 		 object->name().c_str(), r_type,
2987 		 gsym->demangled_name().c_str());
2988       break;
2989     }
2990 }
2991 
2992 
2993 // Report an unsupported relocation against a global symbol.
2994 
2995 template<int size>
2996 void
2997 Target_s390<size>::Scan::unsupported_reloc_global(
2998     Sized_relobj_file<size, true>* object,
2999     unsigned int r_type,
3000     Symbol* gsym)
3001 {
3002   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
3003 	     object->name().c_str(), r_type, gsym->demangled_name().c_str());
3004 }
3005 
3006 // Returns true if this relocation type could be that of a function pointer.
3007 template<int size>
3008 inline bool
3009 Target_s390<size>::Scan::possible_function_pointer_reloc(unsigned int r_type)
3010 {
3011   switch (r_type)
3012     {
3013     case elfcpp::R_390_32:
3014     case elfcpp::R_390_64:
3015     case elfcpp::R_390_PC32DBL: // could be used by larl insn
3016     case elfcpp::R_390_GOT12:
3017     case elfcpp::R_390_GOT16:
3018     case elfcpp::R_390_GOT20:
3019     case elfcpp::R_390_GOT32:
3020     case elfcpp::R_390_GOT64:
3021     case elfcpp::R_390_GOTENT:
3022     case elfcpp::R_390_GOTOFF16:
3023     case elfcpp::R_390_GOTOFF32:
3024     case elfcpp::R_390_GOTOFF64:
3025       return true;
3026     }
3027   return false;
3028 }
3029 
3030 // For safe ICF, scan a relocation for a local symbol to check if it
3031 // corresponds to a function pointer being taken.  In that case mark
3032 // the function whose pointer was taken as not foldable.
3033 
3034 template<int size>
3035 inline bool
3036 Target_s390<size>::Scan::local_reloc_may_be_function_pointer(
3037   Symbol_table* ,
3038   Layout* ,
3039   Target_s390<size>* ,
3040   Sized_relobj_file<size, true>* ,
3041   unsigned int ,
3042   Output_section* ,
3043   const elfcpp::Rela<size, true>& ,
3044   unsigned int r_type,
3045   const elfcpp::Sym<size, true>&)
3046 {
3047   // When building a shared library, do not fold any local symbols.
3048   return (parameters->options().shared()
3049 	  || possible_function_pointer_reloc(r_type));
3050 }
3051 
3052 // For safe ICF, scan a relocation for a global symbol to check if it
3053 // corresponds to a function pointer being taken.  In that case mark
3054 // the function whose pointer was taken as not foldable.
3055 
3056 template<int size>
3057 inline bool
3058 Target_s390<size>::Scan::global_reloc_may_be_function_pointer(
3059   Symbol_table*,
3060   Layout* ,
3061   Target_s390<size>* ,
3062   Sized_relobj_file<size, true>* ,
3063   unsigned int ,
3064   Output_section* ,
3065   const elfcpp::Rela<size, true>& ,
3066   unsigned int r_type,
3067   Symbol* gsym)
3068 {
3069   // When building a shared library, do not fold symbols whose visibility
3070   // is hidden, internal or protected.
3071   return ((parameters->options().shared()
3072 	   && (gsym->visibility() == elfcpp::STV_INTERNAL
3073 	       || gsym->visibility() == elfcpp::STV_PROTECTED
3074 	       || gsym->visibility() == elfcpp::STV_HIDDEN))
3075 	  || possible_function_pointer_reloc(r_type));
3076 }
3077 
3078 template<int size>
3079 void
3080 Target_s390<size>::gc_process_relocs(Symbol_table* symtab,
3081 				       Layout* layout,
3082 				       Sized_relobj_file<size, true>* object,
3083 				       unsigned int data_shndx,
3084 				       unsigned int sh_type,
3085 				       const unsigned char* prelocs,
3086 				       size_t reloc_count,
3087 				       Output_section* output_section,
3088 				       bool needs_special_offset_handling,
3089 				       size_t local_symbol_count,
3090 				       const unsigned char* plocal_symbols)
3091 {
3092 
3093   if (sh_type == elfcpp::SHT_REL)
3094     return;
3095 
3096   gold::gc_process_relocs<size, true, Target_s390<size>, elfcpp::SHT_RELA,
3097 			  typename Target_s390<size>::Scan,
3098 			  typename Target_s390<size>::Relocatable_size_for_reloc>(
3099     symtab,
3100     layout,
3101     this,
3102     object,
3103     data_shndx,
3104     prelocs,
3105     reloc_count,
3106     output_section,
3107     needs_special_offset_handling,
3108     local_symbol_count,
3109     plocal_symbols);
3110 }
3111 
3112 // Perform a relocation.
3113 
3114 template<int size>
3115 inline bool
3116 Target_s390<size>::Relocate::relocate(
3117     const Relocate_info<size, true>* relinfo,
3118     Target_s390<size>* target,
3119     Output_section*,
3120     size_t relnum,
3121     const elfcpp::Rela<size, true>& rela,
3122     unsigned int r_type,
3123     const Sized_symbol<size>* gsym,
3124     const Symbol_value<size>* psymval,
3125     unsigned char* view,
3126     typename elfcpp::Elf_types<size>::Elf_Addr address,
3127     section_size_type view_size)
3128 {
3129   if (view == NULL)
3130     return true;
3131 
3132   const Sized_relobj_file<size, true>* object = relinfo->object;
3133 
3134   // Pick the value to use for symbols defined in the PLT.
