xref: /netbsd-src/external/gpl3/binutils.old/dist/gold/object.cc (revision 122b5006ee1bd67145794b4cde92f4fe4781a5ec)
1 // object.cc -- support for an object file for linking in gold
2 
3 // Copyright (C) 2006-2018 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 #include "gold.h"
24 
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30 
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44 #include "merge.h"
45 
46 namespace gold
47 {
48 
49 // Struct Read_symbols_data.
50 
51 // Destroy any remaining File_view objects and buffers of decompressed
52 // sections.
53 
54 Read_symbols_data::~Read_symbols_data()
55 {
56   if (this->section_headers != NULL)
57     delete this->section_headers;
58   if (this->section_names != NULL)
59     delete this->section_names;
60   if (this->symbols != NULL)
61     delete this->symbols;
62   if (this->symbol_names != NULL)
63     delete this->symbol_names;
64   if (this->versym != NULL)
65     delete this->versym;
66   if (this->verdef != NULL)
67     delete this->verdef;
68   if (this->verneed != NULL)
69     delete this->verneed;
70 }
71 
72 // Class Xindex.
73 
74 // Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
75 // section and read it in.  SYMTAB_SHNDX is the index of the symbol
76 // table we care about.
77 
78 template<int size, bool big_endian>
79 void
80 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
81 {
82   if (!this->symtab_xindex_.empty())
83     return;
84 
85   gold_assert(symtab_shndx != 0);
86 
87   // Look through the sections in reverse order, on the theory that it
88   // is more likely to be near the end than the beginning.
89   unsigned int i = object->shnum();
90   while (i > 0)
91     {
92       --i;
93       if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
94 	  && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
95 	{
96 	  this->read_symtab_xindex<size, big_endian>(object, i, NULL);
97 	  return;
98 	}
99     }
100 
101   object->error(_("missing SHT_SYMTAB_SHNDX section"));
102 }
103 
104 // Read in the symtab_xindex_ array, given the section index of the
105 // SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
106 // section headers.
107 
108 template<int size, bool big_endian>
109 void
110 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
111 			   const unsigned char* pshdrs)
112 {
113   section_size_type bytecount;
114   const unsigned char* contents;
115   if (pshdrs == NULL)
116     contents = object->section_contents(xindex_shndx, &bytecount, false);
117   else
118     {
119       const unsigned char* p = (pshdrs
120 				+ (xindex_shndx
121 				   * elfcpp::Elf_sizes<size>::shdr_size));
122       typename elfcpp::Shdr<size, big_endian> shdr(p);
123       bytecount = convert_to_section_size_type(shdr.get_sh_size());
124       contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
125     }
126 
127   gold_assert(this->symtab_xindex_.empty());
128   this->symtab_xindex_.reserve(bytecount / 4);
129   for (section_size_type i = 0; i < bytecount; i += 4)
130     {
131       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
132       // We preadjust the section indexes we save.
133       this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
134     }
135 }
136 
137 // Symbol symndx has a section of SHN_XINDEX; return the real section
138 // index.
139 
140 unsigned int
141 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
142 {
143   if (symndx >= this->symtab_xindex_.size())
144     {
145       object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
146 		    symndx);
147       return elfcpp::SHN_UNDEF;
148     }
149   unsigned int shndx = this->symtab_xindex_[symndx];
150   if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
151     {
152       object->error(_("extended index for symbol %u out of range: %u"),
153 		    symndx, shndx);
154       return elfcpp::SHN_UNDEF;
155     }
156   return shndx;
157 }
158 
159 // Class Object.
160 
161 // Report an error for this object file.  This is used by the
162 // elfcpp::Elf_file interface, and also called by the Object code
163 // itself.
164 
165 void
166 Object::error(const char* format, ...) const
167 {
168   va_list args;
169   va_start(args, format);
170   char* buf = NULL;
171   if (vasprintf(&buf, format, args) < 0)
172     gold_nomem();
173   va_end(args);
174   gold_error(_("%s: %s"), this->name().c_str(), buf);
175   free(buf);
176 }
177 
178 // Return a view of the contents of a section.
179 
180 const unsigned char*
181 Object::section_contents(unsigned int shndx, section_size_type* plen,
182 			 bool cache)
183 { return this->do_section_contents(shndx, plen, cache); }
184 
185 // Read the section data into SD.  This is code common to Sized_relobj_file
186 // and Sized_dynobj, so we put it into Object.
187 
188 template<int size, bool big_endian>
189 void
190 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
191 			  Read_symbols_data* sd)
192 {
193   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
194 
195   // Read the section headers.
196   const off_t shoff = elf_file->shoff();
197   const unsigned int shnum = this->shnum();
198   sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
199 					       true, true);
200 
201   // Read the section names.
202   const unsigned char* pshdrs = sd->section_headers->data();
203   const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
204   typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
205 
206   if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
207     this->error(_("section name section has wrong type: %u"),
208 		static_cast<unsigned int>(shdrnames.get_sh_type()));
209 
210   sd->section_names_size =
211     convert_to_section_size_type(shdrnames.get_sh_size());
212   sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
213 					     sd->section_names_size, false,
214 					     false);
215 }
216 
217 // If NAME is the name of a special .gnu.warning section, arrange for
218 // the warning to be issued.  SHNDX is the section index.  Return
219 // whether it is a warning section.
220 
221 bool
222 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
223 				   Symbol_table* symtab)
224 {
225   const char warn_prefix[] = ".gnu.warning.";
226   const int warn_prefix_len = sizeof warn_prefix - 1;
227   if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
228     {
229       // Read the section contents to get the warning text.  It would
230       // be nicer if we only did this if we have to actually issue a
231       // warning.  Unfortunately, warnings are issued as we relocate
232       // sections.  That means that we can not lock the object then,
233       // as we might try to issue the same warning multiple times
234       // simultaneously.
235       section_size_type len;
236       const unsigned char* contents = this->section_contents(shndx, &len,
237 							     false);
238       if (len == 0)
239 	{
240 	  const char* warning = name + warn_prefix_len;
241 	  contents = reinterpret_cast<const unsigned char*>(warning);
242 	  len = strlen(warning);
243 	}
244       std::string warning(reinterpret_cast<const char*>(contents), len);
245       symtab->add_warning(name + warn_prefix_len, this, warning);
246       return true;
247     }
248   return false;
249 }
250 
251 // If NAME is the name of the special section which indicates that
252 // this object was compiled with -fsplit-stack, mark it accordingly.
253 
254 bool
255 Object::handle_split_stack_section(const char* name)
256 {
257   if (strcmp(name, ".note.GNU-split-stack") == 0)
258     {
259       this->uses_split_stack_ = true;
260       return true;
261     }
262   if (strcmp(name, ".note.GNU-no-split-stack") == 0)
263     {
264       this->has_no_split_stack_ = true;
265       return true;
266     }
267   return false;
268 }
269 
270 // Class Relobj
271 
272 template<int size>
273 void
274 Relobj::initialize_input_to_output_map(unsigned int shndx,
275 	  typename elfcpp::Elf_types<size>::Elf_Addr starting_address,
276 	  Unordered_map<section_offset_type,
277 	  typename elfcpp::Elf_types<size>::Elf_Addr>* output_addresses) const {
278   Object_merge_map *map = this->object_merge_map_;
279   map->initialize_input_to_output_map<size>(shndx, starting_address,
280 					    output_addresses);
281 }
282 
283 void
284 Relobj::add_merge_mapping(Output_section_data *output_data,
285                           unsigned int shndx, section_offset_type offset,
286                           section_size_type length,
287                           section_offset_type output_offset) {
288   Object_merge_map* object_merge_map = this->get_or_create_merge_map();
289   object_merge_map->add_mapping(output_data, shndx, offset, length, output_offset);
290 }
291 
292 bool
293 Relobj::merge_output_offset(unsigned int shndx, section_offset_type offset,
294                             section_offset_type *poutput) const {
295   Object_merge_map* object_merge_map = this->object_merge_map_;
296   if (object_merge_map == NULL)
297     return false;
298   return object_merge_map->get_output_offset(shndx, offset, poutput);
299 }
300 
301 const Output_section_data*
302 Relobj::find_merge_section(unsigned int shndx) const {
303   Object_merge_map* object_merge_map = this->object_merge_map_;
304   if (object_merge_map == NULL)
305     return NULL;
306   return object_merge_map->find_merge_section(shndx);
307 }
308 
309 // To copy the symbols data read from the file to a local data structure.
310 // This function is called from do_layout only while doing garbage
311 // collection.
312 
313 void
314 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
315 			  unsigned int section_header_size)
316 {
317   gc_sd->section_headers_data =
318 	 new unsigned char[(section_header_size)];
319   memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
320 	 section_header_size);
321   gc_sd->section_names_data =
322 	 new unsigned char[sd->section_names_size];
323   memcpy(gc_sd->section_names_data, sd->section_names->data(),
324 	 sd->section_names_size);
325   gc_sd->section_names_size = sd->section_names_size;
326   if (sd->symbols != NULL)
327     {
328       gc_sd->symbols_data =
329 	     new unsigned char[sd->symbols_size];
330       memcpy(gc_sd->symbols_data, sd->symbols->data(),
331 	    sd->symbols_size);
332     }
333   else
334     {
335       gc_sd->symbols_data = NULL;
336     }
337   gc_sd->symbols_size = sd->symbols_size;
338   gc_sd->external_symbols_offset = sd->external_symbols_offset;
339   if (sd->symbol_names != NULL)
340     {
341       gc_sd->symbol_names_data =
342 	     new unsigned char[sd->symbol_names_size];
343       memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
344 	    sd->symbol_names_size);
345     }
346   else
347     {
348       gc_sd->symbol_names_data = NULL;
349     }
350   gc_sd->symbol_names_size = sd->symbol_names_size;
351 }
352 
353 // This function determines if a particular section name must be included
354 // in the link.  This is used during garbage collection to determine the
355 // roots of the worklist.
356 
357 bool
358 Relobj::is_section_name_included(const char* name)
359 {
360   if (is_prefix_of(".ctors", name)
361       || is_prefix_of(".dtors", name)
362       || is_prefix_of(".note", name)
363       || is_prefix_of(".init", name)
364       || is_prefix_of(".fini", name)
365       || is_prefix_of(".gcc_except_table", name)
366       || is_prefix_of(".jcr", name)
367       || is_prefix_of(".preinit_array", name)
368       || (is_prefix_of(".text", name)
369 	  && strstr(name, "personality"))
370       || (is_prefix_of(".data", name)
371 	  && strstr(name, "personality"))
372       || (is_prefix_of(".sdata", name)
373 	  && strstr(name, "personality"))
374       || (is_prefix_of(".gnu.linkonce.d", name)
375 	  && strstr(name, "personality"))
376       || (is_prefix_of(".rodata", name)
377 	  && strstr(name, "nptl_version")))
378     {
379       return true;
380     }
381   return false;
382 }
383 
384 // Finalize the incremental relocation information.  Allocates a block
385 // of relocation entries for each symbol, and sets the reloc_bases_
386 // array to point to the first entry in each block.  If CLEAR_COUNTS
387 // is TRUE, also clear the per-symbol relocation counters.
388 
389 void
390 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
391 {
392   unsigned int nsyms = this->get_global_symbols()->size();
393   this->reloc_bases_ = new unsigned int[nsyms];
394 
395   gold_assert(this->reloc_bases_ != NULL);
396   gold_assert(layout->incremental_inputs() != NULL);
397 
398   unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
399   for (unsigned int i = 0; i < nsyms; ++i)
400     {
401       this->reloc_bases_[i] = rindex;
402       rindex += this->reloc_counts_[i];
403       if (clear_counts)
404 	this->reloc_counts_[i] = 0;
405     }
406   layout->incremental_inputs()->set_reloc_count(rindex);
407 }
408 
409 Object_merge_map*
410 Relobj::get_or_create_merge_map()
411 {
412   if (!this->object_merge_map_)
413     this->object_merge_map_ = new Object_merge_map();
414   return this->object_merge_map_;
415 }
416 
417 // Class Sized_relobj.
418 
419 // Iterate over local symbols, calling a visitor class V for each GOT offset
420 // associated with a local symbol.
421 
422 template<int size, bool big_endian>
423 void
424 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
425     Got_offset_list::Visitor* v) const
426 {
427   unsigned int nsyms = this->local_symbol_count();
428   for (unsigned int i = 0; i < nsyms; i++)
429     {
430       Local_got_entry_key key(i, 0);
431       Local_got_offsets::const_iterator p = this->local_got_offsets_.find(key);
432       if (p != this->local_got_offsets_.end())
433 	{
434 	  const Got_offset_list* got_offsets = p->second;
435 	  got_offsets->for_all_got_offsets(v);
436 	}
437     }
438 }
439 
440 // Get the address of an output section.
441 
442 template<int size, bool big_endian>
443 uint64_t
444 Sized_relobj<size, big_endian>::do_output_section_address(
445     unsigned int shndx)
446 {
447   // If the input file is linked as --just-symbols, the output
448   // section address is the input section address.
449   if (this->just_symbols())
450     return this->section_address(shndx);
451 
452   const Output_section* os = this->do_output_section(shndx);
453   gold_assert(os != NULL);
454   return os->address();
455 }
456 
457 // Class Sized_relobj_file.
458 
459 template<int size, bool big_endian>
460 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
461     const std::string& name,
462     Input_file* input_file,
463     off_t offset,
464     const elfcpp::Ehdr<size, big_endian>& ehdr)
465   : Sized_relobj<size, big_endian>(name, input_file, offset),
466     elf_file_(this, ehdr),
467     symtab_shndx_(-1U),
468     local_symbol_count_(0),
469     output_local_symbol_count_(0),
470     output_local_dynsym_count_(0),
471     symbols_(),
472     defined_count_(0),
473     local_symbol_offset_(0),
474     local_dynsym_offset_(0),
475     local_values_(),
476     local_plt_offsets_(),
477     kept_comdat_sections_(),
478     has_eh_frame_(false),
479     is_deferred_layout_(false),
480     deferred_layout_(),
481     deferred_layout_relocs_(),
482     output_views_(NULL)
483 {
484   this->e_type_ = ehdr.get_e_type();
485 }
486 
487 template<int size, bool big_endian>
488 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
489 {
490 }
491 
492 // Set up an object file based on the file header.  This sets up the
493 // section information.
494 
495 template<int size, bool big_endian>
496 void
497 Sized_relobj_file<size, big_endian>::do_setup()
498 {
499   const unsigned int shnum = this->elf_file_.shnum();
500   this->set_shnum(shnum);
501 }
502 
503 // Find the SHT_SYMTAB section, given the section headers.  The ELF
504 // standard says that maybe in the future there can be more than one
505 // SHT_SYMTAB section.  Until somebody figures out how that could
506 // work, we assume there is only one.
507 
508 template<int size, bool big_endian>
509 void
510 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
511 {
512   const unsigned int shnum = this->shnum();
513   this->symtab_shndx_ = 0;
514   if (shnum > 0)
515     {
516       // Look through the sections in reverse order, since gas tends
517       // to put the symbol table at the end.
