1 // object.cc -- support for an object file for linking in gold 2 3 // Copyright (C) 2006-2018 Free Software Foundation, Inc. 4 // Written by Ian Lance Taylor <iant@google.com>. 5 6 // This file is part of gold. 7 8 // This program is free software; you can redistribute it and/or modify 9 // it under the terms of the GNU General Public License as published by 10 // the Free Software Foundation; either version 3 of the License, or 11 // (at your option) any later version. 12 13 // This program is distributed in the hope that it will be useful, 14 // but WITHOUT ANY WARRANTY; without even the implied warranty of 15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 // GNU General Public License for more details. 17 18 // You should have received a copy of the GNU General Public License 19 // along with this program; if not, write to the Free Software 20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 21 // MA 02110-1301, USA. 22 23 #include "gold.h" 24 25 #include <cerrno> 26 #include <cstring> 27 #include <cstdarg> 28 #include "demangle.h" 29 #include "libiberty.h" 30 31 #include "gc.h" 32 #include "target-select.h" 33 #include "dwarf_reader.h" 34 #include "layout.h" 35 #include "output.h" 36 #include "symtab.h" 37 #include "cref.h" 38 #include "reloc.h" 39 #include "object.h" 40 #include "dynobj.h" 41 #include "plugin.h" 42 #include "compressed_output.h" 43 #include "incremental.h" 44 #include "merge.h" 45 46 namespace gold 47 { 48 49 // Struct Read_symbols_data. 50 51 // Destroy any remaining File_view objects and buffers of decompressed 52 // sections. 53 54 Read_symbols_data::~Read_symbols_data() 55 { 56 if (this->section_headers != NULL) 57 delete this->section_headers; 58 if (this->section_names != NULL) 59 delete this->section_names; 60 if (this->symbols != NULL) 61 delete this->symbols; 62 if (this->symbol_names != NULL) 63 delete this->symbol_names; 64 if (this->versym != NULL) 65 delete this->versym; 66 if (this->verdef != NULL) 67 delete this->verdef; 68 if (this->verneed != NULL) 69 delete this->verneed; 70 } 71 72 // Class Xindex. 73 74 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX 75 // section and read it in. SYMTAB_SHNDX is the index of the symbol 76 // table we care about. 77 78 template<int size, bool big_endian> 79 void 80 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx) 81 { 82 if (!this->symtab_xindex_.empty()) 83 return; 84 85 gold_assert(symtab_shndx != 0); 86 87 // Look through the sections in reverse order, on the theory that it 88 // is more likely to be near the end than the beginning. 89 unsigned int i = object->shnum(); 90 while (i > 0) 91 { 92 --i; 93 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX 94 && this->adjust_shndx(object->section_link(i)) == symtab_shndx) 95 { 96 this->read_symtab_xindex<size, big_endian>(object, i, NULL); 97 return; 98 } 99 } 100 101 object->error(_("missing SHT_SYMTAB_SHNDX section")); 102 } 103 104 // Read in the symtab_xindex_ array, given the section index of the 105 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the 106 // section headers. 107 108 template<int size, bool big_endian> 109 void 110 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx, 111 const unsigned char* pshdrs) 112 { 113 section_size_type bytecount; 114 const unsigned char* contents; 115 if (pshdrs == NULL) 116 contents = object->section_contents(xindex_shndx, &bytecount, false); 117 else 118 { 119 const unsigned char* p = (pshdrs 120 + (xindex_shndx 121 * elfcpp::Elf_sizes<size>::shdr_size)); 122 typename elfcpp::Shdr<size, big_endian> shdr(p); 123 bytecount = convert_to_section_size_type(shdr.get_sh_size()); 124 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false); 125 } 126 127 gold_assert(this->symtab_xindex_.empty()); 128 this->symtab_xindex_.reserve(bytecount / 4); 129 for (section_size_type i = 0; i < bytecount; i += 4) 130 { 131 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i); 132 // We preadjust the section indexes we save. 133 this->symtab_xindex_.push_back(this->adjust_shndx(shndx)); 134 } 135 } 136 137 // Symbol symndx has a section of SHN_XINDEX; return the real section 138 // index. 139 140 unsigned int 141 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx) 142 { 143 if (symndx >= this->symtab_xindex_.size()) 144 { 145 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"), 146 symndx); 147 return elfcpp::SHN_UNDEF; 148 } 149 unsigned int shndx = this->symtab_xindex_[symndx]; 150 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum()) 151 { 152 object->error(_("extended index for symbol %u out of range: %u"), 153 symndx, shndx); 154 return elfcpp::SHN_UNDEF; 155 } 156 return shndx; 157 } 158 159 // Class Object. 160 161 // Report an error for this object file. This is used by the 162 // elfcpp::Elf_file interface, and also called by the Object code 163 // itself. 164 165 void 166 Object::error(const char* format, ...) const 167 { 168 va_list args; 169 va_start(args, format); 170 char* buf = NULL; 171 if (vasprintf(&buf, format, args) < 0) 172 gold_nomem(); 173 va_end(args); 174 gold_error(_("%s: %s"), this->name().c_str(), buf); 175 free(buf); 176 } 177 178 // Return a view of the contents of a section. 179 180 const unsigned char* 181 Object::section_contents(unsigned int shndx, section_size_type* plen, 182 bool cache) 183 { return this->do_section_contents(shndx, plen, cache); } 184 185 // Read the section data into SD. This is code common to Sized_relobj_file 186 // and Sized_dynobj, so we put it into Object. 187 188 template<int size, bool big_endian> 189 void 190 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file, 191 Read_symbols_data* sd) 192 { 193 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size; 194 195 // Read the section headers. 196 const off_t shoff = elf_file->shoff(); 197 const unsigned int shnum = this->shnum(); 198 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size, 199 true, true); 200 201 // Read the section names. 202 const unsigned char* pshdrs = sd->section_headers->data(); 203 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size; 204 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames); 205 206 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB) 207 this->error(_("section name section has wrong type: %u"), 208 static_cast<unsigned int>(shdrnames.get_sh_type())); 209 210 sd->section_names_size = 211 convert_to_section_size_type(shdrnames.get_sh_size()); 212 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(), 213 sd->section_names_size, false, 214 false); 215 } 216 217 // If NAME is the name of a special .gnu.warning section, arrange for 218 // the warning to be issued. SHNDX is the section index. Return 219 // whether it is a warning section. 220 221 bool 222 Object::handle_gnu_warning_section(const char* name, unsigned int shndx, 223 Symbol_table* symtab) 224 { 225 const char warn_prefix[] = ".gnu.warning."; 226 const int warn_prefix_len = sizeof warn_prefix - 1; 227 if (strncmp(name, warn_prefix, warn_prefix_len) == 0) 228 { 229 // Read the section contents to get the warning text. It would 230 // be nicer if we only did this if we have to actually issue a 231 // warning. Unfortunately, warnings are issued as we relocate 232 // sections. That means that we can not lock the object then, 233 // as we might try to issue the same warning multiple times 234 // simultaneously. 235 section_size_type len; 236 const unsigned char* contents = this->section_contents(shndx, &len, 237 false); 238 if (len == 0) 239 { 240 const char* warning = name + warn_prefix_len; 241 contents = reinterpret_cast<const unsigned char*>(warning); 242 len = strlen(warning); 243 } 244 std::string warning(reinterpret_cast<const char*>(contents), len); 245 symtab->add_warning(name + warn_prefix_len, this, warning); 246 return true; 247 } 248 return false; 249 } 250 251 // If NAME is the name of the special section which indicates that 252 // this object was compiled with -fsplit-stack, mark it accordingly. 253 254 bool 255 Object::handle_split_stack_section(const char* name) 256 { 257 if (strcmp(name, ".note.GNU-split-stack") == 0) 258 { 259 this->uses_split_stack_ = true; 260 return true; 261 } 262 if (strcmp(name, ".note.GNU-no-split-stack") == 0) 263 { 264 this->has_no_split_stack_ = true; 265 return true; 266 } 267 return false; 268 } 269 270 // Class Relobj 271 272 template<int size> 273 void 274 Relobj::initialize_input_to_output_map(unsigned int shndx, 275 typename elfcpp::Elf_types<size>::Elf_Addr starting_address, 276 Unordered_map<section_offset_type, 277 typename elfcpp::Elf_types<size>::Elf_Addr>* output_addresses) const { 278 Object_merge_map *map = this->object_merge_map_; 279 map->initialize_input_to_output_map<size>(shndx, starting_address, 280 output_addresses); 281 } 282 283 void 284 Relobj::add_merge_mapping(Output_section_data *output_data, 285 unsigned int shndx, section_offset_type offset, 286 section_size_type length, 287 section_offset_type output_offset) { 288 Object_merge_map* object_merge_map = this->get_or_create_merge_map(); 289 object_merge_map->add_mapping(output_data, shndx, offset, length, output_offset); 290 } 291 292 bool 293 Relobj::merge_output_offset(unsigned int shndx, section_offset_type offset, 294 section_offset_type *poutput) const { 295 Object_merge_map* object_merge_map = this->object_merge_map_; 296 if (object_merge_map == NULL) 297 return false; 298 return object_merge_map->get_output_offset(shndx, offset, poutput); 299 } 300 301 const Output_section_data* 302 Relobj::find_merge_section(unsigned int shndx) const { 303 Object_merge_map* object_merge_map = this->object_merge_map_; 304 if (object_merge_map == NULL) 305 return NULL; 306 return object_merge_map->find_merge_section(shndx); 307 } 308 309 // To copy the symbols data read from the file to a local data structure. 310 // This function is called from do_layout only while doing garbage 311 // collection. 312 313 void 314 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd, 315 unsigned int section_header_size) 316 { 317 gc_sd->section_headers_data = 318 new unsigned char[(section_header_size)]; 319 memcpy(gc_sd->section_headers_data, sd->section_headers->data(), 320 section_header_size); 321 gc_sd->section_names_data = 322 new unsigned char[sd->section_names_size]; 323 memcpy(gc_sd->section_names_data, sd->section_names->data(), 324 sd->section_names_size); 325 gc_sd->section_names_size = sd->section_names_size; 326 if (sd->symbols != NULL) 327 { 328 gc_sd->symbols_data = 329 new unsigned char[sd->symbols_size]; 330 memcpy(gc_sd->symbols_data, sd->symbols->data(), 331 sd->symbols_size); 332 } 333 else 334 { 335 gc_sd->symbols_data = NULL; 336 } 337 gc_sd->symbols_size = sd->symbols_size; 338 gc_sd->external_symbols_offset = sd->external_symbols_offset; 339 if (sd->symbol_names != NULL) 340 { 341 gc_sd->symbol_names_data = 342 new unsigned char[sd->symbol_names_size]; 343 memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(), 344 sd->symbol_names_size); 345 } 346 else 347 { 348 gc_sd->symbol_names_data = NULL; 349 } 350 gc_sd->symbol_names_size = sd->symbol_names_size; 351 } 352 353 // This function determines if a particular section name must be included 354 // in the link. This is used during garbage collection to determine the 355 // roots of the worklist. 356 357 bool 358 Relobj::is_section_name_included(const char* name) 359 { 360 if (is_prefix_of(".ctors", name) 361 || is_prefix_of(".dtors", name) 362 || is_prefix_of(".note", name) 363 || is_prefix_of(".init", name) 364 || is_prefix_of(".fini", name) 365 || is_prefix_of(".gcc_except_table", name) 366 || is_prefix_of(".jcr", name) 367 || is_prefix_of(".preinit_array", name) 368 || (is_prefix_of(".text", name) 369 && strstr(name, "personality")) 370 || (is_prefix_of(".data", name) 371 && strstr(name, "personality")) 372 || (is_prefix_of(".sdata", name) 373 && strstr(name, "personality")) 374 || (is_prefix_of(".gnu.linkonce.d", name) 375 && strstr(name, "personality")) 376 || (is_prefix_of(".rodata", name) 377 && strstr(name, "nptl_version"))) 378 { 379 return true; 380 } 381 return false; 382 } 383 384 // Finalize the incremental relocation information. Allocates a block 385 // of relocation entries for each symbol, and sets the reloc_bases_ 386 // array to point to the first entry in each block. If CLEAR_COUNTS 387 // is TRUE, also clear the per-symbol relocation counters. 388 389 void 390 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts) 391 { 392 unsigned int nsyms = this->get_global_symbols()->size(); 393 this->reloc_bases_ = new unsigned int[nsyms]; 394 395 gold_assert(this->reloc_bases_ != NULL); 396 gold_assert(layout->incremental_inputs() != NULL); 397 398 unsigned int rindex = layout->incremental_inputs()->get_reloc_count(); 399 for (unsigned int i = 0; i < nsyms; ++i) 400 { 401 this->reloc_bases_[i] = rindex; 402 rindex += this->reloc_counts_[i]; 403 if (clear_counts) 404 this->reloc_counts_[i] = 0; 405 } 406 layout->incremental_inputs()->set_reloc_count(rindex); 407 } 408 409 Object_merge_map* 410 Relobj::get_or_create_merge_map() 411 { 412 if (!this->object_merge_map_) 413 this->object_merge_map_ = new Object_merge_map(); 414 return this->object_merge_map_; 415 } 416 417 // Class Sized_relobj. 418 419 // Iterate over local symbols, calling a visitor class V for each GOT offset 420 // associated with a local symbol. 421 422 template<int size, bool big_endian> 423 void 424 Sized_relobj<size, big_endian>::do_for_all_local_got_entries( 425 Got_offset_list::Visitor* v) const 426 { 427 unsigned int nsyms = this->local_symbol_count(); 428 for (unsigned int i = 0; i < nsyms; i++) 429 { 430 Local_got_entry_key key(i, 0); 431 Local_got_offsets::const_iterator p = this->local_got_offsets_.find(key); 432 if (p != this->local_got_offsets_.end()) 433 { 434 const Got_offset_list* got_offsets = p->second; 435 got_offsets->for_all_got_offsets(v); 436 } 437 } 438 } 439 440 // Get the address of an output section. 441 442 template<int size, bool big_endian> 443 uint64_t 444 Sized_relobj<size, big_endian>::do_output_section_address( 445 unsigned int shndx) 446 { 447 // If the input file is linked as --just-symbols, the output 448 // section address is the input section address. 