3135   Symbol_value<size> symval;
3136   if (gsym != NULL
3137       && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
3138     {
3139       symval.set_output_value(target->plt_address_for_global(gsym));
3140       psymval = &symval;
3141     }
3142   else if (gsym == NULL && psymval->is_ifunc_symbol())
3143     {
3144       unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3145       if (object->local_has_plt_offset(r_sym))
3146 	{
3147 	  symval.set_output_value(target->plt_address_for_local(object, r_sym));
3148 	  psymval = &symval;
3149 	}
3150     }
3151 
3152   const elfcpp::Elf_Xword addend = rela.get_r_addend();
3153 
3154   typename elfcpp::Elf_types<size>::Elf_Addr value = 0;
3155 
3156   switch (r_type)
3157     {
3158     case elfcpp::R_390_PLT64:
3159     case elfcpp::R_390_PLT32:
3160     case elfcpp::R_390_PLT32DBL:
3161     case elfcpp::R_390_PLT24DBL:
3162     case elfcpp::R_390_PLT16DBL:
3163     case elfcpp::R_390_PLT12DBL:
3164       gold_assert(gsym == NULL
3165 		  || gsym->has_plt_offset()
3166 		  || gsym->final_value_is_known()
3167 		  || (gsym->is_defined()
3168 		      && !gsym->is_from_dynobj()
3169 		      && !gsym->is_preemptible()));
3170       // fallthru
3171     case elfcpp::R_390_8:
3172     case elfcpp::R_390_12:
3173     case elfcpp::R_390_16:
3174     case elfcpp::R_390_20:
3175     case elfcpp::R_390_32:
3176     case elfcpp::R_390_64:
3177     case elfcpp::R_390_PC16:
3178     case elfcpp::R_390_PC32:
3179     case elfcpp::R_390_PC64:
3180     case elfcpp::R_390_PC32DBL:
3181     case elfcpp::R_390_PC24DBL:
3182     case elfcpp::R_390_PC16DBL:
3183     case elfcpp::R_390_PC12DBL:
3184       value = psymval->value(object, addend);
3185       break;
3186 
3187     case elfcpp::R_390_GOTPC:
3188     case elfcpp::R_390_GOTPCDBL:
3189       gold_assert(gsym != NULL);
3190       value = target->got_address() + addend;
3191       break;
3192 
3193     case elfcpp::R_390_PLTOFF64:
3194     case elfcpp::R_390_PLTOFF32:
3195     case elfcpp::R_390_PLTOFF16:
3196       gold_assert(gsym == NULL
3197 		  || gsym->has_plt_offset()
3198 		  || gsym->final_value_is_known());
3199       // fallthru
3200     case elfcpp::R_390_GOTOFF64:
3201     case elfcpp::R_390_GOTOFF32:
3202     case elfcpp::R_390_GOTOFF16:
3203       value = (psymval->value(object, addend)
3204 	       - target->got_address());
3205       break;
3206 
3207     case elfcpp::R_390_GOT12:
3208     case elfcpp::R_390_GOT16:
3209     case elfcpp::R_390_GOT20:
3210     case elfcpp::R_390_GOT32:
3211     case elfcpp::R_390_GOT64:
3212     case elfcpp::R_390_GOTENT:
3213     case elfcpp::R_390_GOTPLT12:
3214     case elfcpp::R_390_GOTPLT16:
3215     case elfcpp::R_390_GOTPLT20:
3216     case elfcpp::R_390_GOTPLT32:
3217     case elfcpp::R_390_GOTPLT64:
3218     case elfcpp::R_390_GOTPLTENT:
3219       {
3220         unsigned int got_offset = 0;
3221         if (gsym != NULL)
3222 	  {
3223 	    gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
3224 	    got_offset = gsym->got_offset(GOT_TYPE_STANDARD);
3225 	  }
3226         else
3227 	  {
3228 	    unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3229 	    gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
3230 	    got_offset = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
3231 	  }
3232         value = got_offset + target->got_main_offset() + addend;
3233       }
3234       break;
3235 
3236       // These are initial tls relocs, which are expected when linking
3237     case elfcpp::R_390_TLS_LOAD:
3238     case elfcpp::R_390_TLS_GDCALL:          // Global-dynamic
3239     case elfcpp::R_390_TLS_GD32:
3240     case elfcpp::R_390_TLS_GD64:
3241     case elfcpp::R_390_TLS_LDCALL:          // Local-dynamic
3242     case elfcpp::R_390_TLS_LDM32:
3243     case elfcpp::R_390_TLS_LDM64:
3244     case elfcpp::R_390_TLS_LDO32:
3245     case elfcpp::R_390_TLS_LDO64:
3246     case elfcpp::R_390_TLS_GOTIE12:         // Initial-exec
3247     case elfcpp::R_390_TLS_GOTIE20:
3248     case elfcpp::R_390_TLS_GOTIE32:
3249     case elfcpp::R_390_TLS_GOTIE64:
3250     case elfcpp::R_390_TLS_IE32:
3251     case elfcpp::R_390_TLS_IE64:
3252     case elfcpp::R_390_TLS_IEENT:
3253     case elfcpp::R_390_TLS_LE32:            // Local-exec
3254     case elfcpp::R_390_TLS_LE64:
3255       value = this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
3256 			 view, view_size);
3257       break;
3258 
3259     default:
3260       break;
3261     }
3262 
3263   typename S390_relocate_functions<size>::Status status
3264       = S390_relocate_functions<size>::STATUS_OK;
3265 
3266   switch (r_type)
3267     {
3268     case elfcpp::R_390_NONE:
3269     case elfcpp::R_390_GNU_VTINHERIT:
3270     case elfcpp::R_390_GNU_VTENTRY:
3271     case elfcpp::R_390_TLS_GDCALL:
3272     case elfcpp::R_390_TLS_LDCALL:
3273     case elfcpp::R_390_TLS_LOAD:
3274       break;
3275 
3276     case elfcpp::R_390_64:
3277     case elfcpp::R_390_GOT64:
3278     case elfcpp::R_390_GOTPLT64:
3279     case elfcpp::R_390_PLTOFF64:
3280     case elfcpp::R_390_GOTOFF64:
3281     case elfcpp::R_390_TLS_GD64:
3282     case elfcpp::R_390_TLS_LDM64:
3283     case elfcpp::R_390_TLS_LDO64:
3284     case elfcpp::R_390_TLS_GOTIE64:
3285     case elfcpp::R_390_TLS_IE64:
3286     case elfcpp::R_390_TLS_LE64:
3287       Relocate_functions<size, true>::rela64(view, value, 0);
3288       break;
3289 
3290     case elfcpp::R_390_32:
3291     case elfcpp::R_390_GOT32:
3292     case elfcpp::R_390_GOTPLT32:
3293     case elfcpp::R_390_PLTOFF32:
3294     case elfcpp::R_390_GOTOFF32:
3295     case elfcpp::R_390_TLS_GD32:
3296     case elfcpp::R_390_TLS_LDM32:
3297     case elfcpp::R_390_TLS_LDO32:
3298     case elfcpp::R_390_TLS_GOTIE32:
3299     case elfcpp::R_390_TLS_IE32:
3300     case elfcpp::R_390_TLS_LE32:
3301       Relocate_functions<size, true>::rela32(view, value, 0);
3302       break;
3303 
3304     case elfcpp::R_390_20:
3305     case elfcpp::R_390_GOT20:
3306     case elfcpp::R_390_GOTPLT20:
3307     case elfcpp::R_390_TLS_GOTIE20:
3308       status = S390_relocate_functions<size>::rela20(view, value);
3309       break;
3310 
3311     case elfcpp::R_390_16:
3312     case elfcpp::R_390_GOT16:
3313     case elfcpp::R_390_GOTPLT16:
3314     case elfcpp::R_390_PLTOFF16:
3315     case elfcpp::R_390_GOTOFF16:
3316       status = S390_relocate_functions<size>::rela16(view, value);
3317       break;
3318 
3319     case elfcpp::R_390_12:
3320     case elfcpp::R_390_GOT12:
3321     case elfcpp::R_390_GOTPLT12:
3322     case elfcpp::R_390_TLS_GOTIE12:
3323       status = S390_relocate_functions<size>::rela12(view, value);
3324       break;
3325 
3326     case elfcpp::R_390_8:
3327       Relocate_functions<size, true>::rela8(view, value, 0);
3328       break;
3329 
3330     case elfcpp::R_390_PC16:
3331       Relocate_functions<size, true>::pcrela16(view, value, 0,
3332 					       address);
3333       break;
3334 
3335     case elfcpp::R_390_PLT64:
3336     case elfcpp::R_390_PC64:
3337       Relocate_functions<size, true>::pcrela64(view, value, 0, address);
3338       break;
3339 
3340     case elfcpp::R_390_PLT32:
3341     case elfcpp::R_390_PC32:
3342     case elfcpp::R_390_GOTPC:
3343       Relocate_functions<size, true>::pcrela32(view, value, 0, address);
3344       break;
3345 
3346     case elfcpp::R_390_PLT32DBL:
3347     case elfcpp::R_390_PC32DBL:
3348     case elfcpp::R_390_GOTPCDBL:
3349       status = S390_relocate_functions<size>::pcrela32dbl(view, value, address);
3350       break;
3351 
3352     case elfcpp::R_390_PLT24DBL:
3353     case elfcpp::R_390_PC24DBL:
3354       status = S390_relocate_functions<size>::pcrela24dbl(view, value, address);
3355       break;
3356 
3357     case elfcpp::R_390_PLT16DBL:
3358     case elfcpp::R_390_PC16DBL:
3359       status = S390_relocate_functions<size>::pcrela16dbl(view, value, address);
3360       break;
3361 
3362     case elfcpp::R_390_PLT12DBL:
3363     case elfcpp::R_390_PC12DBL:
3364       status = S390_relocate_functions<size>::pcrela12dbl(view, value, address);
3365       break;
3366 
3367     case elfcpp::R_390_GOTENT:
3368     case elfcpp::R_390_GOTPLTENT:
3369     case elfcpp::R_390_TLS_IEENT:
3370       value += target->got_address();
3371       status = S390_relocate_functions<size>::pcrela32dbl(view, value, address);
3372       break;
3373 
3374     case elfcpp::R_390_COPY:
3375     case elfcpp::R_390_GLOB_DAT:
3376     case elfcpp::R_390_JMP_SLOT:
3377     case elfcpp::R_390_RELATIVE:
3378     case elfcpp::R_390_IRELATIVE:
3379       // These are outstanding tls relocs, which are unexpected when linking
3380     case elfcpp::R_390_TLS_TPOFF:
3381     case elfcpp::R_390_TLS_DTPMOD:
3382     case elfcpp::R_390_TLS_DTPOFF:
3383       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3384 			     _("unexpected reloc %u in object file"),
3385 			     r_type);
3386       break;
3387 
3388     default:
3389       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3390 			     _("unsupported reloc %u"),
3391 			     r_type);
3392       break;
3393     }
3394 
3395   if (status != S390_relocate_functions<size>::STATUS_OK)
3396     {
3397       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3398 			     _("relocation overflow"));
3399     }
3400 
3401   return true;
3402 }
3403 
3404 // Perform a TLS relocation.
3405 
3406 template<int size>
3407 inline typename elfcpp::Elf_types<size>::Elf_Addr
3408 Target_s390<size>::Relocate::relocate_tls(
3409     const Relocate_info<size, true>* relinfo,
3410     Target_s390<size>* target,
3411     size_t relnum,
3412     const elfcpp::Rela<size, true>& rela,
3413     unsigned int r_type,
3414     const Sized_symbol<size>* gsym,
3415     const Symbol_value<size>* psymval,
3416     unsigned char* view,
3417     section_size_type view_size)
3418 {
3419   Output_segment* tls_segment = relinfo->layout->tls_segment();
3420 
3421   const Sized_relobj_file<size, true>* object = relinfo->object;
3422   const elfcpp::Elf_Xword addend = rela.get_r_addend();
3423   elfcpp::Shdr<size, true> data_shdr(relinfo->data_shdr);
3424   bool is_allocatable = (data_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0;
3425 
3426   typename elfcpp::Elf_types<size>::Elf_Addr value
3427       = psymval->value(relinfo->object, addend);
3428 
3429   const bool is_final = (gsym == NULL
3430 			 ? !parameters->options().shared()
3431 			 : gsym->final_value_is_known());
3432   tls::Tls_optimization optimized_type
3433       = Target_s390<size>::optimize_tls_reloc(is_final, r_type);
3434   switch (r_type)
3435     {
3436     case elfcpp::R_390_TLS_GDCALL:            // Global-dynamic marker
3437       if (optimized_type == tls::TLSOPT_TO_LE)
3438 	{
3439 	  if (tls_segment == NULL)
3440 	    {
3441 	      gold_assert(parameters->errors()->error_count() > 0
3442 			  || issue_undefined_symbol_error(gsym));
3443 	      return 0;
3444 	    }
3445 	  this->tls_gd_to_le(relinfo, relnum, rela, view, view_size);
3446 	  break;
3447 	}
3448       else
3449 	{
3450 	  if (optimized_type == tls::TLSOPT_TO_IE)
3451 	    {
3452 	      this->tls_gd_to_ie(relinfo, relnum, rela, view, view_size);
3453 	      break;
3454 	    }
3455 	  else if (optimized_type == tls::TLSOPT_NONE)
3456 	    {
3457 	      break;
3458 	    }
3459 	}
3460       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3461 			     _("unsupported reloc %u"), r_type);
3462       break;
3463 
3464     case elfcpp::R_390_TLS_GD32:            // Global-dynamic
3465     case elfcpp::R_390_TLS_GD64:
3466       if (optimized_type == tls::TLSOPT_TO_LE)
3467 	{
3468 	  if (tls_segment == NULL)
3469 	    {
3470 	      gold_assert(parameters->errors()->error_count() > 0
3471 			  || issue_undefined_symbol_error(gsym));
3472 	      return 0;
3473 	    }
3474 	  return value - tls_segment->memsz();
3475 	}
3476       else
3477 	{
3478 	  unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
3479 				   ? GOT_TYPE_TLS_OFFSET
3480 				   : GOT_TYPE_TLS_PAIR);
3481 	  if (gsym != NULL)
3482 	    {
3483 	      gold_assert(gsym->has_got_offset(got_type));
3484 	      return (gsym->got_offset(got_type)
3485 		      + target->got_main_offset()
3486 		      + addend);
3487 	    }
3488 	  else
3489 	    {
3490 	      unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3491 	      gold_assert(object->local_has_got_offset(r_sym, got_type));
3492 	      return (object->local_got_offset(r_sym, got_type)
3493 		      + target->got_main_offset()
3494 		      + addend);
3495 	    }
3496 	}
3497       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3498 			     _("unsupported reloc %u"), r_type);
3499       break;
3500 
3501     case elfcpp::R_390_TLS_LDCALL:            // Local-dynamic marker
3502       // This is a marker relocation. If the sequence is being turned to LE,
3503       // we modify the instruction, otherwise the instruction is untouched.