518       const unsigned char* p = pshdrs + shnum * This::shdr_size;
519       unsigned int i = shnum;
520       unsigned int xindex_shndx = 0;
521       unsigned int xindex_link = 0;
522       while (i > 0)
523 	{
524 	  --i;
525 	  p -= This::shdr_size;
526 	  typename This::Shdr shdr(p);
527 	  if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
528 	    {
529 	      this->symtab_shndx_ = i;
530 	      if (xindex_shndx > 0 && xindex_link == i)
531 		{
532 		  Xindex* xindex =
533 		    new Xindex(this->elf_file_.large_shndx_offset());
534 		  xindex->read_symtab_xindex<size, big_endian>(this,
535 							       xindex_shndx,
536 							       pshdrs);
537 		  this->set_xindex(xindex);
538 		}
539 	      break;
540 	    }
541 
542 	  // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
543 	  // one.  This will work if it follows the SHT_SYMTAB
544 	  // section.
545 	  if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
546 	    {
547 	      xindex_shndx = i;
548 	      xindex_link = this->adjust_shndx(shdr.get_sh_link());
549 	    }
550 	}
551     }
552 }
553 
554 // Return the Xindex structure to use for object with lots of
555 // sections.
556 
557 template<int size, bool big_endian>
558 Xindex*
559 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
560 {
561   gold_assert(this->symtab_shndx_ != -1U);
562   Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
563   xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
564   return xindex;
565 }
566 
567 // Return whether SHDR has the right type and flags to be a GNU
568 // .eh_frame section.
569 
570 template<int size, bool big_endian>
571 bool
572 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
573     const elfcpp::Shdr<size, big_endian>* shdr) const
574 {
575   elfcpp::Elf_Word sh_type = shdr->get_sh_type();
576   return ((sh_type == elfcpp::SHT_PROGBITS
577 	   || sh_type == parameters->target().unwind_section_type())
578 	  && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
579 }
580 
581 // Find the section header with the given name.
582 
583 template<int size, bool big_endian>
584 const unsigned char*
585 Object::find_shdr(
586     const unsigned char* pshdrs,
587     const char* name,
588     const char* names,
589     section_size_type names_size,
590     const unsigned char* hdr) const
591 {
592   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
593   const unsigned int shnum = this->shnum();
594   const unsigned char* hdr_end = pshdrs + shdr_size * shnum;
595   size_t sh_name = 0;
596 
597   while (1)
598     {
599       if (hdr)
600 	{
601 	  // We found HDR last time we were called, continue looking.
602 	  typename elfcpp::Shdr<size, big_endian> shdr(hdr);
603 	  sh_name = shdr.get_sh_name();
604 	}
605       else
606 	{
607 	  // Look for the next occurrence of NAME in NAMES.
608 	  // The fact that .shstrtab produced by current GNU tools is
609 	  // string merged means we shouldn't have both .not.foo and
610 	  // .foo in .shstrtab, and multiple .foo sections should all
611 	  // have the same sh_name.  However, this is not guaranteed
612 	  // by the ELF spec and not all ELF object file producers may
613 	  // be so clever.
614 	  size_t len = strlen(name) + 1;
615 	  const char *p = sh_name ? names + sh_name + len : names;
616 	  p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
617 						   name, len));
618 	  if (p == NULL)
619 	    return NULL;
620 	  sh_name = p - names;
621 	  hdr = pshdrs;
622 	  if (sh_name == 0)
623 	    return hdr;
624 	}
625 
626       hdr += shdr_size;
627       while (hdr < hdr_end)
628 	{
629 	  typename elfcpp::Shdr<size, big_endian> shdr(hdr);
630 	  if (shdr.get_sh_name() == sh_name)
631 	    return hdr;
632 	  hdr += shdr_size;
633 	}
634       hdr = NULL;
635       if (sh_name == 0)
636 	return hdr;
637     }
638 }
639 
640 // Return whether there is a GNU .eh_frame section, given the section
641 // headers and the section names.
642 
643 template<int size, bool big_endian>
644 bool
645 Sized_relobj_file<size, big_endian>::find_eh_frame(
646     const unsigned char* pshdrs,
647     const char* names,
648     section_size_type names_size) const
649 {
650   const unsigned char* s = NULL;
651 
652   while (1)
653     {
654       s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame",
655 						     names, names_size, s);
656       if (s == NULL)
657 	return false;
658 
659       typename This::Shdr shdr(s);
660       if (this->check_eh_frame_flags(&shdr))
661 	return true;
662     }
663 }
664 
665 // Return TRUE if this is a section whose contents will be needed in the
666 // Add_symbols task.  This function is only called for sections that have
667 // already passed the test in is_compressed_debug_section() and the debug
668 // section name prefix, ".debug"/".zdebug", has been skipped.
669 
670 static bool
671 need_decompressed_section(const char* name)
672 {
673   if (*name++ != '_')
674     return false;
675 
676 #ifdef ENABLE_THREADS
677   // Decompressing these sections now will help only if we're
678   // multithreaded.
679   if (parameters->options().threads())
680     {
681       // We will need .zdebug_str if this is not an incremental link
682       // (i.e., we are processing string merge sections) or if we need
683       // to build a gdb index.
684       if ((!parameters->incremental() || parameters->options().gdb_index())
685 	  && strcmp(name, "str") == 0)
686 	return true;
687 
688       // We will need these other sections when building a gdb index.
689       if (parameters->options().gdb_index()
690 	  && (strcmp(name, "info") == 0
691 	      || strcmp(name, "types") == 0
692 	      || strcmp(name, "pubnames") == 0
693 	      || strcmp(name, "pubtypes") == 0
694 	      || strcmp(name, "ranges") == 0
695 	      || strcmp(name, "abbrev") == 0))
696 	return true;
697     }
698 #endif
699 
700   // Even when single-threaded, we will need .zdebug_str if this is
701   // not an incremental link and we are building a gdb index.
702   // Otherwise, we would decompress the section twice: once for
703   // string merge processing, and once for building the gdb index.
704   if (!parameters->incremental()
705       && parameters->options().gdb_index()
706       && strcmp(name, "str") == 0)
707     return true;
708 
709   return false;
710 }
711 
712 // Build a table for any compressed debug sections, mapping each section index
713 // to the uncompressed size and (if needed) the decompressed contents.
714 
715 template<int size, bool big_endian>
716 Compressed_section_map*
717 build_compressed_section_map(
718     const unsigned char* pshdrs,
719     unsigned int shnum,
720     const char* names,
721     section_size_type names_size,
722     Object* obj,
723     bool decompress_if_needed)
724 {
725   Compressed_section_map* uncompressed_map = new Compressed_section_map();
726   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
727   const unsigned char* p = pshdrs + shdr_size;
728 
729   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
730     {
731       typename elfcpp::Shdr<size, big_endian> shdr(p);
732       if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
733 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
734 	{
735 	  if (shdr.get_sh_name() >= names_size)
736 	    {
737 	      obj->error(_("bad section name offset for section %u: %lu"),
738 			 i, static_cast<unsigned long>(shdr.get_sh_name()));
739 	      continue;
740 	    }
741 
742 	  const char* name = names + shdr.get_sh_name();
743 	  bool is_compressed = ((shdr.get_sh_flags()
744 				 & elfcpp::SHF_COMPRESSED) != 0);
745 	  bool is_zcompressed = (!is_compressed
746 				 && is_compressed_debug_section(name));
747 
748 	  if (is_zcompressed || is_compressed)
749 	    {
750 	      section_size_type len;
751 	      const unsigned char* contents =
752 		  obj->section_contents(i, &len, false);
753 	      uint64_t uncompressed_size;
754 	      if (is_zcompressed)
755 		{
756 		  // Skip over the ".zdebug" prefix.
757 		  name += 7;
758 		  uncompressed_size = get_uncompressed_size(contents, len);
759 		}
760 	      else
761 		{
762 		  // Skip over the ".debug" prefix.
763 		  name += 6;
764 		  elfcpp::Chdr<size, big_endian> chdr(contents);
765 		  uncompressed_size = chdr.get_ch_size();
766 		}
767 	      Compressed_section_info info;
768 	      info.size = convert_to_section_size_type(uncompressed_size);
769 	      info.flag = shdr.get_sh_flags();
770 	      info.contents = NULL;
771 	      if (uncompressed_size != -1ULL)
772 		{
773 		  unsigned char* uncompressed_data = NULL;
774 		  if (decompress_if_needed && need_decompressed_section(name))
775 		    {
776 		      uncompressed_data = new unsigned char[uncompressed_size];
777 		      if (decompress_input_section(contents, len,
778 						   uncompressed_data,
779 						   uncompressed_size,
780 						   size, big_endian,
781 						   shdr.get_sh_flags()))
782 			info.contents = uncompressed_data;
783 		      else
784 			delete[] uncompressed_data;
785 		    }
786 		  (*uncompressed_map)[i] = info;
787 		}
788 	    }
789 	}
790     }
791   return uncompressed_map;
792 }
793 
794 // Stash away info for a number of special sections.
795 // Return true if any of the sections found require local symbols to be read.
796 
797 template<int size, bool big_endian>
798 bool
799 Sized_relobj_file<size, big_endian>::do_find_special_sections(
800     Read_symbols_data* sd)
801 {
802   const unsigned char* const pshdrs = sd->section_headers->data();
803   const unsigned char* namesu = sd->section_names->data();
804   const char* names = reinterpret_cast<const char*>(namesu);
805 
806   if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
807     this->has_eh_frame_ = true;
808 
809   Compressed_section_map* compressed_sections =
810     build_compressed_section_map<size, big_endian>(
811       pshdrs, this->shnum(), names, sd->section_names_size, this, true);
812   if (compressed_sections != NULL)
813     this->set_compressed_sections(compressed_sections);
814 
815   return (this->has_eh_frame_
816 	  || (!parameters->options().relocatable()
817 	      && parameters->options().gdb_index()
818 	      && (memmem(names, sd->section_names_size, "debug_info", 11) != NULL
819 		  || memmem(names, sd->section_names_size,
820 			    "debug_types", 12) != NULL)));
821 }
822 
823 // Read the sections and symbols from an object file.
824 
825 template<int size, bool big_endian>
826 void
827 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
828 {
829   this->base_read_symbols(sd);
830 }
831 
832 // Read the sections and symbols from an object file.  This is common
833 // code for all target-specific overrides of do_read_symbols().
834 
835 template<int size, bool big_endian>
836 void
837 Sized_relobj_file<size, big_endian>::base_read_symbols(Read_symbols_data* sd)
838 {
839   this->read_section_data(&this->elf_file_, sd);
840 
841   const unsigned char* const pshdrs = sd->section_headers->data();
842 
843   this->find_symtab(pshdrs);
844 
845   bool need_local_symbols = this->do_find_special_sections(sd);
846 
847   sd->symbols = NULL;
848   sd->symbols_size = 0;
849   sd->external_symbols_offset = 0;
850   sd->symbol_names = NULL;
851   sd->symbol_names_size = 0;
852 
853   if (this->symtab_shndx_ == 0)
854     {
855       // No symbol table.  Weird but legal.
856       return;
857     }
858 
859   // Get the symbol table section header.
860   typename This::Shdr symtabshdr(pshdrs
861 				 + this->symtab_shndx_ * This::shdr_size);
862   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
863 
864   // If this object has a .eh_frame section, or if building a .gdb_index
865   // section and there is debug info, we need all the symbols.
866   // Otherwise we only need the external symbols.  While it would be
867   // simpler to just always read all the symbols, I've seen object
868   // files with well over 2000 local symbols, which for a 64-bit
869   // object file format is over 5 pages that we don't need to read
870   // now.
871 
872   const int sym_size = This::sym_size;
873   const unsigned int loccount = symtabshdr.get_sh_info();
874   this->local_symbol_count_ = loccount;
875   this->local_values_.resize(loccount);
876   section_offset_type locsize = loccount * sym_size;
877   off_t dataoff = symtabshdr.get_sh_offset();
878   section_size_type datasize =
879     convert_to_section_size_type(symtabshdr.get_sh_size());
880   off_t extoff = dataoff + locsize;
881   section_size_type extsize = datasize - locsize;
882 
883   off_t readoff = need_local_symbols ? dataoff : extoff;
884   section_size_type readsize = need_local_symbols ? datasize : extsize;
885 
886   if (readsize == 0)
887     {
888       // No external symbols.  Also weird but also legal.
889       return;
890     }
891 
892   File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
893 
894   // Read the section header for the symbol names.
895   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
896   if (strtab_shndx >= this->shnum())
897     {
898       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
899       return;
900     }
901   typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
902   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
903     {
904       this->error(_("symbol table name section has wrong type: %u"),
905 		  static_cast<unsigned int>(strtabshdr.get_sh_type()));
906       return;
907     }
908 
909   // Read the symbol names.
910   File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
911 					       strtabshdr.get_sh_size(),
912 					       false, true);
913 
914   sd->symbols = fvsymtab;
915   sd->symbols_size = readsize;
916   sd->external_symbols_offset = need_local_symbols ? locsize : 0;
917   sd->symbol_names = fvstrtab;
918   sd->symbol_names_size =
919     convert_to_section_size_type(strtabshdr.get_sh_size());
920 }
921 
922 // Return the section index of symbol SYM.  Set *VALUE to its value in
923 // the object file.  Set *IS_ORDINARY if this is an ordinary section
924 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
925 // Note that for a symbol which is not defined in this object file,
926 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
927 // the final value of the symbol in the link.
928 
929 template<int size, bool big_endian>
930 unsigned int
931 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
932 							      Address* value,
933 							      bool* is_ordinary)
934 {
935   section_size_type symbols_size;
936   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
937 							&symbols_size,
938 							false);
939 
940   const size_t count = symbols_size / This::sym_size;
941   gold_assert(sym < count);
942 
943   elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
944   *value = elfsym.get_st_value();
945 
946   return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
947 }
948 
949 // Return whether to include a section group in the link.  LAYOUT is
950 // used to keep track of which section groups we have already seen.
951 // INDEX is the index of the section group and SHDR is the section
952 // header.  If we do not want to include this group, we set bits in
953 // OMIT for each section which should be discarded.
954 
955 template<int size, bool big_endian>
956 bool
957 Sized_relobj_file<size, big_endian>::include_section_group(
958     Symbol_table* symtab,
959     Layout* layout,
960     unsigned int index,
961     const char* name,
962     const unsigned char* shdrs,
963     const char* section_names,
964     section_size_type section_names_size,
965     std::vector<bool>* omit)
966 {
967   // Read the section contents.
968   typename This::Shdr shdr(shdrs + index * This::shdr_size);
969   const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
970 					     shdr.get_sh_size(), true, false);
971   const elfcpp::Elf_Word* pword =
972     reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
973 
974   // The first word contains flags.  We only care about COMDAT section
975   // groups.  Other section groups are always included in the link
976   // just like ordinary sections.
977   elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
978 
979   // Look up the group signature, which is the name of a symbol.  ELF
980   // uses a symbol name because some group signatures are long, and
981   // the name is generally already in the symbol table, so it makes
982   // sense to put the long string just once in .strtab rather than in
983   // both .strtab and .shstrtab.
984 
985   // Get the appropriate symbol table header (this will normally be
986   // the single SHT_SYMTAB section, but in principle it need not be).
987   const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
988   typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
989 
990   // Read the symbol table entry.
991   unsigned int symndx = shdr.get_sh_info();
992   if (symndx >= symshdr.get_sh_size() / This::sym_size)
993     {
994       this->error(_("section group %u info %u out of range"),
995 		  index, symndx);
996       return false;
997     }
998   off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
999   const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
1000 					     false);
1001   elfcpp::Sym<size, big_endian> sym(psym);
1002 
1003   // Read the symbol table names.