449 if (this->just_symbols()) 450 return this->section_address(shndx); 451 452 const Output_section* os = this->do_output_section(shndx); 453 gold_assert(os != NULL); 454 return os->address(); 455 } 456 457 // Class Sized_relobj_file. 458 459 template<int size, bool big_endian> 460 Sized_relobj_file<size, big_endian>::Sized_relobj_file( 461 const std::string& name, 462 Input_file* input_file, 463 off_t offset, 464 const elfcpp::Ehdr<size, big_endian>& ehdr) 465 : Sized_relobj<size, big_endian>(name, input_file, offset), 466 elf_file_(this, ehdr), 467 symtab_shndx_(-1U), 468 local_symbol_count_(0), 469 output_local_symbol_count_(0), 470 output_local_dynsym_count_(0), 471 symbols_(), 472 defined_count_(0), 473 local_symbol_offset_(0), 474 local_dynsym_offset_(0), 475 local_values_(), 476 local_plt_offsets_(), 477 kept_comdat_sections_(), 478 has_eh_frame_(false), 479 is_deferred_layout_(false), 480 deferred_layout_(), 481 deferred_layout_relocs_(), 482 output_views_(NULL) 483 { 484 this->e_type_ = ehdr.get_e_type(); 485 } 486 487 template<int size, bool big_endian> 488 Sized_relobj_file<size, big_endian>::~Sized_relobj_file() 489 { 490 } 491 492 // Set up an object file based on the file header. This sets up the 493 // section information. 494 495 template<int size, bool big_endian> 496 void 497 Sized_relobj_file<size, big_endian>::do_setup() 498 { 499 const unsigned int shnum = this->elf_file_.shnum(); 500 this->set_shnum(shnum); 501 } 502 503 // Find the SHT_SYMTAB section, given the section headers. The ELF 504 // standard says that maybe in the future there can be more than one 505 // SHT_SYMTAB section. Until somebody figures out how that could 506 // work, we assume there is only one. 507 508 template<int size, bool big_endian> 509 void 510 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs) 511 { 512 const unsigned int shnum = this->shnum(); 513 this->symtab_shndx_ = 0; 514 if (shnum > 0) 515 { 516 // Look through the sections in reverse order, since gas tends 517 // to put the symbol table at the end. 518 const unsigned char* p = pshdrs + shnum * This::shdr_size; 519 unsigned int i = shnum; 520 unsigned int xindex_shndx = 0; 521 unsigned int xindex_link = 0; 522 while (i > 0) 523 { 524 --i; 525 p -= This::shdr_size; 526 typename This::Shdr shdr(p); 527 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB) 528 { 529 this->symtab_shndx_ = i; 530 if (xindex_shndx > 0 && xindex_link == i) 531 { 532 Xindex* xindex = 533 new Xindex(this->elf_file_.large_shndx_offset()); 534 xindex->read_symtab_xindex<size, big_endian>(this, 535 xindex_shndx, 536 pshdrs); 537 this->set_xindex(xindex); 538 } 539 break; 540 } 541 542 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is 543 // one. This will work if it follows the SHT_SYMTAB 544 // section. 545 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX) 546 { 547 xindex_shndx = i; 548 xindex_link = this->adjust_shndx(shdr.get_sh_link()); 549 } 550 } 551 } 552 } 553 554 // Return the Xindex structure to use for object with lots of 555 // sections. 556 557 template<int size, bool big_endian> 558 Xindex* 559 Sized_relobj_file<size, big_endian>::do_initialize_xindex() 560 { 561 gold_assert(this->symtab_shndx_ != -1U); 562 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset()); 563 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_); 564 return xindex; 565 } 566 567 // Return whether SHDR has the right type and flags to be a GNU 568 // .eh_frame section. 569 570 template<int size, bool big_endian> 571 bool 572 Sized_relobj_file<size, big_endian>::check_eh_frame_flags( 573 const elfcpp::Shdr<size, big_endian>* shdr) const 574 { 575 elfcpp::Elf_Word sh_type = shdr->get_sh_type(); 576 return ((sh_type == elfcpp::SHT_PROGBITS 577 || sh_type == parameters->target().unwind_section_type()) 578 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0); 579 } 580 581 // Find the section header with the given name. 582 583 template<int size, bool big_endian> 584 const unsigned char* 585 Object::find_shdr( 586 const unsigned char* pshdrs, 587 const char* name, 588 const char* names, 589 section_size_type names_size, 590 const unsigned char* hdr) const 591 { 592 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size; 593 const unsigned int shnum = this->shnum(); 594 const unsigned char* hdr_end = pshdrs + shdr_size * shnum; 595 size_t sh_name = 0; 596 597 while (1) 598 { 599 if (hdr) 600 { 601 // We found HDR last time we were called, continue looking. 602 typename elfcpp::Shdr<size, big_endian> shdr(hdr); 603 sh_name = shdr.get_sh_name(); 604 } 605 else 606 { 607 // Look for the next occurrence of NAME in NAMES. 608 // The fact that .shstrtab produced by current GNU tools is 609 // string merged means we shouldn't have both .not.foo and 610 // .foo in .shstrtab, and multiple .foo sections should all 611 // have the same sh_name. However, this is not guaranteed 612 // by the ELF spec and not all ELF object file producers may 613 // be so clever. 614 size_t len = strlen(name) + 1; 615 const char *p = sh_name ? names + sh_name + len : names; 616 p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names), 617 name, len)); 618 if (p == NULL) 619 return NULL; 620 sh_name = p - names; 621 hdr = pshdrs; 622 if (sh_name == 0) 623 return hdr; 624 } 625 626 hdr += shdr_size; 627 while (hdr < hdr_end) 628 { 629 typename elfcpp::Shdr<size, big_endian> shdr(hdr); 630 if (shdr.get_sh_name() == sh_name) 631 return hdr; 632 hdr += shdr_size; 633 } 634 hdr = NULL; 635 if (sh_name == 0) 636 return hdr; 637 } 638 } 639 640 // Return whether there is a GNU .eh_frame section, given the section 641 // headers and the section names. 642 643 template<int size, bool big_endian> 644 bool 645 Sized_relobj_file<size, big_endian>::find_eh_frame( 646 const unsigned char* pshdrs, 647 const char* names, 648 section_size_type names_size) const 649 { 650 const unsigned char* s = NULL; 651 652 while (1) 653 { 654 s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame", 655 names, names_size, s); 656 if (s == NULL) 657 return false; 658 659 typename This::Shdr shdr(s); 660 if (this->check_eh_frame_flags(&shdr)) 661 return true; 662 } 663 } 664 665 // Return TRUE if this is a section whose contents will be needed in the 666 // Add_symbols task. This function is only called for sections that have 667 // already passed the test in is_compressed_debug_section() and the debug 668 // section name prefix, ".debug"/".zdebug", has been skipped. 669 670 static bool 671 need_decompressed_section(const char* name) 672 { 673 if (*name++ != '_') 674 return false; 675 676 #ifdef ENABLE_THREADS 677 // Decompressing these sections now will help only if we're 678 // multithreaded. 679 if (parameters->options().threads()) 680 { 681 // We will need .zdebug_str if this is not an incremental link 682 // (i.e., we are processing string merge sections) or if we need 683 // to build a gdb index. 684 if ((!parameters->incremental() || parameters->options().gdb_index()) 685 && strcmp(name, "str") == 0) 686 return true; 687 688 // We will need these other sections when building a gdb index. 689 if (parameters->options().gdb_index() 690 && (strcmp(name, "info") == 0 691 || strcmp(name, "types") == 0 692 || strcmp(name, "pubnames") == 0 693 || strcmp(name, "pubtypes") == 0 694 || strcmp(name, "ranges") == 0 695 || strcmp(name, "abbrev") == 0)) 696 return true; 697 } 698 #endif 699 700 // Even when single-threaded, we will need .zdebug_str if this is 701 // not an incremental link and we are building a gdb index. 702 // Otherwise, we would decompress the section twice: once for 703 // string merge processing, and once for building the gdb index. 704 if (!parameters->incremental() 705 && parameters->options().gdb_index() 706 && strcmp(name, "str") == 0) 707 return true; 708 709 return false; 710 } 711 712 // Build a table for any compressed debug sections, mapping each section index 713 // to the uncompressed size and (if needed) the decompressed contents. 714 715 template<int size, bool big_endian> 716 Compressed_section_map* 717 build_compressed_section_map( 718 const unsigned char* pshdrs, 719 unsigned int shnum, 720 const char* names, 721 section_size_type names_size, 722 Object* obj, 723 bool decompress_if_needed) 724 { 725 Compressed_section_map* uncompressed_map = new Compressed_section_map(); 726 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size; 727 const unsigned char* p = pshdrs + shdr_size; 728 729 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size) 730 { 731 typename elfcpp::Shdr<size, big_endian> shdr(p); 732 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS 733 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0) 734 { 735 if (shdr.get_sh_name() >= names_size) 736 { 737 obj->error(_("bad section name offset for section %u: %lu"), 738 i, static_cast<unsigned long>(shdr.get_sh_name())); 739 continue; 740 } 741 742 const char* name = names + shdr.get_sh_name(); 743 bool is_compressed = ((shdr.get_sh_flags() 744 & elfcpp::SHF_COMPRESSED) != 0); 745 bool is_zcompressed = (!is_compressed 746 && is_compressed_debug_section(name)); 747 748 if (is_zcompressed || is_compressed) 749 { 750 section_size_type len; 751 const unsigned char* contents = 752 obj->section_contents(i, &len, false); 753 uint64_t uncompressed_size; 754 if (is_zcompressed) 755 { 756 // Skip over the ".zdebug" prefix. 757 name += 7; 758 uncompressed_size = get_uncompressed_size(contents, len); 759 } 760 else 761 { 762 // Skip over the ".debug" prefix. 763 name += 6; 764 elfcpp::Chdr<size, big_endian> chdr(contents); 765 uncompressed_size = chdr.get_ch_size(); 766 } 767 Compressed_section_info info; 768 info.size = convert_to_section_size_type(uncompressed_size); 769 info.flag = shdr.get_sh_flags(); 770 info.contents = NULL; 771 if (uncompressed_size != -1ULL) 772 { 773 unsigned char* uncompressed_data = NULL; 774 if (decompress_if_needed && need_decompressed_section(name)) 775 { 776 uncompressed_data = new unsigned char[uncompressed_size]; 777 if (decompress_input_section(contents, len, 778 uncompressed_data, 779 uncompressed_size, 780 size, big_endian, 781 shdr.get_sh_flags())) 782 info.contents = uncompressed_data; 783 else 784 delete[] uncompressed_data; 785 } 786 (*uncompressed_map)[i] = info; 787 } 788 } 789 } 790 } 791 return uncompressed_map; 792 } 793 794 // Stash away info for a number of special sections. 795 // Return true if any of the sections found require local symbols to be read. 796 797 template<int size, bool big_endian> 798 bool 799 Sized_relobj_file<size, big_endian>::do_find_special_sections( 800 Read_symbols_data* sd) 801 { 802 const unsigned char* const pshdrs = sd->section_headers->data(); 803 const unsigned char* namesu = sd->section_names->data(); 804 const char* names = reinterpret_cast<const char*>(namesu); 805 806 if (this->find_eh_frame(pshdrs, names, sd->section_names_size)) 807 this->has_eh_frame_ = true; 808 809 Compressed_section_map* compressed_sections = 810 build_compressed_section_map<size, big_endian>( 811 pshdrs, this->shnum(), names, sd->section_names_size, this, true); 812 if (compressed_sections != NULL) 813 this->set_compressed_sections(compressed_sections); 814 815 return (this->has_eh_frame_ 816 || (!parameters->options().relocatable() 817 && parameters->options().gdb_index() 818 && (memmem(names, sd->section_names_size, "debug_info", 11) != NULL 819 || memmem(names, sd->section_names_size, 820 "debug_types", 12) != NULL))); 821 } 822 823 // Read the sections and symbols from an object file. 824 825 template<int size, bool big_endian> 826 void 827 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd) 828 { 829 this->base_read_symbols(sd); 830 } 831 832 // Read the sections and symbols from an object file. This is common 833 // code for all target-specific overrides of do_read_symbols(). 834 835 template<int size, bool big_endian> 836 void 837 Sized_relobj_file<size, big_endian>::base_read_symbols(Read_symbols_data* sd) 838 { 839 this->read_section_data(&this->elf_file_, sd); 840 841 const unsigned char* const pshdrs = sd->section_headers->data(); 842 843 this->find_symtab(pshdrs); 844 845 bool need_local_symbols = this->do_find_special_sections(sd); 846 847 sd->symbols = NULL; 848 sd->symbols_size = 0; 849 sd->external_symbols_offset = 0; 850 sd->symbol_names = NULL; 851 sd->symbol_names_size = 0; 852 853 if (this->symtab_shndx_ == 0) 854 { 855 // No symbol table. Weird but legal. 856 return; 857 } 858 859 // Get the symbol table section header. 860 typename This::Shdr symtabshdr(pshdrs 861 + this->symtab_shndx_ * This::shdr_size); 862 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB); 863 864 // If this object has a .eh_frame section, or if building a .gdb_index 865 // section and there is debug info, we need all the symbols. 866 // Otherwise we only need the external symbols. While it would be 867 // simpler to just always read all the symbols, I've seen object 868 // files with well over 2000 local symbols, which for a 64-bit 869 // object file format is over 5 pages that we don't need to read 870 // now. 871 872 const int sym_size = This::sym_size; 873 const unsigned int loccount = symtabshdr.get_sh_info(); 874 this->local_symbol_count_ = loccount; 875 this->local_values_.resize(loccount); 876 section_offset_type locsize = loccount * sym_size; 877 off_t dataoff = symtabshdr.get_sh_offset(); 878 section_size_type datasize = 879 convert_to_section_size_type(symtabshdr.get_sh_size()); 880 off_t extoff = dataoff + locsize; 881 section_size_type extsize = datasize - locsize; 882 883 off_t readoff = need_local_symbols ? dataoff : extoff; 884 section_size_type readsize = need_local_symbols ? datasize : extsize; 885 886 if (readsize == 0) 887 { 888 // No external symbols. Also weird but also legal. 889 return; 890 } 891 892 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false); 893 894 // Read the section header for the symbol names. 895 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link()); 896 if (strtab_shndx >= this->shnum()) 897 { 898 this->error(_("invalid symbol table name index: %u"), strtab_shndx); 899 return; 900 } 901 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size); 902 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB) 903 { 904 this->error(_("symbol table name section has wrong type: %u"), 905 static_cast<unsigned int>(strtabshdr.get_sh_type())); 906 return; 907 } 908 909 // Read the symbol names. 