3504       if (optimized_type == tls::TLSOPT_TO_LE)
3505 	{
3506 	  if (tls_segment == NULL)
3507 	    {
3508 	      gold_assert(parameters->errors()->error_count() > 0
3509 			  || issue_undefined_symbol_error(gsym));
3510 	      return 0;
3511 	    }
3512 	  this->tls_ld_to_le(relinfo, relnum, rela, view, view_size);
3513 	  break;
3514 	}
3515       else if (optimized_type == tls::TLSOPT_NONE)
3516 	{
3517 	  break;
3518 	}
3519       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3520 			     _("unsupported reloc %u"), r_type);
3521       break;
3522 
3523     case elfcpp::R_390_TLS_LDM32:            // Local-dynamic module
3524     case elfcpp::R_390_TLS_LDM64:
3525       if (optimized_type == tls::TLSOPT_TO_LE)
3526 	{
3527 	  if (tls_segment == NULL)
3528 	    {
3529 	      gold_assert(parameters->errors()->error_count() > 0
3530 			  || issue_undefined_symbol_error(gsym));
3531 	      return 0;
3532 	    }
3533 	  // Doesn't matter what we fill it with - it's going to be unused.
3534 	  return 0;
3535 	}
3536       else if (optimized_type == tls::TLSOPT_NONE)
3537 	{
3538 	  // Relocate the field with the offset of the GOT entry for
3539 	  // the module index.
3540 	  return (target->got_mod_index_entry(NULL, NULL, NULL)
3541 		  + addend
3542 		  + target->got_main_offset());
3543 	}
3544       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3545 			     _("unsupported reloc %u"), r_type);
3546       break;
3547 
3548     case elfcpp::R_390_TLS_LDO32:         // Local-dynamic offset
3549     case elfcpp::R_390_TLS_LDO64:
3550       // This relocation type is used in debugging information.
3551       // In that case we need to not optimize the value.  If the
3552       // section is not allocatable, then we assume we should not
3553       // optimize this reloc.
3554       if (optimized_type == tls::TLSOPT_TO_LE && is_allocatable)
3555 	{
3556 	  if (tls_segment == NULL)
3557 	    {
3558 	      gold_assert(parameters->errors()->error_count() > 0
3559 			  || issue_undefined_symbol_error(gsym));
3560 	      return 0;
3561 	    }
3562 	  value -= tls_segment->memsz();
3563 	}
3564       return value;
3565 
3566     case elfcpp::R_390_TLS_LOAD:         // Initial-exec marker
3567       // This is a marker relocation. If the sequence is being turned to LE,
3568       // we modify the instruction, otherwise the instruction is untouched.
3569       if (gsym != NULL
3570 	  && gsym->is_undefined()
3571 	  && parameters->options().output_is_executable())
3572 	{
3573 	  Target_s390<size>::Relocate::tls_ie_to_le(relinfo, relnum,
3574 						      rela, view,
3575 						      view_size);
3576 	  break;
3577 	}
3578       else if (optimized_type == tls::TLSOPT_TO_LE)
3579 	{
3580 	  if (tls_segment == NULL)
3581 	    {
3582 	      gold_assert(parameters->errors()->error_count() > 0
3583 			  || issue_undefined_symbol_error(gsym));
3584 	      return 0;
3585 	    }
3586 	  Target_s390<size>::Relocate::tls_ie_to_le(relinfo, relnum,
3587 						      rela, view,
3588 						      view_size);
3589 	  break;
3590 	}
3591       else if (optimized_type == tls::TLSOPT_NONE)
3592 	{
3593 	  break;
3594 	}
3595       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3596 			     _("unsupported reloc type %u"),
3597 			     r_type);
3598       break;
3599 
3600     case elfcpp::R_390_TLS_GOTIE12:       // Initial-exec, not optimizable
3601     case elfcpp::R_390_TLS_GOTIE20:
3602     case elfcpp::R_390_TLS_IEENT:
3603     case elfcpp::R_390_TLS_GOTIE32:       // Initial-exec, optimizable
3604     case elfcpp::R_390_TLS_GOTIE64:
3605     case elfcpp::R_390_TLS_IE32:
3606     case elfcpp::R_390_TLS_IE64:
3607       if (gsym != NULL
3608 	  && gsym->is_undefined()
3609 	  && parameters->options().output_is_executable()
3610 	  // These three cannot be optimized to LE, no matter what
3611 	  && r_type != elfcpp::R_390_TLS_GOTIE12
3612 	  && r_type != elfcpp::R_390_TLS_GOTIE20
3613 	  && r_type != elfcpp::R_390_TLS_IEENT)
3614 	{
3615           return value;
3616 	}
3617       else if (optimized_type == tls::TLSOPT_TO_LE)
3618 	{
3619 	  if (tls_segment == NULL)
3620 	    {
3621 	      gold_assert(parameters->errors()->error_count() > 0
3622 			  || issue_undefined_symbol_error(gsym));
3623 	      return 0;
3624 	    }
3625           return value - tls_segment->memsz();
3626 	}
3627       else if (optimized_type == tls::TLSOPT_NONE)
3628 	{
3629 	  // Relocate the field with the offset of the GOT entry for
3630 	  // the tp-relative offset of the symbol.