1004   section_size_type symnamelen;
1005   const unsigned char* psymnamesu;
1006   psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
1007 				      &symnamelen, true);
1008   const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
1009 
1010   // Get the section group signature.
1011   if (sym.get_st_name() >= symnamelen)
1012     {
1013       this->error(_("symbol %u name offset %u out of range"),
1014 		  symndx, sym.get_st_name());
1015       return false;
1016     }
1017 
1018   std::string signature(psymnames + sym.get_st_name());
1019 
1020   // It seems that some versions of gas will create a section group
1021   // associated with a section symbol, and then fail to give a name to
1022   // the section symbol.  In such a case, use the name of the section.
1023   if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
1024     {
1025       bool is_ordinary;
1026       unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
1027 						      sym.get_st_shndx(),
1028 						      &is_ordinary);
1029       if (!is_ordinary || sym_shndx >= this->shnum())
1030 	{
1031 	  this->error(_("symbol %u invalid section index %u"),
1032 		      symndx, sym_shndx);
1033 	  return false;
1034 	}
1035       typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
1036       if (member_shdr.get_sh_name() < section_names_size)
1037 	signature = section_names + member_shdr.get_sh_name();
1038     }
1039 
1040   // Record this section group in the layout, and see whether we've already
1041   // seen one with the same signature.
1042   bool include_group;
1043   bool is_comdat;
1044   Kept_section* kept_section = NULL;
1045 
1046   if ((flags & elfcpp::GRP_COMDAT) == 0)
1047     {
1048       include_group = true;
1049       is_comdat = false;
1050     }
1051   else
1052     {
1053       include_group = layout->find_or_add_kept_section(signature,
1054 						       this, index, true,
1055 						       true, &kept_section);
1056       is_comdat = true;
1057     }
1058 
1059   if (is_comdat && include_group)
1060     {
1061       Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1062       if (incremental_inputs != NULL)
1063 	incremental_inputs->report_comdat_group(this, signature.c_str());
1064     }
1065 
1066   size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
1067 
1068   std::vector<unsigned int> shndxes;
1069   bool relocate_group = include_group && parameters->options().relocatable();
1070   if (relocate_group)
1071     shndxes.reserve(count - 1);
1072 
1073   for (size_t i = 1; i < count; ++i)
1074     {
1075       elfcpp::Elf_Word shndx =
1076 	this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
1077 
1078       if (relocate_group)
1079 	shndxes.push_back(shndx);
1080 
1081       if (shndx >= this->shnum())
1082 	{
1083 	  this->error(_("section %u in section group %u out of range"),
1084 		      shndx, index);
1085 	  continue;
1086 	}
1087 
1088       // Check for an earlier section number, since we're going to get
1089       // it wrong--we may have already decided to include the section.
1090       if (shndx < index)
1091 	this->error(_("invalid section group %u refers to earlier section %u"),
1092 		    index, shndx);
1093 
1094       // Get the name of the member section.
1095       typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
1096       if (member_shdr.get_sh_name() >= section_names_size)
1097 	{
1098 	  // This is an error, but it will be diagnosed eventually
1099 	  // in do_layout, so we don't need to do anything here but
1100 	  // ignore it.
1101 	  continue;
1102 	}
1103       std::string mname(section_names + member_shdr.get_sh_name());
1104 
1105       if (include_group)
1106 	{
1107 	  if (is_comdat)
1108 	    kept_section->add_comdat_section(mname, shndx,
1109 					     member_shdr.get_sh_size());
1110 	}
1111       else
1112 	{
1113 	  (*omit)[shndx] = true;
1114 
1115 	  // Store a mapping from this section to the Kept_section
1116 	  // information for the group.  This mapping is used for
1117 	  // relocation processing and diagnostics.
1118 	  // If the kept section is a linkonce section, we don't
1119 	  // bother with it unless the comdat group contains just
1120 	  // a single section, making it easy to match up.
1121 	  if (is_comdat
1122 	      && (kept_section->is_comdat() || count == 2))
1123 	    this->set_kept_comdat_section(shndx, true, symndx,
1124 					  member_shdr.get_sh_size(),
1125 					  kept_section);
1126 	}
1127     }
1128 
1129   if (relocate_group)
1130     layout->layout_group(symtab, this, index, name, signature.c_str(),
1131 			 shdr, flags, &shndxes);
1132 
1133   return include_group;
1134 }
1135 
1136 // Whether to include a linkonce section in the link.  NAME is the
1137 // name of the section and SHDR is the section header.
1138 
1139 // Linkonce sections are a GNU extension implemented in the original
1140 // GNU linker before section groups were defined.  The semantics are
1141 // that we only include one linkonce section with a given name.  The
1142 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1143 // where T is the type of section and SYMNAME is the name of a symbol.
1144 // In an attempt to make linkonce sections interact well with section
1145 // groups, we try to identify SYMNAME and use it like a section group
1146 // signature.  We want to block section groups with that signature,
1147 // but not other linkonce sections with that signature.  We also use
1148 // the full name of the linkonce section as a normal section group
1149 // signature.
1150 
1151 template<int size, bool big_endian>
1152 bool
1153 Sized_relobj_file<size, big_endian>::include_linkonce_section(
1154     Layout* layout,
1155     unsigned int index,
1156     const char* name,
1157     const elfcpp::Shdr<size, big_endian>& shdr)
1158 {
1159   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1160   // In general the symbol name we want will be the string following
1161   // the last '.'.  However, we have to handle the case of
1162   // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1163   // some versions of gcc.  So we use a heuristic: if the name starts
1164   // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
1165   // we look for the last '.'.  We can't always simply skip
1166   // ".gnu.linkonce.X", because we have to deal with cases like
1167   // ".gnu.linkonce.d.rel.ro.local".
1168   const char* const linkonce_t = ".gnu.linkonce.t.";
1169   const char* symname;
1170   if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1171     symname = name + strlen(linkonce_t);
1172   else
1173     symname = strrchr(name, '.') + 1;
1174   std::string sig1(symname);
1175   std::string sig2(name);
1176   Kept_section* kept1;
1177   Kept_section* kept2;
1178   bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1179 						   false, &kept1);
1180   bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1181 						   true, &kept2);
1182 
1183   if (!include2)
1184     {
1185       // We are not including this section because we already saw the
1186       // name of the section as a signature.  This normally implies
1187       // that the kept section is another linkonce section.  If it is
1188       // the same size, record it as the section which corresponds to
1189       // this one.
1190       if (kept2->object() != NULL && !kept2->is_comdat())
1191 	this->set_kept_comdat_section(index, false, 0, sh_size, kept2);
1192     }
1193   else if (!include1)
1194     {
1195       // The section is being discarded on the basis of its symbol
1196       // name.  This means that the corresponding kept section was
1197       // part of a comdat group, and it will be difficult to identify
1198       // the specific section within that group that corresponds to
1199       // this linkonce section.  We'll handle the simple case where
1200       // the group has only one member section.  Otherwise, it's not
1201       // worth the effort.
1202       if (kept1->object() != NULL && kept1->is_comdat())
1203 	this->set_kept_comdat_section(index, false, 0, sh_size, kept1);
1204     }
1205   else
1206     {
1207       kept1->set_linkonce_size(sh_size);
1208       kept2->set_linkonce_size(sh_size);
1209     }
1210 
1211   return include1 && include2;
1212 }
1213 
1214 // Layout an input section.
1215 
1216 template<int size, bool big_endian>
1217 inline void
1218 Sized_relobj_file<size, big_endian>::layout_section(
1219     Layout* layout,
1220     unsigned int shndx,
1221     const char* name,
1222     const typename This::Shdr& shdr,
1223     unsigned int sh_type,
1224     unsigned int reloc_shndx,
1225     unsigned int reloc_type)
1226 {
1227   off_t offset;
1228   Output_section* os = layout->layout(this, shndx, name, shdr, sh_type,
1229 				      reloc_shndx, reloc_type, &offset);
1230 
1231   this->output_sections()[shndx] = os;
1232   if (offset == -1)
1233     this->section_offsets()[shndx] = invalid_address;
1234   else
1235     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1236 
1237   // If this section requires special handling, and if there are
1238   // relocs that apply to it, then we must do the special handling
1239   // before we apply the relocs.
1240   if (offset == -1 && reloc_shndx != 0)
1241     this->set_relocs_must_follow_section_writes();
1242 }
1243 
1244 // Layout an input .eh_frame section.
1245 
1246 template<int size, bool big_endian>
1247 void
1248 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1249     Layout* layout,
1250     const unsigned char* symbols_data,
1251     section_size_type symbols_size,
1252     const unsigned char* symbol_names_data,
1253     section_size_type symbol_names_size,
1254     unsigned int shndx,
1255     const typename This::Shdr& shdr,
1256     unsigned int reloc_shndx,
1257     unsigned int reloc_type)
1258 {
1259   gold_assert(this->has_eh_frame_);
1260 
1261   off_t offset;
1262   Output_section* os = layout->layout_eh_frame(this,
1263 					       symbols_data,
1264 					       symbols_size,
1265 					       symbol_names_data,
1266 					       symbol_names_size,
1267 					       shndx,
1268 					       shdr,
1269 					       reloc_shndx,
1270 					       reloc_type,
1271 					       &offset);
1272   this->output_sections()[shndx] = os;
1273   if (os == NULL || offset == -1)
1274     this->section_offsets()[shndx] = invalid_address;
1275   else
1276     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1277 
1278   // If this section requires special handling, and if there are
1279   // relocs that aply to it, then we must do the special handling
1280   // before we apply the relocs.
1281   if (os != NULL && offset == -1 && reloc_shndx != 0)
1282     this->set_relocs_must_follow_section_writes();
1283 }
1284 
1285 // Layout an input .note.gnu.property section.
1286 
1287 // This note section has an *extremely* non-standard layout.
1288 // The gABI spec says that ELF-64 files should have 8-byte fields and
1289 // 8-byte alignment in the note section, but the Gnu tools generally
1290 // use 4-byte fields and 4-byte alignment (see the comment for
1291 // Layout::create_note).  This section uses 4-byte fields (i.e.,
1292 // namesz, descsz, and type are always 4 bytes), the name field is
1293 // padded to a multiple of 4 bytes, but the desc field is padded
1294 // to a multiple of 4 or 8 bytes, depending on the ELF class.
1295 // The individual properties within the desc field always use
1296 // 4-byte pr_type and pr_datasz fields, but pr_data is padded to
1297 // a multiple of 4 or 8 bytes, depending on the ELF class.
1298 
1299 template<int size, bool big_endian>
1300 void
1301 Sized_relobj_file<size, big_endian>::layout_gnu_property_section(
1302     Layout* layout,
1303     unsigned int shndx)
1304 {
1305   section_size_type contents_len;
1306   const unsigned char* pcontents = this->section_contents(shndx,
1307 							  &contents_len,
1308 							  false);
1309   const unsigned char* pcontents_end = pcontents + contents_len;
1310 
1311   // Loop over all the notes in this section.
1312   while (pcontents < pcontents_end)
1313     {
1314       if (pcontents + 16 > pcontents_end)
1315 	{
1316 	  gold_warning(_("%s: corrupt .note.gnu.property section "
1317 			 "(note too short)"),
1318 		       this->name().c_str());
1319 	  return;
1320 	}
1321 
1322       size_t namesz = elfcpp::Swap<32, big_endian>::readval(pcontents);
1323       size_t descsz = elfcpp::Swap<32, big_endian>::readval(pcontents + 4);
1324       unsigned int ntype = elfcpp::Swap<32, big_endian>::readval(pcontents + 8);
1325       const unsigned char* pname = pcontents + 12;
1326 
1327       if (namesz != 4 || strcmp(reinterpret_cast<const char*>(pname), "GNU") != 0)
1328 	{
1329 	  gold_warning(_("%s: corrupt .note.gnu.property section "
1330 			 "(name is not 'GNU')"),
1331 		       this->name().c_str());
1332 	  return;
1333 	}
1334 
1335       if (ntype != elfcpp::NT_GNU_PROPERTY_TYPE_0)
1336 	{
1337 	  gold_warning(_("%s: unsupported note type %d "
1338 			 "in .note.gnu.property section"),
1339 		       this->name().c_str(), ntype);
1340 	  return;
1341 	}
1342 
1343       size_t aligned_namesz = align_address(namesz, 4);
1344       const unsigned char* pdesc = pname + aligned_namesz;
1345 
1346       if (pdesc + descsz > pcontents + contents_len)
1347 	{
1348 	  gold_warning(_("%s: corrupt .note.gnu.property section"),
1349 		       this->name().c_str());
1350 	  return;
1351 	}
1352 
1353       const unsigned char* pprop = pdesc;
1354 
1355       // Loop over the program properties in this note.
1356       while (pprop < pdesc + descsz)
1357 	{
1358 	  if (pprop + 8 > pdesc + descsz)
1359 	    {
1360 	      gold_warning(_("%s: corrupt .note.gnu.property section"),
1361 			   this->name().c_str());
1362 	      return;
1363 	    }
1364 	  unsigned int pr_type = elfcpp::Swap<32, big_endian>::readval(pprop);
1365 	  size_t pr_datasz = elfcpp::Swap<32, big_endian>::readval(pprop + 4);
1366 	  pprop += 8;
1367 	  if (pprop + pr_datasz > pdesc + descsz)
1368 	    {
1369 	      gold_warning(_("%s: corrupt .note.gnu.property section"),
1370 			   this->name().c_str());
1371 	      return;
1372 	    }
1373 	  layout->layout_gnu_property(ntype, pr_type, pr_datasz, pprop, this);
1374 	  pprop += align_address(pr_datasz, size / 8);
1375 	}
1376 
1377       pcontents = pdesc + align_address(descsz, size / 8);
1378     }
1379 }
1380 
1381 // Lay out the input sections.  We walk through the sections and check
1382 // whether they should be included in the link.  If they should, we
1383 // pass them to the Layout object, which will return an output section
1384 // and an offset.
1385 // This function is called twice sometimes, two passes, when mapping
1386 // of input sections to output sections must be delayed.
1387 // This is true for the following :
1388 // * Garbage collection (--gc-sections): Some input sections will be
1389 // discarded and hence the assignment must wait until the second pass.
1390 // In the first pass,  it is for setting up some sections as roots to
1391 // a work-list for --gc-sections and to do comdat processing.
1392 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1393 // will be folded and hence the assignment must wait.
1394 // * Using plugins to map some sections to unique segments: Mapping
1395 // some sections to unique segments requires mapping them to unique
1396 // output sections too.  This can be done via plugins now and this
1397 // information is not available in the first pass.