910 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(), 911 strtabshdr.get_sh_size(), 912 false, true); 913 914 sd->symbols = fvsymtab; 915 sd->symbols_size = readsize; 916 sd->external_symbols_offset = need_local_symbols ? locsize : 0; 917 sd->symbol_names = fvstrtab; 918 sd->symbol_names_size = 919 convert_to_section_size_type(strtabshdr.get_sh_size()); 920 } 921 922 // Return the section index of symbol SYM. Set *VALUE to its value in 923 // the object file. Set *IS_ORDINARY if this is an ordinary section 924 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE. 925 // Note that for a symbol which is not defined in this object file, 926 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return 927 // the final value of the symbol in the link. 928 929 template<int size, bool big_endian> 930 unsigned int 931 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym, 932 Address* value, 933 bool* is_ordinary) 934 { 935 section_size_type symbols_size; 936 const unsigned char* symbols = this->section_contents(this->symtab_shndx_, 937 &symbols_size, 938 false); 939 940 const size_t count = symbols_size / This::sym_size; 941 gold_assert(sym < count); 942 943 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size); 944 *value = elfsym.get_st_value(); 945 946 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary); 947 } 948 949 // Return whether to include a section group in the link. LAYOUT is 950 // used to keep track of which section groups we have already seen. 951 // INDEX is the index of the section group and SHDR is the section 952 // header. If we do not want to include this group, we set bits in 953 // OMIT for each section which should be discarded. 954 955 template<int size, bool big_endian> 956 bool 957 Sized_relobj_file<size, big_endian>::include_section_group( 958 Symbol_table* symtab, 959 Layout* layout, 960 unsigned int index, 961 const char* name, 962 const unsigned char* shdrs, 963 const char* section_names, 964 section_size_type section_names_size, 965 std::vector<bool>* omit) 966 { 967 // Read the section contents. 968 typename This::Shdr shdr(shdrs + index * This::shdr_size); 969 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(), 970 shdr.get_sh_size(), true, false); 971 const elfcpp::Elf_Word* pword = 972 reinterpret_cast<const elfcpp::Elf_Word*>(pcon); 973 974 // The first word contains flags. We only care about COMDAT section 975 // groups. Other section groups are always included in the link 976 // just like ordinary sections. 977 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword); 978 979 // Look up the group signature, which is the name of a symbol. ELF 980 // uses a symbol name because some group signatures are long, and 981 // the name is generally already in the symbol table, so it makes 982 // sense to put the long string just once in .strtab rather than in 983 // both .strtab and .shstrtab. 984 985 // Get the appropriate symbol table header (this will normally be 986 // the single SHT_SYMTAB section, but in principle it need not be). 987 const unsigned int link = this->adjust_shndx(shdr.get_sh_link()); 988 typename This::Shdr symshdr(this, this->elf_file_.section_header(link)); 989 990 // Read the symbol table entry. 991 unsigned int symndx = shdr.get_sh_info(); 992 if (symndx >= symshdr.get_sh_size() / This::sym_size) 993 { 994 this->error(_("section group %u info %u out of range"), 995 index, symndx); 996 return false; 997 } 998 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size; 999 const unsigned char* psym = this->get_view(symoff, This::sym_size, true, 1000 false); 1001 elfcpp::Sym<size, big_endian> sym(psym); 1002 1003 // Read the symbol table names. 1004 section_size_type symnamelen; 1005 const unsigned char* psymnamesu; 1006 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()), 1007 &symnamelen, true); 1008 const char* psymnames = reinterpret_cast<const char*>(psymnamesu); 1009 1010 // Get the section group signature. 1011 if (sym.get_st_name() >= symnamelen) 1012 { 1013 this->error(_("symbol %u name offset %u out of range"), 1014 symndx, sym.get_st_name()); 1015 return false; 1016 } 1017 1018 std::string signature(psymnames + sym.get_st_name()); 1019 1020 // It seems that some versions of gas will create a section group 1021 // associated with a section symbol, and then fail to give a name to 1022 // the section symbol. In such a case, use the name of the section. 1023 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION) 1024 { 1025 bool is_ordinary; 1026 unsigned int sym_shndx = this->adjust_sym_shndx(symndx, 1027 sym.get_st_shndx(), 1028 &is_ordinary); 1029 if (!is_ordinary || sym_shndx >= this->shnum()) 1030 { 1031 this->error(_("symbol %u invalid section index %u"), 1032 symndx, sym_shndx); 1033 return false; 1034 } 1035 typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size); 1036 if (member_shdr.get_sh_name() < section_names_size) 1037 signature = section_names + member_shdr.get_sh_name(); 1038 } 1039 1040 // Record this section group in the layout, and see whether we've already 1041 // seen one with the same signature. 1042 bool include_group; 1043 bool is_comdat; 1044 Kept_section* kept_section = NULL; 1045 1046 if ((flags & elfcpp::GRP_COMDAT) == 0) 1047 { 1048 include_group = true; 1049 is_comdat = false; 1050 } 1051 else 1052 { 1053 include_group = layout->find_or_add_kept_section(signature, 1054 this, index, true, 1055 true, &kept_section); 1056 is_comdat = true; 1057 } 1058 1059 if (is_comdat && include_group) 1060 { 1061 Incremental_inputs* incremental_inputs = layout->incremental_inputs(); 1062 if (incremental_inputs != NULL) 1063 incremental_inputs->report_comdat_group(this, signature.c_str()); 1064 } 1065 1066 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word); 1067 1068 std::vector<unsigned int> shndxes; 1069 bool relocate_group = include_group && parameters->options().relocatable(); 1070 if (relocate_group) 1071 shndxes.reserve(count - 1); 1072 1073 for (size_t i = 1; i < count; ++i) 1074 { 1075 elfcpp::Elf_Word shndx = 1076 this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i)); 1077 1078 if (relocate_group) 1079 shndxes.push_back(shndx); 1080 1081 if (shndx >= this->shnum()) 1082 { 1083 this->error(_("section %u in section group %u out of range"), 1084 shndx, index); 1085 continue; 1086 } 1087 1088 // Check for an earlier section number, since we're going to get 1089 // it wrong--we may have already decided to include the section. 1090 if (shndx < index) 1091 this->error(_("invalid section group %u refers to earlier section %u"), 1092 index, shndx); 1093 1094 // Get the name of the member section. 1095 typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size); 1096 if (member_shdr.get_sh_name() >= section_names_size) 1097 { 1098 // This is an error, but it will be diagnosed eventually 1099 // in do_layout, so we don't need to do anything here but 1100 // ignore it. 1101 continue; 1102 } 1103 std::string mname(section_names + member_shdr.get_sh_name()); 1104 1105 if (include_group) 1106 { 1107 if (is_comdat) 1108 kept_section->add_comdat_section(mname, shndx, 1109 member_shdr.get_sh_size()); 1110 } 1111 else 1112 { 1113 (*omit)[shndx] = true; 1114 1115 // Store a mapping from this section to the Kept_section 1116 // information for the group. This mapping is used for 1117 // relocation processing and diagnostics. 1118 // If the kept section is a linkonce section, we don't 1119 // bother with it unless the comdat group contains just 1120 // a single section, making it easy to match up. 1121 if (is_comdat 1122 && (kept_section->is_comdat() || count == 2)) 1123 this->set_kept_comdat_section(shndx, true, symndx, 1124 member_shdr.get_sh_size(), 1125 kept_section); 1126 } 1127 } 1128 1129 if (relocate_group) 1130 layout->layout_group(symtab, this, index, name, signature.c_str(), 1131 shdr, flags, &shndxes); 1132 1133 return include_group; 1134 } 1135 1136 // Whether to include a linkonce section in the link. NAME is the 1137 // name of the section and SHDR is the section header. 1138 1139 // Linkonce sections are a GNU extension implemented in the original 1140 // GNU linker before section groups were defined. The semantics are 1141 // that we only include one linkonce section with a given name. The 1142 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME, 1143 // where T is the type of section and SYMNAME is the name of a symbol. 1144 // In an attempt to make linkonce sections interact well with section 1145 // groups, we try to identify SYMNAME and use it like a section group 1146 // signature. We want to block section groups with that signature, 1147 // but not other linkonce sections with that signature. We also use 1148 // the full name of the linkonce section as a normal section group 1149 // signature. 1150 1151 template<int size, bool big_endian> 1152 bool 1153 Sized_relobj_file<size, big_endian>::include_linkonce_section( 1154 Layout* layout, 1155 unsigned int index, 1156 const char* name, 1157 const elfcpp::Shdr<size, big_endian>& shdr) 1158 { 1159 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size(); 1160 // In general the symbol name we want will be the string following 1161 // the last '.'. However, we have to handle the case of 1162 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by 1163 // some versions of gcc. So we use a heuristic: if the name starts 1164 // with ".gnu.linkonce.t.", we use everything after that. Otherwise 1165 // we look for the last '.'. We can't always simply skip 1166 // ".gnu.linkonce.X", because we have to deal with cases like 1167 // ".gnu.linkonce.d.rel.ro.local". 1168 const char* const linkonce_t = ".gnu.linkonce.t."; 1169 const char* symname; 1170 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0) 1171 symname = name + strlen(linkonce_t); 1172 else 1173 symname = strrchr(name, '.') + 1; 1174 std::string sig1(symname); 1175 std::string sig2(name); 1176 Kept_section* kept1; 1177 Kept_section* kept2; 1178 bool include1 = layout->find_or_add_kept_section(sig1, this, index, false, 1179 false, &kept1); 1180 bool include2 = layout->find_or_add_kept_section(sig2, this, index, false, 1181 true, &kept2); 1182 1183 if (!include2) 1184 { 1185 // We are not including this section because we already saw the 1186 // name of the section as a signature. This normally implies 1187 // that the kept section is another linkonce section. If it is 1188 // the same size, record it as the section which corresponds to 1189 // this one. 1190 if (kept2->object() != NULL && !kept2->is_comdat()) 1191 this->set_kept_comdat_section(index, false, 0, sh_size, kept2); 1192 } 1193 else if (!include1) 1194 { 1195 // The section is being discarded on the basis of its symbol 1196 // name. This means that the corresponding kept section was 1197 // part of a comdat group, and it will be difficult to identify 1198 // the specific section within that group that corresponds to 1199 // this linkonce section. We'll handle the simple case where 1200 // the group has only one member section. Otherwise, it's not 1201 // worth the effort. 1202 if (kept1->object() != NULL && kept1->is_comdat()) 1203 this->set_kept_comdat_section(index, false, 0, sh_size, kept1); 1204 } 1205 else 1206 { 1207 kept1->set_linkonce_size(sh_size); 1208 kept2->set_linkonce_size(sh_size); 1209 } 1210 1211 return include1 && include2; 1212 } 1213 1214 // Layout an input section. 1215 1216 template<int size, bool big_endian> 1217 inline void 1218 Sized_relobj_file<size, big_endian>::layout_section( 1219 Layout* layout, 1220 unsigned int shndx, 1221 const char* name, 1222 const typename This::Shdr& shdr, 1223 unsigned int sh_type, 1224 unsigned int reloc_shndx, 1225 unsigned int reloc_type) 1226 { 1227 off_t offset; 1228 Output_section* os = layout->layout(this, shndx, name, shdr, sh_type, 1229 reloc_shndx, reloc_type, &offset); 1230 1231 this->output_sections()[shndx] = os; 1232 if (offset == -1) 1233 this->section_offsets()[shndx] = invalid_address; 1234 else 1235 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset); 1236 1237 // If this section requires special handling, and if there are 1238 // relocs that apply to it, then we must do the special handling 1239 // before we apply the relocs. 1240 if (offset == -1 && reloc_shndx != 0) 1241 this->set_relocs_must_follow_section_writes(); 1242 } 1243 1244 // Layout an input .eh_frame section. 1245 1246 template<int size, bool big_endian> 1247 void 1248 Sized_relobj_file<size, big_endian>::layout_eh_frame_section( 1249 Layout* layout, 1250 const unsigned char* symbols_data, 1251 section_size_type symbols_size, 1252 const unsigned char* symbol_names_data, 1253 section_size_type symbol_names_size, 1254 unsigned int shndx, 1255 const typename This::Shdr& shdr, 1256 unsigned int reloc_shndx, 1257 unsigned int reloc_type) 1258 { 1259 gold_assert(this->has_eh_frame_); 1260 1261 off_t offset; 1262 Output_section* os = layout->layout_eh_frame(this, 1263 symbols_data, 1264 symbols_size, 1265 symbol_names_data, 1266 symbol_names_size, 1267 shndx, 1268 shdr, 1269 reloc_shndx, 1270 reloc_type, 1271 &offset); 1272 this->output_sections()[shndx] = os; 1273 if (os == NULL || offset == -1) 1274 this->section_offsets()[shndx] = invalid_address; 1275 else 1276 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset); 1277 1278 // If this section requires special handling, and if there are 1279 // relocs that aply to it, then we must do the special handling 1280 // before we apply the relocs. 1281 if (os != NULL && offset == -1 && reloc_shndx != 0) 1282 this->set_relocs_must_follow_section_writes(); 1283 } 1284 1285 // Layout an input .note.gnu.property section. 1286 1287 // This note section has an *extremely* non-standard layout. 1288 // The gABI spec says that ELF-64 files should have 8-byte fields and 1289 // 8-byte alignment in the note section, but the Gnu tools generally 1290 // use 4-byte fields and 4-byte alignment (see the comment for 1291 // Layout::create_note). This section uses 4-byte fields (i.e., 1292 // namesz, descsz, and type are always 4 bytes), the name field is 1293 // padded to a multiple of 4 bytes, but the desc field is padded 1294 // to a multiple of 4 or 8 bytes, depending on the ELF class. 1295 // The individual properties within the desc field always use 1296 // 4-byte pr_type and pr_datasz fields, but pr_data is padded to 1297 // a multiple of 4 or 8 bytes, depending on the ELF class. 1298 1299 template<int size, bool big_endian> 1300 void 1301 Sized_relobj_file<size, big_endian>::layout_gnu_property_section( 1302 Layout* layout, 1303 unsigned int shndx) 1304 { 1305 section_size_type contents_len; 1306 const unsigned char* pcontents = this->section_contents(shndx, 1307 &contents_len, 1308 false); 1309 const unsigned char* pcontents_end = pcontents + contents_len; 1310 1311 // Loop over all the notes in this section. 