3631 	  unsigned int got_offset;
3632 	  if (gsym != NULL)
3633 	    {
3634 	      gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
3635 	      got_offset = gsym->got_offset(GOT_TYPE_TLS_OFFSET);
3636 	    }
3637 	  else
3638 	    {
3639 	      unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3640 	      gold_assert(object->local_has_got_offset(r_sym,
3641 						       GOT_TYPE_TLS_OFFSET));
3642 	      got_offset = object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
3643 	    }
3644 	  got_offset += target->got_main_offset();
3645 	  if (r_type == elfcpp::R_390_TLS_IE32
3646 	      || r_type == elfcpp::R_390_TLS_IE64)
3647 	    return target->got_address() + got_offset + addend;
3648 	  else
3649 	    return got_offset + addend;
3650 	}
3651       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3652 			     _("unsupported reloc type %u"),
3653 			     r_type);
3654       break;
3655 
3656     case elfcpp::R_390_TLS_LE32:          // Local-exec
3657     case elfcpp::R_390_TLS_LE64:
3658       if (tls_segment == NULL)
3659 	{
3660 	  gold_assert(parameters->errors()->error_count() > 0
3661 		      || issue_undefined_symbol_error(gsym));
3662 	  return 0;
3663 	}
3664       return value - tls_segment->memsz();
3665     }
3666   return 0;
3667 }
3668 
3669 // Do a relocation in which we convert a TLS General-Dynamic to an
3670 // Initial-Exec.
3671 
3672 template<int size>
3673 inline void
3674 Target_s390<size>::Relocate::tls_gd_to_ie(
3675     const Relocate_info<size, true>* relinfo,
3676     size_t relnum,
3677     const elfcpp::Rela<size, true>& rela,
3678     unsigned char* view,
3679     section_size_type view_size)
3680 {
3681   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3682   if (view[0] == 0x4d)
3683     {
3684       // bas, don't care about details
3685       // Change to l %r2, 0(%r2, %r12)
3686       view[0] = 0x58;
3687       view[1] = 0x22;
3688       view[2] = 0xc0;
3689       view[3] = 0x00;
3690       return;
3691     }
3692   else if (view[0] == 0xc0)
3693     {
3694       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 6);
3695       // brasl %r14, __tls_get_offset@plt
3696       if (view[1] == 0xe5)
3697 	{
3698 	  // Change to l/lg %r2, 0(%r2, %r12)
3699 	  // There was a PLT32DBL reloc at the last 4 bytes, overwrite its result.
3700 	  if (size == 32)
3701 	    {
3702 	      // l
3703 	      view[0] = 0x58;
3704 	      view[1] = 0x22;
3705 	      view[2] = 0xc0;
3706 	      view[3] = 0x00;
3707 	      // nop
3708 	      view[4] = 0x07;
3709 	      view[5] = 0x07;
3710 	    }
3711 	  else
3712 	    {
3713 	      // lg
3714 	      view[0] = 0xe3;
3715 	      view[1] = 0x22;
3716 	      view[2] = 0xc0;
3717 	      view[3] = 0;
3718 	      view[4] = 0;
3719 	      view[5] = 0x04;
3720 	    }
3721 	  return;
3722 	}
3723     }
3724   gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3725 			 _("unsupported op for GD to IE"));
3726 }
3727 
3728 // Do a relocation in which we convert a TLS General-Dynamic to a
3729 // Local-Exec.
3730 
3731 template<int size>
3732 inline void
3733 Target_s390<size>::Relocate::tls_gd_to_le(
3734     const Relocate_info<size, true>* relinfo,
3735     size_t relnum,
3736     const elfcpp::Rela<size, true>& rela,
3737     unsigned char* view,
3738     section_size_type view_size)
3739 {
3740   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
3741   if (view[0] == 0x0d)
3742     {
3743       // basr, change to nop
3744       view[0] = 0x07;
3745       view[1] = 0x07;
3746     }
3747   else if (view[0] == 0x4d)
3748     {
3749       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3750       // bas, don't care about details, change to nop
3751       view[0] = 0x47;
3752       view[1] = 0;
3753       view[2] = 0;
3754       view[3] = 0;
3755       return;
3756     }
3757   else if (view[0] == 0xc0)
3758     {
3759       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 6);
3760       // brasl %r14, __tls_get_offset@plt
3761       if (view[1] == 0xe5)
3762 	{
3763 	  // Change to nop jump. There was a PLT32DBL reloc at the last
3764 	  // 4 bytes, overwrite its result.
3765 	  view[1] = 0x04;
3766 	  view[2] = 0;
3767 	  view[3] = 0;
3768 	  view[4] = 0;
3769 	  view[5] = 0;
3770 	  return;
3771 	}
3772     }
3773   gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3774 			 _("unsupported op for GD to LE"));
3775 }
3776 
3777 template<int size>
3778 inline void
3779 Target_s390<size>::Relocate::tls_ld_to_le(
3780     const Relocate_info<size, true>* relinfo,
3781     size_t relnum,
3782     const elfcpp::Rela<size, true>& rela,
3783     unsigned char* view,
3784     section_size_type view_size)
3785 {
3786   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3787 
3788   if (view[0] == 0x0d)
3789     {
3790       // basr, change to nop
3791       view[0] = 0x07;
3792       view[1] = 0x07;
3793     }
3794   else if (view[0] == 0x4d)
3795     {
3796       // bas, don't care about details, change to nop
3797       view[0] = 0x47;
3798       view[1] = 0;
3799       view[2] = 0;
3800       view[3] = 0;
3801       return;
3802     }
3803   else if (view[0] == 0xc0)
3804     {
3805       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 6);
3806       // brasl %r14, __tls_get_offset@plt
3807       if (view[1] == 0xe5)
3808 	{
3809 	  // Change to nop jump. There was a PLT32DBL reloc at the last
3810 	  // 4 bytes, overwrite its result.