1398 
1399 template<int size, bool big_endian>
1400 void
1401 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1402 					       Layout* layout,
1403 					       Read_symbols_data* sd)
1404 {
1405   const unsigned int unwind_section_type =
1406       parameters->target().unwind_section_type();
1407   const unsigned int shnum = this->shnum();
1408 
1409   /* Should this function be called twice?  */
1410   bool is_two_pass = (parameters->options().gc_sections()
1411 		      || parameters->options().icf_enabled()
1412 		      || layout->is_unique_segment_for_sections_specified());
1413 
1414   /* Only one of is_pass_one and is_pass_two is true.  Both are false when
1415      a two-pass approach is not needed.  */
1416   bool is_pass_one = false;
1417   bool is_pass_two = false;
1418 
1419   Symbols_data* gc_sd = NULL;
1420 
1421   /* Check if do_layout needs to be two-pass.  If so, find out which pass
1422      should happen.  In the first pass, the data in sd is saved to be used
1423      later in the second pass.  */
1424   if (is_two_pass)
1425     {
1426       gc_sd = this->get_symbols_data();
1427       if (gc_sd == NULL)
1428 	{
1429 	  gold_assert(sd != NULL);
1430 	  is_pass_one = true;
1431 	}
1432       else
1433 	{
1434 	  if (parameters->options().gc_sections())
1435 	    gold_assert(symtab->gc()->is_worklist_ready());
1436 	  if (parameters->options().icf_enabled())
1437 	    gold_assert(symtab->icf()->is_icf_ready());
1438 	  is_pass_two = true;
1439 	}
1440     }
1441 
1442   if (shnum == 0)
1443     return;
1444 
1445   if (is_pass_one)
1446     {
1447       // During garbage collection save the symbols data to use it when
1448       // re-entering this function.
1449       gc_sd = new Symbols_data;
1450       this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1451       this->set_symbols_data(gc_sd);
1452     }
1453 
1454   const unsigned char* section_headers_data = NULL;
1455   section_size_type section_names_size;
1456   const unsigned char* symbols_data = NULL;
1457   section_size_type symbols_size;
1458   const unsigned char* symbol_names_data = NULL;
1459   section_size_type symbol_names_size;
1460 
1461   if (is_two_pass)
1462     {
1463       section_headers_data = gc_sd->section_headers_data;
1464       section_names_size = gc_sd->section_names_size;
1465       symbols_data = gc_sd->symbols_data;
1466       symbols_size = gc_sd->symbols_size;
1467       symbol_names_data = gc_sd->symbol_names_data;
1468       symbol_names_size = gc_sd->symbol_names_size;
1469     }
1470   else
1471     {
1472       section_headers_data = sd->section_headers->data();
1473       section_names_size = sd->section_names_size;
1474       if (sd->symbols != NULL)
1475 	symbols_data = sd->symbols->data();
1476       symbols_size = sd->symbols_size;
1477       if (sd->symbol_names != NULL)
1478 	symbol_names_data = sd->symbol_names->data();
1479       symbol_names_size = sd->symbol_names_size;
1480     }
1481 
1482   // Get the section headers.
1483   const unsigned char* shdrs = section_headers_data;
1484   const unsigned char* pshdrs;
1485 
1486   // Get the section names.
1487   const unsigned char* pnamesu = (is_two_pass
1488 				  ? gc_sd->section_names_data
1489 				  : sd->section_names->data());
1490 
1491   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1492 
1493   // If any input files have been claimed by plugins, we need to defer
1494   // actual layout until the replacement files have arrived.
1495   const bool should_defer_layout =
1496       (parameters->options().has_plugins()
1497        && parameters->options().plugins()->should_defer_layout());
1498   unsigned int num_sections_to_defer = 0;
1499 
1500   // For each section, record the index of the reloc section if any.
1501   // Use 0 to mean that there is no reloc section, -1U to mean that
1502   // there is more than one.
1503   std::vector<unsigned int> reloc_shndx(shnum, 0);
1504   std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1505   // Skip the first, dummy, section.
1506   pshdrs = shdrs + This::shdr_size;
1507   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1508     {
1509       typename This::Shdr shdr(pshdrs);
1510 
1511       // Count the number of sections whose layout will be deferred.
1512       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1513 	++num_sections_to_defer;
1514 
1515       unsigned int sh_type = shdr.get_sh_type();
1516       if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1517 	{
1518 	  unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1519 	  if (target_shndx == 0 || target_shndx >= shnum)
1520 	    {
1521 	      this->error(_("relocation section %u has bad info %u"),
1522 			  i, target_shndx);
1523 	      continue;
1524 	    }
1525 
1526 	  if (reloc_shndx[target_shndx] != 0)
1527 	    reloc_shndx[target_shndx] = -1U;
1528 	  else
1529 	    {
1530 	      reloc_shndx[target_shndx] = i;
1531 	      reloc_type[target_shndx] = sh_type;
1532 	    }
1533 	}
1534     }
1535 
1536   Output_sections& out_sections(this->output_sections());
1537   std::vector<Address>& out_section_offsets(this->section_offsets());
1538 
1539   if (!is_pass_two)
1540     {
1541       out_sections.resize(shnum);
1542       out_section_offsets.resize(shnum);
1543     }
1544 
1545   // If we are only linking for symbols, then there is nothing else to
1546   // do here.
1547   if (this->input_file()->just_symbols())
1548     {
1549       if (!is_pass_two)
1550 	{
1551 	  delete sd->section_headers;
1552 	  sd->section_headers = NULL;
1553 	  delete sd->section_names;
1554 	  sd->section_names = NULL;
1555 	}
1556       return;
1557     }
1558 
1559   if (num_sections_to_defer > 0)
1560     {
1561       parameters->options().plugins()->add_deferred_layout_object(this);
1562       this->deferred_layout_.reserve(num_sections_to_defer);
1563       this->is_deferred_layout_ = true;
1564     }
1565 
1566   // Whether we've seen a .note.GNU-stack section.
1567   bool seen_gnu_stack = false;
1568   // The flags of a .note.GNU-stack section.
1569   uint64_t gnu_stack_flags = 0;
1570 
1571   // Keep track of which sections to omit.
1572   std::vector<bool> omit(shnum, false);
1573 
1574   // Keep track of reloc sections when emitting relocations.
1575   const bool relocatable = parameters->options().relocatable();
1576   const bool emit_relocs = (relocatable
1577 			    || parameters->options().emit_relocs());
1578   std::vector<unsigned int> reloc_sections;
1579 
1580   // Keep track of .eh_frame sections.
1581   std::vector<unsigned int> eh_frame_sections;
1582 
1583   // Keep track of .debug_info and .debug_types sections.
1584   std::vector<unsigned int> debug_info_sections;
1585   std::vector<unsigned int> debug_types_sections;
1586 
1587   // Skip the first, dummy, section.
1588   pshdrs = shdrs + This::shdr_size;
1589   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1590     {
1591       typename This::Shdr shdr(pshdrs);
1592       const unsigned int sh_name = shdr.get_sh_name();
1593       unsigned int sh_type = shdr.get_sh_type();
1594 
1595       if (sh_name >= section_names_size)
1596 	{
1597 	  this->error(_("bad section name offset for section %u: %lu"),
1598 		      i, static_cast<unsigned long>(sh_name));
1599 	  return;
1600 	}
1601 
1602       const char* name = pnames + sh_name;
1603 
1604       if (!is_pass_two)
1605 	{
1606 	  if (this->handle_gnu_warning_section(name, i, symtab))
1607 	    {
1608 	      if (!relocatable && !parameters->options().shared())
1609 		omit[i] = true;
1610 	    }
1611 
1612 	  // The .note.GNU-stack section is special.  It gives the
1613 	  // protection flags that this object file requires for the stack
1614 	  // in memory.
1615 	  if (strcmp(name, ".note.GNU-stack") == 0)
1616 	    {
1617 	      seen_gnu_stack = true;
1618 	      gnu_stack_flags |= shdr.get_sh_flags();
1619 	      omit[i] = true;
1620 	    }
1621 
1622 	  // The .note.GNU-split-stack section is also special.  It
1623 	  // indicates that the object was compiled with
1624 	  // -fsplit-stack.
1625 	  if (this->handle_split_stack_section(name))
1626 	    {
1627 	      if (!relocatable && !parameters->options().shared())
1628 		omit[i] = true;
1629 	    }
1630 
1631 	  // Skip attributes section.
1632 	  if (parameters->target().is_attributes_section(name))
1633 	    {
1634 	      omit[i] = true;
1635 	    }
1636 
1637 	  // Handle .note.gnu.property sections.
1638 	  if (sh_type == elfcpp::SHT_NOTE
1639 	      && strcmp(name, ".note.gnu.property") == 0)
1640 	    {
1641 	      this->layout_gnu_property_section(layout, i);
1642 	      omit[i] = true;
1643 	    }
1644 
1645 	  bool discard = omit[i];
1646 	  if (!discard)
1647 	    {
1648 	      if (sh_type == elfcpp::SHT_GROUP)
1649 		{
1650 		  if (!this->include_section_group(symtab, layout, i, name,
1651 						   shdrs, pnames,
1652 						   section_names_size,
1653 						   &omit))
1654 		    discard = true;
1655 		}
1656 	      else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1657 		       && Layout::is_linkonce(name))
1658 		{
1659 		  if (!this->include_linkonce_section(layout, i, name, shdr))
1660 		    discard = true;
1661 		}
1662 	    }
1663 
1664 	  // Add the section to the incremental inputs layout.
1665 	  Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1666 	  if (incremental_inputs != NULL
1667 	      && !discard
1668 	      && can_incremental_update(sh_type))
1669 	    {
1670 	      off_t sh_size = shdr.get_sh_size();
1671 	      section_size_type uncompressed_size;
1672 	      if (this->section_is_compressed(i, &uncompressed_size))
1673 		sh_size = uncompressed_size;
1674 	      incremental_inputs->report_input_section(this, i, name, sh_size);
1675 	    }
1676 
1677 	  if (discard)
1678 	    {
1679 	      // Do not include this section in the link.
1680 	      out_sections[i] = NULL;
1681 	      out_section_offsets[i] = invalid_address;
1682 	      continue;
1683 	    }
1684 	}
1685 
1686       if (is_pass_one && parameters->options().gc_sections())
1687 	{
1688 	  if (this->is_section_name_included(name)
1689 	      || layout->keep_input_section (this, name)
1690 	      || sh_type == elfcpp::SHT_INIT_ARRAY
1691 	      || sh_type == elfcpp::SHT_FINI_ARRAY)
1692 	    {
1693 	      symtab->gc()->worklist().push_back(Section_id(this, i));
1694 	    }
1695 	  // If the section name XXX can be represented as a C identifier
1696 	  // it cannot be discarded if there are references to
1697 	  // __start_XXX and __stop_XXX symbols.  These need to be
1698 	  // specially handled.
1699 	  if (is_cident(name))
1700 	    {
1701 	      symtab->gc()->add_cident_section(name, Section_id(this, i));
1702 	    }
1703 	}
1704 
1705       // When doing a relocatable link we are going to copy input
1706       // reloc sections into the output.  We only want to copy the
1707       // ones associated with sections which are not being discarded.
1708       // However, we don't know that yet for all sections.  So save
1709       // reloc sections and process them later. Garbage collection is
1710       // not triggered when relocatable code is desired.
1711       if (emit_relocs
1712 	  && (sh_type == elfcpp::SHT_REL
1713 	      || sh_type == elfcpp::SHT_RELA))
1714 	{
1715 	  reloc_sections.push_back(i);
1716 	  continue;
1717 	}
1718 
1719       if (relocatable && sh_type == elfcpp::SHT_GROUP)
1720 	continue;
1721 
1722       // The .eh_frame section is special.  It holds exception frame
1723       // information that we need to read in order to generate the
1724       // exception frame header.  We process these after all the other
1725       // sections so that the exception frame reader can reliably
1726       // determine which sections are being discarded, and discard the
1727       // corresponding information.
1728       if (this->check_eh_frame_flags(&shdr)
1729 	  && strcmp(name, ".eh_frame") == 0)
1730 	{
1731 	  // If the target has a special unwind section type, let's
1732 	  // canonicalize it here.
1733 	  sh_type = unwind_section_type;
1734 	  if (!relocatable)
1735 	    {
1736 	      if (is_pass_one)
1737 		{
1738 		  if (this->is_deferred_layout())
1739 		    out_sections[i] = reinterpret_cast<Output_section*>(2);
1740 		  else
1741 		    out_sections[i] = reinterpret_cast<Output_section*>(1);
1742 		  out_section_offsets[i] = invalid_address;
1743 		}
1744 	      else if (this->is_deferred_layout())
1745 		this->deferred_layout_.push_back(
1746 		    Deferred_layout(i, name, sh_type, pshdrs,
1747 				    reloc_shndx[i], reloc_type[i]));
1748 	      else
1749 		eh_frame_sections.push_back(i);
1750 	      continue;
1751 	    }
1752 	}
1753 
1754       if (is_pass_two && parameters->options().gc_sections())
1755 	{
1756 	  // This is executed during the second pass of garbage
1757 	  // collection. do_layout has been called before and some
1758 	  // sections have been already discarded. Simply ignore
1759 	  // such sections this time around.
1760 	  if (out_sections[i] == NULL)
1761 	    {
1762 	      gold_assert(out_section_offsets[i] == invalid_address);
1763 	      continue;
1764 	    }
1765 	  if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1766 	      && symtab->gc()->is_section_garbage(this, i))
1767 	      {
1768 		if (parameters->options().print_gc_sections())
1769 		  gold_info(_("%s: removing unused section from '%s'"
1770 			      " in file '%s'"),
1771 			    program_name, this->section_name(i).c_str(),
1772 			    this->name().c_str());
1773 		out_sections[i] = NULL;
1774 		out_section_offsets[i] = invalid_address;
1775 		continue;
1776 	      }
1777 	}
1778 
1779       if (is_pass_two && parameters->options().icf_enabled())
1780 	{
1781 	  if (out_sections[i] == NULL)
1782 	    {
1783 	      gold_assert(out_section_offsets[i] == invalid_address);
1784 	      continue;
1785 	    }
1786 	  if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1787 	      && symtab->icf()->is_section_folded(this, i))
1788 	      {
1789 		if (parameters->options().print_icf_sections())
1790 		  {
1791 		    Section_id folded =
1792 				symtab->icf()->get_folded_section(this, i);
1793 		    Relobj* folded_obj =
1794 				reinterpret_cast<Relobj*>(folded.first);
1795 		    gold_info(_("%s: ICF folding section '%s' in file '%s' "
1796 				"into '%s' in file '%s'"),
1797 			      program_name, this->section_name(i).c_str(),
1798 			      this->name().c_str(),
1799 			      folded_obj->section_name(folded.second).c_str(),
1800 			      folded_obj->name().c_str());
1801 		  }
1802 		out_sections[i] = NULL;
1803 		out_section_offsets[i] = invalid_address;
1804 		continue;
1805 	      }
1806 	}
1807 
1808       // Defer layout here if input files are claimed by plugins.  When gc
1809       // is turned on this function is called twice; we only want to do this
1810       // on the first pass.
1811       if (!is_pass_two
1812           && this->is_deferred_layout()
1813           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1814 	{
1815 	  this->deferred_layout_.push_back(Deferred_layout(i, name, sh_type,
1816 							   pshdrs,
1817 							   reloc_shndx[i],
1818 							   reloc_type[i]));
1819 	  // Put dummy values here; real values will be supplied by
1820 	  // do_layout_deferred_sections.
1821 	  out_sections[i] = reinterpret_cast<Output_section*>(2);
1822 	  out_section_offsets[i] = invalid_address;
1823 	  continue;
1824 	}
1825 
1826       // During gc_pass_two if a section that was previously deferred is
1827       // found, do not layout the section as layout_deferred_sections will
1828       // do it later from gold.cc.