1312 while (pcontents < pcontents_end) 1313 { 1314 if (pcontents + 16 > pcontents_end) 1315 { 1316 gold_warning(_("%s: corrupt .note.gnu.property section " 1317 "(note too short)"), 1318 this->name().c_str()); 1319 return; 1320 } 1321 1322 size_t namesz = elfcpp::Swap<32, big_endian>::readval(pcontents); 1323 size_t descsz = elfcpp::Swap<32, big_endian>::readval(pcontents + 4); 1324 unsigned int ntype = elfcpp::Swap<32, big_endian>::readval(pcontents + 8); 1325 const unsigned char* pname = pcontents + 12; 1326 1327 if (namesz != 4 || strcmp(reinterpret_cast<const char*>(pname), "GNU") != 0) 1328 { 1329 gold_warning(_("%s: corrupt .note.gnu.property section " 1330 "(name is not 'GNU')"), 1331 this->name().c_str()); 1332 return; 1333 } 1334 1335 if (ntype != elfcpp::NT_GNU_PROPERTY_TYPE_0) 1336 { 1337 gold_warning(_("%s: unsupported note type %d " 1338 "in .note.gnu.property section"), 1339 this->name().c_str(), ntype); 1340 return; 1341 } 1342 1343 size_t aligned_namesz = align_address(namesz, 4); 1344 const unsigned char* pdesc = pname + aligned_namesz; 1345 1346 if (pdesc + descsz > pcontents + contents_len) 1347 { 1348 gold_warning(_("%s: corrupt .note.gnu.property section"), 1349 this->name().c_str()); 1350 return; 1351 } 1352 1353 const unsigned char* pprop = pdesc; 1354 1355 // Loop over the program properties in this note. 1356 while (pprop < pdesc + descsz) 1357 { 1358 if (pprop + 8 > pdesc + descsz) 1359 { 1360 gold_warning(_("%s: corrupt .note.gnu.property section"), 1361 this->name().c_str()); 1362 return; 1363 } 1364 unsigned int pr_type = elfcpp::Swap<32, big_endian>::readval(pprop); 1365 size_t pr_datasz = elfcpp::Swap<32, big_endian>::readval(pprop + 4); 1366 pprop += 8; 1367 if (pprop + pr_datasz > pdesc + descsz) 1368 { 1369 gold_warning(_("%s: corrupt .note.gnu.property section"), 1370 this->name().c_str()); 1371 return; 1372 } 1373 layout->layout_gnu_property(ntype, pr_type, pr_datasz, pprop, this); 1374 pprop += align_address(pr_datasz, size / 8); 1375 } 1376 1377 pcontents = pdesc + align_address(descsz, size / 8); 1378 } 1379 } 1380 1381 // Lay out the input sections. We walk through the sections and check 1382 // whether they should be included in the link. If they should, we 1383 // pass them to the Layout object, which will return an output section 1384 // and an offset. 1385 // This function is called twice sometimes, two passes, when mapping 1386 // of input sections to output sections must be delayed. 1387 // This is true for the following : 1388 // * Garbage collection (--gc-sections): Some input sections will be 1389 // discarded and hence the assignment must wait until the second pass. 1390 // In the first pass, it is for setting up some sections as roots to 1391 // a work-list for --gc-sections and to do comdat processing. 1392 // * Identical Code Folding (--icf=<safe,all>): Some input sections 1393 // will be folded and hence the assignment must wait. 1394 // * Using plugins to map some sections to unique segments: Mapping 1395 // some sections to unique segments requires mapping them to unique 1396 // output sections too. This can be done via plugins now and this 1397 // information is not available in the first pass. 1398 1399 template<int size, bool big_endian> 1400 void 1401 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab, 1402 Layout* layout, 1403 Read_symbols_data* sd) 1404 { 1405 const unsigned int unwind_section_type = 1406 parameters->target().unwind_section_type(); 1407 const unsigned int shnum = this->shnum(); 1408 1409 /* Should this function be called twice? */ 1410 bool is_two_pass = (parameters->options().gc_sections() 1411 || parameters->options().icf_enabled() 1412 || layout->is_unique_segment_for_sections_specified()); 1413 1414 /* Only one of is_pass_one and is_pass_two is true. Both are false when 1415 a two-pass approach is not needed. */ 1416 bool is_pass_one = false; 1417 bool is_pass_two = false; 1418 1419 Symbols_data* gc_sd = NULL; 1420 1421 /* Check if do_layout needs to be two-pass. If so, find out which pass 1422 should happen. In the first pass, the data in sd is saved to be used 1423 later in the second pass. */ 1424 if (is_two_pass) 1425 { 1426 gc_sd = this->get_symbols_data(); 1427 if (gc_sd == NULL) 1428 { 1429 gold_assert(sd != NULL); 1430 is_pass_one = true; 1431 } 1432 else 1433 { 1434 if (parameters->options().gc_sections()) 1435 gold_assert(symtab->gc()->is_worklist_ready()); 1436 if (parameters->options().icf_enabled()) 1437 gold_assert(symtab->icf()->is_icf_ready()); 1438 is_pass_two = true; 1439 } 1440 } 1441 1442 if (shnum == 0) 1443 return; 1444 1445 if (is_pass_one) 1446 { 1447 // During garbage collection save the symbols data to use it when 1448 // re-entering this function. 1449 gc_sd = new Symbols_data; 1450 this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum); 1451 this->set_symbols_data(gc_sd); 1452 } 1453 1454 const unsigned char* section_headers_data = NULL; 1455 section_size_type section_names_size; 1456 const unsigned char* symbols_data = NULL; 1457 section_size_type symbols_size; 1458 const unsigned char* symbol_names_data = NULL; 1459 section_size_type symbol_names_size; 1460 1461 if (is_two_pass) 1462 { 1463 section_headers_data = gc_sd->section_headers_data; 1464 section_names_size = gc_sd->section_names_size; 1465 symbols_data = gc_sd->symbols_data; 1466 symbols_size = gc_sd->symbols_size; 1467 symbol_names_data = gc_sd->symbol_names_data; 1468 symbol_names_size = gc_sd->symbol_names_size; 1469 } 1470 else 1471 { 1472 section_headers_data = sd->section_headers->data(); 1473 section_names_size = sd->section_names_size; 1474 if (sd->symbols != NULL) 1475 symbols_data = sd->symbols->data(); 1476 symbols_size = sd->symbols_size; 1477 if (sd->symbol_names != NULL) 1478 symbol_names_data = sd->symbol_names->data(); 1479 symbol_names_size = sd->symbol_names_size; 1480 } 1481 1482 // Get the section headers. 1483 const unsigned char* shdrs = section_headers_data; 1484 const unsigned char* pshdrs; 1485 1486 // Get the section names. 1487 const unsigned char* pnamesu = (is_two_pass 1488 ? gc_sd->section_names_data 1489 : sd->section_names->data()); 1490 1491 const char* pnames = reinterpret_cast<const char*>(pnamesu); 1492 1493 // If any input files have been claimed by plugins, we need to defer 1494 // actual layout until the replacement files have arrived. 1495 const bool should_defer_layout = 1496 (parameters->options().has_plugins() 1497 && parameters->options().plugins()->should_defer_layout()); 1498 unsigned int num_sections_to_defer = 0; 1499 1500 // For each section, record the index of the reloc section if any. 1501 // Use 0 to mean that there is no reloc section, -1U to mean that 1502 // there is more than one. 1503 std::vector<unsigned int> reloc_shndx(shnum, 0); 1504 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL); 1505 // Skip the first, dummy, section. 1506 pshdrs = shdrs + This::shdr_size; 1507 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size) 1508 { 1509 typename This::Shdr shdr(pshdrs); 1510 1511 // Count the number of sections whose layout will be deferred. 1512 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC)) 1513 ++num_sections_to_defer; 1514 1515 unsigned int sh_type = shdr.get_sh_type(); 1516 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA) 1517 { 1518 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info()); 1519 if (target_shndx == 0 || target_shndx >= shnum) 1520 { 1521 this->error(_("relocation section %u has bad info %u"), 1522 i, target_shndx); 1523 continue; 1524 } 1525 1526 if (reloc_shndx[target_shndx] != 0) 1527 reloc_shndx[target_shndx] = -1U; 1528 else 1529 { 1530 reloc_shndx[target_shndx] = i; 1531 reloc_type[target_shndx] = sh_type; 1532 } 1533 } 1534 } 1535 1536 Output_sections& out_sections(this->output_sections()); 1537 std::vector<Address>& out_section_offsets(this->section_offsets()); 1538 1539 if (!is_pass_two) 1540 { 1541 out_sections.resize(shnum); 1542 out_section_offsets.resize(shnum); 1543 } 1544 1545 // If we are only linking for symbols, then there is nothing else to 1546 // do here. 1547 if (this->input_file()->just_symbols()) 1548 { 1549 if (!is_pass_two) 1550 { 1551 delete sd->section_headers; 1552 sd->section_headers = NULL; 1553 delete sd->section_names; 1554 sd->section_names = NULL; 1555 } 1556 return; 1557 } 1558 1559 if (num_sections_to_defer > 0) 1560 { 1561 parameters->options().plugins()->add_deferred_layout_object(this); 1562 this->deferred_layout_.reserve(num_sections_to_defer); 1563 this->is_deferred_layout_ = true; 1564 } 1565 1566 // Whether we've seen a .note.GNU-stack section. 1567 bool seen_gnu_stack = false; 1568 // The flags of a .note.GNU-stack section. 1569 uint64_t gnu_stack_flags = 0; 1570 1571 // Keep track of which sections to omit. 1572 std::vector<bool> omit(shnum, false); 1573 1574 // Keep track of reloc sections when emitting relocations. 1575 const bool relocatable = parameters->options().relocatable(); 1576 const bool emit_relocs = (relocatable 1577 || parameters->options().emit_relocs()); 1578 std::vector<unsigned int> reloc_sections; 1579 1580 // Keep track of .eh_frame sections. 1581 std::vector<unsigned int> eh_frame_sections; 1582 1583 // Keep track of .debug_info and .debug_types sections. 1584 std::vector<unsigned int> debug_info_sections; 1585 std::vector<unsigned int> debug_types_sections; 1586 1587 // Skip the first, dummy, section. 1588 pshdrs = shdrs + This::shdr_size; 1589 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size) 1590 { 1591 typename This::Shdr shdr(pshdrs); 1592 const unsigned int sh_name = shdr.get_sh_name(); 1593 unsigned int sh_type = shdr.get_sh_type(); 1594 1595 if (sh_name >= section_names_size) 1596 { 1597 this->error(_("bad section name offset for section %u: %lu"), 1598 i, static_cast<unsigned long>(sh_name)); 1599 return; 1600 } 1601 1602 const char* name = pnames + sh_name; 1603 1604 if (!is_pass_two) 1605 { 1606 if (this->handle_gnu_warning_section(name, i, symtab)) 1607 { 1608 if (!relocatable && !parameters->options().shared()) 1609 omit[i] = true; 1610 } 1611 1612 // The .note.GNU-stack section is special. It gives the 1613 // protection flags that this object file requires for the stack 1614 // in memory. 1615 if (strcmp(name, ".note.GNU-stack") == 0) 1616 { 1617 seen_gnu_stack = true; 1618 gnu_stack_flags |= shdr.get_sh_flags(); 1619 omit[i] = true; 1620 } 1621 1622 // The .note.GNU-split-stack section is also special. It 1623 // indicates that the object was compiled with 1624 // -fsplit-stack. 1625 if (this->handle_split_stack_section(name)) 1626 { 1627 if (!relocatable && !parameters->options().shared()) 1628 omit[i] = true; 1629 } 1630 1631 // Skip attributes section. 1632 if (parameters->target().is_attributes_section(name)) 1633 { 1634 omit[i] = true; 1635 } 1636 1637 // Handle .note.gnu.property sections. 1638 if (sh_type == elfcpp::SHT_NOTE 1639 && strcmp(name, ".note.gnu.property") == 0) 1640 { 1641 this->layout_gnu_property_section(layout, i); 1642 omit[i] = true; 1643 } 1644 1645 bool discard = omit[i]; 1646 if (!discard) 1647 { 1648 if (sh_type == elfcpp::SHT_GROUP) 1649 { 1650 if (!this->include_section_group(symtab, layout, i, name, 1651 shdrs, pnames, 1652 section_names_size, 1653 &omit)) 1654 discard = true; 1655 } 1656 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0 1657 && Layout::is_linkonce(name)) 1658 { 1659 if (!this->include_linkonce_section(layout, i, name, shdr)) 1660 discard = true; 1661 } 1662 } 1663 1664 // Add the section to the incremental inputs layout. 1665 Incremental_inputs* incremental_inputs = layout->incremental_inputs(); 1666 if (incremental_inputs != NULL 1667 && !discard 1668 && can_incremental_update(sh_type)) 1669 { 1670 off_t sh_size = shdr.get_sh_size(); 1671 section_size_type uncompressed_size; 1672 if (this->section_is_compressed(i, &uncompressed_size)) 1673 sh_size = uncompressed_size; 1674 incremental_inputs->report_input_section(this, i, name, sh_size); 1675 } 1676 1677 if (discard) 1678 { 1679 // Do not include this section in the link. 1680 out_sections[i] = NULL; 1681 out_section_offsets[i] = invalid_address; 1682 continue; 1683 } 1684 } 1685 1686 if (is_pass_one && parameters->options().gc_sections()) 1687 { 1688 if (this->is_section_name_included(name) 1689 || layout->keep_input_section (this, name) 1690 || sh_type == elfcpp::SHT_INIT_ARRAY 1691 || sh_type == elfcpp::SHT_FINI_ARRAY) 1692 { 1693 symtab->gc()->worklist().push_back(Section_id(this, i)); 1694 } 1695 // If the section name XXX can be represented as a C identifier 1696 // it cannot be discarded if there are references to 1697 // __start_XXX and __stop_XXX symbols. These need to be 1698 // specially handled. 1699 if (is_cident(name)) 1700 { 1701 symtab->gc()->add_cident_section(name, Section_id(this, i)); 1702 } 1703 } 1704 1705 // When doing a relocatable link we are going to copy input 1706 // reloc sections into the output. We only want to copy the 1707 // ones associated with sections which are not being discarded. 1708 // However, we don't know that yet for all sections. So save 1709 // reloc sections and process them later. Garbage collection is 1710 // not triggered when relocatable code is desired. 1711 if (emit_relocs 1712 && (sh_type == elfcpp::SHT_REL 1713 || sh_type == elfcpp::SHT_RELA)) 1714 { 1715 reloc_sections.push_back(i); 1716 continue; 1717 } 1718 1719 if (relocatable && sh_type == elfcpp::SHT_GROUP) 1720 continue; 1721 1722 // The .eh_frame section is special. It holds exception frame 1723 // information that we need to read in order to generate the 1724 // exception frame header. We process these after all the other 1725 // sections so that the exception frame reader can reliably 1726 // determine which sections are being discarded, and discard the 1727 // corresponding information. 1728 if (this->check_eh_frame_flags(&shdr) 1729 && strcmp(name, ".eh_frame") == 0) 1730 { 1731 // If the target has a special unwind section type, let's 1732 // canonicalize it here. 1733 sh_type = unwind_section_type; 1734 if (!relocatable) 1735 { 1736 if (is_pass_one) 1737 { 1738 if (this->is_deferred_layout()) 1739 out_sections[i] = reinterpret_cast<Output_section*>(2); 1740 else 1741 out_sections[i] = reinterpret_cast<Output_section*>(1); 1742 out_section_offsets[i] = invalid_address; 1743 } 1744 else if (this->is_deferred_layout()) 1745 this->deferred_layout_.push_back( 1746 Deferred_layout(i, name, sh_type, pshdrs, 1747 reloc_shndx[i], reloc_type[i])); 1748 else 1749 eh_frame_sections.push_back(i); 1750 continue; 1751 } 1752 } 1753 1754 if (is_pass_two && parameters->options().gc_sections()) 1755 { 1756 // This is executed during the second pass of garbage 1757 // collection. do_layout has been called before and some 1758 // sections have been already discarded. Simply ignore 1759 // such sections this time around. 