3811 	  view[1] = 0x04;
3812 	  view[2] = 0;
3813 	  view[3] = 0;
3814 	  view[4] = 0;
3815 	  view[5] = 0;
3816 	  return;
3817 	}
3818     }
3819   gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3820 			 _("unsupported op for LD to LE"));
3821 }
3822 
3823 // Do a relocation in which we convert a TLS Initial-Exec to a
3824 // Local-Exec.
3825 
3826 template<int size>
3827 inline void
3828 Target_s390<size>::Relocate::tls_ie_to_le(
3829     const Relocate_info<size, true>* relinfo,
3830     size_t relnum,
3831     const elfcpp::Rela<size, true>& rela,
3832     unsigned char* view,
3833     section_size_type view_size)
3834 {
3835   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3836 
3837   if (view[0] == 0x58)
3838     {
3839       // l %rX, 0(%rY) or l %rX, 0(%rY, %r12)
3840       if ((view[2] & 0x0f) != 0 || view[3] != 0)
3841 	goto err;
3842       int rx = view[1] >> 4 & 0xf;
3843       int ry = view[1] & 0xf;
3844       int rz = view[2] >> 4 & 0xf;
3845       if (rz == 0)
3846 	{
3847 	}
3848       else if (ry == 0)
3849 	{
3850 	  ry = rz;
3851 	}
3852       else if (rz == 12)
3853 	{
3854 	}
3855       else if (ry == 12)
3856 	{
3857 	  ry = rz;
3858 	}
3859       else
3860 	goto err;
3861       // to lr %rX, $rY
3862       view[0] = 0x18;
3863       view[1] = rx << 4 | ry;
3864       // and insert a nop
3865       view[2] = 0x07;
3866       view[3] = 0x00;
3867     }
3868   else if (view[0] == 0xe3)
3869     {
3870       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 6);
3871       // lg %rX, 0(%rY) or lg %rX, 0(%rY, %r12)
3872       if ((view[2] & 0x0f) != 0 ||
3873 	  view[3] != 0 ||
3874 	  view[4] != 0 ||
3875 	  view[5] != 0x04)
3876 	goto err;
3877       int rx = view[1] >> 4 & 0xf;
3878       int ry = view[1] & 0xf;
3879       int rz = view[2] >> 4 & 0xf;
3880       if (rz == 0)
3881 	{
3882 	}
3883       else if (ry == 0)
3884 	{
3885 	  ry = rz;
3886 	}
3887       else if (rz == 12)
3888 	{
3889 	}
3890       else if (ry == 12)
3891 	{
3892 	  ry = rz;
3893 	}
3894       else
3895 	goto err;
3896       // to sllg %rX, $rY, 0
3897       view[0] = 0xeb;
3898       view[1] = rx << 4 | ry;
3899       view[2] = 0x00;
3900       view[3] = 0x00;
3901       view[4] = 0x00;
3902       view[5] = 0x0d;
3903     }
3904   else
3905     {
3906 err:
3907       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3908 			     _("unsupported op for IE to LE"));
3909     }
3910 }
3911 
3912 // Scan relocations for a section.
3913 
3914 template<int size>
3915 void
3916 Target_s390<size>::scan_relocs(Symbol_table* symtab,
3917 				 Layout* layout,
3918 				 Sized_relobj_file<size, true>* object,
3919 				 unsigned int data_shndx,
3920 				 unsigned int sh_type,
3921 				 const unsigned char* prelocs,
3922 				 size_t reloc_count,
3923 				 Output_section* output_section,
3924 				 bool needs_special_offset_handling,
3925 				 size_t local_symbol_count,
3926 				 const unsigned char* plocal_symbols)
3927 {
3928   if (sh_type == elfcpp::SHT_REL)
3929     {
3930       gold_error(_("%s: unsupported REL reloc section"),
3931 		 object->name().c_str());
3932       return;
3933     }
3934 
3935   gold::scan_relocs<size, true, Target_s390<size>, elfcpp::SHT_RELA,
3936       typename Target_s390<size>::Scan>(
3937     symtab,
3938     layout,
3939     this,
3940     object,
3941     data_shndx,
3942     prelocs,
3943     reloc_count,
3944     output_section,
3945     needs_special_offset_handling,
3946     local_symbol_count,
3947     plocal_symbols);
3948 }
3949 
3950 // Finalize the sections.
3951 
3952 template<int size>
3953 void
3954 Target_s390<size>::do_finalize_sections(
3955     Layout* layout,
3956     const Input_objects*,
3957     Symbol_table* symtab)
3958 {
3959   const Reloc_section* rel_plt = (this->plt_ == NULL
3960 				  ? NULL
3961 				  : this->plt_->rela_plt());
3962   layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
3963 				  this->rela_dyn_, true, size == 32);
3964 
3965   this->layout_ = layout;
3966 
3967   // Emit any relocs we saved in an attempt to avoid generating COPY
3968   // relocs.
3969   if (this->copy_relocs_.any_saved_relocs())
3970     this->copy_relocs_.emit(this->rela_dyn_section(layout));
3971 
3972   // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
3973   // the .got section.
3974   Symbol* sym = this->global_offset_table_;
3975   if (sym != NULL)
3976     {
3977       uint64_t data_size = this->got_->current_data_size();
3978       symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
3979     }
3980 
3981   if (parameters->doing_static_link()
3982       && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
3983     {
3984       // If linking statically, make sure that the __rela_iplt symbols
3985       // were defined if necessary, even if we didn't create a PLT.