1829       if (is_pass_two
1830 	  && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1831 	continue;
1832 
1833       if (is_pass_one)
1834 	{
1835 	  // This is during garbage collection. The out_sections are
1836 	  // assigned in the second call to this function.
1837 	  out_sections[i] = reinterpret_cast<Output_section*>(1);
1838 	  out_section_offsets[i] = invalid_address;
1839 	}
1840       else
1841 	{
1842 	  // When garbage collection is switched on the actual layout
1843 	  // only happens in the second call.
1844 	  this->layout_section(layout, i, name, shdr, sh_type, reloc_shndx[i],
1845 			       reloc_type[i]);
1846 
1847 	  // When generating a .gdb_index section, we do additional
1848 	  // processing of .debug_info and .debug_types sections after all
1849 	  // the other sections for the same reason as above.
1850 	  if (!relocatable
1851 	      && parameters->options().gdb_index()
1852 	      && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1853 	    {
1854 	      if (strcmp(name, ".debug_info") == 0
1855 		  || strcmp(name, ".zdebug_info") == 0)
1856 		debug_info_sections.push_back(i);
1857 	      else if (strcmp(name, ".debug_types") == 0
1858 		       || strcmp(name, ".zdebug_types") == 0)
1859 		debug_types_sections.push_back(i);
1860 	    }
1861 	}
1862     }
1863 
1864   if (!is_pass_two)
1865     {
1866       layout->merge_gnu_properties(this);
1867       layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1868     }
1869 
1870   // Handle the .eh_frame sections after the other sections.
1871   gold_assert(!is_pass_one || eh_frame_sections.empty());
1872   for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1873        p != eh_frame_sections.end();
1874        ++p)
1875     {
1876       unsigned int i = *p;
1877       const unsigned char* pshdr;
1878       pshdr = section_headers_data + i * This::shdr_size;
1879       typename This::Shdr shdr(pshdr);
1880 
1881       this->layout_eh_frame_section(layout,
1882 				    symbols_data,
1883 				    symbols_size,
1884 				    symbol_names_data,
1885 				    symbol_names_size,
1886 				    i,
1887 				    shdr,
1888 				    reloc_shndx[i],
1889 				    reloc_type[i]);
1890     }
1891 
1892   // When doing a relocatable link handle the reloc sections at the
1893   // end.  Garbage collection  and Identical Code Folding is not
1894   // turned on for relocatable code.
1895   if (emit_relocs)
1896     this->size_relocatable_relocs();
1897 
1898   gold_assert(!is_two_pass || reloc_sections.empty());
1899 
1900   for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1901        p != reloc_sections.end();
1902        ++p)
1903     {
1904       unsigned int i = *p;
1905       const unsigned char* pshdr;
1906       pshdr = section_headers_data + i * This::shdr_size;
1907       typename This::Shdr shdr(pshdr);
1908 
1909       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1910       if (data_shndx >= shnum)
1911 	{
1912 	  // We already warned about this above.
1913 	  continue;
1914 	}
1915 
1916       Output_section* data_section = out_sections[data_shndx];
1917       if (data_section == reinterpret_cast<Output_section*>(2))
1918 	{
1919 	  if (is_pass_two)
1920 	    continue;
1921 	  // The layout for the data section was deferred, so we need
1922 	  // to defer the relocation section, too.
1923 	  const char* name = pnames + shdr.get_sh_name();
1924 	  this->deferred_layout_relocs_.push_back(
1925 	      Deferred_layout(i, name, shdr.get_sh_type(), pshdr, 0,
1926 			      elfcpp::SHT_NULL));
1927 	  out_sections[i] = reinterpret_cast<Output_section*>(2);
1928 	  out_section_offsets[i] = invalid_address;
1929 	  continue;
1930 	}
1931       if (data_section == NULL)
1932 	{
1933 	  out_sections[i] = NULL;
1934 	  out_section_offsets[i] = invalid_address;
1935 	  continue;
1936 	}
1937 
1938       Relocatable_relocs* rr = new Relocatable_relocs();
1939       this->set_relocatable_relocs(i, rr);
1940 
1941       Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1942 						rr);
1943       out_sections[i] = os;
1944       out_section_offsets[i] = invalid_address;
1945     }
1946 
1947   // When building a .gdb_index section, scan the .debug_info and
1948   // .debug_types sections.
1949   gold_assert(!is_pass_one
1950 	      || (debug_info_sections.empty() && debug_types_sections.empty()));
1951   for (std::vector<unsigned int>::const_iterator p
1952 	   = debug_info_sections.begin();
1953        p != debug_info_sections.end();
1954        ++p)
1955     {
1956       unsigned int i = *p;
1957       layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
1958 			       i, reloc_shndx[i], reloc_type[i]);
1959     }
1960   for (std::vector<unsigned int>::const_iterator p
1961 	   = debug_types_sections.begin();
1962        p != debug_types_sections.end();
1963        ++p)
1964     {
1965       unsigned int i = *p;
1966       layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
1967 			       i, reloc_shndx[i], reloc_type[i]);
1968     }
1969 
1970   if (is_pass_two)
1971     {
1972       delete[] gc_sd->section_headers_data;
1973       delete[] gc_sd->section_names_data;
1974       delete[] gc_sd->symbols_data;
1975       delete[] gc_sd->symbol_names_data;
1976       this->set_symbols_data(NULL);
1977     }
1978   else
1979     {
1980       delete sd->section_headers;
1981       sd->section_headers = NULL;
1982       delete sd->section_names;
1983       sd->section_names = NULL;
1984     }
1985 }
1986 
1987 // Layout sections whose layout was deferred while waiting for
1988 // input files from a plugin.
1989 
1990 template<int size, bool big_endian>
1991 void
1992 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1993 {
1994   typename std::vector<Deferred_layout>::iterator deferred;
1995 
1996   for (deferred = this->deferred_layout_.begin();
1997        deferred != this->deferred_layout_.end();
1998        ++deferred)
1999     {
2000       typename This::Shdr shdr(deferred->shdr_data_);
2001 
2002       if (!parameters->options().relocatable()
2003 	  && deferred->name_ == ".eh_frame"
2004 	  && this->check_eh_frame_flags(&shdr))
2005 	{
2006 	  // Checking is_section_included is not reliable for
2007 	  // .eh_frame sections, because they do not have an output
2008 	  // section.  This is not a problem normally because we call
2009 	  // layout_eh_frame_section unconditionally, but when
2010 	  // deferring sections that is not true.  We don't want to
2011 	  // keep all .eh_frame sections because that will cause us to
2012 	  // keep all sections that they refer to, which is the wrong
2013 	  // way around.  Instead, the eh_frame code will discard
2014 	  // .eh_frame sections that refer to discarded sections.
2015 
2016 	  // Reading the symbols again here may be slow.
2017 	  Read_symbols_data sd;
2018 	  this->base_read_symbols(&sd);
2019 	  this->layout_eh_frame_section(layout,
2020 					sd.symbols->data(),
2021 					sd.symbols_size,
2022 					sd.symbol_names->data(),
2023 					sd.symbol_names_size,
2024 					deferred->shndx_,
2025 					shdr,
2026 					deferred->reloc_shndx_,
2027 					deferred->reloc_type_);
2028 	  continue;
2029 	}
2030 
2031       // If the section is not included, it is because the garbage collector
2032       // decided it is not needed.  Avoid reverting that decision.
2033       if (!this->is_section_included(deferred->shndx_))
2034 	continue;
2035 
2036       this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
2037 			   shdr, shdr.get_sh_type(), deferred->reloc_shndx_,
2038 			   deferred->reloc_type_);
2039     }
2040 
2041   this->deferred_layout_.clear();
2042 
2043   // Now handle the deferred relocation sections.
2044 
2045   Output_sections& out_sections(this->output_sections());
2046   std::vector<Address>& out_section_offsets(this->section_offsets());
2047 
2048   for (deferred = this->deferred_layout_relocs_.begin();
2049        deferred != this->deferred_layout_relocs_.end();
2050        ++deferred)
2051     {
2052       unsigned int shndx = deferred->shndx_;
2053       typename This::Shdr shdr(deferred->shdr_data_);
2054       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
2055 
2056       Output_section* data_section = out_sections[data_shndx];
2057       if (data_section == NULL)
2058 	{
2059 	  out_sections[shndx] = NULL;
2060 	  out_section_offsets[shndx] = invalid_address;
2061 	  continue;
2062 	}
2063 
2064       Relocatable_relocs* rr = new Relocatable_relocs();
2065       this->set_relocatable_relocs(shndx, rr);
2066 
2067       Output_section* os = layout->layout_reloc(this, shndx, shdr,
2068 						data_section, rr);
2069       out_sections[shndx] = os;
2070       out_section_offsets[shndx] = invalid_address;
2071     }
2072 }
2073 
2074 // Add the symbols to the symbol table.
2075 
2076 template<int size, bool big_endian>
2077 void
2078 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
2079 						    Read_symbols_data* sd,
2080 						    Layout*)
2081 {
2082   if (sd->symbols == NULL)
2083     {
2084       gold_assert(sd->symbol_names == NULL);
2085       return;
2086     }
2087 
2088   const int sym_size = This::sym_size;
2089   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2090 		     / sym_size);
2091   if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
2092     {
2093       this->error(_("size of symbols is not multiple of symbol size"));
2094       return;
2095     }
2096 
2097   this->symbols_.resize(symcount);
2098 
2099   const char* sym_names =
2100     reinterpret_cast<const char*>(sd->symbol_names->data());
2101   symtab->add_from_relobj(this,
2102 			  sd->symbols->data() + sd->external_symbols_offset,
2103 			  symcount, this->local_symbol_count_,
2104 			  sym_names, sd->symbol_names_size,
2105 			  &this->symbols_,
2106 			  &this->defined_count_);
2107 
2108   delete sd->symbols;
2109   sd->symbols = NULL;
2110   delete sd->symbol_names;
2111   sd->symbol_names = NULL;
2112 }
2113 
2114 // Find out if this object, that is a member of a lib group, should be included
2115 // in the link. We check every symbol defined by this object. If the symbol
2116 // table has a strong undefined reference to that symbol, we have to include
2117 // the object.
2118 
2119 template<int size, bool big_endian>
2120 Archive::Should_include
2121 Sized_relobj_file<size, big_endian>::do_should_include_member(
2122     Symbol_table* symtab,
2123     Layout* layout,
2124     Read_symbols_data* sd,
2125     std::string* why)
2126 {
2127   char* tmpbuf = NULL;
2128   size_t tmpbuflen = 0;
2129   const char* sym_names =
2130       reinterpret_cast<const char*>(sd->symbol_names->data());
2131   const unsigned char* syms =
2132       sd->symbols->data() + sd->external_symbols_offset;
2133   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2134   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2135 			 / sym_size);
2136 
2137   const unsigned char* p = syms;
2138 
2139   for (size_t i = 0; i < symcount; ++i, p += sym_size)
2140     {
2141       elfcpp::Sym<size, big_endian> sym(p);
2142       unsigned int st_shndx = sym.get_st_shndx();
2143       if (st_shndx == elfcpp::SHN_UNDEF)
2144 	continue;
2145 
2146       unsigned int st_name = sym.get_st_name();
2147       const char* name = sym_names + st_name;
2148       Symbol* symbol;
2149       Archive::Should_include t = Archive::should_include_member(symtab,
2150 								 layout,
2151 								 name,
2152 								 &symbol, why,
2153 								 &tmpbuf,
2154 								 &tmpbuflen);
2155       if (t == Archive::SHOULD_INCLUDE_YES)
2156 	{
2157 	  if (tmpbuf != NULL)
2158 	    free(tmpbuf);
2159 	  return t;
2160 	}
2161     }
2162   if (tmpbuf != NULL)
2163     free(tmpbuf);
2164   return Archive::SHOULD_INCLUDE_UNKNOWN;
2165 }
2166 
2167 // Iterate over global defined symbols, calling a visitor class V for each.
2168 
2169 template<int size, bool big_endian>
2170 void
2171 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
2172     Read_symbols_data* sd,
2173     Library_base::Symbol_visitor_base* v)
2174 {
2175   const char* sym_names =
2176       reinterpret_cast<const char*>(sd->symbol_names->data());
2177   const unsigned char* syms =
2178       sd->symbols->data() + sd->external_symbols_offset;
2179   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2180   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2181 		     / sym_size);
2182   const unsigned char* p = syms;
2183 
2184   for (size_t i = 0; i < symcount; ++i, p += sym_size)
2185     {
2186       elfcpp::Sym<size, big_endian> sym(p);
2187       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
2188 	v->visit(sym_names + sym.get_st_name());
2189     }
2190 }
2191 
2192 // Return whether the local symbol SYMNDX has a PLT offset.
2193 
2194 template<int size, bool big_endian>
2195 bool
2196 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
2197     unsigned int symndx) const
2198 {
2199   typename Local_plt_offsets::const_iterator p =
2200     this->local_plt_offsets_.find(symndx);
2201   return p != this->local_plt_offsets_.end();
2202 }
2203 
2204 // Get the PLT offset of a local symbol.
2205 
2206 template<int size, bool big_endian>
2207 unsigned int
2208 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
2209     unsigned int symndx) const
2210 {
2211   typename Local_plt_offsets::const_iterator p =
2212     this->local_plt_offsets_.find(symndx);
2213   gold_assert(p != this->local_plt_offsets_.end());
2214   return p->second;
2215 }
2216 
2217 // Set the PLT offset of a local symbol.
2218 
2219 template<int size, bool big_endian>
2220 void
2221 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
2222     unsigned int symndx, unsigned int plt_offset)
2223 {
2224   std::pair<typename Local_plt_offsets::iterator, bool> ins =
2225     this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
2226   gold_assert(ins.second);
2227 }
2228 
2229 // First pass over the local symbols.  Here we add their names to
2230 // *POOL and *DYNPOOL, and we store the symbol value in
2231 // THIS->LOCAL_VALUES_.  This function is always called from a
2232 // singleton thread.  This is followed by a call to
2233 // finalize_local_symbols.
2234 
2235 template<int size, bool big_endian>
2236 void
2237 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
2238 							    Stringpool* dynpool)
2239 {
2240   gold_assert(this->symtab_shndx_ != -1U);
2241   if (this->symtab_shndx_ == 0)
2242     {
2243       // This object has no symbols.  Weird but legal.
2244       return;
2245     }
2246 
2247   // Read the symbol table section header.
2248   const unsigned int symtab_shndx = this->symtab_shndx_;
2249   typename This::Shdr symtabshdr(this,
2250 				 this->elf_file_.section_header(symtab_shndx));
2251   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2252 
2253   // Read the local symbols.
2254   const int sym_size = This::sym_size;
2255   const unsigned int loccount = this->local_symbol_count_;
2256   gold_assert(loccount == symtabshdr.get_sh_info());
2257   off_t locsize = loccount * sym_size;
2258   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2259 					      locsize, true, true);
2260 
2261   // Read the symbol names.
2262   const unsigned int strtab_shndx =
2263     this->adjust_shndx(symtabshdr.get_sh_link());
2264   section_size_type strtab_size;
2265   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2266 							&strtab_size,
2267 							true);
2268   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2269 
2270   // Loop over the local symbols.