1760 if (out_sections[i] == NULL) 1761 { 1762 gold_assert(out_section_offsets[i] == invalid_address); 1763 continue; 1764 } 1765 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0) 1766 && symtab->gc()->is_section_garbage(this, i)) 1767 { 1768 if (parameters->options().print_gc_sections()) 1769 gold_info(_("%s: removing unused section from '%s'" 1770 " in file '%s'"), 1771 program_name, this->section_name(i).c_str(), 1772 this->name().c_str()); 1773 out_sections[i] = NULL; 1774 out_section_offsets[i] = invalid_address; 1775 continue; 1776 } 1777 } 1778 1779 if (is_pass_two && parameters->options().icf_enabled()) 1780 { 1781 if (out_sections[i] == NULL) 1782 { 1783 gold_assert(out_section_offsets[i] == invalid_address); 1784 continue; 1785 } 1786 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0) 1787 && symtab->icf()->is_section_folded(this, i)) 1788 { 1789 if (parameters->options().print_icf_sections()) 1790 { 1791 Section_id folded = 1792 symtab->icf()->get_folded_section(this, i); 1793 Relobj* folded_obj = 1794 reinterpret_cast<Relobj*>(folded.first); 1795 gold_info(_("%s: ICF folding section '%s' in file '%s' " 1796 "into '%s' in file '%s'"), 1797 program_name, this->section_name(i).c_str(), 1798 this->name().c_str(), 1799 folded_obj->section_name(folded.second).c_str(), 1800 folded_obj->name().c_str()); 1801 } 1802 out_sections[i] = NULL; 1803 out_section_offsets[i] = invalid_address; 1804 continue; 1805 } 1806 } 1807 1808 // Defer layout here if input files are claimed by plugins. When gc 1809 // is turned on this function is called twice; we only want to do this 1810 // on the first pass. 1811 if (!is_pass_two 1812 && this->is_deferred_layout() 1813 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC)) 1814 { 1815 this->deferred_layout_.push_back(Deferred_layout(i, name, sh_type, 1816 pshdrs, 1817 reloc_shndx[i], 1818 reloc_type[i])); 1819 // Put dummy values here; real values will be supplied by 1820 // do_layout_deferred_sections. 1821 out_sections[i] = reinterpret_cast<Output_section*>(2); 1822 out_section_offsets[i] = invalid_address; 1823 continue; 1824 } 1825 1826 // During gc_pass_two if a section that was previously deferred is 1827 // found, do not layout the section as layout_deferred_sections will 1828 // do it later from gold.cc. 1829 if (is_pass_two 1830 && (out_sections[i] == reinterpret_cast<Output_section*>(2))) 1831 continue; 1832 1833 if (is_pass_one) 1834 { 1835 // This is during garbage collection. The out_sections are 1836 // assigned in the second call to this function. 1837 out_sections[i] = reinterpret_cast<Output_section*>(1); 1838 out_section_offsets[i] = invalid_address; 1839 } 1840 else 1841 { 1842 // When garbage collection is switched on the actual layout 1843 // only happens in the second call. 1844 this->layout_section(layout, i, name, shdr, sh_type, reloc_shndx[i], 1845 reloc_type[i]); 1846 1847 // When generating a .gdb_index section, we do additional 1848 // processing of .debug_info and .debug_types sections after all 1849 // the other sections for the same reason as above. 1850 if (!relocatable 1851 && parameters->options().gdb_index() 1852 && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC)) 1853 { 1854 if (strcmp(name, ".debug_info") == 0 1855 || strcmp(name, ".zdebug_info") == 0) 1856 debug_info_sections.push_back(i); 1857 else if (strcmp(name, ".debug_types") == 0 1858 || strcmp(name, ".zdebug_types") == 0) 1859 debug_types_sections.push_back(i); 1860 } 1861 } 1862 } 1863 1864 if (!is_pass_two) 1865 { 1866 layout->merge_gnu_properties(this); 1867 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this); 1868 } 1869 1870 // Handle the .eh_frame sections after the other sections. 1871 gold_assert(!is_pass_one || eh_frame_sections.empty()); 1872 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin(); 1873 p != eh_frame_sections.end(); 1874 ++p) 1875 { 1876 unsigned int i = *p; 1877 const unsigned char* pshdr; 1878 pshdr = section_headers_data + i * This::shdr_size; 1879 typename This::Shdr shdr(pshdr); 1880 1881 this->layout_eh_frame_section(layout, 1882 symbols_data, 1883 symbols_size, 1884 symbol_names_data, 1885 symbol_names_size, 1886 i, 1887 shdr, 1888 reloc_shndx[i], 1889 reloc_type[i]); 1890 } 1891 1892 // When doing a relocatable link handle the reloc sections at the 1893 // end. Garbage collection and Identical Code Folding is not 1894 // turned on for relocatable code. 1895 if (emit_relocs) 1896 this->size_relocatable_relocs(); 1897 1898 gold_assert(!is_two_pass || reloc_sections.empty()); 1899 1900 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin(); 1901 p != reloc_sections.end(); 1902 ++p) 1903 { 1904 unsigned int i = *p; 1905 const unsigned char* pshdr; 1906 pshdr = section_headers_data + i * This::shdr_size; 1907 typename This::Shdr shdr(pshdr); 1908 1909 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info()); 1910 if (data_shndx >= shnum) 1911 { 1912 // We already warned about this above. 1913 continue; 1914 } 1915 1916 Output_section* data_section = out_sections[data_shndx]; 1917 if (data_section == reinterpret_cast<Output_section*>(2)) 1918 { 1919 if (is_pass_two) 1920 continue; 1921 // The layout for the data section was deferred, so we need 1922 // to defer the relocation section, too. 1923 const char* name = pnames + shdr.get_sh_name(); 1924 this->deferred_layout_relocs_.push_back( 1925 Deferred_layout(i, name, shdr.get_sh_type(), pshdr, 0, 1926 elfcpp::SHT_NULL)); 1927 out_sections[i] = reinterpret_cast<Output_section*>(2); 1928 out_section_offsets[i] = invalid_address; 1929 continue; 1930 } 1931 if (data_section == NULL) 1932 { 1933 out_sections[i] = NULL; 1934 out_section_offsets[i] = invalid_address; 1935 continue; 1936 } 1937 1938 Relocatable_relocs* rr = new Relocatable_relocs(); 1939 this->set_relocatable_relocs(i, rr); 1940 1941 Output_section* os = layout->layout_reloc(this, i, shdr, data_section, 1942 rr); 1943 out_sections[i] = os; 1944 out_section_offsets[i] = invalid_address; 1945 } 1946 1947 // When building a .gdb_index section, scan the .debug_info and 1948 // .debug_types sections. 1949 gold_assert(!is_pass_one 1950 || (debug_info_sections.empty() && debug_types_sections.empty())); 1951 for (std::vector<unsigned int>::const_iterator p 1952 = debug_info_sections.begin(); 1953 p != debug_info_sections.end(); 1954 ++p) 1955 { 1956 unsigned int i = *p; 1957 layout->add_to_gdb_index(false, this, symbols_data, symbols_size, 1958 i, reloc_shndx[i], reloc_type[i]); 1959 } 1960 for (std::vector<unsigned int>::const_iterator p 1961 = debug_types_sections.begin(); 1962 p != debug_types_sections.end(); 1963 ++p) 1964 { 1965 unsigned int i = *p; 1966 layout->add_to_gdb_index(true, this, symbols_data, symbols_size, 1967 i, reloc_shndx[i], reloc_type[i]); 1968 } 1969 1970 if (is_pass_two) 1971 { 1972 delete[] gc_sd->section_headers_data; 1973 delete[] gc_sd->section_names_data; 1974 delete[] gc_sd->symbols_data; 1975 delete[] gc_sd->symbol_names_data; 1976 this->set_symbols_data(NULL); 1977 } 1978 else 1979 { 1980 delete sd->section_headers; 1981 sd->section_headers = NULL; 1982 delete sd->section_names; 1983 sd->section_names = NULL; 1984 } 1985 } 1986 1987 // Layout sections whose layout was deferred while waiting for 1988 // input files from a plugin. 1989 1990 template<int size, bool big_endian> 1991 void 1992 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout) 1993 { 1994 typename std::vector<Deferred_layout>::iterator deferred; 1995 1996 for (deferred = this->deferred_layout_.begin(); 1997 deferred != this->deferred_layout_.end(); 1998 ++deferred) 1999 { 2000 typename This::Shdr shdr(deferred->shdr_data_); 2001 2002 if (!parameters->options().relocatable() 2003 && deferred->name_ == ".eh_frame" 2004 && this->check_eh_frame_flags(&shdr)) 2005 { 2006 // Checking is_section_included is not reliable for 2007 // .eh_frame sections, because they do not have an output 2008 // section. This is not a problem normally because we call 2009 // layout_eh_frame_section unconditionally, but when 2010 // deferring sections that is not true. We don't want to 2011 // keep all .eh_frame sections because that will cause us to 2012 // keep all sections that they refer to, which is the wrong 2013 // way around. Instead, the eh_frame code will discard 2014 // .eh_frame sections that refer to discarded sections. 2015 2016 // Reading the symbols again here may be slow. 2017 Read_symbols_data sd; 2018 this->base_read_symbols(&sd); 2019 this->layout_eh_frame_section(layout, 2020 sd.symbols->data(), 2021 sd.symbols_size, 2022 sd.symbol_names->data(), 2023 sd.symbol_names_size, 2024 deferred->shndx_, 2025 shdr, 2026 deferred->reloc_shndx_, 2027 deferred->reloc_type_); 2028 continue; 2029 } 2030 2031 // If the section is not included, it is because the garbage collector 2032 // decided it is not needed. Avoid reverting that decision. 2033 if (!this->is_section_included(deferred->shndx_)) 2034 continue; 2035 2036 this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(), 2037 shdr, shdr.get_sh_type(), deferred->reloc_shndx_, 2038 deferred->reloc_type_); 2039 } 2040 2041 this->deferred_layout_.clear(); 2042 2043 // Now handle the deferred relocation sections. 2044 2045 Output_sections& out_sections(this->output_sections()); 2046 std::vector<Address>& out_section_offsets(this->section_offsets()); 2047 2048 for (deferred = this->deferred_layout_relocs_.begin(); 2049 deferred != this->deferred_layout_relocs_.end(); 2050 ++deferred) 2051 { 2052 unsigned int shndx = deferred->shndx_; 2053 typename This::Shdr shdr(deferred->shdr_data_); 2054 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info()); 2055 2056 Output_section* data_section = out_sections[data_shndx]; 2057 if (data_section == NULL) 2058 { 2059 out_sections[shndx] = NULL; 2060 out_section_offsets[shndx] = invalid_address; 2061 continue; 2062 } 2063 2064 Relocatable_relocs* rr = new Relocatable_relocs(); 2065 this->set_relocatable_relocs(shndx, rr); 2066 2067 Output_section* os = layout->layout_reloc(this, shndx, shdr, 2068 data_section, rr); 2069 out_sections[shndx] = os; 2070 out_section_offsets[shndx] = invalid_address; 2071 } 2072 } 2073 2074 // Add the symbols to the symbol table. 2075 2076 template<int size, bool big_endian> 2077 void 2078 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab, 2079 Read_symbols_data* sd, 2080 Layout*) 2081 { 2082 if (sd->symbols == NULL) 2083 { 2084 gold_assert(sd->symbol_names == NULL); 2085 return; 2086 } 2087 2088 const int sym_size = This::sym_size; 2089 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset) 2090 / sym_size); 2091 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset) 2092 { 2093 this->error(_("size of symbols is not multiple of symbol size")); 2094 return; 2095 } 2096 2097 this->symbols_.resize(symcount); 2098 2099 const char* sym_names = 2100 reinterpret_cast<const char*>(sd->symbol_names->data()); 2101 symtab->add_from_relobj(this, 2102 sd->symbols->data() + sd->external_symbols_offset, 2103 symcount, this->local_symbol_count_, 2104 sym_names, sd->symbol_names_size, 2105 &this->symbols_, 2106 &this->defined_count_); 2107 2108 delete sd->symbols; 2109 sd->symbols = NULL; 2110 delete sd->symbol_names; 2111 sd->symbol_names = NULL; 2112 } 2113 2114 // Find out if this object, that is a member of a lib group, should be included 2115 // in the link. We check every symbol defined by this object. If the symbol 2116 // table has a strong undefined reference to that symbol, we have to include 2117 // the object. 2118 2119 template<int size, bool big_endian> 2120 Archive::Should_include 2121 Sized_relobj_file<size, big_endian>::do_should_include_member( 2122 Symbol_table* symtab, 2123 Layout* layout, 2124 Read_symbols_data* sd, 2125 std::string* why) 2126 { 2127 char* tmpbuf = NULL; 2128 size_t tmpbuflen = 0; 2129 const char* sym_names = 2130 reinterpret_cast<const char*>(sd->symbol_names->data()); 2131 const unsigned char* syms = 2132 sd->symbols->data() + sd->external_symbols_offset; 2133 const int sym_size = elfcpp::Elf_sizes<size>::sym_size; 2134 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset) 2135 / sym_size); 2136 2137 const unsigned char* p = syms; 2138 2139 for (size_t i = 0; i < symcount; ++i, p += sym_size) 2140 { 2141 elfcpp::Sym<size, big_endian> sym(p); 2142 unsigned int st_shndx = sym.get_st_shndx(); 2143 if (st_shndx == elfcpp::SHN_UNDEF) 2144 continue; 2145 2146 unsigned int st_name = sym.get_st_name(); 2147 const char* name = sym_names + st_name; 2148 Symbol* symbol; 2149 Archive::Should_include t = Archive::should_include_member(symtab, 2150 layout, 2151 name, 2152 &symbol, why, 2153 &tmpbuf, 2154 &tmpbuflen); 2155 if (t == Archive::SHOULD_INCLUDE_YES) 2156 { 2157 if (tmpbuf != NULL) 2158 free(tmpbuf); 2159 return t; 2160 } 2161 } 2162 if (tmpbuf != NULL) 2163 free(tmpbuf); 2164 return Archive::SHOULD_INCLUDE_UNKNOWN; 2165 } 2166 2167 // Iterate over global defined symbols, calling a visitor class V for each. 2168 2169 template<int size, bool big_endian> 2170 void 2171 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols( 2172 Read_symbols_data* sd, 2173 Library_base::Symbol_visitor_base* v) 2174 { 2175 const char* sym_names = 2176 reinterpret_cast<const char*>(sd->symbol_names->data()); 2177 const unsigned char* syms = 2178 sd->symbols->data() + sd->external_symbols_offset; 2179 const int sym_size = elfcpp::Elf_sizes<size>::sym_size; 2180 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset) 2181 / sym_size); 2182 const unsigned char* p = syms; 2183 2184 for (size_t i = 0; i < symcount; ++i, p += sym_size) 2185 { 2186 elfcpp::Sym<size, big_endian> sym(p); 2187 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF) 2188 v->visit(sym_names + sym.get_st_name()); 2189 } 2190 } 2191 2192 // Return whether the local symbol SYMNDX has a PLT offset. 2193 2194 template<int size, bool big_endian> 2195 bool 2196 Sized_relobj_file<size, big_endian>::local_has_plt_offset( 2197 unsigned int symndx) const 2198 { 2199 typename Local_plt_offsets::const_iterator p = 2200 this->local_plt_offsets_.find(symndx); 2201 return p != this->local_plt_offsets_.end(); 2202 } 2203 2204 // Get the PLT offset of a local symbol. 2205 2206 template<int size, bool big_endian> 2207 unsigned int 2208 Sized_relobj_file<size, big_endian>::do_local_plt_offset( 2209 unsigned int symndx) const 2210 { 2211 typename Local_plt_offsets::const_iterator p = 2212 this->local_plt_offsets_.find(symndx); 2213 gold_assert(p != this->local_plt_offsets_.end()); 2214 return p->second; 2215 } 2216 2217 // Set the PLT offset of a local symbol. 