3986       static const Define_symbol_in_segment syms[] =
3987 	{
3988 	  {
3989 	    "__rela_iplt_start",	// name
3990 	    elfcpp::PT_LOAD,		// segment_type
3991 	    elfcpp::PF_W,		// segment_flags_set
3992 	    elfcpp::PF(0),		// segment_flags_clear
3993 	    0,				// value
3994 	    0,				// size
3995 	    elfcpp::STT_NOTYPE,		// type
3996 	    elfcpp::STB_GLOBAL,		// binding
3997 	    elfcpp::STV_HIDDEN,		// visibility
3998 	    0,				// nonvis
3999 	    Symbol::SEGMENT_START,	// offset_from_base
4000 	    true			// only_if_ref
4001 	  },
4002 	  {
4003 	    "__rela_iplt_end",		// name
4004 	    elfcpp::PT_LOAD,		// segment_type
4005 	    elfcpp::PF_W,		// segment_flags_set
4006 	    elfcpp::PF(0),		// segment_flags_clear
4007 	    0,				// value
4008 	    0,				// size
4009 	    elfcpp::STT_NOTYPE,		// type
4010 	    elfcpp::STB_GLOBAL,		// binding
4011 	    elfcpp::STV_HIDDEN,		// visibility
4012 	    0,				// nonvis
4013 	    Symbol::SEGMENT_START,	// offset_from_base
4014 	    true			// only_if_ref
4015 	  }
4016 	};
4017 
4018       symtab->define_symbols(layout, 2, syms,
4019 			     layout->script_options()->saw_sections_clause());
4020     }
4021 }
4022 
4023 // Return the size of a relocation while scanning during a relocatable
4024 // link.
4025 
4026 template<int size>
4027 unsigned int
4028 Target_s390<size>::Relocatable_size_for_reloc::get_size_for_reloc(
4029     unsigned int r_type,
4030     Relobj* object)
4031 {
4032   switch (r_type)
4033     {
4034     case elfcpp::R_390_NONE:
4035     case elfcpp::R_390_GNU_VTINHERIT:
4036     case elfcpp::R_390_GNU_VTENTRY:
4037     case elfcpp::R_390_TLS_GD32:          // Global-dynamic
4038     case elfcpp::R_390_TLS_GD64:
4039     case elfcpp::R_390_TLS_GDCALL:
4040     case elfcpp::R_390_TLS_LDM32:         // Local-dynamic
4041     case elfcpp::R_390_TLS_LDM64:
4042     case elfcpp::R_390_TLS_LDO32:
4043     case elfcpp::R_390_TLS_LDO64:
4044     case elfcpp::R_390_TLS_LDCALL:
4045     case elfcpp::R_390_TLS_IE32:          // Initial-exec
4046     case elfcpp::R_390_TLS_IE64:
4047     case elfcpp::R_390_TLS_IEENT:
4048     case elfcpp::R_390_TLS_GOTIE12:
4049     case elfcpp::R_390_TLS_GOTIE20:
4050     case elfcpp::R_390_TLS_GOTIE32:
4051     case elfcpp::R_390_TLS_GOTIE64:
4052     case elfcpp::R_390_TLS_LOAD:
4053     case elfcpp::R_390_TLS_LE32:          // Local-exec
4054     case elfcpp::R_390_TLS_LE64:
4055       return 0;
4056 
4057     case elfcpp::R_390_64:
4058     case elfcpp::R_390_PC64:
4059     case elfcpp::R_390_GOT64:
4060     case elfcpp::R_390_PLT64:
4061     case elfcpp::R_390_GOTOFF64:
4062     case elfcpp::R_390_GOTPLT64:
4063     case elfcpp::R_390_PLTOFF64:
4064       return 8;
4065 
4066     case elfcpp::R_390_32:
4067     case elfcpp::R_390_PC32:
4068     case elfcpp::R_390_GOT32:
4069     case elfcpp::R_390_PLT32:
4070     case elfcpp::R_390_GOTOFF32:
4071     case elfcpp::R_390_GOTPC:
4072     case elfcpp::R_390_PC32DBL:
4073     case elfcpp::R_390_PLT32DBL:
4074     case elfcpp::R_390_GOTPCDBL:
4075     case elfcpp::R_390_GOTENT:
4076     case elfcpp::R_390_GOTPLT32:
4077     case elfcpp::R_390_GOTPLTENT:
4078     case elfcpp::R_390_PLTOFF32:
4079     case elfcpp::R_390_20:
4080     case elfcpp::R_390_GOT20:
4081     case elfcpp::R_390_GOTPLT20:
4082       return 4;
4083 
4084     case elfcpp::R_390_PC24DBL:
4085     case elfcpp::R_390_PLT24DBL:
4086       return 3;
4087 
4088     case elfcpp::R_390_12:
4089     case elfcpp::R_390_GOT12:
4090     case elfcpp::R_390_GOTPLT12:
4091     case elfcpp::R_390_PC12DBL:
4092     case elfcpp::R_390_PLT12DBL:
4093     case elfcpp::R_390_16:
4094     case elfcpp::R_390_GOT16:
4095     case elfcpp::R_390_PC16:
4096     case elfcpp::R_390_PC16DBL:
4097     case elfcpp::R_390_PLT16DBL:
4098     case elfcpp::R_390_GOTOFF16:
4099     case elfcpp::R_390_GOTPLT16:
4100     case elfcpp::R_390_PLTOFF16:
4101       return 2;
4102 
4103     case elfcpp::R_390_8:
4104       return 1;
4105 
4106       // These are relocations which should only be seen by the
4107       // dynamic linker, and should never be seen here.
4108     case elfcpp::R_390_COPY:
4109     case elfcpp::R_390_GLOB_DAT:
4110     case elfcpp::R_390_JMP_SLOT:
4111     case elfcpp::R_390_RELATIVE:
4112     case elfcpp::R_390_IRELATIVE:
4113     case elfcpp::R_390_TLS_DTPMOD:
4114     case elfcpp::R_390_TLS_DTPOFF:
4115     case elfcpp::R_390_TLS_TPOFF:
4116       object->error(_("unexpected reloc %u in object file"), r_type);
4117       return 0;
4118 
4119     default:
4120       object->error(_("unsupported reloc %u in object file"), r_type);
4121       return 0;
4122     }
4123 }
4124 
4125 // Scan the relocs during a relocatable link.