2271 
2272   const Output_sections& out_sections(this->output_sections());
2273   std::vector<Address>& out_section_offsets(this->section_offsets());
2274   unsigned int shnum = this->shnum();
2275   unsigned int count = 0;
2276   unsigned int dyncount = 0;
2277   // Skip the first, dummy, symbol.
2278   psyms += sym_size;
2279   bool strip_all = parameters->options().strip_all();
2280   bool discard_all = parameters->options().discard_all();
2281   bool discard_locals = parameters->options().discard_locals();
2282   bool discard_sec_merge = parameters->options().discard_sec_merge();
2283   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2284     {
2285       elfcpp::Sym<size, big_endian> sym(psyms);
2286 
2287       Symbol_value<size>& lv(this->local_values_[i]);
2288 
2289       bool is_ordinary;
2290       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2291 						  &is_ordinary);
2292       lv.set_input_shndx(shndx, is_ordinary);
2293 
2294       if (sym.get_st_type() == elfcpp::STT_SECTION)
2295 	lv.set_is_section_symbol();
2296       else if (sym.get_st_type() == elfcpp::STT_TLS)
2297 	lv.set_is_tls_symbol();
2298       else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2299 	lv.set_is_ifunc_symbol();
2300 
2301       // Save the input symbol value for use in do_finalize_local_symbols().
2302       lv.set_input_value(sym.get_st_value());
2303 
2304       // Decide whether this symbol should go into the output file.
2305 
2306       if (is_ordinary
2307 	  && shndx < shnum
2308 	  && (out_sections[shndx] == NULL
2309 	      || (out_sections[shndx]->order() == ORDER_EHFRAME
2310 		  && out_section_offsets[shndx] == invalid_address)))
2311 	{
2312 	  // This is either a discarded section or an optimized .eh_frame
2313 	  // section.
2314 	  lv.set_no_output_symtab_entry();
2315 	  gold_assert(!lv.needs_output_dynsym_entry());
2316 	  continue;
2317 	}
2318 
2319       if (sym.get_st_type() == elfcpp::STT_SECTION
2320 	  || !this->adjust_local_symbol(&lv))
2321 	{
2322 	  lv.set_no_output_symtab_entry();
2323 	  gold_assert(!lv.needs_output_dynsym_entry());
2324 	  continue;
2325 	}
2326 
2327       if (sym.get_st_name() >= strtab_size)
2328 	{
2329 	  this->error(_("local symbol %u section name out of range: %u >= %u"),
2330 		      i, sym.get_st_name(),
2331 		      static_cast<unsigned int>(strtab_size));
2332 	  lv.set_no_output_symtab_entry();
2333 	  continue;
2334 	}
2335 
2336       const char* name = pnames + sym.get_st_name();
2337 
2338       // If needed, add the symbol to the dynamic symbol table string pool.
2339       if (lv.needs_output_dynsym_entry())
2340 	{
2341 	  dynpool->add(name, true, NULL);
2342 	  ++dyncount;
2343 	}
2344 
2345       if (strip_all
2346 	  || (discard_all && lv.may_be_discarded_from_output_symtab()))
2347 	{
2348 	  lv.set_no_output_symtab_entry();
2349 	  continue;
2350 	}
2351 
2352       // By default, discard temporary local symbols in merge sections.
2353       // If --discard-locals option is used, discard all temporary local
2354       // symbols.  These symbols start with system-specific local label
2355       // prefixes, typically .L for ELF system.  We want to be compatible
2356       // with GNU ld so here we essentially use the same check in
2357       // bfd_is_local_label().  The code is different because we already
2358       // know that:
2359       //
2360       //   - the symbol is local and thus cannot have global or weak binding.
2361       //   - the symbol is not a section symbol.
2362       //   - the symbol has a name.
2363       //
2364       // We do not discard a symbol if it needs a dynamic symbol entry.
2365       if ((discard_locals
2366 	   || (discard_sec_merge
2367 	       && is_ordinary
2368 	       && out_section_offsets[shndx] == invalid_address))
2369 	  && sym.get_st_type() != elfcpp::STT_FILE
2370 	  && !lv.needs_output_dynsym_entry()
2371 	  && lv.may_be_discarded_from_output_symtab()
2372 	  && parameters->target().is_local_label_name(name))
2373 	{
2374 	  lv.set_no_output_symtab_entry();
2375 	  continue;
2376 	}
2377 
2378       // Discard the local symbol if -retain_symbols_file is specified
2379       // and the local symbol is not in that file.
2380       if (!parameters->options().should_retain_symbol(name))
2381 	{
2382 	  lv.set_no_output_symtab_entry();
2383 	  continue;
2384 	}
2385 
2386       // Add the symbol to the symbol table string pool.
2387       pool->add(name, true, NULL);
2388       ++count;
2389     }
2390 
2391   this->output_local_symbol_count_ = count;
2392   this->output_local_dynsym_count_ = dyncount;
2393 }
2394 
2395 // Compute the final value of a local symbol.
2396 
2397 template<int size, bool big_endian>
2398 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2399 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2400     unsigned int r_sym,
2401     const Symbol_value<size>* lv_in,
2402     Symbol_value<size>* lv_out,
2403     bool relocatable,
2404     const Output_sections& out_sections,
2405     const std::vector<Address>& out_offsets,
2406     const Symbol_table* symtab)
2407 {
2408   // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2409   // we may have a memory leak.
2410   gold_assert(lv_out->has_output_value());
2411 
2412   bool is_ordinary;
2413   unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2414 
2415   // Set the output symbol value.
2416 
2417   if (!is_ordinary)
2418     {
2419       if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2420 	lv_out->set_output_value(lv_in->input_value());
2421       else
2422 	{
2423 	  this->error(_("unknown section index %u for local symbol %u"),
2424 		      shndx, r_sym);
2425 	  lv_out->set_output_value(0);
2426 	  return This::CFLV_ERROR;
2427 	}
2428     }
2429   else
2430     {
2431       if (shndx >= this->shnum())
2432 	{
2433 	  this->error(_("local symbol %u section index %u out of range"),
2434 		      r_sym, shndx);
2435 	  lv_out->set_output_value(0);
2436 	  return This::CFLV_ERROR;
2437 	}
2438 
2439       Output_section* os = out_sections[shndx];
2440       Address secoffset = out_offsets[shndx];
2441       if (symtab->is_section_folded(this, shndx))
2442 	{
2443 	  gold_assert(os == NULL && secoffset == invalid_address);
2444 	  // Get the os of the section it is folded onto.
2445 	  Section_id folded = symtab->icf()->get_folded_section(this,
2446 								shndx);
2447 	  gold_assert(folded.first != NULL);
2448 	  Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2449 	    <Sized_relobj_file<size, big_endian>*>(folded.first);
2450 	  os = folded_obj->output_section(folded.second);
2451 	  gold_assert(os != NULL);
2452 	  secoffset = folded_obj->get_output_section_offset(folded.second);
2453 
2454 	  // This could be a relaxed input section.
2455 	  if (secoffset == invalid_address)
2456 	    {
2457 	      const Output_relaxed_input_section* relaxed_section =
2458 		os->find_relaxed_input_section(folded_obj, folded.second);
2459 	      gold_assert(relaxed_section != NULL);
2460 	      secoffset = relaxed_section->address() - os->address();
2461 	    }
2462 	}
2463 
2464       if (os == NULL)
2465 	{
2466 	  // This local symbol belongs to a section we are discarding.
2467 	  // In some cases when applying relocations later, we will
2468 	  // attempt to match it to the corresponding kept section,
2469 	  // so we leave the input value unchanged here.
2470 	  return This::CFLV_DISCARDED;
2471 	}
2472       else if (secoffset == invalid_address)
2473 	{
2474 	  uint64_t start;
2475 
2476 	  // This is a SHF_MERGE section or one which otherwise
2477 	  // requires special handling.
2478 	  if (os->order() == ORDER_EHFRAME)
2479 	    {
2480 	      // This local symbol belongs to a discarded or optimized
2481 	      // .eh_frame section.  Just treat it like the case in which
2482 	      // os == NULL above.
2483 	      gold_assert(this->has_eh_frame_);
2484 	      return This::CFLV_DISCARDED;
2485 	    }
2486 	  else if (!lv_in->is_section_symbol())
2487 	    {
2488 	      // This is not a section symbol.  We can determine
2489 	      // the final value now.
2490 	      uint64_t value =
2491 		os->output_address(this, shndx, lv_in->input_value());
2492 	      if (relocatable)
2493 		value -= os->address();
2494 	      lv_out->set_output_value(value);
2495 	    }
2496 	  else if (!os->find_starting_output_address(this, shndx, &start))
2497 	    {
2498 	      // This is a section symbol, but apparently not one in a
2499 	      // merged section.  First check to see if this is a relaxed
2500 	      // input section.  If so, use its address.  Otherwise just
2501 	      // use the start of the output section.  This happens with
2502 	      // relocatable links when the input object has section
2503 	      // symbols for arbitrary non-merge sections.
2504 	      const Output_section_data* posd =
2505 		os->find_relaxed_input_section(this, shndx);
2506 	      if (posd != NULL)
2507 		{
2508 		  uint64_t value = posd->address();
2509 		  if (relocatable)
2510 		    value -= os->address();
2511 		  lv_out->set_output_value(value);
2512 		}
2513 	      else
2514 		lv_out->set_output_value(os->address());
2515 	    }
2516 	  else
2517 	    {
2518 	      // We have to consider the addend to determine the
2519 	      // value to use in a relocation.  START is the start
2520 	      // of this input section.  If we are doing a relocatable
2521 	      // link, use offset from start output section instead of
2522 	      // address.
2523 	      Address adjusted_start =
2524 		relocatable ? start - os->address() : start;
2525 	      Merged_symbol_value<size>* msv =
2526 		new Merged_symbol_value<size>(lv_in->input_value(),
2527 					      adjusted_start);
2528 	      lv_out->set_merged_symbol_value(msv);
2529 	    }
2530 	}
2531       else if (lv_in->is_tls_symbol()
2532                || (lv_in->is_section_symbol()
2533                    && (os->flags() & elfcpp::SHF_TLS)))
2534 	lv_out->set_output_value(os->tls_offset()
2535 				 + secoffset
2536 				 + lv_in->input_value());
2537       else
2538 	lv_out->set_output_value((relocatable ? 0 : os->address())
2539 				 + secoffset
2540 				 + lv_in->input_value());
2541     }
2542   return This::CFLV_OK;
2543 }
2544 
2545 // Compute final local symbol value.  R_SYM is the index of a local
2546 // symbol in symbol table.  LV points to a symbol value, which is
2547 // expected to hold the input value and to be over-written by the
2548 // final value.  SYMTAB points to a symbol table.  Some targets may want
2549 // to know would-be-finalized local symbol values in relaxation.
2550 // Hence we provide this method.  Since this method updates *LV, a
2551 // callee should make a copy of the original local symbol value and
2552 // use the copy instead of modifying an object's local symbols before
2553 // everything is finalized.  The caller should also free up any allocated
2554 // memory in the return value in *LV.
2555 template<int size, bool big_endian>
2556 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2557 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2558     unsigned int r_sym,
2559     const Symbol_value<size>* lv_in,
2560     Symbol_value<size>* lv_out,
2561     const Symbol_table* symtab)
2562 {
2563   // This is just a wrapper of compute_final_local_value_internal.
2564   const bool relocatable = parameters->options().relocatable();
2565   const Output_sections& out_sections(this->output_sections());
2566   const std::vector<Address>& out_offsets(this->section_offsets());
2567   return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2568 						  relocatable, out_sections,
2569 						  out_offsets, symtab);
2570 }
2571 
2572 // Finalize the local symbols.  Here we set the final value in
2573 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2574 // This function is always called from a singleton thread.  The actual
2575 // output of the local symbols will occur in a separate task.
2576 
2577 template<int size, bool big_endian>
2578 unsigned int
2579 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2580     unsigned int index,
2581     off_t off,
2582     Symbol_table* symtab)
2583 {
2584   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2585 
2586   const unsigned int loccount = this->local_symbol_count_;
2587   this->local_symbol_offset_ = off;
2588 
2589   const bool relocatable = parameters->options().relocatable();
2590   const Output_sections& out_sections(this->output_sections());
2591   const std::vector<Address>& out_offsets(this->section_offsets());
2592 
2593   for (unsigned int i = 1; i < loccount; ++i)
2594     {
2595       Symbol_value<size>* lv = &this->local_values_[i];
2596 
2597       Compute_final_local_value_status cflv_status =
2598 	this->compute_final_local_value_internal(i, lv, lv, relocatable,
2599 						 out_sections, out_offsets,
2600 						 symtab);
2601       switch (cflv_status)
2602 	{
2603 	case CFLV_OK:
2604 	  if (!lv->is_output_symtab_index_set())
2605 	    {
2606 	      lv->set_output_symtab_index(index);
2607 	      ++index;
2608 	    }
2609 	  break;
2610 	case CFLV_DISCARDED:
2611 	case CFLV_ERROR:
2612 	  // Do nothing.
2613 	  break;
2614 	default:
2615 	  gold_unreachable();
2616 	}
2617     }
2618   return index;
2619 }
2620 
2621 // Set the output dynamic symbol table indexes for the local variables.
2622 
2623 template<int size, bool big_endian>
2624 unsigned int
2625 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2626     unsigned int index)
2627 {
2628   const unsigned int loccount = this->local_symbol_count_;
2629   for (unsigned int i = 1; i < loccount; ++i)
2630     {
2631       Symbol_value<size>& lv(this->local_values_[i]);
2632       if (lv.needs_output_dynsym_entry())
2633 	{
2634 	  lv.set_output_dynsym_index(index);
2635 	  ++index;
2636 	}
2637     }
2638   return index;
2639 }
2640 
2641 // Set the offset where local dynamic symbol information will be stored.
2642 // Returns the count of local symbols contributed to the symbol table by
2643 // this object.
2644 
2645 template<int size, bool big_endian>
2646 unsigned int
2647 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2648 {
2649   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2650   this->local_dynsym_offset_ = off;
2651   return this->output_local_dynsym_count_;
2652 }
2653 
2654 // If Symbols_data is not NULL get the section flags from here otherwise
2655 // get it from the file.
2656 
2657 template<int size, bool big_endian>
2658 uint64_t
2659 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2660 {
2661   Symbols_data* sd = this->get_symbols_data();
2662   if (sd != NULL)
2663     {
2664       const unsigned char* pshdrs = sd->section_headers_data
2665 				    + This::shdr_size * shndx;
2666       typename This::Shdr shdr(pshdrs);
2667       return shdr.get_sh_flags();
2668     }
2669   // If sd is NULL, read the section header from the file.
2670   return this->elf_file_.section_flags(shndx);
2671 }
2672 
2673 // Get the section's ent size from Symbols_data.  Called by get_section_contents
2674 // in icf.cc
2675 
2676 template<int size, bool big_endian>
2677 uint64_t
2678 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2679 {
2680   Symbols_data* sd = this->get_symbols_data();
2681   gold_assert(sd != NULL);
2682 
2683   const unsigned char* pshdrs = sd->section_headers_data
2684 				+ This::shdr_size * shndx;
2685   typename This::Shdr shdr(pshdrs);
2686   return shdr.get_sh_entsize();
2687 }
2688 
2689 // Write out the local symbols.