2218 2219 template<int size, bool big_endian> 2220 void 2221 Sized_relobj_file<size, big_endian>::set_local_plt_offset( 2222 unsigned int symndx, unsigned int plt_offset) 2223 { 2224 std::pair<typename Local_plt_offsets::iterator, bool> ins = 2225 this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset)); 2226 gold_assert(ins.second); 2227 } 2228 2229 // First pass over the local symbols. Here we add their names to 2230 // *POOL and *DYNPOOL, and we store the symbol value in 2231 // THIS->LOCAL_VALUES_. This function is always called from a 2232 // singleton thread. This is followed by a call to 2233 // finalize_local_symbols. 2234 2235 template<int size, bool big_endian> 2236 void 2237 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool, 2238 Stringpool* dynpool) 2239 { 2240 gold_assert(this->symtab_shndx_ != -1U); 2241 if (this->symtab_shndx_ == 0) 2242 { 2243 // This object has no symbols. Weird but legal. 2244 return; 2245 } 2246 2247 // Read the symbol table section header. 2248 const unsigned int symtab_shndx = this->symtab_shndx_; 2249 typename This::Shdr symtabshdr(this, 2250 this->elf_file_.section_header(symtab_shndx)); 2251 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB); 2252 2253 // Read the local symbols. 2254 const int sym_size = This::sym_size; 2255 const unsigned int loccount = this->local_symbol_count_; 2256 gold_assert(loccount == symtabshdr.get_sh_info()); 2257 off_t locsize = loccount * sym_size; 2258 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(), 2259 locsize, true, true); 2260 2261 // Read the symbol names. 2262 const unsigned int strtab_shndx = 2263 this->adjust_shndx(symtabshdr.get_sh_link()); 2264 section_size_type strtab_size; 2265 const unsigned char* pnamesu = this->section_contents(strtab_shndx, 2266 &strtab_size, 2267 true); 2268 const char* pnames = reinterpret_cast<const char*>(pnamesu); 2269 2270 // Loop over the local symbols. 2271 2272 const Output_sections& out_sections(this->output_sections()); 2273 std::vector<Address>& out_section_offsets(this->section_offsets()); 2274 unsigned int shnum = this->shnum(); 2275 unsigned int count = 0; 2276 unsigned int dyncount = 0; 2277 // Skip the first, dummy, symbol. 2278 psyms += sym_size; 2279 bool strip_all = parameters->options().strip_all(); 2280 bool discard_all = parameters->options().discard_all(); 2281 bool discard_locals = parameters->options().discard_locals(); 2282 bool discard_sec_merge = parameters->options().discard_sec_merge(); 2283 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size) 2284 { 2285 elfcpp::Sym<size, big_endian> sym(psyms); 2286 2287 Symbol_value<size>& lv(this->local_values_[i]); 2288 2289 bool is_ordinary; 2290 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(), 2291 &is_ordinary); 2292 lv.set_input_shndx(shndx, is_ordinary); 2293 2294 if (sym.get_st_type() == elfcpp::STT_SECTION) 2295 lv.set_is_section_symbol(); 2296 else if (sym.get_st_type() == elfcpp::STT_TLS) 2297 lv.set_is_tls_symbol(); 2298 else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC) 2299 lv.set_is_ifunc_symbol(); 2300 2301 // Save the input symbol value for use in do_finalize_local_symbols(). 2302 lv.set_input_value(sym.get_st_value()); 2303 2304 // Decide whether this symbol should go into the output file. 2305 2306 if (is_ordinary 2307 && shndx < shnum 2308 && (out_sections[shndx] == NULL 2309 || (out_sections[shndx]->order() == ORDER_EHFRAME 2310 && out_section_offsets[shndx] == invalid_address))) 2311 { 2312 // This is either a discarded section or an optimized .eh_frame 2313 // section. 2314 lv.set_no_output_symtab_entry(); 2315 gold_assert(!lv.needs_output_dynsym_entry()); 2316 continue; 2317 } 2318 2319 if (sym.get_st_type() == elfcpp::STT_SECTION 2320 || !this->adjust_local_symbol(&lv)) 2321 { 2322 lv.set_no_output_symtab_entry(); 2323 gold_assert(!lv.needs_output_dynsym_entry()); 2324 continue; 2325 } 2326 2327 if (sym.get_st_name() >= strtab_size) 2328 { 2329 this->error(_("local symbol %u section name out of range: %u >= %u"), 2330 i, sym.get_st_name(), 2331 static_cast<unsigned int>(strtab_size)); 2332 lv.set_no_output_symtab_entry(); 2333 continue; 2334 } 2335 2336 const char* name = pnames + sym.get_st_name(); 2337 2338 // If needed, add the symbol to the dynamic symbol table string pool. 2339 if (lv.needs_output_dynsym_entry()) 2340 { 2341 dynpool->add(name, true, NULL); 2342 ++dyncount; 2343 } 2344 2345 if (strip_all 2346 || (discard_all && lv.may_be_discarded_from_output_symtab())) 2347 { 2348 lv.set_no_output_symtab_entry(); 2349 continue; 2350 } 2351 2352 // By default, discard temporary local symbols in merge sections. 2353 // If --discard-locals option is used, discard all temporary local 2354 // symbols. These symbols start with system-specific local label 2355 // prefixes, typically .L for ELF system. We want to be compatible 2356 // with GNU ld so here we essentially use the same check in 2357 // bfd_is_local_label(). The code is different because we already 2358 // know that: 2359 // 2360 // - the symbol is local and thus cannot have global or weak binding. 2361 // - the symbol is not a section symbol. 2362 // - the symbol has a name. 2363 // 2364 // We do not discard a symbol if it needs a dynamic symbol entry. 2365 if ((discard_locals 2366 || (discard_sec_merge 2367 && is_ordinary 2368 && out_section_offsets[shndx] == invalid_address)) 2369 && sym.get_st_type() != elfcpp::STT_FILE 2370 && !lv.needs_output_dynsym_entry() 2371 && lv.may_be_discarded_from_output_symtab() 2372 && parameters->target().is_local_label_name(name)) 2373 { 2374 lv.set_no_output_symtab_entry(); 2375 continue; 2376 } 2377 2378 // Discard the local symbol if -retain_symbols_file is specified 2379 // and the local symbol is not in that file. 2380 if (!parameters->options().should_retain_symbol(name)) 2381 { 2382 lv.set_no_output_symtab_entry(); 2383 continue; 2384 } 2385 2386 // Add the symbol to the symbol table string pool. 2387 pool->add(name, true, NULL); 2388 ++count; 2389 } 2390 2391 this->output_local_symbol_count_ = count; 2392 this->output_local_dynsym_count_ = dyncount; 2393 } 2394 2395 // Compute the final value of a local symbol. 2396 2397 template<int size, bool big_endian> 2398 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status 2399 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal( 2400 unsigned int r_sym, 2401 const Symbol_value<size>* lv_in, 2402 Symbol_value<size>* lv_out, 2403 bool relocatable, 2404 const Output_sections& out_sections, 2405 const std::vector<Address>& out_offsets, 2406 const Symbol_table* symtab) 2407 { 2408 // We are going to overwrite *LV_OUT, if it has a merged symbol value, 2409 // we may have a memory leak. 2410 gold_assert(lv_out->has_output_value()); 2411 2412 bool is_ordinary; 2413 unsigned int shndx = lv_in->input_shndx(&is_ordinary); 2414 2415 // Set the output symbol value. 2416 2417 if (!is_ordinary) 2418 { 2419 if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx)) 2420 lv_out->set_output_value(lv_in->input_value()); 2421 else 2422 { 2423 this->error(_("unknown section index %u for local symbol %u"), 2424 shndx, r_sym); 2425 lv_out->set_output_value(0); 2426 return This::CFLV_ERROR; 2427 } 2428 } 2429 else 2430 { 2431 if (shndx >= this->shnum()) 2432 { 2433 this->error(_("local symbol %u section index %u out of range"), 2434 r_sym, shndx); 2435 lv_out->set_output_value(0); 2436 return This::CFLV_ERROR; 2437 } 2438 2439 Output_section* os = out_sections[shndx]; 2440 Address secoffset = out_offsets[shndx]; 2441 if (symtab->is_section_folded(this, shndx)) 2442 { 2443 gold_assert(os == NULL && secoffset == invalid_address); 2444 // Get the os of the section it is folded onto. 2445 Section_id folded = symtab->icf()->get_folded_section(this, 2446 shndx); 2447 gold_assert(folded.first != NULL); 2448 Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast 2449 <Sized_relobj_file<size, big_endian>*>(folded.first); 2450 os = folded_obj->output_section(folded.second); 2451 gold_assert(os != NULL); 2452 secoffset = folded_obj->get_output_section_offset(folded.second); 2453 2454 // This could be a relaxed input section. 2455 if (secoffset == invalid_address) 2456 { 2457 const Output_relaxed_input_section* relaxed_section = 2458 os->find_relaxed_input_section(folded_obj, folded.second); 2459 gold_assert(relaxed_section != NULL); 2460 secoffset = relaxed_section->address() - os->address(); 2461 } 2462 } 2463 2464 if (os == NULL) 2465 { 2466 // This local symbol belongs to a section we are discarding. 2467 // In some cases when applying relocations later, we will 2468 // attempt to match it to the corresponding kept section, 2469 // so we leave the input value unchanged here. 2470 return This::CFLV_DISCARDED; 2471 } 2472 else if (secoffset == invalid_address) 2473 { 2474 uint64_t start; 2475 2476 // This is a SHF_MERGE section or one which otherwise 2477 // requires special handling. 2478 if (os->order() == ORDER_EHFRAME) 2479 { 2480 // This local symbol belongs to a discarded or optimized 2481 // .eh_frame section. Just treat it like the case in which 2482 // os == NULL above. 2483 gold_assert(this->has_eh_frame_); 2484 return This::CFLV_DISCARDED; 2485 } 2486 else if (!lv_in->is_section_symbol()) 2487 { 2488 // This is not a section symbol. We can determine 2489 // the final value now. 2490 uint64_t value = 2491 os->output_address(this, shndx, lv_in->input_value()); 2492 if (relocatable) 2493 value -= os->address(); 2494 lv_out->set_output_value(value); 2495 } 2496 else if (!os->find_starting_output_address(this, shndx, &start)) 2497 { 2498 // This is a section symbol, but apparently not one in a 2499 // merged section. First check to see if this is a relaxed 2500 // input section. If so, use its address. Otherwise just 2501 // use the start of the output section. This happens with 2502 // relocatable links when the input object has section 2503 // symbols for arbitrary non-merge sections. 2504 const Output_section_data* posd = 2505 os->find_relaxed_input_section(this, shndx); 2506 if (posd != NULL) 2507 { 2508 uint64_t value = posd->address(); 2509 if (relocatable) 2510 value -= os->address(); 2511 lv_out->set_output_value(value); 2512 } 2513 else 2514 lv_out->set_output_value(os->address()); 2515 } 2516 else 2517 { 2518 // We have to consider the addend to determine the 2519 // value to use in a relocation. START is the start 2520 // of this input section. If we are doing a relocatable 2521 // link, use offset from start output section instead of 2522 // address. 2523 Address adjusted_start = 2524 relocatable ? start - os->address() : start; 2525 Merged_symbol_value<size>* msv = 2526 new Merged_symbol_value<size>(lv_in->input_value(), 2527 adjusted_start); 2528 lv_out->set_merged_symbol_value(msv); 2529 } 2530 } 2531 else if (lv_in->is_tls_symbol() 2532 || (lv_in->is_section_symbol() 2533 && (os->flags() & elfcpp::SHF_TLS))) 2534 lv_out->set_output_value(os->tls_offset() 2535 + secoffset 2536 + lv_in->input_value()); 2537 else 2538 lv_out->set_output_value((relocatable ? 0 : os->address()) 2539 + secoffset 2540 + lv_in->input_value()); 2541 } 2542 return This::CFLV_OK; 2543 } 2544 2545 // Compute final local symbol value. R_SYM is the index of a local 2546 // symbol in symbol table. LV points to a symbol value, which is 2547 // expected to hold the input value and to be over-written by the 2548 // final value. SYMTAB points to a symbol table. Some targets may want 2549 // to know would-be-finalized local symbol values in relaxation. 2550 // Hence we provide this method. Since this method updates *LV, a 2551 // callee should make a copy of the original local symbol value and 2552 // use the copy instead of modifying an object's local symbols before 2553 // everything is finalized. The caller should also free up any allocated 2554 // memory in the return value in *LV. 2555 template<int size, bool big_endian> 2556 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status 2557 Sized_relobj_file<size, big_endian>::compute_final_local_value( 2558 unsigned int r_sym, 2559 const Symbol_value<size>* lv_in, 2560 Symbol_value<size>* lv_out, 2561 const Symbol_table* symtab) 2562 { 2563 // This is just a wrapper of compute_final_local_value_internal. 2564 const bool relocatable = parameters->options().relocatable(); 2565 const Output_sections& out_sections(this->output_sections()); 2566 const std::vector<Address>& out_offsets(this->section_offsets()); 2567 return this->compute_final_local_value_internal(r_sym, lv_in, lv_out, 2568 relocatable, out_sections, 2569 out_offsets, symtab); 2570 } 2571 2572 // Finalize the local symbols. Here we set the final value in 2573 // THIS->LOCAL_VALUES_ and set their output symbol table indexes. 2574 // This function is always called from a singleton thread. The actual 2575 // output of the local symbols will occur in a separate task. 2576 2577 template<int size, bool big_endian> 2578 unsigned int 2579 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols( 2580 unsigned int index, 2581 off_t off, 2582 Symbol_table* symtab) 2583 { 2584 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3))); 2585 2586 const unsigned int loccount = this->local_symbol_count_; 2587 this->local_symbol_offset_ = off; 2588 2589 const bool relocatable = parameters->options().relocatable(); 2590 const Output_sections& out_sections(this->output_sections()); 2591 const std::vector<Address>& out_offsets(this->section_offsets()); 2592 2593 for (unsigned int i = 1; i < loccount; ++i) 2594 { 2595 Symbol_value<size>* lv = &this->local_values_[i]; 2596 2597 Compute_final_local_value_status cflv_status = 2598 this->compute_final_local_value_internal(i, lv, lv, relocatable, 2599 out_sections, out_offsets, 2600 symtab); 2601 switch (cflv_status) 2602 { 2603 case CFLV_OK: 2604 if (!lv->is_output_symtab_index_set()) 2605 { 2606 lv->set_output_symtab_index(index); 2607 ++index; 2608 } 2609 break; 2610 case CFLV_DISCARDED: 2611 case CFLV_ERROR: 2612 // Do nothing. 2613 break; 2614 default: 2615 gold_unreachable(); 2616 } 2617 } 2618 return index; 2619 } 2620 2621 // Set the output dynamic symbol table indexes for the local variables. 2622 2623 template<int size, bool big_endian> 2624 unsigned int 2625 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes( 2626 unsigned int index) 2627 { 2628 const unsigned int loccount = this->local_symbol_count_; 2629 for (unsigned int i = 1; i < loccount; ++i) 2630 { 2631 Symbol_value<size>& lv(this->local_values_[i]); 2632 if (lv.needs_output_dynsym_entry()) 2633 { 2634 lv.set_output_dynsym_index(index); 2635 ++index; 2636 } 2637 } 2638 return index; 2639 } 2640 2641 // Set the offset where local dynamic symbol information will be stored. 2642 // Returns the count of local symbols contributed to the symbol table by 2643 // this object. 