4126 
4127 template<int size>
4128 void
4129 Target_s390<size>::scan_relocatable_relocs(
4130     Symbol_table* symtab,
4131     Layout* layout,
4132     Sized_relobj_file<size, true>* object,
4133     unsigned int data_shndx,
4134     unsigned int sh_type,
4135     const unsigned char* prelocs,
4136     size_t reloc_count,
4137     Output_section* output_section,
4138     bool needs_special_offset_handling,
4139     size_t local_symbol_count,
4140     const unsigned char* plocal_symbols,
4141     Relocatable_relocs* rr)
4142 {
4143   gold_assert(sh_type == elfcpp::SHT_RELA);
4144 
4145   typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
4146     Relocatable_size_for_reloc> Scan_relocatable_relocs;
4147 
4148   gold::scan_relocatable_relocs<size, true, elfcpp::SHT_RELA,
4149       Scan_relocatable_relocs>(
4150     symtab,
4151     layout,
4152     object,
4153     data_shndx,
4154     prelocs,
4155     reloc_count,
4156     output_section,
4157     needs_special_offset_handling,
4158     local_symbol_count,
4159     plocal_symbols,
4160     rr);
4161 }
4162 
4163 // Relocate a section during a relocatable link.
4164 
4165 template<int size>
4166 void
4167 Target_s390<size>::relocate_relocs(
4168     const Relocate_info<size, true>* relinfo,
4169     unsigned int sh_type,
4170     const unsigned char* prelocs,
4171     size_t reloc_count,
4172     Output_section* output_section,
4173     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
4174     const Relocatable_relocs* rr,
4175     unsigned char* view,
4176     typename elfcpp::Elf_types<size>::Elf_Addr view_address,
4177     section_size_type view_size,
4178     unsigned char* reloc_view,
4179     section_size_type reloc_view_size)
4180 {
4181   gold_assert(sh_type == elfcpp::SHT_RELA);
4182 
4183   gold::relocate_relocs<size, true, elfcpp::SHT_RELA>(
4184     relinfo,
4185     prelocs,
4186     reloc_count,
4187     output_section,
4188     offset_in_output_section,
4189     rr,
4190     view,
4191     view_address,
4192     view_size,
4193     reloc_view,
4194     reloc_view_size);
4195 }
4196 
4197 // Return the offset to use for the GOT_INDX'th got entry which is
4198 // for a local tls symbol specified by OBJECT, SYMNDX.
4199 template<int size>
4200 int64_t
4201 Target_s390<size>::do_tls_offset_for_local(
4202     const Relobj*,
4203     unsigned int,
4204     unsigned int) const
4205 {
4206   // The only way we can get called is when IEENT/GOTIE12/GOTIE20
4207   // couldn't be optimised to LE.
4208   Output_segment* tls_segment = layout_->tls_segment();
4209   return -tls_segment->memsz();
4210 }
4211 
4212 // Return the offset to use for the GOT_INDX'th got entry which is
4213 // for global tls symbol GSYM.
4214 template<int size>
4215 int64_t
4216 Target_s390<size>::do_tls_offset_for_global(
4217     Symbol*,
4218     unsigned int) const
4219 {
4220   Output_segment* tls_segment = layout_->tls_segment();
4221   return -tls_segment->memsz();
4222 }
4223 
4224 // Return the value to use for a dynamic which requires special
4225 // treatment.  This is how we support equality comparisons of function
4226 // pointers across shared library boundaries, as described in the
4227 // processor specific ABI supplement.
4228 
4229 template<int size>
4230 uint64_t
4231 Target_s390<size>::do_dynsym_value(const Symbol* gsym) const
4232 {
4233   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
4234   return this->plt_address_for_global(gsym);
4235 }
4236 
4237 // Return a string used to fill a code section with nops to take up
4238 // the specified length.
4239 
4240 template<int size>
4241 std::string
4242 Target_s390<size>::do_code_fill(section_size_type length) const
4243 {
4244   if (length & 1)
4245     gold_warning(_("S/390 code fill of odd length requested"));
4246   return std::string(length, static_cast<char>(0x07));
4247 }
4248 
4249 // Relocate section data.
4250 
4251 template<int size>
4252 void
4253 Target_s390<size>::relocate_section(
4254     const Relocate_info<size, true>* relinfo,
4255     unsigned int sh_type,
4256     const unsigned char* prelocs,
4257     size_t reloc_count,
4258     Output_section* output_section,
4259     bool needs_special_offset_handling,
4260     unsigned char* view,
4261     typename elfcpp::Elf_types<size>::Elf_Addr address,
4262     section_size_type view_size,
4263     const Reloc_symbol_changes* reloc_symbol_changes)
4264 {
4265   gold_assert(sh_type == elfcpp::SHT_RELA);
4266 
4267   gold::relocate_section<size, true, Target_s390<size>, elfcpp::SHT_RELA,
4268 			 typename Target_s390<size>::Relocate,
4269 			 gold::Default_comdat_behavior>(
4270     relinfo,
4271     this,
4272     prelocs,
4273     reloc_count,
4274     output_section,
4275     needs_special_offset_handling,
4276     view,
4277     address,
4278     view_size,
4279     reloc_symbol_changes);
4280 }
4281 
4282 // Apply an incremental relocation.  Incremental relocations always refer
4283 // to global symbols.
4284 
4285 template<int size>
4286 void
4287 Target_s390<size>::apply_relocation(
4288     const Relocate_info<size, true>* relinfo,
4289     typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
4290     unsigned int r_type,
4291     typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
4292     const Symbol* gsym,
4293     unsigned char* view,
4294     typename elfcpp::Elf_types<size>::Elf_Addr address,
4295     section_size_type view_size)
4296 {
4297   gold::apply_relocation<size, true, Target_s390<size>,
4298 			 typename Target_s390<size>::Relocate>(
4299     relinfo,
4300     this,
4301     r_offset,
4302     r_type,
4303     r_addend,
4304     gsym,
4305     view,
4306     address,
4307     view_size);
4308 }
4309 
4310 // The selector for s390 object files.
4311 
4312 template<int size>
4313 class Target_selector_s390 : public Target_selector
4314 {
4315 public:
4316   Target_selector_s390()
4317     : Target_selector(elfcpp::EM_S390, size, true,
4318 		      (size == 64 ? "elf64-s390" : "elf32-s390"),
4319 		      (size == 64 ? "elf64_s390" : "elf32_s390"))
4320   { }
4321 
4322   virtual Target*
4323   do_instantiate_target()
4324   { return new Target_s390<size>(); }
4325 };
4326 
4327 Target_selector_s390<32> target_selector_s390;
4328 Target_selector_s390<64> target_selector_s390x;
4329 
4330 } // End anonymous namespace.
4331