2690 
2691 template<int size, bool big_endian>
2692 void
2693 Sized_relobj_file<size, big_endian>::write_local_symbols(
2694     Output_file* of,
2695     const Stringpool* sympool,
2696     const Stringpool* dynpool,
2697     Output_symtab_xindex* symtab_xindex,
2698     Output_symtab_xindex* dynsym_xindex,
2699     off_t symtab_off)
2700 {
2701   const bool strip_all = parameters->options().strip_all();
2702   if (strip_all)
2703     {
2704       if (this->output_local_dynsym_count_ == 0)
2705 	return;
2706       this->output_local_symbol_count_ = 0;
2707     }
2708 
2709   gold_assert(this->symtab_shndx_ != -1U);
2710   if (this->symtab_shndx_ == 0)
2711     {
2712       // This object has no symbols.  Weird but legal.
2713       return;
2714     }
2715 
2716   // Read the symbol table section header.
2717   const unsigned int symtab_shndx = this->symtab_shndx_;
2718   typename This::Shdr symtabshdr(this,
2719 				 this->elf_file_.section_header(symtab_shndx));
2720   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2721   const unsigned int loccount = this->local_symbol_count_;
2722   gold_assert(loccount == symtabshdr.get_sh_info());
2723 
2724   // Read the local symbols.
2725   const int sym_size = This::sym_size;
2726   off_t locsize = loccount * sym_size;
2727   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2728 					      locsize, true, false);
2729 
2730   // Read the symbol names.
2731   const unsigned int strtab_shndx =
2732     this->adjust_shndx(symtabshdr.get_sh_link());
2733   section_size_type strtab_size;
2734   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2735 							&strtab_size,
2736 							false);
2737   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2738 
2739   // Get views into the output file for the portions of the symbol table
2740   // and the dynamic symbol table that we will be writing.
2741   off_t output_size = this->output_local_symbol_count_ * sym_size;
2742   unsigned char* oview = NULL;
2743   if (output_size > 0)
2744     oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2745 				output_size);
2746 
2747   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2748   unsigned char* dyn_oview = NULL;
2749   if (dyn_output_size > 0)
2750     dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2751 				    dyn_output_size);
2752 
2753   const Output_sections& out_sections(this->output_sections());
2754 
2755   gold_assert(this->local_values_.size() == loccount);
2756 
2757   unsigned char* ov = oview;
2758   unsigned char* dyn_ov = dyn_oview;
2759   psyms += sym_size;
2760   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2761     {
2762       elfcpp::Sym<size, big_endian> isym(psyms);
2763 
2764       Symbol_value<size>& lv(this->local_values_[i]);
2765 
2766       bool is_ordinary;
2767       unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2768 						     &is_ordinary);
2769       if (is_ordinary)
2770 	{
2771 	  gold_assert(st_shndx < out_sections.size());
2772 	  if (out_sections[st_shndx] == NULL)
2773 	    continue;
2774 	  st_shndx = out_sections[st_shndx]->out_shndx();
2775 	  if (st_shndx >= elfcpp::SHN_LORESERVE)
2776 	    {
2777 	      if (lv.has_output_symtab_entry())
2778 		symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2779 	      if (lv.has_output_dynsym_entry())
2780 		dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2781 	      st_shndx = elfcpp::SHN_XINDEX;
2782 	    }
2783 	}
2784 
2785       // Write the symbol to the output symbol table.
2786       if (lv.has_output_symtab_entry())
2787 	{
2788 	  elfcpp::Sym_write<size, big_endian> osym(ov);
2789 
2790 	  gold_assert(isym.get_st_name() < strtab_size);
2791 	  const char* name = pnames + isym.get_st_name();
2792 	  osym.put_st_name(sympool->get_offset(name));
2793 	  osym.put_st_value(lv.value(this, 0));
2794 	  osym.put_st_size(isym.get_st_size());
2795 	  osym.put_st_info(isym.get_st_info());
2796 	  osym.put_st_other(isym.get_st_other());
2797 	  osym.put_st_shndx(st_shndx);
2798 
2799 	  ov += sym_size;
2800 	}
2801 
2802       // Write the symbol to the output dynamic symbol table.
2803       if (lv.has_output_dynsym_entry())
2804 	{
2805 	  gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2806 	  elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2807 
2808 	  gold_assert(isym.get_st_name() < strtab_size);
2809 	  const char* name = pnames + isym.get_st_name();
2810 	  osym.put_st_name(dynpool->get_offset(name));
2811 	  osym.put_st_value(lv.value(this, 0));
2812 	  osym.put_st_size(isym.get_st_size());
2813 	  osym.put_st_info(isym.get_st_info());
2814 	  osym.put_st_other(isym.get_st_other());
2815 	  osym.put_st_shndx(st_shndx);
2816 
2817 	  dyn_ov += sym_size;
2818 	}
2819     }
2820 
2821 
2822   if (output_size > 0)
2823     {
2824       gold_assert(ov - oview == output_size);
2825       of->write_output_view(symtab_off + this->local_symbol_offset_,
2826 			    output_size, oview);
2827     }
2828 
2829   if (dyn_output_size > 0)
2830     {
2831       gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2832       of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2833 			    dyn_oview);
2834     }
2835 }
2836 
2837 // Set *INFO to symbolic information about the offset OFFSET in the
2838 // section SHNDX.  Return true if we found something, false if we
2839 // found nothing.
2840 
2841 template<int size, bool big_endian>
2842 bool
2843 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2844     unsigned int shndx,
2845     off_t offset,
2846     Symbol_location_info* info)
2847 {
2848   if (this->symtab_shndx_ == 0)
2849     return false;
2850 
2851   section_size_type symbols_size;
2852   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2853 							&symbols_size,
2854 							false);
2855 
2856   unsigned int symbol_names_shndx =
2857     this->adjust_shndx(this->section_link(this->symtab_shndx_));
2858   section_size_type names_size;
2859   const unsigned char* symbol_names_u =
2860     this->section_contents(symbol_names_shndx, &names_size, false);
2861   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2862 
2863   const int sym_size = This::sym_size;
2864   const size_t count = symbols_size / sym_size;
2865 
2866   const unsigned char* p = symbols;
2867   for (size_t i = 0; i < count; ++i, p += sym_size)
2868     {
2869       elfcpp::Sym<size, big_endian> sym(p);
2870 
2871       if (sym.get_st_type() == elfcpp::STT_FILE)
2872 	{
2873 	  if (sym.get_st_name() >= names_size)
2874 	    info->source_file = "(invalid)";
2875 	  else
2876 	    info->source_file = symbol_names + sym.get_st_name();
2877 	  continue;
2878 	}
2879 
2880       bool is_ordinary;
2881       unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2882 						     &is_ordinary);
2883       if (is_ordinary
2884 	  && st_shndx == shndx
2885 	  && static_cast<off_t>(sym.get_st_value()) <= offset
2886 	  && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2887 	      > offset))
2888 	{
2889 	  info->enclosing_symbol_type = sym.get_st_type();
2890 	  if (sym.get_st_name() > names_size)
2891 	    info->enclosing_symbol_name = "(invalid)";
2892 	  else
2893 	    {
2894 	      info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2895 	      if (parameters->options().do_demangle())
2896 		{
2897 		  char* demangled_name = cplus_demangle(
2898 		      info->enclosing_symbol_name.c_str(),
2899 		      DMGL_ANSI | DMGL_PARAMS);
2900 		  if (demangled_name != NULL)
2901 		    {
2902 		      info->enclosing_symbol_name.assign(demangled_name);
2903 		      free(demangled_name);
2904 		    }
2905 		}
2906 	    }
2907 	  return true;
2908 	}
2909     }
2910 
2911   return false;
2912 }
2913 
2914 // Look for a kept section corresponding to the given discarded section,
2915 // and return its output address.  This is used only for relocations in
2916 // debugging sections.  If we can't find the kept section, return 0.
2917 
2918 template<int size, bool big_endian>
2919 typename Sized_relobj_file<size, big_endian>::Address
2920 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2921     unsigned int shndx,
2922     std::string& section_name,
2923     bool* pfound) const
2924 {
2925   Kept_section* kept_section;
2926   bool is_comdat;
2927   uint64_t sh_size;
2928   unsigned int symndx;
2929   bool found = false;
2930 
2931   if (this->get_kept_comdat_section(shndx, &is_comdat, &symndx, &sh_size,
2932 				    &kept_section))
2933     {
2934       Relobj* kept_object = kept_section->object();
2935       unsigned int kept_shndx = 0;
2936       if (!kept_section->is_comdat())
2937         {
2938 	  // The kept section is a linkonce section.
2939 	  if (sh_size == kept_section->linkonce_size())
2940 	    found = true;
2941         }
2942       else
2943 	{
2944 	  if (is_comdat)
2945 	    {
2946 	      // Find the corresponding kept section.
2947 	      // Since we're using this mapping for relocation processing,
2948 	      // we don't want to match sections unless they have the same
2949 	      // size.
2950 	      uint64_t kept_size;
2951 	      if (kept_section->find_comdat_section(section_name, &kept_shndx,
2952 						    &kept_size))
2953 		{
2954 		  if (sh_size == kept_size)
2955 		    found = true;
2956 		}
2957 	    }
2958 	  else
2959 	    {
2960 	      uint64_t kept_size;
2961 	      if (kept_section->find_single_comdat_section(&kept_shndx,
2962 							   &kept_size)
2963 		  && sh_size == kept_size)
2964 		found = true;
2965 	    }
2966 	}
2967 
2968       if (found)
2969 	{
2970 	  Sized_relobj_file<size, big_endian>* kept_relobj =
2971 	    static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2972 	  Output_section* os = kept_relobj->output_section(kept_shndx);
2973 	  Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2974 	  if (os != NULL && offset != invalid_address)
2975 	    {
2976 	      *pfound = true;
2977 	      return os->address() + offset;
2978 	    }
2979 	}
2980     }
2981   *pfound = false;
2982   return 0;
2983 }
2984 
2985 // Look for a kept section corresponding to the given discarded section,
2986 // and return its object file.
2987 
2988 template<int size, bool big_endian>
2989 Relobj*
2990 Sized_relobj_file<size, big_endian>::find_kept_section_object(
2991     unsigned int shndx, unsigned int *symndx_p) const
2992 {
2993   Kept_section* kept_section;
2994   bool is_comdat;
2995   uint64_t sh_size;
2996   if (this->get_kept_comdat_section(shndx, &is_comdat, symndx_p, &sh_size,
2997 				    &kept_section))
2998     return kept_section->object();
2999   return NULL;
3000 }
3001 
3002 // Return the name of symbol SYMNDX.
3003 
3004 template<int size, bool big_endian>
3005 const char*
3006 Sized_relobj_file<size, big_endian>::get_symbol_name(unsigned int symndx)
3007 {
3008   if (this->symtab_shndx_ == 0)
3009     return NULL;
3010 
3011   section_size_type symbols_size;
3012   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
3013 							&symbols_size,
3014 							false);
3015 
3016   unsigned int symbol_names_shndx =
3017     this->adjust_shndx(this->section_link(this->symtab_shndx_));
3018   section_size_type names_size;
3019   const unsigned char* symbol_names_u =
3020     this->section_contents(symbol_names_shndx, &names_size, false);
3021   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
3022 
3023   const unsigned char* p = symbols + symndx * This::sym_size;
3024 
3025   if (p >= symbols + symbols_size)
3026     return NULL;
3027 
3028   elfcpp::Sym<size, big_endian> sym(p);
3029 
3030   return symbol_names + sym.get_st_name();
3031 }
3032 
3033 // Get symbol counts.
3034 
3035 template<int size, bool big_endian>
3036 void
3037 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
3038     const Symbol_table*,
3039     size_t* defined,
3040     size_t* used) const
3041 {
3042   *defined = this->defined_count_;
3043   size_t count = 0;
3044   for (typename Symbols::const_iterator p = this->symbols_.begin();
3045        p != this->symbols_.end();
3046        ++p)
3047     if (*p != NULL
3048 	&& (*p)->source() == Symbol::FROM_OBJECT
3049 	&& (*p)->object() == this
3050 	&& (*p)->is_defined())
3051       ++count;
3052   *used = count;
3053 }
3054 
3055 // Return a view of the decompressed contents of a section.  Set *PLEN
3056 // to the size.  Set *IS_NEW to true if the contents need to be freed
3057 // by the caller.
3058 
3059 const unsigned char*
3060 Object::decompressed_section_contents(
3061     unsigned int shndx,
3062     section_size_type* plen,
3063     bool* is_new)
3064 {
3065   section_size_type buffer_size;
3066   const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
3067 							  false);
3068 
3069   if (this->compressed_sections_ == NULL)
3070     {
3071       *plen = buffer_size;
3072       *is_new = false;
3073       return buffer;
3074     }
3075 
3076   Compressed_section_map::const_iterator p =
3077       this->compressed_sections_->find(shndx);
3078   if (p == this->compressed_sections_->end())
3079     {
3080       *plen = buffer_size;
3081       *is_new = false;
3082       return buffer;
3083     }
3084 
3085   section_size_type uncompressed_size = p->second.size;
3086   if (p->second.contents != NULL)
3087     {
3088       *plen = uncompressed_size;
3089       *is_new = false;
3090       return p->second.contents;
3091     }
3092 
3093   unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
3094   if (!decompress_input_section(buffer,
3095 				buffer_size,
3096 				uncompressed_data,
3097 				uncompressed_size,
3098 				elfsize(),
3099 				is_big_endian(),
3100 				p->second.flag))
3101     this->error(_("could not decompress section %s"),
3102 		this->do_section_name(shndx).c_str());
3103 
3104   // We could cache the results in p->second.contents and store
3105   // false in *IS_NEW, but build_compressed_section_map() would
3106   // have done so if it had expected it to be profitable.  If
3107   // we reach this point, we expect to need the contents only
3108   // once in this pass.
3109   *plen = uncompressed_size;
3110   *is_new = true;
3111   return uncompressed_data;
3112 }
3113 
3114 // Discard any buffers of uncompressed sections.  This is done
3115 // at the end of the Add_symbols task.
3116 
3117 void
3118 Object::discard_decompressed_sections()
3119 {
3120   if (this->compressed_sections_ == NULL)
3121     return;
3122 
3123   for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
3124        p != this->compressed_sections_->end();
3125        ++p)
3126     {
3127       if (p->second.contents != NULL)
3128 	{
3129 	  delete[] p->second.contents;
3130 	  p->second.contents = NULL;
3131 	}
3132     }
3133 }
3134 
3135 // Input_objects methods.
3136 
3137 // Add a regular relocatable object to the list.  Return false if this
3138 // object should be ignored.
3139 
3140 bool
3141 Input_objects::add_object(Object* obj)
3142 {
3143   // Print the filename if the -t/--trace option is selected.
3144   if (parameters->options().trace())
3145     gold_info("%s", obj->name().c_str());
3146 
3147   if (!obj->is_dynamic())
3148     this->relobj_list_.push_back(static_cast<Relobj*>(obj));
3149   else
3150     {
3151       // See if this is a duplicate SONAME.
3152       Dynobj* dynobj = static_cast<Dynobj*>(obj);
3153       const char* soname = dynobj->soname();
3154 
3155       Unordered_map<std::string, Object*>::value_type val(soname, obj);
3156       std::pair<Unordered_map<std::string, Object*>::iterator, bool> ins =
3157 	this->sonames_.insert(val);
3158       if (!ins.second)
3159 	{
3160 	  // We have already seen a dynamic object with this soname.