2644 2645 template<int size, bool big_endian> 2646 unsigned int 2647 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off) 2648 { 2649 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3))); 2650 this->local_dynsym_offset_ = off; 2651 return this->output_local_dynsym_count_; 2652 } 2653 2654 // If Symbols_data is not NULL get the section flags from here otherwise 2655 // get it from the file. 2656 2657 template<int size, bool big_endian> 2658 uint64_t 2659 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx) 2660 { 2661 Symbols_data* sd = this->get_symbols_data(); 2662 if (sd != NULL) 2663 { 2664 const unsigned char* pshdrs = sd->section_headers_data 2665 + This::shdr_size * shndx; 2666 typename This::Shdr shdr(pshdrs); 2667 return shdr.get_sh_flags(); 2668 } 2669 // If sd is NULL, read the section header from the file. 2670 return this->elf_file_.section_flags(shndx); 2671 } 2672 2673 // Get the section's ent size from Symbols_data. Called by get_section_contents 2674 // in icf.cc 2675 2676 template<int size, bool big_endian> 2677 uint64_t 2678 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx) 2679 { 2680 Symbols_data* sd = this->get_symbols_data(); 2681 gold_assert(sd != NULL); 2682 2683 const unsigned char* pshdrs = sd->section_headers_data 2684 + This::shdr_size * shndx; 2685 typename This::Shdr shdr(pshdrs); 2686 return shdr.get_sh_entsize(); 2687 } 2688 2689 // Write out the local symbols. 2690 2691 template<int size, bool big_endian> 2692 void 2693 Sized_relobj_file<size, big_endian>::write_local_symbols( 2694 Output_file* of, 2695 const Stringpool* sympool, 2696 const Stringpool* dynpool, 2697 Output_symtab_xindex* symtab_xindex, 2698 Output_symtab_xindex* dynsym_xindex, 2699 off_t symtab_off) 2700 { 2701 const bool strip_all = parameters->options().strip_all(); 2702 if (strip_all) 2703 { 2704 if (this->output_local_dynsym_count_ == 0) 2705 return; 2706 this->output_local_symbol_count_ = 0; 2707 } 2708 2709 gold_assert(this->symtab_shndx_ != -1U); 2710 if (this->symtab_shndx_ == 0) 2711 { 2712 // This object has no symbols. Weird but legal. 2713 return; 2714 } 2715 2716 // Read the symbol table section header. 2717 const unsigned int symtab_shndx = this->symtab_shndx_; 2718 typename This::Shdr symtabshdr(this, 2719 this->elf_file_.section_header(symtab_shndx)); 2720 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB); 2721 const unsigned int loccount = this->local_symbol_count_; 2722 gold_assert(loccount == symtabshdr.get_sh_info()); 2723 2724 // Read the local symbols. 2725 const int sym_size = This::sym_size; 2726 off_t locsize = loccount * sym_size; 2727 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(), 2728 locsize, true, false); 2729 2730 // Read the symbol names. 2731 const unsigned int strtab_shndx = 2732 this->adjust_shndx(symtabshdr.get_sh_link()); 2733 section_size_type strtab_size; 2734 const unsigned char* pnamesu = this->section_contents(strtab_shndx, 2735 &strtab_size, 2736 false); 2737 const char* pnames = reinterpret_cast<const char*>(pnamesu); 2738 2739 // Get views into the output file for the portions of the symbol table 2740 // and the dynamic symbol table that we will be writing. 2741 off_t output_size = this->output_local_symbol_count_ * sym_size; 2742 unsigned char* oview = NULL; 2743 if (output_size > 0) 2744 oview = of->get_output_view(symtab_off + this->local_symbol_offset_, 2745 output_size); 2746 2747 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size; 2748 unsigned char* dyn_oview = NULL; 2749 if (dyn_output_size > 0) 2750 dyn_oview = of->get_output_view(this->local_dynsym_offset_, 2751 dyn_output_size); 2752 2753 const Output_sections& out_sections(this->output_sections()); 2754 2755 gold_assert(this->local_values_.size() == loccount); 2756 2757 unsigned char* ov = oview; 2758 unsigned char* dyn_ov = dyn_oview; 2759 psyms += sym_size; 2760 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size) 2761 { 2762 elfcpp::Sym<size, big_endian> isym(psyms); 2763 2764 Symbol_value<size>& lv(this->local_values_[i]); 2765 2766 bool is_ordinary; 2767 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(), 2768 &is_ordinary); 2769 if (is_ordinary) 2770 { 2771 gold_assert(st_shndx < out_sections.size()); 2772 if (out_sections[st_shndx] == NULL) 2773 continue; 2774 st_shndx = out_sections[st_shndx]->out_shndx(); 2775 if (st_shndx >= elfcpp::SHN_LORESERVE) 2776 { 2777 if (lv.has_output_symtab_entry()) 2778 symtab_xindex->add(lv.output_symtab_index(), st_shndx); 2779 if (lv.has_output_dynsym_entry()) 2780 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx); 2781 st_shndx = elfcpp::SHN_XINDEX; 2782 } 2783 } 2784 2785 // Write the symbol to the output symbol table. 2786 if (lv.has_output_symtab_entry()) 2787 { 2788 elfcpp::Sym_write<size, big_endian> osym(ov); 2789 2790 gold_assert(isym.get_st_name() < strtab_size); 2791 const char* name = pnames + isym.get_st_name(); 2792 osym.put_st_name(sympool->get_offset(name)); 2793 osym.put_st_value(lv.value(this, 0)); 2794 osym.put_st_size(isym.get_st_size()); 2795 osym.put_st_info(isym.get_st_info()); 2796 osym.put_st_other(isym.get_st_other()); 2797 osym.put_st_shndx(st_shndx); 2798 2799 ov += sym_size; 2800 } 2801 2802 // Write the symbol to the output dynamic symbol table. 2803 if (lv.has_output_dynsym_entry()) 2804 { 2805 gold_assert(dyn_ov < dyn_oview + dyn_output_size); 2806 elfcpp::Sym_write<size, big_endian> osym(dyn_ov); 2807 2808 gold_assert(isym.get_st_name() < strtab_size); 2809 const char* name = pnames + isym.get_st_name(); 2810 osym.put_st_name(dynpool->get_offset(name)); 2811 osym.put_st_value(lv.value(this, 0)); 2812 osym.put_st_size(isym.get_st_size()); 2813 osym.put_st_info(isym.get_st_info()); 2814 osym.put_st_other(isym.get_st_other()); 2815 osym.put_st_shndx(st_shndx); 2816 2817 dyn_ov += sym_size; 2818 } 2819 } 2820 2821 2822 if (output_size > 0) 2823 { 2824 gold_assert(ov - oview == output_size); 2825 of->write_output_view(symtab_off + this->local_symbol_offset_, 2826 output_size, oview); 2827 } 2828 2829 if (dyn_output_size > 0) 2830 { 2831 gold_assert(dyn_ov - dyn_oview == dyn_output_size); 2832 of->write_output_view(this->local_dynsym_offset_, dyn_output_size, 2833 dyn_oview); 2834 } 2835 } 2836 2837 // Set *INFO to symbolic information about the offset OFFSET in the 2838 // section SHNDX. Return true if we found something, false if we 2839 // found nothing. 2840 2841 template<int size, bool big_endian> 2842 bool 2843 Sized_relobj_file<size, big_endian>::get_symbol_location_info( 2844 unsigned int shndx, 2845 off_t offset, 2846 Symbol_location_info* info) 2847 { 2848 if (this->symtab_shndx_ == 0) 2849 return false; 2850 2851 section_size_type symbols_size; 2852 const unsigned char* symbols = this->section_contents(this->symtab_shndx_, 2853 &symbols_size, 2854 false); 2855 2856 unsigned int symbol_names_shndx = 2857 this->adjust_shndx(this->section_link(this->symtab_shndx_)); 2858 section_size_type names_size; 2859 const unsigned char* symbol_names_u = 2860 this->section_contents(symbol_names_shndx, &names_size, false); 2861 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u); 2862 2863 const int sym_size = This::sym_size; 2864 const size_t count = symbols_size / sym_size; 2865 2866 const unsigned char* p = symbols; 2867 for (size_t i = 0; i < count; ++i, p += sym_size) 2868 { 2869 elfcpp::Sym<size, big_endian> sym(p); 2870 2871 if (sym.get_st_type() == elfcpp::STT_FILE) 2872 { 2873 if (sym.get_st_name() >= names_size) 2874 info->source_file = "(invalid)"; 2875 else 2876 info->source_file = symbol_names + sym.get_st_name(); 2877 continue; 2878 } 2879 2880 bool is_ordinary; 2881 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(), 2882 &is_ordinary); 2883 if (is_ordinary 2884 && st_shndx == shndx 2885 && static_cast<off_t>(sym.get_st_value()) <= offset 2886 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size()) 2887 > offset)) 2888 { 2889 info->enclosing_symbol_type = sym.get_st_type(); 2890 if (sym.get_st_name() > names_size) 2891 info->enclosing_symbol_name = "(invalid)"; 2892 else 2893 { 2894 info->enclosing_symbol_name = symbol_names + sym.get_st_name(); 2895 if (parameters->options().do_demangle()) 2896 { 2897 char* demangled_name = cplus_demangle( 2898 info->enclosing_symbol_name.c_str(), 2899 DMGL_ANSI | DMGL_PARAMS); 2900 if (demangled_name != NULL) 2901 { 2902 info->enclosing_symbol_name.assign(demangled_name); 2903 free(demangled_name); 2904 } 2905 } 2906 } 2907 return true; 2908 } 2909 } 2910 2911 return false; 2912 } 2913 2914 // Look for a kept section corresponding to the given discarded section, 2915 // and return its output address. This is used only for relocations in 2916 // debugging sections. If we can't find the kept section, return 0. 2917 2918 template<int size, bool big_endian> 2919 typename Sized_relobj_file<size, big_endian>::Address 2920 Sized_relobj_file<size, big_endian>::map_to_kept_section( 2921 unsigned int shndx, 2922 std::string& section_name, 2923 bool* pfound) const 2924 { 2925 Kept_section* kept_section; 2926 bool is_comdat; 2927 uint64_t sh_size; 2928 unsigned int symndx; 2929 bool found = false; 2930 2931 if (this->get_kept_comdat_section(shndx, &is_comdat, &symndx, &sh_size, 2932 &kept_section)) 2933 { 2934 Relobj* kept_object = kept_section->object(); 2935 unsigned int kept_shndx = 0; 2936 if (!kept_section->is_comdat()) 2937 { 2938 // The kept section is a linkonce section. 2939 if (sh_size == kept_section->linkonce_size()) 2940 found = true; 2941 } 2942 else 2943 { 2944 if (is_comdat) 2945 { 2946 // Find the corresponding kept section. 2947 // Since we're using this mapping for relocation processing, 2948 // we don't want to match sections unless they have the same 2949 // size. 2950 uint64_t kept_size; 2951 if (kept_section->find_comdat_section(section_name, &kept_shndx, 2952 &kept_size)) 2953 { 2954 if (sh_size == kept_size) 2955 found = true; 2956 } 2957 } 2958 else 2959 { 2960 uint64_t kept_size; 2961 if (kept_section->find_single_comdat_section(&kept_shndx, 2962 &kept_size) 2963 && sh_size == kept_size) 2964 found = true; 2965 } 2966 } 2967 2968 if (found) 2969 { 2970 Sized_relobj_file<size, big_endian>* kept_relobj = 2971 static_cast<Sized_relobj_file<size, big_endian>*>(kept_object); 2972 Output_section* os = kept_relobj->output_section(kept_shndx); 2973 Address offset = kept_relobj->get_output_section_offset(kept_shndx); 2974 if (os != NULL && offset != invalid_address) 2975 { 2976 *pfound = true; 2977 return os->address() + offset; 2978 } 2979 } 2980 } 2981 *pfound = false; 2982 return 0; 2983 } 2984 2985 // Look for a kept section corresponding to the given discarded section, 2986 // and return its object file. 2987 2988 template<int size, bool big_endian> 2989 Relobj* 2990 Sized_relobj_file<size, big_endian>::find_kept_section_object( 2991 unsigned int shndx, unsigned int *symndx_p) const 2992 { 2993 Kept_section* kept_section; 2994 bool is_comdat; 2995 uint64_t sh_size; 2996 if (this->get_kept_comdat_section(shndx, &is_comdat, symndx_p, &sh_size, 2997 &kept_section)) 2998 return kept_section->object(); 2999 return NULL; 3000 } 3001 3002 // Return the name of symbol SYMNDX. 3003 3004 template<int size, bool big_endian> 3005 const char* 3006 Sized_relobj_file<size, big_endian>::get_symbol_name(unsigned int symndx) 3007 { 3008 if (this->symtab_shndx_ == 0) 3009 return NULL; 3010 3011 section_size_type symbols_size; 3012 const unsigned char* symbols = this->section_contents(this->symtab_shndx_, 3013 &symbols_size, 3014 false); 3015 3016 unsigned int symbol_names_shndx = 3017 this->adjust_shndx(this->section_link(this->symtab_shndx_)); 3018 section_size_type names_size; 3019 const unsigned char* symbol_names_u = 3020 this->section_contents(symbol_names_shndx, &names_size, false); 3021 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u); 3022 3023 const unsigned char* p = symbols + symndx * This::sym_size; 3024 3025 if (p >= symbols + symbols_size) 3026 return NULL; 3027 3028 elfcpp::Sym<size, big_endian> sym(p); 3029 3030 return symbol_names + sym.get_st_name(); 3031 } 3032 3033 // Get symbol counts. 3034 3035 template<int size, bool big_endian> 3036 void 3037 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts( 3038 const Symbol_table*, 3039 size_t* defined, 3040 size_t* used) const 3041 { 3042 *defined = this->defined_count_; 3043 size_t count = 0; 3044 for (typename Symbols::const_iterator p = this->symbols_.begin(); 3045 p != this->symbols_.end(); 3046 ++p) 3047 if (*p != NULL 3048 && (*p)->source() == Symbol::FROM_OBJECT 3049 && (*p)->object() == this 3050 && (*p)->is_defined()) 3051 ++count; 3052 *used = count; 3053 } 3054 3055 // Return a view of the decompressed contents of a section. Set *PLEN 3056 // to the size. Set *IS_NEW to true if the contents need to be freed 3057 // by the caller. 3058 3059 const unsigned char* 3060 Object::decompressed_section_contents( 3061 unsigned int shndx, 3062 section_size_type* plen, 3063 bool* is_new) 3064 { 3065 section_size_type buffer_size; 3066 const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size, 3067 false); 3068 3069 if (this->compressed_sections_ == NULL) 3070 { 3071 *plen = buffer_size; 3072 *is_new = false; 3073 return buffer; 3074 } 3075 3076 Compressed_section_map::const_iterator p = 3077 this->compressed_sections_->find(shndx); 3078 if (p == this->compressed_sections_->end()) 3079 { 3080 *plen = buffer_size; 3081 *is_new = false; 3082 return buffer; 3083 } 3084 3085 section_size_type uncompressed_size = p->second.size; 3086 if (p->second.contents != NULL) 3087 { 3088 *plen = uncompressed_size; 3089 *is_new = false; 3090 return p->second.contents; 3091 } 3092 3093 unsigned char* uncompressed_data = new unsigned char[uncompressed_size]; 3094 if (!decompress_input_section(buffer, 3095 buffer_size, 3096 uncompressed_data, 3097 uncompressed_size, 3098 elfsize(), 3099 is_big_endian(), 3100 p->second.flag)) 3101 this->error(_("could not decompress section %s"), 3102 this->do_section_name(shndx).c_str()); 3103 3104 // We could cache the results in p->second.contents and store 3105 // false in *IS_NEW, but build_compressed_section_map() would 3106 // have done so if it had expected it to be profitable. If 3107 // we reach this point, we expect to need the contents only 3108 // once in this pass. 3109 *plen = uncompressed_size; 3110 *is_new = true; 3111 return uncompressed_data; 3112 } 3113 3114 // Discard any buffers of uncompressed sections. This is done 3115 // at the end of the Add_symbols task. 3116 3117 void 3118 Object::discard_decompressed_sections() 3119 { 3120 if (this->compressed_sections_ == NULL) 3121 return; 3122 3123 for (Compressed_section_map::iterator p = this->compressed_sections_->begin(); 3124 p != this->compressed_sections_->end(); 3125 ++p) 3126 { 3127 if (p->second.contents != NULL) 3128 { 3129 delete[] p->second.contents; 3130 p->second.contents = NULL; 3131 } 3132 } 3133 } 3134 3135 // Input_objects methods. 