3161 	  // If any instances of this object on the command line have
3162 	  // the --no-as-needed flag, make sure the one we keep is
3163 	  // marked so.
3164 	  if (!obj->as_needed())
3165 	    {
3166 	      gold_assert(ins.first->second != NULL);
3167 	      ins.first->second->clear_as_needed();
3168 	    }
3169 	  return false;
3170 	}
3171 
3172       this->dynobj_list_.push_back(dynobj);
3173     }
3174 
3175   // Add this object to the cross-referencer if requested.
3176   if (parameters->options().user_set_print_symbol_counts()
3177       || parameters->options().cref())
3178     {
3179       if (this->cref_ == NULL)
3180 	this->cref_ = new Cref();
3181       this->cref_->add_object(obj);
3182     }
3183 
3184   return true;
3185 }
3186 
3187 // For each dynamic object, record whether we've seen all of its
3188 // explicit dependencies.
3189 
3190 void
3191 Input_objects::check_dynamic_dependencies() const
3192 {
3193   bool issued_copy_dt_needed_error = false;
3194   for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
3195        p != this->dynobj_list_.end();
3196        ++p)
3197     {
3198       const Dynobj::Needed& needed((*p)->needed());
3199       bool found_all = true;
3200       Dynobj::Needed::const_iterator pneeded;
3201       for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
3202 	{
3203 	  if (this->sonames_.find(*pneeded) == this->sonames_.end())
3204 	    {
3205 	      found_all = false;
3206 	      break;
3207 	    }
3208 	}
3209       (*p)->set_has_unknown_needed_entries(!found_all);
3210 
3211       // --copy-dt-needed-entries aka --add-needed is a GNU ld option
3212       // that gold does not support.  However, they cause no trouble
3213       // unless there is a DT_NEEDED entry that we don't know about;
3214       // warn only in that case.
3215       if (!found_all
3216 	  && !issued_copy_dt_needed_error
3217 	  && (parameters->options().copy_dt_needed_entries()
3218 	      || parameters->options().add_needed()))
3219 	{
3220 	  const char* optname;
3221 	  if (parameters->options().copy_dt_needed_entries())
3222 	    optname = "--copy-dt-needed-entries";
3223 	  else
3224 	    optname = "--add-needed";
3225 	  gold_error(_("%s is not supported but is required for %s in %s"),
3226 		     optname, (*pneeded).c_str(), (*p)->name().c_str());
3227 	  issued_copy_dt_needed_error = true;
3228 	}
3229     }
3230 }
3231 
3232 // Start processing an archive.
3233 
3234 void
3235 Input_objects::archive_start(Archive* archive)
3236 {
3237   if (parameters->options().user_set_print_symbol_counts()
3238       || parameters->options().cref())
3239     {
3240       if (this->cref_ == NULL)
3241 	this->cref_ = new Cref();
3242       this->cref_->add_archive_start(archive);
3243     }
3244 }
3245 
3246 // Stop processing an archive.
3247 
3248 void
3249 Input_objects::archive_stop(Archive* archive)
3250 {
3251   if (parameters->options().user_set_print_symbol_counts()
3252       || parameters->options().cref())
3253     this->cref_->add_archive_stop(archive);
3254 }
3255 
3256 // Print symbol counts
3257 
3258 void
3259 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
3260 {
3261   if (parameters->options().user_set_print_symbol_counts()
3262       && this->cref_ != NULL)
3263     this->cref_->print_symbol_counts(symtab);
3264 }
3265 
3266 // Print a cross reference table.
3267 
3268 void
3269 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
3270 {
3271   if (parameters->options().cref() && this->cref_ != NULL)
3272     this->cref_->print_cref(symtab, f);
3273 }
3274 
3275 // Relocate_info methods.
3276 
3277 // Return a string describing the location of a relocation when file
3278 // and lineno information is not available.  This is only used in
3279 // error messages.
3280 
3281 template<int size, bool big_endian>
3282 std::string
3283 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
3284 {
3285   Sized_dwarf_line_info<size, big_endian> line_info(this->object);
3286   std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
3287   if (!ret.empty())
3288     return ret;
3289 
3290   ret = this->object->name();
3291 
3292   Symbol_location_info info;
3293   if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
3294     {
3295       if (!info.source_file.empty())
3296 	{
3297 	  ret += ":";
3298 	  ret += info.source_file;
3299 	}
3300       ret += ":";
3301       if (info.enclosing_symbol_type == elfcpp::STT_FUNC)
3302 	ret += _("function ");
3303       ret += info.enclosing_symbol_name;
3304       return ret;
3305     }
3306 
3307   ret += "(";
3308   ret += this->object->section_name(this->data_shndx);
3309   char buf[100];
3310   snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
3311   ret += buf;
3312   return ret;
3313 }
3314 
3315 } // End namespace gold.
3316 
3317 namespace
3318 {
3319 
3320 using namespace gold;
3321 
3322 // Read an ELF file with the header and return the appropriate
3323 // instance of Object.
3324 
3325 template<int size, bool big_endian>
3326 Object*
3327 make_elf_sized_object(const std::string& name, Input_file* input_file,
3328 		      off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
3329 		      bool* punconfigured)
3330 {
3331   Target* target = select_target(input_file, offset,
3332 				 ehdr.get_e_machine(), size, big_endian,
3333 				 ehdr.get_e_ident()[elfcpp::EI_OSABI],
3334 				 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
3335   if (target == NULL)
3336     gold_fatal(_("%s: unsupported ELF machine number %d"),
3337 	       name.c_str(), ehdr.get_e_machine());
3338 
3339   if (!parameters->target_valid())
3340     set_parameters_target(target);
3341   else if (target != &parameters->target())
3342     {
3343       if (punconfigured != NULL)
3344 	*punconfigured = true;
3345       else
3346 	gold_error(_("%s: incompatible target"), name.c_str());
3347       return NULL;
3348     }
3349 
3350   return target->make_elf_object<size, big_endian>(name, input_file, offset,
3351 						   ehdr);
3352 }
3353 
3354 } // End anonymous namespace.
3355 
3356 namespace gold
3357 {
3358 
3359 // Return whether INPUT_FILE is an ELF object.
3360 
3361 bool
3362 is_elf_object(Input_file* input_file, off_t offset,
3363 	      const unsigned char** start, int* read_size)
3364 {
3365   off_t filesize = input_file->file().filesize();
3366   int want = elfcpp::Elf_recognizer::max_header_size;
3367   if (filesize - offset < want)
3368     want = filesize - offset;
3369 
3370   const unsigned char* p = input_file->file().get_view(offset, 0, want,
3371 						       true, false);
3372   *start = p;
3373   *read_size = want;
3374 
3375   return elfcpp::Elf_recognizer::is_elf_file(p, want);
3376 }
3377 
3378 // Read an ELF file and return the appropriate instance of Object.
3379 
3380 Object*
3381 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
3382 		const unsigned char* p, section_offset_type bytes,
3383 		bool* punconfigured)
3384 {
3385   if (punconfigured != NULL)
3386     *punconfigured = false;
3387 
3388   std::string error;
3389   bool big_endian = false;
3390   int size = 0;
3391   if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
3392 					       &big_endian, &error))
3393     {
3394       gold_error(_("%s: %s"), name.c_str(), error.c_str());
3395       return NULL;
3396     }
3397 
3398   if (size == 32)
3399     {
3400       if (big_endian)
3401 	{
3402 #ifdef HAVE_TARGET_32_BIG
3403 	  elfcpp::Ehdr<32, true> ehdr(p);
3404 	  return make_elf_sized_object<32, true>(name, input_file,
3405 						 offset, ehdr, punconfigured);
3406 #else
3407 	  if (punconfigured != NULL)
3408 	    *punconfigured = true;
3409 	  else
3410 	    gold_error(_("%s: not configured to support "
3411 			 "32-bit big-endian object"),
3412 		       name.c_str());
3413 	  return NULL;
3414 #endif
3415 	}
3416       else
3417 	{
3418 #ifdef HAVE_TARGET_32_LITTLE
3419 	  elfcpp::Ehdr<32, false> ehdr(p);
3420 	  return make_elf_sized_object<32, false>(name, input_file,
3421 						  offset, ehdr, punconfigured);
3422 #else
3423 	  if (punconfigured != NULL)
3424 	    *punconfigured = true;
3425 	  else
3426 	    gold_error(_("%s: not configured to support "
3427 			 "32-bit little-endian object"),
3428 		       name.c_str());
3429 	  return NULL;
3430 #endif
3431 	}
3432     }
3433   else if (size == 64)
3434     {
3435       if (big_endian)
3436 	{
3437 #ifdef HAVE_TARGET_64_BIG
3438 	  elfcpp::Ehdr<64, true> ehdr(p);
3439 	  return make_elf_sized_object<64, true>(name, input_file,
3440 						 offset, ehdr, punconfigured);
3441 #else
3442 	  if (punconfigured != NULL)
3443 	    *punconfigured = true;
3444 	  else
3445 	    gold_error(_("%s: not configured to support "
3446 			 "64-bit big-endian object"),
3447 		       name.c_str());
3448 	  return NULL;
3449 #endif
3450 	}
3451       else
3452 	{
3453 #ifdef HAVE_TARGET_64_LITTLE
3454 	  elfcpp::Ehdr<64, false> ehdr(p);
3455 	  return make_elf_sized_object<64, false>(name, input_file,
3456 						  offset, ehdr, punconfigured);
3457 #else
3458 	  if (punconfigured != NULL)
3459 	    *punconfigured = true;
3460 	  else
3461 	    gold_error(_("%s: not configured to support "
3462 			 "64-bit little-endian object"),
3463 		       name.c_str());
3464 	  return NULL;
3465 #endif
3466 	}
3467     }
3468   else
3469     gold_unreachable();
3470 }
3471 
3472 // Instantiate the templates we need.
3473 
3474 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3475 template
3476 void
3477 Relobj::initialize_input_to_output_map<64>(unsigned int shndx,
3478       elfcpp::Elf_types<64>::Elf_Addr starting_address,
3479       Unordered_map<section_offset_type,
3480       elfcpp::Elf_types<64>::Elf_Addr>* output_addresses) const;
3481 #endif
3482 
3483 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3484 template
3485 void
3486 Relobj::initialize_input_to_output_map<32>(unsigned int shndx,
3487       elfcpp::Elf_types<32>::Elf_Addr starting_address,
3488       Unordered_map<section_offset_type,
3489       elfcpp::Elf_types<32>::Elf_Addr>* output_addresses) const;
3490 #endif
3491 
3492 #ifdef HAVE_TARGET_32_LITTLE
3493 template
3494 void
3495 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3496 				     Read_symbols_data*);
3497 template
3498 const unsigned char*
3499 Object::find_shdr<32,false>(const unsigned char*, const char*, const char*,
3500 			    section_size_type, const unsigned char*) const;
3501 #endif
3502 
3503 #ifdef HAVE_TARGET_32_BIG
3504 template
3505 void
3506 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3507 				    Read_symbols_data*);
3508 template
3509 const unsigned char*
3510 Object::find_shdr<32,true>(const unsigned char*, const char*, const char*,
3511 			   section_size_type, const unsigned char*) const;
3512 #endif
3513 
3514 #ifdef HAVE_TARGET_64_LITTLE
3515 template
3516 void
3517 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3518 				     Read_symbols_data*);
3519 template
3520 const unsigned char*
3521 Object::find_shdr<64,false>(const unsigned char*, const char*, const char*,
3522 			    section_size_type, const unsigned char*) const;
3523 #endif
3524 
3525 #ifdef HAVE_TARGET_64_BIG
3526 template
3527 void
3528 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3529 				    Read_symbols_data*);
3530 template
3531 const unsigned char*
3532 Object::find_shdr<64,true>(const unsigned char*, const char*, const char*,
3533 			   section_size_type, const unsigned char*) const;
3534 #endif
3535 
3536 #ifdef HAVE_TARGET_32_LITTLE
3537 template
3538 class Sized_relobj<32, false>;
3539 
3540 template
3541 class Sized_relobj_file<32, false>;
3542 #endif
3543 
3544 #ifdef HAVE_TARGET_32_BIG
3545 template
3546 class Sized_relobj<32, true>;
3547 
3548 template
3549 class Sized_relobj_file<32, true>;
3550 #endif
3551 
3552 #ifdef HAVE_TARGET_64_LITTLE
3553 template
3554 class Sized_relobj<64, false>;
3555 
3556 template
3557 class Sized_relobj_file<64, false>;
3558 #endif
3559 
3560 #ifdef HAVE_TARGET_64_BIG
3561 template
3562 class Sized_relobj<64, true>;
3563 
3564 template
3565 class Sized_relobj_file<64, true>;
3566 #endif
3567 
3568 #ifdef HAVE_TARGET_32_LITTLE
3569 template
3570 struct Relocate_info<32, false>;
3571 #endif
3572 
3573 #ifdef HAVE_TARGET_32_BIG
3574 template
3575 struct Relocate_info<32, true>;
3576 #endif
3577 
3578 #ifdef HAVE_TARGET_64_LITTLE
3579 template
3580 struct Relocate_info<64, false>;
3581 #endif
3582 
3583 #ifdef HAVE_TARGET_64_BIG
3584 template
3585 struct Relocate_info<64, true>;
3586 #endif
3587 
3588 #ifdef HAVE_TARGET_32_LITTLE
3589 template
3590 void
3591 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3592 
3593 template
3594 void
3595 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3596 				      const unsigned char*);
3597 #endif
3598 
3599 #ifdef HAVE_TARGET_32_BIG
3600 template
3601 void
3602 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3603 
3604 template
3605 void
3606 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3607 				     const unsigned char*);
3608 #endif
3609 
3610 #ifdef HAVE_TARGET_64_LITTLE
3611 template
3612 void
3613 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3614 
3615 template
3616 void
3617 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3618 				      const unsigned char*);
3619 #endif
3620 
3621 #ifdef HAVE_TARGET_64_BIG
3622 template
3623 void
3624 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3625 
3626 template
3627 void
3628 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3629 				     const unsigned char*);
3630 #endif
3631 
3632 #ifdef HAVE_TARGET_32_LITTLE
3633 template
3634 Compressed_section_map*
3635 build_compressed_section_map<32, false>(const unsigned char*, unsigned int,
3636 					const char*, section_size_type,
3637 					Object*, bool);
3638 #endif
3639 
3640 #ifdef HAVE_TARGET_32_BIG
3641 template
3642 Compressed_section_map*
3643 build_compressed_section_map<32, true>(const unsigned char*, unsigned int,
3644 					const char*, section_size_type,
3645 					Object*, bool);
3646 #endif
3647 
3648 #ifdef HAVE_TARGET_64_LITTLE
3649 template
3650 Compressed_section_map*
3651 build_compressed_section_map<64, false>(const unsigned char*, unsigned int,
3652 					const char*, section_size_type,
3653 					Object*, bool);
3654 #endif
3655 
3656 #ifdef HAVE_TARGET_64_BIG
3657 template
3658 Compressed_section_map*
3659 build_compressed_section_map<64, true>(const unsigned char*, unsigned int,
3660 					const char*, section_size_type,
3661 					Object*, bool);
3662 #endif
3663 
3664 } // End namespace gold.
3665