3136 3137 // Add a regular relocatable object to the list. Return false if this 3138 // object should be ignored. 3139 3140 bool 3141 Input_objects::add_object(Object* obj) 3142 { 3143 // Print the filename if the -t/--trace option is selected. 3144 if (parameters->options().trace()) 3145 gold_info("%s", obj->name().c_str()); 3146 3147 if (!obj->is_dynamic()) 3148 this->relobj_list_.push_back(static_cast<Relobj*>(obj)); 3149 else 3150 { 3151 // See if this is a duplicate SONAME. 3152 Dynobj* dynobj = static_cast<Dynobj*>(obj); 3153 const char* soname = dynobj->soname(); 3154 3155 Unordered_map<std::string, Object*>::value_type val(soname, obj); 3156 std::pair<Unordered_map<std::string, Object*>::iterator, bool> ins = 3157 this->sonames_.insert(val); 3158 if (!ins.second) 3159 { 3160 // We have already seen a dynamic object with this soname. 3161 // If any instances of this object on the command line have 3162 // the --no-as-needed flag, make sure the one we keep is 3163 // marked so. 3164 if (!obj->as_needed()) 3165 { 3166 gold_assert(ins.first->second != NULL); 3167 ins.first->second->clear_as_needed(); 3168 } 3169 return false; 3170 } 3171 3172 this->dynobj_list_.push_back(dynobj); 3173 } 3174 3175 // Add this object to the cross-referencer if requested. 3176 if (parameters->options().user_set_print_symbol_counts() 3177 || parameters->options().cref()) 3178 { 3179 if (this->cref_ == NULL) 3180 this->cref_ = new Cref(); 3181 this->cref_->add_object(obj); 3182 } 3183 3184 return true; 3185 } 3186 3187 // For each dynamic object, record whether we've seen all of its 3188 // explicit dependencies. 3189 3190 void 3191 Input_objects::check_dynamic_dependencies() const 3192 { 3193 bool issued_copy_dt_needed_error = false; 3194 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin(); 3195 p != this->dynobj_list_.end(); 3196 ++p) 3197 { 3198 const Dynobj::Needed& needed((*p)->needed()); 3199 bool found_all = true; 3200 Dynobj::Needed::const_iterator pneeded; 3201 for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded) 3202 { 3203 if (this->sonames_.find(*pneeded) == this->sonames_.end()) 3204 { 3205 found_all = false; 3206 break; 3207 } 3208 } 3209 (*p)->set_has_unknown_needed_entries(!found_all); 3210 3211 // --copy-dt-needed-entries aka --add-needed is a GNU ld option 3212 // that gold does not support. However, they cause no trouble 3213 // unless there is a DT_NEEDED entry that we don't know about; 3214 // warn only in that case. 3215 if (!found_all 3216 && !issued_copy_dt_needed_error 3217 && (parameters->options().copy_dt_needed_entries() 3218 || parameters->options().add_needed())) 3219 { 3220 const char* optname; 3221 if (parameters->options().copy_dt_needed_entries()) 3222 optname = "--copy-dt-needed-entries"; 3223 else 3224 optname = "--add-needed"; 3225 gold_error(_("%s is not supported but is required for %s in %s"), 3226 optname, (*pneeded).c_str(), (*p)->name().c_str()); 3227 issued_copy_dt_needed_error = true; 3228 } 3229 } 3230 } 3231 3232 // Start processing an archive. 3233 3234 void 3235 Input_objects::archive_start(Archive* archive) 3236 { 3237 if (parameters->options().user_set_print_symbol_counts() 3238 || parameters->options().cref()) 3239 { 3240 if (this->cref_ == NULL) 3241 this->cref_ = new Cref(); 3242 this->cref_->add_archive_start(archive); 3243 } 3244 } 3245 3246 // Stop processing an archive. 3247 3248 void 3249 Input_objects::archive_stop(Archive* archive) 3250 { 3251 if (parameters->options().user_set_print_symbol_counts() 3252 || parameters->options().cref()) 3253 this->cref_->add_archive_stop(archive); 3254 } 3255 3256 // Print symbol counts 3257 3258 void 3259 Input_objects::print_symbol_counts(const Symbol_table* symtab) const 3260 { 3261 if (parameters->options().user_set_print_symbol_counts() 3262 && this->cref_ != NULL) 3263 this->cref_->print_symbol_counts(symtab); 3264 } 3265 3266 // Print a cross reference table. 3267 3268 void 3269 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const 3270 { 3271 if (parameters->options().cref() && this->cref_ != NULL) 3272 this->cref_->print_cref(symtab, f); 3273 } 3274 3275 // Relocate_info methods. 3276 3277 // Return a string describing the location of a relocation when file 3278 // and lineno information is not available. This is only used in 3279 // error messages. 3280 3281 template<int size, bool big_endian> 3282 std::string 3283 Relocate_info<size, big_endian>::location(size_t, off_t offset) const 3284 { 3285 Sized_dwarf_line_info<size, big_endian> line_info(this->object); 3286 std::string ret = line_info.addr2line(this->data_shndx, offset, NULL); 3287 if (!ret.empty()) 3288 return ret; 3289 3290 ret = this->object->name(); 3291 3292 Symbol_location_info info; 3293 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info)) 3294 { 3295 if (!info.source_file.empty()) 3296 { 3297 ret += ":"; 3298 ret += info.source_file; 3299 } 3300 ret += ":"; 3301 if (info.enclosing_symbol_type == elfcpp::STT_FUNC) 3302 ret += _("function "); 3303 ret += info.enclosing_symbol_name; 3304 return ret; 3305 } 3306 3307 ret += "("; 3308 ret += this->object->section_name(this->data_shndx); 3309 char buf[100]; 3310 snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset)); 3311 ret += buf; 3312 return ret; 3313 } 3314 3315 } // End namespace gold. 3316 3317 namespace 3318 { 3319 3320 using namespace gold; 3321 3322 // Read an ELF file with the header and return the appropriate 3323 // instance of Object. 3324 3325 template<int size, bool big_endian> 3326 Object* 3327 make_elf_sized_object(const std::string& name, Input_file* input_file, 3328 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr, 3329 bool* punconfigured) 3330 { 3331 Target* target = select_target(input_file, offset, 3332 ehdr.get_e_machine(), size, big_endian, 3333 ehdr.get_e_ident()[elfcpp::EI_OSABI], 3334 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]); 3335 if (target == NULL) 3336 gold_fatal(_("%s: unsupported ELF machine number %d"), 3337 name.c_str(), ehdr.get_e_machine()); 3338 3339 if (!parameters->target_valid()) 3340 set_parameters_target(target); 3341 else if (target != ¶meters->target()) 3342 { 3343 if (punconfigured != NULL) 3344 *punconfigured = true; 3345 else 3346 gold_error(_("%s: incompatible target"), name.c_str()); 3347 return NULL; 3348 } 3349 3350 return target->make_elf_object<size, big_endian>(name, input_file, offset, 3351 ehdr); 3352 } 3353 3354 } // End anonymous namespace. 3355 3356 namespace gold 3357 { 3358 3359 // Return whether INPUT_FILE is an ELF object. 3360 3361 bool 3362 is_elf_object(Input_file* input_file, off_t offset, 3363 const unsigned char** start, int* read_size) 3364 { 3365 off_t filesize = input_file->file().filesize(); 3366 int want = elfcpp::Elf_recognizer::max_header_size; 3367 if (filesize - offset < want) 3368 want = filesize - offset; 3369 3370 const unsigned char* p = input_file->file().get_view(offset, 0, want, 3371 true, false); 3372 *start = p; 3373 *read_size = want; 3374 3375 return elfcpp::Elf_recognizer::is_elf_file(p, want); 3376 } 3377 3378 // Read an ELF file and return the appropriate instance of Object. 3379 3380 Object* 3381 make_elf_object(const std::string& name, Input_file* input_file, off_t offset, 3382 const unsigned char* p, section_offset_type bytes, 3383 bool* punconfigured) 3384 { 3385 if (punconfigured != NULL) 3386 *punconfigured = false; 3387 3388 std::string error; 3389 bool big_endian = false; 3390 int size = 0; 3391 if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size, 3392 &big_endian, &error)) 3393 { 3394 gold_error(_("%s: %s"), name.c_str(), error.c_str()); 3395 return NULL; 3396 } 3397 3398 if (size == 32) 3399 { 3400 if (big_endian) 3401 { 3402 #ifdef HAVE_TARGET_32_BIG 3403 elfcpp::Ehdr<32, true> ehdr(p); 3404 return make_elf_sized_object<32, true>(name, input_file, 3405 offset, ehdr, punconfigured); 3406 #else 3407 if (punconfigured != NULL) 3408 *punconfigured = true; 3409 else 3410 gold_error(_("%s: not configured to support " 3411 "32-bit big-endian object"), 3412 name.c_str()); 3413 return NULL; 3414 #endif 3415 } 3416 else 3417 { 3418 #ifdef HAVE_TARGET_32_LITTLE 3419 elfcpp::Ehdr<32, false> ehdr(p); 3420 return make_elf_sized_object<32, false>(name, input_file, 3421 offset, ehdr, punconfigured); 3422 #else 3423 if (punconfigured != NULL) 3424 *punconfigured = true; 3425 else 3426 gold_error(_("%s: not configured to support " 3427 "32-bit little-endian object"), 3428 name.c_str()); 3429 return NULL; 3430 #endif 3431 } 3432 } 3433 else if (size == 64) 3434 { 3435 if (big_endian) 3436 { 3437 #ifdef HAVE_TARGET_64_BIG 3438 elfcpp::Ehdr<64, true> ehdr(p); 3439 return make_elf_sized_object<64, true>(name, input_file, 3440 offset, ehdr, punconfigured); 3441 #else 3442 if (punconfigured != NULL) 3443 *punconfigured = true; 3444 else 3445 gold_error(_("%s: not configured to support " 3446 "64-bit big-endian object"), 3447 name.c_str()); 3448 return NULL; 3449 #endif 3450 } 3451 else 3452 { 3453 #ifdef HAVE_TARGET_64_LITTLE 3454 elfcpp::Ehdr<64, false> ehdr(p); 3455 return make_elf_sized_object<64, false>(name, input_file, 3456 offset, ehdr, punconfigured); 3457 #else 3458 if (punconfigured != NULL) 3459 *punconfigured = true; 3460 else 3461 gold_error(_("%s: not configured to support " 3462 "64-bit little-endian object"), 3463 name.c_str()); 3464 return NULL; 3465 #endif 3466 } 3467 } 3468 else 3469 gold_unreachable(); 3470 } 3471 3472 // Instantiate the templates we need. 3473 3474 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG) 3475 template 3476 void 3477 Relobj::initialize_input_to_output_map<64>(unsigned int shndx, 3478 elfcpp::Elf_types<64>::Elf_Addr starting_address, 3479 Unordered_map<section_offset_type, 3480 elfcpp::Elf_types<64>::Elf_Addr>* output_addresses) const; 3481 #endif 3482 3483 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG) 3484 template 3485 void 3486 Relobj::initialize_input_to_output_map<32>(unsigned int shndx, 3487 elfcpp::Elf_types<32>::Elf_Addr starting_address, 3488 Unordered_map<section_offset_type, 3489 elfcpp::Elf_types<32>::Elf_Addr>* output_addresses) const; 3490 #endif 3491 3492 #ifdef HAVE_TARGET_32_LITTLE 3493 template 3494 void 3495 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*, 3496 Read_symbols_data*); 3497 template 3498 const unsigned char* 3499 Object::find_shdr<32,false>(const unsigned char*, const char*, const char*, 3500 section_size_type, const unsigned char*) const; 3501 #endif 3502 3503 #ifdef HAVE_TARGET_32_BIG 3504 template 3505 void 3506 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*, 3507 Read_symbols_data*); 3508 template 3509 const unsigned char* 3510 Object::find_shdr<32,true>(const unsigned char*, const char*, const char*, 3511 section_size_type, const unsigned char*) const; 3512 #endif 3513 3514 #ifdef HAVE_TARGET_64_LITTLE 3515 template 3516 void 3517 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*, 3518 Read_symbols_data*); 3519 template 3520 const unsigned char* 3521 Object::find_shdr<64,false>(const unsigned char*, const char*, const char*, 3522 section_size_type, const unsigned char*) const; 3523 #endif 3524 3525 #ifdef HAVE_TARGET_64_BIG 3526 template 3527 void 3528 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*, 3529 Read_symbols_data*); 3530 template 3531 const unsigned char* 3532 Object::find_shdr<64,true>(const unsigned char*, const char*, const char*, 3533 section_size_type, const unsigned char*) const; 3534 #endif 3535 3536 #ifdef HAVE_TARGET_32_LITTLE 3537 template 3538 class Sized_relobj<32, false>; 3539 3540 template 3541 class Sized_relobj_file<32, false>; 3542 #endif 3543 3544 #ifdef HAVE_TARGET_32_BIG 3545 template 3546 class Sized_relobj<32, true>; 3547 3548 template 3549 class Sized_relobj_file<32, true>; 3550 #endif 3551 3552 #ifdef HAVE_TARGET_64_LITTLE 3553 template 3554 class Sized_relobj<64, false>; 3555 3556 template 3557 class Sized_relobj_file<64, false>; 3558 #endif 3559 3560 #ifdef HAVE_TARGET_64_BIG 3561 template 3562 class Sized_relobj<64, true>; 3563 3564 template 3565 class Sized_relobj_file<64, true>; 3566 #endif 3567 3568 #ifdef HAVE_TARGET_32_LITTLE 3569 template 3570 struct Relocate_info<32, false>; 3571 #endif 3572 3573 #ifdef HAVE_TARGET_32_BIG 3574 template 3575 struct Relocate_info<32, true>; 3576 #endif 3577 3578 #ifdef HAVE_TARGET_64_LITTLE 3579 template 3580 struct Relocate_info<64, false>; 3581 #endif 3582 3583 #ifdef HAVE_TARGET_64_BIG 3584 template 3585 struct Relocate_info<64, true>; 3586 #endif 3587 3588 #ifdef HAVE_TARGET_32_LITTLE 3589 template 3590 void 3591 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int); 3592 3593 template 3594 void 3595 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int, 3596 const unsigned char*); 3597 #endif 3598 3599 #ifdef HAVE_TARGET_32_BIG 3600 template 3601 void 3602 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int); 3603 3604 template 3605 void 3606 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int, 3607 const unsigned char*); 3608 #endif 3609 3610 #ifdef HAVE_TARGET_64_LITTLE 3611 template 3612 void 3613 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int); 3614 3615 template 3616 void 3617 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int, 3618 const unsigned char*); 3619 #endif 3620 3621 #ifdef HAVE_TARGET_64_BIG 3622 template 3623 void 3624 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int); 3625 3626 template 3627 void 3628 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int, 3629 const unsigned char*); 3630 #endif 3631 3632 #ifdef HAVE_TARGET_32_LITTLE 3633 template 3634 Compressed_section_map* 3635 build_compressed_section_map<32, false>(const unsigned char*, unsigned int, 3636 const char*, section_size_type, 3637 Object*, bool); 3638 #endif 3639 3640 #ifdef HAVE_TARGET_32_BIG 3641 template 3642 Compressed_section_map* 3643 build_compressed_section_map<32, true>(const unsigned char*, unsigned int, 3644 const char*, section_size_type, 3645 Object*, bool); 3646 #endif 3647 3648 #ifdef HAVE_TARGET_64_LITTLE 3649 template 3650 Compressed_section_map* 3651 build_compressed_section_map<64, false>(const unsigned char*, unsigned int, 3652 const char*, section_size_type, 3653 Object*, bool); 3654 #endif 3655 3656 #ifdef HAVE_TARGET_64_BIG 3657 template 3658 Compressed_section_map* 3659 build_compressed_section_map<64, true>(const unsigned char*, unsigned int, 3660 const char*, section_size_type, 3661 Object*, bool); 3662 #endif 3663 3664 } // End namespace gold. 3665